
Oracle® Communications
Cloud Native Core Security Guide

Release 25.2.100
G42791-01
November 2025



Oracle Communications Cloud Native Core Security Guide, Release 25.2.100

G42791-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

1   Introduction

1.1 Audience 1

1.2 References 1

2   Overview

2.1 Cloud Native Core Network Functions 2

2.2 Secure Development Practices 7

2.2.1 Vulnerability Handling 7

2.3 Trust Model 8

2.3.1 Context diagram 8

2.3.2 Key Trust Boundaries 8

2.3.3 External Data Flows 9

3   Implementing Security Recommendations and Guidelines

3.1 Common Security Recommendations and Guidelines 1

3.1.1 4G and 5G Application Authentication and Authorization 1

3.1.2 cnDBTier Security Recommendations and Guidelines 1

3.1.3 Cloud Native Core Gateway Services Specific Security Recommendations and
Guidelines 9

3.1.4 Automated Test Suite (ATS) Specific Security Recommendations and Guidelines 18

3.1.5 Oracle Communications Certificate Management (OCCM) Specific Security
Recommendations and Guidelines 19

3.1.6 OCI Adaptor Specific Security Recommendations and Guidelines 25

3.1.7 Cloud Native Configuration Console (CNC Console) Specific Security
Recommendations and Guidelines 26

3.1.8 Cloud Native Environment (CNE) Specific Security Recommendations and
Guidelines 39

3.2 Cloud Native Core Network Function Specific Security Recommendations and
Guidelines 62

3.2.1 Network Repository Function (NRF) Specific Security Recommendations and
Guidelines 63

3.2.2 Service Communication Proxy (SCP) Specific Security Recommendations and
Guidelines 70

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page i of ii



3.2.3 Network Exposure Function (NEF) Specific Security Recommendations and
Guidelines 79

3.2.4 Network Slice Selection Function (NSSF) Specific Security Recommendations
and Guidelines 86

3.2.5 Security Edge Protection Proxy (SEPP) Security Recommendations and
Procedures 91

3.2.6 Unified Data Repository (UDR) and Unstructured Data Storage Function (UDSF)
Specific Security Recommendations and Guidelines 95

3.2.7 Binding Support Function (BSF) Specific Security Recommendations and
Guidelines 100

3.2.8 Cloud Native Core Policy Specific Security Recommendations and Guidelines 103

A   Cloud Native Core Network Port Flows

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page ii of ii



Preface

• Documentation Accessibility

• Diversity and Inclusion

• Conventions

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 1 of 1

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc


My Oracle Support

My Oracle Support (https://support.oracle.com) is your initial point of contact for all product
support and training needs. A representative at Customer Access Support can assist you with
My Oracle Support registration.

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the US), or call
the Oracle Support hotline for your local country from the list at http://www.oracle.com/us/
support/contact/index.html. When calling, make the selections in the sequence shown below
on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking and Solaris Operating System Support.

3. Select one of the following options:

• For Technical issues such as creating a new Service Request (SR), select 1.

• For Non-technical issues such as registration or assistance with My Oracle Support,
select 2.

You are connected to a live agent who can assist you with My Oracle Support registration and
opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 1 of 1

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html


Acronyms

The following table lists the acronyms and the terminologies used in the document:

Table     Acronyms and Terminologies

Acronym Description

5GC 5th Generation Core

ACME Automatic Certificate Management Environment

BSF Binding Support Function

cnDBTier Cloud Native Database Tier

CNE Cloud Native Environment

CNCC Cloud Native Configuration Console

cnDRA Cloud Native Diameter Routing Agent

DNSSEC Domain Name System Security Extensions

DNS Domain Name System

ETCD The name “etcd” originated from two ideas, the unix “/etc” folder
and “d"istributed systems. The “/etc” folder is a place to store
configuration data for a single system whereas etcd stores
configuration information for large scale distributed systems.
Hence, a “d"istributed “/etc” is “etcd”.

FQDN fully qualified domain name

GPG Gnu Privacy Guard

iLO Integrated Lights Out

Kyverno Kyverno is a policy engine designed for Kubernetes.

mTLS Mutual Transport Layer Security

NAPTR Name Authority Pointer

NEF Network Exposure Function

NF Network Function. A functional building block within a network
infrastructure, which has well defined external interfaces and well
defined functional behavior. In practical terms, a network function
is often a network node or physical appliance.

NRF Network Repository Function

NSSF Network Slice Selection Function

CNE Oracle Communications Cloud Native Core, Cloud Native
Environment

OCIR Oracle Cloud Infrastructure Registry

OCCM Oracle Communications Certificate Management

OSSA Oracle Software Security Assurance

OWASP Open Web Application Security Project

PCF Policy Control Function

PKI Public Key Infrastructure

SCP Service Communication Proxy

SEPP Security Edge Protection Proxy

ToR Top-of-Rack Switching

UDR Unified Data Repository

UDSF Unstructured Data Storage Function

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 1 of 2



Table     (Cont.) Acronyms and Terminologies

Acronym Description

YUM Yellow Dog Updater, Modified is an open-source Linux package
management application.

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 2 of 2



What's New in This Guide

This section introduces the documentation updates for Release 25.2.1xx in Oracle
Communications Cloud Native Core, Security Guide.

Release 25.2.100 - G42791-01, November 2025

• Updated the DNS Recommendations in the Cloud Native Environment (CNE) Specific
Security Recommendations and Guidelines section.

• Added Port flow reference in the Cloud Native Configuration Console (CNC Console)
Specific Security Recommendations and Guidelines section.

• Added Port flow reference in the Oracle Communications Certificate Management (OCCM)
Specific Security Recommendations and Guidelines section.

• Updated the Cloud Native Core Network Port Flows section.

• Replaced the "Enabling TLS in ingress and egress gateways and selection of CIPHERS"
section with a new Configuring ATS Kubernetes Secret for HTTPS or TLS section with
information about configuring ATS Kubernetes Secret for HTTPS or TLS.

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 1 of 1



1
Introduction

The Security Guide provides an overview of the security relevant information that applies to
Cloud Native Core Network Functions. In case there are specific aspects for the underlying
scenarios or applications, these are described in an NF specific chapters. This document
contains recommendations (short statements on how to operate and manage the CNC
software) and procedures (step-by-step instructions to assist the customer in tailoring or
hardening the CNC system).

Install the CNC system software as "secure by default" where possible. In the few cases where
this isn't possible, an installion time checklist procedure is created and listed on the Cloud
Native Core Security Checklist. It is a short list of post-installation hardening activities that must
be performed by the customer before placing the system into operation. The recommendations
and other procedures found in this document are optional, and must be considered in the
context of your organization's approved security policies.

This security guide also provides a simplified trust model for the system.

1.1 Audience
• Technology consultants

• Installers

• Security consultants

• System administrators

1.2 References
The following references provide additional background on product operations and support:

• Oracle Communications Cloud Native Core, Binding Support Function Installation,
Upgrade, and Fault Recovery Guide

• Oracle Communications Cloud Native Configuration Console Installation, Upgrade, and
Fault Recovery Guide

• Oracle Communications Cloud Native Core, Network Exposure Function Installation,
Upgrade, and Fault Recovery Guide

• Oracle Communications Cloud Native Core, Network Repository Function Installation,
Upgrade, and Fault Recovery Guide

• Oracle Communications Cloud Native Core, Network Slice Selection Function Installation,
Upgrade, and Fault Recovery Guide

• Oracle Communications Cloud Native Core, Networks Data Analytics Function Installation
Guide

• Oracle Communications Cloud Native Core, Policy Installation, Upgrade, and Fault
Recovery Guide

• Oracle Communications Cloud Native Core, Provisioning Gateway Guide

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 1 of 2



• Oracle Communications Cloud Native Core, Service Communication Proxy Installation,
Upgrade, and Fault Recovery Guide

• Oracle Communications Cloud Native Core, Security Edge Protection Proxy Installation,
Upgrade, and Fault Recovery Guide

• Oracle Communications Cloud Native Core, Unified Data Repository Installation, Upgrade,
and Fault Recovery Guide

• Oracle Communications Cloud Native Core, Cloud Native Environment Installation,
Upgrade, and Fault Recovery Guide

Chapter 1
References

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 2 of 2



2
Overview

Deployment Environment

The 5G Cloud Native Core provides a variety of possible configuration and deployment
environments:

Table 2-1    Deployment Environment

Type Host CNE Description

Bare Metal CNE-Supported
Infrastructure

CNE In this environment, a Kubernetes Cloud
Native Environment is hosted directly on the
bare metal hardware, while some other
elements (DB or Bastion) are hosted using
virtualized servers.

vCNE
(Virtualized
CNE)

Customer Hypervisor
(KVM/VMware ESXi)

CNE In this environment, all the system elements
are hosted in virtualized servers deployed on
a customer provided Openstack environment.
The CNE is deployed on the openstack
infrastructure.

Cloud Customer CNE Customer
CNE

In this environment, the customer provides
the CNE and deploys the 5G NFs directly into
the environment. The Oracle provided
common services and cnDBTier are used;
equivalent functionality is provided by the
customer.

Note

• Oracle Communications CNE provides basic CNE environment for on-premise
deployment.

• Customer CNE provides CNE environment for running not just 5G microservices
but also any kind of service, not just 5G. For example- observability frameworks or
4G microservices.

• With Customer CNE, a customer is responsible for ensuring the security of a
Customer CNE.

Note

The cloud environment security recommendations and procedures focus on the CNE
reference environment. Customers providing their own CNE must have security
procedures already in place.

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 1 of 9



2.1 Cloud Native Core Network Functions
Network Function security is prescribed by the relevant 4G and 5G standards. This document
details the administrative steps required to ensure secure 5G network operations.

Table 2-2    4G and 5G Network Functions

Network Functions Abbrevi
ation

Description 3GPP Standard

Network Repository Function NRF NRF provides registration, discovery,
and authorization services to all the
Network Functions (NF) in the 5G core
network.

• 3GPP TS
29.510 v15.5

• 3GPP TS
29.510 v16.3.0

• 3GPP TS
29.510 v16.7

Service Communication
Proxy

SCP SCP provides a 5G-aware service
mesh.

• 3GPP TS
29.500 R16
v16.6.0

Network Slice Selection
Function

NSSF NSSF works with the Access and
Mobility Function (AMF) to select the
network slice to be used by the User
Equipment (UE).

• 3GPP TS
29.531 v15.5.0

• 3GPP TS
29.531 v16.5.0

• 3GPP TS
29.531 v16.8.0

• 3GPP TS
29.501
v16.10.0

• 3GPP TS
29.502
v16.10.0

Security Edge Protection
Proxy

SEPP In the roaming architecture, the home
and visited networks are connected via
the Security Edge Protection Proxy
(SEPP) to manage the control plane of
the inter-network interconnect.

• 3GPP TS
23.501 v17.6.0

• 3GPP TS
23.502 v17.6.0

• 3GPP TS
29.500 v17.8.0

• 3GPP TS
29.501 v17.7.0

• 3GPP TS
29.573 v17.6.0

• 3GPP TS
29.510 v17.7.0

• 3GPP TS
33.501 v17.7.0

• 3GPP TS
33.117 v17.1.0

• 3GPP TS
33.210 v17.1.0

Chapter 2
Cloud Native Core Network Functions

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 2 of 9



Table 2-2    (Cont.) 4G and 5G Network Functions

Network Functions Abbrevi
ation

Description 3GPP Standard

Unified Data Repository UDR/
UDSF

UDR is a repository of subscriber
information, and is used by various NFs
(including UDR, PCF, and NEF). The
UDSF is a part of the Unified Data
Management Function (UDF) and is
used to store state information for
Network Functions (NF).

• 3GPP TS
29.505 v15.4.0

• 3GPP TS
29.504 v16.2.0

• 3GPP TS
29.519 v16.2.0

• 3GPP TS
29.511 v17.2.0

Unified Data Repository
(UDR) as Subscriber Location
Function (SLF).

SLF SLF supports the storage and retrieval
of subscriber information through the
nudr interface.

NA

Chapter 2
Cloud Native Core Network Functions

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 3 of 9



Table 2-2    (Cont.) 4G and 5G Network Functions

Network Functions Abbrevi
ation

Description 3GPP Standard

Network Exposure Function NEF Securely exposes network capabilities
and events to Application Functions
(AF).

• 3GPP TS
29.338 v
17.1.0

• 3GPP TS
23.040 v
17.2.0

• 3GPP TS
29.122 v
16.10.0 ,
17.10.0

• 3GPP TS
23.222 v
16.9.0

• 3GPP TS
23.501 v
16.10.0

• 3GPP TS
23.502 v
16.10.0

• 3GPP TS
29.514 v
16.10.0

• 3GPP TS
29.521 v 16.10

• 3GPP TS
29.503 v
16.14.0

• 3GPP TS
29.515 v 16.7

• 3GPP TS
29.222 v
16.5.0

• 3GPP TS
29.500 v
16.6.0

• 3GPP TS
29.501 v
16.6.0

• 3GPP TS
29.522 v
16.10.0,
17.10.0

• 3GPP TS
29.510 v
16.6.0

• 3GPP TS
29.591 v
16.3.0

• 3GPP TS
29.518 v
16.14.0

Chapter 2
Cloud Native Core Network Functions

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 4 of 9



Table 2-2    (Cont.) 4G and 5G Network Functions

Network Functions Abbrevi
ation

Description 3GPP Standard

• 3GPP TS
33.501 v
17.7.0

• 3GPP TS
29.504 v
16.10.0

• 3GPP TS
29.519 v
16.11.0

• 3GPP TS
29.508 v
16.11.0

• 3GPP TS
23.682 v
16.9.0

• 3GPP TS
29.337 v
16.1.0

• 3GPP TS
29.214 v
16.7.0

• 3GPP TS
32.291 v16.14

• 3GPP TS
32.290
v16.10.0

• 3GPP TS
32.254 v16.6.0

Chapter 2
Cloud Native Core Network Functions

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 5 of 9



Table 2-2    (Cont.) 4G and 5G Network Functions

Network Functions Abbrevi
ation

Description 3GPP Standard

Policy Control Function PCF Implements a unified policy framework
for implementing control plane rules.

• 3GPP TS
23.501

• 3GPP TS
23.502

• 3GPP TS
23.503

• 3GPP TS
29.500

• 3GPP TS
29.504

• 3GPP TS
29.510

• 3GPP TS
29.507

• 3GPP TS
29.512

• 3GPP TS
29.513

• 3GPP TS
29.514

• 3GPP TS
29.519

• 3GPP TS
29.521

• 3GPP TS
29.525

• 3GPP TS
29.594

• 3GPP TS
29.214

Binding Support Function BSF Provides PCF binding (mapping and
selection) for User Equipment (UE).

• 3GPP TS
23.501 v17.7.0

• 3GPP TS
23.502 v17.7

• 3GPP TS
23.503 V17.7

• 3GPP TS
29.500 v17.7.0

• 3GPP TS
29.510 v17.7

• 3GPP TS
29.513 V17.7

• 3GPP TS
29.521 v17.7.0

• 3GPP TS
33.501
V17.7.0

Chapter 2
Cloud Native Core Network Functions

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 6 of 9



Table 2-2    (Cont.) 4G and 5G Network Functions

Network Functions Abbrevi
ation

Description 3GPP Standard

Oracle Communications
Cloud Native Core, Certificate
Management

OCCM Supports automation of certificate
lifecycle management.

• 3GPP TS
33.310-h30

• 3GPP TR
33.876 v.0.3.0

Cloud Native Core Console CNC C Configuration and Operations portal and
proxy for CNC NFs and components.

NA

Table 2-3    5G Common Services

Network Function Abbreviation Description

Ingress Gateway, Egress
Gateway, Alternative Routing
Service

APIGW Ingress and Egress Gateways for
NFs

Automatic Test Suite ATS Automated Test Suite

Oracle Communications
Certificate Manager

OCCM Certificate Management

Network Repository Function -
Client

NRF-Client Product: Oracle Communications
Cloud Native Core - 5G and
Subcomponent: NRF-Client

Mediation Mediation Mediation modifies 5G Service
Based Interface (SBI) message
content, which includes HTTP2
header values and JSON
message body, based on the
user-defined mediation rule sets

Oracle Communication Cloud
Native Core OCI Adapter

OCI Adaptor Oracle Communications Cloud
Native Core OCI Adapter

Oracle Communications DBTier cnDBTier Containerized deployment and
automation of MySQL Cluster
database technology

2.2 Secure Development Practices
Given below are the practices followed for a secure development environment:

2.2.1 Vulnerability Handling
For details about the vulnerability handling, refer Oracle Critical Patch Update Program. The
primary mechanism to backport fixes for security vulnerabilities in Oracle products is quarterly
Critical Patch Update (CPU) program.

In general, the CNC Software is on a quarterly release cycle, with each release providing
feature updates and fixes and updates to relevant third party software. These quarterly
releases provide cumulative patch updates.

You should have procedures in place to deploy security updates for each release cycle. For
more information, see Implementing Security Recommendations and Guidelines.

Chapter 2
Secure Development Practices

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 7 of 9

https://www.oracle.com/CORPORATE/SECURITY-PRACTICES/ASSURANCE/VULNERABILITY/SECURITY-FIXING.HTML


2.3 Trust Model
The following Trust Model depicts the reference trust model (regardless of the target
environment). The model describes the critical access points and controls site deployment.

While the model shows a single 5G NF microservice deployed, several NFs are also deployed
in individual clusters.

2.3.1 Context diagram

2.3.2 Key Trust Boundaries
Trust Boundaries identify areas at a similar level of trust and isolate them from other areas at a
different level of trust. Following are the key trust boundaries:

Chapter 2
Trust Model

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 8 of 9



Table 2-4    Key Trust Boundaries

Trust Boundary Includes Access Control

Site Trust
Boundary

All the NFs and other
supporting elements for a
given site.

Cluster Access Policies are implemented using
some kind of Access Control Group (or Security
Group) mechanism.

Cluster Trust
Boundary

All the compute elements for
a given cluster

Network Policies control traffic ingress and egress.
Pod Security Policies manage the workloads
allowed in the cluster (For example, no pods
requiring privilege escalation).

DB Trust Boundary All the cnDBTier elements for
a given cluster

Firewall Policies control traffic ingress and egress.
DB grants access and other permission
mechanisms that provide authorization for users.

Orchestrator Trust
Boundary (Orch
Trust Boundary)

The orchestration interface
and keys

Firewall Policies control the access to a Bastion
server which provides orchestration services.
Access to the Bastion host uses Secure Socket
Shell (SSH) protocol. The cluster orchestration
keys are stored on the Bastion host.

CS Trust Boundary The common services
implementing logging, tracing,
and measurements.

Each of the common services provides
independent Graphical User Interfaces (GUIs) that
are currently open. The customer may want to
introduce an api-gateway, implement authentication
and authorization mechanisms to protect the OAM
(Operations, Administrations, and Maintenance)
data. The common services can be configured to
use Transport Layer Security (TLS). When TLS is
used, certificates must be generated and deployed
through the orchestrator.

NF Trust
Boundaries

A collection of 5G Network
Functions deployed as a
service.

5G NF microservices provide Signaling access
through a TLS protected HTTP2 interface. The
certificates for these interfaces are managed via
the certificate manager.

2.3.3 External Data Flows
The following are external data flows:

Table 2-5    External Data Flows

Data Flow Protocol Description

DF1: Configuration SSH The installer or administrator accesses the orchestration
system hosted on the Bastion Server. The installer or
administrator must use ssh keys to access the bastion to
a special orchestration account (not root). Password
access is not allowed.

DF2: Logs,
Measurements, Traces

HTTP/HTTPS The administrator or operator interacts with the common
services using web interfaces.

DF3: 5G Signaling HTTP2 (w/TLS) All signaling interaction between NFs at a site and NFs
at an external site is sent through TLS protected HTTP2.

DF4: Alerts SNMP (Trap) Alerting is performed using SNMP traps.

The complete list of network flows including service types and ports are available in Port Flow
Appendix.

Chapter 2
Trust Model

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 9 of 9



3
Implementing Security Recommendations and
Guidelines

3.1 Common Security Recommendations and Guidelines
This section provides details of the common security recommendations and guidelines,
irrespective of the NFs.

3.1.1 4G and 5G Application Authentication and Authorization
Mutual Transport Layer Security (mTLS) is a type of authentication in which the two parties in a
connection authenticate each other using the TLS protocol. mTLS ensures that the traffic is
secure and trusted in both directions between a client and server. Cloud Native Core NFs
support integration with platform service meshes and Mutual Transport Layer Security (mTLS)
may be provided by the platform service mesh, thereby securing communication flows between
all applications that participate in the platform service mesh. mTLS also encrypts the data flows
so that only the endpoints of the mTLS session can access the contents of the communication
data.

4G and 5G NFs use Mutual Transport Layer Security (mTLS) authentication to secure
communication. All NFs require to establish a trust relationship with all peers by exchanging
and trusting peer root or intermediate certificates. The peer certificates must be available in the
truststore (K8s Secrets) to establish secure communication.

4G and 5G NFs also support manual importation and a semiautomatic import using the cert-
manager external provider.

3.1.2 cnDBTier Security Recommendations and Guidelines
The cnDBTier provides a highly available multisite database that stores NF state and
configuration. When installed, the MySQL DB is configured with a root account whose
password is randomly generated. Each NF must have additional accounts for that particular
NF.

The following procedures are specific to the CNE environment, used in baremetal and some
cloud deployment models.

The procedures in this section explain the following:

cnDBTier Security Recommendations and Procedures

After the installation, the cnDBTier system security instance must be audited prior to placing
the system into service. This primarily consists of changing credentials and sequestering SSH
keys to trusted servers. The following table lists all the the credentials that need to be checked,
changed, and retained:

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 1 of 107



Table 3-1    Credentials

Credential Name Type Associated
Resource

Initial Setting Credential
Rotation

Replication User/ Password DB Replication
Service

dbtpasswd asks for
a brand new
password when
installing DB Tier

reset at new
installation

Backup Encryption User/ Password DB Backup
Executor Service

dbtpasswd asks for
a brand new
password when
installing DB Tier

reset at new
installation

MySQL Root
Secret

User/ Password MySQL dbtpasswd asks for
a brand new
password when
installing DB Tier

reset at new
installation

DB-monitor Secret K8s Secret DB Monitor Service dbtpasswd asks for
a brand new
password when
installing DB Tier

reset at new
installation

SSH Keys username/SSH key DB Backup
Executor Service

SSH Keys required
for secure transfer
of cnDBTier
backups

reset at new
installation

SSH Keys username/SSH key DB Replication
Service

SSH Keys required
for replication
connections
between sites

reset at new
installation

TDE Password User/ Password DB Data Service password required
for Transparent
Data Encryption
service

reset at new
installation

TDE Secret K8s Secret DB Data Service Created with TDE
password for
Transparent Data
Encryption service

reset at new
installation

HTTPS KeyStore
password

certificate/
password

Replication
Management K8s
Service

Created during
x.509/SSL
certificate creation
procedure

reset at new
installation

HTTPS Secret K8s Secret Replication
Management K8s
Service

user creates http
secret using
keystore password

reset at new
installation

If factory or Oracle defaults were used for any of these credentials, they should be changed
prior to placing the system into operation. The customer should then store these credentials in
a safe a secure way off site. It is recommended that the customer may plan a regular schedule
for updating (rotating) these credentials.

Specific procedures and recommendations for cnDBTier credential management are the
following:

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 2 of 107



Note

Plan Credential Rotation: It is important to plan ahead a recurrent credential rotation.
Follow the quoted procedures in this guideline, schedule and perform manual
credential rotation.The timespan to rotate them depends on your password policies,
but it is recommended at most one year to update the credentials.

Password Security Recommendations

Password Policy setup

Ensure that your password meets the following password policy requirements:

• Password must be between 20 and 32 characters in length.

• Password must contain at least one lower case letter.

• Password must contain at least one upper case letter.

• Password must include at least one digit.

• Password must include at least one of the following special characters: ,%~+.:_/-

Note

• MySQL Password Autogeneration: MySQL has the feature to autogenerate
password. If that feature is used, the password policy given above must be met.

• Compling with Password Policy: If a character does not meet one of the above
complexity requirements, it is not supported, and it may break the functionality of
this script.

• Password Management: In order to keep track of the inserted passwords, it is
highly recommended to use a password manager.

