Oracle® Communications Cloud Native Core, Unified Data Repository Benchmarking Guide $Oracle\ Communications\ Cloud\ Native\ Core,\ Unified\ Data\ Repository\ Benchmarking\ Guide,\ Release\ 25.1.100$ G25038-01 Copyright © 2022, 2025, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government. This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications. Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle. ## Contents | Introd | uction | | |--------|---|----------| | 1.1 Pu | irpose and Scope | 1 | | 1.2 Re | eferences | 1 | | Deplo | yment Environment | | | 2.1 De | eployed Components | 1 | | 2.2 De | eployment Resources | 1 | | 2.2.1 | Resource Requirements for CNE Observability Services | 2 | | 3.1 Te | st Scenario 1: SLF Call Deployment Model | 1 | | 3.1.1 | SLF Call Model: 34K TPS and 1.44K Provisioning TPS | 1 | | 3.1.2 | SLF Call Model: 50K lookup + 1.44K Provisioning TPS | 6 | | 3.2 Te | st Scenario 2: EIR 10k TPS and 10k Diameter S13 Interface TPS | 12 | | 3.3 Te | st Scenario 3: SOAP and Diameter Deployment Model | 16 | | | 1 / | | | 3.4 Te | st Scenario 4: Policy Data Traffic Deployment Model | 24 | | 3.4 Te | st Scenario 4: Policy Data Traffic Deployment Model | 24
24 | | 3.4.1 | st Scenario 4: Policy Data Traffic Deployment Model | | ## **Preface** - <u>Documentation Accessibility</u> - · Diversity and Inclusion - Conventions ## **Documentation Accessibility** For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc. #### **Access to Oracle Support** Oracle customer access to and use of Oracle support services will be pursuant to the terms and conditions specified in their Oracle order for the applicable services. ## **Diversity and Inclusion** Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce that increases thought leadership and innovation. As part of our initiative to build a more inclusive culture that positively impacts our employees, customers, and partners, we are working to remove insensitive terms from our products and documentation. We are also mindful of the necessity to maintain compatibility with our customers' existing technologies and the need to ensure continuity of service as Oracle's offerings and industry standards evolve. Because of these technical constraints, our effort to remove insensitive terms is ongoing and will take time and external cooperation. #### Conventions The following text conventions are used in this document: | Convention | Meaning | | | | | |------------|--|--|--|--|--| | boldface | Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary. | | | | | | italic | Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values. | | | | | | monospace | Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter. | | | | | ## My Oracle Support My Oracle Support (https://support.oracle.com) is your initial point of contact for all product support and training needs. A representative at Customer Access Support can assist you with My Oracle Support registration. Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the US), or call the Oracle Support hotline for your local country from the list at http://www.oracle.com/us/support/contact/index.html. When calling, make the selections in the sequence shown below on the Support telephone menu: - For Technical issues such as creating a new Service Request (SR), select 1. - For Non-technical issues such as registration or assistance with My Oracle Support, select 2. - For Hardware, Networking and Solaris Operating System Support, select 3. You are connected to a live agent who can assist you with My Oracle Support registration and opening a support ticket. My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year. ## Acronyms The following table provides information about the acronyms and the terminology used in the document. Table Acronyms and Terminologies | Acronym | Description | |---------|--| | AMF | Access and Mobility Management Function | | AUSF | Authentication Server Function | | CNE | Oracle Communications Cloud Native Core, Cloud Native Environment | | CPU | Central Processing Unit | | EIC | Equipment Identity Check | | EIR | Equipment Identity Repository | | GPSI | Generic Public Subscription Identifier | | HTTP | Hypertext Transfer Protocol | | MPS | Messages Per Second | | NF | Network Function | | NRF | Oracle Communications Cloud Native Core, Network Repository Function | | PVC | Persistent Volume Claim | | RAM | Random Access Memory | | SLF | Subscriber Location Function | | SOAP | Simple Object Access Protocol | | SUPI | Subscription Permanent Identifier | | TPS | Transactions Per Second | | UDM | Unified Data Management | | UDR | Oracle Communications Cloud Native Core, Unified Data
Repository | | vCNE | Virtual Cloud Native Environment | ## What's New in This Guide This section introduces the documentation updates for Release 25.1.1xx. #### Release 25.1.100 - G25038-01, April 2025 - Added the <u>Test Scenario 5</u>: 25K N36 and 1.3K Provisioning Profile (600 SOAP and 700 REST) section. - Added the <u>SLF Call Model</u>: <u>50K lookup + 1.44K Provisioning TPS</u> section. - Updated the Table 3-6 in SLF Call Model: 34K TPS and 1.44K Provisioning TPS section. ## Introduction Oracle Communications Cloud Native Core Unified Data Repository (UDR) is a key component of the 5G Service Based Architecture. It is implemented as a cloud native function and offers a unified database
for storing application, subscription, authentication, service authorization, policy data, session binding, and application state information. For more information about UDR architecture, see *Oracle Communications Cloud Native Core*, *Unified Data Repository User Guide*. ## 1.1 Purpose and Scope This document is designed to measure the performance and capacity of UDR, UDR microservices, SLF, EIR, and deployment environment setup software such as Cloud Native Environment (CNE) and cnDBTier. It is recommended that UDR is run through a benchmark on the target cloud native infrastructure to determine the capacity and performance in the target infrastructure. This information can be used to adjust the initial deployment resources and to predict resource requirements when UDR is scaled up. #### 1.2 References - Oracle Communications Cloud Native Core, Unified Data Repository Installation, Upgrade, and Fault Recovery Guide - Oracle Communications Cloud Native Core, Unified Data Repository User Guide - Oracle Communications Cloud Native Core, Cloud Native Environment Installation, Upgrade, and Fault Recovery Guide - Oracle Communications Cloud Native Core, cnDBTier Installation, Upgrade, and Fault Recovery Guide ## **Deployment Environment** This section provides information about the cloud native infrastructure used for UDR, SLF, and EIR benchmarking. ## 2.1 Deployed Components #### **Deployment Platform** Oracle Communications Cloud Native Environment (OCCNE) and BareMetal is used for performing benchmark tests. #### **Observability Services** The following table lists services that are used for UDR benchmark tests. These services fetch UDR metrics, alerts, logs, and traces. For more information about mentioned software, see Oracle Communications Cloud Native Core, Unified Data Repository Installation, Upgrade, and Fault Recovery Guide #### Table 2-1 Observability Services | Service | |------------| | Opensearch | | Fluentd | | Kibana | | Prometheus | | Grafana | | Jaeger | #### **Cloud Native Orchestrator** Kubernetes is used for managing application pods across the cluster. #### cnDBTier cnDBTier is used for performing benchmark tests. For more information about above mentioned components, see *Oracle Communications Cloud Native Core*, *Unified Data Repository Installation, Upgrade, and Fault Recovery Guide*. ## 2.2 Deployment Resources The performance and capacity of UDR can vary based on the chosen environment and how UDR is deployed. This section provides information about CNE resources used to perform benchmark tests. ## 2.2.1 Resource Requirements for CNE Observability Services The following table provides information about number of pods required by each CNE service. Table 2-2 Resource Requirements for CNE Observability Services | | , | |------------------------|---| | Service Name | Number of Pods | | Prometheus Server | 1 | | Prometheus-pushgateway | 1 | | Alert Manager | 2 | | Fluentd | 1 per Worker node | | Prom-node-exporter | 1 per Worker node | | MetalLB speaker | 1 per Worker node | | Opensearch Data/Master | 3/3 | | Opensearch Client | 1 | | Grafana | 1 | | Kibana | 1 | | kube-state-metrics | 1 | | jaeger-agent | 1 per Worker node | | jaeger-collector | 1 | | jaeger-query | 1 | | rook-ceph-osd | 1 for each raw disk available to OS on all Worker nodes | | rook-ceph-mgr | 1 | | rook-ceph-mon | 3 | | rook-ceph-osd | 1 | ## **UDR Benchmark Testing** This chapter describes UDR, SLF, and EIR test scenarios. ## 3.1 Test Scenario 1: SLF Call Deployment Model This section provides information about SLF call deployment model test scenarios. ## 3.1.1 SLF Call Model: 34K TPS and 1.44K Provisioning TPS This test scenario describes performance and capacity of SLF functionality offered by UDR and provides the benchmarking results for various deployment sizes. The following features are enabled for this testcase: - Support for Default Group ID in SLF - Oauth2.0 - Subscriber Activity Logging - Support for LCI and OCI Header - Overload Handling - Support for User-Agent Header - Alternate Route Service You can perform benchmark tests on UDR/SLF for compute and storage resources by considering the following conditions: - Signaling (SLF Look Up): 34K TPS - Provisioning: 1.44K TPS - Total Subscribers: 50M The following table describes the benchmarking parameters and their values: Table 3-1 Traffic Model Details | D | B. W. T. | | |--------------------------------|-------------------------|-----| | Request Type | Details | TPS | | Lookup 34K | SLF Lookup GET Requests | 34K | | Provisioning (1.44k using | CREATE | 216 | | Provisioning Gateway one site) | DELETE | 216 | | | UPDATE | 504 | | | GET | 504 | The following table describes the testcase parameters and their values: **Table 3-2 Testcase Parameters** | Input Parameter Details | Configuration Values | |--|---------------------------------| | UDR Version Tag | 25.1.100 | | Target TPS | 34K Lookup + 1.44K Provisioning | | Traffic Profile | SLF 34K Profile | | UDR Response Timeout | 2.7s | | Client Timeout | 10s | | Signaling Requests Latency Recorded on Client | 17ms | | Provisioning Requests Latency Recorded on Client | 45ms | The following table describes consolidated resource requirement and their utilization: Table 3-3 Consolidated Resource Requirement | Resource | СРИ | Memory | Ephemeral
