
Oracle® Communications
Cloud Native Environment (OC-CNE)
Upgrade Guide

Release 1.6.0
F33966-01
September 2020

Oracle Communications Cloud Native Environment (OC-CNE) Upgrade Guide, Release 1.6.0

F33966-01

Copyright © 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

Acronyms 1-1

2 Upgrading OCCNE

Prerequisites 2-1

Pre-upgrade Procedures 2-2

Upgrade Procedure 2-10

Post-Upgrade Procedures 2-12

Post Upgrade Health Checks 2-14

A Reference Procedures

Preserving MetalLB Configuration During Upgrade A-1

Verifying current MetalLB configuration A-1

Updating MetalLB configuration file A-3

Installing Network Functions A-3

Storing NF Alerts File A-5

Configuring ZIPKIN Support in Jaeger Collector A-6

iii

List of Figures

2-1 Jenkins UI 2-8

iv

List of Tables

1-1 Acronyms 1-1

v

My Oracle Support

My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support can
assist you with My Oracle Support registration.

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the
US), or call the Oracle Support hotline for your local country from the list at http://
www.oracle.com/us/support/contact/index.html. When calling, make the selections in
the sequence shown below on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking and Solaris Operating System Support.

3. Select one of the following options:

• For Technical issues such as creating a new Service Request (SR), select 1.

• For Non-technical issues such as registration or assistance with My Oracle
Support, select 2.

You are connected to a live agent who can assist you with My Oracle Support
registration and opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

6

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

What's New in This Guide

This section introduces the documentation updates for Release 1.6.x in Oracle
Communications Cloud Native Environment (OCCNE) Upgrade Guide.

New and Updates Features in Release 1.6.0

For Release 1.6.0, the following changes are performed in the document:

• Updated Pre-upgrade Procedures section to be executed prior to upgrade.

• Added the following sections:

– Post-Upgrade Procedures

– Reference Procedures

7

1
Introduction

Oracle Communications Cloud Native Environment (OCCNE) is in essence
infrastructure code that provisions, configures, and manages reference cloud native
environments.

This document details the procedure for upgrading the OCCNE. The intended
audiences for this document are Oracle engineers who work with customers to
maintain a Cloud Native Environment (CNE) on-site at customer facilities.

Acronyms
Table 1-1 Acronyms

Term Definition

CD Continuous Delivery

OCCNE Oracle Communications Cloud Native Environment

1-1

2
Upgrading OCCNE

The upgrade procedures in this document explain how to setup and perform
an upgrade on the Oracle Communications Cloud Native Environment (OCCNE)
environment. The upgrade includes the OL7 base image, Kubernetes, and the
common services.

Prerequisites
Following are the prerequisites for upgrading OCCNE:

• The Preserving MetalLB Configuration During Upgrade procedure must be
executed prior to upgrade.

• While upgrading MYSQL NDB on the second site the Mate Site DB Replication
Service Load Balancer IP must be provided as the configuration parameter for
the geo-replication process to continue. Login to Bastion Host of the first site and
execute the following command to retrieve DB Replication Service Load Balancer
IP.

$ kubectl get svc --namespace=occne-infra | grep replication

Example:

$ kubectl get svc --namespace=occne-infra | grep replication
occne-db-replication-svc LoadBalancer 10.233.3.117
10.75.182.88 80:32496/TCP 2m8s

In the above example IPv4: 10.75.182.88 is the Mate Site DB Replication Service
Load Balancer IP.

• The customer central repository should be updated with the current OCCNE
Images for 1.6.0 and any RPMs and binaries should be updated to the latest
versions.

• Copy V987059-01.zip (MySQL Cluster Manager 1.4.8+Cluster TAR for Oracle
Linux / RHEL 7 x86 (64bit), 557.6 MB downloaded from OSDC) to "/var/occne"
directory on bastion host.

• Ensure that cluster is in healthy state by checking that all the pods are ready and
running. Execute the following command and verify that all pods are in completed/
running status. The pods from the list should have status as Running and READY
value set to x/x (or) as Completed and READY value set to 0/x.

kubectl get pods --all-namespaces

2-1

Example:

NAMESPACE NAME READY
STATUS RESTARTS AGE
cert-manager cert-manager-77fb98dc45-7ch6b 1/1
Running 0 8d
kube-system calico-kube-controllers-7df59b474d-r4f7z 1/1
Running 0 8d
kube-system calico-node-6cvhp 1/1
Running 1 8d
...
...
...
occne-infra occne-elastic-elasticsearch-client-0 1/1
Running 0 6d8h
occne-infra occne-elastic-elasticsearch-client-1 1/1
Running 0 6d8h
occne-infra occne-elastic-elasticsearch-client-2 1/1
Running 0 6d8h

...
...
...

Pre-upgrade Procedures
Following is the pre-upgrade procedure for OCCNE:

1. All NFs must be upgraded before OCCNE upgrade. Execute Installing Network
Functions procedure for all NFs that have upgrades available. This procedure
includes steps to update NF-specific alerts.

