
Oracle® Communications
Cloud Native Core Security Guide

Release 1.1.0
F32151-03
June 2020

Oracle Communications Cloud Native Core Security Guide, Release 1.1.0

F32151-03

Copyright © 2020, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

Audience 1-1

References 1-1

Acronyms 1-2

2 Overview

3 Cloud Native Core Network Functions

4 Secure Development Practices

Overview of Secure Development Practices 4-1

Secure Development - DevSecOps 4-1

Vulnerability Handling 4-1

5 Trust Model

Context diagram 5-1

Key Trust Boundaries 5-1

External Data Flows 5-2

6 Common Security Recommendations and Procedures

4G/5G Application Authentication and Authorization 6-1

DB-Tier Authentication and Authorization 6-1

7 4G/5G Core Network Function Security Recommendations and
Procedures

Network Repository Function (NRF) Security Recommendations and Procedures 7-1

Policy Control Function (PCF) Security Recommendations and Procedures 7-3

iii

Cloud Native Policy Control Repository Function (CNPCRF) Security
Recommendations and Procedures 7-6

Cloud Native Diameter Routing Agent (cnDRA) Security Recommendations and
Procedures 7-7

Cloud Native Core - Ingress/Egress Gateways - Security Recommendations /
Procedures 7-8

Service Communication Proxy (SCP) Security Recommendations And Procedures 7-9

Network Slice Selection Function (NSSF) Security Recommendations and
Procedures 7-11

Security Edge Protection Proxy (SEPP) Security Recommendations and Procedures 7-14

Unified Data Repository (UDR) / Unstructured Data Storage Function (UDSF)
Security Recommendations and Procedures 7-15

8 Cloud Native Core Console (CNCC) Security Recommendations
and Procedures

9 Cloud Native Environment (CNE) Security Recommendations and
Procedures

A Cloud Native Core Network Port Flows

iv

My Oracle Support

My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support can
assist you with My Oracle Support registration.

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the
US), or call the Oracle Support hotline for your local country from the list at http://
www.oracle.com/us/support/contact/index.html. When calling, make the selections in
the sequence shown below on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking and Solaris Operating System Support.

3. Select one of the following options:

• For Technical issues such as creating a new Service Request (SR), select 1.

• For Non-technical issues such as registration or assistance with My Oracle
Support, select 2.

You are connected to a live agent who can assist you with My Oracle Support
registration and opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

5

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

What's New in This Guide

New or Updated Features in Release 1.1.0

This section introduces the documentation updates for Release 1.1.0 in Cloud Native
Core Security Guide.

• Added security recommendations and procedures for:

– Network Slice Selection Function (NSSF)

– Security Edge Protection Proxy (SEPP)

– Unified Data Repository (UDR)

– Cloud Native Core Console (CNCC)

• Updated security recommendations and procedures for:

– Network Repository Function (NRF)

– Policy Control Function (PCF)

– Cloud Native Environment (CNE)

6

List of Tables

1-1 Acronyms 1-2

2-1 Deployment Environment 2-1

3-1 5G Network Functions 3-1

3-2 4G Network Functions 3-2

5-1 Key Trust Boundaries 5-2

5-2 External Data Flows 5-2

6-1 Modify MySQL NDB Root Password 6-1

6-2 Configure TLS for MySQL NDB Query Nodes 6-2

7-1 NRF Access Token Secret Configuration 7-1

7-2 NRF Access Token Secret Update 7-2

7-3 NRF MYSQL Secret Configuration 7-2

7-4 NRF MYSQL Secret Update 7-2

7-5 Access Token configuration 7-3

7-6 Update keys to Sign JSON Web Token (JWTs) for Access Token 7-4

7-7 Creating OCPCF MYSQL Kubernetes Secret 7-4

7-8 Creating CNPCRF MYSQL Kubernetes Secret 7-6

7-9 OCSCP MYSQL Kubernetes Secret Configuration 7-9

7-10 OCSCP MYSQL Secret Update 7-10

7-11 OCnssf Access Token Secret Configuration 7-11

7-12 OCNSSF Access Token Secret Update 7-12

7-13 Creating ONSSF MYSQL Kubernetes Secret 7-13

7-14 OCNSSF MYSQL Secret Update 7-14

7-15 OCNRF Access Token Secret Configuration 7-14

7-16 OCSEPP Access Token Secret Update 7-15

7-17 Creating OCUDR MYSQL Kubernetes Secret 7-15

8-1 CNCC IAM MYSQL Secret Configuration 8-1

8-2 CNCC IAM Default User (Admin) Secret Configuration 8-2

8-3 CNCC IAM LDAP Configuration 8-3

8-4 CNCC IAM Secret Configuration to Enable HTTPS 8-4

8-5 CNCC Core Secret Configuration to Enable HTTPS 8-7

9-1 Setting Top Of Rack Switch Credentials 9-2

9-2 Setting Enclosure Switch Credentials 9-3

9-3 Setting HP Onboard Administrator (OA) Credentials 9-6

9-4 Setting HP Integrated Lights Out Manger (ILO) Credentials 9-7

9-5 Setting Root Passwords for All Cluster Nodes 9-9

vii

9-6 Updating admusr SSH Keys 9-9

9-7 Update the bastion host keys 9-10

A-1 NF Port Flows A-4

viii

1
Introduction

The Security Guide provides an overview of the security relevant information that
applies to Cloud Native Core Network Functions. In case there are specific aspects
for the underlying scenarios or applications, these are described in an NF specific
chapters. This document contains recommendations (short statements on how to
operate and manage the CNC software) and procedures (step-by-step instructions)
to assist the customer in tailoring or hardening the CNC system.

Install the CNC system software as "secure by default" where possible. In the few
cases where this isn't possible, an installation time checklist procedure is created and
listed on the Cloud Native Core Security Checklist. It is a short list of post-installation
hardening activities that must be performed by the customer before placing the system
into operation. The recommendations and other procedures found in this document
are optional, and must be considered in the context of your organization's approved
security policies.

This security guide also provides a simplified trust model for the system.

Audience
• Technology consultants

• Installers

• Security consultants

• System administrators

References
The following references provide additional background on product operations and
support:

• Oracle Communications Signaling, Cloud Native Environment (OC-CNE)
Installation Guide

• Cloud Native Core Console (CNCC) Installation Guide

• Network Slice Selection Function (NSSF) Cloud Native Installation Guide

• Service Communication Proxy (SCP) Cloud Native Installation Guide

• Policy Control Function (PCF) Cloud Native Installation Guide

• Cloud Native Unified Data Repository (UDR) Installation and Upgrade Guide

• Network Repository Function (NRF) Cloud Native Installation and Upgrade Guide

• Security Edge Protection Proxy (SEPP) Cloud Native Installation Guide

1-1

Acronyms
Table 1-1 Acronyms

Term Definition

OSSA Oracle Software Security Assurance

OC-CNE Oracle Communications CNE

NF Network Function. A service providing some function in the 5G
Core Network.

NRF Network Repository Function

SCP Service Communication Proxy

NSSF Network Slice Selection Function

SEPP Security Edge Protection Proxy

PCF Policy Control Function

BSF Binding Support Function

cnDRA Cloud Native Diameter Routing Agent Network

CNE Cloud Native Environment

5GC 5G Core Network

PKI Public Key Infrastructure

mTLS Mutual Transport Layer Security

OWASP Open Source Foundation for Application Security

UDR Unified Data Repository

CNCC Cloud Native Core Console

Chapter 1
Acronyms

1-2

2
Overview

Deployment Environment

The 4G/5G Cloud Native Core provides a variety of possible configuration and
deployment models:

Table 2-1 Deployment Environment

Type Host CNE Description

Bare-Metal HP Gen 10 Blades /
Rack Mount Servers /
Cisco Switches

OC-CNE 1 In this environment, a kubernetes Cloud
Native Environment is hosted directly on
the bare metal hardware, while some
other elements (DB or Bastion) are
hosted using virtualized servers.

Cloud Customer Cloud OC-CNE In this environment, all the system
elements are hosted in virtualized
servers deployed on a customer provided
Openstack environment. The OC-CNE is
deployed on the openstack infrastructure.

Cloud Customer CNE Customer
CNE 2

In this environment, the customer
provides the CNE and deploys the
5G NFs directly into the environment.
The Oracle provided common services,
and DB Tier are not used; equivalent
functionality is provided by the customer.

1. Oracle Communications CNE provides basic CNE environment for on-premise
deployment.

2. Customer CNE provides CNE environment for running 5G microservices.

Note:

The cloud environment security recommendations and procedures focuses
on the OC-CNE reference environment. Customers providing their own CNE
must have equivalent security procedures already in place.

2-1

3
Cloud Native Core Network Functions

The 4G/5G Network Funtions that are part of this document are following:

Table 3-1 5G Network Functions

Network Functions Abbreviation Description

Network Repository Function NRF NRF provides registration, discovery and
authorization services to all the Network
Functions (NF) in the 5G core network.

Service Communication Proxy SCP SCP provides a 5G-aware service mesh. The
SCP is not a part of the current 3GPP 5G
specification, but is expected to be added to a
future iteration.

InterWorking Function IWF IWF provides 4G/5G inter-working support.

Network Slice Selection
Function

NSSF NSSF works with the Access and Mobility
Function (AMF) to select the network slice to
be used by the User Equipment (UE).

Security Edge Protection
Proxy

SEPP In the roaming architecture, the home and
the visited network are connected through
Security Protection Proxy (SEPP) for the
control plane of the internetwork interconnect.

Unified Data Repository UDR/UDSF UDR is a repository of subscriber information,
and is used by various NFs (including UDR,
PCF, and NEF). The UDSF is a part of the
Unified Data Management Function (UDF)
and is used to store state information for
Network Functions (NF).

Unified Data Management/
Authentication Server
Function

UDM/AUSF UDM uses the subscription data stored in
UDR and implements the application logic
to perform various functionalities such as
authentication credential generation, user
identification, service and session continuity
etc. The Authentication Server Function
(AUSF) uses data stored in the UDM to
perform authentication.

Network Exposure Function NEF Securely exposes network capabilities and
events to Application Functions (AF).

Policy Control Function PCF Implements a unified policy framework for
implementing control plane rules.

Binding Support Function BSF Provides PCF binding (mapping and selection)
for User Equipment (UE).

3-1

Table 3-2 4G Network Functions

Network Functions Abbreviation Description

Cloud Native 4G Diameter Routing
Agent Network

cnDRA Provides core (subset) 4G DSR
capabilities delivered in a CNE
microservice.