• Use unique passwords: It is highly recommended to use a unique password for
each CNE password. Avoid reusing passwords, specially for root access.

• It is highly recommended to use password encryption for MySQL.

Credential Management Procedures

Changing cnDBTier passwords

Review and follow maintenance procedures:

The cnDBTier User Guide provides detailed procedures on how to manage passwords and
secrets. Deviations from the standard install time configuration are not recommended. Refer to
the " Managing Passwords and Secrets" chapter in the "Maintenance Procedures" in Oracle
Communications Cloud Native Core, cnDBTier User Guide.

Modifying cnDBTier Password Encryption Key

This procedure describes how to modify the encryption key used to encrypt the replication
username and password.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 3 of 107



Note

Use the same encryption key across all other mate sites
If you update an encryption key on one site, ensure that you use the same encryption
key across all the other mate sites.

• Refer to the "Modifying cnDBTier Password Encryption Key" chapter in
"Maintenance Procedures" in Oracle Communications Cloud Native Core,
cnDBTier User Guide.

Changing cnDBTier Passwords

This section provides the procedures to change cnDBTier passwords such as root user,
occneuser, and occnerepluser passwords in a stand alone and multisite georeplication setup
using the dbtpasswd bash script.

Note

Scope of the password change:

• The password changes are applicable only to the current site and are not
replicated in the mate sites.

• Ensure that your password meets the password policy in the section Password
Policy setup.

• Any character that does not meet the complexity requirements mentioned in the
previous note is not supported as it may break the functionality of the dbtpasswd
script.

Changing a cnDBTier password involves the following steps:

1. Adding a new password in MySQL.

Note

• The old password is active until the pods are restarted and the transitional
operations are complete.

• This is achieved by the MySQL dual password feature, which first adds the
new password and keeps the old MySQL password, until all database values
and secrets are changed and the pods are restarted.

• Both the passwords are valid until the old password is discarded explicitly.

• MySQL dual password is not supported for changing the root password.

2. Replacing the current or old password with the new password in Kubernetes secret.

3. Restarting the configured cnDBTier pods to use the new Kubernetes secret (This step is
not applicable while changing an NF password).

4. Discarding the old password in MySQL.

The dbtpasswd bash script automates these steps and provides a single script to change all
cnDBTier passwords at once.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 4 of 107



You can use dbtpasswd to:

• change one or more cnDBTier passwords in a single site or cluster. Changing a cnDBTier
password on a site includes changing the password in MySQL and Kubernetes secret,
restarting all required cnDBTier pods, and updating passwords on cnDBTier database
tables if necessary.

• change passwords on a live cluster with no service interruption.

• change NF passwords. However, when changing an NF password, dbtpasswd can change
the password in the Kubernetes secret and database only. You have to manually restart NF
pods as a separate user action.

Refer to the "Changing All cnDBTier Passwords" chapter in "Maintenance Procedures" in
Oracle Communications Cloud Native Core, cnDBTier User Guide.

Changing all cnDBTier Passwords in Phases

If there is a need to change all cnDBTier passwords, but in different stages or phases, follow
the next procedure that will change the passwords one step at a time.

This procedure uses dbtpasswd bash script, which automates these steps and provides a
single script to change all cnDBTier passwords at once.

• Refer to the "Changing All cnDBTier Passwords in Stages" chapter in "Maintenance
Procedures" in Oracle Communications Cloud Native Core, cnDBTier User Guide.

Changing NF Password in different NF Namespace

This section provides the procedures to change an NF password when the secret is stored in
an NF namespace that is different from the cnDBTier namespace.

Note

Enter current password of NF Secret: When the output prompts for the current
password, enter the current password in the NF secret.

Refer to the "Changing an NF Password" chapter in "Maintenance Procedures" in Oracle
Communications Cloud Native Core, cnDBTier User Guide.

Modifying cnDBTier Backup Encryption Password

This section provides the procedure to modify the cnDBTier backup encryption password.

You can use dbtpasswd to:

• change one or more cnDBTier passwords in a single site or cluster. Changing a cnDBTier
password on a site includes changing the password in MySQL and Kubernetes secret,
restarting all required cnDBTier pods, and updating passwords on cnDBTier database
tables if necessary.

• change passwords on a live cluster with no service interruption.

• change NF passwords. However, when changing an NF password, dbtpasswd can change
the password in the Kubernetes secret and database only. You have to manually restart NF
pods as a separate user action

Refer to the "Modifying cnDBTier Backup Encryption Password" in Section "Maintenance
Procedures" in

Oracle Communications Cloud Native Core, cnDBTier User Guide.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 5 of 107



Keys and Certificates Management Procedures

Modifying SSH Keys for Transferring Backups

This section provides the procedure to modify Secure Shell (SSH) keys for securely
transferring cnDBTier backups.

Perform the following steps to move the existing SSH keys to the backup directory and delete
the existing SSH secrets:

• Refer to the " Modifying SSH Keys for Transferring Backups" chapter in the "Maintenance
Procedures" in Oracle Communications Cloud Native Core, cnDBTier User Guide.

Modifying Transparent Data Encryption (TDE) password
This section provides the procedure to modify the Transparent Data Encryption (TDE)
password. The Transport Data Encryption (TDE) feature in cnDBTier allows you to encrypt
data stored in data nodes. When TDE is enabled, the backup data record and log files written
by each data node are encrypted using a password and a salt that is randomly generated.

• Refer to the " Modifying Transparent Data Encryption Password" chapter in the
"Maintenance Procedures" in Oracle Communications Cloud Native Core, cnDBTier User
Guide.

Creating HTTPS or TLS Certificates for Encrypted Connection
This section provides the procedure to create certificates that are used for encrypting
connection between replication channels using TLS or HTTPS.

Note

Compliance with Certificates Industry Standards: Certificate creation and
utilization must adhere to the standards specified in https://datatracker.ietf.org/doc/
html/rfc5280, https://datatracker.ietf.org/doc/html/rfc8446, and https://
datatracker.ietf.org/doc/html/rfc2818.

This procedure uses openssl to create certificates.

• Refer to the "Creating HTTPS or TLS Certificates for Encrypted Connection" chapter in the
"Appendix" in Oracle Communications Cloud Native Core, cnDBTier Installation, Upgrade
and Fault Recovery Guide.

Modifying HTTPS Certificates
This section provides the procedure to modify HTTPS certificates:

Perform the following steps to move the existing SSH keys to the backup directory and delete
the existing SSH secrets:

1. Create a new certificate by following the sample procedure provided in the "Creating
HTTPS or TLS Certificates for Encrypted Connection" chapter in the "Appendix" in Oracle
Communications Cloud Native Core, cnDBTier Installation, Upgrade and Fault Recovery
Guide.

2. Refer to the " Modifying HTTPS Certificates" chapter in the "Maintenance Procedures" in
Oracle Communications Cloud Native Core, cnDBTier User Guide.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 6 of 107



Operational Security Recommendations

Accessing to MySQL Database through command line

Whenever you are accessing to the cnDBTier applications or pods, consider the following
scenarios:

Note

Password in the command shell

Avoid storing the password in the Bash history. Prefer using commands without the
password or mask the password within the command, and then wait for the application
to ask you the password.

Example on how to properly use the mysql command login, where Password is not provided
but inserted after the command was sent.

$ kubectl -n cluster1 exec -it ndbmysqld-1 -- bash
$ mysql -h 127.0.0.1 -uroot -p
Password:
mysql> SHOW REPLICA STATUS\G;

Use a unique credential for DB CLI Access: When creating user accounts to access the DB
and perform business logic operations, it is highly recommended to create a unique username
and password to access to the DB CLI. Having a unique account for DB CLI access reduces
the exposure of the NF User accounts and helps avoiding potential attacks to the DB CLI
account.

Avoid using root account for DB CLI: Following the recommendation above, it is highly
recommended not to use the root account for any DB CLI operations. This keeps safe the root
credential from any possible stealing or misplacement, and avoids unauthorized access.

Importance of cnDBTier Password Encryption

In the SOME specific cases the cnDBTier deployment should have password encryption
disabled, Refer to "Appendix - Disabling Password Encryption" section in Oracle
Communications Cloud Native Core, cnDBTier Installation, Upgrade, and Fault Recovery
Guide.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 7 of 107



Importance of Transport Data Encryption Password

Note

Transport Data Encryption (TDE):The Transport Data Encryption (TDE) feature in
cnDBTier is an effective solution that allows you to encrypt data stored in data nodes,
which handles sensitive information. When TDE is enabled, the backup data record
and log files written by each data node are encrypted using a password and a Salt that
is randomly generated. This encryption process utilizes a key derivation function
(KDF) with the PBKDF2-SHA256 algorithm to generate a symmetric encryption key for
each file.

Enabling TDE: It is highly recommended to enable TDE in cnDBTier, as this provides
encryption to database files on disk. This mechanism makes sensitive data
inaccessible to unauthorized users.

Network Security Recommendations and Procedures

Network Security Recommendations

cnDBTier support HTTPS connection on all the cnDBTier microservices, except the MySQL
client connections to the NDB App MySQL (ndbappmysqld) servers, as those connections do
not use http.

Note

• Customizing cnDBTier to use HTTPS: Review "Customizing cnDBTier" section
from Oracle Communications Cloud Native Core, cnDBTier Installation, Upgrade,
and Fault Recovery Guide to review the network policies.

• Enable HTTPS: It is highly recommended to use https connections to elevate the
security posture of the connections.

Network Policies Recommendations

Note

• Customizing cnDBTier to use HTTPS: Review the "Global Parameters" from
"Customizing cnDBTier" section from Oracle Communications Cloud Native Core,
cnDBTier Installation, Upgrade, and Fault Recovery Guide to review the network
policies.

• Network Policies: It is highly recommended to enable and configure cnDBTier
network policies, per your specific needs.

The Kubernetes network policies are a crucial feature for controlling and securing network
traffic within a Kubernetes cluster. cnDBTier has implemented Network policies in their
services, in order to enhance security and control incoming and outgoing traffic. Network
policies have been implemented from 24.2.x release onwards.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 8 of 107



• db-backup-manager-svc

• db-monitor-svc

• MySQL Cluster Pods

– ndbmgmd

– ndbmtd

– ndbmysqld

– ndbappmysqld

• helm test

• Pre Upgrade hook

• Post Upgrade hook

• Leader Replication Service

• Replication Service (Non Leader)

• Post Install hook

• Post Rollback hook

3.1.3 Cloud Native Core Gateway Services Specific Security
Recommendations and Guidelines

This section provides Ingress and Egress Gateways specific security recommendations and
guidelines. Security recommendations common to all 5G and 4G are available in the Common
Security Recommendations and Guidelines section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

• Enabling TLS and Ciphers in Ingress/Egress Gateway

• Certificate Management and Dynamic reload of certificates in Gateways

• Gateway Services Access Token Secret Configuration

• Gateway Services Access Token Secret Update

• Gateway Services MySQL Secret Configuration

– Kubernetes Secret Creation for Gateway Services Privileged Database Users

– Kubernetes Secret Update for Gateway Services Privileged Database Users

– Kubernetes Secret Creation for Gateway Services Application Database User

– Kubernetes Secret Update for the Gateway Services Application Database Users

• Network Policies

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 9 of 107



Enabling TLS and Ciphers in Ingress and Egress Gateway

Use the following procedure to enable TLS and Ciphers:

1. Helm configuration to enable TLS:
To open HTTPS port in Ingress Gateway, set the enableIncomingHttps parameter to true.

To configure the HTTPS client in Ingress Gateway, set the enableOutgoingHttps
parameter to true.

2. Create the following files:

a. RSA or ECDSA Private key (Example: rsa_private_key_pkcs1.pem)

b. Truststore password (Example:trust.txt)

c. Key store password (Example: key.txt)

d. Certificate chain for truststore (Example: caroot.cer)

e. Signed server certificate (Example: ocingress.cer) or Signed client certificate
(Example: ocegress.cer)

Note

Creation of private keys, certificates, and passwords is at the discretion of user.

3. Run the following command to create secret:

$ kubectl create secret generic ocingress-secret --from-
file=rsa_private_key_pkcs1.pem 
--from-file=trust.txt --from-file=key.txt --from-file=ocingress.cer --from-
file=caroot.cer -n ocingress

4. Enable the cipher suites:

• Cipher Suites to be enabled on Server side (Ingress Gateway).

• Cipher Suites to be enabled on Client side (Egress Gateway).

Cipher Suites:

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

Certificate Management and Dynamic Reload of Certificates in Gateway Services

Whenever certificates get compromised or a new certificate chain is required to be added to
the truststore, you can update the key and truststore used by the application.

To update the key and the truststore, update or replace the secret:

$ kubectl create secret generic ocingress-secret --from-
file=rsa_private_key_pkcs1.pem
 --from-file=trust.txt --from-file=key.txt --from-file=tmp.cer --from-

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 10 of 107



file=caroot.cer --dry-run -o yaml
 -n ocingress| kubectl replace -f - -n ocingress

Whenever there is an update in the certificate chain or signed certificate placed in secret,
Kubernetes watcher implemented in update container checks for a change in file state and
replaces the key and truststore accordingly in the mounted shared volume.

Dynamic reload of certificates is not supported in Ingress Gateway as of now, so a manual
restart of pod is required when any update in the configuration is made with respect to https.

In case of Egress Gateway, update container will trigger the rest endpoint to reload key and
truststore dynamically. Then Egress Gateway will pickup new store files from shared volume
and reload trust and key managers. Egress Gateway will use the replaced store to establish
new connections and gracefully terminate existing connections by sending a GOAWAY frame.

Gateway Services Access Token Secret Configuration

Use the following procedure to create an Access token secret:

1. Create the following files:

• ECDSA private keys for algorithm ES256 and corresponding valid public certificates
for Gateway Services

• RSA private keys for algorithm RS256 and corresponding valid public certificates for
Gateway Services

Note

Creation of private keys, certificates and passwords are at the discretion of user.

2. Log in to Bastion Host or server from where you can run kubectl commands.

3. Create a namespace for the secret by performing the following procedure:

a. Verify if the required namespace already exists in the system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is available. If not
available, create the namespace using the following command:

Note

This is an optional step. In case required namespace already exists, proceed
with next procedures.

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace ocegress

4. Create Kubernetes secret for the Access token by performing the following steps:

a. To create Kubernetes secret for HTTPS, the following files are required:

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 11 of 107



• ECDSA private keys for algorithm ES256 and corresponding valid public
certificates for Gateway Services

• RSA private keys for algorithm RS256 and corresponding valid public certificates
for Gateway Services

Note

Creation process for private keys, certificates and passwords is at the user's
or operators discretion. Unencrypted key and certificates is only supported.
PKCS1 and PKCS8 are the only supported versions for RSA. PKCS8 is the
only supported version for ECDSA.

b. Run the following command to create secret. The names used below are the same as
provided in the custom_values.yaml file in Gateway Services deployment:

$ kubectl create secret generic <ocegressaccesstoken-secret-name>  --
from-file=<ecdsa_private_key.pem>
 --from-file=<rsa_private_key.pem>  --from-file=<ssl_truststore.txt> --
from-file=<keystore_password.txt> 
  --from-file=rsa_certificate.crt --from-file=<ecdsa_certificate.crt> -
n <Namespace of ocegress AccessToken secret>

Note

Note down the command used during the creation of Kubernetes secret. This
command will be used for future references.

$ kubectl create secret generic ocegressaccesstoken-secret  --from-
file=ecdsa_private_key.pem 
--from-file=rsa_private_key.pem  --from-file=ssl_truststore.txt --from-
file=keystore_password.txt  --from-file=
rsa_certificate.crt --from-file=ecdsa_certificate.crt -n ocegress

c. Run the following command to verify if the secret is created:

$ kubectl describe secret <ocegressaccesstoken-secret-name> -n 
<Namespace of Gateway Services AccessToken secret>

Example:

 $ kubectl describe secret ocegressaccesstoken-secret -n ocegress

Gateway Services Access Token Secret Update

Use the following procedure to update the Access token secret:

1. Update the following files:

• ECDSA private keys for algorithm ES256 and corresponding valid public certificates
for Gateway Services

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 12 of 107



• RSA private keys for algorithm RS256 and corresponding valid public certificates for
Gateway Services

Note

Update of private keys, certificates and passwords are at the discretion of user.

2. Log in to Bastion Host or server from where you can run kubectl commands.

3. Update the secret with new or updated details by performing the following procedure:

a. Copy the exact command used in above section during creation of secret.

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace -f - -n
<Namespace of Access Token secret>".

c. Create secret command must look like:

$ kubectl create secret generic <ocegressaccesstoken-secret> --from-
file=<ecdsa_private_key.pem>
--from-file=<rsa_private_key.pem> --from-file=<rsa_certificate.crt> --
from-file=<ecdsa_certificate.crt>
 --dry-run -o yaml -n <Namespace of ocegress deployment> | kubectl 
replace -f - -n <Namespace of ocegress deployment>

Example: The names used below are the same as provided in the
custom_values.yaml in Gateway Services deployment:

$ kubectl create secret generic ocegressaccesstoken-secret --from-
file=ecdsa_private_key.pem
--from-file=rsa_private_key.pem --from-file=rsa_certificate.crt --from-
file=ecdsa_certificate.crt 
--dry-run -o yaml -n ocegress | kubectl replace -f - -n ocegress

d. Run the updated command.

e. After successful secret update, the following message is displayed:

secret/<ocegressaccesstoken-secret> replaced

Gateway Services MySQL Secret Configuration

This section describes the secret creation for following types of Gateway Services users.
Different users have different sets of permissions.

• Gateway Services privileged user: This user category has a complete set of permissions.
The user can perform DDL and DML operations to install, upgrade, roll back or delete
operations.

• Gateway Services application user: This user category has fewer sets of permissions and
is used by Gateway Services applications during service operations handling. This user
cannot create, alter, and drop the database and tables.

Kubernetes Secret Creation for Gateway Services Privileged Database Users

This section provides procedures to create Kubernetes secrets for accessing the Gateway
Services database for the privileged user.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 13 of 107



1. Log in to Bastion Host or server from where you can run the kubectl commands.

2. Create a namespace for the secret by performing the following procedure:

a. Verify if the required namespace already exists in the system:

$ kubectl get namespaces

b. In the output of the above command, check if the required namespace is available. If
not available, create the namespace using the following command:

Note

This is an optional step. In case the required namespace already exists,
proceed with the next set of procedures.

$ kubectl create namespace <required namespace>

For example:

$ kubectl create namespace ocegress

3. Create a Kubernetes secret for privileged users as follows:

a. Create a Kubernetes secret for MySQL:

 $ kubectl create secret generic <privileged user secret name>
 --from-literal=dbUsername=<Gateway Services Privileged MySQL database 
username> 
--from-literal=dbPassword=<Gateway Services Privileged MySQL User 
database password> 
--from-literal=appDbName=<Gateway Services MySQL database name> 
--from-literal=networkScopedDbName=<Gateway Services MySQL Network 
database name> 
--from-literal=commonConfigDbName=<Gateway Services MySQL Common 
Configuration DB> -n 
<Namespace of Gateway Services deployment>

Note

Note down the command used during the creation of the Kubernetes secret.
This command is used for future references.

Example:

$ kubectl create secret generic privilegeduser-secret --from-
literal=dbUsername=ocegressPrivilegedUsr 
--from-literal=dbPassword=ocegressPrivilegedPasswd --from-
literal=appDbName=ocegressApplicationDB --from-literal

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 14 of 107



=networkScopedDbName=ocegressNetworkDB --from-
literal=commonConfigDbName=commonConfigurationDB -n ocegress

b. Verify the secret created using above command:

$ kubectl describe secret <database secret name> -n <Namespace of 
Gateway Services deployment>

Example:

$ kubectl describe secret privilegeduser-secret -n ocegress

Kubernetes Secret Update for Gateway Services Privileged Database Users

This section provides procedures to update Kubernetes secrets for accessing the Gateway
Services database for the privileged user.

1. Log in to Bastion Host or server from where you can run the kubectl commands.

2. Update Kubernetes secret for privileged user as follows:

a. Copy the exact command used in section during creation of secret:

$ kubectl create secret generic <privileged user secret name> 
--from-literal=dbUsername=<Gateway Services Privileged MySQL database 
username> 
--from-literal=dbPassword=<Gateway Services Privileged MySQL database 
password> 
--from-literal=appDbName=<Gateway Services MySQL database name> 
--from-literal=networkScopedDbName=<Gateway Services MySQL Network 
database name> 
--from-literal=commonConfigDbName=<Gateway Services MySQL Common 
Configuration DB> -n 
<Namespace of Gateway Services deployment>

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace -f - -n
<Namespace of MySQL secret>". After update, the command will be as follows:

$ kubectl create secret generic <privileged user secret name> 
--from-literal=dbUsername=<Gateway Services Privileged MySQL database 
username> 
--from-literal=dbPassword=<Gateway Services Privileged MySQL database 
password> 
--from-literal=appDbName=<Gateway Services MySQL database name> 
--from-literal=networkScopedDbName=<Gateway Services MySQL Network 
database name> 
--from-literal=commonConfigDbName=<Gateway Services MySQL Common 
Configuration DB> --dry-run -o yaml 
-n <Namespace of Gateway Services deployment> | kubectl replace -f - -n 
<Namespace of Gateway Services deployment>

c. Run the updated command. The following message is displayed:

secret/<database secret name> replaced

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 15 of 107



Kubernetes Secret Creation for Gateway Services Application Database User

This section provides procedures to create Kubernetes secrets for accessing the Gateway
Services database for the application database user.

1. Log in to Bastion Host or server from where you can run the kubectl commands.

2. Create a namespace for the secret by performing the following procedure:

a. Verify if the required namespace already exists in the system:

$ kubectl get namespaces

b. In the output of the above command, check if required the namespace is available. If
not available, create the namespace using the following command:

Note

This is an optional step. In case the required namespace already exists,
proceed with the next set of procedures.

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace ocegress

3. Create a Kubernetes secret for the Gateway Services application database user for
configuring records as follows:

a. Create a Kubernetes secret for the Gateway Services application database user:

$ kubectl create secret generic <appuser-secret name> --from-
literal=dbUsername=<Gateway Services APPLICATION User Name> --from-
literal=dbPassword=<Password for Gateway Services APPLICATION User> --
from-literal=appDbName=<Gateway Services Application Database> -n 
<Namespace of Gateway Services deployment>

Note

Note down the command used during the creation of Kubernetes secret. This
command will be used for future references.

Example:

$ kubectl create secret generic appuser-secret --from-
literal=dbUsername=GatewayServicesApplicationUsr --from-
literal=dbPassword=GatewayServicesApplicationPasswd --from-
literal=appDbName=GatewayServicesApplicationDB -n ocegress 

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 16 of 107



b. Verify the secret creation:

$ kubectl describe secret <appuser-secret name> -n <Namespace of 
Gateway Services deployment>

Example:

$ kubectl describe secret appuser-secret -n ocegress

Kubernetes Secret Update for the Gateway Services Application Database Users

This section provides procedures to update Kubernetes secrets for accessing the Gateway
Services database for the application database user.

1. Log in to Bastion Host or server from where you can run the kubectl commands.

2. This section explains how you can update the Kubernetes secret.

a. Copy the exact command used in above section during creation of secret:

$ kubectl create secret generic <appuser-secret name> --from-
literal=dbUsername=<Gateway Services APPLICATION
 User Name> --from-literal=dbPassword=<Password for Gateway Services 
APPLICATION User> --from-literal=appDbName=<Gateway Services 
Application Database> -n <Namespace of Gateway Services deployment>

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace -f - -n
<Namespace of MySQL secret>". After update, the command will be as follows:

$ kubectl create secret generic <database secret name> --from-
literal=dbUsername=<Gateway Services APPLICATION 
User Name> --from-literal=dbPassword=<Password for Gateway Services 
APPLICATION User> --from-literal=appDbName=<Gateway Services 
Application Database> --dry-run -o yaml -n <Namespace of Gateway 
Services deployment> | kubectl replace -f - -n <Namespace 
of Gateway Services deployment>

c. Run the updated command. The following message is displayed:

secret/<database secret name> replaced

Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 17 of 107



For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

3.1.4 Automated Test Suite (ATS) Specific Security Recommendations and
Guidelines

This section provides Oracle Communications Cloud Native Core Automated Test Suite (ATS)
specific security recommendations and guidelines. Security recommendations common to all
4G and 5G NFs are available in the Common Security Recommendations and Guidelines
section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedure is: Configuring ATS Kubernetes Secret for HTTPS or TLS.

