
Oracle® Communications
Cloud Native Unified Data Repository
Installation and Upgrade Guide

Release 1.7.1
F32752-03
August 2020

Oracle Communications Cloud Native Unified Data Repository Installation and Upgrade Guide, Release 1.7.1

F32752-03

Copyright © 2019, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

Overview 1-1

Architecture 1-2

References 1-2

Acronyms 1-3

2 Installing Unified Data Repository

Planning Your Installation 2-1

Installation Sequence 2-4

Installation Preparation 2-4

OCUDR Namespace Creation 2-7

Service Account, Role and RoleBinding Creation 2-8

Kubernetes Secret Creation - DBName, Username, Password and Encryption
Key 2-9

Kubernetes Secret Creation - Private Keys and Certificates for IngressGateway 2-10

ocudr-custom-values.yaml File Configuration 2-12

Unified Data Repository Deployment 2-13

Post Installation Sanity Check - Helm Test 2-14

3 Customizing and Configuring Unified Data Repository

Customizing Unified Data Repository 3-1

Configuring User Parameters 3-16

4 Upgrading an Existing Unified Data Repository Deployment

5 Troubleshooting Unified Data Repository

Generic Checklist 5-1

Verifying UDR Registration with NRF 5-3

Verifying Container Logs 5-4

iii

Verifying OCUDR Microservices Logs 5-4

Debugging Errors from Egress Gateway 5-9

Debugging Errors from Ingress Gateway 5-9

Debugging Helm Test Issues 5-11

Debugging HPA Issues 5-12

Debugging HTTPS Support related Issues 5-12

Debugging Notification Issues 5-14

Debugging Pod Creation Failure 5-14

Debugging UDR Registration with NRF Failure 5-18

Debugging UDR with Service Mesh Failure 5-20

Using Logs 5-22

6 Uninstalling Unified Data Repository

A ASM Specific Configuration

iv

List of Figures

5-1 Sample Output: UDR Pods Status 5-2

5-2 Sample Output: UDR Pods Status 5-2

5-3 Sample Output: Verifying Table Entries in Database 5-3

5-4 Container Logs 5-4

5-5 NRF-Client-Service Logs 5-5

5-6 NUDR-NOTIFY-SERVICE Logs 5-6

5-7 NUDR-CONFIG-SERVICE Logs 5-7

5-8 Enabling Egress Traffic using HTTPS 5-9

5-9 Snapshot of Values.yaml file 5-10

5-10 503 Error Code 5-10

5-11 Helm Test Pod 5-11

5-12 Helm Test in Pending State 5-11

5-13 Pod Readiness Failed 5-11

5-14 metrics-server yaml file 5-12

5-15 CPU Usage Update 5-12

5-16 HTTPS Port Exposed 5-13

5-17 Configuration Info under Ingressgateway 5-13

5-18 config initssl 5-13

5-19 Commands to check Secrets 5-14

5-20 Config Server Container Status 5-14

5-21 Service Availability in CNE 5-18

5-22 Verifying Istio-Proxy 5-20

5-23 Global Section - Istio-Proxy Info 5-21

5-24 Annotation to Configure Port 5-21

5-25 Annotation to View UDR Metrics 5-22

v

List of Tables

2-1 ocudr-custom-values-1.7.1.yaml Parameters 2-12

vi

My Oracle Support

My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support can
assist you with My Oracle Support registration.

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the
US), or call the Oracle Support hotline for your local country from the list at http://
www.oracle.com/us/support/contact/index.html. When calling, make the selections in
the sequence shown below on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking and Solaris Operating System Support.

3. Select one of the following options:

• For Technical issues such as creating a new Service Request (SR), select 1.

• For Non-technical issues such as registration or assistance with My Oracle
Support, select 2.

You are connected to a live agent who can assist you with My Oracle Support
registration and opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

7

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

What's New in This Guide

This section shares the list of new features introduced in every OCUDR release. For
more release specific information, you can refer to its release notes.

Patch Release 1.7.1

In this patch release, UDR can be deployed with service mesh like Aspen. This helps
in controlling and monitoring the data flow within UDR microservices and outside as
well.

Release 1.7

The following new features are introduced in this release:

• Extension of SLF provisioning with SLFGroupName on both UDR and ProvGw

• Supports enablement of various features of UDR

• Supports Helm test for NF deployment

• Supports customized labels and annotations in the Helm charts

• Supports CSAR packaging

• Integrated with Egress API gateway

• Integrated with CNC-Console for configuration of UDR

• Supports 4G policy data storage

• Support Diameter Sh interface for subscriber profile

8

1
Introduction

This documents provides information for installing Cloud Native Unified Data
Repository product.

Overview
The 5G Unified Data Repository (UDR) is one of the main key component of
the 5G Service Based Architecture. It is implemented as a cloud native function
and offers a unified database for storing application, subscription, authentication,
service authorization, policy data, session binding and Application state information.
It provides a HTTP2 based RESTful interface for other NF's and provisioning clients to
access the stored data.

Oracle's 5G UDR:

• Leverages a common Oracle Communications Cloud Native Framework

• Is compliant to 3GPP 29.505 Release 15 specification UDM

• Is compliant to 3GPP 29.519 Release 16 (backward compatible with Release 15)
specification for PCF

• Has tiered architecture providing separation between the connectivity, business
logic and data layers

• Uses Oracle MySQL NDB Cluster CGE Edition as backend database in the Data
Tier.

• Registers with NRF in the 5G network so that the other NFs in the network can
discover UDR through NRF.

• Registers UDR with services like DR-SERVICE and GROUP-ID-MAP.

As per 3GPP, UDR supports following functionality:

• Storage and retrieval of subscription data by the UDM.

• Storage and retrieval of policy data by the PCF.

• Storage and retrieval of structured data for exposure.

• Storage and retrieval of SLF information, consumed by NRF.

• Application data (including Packet Flow Descriptions (PFDs) for application
detection, AF request information for multiple UEs), by the NEF.

• Subscription and Notification feature.

Unstructured Data Storage Function (UDSF) is a part of Oracle's 5G UDR solution.
It supports storage and retrieval of unstructured data by any 5G NF. The specifications
of UDSF are presently not defined by 3GPP.

5G SLF functionality is also a part of Oracle's 5G UDR solution. It:

• Supports Nudr-groupid-map service as defined by 3GPP

• Registers with NRF for Nudr-groupid-map service

1-1

• Is complaint with 3GPP Release 16 for APIs to be consumed by 5G NRF

• Supports REST/JSON based provisioning APIs for SLF data

Architecture
The Cloud Native Unified Data Repository architecture has following three tiers:

Connectivity Tier

• Ingress API Gateway (Spring Cloud Gateway [SCG] based) is used as an API
gateway that receives all requests and forwards them to the Nudr-drservice
service of Business Tier.

• It load balances the traffic and provides required authentication.

• It provides TLS support.

• It runs on Kubernetes/OCCNE as a microservice.

• It uses Egress API Gateway for Egress traffic arising from UDR (notifications and
NRF management APIs).

Business Tier

• Provides the business logic of 5G Unified Data Repository.

• It has following micro services:

– nudr-drservice: The core service that handles flexible URI support, runtime
schema validation and connects to Data Tier for DB operations. It provides
SLF lookup functionality.

– nudr-nrf-client-service: Handles registration, heartbeat, update and
deregistration with Network Repository Function (NRF).

– nudr-notify-service: Handles notification messages to Policy Control
Function (PCF) and Unified Data Management (UDM) for data subscriptions.

– nudr-config: Handles all request from CNC-Console and redirects all
requests to appropriate REST API of the config server. It allows users to
configure UDR for all micro services.

– nudr-config-server: Handles all the requests from nudr-config and updates
the database.

– nudr-diameterproxy service: Supports Diameter Sh interface for 4G policy
data for the subscriber profile.

Data Tier

• Uses Oracle MySQL NDB Cluster, CGE edition as backend database in the DB
tier. This provides HA and geo-redundcancy capabilities.

• Users can build database on either Bare metal, virtualized or on kubernetes
platform (kubevirt based).

References
You can refer to the following documents for better understanding of Unified Data
Repository and its related network functions.

• Unified Data Repository User's Guide

Chapter 1
Architecture

1-2

• Provisioning Gateway Guide

• CNE Installation Guide

• Policy Installation Guide

• NRF Installation Guide

Acronyms
The following table provides information about the acronyms used in the document.

Field Description

5G-AN 5G Access Network

5GC 5G Core Network

5G-GUTI 5G Globally Unique Temporary Identifier

5GS 5G System

AMF Access and Mobility Management Function

ASM Aspen Service Mesh

AUSF Authentication Server Function

NEF Network Exposure Function

NF Network Function

NRF Network Repository Function

NSI ID Network Slice Instance Identifier

NSSAI Network Slice Selection Assistance Information

NSSF Network Slice Selection Function

NSSP Network Slice Selection Policy

PCF Policy Control Function

REST Representational State Transfer

SEPP Security Edge Protection Proxy

SLF Subscriber Location Function

SMF Session Management Function

UDM Unified Data Management

UDR Unified Data Repository

UDSF Unstructured Data Storage Function

Chapter 1
Acronyms

1-3

2
Installing Unified Data Repository

This section provides instructions on installing Unified Data Repository.

Planning Your Installation
Before installing UDR, perform the following pre-installation tasks:

• Checking the software requirements

• Checking the environment setup

Checking the Software Requirements
Before installing Unified Data Repository (UDR), install the following softwares on your
system.

Software Version

Kubernetes v1.13.3

HELM v2.12.3

Additional softwares that needs to be deployed as per the requirement of the services
are:

Software Version Notes

elasticsearch 1.21.1 Needed for Logging Area

elastic-curator 1.2.1 Needed for Logging Area

elastic-exporter 1.1.2 Needed for Logging Area

logs 2.0.7 Needed for Logging Area

kibana 1.5.2 Needed for Logging Area

grafana 2.2.0 Needed for Metrics Area

prometheus 8.8.0 Needed for Metrics Area

prometheus-node-exporter 1.3.0 Needed for Metrics Area

metallb 0.8.4 Needed for External IP

metrics-server 2.4.0 Needed for Metric Server

tracer 0.8.3 Needed for Tracing Area

Note:

The above softwares are available in the Oracle Communications Cloud
Native Environment (OCCNE). If you are deploying UDR in any other
environment, then the above softwares must be installed before installing
UDR.

To check the installed software items, execute the following command:

2-1

helm ls

Some systems may need to use helm command with admin.conf file as follows:

helm --kubeconfig admin.conf

Note:

Some of the above mentioned software(s) are updated frequently. Their later
versions than those listed above should work with UDR 1.7. Some UDR
features and services work differently depending on the software being used

.

Checking the Environment Setup
Before installing UDR, the system environment should have the following:

• Access to OpenStack Environment: User should have access to an existing
OpenStack environment including the OpenStack Desktop. This environment is
configured with appropriate resource flavors and network resources that allows its
users to allocate resources to the virtual machines created via this procedure.

• Availability of a pub key: Users must have a pub key for logging into
the Bootstrap Host. This key should be placed into the customer OpenStack
Environment using Import Key tab on the Launch Instance→Key Pair dialog
or via the Compute→Access and Security.

• OCUDR Software: User must install Kubernetes v1.13.3 and HELM v2.12.3. UDR
consists of:

– Helm Charts that reflect the OCUDR software version. It is a zipped tar file
that you need to unzip.

– Docker images of the micro-services that are shared as tar file. You need to
untar it.

Note:

For more details about OCUDR Software, see Checking the Software
Requirements.

• Create Database User/Group: The Database administrator should create a
user in the MYSQL DB using MySQL NDB cluster. UDR uses an NDB MySQL
database to store the subscriber information. NDB MySQL database provides HA
and geo-redundancy capabilities.
The database administrator should also provide user with necessary permissions
to access the tables in the NDB cluster. The steps to create a user and assign
permissions are as follows:

1. Login to the server where the ssh keys are stored and SQL nodes are
accessible.

2. Connect to the SQL nodes.

3. Login to the Database as a root user.

Chapter 2
Planning Your Installation

2-2

4. Create a user on all sql nodes and assign it to a group having necessary
permissions to access the tables on all sql nodes. Also, create a database on
only one sql node.

CREATE USER '<username>'@'%' IDENTIFIED BY '<password>';
DROP DATABASE if exists <db_name>;
CREATE DATABASE <db_name> CHARACTER SET utf8;
CREATE DATABASE udr_release CHARACTER SET utf8;

Note:

DB Name used in the above command should be same as
releaseDbName configuration under global section in values.

GRANT SELECT, INSERT, CREATE, ALTER, DROP, LOCK TABLES,
CREATE TEMPORARY TABLES, DELETE, UPDATE, EXECUTE, INDEX,
REFERENCES ON
<db_name>.* TO '<user>'@'%';
GRANT SELECT, INSERT, CREATE, ALTER, DROP, LOCK TABLES, CREATE
TEMPORARY TABLES,
DELETE, UPDATE, EXECUTE, INDEX, REFERENCES ON udr_release.* TO
'<user>'@'%';
USE <db_name>;

Note:

You need this database name, username and password at the time
of creating Kubernetes secrets.

• Network Access: The Kubernetes cluster hosts must have network access to:

– Local docker image repository where the Oracle Communications Unified Data
Repository images are available.
To check if the Kubernetes cluster hosts has network access to the local
docker image repository, try to pull any image with tag name to check
connectivity by executing:

docker pull <docker-repo>/<image-name>:<image-tag>

– Local helm repository where the Oracle Communications Unified Data
Repository helm charts are available.
To check if the Kubernetes cluster hosts has network access to the local helm
repository, execute:

helm repo update

Note:

Some of the systems may need to use helm command with helm
--kubeconfig admin.conf

Chapter 2
Planning Your Installation

2-3

Note:

All the kubectl and helm commands (used in this document) must
be executed on a system depending on the infrastructure of the
deployment. It can be any client machine like virtual machine, server,
local desktop and so on.

• Laptop/Desktop Client Software: A laptop/desktop where the user executes
deployment commands should have:

– Network access to the helm repository and docker image repository

– Configuration of Helm repository on the client

– Network access to the Kubernetes cluster

– Necessary environment settings to run the kubectl commands. The
environment should have privileges to create namespace in the Kubernetes
cluster.

– Helm client installed with the push plugin. The environment should be
configured so that the 'helm install' command deploys the software in the
Kubernetes cluster.

Note:

All the kubectl and helm commands (used in this document) must
be executed on a system depending on the infrastructure of the
deployment. It can be any client machine like virtual machine, server,
local desktop and so on.

Installation Sequence
The installation sequence of UDR is as follows:

1. Installation Preparation

2. OCUDR Namespace Creation

3. Service Account, Role, and RoleBinding Creation

4. Creating Kubernetes Secrets for storing:

• DBName, Username, Password and EncryptionKey

• Private Keys and Certificate for IngressGateway

5. ocudr-custom-values.yaml File Configuration

6. UDR Deployment

7. Post Installation Sanity Check - Helm Test

Installation Preparation
This phase of installation includes downloading and loading the required files to the
system.

Chapter 2
Installation Sequence

2-4

1. Download the following UDR package file from Oracle Software Delivery Cloud
(OSDC).
<nfname>-pkg-<marketing-release-number>.tgz

For example:ocudr-pkg-1.7.1.tgz

2. Untar the UDR Package File. Execute the following command to untar UDR
Package File.
tar -xvf ocudr-pkg-1.7.1.tgz

This command results into ocudr-pkg-1.7.1 directory. The directory consists of
following:

• UDR Docker Images File: ocudr-images-1.7.1.tar

• Helm File: ocudr-1.7.1.tgz

• Readme txt File: The Readme.txt contains cksum and md5sum of tarballs.

3. Verify the checksums of tarballs in the following file.
Readme.txt

4. Load the tarballs to docker images. Execute the following command:
docker load --input /root/ocudr-images-1.7.1.tar

5. Check if all the images are loaded. Execute the following command:
docker images | grep ocudr

6. Tag the docker images to docker registry. Execute the following command:
docker tag <image-name>:<image-tag> <docker-repo>/<image-name>:<image-
tag>

7. Push the docker images to docker registry. Execute the following command:
docker push <docker-repo>/<image-name>:<image-tag>

Sample Tag and Push Commands:

docker tag ocudr/nudr_datarepository_service:1.7.1 <customer
repo>/nudr_datarepository_service:1.7.1

docker push <customer repo>/nudr_datarepository_service:1.7.1

docker tag ocudr/nudr_nrf_client_service:1.7.1 <customer repo>/
nudr_nrf_client_service:1.7.1

docker push <customer repo>/nudr_nrf_client_service:1.7.1

docker tag ocudr/nudr_notify_service:1.7.1 <customer repo>/
nudr_notify_service:1.7.1

docker push <customer repo>/nudr_notify_service:1.7.1

docker tag ocudr/nudr_diameterproxy:1.7.1 <customer repo>/
nudr_diameterproxy:1.7.1

docker push <customer repo>/nudr_diameterproxy:1.7.1

docker tag ocudr/nudr_prehook:1.7.1 <customer repo>/
nudr_prehook:1.7.1

Chapter 2
Installation Sequence

2-5

docker push <customer repo>/nudr_prehook:1.7.1

docker tag ocudr/nudr_config:1.7.1 <customer repo>/
nudr_config:1.7.1

docker push <customer repo>/nudr_config:1.7.1

docker tag ocudr/ocingress_gateway:1.7.7 <customer repo>/
ocingress_gateway:1.7.7

docker push <customer repo>/ocingress_gateway:1.7.7

docker tag ocudr/ocegress_gateway:1.7.7 <customer repo>/
ocegress_gateway:1.7.7

docker push <customer repo>/ocegress_gateway:1.7.7

docker tag ocudr/configurationinit:1.2.0 <customer repo>/
configurationinit:1.2.0

docker push <customer repo>/configurationinit:1.2.0

docker tag ocudr/configurationupdate:1.2.0 <customer repo>/
configurationupdate:1.2.0

docker push <customer repo>/configurationupdate:1.2.0

docker tag ocudr/ocpm_config_server:1.7.0 <customer repo>/
ocpm_config_server:1.7.0

docker push <customer repo>/ocpm_config_server:1.7.0

docker tag ocudr/readiness-detector:latest <customer repo>/
readiness-detector:latest

docker push <customer repo>/readiness-detector:latest

docker tag ocudr/nf_test:1.7.1 <customer repo>/nf_test:1.7.1

docker push <customer repo>/nf_test:1.7.1

8. Untar Helm Files. Execute the following command:
tar -xvzf ocudr-1.7.1.tgz

9. Download the Unified Data Repository (UDR) Custom Template ZIP file from OHC.
The steps are as follows:

a. Go to the URL, docs.oracle.com

b. Navigate to Industries->Communications->Cloud Native Core.

c. Click the Unified Data Repository (UDR) Custom Template link to download
the zip file.

d. Unzip the template to get ocudr-custom-configTemplates-1.7.1 file that
contains the following:

• UDR_Dashboard.json: This file is used by grafana.

