
Oracle® Communications Converged
Application Server
Concepts

Release 8.0
F43722-01
December 2021



Oracle Communications Converged Application Server Concepts, Release 8.0

F43722-01

Copyright © 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience vii

My Oracle Support vii

Revision History viii

1   Overview of Converged Application Server Architecture

About the Converged Application Server 1-1

Converged Application Server Architecture 1-2

Configuring and Administering the Converged Application Server Deployment 1-4

Administration Console 1-4

2   Developing Applications for Converged Application Server

Overview of Developing Applications for Converged Application Server 2-1

SIP Protocol Support 2-1

Simplicity and Ease of Use 2-2

Converged Applications 2-2

Application Composition 2-3

Highly Reliable Implementation 2-3

Overview of the SIP Servlet Container 2-3

SIP Dialog Handling 2-4

Using the SIP Servlet API 2-5

The SipServlet Object 2-6

SIP Factory 2-8

SIP Messages 2-8

SipSession 2-9

SipApplicationSession 2-10

Application Timers 2-10

SIP Servlet Application Example: Converged SIP and HTTP Application 2-11

SIP Servlet Application Example: SUBSCRIBE and NOTIFY 2-11

Converged Application Server Profile API 2-13

Using Document Keys for Application-Managed Profile Data 2-14

iii



Monitoring Profile Data 2-15

Developing "Zero Downtime" Upgradable Applications 2-17

Requirements and Restrictions for Upgrading Deployed Applications 2-17

Developing IR.92 Supplementary Services 2-18

About Converged Application Server and VoLTE 2-18

Communication Diversion 2-18

Communication Barring 2-19

Communication Hold 2-19

Setting the Communication Hold Bandwidth 2-19

Originating Identification Presentation and Restriction 2-20

Privacy Service Behavior 2-21

Providing Privacy for the History-Info Header 2-22

Communication Waiting 2-23

Supporting Network- and Terminal-based Communication Waiting 2-23

Message Waiting Indication 2-24

Announcement Support 2-24

Developing Services Using XCAP 2-25

About XCAP and VoLTE 2-26

3   Converged Application Server in the Network

Converged Application Server in a Typical Service Provider Network 3-1

SIP and IMS Service Control 3-2

ISC and the 3GPP SIP Profile 3-2

AS Session Case Determination Requirement of ISC 3-3

Transport Layer Issues Related to ISC 3-3

HTTP User Interface 3-4

Service and Subscriber Data and Authentication 3-4

Proxy Registrar 3-4

Media Server Control 3-8

Charging and Billing 3-9

Security 3-9

Authentication Providers 3-10

Trusted Host Authentication 3-10

Declarative Security 3-12

Protecting the Converged Application Server Domain with a Session Border Controller 3-12

4   Converged Application Server Cluster Architecture

Overview of Converged Application Server Clusters 4-1

Relationship Between Clusters and Domains 4-1

iv



Relationship Between Coherence and WebLogic Server Clusters 4-2

Objects That Can Be Clustered 4-2

Objects That Cannot Be Clustered 4-2

Overview of the Cluster Architecture 4-3

Geographically-Redundant Installations 4-4

Administration Server 4-5

Engines 4-5

Diameter Support 4-6

5   Deployment Scenarios

Overview of Deployment Scenarios 5-1

Single-NIC Configurations with TCP and UDP Channels 5-1

Multihomed Server Configurations Overview 5-3

Multihomed Servers Listening On All Addresses (IP_ANY) 5-3

Multihomed Servers Listening on Multiple Subnets 5-3

Understanding the Route Resolver 5-4

IP Aliasing with Multihomed Hardware 5-5

Load Distribution Considerations 5-5

Single VIP Topology 5-5

Multiple VIP Topology 5-6

Network Address Translation Options 5-7

IP Masquerading Alternative to Source NAT 5-7

Example Scenarios 5-7

Example Deployment with a Non-SIP Aware Load Balancer 5-8

Converged Application Server Configuration 5-9

Load Balancer Configuration 5-9

6   Standards Alignment

Overview of Converged Application Server Standards Alignment 6-1

Java Sun Recommendation (JSR) Standards Compliance 6-1

IETF RFC Compliance 6-1

3GPP R12 Specification Conformance 6-12

A   SIP Servlet API Service Invocation

SIP Servlet API Overview A-1

Servlet Mapping Rules: Objects, Properties and Conditions A-1

Supported Service Trigger Points A-3

Request Object A-3

URI A-3

v



SipURI (extends URI) A-3

TelURL (extends URI) A-4

Address A-4

Conditions and Logical Connectors A-4

vi



Preface

This document provides a technical overview of Oracle Communications Converged
Application Server, including its features, architecture, standards alignment, and supported
platforms. It also describes the service invocation method of the SIP Servlet API.

Audience
This document is intended for anyone who needs to learn about Converged Application
Server, especially those who configure and maintain it.

My Oracle Support
My Oracle Support (https://support.oracle.com) is your initial point of contact for all product
support and training needs. A representative at Customer Access Support (CAS) can assist
you with My Oracle Support registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle Support
hotline for your local country from the list at http://www.oracle.com/us/support/contact/
index.html. When calling, make the selections in the sequence shown below on the Support
telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking, and Solaris Operating System Support.

3. Select one of the following options:

• For technical issues such as creating a new Service Request (SR), select 1.

• For non-technical issues such as registration or assistance with My Oracle Support,
select 2.

You are connected to a live agent who can assist you with My Oracle Support registration and
opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

Emergency Response

In the event of a critical service situation, emergency response is offered by the Customer
Access Support (CAS) main number at 1-800-223-1711 (toll-free in the US), or call the Oracle
Support hotline for your local country from the list at http://www.oracle.com/us/support/
contact/index.html. The emergency response provides immediate coverage, automatic
escalation, and other features to ensure that the critical situation is resolved as rapidly as
possible.

A critical situation is defined as a problem with the installed equipment that severely affects
service, traffic, or maintenance capabilities, and requires immediate corrective action. Critical

vii

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html


situations affect service and/or system operation resulting in one or several of these
situations:

• A total system failure that results in loss of all transaction processing capability

• Significant reduction in system capacity or traffic handling capability

• Loss of the system's ability to perform automatic system reconfiguration

• Inability to restart a processor or the system

• Corruption of system databases that requires service affecting corrective actions

• Loss of access for maintenance or recovery operations

• Loss of the system ability to provide any required critical or major trouble
notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance
capabilities may be defined as critical by prior discussion and agreement with Oracle.

Locate Product Documentation on the Oracle Help Center Site

Oracle Communications customer documentation is available on the web at the Oracle
Help Center (OHC) site, http://docs.oracle.com. You do not have to register to access
these documents. Viewing these files requires Adobe Acrobat Reader, which can be
downloaded at http://www.adobe.com.

1. Access the Oracle Help Center site at http://docs.oracle.com.

2. Click Industries.

3. Under the Oracle Communications sub-header, click the Oracle Communications
documentation link.
The Communications Documentation page appears. Most products covered by
these documentation sets appear under the headings "Network Session Delivery
and Control Infrastructure" or "Platforms."

4. Click on your Product and then Release Number.
A list of the entire documentation set for the selected product and release appears.

5. To download a file to your location, right-click the PDF link, select Save target as
(or similar command based on your browser), and save to a local folder.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Revision History
Table 1    Revision History

Date Revision

December 2021 • Initial release

Preface

viii

http://docs.oracle.com
http://www.adobe.com
http://docs.oracle.com
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


1
Overview of Converged Application Server
Architecture

This chapter introduces the Oracle Communications Converged Application Server.

Before continuing, you should familiarize yourself with the Internet Engineering Task Force
(IETF) standards listed in Table 1-1.

Table 1-1    SIP and SDP Standards

Protocol Description URL

Session Initiation
Protocol (SIP)

From the IETF document,
"[SIP is} an application-layer
control (signaling) protocol for
creating, modifying, and
terminating sessions with one
or more participants. These
sessions include Internet
telephone calls, multimedia
distribution, and multimedia
conferences."

https://www.ietf.org/rfc/rfc3261.txt

Session Description
Protocol (SDP)

From the IETF document,
"SDP is intended for
describing multimedia
sessions for the purposes of
session announcement,
session invitation, and other
forms of multimedia session
initiation."

https://www.ietf.org/rfc/rfc4566.txt

About the Converged Application Server
Converged Application Server is a carrier-class Java Platform, Enterprise Edition (Java EE)
application server that has been extended with support for the SIP and a number of
operational enhancements that allow it to meet the demanding requirements of next-
generation Internet Protocol-based communications networks. The Converged Application
Server implementation is based on Oracle's widely deployed and time-tested Java EE-
compliant WebLogic Server product.

In a typical IP Multimedia Subsystem (IMS) deployment, Converged Application Server fills
the role of the IMS SIP Application Server. Figure 1-1 shows the Converged Application
Server in the context of the functional architecture for the provision of service in the IMS, as
specified by 3GPP TS 23.002, "Network Architecture."

1-1

https://www.ietf.org/rfc/rfc3261.txt
https://www.ietf.org/rfc/rfc4566.txt


Figure 1-1    Converged Application Server in the IMS Service Architecture

Converged Application Server supports all of the standard Oracle WebLogic Server
programming interfaces and facilities, such as Java Transaction API (JTA), Java
Activation Framework (JAF), Java Message Service (JMS), Java Naming and
Directory Interface (JNDI), Java Database Connectivity (JDBC), and Enterprise
JavaBeans (EJB). Converged Application Server also supports the protocols typically
associated with a standards-compliant Java EE application server, including Remote
Method Invocation (RMI) over Internet Inter-Orb Protocol (IIOP), HTTP 1.1,
Lightweight Directory Access Protocol (LDAP), Simple Mail Transfer Protocol (SMTP),
Post Office Protocol (POP), Internet Message Access Protocol (IMAP), and SNMPv2.

Converged Application Server then builds upon the base Java EE programming model
by integrating a SIP Servlet Container that is compliant with the JSR-359 SIP Servlet
API specification. This “converged" container provides an execution environment for
applications containing both HTTP and SIP protocol handling components, as well as
other protocols such as Diameter.

Converged Application Server Architecture
The “SIP Stack" of Converged Application Server is fully integrated into the SIP Servlet
container and is substantially more powerful and easier to use than a traditional
protocol stack.

As shown in Figure 1-2, Converged Application Server combines the SIP Servlet
container with EJB and HTTP Servlet containers, supporting application convergence
through session context sharing.

Chapter 1
Converged Application Server Architecture

1-2



Figure 1-2    Converged Application Server Extended Java EE for Next Generation
Networks

The SIP Servlet API defines a higher layer of abstraction than simple protocol stacks provide
and frees the developer from concern for the mechanics of the SIP protocol itself. Specifically,
the API handles the syntactic validation of received requests, transaction layer timers,
generation of non-application-related responses, generation of fully-formed SIP requests from
request objects (which involves correct preparation of system headers and generation of
syntactically correct SIP messages), and lower-layer transport protocols (such as TCP, UDP
or SCTP).

The Servlet container distributes request and response objects to components in a structured
way, maintains awareness of the state of the larger, converged SIP and HTTP application
session, and manages the end-to-end object lifecycle, including resource, transaction, and
session state management. The converged SIP and HTTP container thereby frees the
developer from much work (and opportunity for error) and allows deployed applications to
inherit the high-availability, performance, and operational features provided by the robust
Converged Application Server container implementation.

The SIP Servlet API greatly simplifies the task of implementing SIP User Agents, Proxies and
Back-to-Back-User-Agents, and it narrows the developers exposure to operational concerns
such as resource management, reliability, manageability and interaction between services.
(See "Developing Applications for Converged Application Server" for more information.)

Converged Application Server incorporates a number of architectural features that allow for
its deployment as a highly-available, fault tolerant cluster.

Engines processes all signaling traffic and replicates transaction and session state between
all engines in a cluster. This clustering capability, combined with a third-party load balancer,
transparently provides services with Telco-grade availability, scalability, and fault tolerance
(session retention), ensuring that ongoing sessions are not affected by the failure of individual
cluster members since a production deployment of Converged Application Server has no
single point of failure.

Chapter 1
Converged Application Server Architecture

1-3



Configuring and Administering the Converged Application
Server Deployment

Converged Application Server provides several tools and mechanisms for
administration and configuration which include:

• Administration Console: Converged Application Server provides an extensive
Web-based GUI that supports all configuration management, including deployment
of applications, configuration of connectivity, and other common tasks. This
interface offers secure, role-based administration of servers from any terminal that
has access to the Administration Server and supports a standard HTML Web
browser.

• Java Management Extensions (JMX): Converged Application Server
interoperates with standard network element management systems via JMX. Many
common network management suites support JMX natively, which is the standard
management technology for Java applications.

• Simple Network Management Protocol (SNMP): Converged Application Server
interoperates with standard network element management systems via use of
SNMP, V2. The Converged Application Server SNMP MIB complies with MIB II.
Converged Application Server also enables developers to send SNMP traps from
within application code. See the Oracle Communications Converged Application
Server Developer Guide.
Converged Application Server also uses the SNMP features available in Oracle
WebLogic Server, such as SNMP proxying. See Monitoring Oracle WebLogic
Server with SNMP.

• WebLogic Scripting Tool (WLST): Converged Application Server provides a
Command Line Interface (CLI) using WLST for manual runtime configuration from
any network terminal with secure access to the Administration Server. See 
Understanding the WebLogic Scripting Tool.

Administration Console
The Converged Application Server Web Administration Console is used for the
following tasks:

• Configuring application container and related resource properties

• Configuring security

• Deploying applications or components

• Monitoring resource usage

• Configure debug logging for the servers in the domain

• Displaying log messages

• Starting and stopping servers

Chapter 1
Configuring and Administering the Converged Application Server Deployment

1-4

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/snmpa/index.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/snmpa/index.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlstg/index.html


Figure 1-3    Converged Application Server Administration Console

In addition to providing access to the configuration for the implementation, the Converged
Application Server Administration console serves as a monitoring and troubleshooting
interface. It provides a convenient interface for observing system-wide usage metrics,
including SIP traffic activity. See Monitoring and Overload Protection in Converged
Application Server Administrator Guide.

Chapter 1
Administration Console

1-5



2
Developing Applications for Converged
Application Server

This chapter describes the environment for developing applications with Oracle
Communications Converged Application Server.

Overview of Developing Applications for Converged Application
Server

Oracle Communications Converged Application Server is a development and runtime
platform for implementing and deploying communication services. The Converged Application
Server supports capabilities that form the basis for advanced communication services,
including those represented by Rich Communication Services (RCS) and Voice over Long-
Term Evolution (VoLTE). The Converged Application Server simplifies the development of
converged applications that provide voice, IM, rich media, and presence services to end
users.

The Converged Application Server provides comprehensive support for the SIP protocol. The
Session Initiation Protocol (SIP) protocol, specified by Java Specification Request (JSR) 359:
SIP Servlet Specification, version 2.0, extends the basic concept of the Servlet. The SIP
Servlet API specification describes not only the programming API but also the Servlet
container function. The container is the Server (software) that hosts or “contains" applications
written using the API. The SIP Servlet container hosts SIP applications.

The Converged Application Server SIP container performs a number of SIP functions as
specified by various Request for Comments (RFCs), thus taking the burden off of the
applications themselves. At the same time, the container exposes the application to SIP
protocol messages through the SIP Servlet API. In this way, the application can perform
various actions based on the SIP messages it receives from the container. Different
applications can be coded and deployed to the container in order to provide various
telecommunication or multimedia services.

SIP Protocol Support
The SIP Servlet API enables applications to perform a complete set of SIP Signaling
functions. The SIP Protocol specification defines different types of high level SIP roles,
namely User Agents (UAs) which include UA Clients, UA Servers, and Back-to-back user
agents (B2BUAs). The SIP protocol also defines the roles of Proxies, Registrars, and
Redirect Servers. The SIP Servlet API is a allows any of these roles to be coded as SIP
Servlet application.

SIP is an extensible protocol, which is one of its strengths. Applications can extend the base
protocol to add new features as necessary. In fact, there are a number of RFCs that define
extensions to the base Internet Engineering Task Force (IETF) RFC 3261 SIP: Session
Initiation Protocol. The SIP Servlet API is also designed to allow developers to easily extend
functionality. This is accomplished by dividing up the SIP processing between the container
functions the applications. Most of the base protocol processing is performed by the

2-1



container, leaving some of the higher level tasks for the applications to perform. This
clever division is what lends a great deal of power and flexibility to the SIP Servlet API.

Simplicity and Ease of Use
The SIP Servlet container handles "non-application-specific" complexity outside of the
application code itself. Concerns like network connectivity, protocol transactions, dialog
management and route processing are required by virtually all applications, and it
would be enormously wasteful and error-prone to require each application to
implement this support. With the SIP Servlet API, all of these tasks are managed by
the container, leaving applications to provide higher level functions.

As an example, consider a SIP Proxy component:

1. A SIP Servlet within the SIP Servlet container receives a SIP request object and
proxies it. A SIP Proxy must add its own Via header to the request; the header is
required by the base SIP protocol to indicate which entities were traversed by the
request. The Via header also stores the branch identifier which acts as the
transaction identifier.

Because the maintenance of transactions and their associated state machine is
maintained by the container, it is the container that actually inserts the Via headers
into the SIP Request.

2. The downstream SIP entity which next receives the request sends the response
back along the path built up by the SIP entities in the path of the request that have
inserted themselves into the Via or Record-Route headers.

3. The container gets the response, removes the Via header it inserted in the original
request and then processes the response. The application code does not need to
manage the Via header, which simplifies application development.

There are many cases in which Converged Application Server handles that sort of
mundane, but essential, protocol detail.

Converged Applications
The SIP Servlet API specification is closely aligned with the Java Platform, Enterprise
Edition (Java EE) specifications, and it is expected that containers that host SIP
Servlet applications also make Java EE features available to developers. The most
notable of these features is the HTTP Servlet container. There are many use cases in
which a converged application, using both SIP and HTTP functions, is required, from
conferencing and click-to-call applications to Presence and User Agent Configuration
Management applications. Converged applications can also combine other protocols
such as Diameter to perform advanced functions such as modifying subscriber profile
data.

Figure 2-1 illustrates that javax.servlet.http and javax.servlet.sip converge in
the SIP Servlet API.

Chapter 2
Overview of Developing Applications for Converged Application Server

2-2



Figure 2-1    HTTP/SIP Convergence in the SIP Servlet API

Application Composition
The SIP Servlet API enables multiple applications to execute on the same request or
response, independently of one another. This is another very powerful feature of the SIP
Servlet API. The promise is that application developers are able to write applications
providing features that are independent of each other, but can be deployed to the same host
SIP Servlet container. The applications can be “composed" (or sequenced) to provide a
service on a call. This composition is facilitated by the container. See "SIP Servlet API
Service Invocation" for more information.

Highly Reliable Implementation
Application data stored in container-managed session objects can benefit from replication
and failover. Almost all applications that perform some useful functions require some state
between different Requests and Responses. Some state information is mandated by the SIP
protocol itself, such as the transaction state machine with its Server and Client Transactions,
and the Dialog state machine.

