
Oracle® Communications Converged
Application Server
Diameter Application Development Guide

Release 8.1
F82338-01
October 2023

Oracle Communications Converged Application Server Diameter Application Development Guide, Release
8.1

F82338-01

Copyright © 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 About This Guide

Audience v

My Oracle Support v

1 Using the Diameter Base Protocol API

Overview of Diameter Protocol Support 1-1

Working with Diameter Applications Using CDI and POJOs 1-2

Creating a Diameter Bean Using Annotations 1-2

Built-in CDI Beans 1-3

SessionSource 1-3

Application 1-3

Application Subtypes 1-3

Diameter Bean Selection 1-3

Filtering Observer Methods Based on Command Codes and Parameters 1-5

Dynamic Configuration 1-6

Legacy Diameter Application Development 1-8

Diameter Application Development Environment Configuration 1-8

File Required for Compiling Application Using the Diameter API 1-8

Configuring Diameter Nodes 1-8

Overview of the Diameter API 1-9

Working with Diameter Nodes 1-10

Implementing a Legacy Diameter Application 1-10

Working with Diameter Sessions 1-11

Working with Diameter Messages 1-12

Sending Request Messages 1-12

Sending Answer Messages 1-13

Creating New Command Codes 1-13

Working with AVPs 1-13

Creating New Attributes 1-14

Creating Converged Diameter and SIP Applications 1-14

iii

2 Using the Diameter Sh Interface Application

Overview of Profile Service API and Sh Interface Support 2-1

Enabling the Sh Interface Provider 2-2

Overview of the Profile Service API 2-2

Creating a Document Selector Key for Application-Managed Profile Data 2-2

Using a Constructed Document Key to Manage Profile Data 2-3

Monitoring Profile Data with ProfileListener 2-4

Prerequisites for Listener Implementations 2-5

Implementing ProfileListener 2-5

3 Using the Diameter Rf Interface Application for Offline Charging

Overview of Rf Interface Support 3-1

Understanding Offline Charging Events 3-1

Event-Based Charging 3-2

Session-Based Charging 3-2

Configuring the Rf Application 3-2

Using the Offline Charging API 3-3

Accessing the Rf Application 3-4

Implementing Session-Based Charging 3-4

Specifying the Session Expiration 3-5

Sending Asynchronous Events 3-5

Implementing Event-Based Charging 3-6

Using the Accounting Session State 3-7

4 Using the Diameter Ro Interface API for Online Charging

Overview of Ro Interface Support 4-1

Understanding Credit Authorization Models 4-1

Credit Authorization with Unit Determination 4-1

Credit Authorization with Direct Debiting 4-2

Determining Units and Rating 4-2

Configuring the Ro Application 4-2

Overview of the Online Charging API 4-3

Accessing the Ro Application 4-4

Implementing Session-Based Charging 4-4

Handling Re-Auth-Request Messages 4-4

Sending Credit-Control-Request Messages 4-5

Handling Failures 4-6

iv

About This Guide

This document provides an overview of the Oracle Communications Converged Application
Server base Diameter protocol packages, classes, and programming model used for
developing client and server-side Diameter applications. It also provides an overview of the
Converged Application Server Diameter Sh, Rf, and Ro Interface Applications that you can
use when developing Diameter protocol applications in your SIP Servlets.

Table 1 Revision History

Date Description

Oct 2023 • Initial release

Audience
This document is intended for developers who build and implement Diameter applications in
Converged Application Server.

My Oracle Support
My Oracle Support (https://support.oracle.com) is your initial point of contact for all product
support and training needs. A representative at Customer Access Support (CAS) can assist
you with My Oracle Support registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle Support
hotline for your local country from the list at http://www.oracle.com/us/support/contact/
index.html. When calling, make the selections in the sequence shown below on the Support
telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking, and Solaris Operating System Support.

3. Select one of the following options:

• For technical issues such as creating a new Service Request (SR), select 1.

• For non-technical issues such as registration or assistance with My Oracle Support,
select 2.

You are connected to a live agent who can assist you with My Oracle Support registration and
opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

v

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

Emergency Response

In the event of a critical service situation, emergency response is offered by the
Customer Access Support (CAS) main number at 1-800-223-1711 (toll-free in the US),
or call the Oracle Support hotline for your local country from the list at http://
www.oracle.com/us/support/contact/index.html. The emergency response provides
immediate coverage, automatic escalation, and other features to ensure that the
critical situation is resolved as rapidly as possible.

A critical situation is defined as a problem with the installed equipment that severely
affects service, traffic, or maintenance capabilities, and requires immediate corrective
action. Critical situations affect service and/or system operation resulting in one or
several of these situations:

• A total system failure that results in loss of all transaction processing capability

• Significant reduction in system capacity or traffic handling capability

• Loss of the system's ability to perform automatic system reconfiguration

• Inability to restart a processor or the system

• Corruption of system databases that requires service affecting corrective actions

• Loss of access for maintenance or recovery operations

• Loss of the system ability to provide any required critical or major trouble
notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance
capabilities may be defined as critical by prior discussion and agreement with Oracle.

Locate Product Documentation on the Oracle Help Center Site

Oracle Communications customer documentation is available on the web at the Oracle
Help Center (OHC) site, http://docs.oracle.com. You do not have to register to access
these documents. Viewing these files requires Adobe Acrobat Reader, which can be
downloaded at http://www.adobe.com.

1. Access the Oracle Help Center site at http://docs.oracle.com.

2. Click Industries.

3. Under the Oracle Communications sub-header, click the Oracle Communications
documentation link.
The Communications Documentation page appears. Most products covered by
these documentation sets appear under the headings "Network Session Delivery
and Control Infrastructure" or "Platforms."

4. Click on your Product and then Release Number.
A list of the entire documentation set for the selected product and release appears.

5. To download a file to your location, right-click the PDF link, select Save target as
(or similar command based on your browser), and save to a local folder.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

About This Guide

vi

http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://docs.oracle.com
http://www.adobe.com
http://docs.oracle.com
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Using the Diameter Base Protocol API

This chapter describes using the Diameter Base protocol implementation to create your own
Diameter applications in Oracle Communications Converged Application Server.

Overview of Diameter Protocol Support
Diameter is a peer-to-peer protocol that involves delivering attribute-value pairs (AVPs). A
Diameter message includes a header and one or more AVPs. The collection of AVPs in each
message is determined by the type of Diameter application, and the Diameter protocol also
allows for extension by adding new commands and AVPs. Diameter enables multiple peers to
negotiate their capabilities with one another, and defines rules for session handling and
accounting functions.

Converged Application Server includes an implementation of the base Diameter protocol that
supports the core functionality and accounting features described in RFC 3588 (http://
www.ietf.org/rfc/rfc3588.txt). Converged Application Server uses the base Diameter
functionality to implement multiple Diameter applications, including the Sh, Rf, and Ro
applications described later in this document.

You can also use the base Diameter protocol to implement additional client and server-side
Diameter applications. The base Diameter API provides a simple, Servlet-like programming
model that enables you to combine Diameter functionality with SIP or HTTP functionality in a
converged application.

Note:

The Diameter protocol offers limited support for clustering for both client and server
applications.

The sections that follow provide an overview of the base Diameter protocol packages,
classes, and programming model used for developing client and server-side Diameter
applications. See also the following sections for information about using the provided
Diameter protocol applications in your SIP Servlets:

• "Using the Diameter Sh Interface Application" describes how to access and manage
subscriber profile data using the Diameter Sh application.

• "Using the Diameter Rf Interface Application for Offline Charging" describes how to issue
offline charging requests using the Diameter Rf application.

• "Using the Diameter Ro Interface API for Online Charging" describes how to perform
online charging using the Diameter Ro application.

1-1

http://www.ietf.org/rfc/rfc3588.txt
http://www.ietf.org/rfc/rfc3588.txt

Working with Diameter Applications Using CDI and POJOs
This section describes the creation and deployment of Diameter applications using
Java EE Common Dependency Injections (CDIs) in conjunction with Plain Old Java
Objects (POJOs).

Creating a Diameter Bean Using Annotations
Example 1-1 shows an implementation of a Diameter Bean, ExamplePOJO, that
listens to RoApplication messages.

Example 1-1 Diameter Bean Listening to RoApplication Messages

@DiameterBean(applicationId = "4")
public class ExamplePOJO {

 @Inject DiameterSessionSource source;

 public void handleCCR(@Observes CCR ccr) {
 RoSession session = (RoSession) ccr.getSession();
 SipApplicationSession sas = source.getApplicationSession(session);
 //... Business logic...
 }

 public void handleSTR(@Observes @DiameterObserver(code=275) Message msg) {
 RoSession session = (RoSession) msg.getSession();
 SipApplicationSession sas = source.getApplicationSession(session);
 //... Business logic...
 }
}

The annotation, @DiameterBean, marks the Java class as a Diameter Bean. The
Diameter stack looks for Common Dependency Injection (CDI) observer methods for
feeding the requests or responses to the Diameter Bean. The method arguments and
the command code, if any, act as a filter for feeding the messages.

Such an architecture avoids the need for registering a listener for subsequent
messages in the Diameter session, since the Diameter session information can be
obtained from the message.

