
Oracle® Communications Billing and
Revenue Management
Configuring and Collecting Payments

Release 15.2
G35885-01
January 2026

Oracle Communications Billing and Revenue Management Configuring and Collecting Payments, Release 15.2

G35885-01

Copyright © 2017, 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

1 Running Payment Collection Utilities

About the Payment Collection Utilities 1

Running the pin_collect Utility to Collect BRM-Initiated Payments 1

When to Run the pin_collect Utility 2

Setting Start and End Dates for pin_collect 2

Running the pin_deposit Utility to Deposit BRM-Initiated Payments 3

When to Run pin_deposit 3

Using More Than One Payment Processor 3

2 Processing Credit Card and Debit Card Payments with Paymentech

About Credit Card Validation and Authorization 1

About Setting Up Payment Processing with Paymentech 2

Exchanging Connection Information with Paymentech 3

Information You Need from Paymentech 3

Information Paymentech Needs from You 3

Using SFTP for Batch Payment Transactions 5

Setting Up Authentication Between dm_fusa and Paymentech 5

Configuring Your SSH Client Configuration File 6

Sending Batch Payment Transactions Through SFTP 6

Using TCP/IP for Batch Payment Transactions 7

Configuring Online Payment Transactions 8

Configuring Paymentech Processing Performance 8

Handling Concurrent Online Paymentech Requests 9

Setting the Connection Timeout Length and Retries 9

Monitoring the Paymentech Connection 10

3 Paymentech Configuration Options

Adding Soft Descriptor Information to Customer Statements 1

Changing How BRM Handles Paymentech Authorization Return Codes 2

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page i of vii

Changing How BRM Handles Paymentech Address Validation Return Codes 3

Specifying the Batch Mode Encryption Key 3

Obtaining Card Type Indicator Information from Paymentech 4

Requiring Additional Protection Against Credit Card Fraud 4

Specifying the Maximum Number of Digits Allowed for CVV2 Verification 6

Enabling Paymentech Direct Debit Processing 6

4 Supported Paymentech Functionality

About Paymentech Account Verification 1

About Action and Response Reason Codes 1

About Stored-Credential Transactions 2

Supported Transaction Types 2

Payment Formats and Batch Processing 3

Paymentech and International Transactions 3

How Paymentech Manager Handles Electronic Check Processing 3

5 Configuring PINless Debit Payment Processing

About PINless Debit Payments 1

About PINless Debit Validation and Authorization 1

Limitations of PINless Debit Payments 2

Setting Up PINless Debit Processing 2

Enabling PINless Debit Payments in BRM 2

Identifying PINless Debit Payment Types 3

6 Setting Up Merchant Accounts

Setting Up Merchant Accounts 1

Specifying Merchant Accounts for the Payment DM 2

Using More Than One Merchant Name 2

7 Masking Credit Card Numbers by Using Tokens

Credit Card Tokenization 1

Replacing Credit Card Numbers with Tokens 2

Purging Old Credit Card Event and Audit Trail Objects 3

8 Testing Paymentech Credit Card Processing

About Testing Paymentech Credit Card Processing 1

Setting Up the Paymentech Simulator 2

Defining the Credit Card Functionality to Test 2

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page ii of vii

Using SFTP for Testing Batch Payment Transactions 3

Setting Up Authentication Between dm_fusa and answer_b 3

Configuring Your SSH Client Configuration File for answer_b 4

Testing Batch Payment Transactions Using SFTP 4

Using TCP/IP for Testing Batch Payment Transactions 5

Specifying an IP Address for the Paymentech Simulator 5

Returning Specific Values for Card Type Indicator 5

Running the Paymentech Simulators 6

Simulating Failed Credit Card Transactions 6

Resolving Failed Credit Card Transactions 6

9 Resolving Failed BRM-Initiated Payment Transactions

About Failed BRM-Initiated Payment Transactions 1

How BRM Records Transactions 2

Checking for Transaction Errors 3

Resolving Transaction Errors Manually 3

Resolving Failed Deposits and Conditional Deposits 4

Resolving Failed Refund Transactions 5

Reprocessing Failed Transactions in BRM 6

Resubmitting Transactions to Paymentech and BRM 6

Checking for Transactions in Paymentech Send Files 7

Checking Paymentech Transmission Log Files 8

Configuring Delay Intervals for Resolving Payments 8

Resolving Payments for Custom Pay Types 8

Troubleshooting Unresolvable Credit Card Transactions 9

Cannot Remove Checkpoints After Using an RFR File 9

Checkpoints Cleared but Payment Events Not Created 10

Paymentech Doesn't Have an RFR File and Never Received the Payment Batch 10

10

Processing Payment Batches in Billing Care

About Batches 1

Processing Lockbox Batches 2

Importing and Submitting Batch Payment Files into Billing Care Without Editing 2

Creating or Importing and Editing Batches 3

Working with Individual Records in Batches 3

Validating and Submitting Batches 4

Managing Batch Entries that Fail Validation 4

About Batch Templates 4

Sample Batch Templates 5

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page iii of vii

11

Allocating Payments

About Payment Allocation 1

About Allocating Payments Manually 2

Allocating Multiple Payments for the Same Bill 2

Allocating Payments Later 3

Working with Multiple Currency Types in Billing Care 3

Finding Bills by Due Amount 3

12

Processing Atypical Payments

Processing Overpayments and Underpayments 1

Processing Late or Missed Payments 1

Reversing Payments 1

Refunding Externally Initiated Payments 2

Configuring Unconfirmed Payment Processing 2

13

Configuring Payment Methods

About Payment Methods 1

Default Payment Methods 1

14

Setting Up Payment Installments

About Installments 1

About Defining the Terms for an Installment Plan 1

About Creating Installments for Customers 1

About Installment Status 2

About Partial Installment Payments 3

About Missed Installment Payments 3

About Canceling an Installment Schedule 3

Setting Up Installments on Your System 4

Applying Installment Charges 4

Updating an Installment Status 4

Customizing Installments 5

15

Customizing Payment Applications

Customizing the Date Format for Payment Center 1

Improved Performance of Searches for Payment Events in Payment Center 2

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page iv of vii

16

Implementing SEPA Payment Processing

About SEPA Payments 1

About Specifying SEPA Payment Information During Account Creation 2

About Registering the Mandate for SEPA Direct Debit Payments 2

About the Different Types of Mandates 2

Managing Customer's SEPA Payment Information 3

Loading Your Creditor Information into the BRM Database 3

Processing SEPA Payments 5

Creating SEPA Direct Debit Payment Requests 5

Creating SEPA Credit Transfer Payment Requests 5

Generating SEPA Request XML Files 6

Sending the SEPA Request XML Files to Your Bank to Collect Payment 6

Processing SEPA Response XML Files to Handle Failed Payment Transactions 7

Reversing an Erroneous Payment Collection 7

Using SEPA XML Messages to Exchange Customer's Payment Information 8

Configuring the pin_sepa Utility for Generating and Processing SEPA XML Files 8

17

Configuring Payment Fees

About Payment Fees 1

Creating Payment Fees in PDC 2

Creating Payment Fees in Pricing Center 3

18

Configuring Payment Incentives

About Payment Incentives 1

How BRM Creates Payment Incentives 1

How Payment Reversals Affect Payment Incentives 2

Enabling BRM for Payment Incentives 3

Creating a Payment Incentive Charge Offer 3

Creating Payment Incentives in Pricing Center 4

19

Configuring Top-Ups

About Standard Top-Ups 1

About Taxes Applied During Voucher Top-Ups 2

Performing Recurring Standard Top-Ups 2

Reversing Voucher Top-Ups 2

About Vouchers Having Noncurrency Balances with a Positive Impact 3

About Sponsored Top-Ups 3

About Sponsored Top-Up Groups 3

About Sponsored Top-Up Credit Limits 4

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page v of vii

Performing Automatic Sponsored Top-Ups 5

Tracking Sponsored Top-Up Adjustments 5

Canceling a Single Member's Sponsored Top-Ups 6

Topping Up Accounts in Customer Center 7

Changing the Default Top-up Payment Method 7

Turning off "Top-up Completed" Message 7

Canceling an Entire Group's Sponsored Top-Ups 7

Reinstating Sponsored Top-Ups 8

Voucher Top-Up Errors 8

20

Configuring Loans

About Loans 1

About Loan Thresholds 2

About Recovering Loans 2

Configuring Loans 2

Loading Your Loan Information into the BRM Database 3

Loan Configuration Examples 5

21

Managing Suspended Payments

About Suspending Payments 1

About the Payment Suspension Process 2

About Payment Suspense and Client Applications 3

Removing Unallocatable Payments from Suspense 4

Payment Suspension Guidelines and Restrictions 5

Configuring BRM for Payment Suspense 6

Enabling Payment Suspense in BRM 6

Creating a Payment Suspense Account 7

Configuring Suspense Reason Codes and Action Owner Codes 8

22

Configuring Payment Channels

About Payment Channel Information 1

Setting Up Payment Channel Information 1

Defining Payment Channel Information in BRM 1

Mapping Payment Channel IDs for BRM-Initiated Payments 2

Configuring Payment Channel IDs for Externally Initiated Payments 2

23

Customizing Payment Collection Dates for BRM-Initiated Payments

About Customizing Payment Collection Dates for BRM-Initiated Payments 1

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page vi of vii

About Configurable Payment Collection Dates and On-Purchase Billing 1

About Configurable Payment Collection Dates and Delayed Billing 3

24

Processing Payments in a Multischema System

Processing Payments in a Multischema System 1

25

Payment Utilities

load_pin_ach 1

pin_balance_transfer 2

pin_cc_migrate 2

pin_clean 4

pin_collect 4

pin_deposit 6

pin_installment_status_change 7

pin_installments 8

pin_recover 8

pin_sepa 10

A About Payment Statuses

About Payment Status A-1

Default Payment Status Codes A-1

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page vii of vii

About This Content

This guide describes how to collect payments in Oracle Communications Billing and Revenue
Management (BRM).

Audience

This guide is intended for operations personnel.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page i of i

1
Running Payment Collection Utilities

Learn how to use the pin_collect and pin_deposit utilities to collect and deposit your
customers' payments in Oracle Communications Billing and Revenue Management (BRM).

Topics in this document:

• About the Payment Collection Utilities

• Running the pin_collect Utility to Collect BRM-Initiated Payments

• Running the pin_deposit Utility to Deposit BRM-Initiated Payments

• Using More Than One Payment Processor

See also "Overview of Payments" in BRM Concepts.

About the Payment Collection Utilities
You use the following utilities to collect payments from your customers:

• pin_collect collects the balance due for bills that are paid by credit card or direct debit.

• pin_deposit deposits pre-authorized credit card payments and PINless debit payments
into your account.

The pin_collect utility performs credit card authorizations and payment deposits at the same
time. The pin_deposit utility only deposits credit card payments that have been pre-
authorized.

You typically run the pin_collect and pin_depost utilities in the same scripts that run other
billing utilities. See "Running Billing Scripts" in BRM Configuring and Running Billing.

If a payment fails, you can use the pin_clean utility and the pin_recover utility to resolve the
failure. See "Resolving Failed BRM-Initiated Payment Transactions" for information.

Running the pin_collect Utility to Collect BRM-Initiated Payments
The pin_collect utility collects payments for bills whose payment collection date is on the day
the utility is run or on the day before the utility is run. For example, if you run pin_collect on
01/01/23, payments are collected from 00:00:00 a.m. on 12/31/22 to 00:00:00 a.m. on
01/02/23.

Use the -start and -end parameters to collect payments on a range of dates.

Use the -rebill parameter to collect on any outstanding bills. Run this option in the weekly and
monthly billing scripts.

Use the -pay_type parameter to collect payments for only one payment method, such as credit
card or SEPA.

You can configure payment collection:

• To increase billing performance, you run multiple threads of the pin_collect utility. See
"Tuning the Number of Children for Billing Utilities" in BRM System Administrator's Guide.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 4

• By default, pin_collect does not collect amounts less than two dollars. To change the
minimum amount, see "Specifying the Minimum Payment to Collect" in BRM Configuring
and Running Billing.

For information about collecting payments for corrective bills, see "Billing Accounts By Using
the pin_make_corrective_bill Utility" in BRM Configuring and Running Billing.

For information about the pin_collect utility syntax, see "pin_collect".

When to Run the pin_collect Utility
Run the pin_collect utility at the following times:

• In the pin_bill_day script for all accounts. Run the pin_bill_accts utility before running the
pin_collect utility.

• In the pin_bill_week script with the -rebill option on all active accounts.

• In the pin_bill_month script with the -rebill option on all closed/inactive accounts.

Note

When you use multiple payment processors, you run this utility for each payment
processor. See "Using More Than One Payment Processor".

You can also run the pin_collect utility manually to rebill accounts from a specific date.

Setting Start and End Dates for pin_collect
When any of the following conditions are met, the pin_collect utility collects payments for 2
days: the day before the utility is run and the day on which the utility is run:

• The -start and -end parameters are not set (this is the default).

• The -start and -end parameters are set to the same value.

• The -start parameter is set to the current date, and the -end parameter is not set.

To collect payments only on the day you run pin_collect, set the -start parameter to 0. For
example:

pin_collect -start 0

You can also specify exact start and end dates, and you can specify the number of days before
the current date for the start and end time calculation. The pin_collect utility only processes
bills with a collection date within the start and end date range.

Note

For open item accounting, the end date of the bill is not used to determine whether the
bill falls within the specified range and qualifies for collection: only the start date is
used.

Chapter 1
Running the pin_collect Utility to Collect BRM-Initiated Payments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 4

Running the pin_deposit Utility to Deposit BRM-Initiated
Payments

The pin_deposit utility deposits pre-authorized credit card payments and PINless debit
payments into your account.

Pre-authorization occurs in two cases:

• When a customer specifies a credit card payment method.

• When a CSR issues a charge in Billing Care or Customer Center.

For credit cards, the pin_deposit utility searches for all pre-authorized but unpaid credit card
transactions made within the past 30 days (from yesterday), and then sends the credit card
authorization codes and the transaction dates to the credit card processor for depositing.

For direct debit, the pin_deposit utility searches for all unpaid PINless debit transactions, and
then sends the authorization codes, transaction dates, trace number, and method of payment
(MOP) to the debit network for depositing.

To increase billing performance, run multiple threads of the pin_deposit utility. See "Tuning
Billing Performance" in BRM System Administrator's Guide.

For information about the pin_deposit utility's syntax, see "pin_deposit".

When to Run pin_deposit
Run the pin_deposit utility daily as part of the pin_bill_day script.

You should run the pin_deposit utility daily because credit-card authorizations can expire. You
can deposit pre-authorized payments after the authorization has expired, but the transactions
cost more to process.

Note

When you use multiple payment processors, you run this utility for each payment
processor. See "Using More Than One Payment Processor".

To adjust performance, you can modify the scope of the search by using the -start and -end
parameters to change the starting and ending dates of the search.

Using More Than One Payment Processor
You can use more than one payment processing Data Manager (DM) simultaneously to collect
and validate payments. To use multiple payment processors, you must run the following utilities
for each payment processor you use:

• pin_collect

• pin_deposit

• pin_refund

These utilities are typically run by the following billing scripts:

Chapter 1
Running the pin_deposit Utility to Deposit BRM-Initiated Payments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 4

• pin_bill_day

By default, this script is scheduled to run pin_collect, pin_deposit, and pin_refund.

• pin_bill_week

By default, this script runs pin_collect.

• pin_bill_week

By default, this script runs pin_collect.

To modify the pin_bill* scripts to run the collect, deposit, and refund scripts for every payment
processor:

1. Go to the BRM_home/bin directory and open the pin_bill* utility in a text editor.

2. Find the entries for the billing utility and add new entries that specify the additional
payment processors.

For example, if you use dm_fusa and another payment processor, find these existing
entries:

pin_refund -active -pay_type 10003 -vendor fusa
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
...
pin_collect -inactive -pay_type 10003 -vendor fusa
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
...
pin_deposit -pay_type 10003 -vendor fusa
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
...

And add entries to run the utility for each payment processor:

pin_refund -active -pay_type 10003 -vendor fusa
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
pin_refund -active -pay_type 10003 -vendor new_vendor
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
...
pin_collect -inactive -pay_type 10003 -vendor fusa
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
pin_collect -inactive -pay_type 10003 -vendor new_vendor
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
...
pin_deposit -pay_type 10003 -vendor fusa
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
pin_deposit -pay_type 10003 -vendor new_vendor
IF %ERR% EQU 0 IF %ERRORLEVEL% NEQ 0 SET ERR=%ERRORLEVEL%
...

Note

There might be several sets of entries for each payment processor. Be sure to add
new entries for each set of existing entries.

Chapter 1
Using More Than One Payment Processor

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 4

2
Processing Credit Card and Debit Card
Payments with Paymentech

Learn how Oracle Communications Billing and Revenue Management (BRM) uses
Paymentech to process your customers' credit card and direct debit payments.

Topics in this document:

• About Credit Card Validation and Authorization

• About Setting Up Payment Processing with Paymentech

• Exchanging Connection Information with Paymentech

• Using SFTP for Batch Payment Transactions

• Using TCP/IP for Batch Payment Transactions

• Configuring Online Payment Transactions

• Configuring Paymentech Processing Performance

• Monitoring the Paymentech Connection

Note

The initials FUSA are sometimes used to represent Paymentech in BRM file names.
For example, the Paymentech Data Manager (DM) is named dm_fusa.

About Credit Card Validation and Authorization
Credit card validation validates a customer's address by checking the ZIP code and street
address. Credit card validation occurs during account creation, and when customers change
their credit card number. If you use the Address Verification System (AVS), Paymentech gives
you a discount for each credit card transaction charge.

Note

AVS supports addresses in the United States and Canada only. For information about
changing the AVS validation results, see "Changing How BRM Handles Paymentech
Address Validation Return Codes".

Credit card authorization validates the customer's credit card by checking the card number,
expiration date, credit limit, and so forth. Authorization occurs at the following times:

• At account creation, or when customers change their payment method to a credit card
payment.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 11

This type of authorization does not charge the customer's account balance. The payment
is recorded in the BRM database, and the balance in the account is adjusted, but the
deposit is made later by the "pin_deposit" utility.

• During billing, the pin_collect utility authorizes payments and deposits them.

• If there are charges during account creation, such as a purchase fee.

Credit card validation and authorization occur in the same transaction, but BRM handles one at
a time.

1. BRM sends a validation request with an authorization to charge $1.00.

Note

The validation process requires a monetary charge. BRM issues an authorization
for $1.00 so that only $1.00 is reserved on the customer's credit card if the AVS
request passes.

The credit card processor returns a validation code and an authorization code. BRM
ignores the authorization code and uses the validation code to determine whether the
address validation passed. For example, by default an address validation fails if the 5-digit
ZIP code is wrong.

Note

Because BRM ignores the authorization, the customer is not charged $1.00.

If the address validation fails, the next step, authorization, does not occur.

Note

If the Paymentech DM detects non-ASCII data in the address fields during the
validation step, the result of the validation request is ignored. This has the same
effect as not performing the validation check. This can occur when characters from
another language are sent.

2. BRM sends another validation request with an authorization to charge for an actual
amount, such as a purchase fee.

The credit card processor returns a validation code and an authorization code. This time,
BRM ignores the validation code and uses the authorization code to determine whether the
authorization passed.

About Setting Up Payment Processing with Paymentech
To enable BRM-initiated payment processing for Paymentech:

1. Install the Paymentech Manager software. You typically install this at the same time as the
rest of the BRM software. If you did not, see "Installing Individual BRM Components" in
BRM Installation Guide.

Chapter 2
About Setting Up Payment Processing with Paymentech

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 11

2. Contact Paymentech to establish a link with Paymentech. See "Exchanging Connection
Information with Paymentech".

3. Configure dm_fusa to send batch payment transactions to Paymentech through SFTP or
TCP/IP.

• For SFTP, see: Using SFTP for Batch Payment Transactions

• For TCP/IP, see: Using TCP/IP for Batch Payment Transactions

4. Configure dm_fusa to send online transactions to Paymentech through TCP/IP. See
"Configuring Online Payment Transactions".

5. Configure merchant accounts. See "Setting Up Merchant Accounts".

6. Set up BRM to process PINless debit payments. See "Configuring PINless Debit Payment
Processing".

7. Set up the Paymentech HeartBeat application. See "Monitoring the Paymentech
Connection".

8. Specify Paymentech configuration options; for example, enabling direct-debit processing
and enabling fraud protection. See "Paymentech Configuration Options".

9. Configure performance options. See "Configuring Paymentech Processing Performance".

10. Test the installation. See "Testing Paymentech Credit Card Processing".

Exchanging Connection Information with Paymentech
Before you can connect BRM to Paymentech, you need to exchange connection information.

Note

Even if you already use Paymentech for credit card processing, you must plan for a
setup and testing period for Paymentech direct debit.

Information You Need from Paymentech
You need the following information from Paymentech:

• The IP address and port for the Paymentech online server (the server used for creating
accounts) and batch server (the server used for handling regular payments).

• The presenter ID and password, and the submitter ID and password.

• Merchant account numbers for each currency you support. The same sets of merchant
account numbers can be used for both credit card and direct debit. See "Setting Up
Merchant Accounts".

Information Paymentech Needs from You
Table 2-1 lists the information that Paymentech needs from you.

Chapter 2
Exchanging Connection Information with Paymentech

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 11

Table 2-1 BRM Default Values for Paymentech

Paymentech Information BRM Default

The IP address and port number for the
machine running the Paymentech Data
Manager (dm_fusa).

None.

This is required only to use the Paymentech HeartBeat
application, which is integrated with the Paymentech Data
Manager. For more information, see "Monitoring the
Paymentech Connection".

Is this for an existing Presenter ID
(PID)?

No

What is the application software that
formats the file?

Written by in-house programmers

What is the communications software
that sends the file?

Customized by the software vendor

What is the online data communications
protocol used to send the online
authorization transaction?

TCP/IP Berkley Socket Interface

What is the batch data communications
protocol used to send the batch file?

TCP/IP Berkeley Socket Interface

What online format to use for sending
online authorizations?

For information about compatible Paymentech online
processing format specifications, see "Additional BRM
Software Requirements" in BRM Compatibility Matrix.

Will you load balance online
authorizations between Paymentech's
data centers, or will you use one data
center as primary and one as backup?

Primary and Backup

What batch format to use for sending
batch files?

For information about compatible Paymentech batch
processing format specifications, see "Additional BRM
Software Requirements" in BRM Compatibility Matrix.

Will you receive the batch reply file by
sending an RFR (Request For
Response) record or not?

1 Call (IA) - No RFR record sent to pick up the reply file.

Will you send authorizations separately
from deposits OR will you send
conditional deposits that will result in a
deposit upon authorization approval?

Separate authorizations and deposits and conditional
deposits.

What is the average size of your files be
in production?

(How many records/transactions?)

None.

This number should be based on your company's projected
customer account creation growth and billing rate.

What is the projected submission
schedule?

Daily.

Number of times per day? Once.

Chapter 2
Exchanging Connection Information with Paymentech

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 11

Table 2-1 (Cont.) BRM Default Values for Paymentech

Paymentech Information BRM Default

What Paymentech functionality do you
intend to test?

This list reflects a typical prepaid services company.

• Online Credit Card Authorization
• Online Electronic Check Processing (ECP) Verification
• PINless Direct Debit Purchase Authorizations
• Batch Electronic Check Processing (ECP) Validate &

Deposit
• Batch Deposits
• Batch Conditional Deposits (for authorization &

settlement)
• Batch Refunds
• Full AVS (Address Verification Service)
• Zip only AVS
• No AVS
• Visa CVV2
• Amex CID
• MasterCard CVC2
• Discover CID
• ECI Indicator (also called Transaction Type)
• International Currencies (specify)
• Merchant Descriptor (requires Risk approval)
• Switch/Solo Cards

Using SFTP for Batch Payment Transactions
You can configure the Paymentech Data Manager (dm_fusa) to use SFTP for sending batch
payment transactions to the Paymentech payment processor. Batch payment transactions
include batch payments, multiple verifications, multiple authorizations, deposits, and refunds.

To send batch payment transactions through SFTP, follow these steps:

• Setting Up Authentication Between dm_fusa and Paymentech

• Configuring Your SSH Client Configuration File

• Sending Batch Payment Transactions Through SFTP

Setting Up Authentication Between dm_fusa and Paymentech
Set up authentication between dm_fusa and Paymentech by generating a public key on the
dm_fusa machine and copying it to the Paymentech server. To test payment processing with
the Paymentech Simulator, also copy the public key to your Paymentech Simulator server.

To setup up authentication between dm_fusa and Paymentech:

1. Generate an RSA public key.

For example, this command generates an RSA public key with a key length of 4096 bits:

ssh-keygen -t rsa -b 4096

2. Copy the RSA public key to the Paymentech SFTP server:

ssh-copy-id -i pathPublicKey userName@hostNamePaymentech

Chapter 2
Using SFTP for Batch Payment Transactions

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 11

where:

• pathPublicKey is the path and file name of the public key generated in step 1.

• userName is name of the dm_fusa user.

• hostNamePaymentech is the host name of the Paymentech SFTP server.

3. Copy the RSA public key to the Paymetech Simulator server:

ssh-copy-id -i pathPublicKey userName@hostNameSimulator

where hostNameSimulator is the host name of the Paymentech Simulator server.

4. Verify the connection:

sftp -i pathPublicKey userName@hostName

where hostName with the appropriate server host name (Paymentech or the Simulator).

Configuring Your SSH Client Configuration File
Connect dm_fusa to the Paymentech SFTP server by setting parameters such as server, port,
algorithms, and ciphers in the SSH client configuration file, located at ~/.ssh/config.

On your dm_fusa machine, add entries to the SSH file to meet your business requirements.
For example:

Host CServer
 HostName SftpHost
 User UserName
 Port PortNumber
 IdentityFile pathPrivateKey
 #KexAlgorithms kexAlgorithms
 #Ciphers cipherNames
 #HostKeyAlgorithms hostKeyAlgorithms
 #MACs macAlgorithm
 #LogLevel DEBUG3
 #LogLevel VERBOSE

where:

• sftpHost:Host name of the Paymentech's SFTP server.

• userName: User name for accessing the Paymentech SFTP server.

• portNumber: SFTP port number for the Paymentech server.

• pathPublicKey: Path and file name of the private key that matches the public key you
generated in "Setting Up Authentication Between dm_fusa and Paymentech".

• kexAlgorithms: List of key exchange algorithms, in order of preference, separated by
commas.

• cipherNames: List of encryption algorithms for data transfer, separated by commas.

• hostKeyAlgorithms: List of public key algorithms the SSH server uses to authenticate itself
to the client, separated by commas.

• macAlgorithm: List of MAC algorithms for data verification, separated by commas.

Sending Batch Payment Transactions Through SFTP
You can configure the Paymentech DM (dm_fusa) to send batch payment transactions to the
Paymentech payment processor using SFTP. Batch payment transactions include batch

Chapter 2
Using SFTP for Batch Payment Transactions

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 11

payments, multiple verifications, multiple authorizations, deposits, and refunds. By default,
dm_fusa uses TCP/IP for batch payment transactions.

To send batch payment transactions through SFTP:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf).

2. Set the connection type between dm_fusa and Paymentech for batch payment
transactions:

- dm_fusa batch_proto sftp

3. If using SFTP for batch transactions, uncomment and configure the following entries:

- dm_fusa sftp_host hostName
- dm_fusa sftp_pkey_pwd passPhrase
- dm_fusa sftp_indir inputPath
- dm_fusa sftp_outdir outputPath
- dm_fusa sftp_rfrfile rfrFileName
- dm_fusa sftp_proc_pat pattern
- dm_fusa sftp_retrys retryValue
- dm_fusa sftp_retry_interval intervalValue

Table 2-2 describes the values to use with the pin.conf entries.

Table 2-2 Variables for the pin.conf Entries

Parameter Description

hostName The host section name in the SSH client configuration file.

passPhrase The SFTP private key passphrase. If omitted, the
passphrase is retrieved from the wallet.

inputPath The absolute path to the input directory where batch files
are uploaded using SFTP.

outputPath The absolute path to the output directory where response
files are downloaded using SFTP.

rfrFileName The name of the RFR file to retrieve from the output
directory. If this parameter is not specified, dm_fusa
downloads any unprocessed file found in remote output
directory.

pattern The extension appended to response files.

retryValue The number of times to check for a response file in the
remote output directory.

intervalValue The time interval, in seconds, to check for a response or
RFR file in the remote output directory.

4. Save your changes.

5. Stop and restart the Paymentech DM for the settings to take effect.

Using TCP/IP for Batch Payment Transactions
To send batch payment transactions through TCP/IP, follow these steps:

To connect dm_fusa to the Paymentech payment processor:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf).

2. Enable or disable TLS connections from dm_fusa to Paymentech:

Chapter 2
Using TCP/IP for Batch Payment Transactions

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 7 of 11

- dm_fusa fusa_tls_enabled 0|1

where 0 disables TLS, and 1 enables TLS. The default is 1.

3. Specify the connection type between dm_fusa and Paymentech for batch payment
transactions:

- dm_fusa batch_proto socket

4. Specify the Paymentech host name and port for batch payment transactions:

- dm_fusa batch_srvr batchSrvr
- dm_fusa batch_port batchPort

where batchSrvr and batchPort are the Paymentech TCP/IP server and port.

5. Save your changes.

6. Stop and restart the Paymentech DM for the settings to take effect.

Configuring Online Payment Transactions
You configure the Paymentech Data Manager (dm_fusa) to send online payment transactions
to the Paymentech payment processor using TCP/IP. Online payment transactions include
single authorization transactions and verification transactions.

To configure dm_fusa to send online payment transactions through TCP/IP, follow these steps:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf).

2. Enable or disable TLS connections from dm_fusa to Paymentech:

- dm_fusa fusa_tls_enabled 0|1

where 0 disables TLS, and 1 enables TLS. The default is 1.

3. Specify the server status for online payment transactions:

- dm_fusa online_proto socket|linkdown

where socket specifies that the online server is running, and linkdown specifies that the
online server is offline. The default is socket.

4. Specify the Paymentech host name and port for online payment transactions:

- dm_fusa online_srvr onlineSrvr
- dm_fusa online_port onlinePort

where:

• onlineSrvr is the IP address or host name of the Paymentech server for online
payment transactions.

• onlinePort is the port where Paymentech receives online payment transactions.

5. Save your changes.

6. Stop and restart the Paymentech DM for the settings to take effect.

Configuring Paymentech Processing Performance
Configure the following options:

• Handling Concurrent Online Paymentech Requests

Chapter 2
Configuring Online Payment Transactions

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 8 of 11

• Setting the Connection Timeout Length and Retries

To improve performance during account creation, see "Increasing Account Creation Speed
When Paymentech Is Offline" in BRM Managing Customers.

Handling Concurrent Online Paymentech Requests
You can increase billing performance by using the fusamux program. Because Paymentech
allows only a single connection per customer, the fusamux program takes multiple DM
backends and bundles them into a single connection. This enables BRM to process multiple
transactions and send them to Paymentech in a single connection.

Without fusamux, the Paymentech DM connects directly to Paymentech. When you use
fusamux, the Paymentech DM connects to the fusamux application, which in turn connects to
Paymentech. When you use fusamux, you must change entries in the Paymentech DM to
point to fusamux instead of pointing to Paymentech.

To configure the fusamux daemon:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf).

2. Edit the fusamux entries:

• Set the fusamux online_port and fusamux online_srvr entries to point to the
Paymentech online server IP address and port number.

• Set the fusamux_port entry to the port on which the fusamux daemon listens.

• Set the dm_fusa online_port entry to the port on which fusamux listens.

• Set the dm_fusa online_srvr entry to point to the fusamux IP address.

• Set the dm_fusa qm_n_be entry to a number between 4 and 8.

3. Save the file.

4. Stop and restart the Paymentech DM.

Setting the Connection Timeout Length and Retries
If you have problems connecting to Paymentech, increase the connection timeout length and
number of retries:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf).

2. Increase the number of times that dm_fusa retries a connection to Paymentech:

- dm_fusa connect_retrys value

The default is 2, but you can enter any number.

3. Change the amount of time, in seconds, that dm_fusa waits for a response from
Paymentech for online authorizations:

- dm_fusa fusa_timeout value

The default is 600.