Chapter 2
Installation Sequence

2-6

https://docs.oracle.com/en/

• ocudr-custom-values-1.7.1.yaml: This file is used during installation.

• ProvGw_Dashboard.json

• provgw-custom-values-1.7.1.yaml

Following are the OCUDR Images.

Pod Image

<helm_release_name>-nudr-drservice ocudr/nudr_datarepository_service

<helm_release_name>-nudr-notify -service ocudr/nudr_notify_service

<helm_release_name>-nudr-nrf-client-service ocudr/nudr_nrf_client_service

<helm_release_name>-ingressgateway ocudr/ocingress_gateway

ocudr/configurationinit

ocudr/configurationupdate

<helm_release_name>-egressgateway ocudr/ocegress_gateway

ocudr/configurationinit

ocudr/configurationupdate

<helm_release_name>-nudr-config ocudr/nudr_config

<helm_release_name>-nudr-config-server ocudr/ocpm_config_server

ocudr/readiness-detector

<helm_release_name>-nudr-diameterproxy-
service

ocudr/nudr_diameterproxy

<helm_release_name>-test ocudr/nf_test

<helm_release_name>-nudr-preinstall ocudr/nudr_prehook

Note:

<helm_release_name>-nudr-notify-service and <helm_release_name>-
nudr-diameterproxy-service are not required for SLF deployment. So,
set its flag value as 'enabled - false' in the values.yaml file. For more
details, see User Configurable Parameterocudr-custom-values.yaml File
Configuration.

OCUDR Namespace Creation
In this section, you will learn to verify the existence of a required namespace in the
system. If a namespace does not exist, you must create it. The steps to verify and
create a namespace are as follows:

1. Execute the following command to verify the existence of required namespace in
system:
kubectl get namespace

2. If the required namespace does not exist, then execute the following command to
create a namespace:
kubectl create namespace <required namespace>

For example: kubectl create namespace ocudr

Chapter 2
Installation Sequence

2-7

Note:

This is an optional step. In case required namespace already exists, proceed
with next procedures.

Service Account, Role and RoleBinding Creation
In this section, you will learn to create a service account, role and rolebinding
resources.

A sample command to create the resources is as follows:

kubectl -n <ocudr-namespace> create -f ocudr-sample-resource-template.yaml

A sample template to create the resources is as follows:

Note:

You need to update the <helm-release> and <namespace> values with its
respective ocudr namespace and ocudr helm release name.

#
Sample template start
#
apiVersion: v1
kind: ServiceAccount
metadata:
 name: <helm-release>-serviceaccount
 namespace: <namespace>

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: <helm-release>-role
 namespace: <namespace>
rules:
- apiGroups:
 - "" # "" indicates the core API group
 resources:
 - services
 - configmaps
 - pods
 - secrets
 - endpoints
 verbs:
 - get
 - watch
 - list

Chapter 2
Installation Sequence

2-8

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
 name: <helm-release>-rolebinding
 namespace: <namespace>
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: <helm-release>-role
subjects:
- kind: ServiceAccount
 name: <helm-release>-serviceaccount
 namespace: <namespace>

#
Sample template end
#

Kubernetes Secret Creation - DBName, Username, Password and
Encryption Key

In this section, you will learn to create a secret to store database name, username,
password, and encryption key.

To create a Kubernetes secret:

1. Create a yaml file with dbname, dbusername, dbpassword, encryptionKey using
the syntax given below:

ocudr-secret.yaml
apiVersion: v1
kind: Secret
metadata:
 name: ocudr-secrets
type: Opaque
data:
 dbname: dWRyZGI=
 dsusername: dWRydXNlcg==
 dspassword: dWRycGFzc3dk
 encryptionkey: TXkgc2VjcmV0IHBhc3NwaHJhc2U=

Note:

The name used to define a secret above should be same as given in the
dbCredSecretName configuration under global section in values.yaml.

The values of dbname, dsusername, dspassword, encryptionKey are base64
encoded. These are created by executing the following commands:

echo -n "<db name>" | base64

echo -n "<db username>" | base64

Chapter 2
Installation Sequence

2-9

echo -n "<db password>" | base64

echo -n "<encryptionKey string>" | base64

Note:

You will create a secret using this yaml file.

2. Execute the following command to create a namespace where deployment is
done.
kubectl create namespace <namespace>

Note:

To create a secret, you need a namespace where deployment is done.

3. Execute the following command to create a secret:
kubectl create -f <secret File Name> -n <namespace>

4. Execute the following command to verify a secret creation:
kubectl describe secret <secret name> -n <namespace>

Kubernetes Secret Creation - Private Keys and Certificates for
IngressGateway

In this section, you will learn to create a secret to store private keys and certificates for
IngressGateway.

Note:

It is a user or operator discretion to create the private keys and certificates
for IngressGateway and it is not in the scope of UDR. This section shares
only samples to create them.

To create a secret to store private keys and certificate for IngressGateway:

1. Generate RSA private key by executing the following command:
openssl req -x509 -nodes -sha256 -days 365 -newkey rsa:2048 -keyout
rsa_private_key -out rsa_certificate.crt -config ssl.conf -passin
pass:"keystorepasswd" -passout pass:"keystorepasswd"

2. Convert the private key to .pem format by executing the following command:
openssl rsa -in rsa_private_key -outform PEM -out
rsa_private_key_pkcs1.pem -passin pass:"keystorepasswd" -passout
pass:"keystorepasswd"

3. Generate certificate using the private key by executing the following command:
openssl req -new -key rsa_private_key -out apigatewayrsa.csr -config
ssl.conf -passin pass:"keystorepasswd" -passout pass:"keystorepasswd"

Chapter 2
Installation Sequence

2-10

Note:

You can use ssl.conf to configure default entries along with storage area
network (SAN) details for your certificate.

A sample ssl.conf file is given below:

ssl.conf
#ssl.conf
[req]
default_bits = 4096
distinguished_name = req_distinguished_name
req_extensions = req_ext
[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = IN
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Karnataka
localityName = Locality Name (eg, city)
localityName_default = Bangalore
organizationName = Organization Name (eg, company)
organizationName_default = Oracle
commonName = Common Name (e.g. server FQDN or YOUR name)
commonName_max = 64
commonName_default = localhost
[req_ext]
subjectAltName = @alt_names
[alt_names]
IP = 127.0.0.1
DNS.1 = localhost

4. Create a root Certificate Authority (CA) by executing the following set of
commands:
openssl req -new -keyout cakey.pem -out careq.pem -config ssl.conf -
passin pass:"keystorepasswd" -passout pass:"keystorepasswd"

openssl x509 -signkey cakey.pem -req -days 3650 -in careq.pem -out
caroot.cer -extensions v3_ca -passin pass:"keystorepasswd" echo 1234 >
serial.txt

5. Sign the server certificate with root CA private key by executing the following
command:
openssl x509 -CA caroot.cer -CAkey cakey.pem -CAserial serial.txt -
req -in apigatewayrsa.csr -out apigatewayrsa.cer -days 365 -extfile
ssl.conf -extensions req_ext -passin pass:"keystorepasswd"

6. Generate ECDSA private key by executing the following set of commands:
openssl ecparam -genkey -name prime256v1 -noout -out
ecdsa_private_key.pem

openssl pkcs8 -topk8 -in ecdsa_private_key.pem -inform pem -out
ecdsa_private_key_pkcs8.pem -outform pem -nocrypt

7. Generate certificate using the private key by executing the following set of
commands:

Chapter 2
Installation Sequence

2-11

openssl req -new -key ecdsa_private_key_pkcs8.pem -x509 -nodes -days
365 -out ecdsa_certificate.crt -config ssl.conf

openssl req -new -key ecdsa_private_key_pkcs8.pem -out
apigatewayecdsa.csr -config ssl.conf -passin pass:"keystorepasswd" -
passout pass:"keystorepasswd"

8. Sign the server certificate with root CA private key by executing the following
command:
openssl x509 -CA caroot.cer -CAkey cakey.pem -CAserial serial.txt -req
-in apigatewayecdsa.csr -out apigatewayecdsa.cer -days 365 -extfile
ssl.conf -extensions req_ext -passin pass:"keystorepasswd"

9. Create a key.txt file by entering any password.
Example: echo "keystorepasswd" > key.txt

10. Create a trust.txt file by entering any password.
Example: echo "truststorepasswd" > trust.txt

11. Create a Secret by executing the following set of commands:
kubectl create ns NameSpace

kubectl create secret generic ocudr-gateway-secret
--from-file=apigatewayrsa.cer --from-file=caroot.cer --from-
file=apigatewayecdsa.cer --from-file=rsa_private_key_pkcs1.pem --
from-file=ecdsa_private_key_pkcs8.pem --from-file=key.txt --from-
file=trust.txt -n <Namespace>

ocudr-custom-values.yaml File Configuration
In this section, you will learn to configure docker Registry path, DB connectivity service
fqdn and port details and UDR details based on deployment.

UDR uses MySQL database to store the configuration and run time data. Before
deploying the UDR in Kubernetes Cluster, update the following parameters in the
ocudr-custom-values-1.7.1.yaml file:

Table 2-1 ocudr-custom-values-1.7.1.yaml Parameters

Section Parameter Services

Global mysql • dbServiceName :
mysql-connectivity-
service.occne-infra.

• port: "<Port>".

dockerRegistry: allows to
configure docker Registry
from where the images are
pulled.

ocudr-
registry.us.oracle.com:5000

Chapter 2
Installation Sequence

2-12

Table 2-1 (Cont.) ocudr-custom-values-1.7.1.yaml Parameters

Section Parameter Services

nrfclient host: • baseurl: "<To connect
to Network Repository
Function (NRF) for
registration>".

• proxy: "<Proxy setting
if anyone connects to
NRF>". Default value is
NULL.

• capacityMultiplier:
"<Capacity Multiplier>".
Default value is 500.

• supirange: "<supi range
for UDR>". Default
value is [{\"start\":
\"10000000000\", \"end\":
\"20000000000\"}]

• priority: "<priority>".
Default value is 10.

• fqdn: "FQDN of nudr-
drservice for NRF to use
while sending request. It
is carried in registration
request to NRF".

• gpsirange: "<gpsi range
for UDR>"

• plmnvalues: "<plmn
values that supports>"

Unified Data Repository Deployment
In this section, you will learn to deploy Unified Data Repository.

You can deploy UDR either with HELM repository or with HELM tar. To deploy UDR
in Kubernetes cluster:

1. Use ocudr-custom-values-1.7.1.yaml file, which is modified in the ocudr-custom-
values.yaml section. Execute the following command to deploy UDR:
helm install <helm chart> [--version <OCUDR version>] --name <release>
--namespace <k8s namespace> -f <ocudr-custom-values-1.7.1.yaml>

In the above command:

• <helm chart> - is the name of the chart, which is of the form <helm repo>/
ocudr.

• <OCUDR version> - is the software version (helm chart version) of the
OCUDR. This is optional. If omitted, the default is latest version available
in helm repository.

• <release> - is a name of user's choice to identify the helm deployment. From
1.7.1 release onwards, all pod names, service name, deployment name are
prepended by this release name.

Chapter 2
Installation Sequence

2-13

• <k8s namespace> - is a name of user's choice to identify the kubernetes
namespace of the Unified Data Repository. All the Unified Data Repository
micro services are deployed in this kubernetes namespace.

• <ocudr-custom-values-1.7.1.yaml> - is the customized ocudr-custom-
values-1.7.1.yaml file. The ocudr-custom-values-1.7.1.yaml file is a part of
customer documentation. Users needs to download the file and modify it as
per the user site.

Note:

If helm3 is used, execute the following command for installation:
helm install -name <release> --namespace <k8s namespace> -
f <ocudr-custom-values-1.7.1.yaml> <helm chart> [--version
<OCUDR version>]

2. (Optional) Customize the Unified Data Repository by overriding the default values
of various configurable parameters. See Customizing Unified Data Repository

Verifying UDR Deployment
After deploying UDR, you need to verify whether all the services and pods are up and
running.

Post Installation Sanity Check - Helm Test
Helm Test is a feature that validates successful installation of UDR along with its
readiness (Readiness probe url configured is checked for success) of all the pods. The
pods that are checked are based on the namespace and label selector configured for
the helm test configurations.

This test also checks for all the PVCs to be in bound state under the Release
namespace and label selector configured.

Note: You can use Helm Test feature only if you have Helm3.

To execute the Helm test functionality:

Note:

Before executing the Hem Test command, it is important to do the following
configurations.

• Configure the helm test configurations under the Global section of the values.yaml
file as follows:

global:
 # Helm test related configurations
 test:
 nfName: ocudr
 image:
 name: ocudr/nf_test
 tag: 1.7.1

Chapter 2
Installation Sequence

2-14

 config:
 logLevel: WARN
 timeout: 40

For more details, refer to the Configuring User Parameters

• Ensure the label given below is part of all microservice deployments. The
Helm Test feature takes the labelSelector internally, along with the helm release
namespace, to select the pods and pvcs for verification.
app.kubernetes.io/instance: {{ .Release.Name }}

Usually, it is one of the Engineering labels present in the template of all NF charts.
If it is not present, you need to add this label so that the helm test can work on
specific helm release.

• Execute the following Helm Test command:
helm test <helm_release_name> -n <k8s namespace>

Wait for the helm test job to complete. Check the output whether the test job is
successful or not.

Note:

Readiness probe for all kubernetes deployment defined under the
umbrella chart should be configured with httpGet parameter with proper
url. If it is not configured, helm test for that pod is considered success.
And if the Pod/PVC list to be verified, is fetched based on namespace
and labelSelector is empty, then the Helm Test is success. If the Helm
Test fails with errors, then you can refer to the Troubleshooting Unified
Data Repository

Chapter 2
Installation Sequence

2-15

3
Customizing and Configuring Unified Data
Repository

This section provides information on customizing and configuring Unified Data
Repository.

Customizing Unified Data Repository
You can customize the Unified Data Repository deployment by overriding the default
values of various configurable parameters.

In the ocudr-custom-values.yaml File Configuration section, MySQL host is
customized.

The ocudr-custom-values.yaml file can be prepared by hand to customize the
parameters.

Following is an example of Unified Data Repository customization file.