2. The below procedure needs to be executed to track and save the changes which
can be reapplied after upgrade to keep the SNMP running after upgrade:

a. If trap receiver (snmp.destination) for occne-snmp-notifier is modified after
installation then the IP details must be saved so that after upgrade it can be
reassigned.

$ kubectl get deployment occne-snmp-notifier -n occne-infra -o
yaml

Search for - --snmp.destination=<trap receiver ip address>:162. Copy
the IP and save it for future reference.

b. Execute the following command to determine whether multiple SNMP notifiers
are configured or not:

$ kubectl get pods --all-namespaces | grep snmp
occne-infra occne-snmp-notifier-1-f4d4876c7-hxnkb 1/1 Running
0 44h
occne-infra occne-snmp-notifier-6b99997bfd-r59t7 1/1 Running
0 43h

Chapter 2
Pre-upgrade Procedures

2-2

c. If multiple SNMP notifiers are created then alert manager configmap must be
saved before upgrade, so that the config can be reapplied after upgrade by
following the post upgrade steps:

$ kubectl get configmap occne-prometheus-alertmanager -n occne-
infra -o yaml
apiVersion: v1
data:
 alertmanager.yml: |
 global: {}
 receivers:
 - name: default-receiver
 webhook_configs:
 - url: http://occne-snmp-notifier:9464/alerts
 - name: test-receiver-1
 webhook_configs:
 - url: http://occne-snmp-notifier-1:9465/alerts
 route:
 group_interval: 5m
 group_wait: 10s
 receiver: default-receiver
 repeat_interval: 3h
 routes:
 - receiver: default-receiver
 group_interval: 1m
 group_wait: 10s
 repeat_interval: 9y
 group_by: [instance, alertname, severity]
 continue: true
 - receiver: test-receiver-1
 group_interval: 1m
 group_wait: 10s
 repeat_interval: 9y
 group_by: [instance, alertname, severity]
 continue: true
kind: ConfigMap

3. Any existing customer specific dashboad(s) must be saved to a local directory so
that it can be restored after the upgrade. Log into the Grafana GUI to backup
dashboard:

a. Select the dashboard to be saved.

b. Go to Shared Dashboard option on the top-right side of the dashboard that
needs to be saved.

c. Click Export. Click Save to file to save the file in the local repository.

d. Repeat these steps until all customer specific dashboards have been saved.

4. Run k8s install pre-upgrade script to switch network plugin from flannel to calico
(only applicable for vCNE cluster)

a. Execute below command on bastion to run k8s getdeps:

$ docker run -it --rm -v /var/occne/cluster/${OCCNE_CLUSTER}:/
host -e 'OCCNEARGS=--extra-vars={"occne_vcne":"1"} '
winterfell:5000/occne/k8s_install:<image_tag> /getdeps/getdeps

Chapter 2
Pre-upgrade Procedures

2-3

Example:
$ docker run -it --rm -v /var/occne/cluster/${OCCNE_CLUSTER}:/
host -e 'OCCNEARGS=--extra-vars={"occne_vcne":"1"} '
winterfell:5000/occne/k8s_install:1.6.0 /getdeps/getdeps

b. Execute below commands on bastion to fetch k8s related binaries and docker
images:

Note:

These commands can be executed as written below since the
indicated environment variables have already been set on initial
deployment. They can be verified by using the linux command:
echo $<variable_name>.

$ /var/occne/cluster/${OCCNE_CLUSTER}/artifacts/
k8s_retrieve_bin.sh http://${CENTRAL_REPO}/occne/
binaries /var/www/html/occne
$ /var/occne/cluster/${OCCNE_CLUSTER}/artifacts/
retrieve_docker.sh winterfell:5000 ${HOSTNAME%%.*}:5000 < /var/
occne/cluster/${OCCNE_CLUSTER}/artifacts/k8s_docker_images.txt

c. Execute below command on bastion to trigger the network plugin upgrade
from flannel to calico:

Note:

Make sure the openstack_lbaas_floating_network_id field is set to
the floating IP network ID and the openstack_lbaas_subnet_id field
is set to the user specific internal network subnet ID. Openstack
values can be obtained by executing the command: openstack
configuration show from the openstack client.

// Get values from Cloud config
$ docker run -it --rm --cap-add=NET_ADMIN --network host -v /var/
occne/cluster/<cluster-name>:/host -v /var/occne:/var/occne:rw -
e OCCNEINV=/host/terraform/hosts -e 'OCCNEARGS=--extra-
vars={"occne_vcne":"1","occne_cluster_name":"<occne_cluster_name>
","occne_repo_host":"<occne_repo_host_name>","occne_repo_host_add
ress":"<occne_repo_host_address>"} --extra-
vars={"openstack_username":"<user.name>","openstack_password":"<o
penstack-cloud-
password>","openstack_auth_url":"<openstack_auth_url>","openstack
_region":"RegionOne","openstack_tenant_id":"<openstack_tenant_id>
","openstack_domain_name":"LDAP","openstack_lbaas_subnet_id":"<op
enstack_lbaas_subnet_id>","openstack_lbaas_floating_network_id":"
<openstack_lbaas_floating_network_id>","openstack_lbaas_use_octav
ia":"true","openstack_lbaas_method":"ROUND_ROBIN","openstack_lbaa
s_enabled":true} ' winterfell:5000/occne/