Storage | PVC | |----------|-----|--------|----------------------|--------| | cnDBTier | 134 | 495 GB | 22 GB | 640 GB | | SLF | 247 | 152 GB | 38 GB | NA | | ProvGw | 42 | 30 GB | 10 GB | NA | | Buffer | 50 | 50 GB | 20 GB | 200 GB | | Total | 473 | 739 GB | 90 GB | 840 GB | #### (i) Note All values are inclusive of ASM sidecar. The following table describes cnDBTier1 resources and their utilization: #### (i) Note - The same resources and usage are applicable for cnDBTier2 - For cnDBTier, you must use ocudr_slf_37msub_dbtier and ocudr_udr_10msub_dbtier custom value files for SLF and UDR respectively. For more information, see *Oracle Communications Cloud Native Core, Unified Data Repository Installation, Upgrade, and Fault Recovery Guide.* Table 3-4 cnDBTier Resources and Usage | Microservi
ce Name | Container
Name | Number of
Pods | CPU
Allocation
Per Pod
(cnDBTier
1) | Memory
Allocation
Per Pod
(cnDBTier
1) | Ephemera
I Storage
Per Pod | PVC
Allocation
Per Pod | Total
Resource
s
(cnDBTier
) | |---------------------------------|--------------------------------|-------------------|---|--|----------------------------------|------------------------------|--| | Manageme nt node | mysqlndbcl
uster | 2 | 2 CPUs | 9 GB | 1 GB | 16 GB | 6 CPUs
26 GB | | (ndbmgmd) | istio-proxy | | 1 CPUs | 4 GB | | | Ephemeral
Storage: 2
GB | | | | | | | | | PVC
Allocation:
32 GB | | Data node (ndbmtd) | mysqlndbcl
uster | 6 | 4 CPUs | 50 GB | 1 GB | 25 GB
(Backup: | 42 CPUs
336 GB | | | istio-proxy | | 2 CPUs | 4 GB | | 56 GB) | Ephemeral
Storage: 6 | | | db-backup-
executor-
svc | | 1 CPU | 1 GB | | | GB PVC Allocation: 486 GB Data Memory: 25 GB | | APP SQL
node | mysqlndbcl
uster | 9 | 4 CPUs | 4 GB | 1 GB | 10 GB | 63 CPUs
72 GB | | (ndbappmy
sqld) | istio-proxy | - | 3 CPUs | 4 GB | | | Ephemeral
Storage: 9
GB | | | | | | | | | PVC
Allocation:
90 GB | | SQL node
(Used for | mysqlndbcl
uster | 2 | 4 CPUs | 16 GB | 1 GB | 16 GB | 13 CPUs
41 GB | | Replication | istio-proxy | | 2 CPUs | 4 GB | | | Ephemeral Storage: 2 | | (ndbmysqld
) | init-sidecar | | 100m CPU | 256 MB | | | GB PVC Allocation: 32 GB | | DB Monitor
Service | db-monitor-
svc | 1 | 4 CPUs | 4 GB | 1 GB | NA | 5 CPUs
5 GB | | (db-
monitor-
svc) | istio-proxy | | 1 CPUs | 1 GB | | | Ephemeral
Storage: 1
GB | | DB Backup
Manager
Service | backup-
manager-
svc | 1 | 100m CPU | 128 MB | 1 GB | NA | 2 CPUs
2 GB | | (backup-
manager-
svc) | istio-proxy | | 1 CPU | 1 GB | | | Ephemeral
Storage: 1
GB | | Replication
Service
(db- | db-
replication-
svc | 1 | 2 CPU | 2 GB | 1 GB | 160 GB | 3 CPUs
13 GB | Table 3-4 (Cont.) cnDBTier Resources and Usage | Microservi
ce Name | Container
Name | Number of
Pods | CPU
Allocation
Per Pod
(cnDBTier
1) | Memory
Allocation
Per Pod
(cnDBTier
1) | Ephemera
I Storage
Per Pod | PVC
Allocation
Per Pod | Total
Resource
s
(cnDBTier | |-----------------------|-------------------|-------------------|---|--|----------------------------------|------------------------------|-------------------------------------| | replication-
svc) | istio-proxy | | 200m CPU | 500MB | | | Ephemeral
Storage: 1
GB | Additional cnDBTier configuration are as follows: ``` ndb: annotations: - sidecar.istio.io/inject: "true" - proxy.istio.io/config: "{concurrency: 8}" - sidecar.istio.io/proxyCPU: "2000m" - sidecar.istio.io/proxyCPULimit: "2000m" - sidecar.istio.io/proxyMemory: "4Gi" - sidecar.istio.io/proxyMemoryLimit: "4Gi" mgm: annotations: - sidecar.istio.io/inject: "true" - proxy.istio.io/config: "{concurrency: 8}" - sidecar.istio.io/proxyCPU: "1000m" - sidecar.istio.io/proxyCPULimit: "1000m" - sidecar.istio.io/proxyMemory: "4Gi" - sidecar.istio.io/proxyMemoryLimit: "4Gi" api: annotations: - sidecar.istio.io/inject: "true" - proxy.istio.io/config: "{concurrency: 8}" - sidecar.istio.io/proxyCPU: "2000m" - sidecar.istio.io/proxyCPULimit: "2000m" - sidecar.istio.io/proxyMemory: "4Gi" - sidecar.istio.io/proxyMemoryLimit: "4Gi" ndbapp: annotations: - sidecar.istio.io/inject: "true" - proxy.istio.io/config: "{concurrency: 8}" - sidecar.istio.io/proxyCPU:
"3000m" - sidecar.istio.io/proxyCPULimit: "3000m" - sidecar.istio.io/proxyMemory: "4Gi" - sidecar.istio.io/proxyMemoryLimit: "4Gi" ``` The following table describes SLF resources and their utilization for Site1 (Lookup Latency: 10ms): Table 3-5 SLF Resources and Usage | Microservice
name | Container
name | Number of Pods | CPU
Allocation Per
Pod | Memory
Allocation Per
Pod | Total
Resources | |----------------------------------|-----------------------------|----------------|------------------------------|---------------------------------|------------------------------------| | Ingress-
gateway-sig | ingressgateway
-sig | 11 | 6 CPUs | 4 GB | 110 CPUs
55 GB Memory | | | istio-proxy | | 4 CPUs | 1 GB | Ephemeral
Storage: 11
GB | | Ingress-
gateway-prov | ingressgateway
-prov | 2 | 4 CPUs | 4 GB | 12 CPUs
10 GB | | | istio-proxy | | 2 CPUs | 1 GB | Ephemeral
Storage: 2 GB | | Nudr-dr-service | nudr-drservice | 9 | 6 CPUs | 4 GB | 81 CPUs | | | istio-proxy | | 3 CPUs | 1 GB | 45 GB | | | | | | | Ephemeral
Storage: 9 GB | | Nudr-dr-
provservice | nudr-dr-
provservice | 2 | 4 CPUs | 4 GB | 12 CPUs
10 GB | | | istio-proxy | | 2 CPUs | 1 GB | Ephemeral
Storage: 2 GB | | Nudr-nrf-client-
nfmanagement | nrf-client-
nfmanagement | 2 | 1 CPU | 1 GB | 4 CPUs
4 GB | | | istio-proxy | | 1 CPUs | 1 GB | Ephemeral
Storage: 2 GB | | Nudr-egress- | egressgateway | 2 | 1 CPUs | 1 GB | 4 CPUs | | gateway | istio-proxy | | 1 CPUs | 1 GB | 4 GB | | | | | | | Ephemeral
Storage: 2 GB | | Nudr-config | nudr-config | 2 | 2 CPUs | 2 GB | 6 CPUs | | | istio-proxy | | 1 CPUs | 1 GB | 6 GB | | | | | | | Ephemeral
Storage: 2 GB | | Nudr-config- | nudr-config- | 2 | 2 CPUs | 2 GB | 6 CPUs | | server | server | | 4.0011 | 4.05 | 6 GB | | | istio-proxy | | 1 CPUs | 1 GB | Ephemeral
Storage: 2 GB | | alternate-route | alternate-route | 2 | 1 CPUs | 1 GB | 4 CPUs | | | istio-proxy | | 1 CPUs | 1 GB | 4 GB | | | | | | | Ephemeral
Storage: 2 GB | | app-info | app-info | 2 | 1 CPUs | 1 GB | 4 CPUs | | | istio-proxy | | 1 CPUs | 1 GB | 4 GB | | | | | | | Ephemeral
Storage: 2 GB | | perf-info | perf-info | 2 | 1 CPUs | 1 GB | 4 CPUs | | | istio-proxy | | 1 CPUs | 1 GB | 4 GB
Ephemeral
Storage: 2 GB | #### (i) Note The same resources and usage are used for Site2. The following table describes provision gateway resources and their utilization (Provisioning Latency: 30ms): Table 3-6 Provision Gateway Resources and Usage | Microservice name | Container
name | Number of Pods | CPU
Allocation Per
Pod | Memory
Allocation Per
Pod | Total
Resources | |-------------------|-------------------|----------------|------------------------------|---------------------------------|----------------------------| | provgw-ingress- | ingressgateway | 2 | 4 CPUs | 4 GB | 6 CPUs | | gateway | istio-proxy | | 1 CPUs | 1 GB | 6 GB Memory | | | | | | | Ephemeral
Storage: 2 GB | | provgw-egress- | egressgateway | 2 | 4 CPUs | 4 GB | 6 CPUs | | gateway | istio-proxy | | 1 CPUs | 1 GB | 6 GB Memory | | | | | | | Ephemeral
Storage: 2 GB | | provgw-service | provgw-service | 2 | 4 CPUs | 4 GB | 8 CPUs | | | istio-proxy | | 1 CPUs | 1 GB | 6 GB Memory | | | | | | | Ephemeral
Storage: 2 GB | | provgw-config | provgw-config | 2 | 2 CPUs | 2 GB | 6 CPUs | | | istio-proxy | | 1 CPUs | 1 GB | 6 GB Memory | | | | | | | Ephemeral
Storage: 2 GB | | provgw-config- | provgw-config- | 2 | 2 CPUs | 2 GB | 6 CPUs | | server | server | | | | 6 GB Memory | | | istio-proxy | | 1 CPUs | 1 GB | Ephemeral
