
Oracle® Communications Converged
Application Server
Developer Guide

Release 8.0
F43723-04
June 2023

Oracle Communications Converged Application Server Developer Guide, Release 8.0

F43723-04

Copyright © 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

My Oracle Support x

Revision History xi

1 About Developing Applications for the Converged Application Server

About Converged Application Server APIs 1-1

2 Overview of SIP Servlet Application Development

About the SIP Protocol 2-1

SIP Requests 2-1

SIP Responses 2-2

What are SIP Servlets? 2-2

Developing SIP Servlets 2-3

Developing SIP Servlets Using POJOs and Annotations 2-3

Developing Legacy SIP Servlets 2-4

Overview of the Differences Between HTTP Servlets and SIP Servlets 2-5

Detailed Differences from HTTP Servlets 2-6

Multiple Responses 2-6

Receiving Responses 2-7

Proxy Functions 2-9

Message Body 2-9

Servlet Request 2-10

Servlet Response 2-10

SipServletMessage 2-11

Role of a Servlet Container 2-11

Application Management 2-11

SIP Messaging 2-13

Utility Functions 2-15

Internetworking with Third Party Protocols 2-17

SIP Servlet Concurrency 2-18

iii

Resolving Telephone Numbers to SipURI 2-18

Annotation for DnsResolver Injection 2-18

3 SIP Servlet POJOs

About SIP Servlet POJOs 3-1

The SIP Servlet POJO Life Cycle 3-1

SIP Meta Annotations 3-1

@SipMethod 3-1

@SipResponseCode 3-2

@SipResponseRange 3-2

@SipPredicate 3-2

Method Specific Annotations 3-2

@AnyMethod Annotation 3-3

Response Filtering 3-3

@BranchResponse Annotation 3-4

Extensibility Using SIP Meta-Annotations 3-5

Method Selection Precedence 3-5

Precedence Rules Equation 3-6

Conflict Resolution 3-6

Request Precedence Rules 3-6

Response Precedence Rule 3-6

SipPredicate and Method Selection 3-7

Deployment 3-7

Conflict Resolution Examples 3-7

Container Deployment Failures 3-8

4 Best Practices for SIP Applications

Overview of Developing Distributed Applications for Converged Application Server 4-1

Use the SIP Concurrency Utilities 4-1

Treat MessageListener Implementations as Read-Only 4-2

Local Data Structures Must Not Store Container-Managed Objects 4-2

Servlets Must Be Non-Blocking 4-2

All Session Data Must Be Serializable 4-2

Mark SIP Servlets as Distributable 4-2

Use SipApplicationSessionActivationListener Sparingly 4-3

Observe Best Practices for Java EE Applications 4-3

Optimizing Memory Utilization and Performance with Serialization 4-3

iv

5 Composing SIP Applications

Using the Application Router 5-1

Using the Default Application Router 5-2

The DAR JSON Configuration File 5-3

Legacy DAR Configuration Files 5-4

Configuring a Custom Application Router 5-5

Application Router Behavior 5-6

Order of Routing Regions 5-8

Inter-Container Application Routing 5-8

Popped Route Header 5-9

Converged Application Server Behavior 5-9

Procedure for Routing an Initial Request 5-10

Application Router Packaging and Deployment 5-11

Using the Legacy Custom Application Router 5-12

Configuring the Legacy Custom Application Router 5-12

Session Key-Based Request Targeting 5-16

Accessing SIP Applications Using SIP Application Index Keys 5-17

Application Composition and SIP-HTTP Convergence 5-17

Join and Replaces Header Support 5-18

About the Join Header 5-18

About the Replaces Header 5-18

Enabling Support for Join and Replaces Headers 5-18

6 Developing Converged Applications

Overview of Converged Applications 6-1

Assembling and Packaging a Converged Application 6-1

Examples 6-2

7 SIP Servlet Concurrency

Specifying Concurrency Mode 7-1

Concurrency Utilities 7-2

Propagating SipApplicationSession Context 7-2

Specifying Application Session Programmatically 7-3

Maintaining Thread Safety with Multiple Application Session Contexts 7-4

ContextService 7-4

Default Managed Objects 7-4

Accessing an Active Application Session 7-5

Accessing Tasks Futures 7-5

Accessing the Futures of Tasks in a Sip Application Session 7-6

v

About Saving Future Objects 7-6

Concurrency Examples 7-6

8 Managing Client Initiated Connections

Retrieving a Flow Object from the Container 8-1

Maintaining Connections Initiated by SIP User Agents 8-2

UAC Sending Keep-Alive 8-2

Handling Flow Failures 8-2

Reusing a Flow 8-3

Implementing Edge Proxies 8-3

Releasing a Flow 8-4

9 Back to Back User Agents

About Back to Back User Agents 9-1

Navigating Between the UAC and UAS Sides of a B2BUA 9-1

ACK and PRACK Handling in B2BUA 9-2

B2BUA and Forking 9-3

The B2BUA Helper Class 9-4

Creating a New B2BUA Request 9-5

Linked SIP Sessions and Linked Request 9-6

Explicit Session Linkage 9-6

Implicit Session Linkage 9-7

Access to Uncommitted Messages 9-7

Original Request and Session Cloning 9-8

Request and Session Cloning and Linking 9-9

10

Forking SIP Requests, Dialog Termination, and Session Keep Alive

Forking SIP Requests 10-1

Binding Attributes to a ForkingContext 10-1

Creating a Request 10-1

Cloning Attributes 10-2

Terminating Dialogs 10-2

Max-Breadth Header Support 10-2

Loop Detection 10-3

SIP Dialog Termination 10-3

Terminating Proxy Dialogs 10-4

Notes on Container Behavior 10-5

INVITE Dialog 10-6

SUBSCRIBE Dialog 10-6

vi

Multiple Dialogs 10-6

Session Keep Alive 10-7

Enabling Session Keep Alive 10-7

Disabling Session Keep Alive 10-8

Refreshing Sessions 10-8

Expiring Sessions 10-8

Sending Provisional Responses to Non-Invite Requests 10-9

422 Responses 10-9

11

Using Compact and Long Header Formats for SIP Messages

Overview of Header Format APIs and Configuration 11-1

Summary of Compact Headers 11-1

Summary of API and Configuration Behavior 11-2

12

Developing Custom Profile Service Providers

Overview of the Profile Service API 12-1

Implementing Profile Service API Methods 12-2

Configuring and Packaging Profile Providers 12-3

Mapping Profile Requests to Profile Providers 12-4

Configuring Profile Providers Using the Administration Console 12-4

13

Using Content Indirection in SIP Servlets

Overview of Content Indirection 13-1

Using the Content Indirection API 13-1

Additional Information 13-1

14

Securing SIP Servlet Resources

Overview of SIP Servlet Security 14-1

Triggering SIP Response Codes 14-2

Specifying the Security Realm 14-2

Converged Application Server Role Mapping Features 14-2

Using Implicit Role Assignment 14-3

Assigning Roles Using security-role-assignment 14-3

Important Requirements 14-3

Assigning Roles at Deployment Time 14-5

Dynamically Assigning Roles Using the Administration Console 14-5

Assigning run-as Roles 14-6

Role Assignment Precedence for SIP Servlet Roles 14-7

vii

Debugging Security Features 14-8

weblogic.xml Deployment Descriptor Reference 14-8

15

Enabling Message Logging

Overview 15-1

Enabling Message Logging 15-1

Specifying a Predefined Logging Level 15-2

Customizing Log Records 15-2

Specifying Content Types for Unencrypted Logging 15-3

Example Message Log Configuration and Output 15-4

Configuring Log File Rotation 15-5

16

Generating SNMP Traps from Application Code

Overview 16-1

Requirement for Accessing SipServletSnmpTrapRuntimeMBean 16-1

Obtaining a Reference to SipServletSnmpTrapRuntimeMBean 16-2

Generating an SNMP Trap 16-3

17

Using the REST Interface

Location Service RESTful Interface 17-1

About REST 17-1

About JSON Body Parameters 17-1

About the Context Root 17-2

Using Authentication and Authorization 17-2

RESTful APIs for the Location Service 17-2

Store Registrations for Address-of-Record 17-2

Lookup an Address-of-Record 17-4

Clear All Address of Record Bindings 17-5

REST Management for MBeans 17-7

NetworkAccessPointMBean 17-8

NetworkAccessPointMBean sip 17-11

NetworkAccessPointMBean sips 17-14

SipServerBean 17-17

Create a SipServer Child MBean 17-20

Configure Application Router 17-25

Configure Proxy 17-27

Configure Overload Protection 17-29

Configure Message Debug 17-42

Configure SIP Security 17-46

viii

Configure Persistence 17-49

Configure Connection Pools 17-52

Configure Cluster Load Balancer 17-55

Configure MPS 17-58

Configure Server Debugging 17-60

Configure Debug Attributes 17-63

Retrieving Runtime Attributes 17-67

Get MPS Runtime Data 17-76

Get MPS Historic Data 17-79

ix

Preface

This document provides an overview of Session Initiation Protocol (SIP) Servlets and
developing SIP applications for Oracle Communications Converged Application
Server.

Audience
This document is intended for developers who build SIP applications for use with
Converged Application Server. Expertise with Java Enterprise Edition concepts as well
as SIP is required.

My Oracle Support
My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support
(CAS) can assist you with My Oracle Support registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle
Support hotline for your local country from the list at http://www.oracle.com/us/support/
contact/index.html. When calling, make the selections in the sequence shown below
on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking, and Solaris Operating System Support.

3. Select one of the following options:

• For technical issues such as creating a new Service Request (SR), select 1.

• For non-technical issues such as registration or assistance with My Oracle
Support, select 2.

You are connected to a live agent who can assist you with My Oracle Support
registration and opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

Emergency Response

In the event of a critical service situation, emergency response is offered by the
Customer Access Support (CAS) main number at 1-800-223-1711 (toll-free in the US),
or call the Oracle Support hotline for your local country from the list at http://
www.oracle.com/us/support/contact/index.html. The emergency response provides
immediate coverage, automatic escalation, and other features to ensure that the
critical situation is resolved as rapidly as possible.

A critical situation is defined as a problem with the installed equipment that severely
affects service, traffic, or maintenance capabilities, and requires immediate corrective

Preface

x

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

action. Critical situations affect service and/or system operation resulting in one or several of
these situations:

• A total system failure that results in loss of all transaction processing capability

• Significant reduction in system capacity or traffic handling capability

• Loss of the system's ability to perform automatic system reconfiguration

• Inability to restart a processor or the system

• Corruption of system databases that requires service affecting corrective actions

• Loss of access for maintenance or recovery operations

• Loss of the system ability to provide any required critical or major trouble notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance
capabilities may be defined as critical by prior discussion and agreement with Oracle.

Locate Product Documentation on the Oracle Help Center Site

Oracle Communications customer documentation is available on the web at the Oracle Help
Center (OHC) site, http://docs.oracle.com. You do not have to register to access these
documents. Viewing these files requires Adobe Acrobat Reader, which can be downloaded at
http://www.adobe.com.

1. Access the Oracle Help Center site at http://docs.oracle.com.

2. Click Industries.

3. Under the Oracle Communications sub-header, click the Oracle Communications
documentation link.
The Communications Documentation page appears. Most products covered by these
documentation sets appear under the headings "Network Session Delivery and Control
Infrastructure" or "Platforms."

4. Click on your Product and then Release Number.
A list of the entire documentation set for the selected product and release appears.

5. To download a file to your location, right-click the PDF link, select Save target as (or
similar command based on your browser), and save to a local folder.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Revision History
Table 1 Revision History

Date Revision

December 2021 • Initial release

June 2022 • Adds Port and Validate Peer Addresses fields
for SCTP multihoming to 'Creating a New
Node Configuration'

• Updates diameter.xml example for SCTP
multihoming feature

Preface

xi

http://docs.oracle.com
http://www.adobe.com
http://docs.oracle.com
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Table 1 (Cont.) Revision History

Date Revision

January 2023 • Updates for MPS feature
• Changes port in REST examples to 7001

June 2023 • Updates OCCAS variable

Preface

xii

1
About Developing Applications for the
Converged Application Server

This chapter introduces application development for the Oracle Communications Converged
Application Server.

About Converged Application Server APIs
Converged Application Server supports a set of different APIs:

• Session Initiation Protocol (SIP) Servlet API

• Media server API

• Diameter API

Communications-oriented applications can also use the Java Platform, Enterprise Edition
(JEE) APIs exposed by Oracle WebLogic Server, and thus making them converged
applications.

The SIP Servlet container exposes a Java Specification Requests (JSR) 359 compliant API
for developing SIP applications.

The media server application program interface (API) is a JSR 309 compliant and provides
an object model for controlling media server resources and the topology of media streams
independently of the underlying media server control protocols. Media server specifics are
handled by a JSR 309 Driver, similar to how Java Database Connectivity (JDBC) are
abstracting away database specifics. This allows an application to interact with different
media servers regardless of vendor.

The Diameter API provides programmatic access to Diameter nodes. This books does not
cover this topic, see Converged Application Server Diameter Application Development Guide
for further information.

1-1

2
Overview of SIP Servlet Application
Development

This chapter describes the Session Initiation Protocol (SIP) protocol, and provides a
background on SIP application development using the Java programming language.

About the SIP Protocol
SIP is a simple network signalling protocol for creating and terminating sessions with one or
more participant. The SIP protocol is designed to be independent of the underlying transport
protocol, so SIP applications can run on Transport Control Protocol (TCP), User Datagram
Protocol (UDP), or other lower-layer networking protocols.

Typically, the SIP protocol is used for internet telephony and multimedia distribution between
two or more endpoints. For example, one person can initiate a telephone call to another
person using SIP, or someone may create a conference call with many participants.

The SIP protocol was designed to be very simple, with a limited set of commands. It is also
text-based, so humans can read the SIP messages passed between endpoints in a SIP
session.

SIP Requests
The SIP protocol defines the following common request types:

Table 2-1 SIP Request Types

SIP Request Description

INVITE Initiates a session between two participants.

ACK The client acknowledges receiving the final message from an INVITE
request.

BYE Terminates a connection.

CANCEL Cancels any pending actions, but does not terminate any accepted
connections.

OPTIONS Queries the server for a list of capabilities.

REGISTER Registers the address in the To header with the server.

INFO Sends a mid-session information that does not modify session state.

UPDATE Modifies session state without changing the dialog state.

SUBSCRIBE Subscribes to event notifications from a notifier.

NOTIFY Notifies a subscriber of a new event.

REFER As a recipient to issue a SIP call transfer request.

PRACK A provisional acknowledgement.

PUBLISH Publishes an event to the server.

2-1

Table 2-1 (Cont.) SIP Request Types

SIP Request Description

MESSAGE Simple instant message transport.

SIP requests are codes used to indicate the various stages in a connection between
SIP-enabled entities.

SIP Responses
The SIP Protocol uses response codes similar to the HTTP protocol. Some of the
common response codes are:

• 100 (Trying)

• 200 (OK)

• 404 (Not found)

• 500 (Server error)

• 600 (Global failure)

What are SIP Servlets?
A servlet is a Java programming language class used to extend the capabilities of
servers that host applications accessed via a request-response programming model. A
Servlet is a Java class in Java EE that conforms to the Java Servlet application
program interface (API), a protocol by which a Java class may respond to requests.
They are not tied to a specific client-server protocol, but are most often used with the
HTTP protocol. Therefore, the word “Servlet" is often used in the meaning of “HTTP
Servlet".

A SIP servlet is a Java programming language server-side component that performs
SIP signalling. SIP servlets are managed by a SIP servlet container, which typically
are part of a SIP-enabled application server. SIP servlets interact with clients by
responding to incoming SIP requests and returning corresponding SIP responses.

Note:

In this document, the term "SIP Servlet" is used to represent the API, and
"SIP servlet" is used to represent an application created with the API.

Chapter 2
What are SIP Servlets?

2-2

Figure 2-1 Servlet API and SIP Servlet API

SIP Servlets are similar to HTTP Servlets, and HTTP servlet developers can easily adapt to
the programming model. The service level defined by both HTTP and SIP Servlets is very
similar, allowing for the design of applications that support both HTTP and SIP.

Developing SIP Servlets
This section describes general techniques for developing SIP servlets using Java Plain Old
Java Objects (POJOs) and Java Enterprise Edition (EE) annotations as well as using legacy
version 1.x techniques.

Developing SIP Servlets Using POJOs and Annotations
JSR-359 defines a standard method for creating SIP servlets using Java EE annotations in
conjunction with POJOs, significantly reducing the amount of code required compared to the
earlier 1.x API techniques. In addition, servlet descriptors such as web.xml and sip.xml are
optional.

Example 2-1 illustrates a basic annotated SIP servlet POJO that handles a variety of SIP
response and request methods.

Example 2-1 SIP Servlet POJO

import javax.inject.Inject;
import javax.servlet.sip.SipFactory;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServletResponse;
import javax.servlet.sip.annotation.Ack;
import javax.servlet.sip.annotation.AnyMethod;
import javax.servlet.sip.annotation.Bye;
import javax.servlet.sip.annotation.ErrorResponse;
import javax.servlet.sip.annotation.Invite;
import javax.servlet.sip.annotation.SipApplication;
import javax.servlet.sip.annotation.SipServlet;
import javax.servlet.sip.annotation.SuccessResponse;
import java.io.IOException;

@SipServlet(loadOnStartup = 1)
public class CallHandler {

 @Inject SipFactory sipFactory;

Chapter 2
Developing SIP Servlets

2-3

 @Invite
 public void handleInvite(SipServletRequest request) throws IOException {
 // Handle a SIP invite on an incoming Request...
 }

 @Ack
 public void handleAck(SipServletRequest request) throws IOException {
 // Handle a SIP ACK on an incoming Request...
 }

 @AnyMethod
 public void handleAllRequests(SipServletRequest request) throws IOException {
 // Handle any generic method on an incoming Request...
 }

 @AnyMethod
 public void handleAllResponses(SipServletResponse resp) throws IOException {
 // Handle any other SIP response for any other method...
 }

 @SuccessResponse
 @ErrorResponse
 @Bye
 public void handleByeResponse(SipServletResponse resp) throws IOException {
 // Handle SIP responses in the case of success, error, or BYE...
 }

}

In Example 2-1, the class CallHandler imports the necessary SIP annotation libraries,
and is itself annotated with @SipServlet indicating that it is a SIP Servlet. CallHandler
then exposes the following public methods:

• handleInvite(request): Annotated with @Invite, handles any incoming SIP INVITE
requests.

• handleAck(request): Annotated with @Ack, handles any incoming SIP ACK
request.

• handleAllRequests(request): Annotated with @AnyMethod, handles any
incoming SIP request method that is not an ACK or an INVITE. The methods
annotated with @Invite and @Ack are more specific, and thus have higher
precedence than @AnyMethod.

• handleAllResponses(response): Annotated with @AnyMethod, handles any
incoming SIP response. Handles any responses other than success, error, or BYE
which are handled by the more specifically annotated handleByeResponse().

• handleByeResponse(response): Annotated with @SuccessResponse,
@ErrorResponse, and @Bye, and therefore handles any SIP success, error
responses, or BYE. Any other SIP responses are handled by general
handleAllResponses().

For more information on developing SIP servlet POJOs, see SIP Servlet POJOs.

Developing Legacy SIP Servlets
Example 2-2 shows an example of a simple SIP servlet using the legacy 1.x SIP Java
API.

Chapter 2
Developing SIP Servlets

2-4

Example 2-2 SimpleSIPServlet.java

package oracle.example.simple;
import java.io.IOException;
import javax.servlet.*;
import javax.servlet.sip.*;

public class SimpleSIPServlet extends SipServlet {
 protected void doMessage(SipServletRequest req)
 throws ServletException, IOException
 {
 SipServletResponse res = req.createResponse(200);
 res.send();
 }
}

In Example 2-2 the SIP servlet that sends back a 200 OK response to the SIP MESSAGE
request. As you can see from the list, SIP Servlet and HTTP Servlet have many things in
common:

1. Servlets must inherit the base class provided by the API. HTTP servlets must inherit
HttpServlet, and SIP servlets must inherit SipServlet.

2. Methods doXxx must be overridden and implemented. HTTP servlets have doGet/doPost
methods corresponding to GET/POST methods. Similarly, SIP servlets have doXxx
methods corresponding to the method name (in Example 2-2, the MESSAGE method).
Application developers override and implement necessary methods.

3. The life cycle and management methods (init, destroy) of SIP Servlet are exactly the
same as HTTP Servlet. Manipulation of sessions and attributes is also the same.

Overview of the Differences Between HTTP Servlets and SIP
Servlets

SIP servlets differ from typical HTTP servlets used in web applications in the following ways:

• HTTP servlets have a particular context (called the context-root) in which they run, while
SIP servlets have no context.

• HTTP servlets typically return HTML pages to the requesting client, while SIP servlets
typically connect SIP-enabled clients to enable telecommunications between the client
and server.

• SIP is a peer-to-peer protocol, unlike HTTP, and SIP servlets can originate SIP requests,
unlike HTTP servlets which only send responses to the originating client.

• SIP servlets often act as proxies to other SIP endpoints, while HTTP servlets are typically
the final endpoint for incoming HTTP requests.

• SIP servlets can generate multiple responses for a particular request.

• SIP servlets can communicate asynchronously, and are not obligated to respond to
incoming requests.

• SIP servlets often work in concert with other SIP servlets to respond to particular SIP
requests, unlike HTTP servlets which typically are solely responsible for responding to
HTTP requests.

Chapter 2
Overview of the Differences Between HTTP Servlets and SIP Servlets

2-5

Detailed Differences from HTTP Servlets
This section describes detailed differences between SIP Servlets and HTTP Servlets.

Multiple Responses
You might notice in Example 2-2 that the doMessage method has only one argument.
In HTTP, a transaction consists of a pair of request and response messages, so
arguments of a doXxx method specify a request (HttpServletRequest) and its
response (HttpServletResponse). An application takes information such as parameters
from the request to execute it, and returns its result in the body of the response.

protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException

For SIP, more than one response may be returned to a single request.

Figure 2-2 Example of Request and Response in SIP

The above figure shows an example of a response to the INVITE request. In this
example, the server sends back three responses 100, 180, and 200 to the single
INVITE request. To implement such sequence, in SIP Servlet, only a request is
specified in a doXxx method, and an application generates and returns necessary
responses in an overridden method.

The legacy 1.x SIP Servlet API defines the following doXxx methods:

protected void doInvite(SipServletRequest req);
protected void doAck(SipServletRequest req);
protected void doOptions(SipServletRequest req);
protected void doBye(SipServletRequest req);
protected void doCancel(SipServletRequest req);
protected void doRegister(SipServletRequest req);
protected void doSubscribe(SipServletRequest req);
protected void doNotify(SipServletRequest req);
protected void doMessage(SipServletRequest req);
protected void doInfo(SipServletRequest req);

Chapter 2
Detailed Differences from HTTP Servlets

2-6

protected void doPrack(SipServletRequest req);
protected void doUpdate(SipServletRequest req);
protected void doRefer(SipServletRequest req);
protected void doPublish(SipServletRequest req);

Likewise, the 2.0 SIP Servlet API defines the following annotations:

@Invite
@Ack
@Options
@Bye
@Cancel
@Register
@Prack
@Subscribe
@Notify
@Message
@Info
@Update
@Refer
@Publish

Receiving Responses
One of the major features of SIP is that roles of a client and server are not fixed. In HTTP,
Web browsers always send HTTP requests and receive HTTP responses: They never
receive HTTP requests and send HTTP responses. In SIP, however, each terminal needs to
have functions of both a client and server.

For example, both of two SIP phones must call to the other and disconnect the call.

Chapter 2
Detailed Differences from HTTP Servlets

2-7

Figure 2-3 Relationship between Client and Server in SIP

Figure 2-3 indicates that a calling or disconnecting terminal acts as a client. In SIP,
roles of a client and server can be changed in one dialog. This client function is called
UAC (User Agent Client) and server function is called UAS (User Agent Server), and
the terminal is called UA (User Agent). The legacy 1.x SIP Servlet defines methods to
receive responses as well as requests.

protected void doProvisionalResponse(SipServletResponse res);
protected void doSuccessResponse(SipServletResponse res);
protected void doRedirectResponse(SipServletResponse res);
protected void doErrorResponse(SipServletResponse res);

These doXxx response methods are not the method name of the request. They are
named by the type of the response as follows:

• doProvisionalResponse: A method invoked on the receipt of a provisional
response (or 1xx response).

• doSuccessResponse: A method invoked on the receipt of a success response.

• doRedirectResponse: A method invoked on the receipt of a redirect response.

• doErrorResponse: A method invoked on the receipt of an error response (or 4xx,
5xx, 6xx responses).

Likewise the 2.x SIP Servlet API defines the following annotations which behave
identically to their 1.x counterparts:

Chapter 2
Detailed Differences from HTTP Servlets

2-8

@ProvisionalResponse
@SuccessResponse
@RedirectResponse
@ErrorResponse

The use of methods to receive responses indicates that the SIP Servlet requests and
responses are independently transmitted by the application using different threads.
Applications must explicitly manage the association of SIP messages. The use of
independent requests and responses makes the process more complicated, but enables you
to write more flexible processes.

Also, SIP Servlet allows applications to explicitly create requests. Using these functions, SIP
servlets not only wait for requests as a server (UAS), but also send requests as a client
(UAC).

Proxy Functions
Another function that is different from the HTTP protocol is forking. Forking is a process of
proxying one request to multiple servers simultaneously (or sequentially) and used when
multiple terminals (operators) are associated with one telephone number (such as in a call
center).

Figure 2-4 Proxy Forking

SIP Servlet provides a utility to proxy SIP requests for applications that have proxy functions.

For more information on forking and SIP servlets, see "Forking SIP Requests".

Message Body
As Figure 2-5 illustrates, the contents of SIP messages is the same as the contents of HTTP
messages. Both SIP and HTTP messages include:

• Starting line: Identifies the message as a request or a response. The starting line is also
referred to as the initial request line or the initial response line.

• Header field: Provides information about the request or response.

• Separator: A blank line separating the header field from the message body.

Chapter 2
Detailed Differences from HTTP Servlets

2-9

• Message body: A message may have a body of data sent after the header lines. In
a response, this is where the requested resource is returned to the client (the most
common use of the message body).

Figure 2-5 SIP Message Example

HTTP is a protocol that transfers HTML files, images, and multimedia data. Contents
to be transferred are stored in the message body. HTTP Servlet defines a stream
manipulation-based API that enables the sending and receiving of these large-file
content types.

Servlet Request
ServletInputStream getInputStream()
BufferedReader getReader()

Servlet Response
ServletOutputStream getOutputStream()
PrintWriter getWriter()
int getBufferSize()
void setBufferSize(int size)
void resetBuffer()
void flushBuffer()

In SIP, however, only low-volume contents are stored in the message body since SIP
is intended for real-time communication. Therefore, above methods are provided only
for compatibility, and their functions are disabled.

In SIP, contents stored in the body include:

• SDP (Session Description Protocol): A protocol to define multimedia sessions
used between terminals. This protocol is defined in RFC2373.

• Presence Information: A message that describes presence information defined in
CPIM.

Chapter 2
Detailed Differences from HTTP Servlets

2-10

• IM Messages: IM (instant message) body. User-input messages are stored in the
message body.

Since the message body is in a small size, processing it in a streaming way increases
overhead. SIP Servlet re-defines API to manipulate the message body on memory as follows:

SipServletMessage
void setContent(Object content, String contentType)
Object getContent()
byte[] getRawContent()

Role of a Servlet Container
The following sections describe major functions provided by Converged Application Server as
a SIP servlet container:

• Application Management: Describes functions such as application management by
servlet context, life cycle management of servlets, application initialization by deployment
descriptors.

• SIP Messaging: Describes functions of parsing incoming SIP messages and delivering to
appropriate SIP servlets, sending messages created by SIP servlets to appropriate UAS,
and automatically setting SIP header fields.

• Utility Functions: Describes functions such as sessions, factories, and proxying that are
available in SIP servlets.

Application Management
Like HTTP servlet containers, SIP servlet containers manage applications by servlet context
(see Figure 2-6). Servlet contexts (applications) are normally archived in a WAR format and
deployed in each application server.

Note:

The method of deploying in application servers varies depending on your product.
Refer to the documentation of your application server.

Figure 2-6 Servlet Container and Servlet Context

Chapter 2
Detailed Differences from HTTP Servlets

2-11

A servlet context for a converged SIP and Web application can include multiple SIP
servlets, HTTP servlets, and JSPs.

Converged application Server can deploy applications using the same method as the
application server you use as the platform. However, if you deploy applications
including SIP servlets, you need a SIP specific deployment descriptor (sip.xml)
defined by SIP servlets. The table below shows the file structure of a general
converged SIP and Web application.

Table 2-2 File Structure Example of Application

File Description

WEB-INF/ Place your configuration and executable files of your converged SIP
and Web application in the directory. You cannot directly refer to files in
this directory on Web (servlets can do this).

WEB-INF/web.xml The Java EE standard configuration file for the Web application.
Optional when using SIP servlet POJOs.

WEB-INF/sip.xml The SIP Servlet-defined configuration files for the SIP application.
Optional if a SIP servlet POJO is using the programmatic deployment
methods of the SipServletContext interface, addServletPojo().

WEB-INF/classes/ Store compiled class files in the directory. You can store both HTTP
and SIP servlets in this directory.

WEB-INF/lib/ Store class files archived as Jar files in the directory. You can store
both HTTP and SIP servlets in this directory.

*.jsp, *.jpg Files comprising the Web application (for example JSP) can be
deployed in the same way as Java EE.

Information specified in the sip.xml file is similar to that in the web.xml except
servlet-mapping setting that is different from HTTP servlets. In HTTP you specify a
servlet associated with the file name portion of URL. But SIP has no concept of the file
name. You set filter conditions using URI or the header field of a SIP request. The
following example shows that a SIP servlet called registrar is assigned all REGISTER
methods.

Example 2-3 Filter Condition Example of sip.xml

 <servlet-mapping>
 <servlet-name>registrar</servlet-name>
 <pattern>
 <equal>
 <var>request.method</var>
 <value>REGISTER</value>
 </equal>
 </pattern>
 </servlet-mapping>

Once deployed, life cycle of the servlet context is maintained by the servlet container.
Although the servlet context is normally started and shutdown when the server is
started and shutdown, the system administrator can explicitly start, stop, and reload
the servlet context.

Chapter 2
Detailed Differences from HTTP Servlets

2-12

Note:

The web.xml file is optional for servlets developed as annotated POJOs.

SIP Messaging
SIP messaging functions provided by a SIP servlet container are classified under the
following types:

• Parsing received SIP messages.

• Delivering parsed messages to the appropriate SIP servlet.

• Sending SIP servlet-generated messages to the appropriate UA

• Automatically generating a response (such as “100 Trying").

• Automatically managing the SIP header field.

All SIP messages that a SIP servlet handles are represented as a SipServletRequest or
SipServletResponse object. A received message is first parsed by the parser and then
translated to one of these objects and sent to the SIP servlet container.

A SIP servlet container receives the following three types of SIP messages, for each of which
you determine a target servlet.

• First SIP Request: When the SIP servlet container received a request that does not
belong to any SIP session, it uses filter conditions in the sip.xml file (described in the
previous section) to determine the target SIP servlet. Since the container creates a new
SIP session when the initial request is delivered, any SIP requests within that SIP
session received after that point are considered as subsequent requests.

Note:

Filtering should be done carefully. In Converged Application Server, when the
received SIP message matches multiple SIP servlets, it is delivered only to any
one SIP servlet.
The use of additional criteria such as request parameters can be used to direct
a request to a servlet.

• Subsequent SIP Request: When the SIP Servlet container receives a request that
belongs to any SIP session, it delivers the request to a SIP Servlet associated with that
session. Whether the request belongs to a session or not is determined using the SIP
dialog ID.
Each time a SIP Servlet processes messages, a lock is established by the container on
the call ID. If a SIP Servlet is currently processing earlier requests for the same call ID
when subsequent requests are received, the SIP Servlet container queues the
subsequent requests. The queued messages are processed only after the Servlet has
finished processing the initial message and has returned control to the SIP Servlet
container.

This concurrency control is guaranteed both in a single containers and in clustered
environments. Application developers can code applications with the understanding that
only one message for any particular call ID gets processed at a given time.

Chapter 2
Detailed Differences from HTTP Servlets

2-13

• SIP Response: When the received response is to a request that a SIP servlet
proxied, the response is automatically delivered to the same servlet since its SIP
session had been determined. When a SIP servlet sends its own request, you
must first specify a servlet that receives a response in the SIP session. For
example, if the SIP servlet sending a request also receives the response, the
following handler setting must be specified in the SIP session.

SipServletRequest req =
getSipFactory().createRequest(appSession, ...);
req.getSession().setHandler(getServletName());

Normally, in SIP a session means a real-time session by RTP/RTSP. On the other
hand, in HTTP Servlet a session refers to a way of relating multiple HTTP
transactions. In this document, session-related terms are defined as follows:

Table 2-3 Session-Related Terminology

Session Name Description

Realtime Session A realtime session established by RTP/RTSP.

HTTP Session A session defined by HTTP Servlet. A means of relating multiple
HTTP transactions.

SIP Session A means of implementing the same concept as in HTTP session in
SIP. SIP (RFC3261) has a similar concept of "dialog," but in this
document this is treated as a different term because while dialogs
and SIP sessions are similar in scope, their exact lifecycles are
different.

Application Session A means for applications using multiple protocols and dialogs to
associate multiple HTTP sessions and SIP sessions. Also called
"APP session."

Converged Application Server automatically execute the following response and
retransmission processes:

• Sending “100 Trying": When Converged Application Server receives an INVITE
request, it automatically creates and sends “100 Trying."

• Response to CANCEL: When Converged Application Server receives a CANCEL
request, it executes the following processes if the request is valid.

1. Sends a 200 response to the CANCEL request.

2. Sends a 487 response to the INVITE request to be cancelled.

3. Invokes a doCancel method on the SIP servlet. This allows the application to
abort the process within the doCancel method, eliminating the need for
explicitly sending back a response.

• Sends ACK to an error response to INVITE: When a 4xx, 5xx, or 6xx response is
returned for INVITE that were sent by a SIP servlet, Converged Application Server
automatically creates and sends ACK. This is because ACK is required only for a
SIP sequence, and the SIP servlet does not require it.
When the SIP servlet sends a 4xx, 5xx, or 6xx response to INVITE, it never
receives ACK for the response.

Chapter 2
Detailed Differences from HTTP Servlets

2-14

• Retransmission process when using UDP: SIP defines that sent messages are
retransmitted when a low-trust transport like UDP is used. Converged Application Server
automatically retransmits according to the specification.

Applications typically do not need to explicitly set and see header fields in HTTP Servlet, as
HTTP Servlet containers automatically manage fields such as Content-Length and Content-
Type. SIP Servlet provides the same header management functions.

In SIP, however, since important information about message delivery exists in some fields,
these headers are not allowed to change by applications. Headers that can not be changed
by SIP Servlets are called system headers.

Table 2-4 System Headers

Header Name Description

Call-ID Contains ID information to associate multiple SIP messages as Call.

Address Can be modified except for the host/port and scheme part in the
Address URI. This restriction does not apply to the To/From headers.
Protected parameters and their values cannot be modified.

From, To Contains Information on the sender and receiver of the SIP request
(SIP, URI, etc.). Modifiable except for the tag parameters.

CSeq Contains sequence numbers and method names.

Via Contains a list of servers the SIP message passed through. This is
used when you want to keep track of the path to send a response to the
request. Can only be modified by adding or removing non-protected
parameters.

Record-Route, Route Used when the proxy server mediates subsequent requests.

Contact Contains network information (such as IP address and port number)
that is used for direct communication between terminals. Only the
following messages can be modified or set by an application:

• REGISTER requests and responses
• 3xx responses
• 485 responses
• 200/OPTIONS responses

Utility Functions
JSR-359 defines the following utilities, which are available to SIP servlets:

1. SIP Session, Application Session

2. SIP Factory

3. Proxy

4. SipSessionsUtil

5. DnsResolver

6. TimerService

7. SipSecurity

SIP Session, Application Session

As stated before, SIP Servlet provides a “SIP session" whose concept is the same as a HTTP
session. In HTTP, multiple transactions are associated using information like Cookie. In SIP,

Chapter 2
Detailed Differences from HTTP Servlets

2-15

this association is done with header information (Call-ID and tag parameters in From
and To). Servlet containers maintain and manage SIP sessions. Messages within the
same dialog can refer to the same SIP session. Also, For a method that does not
create a dialog (such as MESSAGE), messages can be managed as a session if they
have the same header information.

SIP Servlet has a concept of an “application session," which does not exist in HTTP
Servlet. An application session is an object to associate and manage multiple SIP
sessions and HTTP sessions. It is suitable for applications such as B2BUA.

For SIP servlet POJOs, this is handled by the @SipServlet and @SipApplication
annotations.

SIP Factory

A SIP factory (SipFactory) is a factory class to create SIP Servlet-specific objects
necessary for application execution. You can generate the following objects:

Table 2-5 Objects Generated with SipFactory

Class Name Description

URI, SipURI, Address Can generate address information including SIP URI from String.

SipApplicationSession Creates a new application session. It is invoked when a SIP servlet
starts a new SIP signal process.

SipServletRequest Used when a SIP servlet acts as UAC to create a request. Such
requests can not be sent with Proxy.proxyTo. They must be sent with
SipServletRequest.send.

