
Oracle® Communications Converged
Application Server
Concepts

Release 8.2
G35932-01
July 2025

Oracle Communications Converged Application Server Concepts, Release 8.2

G35932-01

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Guide

1 Overview of Converged Application Server Architecture

About the Converged Application Server 1-1

Converged Application Server Architecture 1-2

Configuring and Administering the Converged Application Server Deployment 1-4

Remote Console 1-4

2 Developing Applications for Converged Application Server

Overview of Developing Applications for Converged Application Server 2-1

SIP Protocol Support 2-1

Simplicity and Ease of Use 2-2

Converged Applications 2-2

Application Composition 2-3

Highly Reliable Implementation 2-3

Overview of the SIP Servlet Container 2-3

SIP Dialog Handling 2-4

Using the SIP Servlet API 2-5

The SipServlet Object 2-6

SIP Factory 2-7

SIP Messages 2-8

SipSession 2-9

SipApplicationSession 2-9

Application Timers 2-10

SIP Servlet Application Example: Converged SIP and HTTP Application 2-10

SIP Servlet Application Example: SUBSCRIBE and NOTIFY 2-11

Converged Application Server Profile API 2-13

Using Document Keys for Application-Managed Profile Data 2-14

Monitoring Profile Data 2-14

Developing "Zero Downtime" Upgradable Applications 2-16

Requirements and Restrictions for Upgrading Deployed Applications 2-16

Developing IR.92 Supplementary Services 2-17

iii

About Converged Application Server and VoLTE 2-17

Communication Diversion 2-17

Communication Barring 2-18

Communication Hold 2-18

Setting the Communication Hold Bandwidth 2-18

Originating Identification Presentation and Restriction 2-19

Privacy Service Behavior 2-20

Providing Privacy for the History-Info Header 2-21

Communication Waiting 2-21

Supporting Network- and Terminal-based Communication Waiting 2-21

Message Waiting Indication 2-22

Announcement Support 2-23

Developing Services Using XCAP 2-23

About XCAP and VoLTE 2-24

3 Converged Application Server in the Network

Converged Application Server in a Typical Service Provider Network 3-1

SIP and IMS Service Control 3-2

ISC and the 3GPP SIP Profile 3-2

AS Session Case Determination Requirement of ISC 3-3

Transport Layer Issues Related to ISC 3-3

HTTP User Interface 3-4

Service and Subscriber Data and Authentication 3-4

Proxy Registrar 3-4

Media Server Control 3-8

Charging and Billing 3-9

Security 3-9

Authentication Providers 3-9

Trusted Host Authentication 3-10

Declarative Security 3-12

Protecting the Converged Application Server Domain with a Session Border Controller 3-12

4 Converged Application Server Cluster Architecture

Overview of Converged Application Server Clusters 4-1

Relationship Between Clusters and Domains 4-1

Relationship Between Coherence and WebLogic Server Clusters 4-1

Objects That Can Be Clustered 4-2

Objects That Cannot Be Clustered 4-2

Overview of the Cluster Architecture 4-2

Geographically-Redundant Installations 4-4

iv

Administration Server 4-4

Engines 4-4

Diameter Support 4-5

5 Deployment Scenarios

Overview of Deployment Scenarios 5-1

Single-NIC Configurations with TCP and UDP Channels 5-1

Multihomed Server Configurations Overview 5-3

Multihomed Servers Listening On All Addresses (IP_ANY) 5-3

Multihomed Servers Listening on Multiple Subnets 5-3

Understanding the Route Resolver 5-4

IP Aliasing with Multihomed Hardware 5-5

Load Distribution Considerations 5-5

Single VIP Topology 5-5

Multiple VIP Topology 5-6

Network Address Translation Options 5-6

IP Masquerading Alternative to Source NAT 5-7

Example Scenarios 5-7

Example Deployment with a Non-SIP Aware Load Balancer 5-8

Converged Application Server Configuration 5-8

Load Balancer Configuration 5-9

6 Standards Alignment

Overview of Converged Application Server Standards Alignment 6-1

Java Sun Recommendation (JSR) Standards Compliance 6-1

IETF RFC Compliance 6-1

3GPP R12 Specification Conformance 6-11

A SIP Servlet API Service Invocation

SIP Servlet API Overview A-1

Servlet Mapping Rules: Objects, Properties and Conditions A-1

Supported Service Trigger Points A-3

Request Object A-3

URI A-3

SipURI (extends URI) A-3

TelURL (extends URI) A-3

Address A-4

Conditions and Logical Connectors A-4

v

About This Guide

This document provides a technical overview of Oracle Communications Converged
Application Server, including its features, architecture, standards alignment, and supported
platforms. It also describes the service invocation method of the SIP Servlet API.

Table 1 Revision History

Date Revision

July 2025 • Initial release

About This Guide

vi

1
Overview of Converged Application Server
Architecture

This chapter introduces the Oracle Communications Converged Application Server.

Before continuing, you should familiarize yourself with the Internet Engineering Task Force
(IETF) standards listed in Table 1-1.

Table 1-1 SIP and SDP Standards

Protocol Description URL

Session Initiation
Protocol (SIP)

From the IETF document,
"[SIP is} an application-layer
control (signaling) protocol for
creating, modifying, and
terminating sessions with one
or more participants. These
sessions include Internet
telephone calls, multimedia
distribution, and multimedia
conferences."

https://www.ietf.org/rfc/rfc3261.txt

Session Description
Protocol (SDP)

From the IETF document,
"SDP is intended for
describing multimedia
sessions for the purposes of
session announcement,
session invitation, and other
forms of multimedia session
initiation."

https://www.ietf.org/rfc/rfc4566.txt

About the Converged Application Server
Converged Application Server is a carrier-class Java Platform, Enterprise Edition (Java EE)
application server that has been extended with support for the SIP and a number of operational
enhancements that allow it to meet the demanding requirements of next-generation Internet
Protocol-based communications networks. The Converged Application Server implementation
is based on Oracle's widely deployed and time-tested Java EE-compliant WebLogic Server
product.

The Converged Application Server can be deployed as a SIP Application Server (AS). The
Converged Application Server is deployed in customer network to meet a variety of customer
needs such as Redirect Server, Call Routing Server, Selective Call Recording, Call
Authentication, Call Branding, Fraud/Spam Blocking, Selective Call Blocking. But also supports
services like Conference Call Server, Contact Center Server, and Unified Communications/IP-
PBX functionality.

In a typical IP Multimedia Subsystem (IMS) deployment, Converged Application Server fills the
role of the IMS SIP Application Server. Figure 1-1 shows the Converged Application Server in
the context of the functional architecture for the provision of service in the IMS, as specified by
3GPP TS 23.002, "Network Architecture."

1-1

https://www.ietf.org/rfc/rfc3261.txt
https://www.ietf.org/rfc/rfc4566.txt

Figure 1-1 Converged Application Server in the IMS Service Architecture

Converged Application Server supports all of the standard Oracle WebLogic Server
programming interfaces and facilities, such as Java Transaction API (JTA), Java Activation
Framework (JAF), Java Message Service (JMS), Java Naming and Directory Interface (JNDI),
Java Database Connectivity (JDBC), and Enterprise JavaBeans (EJB). Converged Application
Server also supports the protocols typically associated with a standards-compliant Java EE
application server, including Remote Method Invocation (RMI) over Internet Inter-Orb Protocol
(IIOP), HTTP 1.1, Lightweight Directory Access Protocol (LDAP), Simple Mail Transfer Protocol
(SMTP), Post Office Protocol (POP), Internet Message Access Protocol (IMAP), SNMPv2,
Simple Object Access Protocol (SOAP), and Representational State Transfer (REST).

Converged Application Server then builds upon the base Java EE programming model by
integrating a SIP Servlet Container that is compliant with the JSR-359 SIP Servlet API
specification. This “converged" container provides an execution environment for applications
containing both HTTP and SIP protocol handling components, as well as other protocols such
as Diameter.

Converged Application Server Architecture
The “SIP Stack" of Converged Application Server is fully integrated into the SIP Servlet
container and is substantially more powerful and easier to use than a traditional protocol stack.

As shown in Figure 1-2, Converged Application Server combines the SIP Servlet container with
EJB and HTTP Servlet containers, supporting application convergence through session
context sharing.

Chapter 1
Converged Application Server Architecture

1-2

Figure 1-2 Converged Application Server Extended Java EE for Next Generation
Networks

The SIP Servlet API defines a higher layer of abstraction than simple protocol stacks provide
and frees the developer from concern for the mechanics of the SIP protocol itself. Specifically,
the API handles the syntactic validation of received requests, transaction layer timers,
generation of non-application-related responses, generation of fully-formed SIP requests from
request objects (which involves correct preparation of system headers and generation of
syntactically correct SIP messages), and lower-layer transport protocols (such as TCP, UDP or
SCTP).

