
Oracle® Communications
Cloud Native Core Security Guide

Release 1.3.0
F35049-01
September 2020

Oracle Communications Cloud Native Core Security Guide, Release 1.3.0

F35049-01

Copyright © 2020, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

Audience 1-1

References 1-1

Acronyms 1-2

2 Overview

3 Cloud Native Core Network Functions

4 Secure Development Practices

Overview of Secure Development Practices 4-1

Secure Development - DevSecOps 4-1

Vulnerability Handling 4-1

5 Trust Model

Context diagram 5-1

Key Trust Boundaries 5-1

External Data Flows 5-2

6 Common Security Recommendations and Procedures

4G/5G Application Authentication and Authorization 6-1

DB-Tier Authentication and Authorization 6-1

7 4G/5G Core Network Function Security Recommendations and
Procedures

Network Repository Function (NRF) Security Recommendations and Procedures 7-1

Cloud Native Core Policy Security Recommendations and Procedures 7-7

iii

Cloud Native Diameter Routing Agent (cnDRA) Security Recommendations and
Procedures 7-11

Cloud Native Core Ingress/Egress Gateways Security Recommendations and
Procedures 7-11

Service Communication Proxy (SCP) Security Recommendations And Procedures 7-13

Network Slice Selection Function (NSSF) Security Recommendations and
Procedures 7-15

Security Edge Protection Proxy (SEPP) Security Recommendations and Procedures 7-17

Unified Data Repository (UDR) / Unstructured Data Storage Function (UDSF)
Security Recommendations and Procedures 7-19

InterWorking and Mediation Function (IWF) Security Recommendations and
Procedures 7-21

Binding Support Function (BSF) Security Recommendations and Procedures 7-23

8 Cloud Native Core Console (CNCC) Security Recommendations
and Procedures

9 Cloud Native Environment (CNE) Security Recommendations and
Procedures

A Cloud Native Core Network Port Flows

B OpenSSL Cheatsheet

C Frequently Asked Questions (FAQ)

D Support

iv

My Oracle Support

My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support can
assist you with My Oracle Support registration.

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the
US), or call the Oracle Support hotline for your local country from the list at http://
www.oracle.com/us/support/contact/index.html. When calling, make the selections in
the sequence shown below on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking and Solaris Operating System Support.

3. Select one of the following options:

• For Technical issues such as creating a new Service Request (SR), select 1.

• For Non-technical issues such as registration or assistance with My Oracle
Support, select 2.

You are connected to a live agent who can assist you with My Oracle Support
registration and opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

5

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

What's New in This Guide

New or Updated Features in Release 1.3.0

This section introduces the documentation updates for Release 1.3.0 in Cloud Native
Core Security Guide.

• Updated security recommendations and procedures for:

– Unified Data Repository (UDR)

– Network Repository Function (NRF)

– Service Communication Proxy (SCP)

6

1
Introduction

The Security Guide provides an overview of the security relevant information that
applies to Cloud Native Core Network Functions. In case there are specific aspects
for the underlying scenarios or applications, these are described in an NF specific
chapters. This document contains recommendations (short statements on how to
operate and manage the CNC software) and procedures (step-by-step instructions
to assist the customer in tailoring or hardening the CNC system).

Install the CNC system software as "secure by default" where possible. In the few
cases where this isn't possible, an installion time checklist procedure is created and
listed on the Cloud Native Core Security Checklist. It is a short list of post-installation
hardening activities that must be performed by the customer before placing the system
into operation. The recommendations and other procedures found in this document
are optional, and must be considered in the context of your organization's approved
security policies.

This security guide also provides a simplified trust model for the system.

Audience
• Technology consultants

• Installers

• Security consultants

• System administrators

References
The following references provide additional background on product operations and
support:

• Oracle Communications Signaling, Cloud Native Environment (OC-CNE)
Installation Guide

• Cloud Native Core Console Installation Guide

• Network Slice Selection Function (NSSF) Cloud Native Installation Guide

• Service Communication Proxy (SCP) Cloud Native Installation Guide

• Policy Control Function Cloud Native Installation Guide

• Cloud Native Unified Data Repository Installation and Upgrade Guide

• Network Repository Function (NRF) Cloud Native Installation and Upgrade Guide

• Security Edge Protection Proxy (SEPP) Cloud Native Installation Guide

1-1

Acronyms
Table 1-1 Acronyms

Term Definition

OSSA Oracle Software Security Assurance

OC-CNE Oracle Communications CNE

NF Network Function. A service providing some function in the 5G
Core Network.

NRF Network Repository Function

SCP Service Communication Proxy

NSSF Network Slice Selection Function

SEPP Security Edge Protection Proxy

PCF Policy Control Function

BSF Binding Support Function

cnDRA Cloud Native Diameter Routing Agent Network

CNE Cloud Native Environment

5GC 5G Core Network

PKI Public Key Infrastructure

mTLS Mutual Transport Layer Security

OWASP Open Source Foundation for Application Security

UDR Unified Data Repository

CNCC Cloud Native Core Console

Chapter 1
Acronyms

1-2

2
Overview

Deployment Environment

The 4G/5G Cloud Native Core provides a variety of possible configuration and
deployment models:

Table 2-1 Deployment Environment

Type Host CNE Description

Bare-Metal HP Gen 10 Blades /
Rack Mount Servers /
Cisco Switches

OC-CNE 1 In this environment, a kubernetes Cloud
Native Environment is hosted directly on
the bare metal hardware, while some
other elements (DB or Bastion) are
hosted using virtualized servers.

Cloud Customer Cloud OC-CNE In this environment, all the system
elements are hosted in virtualized
servers deployed on a customer provided
Openstack environment. The OC-CNE is
deployed on the openstack infrastructure.

Cloud Customer CNE Customer
CNE 2

In this environment, the customer
provides the CNE and deploys the
5G NFs directly into the environment.
The Oracle provided common services,
and DB Tier are not used; equivalent
functionality is provided by the customer.

1. Oracle Communications CNE provides basic CNE environment for on premise
deployment.

2. Customer CNE provides CNE environment for running 5G microservices.

Note:

The cloud environment security recommendations and procedures focuses
on the OC-CNE reference environment. Customers providing their own CNE
must have equivalent security procedures already in place.

2-1

3
Cloud Native Core Network Functions

The 4G/5G Network Funtions that are part of this document are following:

Table 3-1 5G Network Functions

Network Functions Abbreviation Description

Network (function) Repository
Function

NRF NRF provides registration, discovery and
authorization services to all the Network
Functions (NF) in the 5G core network.

Service Communication Proxy SCP SCP provides a 5G-aware service mesh. The
SCP is not a part of the current 3GPP 5G
specification, but is expected to be added to a
future iteration.

InterWorking Function IWF IWF provides 4G/5G inter-working support.

Network Slice Selection
Function

NSSF NSSF works with the Access and Mobility
Function (AMF) to select the network slice to
be used by the User Equipment (UE).

Security Edge Protection
Proxy

SEPP In the roaming architecture, the home and
the visited network are connected through
Security Protection Proxy (SEPP) for the
control plane of the internetwork interconnect.

Unified Data Repository UDR/UDSF UDR is a repository of subscriber information,
and is used by various NFs (including UDR,
PCF, and NEF). The UDSF is a part of the
Unified Data Management Function (UDF)
and is used to store state information for
Network Functions (NF).

Unified Data Management/
Authentication Server
Function

UDM/AUSF UDM uses the subscription data stored in
UDR and implements the application logic
to perform various functionalities such as
authentication credential generation, user
identification, service and session continuity
etc. The Authentication Server Function
(AUSF) uses data stored in the UDM to
perform authentication.

Network Exposure Function NEF Securely exposes network capabilities and
events to Application Functions (AF).

Policy Control Function PCF Implements a unified policy framework for
implementing control plane rules.

Binding Support Function BSF Provides PCF binding (mapping and selection)
for User Equipment (UE).

3-1

Table 3-2 4G Network Functions

Network Functions Abbreviatio
n

Description

Cloud Native 4G Diameter Routing
Agent Network

cnDRA Provides core (subset) 4G DSR
capabilities delivered in a CNE
microservice.

Cloud Native 4G Policy Control
Repository Function

cnPCRF Provides core 4G PCRF capabilities
delivered in a CNE microservice.

Chapter 3

3-2

4
Secure Development Practices

Overview of Secure Development Practices
Oracle Software Security Assurance (OSSA) is Oracle’s methodology for building
security into the design, build, testing, and maintenance of its products in every
phase of the product development life cycle. These products are used on premises
by customers, or delivered through Oracle Cloud. Oracle’s goal is to ensure that the
products help customers meet their security requirements and provide the most cost
effective ownership experience.

Secure Development - DevSecOps
Oracle secures the DevOps development process using a variety of techniques:

• Broad developer training to developers for understanding the principles of secure
software development.

• Early creation of Trust Models and Risk Assessments to avoid common security
pitfalls in the designs.

• Identify and expose sensitive interfaces to targeted testing for reducing or
eliminating software vulnerabilities.

• Extensive use of automated security testing to identify vulnerabilities in third party
software

• Check for common OWASP (Open Source Foundation for Application Security)
top 10 items and perform fuzz testing on key exposed interfaces.

• Evaluate deployed software configurations using industry best practices.

Vulnerability Handling
For details about the vulnerability handling, refer Oracle Critical Patch Update
Program. The primary mechanism for the backport of fixes for security vulnerabilities in
Oracle products is the quarterly Critical Patch Update (CPU) program.

In general, the CNC Software is on a quarterly release cycle with each release
providing feature updates and fixes, and updates to relevant third party software.
These quarterly release provide cumulative patch updates.

4-1

https://www.oracle.com/corporate/security-practices/assurance/
https://www.oracle.com/CORPORATE/SECURITY-PRACTICES/ASSURANCE/VULNERABILITY/SECURITY-FIXING.HTML
https://www.oracle.com/CORPORATE/SECURITY-PRACTICES/ASSURANCE/VULNERABILITY/SECURITY-FIXING.HTML

5
Trust Model

The following Trust Model depicts the reference trust model (regardless of the
target environment). The model describes the key access points and controls site
deployment. While the model shows a single 5G NF microservice being deployed,
typically many more would be deployed in an individual cluster.

Context diagram

Key Trust Boundaries
Following are the key trust boundaries:

5-1

Table 5-1 Key Trust Boundaries

Trust Boundary Includes Access Control

Site Trust
Boundary

All the NF and other
supporting elements for a
given site.

Cluster Access Policies are implemented
using some kind of Access Control Group (or
Security Group) mechanism.

Cluster Trust
Boundary

All the Compute Elements
for a given cluster

Network Policies controls traffic ingress
and egress; Pod Security Policies controls
the kinds of workloads allowed in the
cluster (Example: no pods requiring privilege
escalation).

DB Trust
Boundary

All the DB Tier Elements
for a given Cluster

Firewall Policies control traffic ingress and
egress; DB grants and other permission
mechanisms provide authorization for
authorized users.

Orchestrator
Trust Boundary

The orchestration interface
and keys

Firewall Policies control access to a Bastion
server which provides orchestration services;
access to the Bastion host uses SSH. The
cluster orchestration keys are stored on the
Bastion host.

CS Trust
Boundary

The common
services implementing
logging, tracing, and
measurements.

Each of the common services provides
independent user interfaces (GUIs) that are
currently open. The customer may want
to introduce an api-gateway and implement
authentication and authorization mechanisms
to protect the OAM data. The common
services may be configured to use Trasport
Layer Security (TLS); when TLS is used,
certificates will need to be generated and
deployed via the orchestrator.

NF Trust
Boundaries

A collection of one
(or more) 5G Network
Functions deployed as a
service.

Some 5G NF microservices provide OAM
access via a GUI.
5G NF microservices provide Signaling
access via a TLS protected HTTP2 interface.
The certificates for these interfaces are
managed via the certificate manager.

External Data Flows
The following are external data flows:

Table 5-2 External Data Flows

Data Flow Protocol Description

DF1: Configuration SSH The installer or administrator accesses the
orchestration system, which is hosted on the
Bastion Server. The install or administrator must
use ssh keys to access the bastion to a special
orchestration account (not root); no password
access is allowed.

DF2: Logs,
Measurements,
Traces

HTTP/HTTPS The administrator or operator interacts with the
common services using web interfaces.

Chapter 5
External Data Flows

5-2

Table 5-2 (Cont.) External Data Flows

Data Flow Protocol Description

DF3: 5G Signaling HTTP2 (w/TLS) All signalling interaction between NFs at a site and
NFs at an external site is sent via TLS protected
HTTP2.

DF4: Alerts SNMP (Trap) All alerting is performed using SNMP traps.