Chapter 2
Pre-upgrade Procedures

2-4

k8s_install:<image_tag> /upgrade/pre-upgrade.sh

Example:
docker run -it --rm --cap-add=NET_ADMIN --network host -v /var/
occne/cluster/<cluster-name>:/host -v /var/occne:/var/occne:rw -
e OCCNEINV=/host/terraform/hosts -e 'OCCNEARGS=--extra-
vars={"occne_vcne":"1","occne_cluster_name":"ankit-
upgrade-3","occne_repo_host":"ankit-upgrade-3-
bastion-1","occne_repo_host_address":"192.168.200.9"} --extra-
vars={"openstack_username":"ankit.misra","openstack_password":"{C
loud-Password}","openstack_auth_url":"http://
thundercloud.us.oracle.com:5000/
v3","openstack_region":"RegionOne","openstack_tenant_id":"811ef89
b5f154ab0847be2f7e41117c0","openstack_domain_name":"LDAP","openst
ack_lbaas_subnet_id":"2787146b-56fe-4c58-
bd87-086856de24a9","openstack_lbaas_floating_network_id":"e4351e3
e-81e3-4a83-bdc1-
dde1296690e3","openstack_lbaas_use_octavia":"true","openstack_lba
as_method":"ROUND_ROBIN","openstack_lbaas_enabled":true} '
winterfell:5000/occne/k8s_install:1.6.0 /upgrade/pre-upgrade.sh

d. Wait for all pods to become ready with 1/1 and status as running. This can be
done by executing the following command from the Bastion Host:

$ kubectl get pod -A

5. Execute the following commands from the Bastion Host to pass the
OCCNE_CLUSTER Bastion Host environment variable to the Jenkins container.
This applies to both vCNE and Bare Metal:

$ docker stop occne_jenkins
$ docker rm -f occne_jenkins
$ docker run -u root -d --name occne_jenkins
--restart=always -p 8080:8080 -p 50000:50000
-e OCCNE_CLUSTER=${OCCNE_CLUSTER} -v jenkins-data:/var/
jenkins_home -v {{ cluster_dir }}:{{ cluster_dir }} -v /var/run/
docker.sock:/var/run/docker.sock {{ central_repo_hostname }}:
{{ central_repo_docker_port}}/jenkinsci/blueocean:{{ jenkins_tag }}

Example:

$ docker run -u root -d --name occne_jenkins --restart=always
-p 8080:8080 -p 50000:50000 -e OCCNE_CLUSTER=${OCCNE_CLUSTER} -v
jenkins-data:/var/jenkins_home -v /var/occne/cluster/john-doe:/var/
occne/cluster/john-doe -v /var/run/docker.sock:/var/run/docker.sock
winterfell:5000/jenkinsci/blueocean:1.19.0

6. Execute the below command on bastion host to run provision getdeps for
generating script pipeline.sh in artifacts directory:

Chapter 2
Pre-upgrade Procedures

2-5

a. For bare metal cluster:

$ docker run -it --rm -v /var/occne/cluster/${OCCNE_CLUSTER}:/
host -e ANSIBLE_NOCOLOR=1 -e OCCNEARGS='' winterfell:5000/occne/
provision:<image-tag> /getdeps/getdeps

Example:

$ docker run -it --rm -v /var/occne/cluster/${OCCNE_CLUSTER}:/
host -e ANSIBLE_NOCOLOR=1 -e OCCNEARGS='' winterfell:5000/occne/
provision:1.6.0 /getdeps/getdeps

b. For vCNE cluster:

$ docker run -it --rm -v /var/occne/cluster/${OCCNE_CLUSTER}:/
host -e 'OCCNEARGS=--extra-vars={"occne_vcne":"1"} '
winterfell:5000/occne/provision:<image-tag> /getdeps/getdeps

Example:

$ docker run -it --rm -v /var/occne/cluster/${OCCNE_CLUSTER}:/
host -e 'OCCNEARGS=--extra-vars={"occne_vcne":"1"} '
winterfell:5000/occne/provision:1.6.0 /getdeps/getdeps

7. Get the administrator password from the Jenkins container to log into the Jenkins
user interface running on the Bastion Host.

a. SSH to the Bastion host and run following command to get the Jenkins docker
container ID:

$ docker ps | grep 'jenkins' | awk '{print $1}'

Example output:

19f6e8d5639d

b. Get the admin password from the Jenkins container running as bash. Execute
the following command to run the container in bash mode:

$ docker exec -it <container id from above command> bash

c. Run the following command from the Jenkins container while in bash mode.
Once complete, capture the password for later use with user-name: admin to
log in to the Jenkins GUI.