The Servlet container distributes request and response objects to components in a structured
way, maintains awareness of the state of the larger, converged SIP and HTTP application
session, and manages the end-to-end object lifecycle, including resource, transaction, and
session state management. The converged SIP and HTTP container thereby frees the
developer from much work (and opportunity for error) and allows deployed applications to
inherit the high-availability, performance, and operational features provided by the robust
Converged Application Server container implementation.

The SIP Servlet API greatly simplifies the task of implementing SIP User Agents, Proxies and
Back-to-Back-User-Agents, and it narrows the developers exposure to operational concerns
such as resource management, reliability, manageability and interaction between services.
(See "Developing Applications for Converged Application Server" for more information.)

Converged Application Server incorporates a number of architectural features that allow for its
deployment as a highly-available, fault tolerant cluster.

Engines processes all signaling traffic and replicates transaction and session state between all
engines in a cluster. This clustering capability, combined with a third-party load balancer,
transparently provides services with Telco-grade availability, scalability, and fault tolerance
(session retention), ensuring that ongoing sessions are not affected by the failure of individual
cluster members since a production deployment of Converged Application Server has no
single point of failure.

Chapter 1
Converged Application Server Architecture

1-3

Configuring and Administering the Converged Application Server
Deployment

Converged Application Server provides several tools and mechanisms for administration and
configuration which include:

• Remote Console: The WebLogic Remote Console supports all configuration
management, including deployment of applications, configuration of connectivity, and other
common tasks. This interface offers secure, role-based administration of servers from any
terminal that has access to the Administration Server and supports a standard HTML Web
browser.

• Java Management Extensions (JMX): Converged Application Server interoperates with
standard network element management systems via JMX. Many common network
management suites support JMX natively, which is the standard management technology
for Java applications.

• Simple Network Management Protocol (SNMP): Converged Application Server
interoperates with standard network element management systems via use of SNMP, V2.
The Converged Application Server SNMP MIB complies with MIB II. Converged
Application Server also enables developers to send SNMP traps from within application
code. See the Oracle Communications Converged Application Server Developer Guide.
Converged Application Server also uses the SNMP features available in Oracle WebLogic
Server, such as SNMP proxying. See Monitoring Oracle WebLogic Server with SNMP.

• WebLogic Scripting Tool (WLST): Converged Application Server provides a Command
Line Interface (CLI) using WLST for manual runtime configuration from any network
terminal with secure access to the Administration Server. See Understanding the
WebLogic Scripting Tool.

Remote Console
The WebLogic Remote Console is used for the following tasks:

• Configuring application container and related resource properties

• Configuring security

• Deploying applications or components

• Monitoring resource usage

• Configure debug logging for the servers in the domain

• Displaying log messages

• Starting and stopping servers

In addition to providing access to the configuration for the implementation, the Remote
Console serves as a monitoring and troubleshooting interface. It provides a convenient
interface for observing system-wide usage metrics, including SIP traffic activity. See Monitoring
and Overload Protection in Converged Application Server Administrator Guide.

Chapter 1
Configuring and Administering the Converged Application Server Deployment

1-4

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/snmpa/index.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlstg/index.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlstg/index.html

2
Developing Applications for Converged
Application Server

This chapter describes the environment for developing applications with Oracle
Communications Converged Application Server.

Overview of Developing Applications for Converged Application
Server

Oracle Communications Converged Application Server is a development and runtime platform
for implementing and deploying communication services. The Converged Application Server
supports capabilities that form the basis for advanced communication services, including those
represented by Rich Communication Services (RCS) and Voice over Long-Term Evolution
(VoLTE). The Converged Application Server simplifies the development of converged
applications that provide voice, IM, rich media, and presence services to end users.

The Converged Application Server provides comprehensive support for the SIP protocol. The
Session Initiation Protocol (SIP) protocol, specified by Java Specification Request (JSR) 359:
SIP Servlet Specification, version 2.0, extends the basic concept of the Servlet. The SIP
Servlet API specification describes not only the programming API but also the Servlet
container function. The container is the Server (software) that hosts or “contains" applications
written using the API. The SIP Servlet container hosts SIP applications.

The Converged Application Server SIP container performs a number of SIP functions as
specified by various Request for Comments (RFCs), thus taking the burden off of the
applications themselves. At the same time, the container exposes the application to SIP
protocol messages through the SIP Servlet API. In this way, the application can perform
various actions based on the SIP messages it receives from the container. Different
applications can be coded and deployed to the container in order to provide various
telecommunication or multimedia services.

SIP Protocol Support
The SIP Servlet API enables applications to perform a complete set of SIP Signaling functions.
The SIP Protocol specification defines different types of high level SIP roles, namely User
Agents (UAs) which include UA Clients, UA Servers, and Back-to-back user agents (B2BUAs).
The SIP protocol also defines the roles of Proxies, Registrars, and Redirect Servers. The SIP
Servlet API is a allows any of these roles to be coded as SIP Servlet application.

SIP is an extensible protocol, which is one of its strengths. Applications can extend the base
protocol to add new features as necessary. In fact, there are a number of RFCs that define
extensions to the base Internet Engineering Task Force (IETF) RFC 3261 SIP: Session
Initiation Protocol. The SIP Servlet API is also designed to allow developers to easily extend
functionality. This is accomplished by dividing up the SIP processing between the container
functions the applications. Most of the base protocol processing is performed by the container,
leaving some of the higher level tasks for the applications to perform. This clever division is
what lends a great deal of power and flexibility to the SIP Servlet API.

2-1

Simplicity and Ease of Use
The SIP Servlet container handles "non-application-specific" complexity outside of the
application code itself. Concerns like network connectivity, protocol transactions, dialog
management and route processing are required by virtually all applications, and it would be
enormously wasteful and error-prone to require each application to implement this support.
With the SIP Servlet API, all of these tasks are managed by the container, leaving applications
to provide higher level functions.

As an example, consider a SIP Proxy component:

1. A SIP Servlet within the SIP Servlet container receives a SIP request object and proxies it.
A SIP Proxy must add its own Via header to the request; the header is required by the
base SIP protocol to indicate which entities were traversed by the request. The Via header
also stores the branch identifier which acts as the transaction identifier.

Because the maintenance of transactions and their associated state machine is maintained
by the container, it is the container that actually inserts the Via headers into the SIP
Request.

2. The downstream SIP entity which next receives the request sends the response back
along the path built up by the SIP entities in the path of the request that have inserted
themselves into the Via or Record-Route headers.

3. The container gets the response, removes the Via header it inserted in the original request
and then processes the response. The application code does not need to manage the Via
header, which simplifies application development.

There are many cases in which Converged Application Server handles that sort of mundane,
but essential, protocol detail.

Converged Applications
The SIP Servlet API specification is closely aligned with the Java Platform, Enterprise Edition
(Java EE) specifications, and it is expected that containers that host SIP Servlet applications
also make Java EE features available to developers. The most notable of these features is the
HTTP Servlet container. There are many use cases in which a converged application, using
both SIP and HTTP functions, is required, from conferencing and click-to-call applications to
Presence and User Agent Configuration Management applications. Converged applications
can also combine other protocols such as Diameter to perform advanced functions such as
modifying subscriber profile data.

Figure 2-1 illustrates that javax.servlet.http and javax.servlet.sip converge in the SIP
Servlet API.

Figure 2-1 HTTP/SIP Convergence in the SIP Servlet API

Chapter 2
Overview of Developing Applications for Converged Application Server

2-2

Application Composition
The SIP Servlet API enables multiple applications to execute on the same request or
response, independently of one another. This is another very powerful feature of the SIP
Servlet API. The promise is that application developers are able to write applications providing
features that are independent of each other, but can be deployed to the same host SIP Servlet
container. The applications can be “composed" (or sequenced) to provide a service on a call.
This composition is facilitated by the container. See "SIP Servlet API Service Invocation" for
more information.

Highly Reliable Implementation
Application data stored in container-managed session objects can benefit from replication and
failover. Almost all applications that perform some useful functions require some state between
different Requests and Responses. Some state information is mandated by the SIP protocol
itself, such as the transaction state machine with its Server and Client Transactions, and the
Dialog state machine.

The container also has a notion of message context which encapsulates the SIP level state,
and the concept of Sessions, which are the SIP Servlet API constructs. Applications can save
their own state in the Session objects maintained by the container. A carrier-grade container
will replicate this state such that the call becomes fault tolerant of a container instance, as is
done in Converged Application Server.