The complete list of network flows including service types and ports are available in
Port Flow Appendix.

Chapter 5
External Data Flows

5-3

6
Common Security Recommendations and
Procedures

4G/5G Application Authentication and Authorization
4G/5G NFs use Mutual Transport Layer Security (mTLS) authentication to secure
communication. All NFs require a trust relationship to be established with all peers
by exchanging and trusting peer root or intermediate certificates. All the peer
certificates must be available in the trust store (K8s Secrets) in order to establish
secured communication. Ideally, the trust store is populated from the customer Public
Key Infrastructure (PKI) using ACME protocols. 4G/5G NFs also support manual
importation and a semi-automatic import using the cert-manager external provider.

DB-Tier Authentication and Authorization
The DB-Tier provides a highly available multisite database used to store NF state
and configuration. When installed, the MySQL DB is configured with a root account
whose password is randomly generated. Each NF must have additional accounts
for that particular NF. The procedures in this section explains how to change these
account passwords. Additionally, communication between the NFs and the MySQL
query nodes are protected using TLS.

The procedures are:

• Modify MySQL NDB Root Password

• Configure TLS for MySQL NDB Query Nodes

Procedure: Modify MySQL NDB Root Password

This procedure is executed by the DB Administrator.

For each of the MySQL Query nodes, perform the following steps :

1. Log into the next query node using ssh:

$ ssh admusr@<mysql query node>

2. Execute the following command to make the node as root:

$ sudo su

3. Invoke mysql using existing DB Root credentials:

mysql -h 127.0.0.1 -uroot -p

Enter the password: <enter existing root password>

6-1

4. Change the DB Root credentials:

mysql> ALTER USER'root'@'localhost'IDENTIFIED BY'<NEW_PASSWORD>';
mysql> FLUSH PRIVILEGES;

Repeat steps 1 through 4 for each MySQL Query node.

Note:

If you are accessing a DB instance for the first time, the DB Root password is
stored in the /var/occnedb/mysqld_expired.log file. The system generates
a random password at installation time.

Note:

Recommendation 1: Separation of Roles

The roles of DB Administrator and Cluster Administration must be kept
separate. The DB Administrator must be responsible for securing and
maintaining the DB-Tier MySQL NDM cluster. The Cluster Administrator must
be responsible for securing and operating the Bastion Host and K8s Cluster.
When 5G NFs are installed, the DB Administrator is required to create new
NF database and NF DB accounts (using the DB Root credentials). Once
this is completed, the Cluster Administrator installs the NF (using helm).

Recommendation 2: Use Strong Passwords

The DB Administrator must choose a complex DB Root password as per
their organization's security guidelines.

Procedure: Configure TLS for MySQL NDB Query Nodes

The MySQL NDB comes preconfigured to use a self-signed certificate that expires
after 365 days. User can replace this certificate using the following procedure:

1. Create private CA and a set of Keys/Certificate pairs for use in securing MySQL :

$ my_ssl_rsa_setup

2. The available set of PEM files containing CA, server, and client certificates and
keys that must be installed on all the MySQL Query Nodes.

3. Using SCP, copy the PEM files to the MySQL Query Node:

$ scp *.pem admusr@<mysql query node>

4. Login to the MySQL Query Node using ssh:

 $ ssh admusr@<mysql query node>

Chapter 6
DB-Tier Authentication and Authorization

6-2

5. Create a directory to hold the TLS keys and certs, and move them into root:

$ sudo mkdir /var/occnedb/opensslcerts
$ sudo chmod 700 /var/occnedb/opensslcerts
$ sudo mv ~admusr/*pem /var/occnedb/opensslcerts

6. Mysql Cluster Manager (mcm) is used to configure the TLS configuration from any
of the DB nodes

• Login to any DB node:

– $ ssh admusr@<any_db_node>
 $ sudo su

• Login to the mcm client:

– $ mcm

– $ mcm>

• Update TLS config for all the SQL nodes using the mcm client:

$ mcm> set ssl-ca:mysqld=/var/occnedb/opensslcerts/ca.pem
occnendbclustera;
$ mcm> set ssl-cert:mysqld=/var/occnedb/opensslcerts/server-
cert.pem occnendbclustera;
$ mcm> set ssl-key:mysqld=/var/occnedb/opensslcerts/server-key.pem
occnendbclustera;
$ mcm> set tls_version:mysqld=TLSv1.2 occnendbclustera;
$ mcm> set ssl-cipher:mysqld=DHE-RSA-AES128-GCM-SHA256
occnendbclustera;
$ mcm> set ssl-ca:mysqld=/var/occnedb/opensslcerts/ca.pem
occnendbclustera;
$ mcm> set ssl-cert:mysqld=/var/occnedb/opensslcerts/server-
cert.pem occnendbclustera;
$ mcm> set ssl-key:mysqld=/var/occnedb/opensslcerts/server-key.pem
occnendbclustera;
$ mcm> set tls_version:mysqld=TLSv1.2 occnendbclustera;
$ mcm> set ssl-cipher:mysqld=DHE-RSA-AES128-GCM-SHA256
occnendbclustera;

7. Restart SQL nodes from MySQL Cluster Manager (mcm) client tool.

 $ mcm> stop process 56 occnendbclustera;
 $ mcm>start process 56 occnendbclustera;
 $ mcm> stop process 57 occnendbclustera;
 $ mcm> start process 57 occnendbclustera;

Repeat steps 3 through 7 for each MySQL Query node.

Chapter 6
DB-Tier Authentication and Authorization

6-3

Note:

It is possible to integrate into an existing Public Key Infrastructure (PKI) by
creating signing requests and having the PKI to generate the needed key/
certificate pairs.

Chapter 6
DB-Tier Authentication and Authorization

6-4

7
4G/5G Core Network Function Security
Recommendations and Procedures

Network Repository Function (NRF) Security
Recommendations and Procedures

This section provides Network Repository Function (NRF) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.
The procedures are:

• NRF Access Token Secret Configuration

• NRF Access Token Secret Update

• OCNRF MYSQL Secret configuration

– Kubernetes secret creation for OCNRF privileged database user

– Kubernetes secret update for OCNRF privileged database user

– Kubernetes secret creation for OCNRF application database user

– Kubernetes secret update for OCNRF application database user

NRF Access Token Secret Configuration

Use the following procedure to create access token secret :

1. Create the following files:

• ECDSA private key and CA signed certificate of OCNRF (if initialAlgorithm is
ES256)

• RSA private key and CA signed certificate of OCNRF (if initialAlgorithm is
RS256)

• KeyStore password file

Note: Creation of private keys, certificates and passwords are at the discretion of
user.

2. Login to Bastion Host or server from where kubectl can be executed.

3. Create namespace for the secret by following:

a. Verify required namespace already exists in system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is
available. If not available, create the namespace using following command:

7-1

Note: This is an optional step. In case required namespace already exists,
proceed with next procedures.

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace ocnrf

4. Create kubernetes secret for Access token by following :

a. To create kubernetes secret for HTTPS, following files are required:

• ECDSA private key and CA signed certificate of OCNRF (if initialAlgorithm
is ES256)

• RSA private key and CA signed certificate of OCNRF (if initialAlgorithm is
RS256)

• KeyStore password file

Note:Creation process for private keys, certificates and passwords is on
discretion of user/operator.

b. Execute the following command to create secret. The names used below are
same as provided in custom values.yaml in OCNRF deployment:

$ kubectl create secret generic <ocnrfaccesstoken-secret-name>
--from-file=<ecdsa_private_key.pem>
 --from-file=<rsa_private_key.pem> --from-
file=<ssl_truststore.txt> --from-file=<keystore_password.txt>
 --from-file=rsa_certificate.crt --from-
file=<ecdsa_certificate.crt> -n <Namespace of OCNRF AccessToken
secret>

Note: Note down the command used during the creation of kubernetes secret,
this command will be used for updates in future.

$ kubectl create secret generic ocnrfaccesstoken-secret --from-
file=ecdsa_private_key.pem
--from-file=rsa_private_key.pem --from-file=ssl_truststore.txt
--from-file=keystore_password.txt --from-file=
rsa_certificate.crt --from-file=ecdsa_certificate.crt -n ocnrf

c. Execute the following command to verify secret created:

$ kubectl describe secret <ocnrfaccesstoken-secret-name> -n
<Namespace of OCNRF AccessToken secret>

Example:

 $ kubectl describe secret ocnrfaccesstoken-secret -n ocnrf

Chapter 7
Network Repository Function (NRF) Security Recommendations and Procedures

7-2

NRF Access Token Secret Update

Use the following procedure to update access token secret:

1. Update the following files:

• ECDSA private key and CA signed certificate of OCNRF (if initialAlgorithm is
ES256)

• RSA private key and CA signed certificate of OCNRF (if initialAlgorithm is
RS256)

• KeyStore password file

Note: Update of private keys, certificates and passwords are at the discretion of
user.

2. Login to Bastion Host or server from where kubectl can be executed

3. Update the secret with new/updated details by following:

a. Copy the exact command used in above section during creation of secret.

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace
-f - -n <Namespace of Access Token secret>".

c. Create secret command will look like:

kubectl create secret generic <ocnrfaccesstoken-secret> --from-
file=<ecdsa_private_key.pem>
 --from-file=<rsa_private_key.pem> --from-file=<ssl_truststore.txt> --
from-file=<keystore_password.txt>
 --from-file=<rsa_certificate.crt> --from-file=<ecdsa_certificate.crt>
--dry-run -o yaml -n
 <Namespace of Access Token secret> | kubectl replace -f - -n <Namespace
of Access Token secret>Copy

Example: The names used below are same as provided in
custom_values.yaml in OCNRF deployment:

$ kubectl create secret generic ocnrfaccesstoken-secret --from-
file=ecdsa_private_key.pem --from-file=rsa_private_key.pem
 --from-file=ssl_truststore.txt --from-file=keystore_password.txt --
from-file=rsa_certificate.crt --from-file=ecdsa_certificate.crt
--dry-run -o yaml -n ocnrf | kubectl replace -f - -n ocnrfCopy

d. Execute the updated command.

e. After successful secret update, the following message is displayed:

secret/<ocnrfaccesstoken-secret> replaced

OCNRF MYSQL Secret Configuration

This section describes the secret creation for two type of OCNRF users. Different
users has different set of permissions.

• OCNRF privileged user : This catogory of user has complete set of permissions.
The user can perform DDL and DML operations to perform install/upgrade/rollback
or delete operations.

• OCNRF application user : This catogory of user has less set of permissions and
will be used by OCNRF application during service operations handling. The user

Chapter 7
Network Repository Function (NRF) Security Recommendations and Procedures

7-3

can insert, update, get, remove the records. This user can't create, alter and drop
the database as wells as tables

Kubernetes secret creation for OCNRF privilaged database user

This section explains the steps to create kubernetes secrets for accessing OCNRF
database for the privileged user.

1. Login to Bastion Host or server from where kubectl can be executed.

2. Create namespace for the secret by following:

a. Verify required namespace already exists in system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is
available. If not available, create the namespace using following command:
Note:This is an optional step. In case required namespace already exists,
proceed with next procedures.

$ kubectl create namespace <required namespace>

For example:

$ kubectl create namespace ocnrf

3. Create kubernetes secret for privileged user as follows:

a. Create kubernetes secret for MySQL:

$ kubectl create secret generic <privileged user secret
name> --from-literal=dbUsername=<OCNRF Privileged Mysql database
username> --from-literal=dbPassword=<OCNRF Privileged Mysql
User database passsword> --from-literal=appDbName=<OCNRF Mysql
database name> --from-literal=networkScopedDbName=<OCNRF Mysql
Network database name> -n <Namespace of OCNRF deployment>

Note:

Note down the command used during the creation of kubernetes
secret, this command is used for updates in future.

Example:

$ kubectl create secret generic
privilegeduser-secret --from-literal=dbUsername=nrfPrivilegedUsr
--from-literal=dbPassword=nrfPrivilegedPasswd --
from-literal=appDbName=nrfApplicationDb --from-
literal=networkScopedDbName=nrfNetworkDB -n ocnrf

Chapter 7
Network Repository Function (NRF) Security Recommendations and Procedures

7-4

b. Verify the secret created using above command:

$ kubectl describe secret <database secret name> -n <Namespace
of OCNRF deployment>

Example:

$ kubectl describe secret privilegeduser-secret -n ocnrf

Kubernetes secret update for OCNRF privileged database user

This section explains the steps to update kubernetes secrets for accessing OCNRF
database for the privileged user.