The container also has a notion of message context which encapsulates the SIP level state,
and the concept of Sessions, which are the SIP Servlet API constructs. Applications can save
their own state in the Session objects maintained by the container. A carrier-grade container
will replicate this state such that the call becomes fault tolerant of a container instance, as is
done in Converged Application Server.

Overview of the SIP Servlet Container
Figure 2-2 shows the logical layers of a Converged Application Server SIP Servlet Container.
The five layers shown from the bottom are what are known as the SIP stack, the functionality
of which is defined in RFC 3261 and the associated RFCs that extend the base protocol.

SIP, being a transaction-based protocol, has a well-defined transaction layer. SIP requests
are always followed by one or more provisional Responses and one final response, with the
exception of the ACK which has no response. The transaction machinery is designed to keep
track of the provisional and final responses.

Figure 2-2 shows the message processing layers in the Converged Application Server SIP
Servlet container which are the following from top to bottom: Dialog Management Layer,
Transaction Layer, Message Parser, the Transport Layer, and the bottom layer comprising of
Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Transport Layer
Security (TLS).

Chapter 2
Overview of the SIP Servlet Container

2-3



Figure 2-2    Message Processing Layers in the Converged Application Server
SIP Servlet Container

SIP Dialog Handling
A dialog is a point-to-point session between two SIP endpoints that is uniquely
identified by a dialog identifier. Not all SIP requests create dialogs. However, the ones
that do create dialogs have a well-defined mechanism of establishing and tearing
down the dialog (INVITE, SUBSCRIBE/NOTIFY, REFER).

The SIP stack shown in this diagram is not strictly in accordance with RFC 3261. It
differs from the specification in that there is a layer called Transaction User (TU) above
the Transaction layer, and the dialog management layer is not explicitly a layer in
3261. The “Dialog layer" is a very visible constituent of a SIP Servlet container
because the dialogs correspond roughly to the SipSession objects. In Figure 2-2, the
TU layer is actually split between the Dialog management layer and the big Container
block.

The primary purpose of the Container is to host SIP Servlet applications that are
written to the container's SIP Servlet API implementation. It exposes objects like
SipServletRequest, SipServletResponse, different types of Sessions, facilities such
as Timer, Logging, and so forth.

Although SIP is a human-readable, text-based protocol, and is well-defined in Request
for Comment (RFC) 3261, writing SIP applications can be a challenging task. The SIP

Chapter 2
Overview of the SIP Servlet Container

2-4



Servlet API is designed to simplify SIP application development. While the SIP Servlet API
allows access to all the headers present in a SIP Request, it does not require applications to
understand or modify all of them for correct protocol behavior. Also, there are some headers
that are strictly off limits for applications. The SIP Servlet API defines the so-called "system
headers" which are to be managed only by the container. These headers include the From,
To, Call-ID, CSeq, Via, Route (except through pushRoute), Record-Route, and Contact
headers. Applications can add attributes to the Record-Route header and Contact header
fields in all request messages, as well as 3xx and 485 responses. Additionally, for containers
such as Converged Application Server that implement the reliable provisional responses
extension, RAck and RSeq are also considered to be system headers. The system header
management performed by the container offloads a tremendous amount of complexity from
applications.

The From, To, Call-ID, and CSeq message headers collectively identify a given SIP dialog.
The SIP Servlet container keeps track of the dialog state and dialog-related data for the
hosted applications. The SIP Servlet container is responsible for managing Record-Route,
Contact, and Via headers because the network listen points, failure management, multi-
homing, transport switching, and so forth are also handled by the container. Applications can
participate in the routing decisions of a Request emanating from the container by explicitly
modifying Request-URI or adding Route headers with pushRoute(). As a result, applications
have no responsibility for resource management. The SIP Servlet API draws heavily from
Java EE standardization and common practices, such as the declarative usage of container
features such as security, mapping, and environment resources.

Perhaps the greatest advantage of the SIP Servlet API is the API itself. The SIP Servlet API
abstracts a large number of complex SIP tasks behind intuitive constructs. The Proxy
interface, representing the proxy functionality in SIP, is an excellent example. A proxy can:

• Be stateful or stateless.

• Recurse automatically (send Requests automatically) upon receipt of a 3xx SIP response
code to the Contact address(es) contained in the Response header.

• Use the Record-Route header to ensure that subsequent requests also go through it.

• Act as a forking proxy to proxy to multiple destinations, either in parallel or in sequence.

With the SIP Servlet API, all of these options are simple attributes of the Proxy object. The
container-managed Proxy deals with all low level details like finding a target set (based on
Request-URI or Route headers), applying RFC rules if a strict router is upstream or
downstream, creating multiple client transactions, correlating responses, choosing the best
response, and so forth.

Using the SIP Servlet API
This section describes additional important interfaces and constructs of the SIP Servlet API,
and includes examples.

Chapter 2
Using the SIP Servlet API

2-5



Note:

JSR 359 defines a new method for creating SIP servlets using Plain Old
Java Objects (POJOs) in conjunction with SIP specific annotations as well as
other annotations defined by Java EE Common Dependency Injections
(CDIs), which can significantly reduce the amount of code and complexity.
JSR 359 is, however, fully backwards compatible with 1.x applications, and
those examples are left intact in this section.

The SipServlet Object
The SipServlet class extends the GenericServlet class in the servlet base package.
The service method dispatches the SIP message to either doRequest() or
doResponse(), and in turn the requests are directed to the doXXX methods for
Requests such as doInvite, doSubscribe, and so forth, or to doXXX methods for
Responses such as doSuccessResponse and doErrorResponse.

If you are creating a SIP Servlet using POJOs and annotations, you can use the
@SipServlet annotation in conjunction with the following method specific annotations:

• @Invite

• @Ack

• @Options

• @Bye

• @Cancel

• @Register

• @Prack

• @Subscribe

• @Notify

• @Message

• @Info

• @Update

• @Refer

• @Publish

The servlet-mapping element defined in the deployment descriptor can define the rule
that MUST be satisfied before invoking a particular Servlet. The mapping rules have a
well-defined grammar in JSR 116. Example 2-1 shows a mapping that invokes a
Servlet only if the Request is an INVITE and the host part of the Request-URI contains
the string “example.com". See "SIP Servlet API Service Invocation" for more
information on servlet mapping rules.

Example 2-1    Example Servlet Mapping Rule

pattern
  <and>
    <equal>

Chapter 2
Using the SIP Servlet API

2-6



      <var>request.method</var>
      <value>INVITE</value>
    </equal>
    <contains ignore-case="true">
      <var>request.from.uri.host</var>
      <value>example.com</value>
    </contains>
  </and>
</pattern>

There is normally only one SipServlet object accessed by concurrent Requests, so it is not a
place to define any call- or session- specific data structure. The doXXX methods in the
application generally implement the business logic for a given request. Consider 
Example 2-2.

Example 2-2    Example SIP Servlet

1: package test;
2: import javax.servlet.sip.SipServlet;
3: import javax.servlet.sip.SipServletRequest;
4: import java.io.IOException;
5: public class SimpleUasServlet extends SipServlet {
6:   protected void doInvite(SipServletRequest req) 
7:      throws IOException {
8:     req.createResponse(180).send();
9:     req.createResponse(200).send();
10:  }
11:  protected void doBye(SipServletRequest req) throws IOException {
12:    req.createResponse(200).send();
13:    req.getApplicationSession().invalidate();
14:  }
15: }

Example 2-2 shows a simple UAS Servlet that is invoked on an incoming INVITE Request
(triggered by a rule similar to the one defined in Example 2-1). The container invokes the
application by invoking the doInvite method. The application chooses to send a 180
Response (line 8) followed by a 200 Response (line 9). The application does nothing with the
ACK, which would be sent by the UAC. In this case the container receives the ACK and
silently ignores it. If it were a stateful proxy it would have proxied it.

Example 2-3 shows how the same class could be written using an annotated POJO.

Example 2-3    Example SIP Servlet Using an Annotated POJO

package test;
import javax.inject.Inject;
import javax.servlet.sip.SipFactory;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.annotation.Bye;
import javax.servlet.sip.annotation.Invite;
import javax.servlet.sip.annotation.SipServlet;
 
@SipServlet(loadOnStartup = 1)
public class SimpleUasServlet {
  @Inject SipFactory sipFactory;
  @Invite
  public void handleInviteRequest(SipServletRequest req) throws IOException {
    req.createResponse(180).send();
    req.createResponse(200).send();
  }

Chapter 2
Using the SIP Servlet API

2-7



  @Bye
  public void handleByeRequest(SipServletRequest req) throws IOException {
    req.createResponse(200).send();
    req.getApplicationSession().invalidate();
  }
}

SIP Factory
As its name suggests, this class is used to create various SIP Servlet API objects such
as Request, SipApplicationSession, Addresses, and so forth. An application acting
as a UA can use it to create a new Request. Requests created through the factory
have a new Call-ID (with the exception of a particular method for B2BUAs in which the
application can chose to re-use the existing Call-ID on the upstream leg) and do not
have a tag in the To header. The Factory object can be retrieved using the
javax.servlet.sip.SipFactory attribute on the ServletContext.

See the "findme" example installed with Converged Application Server for an example
of obtaining a factory object using SipFactory.

If you are using annotated POJOs, you can use the CDI @Inject annotation to inject
the SipFactory into your servlet class:

@Inject SipFactory sipFactory;

SIP Messages
There are two classes of SIP messages: SipServletRequest and
SipServletResponse. These classes respectively represent SIP Requests (INVITE,
ACK, INFO, and so forth) and Responses (1xx, 2xx, and so forth). Messages are
delivered to the application through various doXXX methods defined in the SipServlet
class.

SIP is an asynchronous protocol and therefore it is not obligatory for an application to
respond to a Request when the doRequest(doXXX) method is invoked. The application
may respond to the Request at a later stage, because they have access to the original
Request object.

Both the SipServletRequest and SipServletResponse objects are derived from the
base SipServletMessage object, which provides some common accessor/mutator
methods such as getHeader(), getContent(), and setContent(). The
SipServletRequest defines many useful methods for Request processing:

• SipServletRequest.createResponse() creates an instance of the
SipServletResponse object. This represents the Response to the Request that
created it. Similarly, SipServletRequest.createCancel() creates a CANCEL
Request to a previously sent Request.

Chapter 2
Using the SIP Servlet API

2-8



Note:

The CANCEL is sent if the UAC decides to not proceed with the call if it has not
received a response to the original request. Sending a CANCEL if you have
received a 200 response or not received a 100 response would be wrong
protocol behavior, luckily the SIP Servlet API steps up to rescue here too. The
UAC application can create and send a CANCEL oblivious to these details. The
container ensures that a CANCEL is sent out only if a 1xx response code is
received, and any response >200 is not received.

• SipServletRequest.getProxy() returns the associated Proxy object to enable an
application to perform proxy operations.

• SipServletRequest.pushRoute(SipURI) enables a UAC or a proxy to route the request
through a server identified by the SipURI. The effect of this method is to add a Route
header to the request at the top of the Route header list.

Another method of interest is SipServletRequest.isInitial(). It is important to understand
the concept of initial and subsequent requests, because an application may treat each one
differently. For example, if an application receives a Re-INVITE request, it is delivered to the
Servlet's doInvite() method, but the isInitial() method returns false.

Initial requests are usually requests outside of an established dialog, of which the container
has no information. Upon receiving an initial Request, the container determines which
application should be invoked; this may involve looking up the Servlet-mapping rules. Some
Requests create dialogs, so any Request received after a dialog is established falls into the
category of a "subsequent" Request. Closely-linked with the dialog construct in SIP is the
SipSession object (see "SipSession ").

In the SipServletResponse object, one particular method of interest is createAck().
createAck() creates an ACK Request on a 2xx Response received for the INVITE
transaction. ACKs for non-2xx responses of the INVITE transaction are created by the
container itself.

SipSession
The SipSession roughly corresponds to a SIP dialog. For UAs the session maintains the
dialog state as specified by the RFC, in order to correctly create a subsequent request in a
dialog. If an application is acting as a UA (a UAC or a B2BUA), and after having processed
an initial request wants to send out a subsequent request in a dialog (such as a Re-INVITE or
BYE), it must use SipSession.createRequest() rather than one of SipFactory methods.
Using a factory method would result in requests being created “out of dialog".

The SipSession is also a place for an application to store any session-specific state that it
requires. An application can set or unset attributes on the SipSession object, and these
attributes are made available to the application over multiple invocations.

SipSession also provides the SipSession.setHandler(String nameOfAServlet) method,
which assigns a particular Servlet in the application to receive subsequent Requests for that
SipSession.

Chapter 2
Using the SIP Servlet API

2-9



SipApplicationSession
The SipApplicationSession logically represents an instance of the application itself.
An application may have one or more protocol sessions associated with it, and these
protocol sessions may be of type SipSession or HttpSession as of JSR 116.
Applications can also store application-wide data as an attribute of the
SipApplicationSession.

Any attribute set on a SipApplicationSession object or its associated SipSession is
visible only to that particular application. The SIP Servlet API defines a mechanism by
which more than one application can be invoked on the same call. This feature is
known as application composition. SipApplicationSession provides a getSessions()
method that returns the protocol sessions associated with the application session. The
image below shows the containment hierarchy of the different sessions in the SIP
Servlet API.

Figure 2-3    Relationship Between Session Object Types

The encodeUri(URI) method in the SipApplicationSession interface is of particular
interest. This method encodes the SipApplication identifier with the URI specified in
the argument. If the container receives a new request with this encoded URI, even if
on a different call, it associates the encoded SipApplicationSession with this
Request. This method can link two disparate calls, and it can be used in a variety of
other ways. SipApplicationSession is also associated with application session timers
(see Application Timers).

Application Timers
The SIP Servlet API provides a timer service that applications can use. The
TimerService interface can be retrieved using a ServletContext attribute, and it
defines a createTimer(SipApplicationSession appSession, long delay, boolean
isPersistent, java.io.Serializable info) method to start an application-level
timer.

The SipApplicationSession is implicitly associated with application-level timers.
When a timer fires, the container invokes an application-defined TimerListener and
passes it the ServletTimer object. The listener can use the ServletTimer object to
retrieve the SipApplicationSession, which provides the correct context for the timer's
expiry.

Chapter 2
Using the SIP Servlet API

2-10



SIP Servlet Application Example: Converged SIP and HTTP Application
In terms of the SIP Servlet API, a converged application is one that involves more than one
protocol, in this case SIP and HTTP. The example below presents an example of a simple
JSP page which can be accessed through an HTTP URL.

Example JSP Showing HTTP and SIP Servlet Interaction

Example 2-4    Example JSP Showing HTTP and SIP Interaction

1:<html>
2:<body>
3: <%
4:  if (request.getMethod().equals("POST")) {
5:   javax.servlet.sip.SipFactory factory = 
6:     (javax.servlet.sip.SipFactory) 
application.getAttribute(javax.servlet.sip.SipServlet.SIP_FACTORY); 
7:   javax.servlet.sip.SipApplicationSession appSession =
8:      factory.createApplicationSession();
9:   javax.servlet.sip.Address to = 
10:     factory.createAddress("sip:localhost:5080");
11:   javax.servlet.sip.Address from = 
12:     factory.createAddress("sip:localhost:5060");
13:   javax.servlet.sip.SipServletRequest invite =
14:      factory.createRequest(appSession, "INVITE", from, to);
15:   javax.servlet.sip.SipSession sess = invite.getSession(true);
16:     sess.setHandler(“sipClickToDial");
17:   //invite.setContent(content, contentType);
18:   invite.send();
19:  }
20:%>
21:<p>
22:Message sent ...
23:</p>
24:</body>
25:</html>

The JSP example would need to be packaged in the same application as a SIP Servlet. The
entire application is a skeleton of a click-to-dial application (called sipClickToDial), where by
clicking on a Web page you initiate a SIP call.

The HTTP Servlet creates a SIP Request from a factory and sends it to a SIP URI. When an
HTTP POST Request is sent to the HTTP Servlet it obtains the SipFactory on line 5-6. Next,
it creates an application session (line 7-8). The application session is the center piece for all
of the application's SIP and HTTP interactions. The overall purpose is to send out a SIP
Request, which is done in lines 13-14, but first the application creates the From and To
headers to be used when forming the INVITE request.

On line 16 the application assigns a handler to the SipSession that is associated with the
INVITE Request that was created, and this ensures that the Response sent by a UAS that
receives the request is dispatched to a SIP Servlet for processing.

SIP Servlet Application Example: SUBSCRIBE and NOTIFY
In the example shown below, the application receives a SUBSCRIBE Request and sends out
a NOTIFY Request. The application then waits for the notification recipient for three seconds,

Chapter 2
Using the SIP Servlet API

2-11



and if does not receive a success response (a 2xx class response), then it may take
some other action (for example, log a message).

Example 2-5    Example of SUBSCRIBE and NOTIFY Handling

1:public class Sample_TimerServlet extends SipServlet
2:  implements TimerListener {
3:  private TimerService timerService;
4:  private static String TIMER_ID = "NOTIFY_TIMEOUT_TIMER";
5:  public void init() throws ServletException {
6:    try {
7:      timerService = 
8:(TimerService)getServletContext().getAttribute
9:      ("javax.servlet.sip.TimerService");
10:    } 
11:    catch(Exception e) {
12:      log ("Exception initializing the servlet "+ e);
13:    }
14:  }
15:  protected void doSubscribe(SipServletRequest req)
16:  throws ServletException, IOException {
17:    req.createResponse(200).send();
18:    req.getSession().createRequest("NOTIFY").send();
19:    ServletTimer notifyTimeoutTimer = 
20:      timerService.createTimer(req.getApplicationSession(), 3000, 
21:  false, null);
22:    req.getApplicationSession().setAttribute(TIMER_ID, 
23:notifyTimeoutTimer);
24:  }
25:  protected void doSuccessResponse(SipServletResponse res) 
26:  throws javax.servlet.ServletException, java.io.IOException {
27:    if (res.getMethod().equals("NOTIFY")) {
28:      ServletTimer notifyTimeoutTimer =      
29:  (ServletTimer)(res.getApplicationSession().getAttribute(TIMER_ID));
30:      if (notifyTimeoutTimer != null) {
31:        notifyTimeoutTimer.cancel();
32:        res.getApplicationSession().removeAttribute(TIMER_ID);
33:      }
34:    }
35:  }
36:  public void timeout(ServletTimer timer) {
37:    // This indicates that the timer has fired because a 200 to
38:    // NOTIFY was not received. Here you can take any timeout 
39:    // action. 
40:    // .........
41:    timer.getApplicationSession().removeAttribute
("NOTIFY_TIMEOUT_TIMER");
42:  }   
43:}

The Servlet itself implements TimerListener so that it will be notified of the timeout.
The example starts by obtaining the TimerService from the ServletContext in lines
7-9. The timer is then set for 3000 ms (3 seconds) upon receiving the SUBSCRIBE
request on line 20. Note that the timer could be set at any stage. There is also an
option to attach an object to the timer. The object could be used as an identifier or an
invocable message at a later stage. This sample simply associates the timer with a
literal.

After sending the NOTIFY the application creates the timer and saves its reference in
the SipApplicationSession for later use on line 22.