Chapter 2
Configuring Paymentech Processing Performance

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 9 of 11

4. Change the amount of time, in seconds, that dm_fusa waits for a response from
Paymentech for batch scripts:

- dm_fusa fusa_batch_timeout value

The default is 600.

5. Save the file.

6. Stop and restart the Paymentech DM.

Monitoring the Paymentech Connection
The Paymentech HeartBeat application is a background process that checks the connectivity
between BRM and Paymentech. When the Paymentech DM successfully connects to
Paymentech, Paymentech acknowledges the connection by sending a HeartBeat message.
The Paymentech DM responds by sending back a HeartBeat message to Paymentech.

If Paymentech does not receive a response message from BRM within 120 seconds of sending
a request message, or if the response message is incorrect, Paymentech resets the
connection to a listen state. BRM handles this as a socket disconnect and recovers
accordingly. Errors are written to the BRM_home/sys/dm_fusa/dm_fusa.pinlog file.

Note

If BRM stops receiving HeartBeat messages and is in the middle of a transaction, the
connection does not disconnect.

To initialize the HeartBeat application, provide Paymentech with the IP address and port
number of the machine running the Paymentech Data Manager (dm_fusa). The HeartBeat
application runs automatically each time you process BRM-initiated payments.

The following entry is a typical HeartBeat request and response pair:

Received (20) chars: Heartbeat request [HO19999999813123258^M]
Sending Heartbeat response [HI19999999813123300^M]

If these entries are missing or are not continuous for the duration of the connection with
Paymentech, work with Paymentech to troubleshoot why the connection was lost or the
HeartBeat application was not enabled from their end.

Note

If a connection is made between the DM and Paymentech, and Paymentech does not
initiate the HeartBeat messages, BRM assumes there is no HeartBeat application
support and continues with payment processing as normal.

If an error occurs with the HeartBeat application during payment simulation, an error message
similar to the following is written to the BRM_home/apps/fusa_server/answer_s.pinlog file:

Received (20) chars: Heartbeat response Validation failed in process_it() :
HI19999999813123300^M

Chapter 2
Monitoring the Paymentech Connection

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 10 of 11

For this message to be logged, the payment processing simulator configuration file
(BRM_home/apps/fusa_server/pin.conf) must contain the following entries:

- answer_s loglevel 3
- answer_s logfile answer_s.pinlog

For more information, see "Testing Paymentech Credit Card Processing".

If a socket disconnect occurs with the payment processing simulator and no online
transactions are occurring, errors similar to the following are written to the answer_s.pinlog
file:

E Tue Aug 08 10:51:24 2006 elm dm_fusa:2994 qbe_fusa.c(1.13):645
1:elm:dm_fusa:2991:1:0:1155059471:0
Socket read error in dm_fusa_respond_heartbeat() recv() returned (0)
E Tue Aug 08 10:51:24 2006 elm dm_fusa:2994 qm_back.c(7):299
1:elm:dm_fusa:2991:1:0:1155059471:0
Error(7) processing heartbeat monitor fd(5)

Chapter 2
Monitoring the Paymentech Connection

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 11 of 11

3
Paymentech Configuration Options

Learn how to configure the way that Paymentech processes credit card and direct debit data in
Oracle Communications Billing and Revenue Management (BRM).

BRM includes an integration with the Paymentech payment card processor.

Note

The initials FUSA are sometimes used to represent Paymentech in BRM file names.
For example, the Paymentech Data Manager (DM) is named dm_fusa.

Topics in this document:

• Adding Soft Descriptor Information to Customer Statements

• Changing How BRM Handles Paymentech Authorization Return Codes

• Changing How BRM Handles Paymentech Address Validation Return Codes

• Specifying the Batch Mode Encryption Key

• Obtaining Card Type Indicator Information from Paymentech

• Requiring Additional Protection Against Credit Card Fraud

• Enabling Paymentech Direct Debit Processing

Adding Soft Descriptor Information to Customer Statements
You can use soft descriptors to add information to your customers' credit card or checking
account statements, including:

• Your "doing business as" (DBA) name

• The product or charge offer name

• A customer service phone number (instead of your headquarters' city)

Visa gives a discount, the Visa PS2000 Direct Marketing interchange rate, to companies that
provide a customer service number in this manner.

An asterisk separates the DBA and product names on the customer's statement. The entry is
truncated on the statement if it is longer than 22 characters (including spaces). In this 22-
character-maximum line, the asterisk delimiter can appear in positions 4, 8, or 13.

To add soft descriptor information to your customers' statements:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf).

2. Turn on soft descriptors by changing the descriptor flag value to 1:

- dm_fusa sd_descriptor_flag 1

3. Specify the soft descriptor information in the following entries:

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 7

- dm_fusa sd_merchantName_dba DBA
- dm_fusa sd_merchantName_pdt productName
- dm_fusa sd_merchantName_phone phoneNumber

where:

• merchantName is the merchant name. It must match the value set in the CM pin.conf
file's merchant entry.

• DBA is your "doing business as" name that the customer knows you by.

• productName is the name of your product.

• phoneNumber is the phone number for your customer support line.

For example, if the merchant name is psi, the DBA name is BRM, the product name is
InternetSVC, and the customer service number is 800-555-1234, you would use the
following entries:

- dm_fusa sd_psi_dba BRM
- dm_fusa sd_psi_pdt InternetSVC
- dm_fusa sd_psi_phone 800-555-1234

4. Change the other related entries according to the instructions in the file.

5. Save and close the file.

6. Stop and restart the Paymentech DM.

To create multiple DBA names, charge offer names, and phone number entries, you must
customize the PCM_OP_PYMT_POL_PRE_COLLECT policy opcode. See "Customizing the
Minimum Amount to Charge" in BRM Opcode Guide.

Changing How BRM Handles Paymentech Authorization Return
Codes

The Paymentech authorization codes BRM uses are listed in BRM_home/sys/dm_fusa/
fusa_codes. This file maps Paymentech authorization codes to BRM result codes.

The fusa_codes file is not a complete list, but it includes the most common codes returned by
Paymentech. If a Paymentech code is not included in the list, it is mapped to a hard decline.

You can change or add new mappings by editing the fusa_codes file.

Note

You can map a Paymentech code to any BRM result code except CHECKPOINT.

1. Open BRM_home/sys/dm_fusa/fusa_codes.

2. Use the instructions in the file to edit it.

3. Save the file.

4. Stop and restart the Paymentech DM.

Chapter 3
Changing How BRM Handles Paymentech Authorization Return Codes

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 7

Changing How BRM Handles Paymentech Address Validation
Return Codes

Paymentech provides return codes when verifying customer addresses. AVS validates only
credit cards with addresses in the United States and Canada. To change how BRM responds
to validation return codes, customize the PCM_OP_PYMT_POL_VALIDATE policy opcode.
See "Processing Paymentech Address Validation Return Codes" in BRM Opcode Guide.

Specifying the Batch Mode Encryption Key
If you process multiple credit card transactions simultaneously, batch mode processing uses
temporary send and receive files to capture records to and from Paymentech. To prevent any
misuse of the temporary batch files, sensitive data such as the card number and security code
is encrypted.

You specify the encryption method and key in the Paymentech configuration file. The default
encryption method is OZT. For more information, see "Encrypting Data" in BRM Developer's
Guide.

Note

Change the encryption key regularly. Before changing the encryption key, ensure that
all pin_recover operations using the -rfr and -resubmit parameters that depend on
the current encryption key are completed.

To specify the encryption key:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf) in a text
editor.

2. Edit the -crypt entry:

- crypt Encrypt_method| BRM_home/lib/Encryption_library "Secret_key"

where:

• Encrypt_method is the type of encryption method, which is either aes or ozt.

• Encryption_library is the path and file name of the encryption library. The prefix for the
library is lib for Linux or null "" for Windows. The extension for the library is .so for
Linux and .dll for Windows.

• Secret_key is your encrypted AES or OZT key.

For example:

- crypt ozt|BRM_home/lib/libpin_crypt_ozt4dm64.so "&ozt|encryptedKey"

Note

You can copy and paste the key, or you can type it.

3. Save and close the file.

Chapter 3
Changing How BRM Handles Paymentech Address Validation Return Codes

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 7

4. Stop and restart the Paymentech DM.

Obtaining Card Type Indicator Information from Paymentech
You can configure BRM to request Card Type Indicator (CTI) details from Paymentech, which
specify the type of card that consumers use for payments.

To set up dm_fusa to request CTI details during account creation with online and batch
transactions, customize the PCM_OP_PYMT_POL_SPEC_VALIDATE and
PCM_OP_PYMT_POL_PRE_COLLECT policy opcodes according to the comments provided
in the source files. When Paymentech returns CTI details, BRM stores them in the
PIN_FLD_TYPE_STR field of /event/billing/charge/cc and /event/billing/validate/cc objects
in the BRM database.

Note

• Paymentech supports two versions of CTI records: 01 and 02. BRM supports
version 02 because it is the superset of version 01.

• Batch transactions are used only for deposits and conditional deposits.

See "BRM-Initiated Payment Processing" in BRM Opcode Guide for more information.

If BRM sends the Format Indicator and the MOP does not equal AX, CR, CZ, DD, DI, IM, JC,
MC, MR, VI, or VR, Paymentech rejects the transaction with Response Reason Code 241
(Illegal Action).

If it sends the Format Indicator and the Action Code does not equal AU, BI, PP, or VF,
Paymentech rejects the transaction with Response Reason Code 225 (Invalid Field Data).

If this Format Indicator is sent, the MOP equals AX, and the Action Code does not equal PP,
Paymentech rejects the with Response Reason Code 225 (Invalid Field Data).

Since action code PP is not used in BRM, customizations enabling the Card Type Indicator
must ensure that CTI is not sent for American Express Cards.

Requiring Additional Protection Against Credit Card Fraud
Paymentech offers additional fraud prevention using Visa CVV2 numbers and American
Express CID numbers.

By default, the CVV2 and CID numbers are considered to be optional when CSRs add or
change a customer's credit card information. To require the CVV2 or CID number as part of
account creation, use the pin_bus_params utility to enable the CidRequired and
Cvv2Required business parameters. For information about this utility, see "pin_bus_params"
in BRM Developer's Guide.

Chapter 3
Obtaining Card Type Indicator Information from Paymentech

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 7

Note

The CVV2 and CID numbers are stored in BRM with a NULL value for security
reasons. If you have the Cvv2Required business parameter entry enabled, the
information is sent directly to Paymentech for validation without being stored in the
database. (Even if your Connection Manager (CM) does not require this additional
fraud prevention, Paymentech still accepts the information if it is sent).

To require CVV2 and CID numbers:

1. Go to BRM_home/sys/data/config.

2. Use the following command to create an editable XML file from the accounts receivable
instance of the /config/business_params object:

pin_bus_params -r BusParamsAR bus_params_AR.xml

This command creates an XML file named bus_params_AR.xml.out in your current
directory. If you do not want this file in your current directory, specify the path as part of the
file name.

3. In bus_params_AR.xml.out, set CidRequired and Cvv2Required to enabled:

<CidRequired>enabled</CidRequired>

<Cvv2Required>enabled</Cvv2Required>

The default value for both of the above business parameters is disabled.

Caution

BRM uses the XML in this file to overwrite the existing instance of the /config/
business_params object. Use care when updating parameters in the file.

4. Save and exit the file.

5. Rename the bus_params_AR.xml.out file to bus_params_AR.xml.

6. Use the following command to load your changes into the /config/business_params
object:

pin_bus_params bus_params_AR.xml

You should run this command from the BRM_home/sys/data/config directory, which
includes support files used by the utility. To run it from a different directory, see
"pin_bus_params" in BRM Developer's Guide.

7. Read the object with the testnap utility or the Object Browser to verify that all fields are
correct.

For general instructions on using testnap, see "Using the testnap Utility to Test BRM" in
BRM Developer's Guide. For information on how to use Object Browser, see "Reading
Objects" in BRM Developer's Guide.

The new value is effective immediately. You do not need to restart the CM.

Chapter 3
Requiring Additional Protection Against Credit Card Fraud

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 7

Specifying the Maximum Number of Digits Allowed for CVV2 Verification
By default, Customer Center and BRM accept a maximum of three CVV2 digits when
validating a customer's credit card.

To change the maximum number of CVV2 digits that can be entered, perform the following:

• For Customer Center: Use the Configurator application provided with Customer Center
SDK to modify the maximum number of CCV2 digits allowed by Customer Center. You
enter the information in the CVV2 Number - maximum digits allowed field of the
Payment Configurator.

• For BRM server: Customize the PCM_OP_CUST_POL_VALID_PAYINFO policy opcode to
validate the number of digits passed in the PIN_FLD_SECURITY_ID input flist field of the
PIN_FLD_CC_INFO array.

Enabling Paymentech Direct Debit Processing
Depending on the choices made during installation, the settings for direct debit might not be
turned on. (Turned off is the default.)

To enable direct debit processing:

1. Open the Connection Manager (CM) configuration file (BRM_home/sys/cm/pin.conf).

2. Change the value of dd_validate to 1 to enable direct debit validation:

For example:

- fm_pymt_pol dd_validate 1

3. Save and exit the file.

4. Go to BRM_home/sys/data/config.

5. Use the following command to create an editable XML file from the accounts receivable
instance of the /config/business_params object:

pin_bus_params -r BusParamsAR bus_params_AR.xml

This command creates an XML file named bus_params_AR.xml.out in your current
directory. If you do not want this file in your current directory, specify the path as part of the
file name.

6. In bus_params_AR.xml.out, set DDcollect to enabled:

<DDcollect>enabled</DDcollect>

Caution

BRM uses the XML in this file to overwrite the existing instance of the /config/
business_params object. Use care when updating parameters in the file.

7. In bus_params_AR.xml.out, set DDRevalidationInterval to the number of seconds
applicable:

<DDRevalidationInterval>value</DDRevalidationInterval >

The default value is 3600 seconds (one hour).

Chapter 3
Enabling Paymentech Direct Debit Processing

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 7

8. Save and exit the file.

9. Rename the bus_params_AR.xml.out file to bus_params_AR.xml.

10. Use the following command to load your changes into the /config/business_params
object:

pin_bus_params bus_params_AR.xml

You should run this command from the BRM_home/sys/data/config directory, which
includes support files used by the utility. To run it from a different directory, see
"pin_bus_params" in BRM Developer's Guide.

11. Read the object with the testnap utility or the Object Browser to verify that all fields are
correct.

For general instructions on using testnap, see "Using the testnap Utility to Test BRM" in
BRM Developer's Guide. For information on how to use Object Browser, see "Reading
Objects" in BRM Developer's Guide.

You do not need to restart the CM to enable this entry.

Chapter 3
Enabling Paymentech Direct Debit Processing

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 7 of 7

4
Supported Paymentech Functionality

Learn how Oracle Communications Billing and Revenue Management (BRM) supports
Paymentech functionality such as account verification and batch processing.

Topics in this document:

• About Paymentech Account Verification

• About Stored-Credential Transactions

• Supported Transaction Types

• Payment Formats and Batch Processing

• Paymentech and International Transactions

• How Paymentech Manager Handles Electronic Check Processing

About Paymentech Account Verification
BRM supports Paymentech's Account Verification feature. Paymentech recommends the use
of Account Verification to differentiate validation requests from authorization requests. This is
because Visa imposes a penalty for all authorization requests that are neither deposited nor
reversed.

Account Verification supports the following Paymentech credit-card payment methods:

• VI for Visa

• MC for MasterCard

Account Verification supports EC for direct debit cards in the United States and Canada.

About Action and Response Reason Codes
BRM sends the following Action Codes to indicate the type of service Paymentech must
perform on the transaction:

• To verify a Paymentech-supported direct debit transaction, BRM sends the action code LO
and a transaction amount of $0.00. Paymentech validates the transaction against various
validation files. If account verification is successful, Paymentech responds with Response
Reason Code 101 (Validation passed Paymentech negative file and data edit check).

• To verify a direct debit transaction against a third-party negative file for United States ECP,
BRM sends the action code VO and a transaction amount of $0.00. If account verification
passes, Paymentech responds with Response Reason Code 102 (Account verification
Passed external negative file).

• To verify the account for VISA or MasterCard, BRM sends the action code VF and a
transaction amount of $0.00. If account verification is successful, Paymentech responds
with Response Reason Code 104 (No Reason to Decline).

For more information, see the Paymentech documentation.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 4

About Stored-Credential Transactions
Credit card networks, such as VISA, MasterCard, Diners, Discover, JCB, and American
Express, support the stored credential framework, which allows merchants to use stored
credentials for transactions. A stored credential is a cardholder's payment information, such as
an account number or a payment token, that is stored by a merchant or its agent, a payment
facilitator, or a staged digital wallet operator for processing future transactions. Paymentech
card processors also support customer-initiated or merchant-initiated transactions with stored
credentials.

BRM supports payment transactions with stored credentials for VISA, MasterCard, Diners,
Discover, JCB, and American Express cards. You can also customize BRM to support stored-
credential transactions for other card networks. When VISA, MasterCard, Diners, Discover,
JCB, and American Express cards are used for payments, the PCM_OP_PYMT_COLLECT
opcode sends the following information required for card transactions to the Paymentech Data
Manager (dm_fusa) and stores the responses received from the Paymentech DM for future
transactions:

• Type of charge, such as recurring, one-time, or installment

• Transaction type

• Information on whether the card details are stored for future use

• A unique ID (TXID) obtained from a previous verify/charge transaction of the same type

You can override the information sent to the Paymentech DM based on your business
requirements. If you do not want to store credentials for future transactions, you can remove
this information from the input passed to the PCM_OP_PYMT_COLLECT opcode. See
"Storing Card Credentials for Future Transactions" in BRM Opcode Guide.

For information about purging card credentials, see "Purging Card Credentials" in BRM
Opcode Guide.

Supported Transaction Types
BRM supports the following transaction types to describe the circumstances under which a
transaction takes place.

• A transaction type 1 indicates a single mail/telephone order transaction where the
cardholder is not present at a sales location and completes the sale through the phone or
mail. The transaction is not for recurring services and does not include sales that are
processed through an installment plan.

• A transaction type 2 indicates a recurring transaction that represents an arrangement
between a cardholder and a sales location where transactions are going to be on a
periodic basis.

• A transaction type 7 indicates a channel encrypted transaction between a cardholder and a
seller. The transaction was completed through the internet, using a form of Internet security
such as Secure Sockets Layer (SSL) but authentication was not performed.

The BRM Paymentech Manager Configuration file stores "" (blank) as the default value for the
transaction type field. Configure the BRM_home/sys/dm_fusa/pin.conf configuration file to
provide the required transaction type.

For information on transaction types in the online processing detail record, see the
Paymentech documentation.

Chapter 4
About Stored-Credential Transactions

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 4

Payment Formats and Batch Processing
Paymentech batch processing supports the following:

• A refund file can be in 120-byte format, even if the corresponding authorization/deposit
was completed in 96-byte format.

• The Request for Response (RFR) header record must be in the same byte format as the
response file. That is, to pick up a 96-byte response file, Paymentech expects a 96-byte
RFR header record; to pick up a 120-byte response file, Paymentech expects a 120-byte
RFR header record.

Consider the following points about batch processing functionality:

• If you use the 120-byte message format, you must complete the certification for batch
processing for Paymentech before you allow customers to log in to the production system.
For more information about obtaining the certification, see the Paymentech website.

• For the UK Domestic Maestro (Switch/Solo) card (MOP = SW) with batch processing
functionality, Paymentech expects the card issue date and the issue number (if present) in
the UK Domestic Maestro extension record.

• BRM does not support creating accounts by using UK Domestic Maestro (Switch/Solo)
card type. For existing subscribers, transactions other than the refund (Action Code = RF)
are not supported.

• To enhance your existing payment processing with Paymentech's Account Verification
feature, before doing so, ensure that all preauthorized payments are deposited or
reversed.

For more information about Paymentech's 120-byte batch format, see the Paymentech
documentation.

Paymentech and International Transactions
You can use Paymentech for credit card processing transfers outside the United States.
Paymentech supports different currencies for different credit cards.

The Paymentech Address Verification System (AVS), which verifies customer addresses at
time of purchase, is turned off if any non-ASCII encoding is entered in the address fields. You
can customize the use of AVS further by changing some policy opcodes.

Paymentech supports only US and Canadian direct debit accounts. The routing number must
be 9 digits and the checking account number can be up to 17 digits.

How Paymentech Manager Handles Electronic Check
Processing

BRM Paymentech Manager processes all electronic check processing (ECP) transactions in
accordance with National Automated Clearing House Association (NACHA) operating rules.

BRM Paymentech Manager provides Account Verification functionality for transactions in batch
mode from any custom client to Paymentech. For more on Account Verification functionality
and the support for online transactions, see "About Paymentech Account Verification ".

Valid entries for ECP Authorization Method are:

Chapter 4
Payment Formats and Batch Processing

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 4

• A. Accounts Receivable. When ECP Authorization Method is set to A, values for Check
Serial Number and Image Reference Number are mandatory.

• I. Internet.

• P. Point of Purchase. When ECP Authorization Method is set to P, values for Check
Serial Number, Terminal City, Terminal State, and Image Reference Number are
mandatory.

• T. Telephone.

• W. Written.

BRM Paymentech Manager supports these authorization method values and the
corresponding information as required by Paymentech.

If you customize electronic check processing with Paymentech, when ECP Authorization
Method is set to A or P:

• Connection Manager ignores any input you provide in the fields that Paymentech
mandates for Check Serial Number, Terminal City, Terminal State, and Image
Reference Number.

• The Check Serial Number, Terminal City, Terminal State, and Image Reference
Number mandatory fields are blank in the input BRM Paymentech Data Manager receives
from Connection Manager.

In BRM, when you customize electronic check processing for end-to-end payment operations
with Paymentech, avoid setting ECP Authorization Method to A or P.

Chapter 4
How Paymentech Manager Handles Electronic Check Processing

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 4

5
Configuring PINless Debit Payment
Processing

Learn how Oracle Communications Billing and Revenue Management (BRM) uses
Paymentech to process PINless debit payment transactions.

Topics in this document:

• About PINless Debit Payments

• About PINless Debit Validation and Authorization

• Limitations of PINless Debit Payments

• Setting Up PINless Debit Processing

About PINless Debit Payments
You can configure BRM to support PINless debit payments from your customers. PINless debit
payments are debit card payments made without the card's magnetic stripe or your customer's
PIN. Supporting PINless debit payments can reduce your transaction processing costs,
because transactions are handled by domestic debit networks that tend to have lower fees
than Visa, MasterCard, and other brands.

In BRM, these payments are processed through Paymentech as PINless debit BillPay.

About PINless Debit Validation and Authorization
BRM validates all debit card payments using Paymentech's Account Verification functionality.
For more information, see "About Paymentech Account Verification ".

BRM authorizes both online and batch PINless debit payments by sending a Purchase
Authorization (PA) request to Paymentech that includes the following:

• Action code set to PA

• Method of Payment (MOP) set to DP

• (For online only) Format indicator set to 02, with the billing reference number set to the
customer's account number

• (For batch only) Product record set to PDE001

Paymentech checks if the customer's account has enough funds and, if it does, debits the
customer's account.

The response from Paymentech includes the MOP set to the PINless debit network and a trace
number, which BRM then stores in the /event/billing/payment/cc object. When pin_deposit
is run, it includes both the MOP the PINless Debit transaction was processed as and the trace
number in the deposit request it sends to Paymentech.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 3

Limitations of PINless Debit Payments
Before configuring BRM to support PINless debit payments, consider the following limitations:

• Tokenization is not supported for PINless debit payment transactions. As a result, if a card
number has already been tokenized in BRM, it cannot be changed to a PINless debit
payment method.

• The Card Type Indicator (CTI) cannot be sent with PINless debit transactions.

• Stored credentials are not supported with PINless debit transactions.

• Refunds are not supported with PINless debit transactions.

Setting Up PINless Debit Processing

Note

Before Paymentech can start processing PINless debit transactions, your debit
network must approve your merchant account and add all of your payment channels.

To set up BRM to support PINless debit payment transactions, do the following:

1. Enable the PINlessDebitProcessing business parameter in BRM. See "Enabling PINless
Debit Payments in BRM".

2. Contact your Merchant Services Representative at Paymentech to have them enable
PINless BIN File Management for your account.

3. Customize the PCM_OP_CUST_POL_PREP_PAYINFO policy opcode to identify PINless
debit payment types. See "Identifying PINless Debit Payment Types".

Enabling PINless Debit Payments in BRM
To enable BRM to collect payments through PINless direct debit, use the pin_bus_params
utility to change the PINlessDebitProcessing business parameter. For information about the
utility's syntax and parameters, see "pin_bus_params" in BRM Developer's Guide.

To enable the collection of PINless debit payments:

1. Go to BRM_home/sys/data/config.

2. Create an XML file from the /config/business_params object:

pin_bus_params -r BusParamsAR bus_params_AR.xml

3. In the file, set the <PINlessDebitProcessing> element to enabled:

<PINlessDebitProcessing>enabled</PINlessDebitProcessing>

4. Save the file as bus_params_AR.xml.

5. Load the XML file into the BRM database:

pin_bus_params bus_params_AR.xml

6. Stop and restart the CM.

Chapter 5
Limitations of PINless Debit Payments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 3

Identifying PINless Debit Payment Types
BRM determines whether a payment card supports PINless debit transactions by reading the
first character in the /payinfo/cc object's PIN_FLD_TYPE_STR field. By default, this field is not
set by BRM. You must customize the PCM_OP_CUST_POL_PREP_PAYINFO policy opcode
to identify whether a payment card supports PINless debit and then set the
PIN_FLD_TYPE_STR in /payinfo/cc appropriately.

To identify and mark PINless debit payment types, customize the
PCM_OP_CUST_POL_PREP_PAYINFO policy opcode to do the following:

1. Validate that the PIN_FLD_TYPE_STR field in the /payinfo/cc object is not already
tokenized.

If the field contains a token, it cannot be changed to a PINless debit payment type. The
customer's debit card must be re-registered to be used for PINless debit transactions.

2. Customize the fm_cust_pol_is_pinless_debit() function to use the Paymentech BIN files
to determine whether a payment card supports PINless debit.

3. Customize the fm_cust_pol_is_pinless_debit() function to return true when the card is
PINless debit and false when it is not.

Depending on the value returned by fm_cust_pol_is_pinless_debit(), the policy opcode
sets the /payinfo/cc object's PIN_FLD_TYPE_STR field as follows:

• If True is returned, the first character of the PIN_FLD_TYPE_STR output flist field is
set to Y.

• If False is returned, the first character of the PIN_FLD_TYPE_STR output flist field is
set to N.

For more information about the PCM_OP_CUST_POL_PREP_PAYINFO policy opcode, see
"Customizing Payment Method Data Preparation" in BRM Opcode Guide.

Chapter 5
Setting Up PINless Debit Processing

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 3

6
Setting Up Merchant Accounts

Learn how to set up merchant accounts for BRM-initiated payments in Oracle Communications
Billing and Revenue Management (BRM). Payment processors, such as Paymentech, use
merchant accounts to identify the companies who send them payments.

Topics in this document:

• Setting Up Merchant Accounts

• Specifying Merchant Accounts for the Payment DM

• Using More Than One Merchant Name

Setting Up Merchant Accounts
To manage BRM-initiated payments, a payment processor, such as Paymentech, creates a
merchant account for your company. For example, your account might be assigned the
merchant account number 050505. If you accept payments in multiple currencies, a payment
processor creates an account number for each currency.

When you send payments to a payment processor, you need to send them the merchant
account number so they can determine where to deposit your BRM-initiated payments. To do
so, you configure the merchant account number in the configuration file for the Data Manager
(DM) that sends the payment request to the payment processor:

- dm_fusa mid_ispname_840 050505

This entry maps the merchant ID (mid_ispname_840) with the merchant account number
(050505). The merchant ID is a combination of the merchant name (ispname) with the
currency ID (840). You need to load merchant names into the BRM database.

To load merchant names into the BRM database, you edit the pin_ach file and load it by using
the load_pin_ach utility. An entry in the pin_ach file includes the merchant name:

fusa 0.0.0.1 /payment -1 ispname 0

If you use multiple currencies, you are given multiple merchant account numbers. You
configure multiple entries in the DM pin.conf file, for example:

- dm_fusa mid_ispname_840 050505
- dm_fusa mid_ispname_250 050506
- dm_fusa mid_ispname_276 050507

You specify merchant names and the payment processors that process your BRM-initiated
payment transactions for the entire system. You can specify any number of merchant ID and
Merchant account number pairs.

To load merchant names into the BRM database:

1. Edit the pin_ach file in BRM_home/sys/data/pricing/example. The pin_ach file includes
examples and instructions.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 3

Note

The default merchant name used by each payment processor is the first merchant
name listed for the payment processor.

The file includes this entry for Paymentech:

fusa 0.0.0.1 /payment -1 test 0

where:

• fusa is the name of the payment processor.

• 0.0.1.1 /payment -1 is a routing POID used to identify the database where the
payment processor DM runs. The object type and ID (/payment -1) are not significant.

• test is the merchant name.

Edit this field to specify your merchant name. This name must match the merchant
name entry in the payment processing DM configuration file. For example, if the
merchant name in the dm_fusa pin.conf file is mid_ispDealer, the merchant name in
pin_ach must be ispDealer.

• 0 is the payment channel ID.

Edit this field to specify the payment channel ID for each payment processor. The
channel_id value must match a payment channel ID configured in the /strings object.
If a payment does not contain a payment channel ID, a value of 0 is saved with the
payment by default, which configures it as Unspecified Payment Channel. For more
information, see "Configuring Payment Channels".

2. Save the pin_ach file.

3. Run the load_pin_ach utility:

load_pin_ach pin_ach

For more information, see "load_pin_ach".

Specifying Merchant Accounts for the Payment DM
To enable the Paymentech DM to send merchant account data:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf).

2. Change the merchant account entry. Use this syntax:

- dm_fusa mid_merchantName_currencyID merchant_account_number

For example:

- dm_fusa mid_ispname_840 050505

3. Save and close the file.

4. Stop and restart the Paymentech DM.

Using More Than One Merchant Name
You might use more than one merchant name if you separate deposits based on payment
method (for example, if you deposit payments to a third-party service provider).

Chapter 6
Specifying Merchant Accounts for the Payment DM

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 3

If you use multiple merchant names, each merchant name must be entered in the following
files:

• The payment processor configuration file (BRM_home/sys/data/pricing/example/
pin_ach).

• The payment processor Data Manager (DM) configuration file (for example,
BRM_home/sys/dm_fusa/pin.conf).

Chapter 6
Using More Than One Merchant Name

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 3

7
Masking Credit Card Numbers by Using
Tokens

Learn how to mask credit card numbers by using tokens in Oracle Communications Billing and
Revenue Management (BRM).

Topics in this document:

• Credit Card Tokenization

• Replacing Credit Card Numbers with Tokens

• Purging Old Credit Card Event and Audit Trail Objects

Credit Card Tokenization
Credit card tokenization is a secure method of storing credit and debit card data. It replaces
credit and debit card numbers with random identifiers called tokens. Tokens are typically the
same length as the credit or debit card numbers and include the last four digits of the card
numbers.

Note

BRM does not tokenize PINless debit card numbers.

By default, credit card tokenization is enabled. When tokenization is enabled, BRM receives
tokens from Paymentech and stores only the tokens in the BRM database. The tokens are
then used for any BRM-initiated payments instead of the actual card numbers. The actual card
numbers and their mapping to the tokens are stored securely in Paymentech. Tokens are valid
only between the sales system and the credit card processor. Therefore, the tokens can be
transmitted safely without the risk of exposing the card data.

Credit card tokenization occurs at the following times:

• During account creation

• When credit cards are used for one-time payments

• When customers change their credit or debit card number

• When customers change to the credit card payment method

If credit card validation fails, tokenization does not occur. In this case, a string value (asterisks
(******) followed by the last four digits of the card number) is stored in the /event/billing/
validate/cc object. The string value can be used to authenticate a credit or debit card but
cannot be used for any transaction.

If you processed credit cards before enabling tokenization, your BRM database includes
untokenized card numbers. Do the following to tokenize existing card numbers stored in the
BRM database:

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 3

1. Replace existing untokenized card numbers in the BRM database with tokens. See
"Replacing Credit Card Numbers with Tokens".