1. Login to Bastion Host or server from where kubectl can be executed.

2. This section describes the steps to update the secrets. Update Kubernetes secret
for privileged user as follows:

a. Copy the exact command used in section during creation of secret:

$ kubectl create secret generic <privileged user secret
name> --from-literal=dbUsername=<OCNRF Privileged Mysql database
username> --from-literal=dbPassword=<OCNRF Privileged Mysql
database password> --from-literal=appDbName=<OCNRF Mysql
database name> --from-literal=networkScopedDbName=<OCNRF Mysql
Network database name> -n <Namespace of OCNRF deployment>

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace
-f - -n <Namespace of MYSQL secret>". After update, the command will be as
follows:

$ kubectl create secret generic <privileged user secret
name> --from-literal=dbUsername=<OCNRF Privileged Mysql database
username> --from-literal=dbPassword=<OCNRF Privileged Mysql
database password> --from-literal=appDbName=<OCNRF Mysql
database name> --from-literal=networkScopedDbName=<OCNRF Mysql
Network database name> --dry-run -o yaml -n <Namespace of OCNRF
deployment> | kubectl replace -f - -n <Namespace of OCNRF
deployment>

c. Execute the updated command. The following message is displayed:

secret/<database secret name> replaced

Kubernetes secret creation for OCNRF application database user

This section explains the steps to create kubernetes secrets for accessing OCNRF
database for the application database user.

1. Login to Bastion Host or server from where kubectl can be executed.

2. Create namespace for the secret by following:

Chapter 7
Network Repository Function (NRF) Security Recommendations and Procedures

7-5

a. Verify required namespace already exists in system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is
available. If not available, create the namespace using following command:
Note: This is an optional step. In case required namespace already exists,
proceed with next procedures.

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace ocnrf

3. Create kubernetes secret for OCNRF application database user for configuring
records is as follows:

a. Create kubernetes secret for OCNRF application database user:

$ kubectl create secret generic <appuser-secret name> --
from-literal=dbUsername=<OCNRF APPLICATION User Name> --from-
literal=dbPassword=<Password for OCNRF APPLICATION User> --from-
literal=appDbName=<OCNRF Application Database> -n <Namespace of
OCNRF deployment>

Note:

Note down the command used during the creation of kubernetes
secret, this command will be used for updates in future.

Example:

$ kubectl create secret generic
appuser-secret --from-literal=dbUsername=nrfApplicationUsr
--from-literal=dbPassword=nrfApplicationPasswd --from-
literal=appDbName=nrfApplicationDB -n ocnrf

b. Verify the secret creation:

$ kubectl describe secret <appuser-secret name> -n <Namespace of
OCNRF deployment>

Example:

$ kubectl describe secret appuser-secret -n ocnrf

Kubernetes secret update for OCNRF application database user

This section explains the steps to update kubernetes secrets for accessing OCNRF
database for the application database user.

Chapter 7
Network Repository Function (NRF) Security Recommendations and Procedures

7-6

1. Login to Bastion Host or server from where kubectl can be executed.

2. This section explains how to update the kubernetes secret.

a. Copy the exact command used in above section during creation of secret:

$ kubectl create secret generic <appuser-secret name> --from-
literal=dbUsername=<OCNRF APPLICATION
 User Name> --from-literal=dbPassword=<Password for OCNRF
APPLICATION User> --from-literal=appDbName=<OCNRF
Application Database> -n <Namespace of OCNRF deployment>

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace
-f - -n <Namespace of MYSQL secret>". After update, the command will be as
follows:

$ kubectl create secret generic <database secret name> --from-
literal=dbUsername=<OCNRF APPLICATION
User Name> --from-literal=dbPassword=<Password for OCNRF
APPLICATION User> --from-literal=appDbName=<OCNRF
Application Database> --dry-run -o yaml -n <Namespace of OCNRF
deployment> | kubectl replace -f - -n <Namespace
of OCNRF deployment>

c. Execute the updated command. The following message is displayed:

secret/<database secret name> replaced

Cloud Native Core Policy Security Recommendations and
Procedures

This section provides Cloud Native Core Policy specific security recommendations and
procedures. Recommendations common to all 5G/4G are available in the Common
Procedures Section.
The procedures are:

• Access Token configuration

• Update Keys to Sign JSON Web Token (JWTs) for Access Token

• Create CNC Policy MYSQL Kubernetes Secret for Storing Database
Username and Password for Admin and Application Users

• Create a Kubernetes Secret for Storing LDAP credentials

Access Token configuration

Use the following procedure to create access token :

1. Create following files:
ECDSA private key (Example: ecdsa_private_key_pkcs8.pem)

RSA private key (Example: rsa_private_key_pkcs1.pem)

TrustStore password file (Example: trustStorePassword.txt)

KeyStore password file (Example: keyStorePassword.txt)

Chapter 7
Cloud Native Core Policy Security Recommendations and Procedures

7-7

CA signed ECDSA OCPolicy certificate (Example:
ecdsa_occnp_certificate.crt)

CA signed RSA OCPolicy certificate (Example: rsa_occnp_certificate.crt)

Note: Creation of private keys, certificates and passwords are at the discretion of
user.

2. Login to Bastion Host or server from where kubectl can be executed.

3. Create namespace for the secret:

$ kubectl create namespace occnp

4. Create kubernetes secret for NF Access token :
Note: The filenames in below command are same as in Step 1

$ kubectl create secret generic ocpcfaccesstoken-secret --from-file=
ecdsa_private_key_pkcs8.pem --from-file=rsa_private_key_pkcs1.pem --
from-file=
trustStorePassword.txt --from-file=keyStorePassword.txt --from-file=
ecdsa_ocpcf_certificate.crt--from-file=rsa_ocpcf_certificate.crt -n
ocpcf

5. Verify that secret is create successfully:

$ kubectl describe secret ocpcfaccesstoken-secret -n ocpcf

Update Keys to Sign JSON Web Token (JWTs) for Access Token

Use the following procedure to update keys to sign JSON web token (JWTs) for
access token:

1. Update the following files:

ECDSA private key (Example: ecdsa_private_key_pkcs8.pem)

RSA private key (Example: rsa_private_key_pkcs1.pem)

CA signed ECDSA OCPolicy certificate (Example:
ecdsa_occnp_certificate.crt)

CA signed RSA OCPolicy certificate (Example: rsa_occnp_certificate.crt)

Note: Update of private keys, certificates and passwords are at the discretion of
user

2. Login to Bastion host or server from where kubectl can be executed.

3. Update the secret with new/updated details:

Delete the secret by executing the following command:

$ kubectl delete secret ocpcfaccesstoken-secret -n ocpcf

Create the secret with updated details:

$ kubectl create secret generic
ocpcfaccesstoken-secret --from-file=ecdsa_private_key_pkcs8.pem
--from-file=rsa_private_key_pkcs1.pem --from-
file=trustStorePassword.txt --from-file=keyStorePassword.txt --from-

Chapter 7
Cloud Native Core Policy Security Recommendations and Procedures

7-8

file=ecdsa_occnp_certificate.crt--from-file=rsa_ocpcf_certificate.crt
-n occnp

Create CNC Policy MYSQL Kubernetes Secret for Storing Database Username
and Password for Admin and Application Users

Use the following procedure to create OCPolicy MYSQL kubernetes secret for storing
database username and password:

1. Login to Bastion Host or server from where kubectl can be executed.

2. Create namespace for the mysql secret. Skip this step, if already created.
$ kubectl create namespace <namespace>

3. To create a kubernetes secret for storing database username and password for an
admin user and an application user:

a. Create a yaml file with the application user's username and password with the
syntax shown below:

Note:

The values mentioned in the right side of column (:) are examples.

apiVersion: v1
kind: Secret
metadata:
 name: occnp-db-pass
type: Opaque
data:
 mysql-username: b2NjbnB1c3I=
 mysql-password: b2NjbnBwYXNzd2Q=

b. Create a yaml file with the admin user's username and password with the
syntax shown below:

Note:

The values mentioned in the right side of column (:) are examples.

apiVersion: v1
kind: Secret
metadata:
 name: occnp-admin-db-pass
type: Opaque
data:
 mysql-username: b2NjbnBhZG1pbnVzcg==
 mysql-password: b2NjbnBhZG1pbnBhc3N3ZA==

Chapter 7
Cloud Native Core Policy Security Recommendations and Procedures

7-9

Note:

'name' will be used for the dbCredSecretName and
privilegedDbCredSecretName parameters in the CNC Policy
custom-values.yaml file.

Note:

The values for mysql-username and mysql-password should be
base64 encoded.

c. Execute the following commands to add the kubernetes secrets in a
namespace:

kubectl create -f yaml_file_name1 -n release_namespace
kubectl create -f yaml_file_name2 -n release_namespace

where:
release_namespace is the deployment namespace used by the helm
command.

yaml_file_name1 is a name of the yaml file that is created in step a.

yaml_file_name2 is a name of the yaml file that is created in step b.

4. Verify the whether the secret is created by executing the following command:

$ kubectl describe secret <secret-name> -n <namespace>

Create a Kubernetes Secret for Storing LDAP credentials

Use the following procedure to create a kubernetes secret for storing LDAP
credentials:

1. Create a yaml file with the following syntax:

Note:

The values mentioned in the right side of column (:) are examples.

apiVersion: v1
kind: Secret
metadata:
 name: secretarial
 labels:
 type: ocpm.secret.ldap
type: Opaque
stringData:
 name: "ldap1"

Chapter 7
Cloud Native Core Policy Security Recommendations and Procedures

7-10

 password: "camiant"
 authDn: "uid=PolicyServer,ou=vodafone,c=hu,o=vodafone"

where,

name is the configured LDAP server name.

password is the LDAP credential for that data source.

authDN is the authentication DN for that LDAP data source.

2. Create the secret by executing the following command: kubectl apply -f
yaml_file_name -n <namespace>

here:

yaml_file_name is a name of the yaml file that is created in step 1.

<namespace> is the deployment namespace used by the helm command.

Cloud Native Diameter Routing Agent (cnDRA) Security
Recommendations and Procedures

This section provides cloud native Diameter Routing Agent (cnDRA) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

The procedures are:

• User (OAM) Authentication and Authorization

• Authentication and Authorization of Applications

User (OAM) Authentication and Authorization

• cnDRA supports REST based MMI interface. There is no GUI provided in the
current cnDRA release.

• The MMI interface is based on fixed user and password, using which the security
token is requested by REST client from cnDRA.

• cnDRA does not allow or support configuration or modify these credentials (user
and password).

Authentication and Authorization of Applications

cnDRA currently supports TCP based signaling traffic connection towards the Remote
Peer Nodes. These connections are not currently secured via TLS etc mechanism.
Currently there is no plan to enable securing of the application/Diameter traffic.

Cloud Native Core Ingress/Egress Gateways Security
Recommendations and Procedures

This section provides Ingress/Egress Gateway specific security recommendations and
procedures. Recommendations common to all 5G/4G are available in the Common
Procedures Section.

Chapter 7
Cloud Native Diameter Routing Agent (cnDRA) Security Recommendations and Procedures

7-11

The procedures are:

• Enabling TLS and Ciphers in Ingress/Egress Gateway

• Certificate Management and Dynamic reload of certificates in Gateways

Enabling TLS and Ciphers in Ingress/Egress Gateway

Use the following procedure to enable the TLS and Ciphers :

1. Helm Configuration to enable TLS:

To open Https port in Ingress gateway: configure in helm enableIncomingHttps:
true

To have a Https client configured in Egress gateway: configure in helm
enableOutgoingHttps: true

2. Create following files:

a. RSA or ECDSA Private key (Example: rsa_private_key_pkcs1.pem)

b. Trust store password (Example: trust.txt)

c. Key store password(Example: key.txt)

d. Certificate chain for trust store (Example: caroot.cer)

e. Signed server certificate (Example: ocingress.cer) or Signed client certificate
(Example: ocegress.cer)

Note: Creation of private keys, certificates and passwords are at the discretion of
user.

3. Create secret by executing following command:

$ kubectl create secret generic ocingress-secret --from-
file=rsa_private_key_pkcs1.pem
--from-file=trust.txt --from-file=key.txt --from-file=ocingress.cer
--from-file=caroot.cer -n ocingress

4. Enable cipher suites:

Cipher Suites to be enabled on Server side (Ingress Gateway),

Cipher Suites to be enabled on Client side (Egress Gateway),

cipherSuites:

-TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Certificate Management and Dynamic reload of certificates in Gateways

Whenever certificates gets compromised or a new certificate chain is required to be
added to the truststore, we can update the key and truststore used by the application.