Note:

All the configurable parameters are mentioned in the Configuring User
Parameters

Copyright 2019 (C), Oracle and/or its affiliates. All rights reserved.

global:
 dockerRegistry: ocudr-registry.us.oracle.com:5000
 mysql:
 dbServiceName: "mysql-connectivity-service.occne-infra" #This is
a read only parameter. Use the default value.
 port: "3306"
 udrTracing:
 enable: false
 host: "occne-tracer-jaeger-collector.occne-infra"
 port: 14268
 dbenc:
 shavalue: 256
 serviceAccountName:
 egress:
 enabled: true

 # Configurations for Config-Server
 configServerEnable: true
 initContainerEnable: false
 dbCredSecretName: 'ocudr-secrets'

3-1

 releaseDbName: 'udr_release'
 configServerFullNameOverride: nudr-config-server

 # Configuration to decide the Service the deployment will provide
 udrServices: "nudr-group-id-map"

 # Enable to register with NRF for UDSF service
 udsfEnable: false

 # Helm test related configurations
 test:
 nfName: ocudr
 image:
 name: ocudr/nf_test
 tag: 1.7.1
 config:
 logLevel: WARN
 timeout: 120

 # Pre Hook Install configurations
 preInstall:
 image:
 name: ocudr/nudr_prehook
 tag: 1.7.1
 config:
 logLevel: WARN

 # Resources for Hooks
 hookJobResources:
 limits:
 cpu: 2
 memory: 2Gi
 requests:
 cpu: 1
 memory: 1Gi

#***

 # ******** Sub-Section Start: Custom Extension Global Parameters

#***

 customExtension:
 allResources:
 labels: {}
 annotations:
 sidecar.istio.io/inject: "\"false\""

 lbServices:
 labels: {}
 annotations: {}

Chapter 3
Customizing Unified Data Repository

3-2

 lbDeployments:
 labels: {}
 annotations:
 sidecar.istio.io/inject: "\"true\""
 oracle.com/cnc: "\"true\""

 nonlbServices:
 labels: {}
 annotations: {}

 nonlbDeployments:
 labels: {}
 annotations:
 sidecar.istio.io/inject: "\"true\""
 oracle.com/cnc: "\"true\""

 # ******** Sub-Section End: Custiom Extensions Global Parameters

#***

 # ******** Sub-Section Start: Prefix/Suffix Global Parameters

#***

 k8sResource:
 container:
 prefix:
 suffix:

 # ******** Sub-Section End: Prefix/Suffix Global Parameters

#***

nudr-drservice:
nameOverride: "nudr-drservice"
 image:
 name: ocudr/nudr_datarepository_service
 tag: 1.7.1
 pullPolicy: Always

 service:
 http2enabled: "true"
 type: ClusterIP
 port:
 http: 5001
 https: 5002
 management: 9000
 customExtension:

Chapter 3
Customizing Unified Data Repository

3-3

 labels: {}
 annotations: {}

 tracingEnabled: false

 notify:
 port:
 http: 5001
 https: 5002

 deployment:
 replicaCount: 2
 customExtension:
 labels: {}
 annotations: {}

 logging:
 level:
 root: "WARN"

 subscriber:
 autocreate: "true"

 validate:
 smdata: "false"

 vsaLevel: "smpolicy"

 resources:
 limits:
 cpu: 4
 memory: 4Gi
 requests:
 cpu: 4
 memory: 4Gi
 target:
 averageCpuUtil: 80

 hikari:
 poolsize: "25"

 minReplicas: 2
 maxReplicas: 8

nudr-notify-service:
nameOverride: "nudr-notify-service"
 enabled: false
 image:
 name: ocudr/nudr_notify_service
 tag: 1.7.1
 pullPolicy: Always

 service:
 http2enabled: "true"

Chapter 3
Customizing Unified Data Repository

3-4

 type: ClusterIP
 port:
 http: 5001
 https: 5002
 management: 9000
 customExtension:
 labels: {}
 annotations: {}
 tracingEnabled: false

 deployment:
 replicaCount: 2
 customExtension:
 labels: {}
 annotations: {}

 notification:
 retrycount: "3"
 retryinterval: "5"
 retryerrorcodes: "400,429,500,503"

 hikari:
 poolsize: "10"

 logging:
 level:
 root: "WARN"

 resources:
 limits:
 cpu: 3
 memory: 3Gi
 requests:
 cpu: 3
 memory: 3Gi
 target:
 averageCpuUtil: 80

 minReplicas: 2
 maxReplicas: 4
 # for egress port
 http:
 proxy:
 port: 8080

nudr-config:
nameOverride: "nudr-configuration-service"
 enabled: true
 image:
 name: ocudr/nudr_config
 tag: 1.7.1
 pullPolicy: Always

 service:
 http2enabled: "true"

Chapter 3
Customizing Unified Data Repository

3-5

 type: ClusterIP
 port:
 http: 5001
 https: 5002
 management: 9000
 customExtension:
 labels: {}
 annotations: {}

 deployment:
 replicaCount: 1
 customExtension:
 labels: {}
 annotations: {}

 logging:
 level:
 root: "WARN"

 resources:
 limits:
 cpu: 2
 memory: 2Gi
 requests:
 cpu: 2
 memory: 2Gi
 target:
 averageCpuUtil: 80

 minReplicas: 1
 maxReplicas: 1

config-server:
 enabled: true
 global:
 nfName: nudr
 imageServiceDetector: ocudr/readiness-detector:latest
 envJaegerAgentHost: ''
 envJaegerAgentPort: 6831
 replicas: 1
 envLoggingLevelApp: WARN
 resources:
 limits:
 cpu: 2
 memory: 2Gi
 requests:
 cpu: 2
 memory: 512Mi

 service:
 type: ClusterIP

 fullnameOverride: udr-config-server
 installedChartVersion: ''

Chapter 3
Customizing Unified Data Repository

3-6

nudr-nrf-client-service:
nameOverride: "nudr-nrf-client-service"
 enabled: true
 host:
 baseurl: "http://ocnrf-ingressgateway.mynrf.svc.cluster.local/nnrf-
nfm/v1/nf-instances"
 proxy:
 ssl: "false"
 logging:
 level:
 root: "WARN"
 image:
 name: ocudr/nudr_nrf_client_service
 tag: 1.7.1
 pullPolicy: Always
 heartBeatTimer: "90"
 udrGroupId: "udr-1"
 capacityMultiplier: "500"
 supirange: "[{\"start\": \"10000000000\", \"end\": \"20000000000\"}]"
 priority: "10"
 udrMasterIpv4: "10.0.0.0"
 gpsirange: "[{\"start\": \"10000000000\", \"end\": \"20000000000\"}]"
 #endpointLabelSelector : "ocudr-ingressgateway"
 plmnvalues: "[{\"mnc\": \"14\", \"mcc\": \"310\"}]"
 scheme: "http"
 livenessProbeMaxRetry: 5
 # this is for egress port
 http:
 proxy:
 host:
 port: 8080
 # The below 2 configuration will change based on site k8s name
resolution settings, Also note the changes with namespace used for udr
installation
 #livenessProbeUrl: "http://nudr-notify-
service.myudr.svc.cluster.local:9000/actuator/health,http://nudr-
drservice.myudr.svc.cluster.local:9000/actuator/health"
 fqdn: "ocudr-ingressgateway.myudr.svc.cluster.local"

 resources:
 limits:
 cpu: 1
 memory: 2Gi
 requests:
 cpu: 1
 memory: 2Gi

 service:
 customExtension:
 labels: {}
 annotations: {}

 deployment:
 customExtension:
 labels: {}

Chapter 3
Customizing Unified Data Repository

3-7

 annotations:
 traffic.sidecar.istio.io/excludeOutboundPorts:
"\"9000,9090\"" #Should be configured with the management ports used
for UDR microservices and actutorPort used for IGW/EGW

ingressgateway:
 global:
 # Docker registry name
 # dockerRegistry: reg-1:5000

 # Specify type of service - Possible values are :- ClusterIP,
NodePort, LoadBalancer and ExternalName
 type: ClusterIP

 # Enable or disable IP Address allocation from Metallb Pool
 metalLbIpAllocationEnabled: true

 # Address Pool Annotation for Metallb
 metalLbIpAllocationAnnotation: "metallb.universe.tf/address-pool:
signaling"

 # Set to true if constant node port needs to be assigned when
Servicetype is LoadBalancer or NodePort
 staticNodePortEnabled: false

 # port on which UDR's API-Gateway service is exposed
 # If httpsEnabled is false, this Port would be HTTP/2.0 Port
(unsecured)
 # If httpsEnabled is true, this Port would be HTTPS/2.0 Port
(secured SSL)
 publicHttpSignalingPort: 80
 publicHttpsSignallingPort: 443

 image:
 # image name
 name: ocudr/ocingress_gateway
 # tag name of image
 tag: 1.7.7
 # Pull Policy - Possible Values are:- Always, IfNotPresent, Never
 pullPolicy: Always

 initContainersImage:
 # inint Containers image name
 name: ocudr/configurationinit
 # tag name of init Container image
 tag: 1.2.0
 # Pull Policy - Possible Values are:- Always, IfNotPresent, Never
 pullPolicy: Always

 updateContainersImage:
 # update Containers image name
 name: ocudr/configurationupdate
 # tag name of update Container image
 tag: 1.2.0
 # Pull Policy - Possible Values are:- Always, IfNotPresent, Never

Chapter 3
Customizing Unified Data Repository

3-8

 pullPolicy: Always

 deployment:
 customExtension:
 labels: {}
 annotations: {}

 service:
 customExtension:
 labels: {}
 annotations: {}
 ssl:
 tlsVersion: TLSv1.2

 privateKey:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 rsa:
 fileName: rsa_private_key_pkcs1.pem
 ecdsa:
 fileName: ecdsa_private_key_pkcs8.pem

 certificate:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 rsa:
 fileName: apigatewayrsa.cer
 ecdsa:
 fileName: apigatewayecdsa.cer

 caBundle:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 fileName: caroot.cer

 keyStorePassword:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 fileName: key.txt

 trustStorePassword:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 fileName: trust.txt

 initialAlgorithm: RSA256

 cncc:
 enabled: false
 enablehttp1: true

 # Resource details
 resources:
 limits:
 cpu: 5

Chapter 3
Customizing Unified Data Repository

3-9

 memory: 4Gi
 initServiceCpu: 1
 initServiceMemory: 1Gi
 updateServiceCpu: 1
 updateServiceMemory: 1Gi
 requests:
 cpu: 5
 memory: 4Gi
 initServiceCpu: 1
 initServiceMemory: 1Gi
 updateServiceCpu: 1
 updateServiceMemory: 1Gi

 target:
 averageCpuUtil: 80

 log:
 level:
 root: WARN
 ingress: INFO
 oauth: INFO

 # enable jaeger tracing
 jaegerTracingEnabled: false

 openTracing :
 jaeger:
 udpSender:
 # udpsender host
 host: "occne-tracer-jaeger-agent.occne-infra"
 # udpsender port
 port: 6831
 probabilisticSampler: 0.5

 # Number of Pods must always be available, even during a disruption.
 minAvailable: 2
 # Min replicas to scale to maintain an average CPU utilization
 minReplicas: 2
 # Max replicas to scale to maintain an average CPU utilization
 maxReplicas: 5

 # label to override name of api-gateway micro-service name
 #fullnameOverride: ocudr-endpoint

 # To Initialize SSL related infrastructure in init/update container
 initssl: false

 # Cipher suites to be enabled on server side
 ciphersuites:
 - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
 - TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_DHE_RSA_WITH_AES_256_CCM
 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

Chapter 3
Customizing Unified Data Repository

3-10

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 #OAUTH CONFIGURATION
 oauthValidatorEnabled: false
 nfType: SMF
 nfInstanceId: 6faf1bbc-6e4a-4454-a507-a14ef8e1bc11
 producerScope: nsmf-pdusession,nsmf-event-exposure
 allowedClockSkewSeconds: 0
 nrfPublicKeyKubeSecret: nrfpublickeysecret
 nrfPublicKeyKubeNamespace: ingress
 validationType: strict
 producerPlmnMNC: 123
 producerPlmnMCC: 346

 #Server Configuration for http and https support
 #Server side http support
 enableIncomingHttp: true
 #Server side https support
 enableIncomingHttps: false
 #Client side https support
 enableOutgoingHttps: false

 maxRequestsQueuedPerDestination: 5000
 maxConnectionsPerIp: 10

 #Service Mesh (Istio) to take care of load-balancing
 serviceMeshCheck: true
 # configuring routes
 routesConfig:
 - id: traffic_mapping_http
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-dr/**
 order: 1
 - id: traffic_mapping_http_prov
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-dr-prov/**
 order: 2
 - id: traffic_mapping_http_mgmt
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-dr-mgm/**
 order: 3
 - id: traffic_mapping_http_udsf
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudsf-dr/**
 order: 4
 - id: traffic_mapping_http_group
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-group-id-map/**
 order: 5
 - id: traffic_mapping_http_group_prov
 uri: http://{{ .Release.Name }}-nudr-drservice:5001
 path: /nudr-group-id-map-prov/**
 order: 6
 - id: traffic_mapping_http_slf_group_prov
 uri: http://{{ .Release.Name }}-nudr-drservice:5001

Chapter 3
Customizing Unified Data Repository

3-11

 path: /slf-group-prov/**
 order: 7

egressgateway:
 enabled: true
 #fullnameOverride : 'ocudr-egress-gateway'
 nfType: UDR

 #global:
 # dockerRegistry: reg-1:5000

 deploymentEgressGateway:
 image: ocudr/ocegress_gateway
 imageTag: 1.7.7
 pullPolicy: Always

 initContainersImage:
 # inint Containers image name
 name: configurationinit
 # tag name of init Container image
 tag: 1.2.0
 # Pull Policy - Possible Values are:- Always, IfNotPresent, Never
 pullPolicy: Always

 updateContainersImage:
 # update Containers image name
 name: configurationupdate
 # tag name of update Container image
 tag: 1.2.0
 # Pull Policy - Possible Values are:- Always, IfNotPresent, Never
 pullPolicy: Always

 # enable jagger tracing
 jaegerTracingEnabled: false

 openTracing :
 jaeger:
 udpSender:
 # udpsender host
 host: "occne-tracer-jaeger-agent.occne-infra"
 # udpsender port
 port: 6831
 probabilisticSampler: 0.5

 # ---- Oauth Configuration - BEGIN ----
 oauthClientEnabled: false
 nrfAuthority: 10.75.224.7:8085
 nfInstanceId: fe7d992b-0541-4c7d-ab84-c6d70b1b01b1
 consumerPlmnMNC: 345
 consumerPlmnMCC: 567
 # ---- Oauth Configuration - END ----

 minReplicas: 1
 maxReplicas: 4
 minAvailable: 1

Chapter 3
Customizing Unified Data Repository

3-12

 # ---- HTTPS Configuration - BEGIN ----
 initssl: false
 enableOutgoingHttps: false

 # Resource details
 resources:
 limits:
 cpu: 3
 memory: 4Gi
 initServiceCpu: 1
 initServiceMemory: 1Gi
 updateServiceCpu: 1
 updateServiceMemory: 1Gi
 requests:
 cpu: 3
 memory: 4Gi
 initServiceCpu: 1
 initServiceMemory: 1Gi
 updateServiceCpu: 1
 updateServiceMemory: 1Gi
 target:
 averageCpuUtil: 80

 deployment:
 customExtension:
 labels: {}
 annotations: {}

 service:
 type: ClusterIP
 customExtension:
 labels: {}
 annotations: {}
 ssl:
 tlsVersion: TLSv1.2
 initialAlgorithm: RSA256
 privateKey:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 rsa:
 fileName: rsa_private_key_pkcs1.pem
 ecdsa:
 fileName: ecdsa_private_key_pkcs8.pem

 certificate:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 rsa:
 fileName: apigatewayrsa.cer
 ecdsa:
 fileName: apigatewayecdsa.cer

 caBundle:
 k8SecretName: ocudr-gateway-secret

Chapter 3
Customizing Unified Data Repository

3-13

 k8NameSpace: ocudr
 fileName: caroot.cer

 keyStorePassword:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 fileName: key.txt

 trustStorePassword:
 k8SecretName: ocudr-gateway-secret
 k8NameSpace: ocudr
 fileName: trust.txt
 # ---- HTTPS Configuration - END ----

 #Enable this if loadbalancing is to be done by egress instead of K8s
 K8ServiceCheck: false

 #Set the root log level
 log:
 level:
 root: WARN
 egress: INFO
 oauth: INFO

nudr-diameterproxy:
 enabled: false
 image:
 name: ocudr/nudr_diameterproxy
 tag: 1.7.1
 pullPolicy: Always

 service:
 http2enabled: "true"
 type: ClusterIP
 diameter:
 type: LoadBalancer
 port:
 http: 5001
 https: 5002
 management: 9000
 diameter: 6000
 customExtension:
 labels: {}
 annotations: {}

 deployment:
 replicaCount: 2
 customExtension:
 labels: {}
 annotations: {}

 logging:
 level:
 root: "WARN"

Chapter 3
Customizing Unified Data Repository

3-14

 resources:
 limits:
 cpu: 3
 memory: 4Gi
 requests:
 cpu: 3
 memory: 4Gi
 target:
 averageCpuUtil: 80

 minReplicas: 2
 maxReplicas: 4

 drservice:
 port:
 http: 5001
 https: 5002
 diameter:
 realm: "oracle.com"
 identity: "nudr.oracle.com"
 strictParsing: false #strict parse message and AVP
 IO:
 threadCount: 0 # should not go beyond 2*CPU
 queueSize: 0 # range [2048-8192] should be power of 2
 messageBuffer:
 threadCount: 0 # should not go beyond 2*CPU
 queueSize: 0 # range [1024-4096] and default 1024/Low,
2048/Medium, 4096/High. should be power of 2
 peer:
 setting: |
 reconnectDelay: 3
 responseTimeout: 4
 connectionTimeOut: 3
 watchdogInterval: 6
 transport: 'TCP'
 reconnectLimit: 50
 nodes: |
 - name: 'seagull'
 responseOnly: false
 namespace: 'seagull1'
 host: '10.75.185.158'
 domain: 'svc.cluster.local'
 port: 4096
 realm: 'seagull1.com'
 identity: 'seagull1a.seagull1.com'
 clientNodes: |
 - identity: 'seagull1a.seagull1.com'
 realm: 'seagull1.com'
 - identity: 'seagull1.com'
 realm: 'seagull1.com'

Chapter 3
Customizing Unified Data Repository

3-15

Configuring User Parameters
The UDR micro services have configuration options. The user should be able to
configure them via deployment values.yaml.

Note:

The default value of some of the settings may change.

Note:

• NAME: is the release name used in helm install command

• NAMESPACE: is the namespace used in helm install command

• K8S_DOMAIN: is the default kubernetes domain (svc.cluster.local)

Default Helm Release Name:- ocudr

Global Configuration: These values are suffixed to all the container names of
OCNRF. These values are useful to add custom annotation(s) to all non-Load
Balancer Type Services that OCNRF helm chart creates.

Following table provides the parameters for global configurations.