2. Purge the database of old untokenized card numbers. See "Purging Old Credit Card Event
and Audit Trail Objects".

Replacing Credit Card Numbers with Tokens

Note

If you are migrating legacy credit card data into the BRM database, migrate the data
before replacing numbers with tokens.

If you have already processed credit cards before enabling tokenization, the BRM database
stores untokenized credit card numbers. You need to replace those numbers with tokenized
numbers.

Before replacing numbers with tokens:

1. If you are migrating from an external database, migrate the data. See "Understanding
Conversion Manager" in BRM Migrating Accounts to the BRM Database.

2. Enable credit card tokenization in BRM. See "Credit Card Tokenization".

To replace credit card numbers with tokens, run the pin_cc_migrate utility.

• To replace all credit card numbers with tokens, run the following command:

pin_cc_migrate -vendor paymentProcessorName

where paymentProcessorName is the credit card processor or ACH to use for validating
credit and debit cards.

For example:

pin_cc_migrate -vendor fusa

• To replace only a specified number of credit card numbers in /payinfo/cc objects, run the
following command:

pin_cc_migrate -vendor paymentProcessorName -num number

where number is the number of /payinfo/cc objects to be selected for tokenization.

For example:

pin_cc_migrate -vendor fusa -num 10

• To replace the credit card numbers for only a specified account, run the following
command:

pin_cc_migrate -vendor paymentProcessorName -account accountPOID

where accountPOID is the Portal object ID (POID) of the account to select for tokenization.

For example:

pin_cc_migrate -vendor fusa -account 3421343

• To specify the time range for selecting credit card numbers for tokenization, run the
following command:

Chapter 7
Replacing Credit Card Numbers with Tokens

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 3

pin_cc_migrate -vendor paymentProcessorName -start_date mm/dd/yy -end_date mm/dd/yy

For example:

pin_cc_migrate -vendor fusa -start_date 01/01/11 -end date 10/30/11

The start and end dates specify the time range for selecting /payinfo/cc objects for
tokenization.

See "pin_cc_migrate" for information about the utility's syntax and parameters.

Purging Old Credit Card Event and Audit Trail Objects
When you run the pin_cc_migrate utility, only the credit and debit card numbers stored in /
payinfo/cc objects are replaced with tokens. The credit and debit card numbers stored in the
following objects are not replaced:

• Event objects created for credit card validation and credit card charges (such as /event/
billing/charge/cc objects)

• Audit trail objects created for tracking credit card payments (such as /event/audit/
customer/payinfo/cc objects)

Oracle recommends that you purge these event and audit trail objects immediately after you
run the pin_cc_migrate utility. You can purge the old event and audit trail objects by using
BRM utilities or purging scripts:

• To purge event objects, see "About Purging BRM Event Objects" in BRM System
Administrator's Guide.

• To purge audit trail objects, see "Purging Archived Audit Data" in BRM Developer's Guide.

Note

If you purge /event/billing/charge/cc objects, you cannot refund payments to the
same credit card accounts that were used for one-time payments made before running
pin_cc_migrate.

Chapter 7
Purging Old Credit Card Event and Audit Trail Objects

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 3

8
Testing Paymentech Credit Card Processing

Learn how to test Paymentech credit card processing in Oracle Communications Billing and
Revenue Management (BRM).

Topics in this document:

• About Testing Paymentech Credit Card Processing

• Setting Up the Paymentech Simulator

• Running the Paymentech Simulators

About Testing Paymentech Credit Card Processing
Paymentech provides connections for testing credit card and direct debit processing, but you
must schedule testing times with Paymentech. In addition, you can use the BRM Paymentech
simulators to test credit card and direct debit processing without connecting to Paymentech.

Caution

To test credit card and debit card processing with BRM Paymentech simulators, you
must use the account numbers from the test environment only.

Use the payment processing simulator to do the following:

• Test the connections in your payment processing configuration.

• Test how to handle no response or dropped-line situations.

• Test any part of your BRM system that includes BRM-initiated payment processing. For
example, you can create credit card accounts and use the simulator to charge them.

• Test how the BRM system responds to credit card validation and authorization. You can
also test BRM's response to the Visa fraud prevention system (CVV2). For example, you
can test how BRM responds when trying to create an account that uses an invalid credit
card.

Note

The Paymentech simulator does not check for the credit card's expiration date.

The payment processing simulator is located in BRM_home/bin. It includes two utilities:
answer_s and answer_b.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 7

Caution

Use the answer_s and answer_b utilities only in test environments. In production
environments, uninstall these utilities to prevent sensitive data from being used for
verification.

• The answer_s utility simulates online transactions.

The answer_s utility automatically simulates the Paymentech HeartBeat application during
BRM-initiated payment processing. It verifies that the HeartBeat responses from the
Paymentech Data Manager (dm_fusa) are on time and in the correct format when sent to
the payment processor (which is the answer_s utility in this case). If not, the utility resets
itself to a listen state, which the simulator handles as a socket disconnect and writes the
errors to the BRM_home/apps/fusa_server/answer_s.pinlog file, if one is configured.
See "Defining the Credit Card Functionality to Test". For information on how to handle the
errors, see "Monitoring the Paymentech Connection".

• The answer_b utility simulates batch transactions.

You can create test accounts that use a credit card payment method. You must use one of the
following pairs of credit card numbers and expiration dates listed in Table 8-1 for your test
accounts.

Table 8-1 Example Credit Card Expiration Data

Credit Card Number Expiration Date

4444 1111 2222 3333 0999

4101 0000 0000 0000 any expiration date

Setting Up the Paymentech Simulator
Setting up the Paymentech Ssimulator involves the following tasks:

• Defining the Credit Card Functionality to Test

• Using SFTP for Testing Batch Payment Transactions

• Using TCP/IP for Testing Batch Payment Transactions

• Specifying an IP Address for the Paymentech Simulator

• Returning Specific Values for Card Type Indicator

Defining the Credit Card Functionality to Test
You can define which area of functionality to test with answer_s and answer_b by editing the
Paymentech simulator configuration file (BRM_home/apps/fusa_server/pin.conf). This file
includes configuration instructions.

Note

The entries can be changed interactively because the answer_s and answer_b
servers read them from the configuration file at each connection.

Chapter 8
Setting Up the Paymentech Simulator

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 7

1. Open the simulator configuration file (BRM_home/apps/fusa_server/pin.conf).

2. Change the response and result codes as necessary. For example:

- answer_s v_code 100
- answer_s avs I3
- answer_s s_code M
- answer_b v_code 100
- answer_b avs I3

3. To write processing information to a log file, add the following entries:

- answer_s loglevel 3
- answer_s answer_S.pinlog
- answer_b loglevel 3
- answer_b answer_b.pinlog

4. Save and close the file.

Using SFTP for Testing Batch Payment Transactions
You can configure the Paymentech Data Manager (dm_fusa) to use SFTP for sending batch
payment transactions to the answer_b server. Batch payment transactions include batch
payments, multiple verifications, multiple authorizations, deposits, and refunds.

To test batch payment transactions through SFTP, follow these steps:

• Setting Up Authentication Between dm_fusa and answer_b

• Configuring Your SSH Client Configuration File for answer_b

• Testing Batch Payment Transactions Using SFTP

Setting Up Authentication Between dm_fusa and answer_b
Set up authentication between dm_fusa and answer_b by generating a public key on the
dm_fusa machine and copying it to your Paymentech Simulator server.

To set up authentication between dm_fusa and answer_b:

1. Generate an RSA public key.

For example, this command generates an RSA public key with a key length of 4096 bits:

ssh-keygen -t rsa -b 4096

2. Copy the RSA public key to the Paymentech Simulator server:

ssh-copy-id -i pathPublicKey userName@hostNameSimulator

where:

• pathPublicKey is the path and file name of the public key generated in step 1.

• userName is name of the dm_fusa user.

• hostNameSimulator is the host name of the Paymentech Simulator server.

3. Verify the connection:

sftp -i pathPublicKey userName@hostNameSimulator

Chapter 8
Setting Up the Paymentech Simulator

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 7

Configuring Your SSH Client Configuration File for answer_b
Connect dm_fusa to the Paymentech Simulator server by setting the following in the SSH
client configuration file, located at ~/.ssh/config:

Host CServer
 HostName sftpHost
 User userName
 Port portNumber
 IdentityFile pathPrivateKey

where:

• sftpHost:Host name of the Paymentech's SFTP server.

• userName: User name for accessing the Paymentech SFTP server.

• portNumber: SFTP port number for the Paymentech server.

• pathPrivateKey: Path and file name of the private key that matches the public key you
generated in "Setting Up Authentication Between dm_fusa and answer_b".

Testing Batch Payment Transactions Using SFTP
You can configure the Paymentech DM (dm_fusa) to test how it sends batch payment
transactions to the Paymentech Simulator. Batch payment transactions include batch
payments, multiple verifications, multiple authorizations, deposits, and refunds.

To test batch payment transactions using SFTP:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf).

2. Set the connection type between dm_fusa and Paymentech Simulator for batch payment
transactions:

- answer_b batch_proto sftp

3. Uncomment and configure the following entries:

- answer_b sftp_host hostName
- answer_b sftp_pkey_pwd passPhrase
- answer_b sftp_indir inputPath
- answer_b sftp_outdir outputPath

Table 2-2 describes the values to use with the pin.conf entries.

Table 8-2 Variables for the pin.conf Entries

Parameter Description

hostName The host section name in the SSH client configuration file.

passPhrase The SFTP private key passphrase for the answer_b
server. If omitted, the passphrase is retrieved from the
wallet.

inputPath The absolute path to the input directory where batch files
are uploaded to the answer_b server using SFTP.

outputPath The absolute path to the output directory where response
files are downloaded from the answer_b server using
SFTP.

Chapter 8
Setting Up the Paymentech Simulator

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 7

4. Save your changes.

5. Stop and restart the Paymentech DM for the settings to take effect.

Using TCP/IP for Testing Batch Payment Transactions
To configure the Paymentech DM to test batch payment transactions over TCP/IP:

1. Open the Paymentech DM configuration file (BRM_home/sys/dm_fusa/pin.conf).

2. Set the connection type between dm_fusa and Paymentech Simulator for batch payment
transactions:

- answer_b batch_proto socket

3. Update the batch_srvr and batch_port entries to point to the answer_b utility port
number and IP address. By default, the port number is 5678.

- answer_b batch_srvr batchSrvr
- answer_b batch_port batchPort

4. Save and close the configuration file.

5. Stop and restart the Paymentech DM.

Specifying an IP Address for the Paymentech Simulator
Systems configured with multiple network cards use multiple IP addresses for each network
card. You can configure the Paymentech simulator to listen to all IP addresses to determine
where to connect, or, if you know the IP address (for example, one provided by Paymentech),
you can define it in the answer_* utility's pin.conf file.

To specify an IP address for the Paymentech Simulator:

1. Open the simulator configuration file (BRM_home/apps/fusa_server/pin.conf).

2. Do one of the following:

• To enable Paymentech to listen to any IP address located on the machine where the
answer_* utility is running, add the following entry to the file:

- answer answer_name -

• To assign a specific IP address for the answer_* utility, add the following entry to the
file:

- answer answer_name IP_address

where IP_address is the IP address of the system running the simulator.

For example:

- answer answer_name 192.0.2.150

Returning Specific Values for Card Type Indicator
You can define specific values to return for Card Type Indicator (CTI).

1. Open the simulator configuration file (BRM_home/apps/fusa_server/pin.conf).

2. Add the following parameters:

- answer_s cti_resp USANYNYNYNYN

Chapter 8
Setting Up the Paymentech Simulator

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 7

- answer_b cti_resp USANYNYNYNYN

3. Save and close the file.

Running the Paymentech Simulators
The Paymentech simulators are in BRM_home/bin.

Note

Start the simulators before you start the Paymentech DM.

You can start and stop the simulators through the command line:

start_answer &
stop_answer

Simulating Failed Credit Card Transactions
General soft declines are failures that can be retried later with possible success. This includes
reasons like insufficient credit limit and other transitory causes. General hard declines are
failures that are unlikely to succeed if retried. These include reasons like lost and stolen credit
card and chronic payment failures.

To create a hard or soft decline on a credit card that you can use to test resolving failures, do
the following:

1. Create a credit card account.

2. Stop the answer_b utility and the Paymentech DM.

3. In the answer_b configuration file (BRM_home/apps/fusa_server/pin.conf), change the
v_code entry to 502:

- answer_b v_code 502

4. Restart the answer_b utility. See "Running the Paymentech Simulators".

5. Restart the Paymentech DM.

6. Advance the time one month and run pin_bill_day.

7. Verify that the amount due is not collected.

8. Verify the PIN_FLD_RESULTS value in the /event/billing/payment/cc object is a 7 (soft
decline) or an 8 (hard decline).

Resolving Failed Credit Card Transactions
In addition to the regular responses, answer_b also handles request for response (RFR) file
requests by returning the contents of the RFR file specified in the answer_b configuration file.

To test recovery of failed transactions:

1. Create an account that uses a credit card.

2. If you have not already created failed credit card transactions, do the following to force a
transaction failure:

a. Advance the time one month.

Chapter 8
Running the Paymentech Simulators

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 7

b. Run pin_bill_day.

c. Stop the answer_b utility while billing runs.

3. Verify the PIN_FLD_RESULTS value in the /event/billing/payment/cc object is a 6
(service unavailable).

4. Run the pin_clean utility to find transaction IDs for failed transactions.

5. Edit a fusa send file (fusas*). Enter the transaction IDs for the transactions that have
checkpoint records.

Fusa send files are located in the directories you specify in the dm_fusa pin.conf file. The
answer_b sftp_indir entry specifies the input directory, and the answer_b sftp_outdir
entry specifies the output directory.

6. (For SFTP only) Enter the file name of the RFR file in the Paymentech simulator
configuration file.

7. Resolve the failed transactions. See "Resolving Failed BRM-Initiated Payment
Transactions".

Chapter 8
Running the Paymentech Simulators

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 7 of 7

9
Resolving Failed BRM-Initiated Payment
Transactions

Learn how to resolve failed credit card and direct debit transactions in Oracle Communications
Billing and Revenue Management (BRM).

Topics in this document:

• About Failed BRM-Initiated Payment Transactions

• Checking for Transaction Errors

• Resolving Transaction Errors Manually

• Checking for Transactions in Paymentech Send Files

• Checking Paymentech Transmission Log Files

• Configuring Delay Intervals for Resolving Payments

• Resolving Payments for Custom Pay Types

• Troubleshooting Unresolvable Credit Card Transactions

For information about the utilities used for resolving BRM-initiated payment transactions, see
"pin_clean" and "pin_recover".

About Failed BRM-Initiated Payment Transactions
Failed credit card or direct debit payment transactions occur when BRM connects to a credit
card processor, sends a transaction, but does not get confirmation from the credit card
processor that the transaction was completed. This is usually caused by a connection loss.

BRM identifies failed transactions by keeping a record of each transaction in the BRM
database. If BRM does not get confirmation that the clearing house received the transaction
successfully, checkpoint records are left in the database. Checkpoint records have a
Paymentech result code of 888 or 999. To resolve failed transactions, you must resolve all
checkpoint records. Transactions usually have a checkpoint record for the following reasons:

• A transaction batch was received by the credit card processor, but it wasn't processed
completely. To resolve this error, you must resubmit the transaction batch.

• A transaction was processed by the credit card processor, but the connection was lost
before BRM received the results. To resolve this error, you must update the checkpoints in
the BRM database.

Note

If the payment processor is offline or too busy to handle your transactions, BRM
records a no-answer (1) record. You do not need to resolve no-answer records.

BRM includes two utilities that you use to resolve failed BRM-initiated payment transactions,
"pin_recover" and "pin_clean". To resolve a failed BRM-initiated payment transaction, you first

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 10

run the pin_clean utility to see if there are any errors. If there are, the method you use for
resolving the error depends on the type of transaction. For example, you can delete failed
verifications without restoring them, but you usually need to restore failed authorizations.

How BRM Records Transactions
Before BRM connects to the credit card processor, a table row with the value 999 is inserted in
the database. This value remains in the row until BRM processes the results from the
Paymentech credit card processor (which are provided in a Paymentech RFR file).

After BRM retrieves the Paymentech RFR file, it sets the table row's value to 1000. When BRM
begins processing the payment, it resets the result value to the Paymentech result code. If the
transactions are completed successfully, regardless of whether the credit card charge was
successful, the result column does not have any values over 999.

The following Paymentech result codes are used by BRM:

• PASS = 0

• FAIL_NO_ANS = 1

• FAIL_ADDR_AVS = 2

• FAIL_ADDR_LOC = 3

• FAIL_ADDR_ZIP = 4

• FAIL_CARD_BAD = 5

• SRVC_UNAVAIL = 6

• FAIL_DECL_SOFT = 7

• FAIL_DECL_HARD = 8

• FAIL_NO_MIN = 9

• INVALID_CMD = 10

• FAIL_SELECT_ITEMS = 11

• CVV_BAD = 12

• NO_CREDIT_BALANCE = 13

• FAIL_LOGICAL_PROBLEM = 14

• FAIL_FORMAT_ERROR = 15

• FAIL_INVALID_CONTENT = 16

• FAIL_TECHNICAL_PROBLEM = 17

• DEPOSIT_PENDING = 777

• AUTH_PENDING = 888

• CHECKPOINT = 999

• OFFSET = 1000

Unsuccessful transactions (result code of 999) are not collected by pin_collect or
PCM_OP_BILL_COLLECT to avoid double charges. Such results indicate a communication
problem between Paymentech and BRM.

Result values of 1000+ indicate that an exception occurred within BRM. This means that the
999 checkpoint has been cleared. However, payment events were not created in BRM. See
"Checkpoints Cleared but Payment Events Not Created" to fix these transaction errors.

Chapter 9
About Failed BRM-Initiated Payment Transactions

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 10

Note

If you add result codes to your system, do not assign them the following values, which
are reserved by BRM: 0 - 17, 777, 888, 999, 1000 - 1017, 1777, and 1999.

Checking for Transaction Errors
You should check for transaction errors every day. The best way to do this is to create a script
that does the following:

1. Runs the "pin_clean" utility and reports transaction failures:

pin_clean -summary

The pin_clean utility writes output to stdout.

2. Writes the output to a file.

Afterward, you can manually resolve the transaction errors. See "Resolving Transaction Errors
Manually".

Resolving Transaction Errors Manually
To resolve failed transactions manually:

1. Retrieve the list of transactions that failed. See "Checking for Transaction Errors".

2. If there are many checkpoint records, limit the number of records found by running the
following command:

pin_clean -summary -search_count_limit n

3. Review the results. This example contains six failures: 1 verification failure, 3 authorization
failures, and 2 refund failures.

CheckPoint Log Summary:
PIN_CHARGE_CMD_VERIFY 1
PIN_CHARGE_CMD_AUTH_ONLY 3
PIN_CHARGE_CMD_CONDITION 0
PIN_CHARGE_CMD_DEPOSIT 0
PIN_CHARGE_CMD_REFUND 2

4. Follow the instructions to review or delete transactions, for example:

Choose function by number:
 1) View PIN_CHARGE_CMD_VERIFY
 2) View PIN_CHARGE_CMD_AUTH_ONLY
 3) View PIN_CHARGE_CMD_CONDITION
 4) View PIN_CHARGE_CMD_DEPOSIT
 5) View PIN_CHARGE_CMD_REFUND
 6) Delete All
 7) Done

You can delete all verifications because they are not associated with any charge. For
authorizations and refunds, you might need to repeat the transaction. Read the event
details to find out if this is a transaction you need to repeat. For example:

0 PIN_FLD_SYS_DESCR STR [0] "Authorization"
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 28456 0

Chapter 9
Checking for Transaction Errors

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 10

0 PIN_FLD_AMOUNT NUM [0] 100.000000
0 PIN_FLD_CREATED_T TSTAMP [0] (827435459) Thu Mar 21 11:10:59 2017

Make a note of the amount and the account number so you can repeat the transaction
later.

Table 9-1 describes how to resolve each type of transaction.

Table 9-1 Types of Failed Credit Card Transactions

Record Type Error Action

verify The connection was lost during
an online transaction such as
account creation.

Delete the transaction record from the
BRM database. You do not need to
resubmit it.

authorize The connection was lost during
an online transaction such as
account creation, or a one-time
charge to a single account.

Delete the transaction record from the
BRM database. If necessary, repeat
the transaction. For example, use
Billing Care to charge the account
again. Because the transaction was for
an authorization, not for a payment,
the customer cannot be charged twice.

conditional deposit The connection was lost while
running the "pin_collect" utility.

See "Resolving Failed Deposits and
Conditional Deposits".

deposit The connection was lost while
running the "pin_deposit" utility.

See "Resolving Failed Deposits and
Conditional Deposits".

refund The connection was lost when a
refund was made.

See "Resolving Failed Refund
Transactions".

Note

You should delete records with a value greater than 999 when you want to
recharge an account by using pin_collect. (The pin_clean utility only processes
payments with checkpoint records = 999.) This deletes the /event/billing/charge
object and the appropriate rows in the EVENT_T, EVENT_BILLING_CHARGE_T,
and EVENT_BILLING_CHARGE_CC_T tables.

5. Use the pin_recover utility to resubmit the batch. See "Resubmitting Transactions to
Paymentech and BRM".

Resolving Failed Deposits and Conditional Deposits
To resolve failed deposits ("pin_deposit") and conditional deposits ("pin_collect"):

1. Request an RFR file from the Paymentech customer support service. If there is no RFR
file, you cannot complete this procedure. See "Resubmitting Transactions to Paymentech
and BRM".

Note

When you request an RFR file, Paymentech does not send you the file. Instead, it
posts it so that the "pin_recover" utility can access it at Paymentech.

Chapter 9
Resolving Transaction Errors Manually

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 10

2. Go to the BRM_home/bin directory and run the pin_recover utility:

pin_recover -rfr

Note

You cannot use the -rfr option for online transactions such as a charge or refund
made using Billing Care or Customer Center.

3. After the pin_recover utility has finished, run it again. Paymentech sometimes posts
multiple RFR files, and you must process all of them before continuing.

Note

Regardless of the number of times you run the pin_recover utility with the -rfr
option, accounts are charged only once for each transaction.

pin_recover -rfr

4. Run the pin_clean utility to check for any remaining transaction errors:

pin_clean -summary

If you still find transaction errors, resubmit the same batch and process the transactions
that didn't go through. See "Resubmitting Transactions to Paymentech and BRM".

Note

Do not delete deposit or conditional deposit records until you know whether the
corresponding charge was successful. The length of time for charges to occur
depends on the payment processor. Generally, you should only delete records
generated more than 7 days previously. Otherwise, you might charge customers twice
if you delete records created within the duplicate detection period. Check with your
payment processor.

Resolving Failed Refund Transactions
If the network goes down while processing a refund, verify whether the refund was processed
successfully in Paymentech and BRM:

• If the refund failed in both BRM and Paymentech, delete the transaction record from the
BRM database. If necessary, repeat the transaction. For example, use Billing Care to
charge the account again. Because the transaction was for an authorization, not for a
payment, the customer cannot be charged twice.

• If the refund was successful in Paymentech but not in BRM, reprocess the RFR file in
BRM. See "Reprocessing Failed Transactions in BRM".

• If there is no RFR file, ensure the credit card number used is the same in the failed
transaction and the account's current payment method. Resubmit the batch to Paymentech
and BRM. See "Resubmitting Transactions to Paymentech and BRM".

Chapter 9
Resolving Transaction Errors Manually

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 10

Note

If the credit card details used in the failed transaction are not used in the account's
current payment method, running the pin_recover -resubmit command fails.

Reprocessing Failed Transactions in BRM
If a transaction batch was processed successfully by Paymentech but one or more payment
transactions failed in BRM, reprocess the RFR file in BRM.

To reprocess failed transactions in BRM:

1. (For SFTP batch payment transactions only) Verify that the RFR file is present in the
Paymentech server’s output directory.

You configure the name of the response file to recover in the sftp_rfrfile entry of the
dm_fusa pin.conf file.

2. Go to the BRM_home/bin directory and run the following command:

pin_recover -rfr

Note

You cannot use the -rfr option for online transactions, such as a charge or refund
made using Billing Care or Customer Center.

3. Run the pin_clean utility to check for remaining transaction errors:

pin_clean -summary

If errors remain, resubmit the same batch and process the transactions that did not
complete. See "Resubmitting Transactions to Paymentech and BRM".

Resubmitting Transactions to Paymentech and BRM
If reprocessing an RFR file in BRM does not resolve all transactions in a batch, resubmit the
batch to Paymentech so it can process the transactions that didn't go through. However, it's
important that you resubmit transactions to Paymentech promptly, as any delay might lead to
the need for reauthorization. VISA authorizations, for example, last only seven days.

Note

If you use a payment processor other than Paymentech, ensure that it uses duplicate
transaction detection. If not, using the "pin_recover" utility with the resubmit option
can cause customers to be billed twice. The duplicate transaction detection offered by
Paymentech eliminates this problem.

To resubmit transactions to Paymentech and BRM:

1. Find the batch ID for the batch you are resubmitting. To do so, run the "pin_clean" utility
again:

Chapter 9
Resolving Transaction Errors Manually

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 10

pin_clean -summary

The pin_clean utility is in BRM_home/bin.

A summary of transaction errors appears, followed by a choice of commands. For
example:

CheckPoint Log Summary:
 PIN_CHARGE_CMD_VERIFY 1
 PIN_CHARGE_CMD_AUTH_ONLY 3
 PIN_CHARGE_CMD_CONDITION 1
 PIN_CHARGE_CMD_DEPOSIT 1
 PIN_CHARGE_CMD_REFUND 2

Choose function by number:
 1) View PIN_CHARGE_CMD_VERIFY
 2) View PIN_CHARGE_CMD_AUTH_ONLY
 3) View PIN_CHARGE_CMD_CONDITION
 4) View PIN_CHARGE_CMD_DEPOSIT
 5) View PIN_CHARGE_CMD_REFUND
 6) Delete All
 7) Done

2. Do one of the following:

• Enter 3 to display transactions made by running the "pin_collect" utility.

• Enter 4 to display transactions made by running the "pin_deposit" utility.

A list of batches appears.

3. Make a note of the batch ID that you want to resubmit (for example T,2f).

Note

When resubmitting deposits, each transaction has two transaction IDs, one for the
original authorization, and one for the deposit batch sent by the pin_deposit
utility. Use the batch ID that was used by the pin_deposit utility.

4. Enter 3 to quit the pin_clean utility.

5. Resubmit the unprocessed transactions to Paymentech:

pin_recover -resubmit batch_ID

For example:

pin_recover -resubmit T,2f

6. Run the pin_clean utility in summary mode again:

pin_clean -summary

If you still find transaction errors, delete them.

Checking for Transactions in Paymentech Send Files
If there are still checkpoint records after using the "pin_recover" utility with the rfr and
resubmit options, you can search the Paymentech send files to find out if the transaction was
sent to Paymentech, located by default in /fusa_temp. (You define the location of the send
files in the temp_dir Paymentech Data Manager (DM) configuration file entry.)

Chapter 9
Checking for Transactions in Paymentech Send Files

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 7 of 10

There are probably multiple files. Find the file that matches the date of the transaction. Open
the file in a text editor and search for the batch ID that was reported by the "pin_clean" utility. If
the batch ID is not present in any file, the connection was broken between the Connection
Manager (CM) and the DM, and the transaction was never sent.

If the transaction is a deposit, search the database to find outstanding deposits. To do so, use
the testnap utility to search for authorization records with no matching deposit record. See
"Testing Your Applications and Custom Modules" in BRM Developer's Guide.

Checking Paymentech Transmission Log Files
The pin_collect utility creates transmission log files to record the billing transactions sent to
and received from Paymentech. The files for information sent have the prefix fusas
(Paymentech), and the files for information received have the prefix fusar (Paymentech).

The Paymentech transmission log files are stored in the system temporary directory. If that
directory is not defined or does not exist, BRM looks for a different folder, in the following order:

• The Directory defined by the temp_dir entry in the Paymentech DM configuration file
(BRM_home/sys/dm_fusa/pin.conf)

• /var/tmp

• /tmp

You must delete or archive billing transmission logs periodically to prevent the file system from
overflowing. If data security is an issue, delete or archive the files to a secure location
immediately after you run billing. Good business practice suggests archiving the files for at
least 30 days before discarding them.

Configuring Delay Intervals for Resolving Payments
If the pin_recover utility is running in parallel with your custom payment application, duplicate
transaction IDs can occur. To prevent this, configure the utility to search through charge events
(/event/billing/charge/cc) whose creation date is older than a specified delay interval.

To configure a delay interval for resolving payments:

1. Open the billing utility configuration file (BRM_home/apps/pin_billd/pin.conf) in a text
editor.

2. Search for the event_search_delay entry.

3. Specify the delay interval:

pin_recover event_search_delay value

where value is the delay interval in seconds. For example, if you set it to 300, pin_recover
searches only through events that are older than 5 minutes.

4. Save and close the file.

Resolving Payments for Custom Pay Types
To resolve payments for custom pay types, you must perform additional configuration steps
before you run the pin_recover utility with the recover_payment option for the first time.

To resolve payments for custom pay types:

Chapter 9
Checking Paymentech Transmission Log Files

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 8 of 10

1. Customize the PCM_OP_PYMT_POL_CHARGE policy opcode to perform the following
when it processes your custom pay type:

a. In the policy opcode's output flist, set the PIN_FLD_BATCH_INFO.PIN_FLD_RESULT
field to PIN_CHARGE_RES_OFFSET.

b. Update your custom /event/billing/charge/* subclass by setting its
PIN_FLD_CHARGE.PIN_FLD_RESULT field to 1000 (PIN_CHARGE_RES_OFFSET).

2. Go to the BRM_home/apps/pin_billd directory.

3. Open the pin.conf file in a text editor.

4. Add the following line for each custom pay type:

- pin_recover config_payment paymentPOID

where paymentPOID is the POID of your /config/payment object. For example:

- pin_recover config_payment 0.0.0.1 /config/payment 200

Troubleshooting Unresolvable Credit Card Transactions
The following details some problems you might encounter while trying to resolve failed credit
card transactions and provides information on how to fix them:

• Cannot Remove Checkpoints After Using an RFR File

• Checkpoints Cleared but Payment Events Not Created

• Paymentech Doesn't Have an RFR File and Never Received the Payment Batch

Cannot Remove Checkpoints After Using an RFR File
If checkpoints still exist after running the pin_recover utility, resubmit the batch. See
"Resubmitting Transactions to Paymentech and BRM" for more information.

Note

Paymentech has duplicate transaction detection, which prevents a customer from
being charged twice.

If resubmitting the batch does not clear the checkpoints:

1. Delete the transactions.

2. Run the pin_recover utility with the -resubmit option:

pin_recover -resubmit

3. Run the pin_clean utility with the -summary option to select and delete batches:

pin_clean -summary

Be sure to note the batch ID.

4. Run the pin_recover utility with the -resubmit option and provide the batch ID:

pin_recover -resubmit batch_ID

Chapter 9
Troubleshooting Unresolvable Credit Card Transactions

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 9 of 10

Checkpoints Cleared but Payment Events Not Created
A credit card number can be reported as charged in BRM and Paymentech but not be
recorded as paid in BRM. This uncommon scenario can occur when the network connection
drops after Paymentech responds but before BRM allocates the payment.

To see if this has occurred, use the testnap utility to search the database for Paymentech
result codes with a value of 1000. For information about testnap, see "Testing Your
Applications and Custom Modules" in BRM Developer's Guide.

Note

You cannot use the pin_clean utility to search for these records because the utility
searches for result codes of 999 or less.

If the database contains result codes of 1000, you must create payment events for those credit
card charges. To do so, run the following command:

Note

Because the charge has been made, this command does not affect the customer's
credit card.

pin_recover -recover_payment

The payment event (/event/billing/payment) objects are inserted into rows in the EVENT_T
and EVENT_BILLING_PAYMENT_CC_T database tables. If the payment item does not exist
for the bill, a row is also inserted into the ITEM_T database table. If possible, BRM allocates
the money to open items. However, you may need to allocate the payment manually.

When a payment recovery is successful, the EVENT_BILLING_PAYMENT_CC_T value is set
to 0.