Cloud Native 4G Policy Control
Repository Function

cnPCRF Provides core 4G PCRF capabilities
delivered in a CNE microservice.

Chapter 3

3-2

4
Secure Development Practices

Overview of Secure Development Practices
Oracle Software Security Assurance (OSSA) is Oracle’s methodology for building
security into the design, build, testing, and maintenance of its products in every
phase of the product development life cycle. These products are used on premises
by customers, or delivered through Oracle Cloud. Oracle’s goal is to ensure that the
products help customers meet their security requirements and provide the most cost
effective ownership experience.

Secure Development - DevSecOps
Oracle secures the DevOps development process using a variety of techniques:

• Broad developer training to developers for understanding the principles of secure
software development.

• Early creation of Trust Models and Risk Assessments to avoid common security
pitfalls in the designs.

• Identify and expose sensitive interfaces to targeted testing for reducing or
eliminating software vulnerabilities.

• Extensive use of automated security testing to identify vulnerabilities in third party
software.

• Check for common OWASP (Open Source Foundation for Application Security)
top 10 items and perform fuzz testing on key exposed interfaces.

• Evaluate deployed software configurations using industry best practices.

Vulnerability Handling
For details about the vulnerability handling, refer to Oracle Critical Patch Update
Program. The primary mechanism for the backport of fixes for security vulnerabilities in
Oracle products is the quarterly Critical Patch Update (CPU) program.

In general, the CNC Software is on a quarterly release cycle with each release
providing feature updates and fixes, and updates to relevant third party software.
These quarterly release provide cumulative patch updates.

4-1

https://www.oracle.com/corporate/security-practices/assurance/
https://www.oracle.com/CORPORATE/SECURITY-PRACTICES/ASSURANCE/VULNERABILITY/SECURITY-FIXING.HTML
https://www.oracle.com/CORPORATE/SECURITY-PRACTICES/ASSURANCE/VULNERABILITY/SECURITY-FIXING.HTML

5
Trust Model

The following Trust Model depicts the reference trust model (regardless of the
target environment). The model describes the key access points and controls site
deployment. While the model shows a single 5G NF microservice being deployed,
typically many more would be deployed in an individual cluster.

Context diagram

Key Trust Boundaries
Following are the key trust boundaries:

5-1

Table 5-1 Key Trust Boundaries

Trust Boundary Includes Access Control

Site Trust
Boundary

All the NF and other
supporting elements for a
given site.

Cluster Access Policies are implemented
using some kind of Access Control Group (or
Security Group) mechanism.

Cluster Trust
Boundary

All the Compute Elements
for a given cluster

Network Policies controls traffic ingress
and egress; Pod Security Policies controls
the kinds of workloads allowed in the
cluster (Example: no pods requiring privilege
escalation).

DB Trust
Boundary

All the DB Tier Elements
for a given Cluster

Firewall Policies control traffic ingress and
egress; DB grants and other permission
mechanisms provide authorization for
authorized users.

Orchestrator
Trust Boundary

The orchestration interface
and keys

Firewall Policies control access to a Bastion
server which provides orchestration services;
access to the Bastion host uses SSH. The
cluster orchestration keys are stored on the
Bastion host.

CS Trust
Boundary

The common
services implementing
logging, tracing, and
measurements.

Each of the common services provides
independent user interfaces (GUIs) that are
currently open. The customer may want
to introduce an api-gateway and implement
authentication and authorization mechanisms
to protect the OAM data. The common
services may be configured to use Trasport
Layer Security (TLS); when TLS is used,
certificates will need to be generated and
deployed via the orchestrator.

NF Trust
Boundaries

A collection of one
(or more) 5G Network
Functions deployed as a
service.

Some 5G NF microservices provide OAM
access via a GUI.
5G NF microservices provide Signaling
access via a TLS protected HTTP2 interface.
The certificates for these interfaces are
managed via the certificate manager.

External Data Flows
The following are external data flows:

Table 5-2 External Data Flows

Data Flow Protocol Description

DF1: Configuration SSH The installer or administrator accesses the
orchestration system, which is hosted on the
Bastion Server. The install or administrator must
use ssh keys to access the bastion to a special
orchestration account (not root); no password
access is allowed.

DF2: Logs,
Measurements,
Traces

HTTP/HTTPS The administrator or operator interacts with the
common services using web interfaces.

Chapter 5
External Data Flows

5-2

Table 5-2 (Cont.) External Data Flows

Data Flow Protocol Description

DF3: 5G Signaling HTTP2 (w/TLS) All signalling interaction between NFs at a site and
NFs at an external site is sent via TLS protected
HTTP2.

DF4: Alerts SNMP (Trap) All alerting is performed using SNMP traps.

The complete list of network flows including service types and ports are available in
Port Flow Appendix.

Chapter 5
External Data Flows

5-3

6
Common Security Recommendations and
Procedures

4G/5G Application Authentication and Authorization
4G/5G NFs use Mutual Transport Layer Security (mTLS) authentication to secure
communication. All NFs require a trust relationship to be established with all peers
by exchanging and trusting peer root or intermediate certificates. All the peer
certificates must be available in the trust store (K8s Secrets) in order to establish
secured communication. Ideally, the trust store is populated from the customer Public
Key Infrastructure (PKI) using ACME protocols. 4G/5G NFs also support manual
importation and a semi-automatic import using the cert-manager external provider.

DB-Tier Authentication and Authorization
The DB-Tier provides a highly available multisite database used to store NF state
and configuration. When installed, the MySQL DB is configured with a root account
whose password is randomly generated. Each NF must have additional accounts
for that particular NF. The procedures in this section explains how to change these
account passwords. Additionally, communication between the NFs and the MySQL
query nodes are protected using TLS.

Procedure: Modify MySQL NDB Root Password

This procedure is executed by the DB Administrator.

For each of the MySQL Query nodes, perform the following steps :

Table 6-1 Modify MySQL NDB Root Password

Step Description Est Time

1. Log into the next query node using ssh:

$ ssh admusr@<mysql query node>

1m

2. Execute the following command to make the node as root:

$ sudo su

1m

3. Invoke mysql using existing DB Root credentials:
mysql -h 127.0.0.1 -uroot -p

Enter password: <enter existing root password>

1m

4. Change the DB Root credentials:

mysql> ALTER USER'root'@'localhost'IDENTIFIED
BY'<NEW_PASSWORD>'; mysql> FLUSH PRIVILEGES;

1m

5 Repeat steps 1 through 4 for each MySQL Query node.

6-1

Note:

If you are accessing a DB instance for the first time, the DB Root password is
stored in the /var/occnedb/mysqld_expired.log file. The system generates
a random password at installation time.

Note:

Recommendation 1: Separation of Roles

The roles of DB Administrator and Cluster Administration must be kept
separate. The DB Administrator must be responsible for securing and
maintaining the DB-Tier MySQL NDM cluster. The Cluster Administrator must
be responsible for securing and operating the Bastion Host and K8s Cluster.
When 5G NFs are installed, the DB Administrator is required to create new
NF database and NF DB accounts (using the DB Root credentials). Once
this is completed, the Cluster Administrator installs the NF (using helm).

Recommendation 2: Use Strong Passwords

The DB Administrator must choose a complex DB Root password as per
their organization's security guidelines.

Procedure: Configure TLS for MySQL NDB Query Nodes

The MySQL NDB comes preconfigured to use a self-signed certificate that expires
after 365 days. User can replace this certificate using the following procedure:

Table 6-2 Configure TLS for MySQL NDB Query Nodes

Step Description Est Time

1. Create private CA and a set of Keys/Certificate pairs for use in
securing MySQL :

$ my_ssl_rsa_setup

1m

2. The available set of PEM files containing CA, server, and client
certificates and keys must be installed on all the MySQL Query
Nodes.

3. Using SCP, copy the PEM files to the MySQL Query Node:

$ scp *.pem admusr@<mysql query node>

1m

4. Login to the MySQL Query Node using ssh:

$ ssh admusr@<mysql query node>

1m

Chapter 6
DB-Tier Authentication and Authorization

6-2

Table 6-2 (Cont.) Configure TLS for MySQL NDB Query Nodes

Step Description Est Time

5 Create a directory to hold the TLS keys and certs, and move them
into root:

$ sudo mkdir /var/occnedb/opensslcerts
$ sudo chmod 700 /var/occnedb/opensslcerts
$ sudo mv ~admusr/*pem /var/occnedb/
opensslcerts

1m

6 Mysql Cluster Manager (mcm) is used to configure the TLS
configuration from any of the DB nodes
• Login to any DB node:

– $ ssh admusr@<any_db_node>
– $ sudo su

• Login to the mcm client:
– $ mcm
– $ mcm>

• Update TLS config for all the SQL nodes using the mcm
client.

$ mcm> set ssl-ca:mysqld=/var/occnedb/opensslcerts/ca.pem
occnendbclustera;

$ mcm> set ssl-cert:mysqld=/var/occnedb/opensslcerts/server-
cert.pem occnendbclustera;

$ mcm> set ssl-key:mysqld=/var/occnedb/opensslcerts/server-
key.pem occnendbclustera;

$ mcm> set tls_version:mysqld=TLSv1.2 occnendbclustera;

$ mcm> set ssl-cipher:mysqld=DHE-RSA-AES128-GCM-
SHA256 occnendbclustera;

5m

7 Restart SQL nodes from MySQL Cluster Manager(mcm)
client tool.
$ mcm> stop process 56 occnendbclustera;

$ mcm>start process 56 occnendbclustera;

$ mcm> stop process 57 occnendbclustera;

$ mcm> start process 57 occnendbclustera;

1m

Repeat steps 3 through 7 for each MySQL Query node.

Note:

It is possible to integrate into an existing Public Key Infrastructure (PKI) by
creating signing requests and having the PKI to generate the needed key/
certificate pairs.

Chapter 6
DB-Tier Authentication and Authorization

6-3

7
4G/5G Core Network Function Security
Recommendations and Procedures

Network Repository Function (NRF) Security
Recommendations and Procedures

This section provides Network Function Repository Function (NRF) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
availabel in the Common Procedures Section.

NRF Access Token Secret Configuration

Use the following procedure to create access token secret :

Table 7-1 NRF Access Token Secret Configuration

Step Description Est time

1 Create the following files:

• ECDSA private key and CA signed certificate of OCNRF (if
initialAlgorithm is ES256)

• RSA private key and CA signed certificate of OCNRF (if
initialAlgorithm is RSA256)

• KeyStore password file
Note: Creation of private keys, certificates and passwords are at
the discretion of user.