SipFactory is located in the servlet context attribute under the default name. You can
retrieve it with the following code:

ServletContext context = getServletContext();
SipFactory factory =
 (SipFactory) context.getAttribute("javax.servlet.sip.SipFactory");

For SIP servlet POJOs, this functionality is handled by the @SipFactory annotation.
The @SipFactory annotation can be used in place of a ServletContext lookup for the
SipFactory from within a Servlet above. The injected SipFactory appears as sip/
appname/SipFactory in the application-scoped JNDI tree, where the appname is the
name of the application.

Proxy

Proxy is a utility used by a SIP servlet to proxy a request. In SIP, proxying has its own
sequences including forking. You can specify the following settings in proxying with
Proxy:

• Recursive routing (recursive): When the destination of proxying returns a 3xx
response, the request is proxied to the specified target.

• Record-Route setting: Sets a Record-Route header in the specified request.

• Parallel/Sequential (parallel): Determines whether forking is executed in parallel or
sequentially.

• stateful: Determines whether proxying is transaction stateful. This parameter is not
relevant because stateless proxy mode is deprecated in JSR-359.

Chapter 2
Detailed Differences from HTTP Servlets

2-16

• Supervising mode: In the event of the state change of proxying (response receipts), an
application reports this.

For more information, see Forking SIP Requests.

SipSessionsUtil

A utility class providing additional support for converged HTTP/SIP applications and
converged Java EE/SIP applications. This class can be accessed through the ServletContext
parameter named javax.servlet.sip.SipSessionsUtil or it can be injected using the @Resource
annotation. The injected SipSessionsUtil appears as sip/appname/SipSessionsUtil in the
application-scoped JNDI tree, where the appname is the name of the application.

For more information, see the Java SIP Servlet API 2.0.

DnsResolver

For information on the DnsResolver utility, see Annotation for DnsResolver Injection.

TimerService

The @Resource annotation also can be used to inject an instance of the TimerService for
scheduling timers. This annotation can replace the following ServletContext based lookup of
the TimerService:

TimerService t = (TimerService) getServletContext().getAttribute(TIMER_SERVICE);

The injected TimerService appears as sip/appname/TimerService in the application-scoped
JNDI tree, where the appname is the name of the application.

SipSecurity

This annotation is used on a Servlet implementation class to specify security constraints to be
enforced by the container on SIP protocol messages. The SIP servlet container will enforce
these constraints on the annotated SIP servlet. The @SipSecurity annotation provides an
alternative mechanism for defining access control constraints equivalent to those that could
otherwise have been expressed declaratively via security-constraint elements in the portable
deployment descriptor.

Note:

If both security-constraint of the deployment descriptor and the @SipSecurity
annotation is present for the same servlet, then the configuration in the deployment
descriptor will take precedence.

For information on using the @SipSecurity annotation see section 22.3.10.1 in JSR-359,
https://jcp.org/en/jsr/detail?id=359.

Internetworking with Third Party Protocols
A Session Initiation Protocol (SIP) application instance may consist of multiple protocol
interactions. Each of these protocol interactions may be satisfied by a protocol library, that
exposes its own Java API. As with SIP servlets or SIP Plain Old Java Objects (POJOs) acting
as protocol listeners for SIP, these other protocol libraries can expose their own protocol
listeners. For example, a Diameter library may expose a POJO that listens in on Diameter

Chapter 2
Internetworking with Third Party Protocols

2-17

https://jcp.org/en/jsr/detail?id=359

messages. Those messages may belong to a protocol session maintained by the
Diameter protocol library. A SIP application archive, thus, may contain these protocol
listeners as well. Furthermore, those protocol listeners can send SIP messages, while
SIP POJOs might send other protocol messages as well.

For a detailed example of integrating with the Diameter protocol, see "Working with
Diameter Applications Using CDI and POJOs" in Converged Application Server
Diameter Application Development Guide.

SIP Servlet Concurrency
Converged Application Server includes concurrency utilities to help you create
portable, reliable, thread safe applications. For information on handling SIP servlet
concurrency, see SIP Servlet Concurrency.

Resolving Telephone Numbers to SipURI
ENUM (E.164 Number Mapping as specified RFC 6116, https://
tools.ietf.org/rfc/rfc6116.txt) is a system that uses the Domain Name Service
(DNS) to translate telephone numbers, like '+12025552600', into URIs. A TelURL or
SipURI with a user=phone parameter constitutes a telephone number. Often, SIP
servlet applications need to resolve such telephone numbers using ENUM as specified
in RFC 3824, https://tools.ietf.org/html/rfc3284. The SIP servlet API provides
a DnsResolver interface to resolve telephone numbers in a TelURL or SipURI that has
a user=phone parameter. DnsResolver is implemented by Converged Application
Server, and is made available to applications as a ServletContext parameter with the
name javax.servlet.sip.DnsResolver. It can also be accessed using resource
injection as described in "Annotation for DnsResolver Injection". After a SIP servlet
obtains a DnsResolver, it can use the following methods to resolve the telephone
numbers to a SipURI:

• SipURI resolveToSipURI(URI uri)
• List<SipURI> resolveToSipURIs(URI uri)
• List<String> resolveToStrings(URI uri, String enumService)
DnsResolver also contains utility methods that help applications while resolving the
URIs. The toEnum(URI uri) method helps applications to get the representation of a
URI in ENUM format. The resolvesInternally (SipURI uri) method helps applications
decide whether the SipURI resolves to the internal container.

Note:

For details on the API described in this section, see the Java SIP Servlet API
2.0 JavaDocs.

Annotation for DnsResolver Injection
The @Resource annotation defined in Common Annotations for the Java Platform
(JSR 250, https://jcp.org/en/jsr/detail?id=250) is used to inject an instance of
the DnsResolver utility class for DNS Enum lookup of telephone numbers.

Chapter 2
SIP Servlet Concurrency

2-18

https://tools.ietf.org/rfc/rfc6116.txt
https://tools.ietf.org/rfc/rfc6116.txt
https://tools.ietf.org/html/rfc3284
https://jcp.org/en/jsr/detail?id=250

This annotation can be used in place of the ServletContext based lookup for the
DnsResolver.

The ServletContext lookup in Example 2-4,

Example 2-4 ServletContext Based DnsResolver Lookup

DnsResolver s = (DnsResolver)
 getServletContext().getAttribute("javax.servlet.sip.DnsResolver");

is equivalent to the annotation based implementation in Example 2-5.

Example 2-5 Annotation Based DnsResolver Lookup

@Resource
DnsResolver resolver;

Chapter 2
Resolving Telephone Numbers to SipURI

2-19

3
SIP Servlet POJOs

This chapter describes creating Session Initiation Protocol (SIP) servlets using Java
Enterprise Edition (EE) annotations in conjunction with Plain Old Java Objects (POJOs).

About SIP Servlet POJOs
SIP Servlet POJOs are SIP Servlets that do not extend from generic Servlets defined by the
GenericServlet interface. They are simple POJOs annotated with an @SipServlet annotation.
These POJOs contain annotated methods invoked by Converged Application Server when a
SIP message arrives.

Any Java class that is annotated with @SipServlet, but does not extend from
javax.servlet.sip.Servlet, is a SIP Servlet POJO. SIP Servlet POJOs support all elements of
the @SipServlet annotation. The SIP Container treats POJOs similar to a component class
listed in Table EE.5-1 of Java EE specification. These classes act as a Common Dependency
Injection (CDI) managed bean and hence support all CDI capabilities explained in the Java
EE CDI specification.

The SIP Servlet POJO Life Cycle
SIP Servlet POJOs are instantiated by the procedure to create a non-contextual instance that
is not managed by the CDI container. The exact procedure is explained at the end of section
titled “Support for Dependency Injection" in the Java EE specification.The POJO life-cycle
closely follows those of other component classes in terms of instantiation and destruction.
Thus, shortly after resource and CDI injection completes successfully, the @PostConstruct
callback is invoked. Similarly, the @PreDestroy annotation may be applied to one method
that is called when the class is taken out of service and is longer be used by the container.
Otherwise, the load-on-startup behavior of SIP Servlets applies to SIP Servlet POJOs as
well. The behavior can be specified either in the @SipServlet annotation or in the deployment
descriptor.

SIP Meta Annotations
A SIP Servlet POJO uses annotated methods to handle SIP Messages. Any Java method
annotated with one or more annotations that carry SIP meta-annotations described in this
section is used by the container to deliver messages to the application. SIP servlet containers
do not depend on individual annotations that use these meta annotations enabling further
extensibility as explained in "Extensibility Using SIP Meta-Annotations".

@SipMethod
The @SipMethod annotation associates the name of a SIP method with an annotation. A
Java method annotated with a runtime annotation that is itself annotated with SipMethod
handles SIP requests or responses with the indicated SIP method. The value of the
annotation specifies the name of the SIP method (For example, "INVITE"). If the annotation is

3-1

specified on a method whose first parameter is not a SipServletRequest or
SipServletResponse, a deployment error occurs.

@SipResponseCode
The @SipResponseCode annotation associates a response code with an annotation.
A Java method annotated with a runtime annotation that is itself annotated with
@SipResponseCode handles SIP responses with the specified code. The value of the
annotation specifies the response code. If an annotation is specified on a method
whose first parameter is not SipServletResponse, a deployment error occurs.

@SipResponseRange
The @SipResponseRange annotation associates a response filter with an annotation.
A Java method annotated with a runtime annotation that is itself annotated with
@SipResponseRange handles SIP responses satisfying the filter. If an annotation is
specified on a method whose first parameter is not SipServletResponse, a deployment
error occurs. The specified range includes both beginning and end values. The
element begin specifies the beginning of the response range, and the element end
specifies the end of the response range.

@SipPredicate
The @SipPredicate annotation applies a predicate with a Java method in a SIP Servlet
POJO. When a Java method is annotated with runtime annotations that are annotated
with @SipPredicate, then those predicates are evaluated by Converged Application
Server before executing the method. Thus, while other meta-annotations allow
applications to define their own annotations, @SipPredicate enables applications to
provide further filtering of messages based on specific logic. For example, an
application can filter decisions based on the value of the SIP header or the state of the
SIP Session.

The value of the annotation is a type of implementation of javax.servlet.sip.Predicate.
Converged Application Server instantiates the class and invokes the
Predicate.apply() method to determine whether or not to invoke the method.

Method Specific Annotations
Annotations are defined for each SIP method, such as INVITE, ACK, and REGISTER.
Each runtime annotation is annotated with the SIP meta annotation @SipMethod.

A method annotated with @Invite is invoked by the SIP Container for SIP requests or
SIP responses based on the type of the first parameter of the method. When the
parameter is of type SipServletRequest.class, it is invoked for all SIP requests with the
method INVITE. When the parameter is of type SipServletResponse.class, it is
invoked for all SIP responses for the method INVITE.

Example 3-1 shows a SIP Servlet POJO that uses the @Invite annotation.

Example 3-1 @Invite Annotation

@SipServlet
public class ExamplePOJO {
 @Invite
 public void handleInviteRequest(SipServletRequest request) {

Chapter 3
Method Specific Annotations

3-2

 //...
 }
 @Invite
 public void handleInviteResponse(SipServletResponse response) {
 //...
 }
}

The following method specific annotations are implemented:

• @Invite

• @Ack

• @Options

• @Bye

• @Cancel

• @Register

• @Prack

• @Subscribe

• @Notify

• @Message

• @Info

• @Update

• @Refer

• @Publish

For descriptions of the associated SIP request methods, see "SIP Requests".

@AnyMethod Annotation
The @AnyMethod annotation can handle SIP messages corresponding to any SIP method.
Applications may use @AnyMethod annotation to receive all SIP requests and SIP responses
without checking the method. If the annotation is specified on a method whose first parameter
is not a SipServletRequest or SipServletResponse, a deployment error occurs.

Response Filtering
JSR-359 defines annotations for filtering responses. The defined annotations are
@ProvisionalResponse, @SuccessResponse, @RedirectResponse, and @ErrorResponse.
These annotations use the SIP meta-annotation @SipResponseRange to specify the
response code range.

Table 3-1 lists the Response annotations and their associated response ranges.

Table 3-1 Response Range Annotations

Annotation Response Range Begin Response Range End

@ProvisionalResponse 101 199

@SuccessResponse 200 299

Chapter 3
Response Filtering

3-3

Table 3-1 (Cont.) Response Range Annotations

Annotation Response Range Begin Response Range End

@RedirectResponse 300 399

@ErrorResponse 400 699

Example 3-2 shows the usage of a response range annotation.

Example 3-2 Response Range Annotation

@SuccessResponse
public void handleSuccessResponse(SipServletResponse response) {
 //...
}

To further filter responses, a POJO may combine both a method specific annotation
and a Response Filter annotation. Example 3-3 shows how to handle success
responses for INVITE messages.

Example 3-3 Combining Annotations

@Invite @SuccessResponse
public void handleInviteSuccessResponse(SipServletResponse response) {
 //...
}

It is also possible to specify multiple response filter annotations to a Java method,
allowing application developers to handle multiple ranges using the same annotation.
Example 3-4 shows how to handle multiple response ranges.

Example 3-4 Multiple Response Range Annotations

@Invite @ProvisionalResponse @SuccessResponse
public void handleInviteSuccessResponse(SipServletResponse response) {
 //...
}

@BranchResponse Annotation
An application can use the built-in SipPredicate, @BranchResponse, to associate an
intermediate final response that arrives on a ProxyBranch with a Java method in a SIP
Servlet POJO.

Example 3-5 shows the @BranchResponse definition.

Example 3-5 @BranchResponse Definition

@Retention(RUNTIME)
@Target({METHOD})
@SipPredicate(BranchResponse.Predicate.class)
public @interface BranchResponse {
 class Predicate implements
 javax.servlet.sip.Predicate<SipServletResponse> {
 @Override
 public boolean apply(final SipServletResponse response) {
 return response.isBranchResponse();
 }
 }

Chapter 3
Response Filtering

3-4

Extensibility Using SIP Meta-Annotations
Meta-annotations provide built-in extensibility. SIP meta-annotations allow application
developers to define and use their own annotations. For example, an application can define
an annotation called foo.example.18xResponses for handling only 18x responses. A single
annotation can also contain more than one SIP meta-annotation.

Example 3-6 shows a user defined annotation.

Example 3-6 User Defined Annotation

@Retention(RUNTIME)
@Target({METHOD})
@SipResponseRange(begin = 200, end = 299)
@SipMethod("INVITE")
public @interface MySucessfulInviteResponse {
}

Example 3-7 shows an annotation that combines a @SipPredicate annotation with other
meta annotations

Example 3-7 Combined Annotations

@Retention(RUNTIME)
@Target({METHOD})
@SipPredicate(MyInitialInvite.Predicate.class)
@SipMethod("INVITE")
public @interface MyInitialInvite {
 class Predicate implements
 javax.servlet.sip.Predicate<SipServletRequest> {
 @Override
 public boolean apply(final SipServletRequest request) {
 return request.isInitial();
 }
 }
}

The application can then use the @MyInitialInvite annotation to select a method for handling
an initial invite as shown in Example 3-8.

Example 3-8 Using a Custom Annotation

@MyInitialInvite
public void handleInviteRequest(SipServletRequest request) {
 //...
}

Method Selection Precedence
Converged Application Server ensures that only one java method is invoked for a particular
SIP message. When more than one Java method has matching annotations, Converged
Application Server selects the Java method with most specific annotations.

For example, given a success response to an INVITE that could go to either of two methods,
one of which matches any response to an INVITE, and the other which matches only success
responses to an INVITE, Converged Application Server chooses the second method. Those
rules are applied in a particular order. For example, assume that two methods each take a
SipServletResponse. If one method only matches the INVITE method, and another method

Chapter 3
Extensibility Using SIP Meta-Annotations

3-5

only matches 200 OK responses, a 200 OK response to an INVITE goes to the
INVITE-matching method because the SIP method matching has higher priority than
response-code matching.

The following sections outline the procedure for finding the most specific Java method.

Precedence Rules Equation
The following shorthand is used to indicate specific annotations:

• Jm: A Java method annotated by annotations with SIP meta annotations.

• Sm: A @SipMethod annotation.

• Sr: A @SipResponseRange annotation.

• Sc: A @SipResponseCode annotation.

• Sp: A @SipPredicate annotation.

• ESm: (Method of the SipServletMessage) eq (value of Sm)

• ESr: (Status code of the SipServletResponse) in (range of Sr)

• Esc: (Status code of the SipServletResponse) eq (value of Sc)

• ESp: Result of evaluation of @SipPredicate.

Converged Application Server determine that a Jm meets the selection criteria if the
annotations evaluate the following equation to true. If an annotation is not present in a
sub-expression, the equation evaluates to true. Example 3-9 shows the complete
precedence rules equation.

Example 3-9 Precedence Rules Equation

(ESm-1|| ESm-2 ||..||ESm-n) && ((ESc-1 || ESc-2 ||..||ESc-n) ||(ESr-1 || ESr-2
|| ..||ESr-n)) && (ESp-1 || ESp-2||..||ESp-n)

Conflict Resolution
If more than one Jm meets the selection criteria, Converged Application Server
selects the Jm with the smallest count of Sm. If the number of Sms is equal, the
container selects the Jm with the smallest count of Sc. If the number of Scs are equal,
the container selects the one with the shortest span of Srs.

Request Precedence Rules
The following rules apply to requests:

• Sc (SipResponseCode) and Sr (SipResponseRange) are not applicable to
Requests.

• If none of the methods satisfy the basic rule, the container selects a Java method
annotated with @AnyMethod.

• If none of the above is true, it results in the default behavior as specified by the
section 2.3 of JSR-359.

Response Precedence Rule
The following rule applies to responses:

Chapter 3
Method Selection Precedence

3-6

• If none of the methods satisfy the basic rule, the container selects a Java method
annotated with @AnyMethod.

SipPredicate and Method Selection
If an application includes one or more @SipPredicate annotations, the application must
ensure that the predicates are not written so as to cause conflict during selection of methods.

Deployment
During deployment, Converged Application Server scans the annotations present. If more
than one Java method has the same SIP meta-annotation specificity using @SipMethod,
@SipResponseCode, or @SipResponseRange, the container fails the deployment.

Conflict Resolution Examples
The following examples explain which method is selected when there is more than one Java
method that match the selection criteria.

In Example 3-10, for a 200/INVITE response, Converged Application Server selects
handleResponse01(), since that is the more specific of the two methods for that message.
For a message with another SIP method, the container will select handleResponse02().

Example 3-10 Conflict Resolution Scenario One

@Invite
@SuccessResponse
public void handleResponse01(SipServletResponse response) {
 //...
}

@SuccessResponse
public void handleResponse02(SipServletResponse response) {
 //...
}

In Example 3-11, for a 200/INVITE response, the container will select handleResponse02(),
since that is the more specific of the two methods for that message. For 201/INVITE
message, the container will select handleResponse01().

Example 3-11 Conflict Resolution Scenario Two

@Invite
@SuccessResponse
public void handleResponse01(SipServletResponse response) {
 //...
}

@InviteOkResponse
public void handleResponse02(SipServletResponse response) {
 //...
}
@Retention(RetentionPolicy.RUNTIME)
@Target(METHOD)
@SipResponseCode(200)
@SipMethod("INVITE")
@interface InviteOkResponse { }

Chapter 3
Method Selection Precedence

3-7

In Example 3-12, for a 200 response handleResponse03() is selected since that is
the only method that matches the response codes, and, therefore, there is no conflict.
For a 201 response, both handleResponse01() and handleResponse02() match the
criteria. However since handleResponse01() has a shorter response range than
handleResponse02(), Converged Application Server chooses handleResponse01().
For a 302 response, Converged Application Server selects handleResponse02()
since that is the only method that match the criteria.

Example 3-12 Conflict Resolution Scenario Three

@SuccessResponse
public void handleResponse01(SipServletResponse resp) {
 //...
}

@NonFailureResponses
public void handleResponse02(SipServletResponse resp) {
 //...
}

@OkResponse
public void handleResponse03(SipServletResponse resp) {
 //...
}
@Retention(RUNTIME)
@Target(METHOD)
@SipResponseRange(begin = 100, end = 399)
@interface NonFailureResponses { }
@Retention(RUNTIME)
@Target(METHOD)
@SipResponseCode(200)
@interface OkResponse { }

Container Deployment Failures
The following examples show situations in which containers fail deployment since
method precedence cannot be determined.

In Example 3-13, the container fails the deployment, since both the methods contain
the same number of requests, and, for an INVITE request, the container will find two
methods with the same specificity.

Example 3-13 Container Deployment Failure Scenario One

@Invite
@Message
public void handleRequest01(SipServletRequest req) {
 //...
}

@Invite
@Register
public void handleRequest02(SipServletRequest req) {
 //...
}

In Example 3-14, the container fails deployment because the handleResponse02()
supports both SUBSCRIBE and INFO methods and 200 and 204 responses. The
handleResponse01() method supports SUBSCRIBE and OPTIONS methods and 200

Chapter 3
Method Selection Precedence

3-8

and 201 responses. Hence, for 200/SUBSCRIBE responses, the specificity of the SIP meta
annotations is the same.

Example 3-14 Container Deployment Failure Scenario Two

@OptionsOkResponse
@SubscribeAccept
public void handleResponse01(SipServletResponse resp) {
 //...
}

@InfoOkResponse
@SubscribeNoNotification
public void handleResponse02(SipServletResponse resp) {
 //...
}
@Retention(RUNTIME)
@Target(METHOD)
@SipResponseCode(200)
@SipMethod("INFO")
@interface InfoOkResponse { }
@Retention(RUNTIME)
@Target(METHOD)
@SipResponseCode(200)
@SipMethod("OPTIONS")
@interface OptionsOkResponse { }
@Retention(RUNTIME)
@Target(METHOD)
@SipResponseCode(204)
@SipMethod("SUBSCRIBE")
@interface SubscribeNoNotification { }
@Retention(RUNTIME)
@Target(METHOD)
@SipResponseCode(201)
@SipMethod("SUBSCRIBE")
@interface SubscribeAccept { }

In Example 3-15, the span of the response ranges are exactly the same and all other SIP
meta annotations are the same in both the methods. For overlapping responses, SIP meta
annotations in the two methods have the same specificity, and the container fails deployment.

Example 3-15 Container Deployment Failure Scenario Three

@InviteNonFailureResponses
public void handleResponse01(SipServletResponse resp) {
 //...
}
@Invite
@NonFailureFinalResponses
public void handleResponse02(SipServletResponse resp) {
 //...
}
@Retention(RUNTIME)
@Target(METHOD)
@SipResponseRange(begin = 100, end = 299)
@SipMethod("INVITE")
@interface InviteNonFailureResponses { }
@Retention(RUNTIME)
@Target(METHOD)
@SipResponseRange(begin = 200, end = 399)
@interface NonFailureFinalResponses { }

Chapter 3
Method Selection Precedence

3-9

In Example 3-16, since all the SIP meta annotations of both methods are the same
and the @SipPredicate annotation uses the same class, the container fails
deployment.

Example 3-16 Container Deployment Failure Scenario Four

@Invite
@MySpecialResponses
public void handleResponse01(SipServletResponse resp) {
 //...
}
@InviteSpecialResponses
public void handleResponse02(SipServletResponse resp) {
 //...
}
@Retention(RUNTIME)
@Target(METHOD)
@SipMethod("INVITE")
@SipPredicate(MyPredicate.class)
@interface InviteSpecialResponses { }
@Retention(RUNTIME)
@Target(METHOD)
@SipPredicate(MyPredicate.class)
@interface MySpecialResponses { }
class MyPredicate implements Predicate<SipServletResponse> {
 @Override public boolean apply(SipServletResponse response) {
 //...
 }
}

Chapter 3
Method Selection Precedence

3-10

4
Best Practices for SIP Applications

This chapter describes requirements and best practices for developing applications for
deployment to Oracle Communications Converged Application Server.

Overview of Developing Distributed Applications for Converged
Application Server

In a typical production environment, Session Initiation Protocol (SIP) applications are
deployed to a Coherence cluster of Converged Application Servers. In order for applications
to function reliably in this environment, you must observe the programming practices and
conventions described in the sections that follow to ensure that multiple deployed copies of
your application perform as expected in the clustered environment.

Use the SIP Concurrency Utilities
Converged Application Server is a multi-threaded application server that carefully manages
resource allocation, concurrency, and thread synchronization for the modules it hosts. To
obtain the greatest advantage from the Converged Application Server architecture, make use
of the Converged Application Server concurrency utilities as described in "SIP Servlet
Concurrency".

If an application needs to access the Future object of a task that belongs to a SIP application
session that is not the current SIP application session, create a non-scheduled managed task
to access it. For more information about submitting a task with a different application session
as its context, see "Specifying Application Session Programmatically".

For scheduled managed tasks, applications should always access future objects from the
SIPApplicationSession interface so that they get consistent access to a task's state across
the cluster. This approach is highly recommended if a task needs to be cancelled so as to
avoid a locally-stored reference. Cancellation of a running task, using the Future or
ScheduledFuture object, in interrupted mode does not always guarantee that the task is
aborted. See the description of the cancel method in:

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

Customers should use appropriate concurrency modes based on their application needs so
that messages and/or timers belonging to the same Sip application session do not lead to
concurrency access issues, such as race conditions or deadlocks. Converged Application
Server employs its own locking framework based on the chosen concurrency mode. Discrete
multiple operations associated with the same Sip Application session may lead to multiple
lock-and-unlock routines. Such a situation should be avoided by combining these operations
into a single non-scheduled managed task for that SIP application session.

Avoid nested lock situations. However, when applications employ nested SIP Application
Session locks, the application logic associated with managing these locks must be designed
with great care. Sometimes and in special circumstances, a nested SIP Application Session
lock may lead to a deadlock. In such a situation, enabling the wlss.concurrent debug flag in
the Converged Application Server Administration Console can assist you in your attempts to

4-1

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

troubleshoot the issue. For information about setting the debug flag in Converged
Application Server, see Converged Application Server Administrator's Guide.

Treat MessageListener Implementations as Read-Only
MessageListener implementations provided by Converged Application Server Java
API SDK are solely meant for read-only purposes, such as logging. They must not be
used for any type of SIP manipulation such as adding, removing, or modifying a
session attribute or any other manipulation of a container-managed object.

The SIP container does not handle any sort of exception scenario; so it is not
advisable for an application to rely on implementing the MessageListener interfaces
for any type of SIP manipulation.

Local Data Structures Must Not Store Container-Managed
Objects

Applications must not store container-managed objects for example, future objects,
tasks, SIP request, and SIP response objects in local data structures.

Servlets Must Be Non-Blocking
SIP and HTTP Servlets must not block threads in the body of a SIP method because
the call state remains locked while the method is invoked. For example, Servlet
method must not actively wait for data to be retrieved or written before returning
control to the SIP Servlet container.

Servlets should also avoid sleep or wait operations in the body of a SIP method as
such operations block the container thread and the callstate lock is held for the
duration of each operation. Methods need to be written in such a way that control is
returned back to the container and the flow is not compromised.

All Session Data Must Be Serializable
To support in-memory replication of SIP application call states, you must ensure that
all objects stored in the SIP Servlet session are serializable. Every field in an object
must be serializable or transient in order for the object to be considered serializable. If
the Servlet uses a combination of serializable and non-serializable objects, Converged
Application Server cannot replicate the session state of the non-serializable objects.

Mark SIP Servlets as Distributable
If you have designed and programmed your SIP Servlet to be deployed to a cluster
environment, you must include the distributable marker element in the Servlet's
deployment descriptor when deploying the application to a cluster of engines. If you
omit the distributable element, Converged Application Server does not deploy the
SIP Servlet in a clustered environment.

Converged Application Server ignores the distributable element in non-clustered
environments.

Chapter 4
Treat MessageListener Implementations as Read-Only

4-2

Use SipApplicationSessionActivationListener Sparingly
The SipApplicationSessionActivationListener interface can provide callbacks to an
application when SIP Sessions are not active or activated. Keep in mind that callbacks occur
only in a replicated Converged Application Server deployment.

Keep in mind that in a replicated deployment, Converged Application Server activates and
passivates a SIP Session many times before and after the SIP messages are processed for
the session. (This occurs normally in any deployment, even when RDBMS-based persistence
is not configured.) Because this constant cycle of activation and passivation results in
frequent callbacks, use SipApplicationSessionActivationListener sparingly in your
applications.

Observe Best Practices for Java EE Applications
If you are deploying applications that use other Java EE APIs, observe the basic clustering
guidelines associated with those APIs. For example, if you are deploying EJBs, you must
design all methods to be idempotent and make EJB homes clusterable in the deployment
descriptor. For more information, see the discussion about "Clustering Best Practices" in the
Fusion Middleware Using Clusters for Oracle WebLogic Server.

Optimizing Memory Utilization and Performance with
Serialization

By default, Converged Application Server serializes and de-serializes call states, which
optimizes your standalone domains for memory utilization. However, you can disable
serialization in Converged Application Server to optimize your standalone domains for
performance. You configure whether Converged Application Server uses serialization by
using the wlss.local.serialization system property. This system property must be
provided to the Java Virtual Machine (JVM) that starts Converged Application Server.

When you set the wlss.local.serialization system property to true, Converged
Application Server optimizes a standalone domain for efficient memory utilization. Maintain
this setting if memory utilization is of concern in your environment, especially in scenarios
where the application session time-out values are large. Converged Application Server
serializes the call state after a dialog is established and de-serializes that call state as it
becomes necessary to do so. Note that performance may be impacted by the serialization
and de-serialization of call states.

When you set the wlss.local.serialization system property to false, Converged
Application Server optimizes a standalone domain for performance. Set this property to false
when performance is critical in your environment and calls have fewer hold times or lower
application session time-out values. Converged Application Server does not serialize or de-
serialize call states. Note that, since the call state are held in memory for the life of each call,
an increase in the hold times for the calls has an impact on memory utilization.

To enable or disable serialization:

1. Go to the Domain_Home/bin directory, where Domain_Home is the domain's home
directory.

2. Open the startWebLogic.sh script in a text editor.

Chapter 4
Use SipApplicationSessionActivationListener Sparingly

4-3

3. Change the wlss.local.serialization system property to true or false as
required.

4. Save and close the file.

Chapter 4
Optimizing Memory Utilization and Performance with Serialization

4-4

5
Composing SIP Applications

This chapter describes how to use Oracle Communications Converged Application Server
application composition features.

Note:

The Session Initiation Protocol (SIP) Servlet v2.0 specification (https://
jcp.org/en/jsr/detail?id=359) describes a formal application selection and
composition process, which is fully implemented in Converged Application Server.
Use the SIP Servlet v2.0 techniques, as described in this document, for all new
development. Application composition techniques described in earlier versions of
Converged Application Server are now deprecated.

Converged Application Server provides backwards compatibility for applications
using version 1.0 composition techniques, provided that:

• You do not configure a custom Application Router.

• You do not configure the Default Application Router properties.

Using the Application Router
Application composition is the process of “chaining" multiple SIP applications into a logical
path to apply services to a SIP request. The SIP Servlet v2.0 specification introduces an
Application Router (AR) deployment, which performs a key role in composing SIP
applications. The Application Router examines an initial SIP request and uses custom logic to
determine which SIP application must process the request. In Converged Application Server,
all initial requests are first delivered to the AR, which determines the application used to
process the request.

Converged Application Server supports the Default Application Router, which can be
configured using a text file. Custom Application Routers are also supported. You create a
Custom Application Router by implementing the SipApplicationRouter interface. A Custom
Application Router can use complex processing to make routing decisions.

In contrast to the Application Router, which requires knowledge of which SIP applications are
available for processing a message, individual SIP applications remain independent from one
another. An individual application performs a very specific service for a SIP request, without
requiring any knowledge of other applications deployed on the system. (The Application
Router does require knowledge of deployed applications, and the SipApplicationRouter
interface provides for automatic notification of application deployment and undeployment.)

Individual SIP applications may complete their processing of an initial request by proxying or
relaying the request, or by terminating the request as a User Agent Server (UAS). If an initial
request is proxied or relayed, the SIP container again forwards the request to the Application
Router, which selects the next SIP application to provide a service for the request. In this way,

5-1

https://jcp.org/en/jsr/detail?id=359
https://jcp.org/en/jsr/detail?id=359

the AR can chain multiple SIP applications as needed to process a request. The
chaining process is terminated when:

• A selected SIP application acts as a UAS to terminate the chain, or

• There are no more applications to select for that request. (In this case, the request
is sent out.)

When the chain is terminated and the request sent, the SIP container maintains the
established path of applications for processing subsequent requests, and the AR is no
longer consulted.

Figure 5-1 shows the use of an Application Router for applying multiple service to a
SIP request.

Figure 5-1 Composed Application Model

Note that the AR may select remote as well as local applications. The chain of
services need not reside within the same Converged Application Server container.

Using the Default Application Router
Converged Application Server includes a Default Application Router (DAR), which
provides the basic functionality described in the SIP Servlet Specification v2.0
(http://jcp.org/en/jsr/detail?id=359), Appendix C: Default Application Router.

Chapter 5
Using the Application Router

5-2

http://jcp.org/en/jsr/detail?id=359

The DAR JSON Configuration File
Converged Application Server lets you use a simple configuration text file that follows
JavaScript Object Notation (JSON)-based application composition rules. The configuration
file consists of an array of chains, each containing a criteria followed by an array of
applications that form the application chain in JSON form. The criteria is expressed using a
JSON encoding of rule language specified in Appending D SIP Request Object Model of Java
Specification Requests (JSR)-359.

In Example 5-1, the DAR invokes two applications on an INVITE request with the host part of
the From header as “example.com". The applications are identified by their names as defined
in the application deployment descriptors. The subscriber identity returned is the URI from the
From and To header respectively for the two applications. The DAR does not return any route
to Converged Application Server and maintains the invocation state in the stateInfo as the
index of the last application in the list.

Example 5-1 DAR JSON Configuration File

{
 "chains": [
 {
 "description": "Example Application Chain",
 "criteria": {
 "and": {
 "equal": {
 "request.method": "INVITE"
 },
 "contains": {
 "ignore-case": "true",
 "request.from.uri.host": "example.com"
 }
 }
 },
 "applications": [
 {
 "name": "OriginatingCallWaiting",
 "subscriber": "request.from",
 "region": "ORIGINATING",
 "route-modifier": "NO_ROUTE"
 },
 {
 "name": "CallForwarding",
 "subscriber": "request.to",
 "region": "TERMINATING",
 "route-modifier": "NO_ROUTE"
 }
]
 }
]
}

Example 5-2 shows a criteria element excerpted from a DAR JSON configuration file.

Chapter 5
Using the Application Router

5-3

Example 5-2 DAR Criteria Element

"criteria": {
 "and": [
 { "equal": { "request.method": "INVITE" }},
 { "equal": { "request.to.uri.port": 5060 }},
 { "contains": {
 "ignore-case": "true",
 "request.from.uri.host": "example.com"
 }
 }]
},

The relevant JSON objects in a DAR configuration file are:

• chains: An array of application chains. Each element in the array represents one
application chain.

• description: A description of the application chain.

• criteria: The criteria contains JSON encoded rules that are based on the object
model specified in Appendix D SIP Request Object Model of JSR-359. When this
predicate evaluates to true, the chain is chosen for handling the request.

• applications: An array of applications in this chain. This element contains the data
for populating the SipApplicationRouterInfo object. Each application contains the
following elements:

– name: Name of the application as known to Converged Application Server.

– subscriber: The SIP header which forms the identity of the subscriber that
DAR returns. This is specified according to the object model in Appendix D
SIP Request Object Model of JSR-359. Alternatively, it can return any string.

– region: The routing region that can be one of the strings "ORIGINATING",
"TERMINATING", or "NEUTRAL".

– routes: An array of SIP URIs indicating the routes as returned by the
Application Router. It can be an empty string.

– route-modifier: A route modifier that can be one of the strings "ROUTE",
"ROUTE_BACK", or "NO_ROUTE".

Legacy DAR Configuration Files
For backwards compatibility, Converged Application Server supports DAR property
files as described in this section.

Each line of the DAR properties file specifies one or more SIP methods, and is
followed by SIP routing information in comma-delimited format. The DAR initially reads
the properties file on startup, and then reads it each time a SIP application is deployed
or undeployed from the container.

To specify the location of the configuration file used by the DAR, configure the
properties using the Administration Console, as described in "Configuring a Custom
Application Router", or include the following parameter when starting the Converged
Application Server instance:

-Djavax.servlet.sip.ar.dar.configuration

Chapter 5
Using the Application Router

5-4

(To specify a property file, rather than a URI, include the prefix file:///) This Java
parameter is specified at the command line, or it can be included in your server startup script.

See Appendix C in the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/detail?
id=289) for detailed information about the format of routing information used by the Default
Application Router.

Note that the Converged Application Server DAR accepts route region strings in addition to
“originating," “terminating," and “neutral." Each new string value is treated as an extended
route region. Also, the Converged Application Server DAR uses the order of properties in the
configuration file to determine the route entry sequence; the state_info value has no effect
when specified in the DAR configuration.

Configuring a Custom Application Router
In contrast to DAR, which is property-file driven, a Custom Application Router is implemented
as a Java class, which allows for complex decision-making processes.

If you develop a custom Application Router, you must store the implementation for the AR in
the /approuter subdirectory of the domain home directory. Supporting libraries for the AR
can be stored in a /lib subdirectory within /approuter. (If you have multiple implementations
of SipApplicationRouter, use the -
Djavax.servlet.sip.ar.spi.SipApplicationRouterProvider option at startup to specify
which one to use.)