Chapter 2
Using the SIP Servlet API

2-12



If the application receives a 200 response to the NOTIFY, it can then extract the timer
reference and cancel the timer (line 25). However, if no response is received in 3 seconds,
then the timer fires and the container calls the timeout() callback method (line 36).

The example above can be rewritten using an annotated POJO as shown in the example
below.

Example 2-6    Example of SUBSCRIBE and NOTIFY Handling using an Annotated
POJO

@SipServlet(loadOnStartup = 1);
public class Sample_TimerServlet {
 
  // Inject the TimerService using the @Resource annotation...
  @Resource TimerService timerService;
  private static String TIMER_ID = "NOTIFY_TIMEOUT_TIMER";
 
  @Subscribe
  protected void handleSubscribeRequest(SipServletRequest req) throws IOException {
    req.createResponse(200).send();
    req.getSession().createRequest("NOTIFY").send();
    ServletTimer notifyTimeoutTimer = timerService.createTimer(
    req.getApplicationSession(), 3000, false, null);
    req.getApplicationSession().setAttribute(TIMER_ID, notifyTimeoutTimer);
  }
 
  @SuccessResponse
  protected void handleSuccessResponse(SipServletResponse res) throws IOException {
    if (res.getMethod().equals("NOTIFY")) {
      ServletTimer notifyTimeoutTimer =
      (ServletTimer)(res.getApplicationSession().getAttribute(TIMER_ID));
      if (notifyTimeoutTimer != null) {
        notifyTimeoutTimer.cancel();
        res.getApplicationSession().removeAttribute(TIMER_ID);
      }
    }
  }
 
  public void timeout(ServletTimer timer) {
    // This indicates that the timer has fired because a 200 to
    // NOTIFY was not received. Here you can take any timeout
    // action.
    // .........
    timer.getApplicationSession().removeAttribute ("NOTIFY_TIMEOUT_TIMER");
  }
}

Converged Application Server Profile API
The IMS specification defines the Sh interface as the method of communication between the
Application Server (AS) function and the Home Subscriber Server (HSS), or between multiple
IMS Application Servers. The AS uses the Sh interface in two basic ways:

• To query or update a user's data stored on the HSS

• To subscribe to and receive notifications when a user's data changes on the HSS

The user data available to an AS may be defined by a service running on the AS (repository
data), or it may be a subset of the user's IMS profile data hosted on the HSS. The Sh
interface specification, 3GPP TS 29.328 V5.11.0, defines the IMS profile data that can be

Chapter 2
Converged Application Server Profile API

2-13



queried and updated via Sh. All user data accessible via the Sh interface is presented
as an XML document with the schema defined in 3GPP TS 29.328.

The IMS Sh interface is implemented as a provider to the base Diameter protocol
support in Converged Application Server. The provider transparently generates and
responds to the Diameter command codes defined in the Sh application specification.
A higher-level Profile Service API enables SIP Servlets to manage user profile data as
an XML document using XML Document Object Model (DOM). Subscriptions and
notifications for changed profile data are managed by implementing a profile listener
interface in a SIP Servlet.

Figure 2-4    Profile Service API and Sh Provider Implementation

Converged Application Server includes only a single provider for the Sh interface.
Future versions of Converged Application Server may include new providers to
support additional interfaces defined in the IMS specification. Applications using the
profile service API will be able to use additional providers as they are made available.

Using Document Keys for Application-Managed Profile Data
Servlets that manage profile data can explicitly obtain an Sh XML document from a
factory using a key, and then work with the document using DOM.

The document selector key identifies the XML document to be retrieved by a Diameter
interface, and uses the format protocol://uri/reference_type[/access_key].

The example below summarizes the required document selector elements for each
type of Sh data reference request.

Chapter 2
Converged Application Server Profile API

2-14



Table 2-1    Summary of Document Selector Elements for Sh Data Reference Requests

Data Reference
Type

Required Document Selector
Elements

Example Document Selector

RepositoryData sh://uri/reference_type/Service-
Indication

sh://sip:user@oracle.com/RepositoryData/Call
Screening/

IMSPublicIdentity sh://uri/reference_type/[Identity-
Set]

where Identity-Set is one of:

• All-Identities
• Registered-Identities
• Implicit-Identities

sh://sip:user@oracle.com/IMSPublicIdentity/
Registered-Identities

IMSUserState sh://uri/reference_type sh://sip:user@oracle.com/IMSUserState/

S-CSCFName sh://uri/reference_type sh://sip:user@oracle.com/S-CSCFName/

InitialFilterCriteria sh://uri/reference_type/Server-
Name

sh://sip:user@oracle.com/InitialFilterCriteria/
www.oracle.com/

LocationInformation sh://uri/reference_type/(CS-Domain
| PS-Domain)

sh://sip:user@oracle.com/LocationInformation/CS-
Domain/

UserState sh://uri/reference_type/(CS-Domain
| PS-Domain)

sh://sip:user@oracle.com/UserState/PS-Domain/

Charging information sh://uri/reference_type sh://sip:user@oracle.com/Charging information/

MSISDN sh://uri/reference_type sh://sip:user@oracle.com/MSISDN/

Converged Application Server provides a helper class,
com.bea.wcp.profile.ProfileService, to help you easily retrieve a profile data document.
The getDocument() method takes a constructed document key, and returns a read-only
org.w3c.dom.Document object. To modify the document, you make and edit a copy, then send
the modified document and key as arguments to the putDocument() method.

See "Using the Profile Service API (Diameter Sh Interface)" in Converged Application Server
Diameter Application Development Guide for more information.

Monitoring Profile Data
The IMS Sh interface enables applications to receive automatic notifications when a
subscriber's profile data changes. Converged Application Server provides an easy-to-use API
for managing profile data subscriptions. A SIP Servlet registers to receive notifications by
implementing the com.bea.wcp.profile.ProfileListener interface, which consists of a
single update method that is automatically invoked when a change occurs to profile to which
the Servlet is subscribed. Notifications are not sent if that same Servlet modifies the profile
information (for example, if a user modifies their own profile data).

Actual subscriptions are managed using the subscribe method of the
com.bea.wcp.profile.ProfileService helper class. The subscribe method requires that you
supply the current SipApplicationSession and the key for the profile data document you
want to monitor. See "Using Document Keys for Application-Managed Profile Data" for more
information.

Chapter 2
Converged Application Server Profile API

2-15



Applications can cancel subscriptions by calling ProfileSubscription.cancel().
Also, pending subscriptions for an application are automatically cancelled if the
application session is terminated.

Example 2-7 shows sample code for a Servlet that implements the ProfileListener
interface.

Example 2-7    Sample Servlet Implementing ProfileListener Interface

package demo;
    import com.bea.wcp.profile.*;
    import javax.servlet.sip.SipServletRequest;
    import javax.servlet.sip.SipServlet;
    import org.w3c.dom.Document;
    import java.io.IOException;
    public class MyServlet extends SipServlet implements ProfileListener {
      private ProfileService psvc;
      public void init() {
        psvc = (ProfileService) 
getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);
      }
      protected void doInvite(SipServletRequest req) throws IOException {
        String docSel = "sh://" + req.getTo() + "/IMSUserState/";
        // Subscribe to profile data.
        psvc.subscribe(req.getApplicationSession(), docSel, null);
}
      public void update(ProfileSubscription ps, Document document) {
        System.out.println("IMSUserState updated: " + ps.getDocumentSelector());
      }
    }

The ProfileListener interface is handled similar to the TimerService provided by
JSR 116 for application timers. Multiple Servlets in an application may implement the
ProfileListener interface, but only one Servlet may act as a listener. The SIP
deployment descriptor for the application must designate the profile listener class in
the set of listeners as shown in Example 2-8.

Example 2-8    Declaring a ProfileListener

<listener>
<listener-class>com.foo.MyProfileListener</listener-class>
Declaring a ProfileListener
</listener>
<listener>
  <listener-class>com.foo.MyProfileListener</listener-class>
</listener>

Example 2-7 can be rewritten using an annotated POJO as shown in Example 2-9.

Example 2-9    Sample Servlet Implementing ProfileListener Interface Using an
Annotated POJO

package demo;
// Includes excluded for brevity...
@SipServlet(loadOnStartup = 1);
public class MyServlet implements ProfileListener {
  private ProfileService psvc;
  @Inject SipFactory sipFactory;
  public void init() {
    psvc = (ProfileService) 
getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);

Chapter 2
Converged Application Server Profile API

2-16



  }
  @Invite
  protected void handleInvite(SipServletRequest req) throws IOException {
    String docSel = "sh://" + req.getTo() + "/IMSUserState/";
    // Subscribe to profile data.
    psvc.subscribe(req.getApplicationSession(), docSel, null);
  }
  public void update(ProfileSubscription ps, Document document) {
    System.out.println("IMSUserState updated: " + ps.getDocumentSelector());
  }
}

Developing "Zero Downtime" Upgradable Applications
With Converged Application Server, you can upgrade a deployed SIP application to a newer
version without losing existing calls being processed by the application. This type of
application upgrade is accomplished by deploying the newer application version alongside
the older version. Converged Application Server automatically manages the SIP Servlet
mapping so that new requests are directed to the new version. Subsequent messages for
older, established dialogs are directed to the older application version until the calls complete.
After all of the older dialogs have completed and the earlier version of the application is no
longer processing calls, you can safely un-deploy it.

Converged Application Server's upgrade feature ensures that no calls are dropped while
during the upgrade of a production application. The upgrade process also enables you to
revert or rollback the process of upgrading an application. If, for example, you determine that
there is a problem with the newer version of the deployed application, you can simply un-
deploy the newer version. Converged Application Server then automatically directs all new
requests to the older application version.

Requirements and Restrictions for Upgrading Deployed Applications
To use the application upgrade functionality of Converged Application Server:

• You must assign version information to your updated application in order to distinguish it
from the older application version. Note that only the newer version of a deployed
application requires version information; if the currently-deployed application contains no
version designation, Converged Application Server automatically treats this application as
the “older" version.

• Both the deployed application and the updated application must provide only SIP protocol
functionality. You cannot upgrade converged HTTP/SIP applications using these
procedures.

• A maximum of two different versions of the same application can be deployed at one
time.

• If your application hard-codes the use of an application name (for example, in composed
applications where multiple SIP Servlets process a given call), you must replace the
application name with calls to a helper method that obtains the base application name.
Converged Application Server provides SipApplicationRuntimeMBean methods for
obtaining the base application name and version identifier, as well as determining
whether the current application version is active or retiring.

• When applications take part in a composed application (using application composition
techniques), Converged Application Server always uses the latest version of an
application when only the base name is supplied.

Chapter 2
Developing "Zero Downtime" Upgradable Applications

2-17



Developing IR.92 Supplementary Services
Oracle Communication Converged Application Server provides support for GSM
Association's (GSMA) IR.92 specifications for delivering Voice over LTE (VoLTE). You
can implement these services using either the SIP Servlet 2.0 (JSR 359) or the
Service Foundation Toolkit (SFT).

SFT provides enhanced APIs that you can use to quickly and easily implement
applications for delivering IR.92-compliant supplementary services over VoLTE. The
APIs provide support for supplementary services such as Call Forwarding, Incoming
and Outgoing Call Barring, ID Presentation and Restriction, Multi-Party Conferencing,
and Message Waiting Indication (MWI).

About Converged Application Server and VoLTE
GSM Association's (GSMA) IR.92 specifications defines the IP Multimedia Subsystem
(IMS) profile for delivering Voice over LTE (VoLTE). The GSMA VoLTE initiative has
defined IMS as the common way to deliver voice and messaging services over mobile
broadband all-IP networks.

In September 2010, GSMA published the IREG Permanent Reference Document
IR.92, which outlines the specifications for migrating 2G and 3G mobile voice, video
and messaging services to 4G mobile broadband networks, such as LTE.

This chapter describes the following IR.92 call control services, and their
implementation in Converged Application Server:

• Communication Diversion

• Communication Barring

• Communication Hold

• Originating Identification Presentation and Restriction

• Communication Waiting

• Message Waiting Indication

• Announcement Support

Communication Diversion
Communication Diversion (also referred to as Call Diversion or Call Forwarding) lets
users of the service (the called party, or callee) forward incoming calls to another
phone number (the third party). The third party may be a mobile telephone, voice-mail
box, or other telephone number where the desired called party is situated.

With Communication Diversion activated:

• Users can continue to make outgoing calls from their telephone while incoming
calls are forwarded.

• When the telephone number the user's calls are being forwarded to is busy, callers
to the forwarded number will receive a busy signal.

Converged Application Server supports the following IR.92 defined Communication
Diversion modes for VoLTE:

Chapter 2
Developing IR.92 Supplementary Services

2-18



• Communication Forwarding Unconditional 3GPP TS 24.604

• Communication Forwarding on No Reply 3GPP TS 24.604

• Communication Forwarding on not Logged in 3GPP TS 24.604

• Communication Forwarding on Busy 3GPP TS 24.604

• Communication Forwarding on not Reachable 3GPP TS 24.604

Communication Diversion applications forward calls by removing the callee (the person to
whom the call is being made), and adding a new participant (the third party) in the calle's
place.

Communication Barring
Communication Barring lets users bar (or restrict) certain or all types of calls to and from their
phone. For example, a user can restrict outgoing calls, outgoing international calls, or
incoming calls from undesirable callers.

Converged Application Server supports the following IR.92 defined Call Barring modes for
VoLTE:

• Barring of All Incoming Calls 3GPP TS 24.611

• Barring of All Outgoing Calls 3GPP TS 24.611

• Barring of Outgoing International Calls 3GPP TS 24.611

• Barring of Outgoing International Calls—ex Home Country 3GPP TS 24.611

• Barring of Incoming Calls When Roaming 3GPP TS 24.611

To implement international call barring, the Communication Barring application must have
access to the phone number of the participant. The application can access this information
from various sources, such as the Registrar, to determine roaming status. Similarly, the profile
of the user—such as country of origin—can be obtained by the application using other
interfaces (for example, the Diameter interface).

Communication Hold
Communication Hold (also referred to Call Hold) allows a user to suspend a communication
session—the reception of media stream(s) from an established IP multimedia session—and
resume the media stream(s) at a later time. Placing a Communication Hold on an ongoing
session is achieved by sending a Session Description Protocol (SDP) offer where each of the
communications (media streams) to be held are marked with the sendonly attribute if they
were previously bidirectional media streams. To resume the session, a new SDP offer is
issued in which each of the held media streams is marked with the default sendrecv attribute.

Communication Hold also allows an AS to play music or an announcement to the held party.
This is achieved using an AS that acts as a third-party call controller (3PCC), and replaces
the existing session of one of the users with a session originating from an application server
that plays the announcement or music until the user's session is resumed. See the 3GPP TS
24.628 specification for more information on the playing of announcements during
Communication Hold.

Setting the Communication Hold Bandwidth
The 3GPP TS 24.610 specification requires that the AS of the User Equipment (UE) invoking
a media stream whose SDP session attribute is recvonly use a lower bandwidth. The SDP

Chapter 2
Developing IR.92 Supplementary Services

2-19



specifies a lower bandwidth by setting the bandwidth (the b= line in the SDP) to a
lower value. The b= line contains two elements:

• The bandwidth value expressed in kilo bits per second (kbps).

• An alphanumeric modifier that indicates the communication session or media
stream to which to apply the specified bandwidth value.

The modifiers whose bandwidth values are specified by SFT are:

• AS: Application Specific Maximum, which specifies the total bandwidth for a single
media stream from one source.

• RS: RTCP bandwidth allocated to active data senders.

• RR: RTCP bandwidth allocated to other participants (receivers) in the RTP
session.

When the bandwidth setting is enabled, SFT sets the default value for the AS
bandwidth to zero (b=AS:0). The b=RR: and b=RS: parameters are set to a value of 800
kbps, which is high enough to allow the continuation of the RTCP flow: b=RR:800 and
b=RS:800
Example 2-10    Bandwidth Line in the Session Description Protocol

v=0
o=alice 2890844526 2890842807 IN IP4 126.16.64.4
s=SDP Seminar
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
m=audio 49170 RTP/AVP 0
b=AS:0
b=RR:800
b=RS:800

Note:

The 3GPP TS 24.610 specification recommends that the AS modify the
bandwidth for media streams whose SDP session attribute is recvonly.
Media streams whose SDP session attribute are inactive, sendonly, and
sendrecv are not affected.

While the 3GPP TS 24.610 specification recommends these values to preserve
network bandwidth when a communication is placed on hold, you may need to adjust
the bandwidth to better suit the requirements of the Communication Hold application.

Originating Identification Presentation and Restriction
Converged Application Server supports the following Identity Presentation and
Restriction services:

• Originating Identification Presentation (OIP): Enables the called party to
receive a network generated and trusted identity of the calling user on the screen
of the mobile device. The originating user may also present a custom identity to be
seen at the called party. The user generated identity is usually screened by the
network of the originating user.

Chapter 2
Developing IR.92 Supplementary Services

2-20



• Originating Identification Restriction (OIR): Invoked when the calling user does not
want their identity to be shown to the called party. In such cases, the network of the
originating user signals to the network of the called user, to withhold the identity of the
calling user.

• Terminating Identification Presentation (TIP): Enables the calling party to receive the
identification information of the remote party from the network. This information is
provided to the originating party once the IMS communication has been accepted
between the endpoints. The information is delivered regardless of the capability of the
handset to process such information at the originating end.

• Terminating Identification Restriction (TIR): Provides the terminating party with an
option to restrict the identity to be presented to the originating party of the IMS
communication. Logically speaking, TIR is the opposite of TIP.

To support the Identity Presentation and Restriction services listed above:

• UE and IMS core network must support the SIP procedures described in the 3GPP TS
24.607 specification. Service configuration, as described in Section 4.10 of 3GPP TS
24.607, is optional.

• UE and IMS core network must support the SIP procedures in the 3GPP TS 24.608
specification. Service configuration, as described in section 4.9 of 3GPP TS 24.608, is
optional.

Privacy Service Behavior
The privacy service role is instantiated by a network intermediary. Typically this function is
performed by entities that act as SIP proxy servers. The privacy service is designed to
provide privacy functions for SIP messages that cannot otherwise be provided by the UAs
themselves. Table 2-2 lists the semantics of each priv-value, and the RFC that defines
them.

Table 2-2    Types of Privacy Service Behaviors

Privacy Type Description

user Request that privacy services provide a user-level privacy function.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

header Request that privacy services modify headers that cannot be set arbitrarily by the
user. For example, the Contact and Via headers.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

session Request that privacy services provide privacy for session media.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

none Privacy services must not perform any privacy function.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

critical Privacy service must perform the specified services or fail the request.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

Chapter 2
Developing IR.92 Supplementary Services

2-21



Table 2-2    (Cont.) Types of Privacy Service Behaviors

Privacy Type Description

id Privacy requested for Third-Party Asserted Identity.

See RFC 3325, "Private Extensions to the Session Initiation Protocol (SIP) for
Asserted Identity within Trusted Networks" for more information.

history Privacy requested for History-Info headers.

See RFC 4244, "An Extension to the Session Initiation Protocol (SIP) for Request
History Information" for more information.