Chapter 7
Cloud Native Core Ingress/Egress Gateways Security Recommendations and Procedures

7-12

To update the key and the truststore, update or replace the secret:

Command:

$ kubectl create secret generic ocingress-secret --from-
file=rsa_private_key_pkcs1.pem
 --from-file=trust.txt --from-file=key.txt --from-file=tmp.cer --from-
file=caroot.cer --dry-run -o yaml
 -n ocingress| kubectl replace -f - -n ocingress

Whenever there is an update in the certificate chain or signed certificate placed in
secret, kubernetes watcher which is implemented in update container will check for
change in file state and replace the key and truststore accordingly in the mounted
shared volume.

Dynamic reload of certificates is not supported in Ingress Gateway as of now, so a
manual restart of pod is required when any update in the configuration is made with
respect to https.

In case of Egress Gateway update container will trigger the rest end point to
dynamically reload key and truststore. Then egress gateway will pickup new store
files from shared volume and reload trust and key managers. Egress gateway will
use the replaced store to establish new connections and gracefully terminate existing
connections by sending a GOAWAY frame.

Service Communication Proxy (SCP) Security
Recommendations And Procedures

This section provides Service Communication Proxy Function (SCP) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

The procedures are:

• OCSCP MYSQL Secret configuration

• OCSCP MYSQL Secret Updates for Password of DB User

OCSCP MYSQL Secret configuration

Use the following procedure to create Mysql kubernetes secret:

1. Login to Bastion Host or server from where kubectl can be executed.

2. Create namespace for the mysql secret. Skip this step, if already created.

$ kubectl create namespace <namespace>

Example:

$ kubectl create namespace ocscp

Chapter 7
Service Communication Proxy (SCP) Security Recommendations And Procedures

7-13

3. Execute the following command to create the secret for MySQL:

kubectl create secret generic appusersecret
--fromliteral=DB_USERNAME=<DB User name> --from-
literal=DB_PASSWORD=<DB user password>
 --fromliteral=DB_NAME=<DB NAME> --dry-run -o yaml -n <Namespace> |
kubectl replace -f -n <Namespace>

d

4. Execute the updated command. The following message is displayed:

secret/<database secret name> replaced

.

5. Verify the whether the secret is created

$ kubectl describe secret <secret-name> -n <SCPnamespace>

Example:

$ kubectl describe secret database-secret -n ocscp

.

OCSCP MYSQL Secret Updates for Password of DB User

Use the following procedure to update Mysql secret:

1. Login to Bastion Host or server from where kubectl can be executed.

2. Update the kubernetes secret for Mysql by executing the following command:

Delete the secret:

$ kubectl delete secret database-secret -n <SCPNamespace>

Create the secret with updated details:

For privileged users:
 kubectl create secret generic privilegedusersecret --
fromliteral=DB_USERNAME=<DB User name>
 --from-literal=DB_PASSWORD=<DB user password> --
fromliteral=DB_NAME=<DB NAME> -n<SCPNamespace>
 For Application Users:
 kubectl create secret generic appusersecret --
fromliteral=DB_USERNAME=<DB User name>
 --from-literal=DB_PASSWORD=<DB user password> --
fromliteral=DB_NAME=<DB NAME> -n
 <SCPNamespace>

Chapter 7
Service Communication Proxy (SCP) Security Recommendations And Procedures

7-14

Network Slice Selection Function (NSSF) Security
Recommendations and Procedures

This section provides Network Slice Selection Function (NSSF) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

The procedures are:

• OCNSSF Access Token Secret Configuration

• OCNSSF Access Token Secret Update

• OCNSSF MYSQL Secret Configuration

• OCNSSF MYSQL Secret Update

OCNSSF Access Token Secret Configuration

Use the following procedure to create access token secret:

1. Create the following files:

• ECDSA private key (Example: ecdsa_private_key_pkcs8.pem)

• RSA private key (Example: rsa_private_key_pkcs1.pem)

• TrustStore password file (Example: trustStorePassword.txt)

• KeyStore password file (Example: keyStorePassword.txt)

• CA signed ECDSA OCNSSF certificate (Example:
ecdsa_ocnssf_certificate.crt)

• CA signed RSA OCNSSF certificate (Example:
rsa_ocnssf_certificate.crt)

Note: Creation of private keys, certificates and passwords are at the discretion of
user.

2. Login to Bastion Host or server from where kubectl can be executed.

3. Create namespace for the secret by executing the following command:
$ kubectl create namespace ocnssf

4. Create kubernetes secret for NF Access token by executing the following
command:

$ kubectl create secret generic
 ocnssfaccesstoken-secret --from-
file=ecdsa_private_key_pkcs8.pem
 --from-file=rsa_private_key_pkcs1.pem --from-
file=trustStorePassword.txt
 --from-
file=keyStorePassword.txt --from-file=ecdsa_ocnssf_certificate.crt--
from-file=rsa_ocnssf_certificate.crt -n
 ocnssf

5. Verify that secret is created successfully by executing the following command:

Chapter 7
Network Slice Selection Function (NSSF) Security Recommendations and Procedures

7-15

$ kubectl describe secret ocnssfaccesstoken-secret -n ocnssf

OCNSSF Access Token Secret Update

Use the following procedure to update access token secret:

1. Update the following files:

• ECDSA private key (Example: ecdsa_private_key_pkcs8.pem)

• RSA private key (Example: rsa_private_key_pkcs1.pem)

• TrustStore password file (Example: trustStorePassword.txt)

• KeyStore password file (Example: keyStorePassword.txt)

• CA signed ECDSA OCNSSF certificate (Example:
ecdsa_ocnssf_certificate.crt)

• CA signed RSA OCNSSF certificate (Example:
rsa_ocnssf_certificate.crt)

Note:Update of private keys, certificates and passwords are at the discretion of
user.

2. Login to Bastion Host or server from where kubectl can be executed.

3. Update the secret with new/updated details by executing the following commands:
Delete the secret: $ kubectl delete secret ocnssfaccesstoken-secret -n
ocnssf Create the secret again with updated details:

$ kubectl create secret generic ocnssfaccesstoken-secret --from-
file=ecdsa_private_key_pkcs8.pem
 --from-file=rsa_private_key_pkcs1.pem --from-
file=trustStorePassword.txt --from-file=keyStorePassword.txt
--from-file=ecdsa_ocnssf_certificate.crt--from-
file=rsa_ocnssf_certificate.crt -n ocnssf

OCNSSF MYSQL Secret Configuration

Use the following procedure to create Mysql kubernetes secret:

1. Login to Bastion Host or server from where kubectl can be executed.

2. Create namespace for the mysql secret. Skip this step, if already created.

 $ kubectl create namespace ocnssf

3. Create a yaml file with the username and password with the syntax shown below:

Note:

The values mentioned in the right side of column (:) are examples.

apiVersion: v1
 kind: Secret
 metadata:

Chapter 7
Network Slice Selection Function (NSSF) Security Recommendations and Procedures

7-16

 name: <secret-name>
 type: Opaque
 data:
 mysql-username: cGNmdXNy
 mysql-password: cGNmcGFzc3dk

1. Note: The values for "mysql-username" and "mysql-password" must be base64
encoded.

2. Execute

kubectl create -f <yaml_file_name> -n <namespace>

to create the secret.

3. Verify whether the secret is created by executing the following command:

$ kubectl describe secret <secret-name> -n <namespace>

OCNSSF MYSQL Secret Update

Use the following procedure to update Mysql kubernetes secret:

1. Login to Bastion Host or server from where kubectl can be executed.

2. Delete the kubernetes secret for Mysql:

Delete the secret
$ kubectl delete secret <secret name> -n <namespace>

3. Update yaml file from step 3 in secret creation with new values for mysql-
username and mysql-password

4. Execute kubectl create -f <yaml_file_name> -n <namespace> to create the
secret.

5. Verify whether the secret is created by executing the following command:
$ kubectl describe secret <secret-name> -n <namespace>

Security Edge Protection Proxy (SEPP) Security
Recommendations and Procedures

This section provides Security Edge Protection Proxy (SEPP) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

The procedures are:

• SEPP Access Token Secret Configuration

• OCSEPP Access Token Secret Update

SEPP Access Token Secret Configuration

Use the following procedure to create access token secret :

Chapter 7
Security Edge Protection Proxy (SEPP) Security Recommendations and Procedures

7-17

1. Login to Bastion Host or server from where kubectl can be executed.

2. Create the following files:

• ECDSA private key with P-256 curve

Example:

ecdsa_private_key_pkcs8.pem

Note: Creation of private keys, certificates and passwords are at the discretion of
user.

3. Create namespace for the secret by executing the following command:

$ kubectl create namespace seppsvc

4. Create kubernetes secret for Access token by executing the following command:

$ kubectl create secret generic ocsepp-ipx-secret
--from-file=ecdsa_private_key_pkcs8.pem -n seppsvc

OCSEPP Access Token Secret Update

Use the following procedure to update access token secret:

1. Login to Bastion Host or server from where kubectl can be executed.

2. Update the following files:

• ECDSA private key with P-256 curve

Example:

ecdsa_private_key_pkcs8.pem

Note:Update of private keys, certificates and passwords are at the discretion of
user.

3. Update the secret with new/updated details.
Delete the secret:

$ kubectl delete secret ocsepp-ipx-secret -n seppsvc

Create the secret again with updated details:

$ kubectl create secret generic ocsepp-ipx-secret
--from-file=ecdsa_private_key_pkcs8.pem -n seppsvc

Chapter 7
Security Edge Protection Proxy (SEPP) Security Recommendations and Procedures

7-18

Unified Data Repository (UDR) / Unstructured Data
Storage Function (UDSF) Security Recommendations and
Procedures

This section provides Unified Data Repository (UDR) / Unstructured Data
Storage Function (UDSF) specific security recommendations and procedures.
Recommendations common to all 5G/4G are available in the Common Procedures
Section.

The procedures are:

• Oauth Token Validation Configuration

• Public key Update for Changed Access Token

• OCUDR MYSQL Kubernetes secret for storing Database Username and
Password

• TLS Certificate for HTTPs Support

Oauth Token Validation Configuration

Use the following procedure for Oauth Token validation configuration:

1. Nrf creates access tokens using following private keys.

ECDSA private key (For example:

ecdsa_private_key_pkcs8.pem

)

RSA private key (For example:

rsa_private_key_pkcs1.pem

)

To validate access token, secret needs to be created and configured in ocudr
ingress gateway with public keys fetched from nrf.

public key naming format must be

<nrfInstanceId>_<AlgorithmUsed>.pem (6faf1bbc-6e4a-4454-a507-
a14ef8e1bc5c_ES256.pem)

.

2. Login to Bastion Host or server from where kubectl can be executed.

3. Create namespace for the secret.

$ kubectl create namespace ocudr

Chapter 7
Unified Data Repository (UDR) / Unstructured Data Storage Function (UDSF) Security Recommendations and Procedures

7-19

https://gbuconfluence.us.oracle.com/pages/viewpage.action?pageId=105592272#CloudNativeCore-UDR/UDSF/SLF-SecurityRecommendationsandProcedures-HowtoupdatePublickeysConfiguredifAccesstokenischanged

4. Create kubernetes secret for NF Access token validation

Note:

The filenames in below command are same as in Step 1

$ kubectl create secret generic oauthsecret --from-
file=6faf1bbc-6e4a-4454-a507-a14ef8e1bc5c_ES256.pem
--from-file=6faf1bbc-6e4a-4454-a507-a14ef8e1bc5c_RS256.pem -n ocudr

5. Verify that secret is create successfully:

$ kubectl describe secret oauthsecret -n ocudr

Public key Update for Changed Access Token

Use the following procedure for public key update for changed access token:

1. Login to Bastion Host or server from where kubectl can be executed.

2. Update the secret with new/updated details:

Delete the secret and recreate it
$ kubectl delete secret oauthsecret -n ocudr

Fetch updated public keys from nrf

Recreate the secret with updated details
$ kubectl create secret generic oauthsecret
--from-file=0263663c-f5c2-4d1b-9170-f7b1a9116337_ES256.pem

--from-file=0263663c-f5c2-4d1b-9170-f7b1a9116337_RS256.pem -n ocudr

OCUDR MYSQL Kubernetes Secret for storing Database Username and
Password

Use the following procedure to create Mysql kubernetes secret for storing database
username and password:

1. Login to Bastion Host or server from where kubectl can be executed.

2. Create namespace for the mysql secret. Skip this step, if already created.

 $ kubectl create namespace <namespace>

3. Create a yaml file with the username and password with the syntax shown below:

Chapter 7
Unified Data Repository (UDR) / Unstructured Data Storage Function (UDSF) Security Recommendations and Procedures

7-20

Note:

The values mentioned in the right side of column (:) are examples.

apiVersion: v1
 kind: Secret
 metadata:
 name: <secret-name>
 type: Opaque
 data:
 dbname: dWRyZGI=
 dsusername: dWRydXNlcg==
 dspassword: dWRycGFzc3dk
 encryptionkey: TXkgc2VjcmV0IHBhc3NwaHJhc2U=

Note: The values for "dbname", "dsusername", "dspassword" and "encryptionkey"
must be base64 encoded.