The RoApplication can then be injected into a SIP servlet as shown in Example 1-2.

Example 1-2 SIP Servlet RoApplication Injection

public class FooServlet {

 @Inject @DiameterContext(applicationId = "4")
 Application roApp;

 @Inject
 DiameterSessionSource source;

 void doInvite(SipServletRequest request) throws IOException {
 RoSession session = (RoSession) source.createSession(roApp,
request.getApplicationSession());
 CCR ccr = session.createCCR(RequestType.INITIAL);
 ccr.send();

Chapter 1
Working with Diameter Applications Using CDI and POJOs

1-2

 }
}

Built-in CDI Beans
The Diameter stack adds built-in CDI beans which can be injected into SIP Servlets and
Diameter Beans.

SessionSource
This bean acts as a source for Diameter session objects, and helps SIP Servlet applications
to associate a diameter Session with a SipApplicationSession and also obtain
SipApplicationSession information from a Diameter session.

Application
A com.bea.wcp.diameter.Application can be injected with a CDI bean like a SIP servlet or
a Diameter bean. The exact subtype of the Application is based on the annotation
@DiameterContext.

Example 1-3 shows injecting an instance of RoApplication into a SIP Servlet.

Example 1-3 Injecting an RoApplication Instance into a SIP Servlet

public class ExampleServlet extends SipServlet {
 @Inject @DiameterContext(applicationId = 4)
 private Application application;
 ...
}

Application Subtypes
Application subtypes, such as RoApplication, RfApplication, ReApplication, RxApplication,
GxApplication, GxxApplication, ShApplication, SyApplication can be injected into a CDI bean
directly, and do not require the @DiameterContext annotation.

Example 1-4 shows injecting an instance of RoApplication, RfApplication, and ShApplication
into a SIP servlet.

Example 1-4 Injecting Diameter Applications into a CDI Bean

public class ExampleServlet extends SipServlet {
 @Inject
 private RoApplication roApplication;
 @Inject
 private RfApplication rfApplication;
 @Inject
 private ShApplication shApplication;
 ...
}

Diameter Bean Selection
The Diameter stack selects the bean to handle incoming requests based on the following
different criteria:

• Application Identifier

Chapter 1
Working with Diameter Applications Using CDI and POJOs

1-3

• Peer (host/realm)

• Origin (origin host/ origin realm)

• Destination (destination host / destination realm)

The stack finds the most specific Diameter bean to handle the message, irrespective
of the application in which it is packaged. The following rules determine the most
specific bean:

• If the bean contains and matches all the selection criteria annotations, then it is
considered most specific.

• If the bean contains and matches a fewer number of selection critera annotations,
then priority is given in the following order:

Application then Peer then Destination then Origin.

• For matching a node (Peer, Origin or Destination), priority is given to host rather
than realm.

Example 1-5 shows a bean with a more complicated set of selection criteria. When a
Diameter message comes in, ExampleBean1 is selected first, followed by the
remaining beans in the following order:

ExampleBean2 then ExampleBean3 then ExampleBean4 then ExampleBean5

Example 1-5 Diameter Bean Selection Criteria

@DiameterBean(
applicationId = 4,
peers = { @DiameterNode(host = "ro.server", realm = "weblogic.com") },
origins = { @DiameterNode(host = "originserver", realm = "originserver.com"),
@DiameterNode(host = "ro.client", realm = "weblogic.com") },
destinations = { @DiameterNode(host = "ro.server", realm = "weblogic.com") })
public class ExampleBean1 {
}

//specify peers.
@DiameterBean(
applicationId = 4,
peers = { @DiameterNode(host = "ro.server", realm = "weblogic.com") },
public class ExampleBean2 {
}

//specify origins.
@DiameterBean(
applicationId = 4,
origins = { @DiameterNode(host = "originserver", realm = "originserver.com"),
@DiameterNode(host = "ro.client", realm = "weblogic.com") },
public class ExampleBean3 {
}

//destinations specify both host and realm.
@DiameterBean(
applicationId = 4,
destinations = { @DiameterNode(host = "ro.server", realm = "weblogic.com") })
public class ExampleBean3 {
}

//destinations only specify host.
@DiameterBean(
applicationId = 4,

Chapter 1
Working with Diameter Applications Using CDI and POJOs

1-4

destinations = { @DiameterNode(host = "ro.server") })
public class ExampleBean4 {
}

//destinations only specify realm.
@DiameterBean(
applicationId = 4,
destinations = { @DiameterNode(realm = "weblogic.com") })
public class ExampleBean5 {
}
}

Filtering Observer Methods Based on Command Codes and Parameters
A Diameter bean may need to filter the messages based on the command code of the
message. For example, if the Diameter bean wants to receive Session Terminated Answer
(STA) and Credit Control Answer (CCA) messages on two different methods, it can do so by
using the @DiameterObserver annotation. If the @DiameterObserver annotation is specified
in the method, then the code injected by @DiameterObserver will be used by the Diameter
stack (CDI) for delivering the message to the correct method.

If two methods have the same @DiameterObserver annotation, the Diameter bean selects
the method where the parameter is the same type as the message.

Example 1-6 illustrates this behavior.

Example 1-6 Filtering Observer Methods

public void handleCCA(@Observes @DiameterObserver(code=272) CCA cca) {
}

public void handleAnswer(@Observes @DiameterObserver(code=272) Answer answer) {
}

public void handleSTA(@Observes @DiameterObserver(code=275) Answer answer) {
}

public void handleCCR(@Observes @DiameterObserver(code=272) CCR ccr) {
}

public void handleRequest(@Observes @DiameterObserver(code=272) Request request) {
}

public void handleMessage(@Observes Message message) {
}

In Example 1-6 the following filtering occurs:

• When a CCA message comes in, it is delivered to handleCCA() not handleAnswer(),
because the handleCCA() parameter CCA matches the CCA message type exactly.

• When an Answer message (not a CCA) with the command code 272 comes in, it it is
delivered to the handleAnswer() method.

• When an STA message comes in, it is delivered to the handleSTA() method.

• When a CCR message comes in, it is delivered to the handleCCR() method rather than
the handleRequest() method.

• When a request message (not a CCR) with command code 272 comes in, it is delivered
to the handleRequest() method.

Chapter 1
Working with Diameter Applications Using CDI and POJOs

1-5

• When other Diameter messages come in, they are delivered to the
handleMessage() method.

Dynamic Configuration
Since the host and realm values of a @DiameterNode may need to be updated
frequently, Converged Application Server leverages Java Enterprise Edition
Environmental Entries, and lets you define them as variables, placing their values in
SIP application deployment descriptors, such as sip.xml, or web.xml rather than hard
coding them in source code. The deployment descriptors can be then be modified
without requiring an application recompile. Alternatively, you can use WebLogic
deployment plans to modify environmental variables.

In a @DiameterNode if host or realm is defined using the pattern, ${xxxx}, the xxxx is
treated as a variable name. That variable name is matched to env-entry-name
elements in sip.xml or web.xml, and, when a match occurs, the associated value is
returned, replacing ${xxxx}.

The host or realm variable can defined by using letters, digits, hyphen, dots and
underscore character.

Example 1-7 is a typical sip.xml configuration file with two env-entry elements
containing env-entry-name child elements.

Example 1-7 sip.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<sip-app xmlns="http://www.jcp.org/xml/ns/sipservlet" xmlns:javaee="http://
java.sun.com/xml/ns/javaee">
 <app-name>FooServlet</app-name>
 <javaee:display-name>diameter abstract API Test</javaee:display-name>
 <distributable />
 <javaee:env-entry>
 <javaee:description>peer server host name</javaee:description>
 <javaee:env-entry-name>peer-server</javaee:env-entry-name>
 <javaee:env-entry-type> java.lang.String </javaee:env-entry-type>
 <javaee:env-entry-value>ro.client</javaee:env-entry-value>
 </javaee:env-entry>
 <javaee:env-entry>
 <javaee:description>peer server realm</javaee:description>
 <javaee:env-entry-name>peer-realm</javaee:env-entry-name>
 <javaee:env-entry-type> java.lang.String </javaee:env-entry-type>
 <javaee:env-entry-value>example.com</javaee:env-entry-value>
 </javaee:env-entry>
</sip-app>

In Example 1-8, the host value for @DiameterNode is defined as ${peer-server}. To
retrieve the value of peer-server from sip.xml in Example 1-7, the env-entry elements
are searched for an env-entry-name element that matches peer-server. The match in
this case is the env-entry-value, ro.client. Likewise, the realm value, peer-realm
from ${peer-realm} matches the env-entry-name, peer-realm, which then returns the
env-entry-value, example.com.

Example 1-8 Referencing sip.xml Configuration Parameters

@DiameterBean
(applicationId= 4,
 peers= {@DiameterNode (host = "${peer-server}", realm ="${peer-realm}")})

Chapter 1
Working with Diameter Applications Using CDI and POJOs

1-6

public class ExampleBean {
}

The realm and host values of @DiameterNode can also be changed using a WebLogic
deployment plan.

Example 1-9 illustrates a WebLogic Deployment Plan file, plan.xml.