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

dockerRegistry Docker registry
from where the
images will be
pulled

ocudr-
registry.us.oracle.
com:5000

Not applicable

mysql.dbService
Name

DB service to
connect

mysql-
connectivity-
service.occne-
infra

Not applicable This is a CNE
service used for
db connection.
Default name
used on CNE is
the same as
configured.

mysql.port Port for DB
Service
Connection

3306 Not applicable

udrTracing.enabl
e

Flag to enable
udr tracing on
Jaeger

false true/false

udrTracing.host Jaegar Service
Name installed in
CNE

occne-tracer-
jaeger-
collector.occne-
infra

Not applicable

Chapter 3
Configuring User Parameters

3-16

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

udrTracing.port Jaegar Service
Port installed in
CNE

14268 Not applicable

dbenc.shavalue Encryption Key
size

256 256 or 512

serviceAccountN
ame

Service account
name

null Not Applicable The
serviceaccount,
role and
rolebindings
required for
deployment
should be done
prior installation.
Use the created
serviceaccountna
me here.

egress.enabled Flag to enable
outgoing traffic
through egress
gateway

true true/false

configServerEna
ble

Flag to enable
config-server

true true/false

initContainerEna
ble

Flag to disable
init container for
config-server.
This is not
required because
the pre install
hooks take care
of DB tables
creation and
connectivity is
also verified

false true/false

dbCredSecretNa
me

DB Credentioal
Secret Name

ocudr-secrets Not Applicable

releaseDbName Release Db
Name

udr_release Not Applicable

configServerFull
NameOverride

Config Server
Full Name
Override

nudr-config-
server

Not Applicable

udrServices Services
supported on the
UDR deployment,
This config will
decide the
schema
execution on the
udrdb which is
done by the nudr-
preinstall hook
pod.

nudr-group-id-
map

All/nudr-dr/nudr-
group-id-map

This release is
specifically for
SLF, so default
value is nudr-
group-id-map

Chapter 3
Configuring User Parameters

3-17

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

udsfEnable Flag to enable
UDSF services
on the
deployment

false true/false

test.nfName NF name on
which the helm
test is performed.
For UDR the
default value is
UDR. Will be
used in container
name as suffix

ocudr Not applicable

test.image.name Image name for
the helm test
container image

ocudr/nf_test Not Applicable

test.image.tag Image version
tag for helm test

1.7.1 Not Applicable

test.config.logLev
el

Log level for helm
test pod

WARN Possible Values -

WARN

INFO

DEBUG

test.config.timeou
t

Timeout value for
the helm test
operation. If
exceeded helm
test will be
considered as
failure

120 Range: 1-300

Unit:seconds

preinstall.image.n
ame

Image name for
the nudr-prehook
pod which will
take care of DB
and table
creation for UDR
deployment.

ocudr/prehook Not Applicable

preinstall.image.t
ag

Image version for
nudr-prehook
pod image

1.7.1 Not Applicable

preinstall.config.l
ogLevel

Log level for
preinstall hook
pod

WARN Possible Values -

WARN

INFO

DEBUG

hookJobResourc
es.limits.cpu

CPU limit for
pods created
kubernetes
hooks/jobs
created as part of
UDR installation.
Applicable for
helm test job as
well.

2 Not Applicable

Chapter 3
Configuring User Parameters

3-18

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

hookJobResourc
es.limits.memory

Memory limit for
pods created
kubernetes
hooks/jobs
created as part of
UDR installation.
Applicable for
helm test job as
well.

2Gi Not Applicable

hookJobResourc
es.requests.cpu

CPU requests for
pods created
kubernetes
hooks/jobs
created as part of
UDR installation.
Applicable for
helm test job as
well.

1 Not Applicable The cpu to be
allocated for
hooks during
deployment

hookJobResourc
es.requests.mem
ory

Memory requests
for pods created
k8s hooks/jobs
created as part of
UDR installation.
Applicable for
helm test job as
well.

1Gi Not Applicable The memory to
be allocated for
hooks during
deployment

customExtension
.allResources.lab
els

Custom Labels
that needs to be
added to all the
OCUDR
kubernetes
resources

null Not Applicable This can be used
to add custom
label(s) to all k8s
resources that
will be created by
OCUDR helm
chart.

customExtension
.allResources.an
notations

Custom
Annotations that
needs to be
added to all the
OCUDR
kubernetes
resources

null Not Applicable

Note: ASM
related
annotations
needs to be
added under
ASM Specific
Configuration
section

This can be used
to add custom
annotation(s) to
all k8s resources
that will be
created by
OCUDR helm
chart.

customExtension
.lbServices.labels

Custom Labels
that needs to be
added to OCUDR
Services that are
considered as
Load Balancer
type

null Not Applicable This can be used
to add custom
label(s) to all
Load Balancer
Type Services
that will be
created by
OCUDR helm
chart.

Chapter 3
Configuring User Parameters

3-19

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

customExtension
.lbServices.annot
ations

Custom
Annotations that
needs to be
added to OCUDR
Services that are
considered as
Load Balancer
type

null Not Applicable This can be used
to add custom
annotation(s) to
all Load Balancer
Type Services
that will be
created by
OCUDR helm
chart.

customExtension
.lbDeployments.l
abels

Custom Labels
that needs to be
added to OCUDR
Deployments that
are associated to
a Service which
is of Load
Balancer type

null Not Applicable This can be used
to add custom
label(s) to all
Deployments that
will be created by
OCUDR helm
chart which are
associated to a
Service which if
of Load Balancer
Type.

customExtension
.lbDeployments.a
nnotations

Custom
Annotations that
needs to be
added to OCUDR
Deployments that
are associated to
a Service which
is of Load
Balancer type

null Not Applicable

Note: ASM
related
annotations
needs to be
added under
ASM Specific
Configuration
section

This can be used
to add custom
annotation(s) to
all Deployments
that will be
created by
OCUDR helm
chart which are
associated to a
Service which if
of Load Balancer
Type.

customExtension
.nonlbServices.la
bels

Custom Labels
that needs to be
added to OCUDR
Services that are
considered as
not Load
Balancer type

null Not Applicable This can be used
to add custom
label(s) to all
non-Load
Balancer Type
Services that will
be created by
OCUDR helm
chart.

customExtension
.nonlbServices.a
nnotations

Custom
Annotations that
needs to be
added to OCUDR
Services that are
considered as
not Load
Balancer type

null Not Applicable This can be used
to add custom
annotation(s) to
all non-Load
Balancer Type
Services that will
be created by
OCUDR helm
chart.

Chapter 3
Configuring User Parameters

3-20

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

customExtension
.nonlbDeploymen
ts.labels

Custom Labels
that needs to be
added to OCUDR
Deployments that
are associated to
a Service which
is not of Load
Balancer type

null Not Applicable This can be used
to add custom
label(s) to all
Deployments that
will be created by
OCUDR helm
chart which are
associated to a
Service which if
not of Load
Balancer Type.

customExtension
.nonlbDeploymen
ts.annotations

Custom
Annotations that
needs to be
added to OCUDR
Deployments that
are associated to
a Service which
is not of Load
Balancer type

null Not Applicable

Note: ASM
related
annotations to be
added under
ASM Specific
Configuration
section

This can be used
to add custom
annotation(s) to
all Deployments
that will be
created by
OCUDR helm
chart which are
associated to a
Service which if
not of Load
Balancer Type.

k8sResource.con
tainer.prefix

Value that will be
prefixed to all the
container names
of OCUDR.

null Not Applicable This value will be
used to prefix to
all the container
names of
OCUDR.

k8sResource.con
tainer.suffix

Value that will be
suffixed to all the
container names
of OCUDR.

null Not Applicable This value will be
used to prefix to
all the container
names of
OCUDR.

Following table provides the parameters for nudr-drservice micro service.

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

image.name Docker Image
name

ocudr/
nudr_datareposit
ory_service

Not applicable

image.tag Tag of Image 1.7.1 Not applicable

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

Chapter 3
Configuring User Parameters

3-21

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

subscriber.autocr
eate

Flag to enable
auto creation of
subscriber

true true/false This flag will
enable auto
creation of
subscriber when
creating data for
a non existent
subscriber.

validate.smdata Flag to enable
correlation
feature for
smdata

false true/false This flag will
control the
correlation
feature for
smdata. This flag
must be false if
using v16.2.0 for
PCF data.

logging.level.root Log Level WARN Possible Values -

WARN

INFO

DEBUG

Log level of the
nudr-drservice
pod

deployment.replic
aCount

Replicas of nudr-
drservice pod

2 Not applicable Number of nudr-
drservice pods to
be maintained by
replica set
created with
deployment

minReplicas Minimum
Replicas

2 Not applicable Minimum number
of pods

maxReplicas Maximum
Replicas

8 Not applicable Maximum
number of pods

service.http2enab
led

Enabled HTTP2
support flag for
rest server

true true/false Enable/Disable
HTTP2 support
for rest server

service.type UDR service type ClusterIP Possbile Values-

ClusterIP

NodePort

LoadBalancer

The kubernetes
service type for
exposing UDR
deployment

Note: Suggested
to be set as
ClusterIP (default
value) always

service.port.http HTTP port 5001 Not applicable The http port to
be used in nudr-
drservice service

service.port.https HTTPS port 5002 Not applicable The https port to
be used for nudr-
drservice service

service.port.man
agement

Management
port

9000 Not applicable The actuator
management port
to be used for
nudr-drservice
service

Chapter 3
Configuring User Parameters

3-22

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

resources.reques
ts.cpu

Cpu Allotment for
nudr-drservice
pod

3 Not applicable The cpu to be
allocated for
nudr-drservice
pod during
deployment

resources.reques
ts.memory

Memory
allotment for
nudr-drservice
pod

4Gi Not applicable The memory to
be allocated for
nudr-drservice
pod during
deployment

resources.limits.c
pu

Cpu allotment
limitation

3 Not applicable

resources.limits.
memory

Memory
allotment
limitation

4Gi Not applicable

resources.target.
averageCpuUtil

CPU utilization
limit for
autoscaling

80 Not Applicable CPU utilization
limit for creating
HPA

notify.port.http HTTP port on
which notify
service is running

5001 Not applicable

notify.port.https HTTPS port on
which notify
service is running

5002 Not applicable

hikari.poolsize Mysql
Connection pool
size

25 Not applicable The hikari pool
connection size
to be created at
start up

vsaLevel The data level
where the vsa
which holds the
4G Policy data is
added.

smpolicy Not applicable

tracingEnabled Flag to enable/
disable jaeger
tracing for nudr-
drservice

false true/false

service.customEx
tension.labels

Custom Labels
that needs to be
added to nudr-
drservice specific
Service.

null Not Applicable This can be used
to add custom
label(s) to nudr-
drservice
Service.

service.customEx
tension.annotatio
ns

Custom
Annotations that
needs to be
added to nudr-
drservice specific
Services.

null Not Applicable This can be used
to add custom
annotation(s) to
nudr-drservice
Service.

Chapter 3
Configuring User Parameters

3-23

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

deployment.custo
mExtension.label
s

Custom Labels
that needs to be
added to nudr-
drservice specific
deployment.

null Not Applicable This can be used
to add custom
label(s) to nudr-
drservice
Deployment.

deployment.custo
mExtension.anno
tations

Custom
Annotations that
needs to be
added to nudr-
drservice specific
deployment.

null Not Applicable This can be used
to add custom
annotation(s) to
nudr-drservice
deployment.

Following table provides the parameters for nudr-notify-service micro service.

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

enabled flag for enabling
or disabling nudr-
notify-service

false true or false For SLF
deployment, this
micro service
must be disabled.

image.name Docker Image
name

ocudr/
nudr_notify_servi
ce

Not applicable

image.tag Tag of Image 1.7.1 Not applicable

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

notification.retryc
ount

Number of
notifications to be
attempted

3 Range: 1 - 10 Number of
notification
attempts to be
done in case of
notification
failures.

Whether retry
should be done
will be based on
notification.retrye
rrorcodes
configuration.

Chapter 3
Configuring User Parameters

3-24

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

notification.retryin
terval

5 Range: 1 - 60

Unit: Seconds

The retry interval
for notifications in
case of failure.
Unit is in
seconds.

Whether retry
should be done
will be based on
notification.retrye
rrorcodes
configuration.

notification.retrye
rrorcodes

Notification
failures eligible
for retry

"400,429,500,503
"

Valid HTTP
status codes
comma
seperated

Comma
separated error
code should be
given. These
error codes will
be eligible for
retry notifications
in case of
failures.

hikari.poolsize Mysql
Connection pool
size

25 Not applicable The hikari pool
connection size
to be created at
start up

tracingEnabled Flag to enable/
disable jaeger
tracing for nudr-
notify-service

false true/false

http.proxy.port Port to connect to
egress gateway

8080 Not applicable

logging.level.root Log Level WARN Possible Values -

WARN

INFO

DEBUG

Log level of the
notify service pod

deployment.replic
aCount

Replicas of nudr-
notify-service pod

2 Not applicable Number of nudr-
notify-service
pods to be
maintained by
replica set
created with
deployment

minReplicas Minimum
Replicas

2 Not applicable Minimum number
of pods

maxReplicas Maximum
Replicas

4 Not applicable Maximum
number of pods

service.http2ena
bled

Enabled HTTP2
support flag

true true/false This is a read
only parameter.
Do not change
this value

Chapter 3
Configuring User Parameters

3-25

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

service.type UDR service type ClusterIP Possbile Values-

ClusterIP

NodePort

LoadBalancer

The kubernetes
service type for
exposing UDR
deployment

Note: Suggested
to be set as
ClusterIP (default
value) always

service.port.http HTTP port 5001 Not applicable The http port to
be used in notify
service to receive
signals from
nudr-notify-
service pod.

service.port.https HTTPS port 5002 Not applicable The https port to
be used in notify
service to receive
signals from
nudr-notify-
service pod.

service.port.man
agement

Management
port

9000 Not applicable The actuator
management
port to be used
for notify service.

resources.reques
ts.cpu

Cpu Allotment for
nudr-notify-
service pod

3 Not applicable The cpu to be
allocated for
notify service pod
during
deployment

resources.reques
ts.memory

Memory
allotment for
nudr-notify-
service pod

3Gi Not applicable The memory to
be allocated for
nudr-notify-
service pod
during
deployment

resources.limits.c
pu

Cpu allotment
limitation

3 Not applicable

resources.limits.
memory

Memory
allotment
limitation

3Gi Not applicable

resources.target.
averageCpuUtil

CPU utilization
limit for
autoscaling

80 Not Applicable CPU utilization
limit for creating
HPA

service.customEx
tension.labels

Custom Labels
that needs to be
added to nudr-
notify-service
specific service.

null Not Applicable This can be used
to add custom
label(s) tonudr-
notify-service
Service.

Chapter 3
Configuring User Parameters

3-26

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

service.customEx
tension.annotatio
ns

Custom
Annotations that
needs to be
added to nudr-
notify-service
specific services.

null Not Applicable This can be used
to add custom
annotation(s) to
nudr-notify-
service Service.

deployment.custo
mExtension.label
s

Custom Labels
that needs to be
added to nudr-
notify-service
specific
deployment.

null Not Applicable This can be used
to add custom
label(s) to nudr-
notify-service
deployment.

deployment.custo
mExtension.anno
tations

Custom
Annotations that
needs to be
added to nudr-
notify-service
specific
deployment.

null Not Applicable This can be used
to add custom
annotation(s) to
nudr-notify-
service
deployment.

Following table provides the parameters for nudr-nrf-client-service micro service.

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

enabled flag for enabling
or disabling nudr-
nrf-client-service

true true/false

host.baseurl NRF url for
registration

http://ocnrf-
ingressgateway.
mynrf.svc.cluster.
local/nnrf-
nfm/v1/nf-
instances

Not applicable Url used for udr
to connect and
register with NRF

host.proxy Proxy Setting NULL nrfClient.host Proxy setting if
required to
connect to NRF

ssl SSL flag false true/false SSL flag to
enable SSL with
udr nrf client pod

logging.level.root Log Level WARN Possible Values -

WARN

INFO

DEBUG

Log level of the
UDR nrf client
pod

image.name Docker Image
name

ocudr/
nudr_nrf_client_s
ervice

Not applicable

image.tag Tag of Image 1.7.1 Not applicable

Chapter 3
Configuring User Parameters

3-27

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

heartBeatTimer Heart beat timer 90 Unit: Seconds

udrGroupId Group ID of UDR udr-1 Not applicable

capacityMultiplier Capacity of UDR 500 Not applicable Capacity
multiplier of UDR
based on number
of UDR pods
running

supirange Supi Range
supported with
UDR

[{\"start\":
\"10000000000\",
\"end\":
\"20000000000\"}
]

Valid start and
end supi range

priority Priority 10 Priority to be sent
in registration
request

Priority to be sent
in registration
request

fqdn UDR FQDN ocudr-
ingressgateway.
myudr.svc.cluster
.local

Not Applicable FQDN to used for
registering in
NRF for other
NFs to connect to
UDR.

Note: Be
cautious in
updating this
value. Should
consider helm
release name,
namespace used
for udr
deployment and
name resolution
setting in k8s.

gpsirange Gpsi Range
supported with
UDR

[{\"start\":
\"10000000000\",
\"end\":
\"20000000000\"}
]

Valid start and
end gpsi range

livenessProbeMa
xRetry

Max retries of
liveness proble
failed

5 This should be
changed based
on how many
times do you
want to retry

This should be
changed based
on how many
times do you
want to retry if
liveness fails

udrMasterIpv4 Master IP of
which we
deployed

10.0.0.0 This should be
changed with the
master ip which
we deployed

udrMasterIpv4 is
used to send the
ipv4 address to
the nrf while
registration.