Paymentech Doesn't Have an RFR File and Never Received the Payment
Batch

If you requested an RFR file from Paymentech and one does not exist, run the pin_recover
utility with the -resubmit option and provide the batch ID. See "Resubmitting Transactions to
Paymentech and BRM" for more information.

If Paymentech confirms they received the batch but checkpoints still exist, request an RFR file
and run the pin_recover utility with the rfr option.

Chapter 9
Troubleshooting Unresolvable Credit Card Transactions

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 10 of 10

10
Processing Payment Batches in Billing Care

Learn how to use Billing Care to process externally-initiated payments, such as payments
made by checks, in Oracle Communications Billing and Revenue Management (BRM).

Topics in this document:

• About Batches

• Processing Lockbox Batches

• Importing and Submitting Batch Payment Files into Billing Care Without Editing

• Creating or Importing and Editing Batches

• Working with Individual Records in Batches

• Validating and Submitting Batches

• Managing Batch Entries that Fail Validation

• About Batch Templates

• Sample Batch Templates

About Batches
Batches are collections of individual payments processed together for efficiency and
convenience. Customers can send their payments directly to your bank or payment processor.
The payment information from various customers are bundled together to include multiple
payment records to be processed as a batch. Batches streamline the process of handling
numerous transactions simultaneously. Batches can be of three types, Payment, Refund, and
Reversal.

You can upload batch payment (.pmt) files created externally either by placing them in the
appropriate directory or by uploading them manually. Billing Care validates the files against
batch payment templates that are installed during Billing Care installation and process the
batch file, automatically or manually, based on configuration. You can validate, manually
suspend, allocate payments in the batch as well as view batch payment processing history,
reverse failed batch payments, view suspended payments or imported file status.

You can create or edit batches, import and edit batch files, and validate and submit these
batches in the Billing Care UI. Batches are stored in the database. You can create batches
directly using the Billing Care UI and save them in your local file system, or you can import
batch files manually into Billing Care. Batch files are text files containing payment information,
such as account number, payment amount, and payment date, in delimiter-separated rows.

In Billing Care, the records in a batch are displayed in a table where you can add, edit, and
delete records. See "Working with Individual Records in Batches" for more information.

When you import a batch file to create a new batch, Billing Care validates the imported batch
file against an existing batch template. If there are no matching templates, you can edit and
use an existing one or create a new template.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 5

Processing Lockbox Batches
Lockbox processing is a typical way to handle externally initiated payments, reversals, and
refunds. With lockbox processing, the bank sends you a record of the data, which you enter
into the BRM database by using Billing Care.

Most banks that perform lockbox processing can format a text file according to your
specifications. You can specify:

• Which data to include

• The format (fixed width or delimited)

Note

Fixed width is only supported when you import batches using the method in
"Importing and Submitting Batch Payment Files into Billing Care Without Editing".

• The order of the entries

• A batch header or footer. The batch header and footer can contain information common to
all payments in the payment batch, and information specific to the batch, including the
lockbox number, date, number of checks, and total payment amount. If a payment is
missing information, the batch data is used.

• You can also specify the payment method, payment type, and qualifier, and whether to
treat consecutive delimiters as one in the given data.

You can have the bank deliver the file electronically, and you can use Billing Care to import
data directly from the file. See "Importing and Submitting Batch Payment Files into Billing Care
Without Editing".

Note

• You might need to create an application to retrieve the file.

• If the bank creates the file with the EBCDIC character set, you must create an
application to convert it to ASCII.

Importing and Submitting Batch Payment Files into Billing Care
Without Editing

You can import data from text files into Billing Care in batch payment format. When you import
files using this method, you cannot edit them. For example, if you have electronic files of data
formatted in columns, you can import that data into a batch instead of entering it manually.

Batch payment files are text files containing payment information, such as account number,
payment amount, and payment date, in delimiter-separated rows. Each batch payment file that
you import into Billing Care must have a unique file name.

Before you begin importing data, ensure that you know how your data is formatted:

Chapter 10
Processing Lockbox Batches

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 5

• When you import data, you must specify how the data is separated in columns (for
example, with spaces or tabs). Open a file containing your data to see how it is formatted.

• Your data can include information that is not formatted in columns (for example, a
document heading). This information can be imported as the batch header and batch
footer.

• For payment data and refund data, there are two required columns:

– The amount paid

– Either the account number or the bill number

• For payment reversal data, the only required column is the payment ID.

A typical input file looks like this:

Account Number,Payment Amount,Date,Check Number
0.0.0.1-887,19.95,5/11/99,1243
0.0.0.1-425,19.95,5/11/99,1543
0.0.0.1-776,19.95,5/11/99,1273
0.0.0.1-143,19.95,5/11/99,1254

After you import the batch, you can process it to validate and submit the records to BRM. If any
of the records fail, you are given the option to create an exception batch. If you choose this
option, a new batch is created with the failed records, and the failed records are removed from
the original batch.

Creating or Importing and Editing Batches
In Billing Care, you can create a batch in the UI or you can import a batch from an existing
batch file. If you import a file, make sure that the batch name in your imported batch .pmt file is
the same as the template name. In either case, you can edit the batch in the same way. You
can set the batch's characteristics, like the type of batch (payment, refund, or reversal), the
number of records, and the payment method. See "Creating, Editing, and Processing Payment,
Refund, and Reversal Batches" in Billing Care Online Help for more information. You can also
edit a table containing the individual records. See "Working with Individual Records in Batches"
for more information.

You can also edit failed records during submission of the batch and create a new batch with
the failed records. This function allows you to identify and revise errors within a batch during its
processing. See "Submitting a Batch" in Billing Care Online Help for more information.

Working with Individual Records in Batches
You can add, edit, manually suspend, allocate, or delete records in a table in the Create Batch
page for the batch. You can import fields in the batch such as first name, last name, due
amount from the file edit all of the payment, refund, or reversal information for the records in
the batch, including account number, bill number, payment amount, due amount, receipt date.
When you import a batch, fields such as due amount, status, first name, last name are
imported from the file and are not editable in the batch. Those fields are auto-populated with
the latest information when the batch is validated.

You can validate batches and the status of the validated records in the table are displayed. You
can edit the failed records through this table. See "Validating a Batch" in Billing Care Online
Help for more information on validation.

You can allocate payments to bills or items. See "Allocating Records to Bills or Items" in Billing
Care Online Help to learn how to allocate payments.

Chapter 10
Creating or Importing and Editing Batches

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 5

You can manually suspend payments if you find a successful payment in a batch that you
suspect contains incorrect data or requires special handling, so that it can be carefully
examined before it is posted to the account. You can also remove suspension from manually
suspended payments or delete records through this table.

You can also search for records through account or bill details to easily add them to the batch.
See "Searching for Records to Add to a Batch" in Billing Care Online Help to learn how to
search for any records.

Validating and Submitting Batches
After a batch is created, you can validate it. See "Validating a Batch" in Billing Care Online
Help for instructions. After validation, a summary table is displayed with details such as
validated total, suspended total, total entered in the batch, expected total and the remaining
total. If any of the records fail validation, you can edit them to correct them. See "Managing
Batch Entries that Fail Validation" for more information.

After validation is complete, you can:

• Edit the unvalidated entries so that they can pass validation.

Note

A payment can fail validation if it is less or more than the amount for a specific bill.
If you have the correct permission in Billing Care (noManualAllocationMandatory),
you can select to ignore this error and allocate the payment at the account level
rather than the bill level.

• Export the batch to your system. See "Exporting a Batch to a File" in Billing Care Online
Help.

• Submit the batch. See "Submitting a Batch" in Billing Care Online Help. This completes the
processing of a batch. After a batch is submitted, you cannot make any further edits to the
records. You can edit the failed records and create a new batch with those records.

Managing Batch Entries that Fail Validation
When records fail validation, and with Payment Suspense Manager enabled, their status
indicates suspension upon batch submission. You can edit these records, employing the same
editing process used for pre-validation changes. See "Modifying a Record in a Batch" in Billing
Care Online Help for instructions. You must then validate the batch again before submitting it.

About Batch Templates
Batch templates are used by Billing Care to process batches of payments, refunds or
reversals. Billing Care provides some default templates which are stored in the database.

Batch templates can be created, edited, or duplicated from an existing template directly in the
UI.

Chapter 10
Validating and Submitting Batches

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 5

Note

• If you have existing .pit files, you can enter the data from your files to the Billing
Care UI. See "Creating a Batch Template" in Billing Care Online Help to know
more.

• Make sure that the batch name in your imported batch .pmt file is the same as the
template name.

Sample Batch Templates
BRM server contains batch payment templates which are used to process batch files.

Table 10-1 contains a list of standard batch payment templates in the Billing Care server.

Table 10-1 Standard Batch Templates

Template Type Payment Code

Cash Payment Batch 10011

Check Payment Batch 10012

Wire-Transfer Payment Batch 10013

Inter Bank Payment Order Payment Batch 10014

Postal Order Payment Batch 10015

Failed Payment Batch 10017

Cash Refund Batch 10011

Check Refund Batch 10012

Failed Refund Batch 10017

Inter Bank Payment Order Refund Batch 10014

Postal Order Refund Batch 10015

Wire-Transfer Refund Batch 10013

Check Reversal Batch 10012

Credit Card Reversal Batch 10002

Direct Debit Reversal Batch 10005

Inter Bank Payment Order Reversal Batch 10014

Postal Order Reversal Batch 10015

Wire-Transfer Reversal Batch 10013

Chapter 10
Sample Batch Templates

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 5

11
Allocating Payments

Learn how to allocate payments in Oracle Communications Billing and Revenue Management
(BRM).

Topics in this document:

• About Payment Allocation

• About Allocating Payments Manually

• Finding Bills by Due Amount

About Payment Allocation
Payment allocation is the process of applying a payment toward an account's open items,
balancing all credits and debits, and then closing all balanced items.

Payments are allocated according to how they were collected:

• BRM-initiated payments for credit card or direct debit accounts are automatically allocated
during the collection process.

• Externally-initiated payments, such as by check, are manually allocated by a payment
clerk.

You can configure the allocation level for payments. The allocation level determines where the
payment is applied:

• Account

When a payment is made at the account level (without specifying bill or item), the payment
can be allocated to accounts with a single bill unit (/billinfo object) or multiple bill units.

– Payment allocated to accounts with single bill unit: Payment is allocated to the
items of the bill unit that contains the default balance group for the account and update
the account balance accordingly. When a payment is applied to an account as
unallocated, the account balance is updated but the open bills and bill items are not
closed. Unallocated payments can be allocated to specific bills and items at any time
by using Billing Care, Customer Center, or your CRM application.

– Payment allocated to accounts with multiple bill units: Payment is distributed to
different bill units of the account based on distribution logic implemented in the
PCM_OP_PYMT_POL_MBI_DISTRIBUTE policy opcode. See "Allocating Externally
Initiated Payments by Due Amount" in BRM Opcode Guide.

When allocating payments manually, you can override the default distribution.

Note

The Payment Suspense Management feature must be enabled in your BRM
system for you to allocate payments to accounts with multiple bill units. For
more information, see "Enabling Payment Suspense in BRM".

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 3

• Bills

Payments allocated to one or more bills close the bills and the account balance is updated
accordingly.

By default, bill allocation is determined during payment validation. BRM uses the bill
number to find the correct bill. If the bill number is missing or cannot be found, BRM uses
the bill amount to find the correct bill. If neither the bill number nor the bill amount can be
determined, BRM allocates the payment to the oldest bills first, because they are collected
first.

If an account-level payment is made to an account having multiple bill units, you can
allocate the payment to multiple bill units of the account. To do so, customize the
PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode. See "Allocating Account
Payments to Multiple Bill Units" in BRM Opcode Guide.

Note

You cannot allocate a payment to a nonpaying bill unit of a child account.

• Items

Payments allocated to one or more items close each item and update the balance
accordingly. If all items in a bill are closed, the bill is also closed. Item-level allocation also
updates the account balance.

About Allocating Payments Manually
When processing payments manually in Billing Care or Customer Center, you can allocate
payments before or after validating them. When you validate a payment, if you see a message
in the status bar that says something similar to “Payment allocation required," you must
allocate the payment.

Manual payment allocations can be required or suggested. If an allocation is required, you
must make the payment allocation before the payment can be submitted. If an allocation is
suggested, your business policy recommends that you allocate the payment, but allocation is
not required.

You can manually allocate payments as follows:

• You can allocate an account-level payment when the payment is applied to an account
with multiple bill units (/billinfo objects).

• If your batch supports bill-level allocation, you can allocate a payment to a specific bill
when there are multiple unpaid bills for an account.

• You can specify which items on the bill to apply the payment to.

A payment batch can contain either bill-level allocations or item-level allocations, but not both.
You must choose the allocation level before you create a payment batch.

Allocating Multiple Payments for the Same Bill
When a payment clerk submits a payment batch that contains multiple payments for the same
bill, BRM views each payment portion as an underpayment and displays a message requiring
the payment to be allocated manually.

Chapter 11
About Allocating Payments Manually

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 3

By default, BRM views each payment as an underpayment and prompts the payment clerk to
manually allocate it.

Allocating Payments Later
You can create a batch for only those payments that need allocations. See "Managing Batch
Entries that Fail Validation".

Working with Multiple Currency Types in Billing Care
When you allocate payments with Billing Care or Customer Center, you choose the currency to
use for each batch of payments. You can allocate a payment to an account in any currency.
The amount is converted to the account's primary currency and then posted to the account.

Finding Bills by Due Amount
If BRM cannot find a bill to allocate a payment to, BRM searches for a bill whose total due
amount matches a specified payment amount. The search is restricted to bills that belong to
the account with which the payment is associated. By default, this search is disabled.

To enable this feature, run the pin_bus_params utility to change the SearchBillAmount
business parameter. For information about this utility, see "pin_bus_params" in BRM
Developer's Guide.

To enable this search:

1. Go to BRM_home/sys/data/config.

2. Create an XML file from the /config/business_params object:

pin_bus_params -r BusParamsAR bus_params_AR.xml

3. In the file, change disabled to enabled:

<SearchBillAmount>enabled</SearchBillAmount>

4. Save the file as bus_params_AR.xml.

5. Load the XML file into the BRM database:

pin_bus_params bus_params_AR.xml

6. Stop and restart the CM.

Chapter 11
Finding Bills by Due Amount

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 3

12
Processing Atypical Payments

Learn how to configure how Oracle Communications Billing and Revenue Management (BRM)
handles payments that are not tailored to your normal payment processing.

Topics in this document:

• Processing Overpayments and Underpayments

• Processing Late or Missed Payments

• Reversing Payments

• Refunding Externally Initiated Payments

• Configuring Unconfirmed Payment Processing

Processing Overpayments and Underpayments
If a customer pays too much or too little, your Oracle Communications Billing and Revenue
Management (BRM) business policies may require payment allocation. See "Allocating
Payments".

Processing Late or Missed Payments
You can specify how BRM handles late or missed payments, for example, change the account
status to inactive or charge a late fee.

To change the account status, customize the PCM_OP_PYMT_POL_COLLECT policy opcode.

To charge a late fee, customize the PCM_OP_PYMT_POL_APPLY_FEE policy opcode.

See "Payment Opcode Workflows" in BRM Opcode Guide.

Reversing Payments
Payment reversals are necessary when a payment is recorded in the BRM database, but the
payment is not deposited. For example, you could record a check payment for a check that
does not clear. To reopen the bill so the payment can be made again, you reverse the
payment. Reversing the payment enables BRM to treat the payment as if it never happened.

See "Reversing Payments" in BRM Opcode Guide to create a custom application for reversing
payments.

Payments are reversed indirectly during suspended payment processing. See "Managing
Suspended Payments".

You can directly reverse the following types of payments:

• Check

• Credit card

• Direct debit

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 2

• Inter-bank transfers

• Postal order

• Wire transfer

Note

Cash reversals enable cash payments to be recycled during payment suspense
processing. They are not intended to directly reverse cash payments from the
BRM database.

Refunding Externally Initiated Payments
To refund externally initiated payments, first create the refund items, either manually or by
using the pin_mass_refund utility. See "About Refunds " in BRM Managing Accounts
Receivable. You then make the refund payments by check or other externally initiated
payment.

• You cannot refund suspended payments. For information on suspended payment
processing, see "Managing Suspended Payments".

• You cannot reverse a refund. If you refund a customer account by mistake, adjust the
account for the refunded amount. To do so, you need to customize A/R opcodes. See
"Adjusting Accounts, Subscription Services, and Member Services" in BRM Opcode Guide.

Configuring Unconfirmed Payment Processing
BRM requires acknowledgment from a bank or payment processor before posting BRM-
initiated payments. In some cases, the response from the bank or payment processor does not
occur immediately with the request for funds. In that case, you can allow BRM to post
unconfirmed payments.

To avoid the possible delay in posting payments, you can configure a new payment Data
Manager (DM) to post payments immediately, before the funds are confirmed by the bank or
payment processor. The DM requires an input flist of payments from BRM and must return the
results to BRM in the output flist. See "Configuring Unconfirmed Payment Processing" in BRM
Opcode Guide.

Chapter 12
Refunding Externally Initiated Payments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 2

13
Configuring Payment Methods

Learn how to configure payment methods for Oracle Communications Billing and Revenue
Management (BRM) payments.

Topics in this document:

• About Payment Methods

• Default Payment Methods

To create a custom payment method, see "Adding a Custom Payment Method" in BRM
Opcode Guide.

About Payment Methods
A payment method is the mode by which customers pay their bills. The payment method is
selected for an account when the account is created, but it can be changed at any time.

Note

You can set up multiple payment methods for an account and assign a different one to
each bill unit (/billinfo object) in an account, but you can use only one payment
method per bill unit.

You can configure custom payment methods. To do so, you need to do the following:

• Update the /config/payment object.

• Modify the PCM_OP_CUST_POL_PREP_PAYINFO policy opcode to validate the custom
payment method. For example, add code for your custom payment method everywhere the
opcode checks the various payment methods.

Default Payment Methods
By default, BRM supports the following payment methods:

• Cash, check, and postal order payment methods. Customers of this type usually use
the Invoice payment method.

• Credit card payment method. Credit card payments are BRM-initiated. Because some
credit card payments are made automatically, accounts that pay bills by these methods
should always use the balance forward accounting type. See "About Accounting Types" in
BRM Concepts.

When a customer registers for a credit card payment method, BRM attempts to validate
the card by default.

When a credit card payment is made, BRM returns a confirmation number that the
customer can use to identify the payment. See "About Credit Card Payment Confirmation
Numbers" in BRM Opcode Guide.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 4

• Direct debit payment method. If a customer uses the direct debit payment, the
customer's bank account is debited automatically each billing cycle. Direct debit charges
are verified by the bank routing number and the checking account number. Direct debit
payments are BRM-initiated.

In the US and Canada, BRM supports direct debit of funds by using Paymentech and all of
the credit cards supported by Paymentech. It also supports debit cards that do not require
a personal identification number (PIN) to perform transactions.

In Europe, BRM supports Single Euro Payments Area (SEPA) Direct Debit (SDD) and
SEPA Credit Transfer (SCT) as BRM-initiated payments. For more information about SEPA
payment processing, see "Implementing SEPA Payment Processing".

Because some direct debit payments are made automatically, accounts that pay bills by
this method should use the balance forward accounting type. See "About Accounting
Types" in BRM Concepts.

• Invoice payment method. Accounts that use the Invoice payment method pay by check,
cash, or other externally initiated payment methods. By default, accounts that use an
Invoice payment method receive invoices on a monthly basis.

• Prepaid payment method. Customers who use the Prepaid payment method pay for
service usage in advance. They send check or cash payments and can also pay by using a
prepaid voucher. With prepaid balances, the customer is always expected to have a credit
(negative) balance. For example, when an IP telephony customer pays $10 for 100
minutes of usage, the account currency balance is -10 US Dollars. As the customer makes
calls, the balance increases until the credit limit (0) is reached. When you run billing, no
collection process is performed on prepaid balances because they are paid in advance of
billing.

Accounts that have prepaid balances should use balance forward accounting because
payments are made before there is a due amount. (With open item accounting, you are
billed only for open items that are due.)

• Nonpaying payment method. Nonpaying bill units are child bill units; their bill is paid by
the account that owns their paying parent bill unit. If an account has two bill units (and thus
two bills), one paying and one nonpaying, the account pays one bill and the account that
owns the nonpaying bill unit's paying parent pays the other. See "About Charge Sharing
Groups" in BRM Managing Customers.

• Undefined payment method. Accounts with the Undefined payment method never
receive a payment request. You typically use undefined accounts for free trial offers.
Creating an undefined account enables a customer to register without having to submit a
credit card number. You can also use undefined accounts for testing BRM and for creating
CSR accounts.

Undefined accounts require a login name and password so customers can be
authenticated and authorized. You can only assign an undefined payment method to an
account during account creation.

Because an account with a payment method of Undefined never pays a bill, you need to
set the credit limit to Unlimited.

Revenue generated from undefined accounts can be recorded as general ledger (G/L)
data.

• Voucher payment method. When a customer buys a voucher, either a CSR or the
customer enters the voucher ID & PIN and BRM validates the voucher and transfers its
prepaid balances to the specified account balance.

Voucher payments cannot be handled by the BRM-initiated payment process. To provide
voucher payments for your customers, you must have Voucher Manager and Voucher

Chapter 13
Default Payment Methods

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 4

Administration Center installed. For more information, see "About Managing Voucher
Inventory" in BRM Telco Integration.

• Wire transfer payment method. Wire transfers include any transfer of money from a
customer's bank account to your company or to your company's payment processor
through an automated teller machine (ATM), computer, telephone, or the like. Customers
who pay their bills with wire transfer payments usually have the Invoice payment method
defined in their accounts.

Payment methods are stored in the /config/payment object and defined in the BRM_home/
include/pin_pymt.h file. Each payment method is associated with an element ID.

Important

To avoid conflicts with payment IDs reserved by BRM, assign custom payment
methods an element ID greater than 10099.

Table 13-1 lists the standard payment methods and element IDs.

Table 13-1 Payment Methods and Element IDs

Payment method Element ID

PIN_PAY_TYPE_UNDEFINED

Used during account creation.

0

PIN_PAY_TYPE_PREPAID

Used to keep negative balances.

10000

PIN_PAY_TYPE_INVOICE

Used for monthly invoices.

10001

PIN_PAY_TYPE_DEBIT

Used for checking account debit.

10002

PIN_PAY_TYPE_CC

Used for credit cards.

10003

PIN_PAY_TYPE_DD

Used for US/Canadian direct debits.

10005

PIN_PAY_TYPE_SMARTC

Used for smartcards.

10006

PIN_PAY_TYPE_SUBORD

Used to roll up balances to the parent account.

10007

PIN_PAY_TYPE_BETA

For use by beta testers only. Billing utilities ignore this.

10008

PIN_PAY_TYPE_INTERNAL

Used for internal employees. Used the same way as guest accounts.

10009

PIN_PAY_TYPE_GUEST

Used for guest accounts. It is not charged, but credit limits apply.

10010

PIN_PAY_TYPE_CASH

Used for cash.

10011

Chapter 13
Default Payment Methods

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 4

Table 13-1 (Cont.) Payment Methods and Element IDs

Payment method Element ID

PIN_PAY_TYPE_CHECK

Used for personal bank checks.

10012

PIN_PAY_TYPE_WTRANSFER

Used for wire transfers.

10013

PIN_PAY_TYPE_PAYORDER

Used for inter-bank payment orders.

10014

PIN_PAY_TYPE_POSTALORDER

Used for postal payment orders.

10015

PIN_PAY_TYPE_VOUCHER

Used for payment vouchers.

10016

PIN_PAY_TYPE_FAILED

Used for unconfirmed payments that failed.

10017

PIN_PAY_TYPE_SEPA

Used for SEPA payments.

10018

Chapter 13
Default Payment Methods

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 4

14
Setting Up Payment Installments

Learn how to set up your customers to pay their bills in installments in Oracle Communications
Billing and Revenue Management (BRM).

Topics in this document:

• About Installments

• Setting Up Installments on Your System

• Applying Installment Charges

• Updating an Installment Status

• Customizing Installments

About Installments
Your customers can pay the amount they owe in multiple installments over time. The amount
your customer owes can be divided into equal or non-equal individual installments. For
example, a $1,200 bill could be split equally into six monthly individual installments of $200 or
unequally into one $600 installment and two monthly installments of $300.

About Defining the Terms for an Installment Plan
You define the terms for each installment plan your company offers by creating an installment
specification. An installment specification defines the minimum amount for an individual
installment, the types of customers and bills eligible for the installment plan, its validity dates,
and the number of unequal individual installments allowed. For example, an installment
specification could specify the following:

• The minimum amount for an individual installment is $100.

• Only customers from California (or a specific area) who owe more than $1000 are eligible
for an installment plan.

• The installment plan is valid for a certain period, such as from January through June.

• Up to two unequal individual installments are allowed but must be scheduled at least 20
days apart.

About Creating Installments for Customers
An installment schedule is an agreement of payment between you and your customer. The
customer agrees to pay the due amount in installments at certain intervals. Based on the
number of installments, the due amount is divided into appropriate individual installment
amounts.

The installment schedule is created on the bill or bill items using an installment specification.

By default, the total amount owed for the installment schedule is divided equally into the
specified number of monthly installment payments. However, the CSRs can manually adjust
the installment’s effective date and amount owed for the individual installments. By default, the

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 5

current date is considered the effective date for the first installment. The due date is calculated
based on the interval specified in the customer’s payment agreement. The installment charge
is billed immediately or is billed in the next billing cycle.

Note

If the individual installment amounts are changed, ensure that the total installment
amount of the installment schedule is equal to the total amount owed. For example, if
the bill amount is $1000, you create an installment schedule of $200 X 5 installments.
The customer can decide to pay $500 in one installment, $200 in the next, $100 in the
next, and $200 in the last installment. BRM allows this as long as the final bill amount
adds up to $1000. However, you get an error if the installment amounts do not add up
to the final bill amount.

The following scenarios explain how the installment schedule can be created:

• A customer purchases a device for $1,200 and wants to pay the amount in installments.
The customer creates an installment schedule to pay for the amount owed in 12 equal
individual installments of $100 per month.

• A customer has a bill amount of $2,400 and wants to pay the bill amount in non-equal
installments. Based on the eligibility criteria, the customer can pay $1200 as the initial
payment amount and then pay the remaining $1200 amount in 3 equal installments
of $400 each.

About Installment Status
When your customer creates an installment schedule, Billing Care creates an installment
schedule and an individual installment for each scheduled installment payment. For example, if
a customer creates an installment schedule with three installment payments, Billing Care
creates one installment schedule and three individual installments.

Billing Care indicates the status of an installment schedule with the following:

• Open: The customer has created an installment schedule and owes a balance.

• Broken: The customer missed all of the installment payments. That is, all individual
installments have a Broken status.

• Canceled: The installment schedule is canceled.

• Finished: The customer has paid off the full amount.

Billing Care indicates the status of an individual installment with the following:

• Open: The individual installment has been scheduled and not charged.

• Charged: The installment charge has been added to the customer’s bill.

• Broken: The customer missed paying an installment payment. The customer’s bill is sent
to collections.

• Paid: The individual installment is paid in full.

• Canceled: The individual installment is canceled.

Chapter 14
About Installments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 5

About Partial Installment Payments
When a customer pays a partial installment amount, the individual installment remains in
Charged status and the customer still owes the remaining balance by the due date. If the
payment for the individual installment is not paid in full by the due date, the individual
installment status is changed to Broken.

About Missed Installment Payments
When a customer misses paying an installment payment by the due date, the individual
installment status changes to Broken. If it is the last installment, the overall installment
schedule status also changes to Broken. If the payment is not made, the collection process
takes care of the next steps as per the defined rules.

About Canceling an Installment Schedule
If a customer decides to pay any remaining amount for the installment in one shot, CSRs can
cancel the remaining installments. CSRs can cancel any installment schedule with Open
status. When an installment schedule is canceled, the pin_installment_status_change utility
changes the status of the installment schedule from Open to Canceled. The utility also
changes the status of all Open individual installments to Canceled. However, the status of any
Charged or Paid individual installments is not changed and the customer still owes the amount
from Charged individual installments by their original due date. BRM automatically applies the
remaining balance from all the Canceled individual installments to the customer’s bill in
progress as a one-time charge.

For example, a customer has a bill due amount with 6 installment payments. After paying a few
(or none) of the installments, the customer decides to cancel the remaining installments by
paying the remaining due amount in full. When a customer raises such a request, the CSR can
cancel the installment schedule and the installment status is changed to Canceled.

Note

CSRs can only cancel the installments that are in Open status.

The following table shows an example where a customer has an open installment schedule
with four individual installments. If the customer decides to cancel the installment schedule on
April 10, the status of the installment schedule is changed to Canceled, and the status of the
individual installments are changed as shown in Table 14-1.

Table 14-1 Sample Individual Installment Status

Installment
Number

Effective Date Billing
Due Date

Amount
Owed

Status Before
Cancellation

Status After
Cancellation

1 March 1 March 15 $100 Paid Paid

2 April 1 April 15 $100 Charged Charged

3 May 1 May 15 $100 Open Canceled

4 June 1 June 15 $100 Open Canceled

In this case, the customer is still required to pay the second installment of $100 by April 15th.
BRM adds a $200 charge for the canceled installments to the customer’s bill in progress.

Chapter 14
About Installments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 5

Setting Up Installments on Your System
To set up BRM to support installments, do the following:

1. Create installment specifications in Billing Care. See "Installments" in Billing Care Online
Help.

2. Create nightly cron jobs to run the following utilities:

• pin_installments

See "Applying Installment Charges".

• pin_installment_status_change

See "Updating an Installment Status".

3. You can run the pin_gen_notifications utility to generate reminder messages for your
customers a specified amount of time before their installment payment is due or their
installment plan ends. See "Sending Messages to Customers through External Notification
Applications" in BRM Managing Customers.

4. Perform any customization to the installment process by using the policy opcodes. See
"Installment Opcode Workflows" in BRM Opcode Guide.

5. Create an installment schedule in Billing Care for customers who want to pay a bill in
installments. See "Creating an Installment Schedule" in Billing Care Online Help.

Applying Installment Charges
The pin_installments utility applies the charges for an individual installment to your
customer’s bills on the specified effective date. If the installment flag is set to Bill Now Bill,
billing is triggered immediately. If that flag is not set, the installment charges are applied to the
next regular bill.

For example, a customer’s installment due date is April 1st. On the scheduled date,
pin_installments changes the installment status from Open to Charged.

Example for the utility command:

pin_installments -verbose

Updating an Installment Status
The pin_installment_status_change utility changes the status of the individual installment of
your customer’s bills, on the specified effective date.

When the payment is not received by the installment due date or when a customer makes only
a partial payment of the bill amount, pin_installment_status_change changes the installment
status from Charged to Broken. The customer’s billing profile is sent to collections
management to take any further actions.

pin_installment_status_change changes the status of an open installment to Canceled. Any
remaining installment amount is included in the next bill.

When all the installments are made and no more payments due, the utility changes the
installment status to Finished.

Chapter 14
Setting Up Installments on Your System

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 5

Once the installment status is changed from Open to Charged,
pin_installment_status_change changes the status to Broken, Canceled, or Paid.

Example for the utility command:

pin_installment_status_change -verbose

Customizing Installments
You can customize installments in the following ways:

• Prepare the installment schedule specifications by using the
PCM_OP_INSTALLMENT_POL_PREP_SCHEDULE_SPEC policy opcode.

• Validate the installment schedule specifications by using the
PCM_OP_INSTALLMENT_POL_VALID_SCHEDULE_SPEC policy opcode.

• Validate the installment by using the
PCM_OP_INSTALLMENT_POL_VALID_INSTALLMENT policy opcode.

• Prepare the installment by using the PCM_OP_INSTALLMENT_POL_PREP_
INSTALLMENT policy opcode.

For more information, see "Installment Opcode Workflows" in BRM Opcode Guide.

Chapter 14
Customizing Installments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 5

15
Customizing Payment Applications

Learn how to customize payment details displayed in Oracle Communications Billing and
Revenue Management (BRM) client applications.

Topics in this document:

• Customizing the Date Format for Payment Center

• Improved Performance of Searches for Payment Events in Payment Center

Customizing the Date Format for Payment Center
You can customize the format of the date displayed in the Payment Search dialog box, the
Undo Allocation dialog box, and the Payment Results window in Payment Center.