Example 1-9 WebLogic Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan http://
xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd">
 <application-name>thirdpartyprotocol</application-name>
 <variable-definition>
 <variable>
 <name>new_peer-server</name>
 <value>ro.client2</value>
 </variable>
 <variable>
 <name>new_peer-realm</name>
 <value>example.com2</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>thirdpartyprotocol.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>sip-app</root-element>
 <uri>WEB-INF/sip.xml</uri>
 <variable-assignment>
 <name>new_peer-server</name>
<xpath>/sip-app/env-entry/[env-entry-name="peer-server"]/env-entry-value</xpath>
 <operation>replace</operation>
 </variable-assignment>
 <variable-assignment>
 <name>new_peer-realm</name> <xpath>/sip-app/env-entry/[env-entry-name="peer-
realm"]/env-entry-value</xpath>
 <operation>replace</operation>
 </variable-assignment>
 </module-descriptor>
 </module-override>
</deployment-plan>

In Example 1-9 two variables are defined, new_peer-server and new_peer-realm, which are
then used to replace the env-entry-values in sip.xml after plan.xml is deployed. You can use
the WebLogic Administration Console to specify a deployment plan for your application, or
you can use the weblogic.Deployer to deploy an application with the -plan parameter:

java weblogic.Deployer -adminurl http://hostname:port -user username -password
password -deploy -name application-name -source application-name.war -targets server-
name -stage -plan plan.xml

Chapter 1
Working with Diameter Applications Using CDI and POJOs

1-7

Legacy Diameter Application Development
This section describes developing Diameter applications using version 1.x legacy Java
techniques.

Diameter Application Development Environment Configuration
This section describes requirements for compiling legacy Diameter applications as well
as configuring Diameter nodes.

File Required for Compiling Application Using the Diameter API
The wlssdiameter.jar file is part of the exposed Diameter API. To compile against this
API, you must access the wlssdiameter.jar, which is located in the directory:

Middleware_Home/Oracle_Home/wlserver/sip/server/lib/

Where MW_home is the directory in which the Converged Application Server software is
installed (the installation program used to install Converged Application Server refers
to this as Middleware Home). For example:

/Oracle/Middleware/Oracle_Home/wlserver/sip/server/lib/

Configuring Diameter Nodes
A Diameter node is represented by the com.bea.wcp.diameter.Node class. A
Diameter node may host one or more Diameter applications, as specified in the
diameter.xml configuration file, located in the directory: Middleware_Home/
Oracle_Home/user_projects/domains/domain_name/config/custom/

Where Middleware_Home is the directory in which the Converged Application Server
software is installed, and domain_name is the name of the Diameter domain. For
example:

/Oracle/Middleware/Oracle_Home/user_projects/domains/Diameter_domain/
config/custom

Diameter nodes are generally configured and started as part of a Converged
Application Server instance. However, for development and testing purposes, you can
also run a Diameter node as a standalone process. To do so:

1. Set the environment for the Diameter domain using the setDomainEnv.sh (UNIX)
or setDomainEnv.cmd (Windows) command located in the directory:
Middleware_Home/Oracle_Home/user_projects/domains/domain_name/
diameter/bin/
Where Middleware_Home is the directory where you installed the Converged
Application Server software and my_domain is the name of the domain's directory.
For example:

cd /Oracle/Middleware/Oracle_Home/user_projects/domains/
Diameter_domain/diameter/bin
./setDomainEnv.sh

Chapter 1
Legacy Diameter Application Development

1-8

2. Make the directory containing the diameter.xml configuration file for the Diameter Node
you want to start your working directory. For example:

cd /Oracle/Middleware/Oracle_Home/user_projects/domains/Diameter_domain/
config/custom

3. Set the Java class path for the Diameter domain to the file:
com.bea.core.process_5.4.0.0.jar

java -classpath $CLASSPATH:/Oracle/Middleware/wlserver/server/lib/
consoleapp/APP-INF/lib/com.bea.core.process_5.4.0.0.jar

4. Start the Diameter Node, specifying the diameter.xml configuration file to use with the
domain:

java com.bea.wcp.diameter.Node ./diameter.xml

Overview of the Diameter API
All classes in the Diameter base protocol API reside in the com.bea.wcp.diameter package.
Table 1-1 describes the key classes, interfaces, and exceptions in this package.

Table 1-1 Key Elements of the Diameter Base Protocol API

Category Element Description

Diameter Node Node A class that represents a Diameter node implementation. A diameter
node can represent a client- or server-based Diameter application, as
well as a Diameter relay agent.

Diameter
Applications

Application,
ClientApplication

A class that represents a basic Diameter application. ClientApplication
extends Application for client-specific features such as specifying
destination hosts and realms. All Diameter applications must extend one
of these classes to return an application identifier. The classes can also
be used directly to create new Diameter sessions.

Diameter
Applications

ApplicationId A class that represents the Diameter application ID. This ID is used by
the Diameter protocol for routing messages to the appropriate
application. The ApplicationId corresponds to one of the Auth-
Application-Id, Acct-Application-Id, or Vendor-Specific-Application-Id
AVPs contained in a Diameter message.

Diameter
Applications

Session A class that represents a Diameter session. Applications that perform
session-based handling must extend this class to provide application-
specific behavior for managing requests and answering messages.

Message
Processing

Message, Request,
Answer

The Message class is a base class used to represent request and
answer message types. Request and Answer extend the base class.

Message
Processing

Command A class that represents a Diameter command code.

Message
Processing

RAR, RAA These classes extend the Request and Answer classes to represent re-
authorization messages.

Message
Processing

ResultCode A class that represents a Diameter result code, and provides constant
values for the base Diameter protocol result codes.

AVP Handling Attribute A class that provides Diameter attribute information.

Chapter 1
Legacy Diameter Application Development

1-9

Table 1-1 (Cont.) Key Elements of the Diameter Base Protocol API

Category Element Description

AVP Handling Avp, AvpList Classes that represent one or more attribute-value pairs in a message.
AvpList is also used to represent AVPs contained in a grouped AVP.

AVP Handling Type A class that defines the supported AVP datatypes.

Error Handling DiameterException The base exception class for Diameter exceptions.

Error Handling MessageException An exception that is raised when an invalid Diameter message is
discovered.

Error Handling AvpException An exception that is raised when an invalid AVP is discovered.

Supporting
Interfaces

Enumerated An enum value that implements this interface can be used as the value
of an AVP of type INTEGER32, INTEGER64, or ENUMERATED.

Supporting
Interfaces

SessionListener An interface that applications can implement to subscribe to messages
delivered to a Diameter session.

Supporting
Interfaces

MessageFactory An interface that allows applications to override the default message
decoder for received messages, and create new types of Request and
Answer objects.

The default decoding process begins by decoding the message header
from the message bytes using an instance of MessageFactory. This is
done so that an early error message can be generated if the message
header is invalid. The actual message AVPs are decoded in a separate
step by calling decodeAvps. AVP values are fully decoded and validated
by calling validate, which in turn calls validateAvp for each partially-
decoded AVP in the message.

In addition to these base Diameter classes, accounting-related classes are stored in
the com.bea.wcp.diameter.accounting package, and credit-control-related classes
are stored in com.bea.wcp.diameter.cc. See Using the Diameter Ro Interface API for
Online Charging and Using the Diameter Rf Interface Application for Offline Charging
for more information about classes in these packages.

Working with Diameter Nodes
In order to access a Diameter application, a deployed application (such as a SIP
Servlet) must obtain the Diameter Node instance and request the application.
Example 1-10 shows the sample code used to access the Rf application.

Example 1-10 Accessing a Diameter Node and Application

ServletContext sc = getServletConfig().getServletContext();
Node node = sc.getAttribute("com.bea.wcp.diameter.Node");
RfApplication rfApp = (RfApplication)
node.getApplication(Charging.RF_APPLICATION_ID);

Implementing a Legacy Diameter Application
All Diameter applications must extend either the base Application class or, for client
applications, the ClientApplication class. The model for creating a Diameter
application is similar to that for implementing Servlets in the following ways:

• Diameter applications override the init() method for initialization tasks.

Chapter 1
Legacy Diameter Application Development

1-10

• Initialization parameters configured for the application in diameter.xml are made
available to the application.

• A session factory is used to generate new application sessions.

Diameter applications must also implement the getId() method to return the proper
application ID. This ID is used to deliver Diameter messages to the correct application.

Applications can optionally implement rcvRequest() or rcvAnswer() as needed. By default,
rcvRequest() answers with UNABLE_TO_COMPLY, and rcvRequest() drops the Diameter
message.

Example 1-11 shows a simple Diameter client application that does not use sessions.

Example 1-11 Simple Diameter Application

public class TestApplication extends ClientApplication {
 protected void init() {
 log("Test application initialized.");
 }
 public ApplicationId getId() {
 return ApplicationId.BASE_ACCOUNTING;
 }
 public void rcvRequest(Request req) throws IOException {
 log("Got request: " + req.getHopByHopId());
 req.createAnswer(ResultCode.SUCCESS).send();
 }
}

Working with Diameter Sessions
Applications that perform session-based handling must extend the base Session class to
provide application-specific behavior for managing requests and answering messages. If you
extend the base Session class, you must implement either rcvRequest() or rcvAnswer(),
and may implement both methods.