Chapter 3
Configuring User Parameters

3-28

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

plmnvalues Plmn values
range that it
supports

[{\"mnc\": \"14\",
\"mcc\": \"310\"}]

This values can
be changed that
the range it
supports

Plmn values are
sent to nrf during
regisration from
UDR.

scheme scheme in which
udr supports

http This can be
changed to https.

scheme which
we send to NRF
during
registration

resources.reques
ts.cpu

Cpu Allotment for
nudr-notify-
service pod

1 Not applicable The cpu to be
allocated for nrf
client service pod
during
deployment

resources.reques
ts.memory

Memory
allotment for
nudr-notify-
service pod

2Gi Not applicable The memory to
be allocated for
nrf client service
pod during
deployment

resources.limits.c
pu

Cpu allotment
limitation

1 Not applicable

resources.limits.
memory

Memory
allotment
limitation

2Gi Not applicable

http.proxy.port Port to connect
egress gateway

8080 Not applicable

service.customEx
tension.labels

Custom Labels
that needs to be
added to nudr-
nrf-client specific
service.

null Not Applicable This can be used
to add custom
label(s) to nudr-
nrf-client service.

service.customEx
tension.annotatio
ns

Custom
Annotations that
needs to be
added to nudr-
nrf-client specific
services.

null Not Applicable This can be used
to add custom
annotation(s) to
nudr-nrf-client
service.

deployment.custo
mExtension.label
s

Custom Labels
that needs to be
added to nudr-
nrf-client specific
deployment.

null Not Applicable This can be used
to add custom
label(s) to nudr-
nrf-client
deployment.

deployment.custo
mExtension.anno
tations

Custom
Annotations that
needs to be
added to nudr-
nrf-client specific
deployment.

null Not Applicable
Note: ASM
related
annotations to be
added under
ASM Specific
Configuration
section

This can be used
to add custom
annotation(s) to
nudr-nrf-client
deployment.

Following table provides the parameters for nudr-config micro service.

Chapter 3
Configuring User Parameters

3-29

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

deployment.custo
mExtension.anno
tations

Custom
Annotations that
needs to be
added to nudr-
config specific
Deployment.

null Not applicable This can be used
to add custom
annotation(s) to
nudr-config
Deployment.

deployment.custo
mExtension.label
s

Custom Labels
that needs to be
added to nudr-
config specific
Deployment.

null Not applicable This can be used
to add custom
label(s) to nudr-
config
Deployment.

deployment.replic
aCount

Replicas of nudr-
config pod

1 Not applicable Number of nudr-
config pods to be
maintained by
replica set
created with
deployment

image.name Docker Image
name

ocudr/
nudr_config

Not applicable

image.pullPolicy This setting
indicates whether
image needs to
be pulled or not

Always Possible Values -

Always

IfNotPresent

Never

image.tag Tag of Image 1.7.1 Not applicable

logging.level.root Log Level WARN Possible Values -

WARN

INFO

DEBUG

Log level of the
nudr-config pod

maxReplicas Maximum
Replicas

1 Not applicable Maximum
number of pods

minReplicas Minimum
Replicas

1 Not applicable Minimum number
of pods

resources.limits.c
pu

Cpu allotment
limitation

2 Not applicable

resources.limits.
memory

Memory
allotment
limitation

2Gi Not applicable

resources.reques
ts.cpu

Cpu Allotment for
nudr-drservice
pod

2 Not applicable The cpu to be
allocated for
nudr-config pod
during
deployment

resources.reques
ts.memory

Memory
allotment for
nudr-drservice
pod

2Gi Not applicable The memory to
be allocated for
nudr-config pod
during
deployment

Chapter 3
Configuring User Parameters

3-30

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

resources.target.
averageCpuUtil

CPU utilization
limit for
autoscaling

80 Not Applicable CPU utilization
limit for creating
HPA

service.customEx
tension.annotatio
ns

Custom
Annotations that
needs to be
added to nudr-
config specific
Services.

null Not applicable This can be used
to add custom
annotation(s) to
nudr-config
Service.

service.customEx
tension.labels

Custom Labels
that needs to be
added to nudr-
config specific
Service.

null Not applicable This can be used
to add custom
label(s) to nudr-
config Service.

service.http2ena
bled

Enabled HTTP2
support flag for
rest server

true true/false Enable/Disable
HTTP2 support
for rest server

service.port.http HTTP port 5001 Not applicable The http port to
be used in nudr-
config service

service.port.https HTTPS port 5002 Not applicable The https port to
be used for nudr-
config service

service.port.man
agement

Management
port

9000 Not applicable The actuator
management
port to be used
for nudr-config
service

service.type UDR service type ClusterIP Possbile Values-

ClusterIP

NodePort

LoadBalancer

The kubernetes
service type for
exposing UDR
deployment

Note: Suggested
to be set as
ClusterIP (default
value) always

Following table provides the parameters for nudr-config-server Micro service.

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

envLoggingLevel
App

Log Level WARN Possible Values -

WARN

INFO

DEBUG

Log level of the
nudr-config-
server pod

Chapter 3
Configuring User Parameters

3-31

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

replicas Replicas of nudr-
config-server pod

1 Not applicable Number of nudr-
config-server
pods to be
maintained by
replica set
created with
deployment

resources.reques
ts.cpu

Cpu Allotment for
nudr-drservice
pod

2 Not applicable The cpu to be
allocated for
nudr-config-
server pod during
deployment

service.type UDR service type ClusterIP Possbile Values-

ClusterIP

NodePort

LoadBalancer

The kubernetes
service type for
exposing UDR
deployment

Note: Suggested
to be set as
ClusterIP (default
value) always

resources.reques
ts.memory

Memory
allotment for
nudr-drservice
pod

512Mi
Not applicable The memory to

be allocated for
nudr-config-
server pod during
deployment

enabled Flag to enable/
disable nudr-
config-server
service

true true/false

global.nfName It is NF name
used to add with
config server
service name.

nudr Not applicable

global.imageServ
iceDetector

Image Service
Detector for
config-server init
container

ocudr/readiness-
detector:latest

Not Applicable

global.envJaeger
AgentHost

Host FQDN for
Jaeger agent
service for
config-server
tracing

' ' Not Applicable

global.envJaeger
AgentPort

Port for
Connection to
Jaeger agent for
config-server
tracing

6831 Valid Port

resources.limits.c
pu

Cpu allotment
limitation

2 Not applicable

resources.limits.
memory

Memory
allotment
limitation

2Gi Not applicable

Chapter 3
Configuring User Parameters

3-32

Following table provides parameters for ocudr-ingressgateway micro service (API
Gateway)

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

global.type ocudr-
ingressgateway
service type

ClusterIP Possbile Values-

ClusterIP

NodePort

LoadBalancer

global.metalLbIp
AllocationEnable
d

Enable or disable
Address Pool for
Metallb

true true/false

global.metalLbIp
AllocationAnnotat
ion

Address Pool for
Metallb

metallb.universe.t
f/address-pool:
signaling

Not applicable

global.staticNode
PortEnabled

If Static node
port needs to be
set, then set
staticNodePortEn
abled flag to true
and provide value
for
staticNodePort

false Not applicable

global.publicHttp
SignalingPort

Port used on
which
ingressgateway
listens for
incoming http
requests.

80 Valid Port

global.publicHttp
sSignallingPort

Port used on
which
ingressgateway
listens for
incoming https
requests.

443 Valid Port

image.name Docker image
name

ocudr/
ocingress_gatew
ay

Not applicable

image.tag Image version
tag

1.7.7 Not applicable

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

initContainersIma
ge.name

Docker Image
name

ocudr/
configurationinit

Not applicable

initContainersIma
ge.tag

Image version
tag

1.2.0 Not applicable

initContainersIma
ge.pullPolicy

This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

Chapter 3
Configuring User Parameters

3-33

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

updateContainer
sImage.name

Docker Image
name

ocudr/
configurationupd
ate

Not applicable

updateContainer
sImage.tag

Image version
tag

1.2.0 Not applicable

updateContainer
sImage.pullPolicy

This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

service.ssl.tlsVer
sion

Configuration to
take TLS version
to be used

TLSv1.2 Valid TLS version These are
service fixed
parameters

service.ssl.privat
eKey.k8SecretNa
me

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.privat
eKey.k8NameSp
ace

namespace in
which secret is
created

ocudr Not applicable

service.ssl.privat
eKey.rsa.fileNam
e

rsa private key
stored in the
secret

rsa_private_key_
pkcs1.pem

Not applicable

service.ssl.privat
eKey.ecdsa.fileN
ame

ecdsa private key
stored in the
secret

ecdsa_private_ke
y_pkcs8.pem

Not applicable

service.ssl.certifi
cate.k8SecretNa
me

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.certifi
cate.k8NameSpa
ce

namespace in
which secret is
created

ocudr Not applicable

service.ssl.certifi
cate.rsa.fileName

rsa certificate
stored in the
secret

apigatewayrsa.ce
r

Not applicable

service.ssl.certifi
cate.ecdsa.fileNa
me

ecdsa certificate
stored in the
secret

apigatewayecdsa
.cer

Not applicable

service.ssl.caBun
dle.k8SecretNam
e

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.caBun
dle.k8NameSpac
e

namespace in
which secret is
created

ocudr Not applicable

service.ssl.caBun
dle.fileName

ca Bundle stored
in the secret

caroot.cer Not applicable

Chapter 3
Configuring User Parameters

3-34

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

service.ssl.keySt
orePassword.k8S
ecretName

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.keySt
orePassword.k8N
ameSpace

namespace in
which secret is
created

ocudr Not applicable

service.ssl.keySt
orePassword.file
Name

keyStore
password stored
in the secret

key.txt Not applicable

service.ssl.trustSt
orePassword.k8S
ecretName

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.trustSt
orePassword.k8N
ameSpace

namespace in
which secret is
created

ocudr Not applicable

service.ssl.trustSt
orePassword.file
Name

trustStore
password stored
in the secret

trust.txt Not applicable

service.initialAlgo
rithm

Algorithm to be
used

ES256 can also
be used, but
corresponding
certificates need
to be used.

RSA256 RSA256/ES256

resources.limits.c
pu

Cpu allotment
limitation

5 Not applicable

resources.limits.
memory

Memory
allotment
limitation

4Gi Not applicable

resources.limits.i
nitServiceCpu

Maximum
amount of CPU
that Kubernetes
will allow the
ingress-gateway
init container to
use.

1 Not Applicable

resources.limits.i
nitServiceMemor
y

Memory Limit for
ingress-gateway
init container

1Gi Not Applicable

resources.limits.u
pdateServiceCpu

Maximum
amount of CPU
that Kubernetes
will allow the
ingress-gateway
update container
to use.

1 Not Applicable

Chapter 3
Configuring User Parameters

3-35

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

resources.limits.u
pdateServiceMe
mory

Memory Limit for
ingress-gateway
update container

1Gi Not Applicable

resources.reques
ts.cpu

Cpu allotment for
ocudr-endpoint
pod

5 Not Applicable

resources.reques
ts.memory

Memory
allotment for
ocudr-endpoint
pod

4Gi Not Applicable

resources.reques
ts.initServiceCpu

The amount of
CPU that the
system will
guarantee for the
ingress-gateway
init container,
and K8s will use
this value to
decide on which
node to place the
pod

Not Applicable

resources.reques
ts.initServiceMe
mory

The amount of
memory that the
system will
guarantee for the
ingress-gateway
init container, and
Kubernetes will
use this value to
decide on which
node to place the
pod

Not Applicable

resources.reques
ts.updateService
Cpu

The amount of
CPU that the
system will
guarantee for the
ingress-gateway
update container,
and Kubernetes
will use this value
to decide on
which node to
place the pod.

Not Applicable

resources.reques
ts.updateService
Memory

The amount of
memory that the
system will
guarantee for the
ingress-gateway
update container,
and Kubernetes
will use this value
to decide on
which node to
place the pod.

Not Applicable

Chapter 3
Configuring User Parameters

3-36

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

resources.target.
averageCpuUtil

CPU utilization
limit for
autoscaling

80 Not Applicable

minAvailable Number of pods
always running

2 Not Applicable

minReplicas Min replicas to
scale to maintain
an average CPU
utilization

2 Not applicable

maxReplicas Max replicas to
scale to maintain
an average CPU
utilization

5 Not applicable

log.level.root Logs to be shown
on ocudr-
endpoint pod

WARN valid level

log.level.ingress Logs to be shown
on ocudr-
ingressgateway
pod for ingress
related flows

INFO valid level

log.level.oauth Logs to be shown
on ocudr-
ingressgateway
pod for oauth
related flows

INFO valid level

initssl To Initialize SSL
related
infrastructure in
init/update
container

false Not Applicable

jaegerTracingEna
bled

Enable/Disable
Jaeger Tracing

false true/false

openTracing.jaeg
er.udpSender.hos
t

Jaeger agent
service FQDN

occne-tracer-
jaeger-
agent.occne-infra

Valid FQDN

openTracing.jaeg
er.udpSender.por
t

Jaeger agent
service UDP port

6831 Valid Port

openTracing.jaeg
er.probabilisticSa
mpler

Probablistic
Sampler on
Jaeger

0.5 Range: 0.0 - 1.0 Sampler makes a
random sampling
decision with the
probability of
sampling. For
example, if the
value set is 0.1,
approximately 1
in 10 traces will
be sampled

Chapter 3
Configuring User Parameters

3-37

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

Supported cipher
suites for ssl -

TLS_ECDHE_EC
DSA_WITH_AES
_256_GCM_SHA
384
 -
TLS_ECDHE_RS
A_WITH_AES_2
56_GCM_SHA38
4
 -
TLS_ECDHE_RS
A_WITH_CHACH
A20_POLY1305
_SHA256
 -
TLS_DHE_RSA_
WITH_AES_256
_GCM_SHA384
 -
TLS_DHE_RSA_
WITH_AES_256
_CCM
 -
TLS_ECDHE_EC
DSA_WITH_AES
_128_GCM_SHA
256
 -
TLS_ECDHE_RS
A_WITH_AES_1
28_GCM_SHA25
6

Not applicable

oauthValidatorEn
abled

OAUTH
Configuration

false Not Applicable

enableIncomingH
ttp

Enabling for
accepting http
requests

true Not Applicable

enableIncomingH
ttps

Enabling for
accepting https
requests

false true or false

enableOutgoingH
ttps

Enabling for
sending https
requests

false true or false

maxRequestsQu
euedPerDestinati
on

Queue Size at
the ocudr-
endpoint pod

5000 Not Applicable

Chapter 3
Configuring User Parameters

3-38

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

maxConnections
PerIp

Connections from
endpoint to other
microServices

10 Not Applicable

serviceMeshChe
ck

Load balancing
will be handled
by Ingress
gateway, if true it
would be handled
by serviceMesh

true true/false

Chapter 3
Configuring User Parameters

3-39

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

routesConfig Routes
configured to
connect to
different micro
services of UDR

- id:
traffic_mapp
ing_http
 uri:
http://{{ .R
elease.Name
}}-nudr-
drservice:50
01
 path: /
nudr-dr/**
 order: 1
- id:
traffic_mapp
ing_http_pro
v
 uri:
http://{{ .R
elease.Name
}}-nudr-
drservice:50
01
 path: /
nudr-dr-
prov/**
 order: 2
- id:
traffic_mapp
ing_http_mgm
t
 uri:
http://{{ .R
elease.Name
}}-nudr-
drservice:50
01
 path: /
nudr-dr-
mgm/**
 order: 3
- id:
traffic_mapp
ing_http_uds
f
 uri:
http://{{ .R
elease.Name
}}-nudr-

Not Applicable

Chapter 3
Configuring User Parameters

3-40

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

drservice:50
01
 path: /
nudsf-dr/**
 order: 4
- id:
traffic_mapp
ing_http_gro
up
 uri:
http://{{ .R
elease.Name
}}-nudr-
drservice:50
01
 path: /
nudr-group-
id-map/**
 order: 5
- id:
traffic_mapp
ing_http_gro
up_prov
 uri:
http://{{ .R
elease.Name
}}-nudr-
drservice:50
01
 path: /
nudr-group-
id-map-
prov/**
 order: 6
- id:
traffic_mapp
ing_http_slf
_group_prov
 uri:
http://{{ .R
elease.Name
}}-nudr-
drservice:50
01
 path: /slf-
group-
prov/**
 order: 7

Chapter 3
Configuring User Parameters

3-41

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

service.customEx
tension.labels

Custom Labels
that needs to be
added to
ingressgateway
specific service.

null Not Applicable This can be used
to add custom
label(s) to
ingressgateway
service.

service.customEx
tension.annotatio
ns

Custom
Annotations that
needs to be
added to
ingressgateway
specific services.

null Not Applicable This can be used
to add custom
annotation(s) to
ingressgateway
service.

deployment.custo
mExtension.label
s

Custom Labels
that needs to be
added to
ingressgateway
specific
deployment.

null Not Applicable This can be used
to add custom
label(s) to
ingressgateway
deployment.

deployment.custo
mExtension.anno
tations

Custom
Annotations that
needs to be
added to
ingressgateway
specific
deployment.

null Not Applicable This can be used
to add custom
annotation(s) to
ingressgateway
deployment.

Following table provides parameters for ocudr-egressgateway micro service (API
Gateway)

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

enabled Configuration flag
to enable/disable
egress gateway

true true/false

image.name Docker image
name

ocudr/
ocegress_gatewa
y

Not applicable

image.tag Image version
tag

1.7.7 Not applicable

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

initContainersIma
ge.name

Docker Image
name

ocudr/
configurationinit

Not applicable

initContainersIma
ge.tag

Image version
tag

1.2.0 Not applicable

Chapter 3
Configuring User Parameters

3-42

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

initContainersIma
ge.pullPolicy

This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

updateContainer
sImage.name

Docker Image
name

ocudr/
configurationupd
ate

Not applicable

updateContainer
sImage.tag

Image version
tag

1.2.0 Not applicable

updateContainer
sImage.pullPolicy

This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

resources.limits.c
pu

Cpu allotment
limitation

3 Not applicable

resources.limits.
memory

Memory
allotment
limitation

4Gi Not applicable

resources.limits.i
nitServiceCpu

Maximum
amount of CPU
that Kubernetes
will allow the
egress-gateway
init container to
use.

1 Not applicable

resources.limits.i
nitServiceMemor
y

Memory Limit for
egress-gateway
init container

1Gi Not applicable

resources.limits.u
pdateServiceCpu

Maximum
amount of CPU
that Kubernetes
will allow the
egress-gateway
update container
to use.