To customize the date format for Payment Center:

1. Open the PaymentCenter_home/paymentcenter.properties file in a text editor, where
PaymentCenter_home is the directory in which Payment Center is installed.

Note

If the paymentcenter.properties file does not exist, you must create it manually.

2. Add the following entry:

DefaultDateFormat=format

where format is one of the following:

• dd/MM/yyyy

• dd/MMM/yyyy

• dd.MMMM.yyyy

where MMMM is the spelled-out name of the month (for example, September).

• yyyy/dd/MM

• MMM/dd/yyyy

• MM/dd/yyyy

The default is MM/dd/yyyy.

For example, if you set DefaultDateFormat=dd/MM/yyyy, Payment Center displays June
30, 2012 as 30/06/2012.

3. Save and close the file.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 2

Improved Performance of Searches for Payment Events in
Payment Center

By default, Payment Center retrieves five payment events for each step of a search. You can
improve Payment Center's performance of payment event searches by configuring the
paymentsearch.stepsize entry in the paymentcenter.properties configuration file.

To configure the step search size:

1. Open the Payment_Center_home/paymentcenter.properties file in a text editor, where
Payment_Center_home is the directory in which Payment Center is installed.

2. Set the paymentsearch.stepsize entry to a value based on the number of events in your
system and your client/server memory configuration. For example:

paymentsearch.stepsize=100

3. Save the file.

Chapter 15
Improved Performance of Searches for Payment Events in Payment Center

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 2

16
Implementing SEPA Payment Processing

Learn how to use Oracle Communications Billing and Revenue Management (BRM) to process
Single Euro Payments Area (SEPA) payments.

Topics in this document:

• About SEPA Payments

• About Specifying SEPA Payment Information During Account Creation

• Managing Customer's SEPA Payment Information

• Loading Your Creditor Information into the BRM Database

• Processing SEPA Payments

• Reversing an Erroneous Payment Collection

• Using SEPA XML Messages to Exchange Customer's Payment Information

• Configuring the pin_sepa Utility for Generating and Processing SEPA XML Files

About SEPA Payments
SEPA payments are electronic payment transfers between bank accounts in the euro countries
that participate in SEPA.

SEPA defines a common set of standards and rules for any organization or individual making
or receiving payments in euro. With SEPA, all bank accounts are uniquely identified by the
International Bank Account Number (IBAN), and the banks related to the accounts are uniquely
identified by the Business Identifier Code (BIC). These standards improve the ability of
consumers to transfer money, for example, from their home bank account to an account in
another country that participates in SEPA.

Note

BRM supports the SEPA specifications in the SEPA Rulebook Version 7.0.

SEPA defines two payment schemes: SEPA Direct Debit and SEPA Credit Transfer. Both
SEPA Direct Debit and SEPA Credit Transfer are supported as BRM-initiated payments.

SEPA Direct Debit is a payment transfer that is initiated by the service provider for automated
payments from the customer's bank account. This type of payment is commonly used for
recurring payments such as automated payments for a monthly subscription charge (can also
be used for one-time payments) and requires a pre-authorization (mandate) from the customer.

SEPA Credit Transfer is a payment transfer that is initiated by the service provider to transfer
money from the service provider's bank account to the customer's bank account. SEPA Credit
Transfer is used to give refunds to customers. The service provider must provide the
customer's IBAN and the customer's bank's BIC to initiate the credit transfer.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 10

About Specifying SEPA Payment Information During Account
Creation

When you create an account (or when an existing customer purchases a new service) and the
customer wants to pay by SEPA Direct Debit, specify SEPA as the payment method.

In addition to the customer's name and address information, your customer must provide a
mandate, a pre-authorization form that is signed by your customer, to debit the customer's
bank account automatically through SEPA Direct Debit.

SEPA Direct Debit and SEPA Credit Transfer payments are allowed in euro only. When you
create an account, the account's primary currency must be euro.

About Registering the Mandate for SEPA Direct Debit Payments
To pay for services by SEPA Direct Debit, your customer must first fill out and sign a mandate
(provided by you) to authorize automatic payments from the customer's bank account.

SEPA requires the service provider to send this mandate information with each collection of the
SEPA Direct Debit payment. You are also required to retain the mandate (throughout the
period when the customer is using SEPA Direct Debit and according to the national legal
requirements and its Terms and Conditions) along with any amendments or information
concerning its cancellation or lapse with the service provider's bank.

The mandate must include the following information:

• Your customer's name and address

• Your customer's IBAN

• Your customer's bank's BIC

• Your business name and address

• Your creditor identification number

• Type of mandate (recurrent or one-off)

• Your customer's signature

Your customer service representative (CSR) receives the signed mandate and enters the data
into the BRM system by using Billing Care.

A mandate is identified by the unique mandate reference (UMR) number. If a unique mandate
reference number is not provided, BRM automatically generates one for the mandate.

In BRM, a mandate is associated with a bill unit and is valid for collection of the payment for
this bill unit. If your customer has multiple services associated with different bill units and wants
to pay for the different services by SEPA Direct Debit, your customer must provide separate
mandates for the collection of payments for each service. If the same mandate is associated
with multiple services, it is assumed that your customer has authorized collection of payment
for all the services using a single mandate.

For information on the requirements for retaining the paper mandate and any amendments to
it, refer to the SEPA Direct Debit Rulebook.

About the Different Types of Mandates
Mandates are of two types: recurrent and one-off.

Chapter 16
About Specifying SEPA Payment Information During Account Creation

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 10

A recurrent mandate is used to collect multiple bill payments for a bill unit; for example, to
collect a recurring monthly service fee. If a recurrent mandate is not used within a 36-month
period, it is considered expired; BRM automatically sets the mandate status to Expired.

A one-off mandate is used to collect only one bill payment for a bill unit. For example, your
customer pays bills regularly by check or credit card but wants to pay a bill by SEPA Direct
Debit. After collection of the one bill payment, the mandate cannot be used to collect other bill
payments; BRM automatically sets the mandate status to Expired.

You cannot re-activate a mandate that is expired. A new mandate is required to process any
SEPA payment requests.

Managing Customer's SEPA Payment Information
Use Billing Care to change or delete your customer's SEPA payment information.

You can do the following:

• Change the customer's payment method

If your customer wants to change from SEPA to a different payment method, you need to
register new payment information and associate the customer's services with the new
payment information. Your customer's existing SEPA payment method in the BRM
database is not changed.

If your customer wants to change from a different payment method to SEPA, you need to
first register the SEPA payment information. For instance, if your customer is currently
paying by credit card and wants to pay by SEPA Direct Debit instead, register new
payment information that includes the SEPA-related information such as the IBAN, BIC,
and the mandate information. Your customer's existing payment information in the BRM
database is not changed.

• Delete the payment method

When you delete a SEPA payment method, BRM also cancels the mandate that is
associated with the payment method and the mandate cannot be used with any future
payment requests; a new mandate is required.

You cannot delete the SEPA payment method if it is associated with a bill unit.

If the SEPA payment method is associated with a payment request that is pending, BRM
cancels the mandate only for future payment requests.

• Change the mandate information

To update the creditor information in a mandate, you update the creditor configuration
object. See BRM Opcode Guide for more information.

BRM stores the new mandate information and also keeps a record of the information that
is amended and sends both the new and amended information to the bank with the next
SEPA payment collection.

Loading Your Creditor Information into the BRM Database

Note

To update creditor information, see BRM Opcode Guide.

Chapter 16
Managing Customer's SEPA Payment Information

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 10

Your creditor information includes your business name and address and the creditor
identification number. You load the creditor information into the creditor configuration objects (/
config/creditor) in the BRM database (see "Loading Your Creditor Information into the BRM
Database").

During account creation, Billing Care or Customer Center retrieves your creditor configuration
information from the BRM database.

Creditor information is stored in the /config/creditor object in the BRM database.

To set up and load creditor information:

1. Open the BRM_home/sys/data/config/config_creditor.xml file in a text editor, where
BRM_home is the directory in which the BRM server software is installed.

2. In the CREDITOR_INFO child element, provide the values listed in Table 16-1.

Table 16-1 Elements in the CREDITOR_INFO Child Element

Element Description

ADDRESS Your business street address

BIC Your Business Identifier Code

CITY The city where your business is located

COUNTRY The country where your business is located

CREDITOR_ID Your creditor identification number

CURRENCY Your currency

IBAN Your International Bank Account Number

NAME Your business name

REF_PARTY The name of your reference party

REF_PARTY_ID_CODE The identification code of your reference party

ZIP The postal code where your business is located

3. Save and close the file.

4. Run the following command, which loads the contents of the file into the /config/creditor
object:

BRM_home/apps/load_config/load_config -v config_creditor.xml

The load_config utility validates the contents using the config_creditor.xsd file before
loading the data.

See "load_config" in BRM Developer's Guide for more information about the utility's syntax
and parameters.

5. Read the object by using the robj command with the testnap utility or by using Object
Browser in Developer Center to verify that the creditor configurations are loaded.

See "Using the testnap Utility to Test BRM" in BRM Developer's Guide for general
instructions on using the testnap utility.

6. Stop and restart the Connection Manager (CM).

You can use load_config utility to add new creditor configuration data; it does not overwrite
any existing data in the configuration objects. However, to update or delete a creditor
configuration object, you need to use opcodes. See "Amending Creditor Information" in BRM
Opcode Guide.

Chapter 16
Loading Your Creditor Information into the BRM Database

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 10

Processing SEPA Payments
Processing of SEPA payments includes these tasks:

• Creating the payment requests in BRM. See "Creating SEPA Direct Debit Payment
Requests" and "Creating SEPA Credit Transfer Payment Requests".

• Generating the SEPA request files. See "Generating SEPA Request XML Files".

• Collecting the payments. See "Sending the SEPA Request XML Files to Your Bank to
Collect Payment".

• Handling the failed payments. See "Processing SEPA Response XML Files to Handle
Failed Payment Transactions".

Creating SEPA Direct Debit Payment Requests
You run the pin_collect utility to create the SEPA Direct Debit payment requests in the BRM
database.

The SEPA Direct Debit payment requests record the customer's payment details, such as the
amount due and mandate information, and the payment transaction ID. The pin_collect utility
retrieves the pending bills for accounts that use the SEPA payment method and calculates the
amount due. For each bill unit, it records the payment details in the payment request (/
sepa/dd) and sets the payment request status to Pending.

The pin_collect utility does not create a payment request if the mandate for the bill unit is
expired. To collect the payment, your customer has to provide a valid mandate or use another
payment method.

SEPA Direct Debit payments are applied to the accounts at the time payment requests are
created (before payment requests are sent to the bank). If your bank is unable to collect the
payment from your customer's bank, you reverse the payment recorded in BRM using the
pin_sepa utility (see "Processing SEPA Response XML Files to Handle Failed Payment
Transactions").

For more information about the pin_collect utility, see "pin_collect".

Creating SEPA Credit Transfer Payment Requests
You run the pin_mass_refund and the pin_refund utilities to create SEPA Credit Transfer
refund requests in the BRM database.

The SEPA Credit Transfer payment requests record the customer's payment details, such as
the refund amount and the payment transaction ID. The pin_mass_refund utility aggregates
the credit balance for each bill unit for each account and generates refund items for the
aggregated credit amount.

The pin_refund utility retrieves the refund items for the accounts that use the SEPA payment
method. For each bill unit, it records the payment details in the refund request (/sepa/ct) and
sets the refund request status to Pending. You run the pin_refund utility after running the
pin_mass_refund utility.

SEPA Credit Transfer refunds are applied to the accounts at the time refund requests are
created (before refund requests are sent to the bank). If your bank is unable to process the
refund, you reverse the refund recorded in BRM using the pin_sepa utility (see "Processing
SEPA Response XML Files to Handle Failed Payment Transactions").

Chapter 16
Processing SEPA Payments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 10

For more information about the pin_mass_refund and pin_refund utilities, see "About
Refunds" in BRM Managing Accounts Receivable.

Generating SEPA Request XML Files
You run the pin_sepa utility to generate the SEPA request XML files (see "pin_sepa" for more
information about the utility syntax).

Before running pin_sepa, configure the utility to provide the information it requires for
generating the SEPA request XML files (see "Configuring the pin_sepa Utility for Generating
and Processing SEPA XML Files").

The pin_sepa utility extracts payment details from the SEPA Direct Debit and SEPA Credit
Transfer payment requests (created by the pin_collect and pin_refund utilities), which are in
Pending status, from the BRM database into SEPA request XML files. All the payment
transactions belonging to the same creditor are grouped in one file. The number of payment
transactions in a file is configurable by using the infranet.threadpool.fetchsize entry in the
Infranet.properties file for pin_sepa.

You must manually send the SEPA request XML files to your bank for collection of the
payments (see "Sending the SEPA Request XML Files to Your Bank to Collect Payment").

After the SEPA request XML files are generated, BRM considers the payment as successful
and changes the status of the payment requests to Requested. The payment requests remain
in Requested status unless the payment is reversed for any reason.

Note

• The SEPA request XML files cannot be regenerated. You must ensure the files are
protected from accidental loss or corruption.

• The SEPA request XML files contain sensitive customer data. You must ensure
the files are protected from unauthorized access.

For more information on security, see BRM Security Guide.

By default, the pin_sepa utility is not included in the pin_bill_day billing script. You can either
add it to the daily billing script or run it separately; however, Oracle recommends to run
pin_sepa daily for SEPA payment collection. You can run the pin_sepa utility manually or as a
cron job that runs at specified times.

Sending the SEPA Request XML Files to Your Bank to Collect Payment
The SEPA request XML files are stored in the directory that you specify in the
Infranet.properties file until they are delivered to your bank for collection of payment. You
must manually send the files to your bank or payment processing center: BRM does not send
the files.

After sending the files, ensure the files were successfully delivered to your bank. Potential
revenue loss can occur if the SEPA request XML files that are generated in BRM are not
received by your bank for processing.

Chapter 16
Processing SEPA Payments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 10

Processing SEPA Response XML Files to Handle Failed Payment
Transactions

Your bank sends back the SEPA response XML files with the payment transactions that are
rejected. Your bank may reject a SEPA payment or refund request for reasons such as the
following:

• The payment or refund request contains an invalid IBAN or BIC.

• The payment request contains an invalid or incorrect mandate.

• The customer's bank account has insufficient funds to process the payment.

SEPA Direct Debit payments and SEPA Credit Transfer refunds are applied to the accounts in
BRM at the time payment requests are created. Therefore, any payment transactions that are
rejected by the bank needs to be reversed in BRM.

The SEPA response XML file indicates a status at the group level, payment-information level,
and transaction level.

If the group-level status is Reject, all the payment transactions in the response file are rejected.

If the payment-information-level status is Reject, all the payment transactions in the payment
information are rejected.

If the transaction-level status is Reject, only the payment for this transaction is rejected.

You run pin_sepa utility to process the rejected payments in the SEPA response file (see
"pin_sepa" for more information about the utility syntax). The utility automatically initiates the
payment reversal in BRM. Using the payment transaction ID, BRM locates the corresponding
SEPA payment request in the database and changes the status of the payment request to
Reject.

Reversing an Erroneous Payment Collection
An erroneous or duplicate payment occurs when your customer is billed twice for the same
charge. The payment is recorded in BRM, and the payment transaction is successfully
completed by the bank.

Unlike a payment reversal that occurs when a payment is rejected by the bank, duplicate
payment reversals are not initiated by BRM.

After the payment reversal requests are created, you run the pin_sepa utility to generate the
SEPA reversal request XML files (see "pin_sepa" for more information about the utility syntax).
The pin_sepa utility extracts the payment details from the payment reversal requests, which
are in Pending status, from the BRM database into SEPA reversal request XML files.

After the SEPA reversal request XML files are generated, BRM considers the payment reversal
as successful and changes the status of the payment reversal requests to Requested.

You must manually send the SEPA reversal request files to your bank to reverse the charges
from the customer's bank account.

Chapter 16
Reversing an Erroneous Payment Collection

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 7 of 10

Using SEPA XML Messages to Exchange Customer's Payment
Information

For SEPA compliance, banks are required to use SEPA ISO20022 XML messages to
exchange customer's payment information.

BRM supports the following ISO20022 XML messages:

For SEPA Credit Transfer:

• Customer Credit Transfer Initiation (pain.001.001.03): This message transports the
customer-to-bank credit transfer information sent by the customer (originator) to the
customer's bank.

• Customer Payment Status Report (pain.002.001.03): This message transports the credit
transfer reject instruction between the bank and its remitting customer.

For SEPA Direct Debit:

• Customer Direct Debit Initiation (pain.008.001.02): This message transports the direct
debit collection instruction from the creditor to the creditor's bank.

• Customer to Bank Payment Reversal (pain.007.001.02): This message transports the
customer-to-bank reversal instruction for a collection sent by the creditor to the creditor's
bank.

• Bank to Customer Payment Status Report (pain.002.001.03): This message transports the
direct debit reject instruction between the bank and its remitting customer.

You and your bank must use this version of ISO20022 XML message to ensure the messages
sent and received are interpreted correctly.

The SEPA request and response XML files must comply with the XML schema definitions
(XSD) that are provided in BRM.

Before processing a SEPA response file, BRM validates the contents using the XSD. BRM
cannot process a response file that uses a different XSD.

Configuring the pin_sepa Utility for Generating and Processing
SEPA XML Files

You use the pin_sepa utility to generate the SEPA request XML files and to process SEPA
response XML files.

Before running the pin_sepa utility, you must edit the utility's Infranet.properties file to include
the information that it requires to generate and process SEPA request and response XML files.

To configure the Infranet.properties file:

1. Open the BRM_home/apps/pin_sepa/Infranet.properties file in a text editor.

2. Provide the values listed in Table 16-2.

The Infranet.properties file for the pin_sepa utility includes standard configuration
entries. See "Using Configuration Files to Connect and Configure Components" in BRM
System Administrator's Guide for more information.

Chapter 16
Using SEPA XML Messages to Exchange Customer's Payment Information

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 8 of 10

Table 16-2 pin_sepa Infranet.properties Configuration Entries

Entry Description

infranet.connection Specifies the connection information to connect to the
BRM database.

infranet.login.type Specifies whether a login name and password is required
to connect to the BRM database. The default is 1.

infranet.log.level Specifies the error reporting level. The default is 1.

• 0: No logging
• 1: Log error messages only
• 2: Log error messages and warnings
• 3: Log error, warning, and debugging messages.

infranet.log.file Specifies the file name used to log errors. The default is
pin_sepa.pinlog.

infranet.threadpool.size Specifies the number of threads. The default is 3.

infranet.threadpool.maxsize Specifies the maximum number of threads. The default is
5.

infranet.threadpool.fetchsize Specifies the number of records fetched from the BRM
database and assigned to a thread at one point of time.

This entry also controls the maximum number of payment
transactions that can be in a SEPA request XML file. The
default is 100.

infranet.sepa_dd_req_dir.path Specifies the directory path to the SEPA Direct Debit
request XML files. The default directory is BRM_home/
apps/pin_sepa/sepa_dd.

If you change the default directory path, you must create
the new directory where you want to store the files before
running pin_sepa.

infranet.sepa_ct_req_dir.path Specifies the directory path to the SEPA Credit Transfer
request XML files. The default directory is BRM_home/
apps/pin_sepa/sepa_ct.

If you change the default directory path, you must create
the new directory where you want to store the files before
running pin_sepa.

infranet.sepa_rev_req_dir.path Specifies the directory path to the SEPA Direct Debit
reversal request XML files. The default directory is
BRM_home/apps/pin_sepa/sepa_rev.

If you change the default directory path, you must create
the new directory where you want to store the files before
running pin_sepa.

infranet.sepa_resp_dir.path Specifies the directory path to the SEPA Direct Debit,
Credit Transfer, and Direct Debit reversal response XML
files. The default directory is BRM_home/apps/pin_sepa/
sepa_resp/input.

If you change the default directory path, you must create
the new directory where you want to store the files before
running pin_sepa.

The utility reads all the files in the directory for processing.
Hence, it recommended to store only response XML files in
this directory.

infranet.sepa.sddrequest.ReqdColltnDt
.pattern

Specifies the date pattern for the SEPA Direct Debit
request.

Chapter 16
Configuring the pin_sepa Utility for Generating and Processing SEPA XML Files

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 9 of 10

Table 16-2 (Cont.) pin_sepa Infranet.properties Configuration Entries

Entry Description

infranet.sepa.sddrequest.ReqdColltnDt
.value

Specifies the date on which to collect the money from the
customer.

infranet.sepa.sddrequest.InitgPty.Nm Specifies the name of the party initiating the SEPA Direct
Debit request.

infranet.sepa.sddrequest.InitgPty.OrgI
d

Specifies the ID of the party initiating the SEPA Direct
Debit request.

infranet.sepa.sddrequest.PmtInf.PmtM
td

Specifies the SEPA Direct Debit payment method.

This entry must be set to DD.

infranet.sepa.sddrequest.InstrPrty Specifies the instruction priority for the SEPA Direct Debit
request. The default is NORM.

infranet.sepa.sddrequest.ChrgBr Specifies the party who pays for the charges. The default is
SLEV.

According to the SEPA Rulebook, the only value allowed
for this entry is SLEV.

infranet.sepa.sddrequest.PmtTpInf.LclI
nstrm

Specifies the Local instrument code for SEPA Direct Debit
request. The default is CORE.

• CORE: Core Scheme
• B2B: Business to Business Scheme

infranet.sepa.sddrequest.PmtTpInf.Sv
cLvl

Specifies the service level for the SEPA Direct Debit
request. The default is SEPA.

infranet.sepa.sctrequest.PmtInf.PmtMt
d

Specifies the SEPA Credit Transfer payment method.

This entry must be set to TRF.

infranet.sepa.sctrequest.ReqdExctnDt.
pattern

Specifies the date pattern for the SEPA Credit Transfer
request.

infranet.sepa.sctrequest.ReqdExctnDt.
value

Specifies the date on which to credit the money to
customer account.

infranet.sepa.sctrequest.InstrPrty Specifies the instruction priority for SEPA Credit Transfer
request. The default is NORM.

infranet.sepa.sctrequest.ChrgBr Specifies the party who pays for the charges. The default is
SLEV. According to the SEPA Rulebook, the only value
allowed for this entry is SLEV.

infranet.sepa.sctrequest.InitgPty.Nm Specifies the name of the party initiating the SEPA Credit
Transfer request.

infranet.sepa.sctrequest.InitgPty.OrgId Specifies the ID of the party initiating the SEPA Credit
Transfer request.

infranet.sepa.sctrequest.PmtTpInf.LclI
nstrm

Specifies the Local instrument code for SEPA Credit
Transfer request. The default is CORE.

• CORE: Core Scheme
• B2B: Business to Business Scheme

infranet.sepa.sctrequest.PmtTpInf.Svc
Lvl

Specifies the service level for the SEPA Credit Transfer
request. The default is SEPA.

infranet.sepa.sddreversal.InitgPty.Nm Specifies the name of the party initiating the SEPA Direct
Debit Reversal request.

infranet.sepa.sddreversal.InitgPty.OrgI
d

Specifies the ID of the party initiating the SEPA Direct
Debit Reversal request.

3. Save and close the file.

Chapter 16
Configuring the pin_sepa Utility for Generating and Processing SEPA XML Files

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 10 of 10

17
Configuring Payment Fees

Learn how to implement payment fees in Oracle Communications Billing and Revenue
Management (BRM).

Topics in this document:

• About Payment Fees

• Creating Payment Fees in PDC

• Creating Payment Fees in Pricing Center

For information on customizing payment fees, see "Customizing Payment Fees" in BRM
Opcode Guide.

About Payment Fees
Payment fees are one-time fees that can be charged for failed payments. For example, if a
check is denied due to insufficient funds or a credit card is invalid because it has expired, you
can charge the customer a payment fee.

Payment fees can be applied to payments that are processed by using BRM-initiated payment
processing, such as credit card payments, or externally-initiated payment processing, such as
checks.

BRM applies the balance impact of the payment fee event to the default balance group of the
bill unit (/billinfo object). If a customer receives a payment fee in error, you can perform a
balance adjustment to remove the fee.

When payments are processed, they are given a status such as successful or failed. When a
payment is given a failed payment status, BRM creates the following events:

• A failed payment fee event (/event/billing/fee/failed_payment)

• A payment event for the failed payment (/event/billing/payment/failed)

You can use data from both events to charge customers for payment fees and customize how
to implement payment fees.

To charge customers for payment fees, you create a charge offer that uses a charge based on
the failed payment fee event (/event/billing/fee/failed_payment). For example, the failed
payment fee event includes the amount of the original payment that failed. You can create a
charge offer that creates a payment fee if the payment amount is over a specified amount.

To customize payment fees, you use the data in the payment event (/event/billing/payment/
failed). For example, this event includes a reason ID that records the reason that the payment
failed. You can use this reason, in conjunction with the PCM_OP_PYMT_POL_APPLY_FEES
policy opcode, to customize how payment fees are created. You can also extend the /event/
billing/payment/failed storable class to include the added fields. See "Customizing Payment
Fees" in BRM Opcode Guide.

Payment fees can be charged only for failures that occur due to financial reasons, and not for
failures that occur due to communication errors between BRM and the payment transaction
service. Communication errors are considered unresolved transactions. You run the

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 4

"pin_clean" utility to find all unresolved credit card and direct debit payments recorded in the
BRM database.

Note

If you use Payment Suspense Manager to handle failed payments, any failed payment
is posted to the payment suspense account and receives a payment fee. When the
payment is later fixed and posted to the correct account, the payment fee is allocated
along with the payment.

Creating Payment Fees in PDC
To create a payment fee in PDC, create a payment fee charge offer:

1. In the PDC service-event map, create a Payment Failure event in the Account events:

2. Create one or more RUMs based on fields in the failed payment fee event. The relevant
fields are:

• Amount of original payment. For example, you could create a payment fee for failed
payments over $50.00.

• Customer segment. For example, you could create customer segments such as early
bill payer and delinquent bill payer. You could create different fees for each segment,
based on their payment patterns. See "Creating and Managing Customer Segments"
in BRM Managing Customers for information about customer segments.

• Payment method. For example, you could create different payment fees for credit-
card payments and cash payments.

• Channel ID. See "Configuring Payment Channels".

To charge a payment fee based on multiple attributes, use a charge selector. For example,
you could create a payment fee based on failed credit-card payments over $50.00.

3. Create a charge offer based on the Payment Failure event. The charge has these
attributes:

• Use Subscription for the charge offer type.

• Use One Time for the charge category.

Chapter 17
Creating Payment Fees in PDC

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 4

• Use Payment Failure for the charge type.

• Use a debit currency balance impact in the charge to charge a fee when the Payment
Failure event occurs.

If an account owns a payment fee charge offer, you cannot exempt the account from receiving
payment fees. However, you can create a discount that grants the same amount as the fee.

Creating Payment Fees in Pricing Center
You create payment fees in Pricing Center by defining rates and configuring real-time rating.
The rates you define for payment fees are based on the fields defined in the /event/billing/fee/
failed_payment event. These fields enable you to charge and suppress payment fees.

Note

You should be familiar with real-time rating before you begin. For information on
creating rates and pricing plans, see Pricing Center Help.

This example defines payment fees based on your customers' payment method. It charges
a $5 fee for failed wire transfers, credit card, debit card, and direct debit payments; a $7 fee for
failed check, postal order, and invoice payments; and no fee for failed cash payments. Failed
cash payments are handled by BRM as non-payments or overdue payments.

1. Start Pricing Center and begin creating a System product.

Note

This defines payment fees for all customer accounts. To define fees only for
certain accounts, create a Subscription product and purchase the product for the
account.

2. Apply the product at the account level and define the purchase and ownership information.

3. In the General Product Info tab, type 1 in Priority.

4. Under Event Map, click Add.

a. In the Event column, select Failed Payment Fee Event.

b. In the Measured By column, select Occurrence.

c. In the Rate Plan Structure column, select Rate Plan Selector.

5. Set up the rate plan for the $5 fee.

a. Under Rate Plan Selector, type a name for the payment fee.

b. Click Edit Plans and click New.

c. Define the Plan Details and Rate Plan Structure.

d. In the Balance Impacts tab, select US Dollars [840] as the Resource ID and type
5.00 in Fixed Amount.

e. Click OK.

6. Set up the rate plan for the $7 fee. Repeat step 5, but in the Balance Impacts tab, type
7.00 in Fixed Amount.

Chapter 17
Creating Payment Fees in Pricing Center

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 4

7. Set up the rate plan selector.

a. Click ...+ in the first column, select Event, choose
PIN_FLD_FAILED_PAYMENT_FEE.PIN_FLD_PAY_TYPE from the attributes list, and
click OK.

b. Click + in the row column to create a row for each payment method, except Cash
payments. Omitting the cash payment method from the rate plan selector excludes it
from being rated and no fees are applied.

c. In the first column of each row, type the element ID for each payment method.

d. For the credit card, debit card, direct debit, and wire transfer payment methods, select
the $5 payment fee rate plan.

e. For the invoice, check, and postal order payment methods, select the $7 payment fee
rate plan.

8. Click OK and Apply.

You can exempt accounts from receiving fees and define thresholds at which to suppress
payment fees. For information, see Pricing Center Help.

Chapter 17
Creating Payment Fees in Pricing Center

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 4

18
Configuring Payment Incentives

Learn how to implement payment incentives in Oracle Communications Billing and Revenue
Management (BRM).

Topics in this document:

• About Payment Incentives

• How BRM Creates Payment Incentives

• How Payment Reversals Affect Payment Incentives

• Enabling BRM for Payment Incentives

• Creating a Payment Incentive Charge Offer

• Creating Payment Incentives in Pricing Center

For information on customizing payment incentives, see "Customizing Payment Incentives" in
BRM Opcode Guide.

About Payment Incentives
A payment incentive is a reward for customers who pay their bills early and in full. For
example, you can award 20 minutes or provide a 5% reduction in the monthly bill amount.

You create payment incentives in PDC by creating charge offers that grant the incentives, and
in Pricing Center by defining a product and rate plan.

Payment incentives are based on the fields defined in the /event/billing/incentive event. For
example, you can create an incentive based on the amount of the current or previous bill, the
payment method, customer segments, and payment channels.

A single payment incentive can impact multiple balances; for example, both minutes and the
amount due for a cycle forward fee. Customers might be eligible for multiple payment
incentives depending on which charge offers they purchase and whether any payment
incentive system charge offers are valid for their account.

You can customize payment incentives by editing the
PCM_OP_PYMT_POL_GRANT_INCENTIVE policy opcode and extending the /event/billing/
incentive storable class. See "Customizing Payment Incentives" in BRM Opcode Guide.

In addition to creating incentives in Pricing Center or PDC, you must also enable payment
incentives in BRM. See "Enabling BRM for Payment Incentives".

How BRM Creates Payment Incentives
BRM determines if an account is eligible for a payment incentive by comparing the time that
the customer paid their previous bill, and the time when the payment was due for the previous
bill. If the payment was paid before it was due, the account is eligible for a payment incentive.
The incentive is granted the next time that billing is run. Figure 18-1 shows how a payment
incentive is granted.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 6

Figure 18-1 Payment Incentive Time Line

If the account qualifies for a payment incentive, BRM adds a trigger to the bill unit (/billinfo
object). This is known as provisioning the payment incentive. During the next billing run, BRM
checks the bill unit for this trigger. If the trigger is present, indicating that the payment incentive
is provisioned, BRM uses the customer's purchased charge offer to calculate the payment
incentive. The payment incentive is applied to the default balance group of the bill unit
associated with the bill.

Note

The current bill total indicates the current bill amount. This does not include the debits
and credits from the previous bill.

By default, payment incentives are granted after BRM processes all billing time events
including the application of taxes. Therefore, payment incentives cannot be based on a pre-tax
bill amount: only on the total after-tax amount. However, you can customize the
PCM_OP_PYMT_POL_GRANT_INCENTIVE policy opcode to consider all the /bill items on a
before tax basis.

Payment incentives are granted only in the billing run for the account's normal billing cycle.
BRM does not apply payment incentives for:

• On-purchase billing runs.

• Bill-now billing runs.

If these types of billing runs occur during a billing cycle, BRM ignores any payment incentives.
Later, BRM applies the payment incentive during the next normal billing run, provided there
was an early payment within the normal billing cycle and the account is eligible.