Overview of the SIP Servlet Container
Figure 2-2 shows the logical layers of a Converged Application Server SIP Servlet Container.
The five layers shown from the bottom are what are known as the SIP stack, the functionality
of which is defined in RFC 3261 and the associated RFCs that extend the base protocol.

SIP, being a transaction-based protocol, has a well-defined transaction layer. SIP requests are
always followed by one or more provisional Responses and one final response, with the
exception of the ACK which has no response. The transaction machinery is designed to keep
track of the provisional and final responses.

Figure 2-2 shows the message processing layers in the Converged Application Server SIP
Servlet container which are the following from top to bottom: Dialog Management Layer,
Transaction Layer, Message Parser, the Transport Layer, and the bottom layer comprising of
Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Transport Layer
Security (TLS).

Chapter 2
Overview of the SIP Servlet Container

2-3

Figure 2-2 Message Processing Layers in the Converged Application Server SIP
Servlet Container

SIP Dialog Handling
A dialog is a point-to-point session between two SIP endpoints that is uniquely identified by a
dialog identifier. Not all SIP requests create dialogs. However, the ones that do create dialogs
have a well-defined mechanism of establishing and tearing down the dialog (INVITE,
SUBSCRIBE/NOTIFY, REFER).

The SIP stack shown in this diagram is not strictly in accordance with RFC 3261. It differs from
the specification in that there is a layer called Transaction User (TU) above the Transaction
layer, and the dialog management layer is not explicitly a layer in 3261. The “Dialog layer" is a
very visible constituent of a SIP Servlet container because the dialogs correspond roughly to
the SipSession objects. In Figure 2-2, the TU layer is actually split between the Dialog
management layer and the big Container block.

The primary purpose of the Container is to host SIP Servlet applications that are written to the
container's SIP Servlet API implementation. It exposes objects like SipServletRequest,
SipServletResponse, different types of Sessions, facilities such as Timer, Logging, and so
forth.

Although SIP is a human-readable, text-based protocol, and is well-defined in Request for
Comment (RFC) 3261, writing SIP applications can be a challenging task. The SIP Servlet API
is designed to simplify SIP application development. While the SIP Servlet API allows access
to all the headers present in a SIP Request, it does not require applications to understand or

Chapter 2
Overview of the SIP Servlet Container

2-4

modify all of them for correct protocol behavior. Also, there are some headers that are strictly
off limits for applications. The SIP Servlet API defines the so-called "system headers" which
are to be managed only by the container. These headers include the From, To, Call-ID, CSeq,
Via, Route (except through pushRoute), Record-Route, and Contact headers. Applications can
add attributes to the Record-Route header and Contact header fields in all request messages,
as well as 3xx and 485 responses. Additionally, for containers such as Converged Application
Server that implement the reliable provisional responses extension, RAck and RSeq are also
considered to be system headers. The system header management performed by the
container offloads a tremendous amount of complexity from applications.

The From, To, Call-ID, and CSeq message headers collectively identify a given SIP dialog. The
SIP Servlet container keeps track of the dialog state and dialog-related data for the hosted
applications. The SIP Servlet container is responsible for managing Record-Route, Contact,
and Via headers because the network listen points, failure management, multi-homing,
transport switching, and so forth are also handled by the container. Applications can participate
in the routing decisions of a Request emanating from the container by explicitly modifying
Request-URI or adding Route headers with pushRoute(). As a result, applications have no
responsibility for resource management. The SIP Servlet API draws heavily from Java EE
standardization and common practices, such as the declarative usage of container features
such as security, mapping, and environment resources.

Perhaps the greatest advantage of the SIP Servlet API is the API itself. The SIP Servlet API
abstracts a large number of complex SIP tasks behind intuitive constructs. The Proxy interface,
representing the proxy functionality in SIP, is an excellent example. A proxy can:

• Be stateful or stateless.

• Recurse automatically (send Requests automatically) upon receipt of a 3xx SIP response
code to the Contact address(es) contained in the Response header.

• Use the Record-Route header to ensure that subsequent requests also go through it.

• Act as a forking proxy to proxy to multiple destinations, either in parallel or in sequence.

With the SIP Servlet API, all of these options are simple attributes of the Proxy object. The
container-managed Proxy deals with all low level details like finding a target set (based on
Request-URI or Route headers), applying RFC rules if a strict router is upstream or
downstream, creating multiple client transactions, correlating responses, choosing the best
response, and so forth.

Using the SIP Servlet API
This section describes additional important interfaces and constructs of the SIP Servlet API,
and includes examples.

Note:

JSR 359 defines a new method for creating SIP servlets using Plain Old Java
Objects (POJOs) in conjunction with SIP specific annotations as well as other
annotations defined by Java EE Common Dependency Injections (CDIs), which can
significantly reduce the amount of code and complexity. JSR 359 is, however, fully
backwards compatible with 1.x applications, and those examples are left intact in this
section.

Chapter 2
Using the SIP Servlet API

2-5

The SipServlet Object
The SipServlet class extends the GenericServlet class in the servlet base package. The
service method dispatches the SIP message to either doRequest() or doResponse(), and in
turn the requests are directed to the doXXX methods for Requests such as doInvite,
doSubscribe, and so forth, or to doXXX methods for Responses such as doSuccessResponse
and doErrorResponse.

If you are creating a SIP Servlet using POJOs and annotations, you can use the @SipServlet
annotation in conjunction with the following method specific annotations:

• @Invite

• @Ack

• @Options

• @Bye

• @Cancel

• @Register

• @Prack

• @Subscribe

• @Notify

• @Message

• @Info

• @Update

• @Refer

• @Publish

The servlet-mapping element defined in the deployment descriptor can define the rule that
MUST be satisfied before invoking a particular Servlet. The mapping rules have a well-defined
grammar. Example 2-1 shows a mapping that invokes a Servlet only if the Request is an
INVITE and the host part of the Request-URI contains the string “example.com". See "SIP
Servlet API Service Invocation" for more information on servlet mapping rules.

Example 2-1 Example Servlet Mapping Rule

pattern
 <and>
 <equal>
 <var>request.method</var>
 <value>INVITE</value>
 </equal>
 <contains ignore-case="true">
 <var>request.from.uri.host</var>
 <value>example.com</value>
 </contains>
 </and>
</pattern>

There is normally only one SipServlet object accessed by concurrent Requests, so it is not a
place to define any call- or session- specific data structure. The doXXX methods in the
application generally implement the business logic for a given request. Consider Example 2-2.

Chapter 2
Using the SIP Servlet API

2-6

Example 2-2 Example SIP Servlet

1: package test;
2: import javax.servlet.sip.SipServlet;
3: import javax.servlet.sip.SipServletRequest;
4: import java.io.IOException;
5: public class SimpleUasServlet extends SipServlet {
6: protected void doInvite(SipServletRequest req)
7: throws IOException {
8: req.createResponse(180).send();
9: req.createResponse(200).send();
10: }
11: protected void doBye(SipServletRequest req) throws IOException {
12: req.createResponse(200).send();
13: req.getApplicationSession().invalidate();
14: }
15: }

Example 2-2 shows a simple UAS Servlet that is invoked on an incoming INVITE Request
(triggered by a rule similar to the one defined in Example 2-1). The container invokes the
application by invoking the doInvite method. The application chooses to send a 180
Response (line 8) followed by a 200 Response (line 9). The application does nothing with the
ACK, which would be sent by the UAC. In this case the container receives the ACK and silently
ignores it. If it were a stateful proxy it would have proxied it.

Example 2-3 shows how the same class could be written using an annotated POJO.

Example 2-3 Example SIP Servlet Using an Annotated POJO

package test;
import javax.inject.Inject;
import javax.servlet.sip.SipFactory;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.annotation.Bye;
import javax.servlet.sip.annotation.Invite;
import javax.servlet.sip.annotation.SipServlet;

@SipServlet(loadOnStartup = 1)
public class SimpleUasServlet {
 @Inject SipFactory sipFactory;
 @Invite
 public void handleInviteRequest(SipServletRequest req) throws IOException {
 req.createResponse(180).send();
 req.createResponse(200).send();
 }
 @Bye
 public void handleByeRequest(SipServletRequest req) throws IOException {
 req.createResponse(200).send();
 req.getApplicationSession().invalidate();
 }
}

SIP Factory
As its name suggests, this class is used to create various SIP Servlet API objects such as
Request, SipApplicationSession, Addresses, and so forth. An application acting as a UA can
use it to create a new Request. Requests created through the factory have a new Call-ID (with
the exception of a particular method for B2BUAs in which the application can chose to re-use
the existing Call-ID on the upstream leg) and do not have a tag in the To header. The Factory

Chapter 2
Using the SIP Servlet API

2-7

object can be retrieved using the javax.servlet.sip.SipFactory attribute on the
ServletContext.