RFC 5379 describes privacy considerations and the recommended treatment of each
SIP header that may reveal user-privacy information. Section 5, "Recommended
Treatment of User-Privacy-Sensitive Information" of RFC 5379 describes how each
header affects privacy, the desired treatment of the value by the user agent and
privacy service, and other details needed to ensure privacy.Table 2-3 lists the
recommended treatment for each priv-value contained in the SIP header. See
"Section 5" of RFC 5379 "Guidelines for Using the Privacy Mechanism for SIP" for
more information.

Table 2-3    Treatment of User-Privacy Information in Target SIP Headers

Target SIP Headers Where User Header Session ID History

Call-ID R Anonymize

Call-Info Rr Delete Not added

Contact R Anonymize

From R Anonymize

History-Info Rr Delete Delete Delete

In-Reply-To R Delete

Organization Rr Delete Not added

P-Asserted-Identity Rr Delete Delete

Record-Route Rr Anonymize

Referred-By R Anonymize

Reply-To Rr Delete

Server r Delete Not added

Subject R Delete

User-Agent R Delete

Via R Anonymize

Warning r Anonymize

Providing Privacy for the History-Info Header
The History-Info header (defined in RFC 4244) provides a way of capturing any
redirection information that may have occurred during a particular call. Without the
History-Info header the redirecting information would be lost. The History-Info header
is generated when a SIP request is re-directed, and can appear in any SIP request not

Chapter 2
Developing IR.92 Supplementary Services

2-22



associated with a dialog. The History-Info header is generated by a User Agent or proxy and
is passed from one entity to another through requests and responses.

Communication Waiting
Communication Waiting (also referred to as Call Waiting) informs a user (or the user
equipment) that limited resources are available for incoming calls. Typically this means that
the callee is involved in a communication session with another caller, and is not able to
answer the incoming call from the second caller. Communication Waiting provides a
mechanism by which you can create an application to inform a user that there is a second
incoming call. The user then has the choice of accepting, rejecting, or ignoring the waiting
call. Converged Application Server supports the 3GPP TS 24.615 and the GSMA IR.92
specifications.

Supporting Network- and Terminal-based Communication Waiting
When using SFT to develop Communication Waiting services, Converged Application Server
supports both network- and terminal-based Communication Waiting.

About Network-based Communication Waiting

Network-based Communication Waiting occurs when the AS determines that one of the
following conditions has occurred:

• The SIP INVITE request fulfills the Network Determined User Busy (NDUB) condition for
the callee.

• The caller receives a SIP message 486 Busy Here (indicating that the callee is busy) with
a 370 Warning in the SIP header field indicating that there is insufficient bandwidth for the
call to complete.

To support network-based Communication Waiting, the AS performs the following functions in
response to receiving an appropriate Communication Waiting condition:

1. Modifies the SIP INVITE request and forwards or re-sends it to User B.

2. Provides an announcement to User C upon receipt of a 180 Ringing response from User
B.

3. Inserts an Alert-Info header field set to urn:alert:service:call-waiting in the 180
Ringing response and forwards it to User C.

4. Rejects the communication by sending a 486 Busy Here response to User C upon receipt
of a 415 Unsupported Media Type response.

About Terminal-based Communication Waiting

Terminal-based Communication Waiting occurs when the AS receives the SIP message 180
Ringing with the Alert-Info header URN Indication Values set to urn:alert:service:call-
waiting.

To support terminal-based Communication Waiting, the application server performs the
following functions in response to receiving an appropriate Communication Waiting condition:

1. Sends an announcement to the calling user (the caller).

2. Sends a 180 Ringing response to the caller.

3. Initiates the Telephony Application Server-Communication Waiting (TAS-CW) timer. This
optional timer specifies the amount of time the network will wait for a response from User

Chapter 2
Developing IR.92 Supplementary Services

2-23



B, in response to the communication from User C. The value of the timer is
between 0.5 and 2 minutes.

If the TAS-CW timer expires, the AS sends a CANCEL request to User B with a
Reason header field set to "SIP," and the cause set to 408 Request Timeout,
indicating that the user could not be found in the allotted time. A 480 Temporarily
Unavailable response is sent to User C, including a Reason header field set to
ISUP Cause Code 19, indicating that there was no answer from the callee.

Message Waiting Indication
Message Waiting Indication (MWI) is a service that informs a user about the status of
recorded messages. To use the notification feature, the user must subscribe to a
notification service that makes use of the Message Waiting Indication status
messages. With the Message Waiting Indication feature you can:

• Send notification when a new subscription arrives.

• Specify when notifications are sent in response to subscriptions.

• Reject subscriptions.

• Terminate subscriptions.

Note:

Typically a voice-mail server manages Message Waiting Indication
accounts. When a new message arrives, the voice-mail server typically
provides a listener or API that you can resister with to receive notification
of new messages. How the application manages the message account is
beyond the scope of the SFT Message Waiting Indication APIs.

Message Waiting Indication lets the AS notify a subscriber that there is a message
waiting for them. The indication is delivered to the subscriber's UE after they have
successfully subscribed to the Message Waiting Indication service. Message Waiting
Indication is defined in the 3GPP TS 24.606 specification.

When Converged Application Server receives a SUBSCRIBE message, SFT notifies
the MWI application via a SUBSCRIPTION event. RFC 3842 specifies that a NOTIFY
message must be sent when accepting new subscriptions, the subscription has
expired, or an unsubscribe event occurs. Converged Application Server's Event
Notification Service sends these NOTIFY messages automatically.

Announcement Support
Announcements are service-related messages played to a recipient to inform them
about the state of a call. Announcements can be provided using either audio or video
content. Converged Application Server supports the playing of announcements as
defined in the 3GPP TS 24.628 specification.

Converged Application Server supports the following approaches to playing
announcements:

• Send the media stream to the recipient of the announcement for playback.

Chapter 2
Developing IR.92 Supplementary Services

2-24



This approach uses a media server and Media Resource Function Processor (MRFP).
The media is streamed to the recipient using the Real-time Transport Protocol (RTP) after
establishing a media session with the media server. Based on the point-in-time at which
the media session is initiated, an early- or non-early media session can be used.

SFT reserves a media resource using the JSR 309 API (the JSR 309 driver used by the
media server). The underlying mechanism between the JSR309 driver and MRFP is
protocol agnostic.

• Send information about the media content that lets the recipient retrieve and playback the
announcement.

This approach sends a URI identifying the media to the recipient, allowing them to
determine whether or not to play the announcement.

Developing Services Using XCAP
Converged Application Server lets you access an XML Document Management Server
(XDMS). The XDMS handles the management of user-generated XML documents stored on
the network, such as authorization rules and contact and group lists (also referred to as
resource lists).

The XML Configuration Access Protocol Server (XCAP server), provides an interface that
allows for the manipulation of service-related data stored as XML documents within the
XDMS. The XCAP specification defines how an HTTP address (or URI) can identify the way
XML documents are stored on an XCAP server. It also defines how the URI can be used to
identify entire XML documents, individual elements, or XML attributes that can be retrieved,
updated, or deleted.

• An Application Unique ID (AUID), which uniquely identifies the application usage, must
be created.

• The XML schema must be defined.

• The default namespace binding, which maps the namespace prefixes to the namespace
URIs, must be set.

• The MIME type of the document must be defined.

• The XCAP server must be able to validate the content of each XCAP document that is
being modified.

• The data in the XML document must have a well defined semantic.

• Naming conventions for XCAP client URIs must be set.

• Resource interdependencies, how changes to one resource will effect other resources,
has to be determined.

The following operations are supported using XCAP:

• Retrieving an item

• Deleting an item

• Modifying an item

• Adding an item

The XCAP addressing mechanism is based on XML Path Language (XPath), a query
language for selecting nodes in XML documents. The operations above can be executed on
XML documents and elements. Operations to XML attributes are not supported, however,
attributes can be handled indirectly by modifying the elements that contain them.

Chapter 2
Developing Services Using XCAP

2-25



About XCAP and VoLTE
Converged Application Server provides two levels of XCAP support: Access to the
XDMS using a base XCAP API that is not specific to any schema, and a high level API
providing support for GSMA IR.92 supplementary services using VoLTE as supported
by the Service Foundation Toolkit (SFT). The VoLTE version of the XCAP API,
supports the following supplementary services:

• 3GPP TS 24.611 Communications Diversion

• 3GPP TS 24.604 Communication Barring

• 3GPP TS 24.607 Originating Identification Presentation and Originating
Identification Restriction

• 3GPP TS 24.608 Terminating Identification Presentation and Terminating
Identification Restriction

• 3GPP TS 24.615 Communication Waiting

The supported VoLTE functions are:

• Partial operations (adding and removing XML elements)

• Data validation

• Support for 409 XCAP error responses as defined in Section 11 of RFC 4825

Chapter 2
Developing Services Using XCAP

2-26



3
Converged Application Server in the Network

This chapter describes how Oracle Communications Converged Application Server functions
in a service provider network.

Converged Application Server in a Typical Service Provider
Network

Converged Application Server can be deployed in 3rd Generation Partnership Project (3GPP)
R6 compliant IP Multimedia Subsystem (IMS) networks as well as in non-IMS networks.
Converged Application Server can interoperate with a number of network functions
regardless of which applications or functions it hosts.

Figure 3-1    Converged Application Server Deployed in a Typical Service Provider Network

The following sections provide more information on the role of the Converged Application in
the network.

3-1



Note:

3GPP R12 Specification Conformance describes Converged Application
Server conformance to the requirements introduced in the 3GPP Release 6
specifications.

SIP and IMS Service Control
The Session Initiation Protocol (SIP) interface between the Serving Call Session
Control Function (CSCF) and the IMS SIP Application Server (AS) is defined as the
IMS Service Control (ISC) reference point. Although ISC is generally compliant with
the SIP protocol as defined by the Internet Engineering Task Force (IETF), it
introduces several specific procedures and transport layer requirements. SIP usage is
often described as the "3GPP SIP Profile."

The ISC reference point does not require that the AS or Serving CSCF add any
particular attribute or value to a request or response beyond the standard behavior of
a SIP protocol entity. There are, however, a number of SIP methods and headers that
are relevant to many of the services that are deployed on the IMS (SIP) AS. In order
for the IMS SIP AS to "fully" comply with all of the 3GPP R5 and R6 specifications,
many IETF RFCs and drafts would have to be supported. However, it is not
reasonable to characterize this as "ISC compliance" because ISC specifically
addresses the relationship between the IMS (SIP) AS and the Serving CSCF. From
this perspective, ISC compliance is relatively straightforward and is minimally reflected
in "Procedures at the AS" defined in 3GPP TS 24.229: "IP Multimedia Call Control
Protocol based on Session Initiation Protocol (SIP) and Session Description Protocol
(SDP); Stage 3 (Release 6)."

From the perspective of the Converged Application Server, the Serving CSCF is a SIP
Proxy and/or User Agent (in the case of the Registration Event Package and third-
party registration messages) and is the SIP Application Server's default gateway for
SIP requests when the AS instantiates a User Agent Client.

ISC and the 3GPP SIP Profile
The 3GPP requires SIP to be used in a more restricted manner than the IETF specs
allow, and also requires a number of additional SIP headers. This use of SIP is often
referred to as the "3GPP SIP Profile."

Converged Application Server's SIP Servlet Container provides automated
management of session objects, Servlet lifecycle, security, OAM and other functions
that are not clearly within the scope of an application's business logic. The SIP Servlet
Container allows applications to handle (send/receive) SIP messages with non-
standard methods or headers—the container is concerned only with the validation of
message syntax, and with the protocol transaction layer.

Converged Application Server uses certain p-headers directly. For example, p-
asserted-identity is used as an assertion of identity within the Converged Application
Server security framework. Other headers, like the 3GPP p-charging-vector or p-
charging-function-address, are relevant only within the scope of the application and
have no container-level implications.

Chapter 3
SIP and IMS Service Control

3-2



Converged Application Server does not programmatically force applications to be compliant
with the 3GPP SIP Profile, although applications deployed on Converged Application Server
may comply with the SIP Profile as necessary.

AS Session Case Determination Requirement of ISC
When requests are sent to an IMS SIP Application Server by the S-CSCF, the SIP AS is
generally required to determine the session case (originating, terminating, or terminating
unregistered) of the request, either implicitly or explicitly.

Converged Application Server provides several ways of determining the session case for the
request. There are three mechanisms described in the 3GPP standardization that an IMS
(SIP) AS may use to make this determination:

• Session Case Specific Addresses (for example, sip:sessioncase_as01.operator.net or
sip:as01.operator.net:49494)

• Tokens in the “User Part" of the Request URI (for example, sip:token@as01.operator.net)

• Request URI Parameters (for example, sip:as01.operator.net;parameter)

See "3GPP TS 24.229: IP Multimedia Call Control Protocol based on Session Initiation
Protocol (SIP) and Session Description Protocol (SDP); Stage 3 (Release 6)" for more
information.

The choice of which mechanism to use is at the discretion of both the Communications
Service Provider and the SIP Servlet application deployer. The SIP Servlet API relies on a
deployment descriptor file that is packaged with the SIP Servlet Application archive file when
it is created. The descriptor explicitly indicates the Service Trigger Points that will be used by
the SIP Servlet Container to determine which SIP Servlets to invoke. These Service Trigger
Points are sufficient to support any of the methods described above for determining the
session case of the request.

See SIP Servlet API Service Invocation for a more detailed description of the Service Trigger
Points supported by Converged Application Server.

Transport Layer Issues Related to ISC
The 3GPP Release 6 specifications mandate the use of IPv6 (see IETF RFC 2460: Internet
Protocol, Version 6 (IPv6) Specification) for all interfaces, including ISC. Converged
Application Server also supports IPv6.

When using TCP, Converged Application Server does not arbitrarily create new connections
for each SIP Transaction or Dialog. By default, responses to SIP requests are returned using
the connection on which the request was received. If a TCP connection fails, Converged
Application Server establishes a new TCP connection to the target host. This may mean that
responses to SIP requests are returned using TCP connections that are different from the
connection over which the request was sent. Although this conforms to the current best
practice and to "IETF RFC 3261: SIP: Session Initiation Protocol," Oracle has discovered that
many SIP products on the market demonstrate non-compliant behaviors with regard to
handling OSI layer 3 protocols.

Although it is not normally the case that Converged Application Server is deployed directly
facing end-user SIP devices, it is important to understand the impact this behavior might have
in such cases. When interacting with SIP endpoints on the public Internet, TCP connections
are often kept alive indefinitely as a means of overcoming Network Address Translation
(NAT) limitations in many typical broadband routers and residential gateways.

Chapter 3
SIP and IMS Service Control

3-3



Converged Application Server does not provide an Application Layer Gateway (ALG)
capability, and it is presumed that such capabilities are provided by a standard Session
Border Control function.

HTTP User Interface
The 3GPP reference point associated with the HTTP interface provided by Converged
Application Server is “Ut". This interface is primarily used for three purposes:

• As a Web-based User Interface for customer self-care and service configuration,
potentially using HTML, XHTML or other presentation technologies.

• To support content indirection.

• To support XML Configuration Access Protocol (XCAP), required by Presence and
Conference Control Protocol.

Converged Application Server provides HTTP support through its HTTP Servlet
Container. Application developers may implement applications or components that
support any or all of the above use cases for the “Ut" reference point.

Service and Subscriber Data and Authentication
Converged Application Server supports the Sh reference point used to interact with the
Home Subscriber Server (HSS) as the principal provider of IMS Profile data
associated with the Public Identity of the network user or subscriber. In many cases,
standard LDAP directory servers or relational databases are also used as
supplementary resources for service or subscriber data. These may also be accessed
via standard interfaces supported by Converged Application Server.

In many deployments, and for certain types of services such as Presence or media
repositories, subscriber and service data can be accessed using other means. These
include LDAP, HTTP, or access to relational databases.

In non-IMS deployments, the security provider may also be a standard directory
accessed via Lightweight Directory access Protocol (LDAP) or access to a relational
database using a database-specific interface. Most major commercial relational
databases provide Java Database Connectivity (JDBC). A number of high-
performance and fault-tolerant JDBC drivers are available commercially for use with
Converged Application Server.

Proxy Registrar

WARNING:

The proxy registrar feature has been deprecated in release 8.0.

The Converged Application Server Proxy Registrar implements the proxy and registrar
functions described in RFC 3261. The Proxy Registrar combines the functionality of a
SIP proxy server and registrar. Its main tasks include registering subscribers, looking
up subscriber locations, and proxying requests onward. The Proxy Registrar is an
optional component.

Chapter 3
HTTP User Interface

3-4



The Proxy Registrar's registrar function processes the REGISTER requests from user agent
clients (UACs) and uses a location service to store a binding (that is, an association) between
a user's address of record (AOR) and one or more contact addresses, typically the IP
addresses of the UACs. The To header field of the REGISTER SIP message sent by a UA
contains the address of record whose registration is to be created, queried, or modified and
the CONTACT header field contains the corresponding contact addresses. The bindings
between the AOR and the contact addresses are persistently stored in a database.

Figure 3-2    Registration Flow

Upon receiving requests to the AOR, the proxy function locates the mapped URIs through a
Location Service lookup and then proxies the request using the location information retrieved
by this lookup.

Figure 3-3 illustrates a simplified view of the interaction between UAs when a subscriber,
Alice, calls another subscriber, Bob, who is located in the same domain.

Chapter 3
Proxy Registrar

3-5



Figure 3-3    Interaction of UA Elements During a Call

Bob may be registered from multiple user agents, such as personal phone, work
phone, and computer. In this case, the query for Bob's location will return multiple
bindings to the Proxy. The Proxy will then fork the call, either in parallel or sequentially,
to the user agents that Bob is logged in to.

The Proxy is capable of proxying not only INVITE request, but other non-REGISTER
requests such as MESSAGE, PUBLISH, SUBSCRIBE and so on.

When a caller and callee are in the same domain, the callee's location can be obtained
by the outgoing proxy through the location service. A simplified example of the call
flow for this scenario is shown in Figure 3-4. Note that this example does not include
100 Trying and 180 Ringing responses.

Chapter 3
Proxy Registrar

3-6



Figure 3-4    Call Establishment Flow Between Subscribers in a Single Domain

After the call is established, Alice and Bob's UAs can communicate directly, without using the
Proxy. However, you can configure to route all subsequent traffic through the Proxy as well.
This is the default and is useful if you want the ability to add additional services during the
session.

If the caller and callee are in different domains, the outgoing proxy forwards the INVITE
request to the callee's domain. The incoming proxy in the callee's domain performs the
lookup and returns the callee's location, as illustrated in Figure 3-5.

Chapter 3
Proxy Registrar

3-7



Figure 3-5    Example of a Call Flow Between Two Domains

The Proxy can use ENUM lookup to resolve TEL URLs. The backend for the ENUM
service is a DNS, which stores a mapping between TEL URLs and SIP URIs.

You configure the Proxy Registrar primarily through the Administration Console. You
configure authentication for the Proxy Registrar by editing the sip.xml deployment
descriptor packaged in the Proxy Registrar application. You can also edit advanced
parameters by using the WebLogic Scripting Tool.

Media Server Control
Converged Application Server enables control of media servers using the Media
Server Control API based on JSR309, a standard Java interface. JSR309 (also
referred to as JSR 309 and the JSR 309 API) defines an abstract Java interface for the
manipulation of audio and video streams and conferences. Vendors of IP media
servers provide JSR 309 based driver implementations that work with their IP media
servers.