The base Application class is used to generate new Session objects. After a session is
created, all session-related messages are delivered directly to the session object. The
Converged Application Server container automatically generates the session ID and encodes
the ID in each message. Session attributes are supported much in the same fashion as
attributes in SipApplicationSession.

Example 1-12 shows a simple Diameter session implementation.

Example 1-12 Simple Diameter Session

public class TestSession extends Session {
 public TestSession(TestApplication app) {
 super(app);
 }
 public void rcvRequest(Request req) throws IOException {
 getApplication().log("rcvReuest: " + req.getHopByHopId());
 req.createAnswer(ResultCode.SUCCESS).send();
 }
}

To use the sample session class, the TestApplication in Example 1-11 would need to add a
factory method:

public class TestApplication extends Application {
 ...

Chapter 1
Legacy Diameter Application Development

1-11

 public TestSession createSession() {
 return new TestSession(this);
 }
}

TestSession could then be used to create new requests as follows:

TestSession session = testApp.createSession();
Request req = session.creatRequest();
req.sent();

The answer is delivered directly to the Session object.

Note:

While a typical Converged Application Server Diameter client application
does not need to concern itself with session management, a Diameter server
applications must call diameterSession.terminate() to invalidate a session
when it is no longer needed.

Working with Diameter Messages
The base Message class is used for both Request and Answer message types. A
Message always includes an application ID, and optionally includes a session ID. By
default, messages are handled in the following manner:

1. The message bytes are parsed.

2. The application and session ID values are determined.

3. The message is delivered to a matching session or application using the following
rules:

a. If the Session-Id AVP is present, the associated Session is located and the
session's rcvMessage() method is called.

b. If there is no Session-Id AVP present, or if the session cannot be located, the
Diameter application's rcvMessage() method is called.

c. If the application cannot be located, an UNABLE_TO_DELIVER response is
generated.

The message type is determined from the Diameter command code. Certain special
message types, such as RAR, RAA, ACR, ACA, CCR, and CCA, have getter and
setter methods in the Message object for convenience.

Sending Request Messages
Either a Session or Application can originate and receive request messages.
Requests are generated using the createRequest() method. You must supply a
command code for the new request message. For routing purposes, the destination
host or destination realm AVPs are also generally set by the originating session or
application.

Received answers can be obtained using Request.getAnswer(). After receiving an
answer, you can use getSession() to obtain the relevant session ID and

Chapter 1
Legacy Diameter Application Development

1-12

getResultCode() to determine the result. You can also use Answer.getRequest() to obtain
the original request message.

Requests can be sent asynchronously using the send() method, or synchronously using the
blocking sendAndWait() method. Answers for requests that were sent asynchronously are
delivered to the originating session or application. You can specify a request timeout value
when sending the message, or can use the global request-timeout configuration element in
diameter.xml. An UNABLE_TO_DELIVER result code is generated if the timeout value is
reached before an answer is delivered. getResultCode() on the resulting Answer returns the
result code.

Sending Answer Messages
New answer messages are generated from the Request object, using createAnswer(). All
generated answers should specify a ResultCode and an optional Error-Message AVP value.
The ResultCode class contains pre-defined result codes that can be used.

Answers are delivered using the send() method, which is always asynchronous (non-
blocking).

Creating New Command Codes
A Diameter command code determines the message type. For instance, when sending a
request message, you must supply a command code.

The Command class represents pre-defined commands codes for the Diameter base protocol,
and can be used to create new command codes. Command codes share a common name
space based on the code itself.

The define() method enables you to define codes, as in:

static final Command TCA = Command.define(1234, "Test-Request", true, true);

The define() method registers a new Command, or returns a previous command definition if
one was already defined. Commands can be compared using the reference equality operator
(==).

Working with AVPs
Attribute Value Pair (AVP) is a method of encapsulating information relevant to the Diameter
message. AVPs are used by the Diameter base protocol, the Diameter application, or a
higher-level application that employs Diameter.

The Avp class represents a Diameter attribute-value pair. You can create new AVPs with an
attribute value in the following way:

Avp avp = new Avp(Attribute.ERROR_MESSAGE, "Bad request");

You can also specify the attribute name directly, as in:

Avp avp = new Avp("Error-Message", "Bad request");

The value that you specify must be valid for the specified attribute type.

To create a grouped AVP, use the AvpList class, as in:

Chapter 1
Legacy Diameter Application Development

1-13

AvpList avps = new AvpList();
avps.add(new Avp("Event-Timestamp", 1234));
avps.add(new Avp("Vendor-Id", 1111));

Creating New Attributes
You can create new attributes to extend your Diameter application. The Attribute
class represents an AVP attribute, and includes the AVP code, name, flags, optional
vendor ID, and type of attribute. The class also maintains a registry of defined
attributes. All attributes share a common namespace based on the attribute code and
vendor ID.

The define() method enables you to define new attributes, as in:

static final Attribute TEST = Attribute.define(1234, "Test-Attribute", 0,
Attribute.FLAG_MANDATORY, Type.INTEGER32);

Table 1-2 lists the available attribute types and describes how they are mapped to
Java types.

The define() method registers a new attribute, or returns a previous definition if one
was already defined. Attributes can be compared using the reference equality operator
(==).

Table 1-2 Attribute Types

Diameter Type Type Constant Java Type

Integer32 Type.INTEGER32 Integer

Integer64 Type.INTEGER64 Long

Float32 Type.FLOAT32 Float

OctetString Type.BYTES ByteBuffer (read-only)

UTF8String Type.STRING String

Address Type.ADDRESS InetAddress

Grouped Type.GROUPED AvpList

Creating Converged Diameter and SIP Applications
The Diameter API enables you to create converged applications that utilize both SIP
and Diameter functionality. A SIP Servlet can access an available Diameter application
through the Diameter Node, as shown in Example 1-13.

Example 1-13 Accessing the Rf Application from a SIP Servlet

ServletContext sc = getServletConfig().getServletContext();
Node node = (Node) sc.getAttribute("com.bea.wcp.diameter.Node");
RfApplication rfApp = (RfApplication)
node.getApplication(Charging.RF_APPLICATION_ID);

SIP uses Call-id (the SIP-Call-ID header) to identify a particular call session between
two users. Converged Application Server automatically links a Diameter session to the
currently-active call state by encoding the SIP Call-id into the Diameter session ID.
When a Diameter message is received, the container automatically retrieves the
associated call state and locates the Diameter session. A Diameter session is

Chapter 1
Legacy Diameter Application Development

1-14

serializable, so you can store the session as an attribute in a the SipApplicationSession
object, or vice versa.

Converged applications can use the Diameter SessionListener interface to receive
notification when a Diameter message is received by the session. The SessionListener
interface defines a single method, rcvMessage(). Example 1-14 shows an example of how to
implement the method.

Example 1-14 Implementing SessionListener

Session session = app.createSession();
session.setListener(new SessionListener() {
 public void rcvMessage(Message msg) {
 if (msg.isRequest()) System.out.println("Got request!");
 }
});

Note:

The SessionListener implementation must be serializable for distributed
applications.

Chapter 1
Legacy Diameter Application Development

1-15

2
Using the Diameter Sh Interface Application

This chapter describes how to use the Diameter Sh interface application, based on the
Oracle Communications Converged Application Server Diameter protocol implementation, in
your own applications.

Overview of Profile Service API and Sh Interface Support
The IP Multimedia Subsystem (IMS) specification defines the Sh interface as the method of
communication between the Application Server (AS) function and the Home Subscriber
Server (HSS), or between multiple IMS Application Servers. The AS uses the Sh interface in
two basic ways:

• To query or update a user's data stored on the HSS

• To subscribe to and receive notifications when a user's data changes on the HSS

The user data available to an AS may be defined by a service running on the AS (repository
data), or it may be a subset of the user's IMS profile data hosted on the HSS. The Sh
interface specification, 3GPP TS 29.328, defines the IMS profile data that can be queried and
updated through Sh. All user data accessible through the Sh interface is presented as an
XML document with the schema defined in 3GPP TS 29.328.

The IMS Sh interface is implemented as a provider to the base Diameter protocol support in
Converged Application Server. The provider transparently generates and responds to the
Diameter command codes defined in the Sh application specification. A higher-level Profile
Service API enables SIP Servlets to manage user profile data as an XML document using
XML Document Object Model (DOM). Subscriptions and notifications for changed profile data
are managed by implementing a profile listener interface in a SIP Servlet.

Figure 2-1 Profile Service API and Sh Provider Implementation

2-1

Converged Application Server includes a provider for the Diameter Sh interface.
Providers to support additional interfaces defined in the IMS specification may be
provided in future releases. Applications using the profile service API are able to use
additional providers as they are made available.

Enabling the Sh Interface Provider
See the chapter "Configuring Diameter Client Nodes and Relay Agents" in the
Converged Application Server Administrator's Guide for information on enabling
Diameter support.

Overview of the Profile Service API
Converged Application Server provides a simple profile service API that SIP Servlets
can use to query or modify subscriber profile data, or to manage subscriptions for
receiving notifications about changed profile data. Using the API, a SIP Servlet
explicitly requests user profile documents through the Sh provider application. The
provider returns an XML document, and the Servlet can then use standard DOM
techniques to read or modify profile data in the local document. Updates to the local
document are applied to the HSS after a "put" operation.