See the "findme" example installed with Converged Application Server for an example of
obtaining a factory object using SipFactory.

If you are using annotated POJOs, you can use the CDI @Inject annotation to inject the
SipFactory into your servlet class:

@Inject SipFactory sipFactory;

SIP Messages
There are two classes of SIP messages: SipServletRequest and SipServletResponse. These
classes respectively represent SIP Requests (INVITE, ACK, INFO, and so forth) and
Responses (1xx, 2xx, and so forth). Messages are delivered to the application through various
doXXX methods defined in the SipServlet class.

SIP is an asynchronous protocol and therefore it is not obligatory for an application to respond
to a Request when the doRequest(doXXX) method is invoked. The application may respond to
the Request at a later stage, because they have access to the original Request object.

Both the SipServletRequest and SipServletResponse objects are derived from the base
SipServletMessage object, which provides some common accessor/mutator methods such as
getHeader(), getContent(), and setContent(). The SipServletRequest defines many useful
methods for Request processing:

• SipServletRequest.createResponse() creates an instance of the SipServletResponse
object. This represents the Response to the Request that created it. Similarly,
SipServletRequest.createCancel() creates a CANCEL Request to a previously sent
Request.

Note:

The CANCEL is sent if the UAC decides to not proceed with the call if it has not
received a response to the original request. Sending a CANCEL if you have
received a 200 response or not received a 100 response would be wrong
protocol behavior, luckily the SIP Servlet API steps up to rescue here too. The
UAC application can create and send a CANCEL oblivious to these details. The
container ensures that a CANCEL is sent out only if a 1xx response code is
received, and any response >200 is not received.

• SipServletRequest.getProxy() returns the associated Proxy object to enable an
application to perform proxy operations.

• SipServletRequest.pushRoute(SipURI) enables a UAC or a proxy to route the request
through a server identified by the SipURI. The effect of this method is to add a Route
header to the request at the top of the Route header list.

Another method of interest is SipServletRequest.isInitial(). It is important to understand
the concept of initial and subsequent requests, because an application may treat each one
differently. For example, if an application receives a Re-INVITE request, it is delivered to the
Servlet's doInvite() method, but the isInitial() method returns false.

Initial requests are usually requests outside of an established dialog, of which the container
has no information. Upon receiving an initial Request, the container determines which

Chapter 2
Using the SIP Servlet API

2-8

application should be invoked; this may involve looking up the Servlet-mapping rules. Some
Requests create dialogs, so any Request received after a dialog is established falls into the
category of a "subsequent" Request. Closely-linked with the dialog construct in SIP is the
SipSession object (see "SipSession ").

In the SipServletResponse object, one particular method of interest is createAck().
createAck() creates an ACK Request on a 2xx Response received for the INVITE transaction.
ACKs for non-2xx responses of the INVITE transaction are created by the container itself.

SipSession
The SipSession roughly corresponds to a SIP dialog. For UAs the session maintains the dialog
state as specified by the RFC, in order to correctly create a subsequent request in a dialog. If
an application is acting as a UA (a UAC or a B2BUA), and after having processed an initial
request wants to send out a subsequent request in a dialog (such as a Re-INVITE or BYE), it
must use SipSession.createRequest() rather than one of SipFactory methods. Using a
factory method would result in requests being created “out of dialog".

The SipSession is also a place for an application to store any session-specific state that it
requires. An application can set or unset attributes on the SipSession object, and these
attributes are made available to the application over multiple invocations.

SipSession also provides the SipSession.setHandler(String nameOfAServlet) method,
which assigns a particular Servlet in the application to receive subsequent Requests for that
SipSession.

SipApplicationSession
The SipApplicationSession logically represents an instance of the application itself. An
application may have one or more protocol sessions associated with it, and these protocol
sessions may be of type SipSession or HttpSession. Applications can also store application-
wide data as an attribute of the SipApplicationSession.

Any attribute set on a SipApplicationSession object or its associated SipSession is visible
only to that particular application. The SIP Servlet API defines a mechanism by which more
than one application can be invoked on the same call. This feature is known as application
composition. SipApplicationSession provides a getSessions() method that returns the
protocol sessions associated with the application session. The image below shows the
containment hierarchy of the different sessions in the SIP Servlet API.

Figure 2-3 Relationship Between Session Object Types

Chapter 2
Using the SIP Servlet API

2-9

The encodeUri(URI) method in the SipApplicationSession interface is of particular interest.
This method encodes the SipApplication identifier with the URI specified in the argument. If the
container receives a new request with this encoded URI, even if on a different call, it
associates the encoded SipApplicationSession with this Request. This method can link two
disparate calls, and it can be used in a variety of other ways. SipApplicationSession is also
associated with application session timers (see Application Timers).

Application Timers
The SIP Servlet API provides a timer service that applications can use. The TimerService
interface can be retrieved using a ServletContext attribute, and it defines a
createTimer(SipApplicationSession appSession, long delay, boolean isPersistent,
java.io.Serializable info) method to start an application-level timer.

The SipApplicationSession is implicitly associated with application-level timers. When a timer
fires, the container invokes an application-defined TimerListener and passes it the
ServletTimer object. The listener can use the ServletTimer object to retrieve the
SipApplicationSession, which provides the correct context for the timer's expiry.

SIP Servlet Application Example: Converged SIP and HTTP Application
In terms of the SIP Servlet API, a converged application is one that involves more than one
protocol, in this case SIP and HTTP. The example below presents an example of a simple JSP
page which can be accessed through an HTTP URL.

Example JSP Showing HTTP and SIP Servlet Interaction

Example 2-4 Example JSP Showing HTTP and SIP Interaction

1:<html>
2:<body>
3: <%
4: if (request.getMethod().equals("POST")) {
5: javax.servlet.sip.SipFactory factory =
6: (javax.servlet.sip.SipFactory)
application.getAttribute(javax.servlet.sip.SipServlet.SIP_FACTORY);
7: javax.servlet.sip.SipApplicationSession appSession =
8: factory.createApplicationSession();
9: javax.servlet.sip.Address to =
10: factory.createAddress("sip:localhost:5080");
11: javax.servlet.sip.Address from =
12: factory.createAddress("sip:localhost:5060");
13: javax.servlet.sip.SipServletRequest invite =
14: factory.createRequest(appSession, "INVITE", from, to);
15: javax.servlet.sip.SipSession sess = invite.getSession(true);
16: sess.setHandler(“sipClickToDial");
17: //invite.setContent(content, contentType);
18: invite.send();
19: }
20:%>
21:<p>
22:Message sent ...
23:</p>
24:</body>
25:</html>

Chapter 2
Using the SIP Servlet API

2-10

The JSP example would need to be packaged in the same application as a SIP Servlet. The
entire application is a skeleton of a click-to-dial application (called sipClickToDial), where by
clicking on a Web page you initiate a SIP call.

The HTTP Servlet creates a SIP Request from a factory and sends it to a SIP URI. When an
HTTP POST Request is sent to the HTTP Servlet it obtains the SipFactory on line 5-6. Next, it
creates an application session (line 7-8). The application session is the center piece for all of
the application's SIP and HTTP interactions. The overall purpose is to send out a SIP Request,
which is done in lines 13-14, but first the application creates the From and To headers to be
used when forming the INVITE request.

On line 16 the application assigns a handler to the SipSession that is associated with the
INVITE Request that was created, and this ensures that the Response sent by a UAS that
receives the request is dispatched to a SIP Servlet for processing.

SIP Servlet Application Example: SUBSCRIBE and NOTIFY
In the example shown below, the application receives a SUBSCRIBE Request and sends out a
NOTIFY Request. The application then waits for the notification recipient for three seconds,
and if does not receive a success response (a 2xx class response), then it may take some
other action (for example, log a message).