Note

You must perform the above mentioned procedure for secure GUI and API of ATS.

Configuring ATS Kubernetes Secret for HTTPS or TLS

Note

Do not use the same credentials in different Kubernetes secrets, and the passwords
stored in the secrets must follow the password policy requirements.

1. Log in to Bastion Host or server from where the kubectl command can be run.

2. Create the following files:

a. Create a private key, for example, rsa_private_key_pkcs1.pem.

b. Certificate chain for trust store, for example, caroot.cer.

c. Create a signed certificate, for example, ssl_certificate.crt.

Note

The creation of keys and certificates are on the discretion of the users.

d. Create .p12 format and jks format files from above created certificates for Jenkins.

3. Run the following command to verify the required namespace that already exists in the
system:

kubectl get namespaces

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 18 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


4. In the output of the above command, check if the required namespace is available. If
unavailable, run the following command to create the namespace:

Note

This is an optional step. In case the required namespace already exists, skip this
step.

kubectl create namespace <required namespace>

Example:

kubectl create namespace ocscp

5. Run the following command to create the secrets:

kubectl create secret generic <secret_name> --from-file=<jks_format_file>  
--from-file=<signed.certificate> --from-file=<rsa_private_key_pkcs1.pem> --
from-file=<caroot.cer> -n <namespace>

Example:

kubectl create secret generic ocats-tls-secret --from-
file=jenkinsserver.jks --from-file=ssl_rsa_certificate.crt --from-
file=rsa_private_key_pkcs1.key --from-file=caroot.cer -n scpsvc

3.1.5 Oracle Communications Certificate Management (OCCM) Specific
Security Recommendations and Guidelines

This section provides Oracle Communications Certificate Management (OCCM) specific
security recommendations and guidelines. Security recommendations common to all 4G and
5G NFs are available in the Common Security Recommendations and Guidelines section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

Global Service Account Configuration

This section is optional and it describes how to manually create a service account, role, and
rolebinding.

A custom service account can be provided for OCCM deployment in
global.serviceAccountName of occm_custom_values_<version>.yaml.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 19 of 107



A custom service account can be provided for helm in global.serviceAccountName:

global:  
  dockerRegistry: cgbu-occncc-dev-docker.dockerhub-phx.oci.oraclecorp.com
  serviceAccountName: ""

Configuring Global Service Account to Manage NF Certificates with OCCM and NF in the
Same Namespace

A sample OCCM Service account yaml file to create custom service account is as follows:

## Service account yaml file for occm-sa
apiVersion: v1
kind: ServiceAccount
metadata:
  name: occm-sa
  namespace: occm
  annotations: {}
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: occm-role
  namespace: occm
rules:
- apiGroups:
  - "" # "" indicates the core API group
  resources:
  - services
  - configmaps
  - pods
  - secrets
  - endpoints
  verbs:
  - get
  - watch
  - list
  - create
  - delete
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: occm-rolebinding
  namespace: occm
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: occm-role
subjects:
- kind: ServiceAccount
  name: occm-sa
  namespace: occm

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 20 of 107



Configuring Global Service Account to Manage NF Certificates with OCCM and NF in
Separate Namespaces

OCCM provides support for key and certificate management in multiple namespaces.

In this deployment model, OCCM is deployed in namespace different from the components
namespaces managed by it. It needs privileges to read, write, and delete Kubernetes secrets
in the managed namespaces.

This is achieved by creating multiple namespace specific roles and binding them to the service
account for OCCM.

• AUTOMATIC Service Account Configuration: Roles and role bindings are created for
each namespace specified using the occmAccessedNamespaces field in
occm_custom_values.yaml. A service account for OCCM is created automatically and the
roles created are assigned using the corresponding role binding.
Namespaces managed by OCCM service account:

occmAccessedNamespaces:
  - ns1
  - ns2

Note

Automatic Service Account Configuration is applicable for Single Namespace
Management as well

• Custom Service Account Configuration: A custom service account can also be
configured against the serviceAccountName field in occm_custom_values.yaml. If this is
provided, automatic service account creation doesn't get triggered. The
occmManagedNamespaces field doesn't need to be configured.
A sample OCCM service account yaml file for creating a custom service account is as
follows:

apiVersion: v1
kind: Namespace
metadata:
  name: ns1
---
apiVersion: v1
kind: Namespace
metadata:
  name: ns2
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: occm-sa
  namespace: occm
  annotations: {}
---
 
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 21 of 107



  namespace: ns1
  name: occm-secret-writer-role
rules:
- apiGroups:
  - "" # "" indicates the core API group
  resources:
  - secrets
  verbs:
  - get
  - watch
  - list
  - create
  - update
  - delete
---
 
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  namespace: ns2
  name: occm-secret-writer-role
rules:
- apiGroups:
  - "" # "" indicates the core API group
  resources:
  - secrets
  verbs:
  - get
  - watch
  - list
  - create
  - update
  - delete
 
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: occm-secret-writer-rolebinding
  namespace: ns1
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: occm-secret-writer-role
subjects:
- kind: ServiceAccount
  name: occm-sa
  namespace: occm
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: occm-secret-writer-rolebinding
  namespace: ns2
roleRef:
  apiGroup: rbac.authorization.k8s.io

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 22 of 107



  kind: Role
  name: occm-secret-writer-role
subjects:
- kind: ServiceAccount
  name: occm-sa
  namespace: occm

Helm Test Service Account Configuration

helmTestServiceAccountName is an optional field in the
occm_custom_values_<version>.yaml file It should be added only if helm kubernetes resource
is enabled. Custom service account can be provided for helm in
global.helmTestServiceAccountName::

global:
  helmTestServiceAccountName: occm-helmtest-serviceaccount

A sample helm test service account yaml file is as follows:

helm test service account apiVersion: v1
kind: ServiceAccount
metadata:
  name: occm-helmtest-serviceaccount
  namespace: occm
  annotations: {}
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: occm-helmtest-role
  namespace: occm
rules:
- apiGroups:
  - "" # "" indicates the core API group
  resources:
  - services
  - configmaps
  - pods
  - secrets
  - endpoints
  - serviceaccounts
  verbs:
  - get
  - watch
  - list
- apiGroups:
  - policy
  resources:
  - poddisruptionbudgets
  verbs:
  - get
  - watch
  - list
  - update
- apiGroups:

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 23 of 107



  - apps
  resources:
  - deployments
  - statefulsets
  verbs:
  - get
  - watch
  - list
  - update
- apiGroups:
  - autoscaling
  resources:
  - horizontalpodautoscalers
  verbs:
  - get
  - watch
  - list
  - update
- apiGroups:
  - rbac.authorization.k8s.io
  resources:
  - roles
  - rolebindings
  verbs:
  - get
  - watch
  - list
  - update
- apiGroups:
  - monitoring.coreos.com
  resources:
  - prometheusrules
  verbs:
  - get
  - watch
  - list
  - update
  
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: occm-helmtest-rolebinding
  namespace: occm
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: occm-helmtest-role
subjects:
- kind: ServiceAccount
  name: occm-helmtest-serviceaccount
  namespace: occm

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 24 of 107



Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Core, Certificate Management Installation, Upgrade, and Fault Recovery Guide.

TLS configuration

OCCM does not directly interact with other NF microservices. The access is only through the
CNC Console.

Note

• OCCM supports authentication of the CA generating the certificates using the
CMPv2 MAC based and signing mechanism.

• As an additional layer of security encryption of the traffic between OCCM and
Certificate Authority using HTTPs is supported.

• Configuration options are provided at REST API and helm deployment level. Refer
to installation and user guide for details on configuration options.

For more information on TLS configuration, see CNC Console IAM LDAP Configuration in the 
Cloud Native Configuration Console (CNCC) Specific Security Recommendations and
Guidelines section.

Network Port Flows

For information on network port flows for OCCM, see "Network Port Flows" in Oracle
Communications Cloud Native Core Certificate Management Installation, Upgrade, and Fault
Recovery Guide.

3.1.6 OCI Adaptor Specific Security Recommendations and Guidelines
This section provides OCI Adaptor specific security recommendations and guidelines. Security
recommendations common to all 4G and 5G NFs are available in the Common Security
Recommendations and Guidelines section.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 25 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


Note

OCI Adaptor is deployed on OCI tenancy owned and managed by the customer.
Therefore, customer is expected to develop an OCI security concept on their own.

OCI Adapter Registry Pull Secret (Automated)

While deploying OCI Adaptor, a registry pull secret must get created automatically (using
Helm) and is used to pull OCI Adapter images from private Oracle Cloud Infrastructure
Registry (OCIR).

Table 3-2    OCI Adaptor Secret

Secret Name Secret Type Secret Content

ocir-container-registry-secret kubernetes.io/dockerconfigjson registry_name: Must be
provided by the user on OCI RM
Stack UI.

registry_username: Must be
provided by the user on OCI RM
Stack UI.

registry_password: Must be
provided by the user on OCI RM
Stack UI.

3.1.7 Cloud Native Configuration Console (CNC Console) Specific Security
Recommendations and Guidelines

This section provides Cloud Native Configuration Console (CNC Console) specific security
recommendations and procedures. Security recommendations common to all 4G and 5G NFs
are available in the Common Security Recommendations and Guidelines Section.

Note

kubectl commands might vary based on the platform deployment. Replace kubectl
with Kubernetes environment-specific command line tool to configure Kubernetes
resources through kube-api server. The instructions provided in this document are as
per the Oracle Communications Cloud Native Environment (CNE) version of kube-api
server.

Caution

User, computer and applications, and character encoding settings may cause an issue
when copy-pasting commands or any content from PDF. PDF reader version also
affects the copy-pasting functionality. It is recommended to verify the pasted content
especially when the hyphens or any special characters are part of the copied content.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 26 of 107



Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

• CNC Console IAM MySQL Secret Configuration

• CNC Console IAM Default User (Admin) Secret Configuration

• OCI IAM Secret Configuration

• CNC Console IAM LDAPS Secret Configuration

• CNC Console IAM LDAP Configuration

• CNC Console TLS Secret configuration

• CNC Console Core Secret Configuration to Enable HTTPS

• CNC Console IAM SAML Configuration

• OCI IAM SAML Configuration

– Adding a SAML Identity Provider in OCI IAM

– JIT Configuration in OCI IAM

• Configuring Role Mapping in OCI IAM

• Network Policies

CNC Console IAM MySQL Secret Configuration

Use the following procedure to create MySQL Kubernetes secret:

1. Log in to Bastion Host or server from where kubectl can be executed

2. Create namespace for the secret by running the following commands:

a. Verify whether the required namespace already exists in system by running the
following command:

$ kubectl get namespaces

b. If the output of the above command does not display the required namespace, create
the namespace by running following command:

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace cncc

3. Run the following command to create the Kubernetes secret for MySQL:

kubectl create secret generic <database secret name> --from-
literal=dbUserNameKey=<CNCC 

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 27 of 107



Mysql database username> --from-literal=dbPasswordKey=<CNCC Mysql database 
password> -n <Namespace of MySQL secret

Example:

$ kubectl create secret generic cncc-db-secret --from-
literal=dbUserNameKey=root --from-
literal=dbPasswordKey=mypass -n cncc

4. Run the following command to verify the secret creation:

$ kubectl describe secret <database secret name> -n <Namespace of MySQL 
secret>

Example:

$ kubectl describe secret cncc-db-secret -n cncc

CNC Console IAM Default User (Admin) Secret Configuration

Note

Not applicable for OCI deployment.

Use the following procedure to create default user (Admin) secret :

1. Log in to Bastion Host or server from where kubectl can be executed

2. Create namespace for the secret by running the following commands:
Verify whether the required namespace already exists in system by running the following
command:

$ kubectl get namespaces  

3. If the output of the above command does not display the required namespace then create
the namespace by running following command:

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace cncc

4. Run the following command to create the Kubernetes secret for MySQL for Admin User:

$ kubectl create secret generic <secret-name> --from-
literal=iamAdminPasswordKey=<password> --namespace <namespace>  

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 28 of 107



Example:

$ kubectl create secret generic cncc-iam-secret --from-
literal=iamAdminPasswordKey=cncciampasswordvalue --namespace cncc

5. Run the following command to verify the secret creation:

$ kubectl describe secret <secret name> -n <namespace>

Example:

$ kubectl describe secret cncc-iam-secret -n cncc

OCI IAM Secret Configuration

Note

This section is applicable only for OCI deployment.

1. Login to Bastion Host or server from where kubectl can be run.

2. Run the following commands to create the oci iam secret:

a. Run the following command to create the Kubernetes secret for OCI IAM clientId and
clientSecret:

$ kubectl create secret generic <secret-name> --from-
literal=clientId='<clientId>' --from-
literal=clientSecret='<clientSecret>' --namespace <namespace>

b. Run the following command to verify whether the secret is created:

$ kubectl describe secret <secret name> -n <namespace>

Example:

$ kubectl create secret generic oci-iam-secret --from-
literal=clientId='269d98xxxxbb5064' --from-
literal=clientSecret='6779exxxxx9602' --namespace cncc
$ kubectl describe secret oci-iam-secret -n cncc

OCI IAM Admin Secret Configuration

Note

This section is applicable only for OCI deployment.

1. Login to Bastion Host or server from where kubectl can be run.

2. Run the following commands to create the oci iam secret:

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 29 of 107



a. Run the following command to create the Kubernetes secret for OCI IAM username
and password:

$ kubectl create secret generic <secret-name> --from-
literal=username='<username>' --from-literal=password='<password>' --
namespace <namespace>

b. Run the following command to verify whether the secret is created:

$ kubectl describe secret <secret name> -n <namespace>

Example:

$ kubectl create secret generic oci-iam-admin-secret --from-
literal=username=admin --from-literal=password='adminpass' --namespace 
cncc
$ kubectl describe secret oci-iam-admin-secret -n cncc

CNC Console IAM LDAPS Secret Configuration

Use the following procedure to create the secrets to enable LDAPS:

Note

The value of ssl_truststore.txt and ssl_truststore-password-key value must be
same.

1. Log in to Bastion Host or server from where kubectl can be run.

2. Create namespace for the secret by running the following commands:
Verify whether the required namespace already exists in system by running the following
command:

$ kubectl get namespaces  

If the output of the above command does not display the required namespace then create
the namespace by running following command:

$ kubectl create namespace <required namespace> 

Example:

$ kubectl create namespace cncc 

3. Create a secret by running the following command:

kubectl create secret generic <secret-name> --from-file=<caroot.cer> 
--from-file=ssl_truststore.txt --from-literal=ssl_truststore-password-
key=<password> --namespace cncc

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 30 of 107



Note

The command is used for Kubernetes secret updates in future.

Example:

$ kubectl create secret generic cncc-iam-kc-root-ca --from-file=caroot.cer
      --from-file=ssl_truststore.txt --from-literal=ssl_truststore-
password-key=<password> --namespace
      cncc

Run the following to display the sample ssl_truststore.txt:

echo <password> > ssl_truststore.txt

4. On successfully running the above command, the following message is displayed:
secret/cncc-iam-kc-root-ca created

5. Run the following command to verify the secret creation:

$ kubectl describe secret cncc-iam-kc-root-ca -n cncc

CNC Console IAM LDAP Configuration

Use the following procedure to configure CNC Console IAM LDAP :

1. Set up User Federation with CNC Console IAM by running following steps:

a. Log in to CNC Console IAM application.

b. Select Cncc Realms and then select User Federation; User federation Screen
appears.

c. Fill the necessary parameters and save.

d. New buttons (Synchronize changed users, Synchronize all users, Remove
imported, Unlink users) appear next to the Save and Cancel.

e. If a user has to be imported to CNCC-IAM, Click Synchronize all users.

f. The user can view the imported users by clicking Users under Manage in the left pane
and click View all users in the right pane.

2. Steps to add Group-Mapper and Assign Roles:

a. Log in to CNC Console IAM application.

b. Select Cncc Realms and then select User Federation; User federation Screen
appears.

c. Click Configure and select User Federation. Click ldap (Console Display Name) and
select the Mappers tab, and click Create.

d. The Add User federation mapper page appears. Select 'group-ldap-mapper' as
Mapper Type from dropdown menu. Click Save.

e. Enter the details in the new screen and Save.

f. New buttons Synchronize LDAP Groups to Keyclaok and Synchronize Keyclaok
Groups to LDAP appear.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 31 of 107



g. Click Synchronize LDAP Groups to Keyclaok.

h. Select the Groups in the left pane and click the View all groups in the right pane.

i. Click any group and then click Edit. The following tabs appear: Settings, Attributes,
Role Mappings, and Members.

j. Select Role Mapping tab to see a list of roles that are pre-defined in cncc-iam.

k. Select one or more roles from Available Roles and assign it to the group.

CNC Console TLS Secret configuration

Use the following procedure to configure CNC C TLS Secret:

1. To create Kubernetes secret for HTTPS, the following files are required:

• ECDSA private key and CA signed certificate of CNC Console (if initial Algorithm is
ES256)

• RSA private key and CA signed certificate of CNC Console (if initial Algorithm is
RSA256)

• TrustStore password file

• KeyStore password file

• CA certificate

2. Create a secret by running the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
      --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
      --from-file=<ssl_keystore.txt> --from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
      --from-file=<ssl_ecdsa_certificate.crt> -n <Namespace of CNCC IAM 
Ingress Gateway
    secret>

Example:

$ kubectl create secret generic cncc-iam-ingress-secret
      --fromfile=ssl_ecdsa_private_key.pem  --from-
file=rsa_private_key_pkcs1.pem
      --fromfile=ssl_truststore.txt --from-file=ssl_keystore.txt --from-
file=caroot.cer
      --fromfile=ssl_rsa_certificate.crt --from-
file=ssl_ecdsa_certificate.crt -n
    cncc

On successfully running the above command, the following message will be displayed:

secret/cncc-iam-ingress-secret created

Run the following command to verify the secret creation:

$ kubectl describe secret cncc-iam-ingress-secret -n cncc

3. This section explains how to update the secrets for enabling HTTPS, if they already exist:

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 32 of 107



Create a secret by running the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
      --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
      --from-file=<ssl_keystore.txt> --from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
      --from-file=<ssl_ecdsa_certificate.crt> --dry-run -o yaml -n 
<Namespace of CNCC IAM Ingress
      Gateway secret> | kubectl replace -f - -n <Namespace of CNCC IAM 
Ingress Gateway
    secret>

Example:

$ kubectl create secret generic cncc-iam-ingress-secret
      --fromfile=ssl_ecdsa_private_key.pem  --from-
file=rsa_private_key_pkcs1.pem
      --fromfile=ssl_truststore.txt --from-file=ssl_keystore.txt --from-
file=caroot.cer
      --fromfile=ssl_rsa_certificate.crt --from-
file=ssl_ecdsa_certificate.crt --dry-run -o yaml -n
      cncc | kubectl replace -f - -n cncc

On successfully running the above command, the following message will be displayed:

secret/cncc-iam-ingress-secret replaced

CNC Console Core Secret Configuration to Enable HTTPS

Note

Not applicable for OCI deployment.

Use the following procedure to configure CNC Console Core Secret to Enable HTTPS:

1. To create Kubernetes secret for HTTPS, the following files are required:

• ECDSA private key and CA signed certificate of CNC Console (if initial Algorithm is
ES256)

• RSA private key and CA signed certificate of CNC Console (if initial Algorithm is
RSA256)

• TrustStore password file

• KeyStore password file

• CA certificate

2. Create a secret by running the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
      --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 33 of 107



      --from-file=<ssl_keystore.txt> --from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
      --from-file=<ssl_ecdsa_certificate.crt> -n <Namespace of CNCC Core 
Ingress Gateway
    secret>

Example:

kubectl create secret generic cncc-core-ingress-secret --
fromfile=ssl_ecdsa_private_key.pem 
      --from-file=rsa_private_key_pkcs1.pem --fromfile=ssl_truststore.txt
      --from-file=ssl_keystore.txt --from-file=caroot.cer --
fromfile=ssl_rsa_certificate.crt
      --from-file=ssl_ecdsa_certificate.crt -n cncc    
  

On successfully running the above command, the following message will be displayed:

secret/cncc-core-ingress-secret created

Run the following command to verify the secret creation:

$ kubectl describe secret cncc-core-ingress-secret -n cncc

3. This section explains how to update the secrets for enabling HTTPS if they already exist:
Create a secret by running the following command:

$ kubectl create secret generic <secret-name> --
fromfile=<ssl_ecdsa_private_key.pem>
      --from-file=<rsa_private_key_pkcs1.pem> --
fromfile=<ssl_truststore.txt>
      --from-file=<ssl_keystore.txt> --from-file=<caroot.cer> --
fromfile=<ssl_rsa_certificate.crt>
      --from-file=<ssl_ecdsa_certificate.crt> --dry-run -o yaml -n 
<Namespace of CNCC Core Ingress
      Gateway secret> | kubectl replace -f - -n <Namespace of CNCC Core 
Ingress Gateway
    secret>

Example:

$ kubectl create secret generic cncc-core-ingress-secret
      --fromfile=ssl_ecdsa_private_key.pem  --from-
file=rsa_private_key_pkcs1.pem
      --fromfile=ssl_truststore.txt --from-file=ssl_keystore.txt --from-
file=caroot.cer
      --fromfile=ssl_rsa_certificate.crt --from-
file=ssl_ecdsa_certificate.crt --dry-run -o yaml -n
      cncc | kubectl replace -f - -n cncc

On successfully running the above command, the following message will be displayed:

secret/cncc-core-ingress-secret replaced

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 34 of 107



CNC Console IAM SAML Configuration

Use the following procedure to configure CNC Console IAM SAML:

1. To configure SAML identity provider (IdP) in CNC Console IAM, log in to CNC Console
IAM Console using admin credentials provided during installation of CNC Console IAM .

2. Select Cncc realm and the Identity Provider tab in the left pane. Identity Providers
screen appears in the right pane.

3. From the Add provider drop down list select the saml entry and the Add Identity
Provider screen appears.

4. To create custom 'First Login Flow', click Authentication tab In the left pane. The
Authentication screen appears.

5. Click New at the right pane. Create Top Level Form screen appears.
Enter the appropriate alias and click Save.

6. The Authentication screen with the newly created custom flow selected in the drop down
list appears. Click Add Execution in the right pane .

7. Create Authenticator Execution screen appears.
Select Create User If Unique from the Provider drop down list. Click Save.

8. The Authentication screen appears with the newly created custom flow selected in the
drop down. Under Requirement section, select Alternative.

9. Select Identity Provider in the left pane. Select the custom flow from First Login Flow
drop down list.

OCI IAM SAML Configuration

SAML (Security Assertion Markup Language) enables applications to authenticate a user using
an identity provider. The identity provider authenticates the user and returns the assertion
information about the authenticated user and the authentication event to the application. If the
user tries to access any other application that uses the same identity provider for user
authentication, the user shall not be required to log in a second time and will be granted
access. This is the principle of SSO (Single Sign On).

Note

• OCI IAM provides option to implement SAML SSO. This is an optional step.

• Applicable only for OCI deployment.

The following section describes the steps to implement SAML SSO in OCI IAM.

Adding a SAML Identity Provider in OCI IAM

1. Navigate to the identity domain: Open the navigation menu and click Identity & Security.
Under Identity, click Domains.

2. Click the name of the identity domain that you want to work in. You might need to change
the compartment to find the domain that you want.

3. Then, click Security and then Identity providers.

4. Click Add IdP, and then click Add SAML IdP.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 35 of 107



5. Enter the following information:

• Name: Enter the name of the IdP.

• (Optional) Description: Enter a description of the IdP.

• (Optional) Identity provider icon: Drag and drop a supported image, or click select
one to browse for the image.

6. Click Next.

7. On the Exchange metadata screen, do one of the following:

• Import IdP metadata: Select this option if you have an XML file exported from your
IdP. Drag and drop the XML file to upload the metadata, or click select one to browse
for the metadata file.