5m

2 Login to Bastion Host or server from where kubectl can be
executed.

1m

3 Create namespace for the secret by following:

Creating OCNRF namespace under the OCNRF pre-deployment
configuration of Network Repository Function (NRF) Cloud Native
Installation and Upgrade Guide.

1m

4 Create kubernetes secret for Access token by following :
Configuring secret for enabling AccessToken service under the
OCNRF pre-deployment configuration of Network Repository
Function (NRF) Cloud Native Installation and Upgrade Guide.

2m

NRF Access Token Secret Update

Use the following procedure to update access token secret:

7-1

https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/nrfinstall/installing-ocnrf1.html#GUID-730B6FBA-C7FB-4D16-A1C3-182D6A36828D
https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/nrfinstall/installing-ocnrf1.html#GUID-B483EEF1-AEF6-4C22-803A-9B13CCC30E80

Table 7-2 NRF Access Token Secret Update

Step Description Est time

1 Update the following files:

• ECDSA private key and CA signed certificate of OCNRF (if
initialAlgorithm is ES256)

• RSA private key and CA signed certificate of OCNRF (if
initialAlgorithm is RSA256)

• KeyStore password file
Note: Update of private keys, certificates and passwords are at
the discretion of user.

5m

2 Login to Bastion Host or server from where kubectl can be
executed

1m

3 Update the secret with new/updated details by following:
Configuring secret for enabling AccessToken service under the
OCNRF pre-deployment configuration of Network Repository
Function (NRF) Cloud Native Installation and Upgrade Guide.

1m

NRF MYSQL Secret Configuration

Use the following procedure to create Mysql kubernetes secret:

Table 7-3 NRF MYSQL Secret Configuration

Step Description Est time

1 Login to Bastion Host or server from where kubectl can be
executed.

1m

2 Create namespace for the secret by following:

Creating OCNRF namespace under the OCNRF pre-deployment
configuration of Network Repository Function (NRF) Cloud Native
Installation and Upgrade Guide.

1m

3 Create kubernetes secret for Access token by following :
Configuring MySQL secret under the OCNRF pre-deployment
configuration of Network Repository Function (NRF) Cloud Native
Installation and Upgrade Guide.

5m

NRF MYSQL Secret Update

Use the following procedure to update Mysql kubernetes secret:

Table 7-4 NRF MYSQL Secret Update

Step Description Est time

1 Login to Bastion Host or server from where kubectl can be
executed.

1m

2 Update the kubernetes secret for Access token by following :
Configuring MySQL secret under the OCNRF pre-deployment
configuration of Network Repository Function (NRF) Cloud Native
Installation and Upgrade Guide.

2 m

Chapter 7
Network Repository Function (NRF) Security Recommendations and Procedures

7-2

https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/nrfinstall/installing-ocnrf1.html#GUID-B483EEF1-AEF6-4C22-803A-9B13CCC30E80
https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/nrfinstall/installing-ocnrf1.html#GUID-730B6FBA-C7FB-4D16-A1C3-182D6A36828D
https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/nrfinstall/installing-ocnrf1.html#GUID-7CAD2028-D185-4E0A-A465-34FB747F7B08
https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/nrfinstall/installing-ocnrf1.html#GUID-7CAD2028-D185-4E0A-A465-34FB747F7B08

Policy Control Function (PCF) Security Recommendations
and Procedures

This section provides Policy Control Function (PCF) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

Access Token configuration

Use the following procedure to create access token :

Table 7-5 Access Token configuration

Step Description Est time

1 Create following files:
ECDSA private key (Example:
ecdsa_private_key_pkcs8.pem)

RSA private key (Example: rsa_private_key_pkcs1.pem)

TrustStore password file (Example: trustStorePassword.txt)

KeyStore password file (Example: keyStorePassword.txt)

CA signed ECDSA OCPCF certificate (Example:
ecdsa_ocpcf_certificate.crt)

CA signed RSA OCPCF certificate (Example:
rsa_ocpcf_certificate.crt)

Note: Creation of private keys, certificates and passwords are at
the discretion of user.

5m

2 Login to Bastion Host or server from where kubectl can be
executed.

1m

3 Create namespace for the secret:
$ kubectl create namespace ocpcf

1m

4 Create kubernetes secret for NF Access token :
Note: The filenames in below command are same as in Step 1

$ kubectl create secret generic
ocpcfaccesstoken-secret --from-file=
ecdsa_private_key_pkcs8.pem --from-
file=rsa_private_key_pkcs1.pem --from-file=
trustStorePassword.txt --from-
file=keyStorePassword.txt --from-file=
ecdsa_ocpcf_certificate.crt--from-
file=rsa_ocpcf_certificate.crt -n ocpcf

1m

5 Verify that secret is create successfully:
$ kubectl describe secret ocpcfaccesstoken-secret
-n ocpcf

1m

Update Keys to Sign JSON Web Token (JWTs) for Access Token

Use the following procedure to update keys to sign JSON web token (JWTs) for
access token:

Chapter 7
Policy Control Function (PCF) Security Recommendations and Procedures

7-3

Table 7-6 Update keys to Sign JSON Web Token (JWTs) for Access Token

Step Description Est time

1 Update the following files:

ECDSA private key (Example:
ecdsa_private_key_pkcs8.pem)

RSA private key (Example:
rsa_private_key_pkcs1.pem)

CA signed ECDSA OCPCF certificate (Example:
ecdsa_ocpcf_certificate.crt)

CA signed RSA OCPCF certificate (Example:
rsa_ocpcf_certificate.crt)

Note: Update of private keys, certificates and
passwords are at the discretion of user

5m

2 Login to Bastion host or server from where kubectl can
be executed.

1m

3 Update the secret with new/updated details:

Delete the secret by executing the following command:

$ kubectl delete secret ocpcfaccesstoken-
secret -n ocpcf

Create the secret with updated details:

$ kubectl create secret
generic ocpcfaccesstoken-secret
--from-file=ecdsa_private_key_pkcs8.pem
--from-file=rsa_private_key_pkcs1.pem
--from-file=trustStorePassword.txt
--from-file=keyStorePassword.txt
--from-file=ecdsa_ocpcf_certificate.crt--
from-file=rsa_ocpcf_certificate.crt -n
ocpcf

1m

Creating OCPCF MYSQL Kubernetes Secret for Storing Database Username and
Password

Use the following procedure to create OCPCF MYSQL kubernetes secret for storing
database username and password:

Table 7-7 Creating OCPCF MYSQL Kubernetes Secret

Step Description Est time

1 Login to Bastion Host or server from where kubectl can
be executed.

1m

2 Create namespace for the mysql secret. Skip this step, if
already created.
$ kubectl create namespace <namespace>

1m

Chapter 7
Policy Control Function (PCF) Security Recommendations and Procedures

7-4

Table 7-7 (Cont.) Creating OCPCF MYSQL Kubernetes Secret

Step Description Est time

3 Create a yaml file with the username and password in
with the syntax shown below:

apiVersion: v1
 kind: Secret
 metadata:
 name: <secret-name>
 type: Opaque
 data:
 mysql-username: cGNmdXNy
 mysql-password: cGNmcGFzc3dk

Note: The values for "mysql-username" and "mysql-
password" must be base64 encoded.

1m

4 Execute kubectl create -f <yaml_file_name> -
n <namespace> to create the secret.

1m

5 Verify the whether the secret is created by executing the
following command:
$ kubectl describe secret <secret-name> -n
<namespace>

1m

Create a Kubernetes Secret for Storing LDAP credentails

Use the following procedure to create a kubernetes secret for storing LDAP
credentails:

1. Create a yaml file with the following syntax:

apiVersion: v1
kind: Secret
metadata:
 name: ldapsecret
 labels:
 type: ocpm.secret.ldap
type: Opaque
stringData:
 name: "ldap1"
 password: "camiant"
 authDn: "uid=PolicyServer,ou=vodafone,c=hu,o=vodafone"

where,

name is the configured LDAP server name.

password is the LDAP credential for that data source.

authDN is the authentication DN for that LDAP datsource.

2. Create the secret by executing the following command: kubectl apply -f
yaml_file_name -n pcf-namespace

Chapter 7
Policy Control Function (PCF) Security Recommendations and Procedures

7-5

where:

yaml_file_name is a name of the yaml file that is created in step 1.

pcf-namespace is the deployment namespace used by the helm command.

Cloud Native Policy Control Repository Function (CNPCRF)
Security Recommendations and Procedures

This section provides Cloud Native Policy Control Repository Function (CNPCRF)
specific security recommendations and procedures. Recommendations common to all
5G/4G are available in the Common Procedures Section.

Creating CNPCRF MYSQL Kubernetes Secret for Storing Database Username
and Password

Use the following procedure to create CNPCRF MYSQL kubernetes secret for storing
database username and password:

Table 7-8 Creating CNPCRF MYSQL Kubernetes Secret

Step Description Est time

1 Login to Bastion Host or server from where kubectl can
be executed.

1m

2 Create namespace for the mysql secret:

Skip this step, if already created.
$ kubectl create namespace <namespace>

1 m

3 Create a yaml file with the username and password in
with the syntax shown below:

apiVersion: v1
 kind: Secret
 metadata:
 name: <secret-name>
 type: Opaque
 data:
 mysql-username: cGNmdXNy
 mysql-password: cGNmcGFzc3dk

Note: The values for "mysql-username" and "mysql-
password" must be base64 encoded.

1m

4 Execute kubectl create -f <yaml_file_name> -
n <namespace> to create the secret.

1m

5 Verify the whether the secret is created by executing the
following command:
$ kubectl describe secret <secret-name> -n
<namespace>

1m

Create a Kubernetes Secret for Storing LDAP credentails

Use the following procedure to create a kubernetes secret for storing LDAP
credentails:

Chapter 7
Cloud Native Policy Control Repository Function (CNPCRF) Security Recommendations and Procedures

7-6

1. Create a yaml file with the following syntax:

apiVersion: v1
kind: Secret
metadata:
 name: ldapsecret
 labels:
 type: ocpm.secret.ldap
type: Opaque
stringData:
 name: "ldap1"
 password: "camiant"
 authDn: "uid=PolicyServer,ou=vodafone,c=hu,o=vodafone"

where,

name is the configured LDAP server name.

password is the LDAP credential for that data source.

authDN is the authentication DN for that LDAP datsource.