$ cat /var/jenkins_home/secrets/initialAdminPassword

Example output:

e1b3bd78a88946f9a0a4c5bfb0e74015

Chapter 2
Pre-upgrade Procedures

2-6

d. Execute the following ssh command from the Jenkins container in bash mode
after getting the bastion host IP internal address:
Note: The Bare Metal user is admusr and the vCNE user is cloud-user.

$ ssh -t -t -i /var/occne/cluster/${OCCNE_CLUSTER}/.ssh/
occne_id_rsa <user>@<bastion_host_ip_address>

Example (for vCNE):
$ ssh -t -t -i /var/occne/cluster/${OCCNE_CLUSTER}/.ssh/
occne_id_rsa cloud-user@192.168.200.17

e. After executing the SSH command the following prompt appears:

The authenticity of host can't be established. Are you sure you
want to continue connecting (yes/no)

Enter yes.

f. Exit from bash mode of the Jenkins container (that is, enter exit at the
command line).

8. Open the Jenkins GUI in a browser window using url, <bastion-host-ip>:8080.
Login using the password from step 7c with admin.

Note:

You may be prompted to enter proxy configurations or skip the plugin
configurations. Select Skip Plugin Configuration". You will then be
prompted to configure the first admin user. Creating a new admin user
here is optional. Use credentials: username admin, password:admin,
Full name: admin, and email address: admin@<domain.com>. The Full
name and email address do not have to be valid values.
You may also get the following Unlock Jenkins page. If this page is
displayed, enter the password from step 7c.

9. Create a job with an appropriate name after clicking New Item from Jenkins home
page. Follow the steps below:

a. Click New Item on the Jenkins home page.

b. Add a name (such as upgrade) and select the Pipeline option for creating the
job.

c. This brings up the Configure page (as displayed in step e below) with the
General tab selected. If the Configure page is displayed, skip the next step
and go to step e.

d. Once the job is created and visible on the Jenkins home page, select Job.
Select Configure.

e. This brings up the Configure page and allows the user to add parameters to
the configuration. Select This project is parameterized checkbox. This will
display the following screen with the Add Parameter button visible. Select the
Add Parameter button twice (after the first string parameter is added, the Add
Parameter button will be just below the first parameter dialog box) and add two
string parameters using the Select String Parameter menu item.

Chapter 2
Pre-upgrade Procedures

2-7

f. Add parameters OCCNE_CLUSTER and CENTRAL_REPO from
configure screen. Two String Parameter dialogs will appear, one for
OCCNE_CLUSTER and one for CENTRAL_REPO. Enter values for the
Default Value fields in the OCCNE_CLUSTER dialog and CENTRAL_REPO
dialog.

Figure 2-1 Jenkins UI

g. Copy the following configuration to the pipeline script section in the
Configure page of the Jenkins job by manually substituting values for
<upgrade_image_version> and <central_repo_docker_port>.

Note:

There are two examples below. Use the appropriate version
depending on whether your Openstack Provider uses credentials or
certificates.

i. For deployment on openstack non certificate authentication environment:

node ('master') {
 sh "docker run -i --rm
-v /var/occne/cluster/${OCCNE_CLUSTER}:/host -e
ANSIBLE_NOCOLOR=1 ${CENTRAL_REPO}:<central_repo_docker_port>/
occne/provision:<upgrade_image_version> cp deploy_upgrade/
JenkinsFile /host/artifacts"
 load '/var/occne/cluster/<cluster-name>/artifacts/
JenkinsFile'
}

Chapter 2
Pre-upgrade Procedures

2-8

Example:

node ('master') {
 sh "docker run -i --rm -v /var/occne/
cluster/${OCCNE_CLUSTER}:/host -e ANSIBLE_NOCOLOR=1 $
{CENTRAL_REPO}:5000/occne/provision:1.6.0 cp deploy_upgrade/
JenkinsFile /host/artifacts"
 load '/var/occne/cluster/occne3-john-doe/artifacts/
JenkinsFile'
}

ii. For deployment on openstack certificate authentication environment:

node ('master') {
 sh "docker run -i --rm
-v /var/occne/cluster/${OCCNE_CLUSTER}:/host -e
ANSIBLE_NOCOLOR=1 ${CENTRAL_REPO}:<central_repo_docker_port>/
occne/provision:<upgrade_image_version> cp deploy_upgrade/
JenkinsFile /host/artifacts"
 sh "docker run -i --rm
-v /var/occne/cluster/${OCCNE_CLUSTER}:/host -e
ANSIBLE_NOCOLOR=1 ${CENTRAL_REPO}:<central_repo_docker_port>/
occne/provision:<upgrade_image_version>
sed -i 's/\${env.openstack_domain_name}\\\\\
\\\\\\\\"}/\${env.openstack_domain_name}\\\\\\\\\\\\\",\\\\\\
\\\\\\\"openstack_cacert\\\\\\\\\\\\\":\\\\\\\\\\\\\"\\/host\
\/openstack-cacert.pem\\\\\\\\\\\\\"}/g' /host/artifacts/
JenkinsFile"
 load '/var/occne/cluster/<cluster-name>/artifacts/
JenkinsFile'
}