Note:

In a clustered environment, the custom AR is deployed to all engine tier instances
of the domain; you cannot deploy different AR implementations within the same
domain.

Converged Application Server provides several configuration parameters to specify the AR
class and to pass initialization properties to the AR or AR. To configure these parameters
using the Administration Console:

1. Log in to the Administration Console for your domain.

2. Select the SIP Server node in the left pane.

3. Click the Configuration tab and then select the Application Router subtab.

4. Use the options on the Application Router pane to configure the custom AR:

• Use Custom Application Router: Select this option to use a custom AR instead of
the Default AR. Note that you must restart the server after selecting or clearing this
option, to switch between using the DAR and a custom AR.

• Use Json form configuration file: Select this to load the AR configuration from a
JavaScript Object Notation (JSON) file instead of a property file. For more information
on the format of this file, see "The DAR JSON Configuration File".

• Custom Application Router filename: Specify only the filename of the custom AR
(packaged as a JAR) to use. The custom AR implementation must reside in
the $DOMAIN_HOME/approuter subdirectory.

Chapter 5
Using the Application Router

5-5

http://jcp.org/en/jsr/detail?id=289
http://jcp.org/en/jsr/detail?id=289

• Default application name: The name of a default application that the
container should call when the custom AR cannot find an application to
process an initial request.
If no default application is specified, the container returns a 500 error if the AR
cannot select an application.

Note:

You must first deploy an application before specifying its name as
the value of Default application name.

• Application Router configuration data: Enter properties to pass to the AR in
the init method. The options are passed either to the DAR or custom AR,
depending on whether the Use Custom AR option is selected.
All configuration properties must conform to the Java Properties format. DAR
properties must further adhere to the detailed property format described in
Appendix C of the SIP Servlet Specification v1.1 (http://jcp.org/en/jsr/
detail?id=289). Each property must be listed on a separate, single line
without line breaks or spaces, as in:

INVITE:
("OriginatingCallWaiting","DAR:From","ORIGINATING","","NO_ROUTE","0"),
("CallForwarding","DAR:To","TERMINATING","","NO_ROUTE","1")
SUBSCRIBE:("CallForwarding","DAR:To","TERMINATING","","NO_ROUTE","1")

You can optionally specify AR initialization properties when starting the
Converged Application Server instance by including the -
Djavax.servlet.sip.ar.dar.configuration Java option. (To specify a
property file, rather than a URI, include the prefix file:///) If you specify the
Java startup option, the container ignores any configuration properties defined
in AR configuration data (stored in sipserver.xml). You can modify the
properties in AR configuration data at any time, but the properties are not
passed to the AR until the server is restarted with the -
Djavax.servlet.sip.ar.dar.configuration option omitted.

5. Click Save.

See Appendix C in the SIP Servlet Specification v2.0 (http://jcp.org/en/jsr/
detail?id=359) for more information about the function of the AR. See also the SIP
Servlet v2.0 API for information about how to implement a custom AR.

Application Router Behavior
When Converged Application Server receives an initial request from an external entity,
or when an application acts as a User Agent Client (UAC) and sends an initial request
with a new routing directive, the application selection process is started fresh. In that
case, the Application Router is called with the following information:

• The SipServletRequest.

• The new routing directive.

Based on the supplied information, the configuration of which subscriber subscribes to
which set of applications, and any other information that it may wish to use, for
example, time of day, network condition, or external subscriber profile database, the
Application Router returns the following information:

Chapter 5
Application Router Behavior

5-6

http://jcp.org/en/jsr/detail?id=289
http://jcp.org/en/jsr/detail?id=289
http://jcp.org/en/jsr/detail?id=359
http://jcp.org/en/jsr/detail?id=359

• The name of the selected application.

• The subscriber identity that the selected application is to serve.

• The routing region that the application serves.

• An array of zero or more routes to push (the routes array).

• A route modifier that tells the container how to interpret the route.

• An optional stateInfo serializable object.

The Application Router can return routes to Converged Application Server using its
SipApplicationRouterInfo.getRoutes() method. The routes can be external or internal.
External routes are used by the Application Router to instruct Converged Application Server
to send the request externally. An internal route is returned when the Application Router
wishes to modify the popped route header as seen by the application code, through the
SipServletRequest.getPoppedRoute() method. When the request is received by
Converged Application Server, the request may have had a Route header belonging to
Converged Application Server, which it removes and makes available as described in
"Popped Route Header". The route modifier returned by the Application Router tells
Converged Application Server how to use the routes returned by it and also how the popped
route needs to be presented.

The route modifier can be one of the following enum values:

• ROUTE indicates that SipApplicationRouterInfo.getRoutes() returns valid routes.
Converged Application Server decides if they are external or internal. All of the routes
returned must be of the same type, so Converged Application Server can make the
determination by examining the first route only.

• ROUTE_FINAL indicates that SipApplicationRouterInfo.getRoutes() returns valid
routes. The returned route can contain internal routes, external routes, or both.
Converged Application Server pushes all routes returned by the Application Router.

• ROUTE_BACK directs Converged Application Server to push its own route before
pushing the routes obtained from SipApplicationRouterInfo.getRoutes().

• NO_ROUTE indicates that Application Router is not returning any routes and the
SipApplicationRouterInfo.getRoutes() value, if any, should be disregarded.

The behavior of the container with respect to the route modifiers is explained in "Procedure
for Routing an Initial Request".

The stateInfo serializable object is useful for the Application Router to store state
information from one invocation to the next. An Application Router implementation may
choose to put any information in the stateInfo object, and this object is opaque to Converged
Application Server and not accessible to the applications. Typically, an Application Router
implementation may store information such as subscriber identity, the name of the application
last invoked, and a precomputed list of applications that are to be invoked next. Application
Router must not change the stateinfo after it is returned to Converged Application Server,
and each result returned to Converged Application Server must contain a different stateinfo
object.

If the selected application subsequently proxies or sends a new initial request based on the
first one with a CONTINUE or REVERSE routing directive, the Application Router is called
again. This time, in addition to the SipServletRequest and the routing directive, it is also
supplied with the stateInfo object that it previously returned. In this way, the Application
Router delegates the maintenance of the application selection state to Converged Application
Server, and thus it can be stateless with respect to each initial request it processes.

Chapter 5
Application Router Behavior

5-7

If the Application Router determines that no application is selected to service a
request, it returns null as the name.

Order of Routing Regions
Because proximity of an application to its subscriber confers priority, it is beneficial for
the management of feature interaction that originating applications are closest to the
caller, and that terminating applications are closest to the callee. This can be satisfied
if the following rules are followed:

• The originating region applications should be invoked first followed by terminating
region applications.

• The applications that service a subscriber are contiguous (that is, no insertion of
applications that service other subscribers in between).

On the other hand, it is entirely possible that the Application Router progresses directly
to the terminating region if the caller is not a subscriber, or the caller does not
subscribe to any applications. It is also possible that the application server does not
serve any originating subscribers or has determined through some means that the
originating applications have already been invoked and it should only look for
terminating applications.

Inter-Container Application Routing
Converged Application Server supports applications distributed across multiple
containers. The Application Router may return external routes in its
SipApplicationRouterInfo.getRoutes() method that point to other application servers
that it wishes the request to be routed to. Converged Application Server then pushes
the routes onto the Route header stack of the request and sends the request
externally. If this request arrives at another JSR-359 compliant container, it invokes the
Application Router residing in that container so that the application selection process
may continue. The first Application Router may pass any state information to the
second Application Router by embedding it in the Route header. This is in accordance
with the cascaded services model (SERL) as the applications can reside on different
hosts and still participate in the application composition process.

Note:

Some architectures require that the originating and terminating applications
be hosted on different servers. The deployer can easily accomplish this by
configuring the Application Routers such that one server hosts only
originating applications and the other only terminating applications. Either the
subscriber data can be partitioned such that the first server only serves
originating users and the second serves terminating users. Alternatively, the
Application Routers can collaborate by passing some state information in the
Route headers, indicating for example that the first server has already
completed the invocation of originating services.

Chapter 5
Application Router Behavior

5-8

Popped Route Header
On receiving an initial request that contains a SIP Route header (preloaded) or receiving a
subsequent request with a Route header (converted from a Record-Route header),
Converged Application Server determines if the request is intended for itself (based on local
policy, for example IP addresses of interfaces or representative DNS entries). If it is,
Converged Application Server removes the Route header before passing it to any application
or the Application Router.

A side effect of removing a SIP Route message header before presenting the request to
applications (and the Application Router) is that applications do not have access to the SIP
Route message header and its associated information. Certain architectures utilize the SIP
Route header for transporting application and other related information.

The following methods return the Route header popped by the container:

• Address getPoppedRoute();

• Address getInitialPoppedRoute();

If application composition is being used, the values returned by those methods may differ.
The getPoppedRoute method returns the route popped before the current application
invocation in the composition chain. The getInitialPoppedRoute method returns the route
popped by Converged Application Server when it first received the request.

If no header is popped by Converged Application Serer on an initial request, both methods
return null.

Both methods return the Route header as an Address, so, parameters added to the Record-
Route header using the Proxy.getRecordRouteURI() method should be retrieved not from
the popped route Address directly, but from the URI of the popped route Address.

Converged Application Server Behavior
Converged Application Server instantiates and initializes the Application Router and provides
to it the initial list of deployed applications. When new applications are deployed or when
applications are undeployed, Converged Application Server also inform the Application
Router.

Converged Application Server receives an initial request from an external entity or from an
application, and invokes the Application Router to obtain the name of the application to
service the initial request, and then dispatches the request to the main servlet within the
application. Converged Application Server also maintains application selection state
including:

• The routing directive associated with this request.

• Routing region (originating, terminating, or neutral).

• Actions on the route returned from the Application Router in conjunction with the route
modifier.

• Arbitrary, opaque state information returned from the Application Router.

Chapter 5
Converged Application Server Behavior

5-9

Procedure for Routing an Initial Request
When Converged Application Server receives a new initial request, it first creates and
initializes the various pieces of application selection state as follows:

• Directive:

– If a request is received from an external SIP entity, the directive is set to NEW.

– If a request is received from an application, the directive is set either implicitly
or explicitly by the application.

• Application router stateInfo:

– If a request is received from an application and the directive is CONTINUE or
REVERSE, stateInfo is set to that of the original request with which this
request is associated.

– Otherwise, stateInfo is not set initially.

• Subscriber URI: Not set initially.

• Routing Region: Not set initially.

With the application selection state initialized, the following procedure is executed:

1. The SipApplicationRouter.getNextApplication() method of the Application
Router object is called. The Application Router returns a
SipApplicationRouterInfo object, named result for the purposes of this
discussion.

2. The result.getRouteModifier() method is checked.

• If result.getRouteModifier() is ROUTE, routes are retrieved using
result.getRoutes().

– If the first returned route is external (does not belong to Converged
Application Server), all of the routes on the request's Route header stack
are pushed, and the request is sent externally. Note that the first returned
route becomes the top route header of the request.

– If the first returned route is internal, Converged Application Server makes
it available to the applications using the
SipServletRequest.getPoppedRoute() method and ignores the
remaining ones, if any. That allows the Application Router to modify the
popped route before passing it to the application.

• If result.getRouteModifier() is ROUTE_FINAL, all of the routes, regardless of
whether the route is internal or external, are pushed on the request's route
header stack and the request is sent.

• If result.getRouteModifier() is ROUTE_BACK, a route is pushed back to
Converged Application Server followed by all of the routes obtained from
result.getRoutes() and the request is sent externally. When the request
eventually returns, Converged Application Server sets the routing directive to
CONTINUE and also retrieve the Application Router state (routingRegion,
stateInfo) and passes it in the call to getNextApplication() to continue
processing the application chain.

To retrieve the Application Router state, the container route in the request
originally sent externally includes Application Router state (routingRegion and
stateinfo) encoded as a route parameter.

Chapter 5
Converged Application Server Behavior

5-10

• If result.getRouteModifier() is NO_ROUTE, result.getRoutes() is disregarded and
processing continues.

3. The result.getNextApplicationName() is checked.

• If result.getNextApplicationName() is not null:

– The application selection state on the SipSession: stateInfo is set to
result.getStateInfo(), region to result.getRegion(), and URI to
result.getSubscriberURI().

– A servlet is selected from the application.

• If result.getNextApplicationName() is null:

– If the Request-URI is not addressed to this container, or if there are one or more
Route headers, the request is sent out according to the standard SIP
mechanism.

– If the Request-URI is addressed to Converged Application Server and there is no
Route header, the request is not sent since it will cause a loop. Instead,
Converged Application Server rejects the request with a 404 Not Found final
response with no Retry-After header.

The effect of sending the request externally, for example, as a result of ROUTE_FINAL or
ROUTE_BACK routing directive, can cause the message to come back to Converged
Application Server and be presented to the Application Router again. Converged Application
Server optimizes this case by calling getNextApplication() directly instead of sending the
message.

Note:

As a guideline, it is strongly recommended that applications to not rely on Via or
Record-Route headers for their application logic, since SIP Servlet container
compliance may vary. Applications should instead use the SipServletMessage
methods getLocalXXX, getRemoteXXX if they are interested in the upstream
entity.

If SipApplicationRouter.getNextApplication() throws an exception, Converged Application
Server sends a 500 Server Internal Error final response to the initial request.

Application Router Packaging and Deployment
Converged Application Server loads and instantiates Application Router implementations. To
be portable across containers, the Application Router implementation must be packaged in
accordance with the rules specified by the Java SE Service Provider framework. Specifically,
the JAR file containing the Application Router implementation must include the META-INF/
services/javax.servlet.sip.ar.spi.SipApplicationRouterProvider file. The contents of that file
indicate the name of the concrete public subclass of the
javax.servlet.sip.ar.spi.SipApplicationRouterProvider class. The concrete subclass must have
a no-arg public constructor.

As specified by the Service Provider framework, the providers may be installed by:

1. Including the provider JAR in the system classpath.

2. Including the provider JAR in the extension class path.

Chapter 5
Converged Application Server Behavior

5-11

3. Container-specific means.

If the container uses classpath-based deployment, the first Application Router JAR file
found in the classpath is installed. To avoid ambiguity when multiple Application Router
implementations are present in the classpath, the
javax.servlet.sip.ar.spi.SipApplicationRouterProvider system property can override
loading behavior and force a specific provider implementation to be used.

Using the Legacy Custom Application Router
The Converged Application Server provides a built-in CAR that you can use. To use
the CAR implementation, you supply configuration parameters to the CAR in the form
of an XML file. The file specifies the applications in the chain, and the rules for
targeting them.

The rules can impose conditions on application targeting based on factors such as the
user identity or the request URI.

To use the prebuilt CAR, first create the configuration file that controls the behavior of
the CAR.

After creating the configuration file, follow the steps listed in "Configuring a Custom
Application Router" to apply the built-in CAR. In the configuration fields, provide the
following values:

• For the custom AR filename, use approuter-SDP.jar

• In the AR configuration data field, specify the name of the configuration file you
created as the value of the configFileName variable. For example:

configFileName=./app.xml
• As the second line of the AR configuration data, enter the following:

byPassIfAppIsNotWorking=true
The following section provides more information on the prebuilt CAR configuration file
format.

Configuring the Legacy Custom Application Router
You control the prebuilt custom application router using an XML-based configuration
file. The file lets you specify the application chain and the conditions for invoking the
applications.

The configuration file is specified by configFileName property in the AR Configuration
Data field of the UI.

You place the file in the following location:

Domain_Home/approuter/lib, where Domain_Home is the domain's home directory.

The schema definition for the configuration file is located in the same location. It is
named app-easydef.xsd.

Example 5-3 shows a sample configuration for the prebuilt CAR implementation:

Chapter 5
Converged Application Server Behavior

5-12

Example 5-3 Example Prebuilt CAR Configuration File

<app-router-conf xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.oracle.com/sdp/easyapp-def" xsi:schemaLocation="http://
www.oracle.com/sdp/easyapp-def easyapp-def.xsd">
 <external-resource>
 <file>
 <file-path>./approuter/lib/user.properties</file-path>
 </file>
 </external-resource>
 <user-identity-header>From</user-identity-header>
 <terminating>
 <app>
 <app-name>basic-call-app</app-name>
 <index>0</index>
 <mapping-rule>
 <protocol>SIP</protocol>
 <pattern>
 <and>
 <equal>
 <var>request.method</var>
 <value>INVITE</value>
 </equal>
 <not>
 <contains>
 <var>request.uri</var>
 <value>voicemail</value>
 </contains>
 </not>
 </and>
 </pattern>
 <subscriber-identity>.*</subscriber-identity>
 <request-uri>.*</request-uri>
 </mapping-rule>
 </app>
 <app>
 <app-name>presence-app</app-name>
 <index>1</index>
 <mapping-rule>
 <protocol>SIP</protocol>
 <pattern>
 <and>
 <equal>
 <var>request.method</var>
 <value>SUBSCRIBE</value>
 </equal>
 <equal>
 <var>request.method</var>
 <value>PUBLISH</value>
 </equal>
 </and>
 </pattern>
 <subscriber-identity>.*</subscriber-identity>
 <request-uri>.*</request-uri>
 </mapping-rule>

Chapter 5
Converged Application Server Behavior

5-13

 </app>
 <app>
 <app-name>RouteToExternalURI</app-name>
 <index>2</index>
 <externalURI>sip:media@voicemail.com</externalURI>
 <mapping-rule>
 <protocol>SIP</protocol>
 <pattern>
 <and>
 <equal>
 <var>request.method</var>
 <value>INVITE</value>
 </equal>
 <contains>
 <var>request.uri</var>
 <value>voicemail</value>
 </contains>
 </and>
 </pattern>
 <subscriber-identity>.*</subscriber-identity>
 <request-uri>.*</request-uri>
 </mapping-rule>
 </app>
 </terminating>
</app-router-conf>

Notice the application named RouteToExternalURI, in the final app-name element.
This is a symbolic application name that enables routing to an external URI. The CAR
implementation adds the external URI to SipApplicationRouterInfo, which directs
the container to route the request to the external URI. You can configure more than
one special application, each with its own name, pattern, and index.

The pattern element syntax is the same as the pattern syntax used in sip.xml

The Application Router must provide the user identity of a subscriber to retrieve
subscriber information from external sources. For the IMS environment, the P-
Asserted-Identify header identifies the user by default. For non-IMS environments, the
From header identifies the user. You can specify which header should be used to
extract the user identity using the user-identity-header element.

For example:

<app-router-conf xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/sdp/app-def app-def.xsd"
 xmlns="http://www.oracle.com/sdp/app-def" >
 <external-resource>
 <file>
 <file-path>./approuter/lib/user.properties</file-path>
 </file>
 </external-resource>
 <user-identity-header>From</user-identity-header>

To access a database, you must specify the JNDI name for the JDBC connection the
SQL statement that selects the subscriber information.

Chapter 5
Converged Application Server Behavior

5-14

For example:

 <external-resource>
 <rdbms>
 <jdbc-jndi-name>jdbc/OwlcsLs</jdbc-jndi-name>
 <sql>select appname from userapp where aor=?</sql>
 </rdbms>
 </external-resource>

In this example, appname identifies the column name in the table that contains the
applications for the subscriber. The aor variable is the column name that represents the
subscriber. The parameter for this SQL will be the P-Asserted-Identity header or From header
of the initial request, as defined by the user-identity-header element.

If an HSS system is used as the external source, the diameter channel must be set up for
each server, as specified in the Converged Application Server Administrator's Guide.

Additional information you need to specify in the configuration file includes:

• file-path: The diameter configuration file path

• service-indication: The Service-Indication AVP value which is defined in the 3GPP 29.328
section 7.4

• app-element: The customer AVP name. Its value is the applications subscribed to by the
subscriber. In the context of the HSS, the app-element is the value of the ServiceData
AVP.

The configuration file may be like:

 <external-resource>
 <hss>
 <file-path>./approuter/lib/hssconfig.xml</file-path>
 <service-indication>ARTest</service-indication>
 <app-element>apps</app-element>
 </hss>
 </external-resource>

The diameter configuration file, hssconfig.xml in the example, must comply with the
Converged Application Server diameter.xml format, and be located in the following directory:

Domain_Home/approuter/lib, where Domain_Home is the domain's home directory.

An example of the hssconfig.xml file is as follows:

<?xml version="1.0" encoding="utf-8"?>
<diameter xmlns="http://www.bea.com/ns/wlcp/diameter/300" xmlns:xsi= "http://
www.w3.org/2001/XMLSchema-instance">
 <configuration>
 <name>hssclient</name>
 <target>engine1</target>
 <target>engine2</target>
 <host>hssclient</host>
 <realm>bea.com</realm>

 <message-debug-enabled>true</message-debug-enabled>

Chapter 5
Converged Application Server Behavior

5-15

 <application>
 <name>WlssShApplication</name>
 <class-name>com.bea.wcp.diameter.sh.WlssShApplication</class-
name>
 <param>
 <name>destination.host</name>
 <value>hss</value>
 </param>
 </application>

 <peer>
 <host>hss</host>
 <address>10.0.0.206</address>
 <port>3900</port>
 </peer>
 </configuration>
</diameter>

Properties can also reside externally. This may be useful in testing or evaluation
scenarios. In this case, you only need to configure the file path.

 <external-resource>
 <file>
 <file-path>./approuter/lib/user.properties</file-path>
 </file>
 </external-resource>

The file, user.properties in the example, should contain configuration information
consisting of name-value pairs, and should be parsable by a Java Properties class. It
should be located in the following directory:

Domain_Home/approuter/lib, where Domain_Home is the domain's home directory.

The format of each line in the user properties file should be subscriber name followed
by the applications available to the subscriber.

For example:

alice@example.com=proxyregistrar,app2,app1bob@example.com=proxyregistra
r,app1

The index element specifies the order of invocation for the applications. The lower
number has higher priority. The index must start at 0.

The mapping-rule element is used to determine if the application should be invoked by
a special initial request. The value of subscriber-identity and request-uri must be Java
regular expression. Only if the initial request matches all conditions, including protocol,
pattern, subscriber-identity and request-uri, can the request be targeted to the
application.

Session Key-Based Request Targeting
The SIP Servlet v2.0 specification provides a mechanism for associating an initial
request with an existing SipApplicationSession object. This mechanism is called

Chapter 5
Session Key-Based Request Targeting

5-16

session key-based targeting. Session key-based targeting is used to direct initial requests
having a particular subscriber (request URI) or region, or other feature to an already-existing
SipApplicationSession, rather than generating a new session.

Accessing SIP Applications Using SIP Application Index Keys
To use this targeting mechanism with an application, you create a method that generates a
unique key and annotate that method with @SipApplicationKey. When the SIP container
selects that application (for example, as a result of the AR choosing it for an initial request), it
obtains a key using the annotated method, and uses the key and application name to
determine if the SipApplicationSession exists. If one exists, the container associates the
new request with the existing session, rather than generating a new session.

Note:

If you develop a spiral proxy application using this targeting mechanism, and the
application modifies the record-route more than once, it must generate different
keys for the initial request, if necessary, when processing record-route hops. If it
does not, then the application cannot discriminate record-route hops for subsequent
requests.

See section 18-30 in the SIP Servlet Specification v2.0 (http://jcp.org/en/jsr/detail?
id=359) for more information about using session key-based targeting.

Application Composition and SIP-HTTP Convergence
The @SipApplicationKey annotation is a useful tool you can employ to process HTTP
requests in a converged module. You can set up a JavaServer page to manage the call
states of a SIP application, an HTTP servlet to process HTTP requests and a proxy
application to proxy the call request to more than one user agent server (UAS).

Converged Application Server provides an example called convergence_indexkey that shows
how SIP application session index keys can be used to access SIP applications. It uses
application composition whereby more than one application is called to process the same SIP
request; and also shows SIP-HTTP session convergence.

The convergence_indexkey example employs the JSR 289 API interfaces called
javax.servlet.sip.ConvergedHttpSession and javax.servlet.sip.SipSessionsUtil. The example
is packaged as an exploded EAR file containing a web application and the Enterprise Java
Beans (EJB).

Note:

The web application and EJB access do not require the configuration file sip.xml.

For more information about accessing convergence_indexkey, see "Examples".

Chapter 5
Session Key-Based Request Targeting

5-17

http://jcp.org/en/jsr/detail?id=359
http://jcp.org/en/jsr/detail?id=359

Join and Replaces Header Support
Converged Application Server provides support for the use of both the Join and
Replaces headers. To learn how to create SIP applications that use the functionality
provided by the Join and Replaces headers, refer to the JSR 359 documentation and
APIs.

About the Join Header
The Join header, defined in RFC 3911, is for use with SIP Call Control and Multi-Party
applications. The Join header logically joins an existing SIP dialog with a new SIP
dialog. You can use this to enable features such as Call Forwarding, Message
Screening, and Call Center Monitoring.

The Join header contains information an application can use to match an existing SIP
dialog to a new dialog. You can use the Join header to add a new dialog or SIP
application session to an existing SIP application session in the same way that an
encoded URI is used. This is achieved by setting the call-id, to-tag, and from-tag
in the Join header of the SIP INVITE to match that of the existing dialog.

About the Replaces Header
The Replaces header, defined in RFC 3891, logically replaces an existing SIP dialog
with a new SIP dialog. You can use this functionality to enable features such as
Attended Call Transfer and Call Pickup.

The Replaces header contains information used to match and replace an existing SIP
dialog (using the call-id, to-tag, and from-tag) to the newly created dialog. The
Join header can be used to replace an existing SIP session associated with a SIP
application session with a new dialog/session. This is achieved by setting the call-id,
to-tag, and from-tag in the Replaces header of the INVITE to match that of an
existing dialog.

Note:

The SIP application must determine to send a BYE message using the
original dialog. Converged Application Server does not automatically send a
BYE message to terminate the original dialog.

Enabling Support for Join and Replaces Headers
Support for the Join and Replaces headers is disabled by default. If you have
applications that need to use the Join and Replaces headers, you must enable
Converged Application Server to handle these types of headers.

Chapter 5
Join and Replaces Header Support

5-18

Note:

Enabling support for the Join and Replaces header may affect the performance of
Converged Application Server. When enabling this feature ensure that your
deployment of Converged Application Server has enough memory, computing
power, and network bandwidth to function properly using Join- and Replaces-
enabled applications.

To enable support for Join and Replaces headers, edit the entry for the –
Dwlss.dialog.index.enabled=false command in the startWebLogic.sh script, and set its
value to true. The startWebLogic.sh script is located in the DOMAIN_HOME/bin directory,
where DOMAIN_HOME is the domain's home directory. When support for Join and Replace
headers is enabled, the entry in the startWebLogic.sh script appears as shown below:

–Dwlss.dialog.index.enabled=true

See the Converged Application Server Administrator's Guide learn more about the
startWebLogic.sh script and the start-up options it controls.

Chapter 5
Join and Replaces Header Support

5-19

6
Developing Converged Applications

This chapter describes how to develop converged Hypertext Transfer Protocol (HTTP) and
Session Initiation Protocol (SIP) applications with Oracle Communications Converged
Application Server.

Overview of Converged Applications
In a converged application, SIP protocol functionality is combined with HTTP or Java
Platform, Enterprise Edition (Java EE) components to provide a unified communication
service. For example, an online push-to-talk application might enable a customer to initiate a
voice call to ask questions about products in their shopping cart. The SIP session initiated for
the call is associated with the customer's HTTP session, which enables the employee
answering the call to view customer's shopping cart contents or purchasing history.

You must package converged applications that utilize Java EE components (such as EJBs)
into an Enterprise Archive (EAR) file. EAR is a file format used by Java EE for packaging one
or more modules into a single archive so that the deployment of the various modules onto an
application server happens simultaneously and coherently. It also contains XML files called
deployment descriptors which describe how to deploy the modules. Converged applications
that use SIP and HTTP protocols must be packaged in a single SAR or WAR file containing
both a sip.xml and a web.xml deployment descriptor file.You can optionally package the SIP
and HTTP Servlets of a converged application into separate SAR and WAR components
within a single EAR file.

The HTTP and SIP sessions used in a converged application can be accessed
programmatically through a common application session object. The SIP Servlet API also
helps you associate HTTP sessions with an application session.

Assembling and Packaging a Converged Application
The SIP Servlet specification fully describes the requirements and restrictions for assembling
converged applications. The following statements summarize the information in the SIP
Servlet specification:

• Use the standard SIP Servlet directory structure for converged applications.

• Store all SIP Servlet files under the WEB-INF subdirectory; this ensures that the files are
not served up as static files by an HTTP Servlet.

• A weblogic.xml deployment descriptor may be included to configure Servlet functionality
in the Converged Application Server container.

• Observe the following restrictions on deployment descriptor elements:

• The distributable tag can be present in sip.xml or specified using a SipApplication
annotation.

• context-param elements are shared for a given converged application. If you define the
same context-param element in sip.xml and in web.xml, the parameter must have the
same value in each definition.

6-1

• If either the display-name or icons element is required, the element must be
defined in both sip.xml and web.xml, and it must be configured with the same
value in each location.

Examples
Converged Application Server includes sample converged applications when installed
using the Complete Installation option. All source code, deployment descriptors, and
build files for the examples are found in

OCCAS_home/occas/samples/sipserver/examples

where, OCCAS_home is the directory in which the Converged Application Server
software is installed. By default, occas_home is a subdirectory of Oracle_home; for
example, Oracle_home/occas. For more information on these placeholders, see the
"Directory Placeholders" table in the first chapter of Converged Application Server
Installation Guide.

For descriptions of the examples, source code, and build files, see index.html under
the src sub-directory in the examples location.

Chapter 6
Examples

6-2

7
SIP Servlet Concurrency

This chapter describes how to develop Session Initiation Protocol (SIP) Servlet applications
that support concurrency in Oracle Communications Converged Application Server. It also
explains ways to develop portable applications without concurrency issues.

Multiple Servlets executing simultaneously may have active access to shared resources like
the SipSession and SipApplicationSession objects. These resources may also be accessed
concurrently from ServletTimer objects, from other Java Platform, Enterprise Edition (Java
EE) modules in a converged Java EE application, and by the SIP Servlet Container.
Operations, such as updating values of session attributes, carried out by different threads on
these objects can create concurrency issues, including deadlock, for some applications.

Note:

For details on the application program interface (API) described in this chapter, see
the Java SIP Servlet API 2.0 JavaDocs.

Specifying Concurrency Mode
A SIP Servlet application can specify the required level of concurrency control Converged
Application Server should apply while executing applications with the @SipApplication
annotation or in the deployment descriptor. Converged Application Server supports two
values for the ConcurrencyMode enum: VENDORSPECIFIC and APPLICATIONSESSION.

The following shows an example of a servlet specifying the concurrency mode.

Example 7-1 Setting the Concurrency Mode

package com.example;
import javax.servlet.sip.SipServlet;
@SipApplication (name = “SampleApplication", concurrencyMode =
 ConcurrencyMode.APPLICATIONSESSION)

Table 7-1 lists the available concurrency modes.

Table 7-1 Concurrency Modes

Mode Description

VENDORSPECIFIC Indicates that Converged Application Server can choose any
concurrency level it deems appropriate. The level of guarantee of
thread safety is determined by Converged Application Server. This is
the default.

7-1

Table 7-1 (Cont.) Concurrency Modes

Mode Description

APPLICATIONSESSION Indicates that Converged Application Server performs concurrency
control at the level of the application session. It ensures that two
messages belonging to the same application session are never
processed simultaneously. It also ensures that various timer tasks or
internal threads managed by Converged Application Server that
access the application session are not executed at the same time.

Concurrency Utilities
The Concurrency Utilities for Java EE specification explains how an application can
use Concurrency Utilities in an enterprise server environment. Converged Application
Server uses those utilities to execute asynchronous tasks and to let you develop
thread safe applications. A SIP Servlet application may use any of the Managed
Objects specified "Default Managed Objects".

Propagating SipApplicationSession Context
When a SIP Servlet application specifies a concurrency control of
ConcurrencyMode.APPLICATIONSESSION, Converged Application Server makes
sure that appropriate concurrency control is maintained. To effectively maintain the
concurrency control at the SipApplicationSession level, the active SIP application
session also needs to be passed as context information.

To enable this, Converged Application Server exposes one or more
ManagedExecutorService and ManagedScheduledExecutorService objects that
execute submitted tasks in a thread pool managed by the Converged Application
Server. The ManagedExecutorService object provides methods for submitting tasks
for execution. And the ManagedScheduledExecutorService object provides methods
for submitting delayed or periodic tasks for execution at specific times.

While executing the tasks, Converged Application Server makes sure that concurrency
control specified by the application is maintained.

Note:

Applications should use the default managed objects as specified in "Default
Managed Objects", to propagate a SIP Application Session.

When a servlet (or any other part of the application) submits a task using the default
ManagedExecutorService or ManagedScheduledExecutorService, apart from the
context information specified in the Concurrency Utilities for EE specification, the
active application session is also passed as the context information. The active
application session is responsible for the execution of the thread where the application
logic is running. Some examples are the application session of the SipServletMessage
that triggered servlet execution, the application session of the executing ServletTimer,
the relevant application session of the application listener, and the application session
of the ConvergedHttpSession of the HTTP servlet.

Chapter 7
Concurrency Utilities

7-2

If the task is submitted from a thread where no application session is active, then the
application can use the mechanism specified in "Specifying Application Session
Programmatically" for specifying an application session as the context.

To submit a scheduled task, the servlet container launches a new thread.

Specifying Application Session Programmatically
A thread might want to submit a task with a different application session as its context than
the context active when the task was submitted. In that case, the application is expected to
create a contextual object proxy using ContextService for submitting the task or by using
ManagedTask. The application can then specify an application session of its choosing as the
context by using one of the following execution properties:

• javax.servlet.sip.ApplicationSessionKey: Specifies the SIP application key.

• javax.servlet.sip.ApplicationSessionId: Specifies the application session ID.

• javax.servlet.sip.ApplicationSession.create: Indicates that the container creates a new
SipApplicationSession and uses it as the context.

Applications can also access these constants from javax.servlet.sip.SipServlet fields
SIP_APPLICATIONSESSION_KEY, SIP_APPLICATIONSESSION_ID, and
SIP_APPLICATIONSESSION_CREATE respectively. Table 7-2 lists the actions that
Converged Application server takes based on application settings.

Table 7-2 Application Settings and Actions Taken by Converged Application Server

Application Settings Resulting Converged Application Server Actions

Both javax.servlet.sip.ApplicationSessionKey and
javax.servlet.sip.ApplicationSessionId are specified by
the application.

javax.servlet.sip.ApplicationSessionId given
precedence.

Application session (specified by either
javax.servlet.sip.ApplicationSessionKey or
javax.servlet.sip.ApplicationSessionId) is invalid or
cannot be found.

Container aborts the execution of the task.

ManagedTaskListener.taskAborted is called throwing an
AbortedException.

javax.servlet.sip.ApplicationSession.create, and
javax.servlet.sip.ApplicationSessionId are specified by
the application.

Discards javax.servlet.sip.ApplicationSession.create

Both javax.servlet.sip.ApplicationSession.create and
javax.servlet.sip.ApplicationSessionKey are specified.

Uses the specified application session key to create the
SipApplicationSession.

If Converged Application Server finds an existing
application session with the specified application
session key, that application session will be used as the
context.

Only javax.servlet.sip.ApplicationSession.create is
specified.

Creates a new SipApplicationSession and uses that as
the context.

To avoid concurrency issues, applications are required to submit asynchronous tasks
whenever they use an application session different from the active application session. That
rule applies for all kinds of application components, such as SIP Servlets, HTTP Servlets,
other Java EE components, Servlet Timers, and asynchronous tasks.

Chapter 7
Concurrency Utilities

7-3

Maintaining Thread Safety with Multiple Application Session Contexts
Converged Application Server ensures that tasks are run in a thread safe manner with
respect to the SIP application session specified as the context. However, an
application should be careful while sharing the objects between tasks with a different
application session context. The thread safety of such objects, whether it is an
application-specific object or an object received from the container, must be
maintained by the application. For example, objects such as SipURI, or Address
should be cloned before they are shared between tasks.

ContextService
As specified in section 3.3 of the Concurrency Utilities for Java EE specification,
javax.enterprise.concurrent.ContextService allows applications to create contextual
objects without using a managed executor. Just like a submitted contextual task,
whenever a method on the contextual object is invoked, the method executes with the
thread context of the associated application component instance.

If a contextual proxy created using the default SIP context service (see "Default
Managed Objects") and if that contextual proxy is executed in a thread known to
Converged Application Server (for example, an HTTP Servlet thread or a MDB
thread), the application session context is set properly. This application session
context is based on the thread that created the contextual proxy. The application may
use the execution properties mentioned in "Specifying Application Session
Programmatically" to use a different application session as the context.

Note:

If the contextual proxy is executed directly on a thread that already has an
active SIP application session and the contextual proxy is created with
another SIP application session as the context, the container throws an
IllegalStateException.

Default Managed Objects
Converged Application Server provides preconfigured, default managed objects shown
in Table 7-3.

Table 7-3 Default Managed Objects

Java EE Object Converged Application Server Object

ManagedExecutorService java:comp/ManagedSipExecutorService

ManagedScheduledExecutorService java:comp/ManagedScheduledSipExecutorService

ContextService java:comp/SipContextService

ManagedThreadFactory java:comp/ManagedSipThreadFactory

The types of contexts propagated by the default objects include naming context,
classloader, and security information apart from the application session.