Creating a Document Selector Key for Application-Managed
Profile Data

The document selector key identifies the XML document to be retrieved by a Diameter
interface, and uses the format protocol://uri/reference_type[/access_key].
Servlets that manage profile data can explicitly obtain an Sh XML document from a
factory using a key, and then work with the document using DOM.

The protocol portion of the selector identifies the Diameter interface provider to use
for retrieving the document. Sh XML documents require the sh:// protocol
designation.

With Sh document selectors, the next element, uri, generally corresponds to the User-
Identity or Public-Identity of the user whose profile data is being retrieved. If you are
requesting an Sh data reference of type LocationInformation or UserState, the URI
value can be the User-Identity or MSISDN for the user.

Table 2-1 summarizes the possible URI values that can be supplied depending on the
Sh data reference you are requesting. 3GPP TS 29.328 describes the possible data
references and associated reference types in more detail.

Table 2-1 Possible URI Values for Sh Data References

Sh Data Reference
Number

Data Reference Type Possible URI Value in Document
Selector

0 RepositoryData User-Identity or Public-Identity

10 IMSPublicIdentity NA

11 IMSUserState NA

12 S-CSCFName NA

Chapter 2
Enabling the Sh Interface Provider

2-2

Table 2-1 (Cont.) Possible URI Values for Sh Data References

Sh Data Reference
Number

Data Reference Type Possible URI Value in Document
Selector

13 InitialFilterCriteria NA

14 LocationInformation User-Identity or MSISDN

15 UserState NA

17 Charging information User-Identity or Public-Identity

17 MSISDN NA

The final element of the document selector key, reference_type, specifies the data reference
type being requested. For some data reference requests, only the uri and reference_type
are required. Other Sh requests use an access key, which requires a third element in the
document selector key corresponding to the value of the Attribute-Value Pair (AVP) defined in
the document selector key.

Table 2-2 summarizes the required document selector key elements for each type of Sh data
reference request.

Table 2-2 Summary of Document Selector Elements for Sh Data Reference Requests

Data Reference
Type

Required Document
Selector Elements

Example Document Selector

RepositoryData sh://uri/reference_type/
Service-Indication

sh://sip:user@oracle.com/RepositoryData/Call Screening/

IMSPublicIdentity sh://uri/reference_type/
[Identity-Set]

where Identity-Set is one
of:

• All-Identities
• Registered-Identities
• Implicit-Identities

sh://sip:user@oracle.com/IMSPublicIdentity/Registered-
Identities

IMSUserState sh://uri/reference_type sh://sip:user@oracle.com/IMSUserState/

S-CSCFName sh://uri/reference_type sh://sip:user@oracle.com/S-CSCFName/

InitialFilterCriteria sh://uri/reference_type/
Server-Name

sh://sip:user@oracle.com/InitialFilterCriteria/www.oracle.com/

LocationInformation sh://uri/reference_type/
(CS-Domain | PS-Domain)

sh://sip:user@oracle.com/LocationInformation/CS-Domain/

UserState sh://uri/reference_type/
(CS-Domain | PS-Domain)

sh://sip:user@oracle.com/UserState/PS-Domain/

Charging information sh://uri/reference_type sh://sip:user@oracle.com/Charging information/

MSISDN sh://uri/reference_type sh://sip:user@oracle.com/MSISDN/

Using a Constructed Document Key to Manage Profile Data
Converged Application Server provides a helper class,
com.bea.wcp.profile.ProfileService, to help you easily retrieve a profile data document.

Chapter 2
Using a Constructed Document Key to Manage Profile Data

2-3

The getDocument() method takes a constructed document key, and returns a read-
only org.w3c.dom.Document object. To modify the document, you make and edit a
copy, then send the modified document and key as arguments to the putDocument()
method.

Note:

If Diameter Sh client node services are not available on the Converged
Application Server instance when getDocument() method is invoked, the
profile service throws a "No registered provider for protocol" exception.

Converged Application Server caches the documents returned from the profile service
for the duration of the service method invocation (for example, when a doRequest()
method is invoked). If the service method requests the same profile document multiple
times, the subsequent requests are served from the cache rather than by re-querying
the HSS.

Example 2-1 shows a sample SIP Servlet that obtains and modifies profile data.

Example 2-1 Sample Servlet Using ProfileService to Retrieve and Write User
Profile Data

package demo;
import com.bea.wcp.profile.*;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServlet;
import org.w3c.dom.Document;
import java.io.IOException;
public class MyServlet extends SipServlet {
 private ProfileService psvc;
 public void init() {
 psvc = (ProfileService)
getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);
 }
 protected void doInvite(SipServletRequest req) throws IOException {
 String docSel = "sh://" + req.getTo() + "/IMSUserState/";
 // Obtain and change a profile document.
 Document doc = psvc.getDocument(docSel); // Document is read only.
 Document docCopy = (Document) doc.cloneNode(true);
 // Modify the copy using DOM.
 psvc.putDocument(docSel, docCopy); // Apply the changes.
 }
}

Monitoring Profile Data with ProfileListener
The IMS Sh interface enables applications to receive automatic notifications when a
subscriber's profile data changes. Converged Application Server provides an easy-to-
use API for managing profile data subscriptions. A SIP Servlet registers to receive
notifications by implementing the com.bea.wcp.profile.ProfileListener interface,
which consists of a single update method that is automatically invoked when a change
occurs to the profile to which the Servlet is subscribed. Notifications are not sent if that
same Servlet modifies the profile information (for example, if a user modifies their own
profile data).

Chapter 2
Monitoring Profile Data with ProfileListener

2-4

Note:

In a replicated environment, Diameter relay nodes always attempt to push
notifications directly to the engine tier server that subscribed for profile updates. If
that engine tier server is unavailable, another server in the engine tier cluster is
chosen to receive the notification. This model succeeds because session
information is stored in the SIP data tier, rather than the engine tier.

Prerequisites for Listener Implementations
In order to receive a call back for subscribed profile data, a SIP Servlet must do the following:

• Implement com.bea.wcp.profile.ProfileListener.

• Create one or more subscriptions using the subscribe method in the
com.bea.wcp.profile.ProfileService helper class.

• Register itself as a listener using the listener element in sip.xml.

Implementing ProfileListener describes how to implement ProfileListener and use the
susbscribe method. In addition to having a valid listener implementation, the Servlet must
declare itself as a listener in the sip.xml deployment descriptor file. For example, it must add
a listener element declaration similar to:

<listener>
 <listener-class>com.mycompany.MyListenerServlet</listener-class>
</listener>

Implementing ProfileListener
Actual subscriptions are managed using the subscribe method of the
com.bea.wcp.profile.ProfileService helper class. The subscribe method requires that you
supply the current SipApplicationSession and the key for the profile data document you
want to monitor. See "Creating a Document Selector Key for Application-Managed Profile
Data" for more information.

Applications can cancel subscriptions by calling ProfileSubscription.cancel(). Also,
pending subscriptions for an application are automatically cancelled if the application session
is terminated.

Example 2-2 shows sample code for a Servlet that implements the ProfileListener
interface.

Example 2-2 Sample Servlet Implementing ProfileListener Interface

package demo;
 import com.bea.wcp.profile.*;
 import javax.servlet.sip.SipServletRequest;
 import javax.servlet.sip.SipServlet;
 import org.w3c.dom.Document;
 import java.io.IOException;
 public class MyServlet extends SipServlet implements ProfileListener {
 private ProfileService psvc;
 public void init() {
 psvc = (ProfileService)
 getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);

Chapter 2
Monitoring Profile Data with ProfileListener

2-5

 }
 protected void doInvite(SipServletRequest req) throws IOException {
 String docSel = "sh://" + req.getTo() + "/IMSUserState/";
 // Subscribe to profile data.
 psvc.subscribe(req.getApplicationSession(), docSel, null);
 }
 public void update(ProfileSubscription ps, Document document) {
 System.out.println("IMSUserState updated: " + ps.getDocumentSelector());
 }
 }

Chapter 2
Monitoring Profile Data with ProfileListener

2-6

3
Using the Diameter Rf Interface Application
for Offline Charging

This chapter describes how to use the Diameter Rf interface application, based on the Oracle
Communications Converged Application Server Diameter protocol implementation, in your
own applications.

Overview of Rf Interface Support
Offline charging is used for network services that are paid for periodically. For example, a
user may have a subscription for voice calls that is paid monthly. The Rf protocol allows an
IMS Charging Trigger Function (CTF) to issue offline charging events to a Charging Data
Function (CDF). The charging events can either be one-time events or may be session-
based.

Converged Application Server provides a Diameter Offline Charging Application that can be
used by deployed applications to generate charging events based on the Rf protocol. The
offline charging application uses the base Diameter protocol implementation, and allows any
application deployed on Converged Application Server to act as CTF to a configured CDF.

For basic information about offline charging, see RFC 3588: Diameter Base Protocol
(http://www.ietf.org/rfc/rfc3588.txt). For more information about the Rf protocol, see
3GPP TS 32.299 (http://www.3gpp.org/ftp/Specs/html-info/32299.htm).

Understanding Offline Charging Events
For both event and session based charging, the CTF implements the accounting state
machine described in RFC 3588. The server (CDF) implements the accounting state machine
"SERVER, STATELESS ACCOUNTING" as specified in RFC 3588.

