
Oracle® Communications
Cloud Native Unified Data Repository
Installation and Upgrade Guide

Release 1.6
F30716-02
May 2020

Oracle Communications Cloud Native Unified Data Repository Installation and Upgrade Guide, Release 1.6

F30716-02

Copyright © 2019, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

Overview 1-1

Architecture 1-2

References 1-2

My Oracle Support 1-2

2 Installing Unified Data Repository

Planning Your Installation 2-1

Installation Sequence 2-4

Installation Preparation 2-4

OCUDR Namespace Creation 2-6

Service Account, Role and RoleBinding Creation 2-6

Kubernetes Secret Creation - DBName, Username, Password and Encryption
Key 2-8

Kubernetes Secret Creation - Private Keys and Certificates for IngressGateway 2-9

ocudr-custom-values.yaml File Configuration 2-11

Unified Data Repository Deployment 2-11

3 Customizing and Configuring Unified Data Repository

Customizing Unified Data Repository 3-1

Configuring User Parameters 3-7

4 Upgrading an Existing Unified Data Repository Deployment

5 Uninstalling Unified Data Repository

iii

What's New in This Guide

This section shares the list of new features introduced in every OCUDR release. For
more release specific information, please refer to its release notes.

Release 1.6
The following new features are introduced in this release:

• Supports AM, SM and UEPolicy set as per 29.519 v16.2.0

• HTTPs/TLS support using Ingress API gateway

• CNC-Console integration on provisioning APIs: Refer to UDR Users Guide

• Provisioning Gateway integration for SLF provisioning: Refer to UDR Provisioning
Gateway Guide for more details.

• Metrics for provisioned data

4

List of Tables

2-1 OCUDR Images 2-6

2-2 ocudr-custom-values-1.6.0.yaml Parameters 2-11

v

1
Introduction

This documents provides information for installing Cloud Native Unified Data
Repository product.

Overview
The 5G Unified Data Repository (UDR) is one of the main key component of the 5G
Service Based Architecture. UDR is a converged repository, which is used by 5G
Network Functions to store the data.

Oracle 5G UDR is implemented as cloud native function and it offers a unified
database for storing application, subscription, authentication, service authorization,
policy data, session binding and Application state information. It exposes a HTTP2
based RESTful API for NF's and provisioning clients to access the stored data.

Oracle's 5G UDR:

• Leverages a common Oracle Communications Cloud Native Framework

• Is compliant to 3GPP Release 15 specification UDM

• Is compliant to 3GPP v29.519 v16.2 (backward compatible with v15.3.0, by
configuration) specification for PCF

• Has tiered architecture providing separation between the connectivity, business
logic and data layers

• Uses Oracle MySQL Cluster CGE backend database provides through DB Tier.

• Registers with NRF in the 5G network, so the other NFs in the network can
discover UDR through NRF.

As per 3GPP, UDR supports following functionality:

• Storage and retrieval of subscription data by the UDM.

• Storage and retrieval of policy data by the PCF.

• Storage and retrieval of structured data for exposure.

• Storage and retrieval of SLF information, consumed by NRF.

• Application data (including Packet Flow Descriptions (PFDs) for application
detection, AF request information for multiple UEs), by the NEF.

• Subscription and Notification feature.

Oracle's 5G UDR provides Unstructured Data Storage Function (UDSF) functionality.
This functionality:

• Supports storage and retrieval of unstructured data by any 5G NF. The
specifications of UDSF are presently not defined by 3GPP completely.

• This functionality is part of Oracle's 5G UDR solution.

Oracle's 5G UDR provides 5G SLF functionality. This functionality:

1-1

• Supports Nudr-groupid-map service as defined by 3GPP

• Complaint with 3GPP Release 16 for APIs to be consumed by 5G NRF

• Supports REST/JSON based provisioning APIs for SLF data

Architecture
The Cloud Native Unified Data Repository architecture has following three tiers:

Connectivity Tier

• Ingress API Gateway (Spring Cloud Gateway [SCG] based) is used as an API
gateway that receives all requests and forwards them to the Nudr-drservice
service of Business Tier.

• It load balances the traffic and provides required authentication.

• It provides TLS support.

Business Tier

• Provides the business logic of 5G Unified Data Repository.

• It has following three micro services:

– nudr-drservice: The core service that handles flexible URI support, runtime
schema validation and connects to Data Tier for DB operations. It provides
SLF lookup functionality.

– nudr-nrf-client-service: Handles registration, heartbeat, update and
deregistration with Network Repository Function (NRF).

– nudr-notify-service: Handles notification messages to Policy Control
Function (PCF) and Unified Data Management (UDM) for data subscriptions.

Data Tier

• Uses Oracle MySQL NDB Cluster, CGE edition as backend database in the DB
tier. This provides HA and geo-redundcancy capabilities.

References
Refer to the following documents for more information about 5G cloud native unified
data repository.

• CNE Installation Guide

• PCF Installation Guide

• NRF Installation Guide

• Provisioning Gateway Guide

• Unified Data Repository User Guide

My Oracle Support
My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support can
assist you with My Oracle Support registration.

Chapter 1
Architecture

1-2

https://support.oracle.com

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the
US), or call the Oracle Support hotline for your local country from the list at http://
www.oracle.com/us/support/contact/index.html. When calling, make the selections in
the sequence shown below on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking and Solaris Operating System Support.

3. Select one of the following options:

• For Technical issues such as creating a new Service Request (SR), select 1.

• For Non-technical issues such as registration or assistance with My Oracle
Support, select 2.

You are connected to a live agent who can assist you with My Oracle Support
registration and opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

Chapter 1
My Oracle Support

1-3

http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

2
Installing Unified Data Repository

This section provides instructions on installing Unified Data Repository.

Planning Your Installation
Before installing UDR, perform the following pre-installation tasks:

• Checking the software requirements

• Checking the environment setup

Checking the Software Requirements
Before installing Unified Data Repository (UDR), install the following softwares on your
system.

Software Version

Kubernetes v1.13.3

HELM v2.12.3

Additional softwares that needs to be deployed as per the requirement of the services
are:

Software Version Notes

elasticsearch 1.21.1 Needed for Logging Area

elastic-curator 1.2.1 Needed for Logging Area

elastic-exporter 1.1.2 Needed for Logging Area

logs 2.0.7 Needed for Logging Area

kibana 1.5.2 Needed for Logging Area

grafana 2.2.0 Needed for Metrics Area

prometheus 8.8.0 Needed for Metrics Area

prometheus-node-exporter 1.3.0 Needed for Metrics Area

metallb 0.8.4 Needed for External IP

metrics-server 2.4.0 Needed for Metric Server

tracer 0.8.3 Needed for Tracing Area

Note:

The above softwares are available in the Oracle Communications Cloud
Native Environment (OCCNE). If you are deploying UDR in any other
environment, then the above softwares must be installed before installing
UDR.

To check the installed software items, execute the following command:

2-1

helm ls

Some systems may need to use helm command with admin.conf file as follows:

helm --kubeconfig admin.conf

Note:

Some of the above mentioned software(s) are updated frequently. Their later
versions than those listed above should work with UDR 1.6. Some UDR
features and services work differently depending on the software being used

.