Example:

node ('master') {
 sh "docker run -i --rm -v /var/occne/
cluster/${OCCNE_CLUSTER}:/host -e ANSIBLE_NOCOLOR=1 $
{CENTRAL_REPO}:5000/occne/provision:1.6.0 cp deploy_upgrade/
JenkinsFile /host/artifacts"
 sh "docker run -i --
rm -v /var/occne/cluster/${OCCNE_CLUSTER}:/host
-e ANSIBLE_NOCOLOR=1 ${CENTRAL_REPO}:5000/occne/
provision:1.6.0 sed -i 's/\${env.openstack_domain_name}\\\\\
\\\\\\\\"}/\${env.openstack_domain_name}\\\\\\\\\\\\\",\\\\\\
\\\\\\\"openstack_cacert\\\\\\\\\\\\\":\\\\\\\\\\\\\"\\/host\
\/openstack-cacert.pem\\\\\\\\\\\\\"}/g' /host/artifacts/
JenkinsFile"
 load '/var/occne/cluster/occne3-john-doe/artifacts/
JenkinsFile'
}

h. Select Apply and Save.

i. Go back to the Job page and select Build with Parameters to see the new
parameters added from the Jenkins desktop.

Chapter 2
Pre-upgrade Procedures

2-9

j. Select Build to execute the pipeline script for this job.

Note:

This job will be aborted because it writes the Jenkins file to the
Bastion Host /var/occne/cluster/<cluster_name>/artifacts directory
which is not there initially.

k. Execute following command on Bastion host (execute this step ONLY if
upgrading to a RC build. Example: upgrading from 1.5.0 to 1.6.0-rc.5)

$ sed -i 's/1.6.0/1.6.0-<rc_version>/g' /var/occne/cluster/
<cluster_name>/artifacts/JenkinsFile

Example:

$ sed -i 's/1.6.0/1.6.0-rc.5/g' /var/occne/cluster/occne3-user1/
artifacts/JenkinsFile

l. Select Build with Parameters option to see latest Jenkins file parameters in
the Jenkins desktop.

m. Select Configure from the same menu and edit the
Pipeline section again. Remove or comment out the line
in the script that does the copy of the JenkinsFile: sh
"docker run -i --rm -v /var/occne/cluster/${OCCNE_CLUSTER}:/host -
e ANSIBLE_NOCOLOR=1 ${CENTRAL_REPO}:<central_repo_docker_port>/
occne/provision:<upgrade_image_version> cp deploy_upgrade/JenkinsFile /
host/artifacts"
This must be completed for use of certificates or it should look like the
following:

node ('master') { load '/var/occne/cluster/<cluster-name>/
artifacts/JenkinsFile'}

Example:

node ('master') { load '/var/occne/cluster/occne3-user1/
artifacts/JenkinsFile'

n. Click the Apply button and then Save button.

Upgrade Procedure
This section describes how to upgrade the OCCNE.
Following is the procedure to upgrade OCCNE:

1. Click the job name created in the previous step. Select the Build with Parameters
option on the left top corner panel in the Jenkins GUI.

2. On selecting the Build with Parameters option, there will be a list of parameters
with a description describing which values need to be used for the Bare-Metal
upgrade vs the vCNE upgrade.

Chapter 2
Upgrade Procedure

2-10

Notes on adding parameters:

a. If default values are not displayed they should be manually entered.

b. The below are the input parameter values required for upgrading both bare
metal cluster and vCNE cluster:

• CENTRAL_REPO: The name of central repository. For example:
'winterfell'

• USER: The value should be set to admusr for upgrading a bare-metal
cluster and cloud-user for upgrading a vCNE cluster.

• HOSTIP: External IP address of Bastion Host

• OCCNE_REPO_HOST: Name of the Bastion Host

• OCCNE_REPO_HOST_ADDRESS: Internal IP address of Bastion Host

• DBTIER_NDB_CLUSTER_ID: is the previous cluster_id which was used
during the previous dbtier installation.

• DBTIER_REPLICATION_SVC_IP: must be set to the EXTERNAL IP of
the dbtier replication service of site 1 if replication is enabled between
site 1 and site 2 with the assumption that site 1 was installed first. If you
are upgrading site 1 then DBTIER_REPLICATION_SVC_IP should be left
blank. If you are upgrading site 2 then replication service ip address of
site 1 can be obtained by executing the following command from the site 1
bastion host.

$ kubectl gete svc -n occne-infra
NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
.
.
.
occne-db-replication-svc LoadBalancer 10.233.43.244
10.75.235.61 80:32416/TCP 23h
.
.

c. Additional input parameter values that are required for upgrading vCNE cluster
alone. The openstack specific values can be obtained by using the openstack
configuration show command on a shell that supports the openstack client
(cli).