Storage: 2 GB | The following table provides observation data for the performance test that can be used for the benchmark testing to scale up SLF performance: Table 3-7 Result and Observation | Parameter | Values | |--|-------------------------------------| | Test Duration | 24hr | | TPS Achieved | 34K SLF Lookup + 1.44k Provisioning | | Success Rate | 100% | | Average SLF processing time (Request and Response) | 26ms | ## 3.1.2 SLF Call Model: 50K lookup + 1.44K Provisioning TPS This test scenario describes performance and capacity of SLF functionality offered by UDR and provides the benchmarking results for various deployment sizes. The following features are enabled for SLF in this testcase: - OAuth2 - · Alternate Routing Service - Support for User-Agent Header - Overload Handling - Support for LCI and OCI Header - Auto Create - Network Function Scoring for a Site - Ingress Gateway Pod Protection The following features are enabled for Provisioning Gateway in this testcase: - Auditor Service - Provgw global configuration You can perform benchmark tests on SLF for compute and storage resources by considering the following conditions: Signaling (SLF Look Up): 50K TPS Provisioning: 144 TPSTotal Subscribers: 64MProfile Size: 450 bytes The following table describes the benchmarking parameters and their values: Table 3-8 Traffic Model Details | Request Type | Details | TPS | |---------------------------|-------------------------|-----| | Lookup 50k | SLF Lookup GET Requests | 50K | | Provisioning (1.44K using | CREATE | 216 | | Provgw) | DELETE | 216 | | | UPDATE | 504 | | | GET | 504 | The following table describes the testcase parameters and their values: Table 3-9 Testcase Parameters | Input Parameter Details | Configuration Values | |--|---------------------------------| | UDR Version Tag | 25.1.100 | | Target TPS | 50K Lookup + 1.44K Provisioning | | Traffic Profile | SLF 50K Profile | | Notification Rate | OFF | | UDR Response Timeout | 900ms | | Client Timeout | 30s | | Signaling Requests Latency Recorded on Client | 19ms | | Provisioning Requests Latency Recorded on Client | 42ms | The following table describes consolidated resource requirement and their utilization: Table 3-10 Consolidated Resource Requirement | Resource | СРИ | Memory | Ephemeral
Storage | PVC | |----------|-----|--------|----------------------|---------| | cnDBTier | 134 | 453 GB | 20 GB | 1064 GB | | SLF | 384 | 225 GB | 53 GB | NA | | ProvGw | 45 | 45 GB | 11 GB | NA | | Buffer | 50 | 50 GB | 50 GB | 50 GB | | Total | 613 | 773 GB | 134 GB | 1114 GB | (i) Note All values are inclusive of ASM sidecar. Table 3-11 cnDBTier Resources and Usage | Microservi
ce Name | Container
Name | Number of Pods | CPU
Allocation
Per Pod
(cnDBtier1 | Memory
Allocation
Per Pod
(cnDBtier1 | Ephemera
I Storage
Per Pod | PVC
Allocation
Per Pod | Total
Resource
s
(cnDBtier) | |-----------------------|--------------------------------|----------------|--|---|----------------------------------|------------------------------|---| | Manageme nt node | mysqlndbcl
uster | 2 | 2 CPUs | 12 GB | 1 GB | 16 GB | 6 CPUs
26 GB | | (ndbmgmd) | istio-proxy | | 1 CPUs | 1 GB | | | Ephemeral
Storage: 2
GB | | | | | | | | | PVC
Allocation:
32 GB | | Data node (ndbmtd) | mysqlndbcl
uster | 6 | 4 CPUs | 50 GB | 1 GB | 65 GB
(Backup: | 42 CPUs
324 GB | | | istio-proxy | | 2 CPUs | 2 GB | | 63 GB) | Ephemeral | | | db-backup-
executor-
svc | | 1 CPU | 2 GB | | | Storage: 6
GB
PVC
Allocation:
768 GB | | APP SQL
node | mysqlndbcl
uster | 7 | 6 CPUs | 4 GB | 1 GB | 10 GB | 63 CPUs | | (ndbappmy
sqld) | istio-proxy | | 3 CPUs | 2 GB | | | 42 GB Ephemeral Storage: 7 GB PVC Allocation: 70 GB | | SQL node
(Used for | mysqlndbcl
uster | 2 | 4 CPUs | 16 GB | 1 GB | 16 GB | 13 CPUs
41 GB | | Replication) | istio-proxy | | 2 CPUs | 4 GB | | | Ephemeral
Storage: 2
GB | Table 3-11 (Cont.) cnDBTier Resources and Usage | Microservi
ce Name | Container
Name | Number of
Pods | CPU
Allocation
Per Pod
(cnDBtier1
) | Memory
Allocation
Per Pod
(cnDBtier1
) | Ephemera
I Storage
Per Pod | PVC
Allocation
Per Pod | Total
Resource
s
(cnDBtier) | |------------------------------|---------------------|-------------------|---|--|----------------------------------|------------------------------|---| | (ndbmysqld
) | init-sidecar | | 100m CPU | 256 MB | | | PVC
Allocation:
32 GB | | DB Monitor | db-monitor- | 1 | 4 CPUs | 4 GB | 1 GB | NA | 5 CPUs | | Service
(db- | SVC | | | | | | 5 GB | | monitor-
svc) | istio-proxy | | 1 CPUs | 1 GB | | | Ephemeral
Storage: 1
GB | | DB Backup | backup- | 1 | 1 CPU | 1 GB | 1 GB | NA | 2 CPUs | | Manager
Service | manager-
svc | | | | | | 2 GB | | (backup-
manager-
svc) | istio-proxy | | 1 CPUs | 1 GB | | | Ephemeral
Storage: 1
GB | | Replication | db- | 1 | 2 CPU | 12 GB | 1 GB | 160 GB | 3 CPUs | | Service
(db- | replication-
svc | | | | | | 13 GB | | replication-
svc) | istio-proxy | | 200m CPU | 500 MB | | | Ephemeral
Storage: 1
GB
PVC
Allocation:
160 GB | The following table describes SLF resources and their utilization for Site1 (Lookup Latency: 19ms): Table 3-12 SLF Resources and Usage | Microservic
e name | Container name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |--------------------------|----------------------|----------------|------------------------------|---------------------------------|---------------------------------|--| | Ingress-
gateway-sig | ingressgatew ay-sig | 19 | 6 CPUs | 4 GB | 1 GB | 190 CPUs
95 GB | | | istio-proxy | | 4 CPUs | 1 GB | | Memory | | | | | | | | Ephemeral
Storage: 19
GB | | Ingress-
gateway-prov | ingressgatew
ay-prov | 2 | 4 CPUs | 4 GB | 1 GB | 12 CPUs
10 GB | | | istio-proxy | | 2 CPUs | 1 GB | | Ephemeral
Storage: 2
GB | | Nudr-dr-
service | nudr-
drservice | 15 | 6 CPUs | 4 GB | 1 GB | 135 CPUs
75 GB | Table 3-12 (Cont.) SLF Resources and Usage | Microservic
e name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |------------------------------------|-----------------------------------|----------------|------------------------------|---------------------------------|---------------------------------|--------------------------------| | | istio-proxy | | 3 CPUs | 1 GB | | Ephemeral
Storage: 15
GB | | Nudr-dr-
provservice | nudr-dr-
provservice | 2 | 4 CPUs | 4 GB | 1 GB | 12 CPUs
10 GB | | | istio-proxy | | 2 CPUs | 1 GB | | Ephemeral
Storage: 2
GB | | Nudr-nrf-
client-
nfmanageme | nrf-client-
nfmanageme
nt | 2 | 1 CPU | 1 GB | 1 GB | 4 CPUs
4 GB
Ephemeral | | nt | istio-proxy | | 1 CPUs | 1 GB | | Storage: 2
GB | | Nudr-egress-
gateway | egressgatew
ay | 2 | 1 CPUs | 1 GB | 1 GB | 4 CPUs
4 GB | | | istio-proxy | | 1 CPUs | 1 GB | | Ephemeral
Storage: 2
GB | | Nudr-config | nudr-config | 2 | 2 CPUs | 2 GB | 1 GB | 6 CPUs | | | istio-proxy | | 1 CPUs | 1 GB | | 6 GB Ephemeral Storage: 2 GB | | Nudr-config-
server | nudr-config-
server | 2 | 2 CPUs | 2 GB | 1 GB | 6 CPUs
6 GB | | | istio-proxy | | 1 CPUs | 1 GB | | Ephemeral
Storage: 2
GB | | alternate-
route | alternate-
route | 2 | 1 CPUs | 1 GB | 1 GB | 4 CPUs
4 GB | | | istio-proxy | | 1 CPUs | 1 GB | | Ephemeral
Storage: 2
GB | | app-info | app-info | 2 | 1 CPUs | 1 GB | 1 GB | 4 CPUs | | | istio-proxy | | 1 CPUs | 1 GB | | 4 GB | | | | | | | | Ephemeral
Storage: 2
GB | | perf-info | perf-info | 2 | 1 CPUs | 1 GB | 1 GB | 4 CPUs | | | istio-proxy | | 1 CPUs | 1 GB | | 4 GB | | | | | | | | Ephemeral
Storage: 2
GB | | Nudr-dbcr-
auditor | nudr-dbcr-
auditor-
service | 1 | 2 CPUs | 2 GB | 1 GB | 3 CPUs
3 GB | Table 3-12 (Cont.) SLF Resources and Usage | Microservic
e name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |-----------------------|-------------------|----------------|------------------------------|---------------------------------|---------------------------------|-------------------------------| | | istio-proxy | | 1 CPUs | 1 GB | | Ephemeral
Storage: 1
GB | Note The same resources and usage are used for Site2. Table 3-13 Provision Gateway Resources and their utilization | Microservic
e name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |--------------------------------|--------------------------|----------------|------------------------------|---------------------------------|---------------------------------|-------------------------------| | provgw- | ingressgatew | 2 | 4 CPUs | 4 GB | 1 GB | 10 CPUs | | ingress-
gateway | ay
· | | 4.000 | 4.00 | | 10 GB | | gatoway | istio-proxy | | 1 CPUs | 1 GB | | Memory
Ephemeral | | | | | | | | Storage: 2
GB | | provgw-
egress- | egressgatew
ay | 2 | 4 CPUs | 4 GB | 1 GB | 10 CPUs
10 GB | | gateway | istio-proxy | 1 | 1 CPUs | 1 GB | | Memory | | | | | | | | Ephemeral
Storage: 2
GB | | provgw- | provgw- | 2 | 4 CPUs | 4 GB | 1 GB | 10 CPUs | | service | service
istio-proxy | | 1 CPUs | 1 GB | M
E _j
St | 10 GB
Memory | | | попо ргоху | | 1 01 03 | | | Ephemeral
Storage: 2
GB | | provgw-
config | provgw-
config | 2 | 2 CPUs | 2 GB | 1 GB | 6 CPUs
6 GB | | | istio-proxy | | 1 CPUs | 1 GB | | Memory | | | | | | | | Ephemeral
Storage: 2
GB | | provgw-
config-server | provgw-
config-server | 2 | 2 CPUs | 2 GB | 1 GB | 6 CPUs
6 GB | | | istio-proxy | | 1 CPUs | 1 GB | | Memory | | | | | | | | Ephemeral
Storage: 2
GB | | provgw-
auditor-
service | auditor-
service | 1 | 2 CPUs | 2 GB | 1 GB | 3 CPUs
3 GB
Memory | Table 3-13 (Cont.) Provision Gateway Resources and their utilization | Microservic
e name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |-----------------------|-------------------|----------------|------------------------------|---------------------------------|---------------------------------|-------------------------------| | | istio-proxy | | 1 CPU | 1 GB | | Ephemeral
Storage: 1