How Payment Reversals Affect Payment Incentives
The provisioning of payment incentives can be reversed under certain circumstances,
particularly ones that involve unconfirmed payments: those where a payment was allocated
before the credit card processor or automated clearing house (ACH) verified funding. For
example, a customer pays a bill early by personal bank check, and BRM allocates an
unconfirmed payment, consequently applying the incentive. Then, the ACH notifies BRM that

Chapter 18
How Payment Reversals Affect Payment Incentives

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 6

the bank account had insufficient funds, and the check failed. In this case, BRM must reverse
both the payment and the payment incentive provision.

The payment reversal itself triggers the reversal of the payment incentive provision. If a
payment is reversed, BRM reverses only those payment incentives that meet these conditions:

• The payment incentive has been provisioned.

• The payment incentive has not yet been applied to the account during a billing run.

If the payment incentive was already applied, you must perform the adjustment manually as a
balance adjustment. You can create a custom application to find accounts that need a payment
event reversal. For information, see "Reversing Payment Incentives" in BRM Opcode Guide.

Enabling BRM for Payment Incentives
To enable payment incentives, run the pin_bus_params utility to change the
PaymentIncentive business parameter. For information about this utility, see
"pin_bus_params" in BRM Developer's Guide.

To enable payment incentives:

1. Go to BRM_home/sys/data/config.

2. Create an XML file from the /config/business_params object:

pin_bus_params -r BusParamsAR bus_params_AR.xml

3. In the file, change disabled to enabled:

<PaymentIncentive>enabled</PaymentIncentive>

4. Save the file as bus_params_AR.xml.

5. Load the XML file into the BRM database:

pin_bus_params bus_params_AR.xml

6. Stop and restart the CM.

Creating a Payment Incentive Charge Offer
To create a charge offer to grant a payment incentive:

1. In the PDC service-event map, create a Payment Incentive event in the Account events:

Chapter 18
Enabling BRM for Payment Incentives

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 6

2. Create one or more RUMs based on fields in the payment incentive event. The relevant
fields are:

• Current bill amount or previous bill amount For example, you can create a balance
impact that credits a percentage of the total bill.

• Customer segment. For example, you could create customer segments such as early
bill payer and delinquent bill payer. You could create different payment incentives for
each segment, based on their payment patterns. See "Creating and Managing
Customer Segments" in BRM Managing Customers for information about customer
segments.

• Payment method. For example, you could create different payment incentives for
credit-card payments and cash payments.

• Channel ID. See "Configuring Payment Channels".

To grant a payment fee based on multiple attributes, use a charge selector.

3. Create a charge offer based on the Payment Incentive event. The charge has these
attributes:

• Use Subscription for the charge offer type.

• Use One Time for the charge category.

• Use Payment Incentive for the charge type.

• Create a balance impact to grant the incentive when the Payment Incentive event
occurs.

Creating Payment Incentives in Pricing Center
You create payment incentives in Pricing Center by defining products and rate plans. The rate
plans you set up for payment incentives are based on the fields defined in the /event/billing/
incentive event. You use these fields to create attribute combinations in Pricing Center that
BRM compares with the actual event to determine whether it should rate the payment incentive
and, if so, which rate to use.

Note

You should be familiar with real-time rating before you begin. For detailed information
on creating rates and pricing plans, see Pricing Center Help.

This example uses a rate plan selector to define payment incentives based on combinations of
two attributes: the payment method and customer segment:

• The payment incentive awards a 15% reduction on the total bill amount for all customers in
the “Platinum Subscriber” customer segment who pay by credit card.

• It also awards a $10 reduction on the total bill amount plus 30 free minutes for customers
in the “Silver Subscriber” customer segment who pay by cash.

This example includes a restriction for customers in the “Silver Subscriber” customer segment.
These customers do not qualify for a payment incentive unless their total bill is over $100.

Chapter 18
Creating Payment Incentives in Pricing Center

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 6

Note

A rate plan selector can only contain fields defined in the payment incentive event. For
example, you can apply a payment incentive based on a customer segment, payment
channel, or payment method, or a combination of these attributes.

1. Start Pricing Center and begin creating a System product.

2. Apply the product at the account level and define the purchase and ownership information.

3. In the General Product Info tab, type 1 in Priority.

4. Under Event Map, click Add.

a. In the Event column, select Payment Incentive Event.

b. In the Measured By column, select Current Bill Total.

c. In the Rate Plan Structure column, select Rate Plan Selector.

5. Set up a rate plan for the 15% total bill reduction.

a. Under Rate Plan Selector, type 15% Reduction as the name for the payment
incentive.

b. Click Edit Plans and click New.

c. Define the Plan Details and Rate Plan Structure.

d. Define the Quantity Discount Bracket for the new rate as Based on: Rate
Dependent.

e. In the Balance Impacts tab, select US Dollars [840] as the Resource ID and type –
0.15 in Scaled Amount. Because the value for Scaled Amount is negative, this
results in a 15% reduction. (A positive number would result in a fee.)

f. Click OK.

6. Set up a second rate plan for the $10 total bill reduction plus the 30 free minutes. This
reduction is applied only if the total for the current bill is over $100.

a. Under Rate Plan Selector, type $10 Reduction + 30 Minutes as the name for the
payment incentive.

b. Click Edit Plans and click New.

c. Define the Plan Details and Rate Plan Structure.

d. Define the Quantity Discount Bracket for the new rate as Based on: Rate
Dependent.

e. In the Balance Impacts tab, deselect Minimum and type 100 in the associated entry
box.

f. Select US Dollars [840] as the Resource ID and type –10 in Fixed Amount.

g. Add a row to the balance impacts table that sets Free Domestic Minutes as the
Resource ID and enter 30 in Fixed Amount.

h. Click OK.

7. Set up the rate plan selector.

a. Click ...+ in the first column, select Event, choose
PIN_FLD_INCENTIVE.PIN_FLD_PAY_TYPE from the attributes list, and click OK.

Chapter 18
Creating Payment Incentives in Pricing Center

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 6

b. Click ...+ in the next column, select Event, choose
PIN_FLD_INCENTIVE.PIN_FLD_CUSTOMER_SEGMENT from the attributes list, and
click OK.

c. Click + in the row column to create a row for each of the two payment method/
customer segment combinations. The system product does not provide incentives to
any customers who do not meet one of these two criteria.

d. For the first row, type 10003 to define credit card as the payment method and
Platinum Subscriber to define the customer segment. Select the 15% Reduction rate
plan.

e. For the second row, type 10011 to define cash as the payment method and Silver
Subscriber to define the customer segment. Select the $10 Reduction + 30 Minutes
rate plan.

f. Click OK and Apply.

Chapter 18
Creating Payment Incentives in Pricing Center

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 6

19
Configuring Top-Ups

Learn how to configure and implement top-ups in Oracle Communications Billing and Revenue
Management (BRM).

Topics in this document:

• About Standard Top-Ups

• About Sponsored Top-Ups

• Topping Up Accounts in Customer Center

• Voucher Top-Up Errors

Important

Most top-up implementation tasks require a custom application. See "Managing Top-
Ups" in BRM Opcode Guide.

About Standard Top-Ups
A standard top-up is a top-up that a customer makes to his or her account. BRM supports the
following types of standard top-ups:

• Manual standard top-ups are initiated by a customer service representative (CSR) using
a client application or by your customers using a self-care application.

Manual top-ups can occur at any time and can be performed on any account. They can be
used to add assets to credit balances or to debit balances.

• Automatic standard top-ups are initiated by ECE. They occur when a resource balance
falls below a specified threshold amount.

To use automatic standard top-ups, an account must have one or more services that are
configured for top-ups. In addition, an automatic standard top-up payment method,
amount, and cap must be set for the account.

• Recurring standard top-ups are initiated by the pin_balance_transfer utility when run
with the -standard parameter.

To use recurring standard top-ups, an account must have one or more services that are
configured for top-ups. In addition, a recurring standard top-up payment method, the top-
up resource, the interval between recurring top-ups, and the number of recurring top-ups to
make must be set for the account.

Customers can use the following payment methods for standard top-ups:

• Cash or check (manual standard top-ups for topping up currency balances only)

• Credit card or direct debit (manual, automatic, and recurring standard top-ups for topping
up both currency and noncurrency balances)

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 8

When a customer uses a payment card to top up his account, BRM interacts with a credit
card agency or direct debit company to collect payment.

• Voucher (manual and recurring standard top-ups for topping up both currency and
noncurrency balances)

When a customer uses a voucher, such as a prepaid phone card, to top up his account,
the BRM API interacts with a voucher management system to validate the voucher and
payment amount.

A voucher can be used to top up one or more balances in a specified balance group (you
cannot allocate a voucher's balances to multiple balance groups). The balances can
include one currency balance and an unlimited number of noncurrency balances. Top-ups
for currency balances are added to the existing currency sub-balance, which maintains its
original validity period. Top-ups for noncurrency balances are added to sub-balances
according to their validity period.

About Taxes Applied During Voucher Top-Ups
By default, when you apply a voucher with tax to an account, BRM applies a negative balance
impact to the account balance.

When you apply a voucher with tax to an account, you must set the tax to a negative value. For
example, if a voucher grants $100 with -10% tax on the amount granted, BRM applies a
balance impact of -100 for the voucher and +10 for the tax to the account balance. In this case,
the final balance is 0 - (-100) - (+10) = $90.

Performing Recurring Standard Top-Ups
Recurring standard top-ups are initiated by the pin_balance_transfer utility. When run with the
-standard parameter, the utility finds all accounts in your system with a recurring top-up and a
top-up date of today.

To perform recurring standard top-ups, go to the BRM_home/apps/pin_balance_transfer
directory and run the following command:

pin_balance_transfer -standard

For more information about the utility, see "pin_balance_transfer".

Reversing Voucher Top-Ups
When a voucher is associated with an account balance, its state becomes used and it cannot
be associated with another account or balance group. Thus, although its impact on the balance
to which it was applied can be reversed, its assets cannot be reapplied to another account or
balance group.

If a voucher has only noncurrency balances, an /event/billing/vouchertopup event is
generated when the voucher is associated with an account. To reverse the balance impact of
this event, you must perform an adjustment.

If a voucher has currency and noncurrency balances, an /event/billing/payment/voucher
event is generated when the voucher is associated with an account. To reverse the balance
impact of this event, you must use testnap to perform a payment reversal.

Chapter 19
About Standard Top-Ups

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 8

About Vouchers Having Noncurrency Balances with a Positive Impact
By default, when you apply a voucher with noncurrency balances to an account, a negative
balance impact is applied to the account balance. For example, if a voucher grants 30 minutes,
a balance impact of -30 is applied to the customer's account balance. As the customer uses
the minutes, the account balance approaches 0. For example, if the customer uses 20 of the
30 minutes, the account balance becomes -10. In this case, the noncurrency balance has a
credit limit of 0 by default, or it can be changed to a negative value.

To have vouchers with noncurrency balances apply a positive balance impact to account
balances, you must set the balance's credit limit to a positive nonzero value. For example, you
must set the minutes balance to +2.

To set the credit limit for noncurrency balances to a positive value, perform one of the
following:

• Specify the credit limit in your package.

• Specify the credit limit in an account.

About Sponsored Top-Ups
A sponsored top-up is a top-up that is performed by transferring assets from a balance group
in one account to a balance group in another account. For example, a mother can top up her
teenage son's account with a $50 payment from her account. Assets can be transferred from a
debit balance to a credit balance or a debit balance.

BRM supports two types of sponsored top-ups:

• Manual sponsored top-ups are initiated by a CSR using a custom client application or by
your customers using a custom self-care application.

To receive manual sponsored top-ups, an account must be a member of a sponsored top-
up group. For more information, see "About Sponsored Top-Up Groups".

• Automatic sponsored top-ups are initiated by the "pin_balance_transfer" utility at
intervals (such as daily, weekly, or monthly) and in amounts that you specify.

To receive automatic sponsored top-ups, an account must be a member of a sponsored
top-up group. In addition, an automatic sponsored top-up amount must be specified for the
group, and an automatic sponsored top-up frequency must be specified for the member
account. For more information, see "About Sponsored Top-Up Groups".

Sponsored top-ups cannot be made between the following accounts:

• Accounts with different primary currencies

• Accounts in different database schemas in a BRM multischema system

About Sponsored Top-Up Groups
To top up other accounts, an account must own a sponsored top-up group. An account can
own multiple sponsored top-up groups.

To receive top-ups from a group owner account, an account must be a member of one of the
owner's sponsored top-up groups.

An account can be a member of only one sponsored top-up group at a time.

Chapter 19
About Sponsored Top-Ups

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 8

Note

An account should be either a sponsored top-up group owner or member. It should not
be both. If an account both owns sponsored top-up groups and belongs to one or
more sponsored top-up groups, its accounts receivable (A/R) data may become
inaccurate.

All accounts that belong to a sponsored top-up group have one of the member statuses shown
in Table 19-1.

Table 19-1 Sponsored Top-Up Group Member Statuses

Status Description

Active Member account can receive top-ups from the group owner account.

Inactive Member account's top-ups from the owner account are suspended, but member cannot
join another sponsored top-up group.

Closed Member account no longer receives top-ups from the group owner account. Member
can join another sponsored top-up group.

Only member accounts whose member status is active can receive sponsored top-ups.

Each member account in a sponsored top-up group can be assigned a top-up PIN (personal
identification number). A top-up PIN is required to authorize all manual sponsored top-ups
requested by the member.

About Sponsored Top-Up Credit Limits
Sponsored top-ups are subject to the following credit limits. When either credit limit is reached,
the account cannot make any more sponsored top-ups until the credit balance is reduced.

• Credit limit of owner account's paying balance group

This credit limit controls the amount of currency and noncurrency debits that can
accumulate in the owner's paying balance group.

• Credit limit of group balance

Each balance supported by a sponsored top-up group has a group top-up cap. The cap
specifies the maximum amount of the balance that the owner account can transfer to its
members during each of the owner account's accounting cycles.

The cap applies to the sum of all top-ups associated with the group, not to an individual
member's top-ups.

Note

Member accounts do not have individual sponsored top-up credit limits.

Chapter 19
About Sponsored Top-Ups

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 8

Performing Automatic Sponsored Top-Ups
Automatic sponsored top-ups are initiated by the pin_balance_transfer utility. The utility
triggers top-ups for all member accounts in your system whose next automatic top-up date is
within the time range specified in the utility's command-line parameters.

To run the pin_balance_transfer utility, use a cron job with a crontab entry. The following
example crontab entry runs pin_balance_transfer at 1:00 a.m. daily:

0 1 * * * BRM_home/bin/pin_balance_transfer &

For more information about the utility, see "pin_balance_transfer".

Tracking Sponsored Top-Up Adjustments
To differentiate sponsored top-up adjustments (/event/billing/adjustment/account objects)
from other types of account adjustments, the reasons.locale file includes the following reason
codes and domain IDs:

• Sponsored top-up debit reason code 4 and domain ID 1

DOMAIN = "Reason Codes-Debit Reasons" ;
STR
 ID = 4 ;
 VERSION = 1 ;
 STRING = "Sponsored Topup. Sponsor Debit" ;
 EVENT-GLID
 "/event/billing/adjustment/account" 105 ;
 EVENT-GLID-END
END

• Sponsored top-up credit reason code 5 and domain ID 8

DOMAIN = "Reason Codes-Credit Reasons" ;
STR
 ID = 5 ;
 VERSION = 8 ;
 STRING = "Sponsored Topup. Sponsoree Credit" ;
 EVENT-GLID
 "/event/billing/adjustment/account" 105 ;
 EVENT-GLID-END
END

The following definitions for these new reason codes and domain IDs are in the pin_pymt.h
file in the BRM_home/include directory:

• Sponsored top-up reason code definitions

#define PIN_REASON_ID_TOPUP_CREDIT 5
#define PIN_REASON_ID_TOPUP_DEBIT 4

• Sponsored top-up reason domain ID definitions

#define PIN_PYMT_TOPUP_CREDIT_REASON_DOMAIN_ID 8
#define PIN_PYMT_TOPUP_DEBIT_REASON_DOMAIN_ID 1

You can customize the default reason codes used for sponsored top-up adjustments as
follows:

• Change the G/L ID event mapping. (If you change the G/L ID mapping, be sure the G/L IDs
you define in the reasons.locale and pin_glid files match).

Chapter 19
About Sponsored Top-Ups

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 8

• Change the reason code domain identifier (version number).

• Change the reason string.

To customize the default reason codes, edit the reasons.en_US sample file in the
BRM_home/sys/msgs/reasoncodes directory.

To load the contents of the customized reasons.en_US file into the /strings and /config/
map_glid objects, use the load_localized_strings utility.

To run the load_localized_strings utility, use this command:

load_localized_strings reasons.locale

For more information about loading the reasons.locale file and creating new strings for it, see
"Loading Localized or Customized Strings" and "Creating New Strings and Customizing
Existing Strings" in BRM Developer's Guide.

Canceling a Single Member's Sponsored Top-Ups
To stop sponsored top-ups temporarily, inactivate the top-up group members.

To cancel a member account's sponsored top-ups, change the member's group status to
closed. When the member's group status is closed, the account can use any outstanding
topped-up credit in its topped-up balance group, but it can no longer receive sponsored top-
ups from the group. It can, however, join another sponsored top-up group.

By default, only the group owner can change a member's group status to closed. To enable
members to close their group status themselves, customize the
PCM_OP_CUST_POL_PREP_TOPUP policy opcode.

To change a member's group status to closed:

1. Use your custom client application to call PCM_OP_CUST_SET_TOPUP.

2. Set the member's PIN_FLD_STATUS field in the PIN_FLD_GROUP_TOPUP_MEMBERS
array of the opcode's input flist to the value associated with the PIN_STATUS_CLOSED
status in the BRM_home/include/ops/pcm.h header file.

Note

This changes only the member's group status. It does not change the member's
account status.

You can also cancel a member account's sponsored top-ups by changing the account status of
the member to closed. By default, when a member account is closed, its sponsored top-up
group member status is set to closed. To change the status of an account, see "Changing
Account and Service Status" in BRM Managing Customers.

Note

When a member account is closed, any outstanding topped-up credit that it has is
forfeited, not transferred back to the group owner account or refunded to either the
owner or the member. Even if the member account's sponsored top-ups are
reactivated, the forfeited credit is not reinstated.

Chapter 19
About Sponsored Top-Ups

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 8

Topping Up Accounts in Customer Center
Manual standard top-ups are performed by a CSR using a client application such as Customer
Center or by a customer using a self-care application such as Self-Care Manager.

Changing the Default Top-up Payment Method
The default top-up payment method in Customer Center is voucher. To change this default,
add the following parameter to the CCSDK_home/CustomerCareSDK/CustCntr/custom/
Customized.properties file:

customized.default.topup.payment.method = payment_method

where payment_method is one of these values:

• ONFILE (Payment method on file)

• ONETIME (One-time credit card)

• VOUCHER (Voucher)

Note

If this parameter is not included in the file, voucher is the default payment method.

For information about modifying the Customized.properties file, see "Modifying Behaviors
Defined by the Default Properties Files" in BRM Developer's Guide.

Turning off "Top-up Completed" Message
By default, Customer Center displays the message "Top-up completed" after you complete a
top-up. If you typically perform multiple top-ups in a row and do not want to close this message
after each of them, you can prevent the message from appearing. To do so, set the following
parameter in the CCSDK_home/CustomerCareSDK/CustCntr/custom/
Customized.properties file to true:

customized.turn.off.topup.completed.msg = true

By default, this parameter is set to false.

For information about modifying the Customized.properties file, see "Modifying Behaviors
Defined by the Default Properties Files" in BRM Developer's Guide.

Canceling an Entire Group's Sponsored Top-Ups
To cancel the sponsored top-ups of every member in a group, change the account status of the
sponsored top-up group owner to closed. By default, when the owner account is closed, the
member status of its member accounts is set to closed.

To change the status of an account, see "Changing Account and Service Status" in BRM
Managing Customers.

Chapter 19
Topping Up Accounts in Customer Center

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 7 of 8

Reinstating Sponsored Top-Ups
When an account's sponsored top-up group member status is set to closed, its array element
is not removed from the PIN_FLD_GROUP_TOPUP_MEMBERS array in the /group/topup
object with which it was associated.

If you later reactivate the member's status and want to use its old MEMBERS array element,
the client application must pass the called opcode the same receiving balance group POID that
was used the last time the member belonged to the group. Otherwise, a new array element is
created for the member account.

Note

If a lot of members have multiple MEMBERS array elements, your system's
performance may be affected.

Voucher Top-Up Errors
Table 19-2 lists the default error messages that are displayed in Customer Center when errors
associated with the corresponding error type and field name occur.

Table 19-2 Default Error Messages in Customer Center for Top-Ups

Error Message Error Type Field Name

Voucher has already been used ERR_NOT_FOUND PIN_FLD_EXTENDED_INFO

Invalid voucher ID/PIN combination ERR_NOT_FOUND PIN_FLD_POID

Voucher has already been used or has expired ERR_BAD_VALUE PIN_FLD_STATE_ID

Voucher has expired ERR_BAD_VALUE PIN_FLD_EXPIRATION_T

Invalid voucher ID/PIN combination ERR_BAD_ARG PIN_FLD_VOUCHER_PIN

Voucher has already been used or has expired ERR_BAD_ARG PIN_FLD_STATE_ID

Chapter 19
Voucher Top-Up Errors

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 8 of 8

20
Configuring Loans

Learn how to configure and implement loans in Oracle Communications Billing and Revenue
Management (BRM).

Topics in this document:

• About Loans

• About Loan Thresholds

• About Recovering Loans

• Configuring Loans

• Loan Configuration Examples

Note

Most loan implementation tasks require a custom application. See "Loan Opcode
Workflows" in BRM Opcode Guide.

About Loans
Prepaid customers can opt-in to receive the following types of loan:

• Dynamic loans are granted when a customer's credit limit is crossed during rating. For
example, if a customer's balance is $5, their credit limit is set to $0, and they try to
purchase a subscription for $10, they can be granted a loan for the remaining $5. You
enable dynamic loans when configuring subscription charge offers in PDC.

• Offered loans are offered when a customer's balance falls below a threshold set in their
credit profile and are granted after the customer confirms. Loans can be offered either
when the threshold is crossed during subscription or usage charging.

• Channel loans are granted when a customer uses an external purchase channel, such as
an external app, an Unstructured Supplementary Service Data (USSD) gateway, or
interactive voice response (IVR) system to use a loan to purchase a package. These
channels send the purchase and loan request to BRM, and BRM checks eligibility and
grants the loan without considering or consuming the customer's current balance.
You must configure a policy opcode to grant channel loans after rating is complete. See
"Granting a Channel Loan" in BRM Opcode Guide for more information.

You recover loans from customers from the next top-up or balance transfer they make.

When configuring loans and customer loan profiles, you can:

• Charge service fees, taxes, and late repayment fees.

• Configure loan offer thresholds.

• Set the number of days before repayment is considered late and specify what happens
after; you can charge a late fee or pull the amount due from the customer's available
balance.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 9

• Configure what happens if a top-up amount is less than the full amount due for the loan,
including service fees, taxes, and late fees.

• Set the maximum number of active loans for a customer.

Although loans are always for currency resources, you can optionally grant noncurrency
resources along with the currency loan. You can also calculate the maximum amount to loan
based on the previous month's consumption of a noncurrency resource.

Loan amounts are temporarily added to the customer's credit limit so that they do not count
against them in credit checks.

About Loan Thresholds
You can set loan thresholds either as a percent of the balance, or a fixed amount. When the
customer's balance falls below their loan threshold, the /event/notification/threshold_loan
event is generated and a notification is sent to the customer to offer a loan. The notification is
then resent each day until the balance is no longer below the threshold.

You configure loan thresholds for all customers when creating packages in PDC or plans in
BRM using the XML Pricing Interface. When a customer purchases the package, the
thresholds are stored in the /config/credit_profile associated with the customer's balance
group. You can update the loan offer thresholds for individual customers when creating or
modifying the customer's loan profile. See:

• "Setting Loan Thresholds for Packages" in PDC Creating Product Offerings

• "Setting Loan Thresholds for Plans" in BRM Setting Up Pipeline Rating

• "Creating and Modifying a Customer's Loan Profile" in BRM Opcode Guide

You must configure your charging application to send the notification generated for the /event/
notification/threshold_loan event, manage the customer's response by USSD, IVR, or other
self-care application, and request the loan from BRM with the PCM_OP_LOAN_APPLY_LOAN
opcode or BRM REST APIs if the customer accepts the loan.

About Recovering Loans
You automatically recover loans granted to your customers the next time they top up their
balance, either by making a standard or sponsored top-up. You can also customize the events
for recurring charges or adjustments to call the PCM_OP_LOAN_RECOVER_LOAN opcode in
the pin_notify file.

Any top-up balance remaining after the loan and all associated service fees and taxes have
been recovered is credited to the main account balance.

If the top-up amount is less than the amount due for the loan, you can:

• Partially recover the loan using a percentage of the top-up balance, credit the remaining
amount to the main account balance, and notify the customer of the remaining amount
due.

• Reject the top-up and notify the customer that they must pay the full amount.

If the payment associated with a top-up is reversed, the loan recovery is also reversed.

Configuring Loans
At a high level, configuring loans involves the following:

Chapter 20
About Loan Thresholds

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 9

1. Configure loans in /config/loan configuration objects and load them to the BRM database
by using the load_config utility. See "Loading Your Loan Information into the BRM
Database".

2. To grant noncurrency resources with loans, create charge offers for the /event/billing/
loan_grant event. See "Configuring Charge Offers" in PDC Creating Product Offerings.

3. To apply loan service fees, if you did not configure the amount in the /config/loan object,
create charge offers for the /event/billing/loan_fee event. You can use the loan amount as
a RUM for the charge. See "Configuring Charge Offers" in PDC Creating Product
Offerings.

4. Configure what happens during loan recovery if the top-up amount is less than the loan
amount due:

• To allocate a percentage of a top-up to loan repayment, set the
LoanRepaymentPercent subscription business parameter. Set this parameter to a
number between 0 (none of the top-up goes to repaying the loan) and 100 (all of the
top-up goes to repaying the loan). The default is 100. See "Configuring BRM by Using
the pin_bus_params Utility" and "business_params Reference" in BRM System
Administrator's Guide for more information about configuring business parameters.

• To reject the top-up completely and notify the customer of the amount due, customize
the PCM_OP_LOAN_POL_PRE_RECOVER_LOAN policy opcode. This is an empty
policy hook that can be called during payment and balance transfer flows for top-ups.

5. When creating subscription charge offers in PDC, specify that a loan can be applied if the
customer has insufficient credit. See "Allowing Customers to Exceed Their Credit Limit" in
PDC Creating Product Offerings.

6. When using the XML Pricing Interface to create packages in PDC or plans in BRM, set
balance thresholds for offering loans to customers. See "Setting Loan Thresholds for
Packages" in PDC Creating Product Offerings or "Setting Loan Thresholds for Plans" in
BRM Setting Up Pipeline Pricing.

7. Configure whether customers want to receive loans, and how loans are implemented for
the customer by creating loan profiles (/profile/loan objects). Loan profiles store the
details for the current loan cycle. See "Creating a Customer's Loan Profile" in BRM
Opcode Guide.

8. Set loan thresholds for customers in /config/credit_profile objects. See "Setting a
Customer's Automatic Loan Threshold" in BRM Opcode Guide.

Loading Your Loan Information into the BRM Database
Your loan information includes parameters such as maximum and minimum amounts, minimum
eligible account age, eligible locations, service fees, and tax codes. You load the loan
information into /config/loan objects in the BRM database. You can create new /config/loan
objects, or update existing ones.

To set up and load loan information:

1. Open the BRM_home/sys/data/config/config_loan.xml file in an XML or text editor,
where BRM_home is the directory in which the BRM server software is installed.

2. Provide the values listed in Table 20-1.

Chapter 20
Configuring Loans

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 9

Table 20-1 Fields in the Loan Configuration Object

Field Description

DESCR (Optional) The loan configuration object's description.

NAME (Required) The name of the loan configuration object. If a /config/
loan object with this name already exists, its fields are updated with
the new values provided. If it doesn't exist, a new object is created.

CREDIT_AMOUNT (Required) The default loan amount to grant. The account's primary
currency is used.
If there is no amount specified on a loan request, this value is used.

LOAN_FIXED_FEE (Optional) The fixed amount to charge as service fee.
If you specify this, you cannot specify LOAN_PERCENT_FEE.

LOAN_PERCENT_FEE (Optional) The percent of the loan to charge as a service fee. For
example, if the requested amount is 10, and you set PERCENT_FEE
to 10, the service fee is $1.
If you specify this, you cannot specify LOAN_FIXED_FEE.

AGE (Optional) The minimum number of days, months, or years the
account must be active to be eligible for a loan.

UNIT (Optional) The unit for the AGE field. Can be:
• 4 (days)
• 5 (months)
• 6 (years)

LOAN_MINIMUM (Optional) The minimum amount for the loan. Used only for dynamic
loans. If the specified amount on the loan request is less than the
minimum, the loan is rejected.

FIXED_MAXIMUM (Optional) The maximum fixed amount to grant for each loan cycle.
This amount can represent a total amount from multiple loans.

For example, if the amount specified in a loan request is 10, and
FIXED_MAXIMUM is set to 30, that loan could be granted a
maximum of three times in the cycle.

You configure the loan cycle in the /profile/loan object. See
"Creating a Customer's Loan Profile" in BRM Opcode Guide.

If you specify this, you cannot specify SCALED_MAXIMUM.

SCALED_MAXIMUM (Optional) The maximum scaled amount to grant. This is a percent of
the resource specified in RESOURCE_ID, which represents
consumption of a noncurrency resource in the previous calendar
month.
For example, if you set SCALED_MAXIMUM to 50% and use the
resource ID for GB of data, the maximum loan amount is calculated
by determining the cost of 50% of the GB used by the customer in
the previous month. If a customer pays $20 monthly for 10GB of
data, and used the full 10GB in the previous month, the maximum
loan amount would be $10.

If you specify this, you cannot specify FIXED_MAXIMUM.

RESOURCE_ID (Optional) The ID of a noncurrency resource to use when calculating
the loan when SCALED_MAXIMUM is specified.
This resource ID is unrelated to noncurrency resources you can grant
with loans by the /event/billing/loan_grant event. Those are
specified in the loan request.

MAX_QUANTITY (Optional) The maximum number of times the loan can be granted in
each loan cycle.

TAX_CODE (Optional) The tax code for the loan service fee.

LOAN_TAX_CODE (Optional) The tax code for the loan.

REASON_ID (Optional) The A/R reason code to map to the G/L ID.

Chapter 20
Configuring Loans

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 9

Table 20-1 (Cont.) Fields in the Loan Configuration Object

Field Description

REASON_DOMAIN_ID (Optional) The A/R reason domain to map to the G/L ID.

LOCATION_MODE (Optional) Whether the locations specified in the LOCATIONS array
are eligible for the loan (0) or ineligible (1).

LOCATIONS (Optional) An array of locations.
If LOCATION_MODE is set to 0, only the locations specified in the
array are eligible for the loan. If you don't specify any locations in the
array, all locations are eligible.

If LOCATION_MODE is set to 1, the array is required. The locations
specified in the array are not eligible for the loan.

LOCATION (Optional) A location, specified in an array under LOCATIONS.
This can be a ZIP code, city, state, or ISO-3166 country code.

3. Save and close the file.

4. Run the following command, which loads the contents of the file into the /config/loan
object:

BRM_home/apps/load_config/load_config -v config_loan.xml

The load_config utility validates the contents using the config_loan.xsd file before
loading the data.

See "load_config" in BRM Developer's Guide for more information about the utility's syntax
and parameters.

5. Read the object by using the robj command with the testnap utility or by using Object
Browser in Developer Center to verify that the creditor configurations are loaded.
See "Using the testnap Utility to Test BRM" in BRM Developer's Guide for general
instructions on using the testnap utility.

6. Stop and restart the Connection Manager (CM).

See "Loan Configuration Examples" for examples of how to use the loan configuration fields.

Loan Configuration Examples
The following examples show how to configure different kinds of loan.