Chapter 7
Concurrency Utilities

7-4

Note:

An application must not use these default managed objects if it does not want the
application session context to be propagated.

Accessing an Active Application Session
You may want to access the application session that is active on the current thread, whether
it is from a thread running a submitted or scheduled task or from a thread executing the
servlet.

It is possible to access SipApplicationSession using SipSessionsUtil, and the ID, or
application key. Converged Application Server provides a more direct access to the active
application with the SipSessionsUtil.getCurrentApplicationSession() method. This method
is especially useful when the tasks are not Common Dependency Injection (CDI) managed
beans where the CDI built-in beans for injecting SipApplicationSession cannot be used.

Accessing Tasks Futures
A Future represents the result of an asynchronous computation. The methods of the Future
interface enable applications to check if the computation is complete, to wait for its
completion, and to retrieve the result of the computation.

Your application can access the Future (java.util.concurrent.Future) objects of submitted or
scheduled tasks that are not completed nor canceled. For

• Submitted tasks:

Asynchronous tasks are typically submitted to the ManagedExecutorService object. The
ManagedExecutorService object returns an instance of the Future interface object. For
information about:

– ManagedExecutorService, see

https://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/
ManagedExecutorService.html

– Future, see

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
Future.html

• Scheduled Tasks

Asynchronous tasks are typically scheduled with the
ManagedScheduledExecutorService object. The
ManagedScheduledExecutorService object returns an instance of the
ScheduledFuture object. For information about:

– ManagedScheduledExecutorService, see

https://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/
ManagedScheduledExecutorService.html

– ScheduledFuture, see

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
ScheduledFuture.html

Chapter 7
Concurrency Utilities

7-5

https://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/ManagedExecutorService.html
https://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/ManagedExecutorService.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/ManagedScheduledExecutorService.html
https://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/ManagedScheduledExecutorService.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ScheduledFuture.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ScheduledFuture.html

Caution:

Converged Application Server does not support both the get methods of the
ScheduledFuture interface. Applications can use the lifecycle events
associated with a ManagedTaskListener.

For information on the possible task lifecycle events that can occur when a
ManagedTaskListener is associated with a task, see:

https://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/
ManagedTaskListener.html

Accessing the Futures of Tasks in a Sip Application Session
Applications can access the Futures of tasks belonging to a SipApplicationSession
by one of the following methods:

• SipApplicationSession.getTaskFuture(String identityName)

This method returns the Future object of the task with the specified identity name,
belonging to the application session.

https://sipservlet-spec.java.net/javadoc/2.0/final/javax/servlet/sip/
SipApplicationSession.html#getTaskFuture(java.lang.String)
To use this method, applications are required to provide the unique identity name
within the SipApplicationSession for
javax.enterprise.concurrent.ManagedTask.IDENTITY_NAME execution
property, when submitting or scheduling the task. For more information, see

https://concurrency-ee-spec.java.net/javadoc/javax/enterprise/
concurrent/ManagedTask.html#IDENTITY_NAME

• SipApplicationSession.getTaskFutures()

This method returns the Future objects of all submitted or scheduled task
belonging to the application session. For more information on this method, see

https://sipservlet-spec.java.net/javadoc/2.0/final/javax/servlet/sip/
SipApplicationSession.html#getTaskFutures

About Saving Future Objects
Applications should not attempt to save the Future object of a scheduled task in the
Sip application session. Doing so will cause the application server to throw the
following error:

Example 7-2 Error Seen When Future Objects are Saved in Sip Application
Sessions

java.lang.IllegalArgumentException: Attribute must be serializable for
distributable application

Concurrency Examples
Example 7-3 shows submitting a task with an active SipApplication context.

Chapter 7
Concurrency Utilities

7-6

https://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/ManagedTaskListener.html
https://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/ManagedTaskListener.html
https://sipservlet-spec.java.net/javadoc/2.0/final/javax/servlet/sip/SipApplicationSession.html#getTaskFuture(java.lang.String)
https://sipservlet-spec.java.net/javadoc/2.0/final/javax/servlet/sip/SipApplicationSession.html#getTaskFuture(java.lang.String)
https://concurrency-ee-spec.java.net/javadoc/javax/enterprise/concurrent/ManagedTask.html#IDENTITY_NAME
https://concurrency-ee-spec.java.net/javadoc/javax/enterprise/concurrent/ManagedTask.html#IDENTITY_NAME
https://sipservlet-spec.java.net/javadoc/2.0/final/javax/servlet/sip/SipApplicationSession.html#getTaskFutures
https://sipservlet-spec.java.net/javadoc/2.0/final/javax/servlet/sip/SipApplicationSession.html#getTaskFutures

Example 7-3 Task with Active SipApplication Context

@SipServlet
public class ExamplePOJO1{
 @Resource(lookup="java:comp/ManagedSipExecutorService")
 ManagedExecutorService mes;
 @Invite
 protected void onInvite(SipServletRequest req) {
 // Create a task instance. MySipTask implements Callable...
 MySipTask sipTask = new MySipTask();
 // Submit the task to the ManagedExecutorService...
 Future sipFuture = mes.submit(sipTask);
 }
}

Example 7-4 shows submitting a task with a different SipApplicationSession context.

Example 7-4 Task with a Different SipApplication Context

@SipServlet
public class ExamplePOJO2{
 @Resource(lookup="java:comp/ManagedScheduledSipExecutorService")
 ManagedScheduledExecutorService mses;
 @Resource(lookup="java:comp/SipContextService")
 ContextService ctxSvc;
 @Invite
 protected void onInvite(SipServletRequest req) {
 SipApplicationSession sas = //...lookup using SipSessionsUtil
 // Set any custom context data through execution properties...
 Map<String, String> execProps = new HashMap<>();
 execProps.put("javax.servlet.sip.ApplicationSessionId", sas.getId());
 // Create a task instance. MySipTask implements Callable...
 MySipTask sipTask = new MySipTask();
 Callable task = ctxSvc.createContextualProxy
 (sipTask, execProps, Callable.class);
 // Submit the task to the ManagedScheduledExecutorService...
 Future sipFuture = mses.submit(task);
 }
}

Example 7-5 shows a more complete TaskHandler class.

Example 7-5 TaskHandler Class

@Dependent
public class TaskHandler {

 @Resource(lookup = "java:comp/SipContextService")
 ContextService sipCS;

 @Resource(lookup = "java:comp/ManagedSipExecutorService")
 ManagedExecutorService sipMES;

 @Inject
 SipSessionsUtil ssu;

 public void doIt(final String sasId, final String appState) {
 Map<String, String> props = new HashMap<>();
 props.put(SipServlet.SIP_APPLICATIONSESSION_ID, sasId);

 final SipSessionsUtil util = ssu;
 Runnable task = () -> {

Chapter 7
Concurrency Utilities

7-7

 final SipApplicationSession session =
 util.getCurrentApplicationSession();
 session.setAttribute("counter", 1);
 session.setAttribute("appState", appState);
 };

 task = sipCS.createContextualProxy(task, props, Runnable.class);
 task.run();
 }

 public void doAsync(final String sasId, final String appState) {
 Map<String, String> props = new HashMap<>();
 props.put(SipServlet.SIP_APPLICATIONSESSION_ID, sasId);

 final SipSessionsUtil util = ssu;

 Runnable task = (Runnable & Serializable) () -> {
 final SipApplicationSession session =
 util.getCurrentApplicationSession();
 int counter = (int) session.getAttribute("counter");
 session.setAttribute("counter", ++counter);
 session.setAttribute("appState", appState);
 };

 task = (Runnable) sipCS.createContextualProxy
 (task, props, Runnable.class, Serializable.class);
 sipMES.submit(task);
 }

Chapter 7
Concurrency Utilities

7-8

8
Managing Client Initiated Connections

This chapter describes how to manage client-initiated connections in Oracle Communications
Converged Application Server.

The Session Initiation Protocol (SIP) outbound specification, as defined in RFC-5656,
https://tools.ietf.org/html/rfc5656, specifies techniques for keeping connections that a
User Application (UA) establishes alive, especially in environments where the UA is behind a
Network Address Translation (NAT) device or a firewall. A SIP Servlet application may take
different roles with respect to those defined in RFC 5626 for keeping the connections alive.
For example, a SIP Servlet application may act as an authoritative proxy, an edge proxy, a
registrar, or a UA. Refer to RFC 5626 for more details about the exact procedure for
managing client-initiated connections.

Converged Application SIP Servlet containers support sending keep alive messages from a
user agent as well as responding to keep alive messages defined in RFC 5626. They also
support a FlowBinder interface for managing the connections as described in the following
sections.

In RFC 5626, a flow is a transport-layer association between two hosts that is represented by
the network address and port number of both ends and by the transport protocol. For
Transport Control Protocol (TCP), a flow is equivalent to a TCP connection. For User
Datagram Protocol (UDP), a flow is a bidirectional stream of datagrams between a single pair
of Internet Protocol (IP) addresses and ports of both peers.

From a SIP Servlet application's perspective, the flow is a transport layer association
between the SIP Servlet container and another SIP endpoint on a specific transport.

Table 8-1 describes the Flow interface's methods.

Table 8-1 Flow Interface Methods

Method Description

getToken() Retrieves the flow token representing a flow.

getLocalURI() Retrieves the SipURI representation of the local end of transport association.

getRemoteURI() Retrieves the SipURI representation of the remote end of transport association.

release() Indicates to the container that the application will not use the Flow object any
more.

isActive() Indicates whether the flow is active or not. Flow becomes inactive when it is
closed.

Applications may get an instance of a Flow that represents this transport layer association by
using the SipSession.getFlow(), Proxy.getFlow(), or ProxyBranch.getFlow() methods.

Retrieving a Flow Object from the Container
A SIP Servlet application can retrieve the Flow object corresponding to a flow token from the
container by using the SipServletContext.getFlow(String flowToken) method.

8-1

https://tools.ietf.org/html/rfc5656

Maintaining Connections Initiated by SIP User Agents
By default, when a SIP user agent located behind a NAT device or firewall initiates a
connection, the SIP container keeps the connections alive. SIP user agents located
behind a NAT are able to communicate with SIP nodes located on the other side of
NAT.

The associated configuration parameter, SIP Outbound Support, is accessible in the
Administration Console. The check box entry for SIP Outbound Support is selected,
by default. You can disable the default support for connections that SIP user agents
located behind a NAT initiate with SIP nodes located on the other side of NAT. To do
so, the General configuration tab for SIP Server in the Domain Structure for the
Administration Console and clear and the SIP Outbound Support check box.

If the check box for the SIP Outbound Support entry is cleared, all communication
handling between user agents located behind a NAT and SIP nodes located on the
other side of NAT is disabled. See "About Accessing the Administration Console" in
Converged Application Server Administrator's Guide.

UAC Sending Keep-Alive
If a SIP Servlet acting as a User Agent Client (UAC) sends a REGISTER request with
the headers required for RFC 5626 support, on receiving a 200 response to such a
request, if that response contains an outbound option-tag in the Require header field,
Converged Application Server starts sending keep-alive messages. These keep-alive
messages may be double Carriage Return Line Feeds (CRLFs) for connection-
oriented transports, such as TCP and Session Traversal Utilities for NAT (STUN)
binding requests as described in RFC 5626.

Example 8-1 shows an implementation of such a UAC:

Example 8-1 UAC Keep-Alive

void sendRegister(SipServletRequest register) throws Exception {
 register.setHeader("Supported", "path,outbound");
 // Add the instance ID...
 Parameterable contact = register.getParameterableHeader("Contact");
 contact.setParameter("+sip.instance", <instanceId>);
 // Add the registration ID...
 contact.setParameter("reg-id", <registrationId>);
 register.send();
}

// The container starts sending keep-alive messages...
@SuccessResponse
public void handle200ok (SipServletResponse resp) {
 Flow flow = resp.getSession().getFlow();
}

Handling Flow Failures
An instance of FlowListener may be configured as a SipListener. Whenever the flow
fails, the container invokes all configured FlowListeners. Applications may retrieve the
flow and complete the necessary business logic, which typically includes sending the
REGISTER message again.

Chapter 8
Maintaining Connections Initiated by SIP User Agents

8-2

Example 8-2 shows the FlowListener and FlowFailedEvent definitions.

Example 8-2 Flow Failure Handling

public interface FlowListener extends EventListener {
 void flowFailed(FlowFailedEvent flowFailedEvent);
}
public class FlowFailedEvent extends EventObject {
 public FlowFailedEvent(Flow flow) {
 super(flow);
 }
 public Flow getFlow() {
 return (Flow) super.getSource();
 }
}

Reusing a Flow
A UAC or a User Agent Server (UAS) may specify the flow to send messages on by using
one of the following methods.

• SipSession.setFlow(Flow flow).

• Proxy.setFlow(Flow flow)

• ProxyBranch.setFlow(Flow flow)

For example, a UAC can specify that the same flow that is used for sending REGISTER
messages be used for sending INVITE messages as shown in Example 8-3.

Example 8-3 Reusing a Flow

void sendInvite(SipServletRequest invite){
 Flow flow = // Retrieve the flow...
 invite.getSession().setFlow(flow);
 invite.send();
}

Implementing Edge Proxies
When an edge proxy is implemented using SIP Servlets, the application inserts the flow token
into the request as explained in RFC 5626. The application can retrieve flow tokens from the
Flow object for that purpose.

Example 8-4 illustrates how an application might implement this logic.

Example 8-4 Inserting a Flow Token in a Request

@Register
public void handleRegister(SipServletRequest request){
 Proxy proxy = request.getProxy();
 Flow flow = proxy.getFlow();
 proxy.setAddToPath(true);
 SipURI pathURI = proxy.getPathURI();
 pathURI.setUser("edge");
 pathURI.setParameter("flow", flow.getToken());
 pathURI.setParameter("ob", "true");
 proxy.proxyTo(request.getRequestURI());
}

Chapter 8
Reusing a Flow

8-3

Similarly, when a different request that needs to be forwarded to a UA arrives at the
edge proxy, it can look up the Flow object using the flow token present in the request.
After the retrieved flow object is set on the Proxy (or ProxyBranch) by using the
Proxy.setFlow(Flow flow) or ProxyBranch.setFlow(Flow flow) methods, the SIP
Servlet container uses the corresponding transport association to send the message.

Example 8-5 illustrates one such implementation.

Example 8-5 Looking up a Flow Object

@Invite
public void handleInvite(SipServletRequest request) {
 Address route = request.getPoppedRoute();
 String flowToken = route.getURI().getParameter("flow");
 Proxy proxy = request.getProxy();
 Flow flow = sipServletContext.getFlow(flowToken);
 proxy.setFlow(flow);
 proxy.proxyTo(request.getRequestURI());
}

Releasing a Flow
An application can signal to Converged Application Server that it is no longer
interested in using Flow by invoking the Flow.release() method. Converged
Application Server uses that signal while making the decision to stop the keep-alive
and/or terminating the underlying transport association. Since more than one
application may be using the same transport association, Flow.release() should not be
considered equivalent to terminating the transport association.

Chapter 8
Releasing a Flow

8-4

9
Back to Back User Agents

This chapter describes how to manage back-to-back user agents (B2BUAs) in Oracle
Communications Converged Application Server.

A B2BUA is a Session Initiation Protocol (SIP) element that acts as an endpoint for two or
more dialogs and forwards requests and responses between those two dialogs in some
fashion.

B2BUAs are sometimes considered undesirable because of their potential to break services.
That potential stems from the fact that they sit between two endpoints and, in some way,
mediate the signaling between those endpoints. If the B2BUA doesn't know about an end-to-
end service being used between those two endpoints, it may inadvertently break it.

B2BUAs are, however, an important tool for SIP application developers and as such are
supported by the SIP Servlet application program interface (API). Oracle Converged
Application Server supports a new helper class and some new methods to facilitate
implementing B2BUAs as defined by Java Specification Request (JSR) 359, https://
jcp.org/en/jsr/detail?id=359.

About Back to Back User Agents
There is no Internet Engineering Task Force (IETF) standard that defines how a B2BUA
behaves; however, it is largely assumed to be an entity that receives a request, upstream, as
a User Agent Server (UAS) and relays it as a new request based on the received request
downstream as a User Agent Client (UAC). Effectively, the application relays the request
downstream.

From a SIP servlet perspective, an application is considered a B2BUA if it indicates the
routing directive as CONTINUE.

Example 9-1 illustrates explicit linking.

Example 9-1 B2BUA Routing

 +--+
 | |
 req1 | req2 = factory.createRequest(appSession, | req2
------->| "INVITE", req1.getFrom(), req1.getTo()); |--------->
 | // Copy headers and content from req1... |
 | req2.setRoutingDirective(CONTINUE, req1);|
 | req2.send(); |
 +--+

Navigating Between the UAC and UAS Sides of a B2BUA
A common behavior of a B2BUA is to forward the requests and responses received on the
UAS side of the B2BUA to the UAC side and back again. Since both UAS and UAC sides of
the B2BUA contain their own SipSession objects, while receiving a request or response on
one side, an application often needs to navigate to a SipSession on the other side. To

9-1

https://jcp.org/en/jsr/detail?id=359
https://jcp.org/en/jsr/detail?id=359

facilitate this, applications can store session IDs of the peer session as an attribute in
the SipSession as shown in Example 9-2.

Example 9-2 Linking SIP Sessions

public void linkSessions(SipSession s1, SipSession s2) {
 s1.setAttribute(LINKED_SESSION_ID, s2.getId());
 s2.setAttribute(LINKED_SESSION_ID, s1.getId());
}

The linked sessions can then be retrieved by using the stored attributes as shown in
Example 9-3.

Example 9-3 Retrieving Linked SIP Sessions

private SipSession retrieveOtherSession(SipSession s) {
 String otherSessionId = (String) s.getAttribute(LINKED_SESSION_ID);
 return s.getApplicationSession().getSipSession(otherSessionId);
}

Many times, the UAC and UAS sides of the B2BUA need to access the
SipServletRequest on the other side. To facilitate this, applications may store the
request IDs of the SipServletRequest in each other as shown in Example 9-4.

Example 9-4 Linking Requests

@Bye
protected void handleBye(SipServletRequest bye1) throws IOException {
 SipSession otherSession = retrieveOtherSession(bye1.getSession());
 SipServletRequest bye2 = otherSession.createRequest("BYE");
 linkRequests(bye1, bye2);
 bye2.send();
}
private void linkRequests(SipServletRequest r1, SipServletRequest r2) {
 r1.setAttribute(LINKED_REQUEST_ID, r2.getId());
 r2.setAttribute(LINKED_REQUEST_ID, r1.getId());
}

When needed, the requests can then be accessed from the session, if they are active
as shown in Example 9-5.

Example 9-5 Retrieving Requests

@SuccessResponse @Bye
protected void byeResponse(SipServletResponse r1) throws IOException {
 SipServletRequest request = retriveLinkedRequest(r1.getRequest());
 SipServletResponse r2 = request.createResponse(r1.getStatus(),
 r1.getReasonPhrase());
 r2.send();
}
private SipServletRequest retriveLinkedRequest(SipServletRequest r1) {
 String requestId = (String) r1.getAttribute(LINKED_REQUEST_ID);
 SipSession session = retrieveOtherSession(r1.getSession());
 return session.getActiveRequest(requestId);
}

ACK and PRACK Handling in B2BUA
To forward an ACK request, the B2BUA needs to access the servlet on the other side
and the application needs to access final response. The application can retrieve the
final response of the INVITE request by using the

Chapter 9
About Back to Back User Agents

9-2

SipServletRequest.getFinalResponse() method. When an ACK request arrives, B2BUA
first retrieves the INVITE method from the other side by using the
SipSession.getActiveInvite(UAMode) method and then accesses the final response from
SipServletRequest as shown in Example 9-6.

Example 9-6 B2BUA Relaying ACK

@Ack
protected void handleAck(SipServletRequest uasAck) throws IOException {
 SipSession uacSession = retrieveOtherSession(uasAck.getSession());
 SipServletRequest uacInvite = uacSession.getActiveInvite(UAMode.UAC);
 SipServletRequest uacAck = uacInvite.getFinalResponse().createAck();
 uacAck.send();
}

For reliable provisional responses, B2BUA may establish a relationship between an incoming
reliable provisional response with the one relayed by the B2BUA. This can be done by saving
the reliable sequence number (RSeq) and the request ID as attributes in the response as
shown in Example 9-7.

Example 9-7 Linking Reliable Provisional Responses

@ProvisionalResponse
void provisionalResponse(SipServletResponse r1) throws Exception {
 SipServletRequest request = retriveLinkedRequest(r1.getRequest());
 SipServletResponse r2 = request.createResponse(r1.getStatus());
 if (r1.isReliableProvisional()) {
 String respId = r1.getProvisionalResponseId();
 r2.setAttribute(LINKED_RELIABLE_RESPONSE_ID, respId);
 r2.sendReliably();
 }
}

The linked provisional response may then be retrieved when the B2BUA forwards a PRACK
as shown in Example 9-8.

Example 9-8 Forwarding a PRACK

@Prack
void handlePrack(SipServletRequest prack) throws Exception {
 SipServletResponse r1 = prack.getAcknowledgedResponse();
 SipSession session = retrieveOtherSession(prack.getSession());
 String respId = (String) r1.getAttribute(LINKED_RELIABLE_RESPONSE_ID);
 SipServletResponse r2 =
 session.getUnacknowledgedProvisionalResponse(respId);
 r2.createPrack().send();
}

B2BUA and Forking
When an INVITE request is forked downstream, one request may receive responses on
different dialogs (derived sessions). Each response causes a transaction branch and is
represented in the SipServlet API by the InviteBranch interface.

A B2BUA forwards such responses on different branches as a UAS to create a new
InviteBranch using the SipServletRequest.createInviteBranch() method as shown in
Example 9-9.

Chapter 9
About Back to Back User Agents

9-3

Example 9-9 Sending a Response on a Particular Branch

@Invite
void handleInviteResponse(SipServletResponse r1) throws IOException {
 InviteBranch branch = r1.getSession().getActiveInviteBranch();
 if (branch != null) {
 SipSession uasSession = retrieveOtherSession(r1.getSession());
 if (uasSession == null) {
 SipServletRequest req =
 retreiveLinkedRequest(r1.getRequest());
 branch = req.createInviteBranch();
 }
 SipServletResponse r2 =
 branch.createResponse(r1.getStatus(), r1.getReasonPhrase());
 r2.send();
 }
}

One SipServletRequest may result in more than one branch. Therefore, when there
are circumstances where a B2BUA needs to access a particular branch, the B2BUA
must use the corresponding InviteBranch object. For example, while relaying an ACK
message, the B2BUA may access the final response from the InviteBranch object as
shown in Example 9-10.

Example 9-10 Relaying an ACK on a Particular Branch

@Ack
protected void handleAck(SipServletRequest uasAck) throws IOException {
 SipSession uacSession = retrieveOtherSession(uasAck.getSession());
 InviteBranch branch = uacSession.getActiveInviteBranch();
 if (branch != null) {
 SipServletResponse response = branch.getFinalResponse();
 response.createAck().send();
 }
}

Although non-INVITE requests can also be forked, the absence of ACK and PRACK
messages make their call flow much simpler. Similarly, non-INVITE requests do not
support sending responses on more than one dialog from the UAS. Thus, the SIP
Servlet API does not provide an API equivalent to the InviteBranch for non-INVITE
requests.

The B2BUA Helper Class
The B2BUA helper class contains useful methods for simple B2BUA operations, and
can be retrieved from the SipServletRequest by invoking the getB2buaHelper()
method on it:

B2buaHelper getB2buaHelper() throws IllegalStateException;

Invoking the getB2buaHelper() method also indicates to Converged Application
Server that this application wishes to be a B2BUA.

Any UA operation is permitted by the application but the application cannot act as
proxy after that, so any invocation to getProxy() must then throw a
IllegalStateException.

Chapter 9
The B2BUA Helper Class

9-4

Similarly, the getB2buaHelper() method throws an IllegalStateException if the application
has already retrieved a proxy handle by an earlier invocation of getProxy().

Note:

B2BUA helper class functionality can only be used for linking two legs (inbound and
outbound) and does not support all cases of forking at the B2B or downstream. A
B2BUA application may come across complex scenarios and call flows that can not
be implemented by using the B2BUA helper class.

Creating a New B2BUA Request
The behavior described in this section minimizes the risk of breaking end-to-end services by
copying all unknown headers from the incoming request to the outgoing request.

When an application receives an initial request for which it wishes to act as a B2BUA, it may
invoke the createRequest() method available in the B2buaHelper. This method creates a
request identical to the one provided as the first argument according to the following rules:

• All unknown headers and Route, From, and To headers are copied from the original
request to the new request. The container assigns a new From tag to the new request.

• Record-Route and Via header fields are not copied. The container adds its own Via
header field to the request when it is actually sent outside the application server.

• The headers in the new request can added to the optional headerMap, a Map of headers
used in place of the ones from origRequest, for example:

{“From" => {sip:myname@myhost.com},
“To" => {sip:yourname@yourhost.com} }

The only headers that can be set using this headerMap are non-system headers as well
as From, To, and Route headers. For Contact headers, only the user part and some
parameters are to be used as defined in 5.1.3 The Contact Header Field in JSR-359,
https://jcp.org/en/jsr/detail?id=359. The values in the map are defined in a
java.util.Set to account for multi-valued headers.

The values in headerMap MUST override the values in the request derived from the
origRequest. Specifically, they do not append header values. Attempts to set any other
system header results in an IllegalArgumentException.

• The linked boolean flag indicates whether the ensuing SipSession and
SipServletRequest are to be linked to the original ones. The concept of linking is
described in "Linked SIP Sessions and Linked Request".

• For non-REGISTER requests, the Contact header field is not copied but is populated by
Converged Application Server as usual.

Like other createRequest() methods, the returned request belongs to a new SipSession.

Chapter 9
The B2BUA Helper Class

9-5

https://jcp.org/en/jsr/detail?id=359

Note:

The SipFactory.createRequest(SipServletRequest origRequest, boolean
sameCallId) method has been deprecated in release 2.0 as the usage of this
method with sameCallId flag set to true actually breaks the provisions of RFC
3261, https://www.ietf.org/rfc/rfc3261.txt, where the Call-ID value
must be unique across dialogs. The use of
B2buaHelper.createRequest(SipServletRequest origRequest) is
recommended.

Linked SIP Sessions and Linked Request
This section describes using linked SIP sessions and requests in the context of
B2BUAs.

Explicit Session Linkage
A B2BUA usually contains two SipSessions (although there can be more than two).
The most common function of a B2BUA is to forward requests and responses from
one SipSession to the other, after performing some transformation, usually an
application of business logic. The B2buaHelper class simplifies the usage of this
pattern by optionally linking the two SipSessions and SipServletRequests when you
use it to create the new request:

SipServletRequest B2buaHelper.createRequest(SipServletRequest origRequest,
boolean linked, java.util.Map<java.lang.String, java.util.Set> headerMap)

The effect of this method when the linked parameter is true is to create a new
SipServletRequest using the original request, such that the two SipSessions and the
two SipServletRequests are linked together. When the two SipSessions and requests
are linked, you can to navigate from one to the other.

Example 9-11 shows how you can access a linked session.

Example 9-11 Accessing a Linked Session

doSuccessResponse(SipServletResponse response) {

 otherSession = B2buaHelper.getLinkedSession(response.getSession());
 // Do something on otherSession

}

The getLinkedSession() is defined in the B2buaHelper class. The helper class works
like a Visitor to the SipSession (and other classes) and encapsulates functionality
useful to a B2BUA implementation.

Similar to SipSessions, the linked SipServletRequest can be obtained from the
method:

B2buaHelper.getLinkedSipServletRequest(SipServletRequest)

Besides the B2buaHelper.createRequest() method, the linking can also be explicitly
achieved by calling:

B2buaHelper.linkSipSessions(session1, session2) throws IllegalArgumentException;

Chapter 9
The B2BUA Helper Class

9-6

https://www.ietf.org/rfc/rfc3261.txt

An IllegalArgumentException is thrown when sessions cannot be linked together, such as
when one or both sessions have terminated, or belong to different SipApplicationSessions, or
one or both have been linked to different SipSessions.

The following helper method unlinks other sessions that are linked with a session:

B2buaHelper.unLinkSipSessions(session) throws IllegalArgumentException;

Only one SipSession can be linked to another single SipSession belonging to the same
SipApplicationSession.

The linkage at the SipServletRequest level is implicit whenever a new request is created
based on the original with link argument as true. There is no explicit linking or unlinking of
SipServletRequests.

Implicit Session Linkage
Another useful method on B2buaHelper for subsequent requests is:

B2buaHelper.createRequest(SipSession session, SipServletRequest origRequest,
java.util.Map<java.lang.String, java.util.Set> headerMap) throws
IllegalArgumentException

The session is the SipSession on which this subsequent request is to be sent. The
origRequest is the request received on another SipSession on which this request is to be
created. The headerMap can contain any non-system header which needs to be overridden
in the resulting request. Any attempt to set a system header results in an
IllegalArgumentException. A call to the createRequest() method also automatically links the
two SipSessions, if they are not already linked, as well as the two SipServletRequests.

Access to Uncommitted Messages
The method SipServletMessage.isComitted(), defines the committed semantics for a
message:

public boolean isCommitted();

SipServletRequest and SipServletResponse objects always implicitly belong to a SIP
transaction. The transaction state machine, as defined by JSR-359, constrains the messages
that can legally be sent at various points of processing. If a servlet attempts to send a
message that violates the transaction state machine, the container throws an
IllegalStateException.

A SipServletMessage is committed when one of the following conditions is true:

• The message is an incoming request for which a final response has been generated.

• The message is an outgoing request that was sent.

• The message is an incoming non-reliable provisional response received by a servlet
acting as a UAC.

• The message is an incoming reliable provisional response for which a PRACK was
already generated.

Chapter 9
The B2BUA Helper Class

9-7

Note:

This scenario applies to containers that support the 100rel extension.

• The message is an incoming final response received by a servlet acting as a UAC
for a Non-INVITE transaction.

• The message is a response that has been forwarded upstream.

• The message is an incoming final response to an INVITE transaction and an ACK
was generated.

• The message is an outgoing request, the client transaction has timed out, and no
response was received from the UAS and the container generates a 408 response
locally.

The semantics of the committed message is that it cannot be further modified or sent
in any way.

The B2BUA Helper class method, B2buaHelper.getPendingMessages() gives the
application a list of uncommitted messages in the order of increasing CSeq based on
the UA mode, because there may be more than one request/response uncommitted
on a SipSession:

List<SipServletMessage> B2buaHelper.getPendingMessages(SipSession, UAMode);

The UAMode is an ENUM with values UAC or UAS. The same session can act as a
UAC or a UAS, and the UAMode indicates messages pertaining the particular mode.

For example, consider a B2BUA involved in a typical INV-200-ACK scenario that
receives an ACK on one leg and wishes to forward it to the other. The B2BUA could
call B2buaHelper.getPendingMessages(leg2Session, UAMode.UAC) to retrieve the
pending messages which contain the original 200 response received on the second
leg. The B2BUA can then create the ACK using the SipServletResponse.createAck()
method. A PRACK request can be created in a similar way from a reliable 1xx
response.

Original Request and Session Cloning
The incoming request that results in the creation of a SipSession is called the original
request. The application can create a response to the original request even if that
request was committed and the application does not have a reference to it. That is
necessary because the B2BUA application may need to send more than one
successful response to a request, for example, in the case when a downstream proxy
is forked and more than one success response must be forwarded upstream. A
response to the original request can be made using the
createResponseToOriginalRequest() method:

SipServletResponse B2buaHelper.createResponseToOriginalRequest(
 SipSession session,
 int status,
 String reasonPhrase) throws IllegalStateException;

This only works on initial requests, since only original requests require multiple
responses.

Chapter 9
The B2BUA Helper Class

9-8

The generated response must have a different To tag from the other responses generated to
the request and must result in a different SipSession. In this and similar cases, Converged
Application Server clones the original SipSession for the second and subsequent dialogs, as
defined in 8.2.3.2 Derived SipSessions of JSR-359, https://jcp.org/en/jsr/detail?
id=359. The cloned session object contains the same application data but its
createRequest() method creates requests belonging to that second or subsequent dialog,
that is, with a To tag specific to that dialog.

Request and Session Cloning and Linking
In the case above when more than one response is received on the UAC side, it results in a
cloned UAC SipSession. When the response is sent on the UAS side using the original
request, it is in context of the cloned UAS SipSession. Those SipSessions are pair-wise
linked for easy navigation.

For example, if UAS-1 is the SipSession on which the incoming request was received and
UAC-1 is the SipSession on which the outgoing request was relayed, then in the case of
multiple 2xx responses, one response is processed by the UAC-1 SipSession. When another
2xx response is received, Converged Application Server clones the UAC-1 SipSession to
create a UAC-2 SipSession to process this new response. The B2buaHelper has the
getLinkedSession() method to navigate from UAS-1 to UAC-1 and back again. As for the
cloned SipSession UAC-2, the B2buaHelper furnishes the UAS-2 (a clone of UAS-1) when
the getLinkedSession() method is invoked with UAC-2. The applications can then create the
response to the original request but now in the context of UAS-2 by invoking the method:

SipServletResponse B2buaHelper.createResponseToOriginalRequest(
 SipSession session-uas-2,
 int status,
 String reasonPhrase) throws IllegalStateException;

Chapter 9
The B2BUA Helper Class

9-9

https://jcp.org/en/jsr/detail?id=359
https://jcp.org/en/jsr/detail?id=359

10
Forking SIP Requests, Dialog Termination,
and Session Keep Alive

This chapter describes methods for forking SIP requests, SIP dialog termination and handling
session keep alive.

Forking SIP Requests
The forking of SIP requests means that multiple dialogs can be established from a single
request. When ever multiple dialogs are created due to forking a derived session is created
from the original session. Such derived sessions that effectively represent such sibling
dialogs belong to a forking context. The ForkingContext interface helps an application to
navigate to all such derived sessions. Thus a SipSession and its derived siblings belong to
the same forking context.

A ForkingContext is created whenever the first session on a new dialog is created and it
remains valid as long as at least one SipSession that belongs to the forking context remains
valid. Applications can obtain an instance of a ForkingContext using the
SipSession.getForkingContext() method.

When acting as a User Agent (UA), it is possible that an application might want to send a new
request on the same forking context, but on a different dialog. In that case such a request
establishes a new dialog. An example of such a request is the NOTIFY request as specified
in RFC 6665, https://tools.ietf.org/html/rfc6665. SIP servlet applications can create
new requests with the same forking Context using the method
ForkingContext.createRequest(String method).

Note:

For details on the API described in this section, see the Java SIP Servlet API 2.0
JavaDocs.

Binding Attributes to a ForkingContext
A servlet can bind an object attribute to a ForkingContext by name. Hence ForkingContext is
also an attribute store. See the discussion of Attribute Stores in Chapter 7 of JSR-359,
https://jcp.org/en/jsr/detail?id=359 for more details.

Creating a Request
When ForkingContext.createRequest() is called, Converged Application Server derives a
new session and creates a request using that session. Only NOTIFY requests can be created
since this API is only applicable in that scenario. When an application tries to create any
other requests, an IllegalArgumentException is thrown. The new derived session is created
based upon the first session setup in the forking context.

10-1

https://tools.ietf.org/html/rfc6665
https://jcp.org/en/jsr/detail?id=359

Cloning Attributes
A ForkingContext supports the flag, enableDerivedSessionAttributeCloning(), for
enabling or disabling the cloning of attributes when creating a derived session within
the forking context scope. In legacy implementations, when creating a derived session,
the attributes in the original session are retrieved and assigned to the new derived
session. The new derived session refers to the same attributes object of the original
session. When enableDerivedSessionAttributeCloning() is set to true, the attribute
values of the original session are cloned, and the derived session refers to a new
attributes object. The default value for enableDerivedSessionAttributeCloning() is
false.

Terminating Dialogs
When the ForkingContext.terminateDialogs() method is called, Converged
Application Server will terminate all SIP sessions of the forking context if they are not
explicitly excluded. This method is available for both UA and proxy modes. When
ForkingContext.terminateDialogs() is called in proxy mode, the feature proxy send
bye will be added to the terminate proxy dialogs.

Max-Breadth Header Support
The Max-Breadth header limits the number of parallel forks that can be made on a
Session Initiation Protocol (SIP) request by downstream proxies. Following RFC 5393,
https://tools.ietf.org/html/rfc5393, each downstream proxy distributes the Max-
Breadth among the active parallel branches so that the outgoing Max-Breadth is the
sum of the Max-Breadth header field values in all forwarded requests in the response
contexts that have not received a final response.

In Converged Application Server, the application decides the number of times the
request is forked in parallel. An application may explicitly set the breadth on the forked
requests by using the SipServletRequest.setMaxBreadth() method. Applications
may retrieve the forked request by using the ProxyBranch.getRequest() method.

If the received request contains no Max-Breadth header, the container uses 60 as the
default value.

In Converged Application Server, the SIP container is configured to automatically
check the Max-Breadth header. The associated configuration parameter, Max-Breadth
Check Support, is accessible in the Administration Console. The check box entry for
Max-Breadth Check Support is selected, by default. You can disable the automatic
checking of the Max-Breadth header. To do so, access the General configuration tab
for SIP Server in the Domain Structure for the Administration Console and clear the
Max-Breadth Check Support check box. See "About Accessing the Administration
Console" in Converged Application Server Administrator's Guide.