GB | The following table provides observation data for the performance test that can be used for the benchmark testing to scale up SLF performance: Table 3-14 Result and Observation | Parameter | Values | |---|-------------------------------------| | Test Duration | 24hr | | TPS Achieved | 50K SLF Lookup + 1.44K Provisioning | | Success Rate | 100% | | Average SLF processing time for signaling requests | 19ms | | Average SLF processing time for provisioning requests | 42ms | # 3.2 Test Scenario 2: EIR 10k TPS and 10k Diameter S13 Interface TPS This test scenario describes performance and capacity improvements of EIR functionality offered by UDR and provides the benchmarking results for various deployment sizes. The following features are enabled for this testcase: - Overload Handling - Ingress Gateway Pod Protection - Network Policy - Diameter Gateway Pod Congestion Control EIR is benchmarked for compute and storage resources under following conditions: EIR Look Up: 20k Total Subscribers: 1M Profile Size: 130 bytes The following table describes the benchmarking parameters and their values: Table 3-15 Traffic Model Details | Request Type | Details | TPS | |--------------|----------------------------|-----| | EIR GET | N17 GET Request | 10k | | ECR message | Diameter S13 Interface ECR | 10k | The following table describes the testcase parameters and their values: **Table 3-16 Testcase Parameters** | Input Parameter Details | Configuration Values | |-------------------------|----------------------| | UDR Version Tag | 24.3.0 | | Target TPS | 20k Lookup | | Traffic Profile | 20k | | EIR Response Timeout | 2.7s | | Client Timeout | 10s | | N17 Latency: | 6.2 ms | | S13 Latency | 11 ms | The following table describes cnDBTier resources and their utilization: Table 3-17 cnDBTier Resources and their Utilization | Micro service
name | Container
name | Number of
Pods | CPU
Allocation Per
Pod | Memory
Allocation Per
Pod
(cnDBTier1) | Total
Resources
(cnDBTier1) | |------------------------|-------------------|-------------------|------------------------------|--|-----------------------------------| | Management | mysqlndbcluste | 2 | 2 CPUs | 11.25 GB | 4 CPU | | node | r | | | | 23 GB Memory | | | | | | | Ephemeral
Storage: 2 GB | | | | | | | PVC
Allocation: 32
GB | | Data node | mysqlndbcluste | 4 | 4 CPUs | 33 GB | 16 CPU | | | r | | | | 132 GB
Memory | | | | | | | Ephemeral
Storage: 4 GB | | | | | | | PVC
Allocation: 324
GB | | APP SQL node | mysqlndbcluste | 5 | 4 CPUs | 4 GB | 20 CPU | | | r | | | | 20 GB Memory | | | | | | | Ephemeral
Storage: 5 GB | | | | | | | PVC
Allocation: 50
GB | | SQL node | mysqlndbcluste | 2 | 4 CPUs | 16 GB | 8 CPU | | (Used for Replication) | r | | | | 32 GB Memory | | replication | | | | | Ephemeral
Storage: 2 GB | | | | | | | PVC
Allocation: 32
GB | Table 3-17 (Cont.) cnDBTier Resources and their Utilization | Micro service
name | Container
name | Number of Pods | CPU
Allocation Per
Pod | Memory
Allocation Per
Pod
(cnDBTier1) | Total
Resources
(cnDBTier1) | |---|------------------------|----------------|------------------------------|--|---| | DB Monitor
Service (db-
monitor-svc) | db-monitor-svc | 1 | 4 CPUs | 4 GB | 4 CPUs 4 GB Memory Ephemeral Storage: 1 GB | | DB Backup
Manager
Service
(backup-
manager-svc) | backup-
manager-svc | 1 | 100m CPUs | 128 MB | 100m CPUs
128 MB
Memory
Ephemeral
Storage: 1 GB | | Replication
Service (db-
replication-svc) | db-replication-
svc | 1 | 2 CPU | 2 GB | 2 CPUs 2 MB Memory Ephemeral Storage: 1 GB | The following table describes EIR resources and their utilization: Table 3-18 EIR Resources and their Utilization | Micro
service
name | Container name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |--------------------------|--------------------------|----------------|------------------------------|---------------------------------|---------------------------------|-------------------------------| | Ingress-
gateway-sig | Ingress-
gateway-sig | 4 | 6 CPUs | 4 GB | 1 GB | 24 CPUs
16 GB
Memory | | | | | | | | Ephemeral
Storage: 4
GB | | Ingress-
gateway-prov | Ingress-
gateway-prov | 2 | 4 CPUs | 4 GB | 1 GB | 8 CPUs
8 GB
Memory | | | | | | | | Ephemeral
Storage: 2
GB | | Nudr-dr-
service | nudr-
drservice | 3 | 6 CPUs | 4 GB | 1 GB | 18 CPUs
12 GB
Memory | | | | | | | | Ephemeral
Storage: 3
GB | | Nudr-dr-
provservice | nudr-dr-
provservice | 2 | 4 CPUs | 4 GB | 1 GB | 8 CPUs
8 GB
Memory | | | | | | | | Ephemeral
Storage: 2
GB | Table 3-18 (Cont.) EIR Resources and their Utilization | Micro
service
name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod |
Ephemeral
Storage Per
Pod | Total
Resources | |--|---------------------------------|----------------|------------------------------|---------------------------------|---------------------------------|--| | Nudr-diam-
gateway | nudr-diam-
gateway | 2 | 6 CPUs | 4 GB | 1 GB | 12 CPUs
8 GB
Memory
Ephemeral
Storage: 2
GB | | Nudr-
diameterprox
y | nudr-
diameterprox
y | 8 | 6 CPUs | 4 GB | 1 GB | 48 CPUs 32 GB Memory Ephemeral Storage: 8 GB | | Nudr-config | nudr-config | 2 | 1 CPUs | 1 GB | 1 GB | 2 CPUs 2 GB Memory Ephemeral Storage: 2 GB | | Nudr-config-
server | nudr-config-
server | 2 | 1 CPUs | 1 GB | 1 GB | 2 CPU 2 GB Memory Ephemeral Storage: 2 GB | | Alternate-
route | alternate-
route | 2 | 1 CPUs | 1 GB | 1 GB | 2 CPU 2 GB Memory Ephemeral Storage: 2 GB | | Nudr-nrf-
client-
nfmanageme
nt-service | nrf-client-
nfmanageme
nt | 2 | 1 CPUs | 1 GB | 1 GB | 2 CPU 2 GB Memory Ephemeral Storage: 2 GB | | App-info | app-info | 2 | 1 CPUs | 1 GB | 1 GB | 2 CPU 2 GB Memory Ephemeral Storage: 2 GB | Table 3-18 (Cont.) EIR Resources and their Utilization | Micro
service
name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |-----------------------------------|-----------------------------------|----------------|------------------------------|---------------------------------|---------------------------------|-------------------------------| | Perf-info | perf-info | 2 | 1 CPUs | 1 GB | 1 GB | 2 CPU
2 GB
Memory | | | | | | | | Ephemeral
Storage: 2
GB | | Nudr-dbcr-
auditor-
service | nudr-dbcr-
auditor-
service | 1 | 1 CPUs | 1 GB | 1 GB | 1 CPU
1 GB
Memory | | | | | | | | Ephemeral
Storage: 1
GB | The following table provides observation data for the performance test that can be used for the benchmark testing to scale up EIR performance: Table 3-19 Result and Observation | Parameter | Values | |--|--------| | Test Duration | 12hrs | | TPS Achieved | 20k | | Success Rate | 100% | | Average EIR processing time (Request and Response) | 9 ms | ## 3.3 Test Scenario 3: SOAP and Diameter Deployment Model 2K SOAP provisioning TPS for ProvGw for Medium profile + Diameter 25K with Large profile The following features are disabled for this testcase: - TLS - OAuth2.0 - Header Validations like XFCC, server header, and user agent header UDR is benchmarked for compute and storage resources under following conditions: - Signaling: 10K TPS - Provisioning: 2K TPS - Total Subscribers: 1M 10M range used for Diameter Sh and 1M range used for SOAP/XML - Profile Size: 2.2KB - Average HTTP Provisioning Request Packet Size: NA Average HTTP Provisioning Response Packet Size: NA Figure 3-1 SOAP and Diameter Deployment Model The following table describes the benchmarking parameters and their values: Table 3-20 Traffic Model Details | Request Type | Details | TPS | |--------------------------------|--------------|-----| | Diameter SH Traffic | SH Traffic | 25K | | Provisioning (2K using Provgw) | SOAP Traffic | 2K | Table 3-21 SOAP Traffic Model | Request Type | SOAP Traffic % | |--------------|----------------| | GET | 33% | | DELETE | 11% | | POST | 11% | | PUT | 45% | Table 3-22 Diameter Traffic Model | Request Type | Diameter Traffic % | |--------------|--------------------| | SNR | 25% | | PUR | 50% | | UDR | 25% | The following table describes the benchmarking parameters and their values: **Table 3-23 Testcase Parameters** | Input Parameter Details | Configuration Values | |--|----------------------| | UDR Version Tag | 22.2.0 | | Target TPS | 25K + 2K | | Traffic Profile | 25K sh + 2K SOAP | | Notification Rate | OFF | | UDR Response Timeout | 5s | | Client timeout | 10s | | Signaling Requests Latency Recorded on Client | NA | | Provisioning Requests Latency Recorded on Client | NA | Note PNR scenarios are not tested because server stub is not used. The following table describes cnDBTier resources and their utilization: Table 3-24 cnDBTier Resources and their Utilization | Micro
service
name | Container name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Total
Resource
s | CPU
Usage | Memory
Usage | |---|--------------------------------|----------------|------------------------------|---------------------------------|----------------------------|--|-----------------| | Manageme
nt node | mysqlndbcl
uster | 3 | 4 CPUs | 10 GB | 12 CPUs
30 GB
Memory | 0.2
CPU/pod | .2 GB/pod | | Data node | mysqlndbcl
uster | 4 | 15 CPUs | 98 GB | 64 CPU
408 GB | 5.8
CPU/pod | 92 GB/pod | | | db-backup-
executor-
svc | | 100m CPU | 128 MB | Memory | NA | NA | | APP SQL
node | mysqlndbcl
uster | 4 | 16 CPUs | 16 GB | 64 CPUs
64 GB
Memory | 9.5
CPU/pod | 8.8 GB/pod | | SQL node
(Used for
Replication
) | mysqlndbcl
uster | 4 | 8 CPUs | 16 GB | 49 CPUs
81 GB
Memory | Utilization data is not available for this service because of resource constraints, pods are not used. | | | DB Monitor