Example 2-5 Example of SUBSCRIBE and NOTIFY Handling

1:public class Sample_TimerServlet extends SipServlet
2: implements TimerListener {
3: private TimerService timerService;
4: private static String TIMER_ID = "NOTIFY_TIMEOUT_TIMER";
5: public void init() throws ServletException {
6: try {
7: timerService =
8:(TimerService)getServletContext().getAttribute
9: ("javax.servlet.sip.TimerService");
10: }
11: catch(Exception e) {
12: log ("Exception initializing the servlet "+ e);
13: }
14: }
15: protected void doSubscribe(SipServletRequest req)
16: throws ServletException, IOException {
17: req.createResponse(200).send();
18: req.getSession().createRequest("NOTIFY").send();
19: ServletTimer notifyTimeoutTimer =
20: timerService.createTimer(req.getApplicationSession(), 3000,
21: false, null);
22: req.getApplicationSession().setAttribute(TIMER_ID,
23:notifyTimeoutTimer);
24: }
25: protected void doSuccessResponse(SipServletResponse res)
26: throws javax.servlet.ServletException, java.io.IOException {
27: if (res.getMethod().equals("NOTIFY")) {
28: ServletTimer notifyTimeoutTimer =
29: (ServletTimer)(res.getApplicationSession().getAttribute(TIMER_ID));
30: if (notifyTimeoutTimer != null) {
31: notifyTimeoutTimer.cancel();
32: res.getApplicationSession().removeAttribute(TIMER_ID);
33: }
34: }
35: }
36: public void timeout(ServletTimer timer) {

Chapter 2
Using the SIP Servlet API

2-11

37: // This indicates that the timer has fired because a 200 to
38: // NOTIFY was not received. Here you can take any timeout
39: // action.
40: //
41: timer.getApplicationSession().removeAttribute
("NOTIFY_TIMEOUT_TIMER");
42: }
43:}

The Servlet itself implements TimerListener so that it will be notified of the timeout. The
example starts by obtaining the TimerService from the ServletContext in lines 7-9. The timer
is then set for 3000 ms (3 seconds) upon receiving the SUBSCRIBE request on line 20. Note
that the timer could be set at any stage. There is also an option to attach an object to the timer.
The object could be used as an identifier or an invocable message at a later stage. This
sample simply associates the timer with a literal.

After sending the NOTIFY the application creates the timer and saves its reference in the
SipApplicationSession for later use on line 22.

If the application receives a 200 response to the NOTIFY, it can then extract the timer
reference and cancel the timer (line 25). However, if no response is received in 3 seconds,
then the timer fires and the container calls the timeout() callback method (line 36).

The example above can be rewritten using an annotated POJO as shown in the example
below.

Example 2-6 Example of SUBSCRIBE and NOTIFY Handling using an Annotated POJO

@SipServlet(loadOnStartup = 1);
public class Sample_TimerServlet {

 // Inject the TimerService using the @Resource annotation...
 @Resource TimerService timerService;
 private static String TIMER_ID = "NOTIFY_TIMEOUT_TIMER";

 @Subscribe
 protected void handleSubscribeRequest(SipServletRequest req) throws IOException {
 req.createResponse(200).send();
 req.getSession().createRequest("NOTIFY").send();
 ServletTimer notifyTimeoutTimer = timerService.createTimer(
 req.getApplicationSession(), 3000, false, null);
 req.getApplicationSession().setAttribute(TIMER_ID, notifyTimeoutTimer);
 }

 @SuccessResponse
 protected void handleSuccessResponse(SipServletResponse res) throws IOException {
 if (res.getMethod().equals("NOTIFY")) {
 ServletTimer notifyTimeoutTimer =
 (ServletTimer)(res.getApplicationSession().getAttribute(TIMER_ID));
 if (notifyTimeoutTimer != null) {
 notifyTimeoutTimer.cancel();
 res.getApplicationSession().removeAttribute(TIMER_ID);
 }
 }
 }

 public void timeout(ServletTimer timer) {
 // This indicates that the timer has fired because a 200 to
 // NOTIFY was not received. Here you can take any timeout
 // action.
 //
 timer.getApplicationSession().removeAttribute ("NOTIFY_TIMEOUT_TIMER");

Chapter 2
Using the SIP Servlet API

2-12

 }
}

Converged Application Server Profile API
The IMS specification defines the Sh interface as the method of communication between the
Application Server (AS) function and the Home Subscriber Server (HSS), or between multiple
IMS Application Servers. The AS uses the Sh interface in two basic ways:

• To query or update a user's data stored on the HSS

• To subscribe to and receive notifications when a user's data changes on the HSS

The user data available to an AS may be defined by a service running on the AS (repository
data), or it may be a subset of the user's IMS profile data hosted on the HSS. The Sh interface
specification, 3GPP TS 29.328 V5.11.0, defines the IMS profile data that can be queried and
updated via Sh. All user data accessible via the Sh interface is presented as an XML document
with the schema defined in 3GPP TS 29.328.

The IMS Sh interface is implemented as a provider to the base Diameter protocol support in
Converged Application Server. The provider transparently generates and responds to the
Diameter command codes defined in the Sh application specification. A higher-level Profile
Service API enables SIP Servlets to manage user profile data as an XML document using XML
Document Object Model (DOM). Subscriptions and notifications for changed profile data are
managed by implementing a profile listener interface in a SIP Servlet.

Figure 2-4 Profile Service API and Sh Provider Implementation

Converged Application Server includes only a single provider for the Sh interface. Future
versions of Converged Application Server may include new providers to support additional
interfaces defined in the IMS specification. Applications using the profile service API will be
able to use additional providers as they are made available.

Chapter 2
Converged Application Server Profile API

2-13

Using Document Keys for Application-Managed Profile Data
Servlets that manage profile data can explicitly obtain an Sh XML document from a factory
using a key, and then work with the document using DOM.

The document selector key identifies the XML document to be retrieved by a Diameter
interface, and uses the format protocol://uri/reference_type[/access_key].

The example below summarizes the required document selector elements for each type of Sh
data reference request.

Table 2-1 Summary of Document Selector Elements for Sh Data Reference Requests

Data Reference Type Required Document Selector
Elements

Example Document Selector

RepositoryData sh://uri/reference_type/Service-
Indication

sh://sip:user@oracle.com/RepositoryData/Call Screening/

IMSPublicIdentity sh://uri/reference_type/[Identity-Set]

where Identity-Set is one of:

• All-Identities
• Registered-Identities
• Implicit-Identities

sh://sip:user@oracle.com/IMSPublicIdentity/Registered-
Identities

IMSUserState sh://uri/reference_type sh://sip:user@oracle.com/IMSUserState/

S-CSCFName sh://uri/reference_type sh://sip:user@oracle.com/S-CSCFName/

InitialFilterCriteria sh://uri/reference_type/Server-Name sh://sip:user@oracle.com/InitialFilterCriteria/
www.oracle.com/

LocationInformation sh://uri/reference_type/(CS-Domain |
PS-Domain)

sh://sip:user@oracle.com/LocationInformation/CS-
Domain/

UserState sh://uri/reference_type/(CS-Domain |
PS-Domain)

sh://sip:user@oracle.com/UserState/PS-Domain/

Charging information sh://uri/reference_type sh://sip:user@oracle.com/Charging information/

MSISDN sh://uri/reference_type sh://sip:user@oracle.com/MSISDN/

Converged Application Server provides a helper class,
com.bea.wcp.profile.ProfileService, to help you easily retrieve a profile data document.
The getDocument() method takes a constructed document key, and returns a read-only
org.w3c.dom.Document object. To modify the document, you make and edit a copy, then send
the modified document and key as arguments to the putDocument() method.

See "Using the Profile Service API (Diameter Sh Interface)" in Converged Application Server
Diameter Application Development Guide for more information.

Monitoring Profile Data
The IMS Sh interface enables applications to receive automatic notifications when a
subscriber's profile data changes. Converged Application Server provides an easy-to-use API
for managing profile data subscriptions. A SIP Servlet registers to receive notifications by
implementing the com.bea.wcp.profile.ProfileListener interface, which consists of a single
update method that is automatically invoked when a change occurs to profile to which the
Servlet is subscribed. Notifications are not sent if that same Servlet modifies the profile
information (for example, if a user modifies their own profile data).

Chapter 2
Converged Application Server Profile API

2-14

Actual subscriptions are managed using the subscribe method of the
com.bea.wcp.profile.ProfileService helper class. The subscribe method requires that you
supply the current SipApplicationSession and the key for the profile data document you want
to monitor. See "Using Document Keys for Application-Managed Profile Data" for more
information.

Applications can cancel subscriptions by calling ProfileSubscription.cancel(). Also,
pending subscriptions for an application are automatically cancelled if the application session
is terminated.

Example 2-7 shows sample code for a Servlet that implements the ProfileListener interface.