If a Proxy application does not set the breadth explicitly, Converged Application Server
distributes the available breadth evenly to the branches when the application invokes
the Proxy.proxyTo() or Proxy.startProxy() methods.

At the time of forking, if the sum of the Max-Breadth values of active parallel branches
exceeds the Max-Breadth of the original incoming request, Converged Application
Server throws an InsufficientBreadthException. For a proxy, this check is done when
the application invokes the Proxy.proxyTo() and Proxy.startProxy() methods.

Chapter 10
Forking SIP Requests

10-2

https://tools.ietf.org/html/rfc5393

Applications may catch this exception and send an error response (440) or attempt to proxy
again after adjusting the breadth.

Max-Breadth is used within Converged Application Server for loop detection.

Note:

For details on the SipServletRequest.setMaxBreadth() method, see the Java SIP
Servlet API 2.0 JavaDocs.

Loop Detection
There is a possibility that loops may occur in invoked applications, such as when A proxies to
B which proxies back to A. It is important that such loops be detected and handled.
Converged Application Server decrements the value of the Max-Forwards header whenever
a request is proxied internally, or whenever a request is forwarded by a servlet acting as a
Back to Back User Agent (B2BUA).

Converged Application Server also checks the Max-Breadth header to verify whether the
request can be proxied in parallel or forwarded to multiple destinations by a servlet acting as
a B2BUA in parallel. Converged Application Server generates an InsufficentBreadthException
when the Max-Breadth check fails.

SIP Dialog Termination
An application may terminate a Session Initiation Protocol (SIP) dialog using the
SipSession.terminateDialog method at any time. If the application is acting as a SIP user
agent on the SipSession, and if the SipSession corresponds to an established SIP dialog, or
a dialog-establishing transaction is pending, terminateDialog method call instructs the
container to send the appropriate SIP messages to terminate the dialog, otherwise the call
results in a no-op.

Note:

SIP dialogs are only created by the INVITE, REFER, and SUBSCRIBE methods,
and, therefore, terminateDialog only affects dialogs created by these methods. For
any other session, the method call will result in an IllegalStateException.

Once the terminateDialog method is called, the application cannot send any more messages
in the SipSession. Any attempt to do so will cause IllegalStateException to be thrown by the
SipServletMessage.send() method. Furthermore, the container will not invoke the
application's SipServlet service() or doXXX() methods from that point on. When the dialog is
terminated, the app is notified by the current
SipSessionListener.sessionReadyToInvalidate() method.

An application may terminate all dialogs belong to a forking context using
ForkingContext.terminateDialogs() method. The container will also terminate all derived
sessions that belong to the same ForkingContext, created after executing this method. For
more information, see "Forking SIP Requests".

Chapter 10
SIP Dialog Termination

10-3

Note:

This method will not terminate dialogs that belong to a proxy application.

In certain cases, an application may wish to modify the outgoing SIP message that the
container is sending in order to terminate a dialog. For example, the application may
want to add a Reason header to a BYE method, or a message content to a NOTIFY
method. There are also cases where the application may wish to be notified of
incoming SIP messages. The application may provide a listener using the following
method:

SipSession.terminateDialog(AutomaticProcessingListener listener)

The AutomaticProcessingListener should not make changes to message that subvert
the RFCs and container behavior in terminating the dialog. Oracle also recommends
that applications do not throw any exceptions during the execution of
AutomaticProcessingListener. Any exception thrown by the application will be ignored
by the SIP servlet container.

Table 10-1 describes the AutomaticProcessingListener methods.

Table 10-1 AutomaticProcessingListener Methods

Method Name Description

outgoingRequest(request) This method is invoked before Converged Application Server
sends a SIP request. The application may modify the request
in-place.

outgoingResponse(respons
e)

This method is invoked before the Converged Application
Server sends a SIP response. The application may modify the
response in-place.

incomingRequest(request) This method is invoked when the Converged Application Server
receives a SIP request.

incomingResponse(respons
e)

This method is invoked when the Converged Application Server
receives a SIP response.

Note:

For details on the API described in this section, see the Java SIP Servlet API
2.0 JavaDocs.

Terminating Proxy Dialogs
As defined in RFC 3261, https://www.ietf.org/rfc/rfc3261.txt, a SIP proxy must
not create and send requests in an established dialog. However, some 3GPP
applications need this ability (see 3GPP TS 24.229, http://www.3gpp.org/
dynareport/24229.htm, section 5.2.8.1.2 Release of an existing session). To support
that use case, a separate method is provided so that an application can terminate
proxy dialogs.

Chapter 10
SIP Dialog Termination

10-4

https://www.ietf.org/rfc/rfc3261.txt
http://www.3gpp.org/dynareport/24229.htm
http://www.3gpp.org/dynareport/24229.htm

Note:

Given the way that this method breaks RFC 3261, this method should be used with
caution and any application that uses it should be carefully tested. 3GPP
specifications also require a way where the termination messages are sent for
either one side of the proxy or both.

If the SipSession corresponds to an established SIP dialog, or a dialog-establishing
transaction is pending, the methods in Table 10-2 instruct the container to send the
appropriate SIP messages to terminate the dialog.

Table 10-2 Proxy Dialog Termination Methods

Method Name Description

terminateProxiedDialog(direction) Terminates the proxied dialog by sending
appropriate messages in the direction specified. For
example, if the direction is UAC, Converged
Application Server will send BYE message to
terminate an INVITE dialog in the direction of UAC.

terminateProxiedDialog(direction, listener) Terminates the proxied dialog by sending
appropriate messages in the direction specified.
Applications may intercept messages during
termination.

terminateProxiedDialog() Terminates the proxied dialog by sending
appropriate messages in both directions.

terminateProxiedDialog(listener) Terminates the proxied dialog by sending
appropriate messages in both the directions.
Applications may intercept messages during
termination.

Note:

An application should invoke the first two terminateProxiedDialog methods only
when it find using some other means that other side of the specified direction will
not respond. Any message on the other side may be ignored by Converged
Application Server.

Notes on Container Behavior
Converged Application Server uses the following RFCs as guidelines for correct dialog
termination behavior:

• RFC 3261, https://www.ietf.org/rfc/rfc3261.txt
• RFC 6665 (for SUBSCRIBE), https://tools.ietf.org/html/rfc6665
• RFC 3515 (for REFER), https://www.ietf.org/rfc/rfc3515.txt
• RFC 5057 (multiple dialogs), https://tools.ietf.org/html/rfc5057

Chapter 10
SIP Dialog Termination

10-5

https://www.ietf.org/rfc/rfc3261.txt
https://tools.ietf.org/html/rfc6665
https://www.ietf.org/rfc/rfc3515.txt
https://tools.ietf.org/html/rfc5057

• RFC 5407 (race states), https://tools.ietf.org/html/rfc5407
• RFC 6026 (an update to RFC 3261), https://tools.ietf.org/html/rfc6026
The following sections provide examples of Converged Application Server behavior in
terminating SIP dialogs based on those RFCs. In the examples, the terms UA, UAC
and UAS should be understood to mean the Converged Application Server acting on
behalf of an UA application that has called SipSession.terminateDialog(). Similarly,
when a proxy dialog is being terminated using SipSession.terminateProxiedDialog(),
these terms corresponds to the direction(s) in which the messages are being sent.

INVITE Dialog
Keep in mind the following INVITE dialog points:

• When a dialog is in its early state, a caller UA must send CANCEL to terminate the
dialog. (While RFC3261 allows sending CANCEL or BYE, RFC 5407 section 2
says UAC MAY send BYE, but not recommended, so Converged Application
Server sends a CANCEL request.). The callee UA can send an error as a final
response.

• The callee's UA must not send a BYE on a confirmed dialog until it has received
an ACK for its 2xx response or until the server transaction times out. (See
RFC3261 sec 15, and RFC6026).

• When a UA receives a BYE, it must respond to any pending requests received for
that dialog with a 487 response (RFC3261 sec 15.1.2).

• While not specified explicitly, a UA should respond to any pending requests before
sending BYE. Converged Application Server sends a 487 response code when
responding to pending requests.

• Various race conditions as described by RFC5407, for example when a requests
have arrived after a UA has sent BYE, are responded to.

SUBSCRIBE Dialog
Keep in mind the following SUBSCRIBE dialog points:

• A SUBSCRIBE dialog can be created explicitly by subscriber sending
SUBSCRIBE.

• A SUBSCRIBE dialog can also be created implicitly by REFER.

• A subscription is destroyed when a UA acting as notifier sends a NOTIFY request
with a "Subscription-State" of "terminated". If the dialog is not otherwise in use, the
SIP dialog is terminated.

• A UA acting as a subscriber cannot explicitly terminate a subscription. A UA acting
as subscriber may send a SUBSCRIBE request with an "Expires" header of 0 in
order to trigger the notifier to send a NOTIFY request that destroys the
subscription.

Multiple Dialogs
Keep in mind the following points when using multiple dialogs:

• It is possible for a dialog to have multiple usages (RFC 5057). For the purpose of
dialog termination, in order to terminate the dialog the UA must terminate each of
those usages independently in order to terminate the entire dialog.

Chapter 10
SIP Dialog Termination

10-6

https://tools.ietf.org/html/rfc5407
https://tools.ietf.org/html/rfc6026

• The order in which messages are sent to terminate the usages is not important. For
example, the UA may need to send BYE and NOTIFY to terminate the INVITE and
SUBSCRIBE usages in a dialog respectively, and the UA may send these messages in
either order.

Session Keep Alive
Session Initiation Protocol (SIP) user agents (UAs) and proxies depend on session
terminating messages to end the session and clean up resources. When a terminating
message does not arrive, Converged Application Server supports a mechanism to determine
whether the session should be kept alive or not as explained in this section. For instance,
when a UA fails to send a BYE message at the end of a session, or when the BYE message
is lost due to network problems, a Call Stateful Proxy (CSP) needs to know when the session
has ended.

RFC 4028 defines an extension that defines a keep alive mechanism for SIP sessions. UAs
send periodic re-INVITE or UPDATE requests to keep the session alive. The interval for the
session refresh requests is determined through a negotiation mechanism defined in RFC
4028. If a session refresh request is not received before the interval passes, the session is
considered terminated. Both UAs are supposed to send a BYE, and CSPs can remove any
state for the call. Converged Application Server supports this keep alive mechanism as
defined in this section.

Enabling Session Keep Alive
A SIP servlet can enable the session keep alive by setting appropriate keep alive preference
to generate an initial session refresh request, and can retrieve a
SessionKeepAlive.Preference object using the method
SipServletMessage.getSessionKeepAlivePreference(). The servlet can then enable the
keep alive by invoking SessionKeepAlive.Preference.setEnabled(true). Converged
Application Server sets the headers (Session-Expires, Supported, Min-SE, and others) as
specified in RFC 4028 by using the values specified in SessionKeepAlive.Preference if the
session keep alive is enabled.

If a User Agent Client (UAC) wants the session timer to be applied to the session, the UAC is
required to enable the session keep alive by invoking
SessionKeepAlive.Preference.setEnabled(true)before sending the initial session refresh
request. Converged Application Server sets Session-Expires to a default value of 1800
seconds once the keep alive is enabled, if it has not been set previously.

For proxies and User Agent Servers (UAS), session keep alive is enabled, if the initial
session refresh request contains a Session-Expires header. If there is no Session-Expires
header in the request, then the UAS or proxy may apply a session timer to the session by
enabling the session keep alive.

Once session keep alive is enabled, Converged Application Server follows the procedures
specified in RFC 4028 for UAC, Proxy, and UAS for activating session timer for the session.

Note:

For details on the API described in this section, see the Java SIP Servlet API 2.0
JavaDocs.

Chapter 10
Session Keep Alive

10-7

Disabling Session Keep Alive
The proxy and UAS may receive a session refresh request with a Session-Expires
header. In that case, by default, session keep alive is enabled. If a proxy or UAS does
not want to take part in the session keep alive activity, then it may choose to disable
the session keep alive by invoking SessionKeepAlive.Preference.setEnabled(false).

Note:

Disabling session keep alive does not mean that a UAC will not send session
refresh requests any more. It may continue to send session refresh requests
if the session keep alive remains enabled.

Refreshing Sessions
When the UA that enabled session keep alive assumes the role of refresher,
Converged Application Server schedules a keep alive timer. However Converged
Application Server will not send a refresh request on its own. A SIP servlet can provide
a refresh callback that will be executed by Converged Application Server at the
appropriate time for sending the session refresh request. The refresh callback needs
to implement the SessionKeepAlive.Callback interface.

Example 10-1 illustrates such a callback.

Example 10-1 Refreshing a Session

request.getSessionKeepAlivePreference().setEnabled(true);
SessionKeepAlive skl = request.getSession().getKeepAlive();
skl.setRefreshCallback(new SessionKeepAlive.Callback() {
 @Override
 public void handle(SipSession session) {
 try {
 session.createRequest("UPDATE").send();
 } catch (IOException e) {
 }
 }
});

Converged Application Server invokes the refresh callback once half of the session
expiration interval has elapsed. If the application sends a refresh request on its own by
that time, Converged Application Server will re-calculate the next session expiration
time and invoke the refresh callback accordingly.

An application can remove the refresh callback by setting a null refresh task by
invoking SessionKeepAlive.setRefreshCallback(null);

Expiring Sessions
When a Proxy or UA does not receive a session refresh request before the expiration
interval, Converged Application Server invokes the expiry callback. The expiry
callback needs to implement SessionKeepAlive.Callback interface as shown in
Example 10-2.

Chapter 10
Session Keep Alive

10-8

Example 10-2 Expiring a Session

request.getSessionKeepAlivePreference().setEnabled(true);
SessionKeepAlive skl = request.getSession().getKeepAlive();
skl.setExpiryCallback(new SessionKeepAlive.Callback() {
 @Override
 public void handle(SipSession session) {
 try {
 session.createRequest("BYE").send();
 } catch (IOException e) {
 }
 }
});

Sending Provisional Responses to Non-Invite Requests
In Converged Application Server, if the application or proxy does not respond to a non-invite
request before the TimerE reaches T2, the container responds with a 100 TRYING to the
request. It does so, if the container has not otherwise responded after the amount of time it
takes a client transaction's TimerE to be reset to T2. For more information about TimeE and
SIP Non-Invite actions, please refer to RFC 4320 at

http://tools.ietf.org/html/rfc4320
The associated configuration parameter, Enable Sending 100 For Non-Invite Request
Support, is accessible in the Administration Console. The check box entry for Enable
Sending 100 For Non-Invite Request Support is selected, by default. You can disable the
container from responding with a 100 TRYING to such non-invite requests. To do so, access
the General configuration tab for SIP Server in the Domain Structure for the Administration
Console and clear the Enable Sending 100 For Non-Invite Request Support check box.
See "About Accessing the Administration Console" in Converged Application Server
Administrator's Guide.

422 Responses
UAS and Proxy applications are expected to generate a 422 response if they find that the
session expiration interval is too small. Similarly, UACs are expected to handle the 422
response and retry the request as specified in RFC 4028.

Chapter 10
Session Keep Alive

10-9

http://tools.ietf.org/html/rfc4320

11
Using Compact and Long Header Formats for
SIP Messages

This chapter describes how to use the Oracle Communications Converged Application Server
SipServletMessage interface and configuration parameters to control Session Initiation
Protocol (SIP) message header formats.

Overview of Header Format APIs and Configuration
Applications that operate on wireless networks may want to limit the size of SIP headers to
reduce the size of messages and conserve bandwidth. Java Specification Request (JSR) 359
provides the SipServletMessage.setHeaderForm() method, which enables application
developers to set a long or compact format for the value of a given header.

One feature of the SipServletMessage application program interface (API) provided in JSR
359 is the ability to set long or compact header formats for the entire SIP message using the
setHeaderForm method.

In addition to SipServletMessage, Converged Application Server provides a container-wide
configuration parameter that can control SIP header formats for all system-generated
headers. This system-wide parameter can be used along with
SipServletMessage.setHeaderForm and SipServletMessage.setHeader to further customize
header formats.

Summary of Compact Headers
Table 11-1 defines the compact header abbreviations described in the SIP specification
(http://www.ietf.org/rfc/rfc3261.txt). Specifications that introduce additional headers
may also include compact header abbreviations.

Table 11-1 Compact Header Abbreviations

Header Name (Long Format) Compact Format

Call-ID i

Contact m

Content-Encoding e

Content-Length l

Content-Type c

From f

Subject s

Supported k

To t

Via v

11-1

http://www.ietf.org/rfc/rfc3261.txt

Summary of API and Configuration Behavior
Header formats can be specified at the header, message, and SIP Servlet container
levels. Table 11-2 shows the header format that results when adding a new header
with SipServletMessage.setHeader, given different container configurations and
message-level settings with WlssSipServletResponse.setUseHeaderForm.

Table 11-2 API Behavior when Adding Headers

SIP Servlet
Container Header
Configuration
(use-compact-
form Setting)

WlssSipServletMessage.
setUseHeaderForm Setting

SipServletMessage.
setHeader Value

Resulting
Header

COMPACT DEFAULT “Content-Type" “Content-Type"

COMPACT DEFAULT “c" “c"

COMPACT COMPACT “Content-Type" “c"

COMPACT COMPACT “c" “c"

COMPACT LONG “Content-Type" “Content-Type"

COMPACT LONG “c" “Content-Type"

LONG DEFAULT “Content-Type" “Content-Type"

LONG DEFAULT “c" “c"

LONG COMPACT “Content-Type" “c"

LONG COMPACT “c" “c"

LONG LONG “Content-Type" “Content-Type"

LONG LONG “c" “Content-Type"

FORCE_COMPACT DEFAULT “Content-Type" “c"

FORCE_COMPACT DEFAULT “c" “c"

FORCE_COMPACT COMPACT “Content-Type" “c"

FORCE_COMPACT COMPACT “c" “c"

FORCE_COMPACT LONG “Content-Type" “Content-Type"

FORCE_COMPACT LONG “c" “Content-Type"

FORCE_LONG DEFAULT “Content-Type" “Content-Type"

FORCE_LONG DEFAULT “c" “Content-Type"

FORCE_LONG COMPACT “Content-Type" “c"

FORCE_LONG COMPACT “c" “c"

FORCE_LONG LONG “Content-Type" “Content-Type"

FORCE_LONG LONG “c" “Content-Type"

Table 11-3 shows the system header format that results when setting the header
format with WlssSipServletResponse.setUseHeaderForm given different container
configuration values.

Chapter 11
Summary of API and Configuration Behavior

11-2

Table 11-3 API Behavior for System Headers

SIP Servlet Container
Header Configuration (use-
compact-form Setting)

WlssSipServletMessage.
setUseHeaderForm Setting

Resulting Contact Header

COMPACT DEFAULT “m"

COMPACT COMPACT “m"

COMPACT LONG “Contact"

LONG DEFAULT “Contact"

LONG COMPACT “m"

LONG LONG “Contact"

FORCE_COMPACT DEFAULT “m"

FORCE_COMPACT COMPACT “m"

FORCE_COMPACT LONG “Contact"

FORCE_LONG DEFAULT “Contact"

FORCE_LONG COMPACT “m"

FORCE_LONG LONG “Contact"

Chapter 11
Summary of API and Configuration Behavior

11-3

12
Developing Custom Profile Service Providers

This chapter describes how to use the Profile Service API to develop custom profile providers
in Oracle Communications Converged Application Server.

Overview of the Profile Service API
Converged Application Server includes a profile service application program interface (API),
com.bea.wcp.profile.API, that may have multiple profile service provider implementations
can be used to create profile provider implementations. A profile provider performs the work
of accessing XML documents from a data repository using a defined protocol. Deployed
Session Initiation Protocol (SIP) Servlets and other applications need not understand the
underlying protocol or the data repository in which the document is stored; they simply
reference profile data using a custom URL, and Converged Application Server delegates the
request processing to the correct profile provider.

The provider performs the necessary protocol operations for manipulating the document. All
providers work with documents in XML Document Object Model (DOM) format, so client code
can work with many different types of profile data in a common way.

You can also use the profile service API to create a custom provider for retrieving document
schemas using another protocol. For example, a profile provider could be created to retrieve
subscription data from an Lightweight Directory Access Protocol (LDAP) store or a relational
database management system (RDBMS).

Note:

The Diameter Sh application also accesses profile data from a Home Subscriber
Server using the Sh protocol. Profile. Although applications access this profile data
using a simple URL, the Diameter applications are implemented using the Diameter
base protocol implementation rather than the profile provider API.

12-1

Figure 12-1 Profile Service API and Provider Implementation

Each profile provider implemented using the API may enable the following operations
against profile data:

• Creating new documents.

• Querying and updating existing documents.

• Deleting documents.

• Managing subscriptions for receiving notifications of profile document changes.

Clients that want to use a profile provider obtain a profile service instance through a
Servlet context attribute. They then construct an appropriate URL and use that URL
with one of the available Profile Service API methods to work with profile data. The
contents of the URL, combined with the configuration of profile providers, determines
the provider implementation that Converged Application Server to process the client's
requests.

The sections that follow describe how to implement the profile service API interfaces in
a custom profile provider.

Implementing Profile Service API Methods
A custom profile providers is implemented as a shared Java EE library (typically a
simple JAR file) deployed to the engine tier cluster. The provider JAR file must include,
at minimum, a class that implements com.bea.wcp.profile.ProfileServiceSpi. This
interface inherits methods from com.bea.wcp.profile.ProfileService and defines
new methods that are called during provider registration and unregistration.

In addition to the provider implementation, you must implement the
com.bea.wcp.profile.ProfileSubscription interface if your provider supports
subscription-based notification of profile data updates. A ProfileSubscription is
returned to the client subscriber when the profile document is modified.

Chapter 12
Implementing Profile Service API Methods

12-2

The Converged Application Server Java API Reference describes each method of the profile
service API in detail. Also keep in mind the following notes and best practices when
implementing the profile service interfaces:

• The putDocument, getDocument, and deleteDocument methods each have two distinct
method signatures. The basic version of a method passes only the document selector on
which to operate. The alternate method signature also passes the address of the sender
of the request for protocols that require explicit information about the requestor.

• The subscribe method has multiple method signatures to allow passing the sender's
address, as well as for supporting time-based subscriptions.

• If you do not want to implement a method in com.bea.wcp.profile.ProfileServiceSpi,
include a “no-op" method implementation that throws the
OperationNotSupportedException.

com.bea.wcp.profile.ProfileServiceSpi defines provider methods that are called during
registration and unregistration. Providers can create connections to data stores or perform
any required initializing in the register method. The register method also supplies a
ProviderBean instance, which includes any context parameters configured in the provider's
configuration elements in profile.xml.

Providers must release any backing store connections, and clean up any state that they
maintain, in the unregister method.

Configuring and Packaging Profile Providers
Providers must be deployed as a shared Java EE library, because all other deployed
applications must be able to access the implementation.

See "Creating Shared Java EE Libraries and Optional Packages" in Developing Applications
for Oracle WebLogic Server for information on how to assemble Java EE libraries. For most
profile providers, you can simply package the implementation classes in a JAR file and then
register the library with Converged Application Server.

After installing the provider as a library, you must also identify the provider class as a provider
in a profile.xml file. The name element uniquely identifies a provider configuration, and the
class element identifies the Java class that implements the profile service API interfaces.
One or more context parameters can also be defined for the provider, which are delivered to
the implementation class in the register method. For example, context parameters might be
used to identify backing stores to use for retrieving profile data.

Example 12-1 shows a sample configuration for a provider that accesses data using XCAP.

Example 12-1 Provider Mapping in profile.xml

<profile-service xmlns="http://www.bea.com/ns/wlcp/wlss/profile/300"
 xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema=instance"
 xmlns:wls="http;//www.bea.com/ns/weblogic/90/security/wls">
 <mapping>
 <map-by>provider-name</map-by>
 </mapping>
 <provider>
 <name>xcap</name>
 <provider-class>com.mycompany.profile.XcapProfileProvider</provider-class>
 <param>
 <name>server</name>
 <value>example.com</name>

Chapter 12
Configuring and Packaging Profile Providers

12-3

 </param>
 ...
 </provider>
</profile-service>

Mapping Profile Requests to Profile Providers
When an application makes a request using the Profile Service API, Converged
Application Server must find a corresponding provider to process the request. By
default, Converged Application Server maps the prefix of the requested URL to a
provider name element defined in profile.xml. For example, with the basic
configuration shown in Example 12-1, Converged Application Server would map
Profile Service API requests beginning with xcap:// to the provider class
com.mycompany.profile.XcapProfileProvider.

Alternately, you can define a mapping entry in profile.xml that lists the prefixes
corresponding to each named provider. Example 12-2 shows a mapping with two
alternate prefixes.

Example 12-2 Mapping a Provider to Multiple Prefixes

...
<mapping>
 <map-by>prefix</map-by>
 <provider>
 <provider-name>xcap</provider-name>
 <doc-prefix>sip</doc-prefix>
 <doc-prefix>subscribe</doc-prefix>
 </provider>
 <by-prefix>
<mapping>
...

If the explicit mapping capabilities of profile.xml are insufficient, you can create a
custom mapping class that implements the com.bea.wcp.profile.ProfileRouter
interface, and then identify that class in the map-by-router element. Example 12-3
shows an example configuration.

Example 12-3 Using a Custom Mapping Class

...
<mapping>
 <map-by-router>
 <class>com.bea.wcp.profile.ExampleRouter</class>
 </map-by-router>
</mapping>
...

Configuring Profile Providers Using the Administration
Console

You can optionally use the Administration Console to create or modify a profile.xml
file. To do so, you must enable the profile provider console extension in the config.xml
file for your domain.

Chapter 12
Configuring Profile Providers Using the Administration Console

12-4

Example 12-4 Enabling the Profile Service Resource in config.xml

...
 <custom-resource>
 <name>ProfileService</name>
 <target>AdminServer</target>
 <descriptor-file-name>custom/profile.xml</descriptor-file-name>
 <resource-
class>com.bea.wcp.profile.descriptor.resource.ProfileServiceResource</
resource-class>
 <descriptor-bean-
class>com.bea.wcp.profile.descriptor.beans.ProfileServiceBean</descriptor-
bean-class>
 </custom-resource>
</domain>

The profile provider extension appears under the SipServer node in the left pane of the
console, and enables you to configure new provider classes and mapping behavior.

Chapter 12
Configuring Profile Providers Using the Administration Console

12-5

13
Using Content Indirection in SIP Servlets

This chapter describes how to develop Session Initiation Protocol (SIP) Servlets that work
with indirect content specified in the SIP message body, and how to use the Oracle
Communications Converged Application Server content indirection API.

Overview of Content Indirection
Data provided by the body of a SIP message can be included either directly in the SIP
message body, or indirectly by specifying an HTTP URL and metadata that describes the
URL content. Indirectly specifying the content of the message body is used primarily in the
following scenarios:

• When the message bodies include large volumes of data. In this case, content indirection
can be used to transfer the data outside of the SIP network (using a separate connection
or protocol).

• For bandwidth-limited applications. In this case, content indirection provides enough
metadata for the application to determine whether or not it must retrieve the message
body (potentially degrading performance or response time).

Converged Application Server provides a simple application program interface (API) that you
can use to work with indirect content specified in SIP messages.

Using the Content Indirection API
The content indirection API provided by Converged Application Server helps you quickly
determine if a SIP message uses content indirection, and to easily retrieve all metadata
associated with the indirect content. The basic API consists of a utility class,
com.bea.wcp.sip.util.ContentIndirectionUtil, and an interface for accessing content
metadata, com.bea.wcp.sip.util.ICParsedData.

SIP Servlets can use the utility class to identify SIP messages having indirect content, and to
retrieve an ICParsedData object representing the content metadata. The ICParsedData object
has simple “getter" methods that return metadata attributes.

Additional Information
Complete details about content indirection are available in RFC 4483:

http://www.ietf.org/rfc/rfc4483.txt
See also the Converged Application Server Java API Reference for additional documentation
about the content indirection API.

13-1

http://www.ietf.org/rfc/rfc4483.txt

14
Securing SIP Servlet Resources

This chapter describes how to apply security constraints to Session Initiation Protocol (SIP)
Servlet resources when deploying to Oracle Communications Converged Application Server.

Overview of SIP Servlet Security
The SIP Servlet application program interface (API) specification defines a set of deployment
descriptor elements that can be used for providing declarative and programmatic security for
SIP Servlets. The primary method for declaring security constraints is to define one or more
security-constraint elements in the sip.xml deployment descriptor. The security-
constraint element defines the actual resources in the SIP Servlet, defined in resource-
collection elements, that are to be protected. security-constraint also identifies the role
names that are authorized to access the resources. All role names used in the security-
constraint are defined elsewhere in sip.xml in a security-role element.

SIP Servlets can also programmatically refer to a role name within the Servlet code, and then
map the hard-coded role name to an alternate role in the sip.xml security-role-ref
element during deployment. Roles must be defined elsewhere in a security-role element
before they can be mapped to a hard-coded name in the security-role-ref element.

For SIP servlet Plain Old Java Objects (POJOs), annotations available which provide
identical functionality:

• @SipSecurity: specifies security constraints to be enforced on SIP protocol messages.

• @SipConstraint: used within the @SipSecurity annotation to represent the security
constraint to be applied to all SIP protocol methods for which a corresponding
@SipMethodConstraint does not occur within the @SipSecurity annotation.

• @SipMethodConstraint: used within the @SipSecurity annotation to represent security
constraints on specific SIP protocol messages.

For information on using the @SipSecurity annotation see section 22.3.10.1 in JSR-359,
https://jcp.org/en/jsr/detail?id=359.

The SIP Servlet specification also enables Servlets to propagate a security role to a called
Enterprise JavaBean (EJB) using the run-as element. Once again, roles used in the run-as
element must be defined in a separate security-role element in sip.xml.

The SIP Servlet API specification provides more details about the types of security available
to SIP Servlets. SIP Servlet security features are similar to security features available with
HTTP Servlets; you can find additional information about HTTP Servlet security by referring
to these sections in the Oracle WebLogic Server documentation:

• The discussion on securing web applications in Programming WebLogic Security
provides an overview of declarative and programmatic security models for Servlets.

• The discussion on EJB security-related deployment descriptors in “Securing Enterprise
JavaBeans (EJBs)" in Programming WebLogic Security describes all security-related
deployment descriptor elements for EJBs, including the run-as element used for
propagating roles to called EJBs.

14-1

https://jcp.org/en/jsr/detail?id=359

See also the example sip.xml excerpt in Example 14-1.

Triggering SIP Response Codes
You can distinguish whether you are a proxy application, or a UAS application, by
configuring the container to trigger the appropriate SIP response code, either a 401
SIP response code, or a 407 SIP response code. If your application needs to proxy an
invitation, the 407 code is appropriate to use. If your application is a registrar
application, you must use the 401 code.

To configure the container to respond with a 407 SIP response code instead of a 401
SIP response code, you must add the <proxy-authentication> element to the
security constraint.

Specifying the Security Realm
You must specify the name of the current security realm in the sip.xml file as follows:

<login-config>
<auth-method>DIGEST</auth-method>
<realm-name>myrealm</realm-name>
</login-config>

Converged Application Server Role Mapping Features
When you deploy a SIP Servlet, security-role definitions that were created for
declarative and programmatic security must be assigned to actual principals and/or
roles available in the Servlet container. Converged Application Server uses the
security-role-assignment element in weblogic.xml to help you map security-role
definitions to actual principals and roles. security-role-assignment provides two
different ways to map security roles, depending on how much flexibility you require for
changing role assignment at a later time:

• The security-role-assignment element can define the complete list of principal
names and roles that map to roles defined in. This method defines the role
assignment at deployment time, but at the cost of flexibility; to add or remove
principals from the role, you must edit the sip.xml and weblogic.xml deployment
descriptors, and redeploy the SIP Servlet.

• The externally-defined element in security-role-assignment enables you to
assign principal names and roles to a sip.xml role at any time using the
Administration Console. When using the externally-defined element, you can
add or remove principals and roles to a sip.xml role without having to redeploy the
SIP Servlet.

Two additional XML elements can be used for assigning roles to the sip.xml
deployment descriptor's run-as element: run-as-principal-name and run-as-role-
assignment. These role assignment elements take precedence over security-role-
assignment elements if they are used, as described in "Assigning run-as Roles".

Optionally, you can choose to specify no role mapping elements in weblogic.xml to
use implicit role mapping, as described in "Using Implicit Role Assignment".

The sections that follow describe Converged Application Server role assignment in
more detail.

Chapter 14
Triggering SIP Response Codes

14-2

Using Implicit Role Assignment
With implicit role assignment, Converged Application Server assigns a security-role name
in sip.xml to a role of the exact same name, which must be configured in the Converged
Application Server security realm. To use implicit role mapping, you omit the security-role-
assignment element in weblogic.xml, as well as any run-as-principal-name, and run-as-
role-assignment elements use for mapping run-as roles.

When no role mapping elements are available in weblogic.xml, Converged Application
Server implicitly maps the sip.xml deployment descriptor's security-role elements to roles
having the same name. Note that implicit role mapping takes place regardless of whether the
role name defined in sip.xml is actually available in the security realm. Converged
Application Server displays a warning message anytime it uses implicit role assignment. For
example, if you use the “everyone" role in sip.xml but you do not explicitly assign the role in
weblogic.xml, the server displays the warning:

<Webapp: ServletContext(id=id,name=application,context-path=/context),
the role: everyone defined in web.xml has not been mapped to principals
in security-role-assignment in weblogic.xml.
Will use the rolename itself as the principal-name.>

You can ignore the warning message if the corresponding role has been defined in the
Converged Application Server security realm. The message can be disabled by defining an
explicit role mapping in weblogic.xml.

Use implicit role assignment if you want to hard-code your role mapping at deployment time
to a known principal name.

Assigning Roles Using security-role-assignment
The security-role-assignment element in weblogic.xml enables you to assign roles either
at deployment time or at any time using the Administration Console. The sections that follow
describe each approach.

Important Requirements
If you specify a security-role-assignment element in the weblogic.xml deployment
descriptor, Converged Application Server requires that you also define a duplicate security-
role element in a web.xml deployment descriptor. This requirement applies even if you are
deploying a pure SIP Servlet, which would not normally require a web.xml deployment
descriptor (generally reserved for HTTP Web Applications).

Chapter 14
Using Implicit Role Assignment

14-3

Note:

If you specify a security-role-assignment in weblogic.xml, but there is no
corresponding security-role element in web.xml, Converged Application
Server generates the error message:

The security-role-assignment references an invlaid security-role:
rolename

The server then implicitly maps the security-role defined in sip.xml
to a role of the same name, as described in "Using Implicit Role
Assignment".

For example, Example 14-1 shows a portion of a sip.xml deployment descriptor that
defines a security constraint with the role, roleadmin. Example 14-2 shows that a
security-role-assignment element has been defined in weblogic.xml to assign
principals and roles to roleadmin. In Converged Application Server, this Servlet must
be deployed with a web.xml deployment descriptor that also defines the roleadmin
role, as shown in Example 14-3.

If the web.xml contents were not available, Converged Application Server would use
implicit role assignment and assume that the roleadmin role was defined in the
security realm; the principals and roles assigned in weblogic.xml would be ignored.

Example 14-1 Declarative Security Constraints in sip.xml

...
 <security-constraint>
 <resource-collection>
 <resource-name>RegisterRequests</resource-name>
 <servlet-name>registrar</servlet-name>
 </resource-collection>
 <auth-constraint>
 <javaee:role-name>roleadmin</javaee:role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <javaee:role-name>roleadmin</javaee:role-name>
 </security-role>
...

Example 14-2 Example security-role-assignment in weblogic.xml

<weblogic-web-app>
 <security-role-assignment>
 <role-name>roleadmin</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>Fred</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Example 14-3 Required security-role Element in web.xml

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

Chapter 14
Assigning Roles Using security-role-assignment

14-4

 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <security-role>
 <role-name>roleadmin</role-name>
 </security-role>
</web-app>

Assigning Roles at Deployment Time
A basic security-role-assignment element definition in weblogic.xml declares a mapping
between a security-role defined in sip.xml and one or more principals or roles available in
the Converged Application Server security realm. If the security-role is used in combination
with the run-as element in sip.xml, Converged Application Server assigns the first principal
or role name specified in the security-role-assignment to the run-as role.

Example 14-2 shows an example security-role-assignment element. This example assigns
three users to the roleadmin role defined in Example 14-1. To change the role assignment,
you must edit the weblogic.xml descriptor and redeploy the SIP Servlet.

Dynamically Assigning Roles Using the Administration Console
The externally-defined element can be used in place of the <principal-name> element to
indicate that you want the security roles defined in the role-name element of sip.xml to use
mappings that you assign in the Administration Console. The externally-defined element
gives you the flexibility of not having to specify a specific security role mapping for each
security role at deployment time. Instead, you can use the Administration Console to specify
and modify role assignments at anytime.

Additionally, because you may elect to use this element for some SIP Servlets and not others,
it is not necessary to select the ignore roles and polices from DD option for the security
realm. (You select this option in the On Future Redeploys: field on the General tab on the
Security control panel in the Administration Console.) Therefore, within the same security
realm, deployment descriptors can be used to specify and modify security for some
applications while the Administration Console can be used to specify and modify security for
others.

Note:

When specifying security role names, observe the following conventions and
restrictions:

• The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

• Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The Oracle-suggested convention for security role names is that they be
singular.