Checking the Environment Setup
Before installing UDR, the system environment should have the following:

• Access to OpenStack Environment: User should have access to an existing
OpenStack environment including the OpenStack Desktop. This environment is
configured with appropriate resource flavors and network resources that allows its
users to allocate resources to the virtual machines created via this procedure.

• Availability of a pub key: Users must have a pub key for logging into the
Bootstrap Host. This key should be placed into the customer OpenStack
Environment using Import Key tab on the Launch Instance→Key Pair dialog or
via the Compute→Access and Security.

• OCUDR Software: User must install Kubernetes v1.13.3 and HELM v2.12.3. UDR
consists of:

– Helm Charts that reflect the OCUDR software version. It is a zipped tar file
that you need to unzip.

– Docker images of the micro-services that are shared as tar file. You need to
untar it.

Note:

For more details about OCUDR Software, see Checking the Software
Requirements.

• Create Database User/Group: The Database administrator should create a user
in the MYSQL DB using MySQL NDB cluster. UDR uses an NDB MySQL
database to store the subscriber information. NDB MySQL database provides HA
and geo-redundancy capabilities.
The database administrator should also provide user with necessary permissions
to access the tables in the NDB cluster. The steps to create a user and assign
permissions are as follows:

1. Login to the server where the ssh keys are stored and SQL nodes are
accessible.

2. Connect to the SQL nodes.

3. Login to the Database as a root user.

Chapter 2
Planning Your Installation

2-2

4. Create a user on all sql nodes and assign it to a group having necessary
permissions to access the tables on all sql nodes. Also, create a database on
only one sql node.

CREATE USER '<username>'@'%' IDENTIFIED BY
'<password>';
DROP DATABASE if exists <db_name>;
CREATE DATABASE <db_name> CHARACTER SET utf8;
GRANT SELECT, INSERT, CREATE, ALTER, DROP, LOCK TABLES, CREATE
TEMPORARY TABLES, DELETE, UPDATE,EXECUTE ON <db_name>.* TO
'<username>'@'%';
USE <db_name>;

Note:

You need this database name, username and password at the time
of creating K8s secrets.

• Network Access: The Kubernetes cluster hosts must have network access to:

– Local docker image repository where the Oracle Communications Unified Data
Repository images are available.
To check if the Kubernetes cluster hosts has network access to the local
docker image repository, try to pull any image with tag name to check
connectivity by executing:

docker pull <docker-repo>/<image-name>:<image-tag>

– Local helm repository where the Oracle Communications Unified Data
Repository helm charts are available.
To check if the Kubernetes cluster hosts has network access to the local helm
repository, execute:

helm repo update

Note:

Some of the systems may need to use helm command with helm --
kubeconfig admin.conf

Note:

All the kubectl and helm commands (used in this document) must be
executed on a system depending on the infrastructure of the
deployment. It can be any client machine like virtual machine, server,
local desktop and so on.

• Laptop/Desktop Client Software: A laptop/desktop where the user executes
deployment commands should have:

– Network access to the helm repository and docker image repository

– Configuration of Helm repository on the client

Chapter 2
Planning Your Installation

2-3

– Network access to the Kubernetes cluster

– Necessary environment settings to run the kubectl commands. The
environment should have privileges to create namespace in the Kubernetes
cluster.

– Helm client installed with the push plugin. The environment should be
configured so that the 'helm install' command deploys the software in the
Kubernetes cluster.

Note:

All the kubectl and helm commands (used in this document) must be
executed on a system depending on the infrastructure of the
deployment. It can be any client machine like virtual machine, server,
local desktop and so on.

Installation Sequence
The installation sequence of UDR is as follows:

1. Installation Preparation

2. OCUDR Namespace Creation

3. Service Account, Role, and RoleBinding Creation

4. Creating Kubernetes Secrets for storing:

• DBName, Username, Password and EncryptionKey

• Private Keys and Certificate for IngressGateway

5. ocudr-custom-values.yaml File Configuration

6. UDR Deployment

Installation Preparation
This phase of installation includes downloading and loading the required files to the
system.

1. Download the UDR package file from Oracle Software Delivery Cloud (OSDC).
Execute the following command to download UDR package.
<nfname>-pkg-<marketing-release-number>.tgz

For example:ocudr-pkg-1.6.0.0.0.tgz

2. Untar the UDR Package File. Execute the following command to untar UDR
Package File.
tar -xvf ocudr-pkg-1.6.0.0.0.tgz

This command results into ocudr-pkg-1.6.0.0.0 directory. The directory consists
of following:

• UDR Docker Images File: ocudr-images-1.6.0.tar

• Helm File: ocudr-1.6.0.tgz

• Readme txt File: The Readme.txt contains cksum and md5sum of tarballs.

Chapter 2
Installation Sequence

2-4

3. Verify the checksums of tarballs. Execute the following command:
Readme.txt

4. Load the tarballs to docker images. Execute the following command:
docker load --input /root/ocudr-images-1.6.0.tar

5. Check if all the images are loaded. Execute the following command:
docker images | grep ocudr

6. Tag the docker images to docker registry. Execute the following command:
docker tag <image-name>:<image-tag> <docker-repo>/<image-name>:<image-
tag>

7. Push the docker images to docker registry. Execute the following command:
docker push <docker-repo>/<image-name>:<image-tag>

Sample Tag and Push Commands:

docker tag ocudr/nudr_datarepository_service:1.6.0 <customer repo>/
nudr_datarepository_service:1.6.0
docker push <customer repo>/nudr_datarepository_service:1.6.0
docker tag ocudr/nudr_nrf_client_service:1.6.0 <customer repo>/
nudr_nrf_client_service:1.6.0
docker push <customer repo>/nudr_nrf_client_service:1.6.0
docker tag ocudr/nudr_notify_service:1.6.0 <customer repo>/
nudr_notify_service:1.6.0
docker push <customer repo>/nudr_notify_service:1.6.0
docker tag ocudr/ocingress_gateway:1.6.2 <customer repo>/
ocingress_gateway:1.6.2
docker push <customer repo>/ocingress_gateway:1.6.2
docker tag ocudr/configurationinit:1.1.1 <customer repo>/
configurationinit:1.1.1
docker push <customer repo>/configurationinit:1.1.1
docker tag ocudr/configurationupdate:1.1.1 <customer repo>/
configurationupdate:1.1.1
docker push <customer repo>/configurationupdate:1.1.1

8. Untar Helm Files. Execute the following command:
tar -xvzf ocudr-1.6.0.tgz

9. Download the Unified Data Repository (UDR) Custom Template ZIP file from
OHC. The steps are as follows:

a. Go to the URL, docs.oracle.com

b. Navigate to Industries->Communications->Cloud Native Core.

c. Click the Unified Data Repository (UDR) Custom Template link to download
the zip file.

d. Unzip the template to get ocudr-custom-configTemplates-1.6.0.0.0 file that
contains the following:

• UDR_Dashboard.json: This file is used by grafana.

• ocudr-custom-values-1.6.0.yaml: This file is used during installation.