• Enter IdP metadata: Select this option if you want to manually enter the IdP metadata.
Provide the following details:

– Identity provider issuer URI

– SSO service URI

– SSO service binding

– Upload identity provider signing certificate

– Enable global logout

– Identity provider logout request URL

– Identity provider logout response URL

8. On the Map User Identity Screen, keep the Requested Name ID Format as None

9. Map user's identity attributes received from the IdP to an Oracle Cloud Infrastructure
identity domain. Mapping options vary based on identity provider. You might be able to
directly assign an IdP value to an Oracle Cloud Infrastructure identity domain value. For
example, NameID might map to UserName. If you select SAML assertion attribute as the
source, select the Assertion attribute name and then enter the Oracle Cloud Infrastructure
identity domain.

10. Click Submit.

11. On the Review and create screen, review your SAML identity provider settings. If the
settings are correct, click Create. Click Edit next to the set of settings, if you need to
change them.

12. The console displays a message when the SAML identity provider is created. You can do
the following from the overview page:

• Click Test to verify that the SAML SSO connection is working correctly.

• Click Activate to activate the IdP so the identity domain can use it.

• Click Assign to IdP policy rule to assign this SAML identity provider to an existing
policy rule you have created.

13. Click Close.

• At this point, the SAML IDP is configured, but any user created in SAML IDP needs to be
created in OCI IAM in-order to allow a successful Login

• In order to directly login to CNCC Core via SAML IdP, JIT Provisioning needs to configured
(Just-In-Time)

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 36 of 107



1. OCI IAMs SAML Metadata can be exported, by clicking on "Export SAML Metadata" on the
"Identity Providers" Tab as shown above.

2. The exported file, can be used to configure SAML Client in an IdP

3. JIT Configuration in OCI IAM
JIT stands for Jut-In-Time Provisioning. It allows the federated user to be created in OCI IAM
users List whenever a federated user logs in for the first time. Follow below steps to configure
this in OCI-IAM

1. On the IDP Configuration Page, click Configure JIT

2. Enable Just-In_Time(JIT) provisioning

3. Select one/both of the following options as required:

• Create a new identity domain user: Create an identity user in the identity domain, if
the user doesn't exist when sign in with the identity provider.

• Update the existing identity domain user: Merge and overwrite identity domain user
account data from the mapped IdP. The existing data is overwritten by the user data
from the IdP.

4. In the Map user attributes area , map a user account from the IdP to a user account from
the identity domain.

a. Select a value in the IdP user attribute type row.

• If you select Attribute, then enter the IdP user attribute name.

• If you select NameID, you don't need to enter the IdP user attribute name.

b. (Optional) Select the identity domain user attribute.

c. (Optional) Add more identity domain attributes.

5. For example, as per above screenshot NameID value to userName is the default
mapping, and the name to familyName mapping is configured by the user.

• OCI IAM will look for an attribute named namein the Assertions coming from SAML
IdP, as mentioned below:

<saml:AttributeStatement>
      <saml:Attribute FriendlyName="name"
                      Name="name"
                      NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">
        <saml:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
                             xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
                             xsi:type="xs:string">SamlUser</
saml:AttributeValue>
      </saml:Attribute>

The user needs to make sure the SAML IDP is populating these attributes in the assertions ,
else JIT Configuring will not work, thus failing the SAML SSO Authentication

4. Configuring Role Mapping in OCI-IAM
Role Mapping for SAML in OCI IAM is configured as a part of JIT Provisioning configuration.
Below mentioned steps can be followed

1. On the IDP Configuration Page, click Configure JIT

2. To enable group mapping, click Assign group mapping

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 37 of 107



3. For Group membership attribute name enter the IdP attribute name that contains group
memberships.

4. To import the group settings, select one of the following options:

• Define explicit group mapping: This option requires you to provide the group name
to map between the IdP and identity domain. If you select this option, enter the IdP
group name and select an available identity domain group name.

• Assign implicit group mapping: This option maps an IdP group to an identity domain
group that has the same name. No other action is required.

– OCI-IAM reads Roles as Groups, "Group membership attribute name" has
assigned as groups

– After this CNC Console (OCI-IAM) Groups can be mapped to the IdP Groups as
mentioned in the below screenshot

5. Under Assignment rules, specify actions to take when assigning group memeberships:

a. If users are assigned to existing groups, select whether to merge with existing group
memberships or replace existing group memberships.

6. When a group isn't found, select to take one of the following actions:

a. Ignore the missing group: The user successfully signs in.

b. Fail the entire request: The sign-in attempt fails.

7. Click Save Changes.

• OCI-IAM will be reading Groups from the SAML Assertions.

• As the Role Mapping is created through 'groups' attribute name, OCI-IAM will look for
'groups' attribute in SAML Assertions.

• Ensure the IDP is sending the required attributes in assertions

5. Assigning Idp to Identity provider (IdP) policies

1. Under your domain , click Security and then Idp policies.

2. Create Idp policy if required else use Default Identity Provider Policy.

3. Under your Identity Provider Policy , click on Add Idp Rule to create a new Rule if
required else to use Default IDP Rule click on the Edit IdP rule.

4. Assign the name of IdP under Assign identity providers.

5. Click Save to save the changes and exit.

Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 38 of 107



For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Configuration Console, Installation, Upgrade, and Fault Recovery Guide.

Network Port Flows

For information on network port flows for CNC Console, see "CNC Console Microservices to
Port Mapping" in Oracle Communications Cloud Native Configuration Console Installation,
Upgrade, and Fault Recovery Guide.

3.1.8 Cloud Native Environment (CNE) Specific Security Recommendations
and Guidelines

After installation, audit the CNE security system stance before deploying the system into
service. This primarily consists of changing credentials and unique SSH keys to trusted
servers. The following table lists all the credentials that need to be checked, changed, and
retained:

Note

kubectl commands might vary based on the platform deployment. Replace kubectl
with Kubernetes environment-specific command line tool to configure Kubernetes
resources through kube-api server. The instructions provided in this document are as
per the Oracle Communications Cloud Native Core, Cloud Native Environment (CNE)
version of kube-api server.

Caution

User, computer and applications, and character encoding settings may cause an issue
when copy-pasting commands or any content from PDF. PDF reader version also
affects the copy-pasting functionality. It is recommended to verify the pasted content
especially when the hyphens or any special characters are part of the copied content.

Table 3-3    Credentials

Credential
Name

Deployment Credential
Type

Associated
Resource

Initial Setting for
Credential Type

Credential
Rotation

TOR Switch BareMetal
Only

username
and password

Cisco Top or
Rack Switch

username and password
from PreFlight Checklist

Reset
postinstallatio
n

Enclosure
Switch

BareMetal
Only

username
and password

HP Enclosure
Switch

username and password
from PreFlight Checklist

Reset
postinstallatio
n

OA Admin BareMetal
Only

username
and password

On-board
Administrator
Console

username and password
from PreFlight Checklist

Reset
postinstallatio
n

ILO Admin BareMetal
Only

username
and password

HP Integrated
Lights Out
Manger

username and password
from PreFlight Checklist

Reset
postinstallatio
n

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 39 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


Table 3-3    (Cont.) Credentials

Credential
Name

Deployment Credential
Type

Associated
Resource

Initial Setting for
Credential Type

Credential
Rotation

GRUB BareMetal
Only

username
and password

Bootloader Set to Customer input
during server installation

Reset post-
install

Server Super
User (root)

All username
and password

Server Super
User

Set to well-known
Oracle default during
server installation

Reset
postinstallatio
n

Server Super
User
(admusr)

All username
and password

Server Super
User

Set to well-known
Oracle default during
server installation

Reset
postinstallatio
n

Server Admin
User SSH

All SSH Key Pair Server Admin
User

Key Pair generated at
install time

Can rotate
keys at any
time; key
distribution
manual
procedure

If factory or Oracle defaults were used for any of these credentials, they must be changed
before placing the system into operation. The customer must store these credentials safely and
securely offsite. It is recommended that the customer must plan a regular schedule for
updating (rotating) these credentials. Specific procedures and recommendations for CNE
credential management are provided below:

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

• Network Security Recommendations and Procedures

– Network Policies Recommendations

– DNS Recommendations

– Credential Management Procedures

* Platform Agnostics Installation

* Setting Top Of Rack Switch Credentials

* Setting Enclosure Switch Credentials

• Hosting Environment Security Recommendations and Procedures

– Repository Management Recommendations

* System Update (YUM) Recommendations

* Container Repository Recommendations

– Credential Management Specific Procedures

* Setting HP Onboard Administrator (OA) Credentials

* Setting HP Integrated Lights Out Manger (ILO) Credentials

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 40 of 107



* Setting Root Passwords for All Cluster Nodes

* Reset or Delete Credentials for the admusr account on Each and Every Server

* Updating admusr SSH Keys for All Cluster Nodes

* Update the keys

* Change Kubernetes Secrets Encryption Key

– General Security Administration Recommendations and Procedures

* Password Requirements Administration Procedures

* Password Policy Administration Procedures

* User Administration Recommendations

* SSHD Policy Administration Procedures

* Auditd Policy Administration Procedures

* SELINUX Recommendations

• Container Security Recommendations / Procedures

– Container Repository Management Recommendations / Procedures

* System Update (Container) Recommendations

– General Container Security Administration Recommendations and Procedures

* Kubernetes Control Plane Certification Administration Procedures

* Kubernetes Policy Engine (Kyverno)

Network Security Recommendations and Procedures

Network Policies Recommendations

Note

Recommendation: It is recommended to keep the default configuration for the
network policies to provide an extra security layer on the common services.

CNE has implemented network policies on common services. The network policies created
during installation or upgrade to 24.2.x. on the following services:

• AlertManager

• Prometheus

• Grafana

• Jaeger

• OpenSearch

DNS Recommendations

At present, CNE supports three options for DNS:

1. External DNS via Bastion Host forwarding to external server.

2. Local (internal) DNS with DNS server on Bastion host.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 41 of 107



3. DNS Enhancement through CNLB.

CNE's Bastion Host has the Domain Name System Security Extensions (DNSSEC) feature.
DNSSEC adds a layer of trust on top of DNS, by providing authentication. When a FQDN is
looked into the DNS resolver, then DNS performs an extra validation by authenticating the
information of the published of the FQDN.

Note

• Enable DNSSEC for Enhanced DNS Authentication:

You must enable DNSSEC to add authentication into the DNS resolution. CNE
has enabled by default the DNSSEC, but disabled by default the validation of the
DNS records using DNSSEC. It is important to enable the feature once your
infrastructure can provide authentication whenever an FQDN is being resolved by
the DNS server. Having it enabled ensures that the resolved FQDN comes from a
valid party.

• DNS Enhancement through CNLB - Requests outside of cluster:
When DNS requests target external domains (as configured in the platform, for
example, using coredns_external_zones), CoreDNS forwards these requests
through the CNLB. CNLB then routes the requests out of the cluster to user-
managed external DNS servers.

The security of these external DNS requests depends on whether TLS (Transport
Layer Security) is enabled for the connection.

Warning: Without TLS, DNS queries are transmitted in plain text and are
vulnerable to interception or tampering.

• TLS Support for CNLB External DNS Requests:
CNE supports TLS for DNS communication between the cluster and external DNS
servers.

Customers can configure external domains to require TLS, ensuring encrypted
and secure communication. To be effective, the external DNS servers must also
support and accept TLS connections.

• Enable TLS for CNLB External DNS Communication:
To secure DNS traffic routed via CNLB, it is strongly recommended to enable TLS.
This ensures that DNS queries are encrypted, significantly reducing the risk of
data interception or manipulation. Customers should ensure their external DNS
servers are configured to support TLS.

• Network Requirements for DNS Communication:
External DNS servers must allow inbound traffic on port 53/UDP, which is required
for standard DNS queries and responses. If TLS is enabled, ensure that port
53/TCP or the appropriate TLS port is also open and accessible. If these ports are
blocked or misconfigured, DNS resolution for external domains will fail.

• External DNS Servers: External DNS servers are managed outside of Oracle’s
control. It is the organization's responsibility to secure, maintain, and monitor their
external DNS infrastructure.

Not enabling DNSSEC increases the risk of a DNS hijacking attacks.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 42 of 107



Credential Management Procedures

Platform Agnostics Installation

BareMetal CNE supports Platform Agnostics installation from the release 25.1.1xx onwards.

For more information about BareMetal deployment model, see "BareMetal Deployment"
chapter, under section "Deployment Models" in the Oracle Communications Cloud Native
Core, Cloud Native Environment User Guide.

For more about Platform Agnostics installation, see "Platform Agnostic Installation CNE
24.3.1+" chapter under section "Maintenance Procedures" in Oracle Communications Cloud
Native Core, Cloud Native Environment User Guide.

Note

Implications of Platform Agnostics and Passwords

If the BareMetal CNE deployment was performed under Platform Agnostics
Installation, all the servers passwords and hardware passwords (for example, ToR
Switch) will be customer responsibility. CNE neither creates nor updates any of the
servers passwords.

CNE Configuration File for Managing Sensitive Data

Starting with version 25.1.2xx, the installation and upgrade procedures have been updated.
Sensitive data used for the deployment of CNE is now recorded in a single CNE inventory file
named secrets.ini.

CNE automation procedures such as installation, upgrade, and recovery use the information in
the secrets.ini file to provision servers and virtual machines, install cloud native components,
and configure all elements within the cluster to ensure it aligns with CNE platform
specifications.

The secrets.ini file must be properly configured to ensure the successful completion of
installation, upgrade, and recovery procedures.

Recommendation: Review Installation and Upgrade Procedures

It is strongly recommended to review the Installation and Upgrade procedures, with particular
attention to the correct configuration of the secrets.ini file.

Depending on your deployment type, refer to the appropriate sections in the Oracle
Communications Cloud Native Core, Cloud Native Environment Installation, Upgrade, and
Fault Recovery Guide.

• File Preparation: Refer to "Inventory File Preparation" in Appendix A.

• Bare Metal Deployment: Refer to "Performing Automated Installation" in Installing CNE.

• VMware Deployment: Refer to "Predeployment Configuration for VMware" in Installing
CNE.

• OpenStack Deployment: Refer to "Deploying CNE Cluster in OpenStack Environment" in
Installing CNE.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 43 of 107



Recommendation: Delete secrets.ini File After Procedure Completion

Ensure that once the installation or upgrade procedure is finished, the secrets.ini file is
deleted and no longer present within the cluster. Leaving this file in place increases the risk of
credential leakage to unauthorized users.

Setting Top Of Rack Switch Credentials

Note

Recommendation: Follow the configuring the TOR switches procedures.

The Oracle Communications Cloud Native Core, Cloud Native Environment
Installation, Upgrade, and Fault Recovery Guide provides the detailed procedures of
how to configure the TOR switches and configure them for remote monitoring.
Deviations from the standard installation time configurations are not recommended.

For more information, see Oracle Communications Cloud Native Core, Cloud Native
Environment Installation, Upgrade, and Fault Recovery Guide.
This procedure is used to set the credentials on the cisco TOR switch as deployed with the
BareMetal deployment option. Steps for creating and deleting accounts and for setting account
passwords are given below:

For more details, refer to Nexus commands to configure Top of Rack switch username and
password.

1. Log in to the TOR switch (from the Bastion Host):

$ ssh <username>@<switch IP address>

User Access Verification
Password: <password>
 
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
...
...
<switch name>#

2. Change the password for <username>:

# configure
Enter configuration commands, one per line. End with CNTL/Z.
(config)# username <username> password <newpassword>
(config)#exit

3. Create a new user (if required):

# configure
Enter configuration commands, one per line. End with CNTL/Z.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 44 of 107

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/security/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_chapter_01001.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/security/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_chapter_01001.html


(config)# username <newusername> password <newpassword> role [network-
operator|network-admin|vdc-admin|vdc-operator]
(config)#exit

4. Verify the account changes by exiting the ssh session (type exit) and repeat step 1.

# exit
Connection to <switch IP address> closed.
$ 
$ ssh <newusername>@<switch IP address>
User Access Verification
Password: <newpassword>
 
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
...
...
<switch name>#

5. Delete an unrequired user account:

# configure
Enter configuration commands, one per line. End with CNTL/Z.
(config)# no username <username>
(config)#exit

6. Change the enable secret:

(config)# enable secret <newenablepassword>   
(config)# exit 

7. Save the configuration changes:

# copy running-config startup-config
[########################################] 100%
Copy complete, now saving to disk (please wait)...
Copy complete.

Note

• Change TOR passwords before placing site into service: The TOR switch
credentials show the changes prior to placing the site into service.

• Use Strong Passwords: The Network Administrator must choose complex TOR
Switch passwords as per their organization's security guidelines.

Setting Enclosure Switch Credentials

This procedure is used to set the credentials on the HP enclosure switch as deployed with the
BareMetal deployment option. Steps for creating and deleting accounts and for setting account

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 45 of 107



passwords is given below. For additional information, refer to HP commands to configure
enclosure switch username and password section in the Oracle Communications Cloud Native
Core, Cloud Native Environment Installation, Upgrade, and Fault Recovery Guide. .

Setting Enclosure Switch Credentials

1. Log in to the iLO with username and password (from the procedure ):

[root@winterfell ~]# ssh <username>@<iLO address>
<username>@<iLO address>'s password: <password>
User:<username> logged-in to ...(<iLO address> / <ipv6 address>)
 
iLO Advanced 2.61 at  Jul 27 2018
Server Name: <server name>
Server Power: On
 
</>hpiLO->
</>hpiLO-> set /map1/accounts1/<username> password=<newpassword>
 
status=0
status_tag=COMMAND COMPLETED
Tue Aug 20 13:27:08 2019
 
</>hpiLO->

2. Change the password for the current username:

[switchname]local-user <username>class <currentclass> 
[switchname-luser-manage-<username>]password simple <newpassword> 
[switchname-luser-manage-<username>]quit

3. Create a new user account:

</>hpiLO-> create /map1/accounts1 username=<newusername> 
password=<newpassword> group=admin,config,oemHP_rc,oemHP_power,oemHP_vm
status=0
status_tag=COMMAND COMPLETED
Tue Aug 20 13:47:56 2019
 
User added successfully.

4. Verify the account changes by exiting the ssh session (type exit) and repeat step 1.

</>hpiLO-> exit
 
status=0
status_tag=COMMAND COMPLETED
Tue Aug 20 13:30:52 2019
 
 
 
 
CLI session stopped
Received disconnect from <iLO address> port 22:11:  Client Disconnect
Disconnected from <iLO address> port 22

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 46 of 107



 
[bastion host]# ssh <newusername>@<iLO address>
<newusername>@<iLO address>'s password: <newpassword>
User:<newusername> logged-in to ...(<iLO address> / <ipv6 address>)
 
iLO Advanced 2.61 at  Jul 27 2018
Server Name: <server name>
Server Power: On
 
</>hpiLO->

5. Delete the user account that is not required:

</>hpiLO-> delete /map1/accounts1/<username>
 
status=0
status_tag=COMMAND COMPLETED
Tue Aug 20 13:59:04 2019
 
User deleted successfully.

Note

• Set Enclosure Switch Credentials before Placing Into Service: The HP Enclosure
switch credentials show are to be changed prior to placing the site into service.

• Use Strong Passwords: The Network Administrator must choose complex
Enclosure Switch passwords as per their organization's security guidelines.

Hosting Environment Security Recommendations and Procedures

The best way to keep your CNE environment secure is to keep it updated. New CNE releases
are typically carried out every three months. The CNE upgrade does not affect the service and
typically installs the newer versions of:

• Host OSs

• Kubernetes and associated containers

• Common service containers

The upgrade process ensures that the uplifts do not affect active service. See Oracle
Communications Cloud Native Core, Cloud Native Environment Installation, Upgrade, and
Fault Recovery Guide for more details.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 47 of 107



Caution

Following are some repository management recommendations:

• Do not perform any YUM updates on hosts outside of the upgrade pipeline, as this
can interfere and affect negatively the cluster.

• Some updates may require system reboots to complete and thus should only be
performed on nodes not actively providing service.

• The Oracle Linux 9 (OL9 ) security guide is available at: https://
docs.oracle.com/cd/F61088_01/security/. This guide provides additional details for
specific security procedures, several of the procedures found in the general OL9
guide are not appropriate for the CNE environment. Contact My Oracle Support
before attempting any hardening activity that are not recommended.

Repository Management Recommendations

As part of the CNE installation, a central repository must be set. The central repository must
contain the following:

• HTTP Repository: Serves Python binaries and other required packages.

• YUM Oracle Repository: Serves YUM packages. This is a mirror from Oracle Yum
Repository.

• Container Image Repository: Provides the images required for a successful Kubernetes
cluster deployment.

This central repository hosts the required artifacts for a successful CNE installation and
upgrade procedure.

System Update (YUM) Recommendations:

• Keep central YUM repositories updated:

– Ensure that you update the YUM packages in the central repositories to the latest
version. YUM updates are performed whenever you install or upgrade CNE. Keeping
the YUM repository up-to-date ensures that the fixes for all publish vulnerabilities are
applied.

– The deployed YUM Oracle server is a mirror from official Oracle YUM repository. There
are secure mechanisms that are already implemented when performing the retrieval of
this repository (for example, the usage of Gnu Privacy Guard (GPG) keys and HTTPS
connection). The security controls are part of the unbreakable Linux network. For more
information about, GPG keys, see https://linux.oracle.com/security/gpg/index.html.

• Scan YUM Server prior installation:
When you complete setting up a central repository, scan the YUM Oracle server located at
the central repository. For more information about setting up the central repository, see the
"Setting Up a Central Repository" section in Oracle Communications Cloud Native Core,
Cloud Native Environment Installation, Upgrade, and Fault Recovery Guide.

It is a good practice to retrieve the YUM Oracle Server in a secure way from Oracle's
server. For more information, see https://linux.oracle.com/security/gpg/index.htm.

Use any of Software Composition Analysis tools (such as Trivy or Grype) to perform the
scan. If needed, you may perform a Malware scan to the Yum server with any malware
scanning tool.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 48 of 107

https://docs.oracle.com/cd/F61088_01/security/
https://docs.oracle.com/cd/F61088_01/security/
https://support.oracle.com/portal/
https://linux.oracle.com/security/gpg/index.html
https://linux.oracle.com/security/gpg/index.html


Container Repository Recommendations

Scan Container Registry prior installation:

When you complete setting up a central repository, scan the container registry located at the
central repository. For more information about setting up the central repository, see the "Setting
Up a Central Repository" section in Oracle Communications Cloud Native Core, Cloud Native
Environment Installation, Upgrade, and Fault Recovery Guide.

Use any of Software Composition Analysis tools (such as Trivy or Grype) to perform the scan.
All images are scanned and vulnerabilities assessed at product development time, but new
exploits / vulnerabilities may be reported / fixed later.

Scan tools typically use a database of known vulnerabilities. Refer to tool vendor for
instructions on creating off-line (internet isolated) vulnerability databases.

• Scan docker image repositories regularly: Scan your docker image repositories regularly
using a tool such as clair or anchore-engine. All images are scanned and vulnerabilities
are assessed at product development time, but new exploits or vulnerabilities may be
reported or fixed later.

Scan tools use a database of known vulnerabilities. Refer to tool vendor for instructions on
creating off-line (internet isolated) vulnerability databases.

Credential Management Specific Procedures

The given below procedures to manage your credentials:

Setting HP Onboard Administrator (OA) Credentials.

This procedure is applicable only to BareMetal deployments. This procedure is used to set the
credentials on the HP Onboard Administrator as deployed with the BareMetal deployment
option. Steps for creating and deleting accounts and for setting account passwords are shown.
For additional information, refer to HP commands to configure OA username and password
section in the https://support.hpe.com.

1. Log in to the OA:

$ ssh <username>@<OA address>

Note

This is a private system. Do not attempt to log in unless you are unauthorized
user. Any authorized or unauthorized access and use may be monitored and can
result in criminal or civil prosecution under applicable law.

$ ssh <username>@<OA address>
---------------------------------------------------------------------------
--
WARNING: This is a private system.  Do not attempt to login unless you are 
an
authorized user.  Any authorized or unauthorized access and use may be 
moni-
tored and can result in criminal or civil prosecution under applicable law.
---------------------------------------------------------------------------

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 49 of 107



--
Firmware Version: 4.85 
Built:04/06/2018@06:14OA 
 Bay Number:1 
OA Role: Active 
<username>@<OA address>'s password: <password>  
HPE BladeSystem Onboard Administrator 
(C) Copyright 2006-2018 Hewlett Packard Enterprise Development LP 
Type 'HELP' to display a list of valid commands. 
Type 'HELP <command>' to display detailed information about a specific 
command. 
Type 'HELP HELP' to display more detailed information about the help 
system. 
OA-A45D36FD5FB1> 

2. Change the current password:

OA-A45D36FD5FB1> set password <newpassword>  

Output:

Changed password for the"<username>"user account.
 