The JSR309 architecture assumes a distributed or IMS-like model where the
Converged Application Server and media server reside on separate physical servers.
User Agents (such as soft phones) interact with the applications deployed on
Converged Application Server using the SIP protocol.

Converged Application Server supports media server control by providing built-in
JSR309 support. The support includes the Media Server Control API, which provides a
standard API for developing and deploying media rich, JSR-based applications for the
Java platform without having prior knowledge of the underlying Media Server Control
protocols.

Chapter 3
Media Server Control

3-8



A Java application that uses the Media Server Control API can use any JSR309-based
implementation with any compatible media server. However, Converged Application Server
provides a built-in JSR309 media driver, JVoiceBridge.

Whether using JVoiceBridge or the driver for another media server, the CAFE and Media
Server Control APIs offer interfaces that ease the task of developing media-rich applications,
such as Conferencing, Ring-back tone, or IVR applications easily using the JSR309 API.

For developers, the Media Server Control API provides a standard API for developing and
deploying media rich, JSR-based applications for the Java platform without having prior
knowledge of the underlying Media Server Control protocols. Moreover, a Java application
that uses the Media Server Control API can use any JSR309-based implementation with any
compatible media server.

For more information, see JSR 309: Media Server Control API, https://jcp.org/en/jsr/
detail?id=309.

Charging and Billing
Converged Application Server provides both a Diameter Rf interface application and a
Diameter Ro interface application to facilitate offline and online charging in IMS networks.
See "Using the Diameter Rf Interface Application for Offline Charging" and "Using the
Diameter Ro Interface Application for Online Charging" in Converged Application Server
Diameter Application Development Guide for information about how to access and use these
Diameter applications in your own SIP Servlets.

Security
Converged Application Server users must be authenticated when they request access to a
protected resource, such as a protected method in a deployed SIP Servlet. Converged
Application Server enables you to perform SIP Servlet authentication using any of the
following techniques:

• DIGEST authentication uses a simple challenge-response mechanism to verify the
identity of a user over SIP or HTTP. See "Configuring Digest Authentication" in
Converged Application Server Administrator's Guide.

• CLIENT-CERT authentication uses an X509 certificate chain passed to the SIP
application to authenticate a user. The X509 certificate chain can be provided in a
number of different ways. In the most common case, two-way SSL handshake is
performed before transmitting the chain to ensure secure communication between the
client and server.

• BASIC authentication uses the Authorization SIP header to transmit the username and
password to SIP Servlets. BASIC authentication is not recommended for production
systems unless you can ensure that all connections between clients and the Converged
Application Server instance are secure.

Different SIP Servlets deployed on Converged Application Server can use different
authentication mechanisms as necessary. The required authentication mechanism is
specified in the auth-method element of the SIP Servlet Application's deployment descriptor.
The deployment descriptor may also define resources that are to be protected, listing the
specific role names that are required for access.

Chapter 3
Charging and Billing

3-9

https://jcp.org/en/jsr/detail?id=309
https://jcp.org/en/jsr/detail?id=309


Authentication Providers
The Converged Application Server authentication services are implemented using one
or more authentication providers. An authentication provider performs the work of
proving the identity of a user or system process, and then transmitting the identity
information to other components of the system.

Converged Application Server may be configured to use multiple authentication
providers via different authentication methods. For example, when using Digest
authentication an administrator may configure both a Digest Identity Asserter provider
to assert the validity of a digest, and a second LDAP or RDBMS authentication
provider that determines the group membership of a validated user.

Trusted Host Authentication
Converged Application Server is designed for deployment scenarios where it is
adjacent to trusted hosts and it is not required to fulfill the role of an application layer
security boundary between the trusted and untrusted domains.

Converged Application Server enables administrators to designate network hosts that
are considered to be “trusted." Trusted hosts are hosts for which Converged
Application Server performs no authentication. If the server receives a SIP message
having a destination address that matches a configured trusted hostname, the
message is delivered without Authentication.

Converged Application Server supports the P-Asserted-Identity SIP header as
described in IETF RFC 3325: Private Extensions to the Session Initiation Protocol
(SIP) for Asserted Identity within Trusted Networks. This functionality automatically
logs in using credentials specified in the P-Asserted-Identity header when they are
received from a trusted host. When combined with the privacy header, P-Asserted-
Identity also determines whether the message can be forwarded to trusted and non-
trusted hosts.

Chapter 3
Security

3-10



Figure 3-6    Asserted Identity Handling in Converged Application Server

It is also possible to use Converged Application Server in scenarios that do not involve
trusted hosts. See "Standards Alignment" for a more detailed description of Converged
Application Server standards compliance.

Chapter 3
Security

3-11



Declarative Security
The SIP Servlet API specification defines a set of deployment descriptor elements that
can be used for providing declarative and programmatic security for SIP Servlets. The
primary method for declaring security constraints is to define one or more security-
constraint elements and role definitions in the sip.xml deployment descriptor.
Converged Application Server adds additional deployment descriptor elements to help
developers easily map SIP Servlet roles to actual principals and/or roles configured by
the Converged Application Server administrator.

Protecting the Converged Application Server Domain with a Session
Border Controller

A Session Border Controller (SBC) is a device used in VoIP networks to exert control
over the signaling (and usually also the media streams) involved in setting up,
conducting, and tearing down interactive media communications. SBCs are typically
used to secure and protect the network and other devices in the operator's network
from denial of service (DOS) attacks. Besides security, SBCs also perform functions
such as QoS guarantees, regulatory compliances (lawful intercept), statistics
collection, and so on. Services developed and deployed on Converged Application
Server are most commonly hosted inside trusted networks. It is recommended to
protect the network which hosts such services deployed on Converged Application
Server with a Session Border Controller.

Chapter 3
Security

3-12



4
Converged Application Server Cluster
Architecture

This chapter describes the Oracle Communications Converged Application Server cluster
architecture.

Overview of Converged Application Server Clusters
A Converged Application Server cluster consists of multiple Converged Application Server
server instances running simultaneously and working together to provide increased scalability
and reliability. A cluster appears to clients to be a single Converged Application Server
instance. The server instances that constitute a cluster can run on the same machine, or be
located on different machines. You can increase a cluster's capacity by adding additional
server instances to the cluster on an existing machine, or you can add machines to the
cluster to host the incremental server instances. Each server instance in a cluster must run
the same version of Converged Application Server.

Relationship Between Clusters and Domains
A cluster is part of a particular Converged Application Server domain.

A domain is an interrelated set of Converged Application Server resources that are managed
as a unit. A domain includes one or more Converged Application Server instances, which can
be clustered, non-clustered, or a combination of clustered and non-clustered instances. A
domain can include multiple clusters. A domain also contains the application components
deployed in the domain, and the resources and services required by those application
components and the server instances in the domain. Examples of the resources and services
used by applications and server instances include machine definitions, optional network
channels, connectors, and startup classes.

You can use a variety of criteria for organizing Converged Application Server instances into
domains. For instance, you might choose to allocate resources to multiple domains based on
logical divisions of the hosted application, geographical considerations, or the number or
complexity of the resources under management. For additional information about domains
see Understanding Domain Configuration for Oracle WebLogic Server.

In each domain, one Converged Application Server instance acts as the Administration
Server: the server instance which configures, manages, and monitors all other server
instances and resources in the domain. Each Administration Server manages one domain
only. If a domain contains multiple clusters, each cluster in the domain has the same
Administration Server. All server instances in a cluster must reside in the same domain; you
cannot "split" a cluster over multiple domains. Similarly, you cannot share a configured
resource or subsystem between domains.

4-1

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/domcf/index.html


Relationship Between Coherence and WebLogic Server
Clusters

Coherence clusters consist of multiple managed Coherence server instances that work
together to distribute data in-memory to increase application scalability, availability,
and performance. A client interacts with the data in a local cache and the distribution
and backup of the data is automatically performed across cluster members.

Coherence clusters are different than Converged Application Server clusters. They use
different clustering protocols and are configured separately. A Converged Application
Server domain can contain a single Coherence cluster. Multiple Converged Application
Server clusters can be associated with a Coherence cluster.

For details on configuring and managing Coherence clusters, see Administering
Clusters for Oracle WebLogic Server.

Objects That Can Be Clustered
A clustered application or application component is one that is available on multiple
Converged Application Server instances in a cluster. If an object is clustered, failover
and load balancing for that object is available. Deploy objects homogeneously—to
every server instance in your cluster—to simplify cluster administration, maintenance,
and troubleshooting.

Web applications can consist of different types of objects, including Enterprise Java
Beans (EJBs), servlets, and Java Server Pages (JSPs). Each object type has a unique
set of behaviors related to control, invocation, and how it functions within an
application. For this reason, the methods that Converged Application Server uses to
support clustering—and hence to provide load balancing and failover—can vary for
different types of objects. The following types of objects can be clustered in a
Converged Application Server deployment:

• Servlets

• JSPs

• EJBs

• Remote Method Invocation (RMI) objects

• Java Messaging Service (JMS) destinations

• Coherence cluster and managed Coherence servers

• Timer services

Objects That Cannot Be Clustered
The following APIs and internal services cannot be clustered in Converged Application
Server:

• File services including file shares

Chapter 4
Relationship Between Coherence and WebLogic Server Clusters

4-2

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/index.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/index.html


Overview of the Cluster Architecture
Converged Application Server itself provides a multi-tier cluster architecture using Oracle
Coherence. Coherence clusters consist of multiple managed Coherence server instances
that distribute data in-memory to increase application scalability, availability, and
performance. An application interacts with the data in a local cache and the distribution and
backup of the data is automatically performed across cluster members.

Coherence integration aligns the lifecycle of a Coherence cluster member with the lifecycle of
a managed server: starting or stopping a server Java Virtual Machine (JVM) starts and stops
a Coherence cluster member. The first member of the cluster starts the cluster service and is
the senior member.

Converged Application managed servers that are associated with a Coherence cluster are
referred to as managed Coherence servers. Managed Coherence servers in each tier can be
individually managed but are typically associated with respective Converged Application
Server clusters.

A standard load balancing appliance is used to distribute traffic across the engines in the
cluster. It is not necessary that the load balancer be SIP-aware; there is no requirement that
the load balancer support affinity between Engines and SIP dialogs or transactions. However,
SIP-aware load balancers can provide higher performance by maintaining a client's affinity to
a particular engine.

Figure 4-1 shows an example Converged Application Server cluster in which traffic from the
IP Network is routed through two load balancers, Load Balancer 1 and Load Balancer 2,
which distribute requests to the four Converged Application Server engines in the clusters,
Cluster 1 and Cluster 2. Within the same Coherence cluster a single Administration Server
handles administration tasks for all of the Converged Application Server engines.

Chapter 4
Overview of the Cluster Architecture

4-3



Figure 4-1    Example Converged Application Cluster

Note:

There is no arbitrary limit to the number of engines or physical servers within
a Coherence cluster.

Geographically-Redundant Installations
Converged Application Server can be installed in a geographically-redundant
configuration for implementations that employ distributed data centers, and require
continuing operation even after a catastrophic site failure.

The geographically-redundant configuration enables multiple Converged Application
Server installations to replicate call state transactions between one another. If a
particular site's installation were to suffer a critical failure, the administrator could
choose to redirect all network traffic to the secondary, replicated site to minimize lost
calls.

For information on configuring geographical redundancy, see "Configuring
Geographically-Redundant Installations" in Converged Application Server
Administrator's Guide.

Chapter 4
Overview of the Cluster Architecture

4-4



Administration Server
You manage a Converged Application Server domain using an Administration Server. The
Administration Server hosts the Administration Console interface, which you use to configure,
deploy, and monitor the Converged Application Server installation.

Oracle recommends the following best practices for configuring Administration Server and
Managed Server instances in your Converged Application Server domain:

• Run the Administration Server instance on a dedicated machine. The Administration
Server machine should have a memory capacity similar to Managed Server machines,
although a single central processing unit (CPU) is generally acceptable for administration
purposes.

• Configure all Managed Server instances to use Managed Server Independence. This
feature allows the Managed Servers to restart even if the Administration Server is
unavailable. For more information, see Administering Server Startup and Shutdown for
Oracle WebLogic Server for more information.

• Configure the Node Manager utility to automatically restart all Managed Servers in the
Converged Application Server domain. See Understanding the WebLogic Scripting Tool
for more information.

If an Administration Server fails, only configuration, deployment, and monitoring features are
affected, but Managed Servers continue to operate and process client requests. See 
Monitoring, Tuning, and Troubleshooting in Oracle Communications Converged Application
Server Administrator's Guide.

Engines
Converged Application Server engines reside in clusters and host the SIP Servlets and other
applications that provide features to SIP clients.

The primary goal of engine clusters is to provide maximum throughput and low response time
to SIP clients. As the number of calls, or the average duration of calls to your system
increases, you can easily add additional engines to your clusters to manage the additional
load.

Although engine cluster consists of multiple Converged Application Server instances, you
manage each cluster as a single, logical entity; SIP Servlets are deployed uniformly to all
server instances (by targeting the cluster itself) and the load balancer need not maintain an
affinity between SIP clients and servers in the engine tier.

Note:

Converged Application Server start scripts use default values for many JVM
parameters that affect performance. For example, JVM garbage collection and heap
size parameters may be omitted, or may use values that are acceptable only for
evaluation or development purposes. In a production system, you must rigorously
profile your applications with different heap size and garbage collection settings in
order to realize adequate performance. See "Monitoring, Tuning, and
Troubleshooting the JVM" in Converged Application Administrator's Guide for
suggestions about maximizing JVM performance in a production domain.

Chapter 4
Administration Server

4-5



Diameter Support
Converged Application Server supports the Diameter base protocol. It supports the
IMS Sh interface provider on engines, which then act as Diameter Sh client nodes. SIP
Servlets deployed on the engines can use the profile service API to initiate requests
for user profile data, or to subscribe to and receive notification of profile data changes.
The Sh interface is also used to communicate between multiple IP Multimedia
Subsystem (IMS) Application Servers.

One or more server instances may be also be configured as Diameter relay agents,
which route Diameter messages from the client nodes to a configured Home
Subscriber Server (HSS) in the network, but do not modify the messages. Oracle
recommends configuring one or more servers to act as relay agents in a domain. The
relays simplify the configuration of Diameter client nodes, and reduce the number of
network connections to the HSS. Using at least two relays ensures that a route can be
established to an HSS even if one relay agent fails.

The relay agents included in Converged Application Server perform only stateless
proxying of Diameter messages; messages are not cached or otherwise processed
before delivery to the HSS.

Note:

In order to support multiple HSSs, the 3rd Generation Partnership Project
(3GPP) defines the Dh interface to look up the correct HSS. Converged
Application Server does not provide a Dh interface application, and can be
configured only with a single HSS.

Note that relay agent servers do not function as engines: they should not host
applications, store call state data, maintain SIP timers, or even use SIP protocol
network resources (sip or sips network channels).

In summary, Converged Application Server supports the following Diameter functions:

• Diameter Sh interface client node (for querying a Home Subscriber Service)

• Diameter Rf interface client node (for offline charging)

• Diameter Ro interface client node (for online charging)

• Diameter relay node

• HSS simulator node (suitable for testing and development only, not for production
deployment)

Converged Application Server also provides a simple HSS simulator that you can use
for testing Sh client applications. You can configure a Converged Application Server
instance to function as an HSS simulator by deploying the appropriate application.

For information on developing Diameter applications for Converged Application Server,
see the Converged Application Server Diameter Application Development Guide.

Chapter 4
Diameter Support

4-6

https://docs.oracle.com/en/industries/communications/converged-application-server/8.0/diameter/


5
Deployment Scenarios

This chapter describes the Oracle Communications Converged Application Server
deployment considerations architecture.

Overview of Deployment Scenarios
This section describes common Converged Application Server network architectures and
network configuration considerations for each architecture, particularly in relation to the Open
Systems Interconnect (OSI) model. See Converged Application Server Administrator's Guide
for detailed configuration steps described in this section.

Figure 5-1 shows the OSI model layers that are typically affected by the network configuration
requirements for the Converged Application Server deployment.

Figure 5-1    OSI Layers Relevant to Converged Application Server Configuration

Layer 3 (Network) and Layer 4 (Transport) contain the source or destination IP address and
port numbers for both outgoing and incoming transport datagrams. Layer 7 (Application) may
also be affected because the SIP protocol specifies that certain SIP headers include
addressing information for contacting the sender of a SIP message.

Single-NIC Configurations with TCP and UDP Channels
In a simple network configuration for a server having a single network interface controller
(NIC), one or more network channels may be created to support SIP messages over User
Datagram Protocol (UDP) and Transmission Control Protocol (TCP), or Session Initiation

5-1



Protocol (SIP) over Transport Layer Security (TLS). It is helpful to understand how this
simple configuration affects information in the OSI model, so that you can understand
how more complex configurations involving multihomed hardware and load balancers
affect the same information.

Figure 5-2    Single-NIC Network Channel

Figure 5-2 shows a single engine tier server instance with a single NIC. The server is
configured with one network channel supporting SIP over UDP and TCP. (SIP
channels always support both UDP and TCP transports; you cannot support only one
of the two.) The scenario also shows two clients communicating with the server, one
over UDP and one over TCP.

For the TCP transport, the outgoing datagram (delivered from Converged Application
Server to the UA) contains the following information:

• Layer 3 includes the source IP address specified by the network channel
(10.1.1.10 in the example above).

• Layer 4 includes the source port number allocated by the underlying operating
system.

Incoming TCP datagrams (delivered from the UA to Converged Application Server)
contain the following information:

• Layer 3 includes the destination IP address specified by the network channel
(10.1.1.10).

• Layer 4 contains the destination port number specified by the network channel
(5060).

For outgoing UDP datagrams, the OSI layer information contains the same information
as with TCP transport. For incoming UDP datagrams, the OSI layer information is the
same as TCP except in the case of incoming datagram Layer 4 information. For
incoming UDP datagrams, Layer 4 contains either:

• The destination port number specified by the network channel (5060), or

• The ephemeral port number previously allocated by Converged Application Server.

Chapter 5
Overview of Deployment Scenarios

5-2



By default Converged Application Server allocates ports from the ephemeral port number
range of the underlying operating system for outgoing UDP datagrams. Converged
Application Server allows external connections to use an ephemeral point as the destination
port number, in addition to the port number configured in the network channel. In other words,
Converged Application Server automatically listens on all ephemeral ports that the server
allocates. You can optionally disable Converged Application Server's use of ephemeral port
numbers and setting a static port, as described in Oracle Communications Converged
Application Server Administrator's Guide.

Multihomed Server Configurations Overview
Engine tier servers in a production deployment frequently utilize multihomed server hardware,
having two or more NICs. Multihomed hardware is typically used for one of the following
purposes:

• To provide redundant network connections within the same subnet. Having multiple NICs
ensures that one or more network connections are available to communicate with SIP
data tier servers or the Administration Server, even if a single NIC fails.

• To support SIP communication across two or more different subnets. For example
Converged Application Server may be configured to proxy SIP requests from UAs in one
subnet to UAs in a second subnet, when the UAs cannot directly communicate across
subnets.