Example 2-7 Sample Servlet Implementing ProfileListener Interface

package demo;
 import com.bea.wcp.profile.*;
 import javax.servlet.sip.SipServletRequest;
 import javax.servlet.sip.SipServlet;
 import org.w3c.dom.Document;
 import java.io.IOException;
 public class MyServlet extends SipServlet implements ProfileListener {
 private ProfileService psvc;
 public void init() {
 psvc = (ProfileService)
getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);
 }
 protected void doInvite(SipServletRequest req) throws IOException {
 String docSel = "sh://" + req.getTo() + "/IMSUserState/";
 // Subscribe to profile data.
 psvc.subscribe(req.getApplicationSession(), docSel, null);
}
 public void update(ProfileSubscription ps, Document document) {
 System.out.println("IMSUserState updated: " + ps.getDocumentSelector());
 }
 }

The ProfileListener interface is handled similar to the TimerService. Multiple Servlets in an
application may implement the ProfileListener interface, but only one Servlet may act as a
listener. The SIP deployment descriptor for the application must designate the profile listener
class in the set of listeners as shown in Example 2-8.

Example 2-8 Declaring a ProfileListener

<listener>
<listener-class>com.foo.MyProfileListener</listener-class>
Declaring a ProfileListener
</listener>
<listener>
 <listener-class>com.foo.MyProfileListener</listener-class>
</listener>

Example 2-7 can be rewritten using an annotated POJO as shown in Example 2-9.

Example 2-9 Sample Servlet Implementing ProfileListener Interface Using an
Annotated POJO

package demo;
// Includes excluded for brevity...
@SipServlet(loadOnStartup = 1);
public class MyServlet implements ProfileListener {
 private ProfileService psvc;
 @Inject SipFactory sipFactory;

Chapter 2
Converged Application Server Profile API

2-15

 public void init() {
 psvc = (ProfileService)
getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);
 }
 @Invite
 protected void handleInvite(SipServletRequest req) throws IOException {
 String docSel = "sh://" + req.getTo() + "/IMSUserState/";
 // Subscribe to profile data.
 psvc.subscribe(req.getApplicationSession(), docSel, null);
 }
 public void update(ProfileSubscription ps, Document document) {
 System.out.println("IMSUserState updated: " + ps.getDocumentSelector());
 }
}

Developing "Zero Downtime" Upgradable Applications
With Converged Application Server, you can upgrade a deployed SIP application to a newer
version without losing existing calls being processed by the application. This type of application
upgrade is accomplished by deploying the newer application version alongside the older
version. Converged Application Server automatically manages the SIP Servlet mapping so that
new requests are directed to the new version. Subsequent messages for older, established
dialogs are directed to the older application version until the calls complete. After all of the
older dialogs have completed and the earlier version of the application is no longer processing
calls, you can safely un-deploy it.

Converged Application Server's upgrade feature ensures that no calls are dropped while during
the upgrade of a production application. The upgrade process also enables you to revert or
rollback the process of upgrading an application. If, for example, you determine that there is a
problem with the newer version of the deployed application, you can simply un-deploy the
newer version. Converged Application Server then automatically directs all new requests to the
older application version.

Requirements and Restrictions for Upgrading Deployed Applications
To use the application upgrade functionality of Converged Application Server:

• You must assign version information to your updated application in order to distinguish it
from the older application version. Note that only the newer version of a deployed
application requires version information; if the currently-deployed application contains no
version designation, Converged Application Server automatically treats this application as
the “older" version.

• Both the deployed application and the updated application must provide only SIP protocol
functionality. You cannot upgrade converged HTTP/SIP applications using these
procedures.

• A maximum of two different versions of the same application can be deployed at one time.

• If your application hard-codes the use of an application name (for example, in composed
applications where multiple SIP Servlets process a given call), you must replace the
application name with calls to a helper method that obtains the base application name.
Converged Application Server provides SipApplicationRuntimeMBean methods for
obtaining the base application name and version identifier, as well as determining whether
the current application version is active or retiring.

• When applications take part in a composed application (using application composition
techniques), Converged Application Server always uses the latest version of an application
when only the base name is supplied.

Chapter 2
Developing "Zero Downtime" Upgradable Applications

2-16

Developing IR.92 Supplementary Services
Oracle Communication Converged Application Server provides support for GSM Association's
(GSMA) IR.92 specifications for delivering Voice over LTE (VoLTE). You can implement these
services using either the SIP Servlet 2.0 (JSR 359) or the Service Foundation Toolkit (SFT).

SFT provides enhanced APIs that you can use to quickly and easily implement applications for
delivering IR.92-compliant supplementary services over VoLTE. The APIs provide support for
supplementary services such as Call Forwarding, Incoming and Outgoing Call Barring, ID
Presentation and Restriction, Multi-Party Conferencing, and Message Waiting Indication
(MWI).

About Converged Application Server and VoLTE
GSM Association's (GSMA) IR.92 specifications defines the IP Multimedia Subsystem (IMS)
profile for delivering Voice over LTE (VoLTE). The GSMA VoLTE initiative has defined IMS as
the common way to deliver voice and messaging services over mobile broadband all-IP
networks.

In September 2010, GSMA published the IREG Permanent Reference Document IR.92, which
outlines the specifications for migrating 2G and 3G mobile voice, video and messaging
services to 4G mobile broadband networks, such as LTE.

This chapter describes the following IR.92 call control services, and their implementation in
Converged Application Server:

• Communication Diversion

• Communication Barring

• Communication Hold

• Originating Identification Presentation and Restriction

• Communication Waiting

• Message Waiting Indication

• Announcement Support

Communication Diversion
Communication Diversion (also referred to as Call Diversion or Call Forwarding) lets users of
the service (the called party, or callee) forward incoming calls to another phone number (the
third party). The third party may be a mobile telephone, voice-mail box, or other telephone
number where the desired called party is situated.

With Communication Diversion activated:

• Users can continue to make outgoing calls from their telephone while incoming calls are
forwarded.

• When the telephone number the user's calls are being forwarded to is busy, callers to the
forwarded number will receive a busy signal.

Converged Application Server supports the following IR.92 defined Communication Diversion
modes for VoLTE:

• Communication Forwarding Unconditional 3GPP TS 24.604

Chapter 2
Developing IR.92 Supplementary Services

2-17

• Communication Forwarding on No Reply 3GPP TS 24.604

• Communication Forwarding on not Logged in 3GPP TS 24.604

• Communication Forwarding on Busy 3GPP TS 24.604

• Communication Forwarding on not Reachable 3GPP TS 24.604

Communication Diversion applications forward calls by removing the callee (the person to
whom the call is being made), and adding a new participant (the third party) in the calle's place.

Communication Barring
Communication Barring lets users bar (or restrict) certain or all types of calls to and from their
phone. For example, a user can restrict outgoing calls, outgoing international calls, or incoming
calls from undesirable callers.

Converged Application Server supports the following IR.92 defined Call Barring modes for
VoLTE:

• Barring of All Incoming Calls 3GPP TS 24.611

• Barring of All Outgoing Calls 3GPP TS 24.611

• Barring of Outgoing International Calls 3GPP TS 24.611

• Barring of Outgoing International Calls—ex Home Country 3GPP TS 24.611

• Barring of Incoming Calls When Roaming 3GPP TS 24.611

To implement international call barring, the Communication Barring application must have
access to the phone number of the participant. The application can access this information
from various sources, such as the Registrar, to determine roaming status. Similarly, the profile
of the user—such as country of origin—can be obtained by the application using other
interfaces (for example, the Diameter interface).

Communication Hold
Communication Hold (also referred to Call Hold) allows a user to suspend a communication
session—the reception of media stream(s) from an established IP multimedia session—and
resume the media stream(s) at a later time. Placing a Communication Hold on an ongoing
session is achieved by sending a Session Description Protocol (SDP) offer where each of the
communications (media streams) to be held are marked with the sendonly attribute if they
were previously bidirectional media streams. To resume the session, a new SDP offer is issued
in which each of the held media streams is marked with the default sendrecv attribute.

Communication Hold also allows an AS to play music or an announcement to the held party.
This is achieved using an AS that acts as a third-party call controller (3PCC), and replaces the
existing session of one of the users with a session originating from an application server that
plays the announcement or music until the user's session is resumed. See the 3GPP TS
24.628 specification for more information on the playing of announcements during
Communication Hold.

Setting the Communication Hold Bandwidth
The 3GPP TS 24.610 specification requires that the AS of the User Equipment (UE) invoking a
media stream whose SDP session attribute is recvonly use a lower bandwidth. The SDP
specifies a lower bandwidth by setting the bandwidth (the b= line in the SDP) to a lower value.
The b= line contains two elements:

Chapter 2
Developing IR.92 Supplementary Services

2-18

• The bandwidth value expressed in kilo bits per second (kbps).

• An alphanumeric modifier that indicates the communication session or media stream to
which to apply the specified bandwidth value.

The modifiers whose bandwidth values are specified by SFT are:

• AS: Application Specific Maximum, which specifies the total bandwidth for a single media
stream from one source.