4. Execute

kubectl create -f <yaml_file_name> -n <namespace>

to create the secret.

5. Verify the whether the secret is created by executing the following command:

$ kubectl describe secret <secret-name> -n <namespace>

TLS certificate for HTTPs support

Refer Cloud Native Core - Ingress/Egress Gateways - Security Recommendations /
Procedures for TLS configuration.

InterWorking and Mediation Function (IWF) Security
Recommendations and Procedures

This section provides InterWorking and Mediation Function (IWF) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

The procedures are:

• OCIWF MYSQL Secret configuration

• OCIWF MYSQL Secret updates for password of DB user

OCIWF MYSQL Secret configuration

Use the following procedure to configure Mysql secret:

1. Login to Bastion Host or server from where kubectl can be executed.

Chapter 7
InterWorking and Mediation Function (IWF) Security Recommendations and Procedures

7-21

2. Create namespace for the mysql secret. If it is already created, skip this step.

$ kubectl create namespace <IwfNamespace>
Example: $ kubectl create namespace iwfsvc

3. Create kubernetes secret for Mysql

$ kubectl create secret generic <secretName> --
fromliteral=DB_USERNAME=<userName>
 --fromliteral=DB_PASSWORD=<password> --
fromliteral=DBNAME=<dbName> -n <IwfNamespace>
Example: $ kubectl create secret generic cred --
fromliteral=DB_USERNAME=root
 --fromliteral=DB_PASSWORD=lLn94uba5p --
fromliteral=DB_NAME=ociwfdb -n
 iwfsvc

Note:

a. <secretName> → Secret name must be same to value present for
'dbSecretName' in ociwf_values.yaml file.

b. <IwfNamespace> -> Must be the name of namespace where IWF
will be deployed.

4. Verify that secret is create successfully

$ kubectl describe secret database-secret -n <IwfNamespace>
Example: $ kubectl describe secret database-secret -n iwfsvc

OCIWF MYSQL Secret updates for password of DB user

Use the following procedure to update MYSQL Secret for password of DB user:

1. Login to Bastion Host or server from where kubectl can be executed

2. Update the kubernetes secret for Mysql

Delete the secret:
 $ kubectl delete secret database-secret -n <IwfNamespace>
 Create the secret with updated details:
 $ kubectl create secret generic <secretName> --
fromliteral=DB_USERNAME=<userName>
 --fromliteral=DB_PASSWORD=<password> --
fromliteral=DBNAME=<dbName> -n
 <IwfNamespace>

Chapter 7
InterWorking and Mediation Function (IWF) Security Recommendations and Procedures

7-22

Binding Support Function (BSF) Security Recommendations
and Procedures

This section provides Binding Support Function (BSF) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

The procedure is:

• Creating BSF MYSQL Kubernetes Secret for Storing Database Username and
Password

Creating BSF MYSQL Kubernetes Secret for Storing Database Username and
Password

Use the following procedure to create BSF MYSQL kubernetes secret for storing
database username and password:

1. Login to Bastion Host or server from where kubectl can be executed.

2. Create namespace, if already does not exists, by entering the command:

kubectl create namespace <namespace>

where:

<namespace> is the deployment BSF namespace.

3. Create a kubernetes secret for an admin user and an application user.

To create a kubernetes secret for storing database username and password for
these users:

Create a yaml file with the application user's username and password with the
syntax shown below:

Note:

The values mentioned in the right side of column (:) are examples.

apiVersion: v1
 kind: Secret
 metadata:
 name: <secret-name>
 type: Opaque
 data:
 mysql-username: YnNmdXNy
 mysql-password: YnNmcGFzc3dk

Create a yaml file with the admin user's username and password with the syntax
shown below:

Chapter 7
Binding Support Function (BSF) Security Recommendations and Procedures

7-23

Note:

The values mentioned in the right side of column (:) are examples.

apiVersion: v1
 kind: Secret
 metadata:
 name: <secret-name>
 type: Opaque
 data:
 mysql-username: YnNmcHJpdmlsZWdlZHVzcg==
 mysql-password: YnNmcHJpdmlsZWdlZHBhc3N3ZA==

Note:

The values for mysql-username and mysql-password should be
base64 encoded

4. Execute the following command to create the secret:

kubectl create -f <yaml_file_name> -n <namespace>

5. Verify whether the secret is created by executing the following command:

$ kubectl describe secret <secret-name> -n <namespace>

Chapter 7
Binding Support Function (BSF) Security Recommendations and Procedures

7-24

8
Cloud Native Core Console (CNCC)
Security Recommendations and
Procedures

This section provides Cloud Native Core Console (CNCC) specific security
recommendations and procedures. Recommendations common to all 5G/4G are
available in the Common Procedures Section.

The procedures are:

• CNCC IAM MYSQL Secret Configuration

• CNCC IAM Default User (Admin) Secret Configuration

• CNCC IAM LDAP Configuration

• CNCC TLS Secret configuration

• CNCC Core Secret Configuration to Enable HTTPS

• CNCC IAM SAML Configuration

CNCC IAM MYSQL Secret Configuration

Use the following procedure to create Mysql kubernetes secret:

1. Login to Bastion Host or server from where kubectl can be executed

2. Create namespace for the secret by executing the following commands:
Verify whether the required namespace already exists in system by executing the
following command:

$ kubectl get namespaces

If the output of the above command does not display the required namespace then
create the namespace by executing following command:

$ kubectl create namespace <required namespace>

$ kubectl create namespace cncc

3. Execute the following command to create the kubernetes secret for MySQL:

kubectl create secret generic <database secret name> --from-
literal=dbUserNameKey=<CNCC
Mysql database username> --from-literal=dbPasswordKey=<CNCC Mysql
database passsword> -n <Namespace of MYSQL secret

Execute the following command to verify the secret creation:
$ kubectl describe secret <database secret name> -n <Namespace of
MYSQL secret>

8-1

Example:

$ kubectl create secret generic cncc-db-secret --from-
literal=dbUserNameKey=root --from-
literal=dbPasswordKey=mypass -n cncc
$ kubectl describe secret cncc-db-secret -n cncc

CNCC IAM Default User (Admin) Secret Configuration

Use the following procedure to create default user (Admin) secret :

1. Login to Bastion Host or server from where kubectl can be executed

2. Create namespace for the secret by executing the following commands:
Verify whether the required namespace already exists in system by executing the
following command:

$ kubectl get namespaces

If the output of the above command does not display the required namespace then
create the namespace by executing following command:

$ kubectl create namespace <required namespace>

$ kubectl create namespace cncc

3. Execute the following command to create the kubernetes secret for MySQL for
Admin User:

$ kubectl create secret generic <secret-name> --from-
literal=iamAdminPasswordKey=<password>
 --namespace <namespace>

Execute the following command to verify the secret creation:

$ kubectl describe secret <secret name> -n <namespace>

Example:

$ kubectl create secret generic cncc-iam-secret
 --from-literal=iamAdminPasswordKey=cncciampasswordvalue --
namespace cncc
$ kubectl describe secret cncc-iam-secret -n cncc

CNCC IAM LDAP Configuration

Use the following procedure to configure CNCC IAM LDAP :

1. Setting up User Federation with CNCC IAM by executing following steps:

a. Login to CNCC IAM application.

b. Select Cncc Realms and select User Federation; User federation Screen
appears.

c. Fill the necessary parameters and save.

Chapter 8

8-2

d. New buttons (Synchronize changed users, Synchronize all users, Remove
imported, Unlink users) appears next to the Save and Cancel.

e. If a user has to be import to CNCC-IAM, Click Synchronize all users.

f. The user can view the imported users by clicking Users under Manage in the
left pane and click View all users in the right pane.

2. Steps to add Group-Mapper and Assign Roles:

a. Login to CNCC IAM application.

b. Select Cncc Realms and select User Federation; User federation Screen
appears.

c. Click Configure and select User Federation. Click ldap (Console Display
Name) and select the Mappers tab, and click Create.

d. The Add User federation mapper page appears. Select 'group-ldap-mapper' as
Mapper Type drop down menu. Click Save.

e. Enter the details in the new screen and Save.

f. New buttons Synchronize LDAP Groups to Keyclaok and Synchronize
Keyclaok Groups to LDAP appears.

g. Click Synchronize LDAP Groups to Keyclaok.

h. Select the Groups in the left pane and click the View all groups in the right
pane.

i. Click any group and click Edit. The following tabs appear: Settings, Attributes,
Role Mappings, and Members.

j. Select Role Mapping tab to see a list of roles that are pre-defined in cncc-iam.

k. Select one or more roles from Available Roles and assign it to the group.

CNCC TLS Secret configuration

Use the following procedure to configure CNCC TLS Secret:

1. To create kubernetes secret for HTTPS, following files are required:

• ECDSA private key and CA signed certificate of CNCC (if initialAlgorithm is
ES256)

• RSA private key and CA signed certificate of CNCC (if initialAlgorithm is
RSA256)

• TrustStore password file

• KeyStore password file

• CA certificate

2. Create a secret by executing the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
 --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
 --from-file=<ssl_keystore.txt> --from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
 --from-file=<ssl_ecdsa_certificate.crt> -n <Namespace of CNCC

Chapter 8

8-3

IAM Ingress Gateway
 secret>

Example:

$ kubectl create secret generic cncc-iam-ingress-secret
 --fromfile=ssl_ecdsa_private_key.pem --from-
file=rsa_private_key_pkcs1.pem
 --fromfile=ssl_truststore.txt --from-file=ssl_keystore.txt --
from-file=caroot.cer
 --fromfile=ssl_rsa_certificate.crt --from-
file=ssl_ecdsa_certificate.crt -n
 cncc

On successfully executing the above command, the following message will be
displayed:
secret/cncc-iam-ingress-secret created

Execute the following command to verify the secret creation: :

$ kubectl describe secret cncc-iam-ingress-secret -n cncc

3. This section explains how to update the secrets for enabling HTTPS, if they
already exist:Create a secret by executing the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
 --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
 --from-file=<ssl_keystore.txt> --from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
 --from-file=<ssl_ecdsa_certificate.crt> --dry-run -o yaml -n
<Namespace of CNCC IAM Ingress
 Gateway secret> | kubectl replace -f - -n <Namespace of CNCC
IAM Ingress Gateway
 secret>

Example:

$ kubectl create secret generic cncc-iam-ingress-secret
 --fromfile=ssl_ecdsa_private_key.pem --from-
file=rsa_private_key_pkcs1.pem
 --fromfile=ssl_truststore.txt --from-file=ssl_keystore.txt --
from-file=caroot.cer
 --fromfile=ssl_rsa_certificate.crt --from-
file=ssl_ecdsa_certificate.crt --dry-run -o yaml -n
 cncc | kubectl replace -f - -n cncc

On successfully executing the above command, the following message will be
displayed:
secret/cncc-iam-ingress-secret replaced

Chapter 8

8-4

CNCC Core Secret Configuration to Enable HTTPS

Use the following procedure to configure CNCC Core Secret to Enable HTTPS:

1. To create kubernetes secret for HTTPS, following files are required:

• ECDSA private key and CA signed certificate of CNCC (if initialAlgorithm is
ES256)

• RSA private key and CA signed certificate of CNCC (if initialAlgorithm is
RSA256)

• TrustStore password file

• KeyStore password file

• CA certificate

2. Create a secret by executing the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
 --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
 --from-file=<ssl_keystore.txt> --from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
 --from-file=<ssl_ecdsa_certificate.crt> -n <Namespace of CNCC
Core Ingress Gateway
 secret>

Example:

kubectl create secret generic cncc-core-ingress-secret --
fromfile=ssl_ecdsa_private_key.pem
 --from-file=rsa_private_key_pkcs1.pem --
fromfile=ssl_truststore.txt
 --from-file=ssl_keystore.txt --from-file=caroot.cer --
fromfile=ssl_rsa_certificate.crt
 --from-file=ssl_ecdsa_certificate.crt -n cncc
 cncc

On successfully executing the above command, the following message will be
displayed:
secret/cncc-core-ingress-secret created

Execute the following command to verify the secret creation:
$ kubectl describe secret cncc-core-ingress-secret -n cncc

3. This section explains how to update the secrets for enabling HTTPS, if they
already exist:

Create a secret by executing the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
 --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
 --from-file=<ssl_keystore.txt> --from-file=<caroot.cer> --

Chapter 8

8-5

fromfile=<ssl_rsa_certificate.crt>
 --from-file=<ssl_ecdsa_certificate.crt> --dry-run -o yaml -n
<Namespace of CNCC Core Ingress
 Gateway secret> | kubectl replace -f - -n <Namespace of CNCC
Core Ingress Gateway
 secret>

Example:

$ kubectl create secret generic cncc-core-ingress-secret
 --fromfile=ssl_ecdsa_private_key.pem --from-
file=rsa_private_key_pkcs1.pem
 --fromfile=ssl_truststore.txt --from-file=ssl_keystore.txt --
from-file=caroot.cer
 --fromfile=ssl_rsa_certificate.crt --from-
file=ssl_ecdsa_certificate.crt --dry-run -o yaml -n
 cncc | kubectl replace -f - -n cncc

On successfully executing the above command, the following message will be
displayed:
secret/cncc-core-ingress-secret replaced

CNCC IAM SAML Configuration

Use the following procedure to configure CNCC IAM SAML:

1. To configure SAML identity provider (IdP) in CNCC IAM, login to CNCC IAM
Console using admin credentials provided during installation of CNCC IAM .