Service | db-monitor-
svc | 1 | 200m
CPUs | 500 MB | 3 CPUs
2 GB
Memory | Minimal resources are used. Utilization is not captured | | | DB Backup
Manager
Service | replication-
svc | 1 | 200m CPU | 500 MB | 3 CPUs
2 GB
Memory | Minimal resources are used. Utilization is not captured | | #### cnDBTier Usage Results for Kubectl top pods on cndbtier is shown below: | NAME | CPU (cores) | MEMORY (bytes) | |--|-------------|----------------| | mysql-cluster-db-backup-manager-svc-5f9956c869-44r9p | 1m | 41Mi | | mysql-cluster-db-monitor-svc-74568b68c6-bgznr | 2m | 235Mi | | ndbappmysqld-0 | 9518m | 8827Mi | | ndbappmysqld-1 | 9856m | 8809Mi | | ndbappmysqld-2 | 9874m | 8811Mi | | ndbappmysqld-3 | 8961m | 8805Mi | | ndbmgmd-0 | 8m | 2064Mi | | ndbmgmd-1 | 8m | 2062Mi | | ndbmgmd-2 | 8m | 2065Mi | | ndbmtd-0 | 5768m | 92317Mi | | ndbmtd-1 | 5526m | 92312Mi | | ndbmtd-2 | 6031m | 92331Mi | | ndbmtd-3 | 5788m | 92317Mi | Results for Kubectl get hpa on cndbtier is shown below: | NAME | REFERENCE | TARGETS | MINPODS | MAXPODS | REPLICAS | AGE | |--------------|--------------------------|---------|---------|---------|----------|-----| | ndbappmysqld | StatefulSet/ndbappmysqld | 59%/80% | 4 | 4 | 4 | 10d | | ndbmgmd | StatefulSet/ndbmgmd | 0%/80% | | 3 | | 10d | | ndbmtd | StatefulSet/ndbmtd | 38%/80% | 4 | 4 | 4 | 10d | #### **cnDBTier Metrics:** Data memory usage: 72GB (5.164GB used) DB Reads per second: 52kDB Writes per second: 24k The following table describes UDR resources and their utilization: Table 3-25 UDR Resources and their Utilization (Request Latency: 40ms) | Micro
service
name | Container name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Total
Resource
s | CPU
Usage | Memory
Usage | |------------------------------|----------------------------|----------------|------------------------------|---------------------------------|------------------------------|---|-----------------| | nudr-
diameterpr
oxy | nudr-
diameterpr
oxy | 19 | 2.5 CPUs | 4 GB | 47.5 CPUs
76 GB
Memory | 1.75
CPU/pod | 1 GB/pod | | nudr-diam-
gateway | nudr-diam-
gateway | 3 | 6 CPUs | 4 GB | 18 CPUs
12 GB
Memory | .2.5
CPU/pod | 2 GB/pod | | Ingress-
gateway-
sig | ingressgate
way-sig | 2 | 2 CPUs | 2 GB | 4 CPUs
4 GB
Memory | Minimal resources are used. Utilization is not captured | | | Ingress-
gateway-
prov | ingressgate
way-prov | 2 | 2 CPUs | 2 GB | 4 CPUs
4 GB
Memory | 1 CPU/pod | 1 GB/pod | | Nudr-dr-
service | nudr-
drservice | 2 | 2 CPUs | 2 GB | 4 CPUs
4 GB
Memory | Minimal resources are used. Utilization is not captured | | | Nudr-dr-
provservice | nudr-dr-
provservice | 2 | 2 CPUs | 2 GB | 4 CPUs
4 GB
Memory | 1.4
CPU/pod | 1 GB/pod | Table 3-25 (Cont.) UDR Resources and their Utilization (Request Latency: 40ms) | Micro
service
name | Container name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Total
Resource
s | CPU
Usage | Memory
Usage | |--|---------------------------------|----------------|------------------------------|---------------------------------|--------------------------|---|-----------------| | Nudr-nrf-
client-
nfmanage
ment | nrf-client-
nfmanage
ment | 2 | 1 CPUs | 1 GB | 2 CPUs
2 GB
Memory | Minimal resoused. Utiliza captured | | | Nudr-
egress-
gateway | egressgate
way | 2 | 2 CPUs | 2 GB | 4 CPU
4 GB
Memory | Minimal reso
used. Usage
captured | | | Nudr-config | nudr-config | 2 | 1 CPUs | 1 GB | 2 CPU
2 GB
Memory | Minimal reso
used. Utiliza
captured | | | Nudr-
config-
server | nudr-
config-
server | 2 | 1 CPUs | 1 GB | 2 CPU
2 GB
Memory | Minimal reso
used. Utiliza
captured | | | alternate-
route | alternate-
route | 2 | 1 CPUs | 1 GB | 2 CPU
2 GB
Memory | Minimal reso
used. Usage
captured | | | app-info | app-info | 2 | 1 CPUs | 1 GB | 2 CPU
2 GB
Memory | Minimal resources are used. Utilization is not captured | | | perf-info | perf-info | 2 | 1 CPUs | 1 GB | 2 CPU
2 GB
Memory | Minimal resoused. Usage captured | | #### **Resource Utilization** Diameter resource
utilization is shown below: | ocudr-nudr-diam-gateway-0 | 2463m | 1958Mi | |--|-------|--------| | ocudr-nudr-diam-gateway-l | 2474m | 1747Mi | | ocudr-nudr-diam-gateway-2 | 2453m | 1754Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-4vglt | 1679m | 984Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-5x94d | 1688m | 1095Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-8f7xg | 1818m | 1078Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-8kbgs | 1789m | 796Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-8wwhv | 1845m | 781Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-bwpzw | 1719m | 908Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-c8nk6 | 1690m | 1054Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-cjlvg | 1662m | 983Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-dfkq4 | 1755m | 983Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-fqjkw | 1761m | 979Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-gmpfn | 1684m | 865Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-hvmzk | 1776m | 907Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-q5qsp | 1763m | 863Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-qd5w2 | 1799m | 996Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-qnkk5 | 1735m | 945Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-rlm7k | 1789m | 811Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-tpqhf | 1681m | 964Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-vfq98 | 1839m | 928Mi | | ocudr-nudr-diameterproxy-b5c5f55b8-vtvcb | 1795m | 845Mi | UDR HPA resource utilization is shown below: | NAME | REFERENCE | TARGETS | MINPODS | MAXPODS | REPLICAS | AGE | |-------------------------------|--|---------|---------|---------|----------|-------| | ocudr-config-server-hpa | Deployment/ocudr-nudr-config-server | 2%/80% | | | | 20h | | ocudr-egressgateway-vl | Deployment/ocudr-egressgateway | 0%/65% | | | | 20h | | ocudr-ingressgateway-prov-vl | Deployment/ocudr-ingressgateway-prov | 43%/65% | | | | 20h | | ocudr-ingressgateway-sig-vl | Deployment/ocudr-ingressgateway-sig | 0%/65% | | | | 20h | | ocudr-nudr-config | Deployment/ocudr-nudr-config | 0%/80% | | | | 20h | | ocudr-nudr-diameterproxy | Deployment/ocudr-nudr-diameterproxy | 70%/80% | 19 | 19 | 19 | 20h | | ocudr-nudr-dr-provservice | Deployment/ocudr-nudr-dr-provservice | 70%/80% | | | | 20h | | ocudr-nudr-drservice | Deployment/ocudr-nudr-drservice | 0%/80% | | | | 20h | | ocudr-nudr-notify-service | Deployment/ocudr-nudr-notify-service | 9%/80% | | | | 20h | | provgw-config-server-hpa | Deployment/provgw-provgw-config-server | 0%/80% | | | | 5h24m | | provgw-prov-egressgateway-vl | Deployment/provgw-prov-egressgateway | 45%/80% | | 4 | | 5h24m | | provgw-prov-ingressgateway-vl | Deployment/provgw-prov-ingressgateway | 64%/80% | | | | 5h24m | | provgw-provgw-config | Deployment/provgw-provgw-config | 808/80 | | | | 5h24m | | provgw-provgw-service | Deployment/provgw-provgw-service | 72%/80% | 4 | 4 | 4 | 5h24m | The following table describes provision gateway resources and their utilization: Table 3-26 Provision Gateway Resources aand their Utilization (Provisioning Request Latency: 40ms) | Micro
service
name | Container name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Total
Resource
s | CPU
Usage | Memory
Usage | |-------------------------------|--------------------|----------------|------------------------------|---------------------------------|--------------------------|----------------|-----------------| | provgw-
ingress-
gatewa | ingressgate
way | 3 | 2 CPUs | 2 GB | 6 CPUs
6 GB
Memory | 1.3
CPU/pod | 1 GB/pod | Table 3-26 (Cont.) Provision Gateway Resources aand their Utilization (Provisioning Request Latency: 40ms) | Micro
service
name | Container name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Total
Resource
s | CPU
Usage | Memory
Usage | |-------------------------------|------------------------------|----------------|------------------------------|---------------------------------|----------------------------|---|-----------------| | provgw-
egress-
gateway | egressgate
way | 2 | 2 CPUs | 2 GB | 4 CPUs
4 GB
Memory | .0.9
CPU/pod | 700 Mi/pod | | provgw-
service | provgw-
service | 4 | 2.5 CPUs | 3 GB | 10 CPUs
12 GB
Memory | 1.75
CPU/pod | 1 GB/pod | | provgw-
config | provgw-
config | 2 | 1 CPUs | 1 GB | 2 CPUs
2 GB
Memory | Minimal resources are used. Utilization is not captured | | | provgw-
config-
server | provgw-
config-
server | 2 | 1 CPUs | 1 GB | 2 CPUs
2 GB
Memory | Minimal resoused. Utilization captured | | Provisioning Gateway resource utilization is shown below: | ocudr-ingressgateway-prov-bc567cb6d-jsr7d | 874m | 666Mi | |---|-------|--------| | ocudr-ingressgateway-prov-bc567cb6d-v8lfp | 862m | 687Mi | | ocudr-nudr-dr-provservice-7c855bb68-4bqns | 1445m | 815Mi | | ocudr-nudr-dr-provservice-7c855bb68-gchlt | 1348m | 828Mi | | provgw-prov-egressgateway-745c9d5d7d-bz7ct | 921m | 738Mi | | provgw-prov-egressgateway-745c9d5d7d-xvj2k | 904m | 710Mi | | provgw-prov-ingressgateway-7bd88db949-8qmps | 1850m | 1263Mi | | provgw-prov-ingressgateway-7bd88db949-g7b25 | 4m | 583Mi | | provgw-prov-ingressgateway-7bd88db949-wdg4k | 2003m | 1281Mi | | provgw-provgw-config-6fcc86cd78-jlfqr | 4m | 536Mi | | provgw-provgw-config-server-9dff7cf4f-6qwkb | 5m | 374Mi | | provgw-provgw-service-c54d94bcb-q84gl | 159m | 582Mi | | provgw-provgw-service-c54d94bcb-s8kpz | 2501m | 742Mi | | provgw-provgw-service-c54d94bcb-sqwwr | 2427m | 1191Mi | | provgw-provgw-service-c54d94bcb-zttr9 | 2103m | 1082Mi | | | | | Resources calculation for UDR, Provisioning Gateway, and cnDbTier are shown below: Table 3-27 cnUDR and ProvGw Resources Calculation | Resources | cnUDR | | | ProvGw | | | |---|--|----------------------------|-------|--|---------------------------|-------| | | Core services used