The reporting of offline charging events to the CDF is managed through the Diameter
Accounting Request (ACR) message. Rf supports the ACR event types described in
Table 3-1.

Table 3-1 Rf ACR Event Types

Request Description

START Starts an accounting session.

INTERIM Updates an accounting session.

STOP Stops an accounting session.

EVENT Indicates a one-time accounting event.

The START, INTERIM, and STOP event types are used for session-based accounting. The
EVENT type is used for event based accounting, or to indicate a failed attempt to establish a
session.

3-1

http://www.ietf.org/rfc/rfc3588.txt
http://www.3gpp.org/ftp/Specs/html-info/32299.htm

Event-Based Charging
Event-based charging events are reported through the ACR EVENT message.
Example 3-1 shows the basic message flow.

Example 3-1 Message Flow for Event-Based Charging

 CTF (WLSS) CDF (Server)
 | |
 | --- ACR (EVENT) --> |
 | |
 | (Process accounting request)
 | |
 | <-- ACA (EVENT) --- |
 | |

Session-Based Charging
Session-based charging uses the ACR START, INTERIM, and STOP requests to
report usage to the CDF. During a session, the CTF may report multiple ACR INTERIM
requests depending on the session lifecycle. Example 3-2 shows the basic message
flow.

Example 3-2 Message Flow for Session-Based Charging

 CTF (WLSS) CDF (Server)
 | |
 | --- ACR (START) ----> |
 | |
 | (Open CDR)
 | |
 | <-- ACA (START) ----- |
 | |

 | --- ACR (INTERIM) --> |
 | |
 | (Update CDR)
 | |
 | <-- ACA (INTERIM) --- |

 | --- ACR (STOP) -----> |
 | |
 | (Close CDR)
 | |
 | <-- ACA (STOP) ------ |
 | |

Here, ACA START is sent a receipt of a service request by Converged Application
Server. ACA INTERIM is typically sent upon expiration of the AII timer. ACA STOP is
issued upon request for service termination by Converged Application Server.

Configuring the Rf Application
The Rf API is packaged as a Diameter application similar to the Sh application used
for managing profile data. The Rf Diameter API can be configured and enabled by
editing the Diameter configuration file located in Domain_Home/config/custom/

Chapter 3
Configuring the Rf Application

3-2

diameter.xml, or by using the Diameter console extension. Additionally, configuration of both
the CDF realm and host can be specified using the cdf.realm and cdf.host initialization
parameters to the Diameter Rf application.

Example 3-3 shows a sample excerpt from diameter.xml that enables Rf with a CDF realm
of "example.com" and host "cdf.example.com:"

Example 3-3 Sample Rf Application Configuration (diameter.xml)

 <application>
 <name>rfcharging</name>
 <class-name>com.bea.wcp.diameter.charging.RfApplication</class-name>
 <param>
 <name>cdf.realm</name>
 <value>example.com</value>
 </param>
 <param>
 <name>cdf.host</name>
 <value>cdf.example.com</value>
 </param>
 </application>

Because the RfApplication uses the Diameter base accounting messages, its Diameter
application id is 3 and there is no vendor ID.

Using the Offline Charging API
Converged Application Server provides an offline charging API to enable any deployed
application to act as a CTF and issue offline charging events. This API supports both event-
based and session-based charging events.

The classes in package com.bea.wcp.diameter.accounting provide general support for
Diameter accounting messages and sessions. Table 3-2 summarizes the classes.

Table 3-2 Diameter Accounting Classes

Class Description

ACR An Accounting-Request message.

ACA An Accounting-Answer message.

ClientSession A Client-based accounting session.

RecordType Accounting record type constants.

In addition, classes in package com.bea.wcp.diameter.charging support the Rf application
specifically. Table 3-3 summarizes the classes.

Table 3-3 Diameter Rf Application Support Classes

Charging Common definitions for 3GPP charging functions

RfApplication Offline charging application

RfSession Offline charging session

The RfApplication class can be used to directly send ACR requests for event-based
charging. The application also has the option of directly modifying the ACR request before it

Chapter 3
Using the Offline Charging API

3-3

is sent out. This is necessary in order for an application to add any custom AVPs to the
request.

In particular, an application must set the Service-Information AVP it carries the service-
specific parameters for the CDF. The Service-Information AVP of the ACR request is
used to send the application-specific charging service information from the CTF
(WLSS) to the CDF (Charging Server). This is a grouped AVP whose value depends
on the application and its charging function. The Offline Charging API allows the
application to set this information on the request before it is sent out.

For session-based accounting, the RfApplication class can also be used to create
new accounting sessions for generating session-based charging events. Each
accounting session is represented by an instance of RfSession, which encapsulates
the accounting state machine for the session.

Accessing the Rf Application
If the Rf application is deployed, then applications deployed on Converged Application
Server can obtain an instance of the application from the Diameter node
(com.bea.wcp.diameter.Node class). Example 3-4 shows the sample Servlet code
used to obtain the Diameter Node and access the Rf application.

Example 3-4 Accessing the Rf Application

ServletContext sc = getServletConfig().getServletContext();
Node node = sc.getAttribute("com.bea.wcp.diameter.Node");
RfApplication rfApp = (RfApplication)
node.getApplication(Charging.RF_APPLICATION_ID);

Applications can safely use a single instance of RfApplication to issue offline
charging requests concurrently, in multiple threads. Each instance of RfSession
actually holds the per-session state unique to each call.

Implementing Session-Based Charging
For session-based charging requests, an application first uses the RfApplication to
create an instance of RfSession. The application can then use the session object to
create one or more charging requests.

The first charging request must be an ACR START request, followed by zero or more
ACR INTERIM requests. The session ends with an ACR STOP request. Upon receipt
of the corresponding ACA STOP message, the RfApplication automatically
terminates the RfSession.

Example 3-5 shows the sample code used to start a new session-based accounting
session.

Example 3-5 Starting a Session-Based Account Session

 RfSession session = rfApp.createSession();
 ACR acr = session.createACR(RecordType.START);
 acr.addAvp(Charging.SERVICE_INFORMATION, ...);
 ACA aca = acr.sendAndWait(1000);
 sipRequest.getApplicationSession().setAttribute("RfSession", session); if (!
aca.getResultCode().isSuccess()) {
 ... error ...
 }

Chapter 3
Using the Offline Charging API

3-4

In Example 3-5, the RfSession is stored as a SIP application session attribute so that it can
be used to send additional accounting requests as the call progresses. Example 3-6 shows
how to send an INTERIM request.

Example 3-6 Sending an INTERIM request

RfSession session = (RfSession)
req.getApplicationSession().getAttribute("RfSession");
 ACR acr = session.createACR(RecordType.INTERIM);
 ACA aca = acr.sendAndWait(1000);
 if (!aca.getResultCode().isSuccess()) {
 // Handle the error...
 }

An application may want to send one or more ACR INTERIM requests while a call is in
progress. The frequency of ACR INTERIM requests is usually based on the Acct-Interim-
Interval AVP value in the ACA START message sent by the CDF. For this reason, an
application timer must be used to send ACR INTERIM requests at the requested interval. See
3GPP TS 32.299 for more details about interim requests.

Specifying the Session Expiration
The Acct-Interim-Interval (AII) timer value is used to indicate the expiration time of an Rf
accounting session. It is specified when ACR START is sent to the CDF to initiate the
accounting session. The CDF responds with its own AII value, which must be used by the
CTF to start a timer upon whose expiration an ACR INTERIM message must be sent. This
INTERIM message informs the CDF that the session is still in use. Otherwise, the CDF
terminates the session automatically.

It is the application's responsibility to send ACR INTERIM messages, because these are
used to send updated Service-Information data to the CDF. Oracle recommends creating a
ServletTimer that is set to expire according to the AII value. When the timer expires, the
application must send an ACR INTERIM message with the updated service information data.

Sending Asynchronous Events
Applications generally use the synchronous sendAndWait() method. However, if latency is
critical, an asynchronous API is provided wherein the application Servlet is asynchronously
notified when an answer message is received from the CDF. To use the asynchronous API,
an application first registers an instance of SessionListener in order to asynchronously
receive messages delivered to the session, as shown in Example 3-7.

Example 3-7 Registering a SessionListener

 RfSession session = rfApp.createSession();
 session.setAttribute("SAS", sipReq.getApplicationSession());
 session.setListener(this);

Attributes can be stored in an RfSession instance similar to the way SIP application session
attributes are stored. In the above example, the associated SIP application was stored as an
RfSession so that it is available to the listener callback.

When a Diameter request or answer message is received from the CDF, the application
Servlet is notified by calling the rcvMessage(Message msg) method. The associated SIP
application session can then be retrieved from the RfSession if it was stored as a session
attribute, as shown in Example 3-8.