2. Select Cncc realm and the Identity Provider tab in the left pane. Identity
Providers screen appears in the right pane.

3. From the Add provider drop down list select the saml entry and the Add Identity
Provider screen appears.

4. To create custom 'First Login Flow', click Authentication tab In the left pane. The
Authentication screen appears.

5. Click New at the right pane. Create Top Level Form screen appears.
Enter the appropriate alias and click Save

6. The Authentication screen with the newly created custom flow selected in the
drop down list appears. Click Add Execution in the right pane .

7. Create Authenticator Execution screen appears.
Select Create User If Unique from the Provider drop down list. Click Save.

8. The Authentication screen with the newly created custom flow selected in the
drop down. Under Requirement section, select Alternative.

9. Select Identity Provider in the left pane. Select the custom flow from First Login
Flow drop down list.

Chapter 8

8-6

9
Cloud Native Environment (CNE) Security
Recommendations and Procedures

After installation, audit the OC-CNE security system stance before placing the system
into service. This primarily consists of changing credentials and sequestering SSH
keys to trusted servers. The following table lists all the credentials that need to be
checked, changed and retained:

Credential
Name

Deployment Type Associated
Resource

Initial Setting Credential
Rotation

TOR Switch Bare Metal
Only

username
and
password

Cisco Top or
Rack Switch

username and
password from
PreFlight
Checklist

Reset post-
install

Enclosure
Switch

Bare Metal
Only

username
and
password

HP Enclosure
Switch

username and
password from
PreFlight
Checklist

Reset post-
install

OA Admin Bare Metal
Only

username
and
password

On-board
Administrator
Console

username and
password from
PreFlight
Checklist

Reset post-
install

ILO Admin Bare Metal
Only

username
and
password

HP Integrated
Lights Out
Manger

username and
password from
PreFlight
Checklist

Reset post-
install

Server
Super User
(root)

All username
and
password

Server Super
User

Set to well-
known Oracle
default during
server
installation

Reset post-
install

Server
Admin User
SSH

All SSH Key Pair Server Admin
User

Key Pair
generated at
install time

Can rotate
keys at any
time; key
distribution
manual
procedure

If factory or Oracle defaults were used for any of these credentials, it must be changed
prior to placing the system into operation. The customer must store these credentials
in a safe and secure way offsite. It is recommended that the customer must plan
a regular schedule for updating (rotating) these credentials. Specific procedures and
recommendations for OC-CNE credential management are provided below.

The procedures are:

• Network Security Recommendations and Procedures

• Credential Management Procedures

– Procedure 1: Setting Top Of Rack Switch Credentials

9-1

– Procedure 2: Setting Enclosure Switch Credentials

• Hosting Environment Security Recommendations and Procedures

• Credential Management Procedures

– Procedure 1: Setting HP Onboard Administrator (OA) Credentials.

– Procedure 2: Setting HP Integrated Lights Out Manger (ILO) Credentials

– Procedure 3: Setting Root Passwords for All Cluster Nodes

– Procedure 4: Updating admusr SSH Keys for All Cluster Nodes

• Update the bastion host keys

• General Security Administration Recommendations and Procedures

– Password Policy Administration Procedures

– SSHD Policy Administration Procedures

– Auditd Policy Administration Procedures

1.1.Network Security Recommendations and Procedures

Recommendation: Review and Follow TOR installation procedures

The OC-CNE on-premise installation guide provides detailed procedures on how to
configure the TOR switches and configure them for remote monitoring. Deviations from
the standard installation time configurations are not recommended.

Credential Management Procedures

Procedure 1: Setting Top Of Rack Switch Credentials

This procedure is used to set the credentials on the Cisco TOR switch as deployed
with the bare metal deployment option. Steps for creating and deleting accounts and
for setting account passwords is given below.

1. Login to the TOR switch (from the bastion host):

$ ssh <username>@<switchIP address> User Access Verification

Password: <password>

Cisco Nexus Operating System (NX-OS) Software

TAC support: www.cisco.com/tac

<switchname>#

2. Change the password for <username>:
configure

Enter configuration commands, one per line. End with CNTL/Z.

(config)# username <username> password<newpassword>
(config)#exit

3. Create a new user (if desired):

configureEnter configuration commands, one per line. End with CNTL/Z.

(config)# username <newusername> password <newpassword> role [network-
operator|network-admin|vdc-admin|vdc-operator] (config)#exit

Chapter 9

9-2

https://www.cisco.com/c/en/us/support/index.html

4. Verify the account changes by exiting the ssh session (type exit) and repeat step
1.

exit

Connection to <switchIP address> closed.

$ ssh <newusername>@<switchIP address>

User Access Verification Password: <newpassword>

Cisco Nexus Operating System (NX-OS) SoftwareTAC support:
www.cisco.com/tac

<switchname>#

5. Delete an unrequired user account:

configureEnter configuration commands, one per line. End with CNTL/Z.

(config)# no username <username>

(config)#exit

6. Change the enable secret:
(config)# enable secret <newenablepassword>

(config)# exit

7. Save the configuration changes:

copy running-config startup-config

100%

Copy complete, now saving to disk (please wait)...

Copy complete.

Note:

Recommendation: Change TOR passwords before placing site into
service. The TOR switch credentials show the changed prior to placing the
site into service.
Recommendation: Use Strong Passwords.The Network Administrator
must choose complex TOR Switch passwords as per their organization's
security guidelines.

Procedure 2: Setting Enclosure Switch Credentials
This procedure is used to set the credentials on the HP enclosure switch as deployed
with the bare metal deployment option. Steps for creating and deleting accounts and
for setting account passwords is given below. For additional information, refer to: HP
commands to configure enclosure switch username and password.

Setting Enclosure Switch Credentials

Chapter 9

9-3

https://www.cisco.com/c/en/us/support/index.html

1. Login to the HP enclosure switch (from the bastion host): $ ssh <username>@<
switchIP address>

Copyright (c)2010-2017Hewlett Packard Enterprise Development LP **
Without the owner's prior written consent,
** no decompiling or reverse-engineering shall be allowed.
<switchname>
<switchname>
sysSystem View:returnto User View with Ctrl+Z.

2. Change the password for the current username:

[switchname]local-user <username>class <currentclass>
[switchname-luser-manage-<username>]password simple <newpassword>
[switchname-luser-manage-<username>]quit

3. Create a new user account:

[switchname]local-user <newusername>class[manage|network]

New local user added

[switchname-luser-manage-<newusername>]password simple <newpassword>
[switchname-luser-manage-<newusername>]quit

4. Delete the user account that is not required:

[switchname]undo local-user <username>class <currentclass>

5. Delete the user account that is not required:

[switchname]undo local-user <username>class <currentclass>

6. Save the configuration changes:

[switchname]save
The current configuration will be written to the device. Are you
sure? [Y/N]: y
Please input the file name(*.cfg)[flash:/<filename>]
(To leave the existing filename unchanged, press the enter key):
flash:/<filename> exists, overwrite? [Y/N]: yValidating file.
Please wait...
Saved the current configuration to mainboard device successfully.
Slot1:
Save next configuration file successfully.
[switchname]
[switchname]save
The current configuration will be written to the device. Are you
sure? [Y/N]: y
Please input the file name(*.cfg)[flash:/<filename>]
(To leave the existing filename unchanged, press the enter key):
flash:/<filename> exists, overwrite? [Y/N]: yValidating file.
Please wait...

Chapter 9

9-4

Saved the current configuration to mainboard device successfully.
Slot1:
Save next configuration file successfully.
[switchname]

Note:

Recommendation: Set Enclosure Switch Credentials before Placing
Into Service

The HP Enclosure switch credentials show be changed prior to placing the
site into service.

Recommendation: Use Strong Passwords

The Network Administrator must choose complex Enclosure Switch
passwords as per their organization's security guidelines.

1.2 Hosting Environment Security Recommendations and Procedures

The best way to keep your CNE environment secure is to keep it up-to-date. New
OC-CNE releases are typically released every 2 months. The OC-CNE upgrade is not
service affecting and will typically install newer versions of:

• Host OSs

• Kubernetes and associated containers

• DB-Tier binaries

• Common service containers

The upgrade process ensures that the uplifts do not affect active service. Refer Cloud
Native Environment (OC-CNE) Upgrade Guide for more details.

Repository Management Recommendations

System Update (YUM) Recommendations
Recommendation: Keep central yum repositories up to date.

Keep central repositories up-to date with latest yum packages; yum updates are
performed on-site whenever a fresh install or upgrade is performed. An up-to date
yum repository will help ensure that fixes for all publish vulnerabilities are applied.

Docker Repository Recommendations
Recommendation: Scan docker image repositories regularly.

Scan your docker image repositories regularly using a tool such as clair or anchore-
engine. All images are scanned and vulnerabilities assessed at product development
time, but new exploits /vulnerabilities may be reported/fixed later. Scan tools typically
use a database of known vulnerabilities - refer to tool vendor for instructions on
creating off-line (internet isolated) vulnerability databases.

Chapter 9

9-5

https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/cne_upgrade/index.html
https://docs.oracle.com/en/industries/communications/cloud-native-core/2.2.0/cne_upgrade/index.html

1.3 Credential Management Procedures

Procedure 1: Setting HP Onboard Administrator (OA) Credentials.

This procedure is used to set the credentials on the HP Onboard Administrator as
deployed with the bare metal deployment option. Steps for creating and deleting
accounts and for setting account passwords is shown. For additional information,
please refer to: HP commands to configure OA username and password.

1. Login to the OA:

$ ssh <username>@<OA address>

WARNING: This is a private system. Do not attempt to login unless you are
anauthorized user. Any authorized or unauthorized access and use may be
monitored and can result in criminal or civil prosecution under applicable law .

Firmware Version: 4.85
Built:04/06/2018@06:14OA
 Bay Number:1
OA Role: Active
<username>@<OA address>'s password: <password>
HPE BladeSystem Onboard Administrator
(C) Copyright 2006-2018 Hewlett Packard Enterprise Development LP
Type 'HELP' to display a list of valid commands.
Type 'HELP <command>' to display detailed information about a
specific command.
Type 'HELP HELP' to display more detailed information about the
help system.
OA-A45D36FD5FB1>

2. Change the current password:

OA-A45D36FD5FB1> set password <newpassword>
Changed password for the"<username>"user account.
OA-A45D36FD5FB1>

3. Add new user:

OA-A45D36FD5FB1> add user <newusername>
New Password: <newpassword>
Confirm : <newpassword>
User"<newusername>"created.
You may set user privileges with the 'SET USER ACCESS' and 'ASSIGN'
commands.
OA-A45D36FD5FB1> set user access <newusername> [ADMINISTRATOR|
OPERATOR|USER] "<newusername>"
has been given [administrator|operator|user] level privileges.

Chapter 9

9-6

4. Assign full access to the enclosure for the user:

OA-A45D36FD5FB1> assign server all <newusername>
<newusername> has been granted access to the valid requested bay
(sOA-A45D36FD5FB1> assign interconnect all <newusername>
<newusername> has been granted access to the valid requested
bay(s)OA-A45D36FD5FB1> assign oa <newusername>
<newusername> has been granted access to the OA.