2. Create the secret by executing the following command: kubectl apply -f
yaml_file_name -n cnpcrf-namespace

where:

yaml_file_name is a name of the yaml file that is created in step 1.

cnpcrf-namespace is the deployment namespace used by the helm command.

Cloud Native Diameter Routing Agent (cnDRA) Security
Recommendations and Procedures

This section provides cloud native Diameter Routing Agent (cnDRA) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
availabe in the Common Procedures Section.

User (OAM) Authentication and Authorization

• cnDRA supports REST based MMI interface. There is no GUI provided in the
current cnDRA release.

• The MMI interface is based on fixed user and password, using which the security
token is requested by REST client from cnDRA.

• cnDRA does not allow or support configuration or modify these credentials (user
and password).

Authentication and Authorization of Applications

cnDRA currently supports TCP based signaling traffic connection towards the Remote
Peer Nodes. These connections are not currently secured via TLS etc mechanism.
Currently there is no plan to enable securing of the application/Diameter traffic.

Chapter 7
Cloud Native Diameter Routing Agent (cnDRA) Security Recommendations and Procedures

7-7

Cloud Native Core - Ingress/Egress Gateways - Security
Recommendations / Procedures

Enabling TLS and Ciphers in Ingress/Egress Gateway

Step Description

1 Helm Configuration to enable TLS:
To open Https port in Ingress gateway: configure in helm
enableIncomingHttps: true

To have a Https client configured in Egress gateway: configure in helm
enableOutgoingHttps: true

2 Create following files:

1. RSA or ECDSA Private key (Example: rsa_private_key_pkcs1.pem)

2. Trust store password (Example: trust.txt)

3. Key store password(Example: key.txt)

4. Certificate chain for trust store (Example: caroot.cer)

5. Signed server certificate (Example: ocingress.cer) or Signed client
certificate (For example: ocegress.cer)

Note: Creation of private keys, certificates and passwords are at the discretion
of user.

3 Create secret

Command :

$ kubectl create secret generic ocingress-secret --from-
file=rsa_private_key_pkcs1.pem --from-file=trust.txt --from-
file=key.txt --from-file=ocingress.cer --from-file=caroot.cer
-n ocingress

4 Enable cipher suites:

Cipher Suites to be enabled on Server side (Ingress Gateway),

Cipher Suites to be enabled on Client side (Egress Gateway),

cipherSuites:

-TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

- TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Note: The above list is the allowed cipher list as per Verizon requirement,
this also coincides with the allowed list of ciphers as per Oracle standards.
Helm deployment may fail due to invalid configuration or cipher suite mismatch.
Manual restart of pod is required if there is update in cipher configuration during
run time.

Certificate Management and Dynamic reload of certificates in Gateways

Whenever certificates gets compromised or a new certificate chain is required to be
added to the truststore, we can update the key and truststore used by the application.

Chapter 7
Cloud Native Core - Ingress/Egress Gateways - Security Recommendations / Procedures

7-8

To update the key and the truststore, update or replace the secret:

Command:

$ kubectl create secret generic ocingress-secret --from-
file=rsa_private_key_pkcs1.pem --from-file=trust.txt --from-file=key.txt
--from-file=tmp.cer --from-file=caroot.cer --dry-run -o yaml -n ocingress|
kubectl replace -f - -n ocingress

Whenever there is an update in the certificate chain or signed certificate placed in
secret, kubernetes watcher which is implemented in update container will check for
change in file state and replace the key and truststore accordingly in the mounted
shared volume.

Dynamic reload of certificates is not supported in Ingress Gateway as of now, so a
manual restart of pod is required when any update in the configuration is made with
respect to https.

In case of Egress Gateway update container will trigger the rest end point to
dynamically reload key and truststore. Then egress gateway will pickup new store
files from shared volume and reload trust and key managers. Egress gateway will
use the replaced store to establish new connections and gracefully terminate existing
connections by sending a GOAWAY frame.

Service Communication Proxy (SCP) Security
Recommendations And Procedures

This section provides Service Communication Proxy Function (SCP) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
availabe in the Common Procedures Section.

OCSCP MYSQL Secret configuration

Use the following procedure to create Mysql kubernetes secret :

Table 7-9 OCSCP MYSQL Kubernetes Secret Configuration

Step Description Est time

1 Login to Bastion Host or server from where kubectl can
be executed.

1m

2 Create namespace for the mysql secret. Skip this step, if
already created.
$ kubectl create namespace <namespace>

Example:

$ kubectl create namespace ocscp

1m

Chapter 7
Service Communication Proxy (SCP) Security Recommendations And Procedures

7-9

Table 7-9 (Cont.) OCSCP MYSQL Kubernetes Secret Configuration

Step Description Est time

3 Execute

$ kubectl
 create secret
generic <secretName> --
fromliteral=DB_USERNAME=<userName>
 --
fromliteral=DB_PASSWORD=<password> --
fromliteral=DBNAME=<dbName> -n
 <SCPNamespace>

to create the secret for Mysql.
Example:

$ kubectl create secret generic cred
 --fromliteral=DB_USERNAME=root --
fromliteral=DB_PASSWORD=lLn94uba5p
 --fromliteral=DB_NAME=ocscpdb -n
scpsvc

Where

<secretName> is Secret name and must be same
value present for 'dbSecretName' in ocscp_values.yaml
file.
<SCPNamespace> must be the name of namespace
where SCP will be deployed.

1m

4 Verify the whether the secret is created
$ kubectl describe secret <secret-name> -n
<SCPnamespace>

Example:

$ kubectl describe secret database-secret -
n ocscp

1m

.

OCSCP MYSQL Secret Updates for Password of DB User

Use the following procedure to update Mysql secret:

Table 7-10 OCSCP MYSQL Secret Update

Step Description Est time

1 Login to Bastion Host or server from where kubectl can be
executed.

1m

Chapter 7
Service Communication Proxy (SCP) Security Recommendations And Procedures

7-10

Table 7-10 (Cont.) OCSCP MYSQL Secret Update

Step Description Est time

3 Update the kubernetes secret for Mysql by by executing the
following command:

Delete the secret: $ kubectl delete secret database-
secret -n <SCPNamespace>

Create the secret with updated details: $
kubectl create secret generic
<secretName> --fromliteral=DB_USERNAME=<userName>
--fromliteral=DB_PASSWORD=<password> --
fromliteral=DBNAME=<dbName> -n <SCPNamespace>

2 m

Network Slice Selection Function (NSSF) Security
Recommendations and Procedures

This section provides Network Slice Selection Function (NSSF) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

OCNSSF Access Token Secret Configuration

Use the following procedure to create access token secret:

Table 7-11 OCnssf Access Token Secret Configuration

Step Description Est time

1 Create the following files:

• ECDSA private key (Example:
ecdsa_private_key_pkcs8.pem)

• RSA private key (Example: rsa_private_key_pkcs1.pem)
• TrustStore password file (Example:

trustStorePassword.txt)
• KeyStore password file (Example:

keyStorePassword.txt)
• CA signed ECDSA OCNSSF certificate (Example:

ecdsa_ocnssf_certificate.crt)
• CA signed RSA OCNSSF certificate (Example:

rsa_ocnssf_certificate.crt)
Note: Creation of private keys, certificates and passwords are at
the discretion of user.

5m

2 Login to Bastion Host or server from where kubectl can be
executed.

1m

3 Create namespace for the secret by executing the following
command:
$ kubectl create namespace ocnssf

1m

Chapter 7
Network Slice Selection Function (NSSF) Security Recommendations and Procedures

7-11

Table 7-11 (Cont.) OCnssf Access Token Secret Configuration

Step Description Est time

4 Create kubernetes secret for NF Access token by executing the
following command: :

$ kubectl create secret generic
 ocnssfaccesstoken-secret --from-
file=ecdsa_private_key_pkcs8.pem
 --from-file=rsa_private_key_pkcs1.pem
--from-file=trustStorePassword.txt
 --from-file=keyStorePassword.txt
--from-file=ecdsa_ocnssf_certificate.crt--from-
file=rsa_ocnssf_certificate.crt -n
 ocnssf

2m

5 Verify that secret is created successfully by executing the
following command:

$ kubectl describe secret ocnssfaccesstoken-secret
-n ocnssf

2m

OCNSSF Access Token Secret Update

Use the following procedure to update access token secret:

Table 7-12 OCNSSF Access Token Secret Update

Step Description Est time

1 Update the following files:

• ECDSA private key (Example:
ecdsa_private_key_pkcs8.pem)

• RSA private key (Example: rsa_private_key_pkcs1.pem)
• TrustStore password file (Example:

trustStorePassword.txt)
• KeyStore password file (Example:

keyStorePassword.txt)
• CA signed ECDSA OCNSSF certificate (Example:

ecdsa_ocnssf_certificate.crt)
• CA signed RSA OCNSSF certificate (Example:

rsa_ocnssf_certificate.crt)

Note:Update of private keys, certificates and passwords are at
the discretion of user.

5m

2 Login to Bastion Host or server from where kubectl can be
executed.

1m

Chapter 7
Network Slice Selection Function (NSSF) Security Recommendations and Procedures

7-12

Table 7-12 (Cont.) OCNSSF Access Token Secret Update

Step Description Est time

3 Update the secret with new/updated details by executing the
following commands:
Delete the secret: $ kubectl delete secret
ocnssfaccesstoken-secret -n ocnssf Create
the secret again with updated details: $
kubectl create secret generic ocnssfaccesstoken-
secret --from-file=ecdsa_private_key_pkcs8.pem
--from-file=rsa_private_key_pkcs1.pem
--from-file=trustStorePassword.txt
--from-file=keyStorePassword.txt
--from-file=ecdsa_ocnssf_certificate.crt--from-
file=rsa_ocnssf_certificate.crt -n ocnssf

1m

OCNSSF MYSQL Secret Configuration

Use the following procedure to create Mysql kubernetes secret:

Table 7-13 Creating ONSSF MYSQL Kubernetes Secret

Step Description Est time

1 Login to Bastion Host or server from where kubectl can
be executed.

1m

2 Create namespace for the mysql secret. Skip this step, if
already created.
$ kubectl create namespace ocnssf

1m

3 Create a yaml file with the username and password with
the syntax shown below:

apiVersion: v1
 kind: Secret
 metadata:
 name: <secret-name>
 type: Opaque
 data:
 mysql-username: cGNmdXNy
 mysql-password: cGNmcGFzc3dk

Note: The values for "mysql-username" and "mysql-
password" must be base64 encoded.