• ProvGw_Dashboard.json

• rollbackPCFschema_15_3.py

• prov-gw5g-custom-values-1.6.0.yaml

Chapter 2
Installation Sequence

2-5

https://docs.oracle.com/en/

• rollback.py

• upgrade.py

Following are the OCUDR Images.

Table 2-1 OCUDR Images

Pod Image

<helm_release_name>-nudr-drservice ocudr/nudr_datarepository_service

<helm_release_name>-nudr-notify -service ocudr/nudr_notify_service

<helm_release_name>-nudr-nrf-client-service ocudr/nudr_nrf_client_service

<helm_release_name>-ingressgateway ocudr/ocingress_gateway

ocudr/configurationinit

ocudr/configurationupdate

Note:

<helm_release_name>-nudr-notify-service is not required for SLF
deployment. So, set its flag value as 'enabled - false' in the values.yaml file.
For more details, see User Configurable Parameter.ocudr-custom-
values.yaml File Configuration

OCUDR Namespace Creation
In this section, you will learn to verify the existence of a required namespace in the
system. If a namespace does not exist, you must create it. The steps to verify and
create a namespace are as follows:

1. Execute the following command to verify the existence of required namespace in
system:
kubectl get namespace

2. If the required namespace does not exist, then execute the following command to
create a namespace:
kubectl create namespace <required namespace>

For example: kubectl create namespace ocudr

Note:

This is an optional step. In case required namespace already exists, proceed
with next procedures.

Service Account, Role and RoleBinding Creation
In this section, you will learn to create a service account, role and rolebinding
resources.

A sample command to create the resources is as follows:

Chapter 2
Installation Sequence

2-6

kubectl -n <ocudr-namespace> create -f ocudr-sample-resource-template.yaml

A sample template to create the resources is as follows:

Note:

You need to update the <helm-release> and <namespace> values with its
respective ocudr namespace and ocudr helm release name.

#
Sample template start
#
apiVersion: v1
kind: ServiceAccount
metadata:
 name: <helm-release>-serviceaccount
 namespace: <namespace>

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: <helm-release>-role
 namespace: <namespace>
rules:
- apiGroups:
 - "" # "" indicates the core API group
 resources:
 - services
 - configmaps
 - pods
 - secrets
 - endpoints
 verbs:
 - get
 - watch
 - list

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
 name: <helm-release>-rolebinding
 namespace: <namespace>
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: <helm-release>-role
subjects:
- kind: ServiceAccount
 name: <helm-release>-serviceaccount
 namespace: <namespace>

Chapter 2
Installation Sequence

2-7

#
Sample template end
#

Kubernetes Secret Creation - DBName, Username, Password and
Encryption Key

In this section, you will learn to create a secret to store database name, username,
password, and encryption key.

To create a Kubernetes secret:

1. Create a yaml file with dbname, dbusername, dbpassword, encryptionKey using
the syntax given below:

ocudr-secret.yaml
apiVersion: v1
kind: Secret
metadata:
 name: ocudr-secrets
type: Opaque
data:
 dbname: dWRyZGI=
 dsusername: dWRydXNlcg==
 dspassword: dWRycGFzc3dk
 encryptionkey: TXkgc2VjcmV0IHBhc3NwaHJhc2U=

The values of dbname, dsusername, dspassword, encryptionKey are base64
encoded. These are created by executing the following commands:

echo -n "<db name>" | base64

echo -n "<db username>" | base64

echo -n "<db password>" | base64

echo -n "<encryptionKey string>" | base64

Note:

You will create a secret using this yaml file.

2. Execute the following command to create a namespace where deployment is
done.
kubectl create namespace <namespace>

Note:

To create a secret, you need a namespace where deployment is done.

3. Execute the following command to create a secret:
kubectl create -f <secret File Name> -n <namespace>

Chapter 2
Installation Sequence

2-8

4. Execute the following command to verify a secret creation:
kubectl describe secret <secret name> -n <namespace>

Kubernetes Secret Creation - Private Keys and Certificates for
IngressGateway

In this section, you will learn to create a secret to store private keys and certificates for
IngressGateway.

Note:

It is a user or operator discretion to create the private keys and certificates
for IngressGateway and it is not in the scope of UDR. This section shares
only samples to create them.

To create a secret to store private keys and certificate for IngressGateway:

1. Generate RSA private key by executing the following command:
openssl req -x509 -nodes -sha256 -days 365 -newkey rsa:2048 -keyout
rsa_private_key -out rsa_certificate.crt -config ssl.conf -passin
pass:"keystorepasswd" -passout pass:"keystorepasswd"

2. Convert the private key to .pem format by executing the following command:
openssl rsa -in rsa_private_key -outform PEM -out
rsa_private_key_pkcs1.pem -passin pass:"keystorepasswd" -passout
pass:"keystorepasswd"

3. Generate certificate using the private key by executing the following command:
openssl req -new -key rsa_private_key -out apigatewayrsa.csr -config
ssl.conf -passin pass:"keystorepasswd" -passout pass:"keystorepasswd"

Note:

You can use ssl.conf to configure default entries along with storage
area network (SAN) details for your certificate.

A sample ssl.conf file is given below:

ssl.conf
#ssl.conf
[req]
default_bits = 4096
distinguished_name = req_distinguished_name
req_extensions = req_ext
[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = IN
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Karnataka
localityName = Locality Name (eg, city)
localityName_default = Bangalore

Chapter 2
Installation Sequence

2-9

organizationName = Organization Name (eg, company)
organizationName_default = Oracle
commonName = Common Name (e.g. server FQDN or YOUR name)
commonName_max = 64
commonName_default = localhost
[req_ext]
subjectAltName = @alt_names
[alt_names]
IP = 127.0.0.1
DNS.1 = localhost

4. Create a root Certificate Authority (CA) by executing the following set of
commands:
openssl req -new -keyout cakey.pem -out careq.pem -config ssl.conf -
passin pass:"keystorepasswd" -passout pass:"keystorepasswd"

openssl x509 -signkey cakey.pem -req -days 3650 -in careq.pem -out
caroot.cer -extensions v3_ca -passin pass:"keystorepasswd" echo 1234 >
serial.txt

5. Sign the server certificate with root CA private key by executing the following
command:
openssl x509 -CA caroot.cer -CAkey cakey.pem -CAserial serial.txt -req
-in apigatewayrsa.csr -out apigatewayrsa.cer -days 365 -extfile
ssl.conf -extensions req_ext -passin pass:"keystorepasswd"

6. Generate ECDSA private key by executing the following set of commands:
openssl ecparam -genkey -name prime256v1 -noout -out
ecdsa_private_key.pem

openssl pkcs8 -topk8 -in ecdsa_private_key.pem -inform pem -out
ecdsa_private_key_pkcs8.pem -outform pem -nocrypt

7. Generate certificate using the private key by executing the following set of
commands:
openssl req -new -key ecdsa_private_key_pkcs8.pem -x509 -nodes -days
365 -out ecdsa_certificate.crt -config ssl.conf

openssl req -new -key ecdsa_private_key_pkcs8.pem -out
apigatewayecdsa.csr -config ssl.conf -passin pass:"keystorepasswd" -
passout pass:"keystorepasswd"