Chapter 14
Assigning Roles Using security-role-assignment

14-5

http://www.w3.org/TR/REC-xml#NT-Nmtoken

Example 14-4 shows an example of using the externally-defined element with the
roleadmin role defined in Example 14-1. To assign existing principals and roles to the
roleadmin role, the Administrator would use the Converged Application Server
Administration Console.

See “Users, Groups, and Security Roles" in Securing Resources Using Roles and
Policies for Oracle WebLogic Server for information about adding and modifying
security roles by using the Administration Console.

Example 14-4 Example externally-defined Element in weblogic.xml

<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <externally-defined/>
 </security-role-assignment>
</weblogic-web-app>

Assigning run-as Roles
The security-role-assignment described in "Assigning Roles Using security-role-
assignment" can be also be used to map run-as roles defined in sip.xml. Note,
however, that two additional elements in weblogic.xml take precedence over the
security-role-assignment if they are present: run-as-principal-name and run-as-
role-assignment.

run-as-principal-name specifies an existing principle in the security realm that is
used for all run-as role assignments. When it is defined within the servlet-
descriptor element of weblogic.xml, run-as-principal-name takes precedence
over any other role assignment elements for run-as roles.

run-as-role-assignment specifies an existing role or principal in the security realm
that is used for all run-as role assignments, and is defined within the weblogic-web-
app element.

Example 14-5 shows an example of a configured run-as role in a sip.xml descriptor.

Example 14-5 run-as Roles in sip.xml

...
 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>com.mycompany.MyServlet</servlet-class>
 <run-as>
 <role-name>weblogic</role-name>
 </run-as>
 </servlet>
...

See "weblogic.xml Deployment Descriptor Reference" for more information about
individual weblogic.xml descriptor elements. See also "Role Assignment Precedence
for SIP Servlet Roles" for a summary of the role mapping precedence for declarative
and programmatic security as well as run-as role mapping.

Chapter 14
Assigning run-as Roles

14-6

Role Assignment Precedence for SIP Servlet Roles
Converged Application Server provides several ways to map sip.xml roles to actual roles in
the SIP Container during deployment. For declarative and programmatic security defined in
sip.xml, the order of precedence for role assignment is:

1. If weblogic.xml assigns a sip.xml role in a security-role-assignment element, the
security-role-assignment is used.

Note:

Converged Application Server also requires a role definition in web.xml in order
to use a security-role-assignment. See "Important Requirements".

2. If no security-role-assignment is available (or if the required web.xml role assignment
is missing), implicit role assignment is used.

For run-as role assignment, the order of precedence for role assignment is:

1. If weblogic.xml assigns the sip.xml deployment descriptor's run-as role in a run-as-
principal-name element defined within servlet-descriptor, the run-as-principal-
name assignment is used.

Note:

Converged Application Server also requires a role definition in web.xml in order
to assign roles with run-as-principal-name. See "Important Requirements".

2. If weblogic.xml assigns the sip.xml deployment descriptor's run-as role in a run-as-
role-assignment element, the run-as-role-assignment element is used.

Note:

Converged Application Server also requires a role definition in web.xml in order
to assign roles with run-as-role-assignment. See "Important Requirements".

3. If weblogic.xml assigns the sip.xml deployment descriptor's run-as role in a security-
role-assignment element, the security-role-assignment is used.

Note:

Converged Application Server also requires a role definition in web.xml in order
to use a security-role-assignment. See "Important Requirements".

4. If no security-role-assignment is available (or if the required web.xml role assignment
is missing), implicit role assignment is used.

Chapter 14
Role Assignment Precedence for SIP Servlet Roles

14-7

Debugging Security Features
If you want to debug security features in SIP Servlets that you develop, specify the -
Dweblogic.Debug=wlss.Security startup option when you start Converged
Application Server. Using this debug option causes Converged Application Server to
display additional security-related messages in the standard output.

weblogic.xml Deployment Descriptor Reference
The weblogic.xml DTD contains detailed information about each of the role mapping
elements discussed in this section. See “weblogic.xml Deployment Descriptor
Elements" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic
Server.

Chapter 14
Debugging Security Features

14-8

15
Enabling Message Logging

This chapter describes how to use Oracle Communications Converged Application Server
message logging features on a development system.

Overview
Message logging records Session Initiation Protocol (SIP) and Diameter messages (both
requests and responses) received by Converged Application Server. This requires that the
logging level be set to at least the INFO level. You can use the message log in a development
environment to check how external SIP requests and SIP responses are received. By
outputting the distinguishable information of SIP dialogs such as Call-IDs from the application
log, and extracting relevant SIP messages from the message log, you can also check SIP
invocations from HTTP servlets and so forth.

Note:

The message logging functionality logs all SIP requests and responses; do not
enable this feature in a production system. In a production system, you can instead
configure one or more logging Servlets, which enable you to specify additional
criteria for determining which messages to log. See “Logging SIP Requests and
Responses" in Converged Application Server Administrator's Guide.

When you enable message logging, Converged Application Server records log records in the
Managed Server log file associated with each engine tier server instance by default. You can
optionally log the messages in a separate, dedicated log file, as described in "Configuring
Log File Rotation".

Enabling Message Logging
You enable and configure message logging by adding a message-debug element to the
sipserver.xml configuration file. Converged Application Server provides two different
methods of configuring the information that is logged:

• Specify a predefined logging level (terse, basic, or full), or

• Identify the exact portions of the SIP message that you want to include in a log record, in
a specified order

The sections that follow describe each method of configuring message logging functionality
using elements in the sipserver.xml file. Note that you can also set these elements using the
Administration Console. In the left pane of the Administration Console, select Configuration,
then select the Message Debug tab of the SipServer console extension node.

15-1

Specifying a Predefined Logging Level
The optional level element in message-debug specifies a predefined collection of
information to log for each SIP request and response. The following levels are
supported:

• terse: Logs only the domain setting, logging Servlet name, logging level, and
whether or not the message is an incoming message.

• basic: Logs the terse items plus the SIP message status, reason phrase, the type
of response or request, the SIP method, the From header, and the To header.

• full: Logs the basic items plus all SIP message headers plus the timestamp,
protocol, request URI, request type, response type, content type, and raw content.

Example 15-1 shows a configuration entry that specifies the full logging level.

Example 15-1 Sample Message Logging Level Configuration in sipserver.xml

<message-debug>
 <level>full</level>
</message-debug>

Customizing Log Records
Converged Application Server also enables you to customize the exact content and
order of each message log record. To configure a custom log record, you provide a
format element that defines a log record pattern and one or more tokens to log in
each record.

Note:

When level is set to full, format is overridden.

Table 15-1 describes the nested elements used in the format element.

Table 15-1 Nested format Elements

param-name param-value Description

pattern Specifies the pattern used to format a message log entry. The
format is defined by specifying one or more integers, bracketed
by “{“ and “}". Each integer represents a token defined later in
the format definition.

token A string token that identifies a portion of the SIP message to
include in a log record. Table 15-2 provides a list of available
string tokens. You can define multiple token elements as needed
to customize your log records.

Table 15-2 describes the string token values used to specify information in a message
log record:

Chapter 15
Enabling Message Logging

15-2

Table 15-2 Available Tokens for Message Log Records

Token Description Example or Type

%call_id The Call-ID header. It is blank when forwarding. 43543543

%content The raw content. Byte array

%content_length The content length. String value

%content_type The content type. String value

%cseq The CSeq header. It is blank when forwarding. INVITE 1

%date The date when the message was received. (“yyyy/MM/dd" format) 2004/05/16

%from The From header (all). It is blank when forwarding. sip:foo@oracle.com;tag=
438943

%from_addr The address portion of the From header. foo@oracle.com

%from_port The port number portion of the From header. 7002

%from_tag The tag parameter of the From header. It is blank when forwarding. 12345

%from_uri The SIP URI part of the From header. It is blank when forwarding. sip:foo@oracle.com

%headers A List of message headers stored in a 2-element array. The first
element is the name of the header, while the second is a list of all
values for the header.

List of headers

%io Whether the message is incoming or not. TRUE

%method The name of the SIP method. It records the method name to
invoke when forwarding.

INVITE

%msg Summary Call ID String value

%mtype The type of receiving. SIPREQ

%protocol The protocol used. UDP

%reason The response reason. OK

%req_uri The request URI. This token is only available for the SIP request. sip:foo@oracle.com

%status The response status. 200

%time The time when the message was received. (“HH:mm:ss" format) 18:05:27

%timestampmillis Time stamp in milliseconds. 9295968296

%to The To header (all). It is blank when forwarding. sip:foo@oracle.com;tag=
438943

%to_addr The address portion of the To header. foo@oracle.com

%to_port The port number portion of the To header. 7002

%to_tag The tag parameter of the To header. It is blank when forwarding. 12345

%to_uri The SIP URI part of the To header. It is blank when forwarding. sip:foo@oracle.com

See "Example Message Log Configuration and Output" for an example sipserver.xml file
that defines a custom log record using two tokens.

Specifying Content Types for Unencrypted Logging
By default Converged Application Server uses String format (UTF-8 encoding) to log the
content of SIP messages having a text or application/sdp Content-Type value. For all other

Chapter 15
Specifying Content Types for Unencrypted Logging

15-3

Content-Type values, Converged Application Server attempts to log the message
content using the character set specified in the charset parameter of the message, if
one is specified. If no charset parameter is specified, or if the charset value is invalid
or unsupported, Converged Application Server uses Base-64 encoding to encrypt the
message content before logging the message.

If you want to avoid encrypting the content of messages under these circumstances,
specify a list of String-representable Content-Type values using the string-rep
element in sipserver.xml. The string-rep element can contain one or more content-
type elements to match. If a logged message matches one of the configured content-
type elements, Converged Application Server logs the content in String format using
UTF-8 encoding, regardless of whether or not a charset parameter is included.

Note:

You do not need to specify text/* or application/sdp content types as these
are logged in String format by default.

Example 15-2 shows a sample message-debug configuration that logs String content
for three additional Content-Type values, in addition to text/* and application/sdp
content.

Example 15-2 Logging String Content for Additional Content Types

 <message-debug>
 <level>full</level>
 <string-rep>
 <content-type>application/msml+xml</content-type>
 <content-type>application/media_control+xml</content-type>
 <content-type>application/media_control</content-type>
 </string-rep>
 </message-debug>

Example Message Log Configuration and Output
Below are a sample message log configuration in sipserver.xml and a sample output
from the Managed Server log file.

Example 15-3 Sample Message Log Configuration in sipserver.xml

<message-debug>
 <format>
 <pattern>{0} {1}</pattern>
 <token>%headers</token>
 <token>%content</token>
 </format>
</message-debug>

Example 15-4 Sample Message Log Output

####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com> <myserver>
 <ExecuteThread: '11' for queue: 'sip.transport.Default'> <<WLS Kernel>> <>
<BEA- 331802> <SIP Tracer: logger Message: To: sut <sip:invite@10.32.5.230:5060>
 <mailto:sip:invite@10.32.5.230:5060>
Content-Length: 136

Chapter 15
Example Message Log Configuration and Output

15-4

Contact: user:user@10.32.5.230:5061
CSeq: 1 INVITE
Call-ID: 59.3170.10.32.5.230@user.call.id
From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061>
;tag=59
Via: SIP/2.0/UDP 10.32.5.230:5061
Content-Type: application/sdp
Subject: Performance Test
Max-Forwards: 70
 v=0
o=user1 53655765 2353687637 IN IP4 127.0.0.1
s=-
c=IN IP4 127.0.0.1
t=0 0
m=audio 10000 RTP/AVP 0
a=rtpmap:0 PCMU/8000
>
####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com> <myserver>
 <ExecuteThread: '11' for queue: 'sip.transport.Default'> <<WLS Kernel>> <>
<BEA- 331802> <SIP Tracer: logger Message: To: sut <sip:invite@10.32.5.230:5060>
 <mailto:sip:invite@10.32.5.230:5060>
Content-Length: 0
CSeq: 1 INVITE
Call-ID: 59.3170.10.32.5.230@user.call.id
Via: SIP/2.0/UDP 10.32.5.230:5061
From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061>
 ;tag=59
Server: Oracle WebLogic Server 10.3.6
 >

Configuring Log File Rotation
Message log entries for SIP and Diameter messages are stored in the main Converged
Application Server log file by default. You can optionally store the messages in a dedicated
log file. Using a separate file makes it easier to locate message logs, and also enables you to
use Converged Application Server's log rotation features to better manage logged data.

Log rotation is configured using several elements nested within the main message-debug
element in sipserver.xml. As with the other XML elements described in this section, you can
also configure values using the Configuration->Message Debug tab of the SIP Server
Administration Console extension.

Table 15-3 describes each element. Note that a server restart is necessary in order to initiate
independent logging and log rotation.

Table 15-3 XML Elements for Configuring Log Rotation

Element Description

logging-enabled Determines whether a separate log file is used to store message debug log
messages. By default, this element is set to false and messages are logged in the
general log file.

file-min-size Configures the minimum size, in kilobytes, after which the server automatically
rotate log messages into another file. This value is used when the rotation-
type element is set to bySize.

Chapter 15
Configuring Log File Rotation

15-5

Table 15-3 (Cont.) XML Elements for Configuring Log Rotation

Element Description

log-filename Defines the name of the log file for storing messages. By default, the log files are
stored under domain_home/servers/server_name/logs, where
Domain_Home is the domain's home directory.

rotation-type Configures the criterion for moving older log messages to a different file. This
element may have one of the following values:

• bySize: This default setting rotates log messages based on the specified
file-min-size.

• byTime: This setting rotates log messages based on the specified
rotation-time.

• none: Disables log rotation.

number-of-files-limited Specifies whether or not the server places a limit on the total number of log files
stored after a log rotation. By default, this element is set to false.

file-count Configures the maximum number of log files to keep when number-of-files-
limited is set to true.

rotate-log-on-startup Determines whether the server must rotate the log file at server startup time.

log-file-rotation-dir Configures a directory in which to store rotated log files. By default, rotated log
files are stored in the same directory as the active log file.

rotation-time Configures a start time for log rotation when using the byTime log rotation
criterion.

file-time-span Specifies the interval, in hours, after which the log file is rotated. This value is
used when the rotation-type element is set to byTime.

date-format-pattern Specifies the pattern to use for rending dates in log file entries. The value of this
element must conform to the java.text.SimpleDateFormat class.

Example 15-5 shows a sample message-debug configuration using log rotation.

Example 15-5 Sample Log Rotation Configuration

<?xml version='1.0' encoding='UTF-8'?>
<sip-server xmlns="http://www.bea.com/ns/wlcp/wlss/300"
 xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://www.bea.com/ns/weblogic/90/security/wls">
 <message-debug>
 <logging-enabled>true</logging-enabled>
 <file-min-size>500</file-min-size>
 <log-filename>sip-messages.log</log-filename>
 <rotation-type>byTime</rotation-type>
 <number-of-files-limited>true</number-of-files-limited>
 <file-count>5</file-count>
 <rotate-log-on-startup>false</rotate-log-on-startup>
 <log-file-rotation-dir>old_logs</log-file-rotation-dir>
 <rotation-time>00:00</rotation-time>
 <file-time-span>20</file-time-span>
 <date-format-pattern>MMM d, yyyy h:mm a z</date-format-pattern>
 </message-debug>
</sip-server>

Chapter 15
Configuring Log File Rotation

15-6

16
Generating SNMP Traps from Application
Code

This chapter describes how to use the Oracle Communications Converged Application Server
SipServletSnmpTrapRuntimeMBean to generate Simple Network Management Protocol
(SNMP) traps from within a SIP Servlet.

See “Configuring SNMP" in the Converged Application Server Administrator's Guide for
information about configuring SNMP in a Converged Application Server domain.

Overview
Converged Application Server includes a runtime MBean,
SipServletSnmpTrapRuntimeMBean,that enables applications to easily generate SNMP traps.
The Converged Application Server management information base (MIB) contains seven new
object identifiers (OIDs) that are reserved for traps generated by an application. Each OID
corresponds to a severity level that the application can assign to a trap, in order from the
least severe to the most severe:

• Info

• Notice

• Warning

• Error

• Critical

• Alert

• Emergency

To generate a trap, an application simply obtains an instance of the
SipServletSnmpTrapRuntimeMBean and then executes a method that corresponds to the
desired trap severity level (sendInfoTrap(), sendWarningTrap(), sendErrorTrap(),
sendNoticeTrap(), sendCriticalTrap(), sendAlertTrap(), and sendEmergencyTrap()).
Each method takes, as a single parameter, the String value of the trap message to generate.

For each SNMP trap generated in this manner, Converged Application Server also
automatically transmits the Servlet name, application name, and Converged Application
Server instance name associated with the calling Servlet.

Requirement for Accessing SipServletSnmpTrapRuntimeMBean
In order to obtain a SipServletSnmpTrapRuntimeMBean, the calling SIP Servlet must be able
to perform MBean lookups from the Servlet context. To enable this functionality, you must
assign a Converged Application Server administrator role-name entry to the security-role
and run-as role elements in the sip.xml deployment descriptor. Example 16-1 shows a
sample sip.xml file with the required role elements highlighted.

16-1

Example 16-1 Sample Role Requirement in sip.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sip-app
 PUBLIC "-//Java Community Process//DTD SIP Application 1.0//EN"
 "http://www.jcp.org/dtd/sip-app_2_0.dtd">
 <sip-app xmlns="http://xmlns.jcp.org/xml/ns/sipservlet"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/sipservlet
 http://xmlns.jcp.org/xml/ns/sipservlet/sip-app_2_0.xsd"
 version="2.0">
 <display-name>My SIP Servlet</display-name>
 <distributable/>
 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>com.mycompany.MyServlet</servlet-class>
 <run-as>
 <role-name>weblogic</role-name>
 </run-as>
 </servlet>
 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <pattern>
 <equal>
<var>request.method</var>
<value>INVITE</value>
 </equal>
 </pattern>
 </servlet-mapping>
 <security-role>
 <role-name>weblogic</role-name>
 </security-role>
</sip-app>

Obtaining a Reference to
SipServletSnmpTrapRuntimeMBean

Any SIP Servlet that generates SNMP traps must first obtain a reference to the
SipServletSnmpTrapRuntimeMBean. Example 16-2 shows the sample code for a
method to obtain the MBean.

Example 16-2 Sample Method for Accessing
SipServletSnmpTrapRuntimeMBean

public SipServletSnmpTrapRuntimeMBean getServletSnmpTrapRuntimeMBean() {
 MBeanHome localHomeB = null;
 SipServletSnmpTrapRuntimeMBean ssTrapMB = null;

 try
 {
 Context ctx = new InitialContext();
 localHomeB = (MBeanHome)ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);
 ctx.close();
 } catch (NamingException ne){
 ne.printStackTrace();
 }

 Set set = localHomeB.getMBeansByType("SipServletSnmpTrapRuntime");
 if (set == null || set.isEmpty()) {

Chapter 16
Obtaining a Reference to SipServletSnmpTrapRuntimeMBean

16-2

 try {
 throw new ServletException("Unable to lookup type
 'SipServletSnmpTrapRuntime'");
 } catch (ServletException e) {
 e.printStackTrace();
 }
 }
 ssTrapMB = (SipServletSnmpTrapRuntimeMBean) set.iterator().next();
 return ssTrapMB;
}

Generating an SNMP Trap
In combination with the method shown in Example 16-2, Example 16-3 demonstrates how a
SIP Servlet would use the MBean instance to generate an SNMP trap in response to a SIP
INVITE.

Example 16-3 Generating a SNMP Trap

public class MyServlet extends SipServlet {
 private SipServletSnmpTrapRuntimeMBean sipServletSnmpTrapMb = null;

 public MyServlet () {
 }

 public void init (ServletConfig sc) throws ServletException {
 super.init (sc);
 sipServletSnmpTrapMb = getServletSnmpTrapRuntimeMBean();
 }

 protected void doInvite(SipServletRequest req) throws IOException {
 sipServletSnmpTrapMb.sendInfoTrap("Rx Invite from " + req.getRemoteAddr() + "with
call id" + req.getCallId());
 }
}

Chapter 16
Generating an SNMP Trap

16-3

17
Using the REST Interface

This chapter describes the Oracle Communications Converged Application Server REST API,
a service interface that configures the Converged Application Server, retrieves runtime
metrics, and creates, modifies, and deletes address-of-record (AOR) entries in the Location
Service.

Location Service RESTful Interface
This section lists RESTful operations for the Location Service, including the parameters
accepted and returned by each operation and examples of HTTP requests and responses.

These operations store, lookup, and clear address-of-record registrations in the Location
Service. An address on record (AOR) is a Session Initiation Protocol (SIP) or SIPS URI that
points to a domain with a location service that can map the URI to another URI where the
user might be available. Typically, the location service is populated through registrations. An
AOR is frequently thought of as the “public address" of the user.

For example, to create objects that represent the AOR, the client application sends the
following request to the API:

POST / context-root/locationservice/registration/sip:alice@example.com

About REST
The Location Service API follows the style of a REST interface.

In a RESTful API, functions are distinguished by the combination of a particular URI and the
HTTP method used to access it. In general, the URI identifies the resource on which to act,
and the HTTP method identifies the type of action to perform.

The methods in the HTTP protocol used in the Location Service RESTful API - POST, GET,
PUT, and DELETE - correspond to the programming operations commonly known as CRUD
operations. CRUD, which stands for create, read, update, and delete, represent the common
operations applicable in data-oriented APIs. The equivalent function calls in a traditional API
may be similar to createUser(), getUser(), setUser(), and deleteUser(). In this case, the
instance on which the function operates is typically identified through an input parameter.

About JSON Body Parameters
Operations that are performed by using the GET or DELETE HTTP methods do not require
input values other than what is provided in the URL and headers of the client request. That is,
they do not require HTTP body content to be supplied in the invocation request.

However, Location Service RESTful API operations are performed by using the POST
methods require additional input data. The API takes input parameters in the form of JSON
(JavaScript Object Notation) data in the body of the request.

17-1

JSON is a data exchange format based on JavaScript that is commonly used to pass
information between web clients and servers over HTTP. In the body of the request,
JSON data appears as one or more name-value pairs.

About the Context Root
The context root is set when the application is deployed. By default Converged
Application Server uses proxyregistrarssr as context root. You can change the
context root by editing the application.xml in the file

Middleware_Home/occas/applications/proxyregistrarear.ear.

To learn more, see the chapter on configuring the Proxy Registrar in Converged
Application Server Administrator's Guide.

Using Authentication and Authorization
The Location Service RESTful interface's security consists of authentication and
authorization. Authentication supports HTTP Digest and X-3GPP-Asserted-Identity
header. Authorization allows only the AOR owner to access and update their
registration information.

To use HTTP Digest and X-3GPP-Asserted-Identity authentication you must configure
Converged Application Server to handle these header types for authentication. To
learn more, see the chapters on configuring Digest authentication and 3GPP HTTP
authentication assertion providers in Converged Application Server Security Guide.

RESTful APIs for the Location Service
The RESTful Location Service APIs are:

• Store Registrations for Address-of-Record

• Lookup an Address-of-Record

• Clear All Address of Record Bindings

Store Registrations for Address-of-Record
Stores registrations for the AOR.

An HTTP response 200 message is returned on success.

HTTP Method

POST

URI

proxyregistrarssr/locationservice/registration/uri
Where the URI is of the form: sip:username@domain.com

Request Header

Accept application/json, Content-Type application/json

Chapter 17
Location Service RESTful Interface

17-2

Request Body

The cseq, contactAddress, and callId parameters are required and case-sensitive.

[
{
"cseq":7,
"callId":"a97d0d177949304c@enpoYWkwMS5hcGFjLmJlYS5jb20.",
"contactAddress":"<sip:alice@10.182.101.231:5060>;expires=3600",
"methodsParam":"INVITE,BYE,CANCEL,ACK"
}
]

Response Body

[{
"aor":"sip:alice@example.com",
"contactUri":"sip:alice@10.182.101.231:5060",
"contactAddress":"<sip:alice@10.182.101.231:5060>;expires=3600",
"callId":"a97d0d177949304c@enpoYWkwMS5hcGFjLmJlYS5jb20.",
"cseq":7,
"qvalue":1.0,
"methodsParam":"INVITE,BYE,CANCEL,ACK",
"expiresParam":3600,
"expires":1335173253469,
"path":null,
"sipInstanceId":null,
"regId":null,
"remoteIP":"localhost",
"remotePort":2169,
"created":1335169653469,
"updated":1335169653469
}]

Example

Example 17-1 stores an AOR registration in the Proxy Registrar using the following
parameters:

final String DEST_URL =
"/proxyregistrarssr/locationservice/registration/sip:alice@example.com";
private String account_name = "alice";
private String account_pass = "<password>";

Example 17-1 Storing AOR Registrations

public void StoreRegistration() throws Exception {
String restUrl = "http://127.0.0.1:7001" + DEST_URL;
URL url = new URL(restUrl);
HttpURLConnection httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("POST");
httpConn.connect();
OutputStreamWriter outWriter = new OutputStreamWriter(httpConn.getOutputStream(), "UTF-8");
String requestRegistration = "[{\"cseq\":2," +
"\"callId\":\"LSRestfulTest.testStoreRegistration@10.182.107.197:5071\"," +
"\"contactAddress\":\"<sip:alice@10.182.107.197:5071>;expires=300\"," +
"\"methodsParam\":\"INVITE,BYE,CANCEL,ACK\"}]";
outWriter.write(requestRegistration);
outWriter.flush();
outWriter.close();
int responseCode = httpConn.getResponseCode();
assertEquals(HttpURLConnection.HTTP_UNAUTHORIZED, responseCode);

Chapter 17
Location Service RESTful Interface

17-3

String digestValue =
httpConn.getHeaderField(HttpAuthenticationUtils.HEADER_WWW_AUTHENTICATE);
// Calculate the authorization header value from the authenticate header
String authorizeValue = caculateAuthorizationFromDigest(digestValue, DEST_URL,
account_name,
account_pass, "POST");
httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("POST");
httpConn.setRequestProperty(HttpAuthenticationUtils.HEADER_AUTHORIZATION, authorizeValue);
httpConn.connect();
outWriter = new OutputStreamWriter(httpConn.getOutputStream(), "UTF-8");
outWriter.write(requestRegistration);
outWriter.flush();
outWriter.close();
responseCode = httpConn.getResponseCode();
assertEquals(HttpURLConnection.HTTP_OK, responseCode);
InputStream input = httpConn.getInputStream();
BufferedReader reader = new BufferedReader(new InputStreamReader(input, "UTF-8"));
String responseContent = "";
String line = null;
while ((line = reader.readLine()) != null) {
responseContent += line;
}
 reader.close();

httpConn.disconnect();
 }
 void setHttpConnReqProperty(HttpURLConnection httpConn) throws ProtocolException {
 httpConn.setRequestProperty("Accept", "application/json");
 httpConn.setRequestProperty("Content-Type", "application/json");
 httpConn.setDoInput(true);
 httpConn.setDoOutput(true);
 }

Lookup an Address-of-Record
This API looks up all bindings of an AOR. An HTTP response 200 message is
returned on success.

HTTP Method

GET

URI

proxyregistrarssr/locationservice/registration/uri

Request Header

Accept application/json, Content-Type application/json

Request Body

None.

Response Body

[{
"aor":"sip:alice@example.com",
"contactUri":"sip:alice@10.182.101.231:5060",
"contactAddress":"<sip:alice@10.182.101.231:5060>;expires=3600",
"callId":"a97d0d177949304c@enpoYWkwMS5hcGFjLmJlYS5jb20.",
"cseq":7,

Chapter 17
Location Service RESTful Interface

17-4

"qvalue":1.0,
"methodsParam":"INVITE,BYE,CANCEL,ACK",
"expiresParam":3600,
"expires":1335173253469,
"path":null,
"sipInstanceId":null,
"regId":null,
"remoteIP":"localhost",
"remotePort":2169,
"created":1335169653469,
"updated":1335169653469
}]

Example

Example 17-2 stores an AOR registration in the Proxy Registrar using the following
parameters:

final String DEST_URL =
"/proxyregistrarssr/locationservice/registration/sip:alice@example.com";
private String account_name = "alice";
private String account_pass = "<password>";

Example 17-2 Looking Up An AOR

public void LookupRegistration() throws Exception {
String restUrl = "http://127.0.0.1:7001" + DEST_URL;
URL url = new URL(restUrl);
HttpURLConnection httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("GET");
httpConn.connect();
String digestValue = httpConn.getHeaderField(HttpAuthenticationUtils.HEADER_WWW_
AUTHENTICATE);
String authorizeValue = caculateAuthorizationFromDigest(digestValue, DEST_URL, account_name,
account_pass, "GET");
httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("GET");
httpConn.setRequestProperty(HttpAuthenticationUtils.HEADER_AUTHORIZATION, authorizeValue);
httpConn.connect();
responseCode = httpConn.getResponseCode();
assertEquals(HttpURLConnection.HTTP_OK, responseCode);
InputStream input = httpConn.getInputStream();
BufferedReader reader = new BufferedReader(new InputStreamReader(input, "UTF-8"));
String responseContent = "";
String line = null;
while ((line = reader.readLine()) != null) {
responseContent += line;
}
reader.close();
httpConn.disconnect();

 }

Clear All Address of Record Bindings
An HTTP response 204 message is returned on success.

HTTP Method

DELETE

Chapter 17
Location Service RESTful Interface

17-5

URI

proxyregistrarssr/locationservice/registration/uri
Where the URI is of the form: sip:username@domain.com

Parameters

None.

Request Header

None.

Request Body

None.

Response Body

None.

Examples

Example 17-3 clears an AOR registration in the Proxy Registrar using the following
parameters:

final String DEST_URL =
"/proxyregistrarssr/locationservice/registration/sip:alice@example.com";
private String account_name = "alice";private String account_pass = "<password>";

Example 17-3 Clearing AOR Binding

public void testClearAllBindings() throws Exception {
String restUrl = "http://127.0.0.1:7001" + DEST_URL;
URL url = new URL(restUrl);
HttpURLConnection httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("DELETE");
httpConn.connect();
String digestValue = httpConn.getHeaderField(HttpAuthenticationUtils.HEADER_
WWW_AUTHENTICATE);
String authorizeValue = caculateAuthorizationFromDigest(digestValue, DEST_URL,
account_name, account_pass, "DELETE");
httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("DELETE");

httpConn.setRequestProperty(HttpAuthenticationUtils.HEADER_AUTHORIZATION,
authorizeValue);
httpConn.connect();
respCode = httpConn.getResponseCode();
assertEquals(HttpURLConnection.HTTP_NO_CONTENT, respCode);
httpConn.disconnect();

 }

Chapter 17
Location Service RESTful Interface

17-6

REST Management for MBeans
The Converged Application Server beans are used extensively by WLS components to
manage configuration settings and to monitor and manage running servers.

The Converged Application Server beans are derived from Java interfaces. At runtime, the
Converged Application Server constructs internal trees of Java beans that can be used to
configure and monitor the system. The Converged Application Server dynamically generates
REST resources, incrementally and on-demand at runtime, by using the bean trees and bean
Infos. These REST resources provide an alternative interface for managing the Converged
Application Server.

The following MBeans are available to configure the Converged Application Server:

• SipServerBean

• AppRouterBean

• ProxyBean

• ServerDebugBean

• MessageDebugBean

• sipSecurityBean

• PersistanceBean

• clusterLoadbalancerMapBean

• OverloadProtectionBean

The following MBeans are available to monitor the runtime state of the Converged Application
Server:

• SipServerRuntimeMBean

• ReplicaRuntimeMBean

• DiameterRuntimeMBean

• ExternalLoadBalancerRuntimeMBean

• SipApplicationRuntimeMBean

• SipPerformanceRuntimeMBean

• SipServletSnmpTrapRuntimeMBean

All runtime MBeans are read-only.

The Converged Application Server provides the following bean trees:

• Edit access—Used to modify the configuration, for example, config.xml and system
resource files. (Only available on the Administration Server.)

• Runtime access—Used to view that server’s configuration and to access its monitoring
data. (Available on every server.)

• Domain access—Contains copies of the runtime beans of all of the running servers,
provides a single point of access for monitoring, is also used to view the most current
configuration that has been persisted. (Only available on the Administration Server.)

WebLogic Scripting Tool (WLST) presents the bean trees as follows:

Chapter 17
REST Management for MBeans

17-7

• Edit—matches the underlying edit access bean tree.

• Domain config—the configuration MBean half of the domain access bean tree
(such as the last persisted configuration).

• Domain runtime—the runtime MBean half of the domain access bean tree (such
as, for monitoring all servers).

• Server config—the configuration MBean half of the runtime access bean tree
(such as, the configuration the server is using).

• ServerRuntime—the runtime MBean half of the runtime access bean tree (such
as, for monitoring a specific server).

NetworkAccessPointMBean
NetworkAccessPointMBean lists all the network channels available.

URL Syntax

/management/weblogic/latest/serverConfig/servers/<server_name>/
networkAccessPoints

Examples

Note:

By default the base domain network access point names are sip and sips.
The default replicated domain network access point names are sipchannel
and sips.

Example 17-4 Access the networkAccessPoints endpoint

curl -u '<user>:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
servers/managed-server1/networkAccessPoints"

Example reponse:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/servers/managed-server1"
 },{
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/servers/managed-server1/networkAccessPoints"
 },{
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/

Chapter 17
REST Management for MBeans

17-8

serverConfig/servers/managed-server1/networkAccessPoints"
 }
],
 "items": [
 {
 "links": [
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/servers/managed-server1/networkAccessPoints/sip"
 },{
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/servers/managed-server1/networkAccessPoints/sip"
 }
],
 "identity": [
 "servers",
 "managed-server1",
 "networkAccessPoints",
 "sip"
],
 "hostnameVerificationIgnored": false,
 "httpEnabledForThisProtocol": false,
 "notes": null,
 "hostnameVerifier": null,
 "publicPort": 5060,
 "idleConnectionTimeout": 65,
 "resolveDNSName": false,
 "privateKeyAlias": null,
 "type": "NetworkAccessPoint",
 "inboundCertificateValidation": "BuiltinSSLValidationOnly",
 "customPrivateKeyPassPhrase": null,
 "proxyPort": 80,
 "protocol": "sip",
 "tunnelingClientTimeoutSecs": 40,
 "tunnelingEnabled": false,
 "listenAddress": "sample-domain1-managed-server1",
 "acceptBacklog": 300,
 "connectTimeout": 0,
 "id": 0,
 "maxMessageSize": 10000000,
 "proxyAddress": null,
 "outboundPrivateKeyAlias": null,
 "outboundPrivateKeyEnabled": false,
 "twoWaySSLEnabled": false,
 "tags": [],
 "outboundCertificateValidation": "BuiltinSSLValidationOnly",
 "completeMessageTimeout": 60,
 "clientCertificateEnforced": false,
 "loginTimeoutMillis": 5000,
 "name": "sip",
 "outboundPrivateKeyPassPhrase": null,
 "publicAddress": "sample-domain1-managed-server1",
 "enabled": true,

Chapter 17
REST Management for MBeans

17-9

 "clusterAddress": "sample-domain1-managed-server1",
 "timeoutConnectionWithPendingResponses": false,
 "customPrivateKeyAlias": null,
 "tunnelingClientPingSecs": 45,
 "allowUnencryptedNullCipher": false,
 "useFastSerialization": false,
 "dynamicallyCreated": false,
 "privateKeyPassPhrase": null,
 "SSLv2HelloEnabled": true,
 "customIdentityKeyStoreFileName": null,
 "excludedCiphersuites": [
 "TLS_RSA_*",
 "*_CBC_*"
],
 "maxConnectedClients": 2147483647,
 "customIdentityKeyStorePassPhrase": null,
 "ciphersuites": [],
 "outboundEnabled": true,
 "channelIdentityCustomized": false,
 "clientInitSecureRenegotiationAccepted": false,
 "minimumTLSProtocolVersion": "TLSv1.2",
 "channelWeight": 50,
 "maxBackoffBetweenFailures": 10000,
 "listenPort": 5060,
 "customIdentityKeyStoreType": null
 },
 {
 "links": [
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/
latest/serverConfig/servers/managed-server1/networkAccessPoints/sips"
 },{
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/
latest/serverConfig/servers/managed-server1/networkAccessPoints/sips"
 }
],
 "identity": [
 "servers",
 "managed-server1",
 "networkAccessPoints",
 "sips"
],
 "hostnameVerificationIgnored": false,
 "httpEnabledForThisProtocol": false,
 "notes": null,
 "hostnameVerifier": null,
 "publicPort": 5061,
 "idleConnectionTimeout": 65,
 "resolveDNSName": false,
 "privateKeyAlias": null,
 "type": "NetworkAccessPoint",
 "inboundCertificateValidation": "BuiltinSSLValidationOnly",
 "customPrivateKeyPassPhrase": null,

Chapter 17
REST Management for MBeans

17-10

 "proxyPort": 80,
 "protocol": "sips",
 "tunnelingClientTimeoutSecs": 40,
 "tunnelingEnabled": false,
 "listenAddress": "sample-domain1-managed-server1",
 "acceptBacklog": 300,
 "connectTimeout": 0,
 "id": 0,
 "maxMessageSize": 10000000,
 "proxyAddress": null,
 "outboundPrivateKeyAlias": null,
 "outboundPrivateKeyEnabled": false,
 "twoWaySSLEnabled": false,
 "tags": [],
 "outboundCertificateValidation": "BuiltinSSLValidationOnly",
 "completeMessageTimeout": 60,
 "clientCertificateEnforced": false,
 "loginTimeoutMillis": 25000,
 "name": "sips",
 "outboundPrivateKeyPassPhrase": null,
 "publicAddress": "sample-domain1-managed-server1",
 "enabled": true,
 "clusterAddress": "sample-domain1-managed-server1",
 "timeoutConnectionWithPendingResponses": false,
 "customPrivateKeyAlias": null,
 "tunnelingClientPingSecs": 45,
 "allowUnencryptedNullCipher": false,
 "useFastSerialization": false,
 "dynamicallyCreated": false,
 "privateKeyPassPhrase": null,
 "SSLv2HelloEnabled": true,
 "customIdentityKeyStoreFileName": null,
 "excludedCiphersuites": [
 "TLS_RSA_*",
 "*_CBC_*"
],
 "maxConnectedClients": 2147483647,
 "customIdentityKeyStorePassPhrase": null,
 "ciphersuites": [],
 "outboundEnabled": true,
 "channelIdentityCustomized": false,
 "clientInitSecureRenegotiationAccepted": false,
 "minimumTLSProtocolVersion": "TLSv1.2",
 "channelWeight": 50,
 "maxBackoffBetweenFailures": 10000,
 "listenPort": 5061,
 "customIdentityKeyStoreType": null
 }
]
}

NetworkAccessPointMBean sip
The networkAccessPoints/sip endpoint lists all the channels available for a SIP port.