1m

4 Execute kubectl create -f <yaml_file_name> -
n <namespace> to create the secret.

1m

5 Verify whether the secret is created by executing the
following command:
$ kubectl describe secret <secret-name> -n
<namespace>

1m

OCNSSF MYSQL Secret Update

Use the following procedure to update Mysql kubernetes secret:

Chapter 7
Network Slice Selection Function (NSSF) Security Recommendations and Procedures

7-13

Table 7-14 OCNSSF MYSQL Secret Update

Step Description Est time

1 Login to Bastion Host or server from where kubectl can be
executed.

1m

2 Delete the kubernetes secret for Mysql:

Delete the secret
$ kubectl delete secret <secret name> -n
<namespace>

1m

3 Update yaml file from step 3 in secret creation with new values for
mysql-username and mysql-password

2 m

4 Execute kubectl create -f <yaml_file_name> -n
<namespace> to create the secret.

1m

5 Verify whether the secret is created by executing the following
command:
$ kubectl describe secret <secret-name> -n
<namespace>

1m

Security Edge Protection Proxy (SEPP) Security
Recommendations and Procedures

This section provides Security Edge Protection Proxy (SEPP) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

OCSEPP Access Token Secret Configuration

Use the following procedure to create access token secret :

Table 7-15 OCNRF Access Token Secret Configuration

Step Description Est time

Login to Bastion Host or server from where kubectl can be
executed.

1m

1 Create the following files:

• ECDSA private key with P-256 curve

Example: ecdsa_private_key_pkcs8.pem
Note: Creation of private keys, certificates and passwords are at
the discretion of user.

5m

3 Create namespace for the secret by executing the following
command:
$ kubectl create namespace seppsvc

1m

4 Create kubernetes secret for Access token by executing the
following command:
$ kubectl create secret generic ocsepp-ipx-secret
--from-file=ecdsa_private_key_pkcs8.pem -n seppsvc

2m

Chapter 7
Security Edge Protection Proxy (SEPP) Security Recommendations and Procedures

7-14

OCSEPP Access Token Secret Update

Use the following procedure to update access token secret:

Table 7-16 OCSEPP Access Token Secret Update

Step Description Est time

1 Login to Bastion Host or server from where kubectl can be
executed.

1m

2 Update the following files:

• ECDSA private key with P-256 curve

Example: ecdsa_private_key_pkcs8.pem

Note:Update of private keys, certificates and passwords are at
the discretion of user.

5m

3 Update the secret with new/updated details.
Delete the secret:

$ kubectl delete secret ocsepp-ipx-secret -n
seppsvc

Create the secret again with updated details:

$ kubectl create secret generic ocsepp-ipx-secret
--from-file=ecdsa_private_key_pkcs8.pem -n seppsvc

2m

Unified Data Repository (UDR) / Unstructured Data
Storage Function (UDSF) Security Recommendations
and Procedures

This section provides Unified Data Repository (UDR) / Unstructured Data
Storage Function (UDSF) specific security recommendations and procedures.
Recommendations common to all 5G/4G are available in the Common Procedures
Section.

OCUDR MYSQL kubernetes secret for storing database username and password

Use the following procedure to create Mysql kubernetes secret:

Table 7-17 Creating OCUDR MYSQL Kubernetes Secret

Step Description Est time

1 Login to Bastion Host or server from where kubectl can be
executed.

1m

2 Create namespace for the mysql secret. Skip this step, if already
created.
$ kubectl create namespace <namespace>

Chapter 7
Unified Data Repository (UDR) / Unstructured Data Storage Function (UDSF) Security Recommendations and Procedures

7-15

Table 7-17 (Cont.) Creating OCUDR MYSQL Kubernetes Secret

Step Description Est time

3 Create a yaml file with the username and password with the
syntax shown below:

apiVersion: v1
 kind: Secret
 metadata:
 name: <secret-name>
 type: Opaque
 data:
 dbname: dWRyZGI=
 dsusername: dWRydXNlcg==
 dspassword: dWRycGFzc3dk
 encryptionkey: TXkgc2VjcmV0IHBhc3NwaHJhc2U=

Note: The values for "dbname", "dsusername", "dspassword" and
"encryptionkey" must be base64 encoded.

1m

4 Execute kubectl create -f <yaml_file_name> -n
<namespace> to create the secret.

1m

5 Verify the whether the secret is created by executing the following
command:
$ kubectl describe secret <secret-name> -n
<namespace>

1m

Chapter 7
Unified Data Repository (UDR) / Unstructured Data Storage Function (UDSF) Security Recommendations and Procedures

7-16

8
Cloud Native Core Console (CNCC)
Security Recommendations and
Procedures

This section provides Cloud Native Core Console (CNCC) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

CNCC IAM MYSQL Secret Configuration

Use the following procedure to create Mysql kubernetes secret:

Table 8-1 CNCC IAM MYSQL Secret Configuration

Step Description Est time

1 Login to Bastion Host or server from where kubectl can be
executed

1m

2 Create namespace for the secret by executing the following
commands:
Verify whether the required namespace already exists in system
by executing the following command:

$ kubectl get namespaces

If the output of the above command does not display the required
namespace then create the namespace by executing following
command:

$ kubectl create namespace <required namespace>

$ kubectl create namespace cncc

1m

8-1

Table 8-1 (Cont.) CNCC IAM MYSQL Secret Configuration

Step Description Est time

3 Execute the following command to create the kubernetes secret
for MySQL:

kubectl create secret generic <database secret
name> --from-literal=dbUserNameKey=<CNCC
Mysql database username> --from-
literal=dbPasswordKey=<CNCC Mysql database
passsword> -n <Namespace of MYSQL secret

Execute the following command to verify the secret creation:
$ kubectl describe secret <database secret name>
-n <Namespace of MYSQL secret>

Example:

$ kubectl create secret generic cncc-db-secret
--from-literal=dbUserNameKey=root --from-
literal=dbPasswordKey=mypass -n cncc
$ kubectl describe secret cncc-db-secret -n cncc

5m

CNCC IAM Default User (Admin) Secret Configuration

Use the following procedure to create default user (Admin) secret :

Table 8-2 CNCC IAM Default User (Admin) Secret Configuration

Step Description Est time

1 Login to Bastion Host or server from where kubectl can be
executed

1m

2 Create namespace for the secret by executing the following
commands:
Verify whether the required namespace already exists in system
by executing the following command:

$ kubectl get namespaces

If the output of the above command does not display the required
namespace then create the namespace by executing following
command:

$ kubectl create namespace <required namespace>

$ kubectl create namespace cncc

1m

Chapter 8

8-2

Table 8-2 (Cont.) CNCC IAM Default User (Admin) Secret Configuration

Step Description Est time

3 Execute the following command to create the kubernetes secret
for MySQL for Admin User:

$ kubectl create secret generic <secret-name> --
from-literal=iamAdminPasswordKey=<password>
 --namespace <namespace>

Execute the following command to verify the secret creation:
$ kubectl describe secret <secret name> -n
<namespace>

Example:

$ kubectl create secret generic cncc-iam-secret
 --from-
literal=iamAdminPasswordKey=cncciampasswordvalue
 --namespace cncc
$ kubectl describe secret cncc-iam-secret -n
cncc

5m

CNCC IAM LDAP Configuration

Use the following procedure to configure CNCC IAM LDAP :

Table 8-3 CNCC IAM LDAP Configuration

Step Description Est time

1 Setting up User Federation with CNCC IAM by executing following
steps:

1. Login to CNCC IAM application.

2. Select Cncc Realms and select User Federation; User
federation Screen appears.

3. Fill the necessary parameters and save.

4. New buttons (Synchronize changed users, Synchronize all
users, Remove imported, Unlink users) appears next to the
Save and Cancel.

5. If a user has to be import to CNCC-IAM, Click Synchronize
all users.

6. The user can view the imported users by clicking Users
under Manage in the left pane and click View all users in
the right pane.

5m

Chapter 8

8-3

Table 8-3 (Cont.) CNCC IAM LDAP Configuration

Step Description Est time

2 Steps to add Group-Mapper and Assign Roles:

1. Login to CNCC IAM application.

2. Select Cncc Realms and select User Federation; User
federation Screen apprears.

3. Click Configure and select User Federation. Click ldap
(Console Display Name) and select the Mappers tab, and
click Create.

4. The Add User federation mapper page appears. Select
'group-ldap-mapper' as Mapper Type drop down menu. Click
Save.

5. Enter the details in the new screen and Save.

6. New buttons Synchronize LDAP Groups to Keyclaok and
Synchronize Keyclaok Groups to LDAP appears.

7. Click Synchronize LDAP Groups to Keyclaok.

8. Select the Groups in the left pane and click the View all
groups in the right pane.

9. Click any group and click Edit. The following tabs appear:
Settings, Attributes, Role Mappings, and Members.

10. Select Role Mapping tab to see a list of roles that are pre-
defined in cncc-iam.

11. Select one or more roles from Available Roles and assign it
to the group.

5m

CNCC TLS Secret configuration

Use the following procedure to configure CNCC TLS Secret:

Table 8-4 CNCC IAM Secret Configuration to Enable HTTPS

Step Description Est time

1 To create kubernetes secret for HTTPS, following files are
required:

• ECDSA private key and CA signed certificate of CNCC (if
initialAlgorithm is ES256)

• RSA private key and CA signed certificate of CNCC (if
initialAlgorithm is RSA256)

• TrustStore password file
• KeyStore password file
• CA certificate

1m

Chapter 8

8-4

Table 8-4 (Cont.) CNCC IAM Secret Configuration to Enable HTTPS

Step Description Est time

2 Create a secret by executing the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
 --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
 --from-file=<ssl_keystore.txt>
--from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
 --from-file=<ssl_ecdsa_certificate.crt> -
n <Namespace of CNCC IAM Ingress Gateway
 secret>

Example:

$ kubectl create secret generic cncc-iam-
ingress-secret
 --fromfile=ssl_ecdsa_private_key.pem --
from-file=rsa_private_key_pkcs1.pem
 --fromfile=ssl_truststore.txt --from-
file=ssl_keystore.txt --from-file=caroot.cer
 --fromfile=ssl_rsa_certificate.crt --from-
file=ssl_ecdsa_certificate.crt -n
 cncc