8. Sign the server certificate with root CA private key by executing the following
command:
openssl x509 -CA caroot.cer -CAkey cakey.pem -CAserial serial.txt -req
-in apigatewayecdsa.csr -out apigatewayecdsa.cer -days 365 -extfile
ssl.conf -extensions req_ext -passin pass:"keystorepasswd"

9. Create a key.txt file by entering any password.
Example: echo "keystorepasswd" > key.txt

10. Create a trust.txt file by entering any password.
Example: echo "truststorepasswd" > trust.txt

11. Create a Secret by executing the following set of commands:
kubectl create ns NameSpace

kubectl create secret generic ocudr-gateway-secret --from-
file=apigatewayrsa.cer --from-file=caroot.cer --from-
file=apigatewayecdsa.cer --from-file=rsa_private_key_pkcs1.pem --from-

Chapter 2
Installation Sequence

2-10

file=ecdsa_private_key_pkcs8.pem --from-file=key.txt --from-
file=trust.txt -n <Namespace>

ocudr-custom-values.yaml File Configuration
In this section, you will learn to configure docker Registry path, DB connectivity service
fqdn and port details and UDR details based on deployment.

UDR uses MySQL database to store the configuration and run time data. Before
deploying the UDR in Kubernetes Cluster, update the following parameters in the
ocudr-custom-values-1.6.0.yaml file:

Table 2-2 ocudr-custom-values-1.6.0.yaml Parameters

Section Parameter Services

Global mysql • dbServiceName : mysql-
connectivity-service.occne-infra.

• port: "<Port>".

dockerRegistry: allows to configure
docker Registry from where the
images are pulled.

dockerRegistry: reg-1:5000

nrfclient host: • baseurl: "<To connect to
Network Repository Function
(NRF) for registration>".

• proxy: "<Proxy setting if anyone
connects to NRF>". Default
value is NULL.

• capacityMultiplier: "<Capacity
Multiplier>". Default value is
500.

• supirange: "<supi range for
UDR>". Default value is [{\"start
\": \"10000000000\", \"end\":
\"20000000000\"}]

• priority: "<priority>". Default
value is 10.

• livenessProbeUrl: "liveness
probe url of nudr-drservice and
nudr-notify-service".

• fqdn: "FQDN of nudr-drservice
for NRF to use while sending
request. It is carried in
registration request to NRF".

• gpsirange: "<gpsi range for
UDR>"

• plmnvalues: "<plmn values that
supports>"

Unified Data Repository Deployment
In this section, you will learn to deploy Unified Data Repository.

You can deploy UDR either with HELM repository or with HELM tar. To deploy UDR
in Kubernetes cluster:

Chapter 2
Installation Sequence

2-11

1. Use ocudr-custom-values-1.6.0.yaml file, which is modified in the ocudr-custom-
values.yaml section. Execute the following command to deploy UDR:
helm install <helm chart> [--version <OCUDR version>] --name <release>
--namespace <k8s namespace> -f <ocudr-custom-values-1.6.0.yaml>

In the above command:

• <helm chart> - is the name of the chart, which is of the form <helm repo>/
ocudr.

• <OCUDR version> - is the software version (helm chart version) of the
OCUDR. This is optional. If omitted, the default is latest version available in
helm repository.

• <release> - is a name of user's choice to identify the helm deployment. From
1.6.0 release onwards, all pod names, service name, deployment name are
prepended by this release name.

• <k8s namespace> - is a name of user's choice to identify the kubernetes
namespace of the Unified Data Repository. All the Unified Data Repository
micro services are deployed in this kubernetes namespace.

• <ocudr-custom-values-1.6.0.yaml> - is the customized ocudr-custom-
values-1.6.0.yaml file. The ocudr-custom-values-1.6.0.yaml file is a part of
customer documentation. Users needs to download the file and modify it as
per the user site.

Note:

If helm3 is used, execute the following command for installation:
helm install -name <release> --namespace <k8s namespace> -f
<ocudr-custom-values-1.6.0.yaml> <helm chart> [--version
<OCUDR version>]

2. (Optional) Customize the Unified Data Repository by overriding the default values
of various configurable parameters. See Customizing Unified Data Repository

Verifying UDR Deployment
After deploying UDR, you need to verify whether all the services and pods are up and
running.

Chapter 2
Installation Sequence

2-12

3
Customizing and Configuring Unified Data
Repository

This section provides information on customizing and configuring Unified Data
Repository.

Customizing Unified Data Repository
You can customize the Unified Data Repository deployment by overriding the default
values of various configurable parameters.

In the ocudr-custom-values.yaml File Configuration section, MySQL host is
customized.

The ocudr-custom-values.yaml file can be prepared by hand to customize the
parameters.

Following is an example of Unified Data Repository customization file.

Note:

All the configurable parameters are mentioned in the Configuring User
Parameters

OCUDR Customization File Collapse source
Copyright 2019 (C), Oracle and/or its affiliates. All rights reserved.

global:
 dockerRegistry: udr-dev-bastion-1:5000
 mysql:
 dbServiceName: "mysql-connectivity-service.occne-infra"
#This is a read only parameter. Use the default value.
 port: "3306"
 jaeger:
 enabled: false
 host: "occne-tracer-jaeger-collector.occne-infra"
 port: 14268
 hikari:
 poolsize: "25"
 dbenc:
 shavalue: 256
 serviceAccountName:
 prefix:
 container:
 configmap:
 hpa:

3-1

nudr-drservice:
nameOverride: "nudr-drservice"
 image:
 name: ocudr/nudr_datarepository_service
 tag: 1.6.0
 pullPolicy: IfNotPresent

 service:
 http2enabled: "true"
 type: ClusterIP
 port:
 http: 5001
 https: 5002
 management: 9000

 notify:
 port:
 http: 5001
 https: 5002

 deployment:
 replicaCount: 2

 logging:
 level:
 root: "WARN"

 subscriber:
 autocreate: "true"

 validate:
 smdata: "false"

 resources:
 limits:
 cpu: 3
 memory: 4Gi
 requests:
 cpu: 3
 memory: 4Gi
 target:
 averageCpuUtil: 80

 minReplicas: 2
 maxReplicas: 4

nudr-notify-service:
nameOverride: "nudr-notify-service"
 enabled: true
 image:
 name: ocudr/nudr_notify_service
 tag: 1.6.0
 pullPolicy: IfNotPresent

Chapter 3
Customizing Unified Data Repository

3-2

 service:
 http2enabled: "true"
 type: ClusterIP
 port:
 http: 5001
 https: 5002
 management: 9000

 deployment:
 replicaCount: 2

 notification:
 retrycount: "3"
 retryinterval: "5"
 retryerrorcodes: "400,429,500,503"

 logging:
 level:
 root: "WARN"

 resources:
 limits:
 cpu: 3
 memory: 4Gi
 requests:
 cpu: 3
 memory: 4Gi
 target:
 averageCpuUtil: 80

 minReplicas: 2
 maxReplicas: 4

nudr-nrf-client-service:
nameOverride: "nudr-nrf-client-service"
 enabled: true
 host:
 baseurl: "http://ocnrf-ingressgateway.mynrf.svc.cluster.local/nnrf-
nfm/v1/nf-instances"
 proxy:
 ssl: "false"
 logging:
 level:
 root: "WARN"
 image:
 name: ocudr/nudr_nrf_client_service
 tag: 1.6.0
 pullPolicy: IfNotPresent
 heartBeatTimer: "90"
 groupId: "udr-1"
 capacityMultiplier: "500"
 supirange: "[{\"start\": \"10000000000\", \"end\": \"20000000000\"}]"
 priority: "10"
 masterIp: "10.0.0.0"
 gpsirange: "[{\"start\": \"10000000000\", \"end\": \"20000000000\"}]"