5. Verify the new account

OA-A45D36FD5FB1> exit
Connection to <OA address> closed.
[bastion host]# ssh <newusername>@<OA address>
WARNING: This is a private system. Do not attempt to login unless
you are unauthorized user.
Any authorized or unauthorized access and use may be monitored and
can result in criminal or
civil prosecution under applicable law.
Firmware Version : 4.85
Built : 04/06/2018 @ 06:14
OA Bay Number : 1
OA Role : Active
<newusername>@<OA address>'s password: <newpassword>
HPE BladeSystem Onboard Administrator
(C) Copyright 2006-2018 Hewlett Packard Enterprise Development LP
Type 'HELP' to display a list of valid commands.
Type 'HELP <command>' to display detailed information about a
specific command.
Type 'HELP HELP' to display more detailed information about the
help system. OA-A45D36FD5FB1>

6. Delete the user account:

OA-A45D36FD5FB1> remove user <username>
Entering anything other than 'YES' will result in the command not
executing.
Are you sure you want to remove testuser1? yes
User"<username>"removed.

Procedure 2: Setting HP Integrated Lights Out Manger (ILO) Credentials

This procedure is used to set the credentials on the HP Integrated Lights Out
Managers as deployed with the bare metal deployment option. Steps for creating and
deleting accounts and for setting account passwords is shown.

1. Login to the iLO:

$ ssh <username>@<iLO address>

<username>@<iLO address>'s password: <password>User:<username>
logged-in to ...(<iLO address> / <ipv6 address>)
iLO Advanced2.61at Jul272018

Chapter 9

9-7

Server Name: <server name>
Server Power: On
</>hpiLO->

2. Change the current password:

</>hpiLO-> set /map1/accounts1/ <username> password= <newpassword>
status=0
status_tag=COMMAND COMPLETED
Tue Aug2013:27:082019
</>hpiLO->

3. Create a new user account:

</>hpiLO-> create /map1/accounts1 username= <newusername> password=
<newpassword>
group=admin,config,oemHP_rc,oemHP_power,oemHP_vm
status=0
status_tag=COMMAND COMPLETED
Tue Aug2013:47:562019
User added successfully.

4. Verify the new user account:

</>hpiLO-> exit
status=0
status_tag=COMMAND COMPLETED
Tue Aug2013:30:522019CLI session stoppedReceived disconnect from
<iLO address> port22:11: Client Disconnect
Disconnected from <iLO address> port22
[bastion host]# ssh <newusername>@<iLO address>
<newusername>@<iLO address>'s password: <newpassword>
User:<newusername> logged-in to ...(<iLO address> / <ipv6 address>)
iLO Advanced2.61at Jul272018
Server Name: <server name>Server
 Power: On</>hpiLO->

5. Delete an unneeded account:

</>hpiLO-> delete /map1/accounts1/ <username>
status=0
status_tag=COMMAND COMPLETED
Tue Aug2013:59:042019
User deleted successfully.

Procedure 3: Setting Root Passwords for All Cluster Nodes

The procedure to reset the root account requires that the administrator login to each
and every server.

To reset the root account, for each and every server in the cluster perform the
following steps:

Chapter 9

9-8

1. Login to the next server:

$ ssh admusr@ <cluster server IP>

2. Perform the root password change:

$ sudo passwd root

New password: <new password>
Retype new password: <new password>
Retype new password:<new password>

3. Repeat steps 1 - 2 for each and every server in the cluster.

Note:

The administrator (admusr) account is provided without a usable password
hash. Thus requiring the use of SSH keys to access the account. The SUDO
users access is configured without the requirement of a password. If you
would like to enable the SUDO passwords for the administrator, you also
need to assign a password to the administrator account using a procedure
very similar to the one outlined above.

Procedure 4: Updating admusr SSH Keys for All Cluster Nodes

There are two sets of SSH keys used in a deployed cluster - the key used to
access the bastion host, and the key used to access the cluster servers. These
key-pairs are generated at install time and are only usable on the cluster they were
generated for. The public key portion of the bastion host key pair is typically provided
to administrators who will manage the cluster. The key pair used to access the cluster
servers should kept local to the cluster:

Table 9-1 Updating admusr SSH Keys

Key Pair Name Public Key Distribution Private Key Distribution

Bastion Host Place copy in the
authorized_keys file on the
bastion host

Cluster Admin - place in the cluster
admin key agent (e.g., ssh-agent or
pageant) external to the cluster. Do not
copy to any host on the cluster.

Cluster Hosts Place a copy in the
authorized_keys files on each
and every cluster host; do not
configure on the bastion host.

Bastion Host -

~admusr/.ssh

directory. This will be used when
performing orchestration activities
(install / upgrade).

Chapter 9

9-9

To replace either of these key pairs starts with an openssh request to generate a new
keypair:

ssh-keygen -b 4096 -t rsa -C "New SSH Key" -f
 .ssh/new_occne_id_rsa -q -N ""

This command generates the following key pair:

Key Name Purpose

new_occne_id_rsa The private key

new_occne_id_rsa.pub The public key

Update the bastion host keys

1. Login to the bastion host and generate a new key pair using the ssh-keygen
command show above.

$ ssh-keygen -b 4096 -t rsa -C "New
 Bastion Key" -f ~/.ssh/new_occne_id_rsa -q -N
 ""

2. Copy the private key portion of the key off cluster and make it available to your
ssh agent of choice or store it in the .ssh directory of your client machine. See
instructions for your specific SSH client (e.g., putty or openssh)

3. Add the new public key to the authorized key file on the bastion host:

$ cat ~/.ssh/new_occne_id_rsa.pub >>
 ~/.ssh/authorized_keys

4. Confirm the permissions of the .ssh directory and files:

$ ls -la ~/.ssh
total 32
drwx------. 2 admusr admusr 4096 Feb 25 15:48 .
drwx------. 42 admusr admusr4096 Feb 24 15:14 ..
-rw-------. 1 admusr admusr 796 Jan 28 14:43 authorized_keys
-rw-------. 2 admusr admusr 545 Feb 12 13:58 config
-rw-------. 1 admusr admusr 3239 Feb 25 15:48 new_occne_id_rsa
-rw-r--r–. 1 admusr admusr 737 Feb 25 15:48 new_occne_id_rsa.pub

In general, the .ssh directory should be mode 700 and the files under that directory
should be mode 600

5. Confirm that the new key works; remove the old key from your ssh client's agent
(see instructions for your client), and confirm that you can still login.

6. Assuming that you were able to login using the new key pair, remove the old key
pair from the authorized_keys file using your favorite editor.

In general, the authorized_keys file should at this point have two keys in it - the old
one and the new one. The new one should be at the bottom.

Chapter 9

9-10

General Security Administration Recommendations and Procedures

Note:

Recommendation: Record configuration changes

Note that in a disaster recovery scenario, Oracle provided procedures will
only restore base system behavior (they will not include restoration of
an special configurations or tweaks). We recommend that all post-delivery
customization be logged or automated using tools such as Ansible.

Password Policy Administration Procedures

In general, the host environments use a user account named admusr which is not
configured with a password; the only way to access this account is using SSH keys.
We recommend using SSH keys rather than passwords for all non-root accounts. The
root account cannot be accessed via ssh; the only access is via the console. For this
account, we recommend setting a password and storing it off-site to be used only for
break-glass console access to the host.

User Administration Recommendations

Customers may want to create additional accounts to manage separate concerns
(Example: a dbadmin account, a k8sadmin account, etc). This can be done using
normal linux user administration procedures.

SSHD Policy Administration Procedures

Customers may want to create augment the standard sshd configuration to perform
additional hardening; this can be done using normal linux ssh administration
procedures. Note that in a disaster recovery scenario, Oracle provided procedures
will only restore base system behavior (they will not include restoration of an special
configurations or tweaks).

Note:

Recommendation: Review changes with Oracle Support

We recommend reviewing any planned changes to sshd configuration with
your Oracle Support contact. Improper sshd configuration can either open
the system up to attacks or prevent proper system operation.

Auditd Policy Administration Procedures

Customers may want to augment the standard auditd configuration to perform
additional monitoring; this can be done using normal linux auditd administration
procedures. Place all customizations in a seperate file in the /etc/audit/rules.d
directory; do not modify any of the other existing audit configuration files

Chapter 9

9-11

A
Cloud Native Core Network Port Flows

Network Port Flows

• Cluster IP addresses are reachable outside of the cluster and are typically
assigned via a Network Load Balancer

• Node IP addresses are reachable from the bastion host (and may be exposed
outside of the cluster)

OC-CNE Port Flows

Table A-1 OC-CNE Port Flows

Name Sever/
Contai
ner

Ingress
Port
ext[:int]/
Proto

TLS Cluster
IP
(Servic
e IP)

Node IP Notes

SSH
Access

ALL 22/TCP Y SSH Access Administrative SSH
Access; no root / key
only.

Repository Bastion
Host

80/TCP,

443/TCP,

5000/TCP

Y Repository
Access

Access repositories
(YUM, Docker, Helm,
etc.)

RPC Bind All 111/TCP,
UDP

N RPCBind Used for installation;
pre booting of NFS
mounted images.

BGP K8s
Nodes

179/TCP N BGP Used on bare metal
environments in load
balancing.

MySQL
Query

MySQL
SQL
Node

3306/TCP N Replica
tion
Traffic

Microservice
SQL Access

The SQL Query
interfaces are used
for 5G NFs to access
the database and
for remote sites to
replicate data.

MySQL
Manageme
nt

MySQL
Manag
ement
Node

1186/TCP N Manag
ement
Consol
e
Access

The SQL
Management interface
is used to access
the management
interfaces for the data
cluster.

MySQL
Data

MySQL
Data
Node

50501/TCP N SQL Query
Backend

The SQL Data
interface provide
a backend DBMS
interface for the SQL
Query Nodes.

A-1

Table A-1 (Cont.) OC-CNE Port Flows

Name Sever/
Contai
ner

Ingress
Port
ext[:int]/
Proto

TLS Cluster
IP
(Servic
e IP)

Node IP Notes

ILO ILO
Manag
ement
Port

443/TCP Y Installation /
Managemen
t

This interface is used
to manage the frame;
it provides low level
management for all of
the frame HW assets.

ETCD
Client

K8s
Master
Nodes

2379/TCP Y Client
Access

Keystore DB used by
K8s

ETCD Peer K8s
Master
Nodes

2380/TCP Y Peer Access ETCD Server
Communication

Kube API
Server

K8s
Master
Nodes

6443/TCP Y K8s
Orchestratio
n

The Kube API
Server provides an
orchestration API for
the creation of K8s
resources.

Kubelet
cAdvisor

K8s
Nodes

4149/TCP Y Container
Metrics

Default cAdvisor port
used to query
container metrics.

Kubelet API K8s
Nodes

10250/TCP Y Control
Plane Node
Access

API which allows full
node access.

Kube-
scheduler

K8s
Nodes

10251/TCP N Scheduler
Access

Serve HTTP
insecurely

Kube-
controller

K8s
Nodes

10252/TCP N Controller
Access

Serve HTTP
insecurely

Kubelet
Node State

K8s
Nodes

10255/TCP Y Node State
Access

Unauthenticated read-
only port, allowing
access to node state.

Kube-proxy K8s
Nodes

10256/TCP N Health
Check

Health check server
for Kube Proxy.

Kube-
controller

K8s
Nodes

10257/TCP Y Controller
Access

HTTPS Access

Kube-
Scheduler

K8s
Node

10259/TCP Y Scheduler
Access

HTTPS Access

Kibana K8s
Nodes

80:5601/TP
C

N GUI Logging Visualization

ElasticSear
ch

K8s
Nodes

9200/TCP N GUI Search API access

ElasticSear
ch

K8s
Nodes

9300/TCP N Logging Internal Logging

Jaeger
Agent

K8s
Nodes

6831/UDP N Agent Accept jaeger.thrift
over compact thrift
protocol.

Jaeger
Agent

K8s
Nodes

6832/UDP N Agent Accept jaeger.thrift
over binary thrift
protocol.

Appendix A

A-2

Table A-1 (Cont.) OC-CNE Port Flows

Name Sever/
Contai
ner

Ingress
Port
ext[:int]/
Proto

TLS Cluster
IP
(Servic
e IP)

Node IP Notes

Jaeger
Agent

K8s
Nodes

5778/TCP N Agent Serve Configs

Jaeger
Query

K8s
Nodes

80:16686/T
CP

N GUI Service Frontend

Jaeger
Collector

K8s
Nodes

14268/TCP N Collector Accept jaeger.thrift
directly from clients.

Jaeger
Collector

K8s
Nodes

9411/TCP N Collector Zipkin compatable
endpoint (optional).