On successfully executing the above command, the following
message will be displayed:
secret/cncc-iam-ingress-secret created

Execute the following command to verify the secret creation: :

$ kubectl describe secret cncc-iam-ingress-secret -n
cncc

1m

Chapter 8

8-5

Table 8-4 (Cont.) CNCC IAM Secret Configuration to Enable HTTPS

Step Description Est time

3 This section explains how to update the secrets for enabling
HTTPS, if they already exist:Create a secret by executing the
following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
 --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
 --from-file=<ssl_keystore.txt>
--from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
 --from-file=<ssl_ecdsa_certificate.crt> --
dry-run -o yaml -n <Namespace of CNCC IAM
Ingress
 Gateway secret> | kubectl replace -f - -n
<Namespace of CNCC IAM Ingress Gateway
 secret>

Example:

$ kubectl create secret generic cncc-iam-
ingress-secret
 --fromfile=ssl_ecdsa_private_key.pem --
from-file=rsa_private_key_pkcs1.pem
 --fromfile=ssl_truststore.txt --from-
file=ssl_keystore.txt --from-file=caroot.cer
 --fromfile=ssl_rsa_certificate.crt --from-
file=ssl_ecdsa_certificate.crt --dry-run -o
yaml -n
 cncc | kubectl replace -f - -n cncc

On successfully executing the above command, the following
message will be displayed:
secret/cncc-iam-ingress-secret replaced

5m

CNCC Core Secret Configuration to Enable HTTPS

Use the following procedure to configure CNCC Core Secret to Enable HTTPS:

Chapter 8

8-6

Table 8-5 CNCC Core Secret Configuration to Enable HTTPS

Step Description Est time

1 To create kubernetes secret for HTTPS, following files are
required:

• ECDSA private key and CA signed certificate of CNCC (if
initialAlgorithm is ES256)

• RSA private key and CA signed certificate of CNCC (if
initialAlgorithm is RSA256)

• TrustStore password file
• KeyStore password file
• CA certificate

1m

2 Create a secret by executing the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
 --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
 --from-file=<ssl_keystore.txt>
--from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
 --from-file=<ssl_ecdsa_certificate.crt> -
n <Namespace of CNCC Core Ingress Gateway
 secret>

Example:

kubectl create secret generic cncc-core-ingress-
secret --fromfile=ssl_ecdsa_private_key.pem
 --from-file=rsa_private_key_pkcs1.pem --
fromfile=ssl_truststore.txt
 --from-file=ssl_keystore.txt
--from-file=caroot.cer --
fromfile=ssl_rsa_certificate.crt
 --from-file=ssl_ecdsa_certificate.crt -n
cncc
 cncc

On successfully executing the above command, the following
message will be displayed:
secret/cncc-core-ingress-secret created

Execute the following command to verify the secret creation:
$ kubectl describe secret cncc-core-ingress-secret
-n cncc

1m

Chapter 8

8-7

Table 8-5 (Cont.) CNCC Core Secret Configuration to Enable HTTPS

Step Description Est time

3 This section explains how to update the secrets for enabling
HTTPS, if they already exist:

Create a secret by executing the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
 --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
 --from-file=<ssl_keystore.txt>
--from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
 --from-file=<ssl_ecdsa_certificate.crt> --
dry-run -o yaml -n <Namespace of CNCC Core
Ingress
 Gateway secret> | kubectl replace -f - -n
<Namespace of CNCC Core Ingress Gateway
 secret>

Example:

$ kubectl create secret generic cncc-core-
ingress-secret
 --fromfile=ssl_ecdsa_private_key.pem --
from-file=rsa_private_key_pkcs1.pem
 --fromfile=ssl_truststore.txt --from-
file=ssl_keystore.txt --from-file=caroot.cer
 --fromfile=ssl_rsa_certificate.crt --from-
file=ssl_ecdsa_certificate.crt --dry-run -o
yaml -n
 cncc | kubectl replace -f - -n cncc

On successfully executing the above command, the following
message will be displayed:
secret/cncc-core-ingress-secret replaced

5m

Chapter 8

8-8

9
Cloud Native Environment (CNE) Security
Recommendations and Procedures

After installation, audit the OC-CNE security system stance before placing the system
into service. This primarily consists of changing credentials and sequestering SSH
keys to trusted servers. The following table lists all the credentials that need to be
checked, changed and retained:

Credential
Name

Deployment Type Associated
Resource

Initial Setting Credential
Rotation

TOR Switch Bare Metal
Only

username
and
password

Cisco Top or
Rack Switch

username and
password from
PreFlight
Checklist

Reset post-
install

Enclosure
Switch

Bare Metal
Only

username
and
password

HP Enclosure
Switch

username and
password from
PreFlight
Checklist

Reset post-
install

OA Admin Bare Metal
Only

username
and
password

On-board
Administrator
Console

username and
password from
PreFlight
Checklist

Reset post-
install

ILO Admin Bare Metal
Only

username
and
password

HP Integrated
Lights Out
Manger

username and
password from
PreFlight
Checklist

Reset post-
install

Server
Super User
(root)

All username
and
password

Server Super
User

Set to well-
known Oracle
default during
server
installation

Reset post-
install

Server
Admin User
SSH

All SSH Key Pair Server Admin
User

Key Pair
generated at
install time

Can rotate
keys at any
time; key
distribution
manual
procedure

If factory or Oracle defaults were used for any of these credentials, it must be changed
prior to placing the system into operation. The customer must store these credentials
in a safe and secure way offsite. It is recommended that the customer must plan
a regular schedule for updating (rotating) these credentials. Specific procedures and
recommendations for OC-CNE credential management are provided below.

1.1.Network Security Recommendations and Procedures

Recommendation: Review and Follow TOR installation procedures

9-1

The OC-CNE on-premise installation guide provides detailed procedures on how to
configure the TOR switches and configure them for remote monitoring. Deviations from
the standard installation time configurations are not recommended.

Credential Management Procedures

Procedure 1: Setting Top Of Rack Switch Credentials

This procedure is used to set the credentials on the Cisco TOR switch as deployed
with the bare metal deployment option. Steps for creating and deleting accounts and
for setting account passwords is given below.

Table 9-1 Setting Top Of Rack Switch Credentials

Step No. Description Est time

1. Login to the TOR switch (from the bastion host):

$ ssh <username>@<switchIP address> User Access
Verification

Password: <password>

Cisco Nexus Operating System (NX-OS) Software

TAC support: www.cisco.com/tac

<switchname>#

1m

2. Change the password for <username>:
configure

Enter configuration commands, one per line. End with CNTL/Z.

(config)# username <username>
password<newpassword>
(config)#exit

1m

3. Create a new user (if desired):

configureEnter configuration commands, one per line.
End with CNTL/Z. (config)# username <newusername>
password <newpassword> role [network-operator|network-
admin|vdc-admin|vdc-operator] (config)#exit

1m

4. Verify the account changes by exiting the ssh session (type exit)
and repeat step 1.

exit

Connection to <switchIP address> closed.

$ $ ssh <newusername>@<switchIP address>

User Access Verification Password: <newpassword>

Cisco Nexus Operating System (NX-OS) SoftwareTAC support:
www.cisco.com/tac

......

<switchname>#

1m

5. Delete an unrequired user account:

configureEnter configuration commands, one per line. End with
CNTL/Z.
(config)# no username <username>

(config)#exit

1m

6. Change the enable secret:
(config)# enable secret <newenablepassword>

(config)# exit

1m

Chapter 9

9-2

https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/c/en/us/support/index.html

Table 9-1 (Cont.) Setting Top Of Rack Switch Credentials

Step No. Description Est time

7. Save the configuration changes: # copy running-config
startup-config

100%

Copy complete, now saving to disk (please wait)...

Copy complete.

1m

Note:

Recommendation: Change TOR passwords before placing site into
service. The TOR switch credentials show the changed prior to placing the
site into service.
Recommendation: Use Strong Passwords.The Network Administrator
must choose complex TOR Switch passwords as per their organization's
security guidelines.

Procedure 2: Setting Enclosure Switch Credentials
This procedure is used to set the credentials on the HP enclosure switch as deployed
with the bare metal deployment option. Steps for creating and deleting accounts and
for setting account passwords is given below. For additional information, refer to: HP
commands to configure enclosure switch username and password.

Table 9-2 Setting Enclosure Switch Credentials

Step Description Est. Time

1. Login to the HP enclosure switch (from the bastion host): $ ssh
<username>@< switchIP address>
Copyright (c)2010-2017Hewlett Packard Enterprise Development
LP ** Without the owner's prior written consent, ** no decompiling
or reverse-engineering shall be allowed.

<switchname>

<switchname>

sysSystem View:returnto User View with Ctrl+Z.

1m

2. Change the password for the current
username: [switchname]local-user <username>class
<currentclass>

[switchname-luser-manage-<username>]password
simple <newpassword>

[switchname-luser-manage-<username>]quit

1m

3. Create a new user account: [switchname]local-user
<newusername>class[manage|network]
New local user added

[switchname-luser-manage-<newusername>]password
simple <newpassword>[switchname-luser-manage-
<newusername>]quit

1m

Chapter 9

9-3

Table 9-2 (Cont.) Setting Enclosure Switch Credentials

Step Description Est. Time

4. Verify the account changes by exiting the ssh session (type
exit) and repeat step 1. <switchname> quitConnection to
<switchIP address>closed.
$

$ ssh <newusername>@< switchIP address>
<newusername>@<switchIP address>'s password:
<newpassword>
Copyright (c)2010-2017Hewlett Packard Enterprise Development
LP *

* Without the owner's prior written consent, *

* no decompiling or reverse-engineering shall be allowed.

<switchname>

<switchname> sys

System View:returnto User View with Ctrl+Z.

1m

5. Delete the user account that is not required: [switchname]undo
local-user <username>class <currentclass>

1m

6. Save the configuration changes:
[switchname]save

The current configuration will be written to the device. Are you
sure? [Y/N]: y

Please input the file name(*.cfg)[flash:/<filename>]

(To leave the existing filename unchanged, press the enter key):

flash:/<filename> exists, overwrite? [Y/N]: yValidating file. Please
wait...

Saved the current configuration to mainboard device successfully.

Slot1:

Save next configuration file successfully.

[switchname]

1

Note:

Recommendation: Set Enclosure Switch Credentials before Placing
Into Service

The HP Enclosure switch credentials show be changed prior to placing the
site into service.