Chapter 3
Customizing Unified Data Repository

3-3

 endpointLabelSelector : "ocudr-ingressgateway"
 plmnvalues: "[{\"mnc\": \"14\", \"mcc\": \"310\"}]"
 scheme: "http"

 # The below 2 configuration will change based on site k8s name resolution
settings,
Also note the changes with namespace used for udr installation
 livenessProbeUrl: "http://nudr-notify-service.myudr.svc.cluster.
local:9000/actuator/health,http://nudr-drservice.myudr.svc.cluster.
local:9000/actuator/health"
 fqdn: "ocudr-ingressgateway.myudr.svc.cluster.local"

 resources:
 limits:
 cpu: 1
 memory: 2Gi
 requests:
 cpu: 1
 memory: 2Gi

ingressgateway:
 global:
 # Docker registry name
 # dockerRegistry: reg-1:5000

 # Specify type of service - Possible values are :- ClusterIP, NodePort,
LoadBalancer
and ExternalName
 type: LoadBalancer

 # Enable or disable IP Address allocation from Metallb Pool
 metalLbIpAllocationEnabled: true

 # Address Pool Annotation for Metallb
 metalLbIpAllocationAnnotation: "metallb.universe.tf/address-pool:
signaling"

 # If Static node port needs to be set, then set staticNodePortEnabled
flag to true
and provide value for staticNodePort
 # # Else random node port will be assigned by K8
 staticNodePortEnabled: false
 staticHttpNodePort: 30075
 staticHttpsNodePort: 30043

 image:
 # image name
 name: ocudr/ocingress_gateway
 # tag name of image
 tag: 1.6.2
 # Pull Policy - Possible Values are:- Always, IfNotPresent, Never
 pullPolicy: Always

 initContainersImage:
 # inint Containers image name

Chapter 3
Customizing Unified Data Repository

3-4

 name: ocudr/configurationinit
 # tag name of init Container image
 tag: 1.1.1
 # Pull Policy - Possible Values are:- Always, IfNotPresent, Never
 pullPolicy: Always

 updateContainersImage:
 # update Containers image name
 name: ocudr/configurationupdate
 # tag name of update Container image
 tag: 1.1.1
 # Pull Policy - Possible Values are:- Always, IfNotPresent, Never
 pullPolicy: Always

 service:
 ssl:
 tlsVersion: TLSv1.2

 privateKey:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 rsa:
 fileName: rsa_private_key_pkcs1.pem
 ecdsa:
 fileName: ecdsa_private_key_pkcs8.pem

 certificate:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 rsa:
 fileName: apigatewayrsa.cer
 ecdsa:
 fileName: apigatewayecdsa.cer

 caBundle:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 fileName: caroot.cer

 keyStorePassword:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 fileName: key.txt

 trustStorePassword:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 fileName: trust.txt

 initialAlgorithm: RSA256

 # Resource details
 resources:
 limits:
 cpu: 3

Chapter 3
Customizing Unified Data Repository

3-5

 memory: 4Gi
 requests:
 cpu: 3
 memory: 4Gi
 target:
 averageCpuUtil: 80

 log:
 level:
 root: WARN
 ingress: INFO
 oauth: INFO

 # enable jaeger tracing
 jaegerTracingEnabled: false

 openTracing :
 jaeger:
 udpSender:
 # udpsender host
 host: "occne-tracer-jaeger-query.occne-infra"
 # udpsender port
 port: 6831
 probabilisticSampler: 0.5

 # Number of Pods must always be available, even during a disruption.
 minAvailable: 2
 # Min replicas to scale to maintain an average CPU utilization
 minReplicas: 2
 # Max replicas to scale to maintain an average CPU utilization
 maxReplicas: 5

 # label to override name of api-gateway micro-service name
 #fullnameOverride: ocudr-endpoint

 # To Initialize SSL related infrastructure in init/update container
 initssl: false

 # Cipher suites to be enabled on server side
 ciphersuites:
 - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
 - TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_DHE_RSA_WITH_AES_256_CCM
 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 #OAUTH CONFIGURATION
 oauthValidatorEnabled: false
 nfType: SMF
 nfInstanceId: 6faf1bbc-6e4a-4454-a507-a14ef8e1bc11
 producerScope: nsmf-pdusession,nsmf-event-exposure
 allowedClockSkewSeconds: 0
 nrfPublicKeyKubeSecret: nrfpublickeysecret

Chapter 3
Customizing Unified Data Repository

3-6

 nrfPublicKeyKubeNamespace: ingress
 validationType: strict
 producerPlmnMNC: 123
 producerPlmnMCC: 346

 #Server Configuration for http and https support
 #Server side http support
 enableIncomingHttp: true
 #Server side https support
 enableIncomingHttps: false
 #Client side https support
 enableOutgoingHttps: false

 maxRequestsQueuedPerDestination: 5000
 maxConnectionsPerIp: 10

 #Service Mesh (Istio) to take care of load-balancing
 serviceMeshCheck: false
 # configuring routes
 routesConfig:
 - id: traffic_mapping_http
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-dr/**
 - id: traffic_mapping_http_prov
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-dr-prov/**
 - id: traffic_mapping_http_mgmt
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-dr-mgm/**
 - id: traffic_mapping_http_udsf
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudsf-dr/**
 - id: traffic_mapping_http_group
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-group-id-map/**
 - id: traffic_mapping_http_group_prov
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-group-id-map-prov/**

Configuring User Parameters
The UDR micro services have configuration options. The user should be able to
configure them via deployment values.yaml.

Note:

The default value of some of the settings may change.

Chapter 3
Configuring User Parameters

3-7

Note:

• NAME: is the release name used in helm install command

• NAMESPACE: is the namespace used in helm install command

• K8S_DOMAIN: is the default kubernetes domain (svc.cluster.local)

Default Helm Release Name:- ocudr

Following table provides the parameters for global configurations.

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

dockerRegistry Docker registry
from where the
images will be
pulled

reg-1:5000 Not applicable

mysql.dbService
Name

DB service to
connect

mysql-
connectivity-
service.occne-
infra

Not applicable This is a CNE
service used for
db connection.
Default name
used on CNE is
the same as
configured.

mysql.port Port of
DBService
Connection

3306 Not applicable

jaeger.service.na
me

Jaegar Service
Name installed in
CNE

occne-tracer-
jaeger-
collector.occne-
infra

Not applicable

jaeger.service.po
rt

Jaegar Service
Port installed in
CNE

9411 Not applicable

hikari.poolsize Connection pool
size

25 Not Applicable The hikari pool
connection size
to be created at
start up

dbenc.shavalue Encryption Key
size

256 256 or 512

serviceAccountN
ame

Service account
name

null Not Applicable The
serviceaccount,
role and
rolebindings
required for
deployment
should be done
prior installation.
Use the created
serviceaccountna
me here.