Example: Configuring an offered loan

This example shows how to configure a loan for $10 and:

• Charge a fixed fee of $0.50

• Grant the loan only to accounts in the USA that have been active for at least 6 months

• Grant a maximum worth 50% of the data used from the previous month

• Restrict customers to one loan per cycle

• Grant 1GB of data with the loan

It also shows how to set up the customer's loan profile to:

• Resets the loan cycle every 30 days.

• Offer a loan when the customer's balance reaches 5.

• Require the customer to pay the loan back 14 days after it is granted. Repayment details:

Chapter 20
Loan Configuration Examples

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 9

• Pull any outstanding balance after 14 days from the customer's available balance.

• Have a maximum of 3 active loans at a time.

To do this:

1. Create a /config/config_loan object and import it using the load_config utility. The
following shows the sample XML for the /config/config_loan object:

<ConfigObject>
 <DESCR>Loan for $10</DESCR>
 <NAME>10DollarLoan</NAME>
 <LOAN_INFO>
 <CREDIT_AMOUNT>10</CREDIT_AMOUNT>
 <LOAN_FIXED_FEE>.50</LOAN_FIXED_FEE>
 <AGE>6</AGE>
 <UNIT>5</UNIT>
 <RESOURCE_ID>1000100</RESOURCE_ID>
 <MAX_QUANTITY>1</MAX_QUANTITY>
 <SCALED_MAXIMUM>50</SCALED_MAXIMUM>
 <TAX_CODE>purchase</TAX_CODE>
 <LOAN_TAX_CODE>usage</LOAN_TAX_CODE>
 <REASON_ID>2</REASON_ID>
 <REASON_DOMAIN_ID>Reason Codes - Loan Reasons</REASON_DOMAIN_ID>
 <LOCATION_MODE>0</LOCATION_MODE>
 <LOCATIONS>
 <LOCATION>US</LOCATION>
 </LOCATIONS>
 </LOAN_INFO>
</ConfigObject>

2. When creating subscription charge offers in PDC, specify that a loan can be applied if the
customer has insufficient credit. See "Allowing Customers to Exceed Their Credit Limit" in
PDC Creating Product Offerings.

3. Create a charge offer with a charge for the /event/billing/loan_grant event that has a
credit balance impact of 1GB of data.

4. Create the customer's loan profile to opt-in for loans, define loan thresholds, and other
settings by using the following input flist for the PCM_OP_CUST_CREATE_PROFILE
opcode:

0 PIN_FLD_POID POID [0] 0.0.0.1 /profile/loan -1 0
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.0 /account
235101 0
0 PIN_FLD_SERVICE_OBJ POID [0] 0.0.0.0 /service/
telco/gsm -1 0
0 PIN_FLD_SERVICE_ID STR [0] "0049100098"
0 PIN_FLD_PROFILES ARRAY [0] allocated 20,
used 7
1 PIN_FLD_PROFILE_OBJ POID [0] 0.0.0.1 /profile/
loan -1 0
1 PIN_FLD_INHERITED_INFO SUBSTRUCT [0] allocated 20,
used 5
2 PIN_FLD_LOAN_INFO SUBSTRUCT [0] allocated
20,used 4
3 PIN_FLD_EXTERNAL_ELIGIBILITY INT [0] 1
3 PIN_FLD_PROFILE_NAME STR [0] "Loan

Chapter 20
Loan Configuration Examples

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 9

Configuration 1"
3 PIN_FLD_FREQUENCY INT [0] 30
3 PIN_FLD_UNIT ENUM [0] 4
3 PIN_FLD_OPT_LOAN INT [0] 1
3 PIN_FLD_MAX_ACTIVE_LOANS INT [0] 3
3 PIN_FLD_REPAYMENT_DAYS INT [0] 14
3 PIN_FLD_PULLBACK INT [0] 1
3 PIN_FLD_LOAN_THRESHOLDS_FIXED STR [0] "5"

See BRM Opcode Guide for more information about using opcodes.

When the customer's balance drops below $5, they are automatically sent a notification
offering them the loan. If they accept and the charging system sends the request to BRM, the
following happens:

1. If the current date is later than the reset date specified in the loan profile for the loan cycle,
the number of loans and credit amount for the loan cycle in the loan profile is reset.

2. BRM checks whether the customer is eligible for the loan. In this scenario, it confirms that:

• The customer has opted in to receive loans

• The customer's maximum number of active loans hasn't been met

• The amount requested does not make the CREDIT_AMOUNT in the loan profile
exceed the scaled maximum amount for this loan cycle. In this example, the amount
must be less than the value of half of the customer's data for the previous month. If the
customer currently pays $20 a month for 10GB of data, and they used all of their data
in the previous month, the maximum amount of loans they can receive for this cycle
is $10.

• The number of times the loan can be granted for this cycle is not exceeded.

• The customer's location is eligible.

• The customer's account has been active long enough.

• The customer's account status is active.

• There is no missing or incorrect information, such as an incorrect resource ID.

3. The loan is granted to the eligible customer. A $10 credit is added to their account balance.
Their credit limit is temporarily raised to include the credit, the fee, and tax.

4. A non-billable open item is created for the $0.50 fee.

5. General ledger information is recorded.

6. Because the request input flist contained a noncurrency resource ID, an /event/billing/
loan_grant event is generated, and the charge offer granting the 1GB of data is
purchased.

7. The customer's credit profile is updated to reflect the loan amount and number of loans
granted this cycle.

Example: Configuring a dynamic loan

This example shows how to configure a dynamic loan for a currency resource and:

• Charge a fee of 10%

• Grant the loan to accounts that have been active for at least 10 days in all locations other
than Alaska

• Restrict customers to two loans per cycle

Chapter 20
Loan Configuration Examples

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 7 of 9

To do this:

1. Create a /config/loan object and import it using the load_config utility. The following
shows the sample XML for the /config/loan object:

<LOAN_INFO>
 <CREDIT_AMOUNT>10</CREDIT_AMOUNT>
 <LOAN_PERCENT_FEE>10</LOAN_PERCENT_FEE>
 <AGE>10</AGE>
 <UNIT>4</UNIT>
 <LOAN_MINIMUM>2</LOAN_MINIMUM>
 <LOAN_MAXIMUM>20</LOAN_MAXIMUM>
 <MAX_QUANTITY>2</MAX_QUANTITY>
 <TAX_CODE>PURCHASE</TAX_CODE>
 <LOAN_TAX_CODE>RECURRING</LOAN_TAX_CODE>
 <REASON_ID>2</REASON_ID>
 <REASON_DOMAIN_ID>Reason Codes - Loan Reasons</REASON_DOMAIN_ID>
 <LOCATION_MODE>1</LOCATION_MODE>
 <LOCATIONS>
 <LOCATION>ALASKA</LOCATION>
 </LOCATIONS>
</LOAN_INFO>

2. When creating subscription charge offers in PDC, specify that a loan can be applied if the
customer has insufficient credit. See "Allowing Customers to Exceed Their Credit Limit" in
PDC Creating Product Offerings.

When a customer is charged for a subscription that costs $20, but only has $12 in their
account, the following happens:

1. If the current date is later than the reset date specified in the loan profile for the loan cycle,
the number of loans and credit amount for the loan cycle in the loan profile is reset.

2. BRM checks whether the customer is eligible for the loan. In this scenario, it confirms that:

• The customer has opted in to receiving loans

• The customer's maximum number of active loans hasn't been met

• The amount requested does not make the CREDIT_AMOUNT in the loan profile
exceed the fixed maximum amount for this loan cycle.

• The number of times the loan can be granted for this cycle is not exceeded.

• The customer's location is eligible.

• The loan requested is more than the minimum amount.

• The customer's account has been active long enough.

• The customer's account status is active.

• There is no missing or incorrect information.

3. The loan is granted to the eligible customer. An $8 credit is added to their account balance.
Their credit limit is temporarily raised to include the credit, the fee, and tax.

Chapter 20
Loan Configuration Examples

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 8 of 9

Note

Even though the CREDIT_AMOUNT configured for the loan was $10, the
requested amount was only $8, so only $8 is granted. If the request did not
contain an amount, the CREDIT_AMOUNT would have been used.

4. A non-billable open item is created for the $0.80 fee.

5. General ledger information is recorded.

6. The customer's credit profile is updated to reflect the loan amount and number of loans
granted this cycle.

Chapter 20
Loan Configuration Examples

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 9 of 9

21
Managing Suspended Payments

Learn how to handle suspended payments in Oracle Communications Billing and Revenue
Management (BRM).

Topics in this document:

• About Suspending Payments

• About the Payment Suspension Process

• About Payment Suspense and Client Applications

• Payment Suspension Guidelines and Restrictions

• Configuring BRM for Payment Suspense

Important

Only externally initiated payments can be suspended.

About Suspending Payments
A suspended payment is a payment that needs to be corrected. Payment Suspense Manager
saves payments to a special payment suspense account. You can then allocate them manually
or save them to an exception batch.

Payment suspense handles the following payment scenarios:

• Payments that fail the BRM validation process.

• Payments that are posted incorrectly to customer accounts.

• Payments that pay the bills for multiple accounts. You can subdivide a suspended payment
into a list of distributed payments and apply each payment to an individual customer
account.

• Account-level payments that are allocated to accounts with multiple bill units (/billinfo
objects).

Managing suspended payments also enables you to perform the following payment processing
tasks:

• Manually suspend payments during payment processing. If you find a successful payment
in a payment batch that you suspect contains incorrect data or requires special handling,
you can manually suspend that payment so that it can be carefully examined before it is
posted to the account.

• Manually suspend payments after they have been posted to customer accounts. If a
payment was posted incorrectly, you can suspend it and repost it to the correct account.

• Allocate suspended payments to one or more accounts.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 11

• Partially allocate a suspended payment so an amount remains in the payment suspense
account. This enables you to track the unrealized revenue in your general ledger (G/L)
system.

• Create financial reports on revenue you have realized but remain unallocated. Suspended
payments are assigned to their own G/L segment.

Payments can remain suspended indefinitely. You can move payments back and forth between
customer accounts and the payment suspense account any number of times.

You use Payment Center to manually suspend payments that were incorrectly posted to
customer accounts and to correct suspended payments.

How you work with this application depends on whether you receive the payment as a batch
file from the bank or use a payment gateway directly integrated with BRM payment services.

About the Payment Suspension Process
Payment suspension begins when you collect payments from a financial institution: whether
you use payment clerks to manually post payments from batch files or you use a third-party
payment gateway to automatically post payments.

The payment processing phase involves three steps: validation, suspension, and correction.
These steps are sequential and rely on the completion of the prior step.

1. Validation: BRM determines whether a payment meets the validation criteria and assigns
a status of successful or “to be suspended." BRM takes the following actions:

• If the payment is successful, BRM posts the payment to the account.

• If the payment does not meet the validation criteria but has enough information to
qualify for suspense, BRM marks it as “to be suspended" and forwards it to the
opcodes responsible for suspending the payment.

BRM can suspend both successful and financially failed payments. For example, a
payment batch includes two check payments, each with an incorrect account number.
The payment information indicates that one check has cleared and the other bounced.

Coming into BRM, the first payment would be considered successful and the second,
failed. When BRM validates the payments, both would be marked for suspense
because, regardless of the financial success or failure of the payment, neither payment
can be posted to the correct account.

• If the payment does not meet the validation criteria and also does not qualify for
suspense, BRM informs you that the payment cannot be posted. You must create an
exception batch to handle payments that fall into this category.

Payment validation is initiated automatically through the payment gateway or manually by
a payment clerk.

2. Suspension: BRM moves the payment to the payment suspense account and creates the
associated events and items to store information on the suspended payment.

Payment suspense can occur during account maintenance, after payments have been
saved to the BRM database.

• During account maintenance, payment suspense is initiated manually by using
Payment Center. Payment suspense is initiated when you undo the allocation of a
payment from a customer account.

3. Correction: To correct a suspended payment, you use Payment Center to assign it to a
correct account number or bill number and apply it to the customer account. You can also

Chapter 21
About the Payment Suspension Process

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 11

create a distribution list for a suspended payment, which enables you to apply the payment
to multiple accounts.

After payment analysts correct suspended payments and assign them to one or more
accounts, the payments must be validated again. If the payment validation is successful,
BRM posts the payments to the correct accounts. If the suspended payment is allocated
completely (an amount does not remain in suspense), BRM reverses the suspended
payment, removing it from the payment suspense account. While performing this
operation, BRM creates the required objects and events.

Note

Payment correction is always initiated by a payment clerk through Payment
Center; this step is never automatic. If, during revalidation, the payment still meets
the suspense criteria, BRM again assigns a status of suspended and the payment
is resubmitted to suspense.

Figure 21-1 shows the steps involved in payment suspension and the basic operations they
perform.

Figure 21-1 Basic Operations and Steps Involved in Payment Suspension

About Payment Suspense and Client Applications
The payment suspense process is initiated in one of three ways:

• Through original payments and suspended payments when payment analysts work with a
payment batch.

Chapter 21
About Payment Suspense and Client Applications

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 11

• Through a payment gateway when it processes a payment file.

Note

For the full range of payment suspense functionality to work with a payment
gateway, the payment gateway must be directly integrated with BRM payment
services.

• Through Payment Center when payment analysts work with payment batches that contain
suspended payments or after payments have been posted in customer accounts.

Payment center is the BRM client application that is used in the payment suspense process.
Payment Center is used to investigate and correct suspended payments.

Use Payment Center for the following tasks:

• Investigate and correct suspended payments.

• Apply corrected payments to the appropriate account.

• Remove a payment from suspense if you cannot correct it within a reasonable time.

When you use automated payment processing, like that provided by a payment gateway, there
is no need for payment personnel to handle a payment batch, validate payments, or submit
payments to BRM. These steps are all performed automatically by the payment gateway
working in concert with BRM.

Figure 21-2 shows how the payment suspense process works if you use a payment gateway to
process payments.

Figure 21-2 Payment Suspense Process Using Payment Gateway

In this case, the payment gateway directs BRM to perform the validation and suspense tasks.
After BRM determines payment status, it submits the payments to the BRM database and
moves any suspended payments to the payment suspense account. Then you use Payment
Center to review the contents of the payment suspense account, investigate the suspended
payments, correct any problems, and submit the corrected payments to BRM.

When you suspend payments that were successfully submitted to customer accounts, you use
Payment Center to undo the allocation of the payments in the customer accounts and save
them to the payment suspense account. You can then investigate the suspended payments,
correct any problems, and resubmit them to the correct accounts.

For information on Payment Center, see Payment Center Help.

Removing Unallocatable Payments from Suspense
Sometimes, you may determine that a suspended payment cannot be allocated and should be
removed from the system. Payments of this nature represent unrealized revenue. To track

Chapter 21
About Payment Suspense and Client Applications

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 11

revenue and report for these payments, you can remove them from the payment suspense
account as unallocatable.

Note

When removing an unallocatable payment from suspense, only the active suspended
payment is reversed. You cannot reverse any distributed payments or payments that
have been reversed due to recycling. After you remove a payment as unallocatable,
you cannot return it to the BRM system.

You use Payment Center to remove unallocatable payments from suspense. BRM assigns a
G/L ID of 112 for the reversal, placing the payment amount in a special G/L bucket so that you
can obtain information about how much unallocatable revenue you have. This amount was a
credit that your company could not recognize toward a debit on any account. It is removed
from the system and tracked for accounting purposes.

You can remove an original or recycled payment from suspense as unallocatable. Removing
unallocatable payments from suspense does not generate any recycled payments.

In some cases, you must partially distribute a suspended payment and remove the remaining
suspended amount as unallocatable. If you resuspend one of the distributed payments, BRM
creates a new suspended payment for the distributed payment's amount, and you can later
remove this new amount as unallocatable if necessary.

Note

If one or more distributed payments have been removed as unallocatable, you cannot
directly reverse the original payment from the BRM database.

Payment Suspension Guidelines and Restrictions
The following guidelines and restrictions apply to suspended payment processing.

• Only externally initiated payments can be suspended and managed by using Payment
Center.

• The currency of a recycled payment must match the currency of its original payment.

• Payments can be recycled any number of times, but a recycled payment can have only
one original payment.

• You cannot change the properties of a payment after it has been directly reversed,
removed as unallocatable, or recycled completely.

• You cannot directly reverse a suspended payment if any portion of the payment has been
removed from suspense as unallocatable.

• You cannot distribute failed payments. These payments are stored in BRM as /event/
billing/payment/failed objects and have a status of PIN_PYMT_FAILED. They are
created to handle unconfirmed payment processing.

• To directly reverse a payment outside of the recycling process, you must reverse the
original payment. If you reverse a suspended payment that was applied to one or more
customer accounts, all posted payments are reversed before the suspended payment is
reversed.

Chapter 21
Payment Suspension Guidelines and Restrictions

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 11

The following guidelines apply to suspended payments.

• You can process only one suspended payment at a time; you cannot apply multiple
suspended payments to customer accounts in the same allocation. Similarly, you cannot
return two distributed payments that originated from different suspended payments in the
same operation.

• If you change the properties (for example, the action owner) of a suspended payment, it is
reversed and a new payment event is created to contain the updated information.

• You cannot change the action owner or any other properties of a suspended payment after
it has been completely distributed to customer accounts. However, if you return any of the
distributed payments to suspense, you can change the properties of the resulting
suspended payment.

• You cannot refund a suspended payment; you can refund only a payment that has been
applied to a customer account. You create payment refunds by using Billing Care or
Customer Center.

• If you suspend a payment that was previously refunded (the /item/refund object was
closed), the due amount on the account is increased by the same amount that was
removed by the refund adjustment. For more information on adjustments, see "About
Adjustments" in BRM Managing Accounts Receivable.

The following guidelines apply to distributed payment processing.

• If the entire list of distributed payments does not pass validation, it is rolled back to
suspense.

• You cannot recycle a payment directly from one customer account to another customer
account; first you must suspend the payment and then apply it to the target account.

• When recycling a distributed payment to suspense, the entire payment is recycled; you
cannot recycle a partial payment amount.

• If one or more distributed payments have been removed as unallocatable, you cannot
reverse the original payment from the BRM database.

Configuring BRM for Payment Suspense
To set up BRM for payment suspense, you complete three tasks:

• Enabling Payment Suspense in BRM

• Creating a Payment Suspense Account

• Configuring Suspense Reason Codes and Action Owner Codes

Enabling Payment Suspense in BRM
Payment Suspense Manager suspends payments exhibiting certain problems instead of failing
or wrongly allocating them, and postpones them for later investigation. This enables the
payment posting process to be completed without requiring immediate intervention to fix the
errors. You can use the pin_bus_params utility to enable Payment Suspense Manager. For
information about this utility, see "pin_bus_params" in BRM Developer's Guide.

To enable Payment Suspense Manager:

1. Go to BRM_home/sys/data/config.

2. Use the following command to create an editable XML file from the appropriate instance of
the /config/business_params object:

Chapter 21
Configuring BRM for Payment Suspense

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 11

pin_bus_params -r BusParamsAR bus_params_AR.xml

This command creates an XML file named bus_params_AR.xml.out in your current
directory. If you do not want this file in your current directory, specify the path as part of the
file name.

3. In the file, change disabled to enabled:

<PaymentSuspense>enabled</PaymentSuspense>

Caution

BRM uses the XML in this file to overwrite the existing instance of the /config/
business_params object. Use care when updating parameters in the file.

4. Save and exit the file.

5. Rename the bus_params_AR.xml.out file to bus_params_AR.xml.

6. Run the following command, which loads the updated contents of the file into the BRM
database:

pin_bus_params bus_params_AR.xml

7. Read the object with the testnap utility or the Object Browser to verify that all fields are
correct.

For general instructions on using testnap, see "Using the testnap Utility to Test BRM" in
BRM Developer's Guide. For information on how to use Object Browser, see "Reading
Objects" in BRM Developer's Guide.

8. Stop and restart the Connection Manager (CM).

For more information, see "Starting and Stopping the BRM System" in BRM System
Administrator's Guide.

Creating a Payment Suspense Account
When BRM determines that a payment should be suspended, it stores the suspended payment
and all information available for the payment in the payment suspense account.

By default, BRM supports only one payment suspense account. You create payment suspense
accounts by using Customer Center and base them on the default customer service
representative (CSR) plan. For more information about supporting multiple payment suspense
accounts, see the documentation about PCM_OP_PYMNT_POL_SUSPEND_PAYMENT in
BRM Opcode Guide.

To create the payment suspense account:

1. Start Customer Center and choose File - New - Account Type (Business or Consumer) to
activate the Account Creation wizard.

2. On the Contact page, enter payment for First Name and suspense for Last Name. This
information is not case sensitive.

3. On the Plan page, select the CSR package for your BRM system.

Chapter 21
Configuring BRM for Payment Suspense

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 7 of 11

Note

The CSR package you select must comply with these rules:

• The admin_client service should have been used when setting up the
package.

• There can be absolutely no bundles or charge offers attached to the package.

4. On the Payment page, select Undefined for Payment Method.

5. For all other required fields in the Account Creation wizard, select the defaults.

6. Click Finish to create the account.

Configuring Suspense Reason Codes and Action Owner Codes
Suspense reason codes explain why a payment was moved into or out of suspense or why an
unallocatable payment is removed from the system. Action owner codes indicate who is
responsible for correcting the problem or taking other action on the payment.

Reason codes and action owner codes are used in various ways by the different tools you use
to process payments:

• Payment Center: Provides action owner lists that payment personnel can choose from
when assigning a person to correct a payment or use as a criterion when searching for a
suspended payment.

• Payment Gateway: Automatically assigns reasons to payments processed through a
payment gateway provided you implement a preprocessing application to map reason
codes in the payment file to reason codes you have created in BRM.

To ensure that BRM can assign the full range of reason codes and action owner codes suitable
for your business needs, you customize BRM by:

• Creating and loading a reasons.locale file that lists each reason code and action owner
code.

• Associating each reason code and action owner code with the appropriate Payment
Suspense Manager reason code domain.

The reasons.locale file defines each reason code domain, the reason codes or action owner
codes that belong to the domain, and the event G/L ID. A reason code domain is a unique
identifier, or version, used to organize reason codes according to the activities they are used
for. For example, all reason codes that describe why you are removing an unallocatable
payment from suspense would be defined within the reason code domain dedicated to that
purpose. The domain and reason code information is used to build the /strings object and the
event G/L ID is used to build the /config/map_glid object.

Payment suspense reason codes and action owner codes use the following domains:

• Payment suspense reason codes: “Reason codes-Payment Suspense Management"
version 14.

• Action owner codes: “Reason codes-Payment Suspense Management Action Owner
reason" version 15.

• Reason codes for reversals due to recycling and removing unallocatable payments
from suspense: “Reason codes-Payment Suspense Management, Reversal Reason"
version 16.

Chapter 21
Configuring BRM for Payment Suspense

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 8 of 11

The following ranges are reserved for default BRM reason codes related to payment suspense
and payment status:

• 0: Default reason code.

• 1 to 1000: Reason codes for successful payments.

• 1001 to 2000: Reason codes for failed payments.

• 2001 to 3000: Reason codes for suspended payments.

• 3001 to 4000: Action owner codes.

• 4001 to 5000: Reason codes for reversals generated when a payment is moved from a
source account to a target account during recycling and for removing unallocatable
payments from suspense.

To add reason codes of your own, use values above 100,000.

You must assign G/L IDs for all reason codes you create for the following payment processes:

• Removing unallocatable payments from suspense.

This enables BRM to map these payments to the G/L bucket used to store a record of
payments that were removed from suspense because they were not correctable. You can
then create reports and applications to help you track this form of unrealized revenue. The
G/L ID assigned to the /event/billing/reversal event, which occurs when payments are
removed from BRM as unallocatable, is 112.

• Recycling payments to or from suspense. You can use information in this bucket to help
determine how much revenue is recovered from suspense. This G/L bucket is reserved for
distributed payments, distributed payments returned to suspense, and original payments to
a customer account that are manually suspended, is 113. G/L ID bucket 113 stores both
the recycled payment and its corresponding payment reversal. Storing both the payment
and reversal in the same G/L ID bucket ensures the correct balance of debits to credits
when generating reports.

Note

You should not assign G/L IDs for action owner codes, and there is no need to
assign G/L IDs for the reason codes for suspended payments.

The following example shows a reasons.locale file segment defining a payment suspense
reason code domain. Some reason codes are BRM defaults, and some are defined by a user
(ID >= 100,000).

LOCALE = en_US
DOMAIN = "Reason Codes - Payment Suspense Management";
STR
 ID = 2001;
 VERSION = 14;
 STRING = "Account No not found.";
 HELPSTR = "Account Number not found in database"
STR
 ID = 100,101;
 VERSION = 14;
 STRING = "Payment is too large.";
 HELPSTR = "The amount of a cash payment is over 10,000."
END

DOMAIN = "Reason Codes - Payment Suspense Action Owner reason";

Chapter 21
Configuring BRM for Payment Suspense

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 9 of 11

STR
 ID = 102,001;
 VERSION = 15;
 STRING = "Alaya Baker";
 HELPSTR = "Payments Processing department"
STR
 ID = 102,002;
 VERSION = 15;
 STRING = "Micheal Orden";
 HELPSTR = "Payments Processing department"
END

DOMAIN = "Reason Codes - Payment Suspense Management Reversal Reason";
STR
 ID = 4999;
 VERSION = 16;
 STRING = "Unable to correct payment";
 HELPSTR = "Unable to correct payment."
 EVENT-GLID
 "/event/billing/reversal" 112;
 EVENT-GLID END
STR
 ID = 110,000;
 VERSION = 16;
 STRING = "Payment recycled to suspense";
 HELPSTR = "Payment moved from wrong customer account to payment suspense account"
 EVENT-GLID
 "/event/billing/reversal" 113;
 EVENT-GLID END
END
STR
 ID = 110,001;
 VERSION = 16;
 STRING = "Distributed Payment allocation";
 HELPSTR = "Suspended payment applied to multiple accounts"
 EVENT-GLID "/event/billing/reversal" 113;
 EVENT-GLID END
END

For more information on the reasons.locale file and assigning G/L IDs, see "Assigning G/L IDs
to A/R Actions" in BRM Collecting General Ledger Data.

To define reason codes and action owner codes for payment suspense, you edit the
reasons.en_US sample file in the BRM_home/sys/msgs/reasoncodes directory. You then
use the load_localized_strings utility to load the contents of the file into the /strings and /
config/map_glid objects.

When you run the load_localized_strings utility, use this command:

load_localized_strings reasons.locale

Chapter 21
Configuring BRM for Payment Suspense

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 10 of 11

Note

• If you are loading a localized version of this file, use the correct file extension for
your locale. For a list of file extensions, see "Locale Names" in BRM Developer's
Guide.

• The load_localized_strings utility overwrites the /config/map_glid object. If you
are updating this object, you cannot load new G/L ID maps only. You must load
complete sets of data each time you run the load_localized_strings utility. This is
also true when using the /strings object, but only if you specify the -f parameter.
Otherwise, the load_localized_strings utility appends the new data to the object.

For information on loading the reasons.locale file and creating new strings for it, see "Loading
Localized or Customized Strings" and "Creating New Strings and Customizing Existing Strings"
in BRM Developer's Guide.

Chapter 21
Configuring BRM for Payment Suspense

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 11 of 11

22
Configuring Payment Channels

Learn how to define and load payment channel IDs and descriptions into the Oracle
Communications Billing and Revenue Management (BRM) database.

Topics in this document:

• About Payment Channel Information

• Setting Up Payment Channel Information

About Payment Channel Information
Payment channel information is a payment property that identifies the delivery method by
which customer payments are sent to a financial institution. For example, payment channels
include the Internet, Interactive Voice Response (IVR) phone service, Automated Clearing
House (ACH), and lockbox.

You can use the payment channel information to implement customizations in BRM, such as
suspending payments, charging failed payment fees, and offering early-payment incentives.

Setting Up Payment Channel Information
To set up payment channel information for your system, you first need to define and load the
data into BRM, and then configure it for BRM-initiated payment processing.

For BRM-initiated payment, the payment gateway must include the payment channel
information with each payment. When BRM receives the payments, they are processed
automatically using the correct channel ID.

For externally initiated payments, the payment gateway must map the external payment
channel information to the BRM channel IDs within each payment file. It is essential that the
payment channel information is already included in the imported payment batch. If a payment
does not have a specific payment channel ID, the channel ID at the payment batch level is
used for that transaction.

Note

By default, BRM does not verify the accurate mapping of payment channel IDs.

Defining Payment Channel Information in BRM
The payment channel information you load into the BRM database consists of payment
channel IDs and the text strings that describe them. To define payment channel IDs, you edit
the payment_channel.en_US sample file in the BRM_home/sys/msgs/paymentchannels
directory. You then use the load_localized_strings utility to load the contents of the file into
the /strings objects.

When you run the load_localized_strings utility, use this command:

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 2

load_localized_strings payment_channel.locale

Note

If you're loading a localized version of this file, use the correct file extension for your
locale. For a list of file extensions, see "Locale Names" in BRM Developer's Guide.

For information about loading the payment_channel.locale file and creating new strings for it,
see "Loading Localized or Customized Strings" and "Creating New Strings and Customizing
Existing Strings" in BRM Developer's Guide.

Mapping Payment Channel IDs for BRM-Initiated Payments
For BRM-initiated payments, such as credit card and direct debit payments, the payment
channel for a particular vendor is retrieved from the payment processor configuration object
and automatically saved in BRM with each payment.

To map the payment channels, you run the load_pin_ach utility to load the contents of the
pin_ach file into the /config/ach object in the BRM database.

1. Edit the pin_ach file in BRM_home/sys/data/pricing/example by specifying each vendor
and its payment channel ID. The channel_id value must match a payment channel ID
configured in the /strings object.

The file contains instructions and an example.

2. Save the pin_ach file.

3. Use the following command to run the "load_pin_ach" utility:

load_pin_ach ach_file

If you are not in the same directory as the load_pin_ach file, include the complete path to
the file. For example:

load_pin_ach BRM_home/sys/data/pricing/example/ach_file

4. Stop and restart the Connection Manager (CM).

5. Verify that the pin_ach file was loaded successfully by using the Object Browser to display
the /config/ach object, or use the testnap utility with the robj command. See "Reading an
Object and Writing its Contents to a File" in BRM Developer's Guide.

If a payment does not contain a payment channel ID, a value of 0 is saved with the payment by
default, which configures it as Unspecified Payment Channel.

For more information on setting up merchant accounts and automated clearing houses, see
"Setting Up Merchant Accounts".

Configuring Payment Channel IDs for Externally Initiated Payments
For externally initiated payments, you must configure the payment gateway or custom CRM
tool with the payment channel ID information. When the payment batch is received, you use
the PCM_OP_PYMT_COLLECT opcode to load the channel ID into BRM.

You can run the testnap utility to check that the payment channel IDs were loaded properly.

Chapter 22
Setting Up Payment Channel Information

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 2

23
Customizing Payment Collection Dates for
BRM-Initiated Payments

Learn how to configure Oracle Communications Billing and Revenue Management (BRM)
payment collection dates for BRM-initiated customer payments.

Topics in this document:

• About Customizing Payment Collection Dates for BRM-Initiated Payments

• About Configurable Payment Collection Dates and On-Purchase Billing

• About Configurable Payment Collection Dates and Delayed Billing

About Customizing Payment Collection Dates for BRM-Initiated
Payments

By default, BRM-initiated payments are collected on the date that bills are finalized.
Alternatively, you can configure BRM to collect a BRM-initiated payment on the date a bill is
due or on a specified number of days before the bill is due.

To support configurable payment collection dates, BRM-initiated payment processing involves
these steps:

1. You configure the payment collection date.

During account creation or modification, a customer service representative (CSR) uses
third-party customer relationship management (CRM) software to set the collection date for
BRM-initiated payments. This date is one of the following:

• Date the bill is finalized (default)

• Date the bill is due

• A specified number of days before the bill due date

For information about the opcode to call to set this date, see "Calculating Payment
Collection Dates" in BRM Opcode Guide.

2. At the end of each billing cycle, BRM calculates the payment collection date after
determining the bill's due date.

3. BRM collects the payment.

BRM-initiated payments are collected by the pin_collect utility.

About Configurable Payment Collection Dates and On-Purchase
Billing

Usually, you bill a customer only at the end of the customer's billing cycle. However, you can
use the Bill Now feature in Customer Center or the BRM on-purchase billing feature to bill the
customer immediately. When you use these features, multiple bills associated with a single bill

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 3

unit may be generated during the same billing cycle. When this occurs, all subsequent bills
generated before BRM collects the first bill are collected on the first bill's payment collection
date.