• OPENSTACK_AUTH_URL: Openstack authentication URL. For example:
'http://thundercloud.us.oracle.com:5000/v3'

• OPENSTACK_USERNAME: Openstack user name

• OPENSTACK_PROJECT_ID: Openstack project ID

• OPENSTACK_USER_DOMAIN_NAME: Openstack user domain name

• OPENSTACK_PASSWORD: Openstack password

• OPENSTACK_REGION_NAME: Openstack region name

3. After entering correct values for parameters, select Build to start the upgrade.

4. Once the build has started, go to the job home page to see the live console for
upgrade. This can be done in two ways: Either select console output or Open

Chapter 2
Upgrade Procedure

2-11

Blue Ocean as shown in the image below (Blue Ocean is recommended as it will
show each stage of upgrade).

5. Re-trigger the Jenkins build by repeating procedure from step 2, when build gets
aborted with the below message (applicable only for bare metal upgrade)

Reboot is required to ensure that your system benefits from these
updates.
+ echo 'Node being restarted due to updates, returns 255'
Node being restarted due to updates, returns 255
+ nohup sudo -b bash -c 'sleep 2; reboot'
+ echo 'restart queued'
restart queued
+ exit 255

6. Check the job progress from Blue Ocean link in the job to see each stage being
executed, once upgrade is complete all the stages will be in Green .

Post-Upgrade Procedures
This section describes the post-upgrade procedure.

1. The below procedure needs to be executed to revert back the changes so that
SNMP runs smoothly:

a. Edit SNMP notifier to add (snmp.destination) IP back:

$ kubectl edit deployment occne-snmp-notifier -n occne-infra
 Move cursor to the line:
 - --snmp.destination=127.0.0.1:162
Modify to the first trap receiver ip:
 - --snmp.destination=<trap receiver ip address>:162
 The editor is vi, use the vi command :x or :wq to same the
change and exit.

b. If multiple SNMP notifiers were created before upgrade then alert manager
configmap needs to be reloaded with previous configuration:

$ kubectl edit configmap occne-prometheus-alertmanager -n occne-
infra

apiVersion: v1
data:
 alertmanager.yml: |
 global: {}
 receivers:
 - name: default-receiver
 webhook_configs:
 - url: http://occne-snmp-notifier:9464/alerts
 - name: test-receiver-1
 webhook_configs:
 - url: http://occne-snmp-notifier-1:9465/alerts
 route:
 group_interval: 5m
 group_wait: 10s

Chapter 2
Post-Upgrade Procedures

2-12

 receiver: default-receiver
 repeat_interval: 3h
 routes:
 - receiver: default-receiver
 group_interval: 1m
 group_wait: 10s
 repeat_interval: 9y
 group_by: [instance, alertname, severity]
 continue: true
 - receiver: test-receiver-1
 group_interval: 1m
 group_wait: 10s
 repeat_interval: 9y
 group_by: [instance, alertname, severity]
 continue: true

c. Restart Alert Manager pods for the configmap changes to take effect:

i. Execute the below command to make sure both the Alert Manager pods
are running:

$kubectl get pods -n occne-infra | grep alert
occne-prometheus-alertmanager-0 2/2 Running
0 5h
occne-prometheus-alertmanager-1 2/2 Running
0 5h

ii. Execute the below command to delete the first Alert manager Pod. The
pod will be recreated automatically after delete:

$kubectl delete pod occne-prometheus-alertmanager-0 -n occne-
infra
pod "occne-prometheus-alertmanager-0" deleted

iii. Execute the below command to make sure the new Alert manager pod is
up and running:

$ kubectl get pods -n occne-infra | grep alert
occne-prometheus-alertmanager-0 2/2 Running
0 5h
occne-prometheus-alertmanager-1 2/2 Running
0 50s

iv. Execute the below command to delete the second Alert manager Pod.
The pod will be recreated automatically after delete.

$kubectl delete pod occne-prometheus-alertmanager-1 -n occne-
infra
pod "occne-prometheus-alertmanager-1" deleted

v. Execute the below command to make sure the new Alert manager pod is
up and running:

$ kubectl get pods -n occne-infra | grep alert
occne-prometheus-alertmanager-0 2/2 Running

Chapter 2
Post-Upgrade Procedures

2-13

0 5h
occne-prometheus-alertmanager-1 2/2 Running
0 50s

2. Execute the Configuring ZIPKIN Support in Jaeger Collector to restore Zipkin
compatibility in Jaeger.

3. Encrypt the Kubernetes secrets using the following command. Since secrets are
encrypted on write, performing an update on a secret will encrypt that content:

$ kubectl get secrets --all-namespaces -o json | kubectl replace -f
-

Post Upgrade Health Checks
Encrypt the Kubernetes secrets using the following command. Since secrets are
encrypted on write, performing an update on a secret will encrypt that content.

kubectl get secrets --all-namespaces -o json | kubectl replace -f -

The health check procedure is as follows:

1. Run command below and verify all the pods in namespace occne-infra are in
running status. All the pods from the list should have status as Running and
READY value set to 1/1.

kubectl get pods -n occne-infra
Sample output:
NAME READY STATUS RESTARTS AGE
occne-elastic-elasticsearch-data-0 1/1 Running 0
2d1h

All the pods from the list should have status as Running and READY
value set to 1/1

2. Load previously configured Grafana dashboard:

a. Click + icon on the left panel, click Import.

b. Once in Import panel, click Upload .json file. Choose the dashboard file
which is saved locally.

c. Repeat the above steps for all previously configured dashboards.