The configuration requirements and OSI layer information differ depending on the use of
multihomed hardware in your system. When multiple NICs are used to provide redundant
connections within a subnet, servers are generally configured to listen on all available
addresses (IP_ANY) as described in "Multihomed Servers Listening On All Addresses
(IP_ANY)".

When using multiple NICs to support different subnets, you must configure multiple network
on the server for each different NIC as described in "Multihomed Servers Listening on
Multiple Subnets".

Multihomed Servers Listening On All Addresses (IP_ANY)
The simplest multihome configuration enables a Converged Application Server instance to
listen on all available NICs (physical NICs as well as logical NICs), sometimes described as
IP_ANY. To accomplish this, you configure a single network channel and specify a channel
listen address of 0.0.0.0.

See information about configuring engine servers to listen on any IP interface in the
Converged Application Server Administrator's Guide.

Multihomed Servers Listening on Multiple Subnets
Multiple NICs can also be used in engine tier servers to listen on multiple subnets. The most
common configuration uses Converged Application Server to proxy SIP traffic from one
subnet to another where no direct access between subnets is permitted. Figure 5-3 shows
this configuration.

Chapter 5
Overview of Deployment Scenarios

5-3



Figure 5-3    Multihomed Configuration for Proxying between Subnets

To configure the Converged Application Server instance in this scenario, you must
define a separate network channel for each NIC used on the server machine. 
Example 5-1 shows the config.xml entries that define channels for the sample
configuration.

Example 5-1    Sample Network Channel Configuration for NICs on Multiple
Subnets

<NetworkAccessPoint ListenAddress="10.1.1.10" ListenPort="5060" 
Name="sipchannelA" Protocol="sip"/>
<NetworkAccessPoint ListenAddress="10.2.1.10" ListenPort="5060" 
Name="sipchannelB" Protocol="sip"/>

Understanding the Route Resolver
When Converged Application Server is configured to listen on multiple subnets, a
feature called the route resolver is responsible for the following activities:

• Populating OSI Layer 7 information (SIP system headers such as Via and Contact)
with the correct address.

• Populating OSI Layer 3 information with the correct source IP address.

For example, in the configuration shown in Figure 5-3, Converged Application Server
must add the correct subnet address to SIP system headers and transport datagrams
in order for each UA to continue processing SIP transactions. If the wrong subnet is
used, replies cannot be delivered because neither UA can directly access the other
UA's subnet.

The route resolver works by determining which NIC the operating system will use to
send a datagram to a given destination, and then examining the network channel that
is associated with that NIC. It then uses the address configured in the selected
network channel to populate SIP headers and Layer 3 address information.

For example, in the configuration shown in Figure 5-3, an INVITE message sent from
Converged Application Server to UAC B would have a destination address of

Chapter 5
Overview of Deployment Scenarios

5-4



10.2.1.16. The operating system would transmit this message using NIC B, which is
configured for the corresponding subnet. The route resolver associates NIC B with the
configured sipchannelB and embeds the channel's IP address (10.2.1.10) in the VIA header
of the SIP message. UAC B then uses the Via header to direct subsequent messages to the
server using the correct IP address. A similar process is used for UAC A, to ensure that
messages are delivered only on the correct subnet.

IP Aliasing with Multihomed Hardware
IP aliasing assigns multiple logical IP addresses to a single NIC, and is configured in the
underlying server operating system. If you configure IP aliasing and all logical IP addresses
are within the same subnet, you configure Converged Application Server to listen on all
addresses.

If you configure IP aliasing to create multiple logical IP addresses on different subnets, you
must configure a separate network channel for each logical IP address. In this configuration,
Converged Application Server treats all logical addresses as separate physical interfaces
(NICs) and uses the route resolver to populate OSI Layer 4 and Layer 7 information based on
the configured channel.

Load Distribution Considerations
A load balancer improves the reliability and scalability of your Converged Application Server
deployment. A load balancer distributes requests among the servers in your deployment and
monitors their availability.

The following sections describe considerations related to exposing an external virtual IP (VIP)
for the Converged Application Server deployment. These sections assume the use of an IP
sprayer. However, your deployment may use other technology to perform the network
dispatching function, such as the DNS Resource Records (RR) feature in the Linux operating
system.

Single VIP Topology
In the simplest scenario, a single IP sprayer gates access to a Load Balancer which
distributes messages to a cluster of engines, as shown in Figure 5-4.

Chapter 5
Load Distribution Considerations

5-5



Figure 5-4    SIngle Load Balancer Configuration

To configure Converged Application Server for use with a single IP sprayer, configure
one or more network channels for each server, and configure the external address
setting of each channel with the virtual IP address of the IP sprayer. The virtual IP
address is the address exposed for the Converged Application Server installation to
external clients.

In this configuration, Converged Application Server embeds the external address (or
VIP) in SIP message system headers to ensure that clients can reach the cluster for
subsequent replies.

Multiple VIP Topology
Multiple IP sprayers (or a multihomed node that functions as an IP sprayer) can be
configured to provide several virtual IP addresses for a single Converged Application
Server cluster.

To configure Converged Application Server for multiple VIPs, create a dedicated
network channel for each IP sprayer or local server NIC. You then set the channel's
external address to the virtual IP address of the IP sprayer to which the channel
connects.

In this configuration, the route resolver associates a configured channel with the NIC
used for originating SIP messages. The public address of the selected channel is then
used for populating SIP system messages. See "Understanding the Route Resolver".

Chapter 5
Load Distribution Considerations

5-6



Network Address Translation Options
In the most common case, a load balancer is configured using destination NAT to provide a
public IP address that clients use for communicating with one or more internal (private)
Converged Application Server addresses. Load balancers may also be configured using
source NAT, which modifies the Layer 3 address information originating from a private
address to match the virtual IP address of the load balancer itself.

With the default route resolver behavior, a Converged Application Server engine originates
UDP packets having a source IP address that matches the address of a local NIC (the private
address). This can be problematic for applications that try to respond directly to the Layer 3
address embedded in the transport packet, because the local server address may not be
publicly accessible. If your applications exhibit this problem, Oracle recommends that you
configure the load balancer to perform source NAT to change the transport Layer 3 address
to a publicly-accessible virtual IP address.

IP Masquerading Alternative to Source NAT
If you choose not to enable source NAT on your load balancer, Converged Application Server
provides limited IP masquerading functionality. To use this functionality, configure a logical
address on each engine tier server using the public IP address of the load balancer for the
cluster. (Duplicate the same logical IP address on each engine tier server machine). When a
local server interface matches the IP address of a configured load balancer (defined in the
public address of a network channel), Converged Application Server uses that interface to
originate SIP UDP messages, and the Layer 3 address contains a public address.

Caution:

Using the Converged Application Server IP masquerading functionality can lead to
network instability, because it requires duplicate IP addresses on multiple servers.
Production deployments must use a load balancer configured for source NAT, rather
than IP masquerading, to ensure reliable network performance.

You can disable IP masquerading functionality by using the startup option:

-Dwlss.udp.lb.masquerade=false

See the Converged Application Server Administrator's Guide for more information on startup
options.

Example Scenarios
This section describes Converged Application Server deployment scenarios. In particular, it
describes considerations related to SIP, load balancer, and Network Address Translation
(NAT), and shows the message flows in such scenarios.

Chapter 5
Network Address Translation Options

5-7



Note:

For more information about implementation-dependent issues surrounding
NAT, see the Internet Engineering Task Force (IETF) document NAT
Behavioral Requirements for Unicast UDP at the IETF website:

http://www.ietf.org/rfc/rfc4787.txt

When deployed with multiple SIP-aware load balancers, the Converged Application
Server deployment also typically includes an IP sprayer or network-level load balancer
to perform IP-level message distribution.

You can also deploy the Converged Application Server with load balancers that are not
SIP-aware, meaning that they do not consider existing SIP dialogues when routing
requests to servers. The following sections describe the scenario given a non-SIP
aware load balancer.

Example Deployment with a Non-SIP Aware Load Balancer
Figure 5-5 shows the sample network topology described in this section. A Converged
Application Server cluster, consisting of engines WLSS 1 and WLSS 2, is configured
on private IP network 10.1/16 (an internal 16-bit subnet). The cluster's public IP
address is 1.2.3.4, which is the virtual IP address configured on the load balancer.

The User Agent, UAC A, with IP address 2.3.4.5 never sees the internal IP addresses
configured for the Converged Application Server cluster. Instead, it sends requests to,
and receives responses from 1.2.3.4.

The sections that follow discuss configuring the Converged Application Server cluster
and load balancer for the example system.

Figure 5-5    Example Network Topology

Chapter 5
Example Scenarios

5-8

http://www.ietf.org/rfc/rfc4787.txt


Converged Application Server Configuration
The Converged Application Server cluster configuration specifies the public address as
1.2.3.4, and the public port as 5060 for each engine. The default route on both Converged
Application Server engines points to the load balancer's 10.1/16 network interface: 10.1.3.4.
The Converged Application Server (servers WLSS 1 and WLSS 2) routing table is shown in 
Example 5-2.

Example 5-2    Converged Application Server Routing Table

$ /sbin/route
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
10.1.0.0           *            255.255.0.0     U     0      0        0 eth0
default         10.1.3.4        0.0.0.0         UG    0      0 

Load Balancer Configuration
The load balancer is configured with a virtual IP address of 1.2.3.4, and two real servers,
WLSS 1 and WLSS 2, having addresses 10.1.1.1 and 10.1.1.2, respectively. The load
balancer also has an internal IP address of 10.1.3.4 configured on the 10.1/16 network. The
UAC address, 2.3.4.5, is reachable from the load balancer by static route configuration on the
load balancer. The load balancer routing table is shown in Example 5-3.

Example 5-3    Load Balancer Routing Table

$ /sbin/route
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
10.1.0.0           *            255.255.0.0     U     0      0        0 eth1
1.2.0.0            *            255.255.0.0     U     0      0 

Because the SIP protocol specification (RFC 3261) dictates the destination IP address and
UDP port numbers that user agents must use when sending requests or responses, the NAT
configuration of the load balancer must be done in a way that does not violate RFC 3261
requirements. Three setup options can be used to accomplish this configuration:

• NAT-based Configuration

• maddr-based Configuration

• rport-based Configuration

The sections that follow describe each approach.

NAT-based Configuration
The default UDP NAT behavior for load balancers is to perform destination IP address
translation in the public to private network direction, and source IP address translation in the
private to public network direction. This means setting up destination address translation in
the UAC to Converged Application Server (2.3.4.5 to 1.2.3.4) direction without source
address translation, and source address translation in the Converged Application Server to
UAC (10.1/16 to 2.3.4.5) direction without destination address translation.

Figure 5-6 illustrates the UDP packet flow for a SUBSCRIBE/200 OK transaction.

Chapter 5
Example Scenarios

5-9



Figure 5-6    SUBSCRIBE Sequence

In the figure, the source and destination IP addresses of the UDP packets are shown
under the message path arrow. In the UAC-to-Converged Application Server direction,
the load balancer translates the destination IP address but not the source IP address.
In the Converged Application Server-to-UAC direction, the load balancer translates the
source IP address but not the destination IP address.

Example 5-4 shows the complete message trace (including IP and UDP headers, as
well as the SIP payload) for the sequence from Figure 5-6.

Example 5-4    Complete SUBSCRIBE Message Trace

No.     Time        Source                Destination           
Protocol Info
      1 1.425250    2.3.4.5           1.2.3.4          SIP      
Request: SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
    Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
    Message Header
        Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1
        From: sipp <sip:sipp@2.3.4.5>;tag=1
        To: sut <sip:subscribe@1.2.3.4:5060>
        Call-ID: 1-25923@2.3.4.5
        Cseq: 1 SUBSCRIBE
        Contact: sip:sipp@2.3.4.5:9999
        Max-Forwards: 70
        Event: ua-profile
        Expires: 10
        Content-Length: 0

No.     Time        Source                Destination           
Protocol Info

Chapter 5
Example Scenarios

5-10



      2 2.426250    2.3.4.5           10.1.1.1          SIP      Request: 
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 10.1.1.1 (10.1.1.1)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
    Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
    Message Header
        Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1
        From: sipp <sip:sipp@2.3.4.5>;tag=1
        To: sut <sip:subscribe@1.2.3.4:5060>
        Call-ID: 1-25923@2.3.4.5
        Cseq: 1 SUBSCRIBE
        Contact: sip:sipp@2.3.4.5:9999
        Max-Forwards: 70
        Event: ua-profile
        Expires: 10
        Content-Length: 0

No.     Time        Source                Destination           Protocol Info
      3 3.430903    10.1.1.1               2.3.4.5           SIP      
Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol
    Status-Line: SIP/2.0 200 OK
    Message Header
        To: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
        Content-Length: 0
        Contact: 
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>
        CSeq: 1 SUBSCRIBE
        Call-ID: 1-25923@2.3.4.5

Figure 5-7 shows the message sequence that results from the Converged Application Server
subsequently sending a NOTIFY request to the UAC:

Chapter 5
Example Scenarios

5-11



Figure 5-7    NOTIFY Sequence

As in the previous sequence, the IP address translation takes place in the Converged
Application Server to UAC direction for the source IP address, and UAC to Converged
Application Server direction for the destination IP address.

Note that this setup does not require the load balancer to maintain session state
information or to be SIP-aware. The complete message trace from is shown in 
Example 5-5 below.

Example 5-5    Complete NOTIFY Message Trace

No.     Time        Source                Destination           
Protocol Info
      1 5.430952    10.1.1.1                2.3.4.5           SIP      
Request: NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol
    Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0
    Message Header
        To: sipp <sip:sipp@2.3.4.5>;tag=1
        Content-Length: 0
        Contact: 
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff7
1>
        CSeq: 1 NOTIFY
        Call-ID: 1-25923@2.3.4.5
        Via: SIP/2.0/UDP 
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab
749adeece4e
        From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
        Max-Forwards: 70

No.     Time        Source                Destination           

Chapter 5
Example Scenarios

5-12



Protocol Info
      2 6.430952    1.2.3.4          2.3.4.5           SIP      Request: 
NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 1.2.3.4 (1.2.3.4), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 9999 (9999)
Session Initiation Protocol
    Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0
    Message Header
        To: sipp <sip:sipp@2.3.4.5>;tag=1
        Content-Length: 0
        Contact: 
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>
        CSeq: 1 NOTIFY
        Call-ID: 1-25923@2.3.4.5
        Via: SIP/2.0/UDP 
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749ade
ece4e
        From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
        Max-Forwards: 70

No.     Time        Source                Destination           Protocol Info
      3 7.431367    2.3.4.5           1.2.3.4          SIP      Status: 200 
OK

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
    Status-Line: SIP/2.0 200 OK
    Message Header
        Via: SIP/2.0/UDP 
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749ade
ece4e
        From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
        To: sipp <sip:sipp@2.3.4.5>;tag=1;tag=1
        Call-ID: 1-25923@2.3.4.5
        CSeq: 1 NOTIFY
        Contact: <sip:2.3.4.5:9999;transport=UDP>

If NAT is performed on both the source (SNAT) and destination IP addresses, the
configuration does not work because the load balancer usually relies on a specific destination
port number value to be sent in responses to requests. That port number value is dictated by
RFC 3261, and must come from the Via header, which presents a conflict with load
balancer's NAT requirements. RFC 3261 requires that responses to SIP requests be sent to
the IP address used to send the request (unless maddr is present in the Via, as described in 
maddr-based Configuration). Consequently, in step 3 in Figure 5-8 below, Converged
Application Server sends a 200 OK response to the load balancer internal IP address
(10.1.3.4) and port 5060. That response is then dropped.

Chapter 5
Example Scenarios

5-13



Figure 5-8    Source and Destination NAT

Example 5-6 shows the complete message trace.

Example 5-6    Complete Failing SUBSCRIBE Message Trace

No.     Time        Source                Destination           
Protocol Info
      1 1.425250    2.3.4.5           1.2.3.4          SIP      
Request: SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
    Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
    Message Header
        Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1
        From: sipp <sip:sipp@2.3.4.5>;tag=1
        To: sut <sip:subscribe@1.2.3.4:5060>
        Call-ID: 1-25923@2.3.4.5
        Cseq: 1 SUBSCRIBE
        Contact: sip:sipp@2.3.4.5:9999
        Max-Forwards: 70
        Event: ua-profile
        Expires: 10
        Content-Length: 0

No.     Time        Source                Destination           
Protocol Info
      2 2.426250    10.1.3.4           10.1.1.1          SIP      
Request: SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 10.1.3.4 (10.1.3.4), Dst: 10.1.1.1 (10.1.1.1)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: sip (5060)
Session Initiation Protocol
    Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
    Message Header
        Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1
        From: sipp <sip:sipp@2.3.4.5>;tag=1

Chapter 5
Example Scenarios

5-14



        To: sut <sip:subscribe@1.2.3.4:5060>
        Call-ID: 1-25923@2.3.4.5
        Cseq: 1 SUBSCRIBE
        Contact: sip:sipp@2.3.4.5:9999
        Max-Forwards: 70
        Event: ua-profile
        Expires: 10
        Content-Length: 0

No.     Time        Source                Destination           Protocol Info
      3 3.430903    10.1.1.1               10.1.3.4           SIP      
Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 10.1.3.4 (10.1.3.4)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol

maddr-based Configuration
When the maddr parameter is present in the Via header, the response is sent to the IP
address specified in the maddr rather than to the received IP address (even when SNAT is
enabled).

In the example below, the UAC specifies a maddr set to 2.3.4.5 in the Via header.
Consequently, the response from the SIP server makes it to the UAC.

Figure 5-9    maddr Sequence

Example 5-7 shows the complete message trace represented by Figure 5-9.

Example 5-7    Complete maddr Message Trace

No.     Time        Source                Destination           Protocol Info
      1 1.425250    2.3.4.5           1.2.3.4          SIP      Request: 
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Chapter 5
Example Scenarios

5-15



Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
    Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
    Message Header
        Via: SIP/2.0/UDP 2.3.4.5:9999;maddr=2.3.4.5;branch=1
        From: sipp <sip:sipp@2.3.4.5>;tag=1
        To: sut <sip:subscribe@1.2.3.4:5060>
        Call-ID: 1-25923@2.3.4.5
        Cseq: 1 SUBSCRIBE
        Contact: sip:sipp@2.3.4.5:9999
        Max-Forwards: 70
        Event: ua-profile
        Expires: 10
        Content-Length: 0

No.     Time        Source                Destination           
Protocol Info
      2 2.426250    10.1.3.4           10.1.1.1          SIP      
Request: SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 10.1.3.4 (10.1.3.4), Dst: 10.1.1.1 (10.1.1.1)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: sip (5060)
Session Initiation Protocol
    Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
    Message Header
        Via: SIP/2.0/UDP 2.3.4.5:9999;maddr=2.3.4.5;branch=1
        From: sipp <sip:sipp@2.3.4.5>;tag=1
        To: sut <sip:subscribe@1.2.3.4:5060>
        Call-ID: 1-25923@2.3.4.5
        Cseq: 1 SUBSCRIBE
        Contact: sip:sipp@2.3.4.5:9999
        Max-Forwards: 70
        Event: ua-profile
        Expires: 10
        Content-Length: 0

No.     Time        Source                Destination           
Protocol Info
      3 3.430903    10.1.1.1               2.3.4.5           SIP      
Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol
    Status-Line: SIP/2.0 200 OK
    Message Header
        To: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
        Content-Length: 0
        Contact: 
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff7
1>

Chapter 5
Example Scenarios

5-16



rport-based Configuration
RFC 3581 improves SIP and NAT interactions by allowing the client to request that the server
send responses to a UDP port number from the request rather than from the Via. In order for
both SUBSCRIBE and NOTIFY to work correctly, both the UAC as well as Converged
Application Server must support RFC 3581.