• RS: RTCP bandwidth allocated to active data senders.

• RR: RTCP bandwidth allocated to other participants (receivers) in the RTP session.

When the bandwidth setting is enabled, SFT sets the default value for the AS bandwidth to
zero (b=AS:0). The b=RR: and b=RS: parameters are set to a value of 800 kbps, which is high
enough to allow the continuation of the RTCP flow: b=RR:800 and b=RS:800
Example 2-10 Bandwidth Line in the Session Description Protocol

v=0
o=alice 2890844526 2890842807 IN IP4 126.16.64.4
s=SDP Seminar
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
m=audio 49170 RTP/AVP 0
b=AS:0
b=RR:800
b=RS:800

Note:

The 3GPP TS 24.610 specification recommends that the AS modify the bandwidth for
media streams whose SDP session attribute is recvonly. Media streams whose SDP
session attribute are inactive, sendonly, and sendrecv are not affected.

While the 3GPP TS 24.610 specification recommends these values to preserve network
bandwidth when a communication is placed on hold, you may need to adjust the bandwidth to
better suit the requirements of the Communication Hold application.

Originating Identification Presentation and Restriction
Converged Application Server supports the following Identity Presentation and Restriction
services:

• Originating Identification Presentation (OIP): Enables the called party to receive a
network generated and trusted identity of the calling user on the screen of the mobile
device. The originating user may also present a custom identity to be seen at the called
party. The user generated identity is usually screened by the network of the originating
user.

• Originating Identification Restriction (OIR): Invoked when the calling user does not
want their identity to be shown to the called party. In such cases, the network of the
originating user signals to the network of the called user, to withhold the identity of the
calling user.

• Terminating Identification Presentation (TIP): Enables the calling party to receive the
identification information of the remote party from the network. This information is provided

Chapter 2
Developing IR.92 Supplementary Services

2-19

to the originating party once the IMS communication has been accepted between the
endpoints. The information is delivered regardless of the capability of the handset to
process such information at the originating end.

• Terminating Identification Restriction (TIR): Provides the terminating party with an
option to restrict the identity to be presented to the originating party of the IMS
communication. Logically speaking, TIR is the opposite of TIP.

To support the Identity Presentation and Restriction services listed above:

• UE and IMS core network must support the SIP procedures described in the 3GPP TS
24.607 specification. Service configuration, as described in Section 4.10 of 3GPP TS
24.607, is optional.

• UE and IMS core network must support the SIP procedures in the 3GPP TS 24.608
specification. Service configuration, as described in section 4.9 of 3GPP TS 24.608, is
optional.

Privacy Service Behavior
The privacy service role is instantiated by a network intermediary. Typically this function is
performed by entities that act as SIP proxy servers. The privacy service is designed to provide
privacy functions for SIP messages that cannot otherwise be provided by the UAs themselves.
Table 2-2 lists the semantics of each priv-value, and the RFC that defines them.

Table 2-2 Types of Privacy Service Behaviors

Privacy Type Description

user Request that privacy services provide a user-level privacy function.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

header Request that privacy services modify headers that cannot be set arbitrarily by the
user. For example, the Contact and Via headers.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

session Request that privacy services provide privacy for session media.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

none Privacy services must not perform any privacy function.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

critical Privacy service must perform the specified services or fail the request.

See RFC 3323, "A Privacy Mechanism for the Session Initiation Protocol (SIP)" for
more information.

id Privacy requested for Third-Party Asserted Identity.

See RFC 3325, "Private Extensions to the Session Initiation Protocol (SIP) for
Asserted Identity within Trusted Networks" for more information.

history Privacy requested for History-Info headers.

See RFC 4244, "An Extension to the Session Initiation Protocol (SIP) for Request
History Information" for more information.

RFC 5379 describes privacy considerations and the recommended treatment of each SIP
header that may reveal user-privacy information. Section 5, "Recommended Treatment of
User-Privacy-Sensitive Information" of RFC 5379 describes how each header affects privacy,

Chapter 2
Developing IR.92 Supplementary Services

2-20

the desired treatment of the value by the user agent and privacy service, and other details
needed to ensure privacy.Table 2-3 lists the recommended treatment for each priv-value
contained in the SIP header. See "Section 5" of RFC 5379 "Guidelines for Using the Privacy
Mechanism for SIP" for more information.

Table 2-3 Treatment of User-Privacy Information in Target SIP Headers

Target SIP Headers Where User Header Session ID History

Call-ID R Anonymize

Call-Info Rr Delete Not added

Contact R Anonymize

From R Anonymize

History-Info Rr Delete Delete Delete

In-Reply-To R Delete

Organization Rr Delete Not added

P-Asserted-Identity Rr Delete Delete

Record-Route Rr Anonymize

Referred-By R Anonymize

Reply-To Rr Delete

Server r Delete Not added

Subject R Delete

User-Agent R Delete

Via R Anonymize

Warning r Anonymize

Providing Privacy for the History-Info Header
The History-Info header (defined in RFC 4244) provides a way of capturing any redirection
information that may have occurred during a particular call. Without the History-Info header the
redirecting information would be lost. The History-Info header is generated when a SIP request
is re-directed, and can appear in any SIP request not associated with a dialog. The History-Info
header is generated by a User Agent or proxy and is passed from one entity to another through
requests and responses.

Communication Waiting
Communication Waiting (also referred to as Call Waiting) informs a user (or the user
equipment) that limited resources are available for incoming calls. Typically this means that the
callee is involved in a communication session with another caller, and is not able to answer the
incoming call from the second caller. Communication Waiting provides a mechanism by which
you can create an application to inform a user that there is a second incoming call. The user
then has the choice of accepting, rejecting, or ignoring the waiting call. Converged Application
Server supports the 3GPP TS 24.615 and the GSMA IR.92 specifications.

Supporting Network- and Terminal-based Communication Waiting
When using SFT to develop Communication Waiting services, Converged Application Server
supports both network- and terminal-based Communication Waiting.

Chapter 2
Developing IR.92 Supplementary Services

2-21

About Network-based Communication Waiting

Network-based Communication Waiting occurs when the AS determines that one of the
following conditions has occurred:

• The SIP INVITE request fulfills the Network Determined User Busy (NDUB) condition for
the callee.

• The caller receives a SIP message 486 Busy Here (indicating that the callee is busy) with
a 370 Warning in the SIP header field indicating that there is insufficient bandwidth for the
call to complete.

To support network-based Communication Waiting, the AS performs the following functions in
response to receiving an appropriate Communication Waiting condition:

1. Modifies the SIP INVITE request and forwards or re-sends it to User B.

2. Provides an announcement to User C upon receipt of a 180 Ringing response from User
B.

3. Inserts an Alert-Info header field set to urn:alert:service:call-waiting in the 180
Ringing response and forwards it to User C.

4. Rejects the communication by sending a 486 Busy Here response to User C upon receipt
of a 415 Unsupported Media Type response.

About Terminal-based Communication Waiting

Terminal-based Communication Waiting occurs when the AS receives the SIP message 180
Ringing with the Alert-Info header URN Indication Values set to urn:alert:service:call-
waiting.

To support terminal-based Communication Waiting, the application server performs the
following functions in response to receiving an appropriate Communication Waiting condition:

1. Sends an announcement to the calling user (the caller).

2. Sends a 180 Ringing response to the caller.

3. Initiates the Telephony Application Server-Communication Waiting (TAS-CW) timer. This
optional timer specifies the amount of time the network will wait for a response from User
B, in response to the communication from User C. The value of the timer is between 0.5
and 2 minutes.

If the TAS-CW timer expires, the AS sends a CANCEL request to User B with a Reason
header field set to "SIP," and the cause set to 408 Request Timeout, indicating that the
user could not be found in the allotted time. A 480 Temporarily Unavailable response is
sent to User C, including a Reason header field set to ISUP Cause Code 19, indicating that
there was no answer from the callee.

Message Waiting Indication
Message Waiting Indication (MWI) is a service that informs a user about the status of recorded
messages. To use the notification feature, the user must subscribe to a notification service that
makes use of the Message Waiting Indication status messages. With the Message Waiting
Indication feature you can:

• Send notification when a new subscription arrives.

• Specify when notifications are sent in response to subscriptions.

• Reject subscriptions.

Chapter 2
Developing IR.92 Supplementary Services

2-22

• Terminate subscriptions.

Note:

Typically a voice-mail server manages Message Waiting Indication accounts.
When a new message arrives, the voice-mail server typically provides a listener
or API that you can resister with to receive notification of new messages. How
the application manages the message account is beyond the scope of the SFT
Message Waiting Indication APIs.