Chapter 3
Configuring User Parameters

3-8

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

prefix.container Container
configurable
prefix

null Not Applicable If this is
configured with
some value, the
same will be
used as prefix for
container names
on different pods
of UDR
deployment. If
not configured,
release name will
be used as preifx.

prefix.configmap Configmap
configurabe
prefix

null Not Applicable If this is
configured with
some value, the
same will be
used as prefix for
configmap
names. If not
configured,
release name will
be used as preifx.

prefix.hpa HPA configurable
prefix

null Not Applicable If this is
configured with
some value, the
same will be
used as prefix for
HPA names. If
not configured,
release name will
be used as preifx.

Following table provides the parameters for nudr-drservice micro service.

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

image.name Docker Image
name

ocudr/
nudr_datareposit
ory_service

Not applicable

image.tag Tag of Image 1.6.0 Not applicable

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

Chapter 3
Configuring User Parameters

3-9

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

subscriber.autocr
eate

Flag to enable
auto creation of
subscriber

true true/false This flag will
enable auto
creation of
subscriber when
creating data for
a non existent
subscriber.

validate.smdata Flag to enable
correlation
feature for
smdata

false true/false This flag will
control the
correlation
feature for
smdata. This flag
must be false if
using v16.2.0 for
PCF data.

logging.level.root Log Level WARN Possible Values -

WARN

INFO

DEBUG

Log level of the
nudr-drservice
pod

deployment.replic
aCount

Replicas of nudr-
drservice pod

2 Not applicable Number of nudr-
drservice pods to
be maintained by
replica set
created with
deployment

minReplicas Minimum
Replicas

2 Not applicable Minimum number
of pods

maxReplicas Maximum
Replicas

4 Not applicable Maximum
number of pods

service.http2enab
led

Enabled HTTP2
support flag for
rest server

true true/false Enable/Disable
HTTP2 support
for rest server

service.type UDR service type ClusterIP Possbile Values-

ClusterIP

NodePort

LoadBalancer

The kubernetes
service type for
exposing UDR
deployment

Note: Suggested
to be set as
ClusterIP (default
value) always

service.port.http HTTP port 5001 Not applicable The http port to
be used in nudr-
drservice service

service.port.https HTTPS port 5002 Not applicable The https port to
be used for nudr-
drservice service

service.port.man
agement

Management port 9000 Not applicable The actuator
management port
to be used for
nudr-drservice
service

Chapter 3
Configuring User Parameters

3-10

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

resources.reques
ts.cpu

Cpu Allotment for
nudr-drservice
pod

3 Not applicable The cpu to be
allocated for
nudr-drservice
pod during
deployment

resources.reques
ts.memory

Memory
allotment for
nudr-drservice
pod

4Gi Not applicable The memory to
be allocated for
nudr-drservice
pod during
deployment

resources.limits.c
pu

Cpu allotment
limitation

3 Not applicable

resources.limits.
memory

Memory
allotment
limitation

4Gi Not applicable

resources.target.
averageCpuUtil

CPU utilization
limit for
autoscaling

80 Not Applicable CPU utilization
limit for creating
HPA

notify.port.http HTTP port on
which notify
service is running

5001 Not applicable

notify.port.https HTTPS port on
which notify
service is running

5002 Not applicable

Following table provides the parameters for nudr-notify-service micro service.

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

enabled flag for enabling
or disabling nudr-
notify-service

true true or false For SLF
deployment, this
micro service
must be disabled.

image.name Docker Image
name

ocudr/
nudr_notify_servi
ce

Not applicable

image.tag Tag of Image 1.6.0 Not applicable

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

Chapter 3
Configuring User Parameters

3-11

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

notification.retryc
ount

Number of
notifications to be
attempted

3 Range: 1 - 10 Number of
notification
attempts to be
done in case of
notification
failures.

Whether retry
should be done
will be based on
notification.retrye
rrorcodes
configuration.

notification.retryin
terval

5 Range: 1 - 60

Unit: Seconds

The retry interval
for notifications in
case of failure.
Unit is in
seconds.

Whether retry
should be done
will be based on
notification.retrye
rrorcodes
configuration.

notification.retrye
rrorcodes

Notification
failures eligible
for retry

"400,429,500,503
"

Valid HTTP
status codes
comma
seperated

Comma
separated error
code should be
given. These
error codes will
be eligible for
retry notifications
in case of
failures.

logging.level.root Log Level WARN Possible Values -

WARN

INFO

DEBUG

Log level of the
notify service pod

deployment.replic
aCount

Replicas of nudr-
notify-service pod

2 Not applicable Number of nudr-
notify-service
pods to be
maintained by
replica set
created with
deployment

minReplicas Minimum
Replicas

2 Not applicable Minimum number
of pods

maxReplicas Maximum
Replicas

4 Not applicable Maximum
number of pods

service.http2enab
led

Enabled HTTP2
support flag

true true/false This is a read
only parameter.
Do not change
this value

Chapter 3
Configuring User Parameters

3-12

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

service.type UDR service type ClusterIP Possbile Values-

ClusterIP

NodePort

LoadBalancer

The kubernetes
service type for
exposing UDR
deployment

Note: Suggested
to be set as
ClusterIP (default
value) always

service.port.http HTTP port 5001 Not applicable The http port to
be used in notify
service to receive
signals from
nudr-notify-
service pod.

service.port.https HTTPS port 5002 Not applicable The https port to
be used in notify
service to receive
signals from
nudr-notify-
service pod.

service.port.man
agement

Management port 9000 Not applicable The actuator
management port
to be used for
notify service.

resources.reques
ts.cpu

Cpu Allotment for
nudr-notify-
service pod

3 Not applicable The cpu to be
allocated for
notify service pod
during
deployment

resources.reques
ts.memory

Memory
allotment for
nudr-notify-
service pod

4Gi Not applicable The memory to
be allocated for
nudr-notify-
service pod
during
deployment

resources.limits.c
pu

Cpu allotment
limitation

3 Not applicable

resources.limits.
memory

Memory
allotment
limitation

4Gi Not applicable

resources.target.
averageCpuUtil

CPU utilization
limit for
autoscaling

80 Not Applicable CPU utilization
limit for creating
HPA

Following table provides the parameters for nudr-nrf-client-service micro service.