Figure 5-10 illustrates the SUBSCRIBE flow.

Figure 5-10    rport SUBSCRIBE Sequence

The complete message trace from the figure is shown in Example 5-8 below.

Example 5-8    Complete Message Trace for rport SUBSCRIBE

No.     Time        Source                Destination           Protocol Info
      1 1.425250    2.3.4.5           1.2.3.4          SIP      Request: 
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
    Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
    Message Header
        Via: SIP/2.0/UDP 2.3.4.5:9999;rport;branch=1
        From: sipp <sip:sipp@2.3.4.5>;tag=1
        To: sut <sip:subscribe@1.2.3.4:5060>
        Call-ID: 1-25923@2.3.4.5
        Cseq: 1 SUBSCRIBE
        Contact: sip:sipp@2.3.4.5:9999
        Max-Forwards: 70
        Event: ua-profile
        Expires: 10
        Content-Length: 0

Chapter 5
Example Scenarios

5-17



No.     Time        Source                Destination           
Protocol Info
      2 2.426250    10.1.3.4           10.1.1.1          SIP      
Request: SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 10.1.3.4 (10.1.3.4), Dst: 10.1.1.1 (10.1.1.1)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: sip (5060)
Session Initiation Protocol
    Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
    Message Header
        Via: SIP/2.0/UDP 2.3.4.5:9999;rport;branch=1
        From: sipp <sip:sipp@2.3.4.5>;tag=1
        To: sut <sip:subscribe@1.2.3.4:5060>
        Call-ID: 1-25923@2.3.4.5
        Cseq: 1 SUBSCRIBE
        Contact: sip:sipp@2.3.4.5:9999
        Max-Forwards: 70
        Event: ua-profile
        Expires: 10
        Content-Length: 0

No.     Time        Source                Destination           
Protocol Info
      3 3.430903    10.1.1.1               10.1.3.4           SIP      
Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 10.1.3.4 (10.1.3.4)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 2222 (2222)
Session Initiation Protocol
    Status-Line: SIP/2.0 200 OK
    Message Header
        To: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
        Content-Length: 0
        Contact: 
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff7
1>
        CSeq: 1 SUBSCRIBE
        Call-ID: 1-25923@2.3.4.5

Figure 5-11 shows the NOTIFY message flow.

Note that while source address NAT is enabled for both directions (UAS to Converged
Application Server and Converged Application Server to UA), the load balancer can
correctly identify the destination address in Step 3 by relying on receiving responses
on the same port number as the one used to send requests. This implies that the load
balancer maintains state.

Chapter 5
Example Scenarios

5-18



Figure 5-11    rport NOTIFY Sequence

Example 5-9 shows the complete message trace from the figure.

Example 5-9    Complete Message Trace for rport NOTIFY

No.     Time        Source                Destination           Protocol Info
      1 5.430952    10.1.1.1                2.3.4.5           SIP      
Request: NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol
    Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0
    Message Header
        To: sipp <sip:sipp@2.3.4.5>;tag=1
        Content-Length: 0
        Contact: 
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>
        CSeq: 1 NOTIFY
        Call-ID: 1-25923@2.3.4.5
        Via: SIP/2.0/UDP 
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749ade
ece4e;rport
        From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
        Max-Forwards: 70

No.     Time        Source                Destination           Protocol Info
      2 6.430952    1.2.3.4          2.3.4.5           SIP      Request: 
NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 1.2.3.4 (1.2.3.4), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 9999 (9999)
Session Initiation Protocol
    Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0
    Message Header

Chapter 5
Example Scenarios

5-19



        To: sipp <sip:sipp@2.3.4.5>;tag=1
        Content-Length: 0
        Contact: 
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff7
1>
        CSeq: 1 NOTIFY
        Call-ID: 1-25923@2.3.4.5
        Via: SIP/2.0/UDP 
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab
749adeece4e;rport
        From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
        Max-Forwards: 70

No.     Time        Source                Destination           
Protocol Info
      3 7.431367    2.3.4.5           1.2.3.4          SIP      
Status: 200 OK

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: (2222)
Session Initiation Protocol
    Status-Line: SIP/2.0 200 OK
    Message Header
        Via: SIP/2.0/UDP 
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab
749adeece4e;rport
        From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
        To: sipp <sip:sipp@2.3.4.5>;tag=1;tag=1
        Call-ID: 1-25923@2.3.4.5
        CSeq: 1 NOTIFY
        Contact: <sip:2.3.4.5:9999;transport=UDP

Chapter 5
Example Scenarios

5-20



6
Standards Alignment

This chapter describes how Oracle Communications Converged Application Server complies
with various specifications and RFCs.

Overview of Converged Application Server Standards Alignment
Converged Application Server is developed with special attention to Internet Engineering
Task Force (IETF) and 3rd Generation Partnership Project (3GPP) specifications. Feature
development is prioritized according to general market trends, both observed and predicted.
In cases where certain specifications are obsolete or where Internet drafts are formalized as
'Request For Comments' standards, Converged Application Server places priority on
compliance with those specifications. In cases where specifications are part of a larger
release plan, as with the 3GPP, Oracle prioritizes compliance with the latest ratified release
(in this case, Release 12). This should not be presumed to mean that the product is not
compliant with subsequent versions of component specifications, although this document
does not summarize compliance with those specifications.

Java Sun Recommendation (JSR) Standards Compliance
Converged Application Server is compliant with Java EE version 7.0 and the corresponding
Java EE component specifications.

Converged Application Server is further enhanced by the addition of a SIP Servlet container
defined by JSR 359: "SIP Servlet API."

Converged Application Server has executed all related Test Compatibility Kits (TCKs) and
has met the formal requirements established by Sun Microsystems for formal public
statements of compliance.

IETF RFC Compliance
The following table lists the Converged Application Server level of compliance to common
IETF Requests for Comment (RFCs) and Internet drafts. The level of compliance is defined
as follows:

• Yes—Indicates that Converged Application Server directly supports the feature or
specification.

• Yes (Platform)—Indicates Converged Application Server can host applications or
components that implement the RFC. However, the RFC or feature has no impact on the
transaction layer of the protocol or on the behavior of the SIP Servlet container.

6-1



Table 6-1    Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

761 DoD Standard
Transmission
Control Protocol

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc761.txt
768 User Datagram

Protocol
Yes Converged Application Server supports applications that

conform to this specification. See

http://www.ietf.org/rfc/rfc768.txt
1157 A Simple Network

Management
Protocol (SNMP)

Yes Converged Application Server supports SNMP V2c traps.
See

http://www.ietf.org/rfc/rfc1157.txt
1847 Security Multiparts

for MIME: Multipart/
Signed and
Multipart/Encrypted

Yes
(Platform)

Converged Application Server supports applications that
consume or generate signed or encrypted multipart MIME
objects. See

http://www.ietf.org/rfc/rfc1847.txt
1901 Introduction to

Community-based
SNMPv2

Yes Converged Application Server supports SNMP V2c traps.
See

http://www.ietf.org/rfc/rfc1901.txt
1905 Protocol Operations

for Version 2 of the
Simple Network
Management
Protocol (SNMPv2)

Yes Converged Application Server supports SNMP V2c traps.
See

http://www.ietf.org/rfc/rfc1905.txt

1906 Transport Mappings
for Version 2 of the
Simple Network
Management
Protocol (SNMPv2)

Yes Converged Application Server supports SNMP over both
TCP and UDP. See

http://www.ietf.org/rfc/rfc1906.txt

1907 Management
Information Base
for Version 2 of the
Simple Network
Management
Protocol (SNMPv2)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc1907.txt

2183 Communicating
Presentation
Information in
Internet Messages:
The Content-
Disposition Header
Field

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2183.txt

2246 The TLS Protocol
Version 1.0

Yes Converged Application Server supports TLS. See

http://www.ietf.org/rfc/rfc2246.txt
2460 Internet Protocol,

Version 6 (IPv6)
Specification

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2460.txt

Chapter 6
IETF RFC Compliance

6-2

http://www.ietf.org/rfc/rfc761.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1847.txt
http://www.ietf.org/rfc/rfc1901.txt
http://www.ietf.org/rfc/rfc1905.txt
http://www.ietf.org/rfc/rfc1906.txt
http://www.ietf.org/rfc/rfc1907.txt
http://www.ietf.org/rfc/rfc2183.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2460.txt


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

2543 SIP: Session
Initiation Protocol
(v1)

Yes Converged Application Server supports backward
compatibility as described in this specification. See

http://www.ietf.org/rfc/rfc2543.txt
2571 An Architecture for

Describing SNMP
Management
Frameworks

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2571.txt

2572 Message
Processing and
Dispatching for the
Simple Network
Management
Protocol (SNMP)

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2572.txt

2573 SNMP Applications Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2573.txt
2574 User-based

Security Model
(USM) for version 3
of theSimple
Network
Management
Protocol (SNMPv3)

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2574.txt

2575 View-based Access
Control Model
(VACM) for the
Simple Network
Management
Protocol (SNMP)

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2575.txt

2576 Coexistence
between Version 1,
Version 2, and
Version 3 of the
Internet-standard
Network
Management
Framework

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2576.txt

2616 Hypertext Transfer
Protocol — HTTP
1.1

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2616.txt
2617 HTTP

Authentication:
Basic and Digest
Access
Authentication

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2617.txt

Chapter 6
IETF RFC Compliance

6-3

http://www.ietf.org/rfc/rfc2543.txt
http://www.ietf.org/rfc/rfc2571.txt
http://www.ietf.org/rfc/rfc2572.txt
http://www.ietf.org/rfc/rfc2573.txt
http://www.ietf.org/rfc/rfc2574.txt
http://www.ietf.org/rfc/rfc2575.txt
http://www.ietf.org/rfc/rfc2576.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

2782 A DNS RR for
specifying the
location of services
(DNS SRV)

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2782.txt

2786 Diffie-Helman USM
Key Management
Information Base
and Textual
Convention

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2786.txt

2806 URLs for Telephone
Calls

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2806.txt
2848 The PINT Service

Protocol:
Extensions to SIP
and SDP for IP
Access to
Telephone Call
Services

Yes
(Platform)

Note that implementing PINT services implies a pre-IMS
architecture. Although Oracle favors the 3GPP/TISPAN
architecture and approach to class 4/5 Service Emulation
and does not advocate PINT, it is possible to implement
PINT service elements using Converged Application Server.
See

http://www.ietf.org/rfc/rfc2848.txt
2960 Stream Control

Transmission
Protocol

Yes SCTP supported only for Diameter traffic. See

http://www.ietf.org/rfc/rfc2960.txt

2976 The SIP INFO
Method

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc2976.txt
3204 MIME media types

for ISUP and QSIG
Objects

Yes
(Platform)

Converged Application Server does not directly consume or
generate ISUP and QSIG objects, but it supports
applications that consume or generate these objects. See

http://www.ietf.org/rfc/rfc3204.txt
3261 SIP: Session

Initiation Protocol
Yes Converged Application Server supports applications that

conform to this specification. See

http://www.ietf.org/rfc/rfc3261.txt
3262 Reliability of

Provisional
Responses in the
Session Initiation
Protocol (SIP)

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3262.txt

3263 Session Initiation
Protocol (SIP):
Locating SIP
Servers

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3263.txt

3264 An Offer/Answer
Model with Session
Description
Protocol (SDP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3264.txt

Chapter 6
IETF RFC Compliance

6-4

http://www.ietf.org/rfc/rfc2782.txt
http://www.ietf.org/rfc/rfc2786.txt
http://www.ietf.org/rfc/rfc2806.txt
http://www.ietf.org/rfc/rfc2848.txt
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc2976.txt
http://www.ietf.org/rfc/rfc3204.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3262.txt
http://www.ietf.org/rfc/rfc3263.txt
http://www.ietf.org/rfc/rfc3264.txt


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3265 Session Initiation
Protocol (SIP)-
Specific Event
Notification

Yes

(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3265.txt

3268 Advanced
Encryption
Standard (AES)
Ciphersuites for
Transport Layer
Security (TLS)

Yes
(Platform)

Converged Application Server supports cryptographic
services, but specific algorithms that are used are subject to
local availability and export control. See

http://www.ietf.org/rfc/rfc3268.txt

3311 The Session
Initiation Protocol
(SIP) UPDATE
Method

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3311.txt

3312 Integration of
Resource
Management and
Session Initiation
Protocol (SIP).

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3312.txt

3313 Private Session
Initiation Protocol
(SIP) Extensions for
Media Authorization

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3313.txt

3323 A Privacy
Mechanism for the
Session Initiation
Protocol (SIP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3323.txt

3325 Private Extensions
to the Session
Initiation Protocol
(SIP) for Asserted
Identity within
Trusted Networks

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3325.txt

3326 The Reason
Header Field for the
Session Initiation
Protocol (SIP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3326.txt

3327 Session Initiation
Protocol (SIP)
Extension Header
Field for Registering
Non-Adjacent
Contacts.

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3327.txt

Chapter 6
IETF RFC Compliance

6-5

http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3311.txt
http://www.ietf.org/rfc/rfc3312.txt
http://www.ietf.org/rfc/rfc3313.txt
http://www.ietf.org/rfc/rfc3323.txt
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc3326.txt
http://www.ietf.org/rfc/rfc3327.txt


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3351 User Requirements
for the Session
Initiation Protocol
(SIP) in Support of
Deaf, Hard of
Hearing and
Speech-impaired
Individuals

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3351.txt

3372 Session Initiation
Protocol for
Telephones (SIP-T):
Context and
Architectures

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3372.txt

3420 Internet Media Type
message/sipfrag

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3420.txt
3428 Session Initiation

Protocol (SIP)
Extension for
Instant Messaging

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3428.txt

3455 Private Header (P-
Header) Extensions
to the Session
Initiation Protocol
(SIP) for the 3rd-
Generation
Partnership Project
(3GPP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3455.txt

3515 The Session
Initiation Protocol
(SIP) Refer Method.

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3515.txt
3524 Mapping of Media

Streams to
Resource
Reservation Flows

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3524.txt

3556 Session Description
Protocol (SDP)
Bandwidth
Modifiers for RTP
Control Protocol
(RTCP) Bandwidth

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3556.txt

Chapter 6
IETF RFC Compliance

6-6

http://www.ietf.org/rfc/rfc3351.txt
http://www.ietf.org/rfc/rfc3372.txt
http://www.ietf.org/rfc/rfc3420.txt
http://www.ietf.org/rfc/rfc3428.txt
http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3515.txt
http://www.ietf.org/rfc/rfc3524.txt
http://www.ietf.org/rfc/rfc3556.txt


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3578 Mapping of
Integrated Services
Digital Network
(ISDN) User Part
(ISUP) Overlap
Signalling to the
Session Initiation
Protocol (SIP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification, but it does not provide an ISUP
interface. See

http://www.ietf.org/rfc/rfc3578.txt

3581 An Extension to the
Session Initiation
Protocol (SIP) for
Symmetric
Response Routing

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3581.txt

3589 Diameter Command
Codes for Third
Generation
Partnership Project
(3GPP) Release 5

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3589.txt

3588 Diameter Base
Protocol

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3588.txt
3605 Real Time Control

Protocol (RTCP)
attribute in Session
Description
Protocol ((SDP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See http://
www.ietf.org/rfc/rfc3605.txt

3608 Session Initiation
Protocol (SIP)
Extension Header
Field for Service
Route Discovery
During Registration.

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification, but it does not provide a means
of storing the ServiceRoute established during registration.
This functionality can be implemented as part of the
application. See

http://www.ietf.org/rfc/rfc3608.txt
3665 Session Initiation

Protocol (SIP) Basic
Call Flow
Examples.

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3665.txt

3666 Session Initiation
Protocol (SIP)
Public Switched
Telephone Network
(PSTN) Call Flows

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3666.txt

3680 A Session Initiation
Protocol (SIP)
Event Package for
Registrations

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3680.txt

Chapter 6
IETF RFC Compliance

6-7

http://www.ietf.org/rfc/rfc3578.txt
http://www.ietf.org/rfc/rfc3581.txt
http://www.ietf.org/rfc/rfc3589.txt
http://www.ietf.org/rfc/rfc3588.txt
http://www.ietf.org/rfc/rfc3605.txt
http://www.ietf.org/rfc/rfc3605.txt
http://www.ietf.org/rfc/rfc3608.txt
http://www.ietf.org/rfc/rfc3665.txt
http://www.ietf.org/rfc/rfc3666.txt
http://www.ietf.org/rfc/rfc3680.txt


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3689 General
Requirements for
Emergency
Telecommunication
Service (ETS)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3689.txt

3690 IP Telephony
Requirements for
Emergency
Telecommunication
Service (ETS)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3690.txt

3702 Authentication,
Authorization, and
Accounting
Requirements for
the Session
Initiation Protocol
(SIP)

Yes Converged Application Server version supports JDBC and
LDAP. See

http://www.ietf.org/rfc/rfc3702.txt

3725 Best Current
Practices for Third
Party Call Control
(3pcc) in the
Session Initiation
Protocol (SIP)

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3725.txt

3761 The E.164 to
Uniform Resource
Identifiers (URI)
Dynamic Delegation
Discovery System
(DDDS) Application
(ENUM)

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3761.txt

3764 Enumservice
Registration for
Session Initiation
Protocol (SIP)
Addresses-of-
Record

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3764.txt

3824 Using E.164
numbers with the
Session Initiation
Protocol (SIP)

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3824.txt

3826 The Advanced
Encryption
Standard (AES)
Cipher Algorithm in
the SNMP User-
based Security
Model

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3826.txt

Chapter 6
IETF RFC Compliance

6-8

http://www.ietf.org/rfc/rfc3689.txt
http://www.ietf.org/rfc/rfc3690.txt
http://www.ietf.org/rfc/rfc3702.txt
http://www.ietf.org/rfc/rfc3725.txt
http://www.ietf.org/rfc/rfc3761.txt
http://www.ietf.org/rfc/rfc3764.txt
http://www.ietf.org/rfc/rfc3824.txt
http://www.ietf.org/rfc/rfc3826.txt


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3840 Indicating User
Agent Capabilities
in the Session
Initiation Protocol
(SIP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3840.txt

3841 Caller Preferences
for the Session
Initiation Protocol
(SIP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3841.txt

3853 S/MIME Advanced
Encryption
Standard (AES)
Requirement for the
Session Initiation
Protocol (SIP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3853.txt

3891 The Session
Initiation Protocol
(SIP) 'Replaces'
Header

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3891.txt

3892 The Session
Initiation Protocol
(SIP) Referred-By
Mechanism

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3892.txt

3893 Session Initiation
Protocol (SIP)
Authenticated
Identity Body (AIB)
Format

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3893.txt

3903 Session Initiation
Protocol (SIP)
Extension for Event
State Publication

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3903.txt

3911 The Session
Initiation Protocol
(SIP) "Join" Header

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3911.txt
3959 The Early Session

Disposition Type for
the Session
Initiation Protocol
(SIP)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3959.txt

3960 Early Media and
Ringing Tone
Generation in the
Session Initiation
Protocol (SIP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc3960.txt

3966 The tel URI for
Telephone Numbers

Yes See

http://www.ietf.org/rfc/rfc3966.txt

Chapter 6
IETF RFC Compliance

6-9

http://www.ietf.org/rfc/rfc3840.txt
http://www.ietf.org/rfc/rfc3841.txt
http://www.ietf.org/rfc/rfc3853.txt
http://www.ietf.org/rfc/rfc3891.txt
http://www.ietf.org/rfc/rfc3892.txt
http://www.ietf.org/rfc/rfc3893.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3911.txt
http://www.ietf.org/rfc/rfc3959.txt
http://www.ietf.org/rfc/rfc3960.txt
http://www.ietf.org/rfc/rfc3966.txt


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

4028 Session Timers in
the Session
Initiation Protocol
(SIP)

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc4028.txt

4032 Update to the
Session Initiation
Protocol (SIP)
Preconditions
Framework

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc4032.txt

4244 An Extension to the
Session Initiation
Protocol (SIP) for
Request History
Information

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc4244.txt

4320 Actions Addressing
Identified Issues
with the Session
Initiation Protocol's
(SIP) Non-INVITE
Transaction

Yes Converged Application Server supports applications that
conform to this specification, specifically including:

• If the application or proxy does not respond to a non-
invite request before TimerE reaches T2, the container
responds with a 100 TRYING message.