3. Add new user:

OA-A45D36FD5FB1> add user <newusername> 
New Password: <newpassword> 
Confirm : <newpassword> 

Sample output:

User"<newusername>"created. 
You may set user privileges with the 'SET USER ACCESS' and 'ASSIGN' 
commands. 

4. Set user privilages:

OA-A45D36FD5FB1> set user access <newusername> [ADMINISTRATOR|OPERATOR|
USER] 

Sample output:

"<newusername>" has been given [administrator|operator|user] level 
privileges. 

5. Assign full access to the enclosure for the user:

OA-A45D36FD5FB1> assign server all <newusername>

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 50 of 107



Sample output:

<newusername> has been granted access to the valid requested bay(s

OA-A45D36FD5FB1> assign interconnect all <newusername>

Sample output:

<newusername> has been granted access to the valid requested bay(s)

OA-A45D36FD5FB1> assign oa <newusername>

Sample output:

<newusername> has been granted access to the OA.

6. Verify the new account:

OA-A45D36FD5FB1> exit 

Sample output:

Connection to <OA address> closed.
[bastion host]# ssh <newusername>@<OA address> 
WARNING: This is a private system. Do not attempt to log in unless you are 
unauthorized user. 
Any authorized or unauthorized access and use may be monitored and can 
result in criminal or 
civil prosecution under applicable law. 
Firmware Version : 4.85 
Built : 04/06/2018 @ 06:14 
OA Bay Number : 1 
OA Role : Active 
<newusername>@<OA address>'s password: <newpassword>  
HPE BladeSystem Onboard Administrator 
(C) Copyright 2006-2018 Hewlett Packard Enterprise Development LP 
Type 'HELP' to display a list of valid commands. 
Type 'HELP <command>' to display detailed information about a specific 
command. 
Type 'HELP HELP' to display more detailed information about the help 
system.  

7. Delete the user account that is not required:

OA-A45D36FD5FB1> remove user <username>

Sample output:

Entering anything other than 'YES' will result in the command not 
executing. 

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 51 of 107



Are you sure you want to remove testuser1? yes 
User"<username>"removed.

Setting HP Integrated Lights Out Manger (ILO) Credentials

This procedure is applicable only to BareMetal deployments. This procedure is used to set the
credentials on the HP Integrated Lights Out Managers as deployed with the BareMetal
deployment option. Steps for creating and deleting accounts and for setting account passwords
is shown.

1. Log in to the iLO:

$ ssh <username>@<iLO address> 

Sample output:

<username>@<iLO address>'s password: <password>User:<username> 
logged-in to ...(<iLO address> / <ipv6 address>)
iLO Advanced2.61at Jul272018 
Server Name: <server name> 
Server Power: On 
</>hpiLO->  

2. Change the current password:

</>hpiLO-> set /map1/accounts1/ <username> password= <newpassword>  
status=0 
status_tag=COMMAND COMPLETED 
Tue Aug2013:27:082019 
</>hpiLO-> 

3. Create a new user account:

</>hpiLO-> create /map1/accounts1 username= <newusername> password= 
<newpassword> 
group=admin,config,oemHP_rc,oemHP_power,oemHP_vm 
status=0 
status_tag=COMMAND COMPLETED 
Tue Aug2013:47:562019 
User added successfully.

4. Verify the new user account:

</>hpiLO-> exit 
status=0 
status_tag=COMMAND COMPLETED 
Tue Aug2013:30:522019CLI session stoppedReceived disconnect from <iLO 
address> port22:11: Client Disconnect 
Disconnected from <iLO address> port22 
[bastion host]# ssh <newusername>@<iLO address> 
<newusername>@<iLO address>'s password: <newpassword> 
User:<newusername> logged-in to ...(<iLO address> / <ipv6 address>) 
iLO Advanced2.61at Jul272018 

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 52 of 107



Server Name: <server name>Server 
 Power: On</>hpiLO->

5. Delete the user account that is not required:

</>hpiLO-> delete /map1/accounts1/ <username> 
status=0 
status_tag=COMMAND COMPLETED 
Tue Aug2013:59:042019 
User deleted successfully. 

Setting Root Passwords for All Cluster Nodes

The procedure to reset the root account requires that the administrator log in to each and every
server. This procedure is applicable to all CNE deployments.

To reset the root account, perform the following steps for each and every server in the cluster:

1. Log in to the next server:

$ ssh admusr@ <cluster server IP>

2. Perform the root password change:

$ sudo passwd root

New password: <new password>
Retype new password: <new password>
Retype new password:<new password> 

3. Repeat step 1 and step 2 for each and every server in the cluster.

Note

The administrator (admusr) account is provided without a usable password hash. Thus
requiring the use of SSH keys to access the account. The SUDO user access is
configured without the requirement of a password. If you would like to enable the
SUDO passwords for the administrator, you also need to assign a password to the
administrator account using a procedure very similar to the one outlined above.

Reset or Delete Credentials for the admusr account on Each and Every Server

The procedure to reset or delete the admusr account. This procedure requires root privileges
and must be applied on each and every server.

To reset or delete the admusr account, perform the following steps for each and every server in
the cluster:

1. Log in to the next server:

$ ssh admusr@ <cluster server IP>

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 53 of 107



or

$ ssh cloud-user@<cluster server IP>

2. Perform the root password change:

Admusr:

$ sudo passwd -l admusr
New password: <new password>
Retype new password: <new password>
Retype new password: <new password>

Cloud-user:

$ sudo passwd -l cloud-user
New password: <new password>
Retype new password: <new password>
Retype new password: <new password>

3. Repeat step 1 and step 2 for each and every server in the cluster.

Updating admusr SSH Keys for All Cluster Nodes

There are two sets of SSH keys used in a deployed cluster: The key used to access the and
the key used to access the cluster servers. This procedure is applicable to all CNE
deployments.

These key-pairs are generated at install time and are only usable on the cluster they were
generated for. The public key portion of the key pair is typically provided to administrators who
will manage the cluster. The key pair used to access the cluster servers should be kept local to
the cluster:

Table 3-4    Updating admusr SSH Keys

Key Pair Name Public Key Distribution Private Key Distribution

Bastion Host Place copy in the authorized_keys
file on the .

Cluster Admin: Place in the cluster admin
key agent (e.g., ssh-agent or pageant)
external to the cluster. Do not copy to any
host on the cluster.

Cluster Hosts Place a copy in the
authorized_keys files on each and
every cluster host; do not configure
on the .

Bastion Host: ~admusr/.ssh directory. This
will be used when performing orchestration
activities (install / upgrade).

To replace either of these key pairs starts with an openssh request to generate a new keypair:

ssh-keygen -b 4096 -t rsa -C "New SSH Key" -f
      .ssh/new_CNE_id_rsa -q -N ""

This command generates the following key pair:

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 54 of 107



Table 3-5    Key pair

Key Name Purpose

new_CNE_id_rsa The private key

new_CNE_id_rsa.pub The public key

Updating the keys

1. Log in to the and generate a new key pair using the ssh-keygen command given above:

$ ssh-keygen -b 4096 -t rsa -C "New SSH Key" -f /var/CNE/cluster/
<cluster_name>/.ssh/new_CNE_id_rsa -q -N ""

2. Copy the private key portion of the key off cluster and make it available to your ssh agent
of choice or store it in the .ssh directory of your client machine. See instructions for your
specific SSH client (for example, putty or openssh)

3. Add the new public key to the authorized key file on the :

$ cat ~/.ssh/new_CNE_id_rsa.pub >> ~/.ssh/authorized_keys

4. Confirm the permissions of the .ssh directory and files:

$ ls -la ~/.ssh
total 32
drwx------. 2 admusr admusr 4096 Feb 25 15:48 .
drwx------. 42 admusr admusr4096 Feb 24 15:14 ..
-rw-------. 1 admusr admusr 796 Jan 28 14:43 authorized_keys
-rw-------. 2 admusr admusr 545 Feb 12 13:58 config
-rw-------. 1 admusr admusr 3239 Feb 25 15:48 new_CNE_id_rsa
-rw-r--r–. 1 admusr admusr 737 Feb 25 15:48 new_CNE_id_rsa.pub

In general, the .ssh directory should be mode 700 and the files under that directory should
be mode 600.

5. Confirm that the new key works. Remove the old key from your ssh client's agent (see
instructions for your client) and confirm that you can still log in.

6. Assuming that you were able to Log in using the new key pair, remove the old key pair
from the authorized_keys file using your favorite editor.

In general, the authorized_keys file should at this point have two keys in it - the old one
and the new one. The new one should be at the bottom.

Note

Access to Bastion Host container registry is TLS enabled and only CNE has access to
it.

Change Kubernetes Secrets Encryption Key

The procedure is to change the key used to encrypt Secrets stored in the CNE Kubernetes
cluster. Secret encryption is enabled by default during CNE install or upgrade.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 55 of 107



To change Kubernetes secrets encryption key, perform the following steps:

1. Locate in Bastion host:

$ ssh <username>@<OA address>

2. Generate a new key with Approved Oracle Linux Randomness:

$ NEW_KEY=$(head -c 32 /dev/urandom | base64)

3. Generate a new key with Approved Oracle Linux Randomness:

$ KEY_NAME=$(cat /dev/random | tr -dc '[:alnum:]' | head -c 10)

4. Run the following command:

$ kubectl get nodes | awk '/control-plane/ {print $1}' | xargs -I{} ssh {} 
" sudo sed -i '/keys:$/a\        - name: key_$KEY_NAME\n\          
secret: $NEW_KEY' /etc/kubernetes/ssl/secrets_encryption.yaml; sudo 
cat /etc/kubernetes/ssl/secrets_encryption.yaml"

Output shows new encryption key, key name and the contents of /etc/kubernetes/ssl/
secrets_encryption.yaml file:

This site is for the exclusive use of Oracle and its authorized customers 
and partners. Use of this site by customers and partners is subject to the 
Terms of Use and Privacy Policy for this site, as well as your contract 
with Oracle. Use of this site by Oracle employees is subject to company 
policies, including the Code of Conduct. Unauthorized access or breach of 
these terms may result in termination of your authorization to use this 
site and/or civil and criminal penalties.
kind: EncryptionConfig
apiVersion: v1
resources:
  - resources:
    - secrets
 
    providers:
    - secretbox:
        keys:
        - name: key_ZOJ1Hf5OCx
          secret: l+CaDTmMkC85LwJRiWJ0LQPYVtOyZ0TdtNZ2ij+kuGA=
        - name: key
          secret: ZXJ1Ulk2U0xSbWkwejdreTlJWkFrZmpJZjhBRzg4U00=
    - identity: {}
    1m
5    

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 56 of 107



5. Restart api server by executing following command. This ensures that all the new secrets
will be encrypted with the new key.

kubectl get nodes | awk '/control-plane/ {print $1}' | xargs -I{} ssh {} " 
sudo mv /etc/kubernetes/manifests/kube-apiserver.yaml ~; sleep 2; sudo mv 
~/kube-apiserver.yaml /etc/kubernetes/manifests"

6. Run the following command to encrypt all the existing secrets with a new key:

$kubectl get secrets --all-namespaces -o json | kubectl replace -f-

Output:

secret/CNE-cert-manager-webhook-ca replaced
...
secret/sh.helm.release.v1.CNE-tracer.v1 replaced
secret/webhook-server-cert replaced
Error from server (Conflict): error when replacing "STDIN": Operation 
cannot be fulfilled on secrets "alertmanager-CNE-kube-prom-stack-kube-
alertmanager-generated": the object has been modified; please apply your 
changes to the latest version and try again
Error from server (Conflict): error when replacing "STDIN": Operation 
cannot be fulfilled on secrets "alertmanager-CNE-kube-prom-stack-kube-
alertmanager-tls-assets-0": the object has been modified; please apply 
your changes to the latest version and try again
Error from server (Conflict): error when replacing "STDIN": Operation 
cannot be fulfilled on secrets "alertmanager-CNE-kube-prom-stack-kube-
alertmanager-web-config": the object has been modified; please apply your 
changes to the latest version and try again

Note

There may exist some errors depending on how the secret was created, but you
can verify the content of encrypted secret using the following commands.

7. For each controller node (i.e. ctrl-1), locate in the controller node.

8. Run (with sudo) the following command. This shows all existing secrets that would launch
this command from a controller node after select any secret to verify the information
related the new encryption key, using cert and key pem files:

sudo ETCDCTL_API=3 /usr/local/bin/etcdctl --cert /etc/ssl/etcd/ssl/<cert 
pem file> --key /etc/ssl/etcd/ssl/<key pem file> get --keys-only=true --
prefix /registry/secrets

9. To verify whether the new key is being used for encrypting existing secrets by running the
following command from a controller node: Replace <cert pem file>, <key pem file> and
<secret> with their corresponding values.

sudo ETCDCTL_API=3 /usr/local/bin/etcdctl --cert /etc/ssl/etcd/ssl/<cert 
pem file> --key /etc/ssl/etcd/ssl/<key pem file> get /registry/secrets/
<namespace>/<secret> -w fields | grep Value

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 57 of 107



Output:

[cloud-user@CNE3-user-k8s-ctrl-3 ~]$ sudo ETCDCTL_API=3 /usr/local/bin/
etcdctl 
--cert /etc/ssl/etcd/ssl/node-CNE3-user-k8s-ctrl-1.pem 
--key /etc/ssl/etcd/ssl/node-CNE3-user-k8s-ctrl-1-key.pem get /registry/
secrets/default/secret1 -w fields | grep Value
"Value" : "k8s:enc:secretbox:v1:key_ZOJ1Hf5OCx:<ENCRYPTED_DATA>"

In this example, the new key key_ZOJ1Hf5OCx is being used to encrypt 
secret1 secret.

10. Repeat steps 8 and 9 for each and every controller server in the cluster.

General Security Administration Recommendations and Procedures

Note

Record configuration changes: In a disaster recovery scenario, Oracle provided
procedures will only restore base system behavior (they will not include restoration of
an special configurations or tweaks). We recommend that all post-delivery
customization be logged or automated using tools such as Ansible.

Password Requirements Administration Procedures

The following are the recommended password requirements:

• Must have length between 20 and 32 characters

• Must include at least one lower case letter

• Must include at least one upper case letter

• Must include at least one digit

• Must include at least one of the mentioned special characters: ,%~+.:_/-

The password policy can vary depending on your local policies or IT directives.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 58 of 107



Note

• GRUB Password Policies:

– The password must contain at least eight characters.

– The password must contain uppercase and lowercase characters.

– The password must contain at least special character except single and
double quotes. For example ~ @ # ^ * - _ + [ { } ] : . / ? % = !

– The password must contain at least two digits.

• Password Policy Appliance: It is highly recommended to follow the local
password policies (that is, how a password must be created and the management
of it). In case there is no local password policies exist, follow the given password
policy.

• Plan Credential Rotation: It is important to plan ahead a recurrent credential
rotation. Follow the quoted procedures in this guideline, schedule and perform
manual credential rotation.The timespan to rotate them depends on your
password policies, but it is recommended at most one year to update the
credentials.

• Password Management: In order to keep track of the inserted passwords, it is
highly recommended to use a password manager.

• Use Unique passwords: It is highly recommended to use a unique password for
each CNE password. Avoid reusing passwords, specially for root access.

Password Login Policy Administration Procedures

In general, the host environments use a user account named admusr (cloud-user in vCNE
deployments) which is not configured with a password; the only way to access this account is
using SSH keys.

Note

• Use SSH Keys rather than passwords: We recommend using SSH keys rather
than passwords for all non-root accounts. The root account cannot be accessed
via ssh; the only access is through the console.

• Root Password Well Secured: For the root account, we recommend setting a
password and storing it off-site to be used only for break-glass console access to
the host.

User Administration Recommendations

Customers may want to create additional accounts to manage separate concerns (Example: a
dbadmin account, a k8sadmin account, and so on). This can be done using normal Linux user
administration procedures.

SSHD Policy Administration Procedures

The customer may want to create augment the standard sshd configuration to perform
additional hardening; this can be done using normal Linux ssh administration procedures. In a

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 59 of 107



disaster recovery scenario, Oracle provided procedures will only restore base system behavior
(they will not include restoration of an special configurations or tweaks).

Note

Review changes with Oracle Support: We recommend reviewing any planned
changes to sshd configuration with your Oracle Support contact. Improper sshd
configuration can either open the system up to attacks or prevent proper system
operation.

Auditd Policy Administration Procedures

Customers may want to augment the standard auditd configuration to perform additional
monitoring; this can be done using normal Linux auditd administration procedures. Place all
customizations in a separate file in the /etc/audit/rules.d directory, do not modify any of the
other existing audit configuration files.

Container Security Recommendations and Procedures

The following are the container security recommendations and procedures:

Container Repository Management Recommendations and Procedures
The following are the container repository management recommendations and procedures:

System Update (Container) Recommendations

Note

Recommendation: Keep central Image repositories up-to-date.

Keep central repositories up-to-date with latest recommended container packages;
container updates are performed on-site whenever a fresh install or upgrade is
performed. An up-to-date container repository is required for both fresh install and
upgrade operations.

General Container Security Administration Recommendations and Procedures

Kubernetes Control Plane Certification Administration Procedures
Recommendation: keep monitoring the Kubernetes Certificates expire date.

Kubernetes uses many different TLS certificates to secure access to internal services. These
certificates are automatically renewed during upgrade. However, if upgrade is not performed
regularly, these certificates may expire and cause the Kubernetes cluster to fail. For more
details, refer to the Renewing Kubernetes Certificates procedure inOracle Communications
Cloud Native Core, Cloud Native Environment User Guide.

Kubernetes Policy Engine (Kyverno)

CNE is deploying Kyverno. This provides policies to ensure that malicious applications do not
corrupt the Kubernetes controller, worker nodes and cluster data.

Policies can be used to control and monitor workloads running on CNE, and also can be used
to audit workloads running on Kubernetes. Kyverno framework is deployed as common service
in CNE.

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 60 of 107



Note

• Importance of Kyveno

– CNE has deployed a set of baseline policies, in order to guarantee an
essential set of controls from known privilege escalations.

– In the end, these will represent the minimum standard of Policy protection that
all OC-CNE cluster will have by default.

– Kyverno policies should not be modified nor disabled, otherwise the security
risk is heavily increased and it is open to unknown attacks.

• Kyverno default setting: From 23.2.x and onwards, CNE has set all the Kyverno
policies validation mode as "enforced". This means that, if a policy is being
violated, the "enforce" mode will block any resource creation or updates that does
not comply.

• Keep the Kyverno metrics ON: Keeping Kyverno metrics ON populates the
Grafana's dashboards with the Policy enforcement and compliance monitoring.

Common Service Security Recommendations and Procedures

The CNE Common Services bundle integrates various third-party components, each utilizing
different approaches. Within these common services, there is a subset known as Observability
Services:

• Grafana

• Prometheus

• Alert Manager

• Opensearch

• Jaeger

CNC Console Integration with CNE

The CNC Console is a module that offers the following capabilities:

• Graphical user interface (GUI) for NF Supporting API only

• Unified GUI access for NFs across and within Kubernetes (K8s) clusters

• Hyperlink support for reverse-proxy-friendly K8s services

• Secure access to both GUI and APIs

CNC Console Security Features

The CNC Console (CNCC) includes robust security features encompassing authentication,
authorization, and access control:

• Authentication can be done using SAML SSO, LDAP, or local identity storage.

• RBAC (Role Based Access Control) access control is provided.

CNCC provide two kinds of logs for security and audit.

• Audit log containing user authentication/access details.

• Security log contains the complete request/response

Chapter 3
Common Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 61 of 107



In addition, CNC Console can enable HTTPS connection.

Enhance Security with CNC Console
Integrating CNC Console (CNCC) with CNE significantly strengthens the overall security
posture. While CNE delivers monitoring capabilities, CNCC ensures secure, role-based access
to common services, particularly the observability services.

Key benefits of CNE and CNC Console integration include:

• Authentication using CNCC IAM

• Configurated CNCC GUI, based on authorization roles

CNE Common Services can be set to enable HTTPS communication.

It is recommended to install CNC Console, in order to have the features listed above within
CNE.

CNC Console Integration
To install the CNC Console, refer to the Cloud Native Configuration Console Installation,
Upgrade, and Fault Recovery Guide.

For deployment configurations examples, refer to the "Common Service Instances
Configuration Examples" section in the "Common Service Single Cluster Deployment Instance
Configuration Examples" chapter, in Cloud Native Configuration Console Installation, Upgrade,
and Fault Recovery Guide.
For additional guidance, refer to the "Implementing Security Recommendations and
Guidelines" section in the Cloud Native Configuration Console (CNC Console) Specific
Security Recommendations and Guidelines chapter.

3.2 Cloud Native Core Network Function Specific Security
Recommendations and Guidelines

Note

kubectl commands might vary based on the platform deployment. Replace kubectl
with Kubernetes environment-specific command line tool to configure Kubernetes
resources through kube-api server. The instructions provided in this document are as
per the Oracle Communications Cloud Native Core, Cloud Native Environment (CNE)
version of kube-api server.

Caution

User, computer and applications, and character encoding settings may cause an issue
when copy-pasting commands or any content from PDF. PDF reader version also
affects the copy-pasting functionality. It is recommended to verify the pasted content
especially when the hyphens or any special characters are part of the copied content.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 62 of 107



3.2.1 Network Repository Function (NRF) Specific Security
Recommendations and Guidelines

This section provides Network Repository Function (NRF) specific security recommendations
and guidelines. Security recommendations common to all 4G and 5G NFs are available in the 
Common Security Recommendations and Guidelines section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

• NRF Access Token Secret Configuration

• NRF Access Token Secret Update

• NRF MySQL Secret configuration

– Kubernetes secret creation for NRF privileged database user

– Kubernetes secret update for NRF privileged database user

– Kubernetes secret creation for NRF application database user

– Kubernetes secret update for NRF application database user

– Creating Secrets for DNS NAPTR - Alternate route service

• Network Policies

NRF Access Token Secret Configuration

Use the following procedure to create access token secret:

1. Create the following files:

• ECDSA private keys for algorithm ES256 and corresponding valid public certificates
for NRF

• RSA private keys for algorithm RS256 and corresponding valid public certificates for
NRF

Note: Creation of private keys, certificates, and passwords are at the discretion of user.

2. Log in to Bastion Host or server from where kubectl can be executed.

3. Create namespace for the secret by performing the following steps:

a. Verify required namespace already exists in system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is available. If not
available, create the namespace using following the command:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 63 of 107



Note: This is an optional step. In case required namespace already exists, proceed
with next procedures.

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace ocnrf

4. Create Kubernetes secret for Access token by performing the following steps:

a. To create Kubernetes secret for HTTPS, following files are required:

• ECDSA private keys for algorithm ES256 and corresponding valid public
certificates for NRF

• RSA private keys for algorithm RS256 and corresponding valid public certificates
for NRF

Note

Creation process for private keys, certificates and passwords is based on the
discretion of the user or operator. Only unencrypted keys and certificates are
supported. PKCS1 and PKCS8 are the only supported versions for RSA, and
PKCS8 is the only supported version for ECDSA.

b. Run the following command to create secret. The names used below are same as
provided in custom values.yaml in NRF deployment:

$ kubectl create secret generic <ocnrfaccesstoken-secret-name>  --from-
file=<ecdsa_private_key.pem>
 --from-file=<rsa_private_key.pem>  --from-file=<ssl_truststore.txt> --
from-file=<keystore_password.txt> 
  --from-file=rsa_certificate.crt --from-file=<ecdsa_certificate.crt> -
n <Namespace of NRF AccessToken secret>

Note: Note down the command used during the creation of Kubernetes secret, this
command will be used for updates in future.