1 Not applicable

resources.limits.u
pdateServiceMe
mory

Memory Limit for
egress-gateway
update container

1Gi Not applicable

resources.reques
ts.cpu

Cpu allotment for
ocudr-
egressgateway
pod

3 Not applicable

resources.reques
ts.memory

Memory
allotment for
ocudr-
egressgatewaypo
d

4Gi Not applicable

Chapter 3
Configuring User Parameters

3-43

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

resources.reques
ts.initServiceCpu

The amount of
CPU that the
system will
guarantee for the
egress-gateway
init container, and
Kubernetes will
use this value to
decide on which
node to place the
pod

Not Applicable

resources.reques
ts.initServiceMe
mory

The amount of
memory that the
system will
guarantee for the
egress-gateway
init container, and
Kubernetes will
use this value to
decide on which
node to place the
pod

Not Applicable

resources.reques
ts.updateService
Cpu

The amount of
CPU that the
system will
guarantee for the
egress-gateway
update container,
and Kubernetes
will use this value
to decide on
which node to
place the pod.

Not Applicable

resources.reques
ts.updateService
Memory

The amount of
memory that the
system will
guarantee for the
egress-gateway
update container,
and Kubernetes
will use this value
to decide on
which node to
place the pod.

Not Applicable

resources.target.
averageCpuUtil

CPU utilization
limit for
autoscaling

80 Not applicable

service.ssl.tlsVer
sion

Configuration to
take TLS version
to be used

TLSv1.2 Valid TLS version These are
service fixed
parameters

Chapter 3
Configuring User Parameters

3-44

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

service.initialAlgo
rithm

Algorithm to be
used

ES256 can also
be used, but
corresponding
certificates need
to be used.

RSA256 RSA256/ES256

service.ssl.privat
eKey.k8SecretNa
me

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.privat
eKey.k8NameSp
ace

namespace in
which secret is
created

ocudr Not applicable

service.ssl.privat
eKey.rsa.fileNam
e

rsa private key
stored in the
secret

rsa_private_key_
pkcs1.pem

Not applicable

service.ssl.privat
eKey.ecdsa.fileN
ame

ecdsa private key
stored in the
secret

ecdsa_private_ke
y_pkcs8.pem

Not applicable

service.ssl.certifi
cate.k8SecretNa
me

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.certifi
cate.k8NameSpa
ce

namespace in
which secret is
created

ocudr Not applicable

service.ssl.certifi
cate.rsa.fileName

rsa certificate
stored in the
secret

apigatewayrsa.ce
r

Not applicable

service.ssl.certifi
cate.ecdsa.fileNa
me

ecdsa certificate
stored in the
secret

apigatewayecdsa
.cer

Not applicable

service.ssl.caBun
dle.k8SecretNam
e

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.caBun
dle.k8NameSpac
e

namespace in
which secret is
created

ocudr Not applicable

service.ssl.caBun
dle.fileName

ca Bundle stored
in the secret

caroot.cer Not applicable

service.ssl.keySt
orePassword.k8S
ecretName

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.keySt
orePassword.k8N
ameSpace

namespace in
which secret is
created

ocudr Not applicable

Chapter 3
Configuring User Parameters

3-45

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

service.ssl.keySt
orePassword.file
Name

keyStore
password stored
in the secret

key.txt Not applicable

service.ssl.trustSt
orePassword.k8S
ecretName

name of the
secret which
stores keys and
certificates

ocudr-gateway-
secret

Not applicable

service.ssl.trustSt
orePassword.k8N
ameSpace

namespace in
which secret is
created

ocudr Not applicable

service.ssl.trustSt
orePassword.file
Name

trustStore
password stored
in the secret

trust.txt Not applicable

minAvailable Number of pods
always running

1 Not Applicable

minReplicas Min replicas to
scale to maintain
an average CPU
utilization

1 Not applicable

maxReplicas Max replicas to
scale to maintain
an average CPU
utilization

4 Not applicable

log.level.root Logs to be shown
on ocudr-
egressgateway
pod

WARN valid level

log.level.egress Logs to be shown
on ocudr-
egressgateway
pod for egress
related flows

INFO valid level

log.level.oauth Logs to be shown
on ocudr-
egressgateway
pod for oauth
related flows

INFO valid level

fullnameOverride Name to be used
for deployment

ocudr-
egressgateway

Not applicable This config is
commented by
default.

initssl To Initialize SSL
related
infrastructure in
init/update
container

false Not Applicable

jaegerTracingEna
bled

Enable/Disable
Jaeger Tracing

false true/false

openTracing.jaeg
er.udpSender.hos
t

Jaeger agent
service FQDN

occne-tracer-
jaeger-
agent.occne-infra

Valid FQDN

Chapter 3
Configuring User Parameters

3-46

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

openTracing.jaeg
er.udpSender.por
t

Jaeger agent
service UDP port

6831 Valid Port

openTracing.jaeg
er.probabilisticSa
mpler

Probablistic
Sampler on
Jaeger

0.5 Range: 0.0 - 1.0 Sampler makes a
random sampling
decision with the
probability of
sampling. For
example if the
value set is 0.1,
approximately 1
in 10 traces will
be sampled.

enableOutgoingH
ttps

Enabling for
sending https
requests

false true or false

oauthClientEnabl
ed

Enable if oauth is
required

false true or false Enable based on
Oauth
configuration

nrfAuthority Nrf Authoriy
configuration

10.75.224.7:8085 Not Applicable

nfInstanceId Nrf Instance Id fe7d992b-0541-4
c7d-ab84-
c6d70b1b01b1

Not Applicable

consumerPlmnM
NC

plmnmnc 345 Not Applicable

consumerPlmnM
CC

plmnmcc 567 Not Applicable

k8sServiceCheck Enable this if
loadbalancing is
to be done by
egress instead of
K8s

false true/false

service.customEx
tension.labels

Custom Labels
that needs to be
added to
egressgateway
specific Service.

null Not applicable This can be used
to add custom
label(s) to
egressgateway
Service.

service.customEx
tension.annotatio
ns

Custom
Annotations that
needs to be
added to
egressgateway
specific Services.

null Not applicable This can be used
to add custom
annotation(s) to
egressgateway
Service.

deployment.custo
mExtension.label
s

Custom Labels
that needs to be
added to
egressgateway
specific
Deployment.

null Not applicable This can be used
to add custom
label(s) to
egressgateway
Deployment.

Chapter 3
Configuring User Parameters

3-47

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

deployment.custo
mExtension.anno
tations

Custom
Annotations that
needs to be
added to
egressgateway
specific
Deployment.

null Not applicable This can be used
to add custom
annotation(s) to
egressgateway
deployment.

Following table provides parameters for nudr-diameterproxy micro service.

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

enabled To enable
service.

false Not applicable Used to enable
or disable
service.

image.name Docker Image
name

ocudr/
nudr_diameterpr
oxy

Not applicable

image.tag Tag of Image 1.7.1 Not applicable

image.pullPolicy This setting will
tell if image need
to be pulled or
not

Always Possible Values -

Always

IfNotPresent

Never

logging.level.root Log Level WARN Possible Values -

WARN

INFO

DEBUG

The log level of
the nudr-
diameterproxy
server pod

deployment.replic
aCount

Replicas of the
nudr-
diameterproxy
pod

2 Not applicable Number of nudr-
config-server
pods to be
maintained by
replica set
created with
deployment

minReplicas min replicas of
nudr-
diameterproxy

2 Not applicable Minimum number
of pods

maxReplicas max replicas of
nudr-
diameterproxy

4 Not applicable Maximum
number of pods

service.http2ena
bled

Enabled HTTP2
support flag for
rest server

true true/false Enable/Disable
HTTP2 support
for rest server

Chapter 3
Configuring User Parameters

3-48

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

service.type UDR service type ClusterIP Possible Values-

ClusterIP

NodePort

LoadBalancer

The Kubernetes
service type for
exposing UDR
deployment

Note: Suggested
to be set as
ClusterIP (default
value) always

service.diameter.t
ype

Diameter service
type

LoadBalancer Possible Values-

ClusterIP

NodePort

LoadBalancer

The Kubernetes
service type for
exposing UDR
deploymentdiame
ter traffic goes
via diameter-
endpoint, not via
ingress-gateway

service.port.http HTTP port 5001 Not applicable The HTTP port to
be used in nudr-
diameterproxy
service

service.port.https HTTPS port 5002 Not applicable The https port to
be used for nudr-
diameterproxy
service

service.port.man
agement

Management
port

9000 Not applicable The actuator
management
port to be used
for nudr-
diameterproxy
service

service.port.diam
eter

Diameter port 6000 Not applicable The diameter
port to be used
for nudr-
diameterproxy
service

resources.reques
ts.cpu

Cpu Allotment for
nudr-
diameterproxy
pod

3 Not applicable The CPU to be
allocated for
nudr-
diameterproxy
pod during
deployment

resources.reques
ts.memory

Memory
allotment for
nudr-
diameterproxy
pod

4Gi
Not applicable The memory to

be allocated for
nudr-
diameterproxy
pod during
deployment

resources.limits.c
pu

Cpu allotment
limitation

3 Not applicable The CPU to be
max allocated for
nudr-
diameterproxy
pod

Chapter 3
Configuring User Parameters

3-49

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

resources.limits.
memory

Memory
allotment
limitation

4Gi Not applicable The memory to
be max allocated
for nudr-
diameterproxy
pod

resources.target.
averageCpuUtil

CPU utilization
limit for
autoscaling

80 Not Applicable CPU utilization
limit for creating
HPA

drservice.port.htt
p

HTTP port on
which dr service
is running

5001 Not Applicable dr-service port is
required in
diameterproxy
application

drservice.port.htt
ps

HTTPS port on
which dr service
is running

5002 Not Applicable dr-service port is
required in
diameterproxy
application

diameter.realm Realm of the
diameterproxy
microservice

oracle.com String value Host realm of
diameterproxy

diameter.identity FQDN of the
diameterproxy in
diameter
messages

nudr.oracle.com String value identity of the
diameterproxy

diameter.strictPar
sing

Strict parsing of
Diameter AVP
and Messages

false Not Applicable strict parsing

diameter.IO.threa
dCount

Number of thread
for IO operation

0 0 to 2* CPU Number of
threads to handle
IO operations in
diameterproxy
pod

if threadcount is
0 then application
choose the
threadCount
based on pod
profile size

diameter.IO.queu
eSize

Queue size for IO 0 2048 to 8192 the count should
be the power of 2

if queueSize is 0
then application
choose the
queueSize based
on pod profile
size

Chapter 3
Configuring User Parameters

3-50

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

diameter.messag
eBuffer.threadCo
unt

Number of
threads for
process the
message

0 0 to 2* CPU Number of
threads to handle
meassages in
diameterproxy
pod

if threadcount is
0 then application
choose the
threadCount
based on pod
profile size

diameter.peer.set
ting

Diameter peer
setting

reconnectDelay:
3

responseTimeout
: 4

connectionTimeO
ut: 3

watchdogInterval:
6

transport: 'TCP'

reconnectLimit:
50

Not Applicable 1. reconnect
delay for
diameter
reonnect (in
seconds).

2. total
turnaround
time for
process the
diameter
messages.
(in sec)

3. TCP
connection
timeout time.
(in sec)

4. DWR and
DWA
messages
every
number of
time (in sec)

5. Transport
layer

6. reconnect
the number
of time if
diameter
peer is down

Chapter 3
Configuring User Parameters

3-51

Parameter Description Default value Range or
Possible Values
(If applicable)

Notes

diameter.peer.no
des

diameter server
peer nodes list

- name: 'seagull'

responseOnly:
false

namespace:
'seagull1'

host:
'10.75.185.158'

domain:
'svc.cluster.local'

port: 4096

realm:
'seagull1.com'

identity:
'seagull1a.seagul
l1.com'

Not applicable the diameter
server peer node
information

*it should be
yaml list

*default values
are template ,
how to add peer
nodes.

diameter.peer.clie
ntNodes

diameter client
peers

- identity:
'seagull1a.seagul
l1.com'

realm:
'seagull1.com'

- identity:
'seagull1.com'

realm:
'seagull1.com'

Not applicable the diameter
client node
information

*it should be
yaml list

*default values is
template, how to
add peer nodes.

service.customEx
tension.labels

Custom Labels
that needs to be
added to nudr-
diameterproxy
specific Service.

null Not applicable This can be used
to add custom
label(s) to nudr-
diameterproxy
Service.

service.customEx
tension.annotatio
ns

Custom
Annotations that
needs to be
added to nudr-
diameterproxy
specific Services.

null Not applicable This can be used
to add custom
annotation(s) to
nudr-
diameterproxy
Service.

deployment.custo
mExtension.label
s

Custom Labels
that needs to be
added to nudr-
diameterproxy
specific
Deployment.

null Not applicable This can be used
to add custom
label(s) to nudr-
diameterproxy
Deployment.

deployment.custo
mExtension.anno
tations

Custom
Annotations that
needs to be
added to nudr-
diameterproxy
specific
Deployment.

null Not applicable This can be used
to add custom
annotation(s) to
nudr-
diameterproxy
Deployment.

Chapter 3
Configuring User Parameters

3-52

4
Upgrading an Existing Unified Data
Repository Deployment

Note:

IF YOU HAVE ENABLED SERVICE MESH THEN YOU HAVE TO INSTALL
UDR. YOU CANNOT UPGRADE FROM UDR 1.7.0 TO UDR 1.7.1.
HOWEVER, IF THE SERVICE MESH IS NOT ENABLED THEN YOU CAN
UPGRADE FROM UDR 1.7.0 TO UDR 1.7.1 BY FOLLOWING THE HELM
UPGRADE SECTION DIRECTLY. WHILE UPGRADING, YOU CAN SKIP
THE DB SCHEMA UPGRADE SECTION.

To upgrade an existing UDR deployment, first upgrade the DB schema and then,
perform the helm upgrade.

User should stop the Provisioning traffic while performing the upgrade procedure.

Note:

For SLF, upgrade feature is not supported from 1.7.0 to 1.7.1. Hence, these
instructions are not applicable for the same.

DB Schema Upgrade

You should install mysql-connector and Python3 before upgrading the DB schema. If
Python3 is not available, then execute the commands given below on one of the sql
nodes for dbschema upgrade.

yum install gcc openssl-devel bzip2-devel sqlite-devel
cd /usr/src/
wget https://www.python.org/ftp/python/3.6.10/Python-3.6.10.tgz
tar xzf Python-3.6.10.tgz
cd Python-3.6.10
./configure --enable-optimizations
make altinstall
python3.6 -V (To check if installation is OK)

To install mysql-connector using pip, execute the following commands on the sql
node.

python3.6 -m pip install -U setuptools
python3.6 -m pip install -U wheel
python3.6 -m pip install -U mysql-connector-python-rf

4-1

https://www.python.org/ftp/python/3.6.10/Python-3.6.10.tgz

Modify username, password and db name in the script as per requirement.

Note:

You can refer to the Oracle Help Center for upgrade.py script to upgrade to
1.7.0 schema.

For db upgrade, execute the following command:

python3.6 upgrade.py

Helm Upgrade

Upgrading an existing deployment replaces the running containers and pods with new
containers and pods. If there is no change in the pod configuration, it is not replaced.
Unless there is a change in the service configuration of a micro service, the service
endpoints remain unchanged. For example, ClusterIP.

• To upgrade, follow instructions given in the Deploying OCUDR section to extract
the required OCUDR software components. If required, re-tag and push the
images to customer's repository. For more information, see UDR Deployment.

• Take a backup of 1.6.0 version's ocudr-custom-values.yaml file before changing
any configuration.

• Modify the ocudr-custom-values-1.7.0.yaml file parameters as per
site requirement. For more information on updating the ocudr-custom-
values-1.7.0.yaml file, see ocudr-custom-values.yaml File Configuration.

Execute the following command to upgrade an existing Unified Data Repository
deployment. For the parameters that are configurable, see . Customizing Unified Data
Repository

$ helm upgrade <release> <helm chart> [--version <OCUDR version>] -f
<ocudr-custom-values-1.7.0.yaml>

<release> could be found in the output of 'helm list' command
<chart> is the name of the chart in the form of <repository/ocudr> e.g.
reg-1/ocudr or cne-repo/ocudr

Rollback Instructions

Execute the following command to check if the pods are successfully started.

kubectl get pods -n <namespace_name>

If there are issues that a user cannot recover on checking logs and describe on pods,
rollback using the steps below:

Schema Rollback:

1. Rollback schema to 1.6.0.

2. Use the rollback.py script to downgrade to 1.6.0 schema, modify username,
password and db name as per requirement.
python rollback.py

Chapter 4

4-2

Note:

You can refer to the Oracle Help Center site for the rollback.py script.

Image Rollback using Helm:

1. Use the backed up customized 1.6.0 version's ocudr-values.yaml file to rollback
to previous version.

2. Execute the helm rollback command.
helm rollback <helm release name> <revision_no>

To obtain the revision number, execute the following command :
helm history <helm release name>

Chapter 4

4-3

5
Troubleshooting Unified Data Repository

In this chapter, you will learn about the known issues that you may encounter while
installing or working on Unified Data Repository and the techniques to troubleshoot
these issues. It covers:

• Generic Checklist

• Verifying UDR Registration with NRF

• Verifying Container Logs

• Verifying OCUDR Micro Services Logs

• Debugging Errors from Egress Gateway

• Debugging Errors from Ingress Gateway

• Debugging Helm Test Issues

• Debugging HPA Issues

• Debugging HTTPS Support related Issues

• Debugging Notification Issues

• Debugging Pod Creation Failure

• Debugging UDR Registration with NRF Failure

Generic Checklist
The following generic checklist helps you to ensure that your system is configured
properly and there is no issue with basic system setup:

• Execute the following command to check the installation of kubectl.
$ kubectl

If Kubectl is not installed, you can visit https://kubernetes.io/docs/tasks/tools/
install-kubectl/

• Execute the following command to check the installation of helm.
$ helm ls

If helm is not installed, execute the following set of commands one after another to
install helm:

1. curl -o /tmp/helm.tgz https://storage.googleapis.com/kubernetes-helm/helm-v2.9.1-
linux-amd64.tar.gz. Replace with appropriate http link.