Chapter 3
Using the Offline Charging API

3-5

Example 3-8 Retrieving the RfSession after a Notification

public void rcvMessage(Message msg) {
 if (msg.getCommand() != Command.ACA) {
 if (msg.isRequest()) {
 ((Request) msg).createAnswer(ResultCode.UNABLE_TO_COMPLY, "Unexpected
 request").send();
 }
 return;
 }
 ACA aca = (ACA) msg;
 RfSession session = (RfSession) aca.getSession();
 SipApplicationSession appSession = (SipApplicationSession)
 session.getAttribute("SAS");
 ...
}

Implementing Event-Based Charging
For an event-based charging request, the charging request is a one-time event and
the session is automatically terminated upon receipt of the corresponding EVENT ACA
message. The sendAndWait(long timeout) method can be used to synchronously
send the EVENT request and block the thread until a response has been received
from the CDF. Example 3-9 shows an example that uses an RfSession for sending an
event-based charging request.

Example 3-9 Event-Based Charging Using RfSession

RfSession session = rfApp.createSession();
ACR acr = session.createACR(RecordType.EVENT);
acr.addAvp(Charging.SERVICE_INFORMATION, ...);
ACA aca = acr.sendAndWait(1000);
if (!aca.getResultCode().isSuccess()) {
 // Send error response ...
}

For convenience, it is also possible send event-based charging requests using the
RfApplication directly, as shown in Example 3-10.

Example 3-10 Event-Based Charging Using RfApplication

ACR acr = rfApp.createEventACR();
acr.addAvp(Charging.SERVICE_INFORMATION, ...);
ACA aca = acr.sendAndWait(1000);

Internally, the RfApplication creates an instance of RfSession associated with the
ACR request, so this method is equivalent to creating the session explicitly.

For both session and event based accounting, the RfSession class automatically
handles creating session IDs, as well as updating the Accounting-Record-Number AVP
used to sequence messages within the same accounting session.

In the above cases the applications waits for up to 1000 ms to receive an answer from
the CDF. If no answer is received within that time, the Diameter core delivers an
UNABLE_TO_COMPLY error response to the application, and cancels the request. If
no timeout is specified with sendAndWait(), then the default request timeout of 30
seconds is used. This default value can be configured using the Diameter console
extension.

Chapter 3
Using the Offline Charging API

3-6

Using the Accounting Session State
The accounting session state for offline charging is serializable, so it can be stored as a SIP
application session attribute. Because the client APIs are synchronous, it is not necessary to
maintain any state for the accounting session once the Servlet has finished handling the call.

For event-based charging events it is not necessary for the application to maintain any
accounting session state because it is only used internally, and is disposed once the ACA
response has been received.

Chapter 3
Using the Offline Charging API

3-7

4
Using the Diameter Ro Interface API for
Online Charging

This chapter describes how to use the Diameter Ro interface API, based on Oracle
Communications Converged Application Server's Diameter protocol implementation, in your
own applications.

Overview of Ro Interface Support
Online charging, also known as credit-based charging, is used to charge prepaid services. A
typical example of a prepaid service is a calling card purchased for voice or video. The Ro
protocol allows a Charging Trigger Function (CTF) to issue charging events to an Online
Charging Function (OCF). The charging events can be immediate, event-based, or session-
based.

Converged Application Server provides a Diameter Online Charging Application that
deployed applications can use to generate charging events based on the Ro protocol. This
enables deployed applications to act as CTF to a configured OCF. The Diameter Online
Charging Application uses the base Diameter protocol that underpins both the Rf and Sh
applications.

The Diameter Online Charging Application is based on IETF RFC 4006: Diameter Credit
Control Application (http://www.ietf.org/rfc/rfc4006.txt). However, the application
supports only a subset of the RFC 4006 required for compliance with 3GPP TS 32.299:
Telecommunication management; Charging management; Diameter charging applications
(http://www.3gpp.org/ftp/Specs/html-info/32299.htm). Specifically, the Converged
Application Server Diameter Online Charging Application provides no direct support for
service-specific Attribute-Value Pairs (AVPs), but the API that is provided is flexible enough to
allow applications to include custom service-specific AVPs in any credit control request.

Understanding Credit Authorization Models
RFC 4006 defines two basic types of credit authorization models:

• Credit authorization with unit reservation.

• Credit authorization with direct debiting.

Credit authorization with unit reservation can be performed with either event-based or
session-based charging events. Credit authorization with direct debiting uses immediate
charging events. In both models, the CTF requests credit authorization from the OCF prior to
delivering services to the end user.

The sections that follow describe each model in more detail.

Credit Authorization with Unit Determination
RFC 4006 defines both Event Charging with Unit Reservation (ECUR) and Session Charging
with Unit Reservation (SCUR). Both charging events are session-based, and require multiple

4-1

http://www.ietf.org/rfc/rfc4006.txt
http://www.3gpp.org/ftp/Specs/html-info/32299.htm

transactions between the CTF and OCF. ECUR begins with an interrogation to reserve
units before delivering services, followed by an additional interrogation to report the
actual used units to the OCF upon service termination. With SCUR, it is also possible
to include one or more intermediate interrogations for the CTF in order to report
currently-used units, and to reserve additional units if required. In both cases, the
session state is maintained in both the CTF and OCF.

For both ECUR and SCUR, the online charging client implements the "CLIENT,
SESSION BASED" state machine described in RFC 4006.

Credit Authorization with Direct Debiting
For direct debiting, Immediate Event Charging (IEC) is used. With IEC, a single
transaction is created where the OCF deducts a specific amount from the user's
account immediately after completing the credit authorization. After receiving the
authorization, the CTF delivers services. This form of credit authorization is a one-time
event in which no session state is maintained.

With IEC, the online charging client implements the "CLIENT, EVENT BASED" state
machine described in IETF RFC 4006.

Determining Units and Rating
Unit determination refers to calculating the number of non-monetary units (service
units, time, events) that can be assigned prior to delivering services. Unit rating refers
to determining a price based on the non-monetary units calculated by the unit
determination function.

It is possible for either the OCF or the CTF to handle unit determination and unit rating.
The decision lies with the client application, which controls the selection of AVPs in the
credit control request sent to the OCF.

Configuring the Ro Application
The RoApplication is packaged as a Diameter application similar to the Sh application
used for managing profile data. The Ro Diameter application can be configured and
enabled by editing the Diameter configuration file located in Domain_Home/config/
custom/diameter.xml, or by using the Diameter console extension.

The application init parameter ocs.host specifies the host identity of the OCF. The
OCF host must also be configured in the peer table as part of the global Diameter
configuration. Alternately, the init parameter ocs.realm can be used to specify more
than one OCF host using realm-based routing. The corresponding realm definition
must also exist in the global Diameter configuration.

Example 4-1 shows a sample excerpt from diameter.xml that enables Ro with an
OCF host name of "myocs.example.com."

Example 4-1 Sample Ro Application Configuration (diameter.xml)

 <application>
 <application-id>4</application-id>
 <class-name>com.bea.wcp.diameter.charging.RoApplication</class-name>
 <param>
 <name>ocs.host</name>
 <value>myocs.example.com</value>

Chapter 4
Configuring the Ro Application

4-2

 </param>
 </application>

Because the RoApplication is based on the Diameter Credit Control Application, its
Diameter application id is 4.

Overview of the Online Charging API
Converged Application Server provides an online charging API to enable any deployed
application to act as a CTF and issue online charging events to an OCF through the Ro
protocol. All online charging requests use the Diameter Credit-Control-Request (CCR)
message. The CC-Request-Type AVP is used to indicate the type of charging used. In the
charging API, the CC-Request-Type is represented by the RequestType class in package
com.bea.wcp.diameter.cc. Table 4-1 shows the request types associated with different credit
authorization models.

Table 4-1 Credit Control Request Types

Type Description RequestType Field in
com.bea.wcp.diameter.cc.RequestType

IEC Immediate Event Charging EVENT_REQUEST
ECUR Event Charging with Unit Reservation INITIAL or TERMINATION_REQUEST
SCUR Session Charging with Unit Reservation INITIAL, UPDATE, or TERMINATION_REQUEST

For ECUR and SCUR, units are reserved prior to service delivery and committed upon
service completion. Units are reserved with INITIAL_REQUEST and committed with a
TERMINATION_REQUEST. For SCUR, units can also be updated with UPDATE_REQUEST.

The base diameter package, com.bea.wcp.diameter, contains classes to support the re-
authorization requests used in Ro. The com.bea.wcp.diameter.cc package contains classes
to support credit-control applications, including Ro applications.
com.bea.wcp.diameter.charging directly supports the Ro credit-control application.
Table 4-2 summarizes the classes of interest to Ro credit-control.

Table 4-2 Summary of Ro Classes

Class Description Package

Charging Constant definitions com.bea.wcp.diameter.charging
RoApplication Online charging application com.bea.wcp.diameter.charging
RoSession Online charging session com.bea.wcp.diameter.charging
CCR Credit Control Request com.bea.wcp.diameter.cc
CCA Credit Control Answer com.bea.wcp.diameter.cc
ClientSession Credit control client session com.bea.wcp.diameter.cc
RequestType Credit-control request type com.bea.wcp.diameter.cc
RAR Re-Auth-Request message com.bea.wcp.diameter
RAA Re-Auth-Answer message com.bea.wcp.diameter

Chapter 4
Overview of the Online Charging API

4-3

Accessing the Ro Application
If the Ro application is deployed, then applications deployed on Converged Application
Server can obtain an instance of the application from the Diameter node
(com.bea.wcp.diameter.Node class). Example 4-2 shows the sample Servlet code
used to obtain the Diameter Node and access the Ro application.