$ kubectl create secret generic ocnrfaccesstoken-secret  --from-
file=ecdsa_private_key.pem 
--from-file=rsa_private_key.pem  --from-file=ssl_truststore.txt --from-
file=keystore_password.txt  --from-file=
rsa_certificate.crt --from-file=ecdsa_certificate.crt -n ocnrf

c. Run the following command to verify secret created:

$ kubectl describe secret <ocnrfaccesstoken-secret-name> -n <Namespace 
of NRF AccessToken secret>

Example:

 $ kubectl describe secret ocnrfaccesstoken-secret -n ocnrf

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 64 of 107



NRF Access Token Secret Update

Use the following procedure to update access token secret:

1. Update the following files:

• ECDSA private keys for algorithm ES256 and corresponding valid public certificates
for NRF

• RSA private keys for algorithm RS256 and corresponding valid public certificates for
NRF

Note: Updating private keys, certificates, and passwords are at the user's discretion.

2. Log in to Bastion Host or server from where kubectl can be executed.

3. Update the secret with new or updated details by performing the following steps:

a. Copy the exact command used in above section during creation of secret.

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace -f - -n
<Namespace of Access Token secret>".

c. Sample format of the create secret command is given below:

$ kubectl create secret generic <ocnrfaccesstoken-secret> --from-
file=<ecdsa_private_key.pem>
 --from-file=<rsa_private_key.pem> --from-file=<rsa_certificate.crt> --
from-file=<ecdsa_certificate.crt>
 --dry-run -o yaml -n <Namespace of NRF deployment> | kubectl replace -
f - -n <Namespace of NRF deployment>

Example: The names used below are same as provided in custom_values.yaml in
NRF deployment:

$ kubectl create secret generic ocnrfaccesstoken-secret --from-
file=ecdsa_private_key.pem
 --from-file=rsa_private_key.pem --from-file=rsa_certificate.crt --from-
file=ecdsa_certificate.crt 
--dry-run -o yaml -n ocnrf | kubectl replace -f - -n ocnrf

d. Run the updated command.

e. After successful secret update, the following message is displayed:

secret/<ocnrfaccesstoken-secret> replaced

NRF MySQL Secret Configuration

This section describes the secret creation for two types of NRF users. Different users have
different sets of permissions.

• NRF privileged user: This user category has the complete set of permissions. The user can
perform DDL and DML operations to install, upgrade, roll back or delete operations.

• NRF application user: This user category has fewer permissions and is used by NRF
applications during service operations handling. The user can insert, update, get, and
remove the records but cannot create, alter, and drop the database and tables.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 65 of 107



Kubernetes secret creation for NRF privileged database user

This section explains the steps to create Kubernetes secrets for accessing NRF database for
the privileged user.

1. Log in to Bastion Host or server from where kubectl can be executed.

2. Create namespace for the secret by performing the following steps:

a. Verify if required namespace already exists in the system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is available. If not
available, create the namespace using the following command:
Note: This is an optional step. In case required namespace already exists, proceed
with next procedures.

$ kubectl create namespace <required namespace>

For example:

$ kubectl create namespace ocnrf

3. Create Kubernetes secret for privileged user as follows:

a. Create Kubernetes secret for MySQL:

$ kubectl create secret generic <privileged user secret name> --from-
literal=dbUsername=<NRF Privileged Mysql database username> --from-
literal=dbPassword=<NRF Privileged Mysql User database passsword> --
from-literal=appDbName=<NRF Mysql database name> --from-
literal=networkScopedDbName=<NRF Mysql Network database name> --from-
literal=commonConfigDbName=<NRF Mysql Common Configuration DB> --from-
literal=leaderElectionDbName=<Perf-Info DB> -n <Namespace of NRF 
deployment>

Note

Note down the command used during the creation of Kubernetes secret, this
command is used for updates in future.

Example:

$ kubectl create secret generic privilegeduser-secret --
fromliteral=dbUsername=nrfPrivilegedUsr --
fromliteral=dbPassword=nrfPrivilegedPasswd --
fromliteral=appDbName=nrfApplicationDB --
fromliteral=networkScopedDbName=nrfNetworkDB --
fromliteral=commonConfigDbName=commonConfigurationDB --
fromliteral=leaderElectionDbName=leaderElectionDB -n ocnrf

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 66 of 107



b. Verify the secret created using above command:

$ kubectl describe secret <database secret name> -n <Namespace of NRF 
deployment>

Example:

$ kubectl describe secret privilegeduser-secret -n ocnrf

Kubernetes secret update for NRF privileged database user

This section explains the steps to update Kubernetes secrets for accessing NRF database for
the privileged user.

1. Log in to Bastion Host or server from where kubectl can be executed.

2. This section describes the steps to update the secrets. Update Kubernetes secret for
privileged user as follows:

a. Copy the exact command used in section during creation of secret:

$ kubectl create secret generic <privileged user secret name> 
--from-literal=dbUsername=<NRF Privileged MySQL database username> 
--from-literal=dbPassword=<NRF Privileged MySQL database password> 
--from-literal=appDbName=<NRF MySQL database name> 
--from-literal=networkScopedDbName=<NRF MySQL Network database name> 
--from-literal=commonConfigDbName=<NRF MySQL Common Configuration DB> -
n 
<Namespace of NRF deployment>

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace -f - -n
<Namespace of MySQL secret>". After update, the command will be as follows:

$ kubectl create secret generic <privileged user secret name> 
--from-literal=dbUsername=<NRF Privileged MySQL database username> 
--from-literal=dbPassword=<NRF Privileged MySQL database password> 
--from-literal=appDbName=<NRF MySQL database name> 
--from-literal=networkScopedDbName=<NRF MySQL Network database name> 
--from-literal=commonConfigDbName=<NRF MySQL Common Configuration DB> --
dry-run -o yaml 
-n <Namespace of NRF deployment> | kubectl replace -f - -n <Namespace 
of NRF deployment>

c. Run the updated command. The following message is displayed:

secret/<database secret name> replaced

Kubernetes secret creation for NRF application database user

This section explains the steps to create Kubernetes secrets for accessing NRF database for
the application database user.

1. Log in to Bastion Host or server from where kubectl can be executed.

2. Create namespace for the secret by performing the following steps:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 67 of 107



a. Verify if required namespace already exists in the system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is available. If not
available, create the namespace using the following command:
Note: This is an optional step. In case required namespace already exists, proceed
with next procedures.

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace ocnrf

3. Create Kubernetes secret for NRF application database user for configuring records is as
follows:

a. Create Kubernetes secret for NRF application database user:

$ kubectl create secret generic <appuser-secret name> --from-
literal=dbUsername=<NRF APPLICATION User Name> --from-
literal=dbPassword=<Password for NRF APPLICATION User> --from-
literal=appDbName=<NRF Application Database> -n <Namespace of NRF 
deployment>

Note

Note down the command used during the creation of Kubernetes secret, this
command will be used for updates in future.

Example:

$ kubectl create secret generic appuser-secret --from-
literal=dbUsername=nrfApplicationUsr --from-
literal=dbPassword=nrfApplicationPasswd --from-
literal=appDbName=nrfApplicationDB -n ocnrf 

b. Verify the secret creation:

$ kubectl describe secret <appuser-secret name> -n <Namespace of NRF 
deployment>

Example:

$ kubectl describe secret appuser-secret -n ocnrf

Kubernetes secret update for NRF application database user

This section explains the steps to update Kubernetes secrets for accessing NRF database for
the application database user.

1. Log in to Bastion Host or server from where kubectl can be executed.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 68 of 107



2. This section explains how to update the Kubernetes secret.

a. Copy the exact command used in above section during creation of secret:

$ kubectl create secret generic <appuser-secret name> --from-
literal=dbUsername=<NRF APPLICATION
 User Name> --from-literal=dbPassword=<Password for NRF APPLICATION 
User> --from-literal=appDbName=<NRF 
Application Database> -n <Namespace of NRF deployment>

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace -f - -n
<Namespace of MySQL secret>". After update, the command will be as follows:

$ kubectl create secret generic <database secret name> --from-
literal=dbUsername=<NRF APPLICATION 
User Name> --from-literal=dbPassword=<Password for NRF APPLICATION 
User> --from-literal=appDbName=<NRF 
Application Database> --dry-run -o yaml -n <Namespace of NRF 
deployment> | kubectl replace -f - -n <Namespace 
of NRF deployment>

c. Run the updated command. The following message is displayed:

secret/<database secret name> replaced

Creating Secrets for DNS NAPTR - Alternate route service

This section provides information about how to create secret for DNS NAPTR in Alternate
Route service.

1. Run the following command to create secret:

$ kubectl create secret generic <DNS NAPTR Secret> --from-
literal=tsigKey=<tsig key generated of DNS Server> --from-
literal=algorithm=<Algorithm used to generate key> --from-
literal=keyName=<key-name used while generating key> -n <Namespace of NRF 
deployment>

Note

Note down the command used during the creation of the secret. Use the
command for updating the secrets in the future.

Example:

$ kubectl create secret generic tsig-secret  --from-
literal=tsigKey=kUVdLp2SYshV/mkE985LEePLt3/
K4vhM63suWJXA9T6DAl3hJFQQpKAcK5imcIKjI5IVyYk2AJBkq3qtQvRTGw== --from-
literal=algorithm=hmac-sha256 --from-literal=keyName=ocnrf-tsig -n ocnrf

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 69 of 107



2. Run the following command to verify the secret created:

$ kubectl describe secret <DNS NAPTR Secret> -n <Namespace of NRF 
deployment>

Example:

$ kubectl describe secret tsig-secret -n ocnrf

Note

Creating DNS Server Key is on discretion of the operator.

Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Core, Network Repository Function Installation, Upgrade, and Fault Recovery Guide.

3.2.2 Service Communication Proxy (SCP) Specific Security
Recommendations and Guidelines

This section provides Oracle Communications Cloud Native Core, Service Communication
Proxy (SCP) specific security recommendations and guidelines. Security recommendations
common to all 4G and 5G Network Functions (NFs) are available in the Common Security
Recommendations and Guidelines section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 70 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


Note

You must perform the following procedures in the same sequence as described in the
"Installing SCP" section in Oracle Communications Cloud Native Core, Service
Communication Proxy Installation, Upgrade, and Fault Recovery Guide.

• Configuring Database for SCP

– Creating and Updating Kubernetes Secret for Privileged Database User

– Creating and Updating Kubernetes Secret for Application Database User

– Configuring SSL or TLS Certificates to Enable HTTPS

• Network Policies

Configuring Database for SCP

The following SCP users have different sets of permissions:

• SCP privileged user: This user category has a complete set of permissions. The user can
perform Data Definition Language (DDL) and Data Manipulation Language (DML)
operations to install, upgrade, roll back or delete operations.

• SCP application user: This user category has fewer permissions and is used by SCP
applications during service operations handling. The user can insert, update, get, and
remove the records. This user cannot create, alter, and drop the database and tables.

This section explains how database administrators can create users and database in a single
and multisite deployment.

Note

While performing a fresh installation, if SCP is already deployed, purge the
deployment and remove the database and users that were used for the previous
deployment.

1. Log in to the MySQL server and ensure that there is a privileged user (<privileged user>)
with the privileges similar to a root user.

2. On each SQL node, run the following command to verify that the privileged user has the
required permissions to allow connections from remote hosts:

mysql>select host from mysql.user where User='<privileged username>';
+------+
| host |
+------+
| % |
+------+
1 rowinset(0.00 sec)

3. If you do not see '%' in the output of the above mentioned query, then run the following
command to modify this field to allow connections to remote host:

mysql>update mysql.user set host='%' where User='<privileged username>';
Query OK, 0rowsaffected (0.00 sec)
Rowsmatched: 1 Changed: 0 Warnings: 0

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 71 of 107



mysql> flush privileges;
Query OK, 0rowsaffected (0.06 sec)

Note

Perform this step on each SQL node.

4. To automatically create an application user, backup database, and application database,
ensure that the createUser parameter in the ocscp_values.yaml file is set to true. To
manually create an application user, application database, and backup database, set the
createUser parameter to false in the ocscp_values.yaml file.
By default, the createUser parameter value is set to true.

5. Run the following commands to create an application and backup database:

• For application database:

CREATE DATABASE <scp_dbname>;

Example:

CREATE DATABASE ocscpdb;

• For backup database:

CREATE DATABASE <scp_backupdbname>;

Example:

CREATE DATABASE ocscpbackupdb;

6. Run the following command to create an application user and assign privileges:

CREATE USER '<username>'@'%' IDENTIFIED BY '<password>';
GRANT SELECT, INSERT, DELETE, UPDATE ON <scp_dbname>.* TO <username>@'%';

Where,

• <scp_dbname> is the database name.

• <username> is the database username.

Example:

CREATE USER 'scpApplicationUsr'@'%' IDENTIFIED BY 'scpApplicationPasswd';
GRANT SELECT, INSERT, DELETE, UPDATE ON ocscpdb.* TO scpApplicationUsr@'%';

7. Run the following command to grant NDB_STORED_USER permission to the application
user:

GRANT NDB_STORED_USER ON *.* TO '<username>'@'%' WITH GRANT OPTION ;

Example:

GRANT NDB_STORED_USER ON *.* TO 'scpApplicationUsr'@'%' WITH GRANT OPTION ;

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 72 of 107



Note

During a fresh SCP installation, the application database and backup database
must be removed manually by running the following command:

drop database <dbname>;

SCP Kubernetes Secret Configuration

Note

Do not use the same credentials in different Kubernetes secrets, and the passwords
stored in the secrets must follow the password policy requirements as recommended
in #unique_43.

Creating and Updating Kubernetes Secret for Privileged Database User

This section explains how to create and update Kubernetes secret for privileged user to access
the database.

1. Run the following command to create Kubernetes secret:

kubectl create secret generic <secret name> --from-
literal=DB_USERNAME=<privileged user> --from-
literal=DB_PASSWORD=<privileged user password> --from-literal=DB_NAME=<scp 
application db> --from-literal=RELEASE_DB_NAME=<scp backup db> -n <scp 
namespace>

Where,

• <secret name> is the secret name of the Privileged User.

• <privileged user> is the username of the Privileged User.

• <privileged user password> is the password of the Privileged User.

• <scp backup db> is the backup database name.

• <scp namespace> is the namespace of SCP deployment.

Note

Note down the command used during the creation of Kubernetes secret. This
command is used for updating the secrets in the later releases.

Example:

kubectl create secret generic privilegeduser-secret --from-
literal=DB_USERNAME=scpPrivilegedUsr --from-
literal=DB_PASSWORD=scpPrivilegedPasswd --from-literal=DB_NAME=ocscpdb --from-
literal=RELEASE_DB_NAME=ocscpbackupdb -n scpsvc

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 73 of 107



2. Run the following command to verify the secret created:

kubectl describe secret <secret name> -n <scp namespace>

Where,

• <secret name> is the secret name of the Privileged user.

• <scp namespace> is the namespace of SCP deployment.

Example:

kubectl describe secret privilegeduser-secret -n ocscp

Sample output:

Name:         privilegeduser-secret
Namespace:    ocscp
Labels:       <none>
Annotations:  <none>

Type:  Opaque

Data
====
mysql-password:  10 bytes
mysql-username:  17 bytes

Creating and Updating Kubernetes Secret for Application Database User

This section explains how to create and update Kubernetes secret for application user to
access the database.

1. Run the following command to create a Kubernetes secret:

kubectl create secret generic <secret name> --from-
literal=DB_USERNAME=<application user> --from-
literal=DB_PASSWORD=<application user password> --from-
literal=DB_NAME=<scp application db> -n <scp namespace>

Where,

• <secret name> is the secret name of the Privileged User.

• <application user> is the username of the Application User.

• <application user password> is the password of the Application User.

• <scp application db> is the application database name.

• <scp namespace> is the namespace of SCP deployment.

Note

Note down the command used during the creation of Kubernetes secret. This
command is used for updating the secrets in the later releases.

Example:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 74 of 107



kubectl create secret generic appuser-secret --from-
literal=DB_USERNAME=scpApplicationUsr --from-
literal=DB_PASSWORD=scpApplicationPasswd --from-literal=DB_NAME=ocscpdb -n
scpsvc

2. Run the following command to verify the secret created:

kubectl describe secret <application user secret name> -n <namespace>

Where,

• <application user secret name> is the secret name of the application user.

• <scp namespace> is the namespace of SCP deployment.

Example:

kubectl describe secret appuser-secret -n ocscp

Sample output:

Name:         appuser-secret
Namespace:    ocscp
Labels:       <none>
Annotations:  <none>

Type:  Opaque

Data
====
mysql-password:  10 bytes
mysql-username:  7 bytes

Configuring SSL or TLS Certificates to Enable HTTPS

The Secure Sockets Layer (SSL) and Transport Layer Security (TLS) certificates must be
configured in SCP to enable Hypertext Transfer Protocol Secure (HTTPS). These certificates
must be stored in Kubernetes secret and the secret name must be provided in the
sbiProxySslConfigurations section of the custom-values.yaml file.

Perform the following procedure to configure SSL or TLS certificates for enabling HTTPS in
SCP. You must perform this procedure before:

• fresh installation of SCP.

• performing an SCP upgrade.

You must have the following files to create Kubernetes secret for HTTPS:

• ECDSA private key and CA signed certificate of SCP if initialAlgorithm is ES256

• RSA private key and CA signed certificate of SCP if initialAlgorithm is RS256

• TrustStore password file

• KeyStore password file

• CA Root file

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 75 of 107



Note

• The process to create the private keys, certificates, and passwords is at the
operators' discretion.

• The passwords for TrustStore and KeyStore must be stored in the respective
password files.

• Perform this procedure before enabling HTTPS in SCP.

You can create Kubernetes secret for enabling HTTPS in SCP using one of the following
methods:

• Managing Kubernetes secret manually

• Managing Kubernetes secret through OCCM

Managing Kubernetes Secret Manually

1. To create Kubernetes secret manually, run the following command:

kubectl create secret generic <ocscp-secret-name> --from-file=<rsa private 
key file name> --from-file=<ssl truststore file name> --from-file=<ssl 
keystore file name> --from-file=<CA root bundle> --from-file=<ssl rsa 
certificate file name> -n <Namespace of OCSCP deployment>

Note

Note down the command used during the creation of Kubernetes secret. This
command is used for the subsequent updates.

Example:

kubectl create secret generic server-primary-ocscp-secret --from-
file=server_rsa_private_key_pkcs1.pem --from-file=server_ocscp.cer --from-
file=server_caroot.cer --from-file=trust.txt --from-file=key.txt -
n $NAMESPACE
kubectl create secret generic default-primary-ocscp-secret --from-
file=client_rsa_private_key_pkcs1.pem --from-file=client_ocscp.cer --from-
file=caroot.cer --from-file=trust.txt --from-file=key.txt -n $NAMESPACE

Note

It is recommended to use the same Kubernetes secret name for the primary client
and the primary server as mentioned in the example. In case you change <ocscp-
secret-name>, then update the k8SecretName parameter under the
sbiProxySslConfigurations section in the custom-values.yaml file. For more
information about sbiProxySslConfigurations parameters, see "Global
parameters" in Oracle Communications Cloud Native Core, Service
Communication Proxy Installation, Upgrade, and Fault Recovery Guide.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 76 of 107



2. Run the following command to verify the Kubernetes secret created:

kubectl describe secret <ocscp-secret-name> -n <Namespace of OCSCP 
deployment>

Example:

kubectl describe secret ocscp-secret -n ocscp

3. Perform the following tasks to add, remove, or modify TLS or SSL certificates in
Kubernetes secret:

Note

You must have the certificates and files that you want to add or update in the
Kubernetes secret.

• To add a certificate, run the following command:

TLS_CRT=$(base64 < "<certificate-name>" | tr -d '\n')
kubectl patch secret <secret-name> -p "{\"data\":{\"<certificate-
name>\":\"${TLS_CRT}\"}}"

Where,

– <certificate-name> is the certificate file name.

– <secret-name> is the name of the Kubernetes secret, for example, ocscp-secret.

Example:

If you want to add a Certificate Authority (CA) Root from the caroot.cer file to the
ocscp-secret, run the following command:

TLS_CRT=$(base64 < "caroot.cer" | tr -d '\n')
kubectl patch secret ocscp-secret  -p "{\"data\":{\"caroot.cer\":\"$
{TLS_CRT}\"}}" -n scpsvc

Similarly, you can also add other certificates and keys to the ocscp-secret.

• To update an existing certificate, run the following command:

TLS_CRT=$(base64 < "<updated-certificate-name>" | tr -d '\n')
kubectl patch secret <secret-name> -p "{\"data\":{\"<certificate-
name>\":\"${TLS_CRT}\"}}"

Where, <updated-certificate-name> is the certificate file that contains the updated
content.

Example:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 77 of 107



If you want to update the privatekey present in the rsa_private_key_pkcs1.pem
file to the ocscp-secret, run the following command:

TLS_CRT=$(base64 < "rsa_private_key_pkcs1.pem" | tr -d '\n') 
kubectl patch secret ocscp-secret -p "{\"data\":
{\"rsa_private_key_pkcs1.pem\":\"${TLS_CRT}\"}}" -n scpsvc

Similarly, you can also update other certificates and keys to the ocscp-secret.

• To remove an existing certificate, run the following command:

kubectl patch secret <secret-name> -p "{\"data\":{\"<certificate-
name>\":null}}"

Where, <certificate-name> is the name of the certificate to be removed.

The certificate must be removed when it expires or needs to be revoked.

Example:

To remove the CA Root from the ocscp-secret, run the following command:

kubectl patch secret ocscp-secret  -p "{\"data\":
{\"caroot.cer\":null}}" -n scpsvc

Similarly, you can also remove other certificates and keys from the ocscp-secret.

The certificate update and renewal impacts are as follows:

• Updating, adding, or deleting the certificate, terminates all the existing connections
gracefully and reestablishes new connections for new requests.

• When the certificates expires, no new connections are established for new requests,
however, the existing connections remain active. After the renewal of the certificates
as described in the previous step, all the existing connections are gracefully
terminated. And, new connections are established with the renewed certificates.

Managing Kubernetes Secret Through OCCM

To create the Kubernetes secret using Oracle Communications Cloud Native Core, Certificate
Management (OCCM), see "Managing Certificates" in Oracle Communications Cloud Native
Core, Certificate Management User Guide, and then patch the Kubernetes secret created by
OCCM to add keyStore password and trustStore password files by running the following
commands:

1. To patch the Kubernetes secret created with the keyStore password file:

TLS_CRT=$(base64 < "key.txt" | tr -d '\n')
kubectl patch secret server-primary-ocscp-secret-occm -n scpsvc -p 
"{\"data\":{\"key.txt\":\"${TLS_CRT}\"}}"

Where, key.txt is the KeyStore password file that contains KeyStore password.

2. To patch the Kubernetes secret created with the trustStore password file:

TLS_CRT=$(base64 < "trust.txt" | tr -d '\n')
kubectl patch secret server-primary-ocscp-secret-occm -n scpsvc -p 
"{\"data\":{\"trust.txt\":\"${TLS_CRT}\"}}"

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 78 of 107



Where, trust.txt is the TrustStore password file that contains TrustStore password.

Note

To monitor the lifecycle management of the certificates through OCCM, do not patch
the Kubernetes secret manually to update the TLS certificate or keys. It must be done
through the OCCM GUI.

Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Core,Service Communication Proxy Installation, Upgrade, and Fault Recovery Guide.

3.2.3 Network Exposure Function (NEF) Specific Security
Recommendations and Guidelines

This section provides specific recommendations and guidelines for Network Exposure Function
(NEF) security. Security recommendations common to all 4G and 5G NFs are available in the 
Common Security Recommendations and Guidelines section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

• NEF Access Token Secret Configuration

• NEF Access Token Secret Update

• NEF MySQL Secret configuration

– Kubernetes secret creation for NEF privileged database user

– Kubernetes secret update for NEF privileged database user

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 79 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


– Kubernetes secret creation for NEF application database user

– Kubernetes secret update for NEF application database user

• Network Policies

NEF Access Token Secret Configuration

Use the following procedure to create an Access token secret :

1. Create the following files:

• ECDSA private keys for algorithm ES256 and corresponding valid public certificates
for NEF

• RSA private keys for algorithm RS256 and corresponding valid public certificates for
NEF

Note: Creation of private keys, certificates and passwords are at the discretion of user.

2. Log in to Bastion Host or server from where you can run kubectl commands.

3. Create a namespace for the secret by performing the following steps:

a. Verify if the required namespace already exists in the system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is available. If not
available, create the namespace using the following command:
Note: This is an optional step. In case required namespace already exists, proceed
with next procedures.