2. tar -xzvf /tmp/helm.tgz -C /usr/local/bin --strip-components=1
linux-amd64/helmrm -f /tmp/helm.tgz

3. kubectl create serviceaccount --namespace kube-system tiller

4. kubectl create clusterrolebinding tiller-cluster-rule --
clusterrole=cluster-admin --serviceaccount=kube-system:tiller

5. helm init --service-account tiller

5-1

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://storage.googleapis.com/kubernetes-helm/helm-v2.9.1-linux-amd64.tar.gz
https://storage.googleapis.com/kubernetes-helm/helm-v2.9.1-linux-amd64.tar.gz

6. kubectl get po -n kube-system # Wait for tiller pod to be up

7. helm ls # Does not return an error. Try again if returns an error as tiller pod
may be coming up.

8. helm install. If this command fails immediately with syntax error, check the
syntax and values in the values.yaml file. [If values.yaml file is used in helm
install command, else contact the UDR development team.]

• Execute the following command to check the installation of UDR.
$ kubectl get pods -n <ocudr-namespace>

Figure 5-1 Sample Output: UDR Pods Status

In the figure given above, the STATUS of all the pods is 'Running'.

• Execute the following command to view all the events related to a particular
namespace.
kubectl get events -n <ocudr-namespace>

• Verify UDR Pods: Execute the following command to verify whether UDR specific
pods are working as expected:
$ kubectl get pods -n <ocudr-namespace>

Figure 5-2 Sample Output: UDR Pods Status

In the figure given above, you can see that the status of all the pods is 'Running'.

Note:

The number of pods for each service depends on helm configuration. In
addition, all pods should be in ready state and you need to ensure that
there are no continuous restarts.

• Verify Database Connectivity: After verifying UDR pods, login to NDB cluster
and verify the creation of udrdb with all the tables. To check the entries in the
database tables, you need to execute following command:
select count(*) from RESOURCE_MAP

Chapter 5
Generic Checklist

5-2

It ensures that the connection is fine and the database is created successfully.
This count differs based on the udrServices option selected under global section
in values. But this table cannot be empty.

Figure 5-3 Sample Output: Verifying Table Entries in Database

• Verify Subscribers: To verify UDR subscribers, you need to verify the
provisioning flow on UDR. You can use the following provisioning URL supported
on UDR to verify the provisioning flow:

– If you use external tools like postman and http2 curl, then follow this URL:
http://<ocudr-ingress-gateway-ip>:<http-external-port>/nudr-dr-
prov/v1/profile-data/msisdn-1111111113

In case of curl, the client should support a http2 curl utility.

– If https is enabled in UDR ingress gateway, then follow this URL:
https://<ocudr-ingress-gateway-ip>:<https-external-port>/nudr-dr-
prov/v1/profile-data/msisdn-1111111113

Verifying provisioning flow on UDR also confirms udrdb status on the NDB cluster.

• Verify Logs: Check the logs of nudr-nrf-client-service for no 503 errors. This helps
to find out if all the fqdn configured, as part of helm configurations, in values are
resolvable.

• Verify NRF registration: Once the deployment has passed the above checks,
verify the udr_nrf_registration_success_total metric on prometheus after couple
of minutes of UDR deployment.

Verifying UDR Registration with NRF
Execute the following commands to verify whether UDR is registered with NRF.

• With HTTP1 messaging
curl -v -X GET --url 'http://<FQDN:PORT of NRF-API_Gateway>/nnrf-
nfm/v1/nf-instances?nf-type=UDR'

Example: curl -v --http2-prior-knowledge -X GET --url 'http://ocnrf-
ingressgateway.ocnrf/nnrf-nfm/v1/nf-instances?nf-type=UDR'

• With HTTP2 messaging
curl -v --http2-prior-knowledge -X GET --url 'http://<FQDN:PORT of
NRF-API_Gateway>/nnrf-nfm/v1/nf-instances?nf-type=UDR'

Example: curl -v --http2-prior-knowledge -X GET --url 'http://ocnrf-
ingressgateway.ocnrf/nnrf-nfm/v1/nf-instances?nf-type=UDR'

Chapter 5
Generic Checklist

5-3

Note:

User should have curl version that supports --http2-prior-knowledge
option.

Verifying Container Logs
You can check the container logs in the /var/log/containers location on the
appropriate nodes where the pods are running.

Figure 5-4 Container Logs

Verifying OCUDR Microservices Logs
In this section, you will learn to check logs of the following microservices:

• OCUDR-NUDR-DRSERVICE

• NRF-CLIENT-SERVICE

• NUDR-NOTIFY-SERVICE

• NUDR-CONFIG-SERVICE

• NUDR-CONFIG-SERVER

• NUDR-DIAMETERPROXY Service

Checking Logs in OCUDR-NUDR-DRSERVICE

OCUDR-NUDR-DRSERVICE dumps all the header while processing messages. User
should search for "Before Request/After Request" header in the messages.
If nudr-drservice requests are failing, check the count of
udr_schema_operations_failure_total measurement. If this count is increasing:

• Check the content of incoming requests

• Ensure that the incoming json data blob is proper

• Connectivity between microservices are mysql DB nodes

• Try not to insert duplicate keys

• Ensure DB nodes have enough resources available

To view logs, execute the following command:
kubectl logs -f <nudr-drservice pod> -n <ocudr-namespace>

To check logs directly on the pods, execute the following command:

Chapter 5
Generic Checklist

5-4

kubectl exec -it ocudr-nudr-drservice-779c67b9f-sjcmv bash

To change logging level in the ocudr-nudr-drservice using helm:

1. Open the latest ocudr_value.yaml file that is used at the time of ocudr installation/
upgrade.

2. Change the value of "logging level root" attribute under "ocudr" to "INFO".

Note:

OCUDR supports logging level values: DEBUG, INFO, WARN and
ERROR.

3. Execute the following helm upgrade command to change the log level:
helm upgrade ocudr ocudr-helm-repo/ocudr -f <updated values.yaml with
logging level as INFO> --version <helm version>

Checking Logs in NUDR-NRF-CLIENT-SERVICE

If the count of udr_nrf_livenessProbe_failure_total measure increases, you need to
ensure that helm charts configuration for “nudr-nrf-client-service” is correct and NRF
server is up and running fine.

If nudr-nrf-client-service is not able to register with NRF and
there is a difference between “udr_nrf_registration_requests_total” and
“udr_nrf_registration_success_total”, then you need to ensure that helm charts
configuration for “nudr-nrf-client-service” are correct.

If nudr-nrf-client-service is not able to de-register with NRF and
there is a difference between “udr_nrf_deregistration_requests_total” and
“udr_nrf_deregistration_success_total”, then you need to ensure that helm charts
configuration for “nudr-nrf-client-service” are correct.

To view the NUDR-NRF-CLIENT-SERVICE logs, execute the following command:

kubectl logs <nrf-client-pod pod> -n <ocudr-namespace>

To check logs directly on the pods, refer to the screen given below:

Figure 5-5 NRF-Client-Service Logs

To change logging level in the nrf-client-service using helm:

1. Open the latest ocudr_value.yaml file that is used at the time of ocudr installation/
upgrade.

Chapter 5
Generic Checklist

5-5

2. Change the value of "logging level root" attribute under "nrfclient" to "INFO".

Note:

nudr-nrf-client-service supports logging level values: DEBUG, INFO,
WARN and ERROR.

3. Execute the following helm upgrade command to change the log level:
helm upgrade ocudr ocudr-helm-repo/ocudr -f <updated values.yaml with
logging level as INFO> --version <helm version>

Checking Logs in NUDR-NOTIFY-SERVICE

Measurements like nudr_notif_notifications_ack_2xx_total,
nudr_notif_notifications_ack_4xx_total, and
nudr_notif_notifications_ack_5xx_total gives information about the response
code returned in the notification response. If the count of
nudr_notif_notifications_send_fail_total measurement increases, then you need
to ensure that the notification server mentioned in the NOTIFICATION_URI during
subscription request is up and running.

To view the NUDR-NOTIFY-SERVICE logs, execute the following command:

kubectl logs <nudr-notify-service pod> -n <ocudr-namespace>

To check logs directly on the pods, refer to the screen given below:

Figure 5-6 NUDR-NOTIFY-SERVICE Logs

To change logging level in the nudr-notify-service using helm:

1. Open the latest ocudr_value.yaml file that is used at the time of ocudr installation/
upgrade.

2. Change the value of "logging level root" attribute under "ocudr" to "INFO".

Note:

nudr-notify-service supports logging level values: DEBUG, INFO, WARN
and ERROR.

3. Execute the following helm upgrade command to change the log level:
helm upgrade ocudr ocudr-helm-repo/ocudr -f <updated values.yaml with
logging level as INFO> --version <helm version>

Chapter 5
Generic Checklist

5-6

Checking Logs in NUDR-CONFIG-SERVICE

To view logs, execute the following command:
kubectl logs <nudr-config pod> -n <ocudr-namespace>

To check logs directly on the pods, refer to the screen given below:

Figure 5-7 NUDR-CONFIG-SERVICE Logs

To change logging level in the ocudr-nudr-config service using helm:

1. Open the latest ocudr_value.yaml file that is used at the time of ocudr installation/
upgrade.

2. Change the value of "logging level root" attribute under "ocudr" to "INFO".

Note:

OCUDR supports logging level values: DEBUG, INFO, WARN and
ERROR.

3. Execute the following helm upgrade command to change the log level:
helm upgrade ocudr ocudr-helm-repo/ocudr -f <updated values.yaml with
logging level as INFO> --version <helm version>

Checking Logs in NUDR-CONFIG-SERVER

To view logs, execute the following command:
kubectl logs <nudr-config-server pod> -n <ocudr-namespace>

To change logging level in the ocudr-nudr-config-server service using helm:

1. Open the latest ocudr_value.yaml file that is used at the time of ocudr installation/
upgrade.

2. Change the value of "logging level root" attribute under "ocudr" to "INFO".

Note:

OCUDR supports logging level values: DEBUG, INFO, WARN and
ERROR.

Chapter 5
Generic Checklist

5-7

3. Execute the following helm upgrade command to change the log level:
helm upgrade ocudr ocudr-helm-repo/ocudr -f <updated values.yaml with
logging level as INFO> --version <helm version>

Checking Logs in NUDR-DIAMETERPROXY Service

Debug errors from ocudr-nudr-diameterproxy:

• If diameterproxy rejects any request or you are not able to send any request
from seagull machines, it means the dictionary file is not loaded correctly to the
application. You need to check the dictionary path and change it, if required and
redeploy the diameterproxy service. (The dictionary file path should be "/home/
udruser/app/diameter").

• If diameterproxy answers CEA message with DIAMETER_UNKNOWN_PEER, it
means client peer is not configured correctly. To resolve this, configure client peer
of nudr-diameterproxy service.

• If diameterproxy answers CEA message success and other SH message
response as DIAMETER_UNABLE_TO_COMPLY, it means the dr-service pod
is not up and running or sent sh message is invalid. You can check dr-service
failure using nudr_diameterproxy_rest_failure_res_msgs_total metrics name
and invalid sh message, if nudr_diameterproxy_total_requests_total metric is
not increasing .

• If there are many error logs in diameterproxy micro service stating connection
refused with some IP Address and port, it means specified server peer in helm
charts is not running and diameterproxy retries to connect with that peer.

• If you are not getting any PNR messages then check whether dr-service and
notify-service is up and running. You need to ensure that server peer configuration
is correct.

To view NUDR-DIAMETERPROXY service logs, execute the following command:
kubectl logs <nudr-diameterproxy pod> -n <ocudr-namespace>

To change logging level in the ocudr-nudr-diameterproxy service using helm:

1. Open the latest ocudr_value.yaml file that is used at the time of ocudr installation/
upgrade.

2. Change the value of "logging level root" attribute under "ocudr" to "INFO".

Note:

OCUDR supports logging level values: DEBUG, INFO, WARN and
ERROR.

3. Execute the following helm upgrade command to change the log level:
helm upgrade ocudr ocudr-helm-repo/ocudr -f <updated values.yaml with
logging level as INFO> --version <helm version>

Note:

You can use kibana also to view logs.

Chapter 5
Generic Checklist

5-8

Debugging Errors from Egress Gateway
If the traffic is not routed via Egress Gateway, you need to check the following:

• Check whether Egress Gateway is enabled or not from global values file.

• Check whether Egress pod is running from kubectl. To check, execute the
following command:
kubectl get pods -n <Release.name>

• To enable the outgoing traffic using HTTPS, you need to make the following
configuration as true:

Figure 5-8 Enabling Egress Traffic using HTTPS

• Create certs and keys uniquely for all Egress and respective Ingress NF's. For
more details, check the IngressGateway Container Stuck section in Init State/
Failed. It is same as Ingress debugging.

Debugging Errors from Ingress Gateway
The possible errors that you may encounter from Ingress Gateway are:

• Check for 500 Error: If the request fails with 500 status code without Problem
Details information, it means that the flow ended in ocudr-ingressgateway pod
without route. You can confirm the same in the errors/exception section of the
ocudr-ingressgateway pod logs. You also need to check the values.yaml file for the
essential route configuration as shown below:

Chapter 5
Debugging Errors from Egress Gateway

5-9

Figure 5-9 Snapshot of Values.yaml file

• Check for 503 Error: If the request fails with 503 status code with
"SERVICE_UNAVAILABLE" in Problem Details, then it means that the nudr-
drservice pod is not reachable due to some reason.

Figure 5-10 503 Error Code

You can confirm the same in the errors/exception logs of the ocudr-
ingressgateway pod. Check for ocudr-nudr-drservice pod status and fix the issue.

Chapter 5
Debugging Errors from Ingress Gateway

5-10

Debugging Helm Test Issues
To debug Helm Test issues:

• Execute the following command to get the Helm Test pod name.
kubectl get pods -n <deployment-namespace>

• Check for the Helm Test pod that is in error state.

Figure 5-11 Helm Test Pod

• Execute the following command to check the Helm Test pod:
kubectl logs <helm_test_pod_name> -n <deployment_namespace>

In the logs, concentrate on ERROR and WARN level logs. There can be multiple
reasons for failure. Some of hem are shown below:

Figure 5-12 Helm Test in Pending State

In this case, check for CPU and Memory availabality in the kubernetes cluster.

Figure 5-13 Pod Readiness Failed

In this case, check for readiness proble url correctness in the particular
microservice helm charts under charts folder. In the above case, check for charts

Chapter 5
Debugging Helm Test Issues

5-11

of notify service [OR] check if the pod is crashing for some reason when the url
configured for readiness probe is correct.

• There are few other cases where the httpGet parameter is not configured for
Readiness probe. In this case, Helm Test is considered as success for that pod.
And if the Pod/PVC list is fetched based on namespace and labelSelector is
empty, the helm test is considered as success.

Debugging HPA Issues
There can be scenarios where HPA running on nudr-drservice deployment and
nudr_notify_service might not get the CPU metrics successfully from the pods.
Execute the following command to view the HPA details:

kubectl get hpa

In this scenario, you need to check the following:

• Check whether metrics server is running on the kubernetes cluster. If it is running,
even then the CPU usage pod might not be accessible. In this case, you need to
check the metrics-server values yaml file for the args passed as shown below:

Figure 5-14 metrics-server yaml file

• If it requires any update, then do the same and restart the metrics server pod. You
have to wait for couple of minutes after starting the metrics server to see the CPU
usage update. For this, execute the kubectl get hpa command.

Figure 5-15 CPU Usage Update

Debugging HTTPS Support related Issues
UDR supports HTTPS and its validations are done at Ingress Gateway of UDR. You
may encounter issues related to HTTPS when:

• HTTPS port is not exposed: Execute the following command to figure out
whether HTTPS port is exposed or not:
kubectl get svc --n <ocudr-namespace>

Chapter 5
Debugging HPA Issues

5-12

Figure 5-16 HTTPS Port Exposed

Note:

In the above screen, the secure port is 443.

If the HTTPS port is not exposed, then enable the configuration information
highlighted in the following screen under the ingressgateway section of the
values.yaml file.

Figure 5-17 Configuration Info under Ingressgateway

• IngressGateway Container is stuck in Init State/Failed:The IngressGateway
Container can stuck due to any one of the following reasons:

– When config initssl is enabled under ingressgateway section of the
values.yaml file.

Figure 5-18 config initssl

– If config initssl is enabled, then you need to check whether secrets are created
with all required certificates. The following screenshot shows the commands
that you need to execute to check whether secrets are present and have all
the required data.

Chapter 5
Debugging HTTPS Support related Issues

5-13

Figure 5-19 Commands to check Secrets

• Config-Server Container Stuck in Hooks Init State: The UDR installation stucks
in Hooks Init state when there is database connection failure.

Figure 5-20 Config Server Container Status

Debugging Notification Issues
If UDR does not generate any notification, check the notify service port configuration
in the values.yaml file. These ports should be same as ports on which notify service is
running.

nudr-drservice:
...
...
...
 notify:
 port:
 http: 5001
 https: 5002

Debugging Pod Creation Failure
A pod creation can fail due to various reasons. Some of the possible scenarios are
explained below:

• Verifying pod image correctness: To verify pod image correctness:

– Verify whether any of the pod is in ImagePullBackOff state.