for traffic runs (Nudr-
diamgw, Nudr-
diamproxy, Nudr-
ingressgateway-prov
and Nudr-dr-prov) at
70% usage | Other
Microservi
ces | Total | Core
services
used for
traffic runs
(ProvGw-
ingressgate
way,
ProvGw-
provgw
service and
ProvGw-
egressgate
way) at
70% usage | Other
Microservi
ce | Total | | CPU | 73.5 | 24 | 97.5 | 20 | 4 | 24 | | Memory in GB | 96 | 24 | 120 | 22 | 4 | 26 | | Disk Volume
(Ephemeral
storage) in GB | 26 | 16 | 42 | 9 | 4 | 13 | Table 3-28 cnDbTier Resources Calculation | Resources | cnDbTier | | | | | | | | |---|-----------------------------------|---|------------------------------------|--|---|-------|--|--| | | SQL nodes
(at actual
usage) | SQL Nodes
(Overhead/
Buffer
resources at
20%) | Data nodes
(at actual
usage) | Data nodes
(Overhead/
Buffer
resources at
10%) | MGM nodes
and other
resources
(Default
resources) | Total | | | | CPU | 76 | 16 | 23.2 | 5 | 18 | 138.5 | | | | Memory in GB | 70.4 | 14 | 368 | 36 | 34 | 522 | | | | Disk Volume
(Ephemeral
storage) in GB | 8 | NA | 960
(ndbdisksize
= 240*4) | NA | 20 | 988 | | | Table 3-29 Total Resources Calculation | Resources | Total | |---------------------------------------|--------| | CPU | 260 | | Memory in GB | 668 GB | | Disk Volume (Ephemeral storage) in GB | 104 GB | The following table provides observation data for the performance test that can be used for the benchmark testing to scale up UDR performance: Table 3-30 Result and Observation | _ | l | |---------------|--------| | Parameter | Values | | Test Duration | 18hr | Table 3-30 (Cont.) Result and Observation | Parameter | Values | |--|--------| | TPS Achieved | 10K | | Success Rate | 100% | | Average UDR processing time (Request and Response) | 40ms | ## 3.4 Test Scenario 4: Policy Data Traffic Deployment Model This section provides information about policy data traffic deployment model test scenarios. ## 3.4.1 Policy Data: 17.2K N36, 300 TPS Notifications and 500 TPS Provisioning You can perform benchmark tests on UDR for compute and storage resources by considering the following conditions: Signaling: 17.2K Provisioning: 500 TPSTotal Subscribers: 10M The following table describes the benchmarking parameters and their values: Table 3-31 Traffic Model Details | Request Type | Details | TPS | |---|-------------------------|--------------| | N36 traffic (100%) 17.2K TPS for sm-data | subs-to-notify POST | 3K (17.45%) | | and subs-to-notify POST/DELETE | sm-data GET | 4.7K (27.3%) | | | subs-to-notify DELETE | 3K (17.45%) | | | sm-data PATCH | 6.5K (37.8%) | | 500 TPS PROVISIONING | UPDATE | 300 (60%) | | Policy Data PUT Operation | GET | 100 (40%) | | | CREATE | 50 (10%) | | | DELETE | 50 (10%) | | NOTIFICATIONS (triggered from 300 PUT provisioning traffic) | POST Operation (Egress) | 300 | The following table describes the test case parameters and their values: **Table 3-32 Testcase Parameters** | Input Parameter Details | Configuration Values | |-------------------------|----------------------| | UDR Version Tag | 24.2.0 | | Target TPS | 17.2K Signaling | | Notification Rate | 300 | | UDR Response Timeout | 2700ms | Table 3-32 (Cont.) Testcase Parameters | Input Parameter Details | Configuration
Values | |--|----------------------| | Signaling Requests Latency Recorded on Client | 19ms | | Provisioning Requests Latency Recorded on Client | 24ms | Table 3-33 Consolidated Resource Requirement | Resource | CPU | Memory | Ephemeral
Storage | PVC | |----------|----------|--------|----------------------|---------| | cnDBTier | 92 CPUs | 485 GB | 21 GB | 1404 GB | | UDR | 215 CPUs | 156 GB | 48 GB | NA | | Buffer | 50 CPUs | 50 GB | 20 GB | 200 GB | | Total | 357 CPUs | 691 GB | 89 GB | 1604 GB | The following table describes cnDBTier resources and their utilization: Table 3-34 cnDBTier Resources and their Utilization | Microser
vice
name | Containe
r name | Number
of Pods | CPU
Allocatio
n Per
Pod | Memory
Allocatio
n Per
Pod | Ephemer
al
Storage
Per Pod | PVC
Allocatio
n Per
Pod | Total
Resourc
es | PVC
Usage | |---------------------------------------|---------------------|-------------------|----------------------------------|-------------------------------------|-------------------------------------|----------------------------------|--|---------------| | Managem
ent node
(ndbmgm
d) | mysqlndb
cluster | 2 | 2 CPUs | 9 GB | 1 GB | 15 GB | 4 CPUs 18 GB Ephemer al Storage: 2 GB PVC Allocatio n: 30 GB | 70
MB/pod | | Data
node
(ndbmtd) | mysqlndb
cluster | 4 | 4 CPUs | 93 GB | 1 GB | 132 GB
Backup:
164 GB | 16 CPUs 372 GB Ephemer al Storage: 4 GB PVC Allocatio n: 1184 GB | 33
GB/pod | | APP SQL
node
(ndbappm
ysqld) | mysqlndb
cluster | 10 | 6 CPUs | 4 GB | 1 GB | 2 GB | 60 CPUs 40 GB Ephemer al Storage: 10 GB PVC Allocatio n: 20 GB | 200
MB/pod | Table 3-34 (Cont.) cnDBTier Resources and their Utilization | Microser
vice
name | Containe
r name | Number
of Pods | CPU
Allocatio
n Per
Pod | Memory
Allocatio
n Per
Pod | Ephemer
al
Storage
Per Pod | PVC
Allocatio
n Per
Pod | Total
Resourc
es | PVC
Usage | |--|----------------------------|-------------------|----------------------------------|-------------------------------------|-------------------------------------|----------------------------------|--|------------------------------| | SQL node
(ndbmysq
Id,used
for
replicatio
n) | mysqlndb
cluster | 2 | 4 CPUs | 24 GB | 1 GB | 13 GB | 8 CPUs 48 GB Ephemer al Storage: 2 GB PVC Allocatio n: 26 GB | 2 GB/pod | | DB
Monitor
Service | db-
monitor-
svc | 1 | 4 CPUs | 4 GB | 1 GB | NA | 4 CPU 4 MB Ephemer al Storage: 1 GB | Minimal
resources
used | | DB
Backup
Manager
Service | backup-
manager-
svc | 1 | 100
millicores
CPUs | 128 MB | 1 GB | NA | 1 CPU 128 MB Ephemer al Storage: 1 GB | Minimal
resources
used | | Replicatio
n service
(Multi site
cases) | replicatio
n-svc | 1 | 2 CPUs | 2 GB | 1 GB | 143 GB | 2 CPUs 2 GB Ephemer al Storage: 1 GB PVC Allocatio n: 143 GB | NA | The following table describes UDR resources and their utilization: Table 3-35 UDR Resources and their Utilization (Average Latency: 19ms for N36 and 24ms for Provisioning) | Micro
service
name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |--------------------------|------------------------|----------------|------------------------------|---------------------------------|---------------------------------|---| | Ingress-
gateway-sig | ingressgatew
ay-sig | 9 | 6 CPUs | 4 GB | 1 GB | 54 CPUs
36 GB
Ephemeral
Storage: 9
GB | Table 3-35 (Cont.) UDR Resources and their Utilization (Average Latency: 19ms for N36 and 24ms for Provisioning) | Micro
service
name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |--|---------------------------------|----------------|------------------------------|---------------------------------|---------------------------------|---| | Ingress-
gateway-prov | ingressgatew
ay-prov | 2 | 4 CPUs | 4 GB | 1 GB | 8 CPUs
8 GB
Ephemeral
Storage: 2
GB | | Nudr-dr-
service | nudr-
drservice | 17 | 6 CPUs | 4 GB | 1 GB | 102 CPUs
68 GB
Ephemeral
Storage: 17
GB | | Nudr-dr-
provservice | nudr-dr-
provservice | 2 | 4 CPUs | 4 GB | 1 GB | 8 CPUs
8 GB
Ephemeral
Storage: 2
GB | | Nudr-notify-
service | nudr-notify-
service | 3 | 6 CPUs | 5 GB | 1 GB | 18 CPUs
15 GB
Ephemeral
Storage: 3
GB | | Nudr-egress-
gateway | egressgatew
ay | 2 | 6 CPUs | 4 GB | 1 GB | 12 CPUs
8 GB
Ephemeral
Storage: 2
GB | | Nudr-config | nudr-config | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs
2 GB
Ephemeral
Storage: 2
GB | | Nudr-config-
server | nudr-config-
server | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs
2 GB
Ephemeral
Storage: 2
GB | | Alternate-
route | alternate-
route | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs
2 GB
Ephemeral
Storage: 2
GB | | Nudr-nrf-
client-
nfmanageme
nt-service | nrf-client-
nfmanageme
nt | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs 2 GB Ephemeral Storage: 2 GB | Table 3-35 (Cont.) UDR Resources and their Utilization (Average Latency: 19ms for N36 and 24ms for Provisioning) | Micro
service
name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |--------------------------|-------------------|----------------|------------------------------|---------------------------------|---------------------------------|-------------------------------| | App-info | app-info | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs | | | | | | | | 2 GB | | | | | | | | Ephemeral
Storage: 2
GB | | Perf-info | perf-info | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs | | | | | | | | 2 GB | | | | | | | | Ephemeral
Storage: 2
GB | | Nudr-dbcr- | nudr-dbcr- | 1 | 1 CPU | 1 GB | 1 GB | 1 CPU | | auditor- | auditor- | | | | | 1 GB | | service | service | | | | | Ephemeral
Storage: 1