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace ocnef

4. Create Kubernetes secret for the Access token by performing the following steps:

a. To create Kubernetes secret for HTTPS, following files are required:

• ECDSA private keys for algorithm ES256 and corresponding valid public
certificates for NEF

• RSA private keys for algorithm RS256 and corresponding valid public certificates
for NEF

Note

Creation process for private keys, certificates and passwords is at the user's
or operators discretion. Unencrypted key and certificates is only supported.
PKCS1 and PKCS8 are the only supported versions for RSA. PKCS8 is the
only supported version for ECDSA.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 80 of 107



b. Run the following command to create secret. The names used below are same as
provided in custom values.yaml in NEF deployment:

$ kubectl create secret generic <ocnefaccesstoken-secret-name>  --from-
file=<ecdsa_private_key.pem>
 --from-file=<rsa_private_key.pem>  --from-file=<ssl_truststore.txt> --
from-file=<keystore_password.txt> 
  --from-file=rsa_certificate.crt --from-file=<ecdsa_certificate.crt> -
n <Namespace of ocnef AccessToken secret>

Note: Note down the command used during the creation of Kubernetes secret, this
command will be used for updates in future.

$ kubectl create secret generic ocnefaccesstoken-secret  --from-
file=ecdsa_private_key.pem 
--from-file=rsa_private_key.pem  --from-file=ssl_truststore.txt --from-
file=keystore_password.txt  --from-file=
rsa_certificate.crt --from-file=ecdsa_certificate.crt -n ocnef

c. Run the following command to verify if the secret is created:

$ kubectl describe secret <ocnefaccesstoken-secret-name> -n <Namespace 
of NEF AccessToken secret>

Example:

 $ kubectl describe secret ocnefaccesstoken-secret -n ocnef

NEF Access Token Secret Update

Use the following procedure to update the Access token secret:

1. Update the following files:

• ECDSA private keys for algorithm ES256 and corresponding valid public certificates
for NEF

• RSA private keys for algorithm RS256 and corresponding valid public certificates for
NEF

Note: Update of private keys, certificates and passwords are at the discretion of user.

2. Log in to Bastion Host or server from where you can run kubectl commands.

3. Update the secret with new or updated details by performing the following steps:

a. Copy the exact command used in above section during creation of secret.

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace -f - -n
<Namespace of Access Token secret>".

c. Create secret command must look like:

$ kubectl create secret generic <ocnefaccesstoken-secret> --from-
file=<ecdsa_private_key.pem>
--from-file=<rsa_private_key.pem> --from-file=<rsa_certificate.crt> --
from-file=<ecdsa_certificate.crt>

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 81 of 107



 --dry-run -o yaml -n <Namespace of ocnef deployment> | kubectl replace 
-f - -n <Namespace of ocnef deployment>

Example: The names used below are same as provided in custom_values.yaml in NEF
deployment:

$ kubectl create secret generic ocnefaccesstoken-secret --from-
file=ecdsa_private_key.pem
--from-file=rsa_private_key.pem --from-file=rsa_certificate.crt --from-
file=ecdsa_certificate.crt 
--dry-run -o yaml -n ocnef | kubectl replace -f - -n ocnef

d. Run the updated command.

e. After successful secret update, the following message is displayed:

secret/<ocnefaccesstoken-secret> replaced

NEF MySQL Secret Configuration

This section describes the secret creation for two types of NEF users. Different users have
different sets of permissions.

• NEF privileged user: This user category has a complete set of permissions. The user can
perform DDL and DML operations to install, upgrade, roll back or delete operations.

• NEF application user: This user category has fewer sets of permissions and is used by
NEF applications during service operations handling. This user cannot create, alter, and
drop the database and tables.

Kubernetes secret creation for NEF privileged database user

This section explains the steps to create Kubernetes secrets for accessing NEF database for
the privileged user.

1. Log in to Bastion Host or server from where you can run kubectl commands.

2. Create a namespace for the secret by performing the following steps:

a. Verify if the required namespace already exists in the system:

$ kubectl get namespaces

b. In the output of the above command, check if the required namespace is available. If
not available, create the namespace using the following command:
Note: This is an optional step. In case the required namespace already exists,
proceed with the next set of procedures.

$ kubectl create namespace <required namespace>

For example:

$ kubectl create namespace ocnef

3. Create a Kubernetes secret for privileged user as follows:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 82 of 107



a. Create a Kubernetes secret for MySQL:

 $ kubectl create secret generic <privileged user secret name>
 --from-literal=dbUsername=<NEF Privileged MySQL database username> 
--from-literal=dbPassword=<NEF Privileged MySQL User database password> 
--from-literal=appDbName=<NEF MySQL database name> 
--from-literal=networkScopedDbName=<NEF MySQL Network database name> 
--from-literal=commonConfigDbName=<NEF MySQL Common Configuration DB> -
n 
<Namespace of NEF deployment>

Note

Note down the command used during the creation of the Kubernetes secret;
this command is used for updates in the future.

Example:

$ kubectl create secret generic privilegeduser-secret --from-
literal=dbUsername=ocnefPrivilegedUsr 
--from-literal=dbPassword=ocnefPrivilegedPasswd --from-
literal=appDbName=ocnefApplicationDB --from-literal
=networkScopedDbName=ocnefNetworkDB --from-
literal=commonConfigDbName=commonConfigurationDB -n ocnef 

b. Verify the secret created using above command:

$ kubectl describe secret <database secret name> -n <Namespace of NEF 
deployment>

Example:

$ kubectl describe secret privilegeduser-secret -n ocnef

Kubernetes secret update for NEF privileged database user

This section explains the steps to update Kubernetes secrets for accessing NEF database for
the privileged user.

1. Log in to Bastion Host or server from where you can run kubectl commands.

2. This section describes the steps to update the secrets. Update Kubernetes secret for
privileged user as follows:

a. Copy the exact command used in section during creation of secret:

$ kubectl create secret generic <privileged user secret name> 
--from-literal=dbUsername=<NEF Privileged MySQL database username> 
--from-literal=dbPassword=<NEF Privileged MySQL database password> 
--from-literal=appDbName=<NEF MySQL database name> 
--from-literal=networkScopedDbName=<NEF MySQL Network database name> 

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 83 of 107



--from-literal=commonConfigDbName=<NEF MySQL Common Configuration DB> -
n 
<Namespace of NEF deployment>

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace -f - -n
<Namespace of MySQL secret>". After update, the command will be as follows:

$ kubectl create secret generic <privileged user secret name> 
--from-literal=dbUsername=<NEF Privileged MySQL database username> 
--from-literal=dbPassword=<NEF Privileged MySQL database password> 
--from-literal=appDbName=<NEF MySQL database name> 
--from-literal=networkScopedDbName=<NEF MySQL Network database name> 
--from-literal=commonConfigDbName=<NEF MySQL Common Configuration DB> --
dry-run -o yaml 
-n <Namespace of NEF deployment> | kubectl replace -f - -n <Namespace 
of NEF deployment>

c. Run the updated command. The following message is displayed:

secret/<database secret name> replaced

Kubernetes secret creation for NEF application database user

This section explains the steps to create Kubernetes secrets for accessing NEF database for
the application database user.

1. Log in to Bastion Host or server from where you can run kubectl commands.

2. Create a namespace for the secret by performing the following steps:

a. Verify if the required namespace already exists in the system:

$ kubectl get namespaces

b. In the output of the above command, check if required the namespace is available. If
not available, create the namespace using the following command:
Note: This is an optional step. In case the required namespace already exists,
proceed with the next set of procedures.

$ kubectl create namespace <required namespace>

Example:

$ kubectl create namespace ocnef

3. Create a Kubernetes secret for NEF application database user for configuring records as
follows:

a. Create a Kubernetes secret for NEF application database user:

$ kubectl create secret generic <appuser-secret name> --from-
literal=dbUsername=<NEF APPLICATION User Name> --from-
literal=dbPassword=<Password for NEF APPLICATION User> --from-
literal=appDbName=<NEF Application Database> -n <Namespace of NEF 
deployment>

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 84 of 107



Note

Note down the command used during the creation of Kubernetes secret, this
command will be used for updates in future.

Example:

$ kubectl create secret generic appuser-secret --from-
literal=dbUsername=NEFApplicationUsr --from-
literal=dbPassword=NEFApplicationPasswd --from-
literal=appDbName=NEFApplicationDB -n ocnef 

b. Verify the secret creation:

$ kubectl describe secret <appuser-secret name> -n <Namespace of NEF 
deployment>

Example:

$ kubectl describe secret appuser-secret -n ocnef

Kubernetes secret update for NEF application database user

This section explains the steps to update Kubernetes secrets for accessing NEF database for
the application database user.

1. Log in to Bastion Host or server from where you can run kubectl commands.

2. This section explains how you can update the Kubernetes secret.

a. Copy the exact command used in above section during creation of secret:

$ kubectl create secret generic <appuser-secret name> --from-
literal=dbUsername=<NEF APPLICATION
 User Name> --from-literal=dbPassword=<Password for NEF APPLICATION 
User> --from-literal=appDbName=<NEF 
Application Database> -n <Namespace of NEF deployment>

b. Update the same command with string "--dry-run -o yaml" and "kubectl replace -f - -n
<Namespace of MySQL secret>". After update, the command will be as follows:

$ kubectl create secret generic <database secret name> --from-
literal=dbUsername=<NEF APPLICATION 
User Name> --from-literal=dbPassword=<Password for NEF APPLICATION 
User> --from-literal=appDbName=<NEF 
Application Database> --dry-run -o yaml -n <Namespace of NEF 
deployment> | kubectl replace -f - -n <Namespace 
of NEF deployment>

c. Run the updated command. The following message is displayed:

secret/<database secret name> replaced

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 85 of 107



Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Core, Network Exposure Function Installation, Upgrade, and Fault Recovery Guide.

3.2.4 Network Slice Selection Function (NSSF) Specific Security
Recommendations and Guidelines

This section provides Network Slice Selection Function (NSSF) specific security
recommendations and guidelines. Recommendations common to all 4G and 5G NFs are
available in the Common Security Recommendations and Guidelines section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

• NSSF Access Token Secret Configuration

• NSSF Access Token Secret Update

• NSSF MySQL Secret Configuration

– Kubernetes Secret Creation for NSSF Privileged Database User

– Kubernetes Secret Update for NSSF Privileged Database User

– Kubernetes Secret Creation for NSSF Application Database User

– Kubernetes Secret Update for NSSF Application Database User

• Network Policies

NSSF Access Token Secret Configuration

Use the following procedure to create access token secret:

1. Create the following files:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 86 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


• ECDSA private key (Example: ecdsa_private_key_pkcs8.pem)

• RSA private key (Example: rsa_private_key_pkcs1.pem)

• TrustStore password file (Example: trustStorePassword.txt)

• KeyStore password file (Example: keyStorePassword.txt)

• CA signed ECDSA NSSF certificate (Example: ecdsa_ocnssf_certificate.crt)

• CA signed RSA NSSF certificate (Example: rsa_ocnssf_certificate.crt)

Note: Creation of private keys, certificates and passwords are at the discretion of user.

2. Log in to Bastion Host or server from where kubectl can be run.

3. Create namespace for the secret by executing the following command:
$ kubectl create namespace ocnssf

4. Create Kubernetes secret for NF Access token by executing the following command:

$ kubectl create secret generic
         ocnssfaccesstoken-secret --from-file=ecdsa_private_key_pkcs8.pem
         --from-file=rsa_private_key_pkcs1.pem --from-
file=trustStorePassword.txt
         --from-file=keyStorePassword.txt --from-
file=ecdsa_ocnssf_certificate.crt--from-file=rsa_ocnssf_certificate.crt -n
      ocnssf

5. Verify that secret is created successfully by executing the following command:
$ kubectl describe secret ocnssfaccesstoken-secret -n ocnssf

NSSF Access Token Secret Update

Use the following procedure to update access token secret:

1. Update the following files:

• ECDSA private key (Example: ecdsa_private_key_pkcs8.pem)

• RSA private key (Example: rsa_private_key_pkcs1.pem)

• TrustStore password file (Example: trustStorePassword.txt)

• KeyStore password file (Example: keyStorePassword.txt)

• CA signed ECDSA NSSF certificate (Example: ecdsa_ocnssf_certificate.crt)

• CA signed RSA NSSF certificate (Example: rsa_ocnssf_certificate.crt)

Note:Update private keys, certificates, and passwords are at the user's discretion.

2. Log in to Bastion Host or server from where kubectl can be run.

3. Update the secret with new or updated details by executing the following commands:
Delete the secret:

$ kubectl delete secret ocnssfaccesstoken-secret -n ocnssf

Create the secret again with updated details:

$ kubectl create secret generic ocnssfaccesstoken-secret --from-
file=ecdsa_private_key_pkcs8.pem
 --from-file=rsa_private_key_pkcs1.pem --from-file=trustStorePassword.txt 

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 87 of 107



--from-file=keyStorePassword.txt 
--from-file=ecdsa_ocnssf_certificate.crt--from-
file=rsa_ocnssf_certificate.crt -n ocnssf

NSSF MySQL Secret Configuration

Kubernetes Secret Creation for NSSF Privileged Database User

This section explains the steps to create Kubernetes secrets for accessing NSSF database for
the privileged user.

1. Log in to Bastion Host or server from where kubectl can be run.

2. Create namespace for the secret by following:

a. Verify required namespace already exists in system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is available. If not
available, create the namespace using following command:
Note:This is an optional step. In case required namespace already exists, proceed
with next procedures.

$ kubectl create namespace <required namespace>

For example:

$ kubectl create namespace ocnssf

3. Create a yaml file with the username and password with the syntax as follows:

apiVersion: v1
kind: Secret
metadata:
name: <secret-name>
type: Opaque
data:
mysql-username: cm9vdA==
mysql-password: cm9vdHBhc3N3ZA==

Note

The values for "mysql-username" and "mysql-password" must be Base64
encoded.

4. Run kubectl create -f <yaml_file_name> -n <namespace> to create the secret.

5. Verify whether the secret is created by running the following command:
$ kubectl describe secret <secret-name> -n <namespace>

Kubernetes Secret Update For NSSF Privileged Database User

This section explains the steps to update Kubernetes secrets for accessing NSSF database for
the privileged user.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 88 of 107



1. Log in to Bastion Host or server from where kubectl can be run.

2. Delete the Kubernetes secret for MySQL:

# Delete the secret
$ kubectl delete secret <secret name> -n <namespace>

3. Update yaml file from step 3 in secret creation with new values for MySQL-username and
MySQL-password

4. Run kubectl create -f <yaml_file_name> -n <namespace> to create the secret.

5. Verify whether the secret is created by running the following command:
$ kubectl describe secret <secret-name> -n <namespace>

Kubernetes Secret Creation for NSSF Application Database User

This section explains the steps to create Kubernetes secrets for accessing NSSF database for
the application database user.

1. Log in to Bastion Host or server from where kubectl can be run.

2. Create namespace for the secret by following:

a. Verify required namespace already exists in system:

$ kubectl get namespaces

b. In the output of the above command, check if required namespace is available. If not
available, create the namespace using following command:

Note

This is an optional step. In case required namespace already exists, proceed
with next procedures.

$ kubectl create namespace <required namespace>

For example:

$ kubectl create namespace ocnssf

3. Create a yaml file with the username and password with the syntax as follows:

apiVersion: v1
kind: Secret
metadata:
name: <secret-name>
type: Opaque
data:
mysql-username: bnNzZnVzZXI=
mysql-password: bnNzZnBhc3N3ZA==

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 89 of 107



Note

The values for "mysql-username" and "mysql-password" must be Base64
encoded.

4. Run kubectl create -f <yaml_file_name> -n <namespace> to create the secret.

5. Verify whether the secret is created by running the following command:
$ kubectl describe secret <secret-name> -n <namespace>

Kubernetes Secret Update for NSSF Application Database User

This section explains the steps to update Kubernetes secrets for accessing NSSF database for
the application database user.

1. Log in to Bastion Host or server from where kubectl can be run.

2. Delete the Kubernetes secret for MySQL:

# Delete the secret
$ kubectl delete secret <secret name> -n <namespace>

3. Update yaml file from step 3 in secret creation with new values for MySQL-username and
MySQL-password

4. Run kubectl create -f <yaml_file_name> -n <namespace> to create the secret.

5. Verify whether the secret is created by running the following command:
$ kubectl describe secret <secret-name> -n <namespace>

Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Core, Network Slice Selection Function Installation, Upgrade, and Fault Recovery
Guide.

.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 90 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


3.2.5 Security Edge Protection Proxy (SEPP) Security
Recommendations and Procedures

This section provides Security Edge Protection Proxy (SEPP) specific security
recommendations and procedures. Security recommendations common to all 4G and 5G NFs
are available in the Common Security Recommendations and Guidelines section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

• SEPP Secret Configuration for HTTPS and HTTP over TLS

– Creating Secret for HTTPS and HTTP over TLS

– Updating Access Token Secret

• SEPP MySQL Secret Configuration

– Creating Secret for MySQL

– Updating Secret for MySQL

• Network Policies

SEPP Secret Configuration for HTTPS and HTTP over TLS

Use the following procedures to configure secret for HTTPS and HTTP over TLS and to update
Access Token Secret:

Creating Secret for HTTPS and HTTP over TLS

Use the following procedure to create secret for HTTPS and HTTP over TLS:

1. Log in to Bastion Host or server from where you can run kubectl commands.

2. Create the following files:

• RSA or ECDSA Private key ( For example: rsa_private_key_pkcs1.pem)

• Truststore password (For example: trust.txt)

• Key store password (For example: key.txt)

• Certificate chain for truststore (For example: caroot.cer)

• Signed server certificate (For example: ocsepp.cer) or Signed client certificate (For
example: ocsepp.cer)

Note: Creation of private keys, certificates, and passwords is at the discretion of the user.

3. To verify and create the Kubernetes namespace, do the following:

a. Run the following command to verify if the required namespace exists in the system:

$ kubectl get namespaces

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 91 of 107



b. Run the following command to create a Kubernetes namespace if the output of the
above command does not display the required namespace:

$ kubectl create namespace <required namespace>

Note

This is an optional step. In case the required namespace already exists, skip
this procedure.

Example:

$ kubectl create namespace seppsvc

4. Run the following commands to create Kubernetes secrets:

• For Creating secrets

$ kubectl create secret generic <secret-name>
                  --from-file=<ssl_ecdsa_private_key.pem> --from-
file=<rsa_private_key_pkcs1.pem>
                  --from-file=<ssl_truststore.txt> --from-
file=<ssl_keystore.txt> --from-file=<signed.cer>
                  --from-file=<caroot.cer> --from-
file=<ssl_rsa_certificate.crt> --from-file
                  <ssl_ecdsa_certificate.crt> -n <Namespace of SEPP 
deployment>

• For HTTP over TLS => For n32 interface

$ kubectl create secret generic ocsepp-n32-secret
                  --from-file=rsa_private_key_pkcs1.pem --from-
file=trust.txt --from-file=key.txt
                  --from-file=caroot.cer --from-
file=rsa_certificate.crt --from-file=ocsepp.cer -n
                  seppsvc

• For HTTPS => For Plmn interface

$ kubectl create secret generic
                    ocsepp-plmn-secret --from-
file=rsa_private_key_pkcs1.pem --from-file=trust.txt
                    --from-file=key.txt --from-file=caroot.cer --from-
file=rsa_certificate.crt
                    --from-file=ocsepp.cer -n seppsvc

Updating Access Token Secret

Use the following procedure to update access token secret:

1. Log in to Bastion Host or server from where you can run kubectl commands.

2. Update the secret with new or updated details.
Run the following commands to create the secrets again with updated details:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 92 of 107



• for HTTP over TLS For n32 interface

$ kubectl create secret generic ocsepp-n32-secret --from-
file=rsa_private_key_pkcs1.pem
      --from-file=trust.txt --from-file=key.txt --from-file=caroot.cer
      --from-file=rsa_certificate.crt --from-file=ocsepp.cer --dry-run -
o yaml  -n seppsvc | kubectl replace -f - -n seppsvc

• for HTTPS For PLMN interface

$ kubectl create secret generic ocsepp-plmn-secret --from-
file=rsa_private_key_pkcs1.pem
      --from-file=trust.txt --from-file=key.txt --from-file=caroot.cer
      --from-file=rsa_certificate.crt --from-file=ocsepp.cer --dry-run -
o yaml  -n seppsvc |
      kubectl replace -f - -n seppsvc

Note: Update of private keys, certificates and passwords are at the discretion of the
user.

SEPP MySQL Secret Configuration

Creating Secret for MySQL

Use the following procedure to create MySQL Secret:

1. Log in to Bastion Host or server from where you can run kubectl commands.

2. Create namespace for the secret. Skip this step, if already created.

$ kubectl create namespace seppsvc

Note: Creation of private keys, certificates and passwords are at the discretion of the user.

3. Create a yaml file with the username, password, and DB name with the syntax shown
below:

apiVersion: v1
kind: Secret
metadata:
name: ocsepp-mysql-cred
type: Opaque
data:
mysql-username: c2VwcF91c3I=
mysql-password: RHVrdzFAbT8=
dbName: c2VwcGRi

Note

Note: The values for "mysql-username", "mysql-password" and dbName should be
Base64 encoded.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 93 of 107



4. Run the following commands to create Kubernetes secrets:

$ kubectl apply -f <yaml_file_name> -n <namespace> 
 

Or

kubectl create secret generic ocsepp-mysql-cred --from-literal=mysql-
username='<USR_NAME>' 
--from-literal=mysql-password='<PWD>' --from-literal=dbName='<Db Name>' -n 
seppsvc

5. Verify the secret creation:

$ kubectl describe secret <secret-name> -n <namespace>

Updating Secret for MySQL

Use the following procedure to update MySQL Secret :

1. Log in to Bastion Host or server from where you can run kubectl commands.

2. Update the Kubernetes secret for MySQL:

# Delete the secret:

$ kubectl delete secret database-secret -n <namespace>
   

# Create the secret with updated details:

$ kubectl create secret generic <secretName> -from-literal=mysql-
username='<USR_NAME>' 
--from-literal=mysql-password='<PWD>' --from-literal=dbName='<Db Name>' -n 
<namespace>

Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 94 of 107



For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Core, Security Edge Protection Proxy Installation, Upgrade, and Fault Recovery Guide.

3.2.6 Unified Data Repository (UDR) and Unstructured Data Storage
Function (UDSF) Specific Security Recommendations and Guidelines

This section provides Unified Data Repository (UDR), Unstructured Data Storage Function
(UDSF), and Equipment Identity Register (EIR) specific security recommendations and
guidelines. Security recommendations common to all 4G and 5G NFs are available in the 
Common Security Recommendations and Guidelines Section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

• Oauth Token Validation Configuration

– Rest Configuration

– Public key Update for Changed Access Token

– Disabling the Signature Validation for Oauth

• UDR MySQL Kubernetes secret for storing Database Username and Password

• TLS Certificate for HTTPs Support

• Remote File Transfer Support

• Network Policies

Oauth Token Validation Configuration

Use the following procedure for Oauth Token validation configuration:

1. NRF creates access tokens using following private keys:

• ECDSA private key
Example:

ecdsa_private_key_pkcs8.pem

• RSA private key
Example:

rsa_private_key_pkcs1.pem

In order to validate access token secret needs to be created and configured in ocudr
ingress gateway with certificates fetched from nrf.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 95 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


Example:

 6faf1bbc-6e4a-4454-a507-a14ef8e1bc5c_ES256.crt

2. Log in to Bastion Host or server from where kubectl can be executed.

3. Create namespace for the secret.

$ kubectl create namespace ocudr

4. Create Kubernetes secret for NF Access token validation

Note

The file names in below command are same as in Step 1.

$ kubectl create secret generic oauthsecret --from-file=6faf1bbc-6e4a-4454-
a507-a14ef8e1bc5c_ES256.crt-n ocudr

5. Run the following command to verify if the secret is created successfully:

$ kubectl describe secret oauthsecret -n ocudr

Rest Configuration

We need REST based configurations to distinguish certificates configured from different NRF
and use them properly to validate token received from specific NRF. These configurations can
be added from CNCC GUI which internally uses config API and payload as below:

“/udr/nf-common-component/v1/igw/oauthvalidatorconfiguration”

Payload:

{
              "keyIdList": [{

                             "keyId": "664b344e74294c8fa5d2e7dfaaaba407",
                             "kSecretName": "samplesecret1",
                             "certName": "samplecert1.crt",
                             "certAlgorithm": "ES256"
                           }],
              "instanceIdList": [{

                             "instanceId": "664b344e74294c8fa5d2e7dfaaaba407",
                             "kSecretName": "samplesecret2",
                             "certName": "samplecert2.crt",
                             "certAlgorithm": "ES256"

                              }],
              "oAuthValidationMode": "INSTANCEID_ONLY"

}

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 96 of 107



The multiple keyId and instanceId object of different NRFs can be configured.