Example 4-2 Accessing the Ro Application

private RoApplication roApp;
void init(ServletConfig conf) {
 ServletContext ctx = conf.getServletContext();
 Node node = (Node) ctx.getParameter("com.bea.wcp.diameter.Node");
 roApp = node.getApplication(Charging.RO_APPLICATION_ID);
}

This code example would make RoApplication available to the Servlet as an instance
variable. The instance of RoApplication is safe for use by multiple concurrent threads.

Implementing Session-Based Charging
The RoApplication can be used to create new sessions for session-based credit
authorization. The RoSession class implements the appropriate state machine
depending on the credit control type, either ECUR (Event-Based Charging with Unit
Reservation) or SCUR (Session-based Charging with Unit Reservation). The
RoSession class is also serializable, so it can be stored as a SIP session attribute. This
allows the session to be restored when necessary to terminate the session or update
credit authorization.

The example in Example 4-3 creates a new RoSession for event-based charging, and
sends a CCR request to start the first interrogation. The RoSession instance is saved
so that it can be terminated later, after the service has finished.

Note that the RoSession class automatically handles creating session IDs; the
application is not required to set the session ID.

Example 4-3 Creating and Using a RoSession

RoSession session = roApp.createSession();
CCR ccr = session.createCCR(RequestType.INITIAL);
CCA cca = ccr.sendAndWait();
sipAppSession.setAttribute("RoSession", session);
...

Handling Re-Auth-Request Messages
The OCS may initiate credit re-authorization by issuing a Re-Auth-Request (RAR) to
the CTF. The application can register a session listener for handling this type of
request. Upon receiving a RAR, the Diameter subsystem invoke the session listener
on the applications corresponding RoSession object. The application must then
respond to the OCS with an appropriate RAA message and initiate credit re-
authorization to the CTF by sending a CCR with the CC-Request-Type AVP set to the
value UPDATE_REQUEST, as described in section 5.5 of RFC 4006 (http://
www.ietf.org/rfc/rfc4006.txt).

Chapter 4
Accessing the Ro Application

4-4

http://www.ietf.org/rfc/rfc4006.txt
http://www.ietf.org/rfc/rfc4006.txt

A session listener must implement the SessionListener interface and be serializable, or it
must be an instance of SipServlet. A Servlet can register a listener as follows:

RoSession session = roApp.createSession();
session.addListener(new SessionListener() {
 public void rcvMessage(Message msg) {
 System.out.println("Got message: id = " msg.getSession().getId());
 }
}

Example 4-4 shows sample rcvMessage() code for processing a Re-Auth-Request.

Example 4-4 Managing a Re-Auth-Request

RoSession session = roApp.createSession();
session.addListener(new SessionListener() {
public void rcvMessage(Message msg) {
 Request req = (Request)msg;
 if (req.getCommand() != Command.RE_AUTH_REQUEST) return;
 RoSession session = (RoSession) req.getSession();
 Answer ans = req.createAnswer();
 ans.setResultCode(ResultCode.LIMITED_SUCCESS); // Per RFC 4006 5.5
 ans.send();
 CCR ccr = session.createCCR(Ro.UPDATE_REQUEST);
 // Set CCR AVPs according to requested credit re-authorization...
 ccr.send();
 CCA cca = (CCA) ccr.waitForAnswer();
}

In Example 4-4, upon receiving the Re-Auth-Request the application sends an RAA with the
result code DIAMETER_LIMITED_SUCCESS to indicate to the OCS that an additional CCR
request is required in order to complete the procedure. The CCR is then sent to initiate credit
re-authorization.

Note:

Because the Diameter subsystem locks the call state before delivering the request
to the corresponding RoSession, the call state remains locked while the handler
processes the request.

Sending Credit-Control-Request Messages
The CCR class represents a Diameter Credit-Control-Request message, and can be used to
send credit control requests to the OCF. For both ECUR (Event-Based Charging with Unit
Reservation) and SCUR (Session-Based Charging with Unit Reservation), an instance of
RoSession is used to create new CCR requests. You can also use RoApplication directly to
create CCR messages for IEC (Immediate Event Charging). Example 4-5 shows an example
of how to create and send a CCR.

Example 4-5 Creating and Sending a CCR

CCR ccr = session.createCCR(RequestType.INITIAL);
ccr.setServiceContextId("sample_id");
CCA cca = ccr.sendAndWait();

Chapter 4
Sending Credit-Control-Request Messages

4-5

Once a CCR request is created, you can set whatever application- or service-specific
AVPs that are required before sending the request using the addAvp() method.
Because some of the same AVPs need to be included in each new request for the
session, it is also possible to set these AVPs on the session itself. Example 4-6 shows
a sample that sets:

• Subscription-Id to identify the user for the session

• Service-Identifier to indicate the service requested

• Requested-Service-Unit to specify the units requested.

A custom AVP is also added directly to the CCR request.

Example 4-6 Setting AVPs in the CCR

session.setSubscriptionId(...);
session.setServiceIdentifier(...);
CCR ccr = session.createCCR(RequestType.INITIAL);
ccr.setRequestedServiceUnit(...);
ccr.addAvp(CUSTOM_MESSAGE, "This is a test");
ccr.send();

In this case, the same Subscription-Id and Service-Identifier are added to every new
request for the session. The custom AVP "Custom-Message" is added to the message
before it is sent out.

Handling Failures
Applications can examine the Result-Code AVP in CCA error responses from the OCF
to detect the cause of a failure and take an appropriate action. Locally-generated
errors, such as an unavailable peer or invalid route specification, cause the request
send method to throw an IOException to with a detailed message indicating the nature
of the failure.

Applications can also use the Diameter Timer Tx value for determining when the OCF
fails to respond to a credit authorization request. Timer Tx has a default value of 10
seconds, but can be overridden using the tx.timer init parameter in the
RoApplication configuration. Timer Tx starts when a CCR is sent to the OCF. The
timer resets after the corresponding CCA is received.

If Tx expires before a corresponding CCA arrives, any call to waitForAnswer
immediately returns null to indicate that the request has timed out. An application can
then take action according to the value of the Credit-Control-Failure-Handling (CCFH)
AVP in the request. See section 5.7, "Failure Procedures" in RFC 4006 (http://
www.ietf.org/rfc/rfc4006.txt) for more details.

Example 4-7 terminates the credit control session if timer Tx expires before receiving
the CCA. If the CCA is received later by the Diameter subsystem, the message is
ignored because the session no longer exists.

Example 4-7 Checking for Timer Tx Expiry

CCR ccr = session.createCCR(RequestType.INITIAL);
ccr.setCreditControlFailureHandling(RequestType.TERMINATION);
ccr.send();
CCA cca = ccr.waitForAnswer();
if (cca == null) {

Chapter 4
Handling Failures

4-6

http://www.ietf.org/rfc/rfc4006.txt
http://www.ietf.org/rfc/rfc4006.txt

 session.terminate();
}

Chapter 4
Handling Failures

4-7

	Contents
	About This Guide
	Audience
	My Oracle Support

	1 Using the Diameter Base Protocol API
	Overview of Diameter Protocol Support
	Working with Diameter Applications Using CDI and POJOs
	Creating a Diameter Bean Using Annotations
	Built-in CDI Beans
	SessionSource
	Application
	Application Subtypes

	Diameter Bean Selection
	Filtering Observer Methods Based on Command Codes and Parameters
	Dynamic Configuration

	Legacy Diameter Application Development
	Diameter Application Development Environment Configuration
	File Required for Compiling Application Using the Diameter API
	Configuring Diameter Nodes

	Overview of the Diameter API
	Working with Diameter Nodes
	Implementing a Legacy Diameter Application
	Working with Diameter Sessions
	Working with Diameter Messages
	Sending Request Messages
	Sending Answer Messages
	Creating New Command Codes

	Working with AVPs
	Creating New Attributes

	Creating Converged Diameter and SIP Applications

	2 Using the Diameter Sh Interface Application
	Overview of Profile Service API and Sh Interface Support
	Enabling the Sh Interface Provider
	Overview of the Profile Service API
	Creating a Document Selector Key for Application-Managed Profile Data
	Using a Constructed Document Key to Manage Profile Data
	Monitoring Profile Data with ProfileListener
	Prerequisites for Listener Implementations
	Implementing ProfileListener

	3 Using the Diameter Rf Interface Application for Offline Charging
	Overview of Rf Interface Support
	Understanding Offline Charging Events
	Event-Based Charging
	Session-Based Charging

	Configuring the Rf Application
	Using the Offline Charging API
	Accessing the Rf Application
	Implementing Session-Based Charging
	Specifying the Session Expiration
	Sending Asynchronous Events

	Implementing Event-Based Charging
	Using the Accounting Session State

	4 Using the Diameter Ro Interface API for Online Charging
	Overview of Ro Interface Support
	Understanding Credit Authorization Models
	Credit Authorization with Unit Determination
	Credit Authorization with Direct Debiting
	Determining Units and Rating

	Configuring the Ro Application
	Overview of the Online Charging API
	Accessing the Ro Application
	Implementing Session-Based Charging
	Handling Re-Auth-Request Messages

	Sending Credit-Control-Request Messages
	Handling Failures