GB | The following table provides observation data for the performance test that can be used for the benchmark testing to scale up UDR performance: Table 3-36 Result and Observation | Parameter | Values | |---------------|-----------------| | Test Duration | 4h30m | | TPS Achieved | 17.2K Signaling | | Success rate | 100% | ## 3.5 Test Scenario 5: 25K N36 and 1.3K Provisioning Profile (600 SOAP and 700 REST) You can perform benchmark tests on UDR for compute and storage resources by considering the following conditions: Signaling: 25K TPSProvisioning: 1.3K Total Subscribers: 35M The following features are enabled for this testcase: - Auto Enrollment and Auto Create Features - Overload Handling - ETag (Entity Tag) - Ingress Gateway Pod Protection - Support for User-Agent Header - 3gpp-Sbi-Correlation-Info Header - Suppress Notification The following table describes the benchmarking parameters and their values: Table 3-37 Traffic Model Details | Request Type | Details | TPS | |---------------------------|--|-----------| | N36 traffic 25K TPS | subs-to-notify POST | 5K (20%) | | | sm-data GET | 5K (20%) | | | subs-to-notify DELETE | 5K (20% | | | sm-data PATCH | 10K (40%) | | SOAP PROVISIONING 600 TPS | GET | 100 | | | UPDATE QUOTA | 50 | | | UPDATE DYNAMIC
QUOTA | 50 | | | UPDATE STATE | 100 | | | UPDATE SUBSCRIBER | 100 | | | CREATE SUBSCRIBER | 100 | | | DELETE SUBSCRIBER | 100 | | REST PROVISIONING 700 TPS | DELETE (Cleaning the auto provisioned subscribers) | 700 | The following table describes the test case parameters and their values: **Table 3-38 Testcase Parameters** | Input Parameter Details | Configuration Values | |--|----------------------| | UDR Version Tag | 25.1.100 | | Target TPS | 25K TPS Signaling | | Notification Rate | 300 | | UDR Response Timeout | 2.7s | | Signaling Requests Latency Recorded on Client | 25ms | | Provisioning Requests Latency Recorded on Client | 25ms | Table 3-39 Consolidated Resource Requirement | Resource | СРИ | Memory | Ephemeral
Storage | PVC | |----------|----------|--------|----------------------|---------| | cnDBTier | 143 CPUs | 640 GB | 29 GB | 1875 GB | | UDR | 247 CPUs | 184 GB | 55 GB | NA | | Buffer | 50 CPUs | 50 GB | 20 GB | 200 GB | | Total | 440 CPUs | 814 GB | 104 GB | 2075 GB | The following table describes cnDBTier resources and their utilization: Table 3-40 cnDBTier Resources and their Utilization | Micros
ervice
name | Contai
ner
name | Numbe
r of
Pods | CPU
Allocat
ion Per
Pod | Memor
y
Allocat
ion Per
Pod | Ephem
eral
Storag
e Per
Pod | PVC
Allocat
ion Per
Pod | Total
Resour
ces | CPU
Usage | Memor
y
Usage | PVC
Usage | |--|-------------------------|-----------------------|----------------------------------|---|---|----------------------------------|--|------------------------------|---------------------|---------------------------------------| | Manag
ement
node
(ndbmg
md) | mysqln
dbclust
er | 2 | 2 CPUs | 9 GB | 1 GB | 15 GB | 4 CPUs
18 GB
Ephem
eral
Storag
e: 2 GB
PVC
Allocat
ion: 30
GB |
Minimal
resource
used. | s are | 0.032M
B/pod | | Data
node
(ndbmt
d) | mysqln
dbclust
er | 4 | 4 CPUs | 124 GB | 1 GB | 132 GB
Backup
: 220
GB | 16
CPUs
496 GB
Ephem
eral
Storag
e: 4 GB
PVC
Allocat
ion:
1408
GB | 2.2
CPU/po
d | 113
GB/pod | 5.97GB
/pod | | APP
SQL
node
(ndbap
pmysql
d) | mysqln
dbclust
er | 18 | 6 CPUs | 4 GB | 1 GB | 4 GB | 108
CPUs
72 GB
Ephem
eral
Storag
e: 18
GB
PVC
Allocat
ion: 72
GB | 3.6
CPU/po
d | 0.8
GB/pod | 221MB/
pod | | SQL
node
(ndbmy
sqld,us
ed for
replicati
on) | mysqln
dbclust
er | 2 | 4 CPUs | 24 GB | 1 GB | 110 GB | 8 CPUs 48 GB Ephem eral Storag e: 2 GB PVC Allocat ion: 220 GB | Minimal
resource
used. | s are | Minimal
resourc
es are
used. | Table 3-40 (Cont.) cnDBTier Resources and their Utilization | Micros
ervice
name | Contai
ner
name | Numbe
r of
Pods | CPU
Allocat
ion Per
Pod | Memor
y
Allocat
ion Per
Pod | Ephem
eral
Storag
e Per
Pod | PVC
Allocat
ion Per
Pod | Total
Resour
ces | CPU
Usage | Memor
y
Usage | PVC
Usage | |--|----------------------------|-----------------------|----------------------------------|---|---|----------------------------------|--|------------------------------|---------------------|---| | DB
Monitor
Service
(db-
monitor
-svc) | db-
monitor
-svc | 1 | 4 CPUs | 4 GB | 1 GB | NA | 4 CPU 4 MB Ephem eral Storag e: 1 GB | Minimal
resource
used. | es are | Minimal
resourc
es used | | DB Backup Manag er Service (backup - manag er-svc) | backup-
manag
er-svc | 1 | 100
millicor
es
CPUs | 128 MB | 1 GB | NA | 1 CPU
128 MB
Ephem
eral
Storag
e: 1 GB | Minimal
resource
used. | s are | Minimal
resourc
es used | | Replica
tion
service
(Multi
site
cases) | replicati
on-svc | 1 | 2 CPUs | 2 GB | 1 GB | 143 GB | 2 CPUs
2 GB
Ephem
eral
Storag
e: 1 GB
PVC
Allocat
ion:
143 GB | Minimal
resource | s used | NA
Note:
Tested
in
single
site
deploy
ment | The following table describes UDR resources and their utilization: Table 3-41 UDR Resources and their Utilization (Average Latency: 41ms for N36 and Provisioning) | Micro
service
name | Contain
er name | Number
of Pods | CPU
Allocati
on Per
Pod | Memory
Allocati
on Per
Pod | Epheme
ral
Storage
Per Pod | Total
Resour
ces | CPU
Usage | Memory
Usage | CPU
Utilizati
on | |------------------------------|-----------------------------|-------------------|----------------------------------|-------------------------------------|-------------------------------------|---|---------------------|-----------------|------------------------| | Ingress-
gateway-
sig | ingressg
ateway-
sig | 13 | 6 CPUs | 4 GB | 1 GB | 78 CPUs
52 GB
Epheme
ral
Storage
: 13 GB | 2.4
CPU/po
d | 2.5
GB/pod | 40% | | Ingress-
gateway-
prov | ingressg
ateway-
prov | 2 | 4 CPUs | 4 GB | 1 GB | 8 CPUs
8 GB
Epheme
ral
Storage
: 2 GB | 0.9
CPUs/po
d | 2.2
GB/pod | 21% | Table 3-41 (Cont.) UDR Resources and their Utilization (Average Latency: 41ms for N36 and Provisioning) | Micro
service
name | Contain
er name | Number of Pods | CPU
Allocati
on Per
Pod | Memory
Allocati
on Per
Pod | Epheme
ral
Storage
Per Pod | Total
Resour
ces | CPU
Usage | Memory
Usage | CPU
Utilizati
on | |-----------------------------|-----------------------------|----------------|----------------------------------|-------------------------------------|-------------------------------------|---|-----------------------------|-----------------|------------------------| | Nudr-dr-
service | nudr-
drservic
e | 20 | 6 CPUs | 4 GB | 1 GB | 120
CPUs
80 GB
Epheme
ral
Storage
: 20 GB | 3.3
CPUs/po
d | 1.9
GB/pod | 55% | | Nudr-dr-
provserv
ice | nudr-dr-
provserv
ice | 2 | 4 CPUs | 4 GB | 1 GB | 8 CPUs
8 GB
Epheme
ral
Storage
: 2 GB | 2.4
CPUs/po
d | 1.8
GB/pod | 40% | | Nudr-
notify-
service | nudr-
notify-
service | 3 | 6 CPUs | 5 GB | 1 GB | 18 CPUs
15 GB
Epheme
ral
Storage
: 3 GB | Minimal resources are used. | | | | Nudr-
egress-
gateway | egressg
ateway | 2 | 6 CPUs | 4 GB | 1 GB | 12 CPUs
8 GB
Epheme
ral
Storage
: 2 GB | Minimal re | esources a | re used. | | Nudr-
config | nudr-
config | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs 2 GB Epheme ral Storage : 2 GB | Minimal re | esources a | re used. | | Nudr-
config-
server | nudr-
config-
server | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs 2 GB Epheme ral Storage : 2 GB | Minimal re | esources a | re used. | | Alternat
e-route | alternate
-route | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs 2 GB Epheme ral Storage : 2 GB | Minimal re | esources a | re used. | Table 3-41 (Cont.) UDR Resources and their Utilization (Average Latency: 41ms for N36 and Provisioning) | Micro
service
name | Contain
er name | Number
of Pods | CPU
Allocati
on Per
Pod | Memory
Allocati
on Per
Pod | Epheme
ral
Storage
Per Pod | Total
Resour
ces | CPU
Usage | Memory
Usage | CPU
Utilizati
on | |--|---------------------------------------|-------------------|----------------------------------|-------------------------------------|-------------------------------------|--|-----------------------------|-----------------|------------------------| | Nudr-nrf-
client-
nfmanag
ement-
service | nrf-
client-
nfmanag
ement | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs
2 GB
Epheme
ral
Storage
: 2 GB | Minimal resources are used. | | | | App-info | app-info | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs 2 GB Epheme ral Storage : 2 GB | Minimal re | esources a | re used. | | Perf-info | perf-info | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs 2 GB Epheme ral Storage : 2 GB | Minimal re | esources a | re used. | | Nudr-
dbcr-
auditor-
service | nudr-
dbcr-
auditor-
service | 1 | 1 CPU | 1 GB | 1 GB | 1 CPU
1 GB
Epheme
ral
Storage
: 1 GB | Minimal re | esources a | re used. | The following table describes Provisioning Gateway resources and their utilization: Table 3-42 Provisioning Gateway Resources and their Utilization | Micro
service
name | Containe
r name | Number
of Pods | CPU
Allocatio
n Per
Pod | Memory
Allocatio
n Per
Pod | Total
Resourc
es | CPU
Usage | Memory
Usage | CPU
Utilizatio
n | |--------------------------------|--------------------|-------------------|----------------------------------|-------------------------------------|---|-----------------|-----------------|------------------------| | provgw-
ingress-
gateway | ingressga
teway | 2 | 4 CPUs | 4 GB | 8 CPUs
8 GB
Ephemer
al
Storage:
2 GB | 430m
CPU/pod | 1.3
GB/pod | 11% | | provgw-
egress-
gateway | egressgat
eway | 2 | 4 CPUs | 4 GB | 8 CPUs
8 GB
Ephemer
al
Storage:
2 GB | 520m