Chapter 17
REST Management for MBeans

17-11

URL Syntax

For a GET:

/management/weblogic/latest/serverConfig/servers/<server_name>/
networkAccessPoints/sip

For a POST:

/management/weblogic/latest/edit/servers/<server_name>/
networkAccessPoints/sip

HTTP Methods

• GET

• POST

Examples

Example 17-5 Access the networkAccessPoints endpoint

curl -u '<user>:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
servers/managed-server1/networkAccessPoints/sip"

Example reponse:

{
 "links": [
 {
 "rel": "parent",
 "href": "http:\/\/10.0.0.1:7001\/management\/weblogic\/
latest\/serverConfig\/servers\/managed-server1\/networkAccessPoints"
 },
 {
 "rel": "self",
 "href": "http:\/\/10.0.0.1:7001\/management\/weblogic\/
latest\/serverConfig\/servers\/managed-server1\/networkAccessPoints\/
sip"
 },
 {
 "rel": "canonical",
 "href": "http:\/\/10.0.0.1:7001\/management\/weblogic\/
latest\/serverConfig\/servers\/managed-server1\/networkAccessPoints\/
sip"
 }
],
 "identity": [
 "servers",
 "managed-server1",
 "networkAccessPoints",
 "sip"

Chapter 17
REST Management for MBeans

17-12

],
 "hostnameVerificationIgnored": false,
 "httpEnabledForThisProtocol": false,
 "notes": null,
 "hostnameVerifier": null,
 "publicPort": 5060,
 "idleConnectionTimeout": 65,
 "resolveDNSName": false,
 "privateKeyAlias": null,
 "type": "NetworkAccessPoint",
 "inboundCertificateValidation": "BuiltinSSLValidationOnly",
 "customPrivateKeyPassPhrase": null,
 "proxyPort": 80,
 "protocol": "sip",
 "tunnelingClientTimeoutSecs": 40,
 "tunnelingEnabled": false,
 "listenAddress": "sample-domain1-managed-server1",
 "acceptBacklog": 300,
 "connectTimeout": 0,
 "id": 0,
 "maxMessageSize": 10000000,
 "proxyAddress": null,
 "outboundPrivateKeyAlias": null,
 "outboundPrivateKeyEnabled": false,
 "twoWaySSLEnabled": false,
 "tags": [],
 "outboundCertificateValidation": "BuiltinSSLValidationOnly",
 "completeMessageTimeout": 60,
 "clientCertificateEnforced": false,
 "loginTimeoutMillis": 5000,
 "name": "sip",
 "outboundPrivateKeyPassPhrase": null,
 "publicAddress": "sample-domain1-managed-server1",
 "enabled": true,
 "clusterAddress": "sample-domain1-managed-server1",
 "timeoutConnectionWithPendingResponses": false,
 "customPrivateKeyAlias": null,
 "tunnelingClientPingSecs": 45,
 "allowUnencryptedNullCipher": false,
 "useFastSerialization": false,
 "dynamicallyCreated": false,
 "privateKeyPassPhrase": null,
 "SSLv2HelloEnabled": true,
 "customIdentityKeyStoreFileName": null,
 "excludedCiphersuites": [
 "TLS_RSA_*",
 "*_CBC_*"
],
 "maxConnectedClients": 2147483647,
 "customIdentityKeyStorePassPhrase": null,
 "ciphersuites": [],
 "outboundEnabled": true,
 "channelIdentityCustomized": false,
 "clientInitSecureRenegotiationAccepted": false,
 "minimumTLSProtocolVersion": "TLSv1.2",

Chapter 17
REST Management for MBeans

17-13

 "channelWeight": 50,
 "maxBackoffBetweenFailures": 10000,
 "listenPort": 5060,
 "customIdentityKeyStoreType": null
}

Example 17-6 Update the networkAccessPoints endpoint

The command below shows how to update the publicPort parameter for this MBean.

Note:

The serverConfig portion of the URL changes to edit when sending a
POST to update the configuration.

curl -X POST \
 -u '<user>:<password>' \
 -d '{"publicPort":5062}' \
 -H "X-Requested-By: MyClient" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 "http://10.0.0.1/management/weblogic/latest/edit/servers/managed-
server1/networkAccessPoints/sip"

NetworkAccessPointMBean sips
The networkAccessPoints/sips endpoint lists all the channels available for the
secured SIP ports.

URL Syntax

For a GET:

/management/weblogic/latest/serverConfig/servers/<server_name>/
networkAccessPoints/sips

For a POST:

/management/weblogic/latest/edit/servers/<server_name>/
networkAccessPoints/sips

HTTP Methods

• GET

• POST

Chapter 17
REST Management for MBeans

17-14

Examples

Example 17-7 Access the networkAccessPoints/sips endpoint

curl -u '<user>:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/servers/
managed-server1/networkAccessPoints/sips"

Example reponse:

{
 "links": [
 {
 "rel": "parent",
 "href": "http:\/\/10.0.0.1:7001\/management\/weblogic\/latest\/
serverConfig\/servers\/managed-server1\/networkAccessPoints"
 },
 {
 "rel": "self",
 "href": "http:\/\/10.0.0.1:7001\/management\/weblogic\/latest\/
serverConfig\/servers\/managed-server1\/networkAccessPoints\/sips"
 },
 {
 "rel": "canonical",
 "href": "http:\/\/10.0.0.1:7001\/management\/weblogic\/latest\/
serverConfig\/servers\/managed-server1\/networkAccessPoints\/sips"
 }
],
 "identity": [
 "servers",
 "managed-server1",
 "networkAccessPoints",
 "sips"
],
 "hostnameVerificationIgnored": false,
 "httpEnabledForThisProtocol": false,
 "notes": null,
 "hostnameVerifier": null,
 "publicPort": 5061,
 "idleConnectionTimeout": 65,
 "resolveDNSName": false,
 "privateKeyAlias": null,
 "type": "NetworkAccessPoint",
 "inboundCertificateValidation": "BuiltinSSLValidationOnly",
 "customPrivateKeyPassPhrase": null,
 "proxyPort": 80,
 "protocol": "sips",
 "tunnelingClientTimeoutSecs": 40,
 "tunnelingEnabled": false,
 "listenAddress": "sample-domain1-managed-server1",
 "acceptBacklog": 300,
 "connectTimeout": 0,
 "id": 0,
 "maxMessageSize": 10000000,

Chapter 17
REST Management for MBeans

17-15

 "proxyAddress": null,
 "outboundPrivateKeyAlias": null,
 "outboundPrivateKeyEnabled": false,
 "twoWaySSLEnabled": false,
 "tags": [],
 "outboundCertificateValidation": "BuiltinSSLValidationOnly",
 "completeMessageTimeout": 60,
 "clientCertificateEnforced": false,
 "loginTimeoutMillis": 25000,
 "name": "sips",
 "outboundPrivateKeyPassPhrase": null,
 "publicAddress": "sample-domain1-managed-server1",
 "enabled": true,
 "clusterAddress": "sample-domain1-managed-server1",
 "timeoutConnectionWithPendingResponses": false,
 "customPrivateKeyAlias": null,
 "tunnelingClientPingSecs": 45,
 "allowUnencryptedNullCipher": false,
 "useFastSerialization": false,
 "dynamicallyCreated": false,
 "privateKeyPassPhrase": null,
 "SSLv2HelloEnabled": true,
 "customIdentityKeyStoreFileName": null,
 "excludedCiphersuites": [
 "TLS_RSA_*",
 "*_CBC_*"
],
 "maxConnectedClients": 2147483647,
 "customIdentityKeyStorePassPhrase": null,
 "ciphersuites": [],
 "outboundEnabled": true,
 "channelIdentityCustomized": false,
 "clientInitSecureRenegotiationAccepted": false,
 "minimumTLSProtocolVersion": "TLSv1.2",
 "channelWeight": 50,
 "maxBackoffBetweenFailures": 10000,
 "listenPort": 5061,
 "customIdentityKeyStoreType": null
}

Example 17-8 Update the networkAccessPoints endpoint

The command below shows how to update the publicPort parameter for this MBean.

Note:

The serverConfig portion of the URL changes to edit when sending a
POST to update the configuration.

curl -X POST \
 -u '<user>:<password>' \
 -d '{"publicPort":5062}' \

Chapter 17
REST Management for MBeans

17-16

 -H "X-Requested-By: MyClient" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 "http://10.0.0.1/management/weblogic/latest/edit/servers/managed-server1/
networkAccessPoints/sips"

SipServerBean
Use the SipServerBean to configure SIP timer values, session timeout duration, the default
Converged Application Server behavior, server header format, call state caching, DNS name
resolution, timer affinity, domain aliases, report support, diagnostic image format, stale
session handling, Max-BreadthCheck Support, SIP outbound support, and automatic
responses to a non-INVITE request.

URL Syntax

For a GET:

/management/weblogic/latest/serverConfig/customResources/sipserver/
customResource

For a POST:

/management/weblogic/latest/edit/customResources/sipserver/customResource

HTTP Methods

• GET

• POST

Note:

A DELETE request on /management/weblogic/latest/serverConfig/
customResources/sipserver will permenantly delete the SipServerMBean instance.
If this happens, you will have to reinstall the Converged Application Server.

Parameters

Table 17-1 URL Parameters for the customResource endpoint

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../customResource?links=none

Chapter 17
REST Management for MBeans

17-17

Table 17-1 (Cont.) URL Parameters for the customResource endpoint

Names Description

fields Set to an enumerated list of the fields to return. For example:

.../customResource?
links=none&fields=serverHeader,enableLocalDispatch

Examples

Example 17-9 Get the SIP server information

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource"

Example response:

{
 "links": [{
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver"
 },{
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource"
 },{
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource"
 },{
 "rel": "connectionReusePools",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
connectionReusePools"
 },{
 "rel": "extensions",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/extensions"
 },{
 "rel": "filters",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/filters"
 },{
 "rel": "clusterLoadbalancerMaps",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
clusterLoadbalancerMaps"
 },{
 "rel": "proxy",

Chapter 17
REST Management for MBeans

17-18

 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/proxy"
 },{
 "rel": "sipSecurity",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/sipSecurity"
 },{
 "rel": "appRouter",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/appRouter"
 },{
 "rel": "messageDebug",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/messageDebug"
 },{
 "rel": "overloadProtection",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection"
 },{
 "rel": "persistence",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/persistence"
 },{
 "rel": "routeHeader",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/routeHeader"
 },{
 "rel": "overload",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overload"
 },{
 "rel": "MPSConfig",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/MPSConfig"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource"
],
 "timerMTimeoutInterval": 32000,
 "enableTimerAffinity": false,
 "enableSipOutBound": true,
 "useHeaderForm": "long",
 "t2TimeoutInterval": 4000,
 "globallyRoutableUri": null,
 "serverHeader": "none",
 "timerNTimeoutInterval": 32000,
 "replicationEnabled": false,
 "enableDnsSrvLookup": false,
 "enableLocalDispatch": false,
 "defaultBehavior": "proxy",
 "t1TimeoutInterval": 500,
 "maxApplicationSessionLifetime": -1,

Chapter 17
REST Management for MBeans

17-19

 "domainAliasNames": [],
 "timerFTimeoutInterval": 32000,
 "timerBTimeoutInterval": 32000,
 "t4TimeoutInterval": 5000,
 "defaultServletName": null,
 "enableContactProvisionalResponse": false,
 "enableRport": false,
 "serverHeaderValue": "WebLogic SIP Server",
 "engineCallStateCacheEnabled": true,
 "enableSetMaxBreadth": true,
 "timerLTimeoutInterval": 32000,
 "name": null,
 "enableSend100ForNonInviteTransaction": true,
 "staleSessionHandling": "error",
 "imageDumpLevel": "basic",
 "retryAfterValue": "180"
}

Example 17-10 Update the SIP server

Send a POST request to update the SIP server.

Note:

The serverConfig portion of the URL changes to edit when sending a
POST to update the configuration

curl -X POST \
 -u 'weblogic:<password>' \
 -d'{"timerNTimeoutInterval":320}' \
 -H "X-Requested-By: MyClient" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource"

Create a SipServer Child MBean
A GET request to the URL below returns the CreateForm URLs that are used to create
child MBeans. After discovering the CreateForm URLs, make a GET request to the
appropriate CreateForm URL to retrieve both the default parameters and the create
URL. Send a POST request to the create URL to create the child MBean.

URL Syntax

For the initial GET:

/management/weblogic/latest/edit/customResources/sipserver/
customResource

Chapter 17
REST Management for MBeans

17-20

For the subsequent GET:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
<resource>CreateForm

HTTP Methods

• GET

• POST

Parameters

Table 17-2 URL Parameters for the customResource endpoint

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../customResource?links=overload,overloadCreateForm

fields Set to an enumerated list of the fields to return. For example:

.../customResource?
links=none&fields=serverHeader,enableLocalDispatch

Examples

Example 17-11 Get the child MBean URLs

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource"

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/

Chapter 17
REST Management for MBeans

17-21

customResources/sipserver/customResource"
 },
 {
 "rel": "connectionReusePools",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/connectionReusePools"
 },
 {
 "rel": "connectionReusePoolCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/
connectionReusePoolCreateForm"
 },
 {
 "rel": "extensions",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/extensions"
 },
 {
 "rel": "filters",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/filters"
 },
 {
 "rel": "clusterLoadbalancerMaps",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/clusterLoadbalancerMaps"
 },
 {
 "rel": "clusterLoadbalancerMapCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/
clusterLoadbalancerMapCreateForm"
 },
 {
 "rel": "proxy",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/proxy"
 },
 {
 "rel": "proxyCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/proxyCreateForm"
 },
 {
 "rel": "sipSecurity",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/sipSecurity"
 },
 {
 "rel": "sipSecurityCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/sipSecurityCreateForm"
 },
 {

Chapter 17
REST Management for MBeans

17-22

 "rel": "appRouter",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/appRouter"
 },
 {
 "rel": "appRouterCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/appRouterCreateForm"
 },
 {
 "rel": "messageDebug",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/messageDebug"
 },
 {
 "rel": "messageDebugCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/messageDebugCreateForm"
 },
 {
 "rel": "overloadProtection",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/overloadProtection"
 },
 {
 "rel": "overloadProtectionCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/overloadProtectionCreateForm"
 },
 {
 "rel": "persistence",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/persistence"
 },
 {
 "rel": "persistenceCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/persistenceCreateForm"
 },
 {
 "rel": "routeHeader",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/routeHeader"
 },
 {
 "rel": "routeHeaderCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/routeHeaderCreateForm"
 },
 {
 "rel": "overload",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/overload"
 },
 {

Chapter 17
REST Management for MBeans

17-23

 "rel": "overloadCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/overloadCreateForm"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource"
],
 "timerMTimeoutInterval": 32000,
 "enableTimerAffinity": false,
 "enableSipOutBound": true,
 "useHeaderForm": "long",
 "t2TimeoutInterval": 4000,
 "globallyRoutableUri": null,
 "serverHeader": "none",
 "timerNTimeoutInterval": 32000,
 "replicationEnabled": false,
 "enableDnsSrvLookup": false,
 "enableLocalDispatch": false,
 "defaultBehavior": "proxy",
 "t1TimeoutInterval": 500,
 "maxApplicationSessionLifetime": -1,
 "domainAliasNames": [],
 "timerFTimeoutInterval": 32000,
 "timerBTimeoutInterval": 32000,
 "t4TimeoutInterval": 5000,
 "defaultServletName": null,
 "enableContactProvisionalResponse": false,
 "enableRport": false,
 "serverHeaderValue": "WebLogic SIP Server",
 "engineCallStateCacheEnabled": true,
 "enableSetMaxBreadth": true,
 "timerLTimeoutInterval": 32000,
 "name": null,
 "enableSend100ForNonInviteTransaction": true,
 "staleSessionHandling": "error",
 "imageDumpLevel": "basic",
 "retryAfterValue": "180"
}

Example 17-12 Get the required parameters for a custom resource

Send a GET request to one of the ..CreateForm endpoints. For example, to get the
required parameters for creating a new connectionReusePool and return only the URL
to be used for creating that new connectionReusePool, make a GET request as shown
below.

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/connectionReusePoolCreateForm?
links=create"

Chapter 17
REST Management for MBeans

17-24

Example response:

{
 "links": [
 {
 "rel": "create",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/connectionReusePools"
 }
],
 "destinationPort": 0,
 "maximumConnections": 0,
 "destination": null,
 "poolName": null
}

Example 17-13 Create a custom resource

Send a POST request to create the new connectionReusePool.

curl -X POST \
 -u 'weblogic:<password>' \
 -d
'{"destinationPort":987987,"maximumConnections":4,"destination":"newDst","poo
lName":"newPool"}' \
 -H "X-Requested-By: MyClient" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 "http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/connectionReusePools"

Configure Application Router
Use the REST API endpoint below to configure the Application Router.

URL Syntax

For a GET:

/management/weblogic/latest/serverConfig/customResources/sipserver/
customResource/appRouter

For a POST:

management/weblogic/latest/edit/customResources/sipserver/customResource/
appRouter

HTTP Methods

• GET

• POST

• DELETE

Chapter 17
REST Management for MBeans

17-25

Parameters

Table 17-3 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../appRouter?links=create-form

fields Set to an enumerated list of the fields to return. For example:

.../appRouter?links=none&fields=useJsonForm

Examples

Example 17-14 Get the Application Router configuration

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/appRouter"

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/appRouter"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/appRouter"
 },
 {
 "rel": "create-form",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/appRouterCreateForm"
 }
],
 "identity": [
 "customResources",
 "sipserver",

Chapter 17
REST Management for MBeans

17-26

 "customResource",
 "appRouter"
],
 "useJsonForm": false,
 "appRouterConfigData": "",
 "jsonFileName": "",
 "name": null,
 "useCustomAppRouter": false,
 "customAppRouterJarFileName": "",
 "defaultApplicationName": ""
}

Example 17-15 Create a custom resource

Send a POST request to create a custom Application Router.

curl -X POST \
 -u 'weblogic:<password>' \
 -d@config.json \
 -H "X-Requested-By: MyClient" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 "http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/appRouter"

The contents of config.json:

{
 "useJsonForm": false,
 "appRouterConfigData": "",
 "jsonFileName": "appRouter.json",
 "useCustomAppRouter": false,
 "customAppRouterJarFileName": "customRouter.jar",
 "defaultApplicationName": "AppRouter"
}

Configure Proxy
Use the REST API endpoint below to configure the proxy.

URL Syntax

For a GET:

/management/weblogic/latest/serverConfig/customResources/sipserver/
customResource/proxy

For a POST:

management/weblogic/latest/edit/customResources/sipserver/customResource/
proxy

Chapter 17
REST Management for MBeans

17-27

HTTP Methods

• GET

• POST

• DELETE

Parameters

Table 17-4 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../proxy?links=parent

fields Set to an enumerated list of the fields to return. For example:

.../proxy?links=none&fields=name

Examples

Example 17-16 Get the Application Router configuration

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/proxy"

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/proxy"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/proxy"
 }
],
 "identity": [

Chapter 17
REST Management for MBeans

17-28

 "customResources",
 "sipserver",
 "customResource",
 "proxy"
],
 "uris": [],
 "name": null,
 "routingPolicy": "proxy",
 "proxyRequireOptions": null
}

Example 17-17 Create a custom resource

Send a POST request to create a custom proxy.

curl -X POST \
 -u 'weblogic:<password>' \
 -d@config.json \
 -H "X-Requested-By: MyClient" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 "http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/proxy"

The contents of config.json:

{
 "uris": ["sip:oracle.com"],
 "name": null,
 "routingPolicy": "proxy",
 "proxyRequireOptions": "test"
}

Configure Overload Protection
Use the REST API endpoint below to discover the overload protection subcategories that can
be configured. A GET request to the subcategory's CreateForm URL retrieves both the
default parameters and the create URL. Send a POST request to the create URL to create
the child MBean.

URL Syntax

For the GET that returns the subcategories:

/management/weblogic/latest/serverConfig/customResources/sipserver/
customResource/overloadProtection

For a subsequent GET:

/management/weblogic/latest/serverConfig/customResources/sipserver/
customResource/overloadProtection/<subcategory>/<subcategory>CreateForm

Chapter 17
REST Management for MBeans

17-29

HTTP Methods

• GET

Parameters

The subcategories include:

• thresholds

• collectors

• eventHandlers

• actions

Table 17-5 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../overloadProtection?links=parent

fields Set to an enumerated list of the fields to return. For example:

.../overloadProtection?links=none&fields=name

Examples

Example 17-18 Get the Application Router configuration

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/overloadProtection"

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
overloadProtection"
 },
 {
 "rel": "canonical",

Chapter 17
REST Management for MBeans

17-30

 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection"
 },
 {
 "rel": "thresholds",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection/
thresholds"
 },
 {
 "rel": "collectors",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection/
collectors"
 },
 {
 "rel": "eventHandlers",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection/
eventHandlers"
 },
 {
 "rel": "actions",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection/
actions"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "overloadProtection"
],
 "name": null
}

Configure Overload Protection Thresholds
Use the REST API endpoint below to configure the overload protection thresholds. A GET
request to the CreateForm URL retrieves both the default parameters and the create URL.
Send a POST request to the create URL to create the child MBean.

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
overloadProtection/thresholds/thresholdCreateForm

Chapter 17
REST Management for MBeans

17-31

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/sipserver/
customResource/overloadProtection/thresholds/thresholds

HTTP Methods

• GET

• POST

• DELETE

Parameters

Table 17-6 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../thresholds/thresholdCreateForm?links=create

fields Set to an enumerated list of the fields to return. For example:

.../thresholds/thresholdCreateForm?
links=none&fields=enabled

Examples

Example 17-19 Get the Overload Protection Threshold CreateForm

The example below returns the required parameters to create the overload protection
threshold without any of the links.

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/overloadProtection/thresholds/
thresholdCreateForm?links=none"

Example response:

{
 "samplingInterval": 0,
 "upActions": null,
 "samplingNumber": 0,
 "samplingMode": null,
 "algorithmParameter": 0,
 "thresholdValue": 0,
 "downActions": null,
 "algorithmName": null,
 "thresholdName": null,

Chapter 17
REST Management for MBeans

17-32

 "enabled": false,
 "collector": null,
 "name": null
}

Example 17-20 Create an Overload Protection Threshold

curl -X POST \
 -d@config.json \
 -u weblogic:<password> \
 -H "X-Requested-By: MyClient" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/overloadProtection/thresholds/thresholds'

The contents of config.json:

{
 "samplingInterval": 0,
 "upActions": "reject",
 "samplingNumber": 0,
 "samplingMode": "real-time",
 "name": "up",
 "algorithmParameter": 0,
 "thresholdValue": 200000.0,
 "downActions": "reject",
 "algorithmName": "value",
 "thresholdName": "up",
 "enabled": false,
 "collector": "queue-length"
}

Example 17-21 View the Updated Overload Protection Thresholds

First, make a GET request to the thresholds/thresholds URL to retrieve links at which you
can view threshold information.

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/overloadProtection/thresholds/
thresholds"

Next, make a GET request to the links returned under the items parameter:

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/overloadProtection/thresholds/
thresholds/up"

Chapter 17
REST Management for MBeans

17-33

An example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
overloadProtection/thresholds/thresholds"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
overloadProtection/thresholds/thresholds/up"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
overloadProtection/thresholds/thresholds/up"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "overloadProtection",
 "thresholds",
 "thresholds",
 "up"
],
 "samplingInterval": 0,
 "upActions": "reject",
 "samplingNumber": 0,
 "samplingMode": "real-time",
 "name": "up",
 "algorithmParameter": 0,
 "thresholdValue": 200000,
 "downActions": "reject",
 "algorithmName": "value",
 "thresholdName": "up",
 "enabled": false,
 "collector": "queue-length"
}

Configure Overload Protection Collectors
Use the REST API endpoint below to configure the overload protection collectors. A
GET request to the CreateForm URL retrieves both the default parameters and the
create URL. Send a POST request to the create URL to create the child MBean.

Chapter 17
REST Management for MBeans

17-34

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
overloadProtection/collectors/collectorCreateForm

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
overloadProtection/collectors/collectors

HTTP Methods

• GET

• POST

• DELETE

Parameters

Table 17-7 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../collectors/collectorCreateForm?links=create

fields Set to an enumerated list of the fields to return. For example:

.../collectors/collectorCreateForm?links=none&fields=enabled

Examples

Example 17-22 Get the Overload Protection Collectors CreateForm

The example below returns the required parameters to create the overload protection
collector without any of the links.

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/overloadProtection/collectors/collectorCreateForm?
links=none"

Example response:

{
 "attributes": null,
 "collectorName": null,

Chapter 17
REST Management for MBeans

17-35

 "collectorType": null,
 "name": null
}

Example 17-23 Create an Overload Protection Collector

curl -X POST \
 -d@config.json \
 -u weblogic:<password> \
 -H "X-Requested-By: MyClient" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/overloadProtection/collectors/
collectors'

The contents of config.json:

{
 "name": "queue-length",
 "attributes": "queue-length",
 "collectorName": "queue-length",
 "collectorType":
"com.bea.sip.engine.server.olp.collector.QueuelengthCollector"
}

Example 17-24 Get the Attributes of the Overload Protection Collector

First, make a GET request to the collectors/collectors URL to retrieve links at
which you can view collector information.

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/overloadProtection/collectors/
collectors"

Next, make a GET request to the links returned under the items parameter:

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/overloadProtection/collectors/
collectors/queue-length"

An examples response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
overloadProtection/collectors/collectors"

Chapter 17
REST Management for MBeans

17-36

 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection/
collectors/collectors/queue-length"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection/
collectors/collectors/queue-length"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "overloadProtection",
 "collectors",
 "collectors",
 "queue-length"
],
 "name": "queue-length",
 "attributes": "queue-length",
 "collectorName": "queue-length",
 "collectorType":
"com.bea.sip.engine.server.olp.collector.QueuelengthCollector"
}

Configure Overload Protection Event Handlers
Use the REST API endpoint below to configure the overload protection event handlers. A
GET request to the CreateForm URL retrieves both the default parameters and the create
URL. Send a POST request to the create URL to create the child MBean.

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
overloadProtection/eventHandlers/eventHandlerCreateForm

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
overloadProtection/eventHandlers/eventHandlers

HTTP Methods

• GET

• POST

• DELETE

Chapter 17
REST Management for MBeans

17-37

Parameters

Table 17-8 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../eventHandlers/eventHandlerCreateForm?links=create

fields Set to an enumerated list of the fields to return. For example:

.../eventHandlers/eventHandlerCreateForm?
links=none&fields=enabled

Examples

Example 17-25 Get the Overload Protection Event Handlers CreateForm

The example below returns the required parameters to create the overload protection
event handler without any of the links.

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/overloadProtection/
eventHandlers/eventHandlerCreateForm?links=none'

Example response:

{
 "attributes": null,
 "eventHandlerName": null,
 "name": null
}

Example 17-26 Create an Overload Protection Event Handler

curl -X POST \
 -d@config.xml \
 -u weblogic:<password> \
 -H 'X-Requested-By: MyClient' \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/overloadProtection/
eventHandlers/eventHandlers'

Chapter 17
REST Management for MBeans

17-38

The contents of config.json:

{
 "name": "control-traffic-handler",
 "attributes": "ControlTrafficHandler",
 "eventHandlerName":
"com.bea.wcp.sip.engine.server.olp.handler.ControlTrafficHandler"
}

Example 17-27 Get the Attributes of the Overload Protection Event Handler

First, make a GET request to the eventHandlers/eventHandlers URL to retrieve links at
which you can view event handler information.

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/overloadProtection/eventHandlers/
eventHandlers"

Next, make a GET request to the links returned under the items parameter:

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/overloadProtection/eventHandlers/
eventHandlers/control-traffic-handler'

An examples response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection/
eventHandlers/eventHandlers"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection/
eventHandlers/eventHandlers/control-traffic-handler"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/overloadProtection/
eventHandlers/eventHandlers/control-traffic-handler"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",

Chapter 17
REST Management for MBeans

17-39

 "overloadProtection",
 "eventHandlers",
 "eventHandlers",
 "control-traffic-handler"
],
 "name": "control-traffic-handler",
 "attributes": "ControlTrafficHandler",
 "eventHandlerName":
"com.bea.wcp.sip.engine.server.olp.handler.ControlTrafficHandler"
}

Configure Overload Protection Actions
Use the REST API endpoint below to configure the overload protection actions. A GET
request to the CreateForm URL retrieves both the default parameters and the create
URL. Send a POST request to the create URL to create the child MBean.

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/sipserver/
customResource/overloadProtection/actions/actionCreateForm

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/sipserver/
customResource/overloadProtection/actions/actions

HTTP Methods

• GET

• POST

• DELETE

Parameters

Table 17-9 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../actions/actionCreateForm?links=create

fields Set to an enumerated list of the fields to return. For example:

.../actions/actionCreateForm?links=none&fields=enabled

Chapter 17
REST Management for MBeans

17-40

Examples

Example 17-28 Get the Overload Protection Actions CreateForm

The example below returns the required parameters to create the overload protection action
without any of the links.

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/overloadProtection/actions/actionCreateForm?
links=none'

Example response:

{
 "actionType": null,
 "attributes": null,
 "eventHandler": null,
 "actionName": null,
 "name": null
}

Example 17-29 Create an Overload Protection Action

curl -X POST \
 -d@config.xml \
 -u weblogic:<password> \
 -H 'X-Requested-By: MyClient' \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/overloadProtection/actions/actions'

The contents of config.json:

{
 "actionType": "reject-traffic",
 "name": "reject",
 "attributes": "ControlTrafficHandler",
 "eventHandler":
"com.bea.wcp.sip.engine.server.olp.handler.ControlTrafficHandler",
 "actionName": "reject"
}

Example 17-30 Get the Attributes of the Overload Protection Action

First, make a GET request to the actions/actions URL to retrieve links at which you can
view actions information.

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/overloadProtection/actions/actions"

Chapter 17
REST Management for MBeans

17-41

Next, make a GET request to the links returned under the items parameter:

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/overloadProtection/actions/
actions/reject'

An examples response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
overloadProtection/actions/actions"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
overloadProtection/actions/actions/reject"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/
overloadProtection/actions/actions/reject"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "overloadProtection",
 "actions",
 "actions",
 "reject"
],
 "actionType": "reject-traffic",
 "name": "reject",
 "attributes": "ControlTrafficHandler",
 "eventHandler":
"com.bea.wcp.sip.engine.server.olp.handler.ControlTrafficHandler",
 "actionName": "reject"
}

Configure Message Debug
Use the REST API endpoint below to configure message debug. A GET request to the
CreateForm URL retrieves both the default parameters and the create URL. Send a
POST request to the create URL to create the child MBean.

Chapter 17
REST Management for MBeans

17-42

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
messageDebugCreateForm

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
messageDebug

HTTP Methods

• GET

• POST

• DELETE

Parameters

Table 17-10 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../messageDebugCreateForm?links=parent

fields Set to an enumerated list of the fields to return. For example:

.../messageDebug?links=none&fields=name

Examples

Example 17-31 Get the Message Debug CreateForm

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/messageDebugCreateForm'

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource"

Chapter 17
REST Management for MBeans

17-43

 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/messageDebugCreateForm"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/messageDebugCreateForm"
 },
 {
 "rel": "create",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/messageDebug"
 }
],
 "dateFormatPattern": null,
 "fileMinSize": 500,
 "logFilename": "sip-messages.log",
 "fileTimeSpanFactor": 3600000,
 "loggingEnabled": false,
 "level": null,
 "rotationType": "bySize",
 "fileTimeSpan": 24,
 "numberOfFilesLimited": false,
 "fileCount": 7,
 "rotateLogOnStartup": true,
 "localLoggingEnabled": true,
 "rotationTime": "00:00",
 "logFileRotationDir": null
}

Example 17-32 Create a custom resource

Send a POST request to create the message debug element.

curl -X POST \
 -d@config.xml \
 -u weblogic:<password> \
 -H 'X-Requested-By: MyClient' \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/messageDebug'

The contents of config.json:

{
 "dateFormatPattern": "MMM d, yyyy h:mm:ss,SSS a z",
 "fileMinSize": 500,
 "logFilename": "sip-messages.log",
 "fileTimeSpanFactor": 3600000,
 "loggingEnabled": false,

Chapter 17
REST Management for MBeans

17-44

 "level": "full",
 "rotationType": "bySize",
 "fileTimeSpan": 24,
 "numberOfFilesLimited": false,
 "fileCount": 7,
 "rotateLogOnStartup": true,
 "name": null,
 "localLoggingEnabled": true,
 "rotationTime": "00:00",
 "logFileRotationDir": "/tmp/log"
}

Example 17-33

After the element has been created, send a GET request to view its links and attributes.

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/messageDebug'

An example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/messageDebug"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/messageDebug"
 },
 {
 "rel": "format",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/messageDebug/format"
 },
 {
 "rel": "formatCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/messageDebug/formatCreateForm"
 },
 {
 "rel": "stringRep",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/messageDebug/stringRep"
 },

Chapter 17
REST Management for MBeans

17-45

 {
 "rel": "stringRepCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/messageDebug/
stringRepCreateForm"
 },
 {
 "rel": "create-form",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/messageDebugCreateForm"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "messageDebug"
],
 "dateFormatPattern": "MMM d, yyyy h:mm:ss,SSS a z",
 "fileMinSize": 500,
 "logFilename": "sip-messages.log",
 "fileTimeSpanFactor": 3600000,
 "loggingEnabled": false,
 "level": "full",
 "rotationType": "bySize",
 "fileTimeSpan": 24,
 "numberOfFilesLimited": false,
 "fileCount": 7,
 "rotateLogOnStartup": true,
 "name": null,
 "localLoggingEnabled": true,
 "rotationTime": "00:00",
 "logFileRotationDir": "/tmp/log"
}

Configure SIP Security
Use the REST API endpoint below to configure SIP security. A GET request to the
CreateForm URL retrieves both the default parameters and the create URL. Send a
POST request to the create URL to create the child MBean.

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/sipserver/
customResource/sipSecurityCreateForm

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/sipserver/
customResource/sipSecurity

Chapter 17
REST Management for MBeans

17-46

HTTP Methods

• GET

• POST

• DELETE

Parameters

Table 17-11 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../sipSecurityCreateForm?links=parent

fields Set to an enumerated list of the fields to return. For example:

.../sipSecurity?links=none&fields=trustedAuthenticationHosts

Examples

Example 17-34 Get the SIP Security CreateForm

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/sipSecurityCreateForm'

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/sipSecurityCreateForm"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/sipSecurityCreateForm"
 },
 {
 "rel": "create",

Chapter 17
REST Management for MBeans

17-47

 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/sipSecurity"
 }
],
 "trustedAuthenticationHosts": null,
 "trustedChargingHosts": null
}

Example 17-35 Create a custom resource

Send a POST request to create the SIP security element.

curl -X POST \
 -d@config.xml \
 -u weblogic:<password> \
 -H 'X-Requested-By: MyClient' \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/sipSecurity'

The contents of config.json:

{
 "trustedAuthenticationHosts": [10.0.0.2],
 "trustedChargingHosts": [10.0.0.2]
}

Example 17-36 Retrieve the created resource

After the resource has been created, send a GET request to view its links and
attributes.

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/domainConfig/
customResources/sipserver/customResource/sipSecurity'

An example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainConfig/customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainConfig/customResources/sipserver/customResource/sipSecurity"
 },
 {
 "rel": "canonical",

Chapter 17
REST Management for MBeans

17-48

 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainConfig/customResources/sipserver/customResource/sipSecurity"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "sipSecurity"
],
 "trustedAuthenticationHosts": [
 "10.0.0.2"
],
 "name": null,
 "trustedChargingHosts": [
 "10.0.0.2"
]
}

Configure Persistence
Use the REST API endpoint below to configure persistence. A GET request to the
CreateForm URL retrieves both the default parameters and the create URL. Send a POST
request to the create URL to create the child MBean.