Recommendation: Use Strong Passwords

The Network Administrator must choose complex Enclosure Switch
passwords as per their organization's security guidelines.

1.2 Hosting Environment Security Recommendations and Procedures

Chapter 9

9-4

The best way to keep your CNE environment secure is to keep it up-to-date. New
OC-CNE releases are typically released every 2 months. The OC-CNE upgrade is not
service affecting and will typically install newer versions of:

• Host OSs

• Kubernetes and associated containers

• DB-Tier binaries

• Common service containers

The upgrade process ensures that the uplifts do not affect active service. Refer Cloud
Native Environment (OC-CNE) Upgrade Guide for more details.

Repository Management Recommendations

System Update (YUM) Recommendations
Recommendation: Keep central yum repositories up to date.

Keep central repositories up-to date with latest yum packages; yum updates are
performed on-site whenever a fresh install or upgrade is performed. An up-to date
yum repository will help ensure that fixes for all publish vulnerabilities are applied.

Docker Repository Recommendations
Recommendation: Scan docker image repositories regularly.

Scan your docker image repositories regularly using a tool such as clair or anchore-
engine. All images are scanned and vulnerabilities assessed at product development
time, but new exploits /vulnerabilities may be reported/fixed later. Scan tools typically
use a database of known vulnerabilities - refer to tool vendor for instructions on
creating off-line (internet isolated) vulnerability databases.

1.3 Credential Management Procedures

Procedure 1: Setting HP Onboard Administrator (OA) Credentials.

This procedure is used to set the credentials on the HP Onboard Administrator as
deployed with the bare metal deployment option. Steps for creating and deleting
accounts and for setting account passwords is shown. For additional information,
please refer to: HP commands to configure OA username and password.

Chapter 9

9-5

https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/cne_upgrade/index.html
https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/cne_upgrade/index.html

Table 9-3 Setting HP Onboard Administrator (OA) Credentials

Step Description Est Time

1 Login to the OA:
$ ssh <username>@<OA address>

WARNING: This is a private system. Do not attempt to login
unless you are anauthorized user. Any authorized or unauthorized
access and use may be moni-tored and can result in criminal or
civil prosecution under applicable law

Firmware Version: 4.85

Built:04/06/2018@06:14OA

Bay Number:1

OA Role: Active

<username>@<OA address>'s password: <password>

HPE BladeSystem Onboard Administrator

(C) Copyright 2006-2018 Hewlett Packard Enterprise
Development LP

Type 'HELP' to display a list of valid commands.

Type 'HELP <command>' to display detailed information about a
specific command.

Type 'HELP HELP' to display more detailed information about the
help system.

OA-A45D36FD5FB1>

1m

2 Change the current password:

OA-A45D36FD5FB1> set password <newpassword>
Changed password for the"<username>"user account.

OA-A45D36FD5FB1>

1m

3 Add new user:
OA-A45D36FD5FB1> add user <newusername>

New Password: <newpassword>

Confirm : <newpassword>

User"<newusername>"created.

You may set user privileges with the 'SET USER ACCESS' and
'ASSIGN' commands.

OA-A45D36FD5FB1> set user access <newusername>
[ADMINISTRATOR|OPERATOR|USER] "<newusername>" has
been given [administrator|operator|user] level privileges.

1m

4 Assign full access to the enclosure for the user:
OA-A45D36FD5FB1> assign server all <newusername>

<newusername> has been granted access to the valid
requested bay (sOA-A45D36FD5FB1> assign interconnect all
<newusername>

<newusername> has been granted access to the valid requested
bay(s)OA-A45D36FD5FB1> assign oa <newusername>

<newusername> has been granted access to the OA.

1m

Chapter 9

9-6

Table 9-3 (Cont.) Setting HP Onboard Administrator (OA) Credentials

Step Description Est Time

5 Verify the new account:
OA-A45D36FD5FB1> exit

Connection to <OA address> closed.

[bastion host]# ssh <newusername>@<OA address>

WARNING: This is a private system. Do not attempt to login
unless you are unauthorized user. Any authorized or unauthorized
access and use may be monitored and can result in criminal or
civil prosecution under applicable law.

Firmware Version : 4.85

Built : 04/06/2018 @ 06:14

OA Bay Number : 1

OA Role : Active

<newusername>@<OA address>'s password:
<newpassword>

HPE BladeSystem Onboard Administrator

(C) Copyright 2006-2018 Hewlett Packard Enterprise
Development LP

Type 'HELP' to display a list of valid commands.

Type 'HELP <command>' to display detailed information about a
specific command.

Type 'HELP HELP' to display more detailed information about the
help system. OA-A45D36FD5FB1>

1m

6 Delete an unneeded user account:
OA-A45D36FD5FB1> remove user <username>

Entering anything other than 'YES' will result in the command not
executing.

Are you sure you want to remove testuser1? yes

User"<username>"removed.

1m

Procedure 2: Setting HP Integrated Lights Out Manger (ILO) Credentials

This procedure is used to set the credentials on the HP Integrated Lights Out
Managers as deployed with the bare metal deployment option. Steps for creating and
deleting accounts and for setting account passwords is shown.

Table 9-4 Setting HP Integrated Lights Out Manger (ILO) Credentials

Step Description Est Time

1 Login to the iLO:

$ ssh <username>@<iLO address>
<username>@<iLO address>'s password:
<password>User:<username> logged-in to ...(<iLO address> /
<ipv6 address>)

iLO Advanced2.61at Jul272018

Server Name: <server name>

Server Power: On

</>hpiLO->

1m

Chapter 9

9-7

Table 9-4 (Cont.) Setting HP Integrated Lights Out Manger (ILO) Credentials

Step Description Est Time

2 Change the current password:
</>hpiLO-> set /map1/accounts1/ <username>
password= <newpassword>

status=0

status_tag=COMMAND COMPLETED

Tue Aug2013:27:082019

</>hpiLO->

1m

3 Create a new user account:
</>hpiLO-> create /map1/accounts1 username=
<newusername> password= <newpassword>
group=admin,config,oemHP_rc,oemHP_power,oemHP_vm

status=0

status_tag=COMMAND COMPLETED

Tue Aug2013:47:562019

User added successfully.

1m

4 Verify the new user account:
</>hpiLO-> exit

status=0

status_tag=COMMAND COMPLETED

Tue Aug2013:30:522019CLI session stoppedReceived disconnect
from <iLO address> port22:11: Client Disconnect

Disconnected from <iLO address> port22

[bastion host]# ssh <newusername>@<iLO address>

<newusername>@<iLO address>'s password: <newpassword>

User:<newusername> logged-in to ...(<iLO address> / <ipv6
address>)

iLO Advanced2.61at Jul272018

Server Name: <server name>Server

Power: On</>hpiLO->

1m

5 Delete an unneeded account: </>hpiLO-> delete /map1/
accounts1/ <username>
status=0

status_tag=COMMAND COMPLETED

Tue Aug2013:59:042019

User deleted successfully.

Procedure 3: Setting Root Passwords for All Cluster Nodes

The procedure to reset the root account requires that the administrator login to each
and every server.

To reset the root account, for each and every server in the cluster perform the
following steps:

Chapter 9

9-8

Table 9-5 Setting Root Passwords for All Cluster Nodes

Step Description Est. time

1 Login to the next server:

$ ssh admusr@ <cluster server IP>

1m

2 Perform the root password change:

$ sudo passwd root

New password: <new password>

Retype new password: <new password>

Retype new password:<new password>

1m

3 Repeat steps 1 - 2 for each and every server in the cluster.

Note:

The administrator (admusr) account is provided without a usable password
hash. Thus requiring the use of SSH keys to access the account. The SUDO
users access is configured without the requirement of a password. If you
would like to enable the SUDO passwords for the administrator, you also
need to assign a password to the administrator account using a procedure
very similar to the one outlined above.

Procedure 4: Updating admusr SSH Keys for All Cluster Nodes
There are two sets of SSH keys used in a deployed cluster - the key used to
access the bastion host, and the key used to access the cluster servers. These
key-pairs are generated at install time and are only usable on the cluster they were
generated for. The public key portion of the bastion host key pair is typically provided
to administrators who will manage the cluster. The key pair used to access the cluster
servers should kept local to the cluster:

Table 9-6 Updating admusr SSH Keys

Key Pair Name Public Key Distribution Private Key Distributionm

Bastion Host Place copy in the
authorized_keys file on the
bastion host

Cluster Admin - place in the cluster
admin key agent (e.g., ssh-agent or
pageant) external to the cluster. Do not
copy to any host on the cluster.

Cluster Hosts Place a copy in the
authorized_keys files on each
and every cluster host; do not
configure on the bastion host.

Bastion Host -

~admusr/.ssh

directory. This will be used when
performing orchestration activities
(install / upgrade).

Chapter 9

9-9

To replace either of these key pairs starts with an openssh request to generate a new
keypair:

ssh-keygen -b 4096 -t rsa -C "New SSH Key" -f
 .ssh/new_occne_id_rsa -q -N ""

This command generates the following key pair:

Key Name Purpose

new_occne_id_rsa The private key

new_occne_id_rsa.pub The public key

Update the bastion host keys

Table 9-7 Update the bastion host keys

Step No. Description Est time

1. Login to the bastion host and generate a new key pair using the
ssh-keygen command show above.

$ ssh-keygen -b 4096 -t rsa -C "New
 Bastion Key" -f ~/.ssh/
new_occne_id_rsa -q -N
 ""

1m

2. Copy the private key portion of the key off cluster and make
it available to your ssh agent of choice or store it in the .ssh
directory of your client machine. See instructions for your specific
SSH client (e.g., putty or openssh)

1m

3. Add the new public key to the authorized key file on the bastion
host:

$ cat ~/.ssh/new_occne_id_rsa.pub >>
 ~/.ssh/authorized_keys

1m

Chapter 9

9-10

Table 9-7 (Cont.) Update the bastion host keys

Step No. Description Est time

4. Confirm the permissions of the .ssh directory and files:

$ ls -la ~/.ssh
total 32
drwx------. 2 admusr admusr 4096 Feb 25 15:48 .
drwx------. 42 admusr admusr4096 Feb 24 15:14 ..
-rw-------. 1 admusr admusr 796 Jan 28 14:43
authorized_keys
-rw-------. 2 admusr admusr 545 Feb 12 13:58
config
-rw-------. 1 admusr admusr 3239 Feb 25 15:48
new_occne_id_rsa
-rw-r--r–. 1 admusr admusr 737 Feb 25 15:48
new_occne_id_rsa.pub

In general, the .ssh directory should be mode 700 and the files
under that directory should be mode 600

1m

5. Confirm that the new key works; remove the old key from your ssh
client's agent (see instructions for your client), and confirm that
you can still login.