CPU/pod | 1 GB/pod | 13% | Table 3-42 (Cont.) Provisioning Gateway Resources and their Utilization | Micro
service
name | Containe
r name | Number
of Pods | CPU
Allocatio
n Per
Pod | Memory
Allocatio
n Per
Pod | Total
Resourc
es | CPU
Usage | Memory
Usage | CPU
Utilizatio
n | |------------------------------|------------------------------|-------------------|----------------------------------|-------------------------------------|---|---|------------------------------|------------------------| | provgw-
service | provgw-
service | 4 | 2 CPUs | 2 GB | 8 CPUs
8 GB | 460m
CPU/pod | 1 GB/pod | 22% | | | | | | | Ephemer
al
Storage:
2 GB | | | | | provgw-
config | provgw-
config | 2 | 2 CPUs | 2 GB | 4 CPUs 4 GB Memory Ephemer al Storage: 2 GB | Minimal resources are used. Utilization data is not captured. | | | | provgw-
config-
server | provgw-
config-
server | 2 | 2 CPUs | 2 GB | 4 CPUs 4 GB Memory Ephemer al Storage: 2 GB | 1 | sources are
data is not c | | The following table provides observation data for the performance test that can be used for the benchmark testing to scale up UDR performance: Table 3-43 Result and Observation | Parameter | Values | |---------------|---------------| | Test Duration | 6h | | TPS Achieved | 25K Signaling | | Success rate | 100% | ## 3.6 Test Scenario 6: 17.2K N36 + 10K SH and 1.2K Provisioning Profile (600 SOAP and 600 REST) You can perform benchmark tests on UDR for compute and storage resources by considering the following conditions: Signaling: 17.2K N36 + 10K SH Provisioning: 1.2K Total Subscribers: 35M The following features are enabled for this testcase: - Auto Enrollment and Auto Create Features - Overload Handling - ETag (Entity Tag) - Ingress Gateway Pod Protection - Support for User-Agent Header - 3gpp-Sbi-Correlation-Info Header - Suppress Notification - Subscriber Activity Logging - Diameter Gateway Pod Congestion Control The following table describes the benchmarking parameters and their
values: Table 3-44 Traffic Model Details | Request Type | Details | TPS | |---------------------------|--|------------| | N36 17.2K TPS | subs-to-notify POST | 3.6K (20%) | | | sm-data GET | 3.6K (20%) | | | subs-to-notify DELETE | 3.6K (20%) | | | sm-data PATCH | 6.4K (40%) | | SH 10K TPS | UDR | 4K | | | PUR | 1.2K | | | SNR | 4.8K | | SH PNR 700 TPS | PNR | 700 | | SOAP PROVISIONING 600 TPS | GET | 100 | | | UPDATE QUOTA | 50 | | | UPDATE DYNAMIC
QUOTA | 50 | | | UPDATE STATE | 100 | | | UPDATE SUBSCRIBER | 100 | | | CREATE SUBSCRIBER | 100 | | | DELETE SUBSCRIBER | 100 | | REST PROVISIONING 600 TPS | DELETE (Cleaning auto provisioned subscribers) | 600 | The following table describes the test case parameters and their values: **Table 3-45 Testcase Parameters** | Input Parameter Details | Configuration Values | |---|----------------------| | UDR Version Tag | 24.3.0 | | Target TPS | 17.2K N36 + 10K SH | | Notification Rate | 700 | | UDR Response Timeout | 2.7s | | Signaling Requests Latency Recorded on Client | 36ms | | Provisioning Requests Latency Recorded on Client | 36ms | | Diameter (SH) Requests Latency Recorded on Client | 40ms | Table 3-46 Consolidated Resource Requirement | Resource | СРИ | Memory | Ephemeral
Storage | PVC | |----------|----------|--------|----------------------|---------| | cnDBTier | 97 CPUs | 609 GB | 21 GB | 1815 GB | | UDR | 215 CPUs | 155 GB | 48 GB | NA | | Buffer | 50 CPUs | 50 GB | 20 GB | 200 GB | | Total | 362 CPUs | 814 GB | 89 GB | 2015 GB | The following table describes cnDBTier resources and their utilization: Table 3-47 cnDBTier Resources and their Utilization | Microservi
ce name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemera
I Storage
Per Pod | PVC
Allocation
Per Pod | Total
Resource
s | |-------------------------|---------------------|----------------|------------------------------|---------------------------------|----------------------------------|------------------------------|--------------------------------| | Manageme nt node | mysqlndbcl
uster | 2 | 2 CPUs | 9 GB | 1 GB | 15 GB | 4 CPUs
18 GB | | (ndbmgmd) | | | | | | | Ephemeral
Storage: 2
GB | | | | | | | | | PVC
Allocation:
30 GB | | Data node | mysqlndbcl | 4 | 4 CPUs | 124 GB | 1 GB | 132 GB | 16 CPUs | | (ndbmtd) | uster | | | | | Backup:
220 GB | 496 GB | | | | | | | | | Ephemeral
Storage: 4
GB | | | | | | | | | PVC
Allocation:
1408 GB | | APP SQL | mysqlndbcl | 14 | 6 CPUs | 4 GB | 1 GB | 4 GB | 84 CPUs | | node
(ndbappmy | uster | | | | | | 56 GB | | sqld) | | | | | | | Ephemeral
Storage:
14 GB | | | | | | | | | PVC
Allocation:
20 GB | | SQL node | mysqlndbcl | 2 | 4 CPUs | 24 GB | 1 GB | 110 GB | 8 CPUs | | (ndbmysqld
,used for | uster | | | | | | 48 GB | | replication) | | | | | | | Ephemeral
Storage: 2
GB | | | | | | | | | PVC
Allocation:
220 GB | Table 3-47 (Cont.) cnDBTier Resources and their Utilization | Microservi
ce name | Container name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemera
I Storage
Per Pod | PVC
Allocation
Per Pod | Total
Resource
s | |-----------------------|--------------------|----------------|------------------------------|---------------------------------|----------------------------------|------------------------------|-------------------------------| | DB Monitor
Service | db-monitor-
svc | 1 | 4 CPUs | 4 GB | 1 GB | NA | 4 CPU
4 MB | | | | | | | | | Ephemeral
Storage: 1
GB | | DB Backup | backup- | 1 | 100 | 128 MB | 1 GB | NA | 1 CPU | | Manager | manager- | | millicores
CPUs | | | | 128 MB | | Service | SVC | | | | | | Ephemeral
Storage: 1
GB | | Replication | replication- | 1 | 2 CPUs | 2 GB | 1 GB | 143 GB | 2 CPUs | | service | SVC | | | | | | 2 GB | | (Multi site cases) | | | | | | | Ephemeral
Storage: 1
GB | | | | | | | | | PVC
Allocation:
143 GB | The following table describes UDR resources and their utilization: Table 3-48 UDR Resources and their Utilization (Average Latency: 36ms for N36 and Provisioning. Diameter (SH) is 40ms. | Micro
service
name | Container name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |--------------------------|------------------------|----------------|------------------------------|---------------------------------|---------------------------------|---| | Ingress-
gateway-sig | ingressgatew
ay-sig | 9 | 6 CPUs | 4 GB | 1 GB | 54 CPUs
36 GB | | | | | | | | Ephemeral
Storage: 9
GB | | Ingress- | ingressgatew | 2 | 4 CPUs | 4 GB | 1 GB | 8 CPUs | | gateway-prov | ay-prov | | | | | 8 GB | | | | | | | | Ephemeral
Storage: 2
GB | | Nudr-dr- | nudr- | 17 | 6 CPUs | 4 GB | 1 GB | 102 CPUs | | service | drservice | | | | | 68 GB | | | | | | | | Ephemeral
Storage: 17
GB | Table 3-48 (Cont.) UDR Resources and their Utilization (Average Latency: 36ms for N36 and Provisioning. Diameter (SH) is 40ms. | Miore | Comtains | Nonelser | CDU | Mans | Enh | Total | |--|---------------------------------|----------------|------------------------------|---------------------------------|---------------------------------|---| | Micro
service
name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | | Nudr-dr-
provservice | nudr-dr-
provservice | 2 | 4 CPUs | 4 GB | 1 GB | 8 CPUs
8 GB
Ephemeral
Storage: 2
GB | | Nudr-notify-
service | nudr-notify-
service | 3 | 6 CPUs | 5 GB | GB | 18 CPUs
15 GB
Ephemeral
Storage: 3
GB | | Nudr-egress-
gateway | egressgatew
ay | 2 | 6 CPUs | 4 GB | 1 GB | 12 CPUs
8 GB
Ephemeral
Storage: 2
GB | | Nudr-diam-
gateway | nudr-diam-
gateway | 2 | 6 CPUs | 5 GB | 1 GB | 12 CPUs
10 GB
Ephemeral
Storage: 2
GB | | Nudr-
diameterprox
y | nudr-
diameterprox
y | 9 | 6 CPUs | 4 GB | 1 GB | 54 CPUs
36 GB
Ephemeral
Storage: 9
GB | | Nudr-config | nudr-config | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs 2 GB Ephemeral Storage: 2 GB | | Nudr-config-
server | nudr-config-
server | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs
2 GB
Ephemeral
Storage: 2
GB | | Alternate-
route | alternate-
route | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs 2 GB Ephemeral Storage: 2 GB | | Nudr-nrf-
client-
nfmanageme
nt-service | nrf-client-
nfmanageme
nt | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs
2 GB
Ephemeral
Storage: 2
GB | Table 3-48 (Cont.) UDR Resources and their Utilization (Average Latency: 36ms for N36 and Provisioning. Diameter (SH) is 40ms. | Micro
service
name | Container
name | Number of Pods | CPU
Allocation
Per Pod | Memory
Allocation
Per Pod | Ephemeral
Storage Per
Pod | Total
Resources | |--------------------------|-------------------|----------------|------------------------------|---------------------------------|---------------------------------|-------------------------------| | App-info | app-info | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs | | | | | | | | 2 GB | | | | | | | | Ephemeral
Storage: 2
GB | | Perf-info | perf-info | 2 | 1 CPU | 1 GB | 1 GB | 2 CPUs | | | | | | | | 2 GB | | | | | | | | Ephemeral
Storage: 2
GB | | Nudr-dbcr- | nudr-dbcr- | 1 | 1 CPU | 1 GB | 1 GB | 1 CPU | | auditor- | auditor- | | | | | 1 GB | | service | service | | | | | Ephemeral
Storage: 1
GB | The following table provides observation data for the performance test that can be used for the benchmark testing to scale up UDR performance: Table 3-49 Result and Observation | Parameter | Values | |---------------|--------------------| | Test Duration | 72h | | TPS Achieved | 17.2K N36 + 10K SH | | Success rate | 100% |