Chapter 2
Post Upgrade Health Checks

2-14

A
Reference Procedures

Preserving MetalLB Configuration During Upgrade
This purpose of this procedure is to verify the MetalLB configuration changes that were
made in a non-standard manner, such as by editing the MetalLB ConfigMap using
kubectl edit. This procedure should be performed prior to upgrade.

Note:

All commands in this procedure are executed from the Bastion Host.

Verifying current MetalLB configuration
This section describes the procedure to determine whether or not the MetalLB config
file needs to be updated.

Following the procedure to verify the existing MetalLB configuration:

1. Ensure that the MetalLB ConfigMap exists in the occne-infra namespace:

$ kubectl get configmap -n occne-infra | grep occne-metallb

Expected output:

NAME DATA
occne-metallb 1

2. Retrieve the current configuration stored in the MetalLB ConfigMap using the
following command:

$ kubectl get configmap occne-metallb -n occne-infra -o yaml

Sample configuration:

apiVersion: v1
data:
 config: |
 address-pools:
 - addresses:
 - 10.75.182.88/29
 auto-assign: false
 name: oam

A-1

 protocol: bgp
 peers:
 - my-asn: 64512
 peer-address: 172.16.7.3
 peer-asn: 64501
 - my-asn: 64512
 peer-address: 172.16.7.2
 peer-asn: 64501
kind: ConfigMap
metadata:
 creationTimestamp: "2020-08-14T22:32:27Z"
 labels:
 app: metallb
 chart: metallb-0.12.0
 heritage: Helm
 release: occne-metallb
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
 fieldsV1:
 f:data:
 .: {}
 f:config: {}
 f:metadata:
 f:labels:
 .: {}
 f:app: {}
 f:chart: {}
 f:heritage: {}
 f:release: {}
 manager: Go-http-client
 operation: Update
 time: "2020-08-14T22:32:27Z"
 name: occne-metallb
 namespace: occne-infra
 resourceVersion: "2442"
 selfLink: /api/v1/namespaces/occne-infra/configmaps/occne-metallb
 uid: 130e0464-856d-48d5-9a6a-626adc0234ee

Note:

The output is similar as in sample, but as per your configuration the IP
addresses and ASN numbers might be different.

3. Display the MetalLB config file using the below command:

$ cat /var/occne/cluster/<cluster_name>/mb_configmap.yaml

Sample file:

configInline:
 peers:

Appendix A
Preserving MetalLB Configuration During Upgrade

A-2

 - peer-address: 172.16.7.3
 peer-asn: 64501
 my-asn: 64512
 - peer-address: 172.16.7.2
 peer-asn: 64501
 my-asn: 64512
 address-pools:
 - name: oam
 protocol: bgp
 auto-assign: false
 addresses:
 - '10.75.182.88/29'

4. Compare the current configuration against the configuration stored in the MetalLB
config file. Compare the "peers" and "address-pools" sections from the ConfigMap
output and the config file. Check the differences in these sections.

Note:

The ConfigMap output may show the contents of the "peers" and
"address-pools" sections in a different order than the config file.
This might be as per your configuration, and does not constitute a
"difference".

5. If there no differences in these sections, then this procedure is complete. If the
command output shows differences, such as in the sample output shown above,
update the file as mentioned in Updating MetalLB configuration file.

Updating MetalLB configuration file
This section describes the procedure to update the current MetalLB configuration to
the MetalLB config file, so that this configuration is preserved during upgrade.

Following the procedure to update the MetalLB configuration file:

1. Take backup of the current configuration file:

$ cp /var/occne/cluster/<cluster_name>/mb_configmap.yaml /var/occne/
cluster/<cluster_name>/mb_configmap_backup.yaml

2. Copy the contents of the ConfigMap to the new config file.
Using a text editor such as vi, overwrite the "peers" and "address-pools" sections
in /var/occne/cluster/<cluster_name>/mb_configmap.yaml with the same sections
from the ConfigMap output derived from Verifying current MetalLB configuration.
Save your changes and exit when the file is updated completely.

Installing Network Functions
This section describes the procedure to install Network Functions (NF) on the OCCNE.

Appendix A
Installing Network Functions

A-3

Note:

It is assumed that the NF has docker images located on a docker registry
that is reachable by the cluster's bastion, and associated helm charts located
at a URL also accessible by the bastion.
Run the following commands from the cluster bastion.