– To check whether the image name used for any pod is not correct, verify the
values given below in the values.yaml file.

nudr-drservice:
 ...

Chapter 5
Debugging Notification Issues

5-14

 image:
 repository: reg-1:5000/ocudr/
nudr_datarepository_service
 tag: 1.6.0

 nudr-nrf-client-service:
 ...
 image:
 repository: reg-1:5000/ocudr/nrf_client_service
 tag: 1.6.0

 nudr-notify-service:

 ...
 image:
 repository: reg-1:5000/ocudr/nudr_notify_service
 tag: 1.6.0

 nudr-config:

 ...
 image:
 repository: reg-1:5000/ocudr/nudr_config
 tag: 1.6.0

 nudr-config-server:

 ...
 image:
 repository: reg-1:5000/ocudr/ocpm_config_server
 tag: 1.6.0

– After updating the values.yaml file, execute the following command for helm
upgrade:
helm upgrade <helm chart> [--version <OCUDR version>] --name
<release> --namespace <ocudr-namespace> -f <ocudr_values.yaml>

• Verifying Resource Allocation Failure: To verify resource allocation failure:

– Verify whether any of the pod is in Pending state. If it is there, execute the
following command:
kubectl describe <nudr-drservice pod id> --n <ocudr-namespace>

– Verify whether any warning on Insufficient CPU exists in the describe output
of the respective pod. If it exists, it means there are insufficient CPU for the
pods to start. You have to either fix the hardware issue or reduce the number
of CPUs alloted to a pod in the values.yaml file.

nudr-drservice:
...
...
...
resources:

 limits:

Chapter 5
Debugging Pod Creation Failure

5-15

 cpu: 3

 memory: 4Gi

 requests:

 cpu: 3

 memory: 4Gi

nudr-notify-service:
...
...
...

resources:

 limits:

 cpu: 3

 memory: 4Gi

 requests:

 cpu: 3

 memory: 4Gi

nudr-config:
...
...
...

resources:

 limits:

 cpu: 3

 memory: 4Gi

 requests:

 cpu: 3

 memory: 4Gi

Chapter 5
Debugging Pod Creation Failure

5-16

nudr-config-server:
...
...
...

resources:

 limits:

 cpu: 2

 memory: 2Gi

 requests:

 cpu: 2

 memory: 512Mi

ingress-gateway:
...
...
...

resources:

 limits:

 cpu: 3

 memory: 4Gi

 requests:

 cpu: 3

 memory: 4Gi

– After updating the values.yaml file, execute the following command for helm
upgrade:
helm upgrade <helm chart> [--version <OCUDR version>] --name
<release> --namespace <ocudr-namespace> -f <ocudr_values.yaml>

• Verifying SQL Exception Failures with nudr-prehook pod:
nudr-prehook pod is added as part of 1.7 release. It creates UDR DB along with
the tables required. If it does not creates the DB, then to debug the pod failure
perform the following steps:

– Verify whether helm install command hangs for longer time or fails with
BackOffLimit exceeded error.

– Watch the kubectl get pods command based on the release namespace.

– Check whether nudr-preinstall pod is going to error state. This means the DB
creation has failed or connection to DB is not successful.

Chapter 5
Debugging Pod Creation Failure

5-17

– Execute the following command on logs:
kubectl logs <nudr-prehook pod id> --n <ocudr-namespace>

– Check the log output of the pods for any warning or SQL exceptions using
above command continuously. If any warning or SQL execption is found, it
means there is an issue with the SQL connection or the SQL Node. Examine
each exception thoroughly to find the root caue.

– Verify the following information in the values.yaml file.

global:
...
...
...
mysql:
 dbServiceName: "mysql-connectivity-service.occne-infra" #This
is a read only parameter. Use the default value.
 port: "3306"

– Ensure that the following service is available in the CNE.

Figure 5-21 Service Availability in CNE

– Check whether kubernetes secrets are present. If secrets exist, then check its
encrypted details like username, password and DB name. If these details does
not exist, then update the secrets.

– After making any changes, execute the following command to upgrade helm.
helm upgrade <helm chart> [--version <OCUDR version>] --name
<release> --namespace <ocudr-namespace> -f <ocudr_values.yaml>

For more details, you can refer to Kubernetes Secret Creation - DBName,
Username, Password and Encryption Key.

Debugging UDR Registration with NRF Failure
UDR registration with NRF may fail due to various reasons. Some of the possible
scenarios are as follows:

• Verify pod status: Verify whether all the pods are running or not. Ensure atleast
one replica for each microservice is up and running. If it is not running, check for
possible reasons. Once the issue resolves, UDR registers successfully with NRF.

• Verify NRF url correctness: Execute the following command to check the logs of
the ocudr-nudr-nrf-client-service pod:
kubectl logs <nrf-client-service pod id> --n <ocudr-namespace>

If the logs state that the connection with NRF fails as shown below:

10:07:01.335 [scheduling-1] WARN
ocudr.udr.services.client.RestClient
- Got error response
{nfInstanceId=3fd8556a-7804-4abd-8143-640904042d89,
answerStr=java.net.UnknownHostException: ocnrf-

Chapter 5
Debugging UDR Registration with NRF Failure

5-18

ingressgateway.mynrf.svc.cluster.local,
 response=<503,java.net.UnknownHostException: ocnrf-
ingressgateway.mynrf.svc.cluster.
local,[]>, nrfBaseUrl=http://ocnrf-
ingressgateway.mynrf.svc.cluster.local/nnrf-nfm/
v1/nf-instances, header={Content-Type=[application/json]},
uri=http://ocnrf-ingressgateway.mynrf.svc.cluster.local/nnrf-nfm/v1/
nf-instances/3fd8556a-7804-4abd-8143-640904042d89}

10:07:01.340 [scheduling-1] WARN
ocudr.udr.services.client.RestClient -
Got error response {answerStr=java.net.UnknownHostException: ocnrf-
ingressgateway.
mynrf.svc.cluster.local, headerMap={Content-Type=[application/
json]}, response=<503,
java.net.UnknownHostException: ocnrf-
ingressgateway.mynrf.svc.cluster.local,[]>,
profile={"nfInstanceId":"3fd8556a-7804-4abd-8143-640904042d89","nfTy
pe":"UDSF",
"nfStatus":"REGISTERED","fqdn":"ocudr-
ingressgateway.myudr.svc.cluster.local",
"udrInfo":{"supiRanges":[{"start":"1000000000

Then, verify the baseurl used for NRF in the values.yaml file (as shown below),
which is used for connection with NRF.

nudr-nrf-client-service:
...
...
...
 host:
 baseurl: "http://ocnrf-ingressgateway.mynrf.svc.cluster.local/
nnrf-nfm/v1/nf-instances"

• Verify UDR fqdn correctness: Execute the following command to check the logs
of the nrf-client-service pod:
kubectl logs <nrf-client-service pod id> --n <ocudr-namespace>

If the logs state that the FQDN used is not correct then the UDR registration with
NRF fails. You need to check the FQDN used in the values.yaml file as follows:

nudr-nrf-client-service:
...
...
...
 fqdn: "ocudr-ingressgateway.myudr.svc.cluster.local"

This helps to connect with NRF.

• Check for livenessProbeFailure: Execute the following command to check the
logs of the nrf-client-service pod.
kubectl logs <nrf-client-service pod id> --n <ocudr-namespace>

Chapter 5
Debugging UDR Registration with NRF Failure

5-19

If the logs state that the livenessProbe failed, check for similar logs as shown
below:

19:38:42.770 [scheduling-1] ERROR o.u.s.c.NRFRegistrationScheduler -
NFService liveness probe failed, ignore registration/update operation
{livenessProbeRetry=19}

19:39:12.772 [scheduling-1] WARN ocudr.udr.services.client.RestClient
- Got error response {answerStr=java.net.UnknownHostException:
nudr-drservice.myudr.svc.cluster.local: Temporary
failure in name resolution, uri=http://nudr-
drservice.myudr.svc.cluster.local:9000/actuator/health, url=http://
nudr-drservice.myudr.svc.cluster.local:9000/actuator/health,
headerMap=null, response=<503,java.net.UnknownHostException: nudr-
drservice.myudr.svc.cluster.local: Temporary failure in name
resolution,[]>}

In the values.yaml file, check the livenessProbeUrl, which is used for connection
with NRF.

nudr-nrf-client-service:
...
...
...
 livenessProbeUrl: ""

Debugging UDR with Service Mesh Failure
There are some known failure scenarios that you may encounter while installing UDR
with service mesh. The scenarios along with their solutions are as follows:

• Istio-Proxy side car container not attached to Pod: This particular failure arise
when istio injection is not enabled on the NF installed namespace. Execute the
following command to verify the same:
kubectl get namespace -L istio-injection

Figure 5-22 Verifying Istio-Proxy

To enable the istio injection, execute the following command:

kubectl label --overwrite namespace <nf-namespace> istio-
injection=enabled

Chapter 5
Debugging UDR with Service Mesh Failure

5-20

Other possible reason for this error could be that the below highlighted annotation
is missing from the deployment.

Figure 5-23 Global Section - Istio-Proxy Info

You need to add the highlighted annotation as shown above to the global section
for lbDeployments and nonlbDeployments parameters.

• UDR registration with NRF failed: This can be due to NF liveness probe failure.
You can confirm this on nudr-nrf-client-service pod logs. In this case, you need to
ensure that the management port of all UDR microservices are excluded from side
car envoy usage. You have to configure proper port as suggested in the below
annotation under nudr-nrf-client-service section.

Figure 5-24 Annotation to Configure Port

• If there are issues in viewing UDR metrics on OSO prometheus then you have to
add the annotation given below to all the deployments for the NF.

Chapter 5
Debugging UDR with Service Mesh Failure

5-21

Figure 5-25 Annotation to View UDR Metrics

Using Logs
The following table helps you to understand the logs you need to look into, to handle
different UDR debugging issues:

SNO Scenarios Pod Logs to be searched Log Level

1 Registration with NRF
Successful

nrf-client-service Register completed
successfully /
"nfServiceStatus":"RE
GISTERED"

INFO

2 Heartbeat message
log

nrf-client-service Update completed
successfully

INFO

3 NRF configurations
reloading

nrf-client-service NRF client config
reloaded

INFO

4 Check for exiting NF
Instance Entry

nrf-client-service No registered NF
instance exists

WARN

5 Started Application nrf-client-service Successful application
start

INFO

6 Started Application nudr-drservice Successful application
start

INFO

7 NRF Client Config
Initialized

nrf-client-service Initialize NRF client
configuration

INFO

8 FQDN/BASEURL/
livenessProbeUrl
Improper

nrf-client-service response=<503,java.n
et.UnknownHostExce
ption

WARN

Chapter 5
Using Logs

5-22

SNO Scenarios Pod Logs to be searched Log Level

9 nudr-drservice
liveness probe failure

nrf-client-service NFService liveness
probe failed

WARN

10 SQL Exception during
start up

nudr-drservice java.sql.SQLExceptio
n

WARN

11 DB connection pool
Established

nudr-drservice HikariPool-1 - Start
completed

INFO

12 Error Code Mapping
configurations loaded

nudr-drservice Loaded Error
Code Mapping
Configuration

INFO

13 Error Code Mapping
configurations loaded

nudr-drservice Loaded Error
Reason Mapping
Configuration

INFO

14 Error Code Mapping
configurations loaded

nudr-drservice Loaded Error
Title Mapping
Configuration

INFO

15 Error Code Mapping
configurations loaded

nudr-drservice Loaded Error
Type Mapping
Configuration

INFO

16 Check if Ports
successfully listening

nudr-drservice Undertow started on
port(s)

INFO

17 Check for message
received

nudr-drservice Before request
[uri=<uri-sent
excluding ip and port>

DEBUG

18 Check for message
processed

nudr-drservice After request
[uri=<uri-sent
excluding ip and port>

DEBUG

19 URI Pattern not
supported

nudr-drservice None match pattern
found for URL

WARN

20 Check if Ports
successfully listening

nrf-client-service Undertow started on
port(s)

INFO

21 Pod exit nudr-drservice HikariPool-1 -
Shutdown completed

INFO

22 DB username/ DB
password invalid

nudr-drservice Access denied for
user

WARN

23 Registration with NRF
failed

nrf-client-service Register failed ERROR

24 De registration with
NRF successful

nrf-client-service Deregister completed
successfully

INFO

25 De registration with
NRF failed

nrf-client-service Deregister failed ERROR

26 NF Profile update
failed

nrf-client-service Update failed ERROR

Chapter 5
Using Logs

5-23

6
Uninstalling Unified Data Repository

To uninstall or completely delete the Unified Data Repository (UDR) deployment,
execute the following command: helm del --purge <helm_release_name_for_ocudr>

Note:

In case you are using helm3, execute the following command to uninstall
UDR:

helm uninstall <helm_release_name_for_ocudr> --namespace
<ocudr_namespace>

6-1

A
ASM Specific Configuration

To configure ASM, you have to:

• Add the following annotation under Global section of UDR deployment.

******** Sub-Section Start: Custom Extension Global Parameters

#***

global:
 customExtension:
 allResources:
 labels: {}
 annotations:
 sidecar.istio.io/inject: "\"false\""

 lbServices:
 labels: {}
 annotations: {}

 lbDeployments:
 labels: {}
 annotations:
 sidecar.istio.io/inject: "\"true\""
 oracle.com/cnc: "\"true\""
 nonlbServices:
 labels: {}
 annotations: {}

 nonlbDeployments:
 labels: {}
 annotations:
 sidecar.istio.io/inject: "\"true\""
 oracle.com/cnc: "\"true\""

 # ******** Sub-Section End: Custiom Extensions Global Parameters

#***

• Enable Service Mesh Flag under ingressgateway section.

ingressgateway:
 # Mandatory: This flag needs to set it "true" is Service Mesh
would be present

A-1

 where UDR will be deployed
 serviceMeshCheck: true

• Change Ingress Gateway Service Type to ClusterIP under ingressgateway
section.

ingressgateway:
 global:
 # Service Type
 type: ClusterIP

• Exclude actuator ports from Aspen Mesh to avoid traffic through side car.
These ports are used as actuator ports (used for readiness/liveness checks)
for Ingress Gateway and UDR microservices. The default actuator port
(service.port.management) used for UDR microservices is 9000 and Ingress/
Egress Gateway is 9090 (ingressgateway.ports.actuatorPort). If there is no change
in default ports, you can use the annotation given below.

nudr-nrf-client-service:
 deployment:
 customExtension:
 labels: {}
 annotations:
 traffic.sidecar.istio.io/excludeOutboundPorts:
"\"9000,9090\""

• Create a destination rule and service entry to enable MYSQL connectivity service
to establish a connection between UDR/SLF and NDB cluster. This is outside
ASM. The sample templates are as follows:
Creating a Service for External MySQL instance

apiVersion: v1
kind: Endpoints
metadata:
 name: mysql-connectivity-service-headless
 namespace: <ocudr-namespace>
subsets:
- addresses:
 - ip: <sql-node1-ip>
 - ip: <sql-node2-ip>
 ports:
 - port: 3306
 protocol: TCP

apiVersion: v1
kind: Service
metadata:
 name: mysql-connectivity-service-headless
 namespace: <ocudr-namespace>
spec:
 clusterIP: None
 ports:
 - port: 3306
 protocol: TCP

Appendix A

A-2

 targetPort: 3306
 sessionAffinity: None
 type: ClusterIP

apiVersion: v1
kind: Service
metadata:
 name: mysql-connectivity-service
 namespace: <ocudr-namespace>
spec:
 externalName: mysql-connectivity-service-headless.<ocudr-
namespace>.svc.cluster.local
 sessionAffinity: None
 type: ExternalName

Creation of Service Entry and DestinationRule for External DB instance

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: mysql-external-se
 namespace: <ocudr-namespace>
spec:
 hosts:
 - mysql-connectivity-service-headless.<ocudr-
namespace>.svc.cluster.local
 ports:
 - number: 3306
 name: mysql
 protocol: MySQL
 location: MESH_EXTERNAL

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: mysql-external-dr
 namespace: <ocudr-namespace>
spec:
 host: mysql-connectivity-service-headless.<ocudr-
namespace>.svc.cluster.local
 trafficPolicy:
 tls:
 mode: DISABLE

Appendix A

A-3

	Contents
	List of Figures
	List of Tables
	My Oracle Support
	What's New in This Guide
	1 Introduction
	Overview
	Architecture
	References
	Acronyms

	2 Installing Unified Data Repository
	Planning Your Installation
	Installation Sequence
	Installation Preparation
	OCUDR Namespace Creation
	Service Account, Role and RoleBinding Creation
	Kubernetes Secret Creation - DBName, Username, Password and Encryption Key
	Kubernetes Secret Creation - Private Keys and Certificates for IngressGateway
	ocudr-custom-values.yaml File Configuration
	Unified Data Repository Deployment
	Post Installation Sanity Check - Helm Test

	3 Customizing and Configuring Unified Data Repository
	Customizing Unified Data Repository
	Configuring User Parameters

	4 Upgrading an Existing Unified Data Repository Deployment
	5 Troubleshooting Unified Data Repository
	Generic Checklist
	Verifying UDR Registration with NRF
	Verifying Container Logs
	Verifying OCUDR Microservices Logs

	Debugging Errors from Egress Gateway
	Debugging Errors from Ingress Gateway
	Debugging Helm Test Issues
	Debugging HPA Issues
	Debugging HTTPS Support related Issues
	Debugging Notification Issues
	Debugging Pod Creation Failure
	Debugging UDR Registration with NRF Failure
	Debugging UDR with Service Mesh Failure
	Using Logs

	6 Uninstalling Unified Data Repository
	A ASM Specific Configuration