Prometheu
s Server

K8s
Nodes

80:9090/TC
P

N GUI Prometheus Server

Prometheu
s Push
Gateway

K8s
Nodes

9091/TCP N Push
Gateway

Prometheus Push
Gateway

Alertmanag
er

K8s
Nodes

80:9093/TC
P

N GUI Alertmanager

Alertmanag
er
clustering

K8s
Nodes

9094/TCP N Amertmang
er Clustering

Alertmanager
Clustering

Prometheu
s Exporters

K8s
Nodes

9100-9551/T
CP

24231/TCP
(fluent)

9099/TCP
(snmp)

N Prometheus
Exporters

Prometheus Exporters

Grafana K8s
Nodes

80:3000/TC
P

N GUI Grafana

NF Port Flows

Table A-2 NF Port Flows

Name Sever /
Container

Ingress
Port
[external]:i
nternal

TLS ? Cluster IP
(Service IP)

Node IP Notes

5G NRF K8s Nodes /
NRF Service

80/TCP

443/TCP

Y NfConfigurat
ion

IngressGate
way

NfRegistrati
on

NfSubscripti
on

NfDiscovery

NfAccessTo
ken

EgressGate
way

5G NRF

Appendix A

A-3

Table A-2 (Cont.) NF Port Flows

Name Sever /
Container

Ingress
Port
[external]:i
nternal

TLS ? Cluster IP
(Service IP)

Node IP Notes

5G SPF K8s Nodes /
SPF Worker

8000/TCP N 5G Proxy 5G SCP
(aka SPF)
Proxy

5G SPF K8s Nodes /
Soothsayer

8082/TCP N Proxy
Configuratio
n

5G SCP
(aka SPF)
Proxy
Configuratio
n

5G SPF K8s Nodes /
Istio

N Mesh State
Sharing

5G SCP
(aka SPF)
Mesh
Managemen
t

5G NSSF K8s Nodes /
NSSF
Service

80/TCP

443/TCP

Y NSSF
configuration

IngressGate
way

NS-
selection,
NS-
availability,

NS-
subscription

EgressGate
way

NRF-Client

5G NSSF

5G UDR/
UDSF

K8s Nodes /
UDR
Service

80/TCP N Nudr-dr/
Nudr-prov

5G UDR:
Signalling
network can
be used for
managemen
t API
exposed

Appendix A

A-4

B
OpenSSL Cheatsheet

It is possible to use openssl to perform basic PKI functions. This cheat sheet shows
common openssl operations needed to create certificate authorities, to sign certificate
requests, generate private keys, strip passphrases, etc. The intended audience of this
appendiix is developers or testers who need to quickly create certificates and keys to
verify or execute security guide procedures. Customer deployments with use a PKI
system with these capabilities built in, or will use an internal CA to manage important
certificate lifecycle operations.

1. Create CA Certificate Private Key

$ openssl genrsa 2048 >
 ca-key.pemGenerating RSA private key, 2048 bit long
modulus
 ...
.................+++
 +++
 e is 65537 (0x10001)

2. Create CA Certificate

$ openssl req -new -x509 -nodes
 -days 3600 -key ca-key.pem -out ca.pem You are about to be
 asked to enter information that will be incorporated into
your certificate request.
 What you are about to enter is what is called a
Distinguished Name or a DN.
 There are quite a few fields but you can leave some blank
 For some fields there will be a default value,
 If you enter '.', the field will be left blank.

 Country Name (2 letter code) [XX]:US
 State or Province Name (full name) []:NC
 Locality Name (eg, city)[Default City]:Morrisville
 Organization Name (eg, company) [Default Company
Ltd]:Oracle Corporation Inc
 Organizational Unit Name (eg, section) []:CGBU
 Common Name (eg, your name or
 your server's hostname) []:exampleDbCa
 Email Address []:

3. Create a Certificate Signing Request and Sign It

$ openssl req -newkey rsa:2048
 -days 30 -nodes -keyout server-key.pem -out server-
req.pem Generating a 2048 bit RSA private
 key................++

B-1

+...
.................................+++
 writing new private key to 'server-key.pem'

 You are about to be asked to enter
 information that will be incorporatedinto your
certificate request.
 What you are about to enter is what is called a
Distinguished Name or a DN.
 There are quite a few fields but
 you can leave some blankFor some fields there will be a
default value,
 If you enter '.', the field will be left
 blank.

 Country Name (2 letter code) [XX]:US
 State or Province Name (full name) []:NC
 Locality Name (eg, city)
 [Default City]:Morrisville
 Organization Name (eg, company) [Default Company
Ltd]:Oracle Corporation Inc
 Organizational Unit Name (eg, section) []:CGBU
 Common Name (eg, your name or your server's hostname)
[]:mysql-1.example.com
 Email Address []:
 Please enter the following 'extra'attributes
 to be sent with your certificate request
 A challenge password[]:OccneNextGenCne
 An optional company name []:

4. Strip the Passphrase from a CSR

$ openssl rsa -inserver-key.pem -out server-key.pem
 writing RSA key

5. Create a Signed Certificate

$ openssl x509 -req -inserver-req.pem -days 3600 -CA ca.pem -CAkey
ca-key.pem -set_serial
 01 -out server-cert.pem
 Signature ok
 subject=/C=US/ST=NC/L=Morrisville/O=Oracle Corporation
Inc/OU=CGBU/CN=OccneDataTierMySQLNDB
 Getting CA Private Key

6. Verify Certificate / Key pair

$ openssl verify -CAfile ca.pem server-cert.pem client-cert.pem
 /var/occnedb/opensslcerts/server-cert.pem:OK
 /var/occnedb/opensslcerts/client-cert.pem:OK

Appendix B

B-2

C
Frequently Asked Questions (FAQ)

The Cloud Native Core products provide a set of 4G and 5G cloud native applications
(called Network Functions or NFs) that run on an Cloud Native Environment (CNE).
The CNE may be virtualized or may run on bare metal, and it may be configured
using the OC CNE installers (to create an OCCNE reference environment) or may be
provided by the customer. These FAQs assume that a reference OCCNE environment
is being used. When a customer provided CNE is used, then CNE security will be
managed by the customer.

The FAQ question are general; the answers might have different responses with
respect to the CNE environment and the NF application. For example, CNE
authentication/authorization in the OCCNE reference environment is handled by the
Oracle Linux PAM module, and can be customized using PAM configuration changes.
Authentication and authorization for the 5G NFs is specified by the 5G 3GPP spec,
and is typically performed using X.509 mutual authentication, OATH2, and Javascript
Web Tokens.

.

Security Zones

Zone Purpose Notes

Network Network Access Network access is provided in bare metal environments
using network switches. These switches control ingress
and egress flows to a site. In the openstack and OCI
environments, different network rules provide similar access
controls.

Infrastructur
e

Infrastructure
Hosting

All compute and data elements are hosted either directly
on bare metal servers or virtualize machines. These
infrastructure hosts run Oracle Linux 7 and use standard
Linux security mechanisms.

DB Cluster State
Persistence

The DB-Tier is typically hosted on a cluster virtual machines
and provides a fault tolerant MySQL environment. MySQL
has it's own authentication and authorization mechanisms.

K8s Stateless
Computing
Instances

The Kubernetes (K8s) cluster is hosted either directly on
bare metal servers or on a set of virtual machines. K8s has
it's own security mechanisms.

OAM 5G NF OAM The 5G Network Functions have a variety of OAM
interfaces for different OAM functions (Example: logging,
tracing, monitoring, configuration). All authentication and
authorization for the 5G NF OAM zone is mediated by the
CNC Console.

Signaling 5G NF Signaling The 5G NF core network defines a set of standards driven
authentication and authorization mechanisms .

DB Cluster State
Persistence

The DB-Tier is typically hosted on a cluster virtual machines
and provides a fault tolerant MySQL environment. MySQL
has it's own authentication and authorization mechanisms.

C-1

Zone Purpose Notes

K8s Stateless
Computing
Instances

The Kubernetes (K8s) cluster is hosted either directly on
bare metal servers or on a set of virtual machines. K8s has
it's own security mechanisms.

(Optional) Enter conceptual text here.

Security Principles

Attack Surface Reduction

• What are the concrete ways to minimize attack surfaces?

– Minimize system processes.

– Uninstall or don't install softwares that are not required.

Principle of Least Privilege

• What are the concrete ways to limit need for privilege escalation?

– Restricted Pod Security Policies.

– Don't run as root.

Defense in Depth

• What are the concrete ways to implement defense in depth principles?

– Redundant controls

– Redundant monitoring

Security Monitoring

• What are the concrete ways to monitor for security?

– Authentication events

– Performance anomalies

Appendix C

C-2

D
Support

This section describes the general suppport options that are available:

My Oracle Support (MOS)

MOS (https://support.oracle.com) is your initial point of contact for all product support
and training needs. A representative at Customer Access Support (CAS) can assist
you with MOS registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle
Support hotline for your local country from the list at http://www.oracle.com/us/support/
contact/index.html. When calling, make the selections in the sequence shown on the
Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking, and Solaris Operating System Support.

3. Select one of the following options:

• For technical issues such as creating a new Service Request (SR), select 1.

• For non-technical issues such as registration or assistance with MOS, select 2.

You are connected to a live agent who can assist you with MOS registration and
opening a support ticket. MOS is available 24 hours a day, 7 days a week, 365 days a
year.

Emergency Response

In the event of a critical service situation, emergency response is offered by the
CAS main number at 1-800-223-1711 (toll-free in the US), or by calling the Oracle
Support hotline for your local country from the list at http://www.oracle.com/us/support/
contact/index.html. The emergency response provides immediate coverage, automatic
escalation, and other features to ensure the critical situation is resolved as rapidly as
possible.

A critical situation is defined as a problem with the installed equipment that severely
affects service, traffic, or maintenance capabilities, and requires immediate corrective
action. Critical situations affect service and/or system operation resulting in one or
several of these situations:

• A total system failure that results in loss of all transaction processing capability

• Significant reduction in system capacity or traffic handling capability

• Loss of the system’s ability to perform automatic system reconfiguration

• Inability to restart a processor or the system

• Corruption of system databases that requires service affecting corrective actions

• Loss of access for maintenance or recovery operations

D-1

https://support.oracle.com/
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

• Loss of the system ability to provide any required critical or major trouble
notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance
capabilities may be defined as critical by prior discussion and agreement with Oracle.

Locate Product Documentation on the Oracle Help Center Site

Oracle Communications customer documentation is available on the web at the Oracle
Help Center (OHC) site, http://docs.oracle.com. You do not have to register to access
these documents. Viewing these files requires Adobe Acrobat Reader, which can be
downloaded at http://www.adobe.com.

1. Access the Oracle Help Center site at http://docs.oracle.com.

2. Click Industries.

3. Under the Oracle Communications subheading, click the Oracle Communications
documentation link.

The Communications Documentation page displays. Most products covered by these
documentation sets display under the headings Network Session Delivery and
Control Infrastructure or Platforms.

1. Click on your product and then the release number.

A list of the entire documentation set for the selected product and release displays.

To download a file to your location, right-click the PDF link, select Save target as (or
similar command based on your browser), and save to a local folder.

Appendix D

D-2

http://docs.oracle.com/
http://www.adobe.com/
http://docs.oracle.com/

	Contents
	My Oracle Support
	What's New in This Guide
	1 Introduction
	Audience
	References
	Acronyms

	2 Overview
	3 Cloud Native Core Network Functions
	4 Secure Development Practices
	Overview of Secure Development Practices
	Secure Development - DevSecOps
	Vulnerability Handling

	5 Trust Model
	Context diagram
	Key Trust Boundaries
	External Data Flows

	6 Common Security Recommendations and Procedures
	4G/5G Application Authentication and Authorization
	DB-Tier Authentication and Authorization

	7 4G/5G Core Network Function Security Recommendations and Procedures
	Network Repository Function (NRF) Security Recommendations and Procedures
	Cloud Native Core Policy Security Recommendations and Procedures
	Cloud Native Diameter Routing Agent (cnDRA) Security Recommendations and Procedures
	Cloud Native Core Ingress/Egress Gateways Security Recommendations and Procedures
	Service Communication Proxy (SCP) Security Recommendations And Procedures
	Network Slice Selection Function (NSSF) Security Recommendations and Procedures
	Security Edge Protection Proxy (SEPP) Security Recommendations and Procedures
	Unified Data Repository (UDR) / Unstructured Data Storage Function (UDSF) Security Recommendations and Procedures
	InterWorking and Mediation Function (IWF) Security Recommendations and Procedures
	Binding Support Function (BSF) Security Recommendations and Procedures

	8 Cloud Native Core Console (CNCC) Security Recommendations and Procedures
	9 Cloud Native Environment (CNE) Security Recommendations and Procedures
	A Cloud Native Core Network Port Flows
	B OpenSSL Cheatsheet
	C Frequently Asked Questions (FAQ)
	D Support