Chapter 3
Configuring User Parameters

3-13

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

enabled flag for enabling
or disabling nudr-
nrf-client-service

true true/false

host.baseurl NRF url for
registration

http://ocnrf-
ingressgateway.
mynrf.svc.cluster.
local/nnrf-
nfm/v1/nf-
instances

Not applicable Url used for udr
to connect and
register with NRF

host.proxy Proxy Setting NULL nrfClient.host Proxy setting if
required to
connect to NRF

ssl SSL flag false true/false SSL flag to
enable SSL with
udr nrf client pod

logging.level.root Log Level WARN Possible Values -

WARN

INFO

DEBUG

Log level of the
UDR nrf client
pod

image.name Docker Image
name

ocudr/
nudr_nrf_client_s
ervice

Not applicable

image.tag Tag of Image 1.6.0 Not applicable

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

heartBeatTimer Heart beat timer 90 Unit: Seconds

groupId Group ID of UDR udr-1 Not applicable

capacityMultiplier Capacity of UDR 500 Not applicable Capacity
multiplier of UDR
based on number
of UDR pods
running

supirange Supi Range
supported with
UDR

[{\"start\":
\"10000000000\",
\"end\":
\"20000000000\"}
]

Valid start and
end supi range

priority Priority 10 Priority to be sent
in registration
request

Priority to be sent
in registration
request

Chapter 3
Configuring User Parameters

3-14

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

livenessProbeUrl Liveness probe
URL for nudr-
drservice/api-
gateway

http://nudr-notify-
service.myudr.sv
c.cluster.local:
9000/actuator/
health

http://nudr-
drservice.myudr.
svc.cluster.local:
9000/actuator/
health

Not Applicable URL used by nrf-
client-service to
check liveness
probe of nudr-
drservice, nudr-
notify-service and
ocudr-
ambassador
pods.

Note: Be
cautious in
updating this
value. Should
consider helm
release name,
namespace used
for udr
deployment and
name resolution
setting in k8s.

fqdn UDR FQDN ocudr-
ingressgateway.
myudr.svc.cluster
.local

Not Applicable FQDN to used for
registering in
NRF for other
NFs to connect to
UDR.

Note: Be cautious
in updating this
value. Should
consider helm
release name,
namespace used
for udr
deployment and
name resolution
setting in k8s.

gpsirange Gpsi Range
supported with
UDR

[{\"start\":
\"10000000000\",
\"end\":
\"20000000000\"}
]

Valid start and
end gpsi range

endpointLabelSel
ector

Pod name of
ingress gateway

ocudr-
ingressgateway

This should be
changed based
on the name
space that you
created.

End Point Label
Selector is used
to get the port
number of the
running ingress
gateway pod that
is deployed.

masterIp Master IP of
which we
deployed

10.0.0.0 This should be
changed with the
master ip which
we deployed

Master IP is used
to send the ipv4
address to the nrf
while registration.

Chapter 3
Configuring User Parameters

3-15

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

plmnvalues Plmn values
range that it
supports

[{\"mnc\": \"14\",
\"mcc\": \"310\"}]

This values can
be changed that
the range it
supports

Plmn values are
sent to nrf during
regisration from
UDR.

scheme scheme in which
udr supports

http This can be
changed to https.

scheme which we
send to NRF
during
registration

resources.reques
ts.cpu

Cpu Allotment for
nudr-notify-
service pod

1 Not applicable The cpu to be
allocated for nrf
client service pod
during
deployment

resources.reques
ts.memory

Memory
allotment for
nudr-notify-
service pod

2Gi Not applicable The memory to
be allocated for
nrf client service
pod during
deployment

resources.limits.c
pu

Cpu allotment
limitation

1 Not applicable

resources.limits.
memory

Memory
allotment
limitation

2Gi Not applicable

Following table provides parameters for ocudr-ingressgateway micro service (API
Gateway)

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

type ocudr-
ingressgateway
service type

LoadBalancer Possbile Values-

ClusterIP

NodePort

LoadBalancer

metalLbIpAllocati
onEnabled

Enable or disable
Address Pool for
Metallb

true true/false

metalLbIpAllocati
onAnnotation

Address Pool for
Metallb

metallb.universe.t
f/address-pool:
signaling

Not applicable

staticNodePortEn
abled

If Static node port
needs to be set,
then set
staticNodePortEn
abled flag to true
and provide
value for
staticNodePort

false Not applicable

Chapter 3
Configuring User Parameters

3-16

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

staticHttpNodePo
rt

static http node
port value need
to be provided

30075 can be changed
based of user
requirement.

staticHttpsNodeP
ort

static https node
port value need
to be provided

30043 can be changed
based of user
requirement.

image.name Docker image
name

ocudr/
ocingress_gatew
ay

Not applicable

image.tag Image version
tag

1.6.2 Not applicable

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

initContainersIma
ge.name

Docker Image
name

ocudr/
configurationinit

Not applicable

initContainersIma
ge.tag

Image version
tag

1.1.1 Not applicable

initContainersIma
ge.pullPolicy

This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

updateContainers
Image.name

Docker Image
name

ocudr/
configurationupd
ate

Not applicable

updateContainers
Image.tag

Image version
tag

1.1.1 Not applicable

updateContainers
Image.pullPolicy

This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

service.ssl.privat
eKey.k8SecretNa
me

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.privat
eKey.k8NameSp
ace

namespace in
which secret is
created

ocudr Not applicable

service.ssl.privat
eKey.rsa.fileNam
e

rsa private key
stored in the
secret

rsa_private_key_
pkcs1.pem

Not applicable

service.ssl.privat
eKey.ecdsa.fileN
ame

ecdsa private key
stored in the
secret

ecdsa_private_ke
y_pkcs8.pem

Not applicable

Chapter 3
Configuring User Parameters

3-17

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

service.ssl.certific
ate.k8SecretNam
e

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.certific
ate.k8NameSpac
e

namespace in
which secret is
created

ocudr Not applicable

service.ssl.certific
ate.rsa.fileName

rsa certificate
stored in the
secret

apigatewayrsa.ce
r

Not applicable

service.ssl.certific
ate.ecdsa.fileNa
me

ecdsa certificate
stored in the
secret

apigatewayecdsa
.cer

Not applicable

service.ssl.caBun
dle.k8SecretNam
e

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.caBun
dle.k8NameSpac
e

namespace in
which secret is
created

ocudr Not applicable

service.ssl.caBun
dle.fileName

ca Bundle stored
in the secret

caroot.cer Not applicable

service.ssl.keySt
orePassword.k8S
ecretName

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.keySt
orePassword.k8N
ameSpace

namespace in
which secret is
created

ocudr Not applicable

service.ssl.keySt
orePassword.file
Name

keyStore
password stored
in the secret

key.txt Not applicable

service.ssl.trustSt
orePassword.k8S
ecretName

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.trustSt
orePassword.k8N
ameSpace

namespace in
which secret is
created

ocudr Not applicable

service.ssl.trustSt
orePassword.file
Name

trustStore
password stored
in the secret

trust.txt Not applicable

resources.limits.c
pu

Cpu allotment
limitation

3 Not applicable

resources.limits.
memory

Memory
allotment
limitation

4Gi Not applicable

resources.reques
ts.cpu

Cpu allotment for
ocudr-endpoint
pod

3 Not Applicable

Chapter 3
Configuring User Parameters

3-18

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

resources.reques
ts.memory

Memory
allotment for
ocudr-endpoint
pod

4Gi Not Applicable

resources.target.
averageCpuUtil

CPU utilization
limit for
autoscaling

80 Not Applicable

minAvailable Number of pods
always running

2 Not Applicable

minReplicas Min replicas to
scale to maintain
an average CPU
utilization

2 Not applicable

maxReplicas Max replicas to
scale to maintain
an average CPU
utilization

5 Not applicable

log.level.root Logs to be shown
on ocudr-
endpoint pod

WARN valid level

log.level.ingress Logs to be shown
on ocudr-
ingressgateway
pod for ingress
related flows