For example, Account A has one bill unit. Its monthly bill, which is paid by direct debit, is due
31 days after it is finalized. Its payment is collected 5 days before the due date. On August 10
(the end of the July 10–August 10 billing cycle), regular billing is run:

• Bill finalized = “Bill 1" (see Figure 23-1)

• Due date = September 10 (August 10 + 31 days)

• Payment collection date = September 5 (September 10 - 5 days)

Figure 23-1 Regular Billing Cycle Dates

The Bill 1 payment collection date (September 5) is stored in the bill unit associated with Bill 1.

On August 18, the Bill Now feature is used to bill the account:

• Bill finalized = “Bill Now" (see Figure 23-2)

• Due date = September 18 (August 18 + 31 days)

• Payment collection date = September 13 (September 18 - 5 days)

Figure 23-2 Bill Now Billing Cycle Dates

Chapter 23
About Configurable Payment Collection Dates and On-Purchase Billing

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 3

However, the Bill Now payment collection date (September 13) is not stored in the bill unit.
Instead, the earlier payment collection date (September 5) is applied to both bills, as shown in
Figure 23-3.

Figure 23-3 Bill Now Payment Collection Date

Note

If the Bill Now payment collection date were stored in the bill unit on August 18, it
would overwrite the Bill 1 payment collection date, changing the date from September
5 to September 18. This would postpone Bill 1's payment collection for over a week.

For more information about Bill Now and on-purchase billing, see "About Bill Now" in BRM
Configuring and Running Billing and "On-Purchase Billing" in BRM Opcode Guide.

About Configurable Payment Collection Dates and Delayed
Billing

The BRM delayed billing feature enables billing for all the bill units in your system to be run a
specified number of days after the end of their billing cycle. If you use delayed billing, be
careful to avoid configuring payment collection dates that occur before bills are finalized.

For example, your system has a 14-day billing delay. Account A's bill is due 21 days after the
end date of its monthly billing cycle. If you set a payment collection date that is more than 7
days before the bill due date, the payment collection date occurs before the bill is finalized. In
such cases, BRM ignores the payment collection date and collects the payment on the date
the bill is finalized.

For information about delayed billing, see "Setting up Delayed Billing" in BRM Configuring and
Running Billing.

Chapter 23
About Configurable Payment Collection Dates and Delayed Billing

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 3

24
Processing Payments in a Multischema
System

Learn how to collect payments in an Oracle Communications Billing and Revenue
Management (BRM) multischema system.

Topics in this document:

• Processing Payments in a Multischema System

Processing Payments in a Multischema System
You can use Payment Center in a multischema environment. This support for multischema
payment processing allows you to:

• Create and submit a single payment batch that includes payments made to customer
accounts across multiple schemas.

• Create and submit a single reverse or refund payment batch for payments associated with
customer accounts in various schemas.

• Move suspended payments to the designated payment suspense account set up for the
connected schema.

• Recycle suspended payments to one or more customer accounts across multiple schemas
using Payment Center. For example, if you are connected to schema 1, you can recycle
payments from the payment suspense account for schema 1 to customers accounts
located in different schemas.

To enable multischema support for payment processing, do the following:

1. Set up a multischema system. See "Installing a Multischema System" in BRM Installation
Guide.

2. Create separate payment suspense accounts for each schema in your system. See
"Creating a Payment Suspense Account".

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 1

25
Payment Utilities

Learn about the Oracle Communications Billing and Revenue Management (BRM) payment
utilities.

Topics in this document:

• load_pin_ach

• pin_balance_transfer

• pin_cc_migrate

• pin_clean

• pin_collect

• pin_deposit

• pin_installment_status_change

• pin_installments

• pin_recover

• pin_sepa

load_pin_ach
Use this utility to load the merchant account information for all credit card processor and
automated clearing house (ACH) vendors into the BRM database. See "Setting Up Merchant
Accounts".

Location

BRM_home/bin

Syntax

load_pin_ach [-d] [-v] [-t] pin_ach_file

Parameters

-d
Creates a log file for debugging purposes.

-v
Displays information as the utility runs.

-t
Runs a test to check the input to the utility.

pin_ach_file
The name and location of the file that defines merchant accounts. The default pin_ach file is
in BRM_home/sys/data/pricing/example.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 1 of 11

Results

If the load_pin_ach utility does not notify you that it was successful, look in the utility log file
(default.pinlog) to find any errors.

pin_balance_transfer
Use this utility to perform automatic sponsored top-ups or recurring standard top-ups.

For information about automatic sponsored top-ups, see "About Sponsored Top-Ups".

Location

BRM_home/bin

Syntax

pin_balance_transfer [-test] [-start mm/dd/yy] [-end mm/dd/yy] [-standard]
 [-verbose [file_name.log]]

Parameters

-test
Tests the utility, but does not affect accounts. Use this parameter to see which accounts
receive automatic sponsored top-ups without actually transferring funds from group owner
accounts to member accounts.

-start mm/dd/yy or yyyy
Specifies to perform top-ups scheduled on or after the specified start date.

-end mm/dd/yy or yyyy
Specifies to perform top-ups scheduled on or before the specified end date.

-standard
Performs standard recurring top-ups. See "About Standard Top-Ups".
The -start and -end parameters cannot be used with the -standard parameter.

-verbose
Displays information as the utility runs.

Results

This utility notifies you only if it encounters errors. Look in the default.pinlog file for errors.
This file is either in the directory from which the utility was started or in a directory specified in
the utility configuration file.

pin_cc_migrate
Use this utility to replace credit or debit card numbers stored in /payinfo/cc objects with
tokens. See "Replacing Credit Card Numbers with Tokens".

Chapter 25
pin_balance_transfer

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 2 of 11

Note

• Ensure that the outstanding payments for credit card accounts are closed before
running this utility.

• The utility does not tokenize PINless debit card numbers.

Location

BRM_home/bin

Syntax

pin_cc_migrate -vendor payment_processor_name
 [-num number]
 [-account account_POID]
 [-start_date mm/dd/yy]
 [-end_date mm/dd/yy]
 [-verbose [file_name.log]]
 [-report]
 [-help]

Parameters

-vendor payment_processor_name
Specifies the credit card processor or ACH to use for validating credit and debit cards.
See "Setting Up Merchant Accounts".

-num number
Specifies the number of /payinfo/cc objects to select for tokenization.

-account account_POID
Specifies the account POID. Use this parameter to replace credit or debit card numbers with
tokens for a single account.

-start_date mm/dd/yy
Specifies the start date. The start and end dates specify the time range for selecting objects
for tokenization. If you do not specify a value for the -start_date parameter, the start date is
set to the current date. If a start date is specified, the entire day is included.

-end_date mm/dd/yy
Specifies the end date. If you do not specify a value for the -end_date parameter, the end
date is set to the current date. If an end date is specified, the entire day is included, ending
exclusively on the first second of the next day (00:00:00 a.m.).

-verbose file_name.log
Displays information about successful or failed processing as the utility runs.

-report
Returns a list of the /payinfo/cc objects for which tokenization has been completed. This
parameter must be used with the -verbose parameter.

-help
Displays syntax and parameters for this utility.

Chapter 25
pin_cc_migrate

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 3 of 11

Results

If the pin_cc_migrate utility does not notify you that it was successful, look in the utility log file
(default.pinlog) to find any errors.

pin_clean
Use this utility to find unresolved credit card and direct debit payments. See "Resolving Failed
BRM-Initiated Payment Transactions".

Location

BRM_home/bin

Syntax

pin_clean [-summary] [-search_count_limit n] [-auth_pending] [-schema
schema_number]
 [-verbose] [file_name.log] [-help]

Parameters

-summary
Displays the total number of each type of unresolved credit card transaction.
Without the summary option, the log summary is displayed and a menu if there are
checkpoints to resolve.

-search_count_limit n
Specifies the number of records to return.

-auth_pending
Specifies the number of records with the auth pending status.

-schema schema_number
Specifies the schema on which to run the utility on multischema BRM systems: 1 specifies the
primary schema, 2 specifies the second schema, and so on. By default, the utility runs on all
schemas.

-verbose
Displays information about successful or failed processing as the utility runs.

-help
Displays syntax and parameters for this utility.

Results

If the pin_clean utility does not notify you that it was successful, look in the utility log file
(default.pinlog) to find any errors. The log file is either in the directory from which the utility
was started, or in a directory specified in the configuration file.

pin_collect
Use this utility to collect the balance due for accounts that use credit card and direct debit
payment methods. See "Running the pin_collect Utility to Collect BRM-Initiated Payments".

Chapter 25
pin_clean

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 4 of 11

Location

BRM_home/bin

Syntax

pin_collect -pay_type payment_method
 [-vendor] payment_processor_name
 [-active | -close | -inactive]
 [-start [mm/dd/yy | number_of_days]]
 [-end [mm/dd/yy | number_of_days]]
 [-report]
 [-rebill]
 [-test]
 [-verbose[file_name.log]]
 [-help]

Parameters

-pay_type payment_method
Specifies the payment method:

• 10003 for credit card

• 10005 for direct debit

• 10018 for SEPA

-vendor payment_processor_name
Specifies the credit card processor or automated clearing house (ACH) to use for validating
credit cards, debit cards, and direct debit transactions.
This parameter is not applicable for SEPA payment type.

-active |- close | -inactive
Specifies the status of the accounts to collect payments from.

-test
Runs a test to find out how many accounts meet the criteria without performing the collection.
The test has no effect on the accounts. This is most useful when run with the -verbose and -
report options.

-verbose [file_name.log]
Displays information about successful or failed processing as the utility runs.

-report
Displays more information than the verbose parameter. Requires the verbose option.

-rebill
Collects any outstanding bills for a given account status.

-start [mm/dd/yy or yyyy | number_of_days]
Start date. Collects payments on the day utility is run and the day before the utility is run.
If a start date is specified, the entire day is included. The end date is automatically the current
date if you do not specify a value for the -end parameter.

-end [mm/dd/yy or yyyy | number_of_days]
End date.
If an end date is specified, that entire day is included, ending at, but not including, the 0th
(first) second of the next day (00:00:00 a.m.). The end date cannot be a future date.

Chapter 25
pin_collect

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 5 of 11

-help
Displays syntax and parameters for this utility.

Results

If the pin_collect utility doesn't notify you that it was successful, look in the utility log file
(default.pinlog) to find any errors. The log file is either in the directory from which the utility
was started, or in a directory specified in the configuration file.

When it is called by the pin_bill_day script, the pin_collect utility logs error information in the
pin_mta.pinlog file.

pin_deposit
Use this utility to deposit pre-authorized credit card transactions and PINless debit transactions
made within the past 30 days (from yesterday).

When you use multiple payment processors, you run this utility for each one. See "Using More
Than One Payment Processor" for more information.

Location

BRM_home/bin

Syntax

pin_deposit -pay_type payment_method
 -vendor payment_processor_name
 [-start mm/dd/yy | number_of_days]
 [-end mm/dd/yy | number_of_days]
 [-test]
 [-verbose[file_name.log]]
 [-help]

Parameters

-pay_type payment_method
Specifies the payment method. There are two possible values:

• 10003 for credit card

• 10005 for direct debit

-vendor payment_processor_name
Specifies the credit card processor or automated clearing house (ACH) to use for validating
credit cards, debit cards, and direct debit transactions.
See "Setting Up Merchant Accounts" for more information on configuring payment processor
information.

-start [mm/dd/yy or yyyy | number_of_days]
-end [mm/dd/yy or yyyy | number_of_days]
Start and end date.
If a start date is specified, the entire day is included. The end date is automatically the current
date if you do not specify a value for the -end parameter.
If an end date is specified, that entire day is included, ending at, but not including, the 0th
(first) second of the next day (00:00:00 a.m.). The end date cannot be a future date.

Chapter 25
pin_deposit

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 6 of 11

-test
Runs a test to find out how many accounts meet the criteria without performing the deposit.
The test has no effect on the accounts.

-verbose
Displays information about successful or failed processing as the utility runs.

-help
Displays syntax and parameters for this utility.

Results

If the pin_deposit utility doesn't notify you that it was successful, look in the utility log file
(default.pinlog) to find any errors. The log file is either in the directory from which the utility
was started, or in a directory specified in the configuration file.

When it is called by the pin_bill_day script, the pin_deposit utility logs error information in the
pin_billd.pinlog file.

pin_installment_status_change
Use this utility to update a customer’s installment schedule status. This utility searches for
installments with a due date on or before the current date and the installment schedule status
Charged. When it finds an installment that meets the criteria, the utility changes the installment
schedule status to one of the following:

• Broken: If the installment amount is not paid by the specified due date or if only a part of
the installment amount is paid, this utility changes the installment schedule status to
Broken.

• Canceled: If the customer decides to cancel an installment schedule, this utility is used to
change the installment schedule status to Canceled. When this happens, any remaining
installments are canceled, and any remaining installment amount gets reflected in the next
bill.

Location

BRM_home/bin

Syntax

pin_installment_status_change [-verbose] [-test] [-help]

Parameters

-verbose
Displays information about successful or failed processing as the utility runs.

-test
Tests the utility but does not affect the installment. Use this parameter to check if the status is
changed correctly.

-help
Displays the syntax and parameters for this utility.

Results

If the pin_installments_status_change utility does not notify you that it was successful, look
in the utility log file (pin_installments_status_change.pinlog) to find any errors. The log file

Chapter 25
pin_installment_status_change

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 7 of 11

is either in the directory from which the utility was started, or in a directory specified in the
configuration file.

pin_installments
Use this utility to apply the installment charges to the customer’s bills. This utility searches for
installment schedules with an effective date on or before the current date and the installment
status as Open. When it finds an installment that meets the criteria, the utility applies the
installment charges to the customer’s bill and changes the installment’s status to Charged.

Note

To connect to the BRM database, this utility needs a configuration (pin.conf) file in the
directory from which it is being run. For information about creating configuration files
for BRM utilities, see "Connecting BRM Utilities" in BRM System Administrator's
Guide.

Location

BRM_home/bin

Syntax

pin_installments [-help] [-verbose] [-test]

Parameters

-help
Displays the syntax and parameters for this utility.

-verbose
Displays information about successful or failed processing as the utility runs.

-test
Tests the utility but does not affect the installment. Use this parameter to check if the
installment charges are applied correctly.

Results

If the pin_installments utility does not notify you that it was successful, look in the utility log
file (pin_installments.pinlog) to find any errors. The log file is either in the directory from
which the utility was started, or in a directory specified in the configuration file.

pin_recover
Use this utility to resolve failed credit card and direct debit transactions. See "Resolving Failed
BRM-Initiated Payment Transactions" for more information.

Location

BRM_home/bin

Chapter 25
pin_installments

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 8 of 11

Syntax

pin_recover -pay_type payment_method -vendor payment_processor_name
 [-schema schema_number] [-rfr|-resubmit batch_ID|-
recover_payment]
 [-verbose [file_name.log]] [-test] [-help]

Parameters

-pay_type payment_method
Specifies the payment method. There are two possible values:

• 10003 for credit card

• 10005 for direct debit

-vendor payment_processor_name
Specifies the credit card processor or automated clearing house (ACH) to use for validating
credit cards, debit cards, and direct debit transactions.
See "Setting Up Merchant Accounts" for more information on configuring payment processor
information.

-schema schema_number
Specifies the schema on which to run the utility in multischema BRM systems: 1 specifies the
primary schema, 2 specifies the second schema, 3 specifies the third schema, and so on. By
default, the utility runs on all schemas.

-rfr
Retrieves the Request For Response (RFR) file from Paymentech, allocates successfully
processed payments to the appropriate accounts' open items, and records the payments as
completed in BRM. See "Reprocessing Failed Transactions in BRM" for more information.

-resubmit batch_ID
Resends the original batch with the same batch ID to Paymentech for processing. To find the
batch ID, run the pin_clean utility. See "Resubmitting Transactions to Paymentech and BRM"
for more information.

Note

If you use a transaction processing service or credit card processing service other
than Paymentech, ensure that it uses duplicate transaction detection. If not, using -
resubmit can cause customers to be billed twice.

-recover_payment
Creates payment events for payments that have been successfully charged, but not recorded.
See "Resolving Payments for Custom Pay Types" for more information.

-verbose
Displays information about successful or failed processing as the utility runs.

-test
Runs a test to find out how many accounts meet the criteria without performing the recovery.
The test has no effect on the accounts.

Chapter 25
pin_recover

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 9 of 11

-help
Displays syntax and parameters for this utility.

Results

If the pin_recover utility doesn't notify you that it was successful, look in the utility log file
(default.pinlog) to find any errors. The log file is either in the directory from which the utility
was started, or in a directory specified in the configuration file.

pin_sepa
Use this utility to generate and process SEPA request and response files.

See "Implementing SEPA Payment Processing".

Location

BRM_home/apps/pin_sepa

Syntax

To generate SEPA request XML files:

pin_sepa [-sdd_req | -sct_req | -sepa_rev] [-verbose [file_name.log]] [-help]

To process SEPA response XML files:

pin_sepa -sepa_resp [-verbose] [-help]

To generate SEPA request XML files and process SEPA response XML files:

pin_sepa -all [-verbose] [-help]

Parameters

-sdd_req
Generates SEPA Direct Debit request XML files.

-sct_req
Generates SEPA Credit Transfer request XML files.

-sepa_rev
Generates SEPA Direct Debit reversal request XML files.

-sepa_resp
Processes SEPA response XML files for SEPA Direct Debit and SEPA Credit Transfer.

-all
Generates SEPA request XML files for SEPA Direct Debit, SEPA Credit Transfer, and SEPA
Direct Debit reversal and processes SEPA response XML files for SEPA Direct Debit and
SEPA Credit Transfer.

-verbose [>filename]
Displays information about successful or failed processing as the utility runs. filename
specifies the file to redirect the output to.

Chapter 25
pin_sepa

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 10 of 11

Note

This parameter is always used in conjunction with other parameters and commands.

-help
Displays the syntax and parameters for this utility.

Results

The pin_sepa utility uses the following file naming convention for the request XML files:

typedbno-YYYYMMDD-X.xml

where:

• type is SDD for SEPA Direct Debit, SCT for SEPA Credit Transfer, or SDD-REV for SEPA
Direct Debit reversal.

• dbno is the database number.

• YYYYMMDD is the year, month, and day on which the file was generated.

• X is a unique, eight-digit sequence number.

If the pin_sepa utility does not notify you that it was successful, look in the log file
(javapcm.log is the default log filename) to find any errors. The log file is either in the directory
from which the utility was started or in a directory specified in the Infranet.properties
configuration file.

Chapter 25
pin_sepa

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Page 11 of 11

A
About Payment Statuses

Learn about Oracle Communications Billing and Revenue Management (BRM) payment
attributes.

Topics in this document:

• About Payment Status

• Default Payment Status Codes

About Payment Status
BRM uses the PIN_FLD_STATUS field of a payment to validate payments before they are
posted in BRM. By default, payments are received with a status of successful, failed, or invalid.

Successful payments are automatically posted to the account to which they belong. The
payment amount is removed from the current balance on the account, and any remaining
amount is allocated according to your business policies. Failed payments are payments that
are declined for financial reasons, such as an overdrawn account or an expired credit card.
Invalid payments are payments that cannot be posted correctly for the following reasons:

• The account that the payment applies to is closed.

• Both the account number and the bill number are incorrect and cannot be found in BRM.

• The POID for the account number does not exist in BRM.

If the Payment Suspense Manager feature is enabled, payments can have a status of
suspended.

Value ranges for the PIN_FLD_STATUS field:

• Successful payments have a value >= PIN_PYMT_SUCCESS and <
PIN_PYMT_SUSPENSE. The numeric range for successful payments is 0-14.

• Suspended payments have a value >= PIN_PYMT_SUSPENSE and <
PIN_PYMT_FAILED. This range includes payments that arrive in BRM as failed for
financial reasons, but that also meet the criteria for suspending a payment. The numeric
range for suspended payments is 15-29.

• Failed payments have a value >= PIN_PYMT_FAILED and < PIN_PYMT_STATUS_MAX.
The numeric range for financially failed payments is 30-44.

• Payments with a status >= PIN_PYMT_STATUS_MAX are not supported by BRM.

If a payment is invalid, you must manually fix it before it can be posted in BRM, unless the
Payment Suspense Manager feature is enabled. In such cases, invalid payments might be
received as suspended.

Default Payment Status Codes
Table A-1 lists the status codes assigned by default.

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Appendix A-1 of A-3

Table A-1 Default BRM Status Codes and Descriptions

Value Default Code Description

PIN_PYMT_SUCCESS 0 The payment was automatically posted
to the account to which it belongs. The
payment amount is removed from the
current balance on the account, and any
remaining amount is allocated according
to your business policies.

Status codes 1 through 14 are
configurable. If you have the Payment
Suspense Manager feature enabled,
they can also be used for payments
successfully recycled from suspense to
a customer account.

PIN_PYMT_WRITEOFF_SU
CCESS

10 The payment was successfully applied
to a written-off account.

The write-off reversal feature must be
enabled. See "Configuring Write-off and
Write-off Reversals" in BRM Managing
Accounts Receivable.

PIN_PYMT_SUSPENSE 15 The payment:

• Arrived in BRM as invalid but meets
the criteria for suspending a
payment. The payment is saved to
the payment suspense account.

• Arrived in BRM as valid but was
manually suspended before or after
it was posted to the customer
account.

This status code is not used for recycled
payments.

The Payment Suspense Manager
feature must be enabled. See
"Managing Suspended Payments".

PIN_PYMT_FAILED_SUSPE
NSE

16 The payment arrived in BRM as failed
for financial reasons but meets the
criteria for suspending a payment. Failed
suspended payments are saved to the
payment suspense account.

This status code is used only for
payments that originally post to the
suspense account. It is not used for
recycled payments.

The Payment Suspense Manager
feature must be enabled. See
"Managing Suspended Payments".

Appendix A
Default Payment Status Codes

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Appendix A-2 of A-3

Table A-1 (Cont.) Default BRM Status Codes and Descriptions

Value Default Code Description

PIN_PYMT_RECYCLED_SU
SPENSE

17 The payment was generated for an
amount that remains in the payment
suspense account after an original
payment has been partially distributed to
customer accounts. You can continue to
generate distributed payments until this
remaining suspended payment is used
up.

For example, an original payment fails
validation and enters BRM as a
suspended payment with a payment
status of PIN_PYMT_SUSPENSE. The
original payment is then partially
distributed and a new suspended
payment is generated for the remainder.
This new suspended payment is
assigned a status of
PIN_PYMT_RECYCLED_SUSPENSE.

PIN_PYMT_RETURNED_SU
SPENSE

19 The payment was distributed to a
customer account from the payment
suspense account but was then
resuspended.

PIN_PYMT_FAILED 30 The payment does not comply with the
financial practices of your company
because, upon collection, it has been
dishonored or rejected by the bank. For
example, payments can fail due to
expired credit cards, incorrect account
details, or insufficient funds.

PIN_PYMT_STATUS_MAX 45 Payments with a value equal to or
greater than 45 are not supported by
BRM.

Appendix A
Default Payment Status Codes

Configuring and Collecting Payments
G35885-01
Copyright © 2017, 2026, Oracle and/or its affiliates.

January 28, 2026
Appendix A-3 of A-3

	Contents
	About This Content
	1 Running Payment Collection Utilities
	About the Payment Collection Utilities
	Running the pin_collect Utility to Collect BRM-Initiated Payments
	When to Run the pin_collect Utility
	Setting Start and End Dates for pin_collect

	Running the pin_deposit Utility to Deposit BRM-Initiated Payments
	When to Run pin_deposit

	Using More Than One Payment Processor

	2 Processing Credit Card and Debit Card Payments with Paymentech
	About Credit Card Validation and Authorization
	About Setting Up Payment Processing with Paymentech
	Exchanging Connection Information with Paymentech
	Information You Need from Paymentech
	Information Paymentech Needs from You

	Using SFTP for Batch Payment Transactions
	Setting Up Authentication Between dm_fusa and Paymentech
	Configuring Your SSH Client Configuration File
	Sending Batch Payment Transactions Through SFTP

	Using TCP/IP for Batch Payment Transactions
	Configuring Online Payment Transactions
	Configuring Paymentech Processing Performance
	Handling Concurrent Online Paymentech Requests
	Setting the Connection Timeout Length and Retries

	Monitoring the Paymentech Connection

	3 Paymentech Configuration Options
	Adding Soft Descriptor Information to Customer Statements
	Changing How BRM Handles Paymentech Authorization Return Codes
	Changing How BRM Handles Paymentech Address Validation Return Codes
	Specifying the Batch Mode Encryption Key
	Obtaining Card Type Indicator Information from Paymentech
	Requiring Additional Protection Against Credit Card Fraud
	Specifying the Maximum Number of Digits Allowed for CVV2 Verification

	Enabling Paymentech Direct Debit Processing

	4 Supported Paymentech Functionality
	About Paymentech Account Verification
	About Action and Response Reason Codes

	About Stored-Credential Transactions
	Supported Transaction Types
	Payment Formats and Batch Processing
	Paymentech and International Transactions
	How Paymentech Manager Handles Electronic Check Processing

	5 Configuring PINless Debit Payment Processing
	About PINless Debit Payments
	About PINless Debit Validation and Authorization
	Limitations of PINless Debit Payments
	Setting Up PINless Debit Processing
	Enabling PINless Debit Payments in BRM
	Identifying PINless Debit Payment Types

	6 Setting Up Merchant Accounts
	Setting Up Merchant Accounts
	Specifying Merchant Accounts for the Payment DM
	Using More Than One Merchant Name

	7 Masking Credit Card Numbers by Using Tokens
	Credit Card Tokenization
	Replacing Credit Card Numbers with Tokens
	Purging Old Credit Card Event and Audit Trail Objects

	8 Testing Paymentech Credit Card Processing
	About Testing Paymentech Credit Card Processing
	Setting Up the Paymentech Simulator
	Defining the Credit Card Functionality to Test
	Using SFTP for Testing Batch Payment Transactions
	Setting Up Authentication Between dm_fusa and answer_b
	Configuring Your SSH Client Configuration File for answer_b
	Testing Batch Payment Transactions Using SFTP

	Using TCP/IP for Testing Batch Payment Transactions
	Specifying an IP Address for the Paymentech Simulator
	Returning Specific Values for Card Type Indicator

	Running the Paymentech Simulators
	Simulating Failed Credit Card Transactions
	Resolving Failed Credit Card Transactions

	9 Resolving Failed BRM-Initiated Payment Transactions
	About Failed BRM-Initiated Payment Transactions
	How BRM Records Transactions

	Checking for Transaction Errors
	Resolving Transaction Errors Manually
	Resolving Failed Deposits and Conditional Deposits
	Resolving Failed Refund Transactions
	Reprocessing Failed Transactions in BRM
	Resubmitting Transactions to Paymentech and BRM

	Checking for Transactions in Paymentech Send Files
	Checking Paymentech Transmission Log Files
	Configuring Delay Intervals for Resolving Payments
	Resolving Payments for Custom Pay Types
	Troubleshooting Unresolvable Credit Card Transactions
	Cannot Remove Checkpoints After Using an RFR File
	Checkpoints Cleared but Payment Events Not Created
	Paymentech Doesn't Have an RFR File and Never Received the Payment Batch

	10 Processing Payment Batches in Billing Care
	About Batches
	Processing Lockbox Batches
	Importing and Submitting Batch Payment Files into Billing Care Without Editing
	Creating or Importing and Editing Batches
	Working with Individual Records in Batches
	Validating and Submitting Batches
	Managing Batch Entries that Fail Validation
	About Batch Templates
	Sample Batch Templates

	11 Allocating Payments
	About Payment Allocation
	About Allocating Payments Manually
	Allocating Multiple Payments for the Same Bill
	Allocating Payments Later
	Working with Multiple Currency Types in Billing Care

	Finding Bills by Due Amount

	12 Processing Atypical Payments
	Processing Overpayments and Underpayments
	Processing Late or Missed Payments
	Reversing Payments
	Refunding Externally Initiated Payments
	Configuring Unconfirmed Payment Processing

	13 Configuring Payment Methods
	About Payment Methods
	Default Payment Methods

	14 Setting Up Payment Installments
	About Installments
	About Defining the Terms for an Installment Plan
	About Creating Installments for Customers
	About Installment Status
	About Partial Installment Payments
	About Missed Installment Payments
	About Canceling an Installment Schedule

	Setting Up Installments on Your System
	Applying Installment Charges
	Updating an Installment Status
	Customizing Installments

	15 Customizing Payment Applications
	Customizing the Date Format for Payment Center
	Improved Performance of Searches for Payment Events in Payment Center

	16 Implementing SEPA Payment Processing
	About SEPA Payments
	About Specifying SEPA Payment Information During Account Creation
	About Registering the Mandate for SEPA Direct Debit Payments
	About the Different Types of Mandates

	Managing Customer's SEPA Payment Information
	Loading Your Creditor Information into the BRM Database
	Processing SEPA Payments
	Creating SEPA Direct Debit Payment Requests
	Creating SEPA Credit Transfer Payment Requests
	Generating SEPA Request XML Files
	Sending the SEPA Request XML Files to Your Bank to Collect Payment
	Processing SEPA Response XML Files to Handle Failed Payment Transactions

	Reversing an Erroneous Payment Collection
	Using SEPA XML Messages to Exchange Customer's Payment Information
	Configuring the pin_sepa Utility for Generating and Processing SEPA XML Files

	17 Configuring Payment Fees
	About Payment Fees
	Creating Payment Fees in PDC
	Creating Payment Fees in Pricing Center

	18 Configuring Payment Incentives
	About Payment Incentives
	How BRM Creates Payment Incentives
	How Payment Reversals Affect Payment Incentives
	Enabling BRM for Payment Incentives
	Creating a Payment Incentive Charge Offer
	Creating Payment Incentives in Pricing Center

	19 Configuring Top-Ups
	About Standard Top-Ups
	About Taxes Applied During Voucher Top-Ups
	Performing Recurring Standard Top-Ups
	Reversing Voucher Top-Ups
	About Vouchers Having Noncurrency Balances with a Positive Impact

	About Sponsored Top-Ups
	About Sponsored Top-Up Groups
	About Sponsored Top-Up Credit Limits
	Performing Automatic Sponsored Top-Ups
	Tracking Sponsored Top-Up Adjustments
	Canceling a Single Member's Sponsored Top-Ups

	Topping Up Accounts in Customer Center
	Changing the Default Top-up Payment Method
	Turning off "Top-up Completed" Message
	Canceling an Entire Group's Sponsored Top-Ups
	Reinstating Sponsored Top-Ups

	Voucher Top-Up Errors

	20 Configuring Loans
	About Loans
	About Loan Thresholds
	About Recovering Loans
	Configuring Loans
	Loading Your Loan Information into the BRM Database

	Loan Configuration Examples

	21 Managing Suspended Payments
	About Suspending Payments
	About the Payment Suspension Process
	About Payment Suspense and Client Applications
	Removing Unallocatable Payments from Suspense

	Payment Suspension Guidelines and Restrictions
	Configuring BRM for Payment Suspense
	Enabling Payment Suspense in BRM
	Creating a Payment Suspense Account
	Configuring Suspense Reason Codes and Action Owner Codes

	22 Configuring Payment Channels
	About Payment Channel Information
	Setting Up Payment Channel Information
	Defining Payment Channel Information in BRM
	Mapping Payment Channel IDs for BRM-Initiated Payments
	Configuring Payment Channel IDs for Externally Initiated Payments

	23 Customizing Payment Collection Dates for BRM-Initiated Payments
	About Customizing Payment Collection Dates for BRM-Initiated Payments
	About Configurable Payment Collection Dates and On-Purchase Billing
	About Configurable Payment Collection Dates and Delayed Billing

	24 Processing Payments in a Multischema System
	Processing Payments in a Multischema System

	25 Payment Utilities
	load_pin_ach
	pin_balance_transfer
	pin_cc_migrate
	pin_clean
	pin_collect
	pin_deposit
	pin_installment_status_change
	pin_installments
	pin_recover
	pin_sepa

	A About Payment Statuses
	About Payment Status
	Default Payment Status Codes