Follow the procedure to install the NF:

1. Place docker images into the bastion-host docker registry:

a. Create a file docker_images.txt listing the required docker images and tags:

dockerRepo:5000/serviceNameImage1:1.0.1
dockerRepo:5000/serviceNameImage2:1.2.2

b. Load these images into the cluster-local docker registry by running
(the parameters are the central-docker-registry-repo:port, and the local
registry:port):

$ /var/occne/cluster/<cluster>/artifacts/retrieve_docker.sh
<central-repo>:<central-repo-docker-port> ${HOSTNAME}:5000 <
docker_images.txt

2. Place the Helm chart into the bastion-host helm chart repository:

a. Create a file helm_charts.txt listing the Helm chart and version:

helmRepoName/chart_name 2.7.6

b. Add the source helm repository to the cluster-local helm configuration (this
need only be done once for each repo):

$ helm repo add helmRepoName https://someUrl.oracle.com

c. Load the chart into the cluster-local helm chart repository by running (the
parameters are the source repo URL, the target directory, and the cluster
directory (where helm binary exists)):

$ /var/occne/cluster/<cluster>/artifacts/retrieve_helm.sh
http://<central-repo>/occne/charts /var/www/html/occne /var/
occne/cluster/${OCCNE_CLUSTER}/artifacts/ < helm_charts.txt

3. Install the NF:

a. Create a values.yaml file on the Bastion Host that contains the values needed
by the Helm chart and run the helm install command as follows:

$ helm install --name <release-name> --namespace <service-
namespace> -f values.yaml <chart_name>

b. After successful install, follow section Storing NF Alerts File to configure the
NF alerts.

Appendix A
Installing Network Functions

A-4

4. Updating the previously installed NF:

$ helm upgrade -f values.yaml <release-name> <chart_name>

After successful upgrade, follow section Storing NF Alerts File to configure the NF
alerts.

5. Removing the previously installed NF:

$ helm del <release-name> --purge

Storing NF Alerts File
After the NF install/upgrade, the alert file must be copied to a pre-defined location in
bastion host before upgrading from OCCNE 1.5 to OCCNE 1.6.

Note:

A YAML file containing the alerting rules, hereby referenced as
NFAlertRule.yaml will be added . This must be in a valid YAML format, and
must have the extension .yaml.

Steps to follow on Bastion host:

1. Verify the environment variable OCCNE_CLUSTER is set correctly. Check if below
directory exists, if not then create it using below command:

echo $OCCNE_CLUSTER
mkdir /var/occne/cluster/$OCCNE_CLUSTER/artifacts/alerts
chmod 755 /var/occne/cluster/$OCCNE_CLUSTER/artifacts/alerts

2. Set the permissions on the NFAlertRule.yaml file as below:

chmod 644 NFAlertRule.yaml

3. Copy the NFAlertRule.yaml file to the newly created alerts directory as above
using below command:

cp NFAlertRule.yaml /var/occne/cluster/$OCCNE_CLUSTER/artifacts/
alerts

4. Here is an example for occne_alerts.yaml with the expected permissions:

Directory:
$ ls -lrt -d /var/occne/cluster/$OCCNE_CLUSTER/artifacts/alerts
drwxr-xr-x. 2 cloud-user cloud-user 4096 Sep 2 14:46 /var/occne/
cluster/occne-cluster-name/artifacts/alerts

File:
$ ls -lrt /var/occne/cluster/$OCCNE_CLUSTER/artifacts/alerts
total 16

Appendix A
Installing Network Functions

A-5

-rw-r--r--. 1 cloud-user cloud-user 12991 Sep 2 14:46
occne_alerts.yaml

Configuring ZIPKIN Support in Jaeger Collector
This section describes how to configure Jaeger to support ZIPKIN after fresh
installation of OCCNE or upgrade from older versions of OCCNE.

Note:

This procedure must be applied after upgrading to OCCNE 1.4, 1.5, or 1.6.
It must be re-applied after each upgrade, because upgrade overwrites these
changes.

Follow the below procedure to configure Jaeger:

1. From bastion host, edit deployment of jaeger-collector as:

$ kubectl edit deployment occne-tracer-jaeger-collector --namespace
occne-infra

2. Add environment variable COLLECTOR_ZIPKIN_HTTP_PORT with value "9411"
above SPAN_STORAGE_TYPE in jaeger-collector deployment. Sample file:

spec:
 containers:
 - env:
 - name: COLLECTOR_ZIPKIN_HTTP_PORT
 value: "9411"
 - name: SPAN_STORAGE_TYPE
 value: elasticsearch

3. Save the file to enable ZIPKIN support in Jaeger Collector.

Appendix A
Configuring ZIPKIN Support in Jaeger Collector

A-6

	Contents
	List of Figures
	List of Tables
	My Oracle Support
	What's New in This Guide
	1 Introduction
	Acronyms

	2 Upgrading OCCNE
	Prerequisites
	Pre-upgrade Procedures
	Upgrade Procedure
	Post-Upgrade Procedures
	Post Upgrade Health Checks

	A Reference Procedures
	Preserving MetalLB Configuration During Upgrade
	Verifying current MetalLB configuration
	Updating MetalLB configuration file

	Installing Network Functions
	Storing NF Alerts File

	Configuring ZIPKIN Support in Jaeger Collector