Using oAuthValidationMode mode of validation can be selected.

Example: INSTANCEID_ONLY, KID_ONLY or KID_PREFERRED

KID_PREFERRED is a fall back mode where it checks for keyId in token, if token contains
keyId then validation mode is KID_ONLY or else it falls back to INSTANCEID_ONLY.

Public key Update for Changed Access Token

Use the following procedure for public key update for changed access token:

1. Log in to Bastion Host or server from where kubectl can be executed.

2. Update the secret with new or updated details:

# Delete the secret and recreate it
$ kubectl delete secret oauthsecret -n ocudr

# Fetch updated certificates from nrf 

# Recreate the secret with updated details
$ kubectl create secret generic oauthsecret --from-file=0263663c-
f5c2-4d1b-9170-f7b1a9116337_ES256.crt

-n ocudr

3. Certificate configuration update request needs to be sent using CNCC GUI with the
updated keyIdList and instanceIdList with new certificates.

Disabling the Signature Validation for Oauth

If serviceMeshCheck flag is enabled under ingress gateway in custom-values file, signature
validation is disabled by default.

In this case, only header and payload are validated, and request is successful even if token
has wrong signature.

UDR MySQL Kubernetes Secret for storing Database Username and Password

Use the following procedure to create MySQL Kubernetes secret for storing database
username and password:

1. Log in to Bastion Host or server from where kubectl can be executed.

2. Create namespace for the MySQL secret. Skip this step, if already created.

 $ kubectl create namespace <namespace>

3. Run the following command for creating the secret:

kubectl create secret generic ocudr-secrets --from-literal=
dbname=<dbname> --from-literal=configdbname=<configdbname> --from-literal=
privilegedUsername=<privilegedUsername> --from-literal=
privilegedPassword=<privilegedPassword> --from-
literal=dsusername=<udruserName> --from-literal=

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 97 of 107



dspassword=<udruserPassword> --from-literal=encryptionKey='My secret 
passphrase' -n <ocudr-namespace>

Example:

kubectl create secret generic ocudr-secrets --from-literal=dbname=udrdb --
from-literal=
configdbname=udrconfigdb --from-literal=privilegedUsername=root --from-
literal=
privilegedPassword=rootPasswd --from-literal=dsusername=udruser --from-
literal=dspassword=udrpasswd --from-literal=
encryptionKey='My secret passphrase' -n <ocudr-namespace>

4. Verify the whether the secret is created by executing the following command:

$ kubectl describe secret <secret-name> -n <namespace>  

TLS certificate for HTTPs support

UDR and EIR has two Ingress Gateway services to handle the signaling and provisioning
traffic. Hence, you must configure two separate TLS certificates to support HTTPS on both the
gateways.

For information on the procedure to enable TLS certificates, see Cloud Native Core - Ingress/
Egress Gateways - Security Recommendations / Guidelines for TLS configuration.

Updating Keys and Certificates in the Existing Secrets

Prerequsite: The certificates and files that need to be updated must be present in the secret.

Perform the following steps to update the existing certificates in secrets:

1. Run the following command to add a certificate:

TLS_CRT=$(base64 < "<certificate-name>" | tr -d '\n')
kubectl patch secret <secret-name> -p "{\"data\":{\"<certificatename>\":\"$
{TLS_CRT}\"}}"

Here,

<certificate-name> is the certificate file name.

<secret-name> is the name of the secret, for example, ocudr-gateway-secret.

Example:

Run the following command to add a Certificate Authority (CA) Root from the caroot.cer
file to the ocudr-gateway-secret.

TLS_CRT=$(base64 < "caroot.cer" | tr -d '\n')
kubectl patch secret ocudr-gateway-secret -p "{\"data\":{\"caroot.cer\":\"$
{TLS_CRT}\"}}" -n udr

Similarly, you can also add other certificates and keys to the ocudr-gateway-secret.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 98 of 107



2. Run the following command to update an existing certificate:

TLS_CRT=$(base64 < "<updated-certificate-name>" | tr -d '\n')
kubectl patch secret <secret-name> -p "{\"data\":{\"<certificatename>\":\"$
{TLS_CRT}\"}}"

Here,

<updated-certificate-name> is the certificate file that contains the updated content.

Example:

Run the following command to update the private key present in the
rsa_private_key_pkcs1.pem file to the ocudr-gateway-secret:

TLS_CRT=$(base64 < "rsa_private_key_pkcs1.pem" | tr -d '\n')
kubectl patch secret ocudr-gateway-secret -p "{\"data\":
{\"rsa_private_key_pkcs1.pem\":\"${TLS_CRT}\"}}" -n udr

Similarly, you can also update other certificates and keys to the ocudr-gateway-secret.

3. Run the following command to remove an existing certificate:

kubectl patch secret <secret-name> -p "{\"data\":
{\"<certificatename>\":null}}"

Here,

<certificate-name> is the name of the certificate to be removed.

The certificate must be removed when it expires or needs to be revoked.

Example:

Run the following command to remove the CA Root from the ocudr-gateway-secret:

kubectl patch secret ocudr-gateway-secret -p "{\"data\":
{\"caroot.cer\":null}}" -n udr

Similarly, you can also remove other certificates and keys from the ocudr-gateway-secret.

Note

The following are the certificate update and renewal impacts:

• Updating, adding, deleting the certificate, ot terminates all the existing connections
gracefully and re-establishes new connections for new requests.

• When the certificates expires, no new connections are established for new
requests, however, the existing connections remain active. After the renewal of the
certificates all the existing connections are gracefully terminated. And, new
connections are established with the renewed certificates.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 99 of 107



Remote File Transfer Support

UDR supports the transfer of files to the remote sever using Secure File Transfer Protocol
(SFTP) in the subscriber bulk import tool and the subscriber export tool as below:

• In subscriber bulk import tool the files will be transferred from the remote server to
Persistent Volume Claim (PVC) and vice versa using SFTP

• In subscriber export tool the files will be transferred from PVC to the remote server using
SFTP

To support the file transfer, you must run the below command to configure the private and
public keys in to the kuberenetes secrets. The operator will get the private and public keys
from the remote server.

Keys

kubectl create secret generic ocudr-ssh-private-key --from-file=id_rsa=/home/
cloud-user/ocudr/secrets/id_rsa -n <namespace>
kubectl create secret generic ocudr-ssh-public-key --from-file=id_rsa.pub=/
home/cloud-user/ocudr/secrets/id_rsa.pub -n <namespace>

Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Core, Unified Data Repository Installation, Upgrade, and Fault Recovery Guide and
Oracle Communications Cloud Native Core, Unified Data Repository User Guide.

3.2.7 Binding Support Function (BSF) Specific Security Recommendations
and Guidelines

This section provides Binding Support Function (BSF) specific security recommendations and
guidelines. Security recommendations common to all 4G and 5G NFs are available in the 
Common Security Recommendations and Guidelines Section.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 100 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedure is:

• Creating BSF MySQL Kubernetes Secret for Storing Database Username and Password

• Network Policies

Creating BSF MySQL Kubernetes Secret for Storing Database Username and Password

Use the following procedure to create BSF MySQL Kubernetes secret for storing database
username and password:

1. Log in to Bastion Host or server from where kubectl can be Run.

2. Create namespace, if already does not exists, by entering the command:

kubectl create namespace <namespace>

where:

<namespace> is the deployment BSF namespace.

3. Create a Kubernetes secret for an admin user and an application user. To create a
Kubernetes secret for storing database username and password for these users follow the
procedure below:

Create a YAML file with the application user's username and password with the syntax
shown below:

Note

The values mentioned in the syntax are sample values.

apiVersion: v1
             kind: Secret
             metadata:
             name: <secret-name>
             type: Opaque
             data:
             mysql-username: YnNmdXNy
             mysql-password: YnNmcGFzc3dk

Create a YAML file with the admin user's username and password with the syntax shown
below:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 101 of 107



Note

The values mentioned in the syntax are sample values.

apiVersion: v1
           kind: Secret
           metadata:
           name: <secret-name>
           type: Opaque
           data:
            mysql-username: YnNmcHJpdmlsZWdlZHVzcg==
            mysql-password: YnNmcHJpdmlsZWdlZHBhc3N3ZA==

Note

The values for mysql-username and mysql-password should be Base64
encoded

4. Run the following command to create the secret:

kubectl create -f <yaml_file_name> -n <namespace>

5. Verify whether the secret is created by executing the following command:

$ kubectl describe secret <secret-name> -n <namespace>

For more information, see cnDBTier Security Recommendations and Guidelines.

Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Core, Binding Support Function Installation, Upgrade, and Fault Recovery Guide.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 102 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


3.2.8 Cloud Native Core Policy Specific Security Recommendations and
Guidelines

This section provides Cloud Native Core Policy specific security recommendations and
guidelines. Security recommendations common to all 4G and 5G NFs are available in the 
Common Security Recommendations and Guidelines Section.

Note

The following procedures can be performed by any authenticated user who has
privileged access to the system. This user can create different roles for specific
operations. For creation of role and role binding, see the NF or component-specific
Installation and Upgrade Guide.

The procedures are:

• Access Token configuration

• Update Keys to Sign JSON Web Token (JWTs) for Access Token

• Create CNC Policy MySQL Kubernetes Secret for Storing Database Username and
Password for Admin and Application Users

• Create a Kubernetes Secret for Storing LDAP credentials

• Network Policies

Access Token configuration

Use the following procedure to create access token :

1. Create following files:

• ECDSA private key (Example: ecdsa_private_key_pkcs8.pem)

• RSA private key (Example: rsa_private_key_pkcs1.pem)

• TrustStore password file (Example: trustStorePassword.txt)

• KeyStore password file (Example: keyStorePassword.txt)

• CA signed ECDSA OCPolicy certificate (Example: ecdsa_occnp_certificate.crt)

• CA signed RSA OCPolicy certificate (Example: rsa_occnp_certificate.crt)

2. Log in to Bastion Host or server from where kubectl can be run.

3. Create namespace for the secret:

$ kubectl create namespace occnp

4. Create Kubernetes secret for NF Access token :
Note: The filenames in below command are same as in Step 1

$ kubectl create secret generic ocpcfaccesstoken-secret --from-file=
ecdsa_private_key_pkcs8.pem --from-file=rsa_private_key_pkcs1.pem --from-
file=

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 103 of 107



trustStorePassword.txt --from-file=keyStorePassword.txt --from-file=
ecdsa_ocpcf_certificate.crt--from-file=rsa_ocpcf_certificate.crt -n ocpcf

5. Verify that secret is created successfully:

$ kubectl describe secret ocpcfaccesstoken-secret -n ocpcf

Update Keys to Sign JSON Web Token (JWTs) for Access Token

Use the following procedure to update keys to sign JSON web token (JWTs) for access token:

1. Update the following files:

• ECDSA private key (Example: ecdsa_private_key_pkcs8.pem)

• RSA private key (Example: rsa_private_key_pkcs1.pem)

• CA signed ECDSA OCPolicy certificate (Example: ecdsa_occnp_certificate.crt)

• CA signed RSA OCPolicy certificate (Example: rsa_occnp_certificate.crt)

Note

Update of private keys, certificates and passwords are at the discretion of user

2. Log in to Bastion host or server from where kubectl can be run.

3. Update the secret with new or updated details by performing the following steps:

• Delete the secret by executing the following command:

$ kubectl delete secret ocpcfaccesstoken-secret -n ocpcf

• Create the secret with updated details:

$ kubectl create secret generic ocpcfaccesstoken-secret
            --from-file=ecdsa_private_key_pkcs8.pem --from-
file=rsa_private_key_pkcs1.pem
            --from-file=trustStorePassword.txt --from-
file=keyStorePassword.txt
            --from-file=ecdsa_occnp_certificate.crt--from-
file=rsa_ocpcf_certificate.crt -n
            occnp

Create CNC Policy MySQL Kubernetes Secret for Storing Database Username and
Password for Admin and Application Users

Use the following procedure to create OCPolicy MySQL Kubernetes secret for storing
database username and password:

1. Log in to Bastion Host or server from where kubectl can be run.

2. Create namespace for the MySQL secret. Skip this step, if already created.

$ kubectl create namespace <namespace>

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 104 of 107



3. To create a Kubernetes secret for storing database username and password for an admin
user and an application user:

a. Create a YAML file with the application user's username and password with the syntax
shown below:

Note

The values mentioned in the syntax are sample values.

apiVersion: v1
kind: Secret
metadata:
  name: occnp-db-pass
type: Opaque
data:
  mysql-username: b2NjbnB1c3I=
  mysql-password: b2NjbnBwYXNzd2Q=

b. Create a YAML file with the admin user's username and password with the syntax
shown below:

Note

The values mentioned in the syntax are sample values.

apiVersion: v1
kind: Secret
metadata:
  name: occnp-admin-db-pass
type: Opaque
data:
  mysql-username: b2NjbnBhZG1pbnVzcg==
  mysql-password: b2NjbnBhZG1pbnBhc3N3ZA==

Note

name will be used to contain dbCredSecretName and
privilegedDbCredSecretName parameters in the CNC Policy custom-
values.yaml file.

Note

The values for mysql-username and mysql-password should be Base64
encoded.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 105 of 107



c. Run the following commands to add the Kubernetes secrets in a namespace:

kubectl create -f yaml_file_name1 -n release_namespace
kubectl create -f yaml_file_name2 -n release_namespace

where:

• release_namespace is the deployment namespace used by the helm command.

• yaml_file_name1 is a name of the YAML file that is created in step a.

• yaml_file_name2 is a name of the YAML file that is created in step b.

4. Verify whether the secret is created by executing the following command:

$ kubectl describe secret <secret-name> -n <namespace>

For more information, see cnDBTier Security Recommendations and Guidelines.

Create a Kubernetes Secret for Storing LDAP credentials

Use the following procedure to create a Kubernetes secret for storing LDAP credentials:

1. Create a YAML file with the following syntax:

Note

The values mentioned in the syntax are sample values.

apiVersion: v1 
kind: Secret 
metadata:  
  name: secretarial  
  labels:    
    type: ocpm.secret.ldap 
type: Opaque 
stringData:  
  name: "ldap1"  
  password: "camiant"  
  authDn: "uid=PolicyServer,ou=samplename,c=hu,o=samplename"

where:

• name is the configured LDAP server name.

• password is the LDAP credential for that data source.

• authDN is the authentication DN for that LDAP data source.

• samplename is the sample operator name.

2. Create the secret by executing the following command:

kubectl apply -f yaml_file_name -n <namespace>

Here:

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 106 of 107



• yaml_file_name is a name of the YAML file that is created in step 1.

• <namespace> is the deployment namespace used by the helm command.

Network Policies

The network policies allow ingress or egress rules to be defined based on Kubernetes
resources such as Pod, Namespace, IP, and Ports. These rules are selected based on
Kubernetes labels in the application. These network policies enforces access restrictions for all
the applicable data flows except communication from Kubernetes node to pod for invoking
container probe.

Note

Configuring network policy is optional. Based on the security requirements, network
policy can be configured.

For more information on the network policy, see https://kubernetes.io/docs/concepts/services-
networking/network-policies/.

For more information on configuring the network policy, see Oracle Communications Cloud
Native Core, Converged Policy Installation, Upgrade, and Fault Recovery Guide.

Chapter 3
Cloud Native Core Network Function Specific Security Recommendations and Guidelines

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Page 107 of 107

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


A
Cloud Native Core Network Port Flows

This section describes network port flows for the Cloud Native Core.

Network Port Flows

• Cluster IP addresses are reachable outside of the cluster and are typically assigned by
using a Network Load Balancer.

• Node IP addresses are reachable from the bastion host (and may be exposed outside of
the cluster).

CNE Port Flows

Table A-1    CNE Port Flows

Name Server/
Contain
er

Ingress Port
ext[:int]/
Proto

TLS Cluster
IP
(Service
IP)

Node IP Notes

SSH Access ALL 22/TCP Y SSH Access Administrative SSH
Access; no root / key
only.

Repository Bastion
Host

80/TCP,

443/TCP,

5000/TCP

Y Repository
Access

Access repositories
(YUM, Docker, Helm,
etc.)

Jenkins CD Bastion
Host

8080/TCP N CD Pipeline
Access

Access CD Pipeline GUI

Jenkins M2M Bastion
Host

50000/TCP N Jenkins M2M CD Pipeline Operations

RPC Bind All 111/TCP,
UDP

N RPCBind Used for installation; pxe
booting of NFS mounted
images

BGP K8s
Nodes

179/TCP N BGP Used on bare metal
environments in load
balancing

MySQL
Query

MySQL
SQL
Node

3306/TCP N Replicati
on
Traffic

Microservice
SQL Access

The SQL Query
interfaces are used for
5G NFs to access the
database and for remote
sites to replicate data

Ceph Ceph
CSI
Metric

9080/TCP,
9081/TCP,
9090/TCP,
9091/TCP

N All Cluster
Nodes

Used to monitor the CSI
performance of the
Ceph storage backend.

ILO ILO
Manage
ment
Port

443/TCP Y Installation /
Management

This interface is used to
manage the frame; it
provided low level
management for all of
the frame HW assets

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Appendix A-1 of A-5



Table A-1    (Cont.) CNE Port Flows

Name Server/
Contain
er

Ingress Port
ext[:int]/
Proto

TLS Cluster
IP
(Service
IP)

Node IP Notes

Kube API
Server

K8s
Master
Nodes

6443/TCP Y K8s
Orchestration

The Kube API Server
provides an
orchestration API for the
management creation of
K8s resources.

Kubelet
cAdvisor

K8s
Nodes

4149/TCP Y Container
Metrics

Default cAdvisor port
used to query container
metrics

Kubelet API K8s
Nodes

10250/TCP Y Control Plane
Node Access

API which allows full
node access

Kube-
scheduler

K8s
Nodes

10251/TCP N Scheduler
Access

Serve HTTP insecurely

Kube-
controller

K8s
Nodes

10252/TCP N Controller
Access

Serve HTTP insecurely

Kube-proxy K8s
Nodes

10256/TCP N Health Check Health check server for
Kube Proxy

Kube-proxy K8s
Nodes

30000-32767 N Service
Access

The default service node
port range

Kube-
controller

K8s
Nodes

10257/TCP Y Controller
Access

HTTPS Access

Kube-
Scheduler

K8s
Node

10259/TCP Y Scheduler
Access

HTTPS Access

NF Port Flows

Table A-2    NF Port Flows

Name Server /
Container

Ingress Port
[external:]in
ternal

TLS? Service IP Node IP Notes

5G NRF K8s Nodes /
NRF Service

80/TCP

443/TCP

Y IngressGate
way

NfRegistratio
n

NfSubscriptio
n

NfDiscovery

NfAccessTok
en

EgressGatew
ay

NrfConfigurat
ion

5G NRF

5G SCP Kubernetes
Nodes/SCP
Worker

8000/TCP N 5G Proxy 5G SCP
Proxy

5G SCP Kubernetes
Nodes/scp-
configuration

8082/TCP N Proxy
Configuration

5G SCP
Proxy
Configuration

Appendix A

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Appendix A-2 of A-5



Table A-2    (Cont.) NF Port Flows

Name Server /
Container

Ingress Port
[external:]in
ternal

TLS? Service IP Node IP Notes

5G SCP Kubernetes
Nodes/Istio

/TCP N Mesh State
Sharing

5G SCP
Mesh
Management

5G NSSF K8s Nodes /
NSSF
Service

80/TCP

443/TCP

Y NSSF
configuration

IngressGate
way

NS-selection,
NS-
availability,

NS-
subscription

EgressGatew
ay

NRF-Client

5G NSSF

5G UDR/
UDSF

K8s Nodes /
UDR Service

80/TCP

443/TCP

Y UDR
Configuration

Ingress
gateway

Nudr-dr/
Nudr-prov

5G UDR

5G SEPP K8s Nodes /
SEPP
Service

80/TCP

443/TCP

Y plmn-
ingress-
gateway

n32-ingress-
gateway

config-mgr-
svc

• n32-
egress-
gateway

• plmn-
egress-
gateway

• pn32c-
svc

• cn32c-
svc

• pn32f-
svc

• cn32f-
svc

• nfmediat
ion-svc

• nfdiscov
ery

• nfmanag
ement

• coheren
ce-svc

• perf-info
• app-info
• alternate

-rte-svc
• config-

mgr-svc

5G SEPP

Appendix A

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Appendix A-3 of A-5



Table A-2    (Cont.) NF Port Flows

Name Server /
Container

Ingress Port
[external:]in
ternal

TLS? Service IP Node IP Notes

5G PCF K8s Nodes /
PCF Service

80/TCP

443/TCP

Y ingress_gate
way

• pcf-pcf-
amservi
ce

• pcf-pcf-
smservic
e

• pcf-pcf-
ueservic
e

• pcf-
occnp-
nrf-client

5G Policy

5G BSF K8s Nodes /
PCF Service

80/TCP

443/TCP

Y ingress_gate
way

• ocpm-
cm-
service

• ocpm-
queryser
vice

5G BSF

Common Service Port Flows

Appendix A

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Appendix A-4 of A-5



Table A-3    Common Service Port Flows

Name Server /
Container

Ingress Port
ext[:int]/
proto

TLS ? Service IP
(LP)

Node IP Comments

5G CNCATS K8s Node 8080/
TCP8443/
TCP5001/TC
P

Y GUI & ATS
API

• ocats-
service

• Provides
GUI and
API
abilities
to the
ATS
service.

• TLS is
enabled
on ports
8443
and
5001,
– only

one
of
844
3
and
808
0 is
allo
cate
d
dep
endi
ng
on
type
of
depl
oym
ent(
TLS
or
not)

Appendix A

Cloud Native Core Security Guide
G42791-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 14, 2025
Appendix A-5 of A-5


	Contents
	Preface
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	My Oracle Support
	Acronyms
	What's New in This Guide
	1 Introduction
	1.1 Audience
	1.2 References

	2 Overview
	2.1 Cloud Native Core Network Functions
	2.2 Secure Development Practices
	2.2.1 Vulnerability Handling

	2.3 Trust Model
	2.3.1 Context diagram
	2.3.2 Key Trust Boundaries
	2.3.3 External Data Flows


	3 Implementing Security Recommendations and Guidelines
	3.1 Common Security Recommendations and Guidelines
	3.1.1 4G and 5G Application Authentication and Authorization
	3.1.2 cnDBTier Security Recommendations and Guidelines
	3.1.3 Cloud Native Core Gateway Services Specific Security Recommendations and Guidelines
	3.1.4 Automated Test Suite (ATS) Specific Security Recommendations and Guidelines
	3.1.5 Oracle Communications Certificate Management (OCCM) Specific Security Recommendations and Guidelines
	3.1.6 OCI Adaptor Specific Security Recommendations and Guidelines
	3.1.7 Cloud Native Configuration Console (CNC Console) Specific Security Recommendations and Guidelines
	3.1.8 Cloud Native Environment (CNE) Specific Security Recommendations and Guidelines

	3.2 Cloud Native Core Network Function Specific Security Recommendations and Guidelines
	3.2.1 Network Repository Function (NRF) Specific Security Recommendations and Guidelines
	3.2.2 Service Communication Proxy (SCP) Specific Security Recommendations and Guidelines
	3.2.3 Network Exposure Function (NEF) Specific Security Recommendations and Guidelines
	3.2.4 Network Slice Selection Function (NSSF) Specific Security Recommendations and Guidelines
	3.2.5 Security Edge Protection Proxy (SEPP) Security Recommendations and Procedures
	3.2.6 Unified Data Repository (UDR) and Unstructured Data Storage Function (UDSF) Specific Security Recommendations and Guidelines
	3.2.7 Binding Support Function (BSF) Specific Security Recommendations and Guidelines
	3.2.8 Cloud Native Core Policy Specific Security Recommendations and Guidelines


	A Cloud Native Core Network Port Flows