• A system parameter that disables this feature: -
Dwlss.send100ForNonInviteTransaction=false. The
parameter is true by default.

See http://www.ietf.org/rfc/rfc4320.txt
4321 Problems Identified

Associated with the
Session Initiation
Protocol's (SIP)
Non_INVITE
Transaction

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc4321.txt

4474 Enhancements for
Authenticated
Identity
Management in the
Session Initiation
Protocol (SIP)

Yes Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc4474.txt.

4483 A Mechanism for
Content Indirection
in Session Initiation
Protocol (SIP)
Messages

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc4483.txt.

4566 SDP: Session
Description
Protocol

Yes Converged Application Server supports applications that
consume or generate SDP. See

http://www.ietf.org/rfc/rfc4566.txt
4916 Connected Identity

in the Session
Initiation Protocol
(SIP)

Yes See

https://tools.ietf.org/html/rfc4916

Chapter 6
IETF RFC Compliance

6-10

http://www.ietf.org/rfc/rfc4028.txt
http://www.ietf.org/rfc/rfc4032.txt
http://www.ietf.org/rfc/rfc4244.txt
http://www.ietf.org/rfc/rfc4320.txt
http://www.ietf.org/rfc/rfc4321.txt
http://www.ietf.org/rfc/rfc4474.txt
http://www.ietf.org/rfc/rfc4483.txt
http://www.ietf.org/rfc/rfc4566.txt
https://tools.ietf.org/html/rfc4916


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

5393 Addressing an
Amplification
Vulnerability in
Session Initiation
Protocol (SIP)
Forking Proxies

Partial Converged Application Server supports the Max-Breadth
Header portion of JSR 359, section 12.2.11, “Max-Breadth
Check." Specifically, it implements a Max-Breadth header to
limit the number of parallel forks that can be made on a SIP
request by the downstream proxies. See

https://www.jcp.org/en/jsr/detail?id=359
5626 Managing Client-

Initiated
Connections in the
Session Initiation
Protocol (SIP)

Yes Converged Application Server supports JSR 359, section
17.4, “Managing Client Initiated Connections," which
includes support for UDP/TCP with cluster deployment. See

https://www.jcp.org/en/jsr/detail?id=359

5630 The Use of the
SIPS URI Scheme
in the Session
Initiation Protocol
(SIP)

Yes When a proxy sends a request using a SIPS Request-URI
and receives one of:

• A 3XX response with a SIP Contact header field
• A 416 response
• A 480 (Temporarily Unavailable) response with a

Warning header with warn-code 380 "SIPS Not Allowed"
response

The proxy must not recurse on the response. In this case,
the proxy should forward the best response instead of
recursing. This allows the UAC to take the appropriate
action.

When a proxy sends a request using a SIP Request-URI and
receives:

• A 3XX response with a SIPS Contact header field
• A 480 (Temporarily Unavailable) response with a

Warning header with warn-code 381 "SIPS Required"
The proxy must not recurse on the response. In this case,
the proxy should forward the best response instead of
recursing. This allows the UAC to take the appropriate
action.

5888 The Session
Description
Protocol (SDP)
Grouping
Framework

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://www.ietf.org/rfc/rfc5888.txt

5806 Diversion Indication
in SIP

Yes Converged Application Server supports applications that
conform to this specification. See

https://datatracker.ietf.org/doc/rfc5806/
5954 Essential Correction

for IPv6 ABNF and
URI Comparison in
RFC 3261

Yes Converged Application Server now includes a task to update
the equals() and hashcode() methods of SipURIImpl based
on this RFC. See

https://tools.ietf.org/html/rfc5954

Chapter 6
IETF RFC Compliance

6-11

https://www.jcp.org/en/jsr/detail?id=359
https://www.jcp.org/en/jsr/detail?id=359
http://www.ietf.org/rfc/rfc5888.txt
https://datatracker.ietf.org/doc/rfc5806/
https://tools.ietf.org/html/rfc5954


Table 6-1    (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

6026 Correct Transaction
Handling for 2xx
Responses to
Session Initiation
Protocol (SIP)
INVITE Requests

Yes Converged Application Server supports applications that
conform to this specification. See

https://tools.ietf.org/html/rfc6026

6141 Re-INVITE and
Target-Refresh
Request Handling
in the Session
Initiation Protocol
(SIP)

Yes Converged Application Server supports applications that
conform to this specification. See

https://tools.ietf.org/html/rfc6141

6665 SIP-Specific Event
Notification

Yes Converged Application Server supports applications that
conform to this specification. See

https://tools.ietf.org/html/rfc6665
draft-donovan-
mmusic-183-0
0

SIP 183 Session
Progress Message
Draft

Yes
(Platform)

Converged Application Server supports applications that
conform to this specification. See

http://tools.ietf.org/html/draft-donovan-
mmusic-183-00

draft-ietf-sip-
gruu-15

Obtaining and
Using Globally
Routable User
Agent (UA) URIs
(GRUU) in the
Session Initiation
Protocol (SIP)

Yes See

http://tools.ietf.org/id/draft-ietf-sip-
gruu-15.txt

draft-reeder-
snmpv3-
usm-3desede-
00

Extension to the
User-Based
Security Model
(USM) to Support
Triple-DES EDE in
"Outside" CBC
Mode

Yes See

http://tools.ietf.org/id/draft-reeder-snmpv3-
usm-3desede-00.txt

3GPP R12 Specification Conformance
Converged Application Server is fully compliant with the latest 3GPP Release 12
specification, and does not impose any restrictions on implementing applications or
functions that are compliant with those associated with the Application Server entity
described in the specification. In some cases, applications must implement support for
SIP methods or headers. The default behavior of the Converged Application Server
Sip Servlet Container is to pass unrecognized headers, request methods and payloads
to SIP Servlets using normal SIP Servlet API procedures.

Chapter 6
3GPP R12 Specification Conformance

6-12

https://tools.ietf.org/html/rfc6026
https://tools.ietf.org/html/rfc6141
https://tools.ietf.org/html/rfc6665
http://tools.ietf.org/html/draft-donovan-mmusic-183-00
http://tools.ietf.org/html/draft-donovan-mmusic-183-00
http://tools.ietf.org/id/draft-ietf-sip-gruu-15.txt
http://tools.ietf.org/id/draft-ietf-sip-gruu-15.txt
http://tools.ietf.org/id/draft-reeder-snmpv3-usm-3desede-00.txt
http://tools.ietf.org/id/draft-reeder-snmpv3-usm-3desede-00.txt


A
SIP Servlet API Service Invocation

This appendix describes the Service invocation method of the SIP Servlet API (JSR 116).

SIP Servlet API Overview
The SIP Servlet API provides a model for application composition and interaction. Service
Interaction which is analogous with a simplistic implementation of the Service Capability
Interaction Manager (SCIM) alluded to by the 3GPP. Handling of all incoming requests is
governed by the Converged Application Server SIP Servlet Container in accordance with the
SIP Servlet API specification.

Oracle Communications Converged Application Server's SIP Servlet Container filters
received Initial SIP requests and applies a set of defined rules (Servlet Mapping Rules) to
determine which SIP Servlets within the deployed applications shall be invoked to service
that particular request. This order is always sequential and is defined in a configuration file
built up through successive deployments of SIP applications.

Within the deployment descriptor for each SIP application that is deployed, a sequence of
conditions, called Servlet Mapping Rules, is defined. These rules determine which Servlets
will handle any initial request. As the request object is "routed" between Servlets, the path
from Servlet to Servlet is recorded in a fashion equivalent to that of the Record-Route and Via
headers used in SIP requests. This route is stored as part of the SIP application session and
is appended to subsequent requests within the same dialogue in either "forward" or "reverse"
order depending on the orientation of the “From" and “To" tags for the request. This internal
"route" is stripped from the request object before a SIP request leaves Converged Application
Server and is not visible to external SIP servers. It is again added whenever a new request
within an existing dialog is received.

The SIP Servlets (SIP/HTTP application) that are invoked in this manner are unaware that
any other SIP/HTTP application exists. This is one of the fundamental characteristics of the
SIP Servlet programming model. Making maximal use of this model requires that the Servlet
container be treated by the developer as if it is a logical sub-network, with the container
effectively acting as an intermediary proxy. In many ways, the SIP Servlet Container may be
compared with the Serving CSCF function in an IMS architecture.

Servlet Mapping Rules: Objects, Properties and Conditions
Servlet mapping rules are defined by the service developer and are detailed in the
application's deployment descriptor. A deployment descriptor is an XML-based text file whose
elements describe how to assemble and deploy the unit into a specific environment. Each
element consists of a tag and a value expressed in the following syntax: <tag>value</tag>.
Usually deployment descriptors are automatically generated by deployment tools, so you will
not have to manage them directly. Deployment descriptor elements contain behavioral
information about components not included directly in code. Their purpose is to tell the
Deployer how to deploy an application, not tell the server how to manage components at
runtime.

A-1



In the context of SIP applications, the deployment descriptor is contained within the
Servlet archive (SAR) file that is deployed on Converged Application Server. There
may be more than one Servlet mapping rule defined within the deployment descriptor
for the application (SIP/HTTP application). In this case, these rules must be applied in
the order in which they are defined in the deployment descriptor.

Example A-1 provides an example of a simple Servlet mapping rule found in a typical
deployment descriptor.

Note:

Servlet mapping rules are entirely concerned with the content of the SIP
message being processed. It is not possible to use information regarding the
actual IP address and port number on which the request was received as
service trigger points unless this information matches the request URI of the
Sip message.

The Servlet mapping rule shown in Example A-1 illustrates the following Boolean
expression:

(Method="INVITE" OR Method = “MESSAGE" OR Method="SUBSCRIBE") AND
(Method="INVITE" OR Method = “MESSAGE" OR (NOT Header = “from" Match =
“Bob"))

Note:

This is the same logical condition used in the Initial filter Criteria example
provided in 3GPP TS 29.228 Annex C expressed as a Servlet Mapping Rule.

Example A-1    Example Servlet Mapping Rule

<servlet-mapping>
<servlet-name>servlet1</servlet-name>
<pattern>
        <and>    
        <or>
                <equal>
                <var>request.method</var>
                <value>INVITE</value>
                </equal>
                        <equal>
                <var>request.method</var>
                <value>MESSAGE</value>
                        </equal>
                <equal>
                <var>request.method</var>
                <value>SUBSCRIBE</value>
                        </equal>
        </or>
        <or>
                <equal>

Appendix A
Servlet Mapping Rules: Objects, Properties and Conditions

A-2



                <var>request.method</var>
                <value>INVITE</value>
                </equal>
                        <equal>
                <var>request.method</var>
                <value>MESSAGE</value>
                    </equal>
                <not>
                    <equal>
                        <var>request.from.display-name</var>
                        <value>Bob</value>
                    </equal>
                </not>
        </or>
        </and>
</pattern>      
</servlet-mapping>

Supported Service Trigger Points
Service Point Triggers are the attributes of a SIP request that may be evaluated by Servlet
Mapping Rules. See "Section 11.1: Triggering Rules" in the JSR 116 specification for more
information.

Request Object
The Request Object is a Java representation of a SIP request.

• method: the request method, a string

• uri: the request URI; for example a SipURI or a TelURL

• from: an Address representing the value of the From header

• to: an Address representing the value of the To header

URI
• scheme: the URI scheme

SipURI (extends URI)
• scheme: a literal string – either “sip" or “sips"

• user: the “user" part of the SIP/SIPS URI

• host: the “host" part of the SIP/SIPS URI. This may be a domain name or a dotted
decimal IP address.

• port: the URI port number in decimal format; if absent the default value is used (5060 for
UDP and TCP, 5061 for TLS).

• tel: if the “user" parameter is not “phone", this variable is undefined. Otherwise, its value
is the telephone number contained in the “user" part of the SIP/SIPS URI with visual
separators stripped. This variable is always matched case insensitively (the telephone
numbers may contain the symbols ‘A', ‘B', ‘C' and ‘D').

• param.name: value of the named parameter within a SIP/SIPS URI; name must be a
valid SIP/SIPS URI parameter name.

Appendix A
Servlet Mapping Rules: Objects, Properties and Conditions

A-3



TelURL (extends URI)
• scheme: always the literal string “tel"

• tel: the tel URL subscriber name with visual separators stripped off

• param.name: value of the named parameter within a tel URL; name must be a
valid tel URL parameter name

Address
• uri: the URI object; see URI, SipURI, TelURL types above

• display-name: the display-name portion of the From or To header

Conditions and Logical Connectors
• equal: compares the value of a variable with a literal value and evaluates to true if

the variable is defined and its value equals that of the literal. Otherwise, the result
is false.

• exists: takes a variable name and evaluates to true if the variable is defined, and
false otherwise.

• contains: evaluates to true if the value of the variable specified as the first
argument contains the literal string specified as the second argument.

• subdomain-of: given a variable denoting a domain name (SIP/SIPS URI host) or
telephone subscriber (tel property of SIP or Tel URLs), and a literal value, this
operator returns true if the variable denotes a subdomain of the domain given by
the literal value. Domain names are matched according to the DNS definition of
what constitutes a subdomain; for example, the domain names “example.com" and
“research.example.com“are both subdomains of “example.com". IP addresses
may be given as arguments to this operator; however, they only match exactly. In
the case of the tel variables, the subdomain-of operator evaluates to true if the
telephone number denoted by the first argument has a prefix that matches the
literal value given in the second argument; for example, the telephone number “1
212 555 1212" would be considered a subdomain of “1212555".

• and: contains a number of conditions and evaluates to true if and only if all
contained conditions evaluate to true

• or: contains a number of conditions and evaluates to true if and only if at least one
contained condition evaluates to true

• not: negates the value of the contained condition.

The equal and contains operators optionally ignore character case when making
comparisons. The default is case-sensitive matching.

Appendix A
Servlet Mapping Rules: Objects, Properties and Conditions

A-4


	Contents
	Preface
	Audience
	My Oracle Support
	Revision History

	1 Overview of Converged Application Server Architecture
	About the Converged Application Server
	Converged Application Server Architecture
	Configuring and Administering the Converged Application Server Deployment
	Administration Console

	2 Developing Applications for Converged Application Server
	Overview of Developing Applications for Converged Application Server
	SIP Protocol Support
	Simplicity and Ease of Use
	Converged Applications
	Application Composition
	Highly Reliable Implementation

	Overview of the SIP Servlet Container
	SIP Dialog Handling

	Using the SIP Servlet API
	The SipServlet Object
	SIP Factory
	SIP Messages
	SipSession
	SipApplicationSession
	Application Timers
	SIP Servlet Application Example: Converged SIP and HTTP Application
	SIP Servlet Application Example: SUBSCRIBE and NOTIFY

	Converged Application Server Profile API
	Using Document Keys for Application-Managed Profile Data
	Monitoring Profile Data

	Developing "Zero Downtime" Upgradable Applications
	Requirements and Restrictions for Upgrading Deployed Applications

	Developing IR.92 Supplementary Services
	About Converged Application Server and VoLTE
	Communication Diversion
	Communication Barring
	Communication Hold
	Setting the Communication Hold Bandwidth

	Originating Identification Presentation and Restriction
	Privacy Service Behavior
	Providing Privacy for the History-Info Header

	Communication Waiting
	Supporting Network- and Terminal-based Communication Waiting

	Message Waiting Indication
	Announcement Support

	Developing Services Using XCAP
	About XCAP and VoLTE


	3 Converged Application Server in the Network
	Converged Application Server in a Typical Service Provider Network
	SIP and IMS Service Control
	ISC and the 3GPP SIP Profile
	AS Session Case Determination Requirement of ISC
	Transport Layer Issues Related to ISC

	HTTP User Interface
	Service and Subscriber Data and Authentication
	Proxy Registrar
	Media Server Control
	Charging and Billing
	Security
	Authentication Providers
	Trusted Host Authentication
	Declarative Security
	Protecting the Converged Application Server Domain with a Session Border Controller


	4 Converged Application Server Cluster Architecture
	Overview of Converged Application Server Clusters
	Relationship Between Clusters and Domains
	Relationship Between Coherence and WebLogic Server Clusters
	Objects That Can Be Clustered
	Objects That Cannot Be Clustered
	Overview of the Cluster Architecture
	Geographically-Redundant Installations

	Administration Server
	Engines
	Diameter Support

	5 Deployment Scenarios
	Overview of Deployment Scenarios
	Single-NIC Configurations with TCP and UDP Channels
	Multihomed Server Configurations Overview
	Multihomed Servers Listening On All Addresses (IP_ANY)
	Multihomed Servers Listening on Multiple Subnets
	Understanding the Route Resolver
	IP Aliasing with Multihomed Hardware


	Load Distribution Considerations
	Single VIP Topology
	Multiple VIP Topology

	Network Address Translation Options
	IP Masquerading Alternative to Source NAT

	Example Scenarios
	Example Deployment with a Non-SIP Aware Load Balancer
	Converged Application Server Configuration
	Load Balancer Configuration
	NAT-based Configuration
	maddr-based Configuration
	rport-based Configuration




	6 Standards Alignment
	Overview of Converged Application Server Standards Alignment
	Java Sun Recommendation (JSR) Standards Compliance
	IETF RFC Compliance
	3GPP R12 Specification Conformance

	A SIP Servlet API Service Invocation
	SIP Servlet API Overview
	Servlet Mapping Rules: Objects, Properties and Conditions
	Supported Service Trigger Points
	Request Object
	URI
	SipURI (extends URI)
	TelURL (extends URI)
	Address

	Conditions and Logical Connectors