1m

6. Assuming that you were able to login using the new key pair,
remove the old key pair from the authorized_keys file using your
favorite editor.

In general, the authorized_keys file should at this point have two
keys in it - the old one and the new one. The new one should be
at the bottom.

1m

General Security Administration Recommendations and Procedures

Note:

Recommendation: Record configuration changes

Note that in a disaster recovery scenario, Oracle provided procedures will
only restore base system behavior (they will not include restoration of
an special configurations or tweaks). We recommend that all post-delivery
customization be logged or automated using tools such as Ansible.

Password Policy Administration Procedures

In general, the host environments use a user account named admusr which is not
configured with a password; the only way to access this account is using SSH keys.
We recommend using SSH keys rather than passwords for all non-root accounts. The
root account cannot be accessed via ssh; the only access is via the console. For this
account, we recommend setting a password and storing it off-site to be used only for
break-glass console access to the host.

User Administration Recommendations

Chapter 9

9-11

Customers may want to create additional accounts to manage separate concerns
(Example: a dbadmin account, a k8sadmin account, etc). This can be done using
normal linux user administration procedures.

SSHD Policy Administration Procedures

Customers may want to create augment the standard sshd configuration to perform
additional hardening; this can be done using normal linux ssh administration
procedures. Note that in a disaster recovery scenario, Oracle provided procedures
will only restore base system behavior (they will not include restoration of an special
configurations or tweaks).

Note:

Recommendation: Review changes with Oracle Support

We recommend reviewing any planned changes to sshd configuration with
your Oracle Support contact. Improper sshd configuration can either open
the system up to attacks or prevent proper system operation.

Auditd Policy Administration Procedures

Customers may want to augment the standard auditd configuration to perform
additional monitoring; this can be done using normal linux auditd administration
procedures. Place all customizations in a seperate file in the /etc/audit/rules.d
directory; do not modify any of the other existing audit configuration files.

Chapter 9

9-12

A
Cloud Native Core Network Port Flows

Network Port Flows

• Cluster IP addresses are reachable outside of the cluster and are typically
assigned via a Network Load Balancer

• Node IP addresses are reachable from the bastion host (and may be exposed
outside of the cluster)

OC-CNE Port Flows

Name Sever/
Container

Ingres
s Port
ext[:int
]/Proto

TLS Cluster IP
(Service IP)

Node IP Notes

SSH
Access

ALL 22/TCP Y SSH Access Administrative
SSH Access; no
root / key only.

Repository Bastion Host 80/TCP,

443/
TCP,

5000/T
CP

Y Repository
Access

Access
repositories
(YUM, Docker,
Helm, etc.)

RPC Bind All 111/
TCP,
UDP

N RPCBind Used for
installation; pxe
booting of NFS
mounted images

BGP K8s Nodes 179/TC
P

N BGP Used on bare
metal
environments in
load balancing

MySQL
Query

MySQL SQL
Node

3306/T
CP

N Replication
Traffic

Microservice
SQL Access

The SQL Query
interfaces are
used for 5G NFs
to access the
database and for
remote sites to
replicate data

MySQL
Manageme
nt

MySQL
Managemen
t Node

1186/T
CP

N Managemen
t Console
Access

The SQL
Management
interface is used
to access the
management
interfaces for the
data cluster

A-1

Name Sever/
Container

Ingres
s Port
ext[:int
]/Proto

TLS Cluster IP
(Service IP)

Node IP Notes

MySQL
Data

MySQL Data
Node

50501/
TCP

N SQL Query
Backend

The SQL Data
interface provide
a backend DBMS
interface for the
SQL Query
Nodes

ILO ILO
Managemen
t Port

443/TC
P

Y Installation /
Managemen
t

This interface is
used to manage
the frame; it
provided low level
management for
all of the frame
HW assets

MetalLB Metallb
Speaker

7472 N Load
Balancer

This port is used
to share service
locations

Metrics
Server

K8s Metrics
Server

8443 N Monitoring Used for scaling

ETCD
Client

K8s Master
Nodes

2379/T
CP

Y Client
Access

Keystore DB
used by K8s

ETCD Peer K8s Master
Nodes

2380/T
CP

Y Peer Access ETCD Server
Communication

Kube API
Server

K8s Master
Nodes

6443/T
CP

Y K8s
Orchestratio
n

The Kube API
Server provides
an orchestration
API for the
creation of K8s
resources.

Kubelet
cAdvisor

K8s Nodes 4149/T
CP

Y Container
Metrics

Default cAdvisor
port used to
query container
metrics

Kubelet API K8s Nodes 10250/
TCP

Y Control
Plane Node
Access

API which allows
full node access

Kube-
scheduler

K8s Nodes 10251/
TCP

N Scheduler
Access

Serve HTTP
insecurely

Kube-
controller

K8s Nodes 10252/
TCP

N Controller
Access

Serve HTTP
insecurely

Kube-proxy K8s Nodes 10256/
TCP

N Health
Check

Health check
server for Kube
Proxy

Kube-proxy K8s Nodes 30000-
32767

N Service
Access

The default
service node port
range

Kube-
controller

K8s Nodes 10257/
TCP

Y Controller
Access

HTTPS Access

Kube-
Scheduler

K8s Node 10259/
TCP

Y Scheduler
Access

HTTPS Access

Appendix A

A-2

Name Sever/
Container

Ingres
s Port
ext[:int
]/Proto

TLS Cluster IP
(Service IP)

Node IP Notes

Kibana K8s Nodes 80:560
1/TPC

N GUI Logging
Visualization

ElasticSear
ch

K8s Nodes 9200/T
CP

N GUI Search API
access

ElasticSear
ch

K8s Nodes 9300/T
CP

N Logging Internal Logging

Jaeger
Agent

K8s Nodes 6831/U
DP

N Agent Accept
jaeger.thrift over
compact thrift
protocol

Jaeger
Agent

K8s Nodes 6832/U
DP

N Agent Accept
jaeger.thrift over
binary thrift
protocol

Jaeger
Agent

K8s Nodes 5778/T
CP

N Agent Serve Configs

Jaeger
Query

K8s Nodes 80:166
86/TCP

N GUI Service Frontend

Jaeger
Collector

K8s Nodes 14268/
TCP

N Collector Accept
jaeger.thrift
directly from
clients

Jaeger
Collector

K8s Nodes 9411/T
CP

N Collector Zipkin
compatable
endpoint
(optional)

Prometheu
s Server

K8s Nodes 80:909
0/TCP

N GUI Prometheus
Server

Prometheu
s Push
Gateway

K8s Nodes 9091/T
CP

N Push
Gateway

Prometheus
Push Gateway

Alertmanag
er

K8s Nodes 80:909
3/TCP

N GUI Alertmanager

Alertmanag
er
clustering

K8s Nodes 9094/T
CP

N Amertmang
er Clustering

Alertmanager
Clustering

Prometheu
s Exporters

K8s Nodes 9100-9
551/TC
P

24231/
TCP
(fluent)

9099/T
CP
(snmp)

N Prometheus
Exporters

Prometheus
Exporters

Grafana K8s Nodes 80:300
0/TCP

N GUI Grafana

Appendix A

A-3

NF Port Flows

Table A-1 NF Port Flows

Name Sever /
Container

Ingress
Port
[external]:i
nternal

TLS ? Cluster IP
(Service IP)

Node IP Notes

5G NRF K8s Nodes /
NRF Service

80/TCP

443/TCP

Y NfConfigurat
ion

IngressGate
way

NfRegistrati
on

NfSubscripti
on

NfDiscovery

NfAccessTo
ken

EgressGate
way

5G NRF

Refer
OCNRF
microservice
s to port
mapping for
more details.

5G SPF K8s Nodes /
SPF Worker

8000/TCP N 5G Proxy 5G SCP
(SPF) Proxy

5G SPF K8s Nodes /
Soothsayer

8082/TCP N Proxy
Configuratio
n

5G SCP
(SPF) Proxy
Configuratio
n.

5G SPF K8s Nodes /
Istio

/TCP N Mesh State
Sharing

5G SCP
(SPF) Mesh
Managemen
t.

5G NSSF K8s Nodes /
NSSF
Service

80/TCP

443/TCP

Y NSSF
configuration

IngressGate
way

NS-
selection,
NS-
availability,

NS-
subscription

EgressGate
way

NRF-Client

5G NSSF

Refer to
NSSF
microservice
s to port
mapping for
further
details.

5G UDR/
UDSF

K8s Nodes /
UDR
Service

80/TCP N Nudr-dr/
Nudr-prov

5G UDR:
Signalling
network can
be used for
managemen
t API
exposed.

Appendix A

A-4

	Contents
	My Oracle Support
	What's New in This Guide
	List of Tables
	1 Introduction
	Audience
	References
	Acronyms

	2 Overview
	3 Cloud Native Core Network Functions
	4 Secure Development Practices
	Overview of Secure Development Practices
	Secure Development - DevSecOps
	Vulnerability Handling

	5 Trust Model
	Context diagram
	Key Trust Boundaries
	External Data Flows

	6 Common Security Recommendations and Procedures
	4G/5G Application Authentication and Authorization
	DB-Tier Authentication and Authorization

	7 4G/5G Core Network Function Security Recommendations and Procedures
	Network Repository Function (NRF) Security Recommendations and Procedures
	Policy Control Function (PCF) Security Recommendations and Procedures
	Cloud Native Policy Control Repository Function (CNPCRF) Security Recommendations and Procedures
	Cloud Native Diameter Routing Agent (cnDRA) Security Recommendations and Procedures
	Cloud Native Core - Ingress/Egress Gateways - Security Recommendations / Procedures
	Service Communication Proxy (SCP) Security Recommendations And Procedures
	Network Slice Selection Function (NSSF) Security Recommendations and Procedures
	Security Edge Protection Proxy (SEPP) Security Recommendations and Procedures
	Unified Data Repository (UDR) / Unstructured Data Storage Function (UDSF) Security Recommendations and Procedures

	8 Cloud Native Core Console (CNCC) Security Recommendations and Procedures
	9 Cloud Native Environment (CNE) Security Recommendations and Procedures
	A Cloud Native Core Network Port Flows