INFO valid level

log.level.oauth Logs to be shown
on ocudr-
ingressgateway
pod for oauth
related flows

INFO valid level

fullnameOverride Name to be used
for deployment

ocudr-
ingressgateway

Not applicable This config is
commented by
default.

initssl To Initialize SSL
related
infrastructure in
init/update
container

false Not Applicable

jaegerTracingEna
bled

Enable/Disable
Jaeger Tracing

false true/false

openTracing.jaeg
er.udpSender.ho
st

Jaeger agent
service FQDN

jaeger-agent.cne-
infra

Valid FQDN

openTracing.jaeg
er.udpSender.por
t

Jaeger agent
service UDP port

6831 Valid Port

Chapter 3
Configuring User Parameters

3-19

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

openTracing.jaeg
er.probabilisticSa
mpler

Probablistic
Sampler on
Jaeger

0.5 Range: 0.0 - 1.0 Sampler makes a
random sampling
decision with the
probability of
sampling. For
example, if the
value set is 0.1,
approximately 1
in 10 traces will
be sampled

oauthValidatorEn
abled

OAUTH
Configuration

false Not Applicable

enableIncomingH
ttp

Enabling for
accepting http
requests

true Not Applicable

enableIncomingH
ttps

Enabling for
accepting https
requests

false true or false

enableOutgoingH
ttps

Enabling for
sending https
requests

false true or false

maxRequestsQu
euedPerDestinati
on

Queue Size at
the ocudr-
endpoint pod

5000 Not Applicable

maxConnections
PerIp

Connections from
endpoint to other
microServices

10 Not Applicable

Chapter 3
Configuring User Parameters

3-20

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

routesConfig Routes
configured to
connect to
different micro
services of UDR

-
id:traffic_ma
pping_http
uri: http://
{{ .Release.N
ame }}-nudr-
drservice:
5001 path: /
nudr-dr/** -
id:
traffic_mappi
ng_http_prov
uri: http://
{{ .Release.N
ame }}-nudr-
drservice:
5001 path: /
nudr-dr-
prov/** - id:
traffic_mappi
ng_http_mgmt
uri: http://
{{ .Release.N
ame }}-nudr-
drservice:
5001 path: /
nudr-dr-
mgm/** - id:
traffic_mappi
ng_http_udsf
uri: http://
{{ .Release.N
ame }}-nudr-
drservice:
5001 path: /
nudsf-dr/** -
id:
traffic_mappi
ng_http_group
uri: http://
{{ .Release.N
ame }}-nudr-
drservice:
5001 path: /
nudr-group-
id-map/** -
id:
traffic_mappi
ng_http_group
_prov uri:
http://
{{ .Release.N
ame }}-nudr-

Not Applicable

Chapter 3
Configuring User Parameters

3-21

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

drservice:
5001 path: /
nudr-group-
id-map-
prov/**

Chapter 3
Configuring User Parameters

3-22

4
Upgrading an Existing Unified Data
Repository Deployment

To upgrade an existing UDR deployment, first upgrade the DB schema and then,
perform the helm upgrade.

User should stop the Provisioning traffic while performing the upgrade procedure.

Note:

While upgrading from UDR 1.5.0 to UDR 1.6.0, user should follow the
instructions in the same order as given in the Upgrading DB Schema
section and Upgrading Helm section below.

Upgrading DB Schema
You should install mysql-connector before upgrading the DB schema.

To upgrade DB schema:

wget http://dl.fedoraproject.org/pub/epel/7/x86_64/Packages/p/python2-
pip-8.1.2-7.el7.noarch.rpm
wget dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
rpm -ivh epel-release-6-8.noarch.rpm
yum install python-setuptools
rpm -ivh python2-pip-8.1.2-7.el7.noarch.rpm
pip install -U setuptools
pip install -U wheel
pip install mysql-connector-python-rf

Modify username, password and db name in the script as per requirement.

Note:

You can refer to the Oracle Help Center for upgrade.py script.

Helm Upgrade

Upgrading an existing deployment replaces the running containers and pods with new
containers and pods. If there is no change in the pod configuration, it is not replaced.
Unless there is a change in the service configuration of a micro service, the service
endpoints remain unchanged. For example, ClusterIP.

• To upgrade, follow instructions given in the Deploying OCUDR section to extract
the required OCUDR software components. If required, re-tag and push the
images to customer's repository. For more information, see UDR Deployment.

4-1

• Take a backup of 1.5.0 version's ocudr-custom-values.yaml file before changing
any configuration.

• Modify the ocudr-custom-values-1.6.0.yaml file parameters as per site
requirement. For more information on updating the ocudr-custom-
values-1.6.0.yaml file, see ocudr-custom-values.yaml File Configuration.

Execute the following command to upgrade an existing Unified Data Repository
deployment. For the parameters that are configurable, see . Customizing Unified Data
Repository

$ helm upgrade <release> <helm chart> [--version <OCUDR version>] -f
<ocudr-custom-values-1.6.0.yaml>

<release> could be found in the output of 'helm list' command
<chart> is the name of the chart in the form of <repository/ocudr> e.g.
reg-1/ocudr or cne-repo/ocudr

Rollback Instructions

Execute the following command to check if the pods are successfully started.

kubectl get pods -n <namespace_name>

If there are issues that a user cannot recover on checking logs and describe on pods,
rollback using the steps below:

Schema Rollback:

1. Rollback schema to 1.5.0.

2. Use the rollback.py script to downgrade to 1.5.0 schema, modify username,
password and db name as per requirement.
python rollback.py

Note:

You can refer to the Oracle Help Center site for the rollback.py script.

Image Rollback using Helm:

1. Use the backed up customized 1.5.0 version's ocudr-values.yaml file to rollback
to previous version.

2. Execute the helm rollback command.
helm rollback <helm release name> <revision_no>

To obtain the revision number, execute the following command :
helm history <helm release name>

Chapter 4

4-2

5
Uninstalling Unified Data Repository

To uninstall or completely delete the Unified Data Repository (UDR) deployment,
execute the following command:

helm del --purge <helm_release_name_for_ocudr>

Note:

In case you are using helm3, execute the following command to uninstall
UDR:

helm uninstall <helm_release_name_for_ocudr> --namespace
<ocudr_namespace>

5-1

	Contents
	What's New in This Guide
	List of Tables
	1 Introduction
	Overview
	Architecture
	References
	My Oracle Support

	2 Installing Unified Data Repository
	Planning Your Installation
	Installation Sequence
	Installation Preparation
	OCUDR Namespace Creation
	Service Account, Role and RoleBinding Creation
	Kubernetes Secret Creation - DBName, Username, Password and Encryption Key
	Kubernetes Secret Creation - Private Keys and Certificates for IngressGateway
	ocudr-custom-values.yaml File Configuration
	Unified Data Repository Deployment

	3 Customizing and Configuring Unified Data Repository
	Customizing Unified Data Repository
	Configuring User Parameters

	4 Upgrading an Existing Unified Data Repository Deployment
	5 Uninstalling Unified Data Repository