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
persistenceCreateForm

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
persistence

HTTP Methods

• GET

• POST

• DELETE

Chapter 17
REST Management for MBeans

17-49

Parameters

Table 17-12 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../persistenceCreateForm?links=none

fields Set to an enumerated list of the fields to return. For example:

.../persistence?links=none&fields=geoEnabled

Examples

Example 17-37 Get the Persistence CreateForm

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/persistenceCreateForm'

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/persistenceCreateForm"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/persistenceCreateForm"
 },
 {
 "rel": "create",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/persistence"
 }
],
 "geoRemoteT3Url": null,
 "dbEnabled": false,
 "jmsSendAsIdentity": null,

Chapter 17
REST Management for MBeans

17-50

 "geoEnabled": false,
 "defaultHandling": null
}

Example 17-38 Create a custom resource

Send a POST request to create the element.

curl -X POST \
 -d@config.xml \
 -u weblogic:<password> \
 -H 'X-Requested-By: MyClient' \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/persistence'

The contents of config.json:

{
 "geoRemoteT3Url": null,
 "dbEnabled": false,
 "jmsSendAsIdentity": null,
 "geoEnabled": false,
 "defaultHandling": "all"
}

Example 17-39 Retrieve the created resource

After the resource has been created, send a GET request to view its links and attributes.

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/persistence'

An example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/persistence"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/persistence"

Chapter 17
REST Management for MBeans

17-51

 },
 {
 "rel": "create-form",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/persistenceCreateForm"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "persistence"
],
 "geoRemoteT3Url": null,
 "dbEnabled": false,
 "jmsSendAsIdentity": null,
 "geoEnabled": false,
 "defaultHandling": "all"
}

Configure Connection Pools
Use the REST API endpoint below to configure connection reuse pools to minimize
communication overhead with a Session Border Controller or Serving Call Session
Control Function (S-CSCF). A GET request to the CreateForm URL retrieves both the
default parameters and the create URL. Send a POST request to the create URL to
create the child MBean.

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/sipserver/
customResource/connectionReusePoolCreateForm

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/sipserver/
customResource/connectionReusePools

HTTP Methods

• GET

• POST

• DELETE

Chapter 17
REST Management for MBeans

17-52

Parameters

Table 17-13 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../connectionReusePoolCreateForm?links=none

fields Set to an enumerated list of the fields to return. For example:

.../connectionReusePools?links=none&fields=destinationPort

Examples

Example 17-40 Get the Connection Reuse Pools CreateForm

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/connectionReusePoolCreateForm'

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/connectionReusePoolCreateForm"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/connectionReusePoolCreateForm"
 },
 {
 "rel": "create",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/connectionReusePools"
 }
],
 "destinationPort": 0,
 "maximumConnections": 0,
 "destination": null,

Chapter 17
REST Management for MBeans

17-53

 "poolName": null
}

Example 17-41 Create a custom resource

Send a POST request to create the connection reuse pool.

curl -X POST \
 -d@config.xml \
 -u weblogic:<password> \
 -H 'X-Requested-By: MyClient' \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/connectionReusePools'

The contents of config.json:

{
 "destinationPort": 35071,
 "maximumConnections": 1,
 "destination": "10.10.10.11",
 "poolName": "ConnPool-1"
}

Example 17-42 Retrieve the created resource

After the resource has been created, send a GET request to view its links and
attributes.

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/connectionReusePools'

An example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/connectionReusePools"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/connectionReusePools"
 },

Chapter 17
REST Management for MBeans

17-54

 {
 "rel": "create-form",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/connectionReusePoolCreateForm"
 }
],
 "items": [
 {
 "links": [
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/connectionReusePools/
ConnPool-1"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/connectionReusePools/
ConnPool-1"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "connectionReusePools",
 "ConnPool-1"
],
 "destinationPort": 35071,
 "maximumConnections": 1,
 "destination": "10.10.10.11",
 "poolName": "ConnPool-1"
 }
]
}

Configure Cluster Load Balancer
Use the REST API endpoint below to configure a cluster load balancer. A GET request to the
CreateForm URL retrieves both the default parameters and the create URL. Send a POST
request to the create URL to create the child MBean.

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/sipserver/customResource/
clusterLoadbalancerMapCreateForm

Chapter 17
REST Management for MBeans

17-55

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/sipserver/
customResource/clusterLoadbalancerMaps

HTTP Methods

• GET

• POST

• DELETE

Parameters

Table 17-14 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../clusterLoadbalancerMapCreateForm?links=none

fields Set to an enumerated list of the fields to return. For example:

.../clusterLoadbalancerMaps?links=none&fields=sipUri

Examples

Example 17-43 Get the CreateForm

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/
clusterLoadbalancerMapCreateForm'

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/
clusterLoadbalancerMapCreateForm"
 },
 {

Chapter 17
REST Management for MBeans

17-56

 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/clusterLoadbalancerMapCreateForm"
 },
 {
 "rel": "create",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/clusterLoadbalancerMaps"
 }
],
 "sipUri": null,
 "clusterName": null
}

Example 17-44 Create a custom resource

Send a POST request to create the SIP security element.

curl -X POST \
 -d@config.xml \
 -u weblogic:<password> \
 -H 'X-Requested-By: MyClient' \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/clusterLoadbalancerMaps'

The contents of config.json:

{
 "sipUri": "sip:oracle.com",
 "clusterName": "Cluster-0"
}

Example 17-45 Retrieve the created resource

After the resource has been created, send a GET request to view its links and attributes.

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
sipserver/customResource/clusterLoadbalancerMaps'

An example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource"
 },
 {
 "rel": "self",

Chapter 17
REST Management for MBeans

17-57

 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/clusterLoadbalancerMaps"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/clusterLoadbalancerMaps"
 },
 {
 "rel": "create-form",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/sipserver/customResource/
clusterLoadbalancerMapCreateForm"
 }
],
 "items": [
 {
 "links": [
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/
latest/edit/customResources/sipserver/customResource/
clusterLoadbalancerMaps/Cluster-0"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/
latest/edit/customResources/sipserver/customResource/
clusterLoadbalancerMaps/Cluster-0"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "clusterLoadbalancerMaps",
 "Cluster-0"
],
 "clusterName": "Cluster-0",
 "name": null,
 "sipUri": "sip:oracle.com"
 }
]
}

Configure MPS
Use the REST API endpoint below to configure the messages per second.

Chapter 17
REST Management for MBeans

17-58

URL Syntax

For a GET:

/management/weblogic/latest/serverConfig/customResources/sipserver/
customResource/MPSConfig

For a POST:

/management/weblogic/latest/serverConfig/customResources/sipserver/
customResource/MPSConfig

HTTP Methods

• GET

• POST

Parameters

Table 17-15 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../MPSConfig?links=parent

fields Set to an enumerated list of the fields to return. For example:

.../MPSConfig?links=none&fields=licensedPeakMPS

Examples

Example 17-46 Get the MPS details

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/serverConfig/
customResources/sipserver/customResource/MPSConfig"

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource"
 },
 {

Chapter 17
REST Management for MBeans

17-59

 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/MPSConfig"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
serverConfig/customResources/sipserver/customResource/MPSConfig"
 }
],
 "identity": [
 "customResources",
 "sipserver",
 "customResource",
 "MPSConfig"
],
 "alertThreshold": 10,
 "licensedPeakMPS": 100,
 "name": null,
 "breachInfo":"Threshold limit crossed during period Mon Jan 09
22:15:00 IST 2023 and Mon Jan 09 22:20:00 IST 2023",
 "historicMPSPersistenceInterval": 12
}

Example 17-47 Create a custom resource

Send a POST request to create a custom MPSConfig.

curl -X POST \
 -u 'weblogic:<password>' \
 -d@config.json \
 -H "X-Requested-By: MyClient" \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/sipserver/customResource/MPSConfig"

The contents of config.json:

{
 licensedPeakMPS: 1000,
 historicMPSPersistenceInterval: 1,
 alertThreshold: 75
}

Configure Server Debugging
Use the REST API endpoint below to configure server debugging. A GET request to
the CreateForm URL retrieves both the default parameters and the create URL. Send
a POST request to the create URL to create the child MBean.

Chapter 17
REST Management for MBeans

17-60

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/serverdebug/customResource/
serverCreateForm

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/serverdebug/customResource/
servers

HTTP Methods

• GET

• POST

• DELETE

Parameters

Table 17-16 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../serverCreateForm?links=none

fields Set to an enumerated list of the fields to return. For example:

.../servers?links=none&fields=name

Examples

Example 17-48 Get the CreateForm

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
serverdebug/customResource/serverCreateForm'

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource"

Chapter 17
REST Management for MBeans

17-61

 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/serverdebug/customResource/serverCreateForm"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/serverdebug/customResource/serverCreateForm"
 },
 {
 "rel": "create",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/serverdebug/customResource/servers"
 }
],
 "name": null
}

Example 17-49 Create a custom resource

Send a POST request to create the server element.

curl -X POST \
 -d@config.xml \
 -u weblogic:<password> \
 -H 'X-Requested-By: MyClient' \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers'

The contents of config.json:

{
 "name": "AdminServer"
}

Example 17-50 Retrieve the created resource

After the resource has been created, send a GET request to view its links, attributes,
and subcategories. The URL syntax is:

/management/weblogic/latest/edit/customResources/serverdebug/
customResource/servers/<name>

For example:

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer'

Chapter 17
REST Management for MBeans

17-62

An example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer"
 },
 {
 "rel": "debugAttributes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer/
debugAttributes"
 },
 {
 "rel": "debugAttributeCreateForm",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer/
debugAttributeCreateForm"
 }
],
 "identity": [
 "customResources",
 "serverdebug",
 "customResource",
 "servers",
 "AdminServer"
],
 "name": "AdminServer"
}

Configure Debug Attributes
Use the REST API endpoint below to configure debug attributes. A GET request to the
CreateForm URL retrieves both the default parameters and the create URL. Send a POST
request to the create URL to create the child MBean.

URL Syntax

For the GET:

/management/weblogic/latest/edit/customResources/serverdebug/customResource/
servers/<server>/debugAttributeCreateForm

Chapter 17
REST Management for MBeans

17-63

For the POST or DELETE:

/management/weblogic/latest/edit/customResources/serverdebug/
customResource/servers/<server>/debugAttributes

HTTP Methods

• GET

• POST

• DELETE

Parameters

The debug attributes you can set include:

• wlss.Admin

• wlss.AppRoute

• wlss.CallState

• wlss.CoherenceStore

• wlss.concurrent

• wlss.Deployment

• wlss.Diameter

• wlss.Dns

• wlss.Filters

• wlss.Geo

Table 17-17 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../debugAttributeCreateForm?links=none

fields Set to an enumerated list of the fields to return. For example:

.../debugAttributes?links=none&fields=name

Examples

Example 17-51 Get the CreateForm

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer/
debugAttributeCreateForm'

Chapter 17
REST Management for MBeans

17-64

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer/
debugAttributeCreateForm"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer/
debugAttributeCreateForm"
 },
 {
 "rel": "create",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer/
debugAttributes"
 }
],
 "name": null,
 "state": false
}

Example 17-52 Create a custom resource

Send a POST request to set the debug attribute.

curl -X POST \
 -d@config.xml \
 -u weblogic:<password> \
 -H 'X-Requested-By: MyClient' \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/customResources/
serverdebug/customResource/servers/AdminServer/debugAttributes'

The contents of config.json:

{
 "name": "wlss.Dns",
 "state": true
}

Chapter 17
REST Management for MBeans

17-65

Example 17-53 Retrieve the created resource

After the resource has been created, send a GET request to view its links and
attributes.

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/edit/
customResources/serverdebug/customResource/servers/AdminServer/
debugAttributes'

An example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/serverdebug/customResource/servers/AdminServer"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/serverdebug/customResource/servers/AdminServer/
debugAttributes"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/serverdebug/customResource/servers/AdminServer/
debugAttributes"
 },
 {
 "rel": "create-form",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
edit/customResources/serverdebug/customResource/servers/AdminServer/
debugAttributeCreateForm"
 }
],
 "items": [
 {
 "links": [
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/
latest/edit/customResources/serverdebug/customResource/servers/
AdminServer/debugAttributes/wlss.Dns"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/
latest/edit/customResources/serverdebug/customResource/servers/
AdminServer/debugAttributes/wlss.Dns"
 }
],
 "identity": [

Chapter 17
REST Management for MBeans

17-66

 "customResources",
 "serverdebug",
 "customResource",
 "servers",
 "AdminServer",
 "debugAttributes",
 "wlss.Dns"
],
 "name": "wlss.Dns",
 "state": true
 }
]
}

Retrieving Runtime Attributes
Each server object contains runtime attributes that are read-only. Use the REST API endpoint
below to retrieve these attributes. Access the subcategory attributes by making a GET
request to the subcategories returned in the links section.

URL Syntax

/management/weblogic/latest/domainRuntime/serverRuntimes/<server-name>

HTTP Methods

• GET

Parameters

Table 17-18 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../serverRuntimes/<server-name>?links=none

fields Set to an enumerated list of the fields to return. For example:

.../serverRuntimes/<server-name>?
links=none&fields=type,weblogicVersion

Examples

Example 17-54 Get the Runtime Attributes

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/domainRuntime/
serverRuntimes/managed-server1'

Chapter 17
REST Management for MBeans

17-67

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1"
 },
 {
 "rel": "maxThreadsConstraintRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/
maxThreadsConstraintRuntimes"
 },
 {
 "rel": "webServerRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/webServerRuntimes"
 },
 {
 "rel": "minThreadsConstraintRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/
minThreadsConstraintRuntimes"
 },
 {
 "rel": "pathServiceRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/pathServiceRuntimes"
 },
 {
 "rel": "persistentStoreRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/persistentStoreRuntimes"
 },
 {
 "rel": "serverChannelRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/serverChannelRuntimes"
 },
 {
 "rel": "requestClassRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/requestClassRuntimes"

Chapter 17
REST Management for MBeans

17-68

 },
 {
 "rel": "libraryRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/libraryRuntimes"
 },
 {
 "rel": "executeQueueRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/executeQueueRuntimes"
 },
 {
 "rel": "workManagerRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/workManagerRuntimes"
 },
 {
 "rel": "messagingBridgeRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/messagingBridgeRuntimes"
 },
 {
 "rel": "mailSessionRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/mailSessionRuntimes"
 },
 {
 "rel": "applicationRuntimes",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/applicationRuntimes"
 },
 {
 "rel": "MANAsyncReplicationRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/MANAsyncReplicationRuntime"
 },
 {
 "rel": "singleSignOnServicesRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/singleSignOnServicesRuntime"
 },
 {
 "rel": "wseeWsrmRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/wseeWsrmRuntime"
 },
 {
 "rel": "batchJobRepositoryRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/batchJobRepositoryRuntime"
 },
 {
 "rel": "JVMRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/JVMRuntime"

Chapter 17
REST Management for MBeans

17-69

 },
 {
 "rel": "asyncReplicationRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/asyncReplicationRuntime"
 },
 {
 "rel": "serverSecurityRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/serverSecurityRuntime"
 },
 {
 "rel": "entityCacheCurrentStateRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/
entityCacheCurrentStateRuntime"
 },
 {
 "rel": "SNMPAgentRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/SNMPAgentRuntime"
 },
 {
 "rel": "clusterRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/clusterRuntime"
 },
 {
 "rel": "joltRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/joltRuntime"
 },
 {
 "rel": "threadPoolRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/threadPoolRuntime"
 },
 {
 "rel": "timerRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/timerRuntime"
 },
 {
 "rel": "defaultExecuteQueueRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/
defaultExecuteQueueRuntime"
 },
 {
 "rel": "wseeClusterFrontEndRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/
wseeClusterFrontEndRuntime"
 },
 {

Chapter 17
REST Management for MBeans

17-70

 "rel": "logBroadcasterRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/logBroadcasterRuntime"
 },
 {
 "rel": "concurrentManagedObjectsRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/concurrentManagedObjectsRuntime"
 },
 {
 "rel": "entityCacheCumulativeRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/entityCacheCumulativeRuntime"
 },
 {
 "rel": "entityCacheHistoricalRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/entityCacheHistoricalRuntime"
 },
 {
 "rel": "JTARuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/JTARuntime"
 },
 {
 "rel": "connectorServiceRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/connectorServiceRuntime"
 },
 {
 "rel": "MANReplicationRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/MANReplicationRuntime"
 },
 {
 "rel": "SAFRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/SAFRuntime"
 },
 {
 "rel": "classLoaderRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/classLoaderRuntime"
 },
 {
 "rel": "WLDFRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/WLDFRuntime"
 },
 {
 "rel": "WTCRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/WTCRuntime"
 },
 {

Chapter 17
REST Management for MBeans

17-71

 "rel": "JMSRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/JMSRuntime"
 },
 {
 "rel": "JDBCServiceRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/JDBCServiceRuntime"
 },
 {
 "rel": "WANReplicationRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/WANReplicationRuntime"
 },
 {
 "rel": "serverLogRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/serverLogRuntime"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/suspend",
 "title": "suspend"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/resume",
 "title": "resume"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/getURL",
 "title": "getURL"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/getIPv4URL",
 "title": "getIPv4URL"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/getIPv6URL",
 "title": "getIPv6URL"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/forceRestartPartition",
 "title": "forceRestartPartition"
 },

Chapter 17
REST Management for MBeans

17-72

 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/forceSuspend",
 "title": "forceSuspend"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/restartSSLChannels",
 "title": "restartSSLChannels"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/forceShutdown",
 "title": "forceShutdown"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/shutdown",
 "title": "shutdown"
 },
 {
 "rel": "DiameterRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/DiameterRuntime"
 },
 {
 "rel": "search",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/search"
 },
 {
 "rel": "SipPerformanceRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/SipPerformanceRuntime"
 },
 {
 "rel": "SipServletSnmpTrapRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/SipServletSnmpTrapRuntime"
 },
 {
 "rel": "SipApplicationRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/SipApplicationRuntime"
 },
 {
 "rel": "SipServerRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/SipServerRuntime"
 }
],

Chapter 17
REST Management for MBeans

17-73

 "identity": [],
 "stateVal": 2,
 "type": "ServerRuntime",
 "weblogicVersion": "WebLogic Server 14.1.1.0.0 Thu Mar 26
03:15:09 GMT 2020 2000885",
 "adminServerHost": "sample-domain1-admin-server",
 "restartRequired": false,
 "overallHealthState": {
 "state": "ok",
 "subsystemName": "ServerRuntime",
 "partitionName": null,
 "symptoms": []
 },
 "middlewareHome": "/u01/oracle",
 "listenPortEnabled": true,
 "weblogicHome": "/u01/oracle/wlserver",
 "adminServer": false,
 "SSLListenPortEnabled": false,
 "state": "RUNNING",
 "activationTime": 1636120517390,
 "defaultURL": "t3://sample-domain1-managed-server1:8001",
 "adminServerListenPort": 7001,
 "currentMachine": "",
 "patchList": [
 "No patches installed"
],
 "openSocketsCurrentCount": 12,
 "administrationPortEnabled": false,
 "administrationURL": "t3://sample-domain1-managed-server1:8001",
 "adminServerListenPortSecure": false,
 "healthState": {
 "state": "ok",
 "subsystemName": "ServerRuntime",
 "partitionName": null,
 "symptoms": []
 },
 "currentDirectory": "/scratch/pv/domains/sample-domain1/.",
 "name": "managed-server1",
 "inSitConfigState": true,
 "serverClasspath": "/u01/oracle/wlserver/../oracle_common/modules/
endorsed/jakarta.annotation.jakarta.annotation-api.jar:/u01/oracle/
wlserver/../oracle_common/modules/endorsed/
jakarta.xml.ws.jakarta.xml.ws-api.jar:/usr/java/jdk-8/jre/lib/
resources.jar:/usr/java/jdk-8/jre/lib/rt.jar:/usr/java/jdk-8/jre/lib/
sunrsasign.jar:/usr/java/jdk-8/jre/lib/jsse.jar:/usr/java/
jdk-8/jre/lib/jce.jar:/usr/java/jdk-8/jre/lib/charsets.jar:/usr/java/
jdk-8/jre/lib/jfr.jar:/usr/java/jdk-8/jre/classes:/usr/java/jdk-8/lib/
tools.jar:/u01/oracle/wlserver/server/lib/weblogic.jar:/u01/oracle/
wlserver/../oracle_common/modules/thirdparty/ant-
contrib-1.0b3.jar:/u01/oracle/wlserver/modules/features/
oracle.wls.common.nodemanager.jar:/u01/oracle/wlserver/sip/server/lib/
weblogic_sip.jar:/u01/oracle/occas/server/lib/platform/
oracle.sdp.occas.depended.jar:/u01/oracle/wlserver/sip/server/lib/wlss-
runtime-rest-proxy.jar:/usr/java/jdk-8/lib/tools.jar:/scratch/pv/

Chapter 17
REST Management for MBeans

17-74

domains/sample-domain1/lib/sipactivator.jar"
}

Example 17-55 Retrieve Specific Attributes

To retrieve specific attributes, use the fields parameter with an enumerated list.

For example:

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/domainRuntime/
serverRuntimes/managed-server1?links=none&fields=name,weblogicHome'

An example response:

{
 "weblogicHome": "/u01/oracle/wlserver",
 "name": "managed-server1"
}

Example 17-56 Access the Runtime Attributes of a Subcategory

The links to subcategories are returned in the links section, as shown above. Make a GET
request to one of those links to view the attributes of that subcategory.

For example:

curl -u weblogic:<password> \
 'http://10.0.0.1:7001/management/weblogic/latest/domainRuntime/
serverRuntimes/managed-server1/clusterRuntime'

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/clusterRuntime"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/clusterRuntime"
 },
 {
 "rel": "unicastMessaging",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/clusterRuntime/unicastMessaging"

Chapter 17
REST Management for MBeans

17-75

 },
 {
 "rel": "jobSchedulerRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/clusterRuntime/
jobSchedulerRuntime"
 },
 {
 "rel": "serverMigrationRuntime",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/clusterRuntime/
serverMigrationRuntime"
 },
 {
 "rel": "action",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/serverRuntimes/managed-server1/clusterRuntime/
initiateResourceGroupMigration",
 "title": "initiateResourceGroupMigration"
 }
],
 "identity": [
 "clusterRuntime"
],
 "activeSingletonServices": [
 "managed-server1"
],
 "primaryCount": 0,
 "fragmentsSentCount": 45358,
 "secondaryCount": 0,
 "type": "ClusterRuntime",
 "detailedSecondariesDistribution": [],
 "resendRequestsCount": 0,
 "aliveServerCount": 1,
 "foreignFragmentsDroppedCount": 0,
 "healthState": {
 "state": "ok",
 "subsystemName": null,
 "partitionName": null,
 "symptoms": []
 },
 "serverNames": [
 "managed-server1"
],
 "name": "BEA_ENGINE_TIER_CLUST",
 "fragmentsReceivedCount": 0,
 "multicastMessagesLostCount": 0,
 "secondaryServerDetails": ""
}

Get MPS Runtime Data
Use the REST API endpoint below to get the MPS runtime data.

Chapter 17
REST Management for MBeans

17-76

URL Syntax

For a GET:

/management/weblogic/latest/domainRuntime/MPSRuntimeData

HTTP Methods

• GET

Parameters

Table 17-19 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../MPSRuntimeData?links=parent

fields Set to an enumerated list of the fields to return. For example:

.../MPSRuntimeData?links=none&fields=MPSLatestRecord

Examples

Example 17-57 Get the MPS details

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/domainRuntime/
MPSRuntimeData"

Example response:

{
 "links": [
 {
 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/MPSRuntimeData"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/MPSRuntimeData"

Chapter 17
REST Management for MBeans

17-77

 }
],
 "MPSLatestRecord": [
 "StartTime : Thu Jan 12 06:36:40 IST 2023EndTime : Thu Jan 12
06:37:10 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:36:45 IST 2023EndTime : Thu Jan 12
06:37:15 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:36:50 IST 2023EndTime : Thu Jan 12
06:37:20 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:36:55 IST 2023EndTime : Thu Jan 12
06:37:25 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:00 IST 2023EndTime : Thu Jan 12
06:37:30 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:05 IST 2023EndTime : Thu Jan 12
06:37:35 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:10 IST 2023EndTime : Thu Jan 12
06:37:40 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:15 IST 2023EndTime : Thu Jan 12
06:37:45 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:20 IST 2023EndTime : Thu Jan 12
06:37:50 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:25 IST 2023EndTime : Thu Jan 12
06:37:55 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:30 IST 2023EndTime : Thu Jan 12
06:38:00 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:35 IST 2023EndTime : Thu Jan 12
06:38:05 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:40 IST 2023EndTime : Thu Jan 12
06:38:10 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:45 IST 2023EndTime : Thu Jan 12
06:38:15 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:50 IST 2023EndTime : Thu Jan 12
06:38:20 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:37:55 IST 2023EndTime : Thu Jan 12
06:38:25 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:00 IST 2023EndTime : Thu Jan 12
06:38:30 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:05 IST 2023EndTime : Thu Jan 12
06:38:35 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:10 IST 2023EndTime : Thu Jan 12
06:38:40 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:15 IST 2023EndTime : Thu Jan 12
06:38:45 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:20 IST 2023EndTime : Thu Jan 12
06:38:50 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:25 IST 2023EndTime : Thu Jan 12
06:38:55 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:30 IST 2023EndTime : Thu Jan 12
06:39:00 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:35 IST 2023EndTime : Thu Jan 12
06:39:05 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:40 IST 2023EndTime : Thu Jan 12
06:39:10 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:45 IST 2023EndTime : Thu Jan 12
06:39:15 IST 2023Peak MPS : 0",

Chapter 17
REST Management for MBeans

17-78

 "StartTime : Thu Jan 12 06:38:50 IST 2023EndTime : Thu Jan 12
06:39:20 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:38:55 IST 2023EndTime : Thu Jan 12
06:39:25 IST 2023Peak MPS : 0",
 "StartTime : Thu Jan 12 06:39:00 IST 2023EndTime : Thu Jan 12
06:39:30 IST 2023Peak MPS : 0"
]
}

Get MPS Historic Data
Use the REST API endpoint below to get the MPS historic data.

URL Syntax

For a GET:

/management/weblogic/latest/domainRuntime/MPSHistoricData

HTTP Methods

• GET

Parameters

Table 17-20 URL Parameters

Names Description

links Set to none if you want to remove the links from the response. Set to an
enumerated list of the links to return. For example:

.../MPSHistoricData?links=parent

fields Set to an enumerated list of the fields to return. For example:

.../MPSHistoricData?links=none&fields=MPSThisHourReport

Examples

Example 17-58 Get the MPS Historic Details

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/domainRuntime/
MPSHistoricData"

Example response:

{
 "links": [
 {

Chapter 17
REST Management for MBeans

17-79

 "rel": "parent",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime"
 },
 {
 "rel": "self",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/MPSHistoricData"
 },
 {
 "rel": "canonical",
 "href": "http://10.0.0.1:7001/management/weblogic/latest/
domainRuntime/MPSHistoricData"
 }
],
 "MPSThisHourReport": [
 "StartTime : Thu Jan 12 06:00:00 IST 2023 EndTime : Thu Jan
12 06:05:00 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:04:35 IST 2023 EndTime : Thu Jan
12 06:09:35 IST 2023 Average Peak MPS : 2",
 "StartTime : Thu Jan 12 06:09:10 IST 2023 EndTime : Thu Jan
12 06:14:10 IST 2023 Average Peak MPS : 2",
 "StartTime : Thu Jan 12 06:13:45 IST 2023 EndTime : Thu Jan
12 06:18:45 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:18:20 IST 2023 EndTime : Thu Jan
12 06:23:20 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:22:55 IST 2023 EndTime : Thu Jan
12 06:27:55 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:27:30 IST 2023 EndTime : Thu Jan
12 06:32:30 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:32:05 IST 2023 EndTime : Thu Jan
12 06:37:05 IST 2023 Average Peak MPS : 0"
],
 "MPSTodayReport": [
 "StartTime : Thu Jan 12 06:00:00 IST 2023 EndTime : Thu Jan
12 06:05:00 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:04:35 IST 2023 EndTime : Thu Jan
12 06:09:35 IST 2023 Average Peak MPS : 2",
 "StartTime : Thu Jan 12 06:09:10 IST 2023 EndTime : Thu Jan
12 06:14:10 IST 2023 Average Peak MPS : 2",
 "StartTime : Thu Jan 12 06:13:45 IST 2023 EndTime : Thu Jan
12 06:18:45 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:18:20 IST 2023 EndTime : Thu Jan
12 06:23:20 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:22:55 IST 2023 EndTime : Thu Jan
12 06:27:55 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:27:30 IST 2023 EndTime : Thu Jan
12 06:32:30 IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:32:05 IST 2023 EndTime : Thu Jan
12 06:37:05 IST 2023 Average Peak MPS : 0"
]
}

Chapter 17
REST Management for MBeans

17-80

Example 17-59 Get the MPS Historic Details by Date

curl -u 'weblogic:<password>' \
 "http://10.0.0.1:7001/management/weblogic/latest/domainRuntime/
MPSHistoricData/MPSData?fromDate=12/11/2022&toDate=01/12/2023"

Example response:

{
 "MPSDATA":[
 "StartTime : Thu Jan 12 06:00:00 IST 2023 EndTime : Thu Jan 12 06:05:00
IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:04:35 IST 2023 EndTime : Thu Jan 12 06:09:35
IST 2023 Average Peak MPS : 2",
 "StartTime : Thu Jan 12 06:09:10 IST 2023 EndTime : Thu Jan 12 06:14:10
IST 2023 Average Peak MPS : 2",
 "StartTime : Thu Jan 12 06:13:45 IST 2023 EndTime : Thu Jan 12 06:18:45
IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:18:20 IST 2023 EndTime : Thu Jan 12 06:23:20
IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:22:55 IST 2023 EndTime : Thu Jan 12 06:27:55
IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:27:30 IST 2023 EndTime : Thu Jan 12 06:32:30
IST 2023 Average Peak MPS : 0",
 "StartTime : Thu Jan 12 06:32:05 IST 2023 EndTime : Thu Jan 12 06:37:05
IST 2023 Average Peak MPS : 0"
]
}

Chapter 17
REST Management for MBeans

17-81

	Contents
	Preface
	Audience
	My Oracle Support
	Revision History

	1 About Developing Applications for the Converged Application Server
	About Converged Application Server APIs

	2 Overview of SIP Servlet Application Development
	About the SIP Protocol
	SIP Requests
	SIP Responses

	What are SIP Servlets?
	Developing SIP Servlets
	Developing SIP Servlets Using POJOs and Annotations
	Developing Legacy SIP Servlets

	Overview of the Differences Between HTTP Servlets and SIP Servlets
	Detailed Differences from HTTP Servlets
	Multiple Responses
	Receiving Responses
	Proxy Functions
	Message Body
	Servlet Request
	Servlet Response
	SipServletMessage

	Role of a Servlet Container
	Application Management
	SIP Messaging
	Utility Functions

	Internetworking with Third Party Protocols
	SIP Servlet Concurrency
	Resolving Telephone Numbers to SipURI
	Annotation for DnsResolver Injection

	3 SIP Servlet POJOs
	About SIP Servlet POJOs
	The SIP Servlet POJO Life Cycle
	SIP Meta Annotations
	@SipMethod
	@SipResponseCode
	@SipResponseRange
	@SipPredicate

	Method Specific Annotations
	@AnyMethod Annotation

	Response Filtering
	@BranchResponse Annotation

	Extensibility Using SIP Meta-Annotations
	Method Selection Precedence
	Precedence Rules Equation
	Conflict Resolution
	Request Precedence Rules
	Response Precedence Rule
	SipPredicate and Method Selection
	Deployment
	Conflict Resolution Examples
	Container Deployment Failures

	4 Best Practices for SIP Applications
	Overview of Developing Distributed Applications for Converged Application Server
	Use the SIP Concurrency Utilities
	Treat MessageListener Implementations as Read-Only
	Local Data Structures Must Not Store Container-Managed Objects
	Servlets Must Be Non-Blocking
	All Session Data Must Be Serializable
	Mark SIP Servlets as Distributable
	Use SipApplicationSessionActivationListener Sparingly
	Observe Best Practices for Java EE Applications
	Optimizing Memory Utilization and Performance with Serialization

	5 Composing SIP Applications
	Using the Application Router
	Using the Default Application Router
	The DAR JSON Configuration File
	Legacy DAR Configuration Files

	Configuring a Custom Application Router

	Application Router Behavior
	Order of Routing Regions
	Inter-Container Application Routing
	Popped Route Header

	Converged Application Server Behavior
	Procedure for Routing an Initial Request
	Application Router Packaging and Deployment
	Using the Legacy Custom Application Router
	Configuring the Legacy Custom Application Router

	Session Key-Based Request Targeting
	Accessing SIP Applications Using SIP Application Index Keys
	Application Composition and SIP-HTTP Convergence

	Join and Replaces Header Support
	About the Join Header
	About the Replaces Header
	Enabling Support for Join and Replaces Headers

	6 Developing Converged Applications
	Overview of Converged Applications
	Assembling and Packaging a Converged Application
	Examples

	7 SIP Servlet Concurrency
	Specifying Concurrency Mode
	Concurrency Utilities
	Propagating SipApplicationSession Context
	Specifying Application Session Programmatically
	Maintaining Thread Safety with Multiple Application Session Contexts

	ContextService
	Default Managed Objects
	Accessing an Active Application Session
	Accessing Tasks Futures
	Accessing the Futures of Tasks in a Sip Application Session
	About Saving Future Objects

	Concurrency Examples

	8 Managing Client Initiated Connections
	Retrieving a Flow Object from the Container
	Maintaining Connections Initiated by SIP User Agents
	UAC Sending Keep-Alive
	Handling Flow Failures
	Reusing a Flow
	Implementing Edge Proxies
	Releasing a Flow

	9 Back to Back User Agents
	About Back to Back User Agents
	Navigating Between the UAC and UAS Sides of a B2BUA
	ACK and PRACK Handling in B2BUA
	B2BUA and Forking

	The B2BUA Helper Class
	Creating a New B2BUA Request
	Linked SIP Sessions and Linked Request
	Explicit Session Linkage
	Implicit Session Linkage

	Access to Uncommitted Messages
	Original Request and Session Cloning
	Request and Session Cloning and Linking

	10 Forking SIP Requests, Dialog Termination, and Session Keep Alive
	Forking SIP Requests
	Binding Attributes to a ForkingContext
	Creating a Request
	Cloning Attributes
	Terminating Dialogs
	Max-Breadth Header Support
	Loop Detection

	SIP Dialog Termination
	Terminating Proxy Dialogs
	Notes on Container Behavior
	INVITE Dialog
	SUBSCRIBE Dialog
	Multiple Dialogs

	Session Keep Alive
	Enabling Session Keep Alive
	Disabling Session Keep Alive
	Refreshing Sessions
	Expiring Sessions
	Sending Provisional Responses to Non-Invite Requests
	422 Responses

	11 Using Compact and Long Header Formats for SIP Messages
	Overview of Header Format APIs and Configuration
	Summary of Compact Headers
	Summary of API and Configuration Behavior

	12 Developing Custom Profile Service Providers
	Overview of the Profile Service API
	Implementing Profile Service API Methods
	Configuring and Packaging Profile Providers
	Mapping Profile Requests to Profile Providers

	Configuring Profile Providers Using the Administration Console

	13 Using Content Indirection in SIP Servlets
	Overview of Content Indirection
	Using the Content Indirection API
	Additional Information

	14 Securing SIP Servlet Resources
	Overview of SIP Servlet Security
	Triggering SIP Response Codes
	Specifying the Security Realm
	Converged Application Server Role Mapping Features
	Using Implicit Role Assignment
	Assigning Roles Using security-role-assignment
	Important Requirements
	Assigning Roles at Deployment Time
	Dynamically Assigning Roles Using the Administration Console

	Assigning run-as Roles
	Role Assignment Precedence for SIP Servlet Roles
	Debugging Security Features
	weblogic.xml Deployment Descriptor Reference

	15 Enabling Message Logging
	Overview
	Enabling Message Logging
	Specifying a Predefined Logging Level
	Customizing Log Records

	Specifying Content Types for Unencrypted Logging
	Example Message Log Configuration and Output
	Configuring Log File Rotation

	16 Generating SNMP Traps from Application Code
	Overview
	Requirement for Accessing SipServletSnmpTrapRuntimeMBean
	Obtaining a Reference to SipServletSnmpTrapRuntimeMBean
	Generating an SNMP Trap

	17 Using the REST Interface
	Location Service RESTful Interface
	About REST
	About JSON Body Parameters
	About the Context Root
	Using Authentication and Authorization
	RESTful APIs for the Location Service
	Store Registrations for Address-of-Record
	Lookup an Address-of-Record
	Clear All Address of Record Bindings

	REST Management for MBeans
	NetworkAccessPointMBean
	NetworkAccessPointMBean sip
	NetworkAccessPointMBean sips

	SipServerBean
	Create a SipServer Child MBean
	Configure Application Router
	Configure Proxy
	Configure Overload Protection
	Configure Overload Protection Thresholds
	Configure Overload Protection Collectors
	Configure Overload Protection Event Handlers
	Configure Overload Protection Actions

	Configure Message Debug
	Configure SIP Security
	Configure Persistence
	Configure Connection Pools
	Configure Cluster Load Balancer
	Configure MPS

	Configure Server Debugging
	Configure Debug Attributes

	Retrieving Runtime Attributes
	Get MPS Runtime Data
	Get MPS Historic Data