Message Waiting Indication lets the AS notify a subscriber that there is a message waiting for
them. The indication is delivered to the subscriber's UE after they have successfully subscribed
to the Message Waiting Indication service. Message Waiting Indication is defined in the 3GPP
TS 24.606 specification.

When Converged Application Server receives a SUBSCRIBE message, SFT notifies the MWI
application via a SUBSCRIPTION event. RFC 3842 specifies that a NOTIFY message must be
sent when accepting new subscriptions, the subscription has expired, or an unsubscribe event
occurs. Converged Application Server's Event Notification Service sends these NOTIFY
messages automatically.

Announcement Support
Announcements are service-related messages played to a recipient to inform them about the
state of a call. Announcements can be provided using either audio or video content.
Converged Application Server supports the playing of announcements as defined in the 3GPP
TS 24.628 specification.

Converged Application Server supports the following approaches to playing announcements:

• Send the media stream to the recipient of the announcement for playback.

This approach uses a media server and Media Resource Function Processor (MRFP). The
media is streamed to the recipient using the Real-time Transport Protocol (RTP) after
establishing a media session with the media server. Based on the point-in-time at which
the media session is initiated, an early- or non-early media session can be used.

SFT reserves a media resource using the JSR 309 API (the JSR 309 driver used by the
media server). The underlying mechanism between the JSR309 driver and MRFP is
protocol agnostic.

• Send information about the media content that lets the recipient retrieve and playback the
announcement.

This approach sends a URI identifying the media to the recipient, allowing them to
determine whether or not to play the announcement.

Developing Services Using XCAP
Converged Application Server lets you access an XML Document Management Server
(XDMS). The XDMS handles the management of user-generated XML documents stored on
the network, such as authorization rules and contact and group lists (also referred to as
resource lists).

The XML Configuration Access Protocol Server (XCAP server), provides an interface that
allows for the manipulation of service-related data stored as XML documents within the XDMS.

Chapter 2
Developing Services Using XCAP

2-23

The XCAP specification defines how an HTTP address (or URI) can identify the way XML
documents are stored on an XCAP server. It also defines how the URI can be used to identify
entire XML documents, individual elements, or XML attributes that can be retrieved, updated,
or deleted.

• An Application Unique ID (AUID), which uniquely identifies the application usage, must be
created.

• The XML schema must be defined.

• The default namespace binding, which maps the namespace prefixes to the namespace
URIs, must be set.

• The MIME type of the document must be defined.

• The XCAP server must be able to validate the content of each XCAP document that is
being modified.

• The data in the XML document must have a well defined semantic.

• Naming conventions for XCAP client URIs must be set.

• Resource interdependencies, how changes to one resource will effect other resources, has
to be determined.

The following operations are supported using XCAP:

• Retrieving an item

• Deleting an item

• Modifying an item

• Adding an item

The XCAP addressing mechanism is based on XML Path Language (XPath), a query language
for selecting nodes in XML documents. The operations above can be executed on XML
documents and elements. Operations to XML attributes are not supported, however, attributes
can be handled indirectly by modifying the elements that contain them.

About XCAP and VoLTE
Converged Application Server provides two levels of XCAP support: Access to the XDMS
using a base XCAP API that is not specific to any schema, and a high level API providing
support for GSMA IR.92 supplementary services using VoLTE as supported by the Service
Foundation Toolkit (SFT). The VoLTE version of the XCAP API, supports the following
supplementary services:

• 3GPP TS 24.611 Communications Diversion

• 3GPP TS 24.604 Communication Barring

• 3GPP TS 24.607 Originating Identification Presentation and Originating Identification
Restriction

• 3GPP TS 24.608 Terminating Identification Presentation and Terminating Identification
Restriction

• 3GPP TS 24.615 Communication Waiting

The supported VoLTE functions are:

• Partial operations (adding and removing XML elements)

• Data validation

Chapter 2
Developing Services Using XCAP

2-24

• Support for 409 XCAP error responses as defined in Section 11 of RFC 4825

Chapter 2
Developing Services Using XCAP

2-25

3
Converged Application Server in the Network

This chapter describes how Oracle Communications Converged Application Server functions in
a service provider network.

Converged Application Server in a Typical Service Provider
Network

Converged Application Server can be deployed in 3rd Generation Partnership Project (3GPP)
R6 compliant IP Multimedia Subsystem (IMS) networks as well as in non-IMS networks.
Converged Application Server can interoperate with a number of network functions regardless
of which applications or functions it hosts.

Figure 3-1 Converged Application Server Deployed in a Typical Service Provider Network

The following sections provide more information on the role of the Converged Application in the
network.

3-1

Note:

3GPP R12 Specification Conformance describes Converged Application Server
conformance to the requirements introduced in the 3GPP Release 6 specifications.

SIP and IMS Service Control
The Session Initiation Protocol (SIP) interface between the Serving Call Session Control
Function (CSCF) and the IMS SIP Application Server (AS) is defined as the IMS Service
Control (ISC) reference point. Although ISC is generally compliant with the SIP protocol as
defined by the Internet Engineering Task Force (IETF), it introduces several specific
procedures and transport layer requirements. SIP usage is often described as the "3GPP SIP
Profile."

The ISC reference point does not require that the AS or Serving CSCF add any particular
attribute or value to a request or response beyond the standard behavior of a SIP protocol
entity. There are, however, a number of SIP methods and headers that are relevant to many of
the services that are deployed on the IMS (SIP) AS. In order for the IMS SIP AS to "fully"
comply with all of the 3GPP R5 and R6 specifications, many IETF RFCs and drafts would have
to be supported. However, it is not reasonable to characterize this as "ISC compliance"
because ISC specifically addresses the relationship between the IMS (SIP) AS and the Serving
CSCF. From this perspective, ISC compliance is relatively straightforward and is minimally
reflected in "Procedures at the AS" defined in 3GPP TS 24.229: "IP Multimedia Call Control
Protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP);
Stage 3 (Release 6)."

From the perspective of the Converged Application Server, the Serving CSCF is a SIP Proxy
and/or User Agent (in the case of the Registration Event Package and third-party registration
messages) and is the SIP Application Server's default gateway for SIP requests when the AS
instantiates a User Agent Client.

ISC and the 3GPP SIP Profile
The 3GPP requires SIP to be used in a more restricted manner than the IETF specs allow, and
also requires a number of additional SIP headers. This use of SIP is often referred to as the
"3GPP SIP Profile."

Converged Application Server's SIP Servlet Container provides automated management of
session objects, Servlet lifecycle, security, OAM and other functions that are not clearly within
the scope of an application's business logic. The SIP Servlet Container allows applications to
handle (send/receive) SIP messages with non-standard methods or headers—the container is
concerned only with the validation of message syntax, and with the protocol transaction layer.

Converged Application Server uses certain p-headers directly. For example, p-asserted-identity
is used as an assertion of identity within the Converged Application Server security framework.
Other headers, like the 3GPP p-charging-vector or p-charging-function-address, are relevant
only within the scope of the application and have no container-level implications.

Converged Application Server does not programmatically force applications to be compliant
with the 3GPP SIP Profile, although applications deployed on Converged Application Server
may comply with the SIP Profile as necessary.

Chapter 3
SIP and IMS Service Control

3-2

AS Session Case Determination Requirement of ISC
When requests are sent to an IMS SIP Application Server by the S-CSCF, the SIP AS is
generally required to determine the session case (originating, terminating, or terminating
unregistered) of the request, either implicitly or explicitly.

Converged Application Server provides several ways of determining the session case for the
request. There are three mechanisms described in the 3GPP standardization that an IMS (SIP)
AS may use to make this determination:

• Session Case Specific Addresses (for example, sip:sessioncase_as01.operator.net or
sip:as01.operator.net:49494)

• Tokens in the “User Part" of the Request URI (for example, sip:token@as01.operator.net)

• Request URI Parameters (for example, sip:as01.operator.net;parameter)

See "3GPP TS 24.229: IP Multimedia Call Control Protocol based on Session Initiation
Protocol (SIP) and Session Description Protocol (SDP); Stage 3 (Release 6)" for more
information.

The choice of which mechanism to use is at the discretion of both the Communications Service
Provider and the SIP Servlet application deployer. The SIP Servlet API relies on a deployment
descriptor file that is packaged with the SIP Servlet Application archive file when it is created.
The descriptor explicitly indicates the Service Trigger Points that will be used by the SIP
Servlet Container to determine which SIP Servlets to invoke. These Service Trigger Points are
sufficient to support any of the methods described above for determining the session case of
the request.

See SIP Servlet API Service Invocation for a more detailed description of the Service Trigger
Points supported by Converged Application Server.

Transport Layer Issues Related to ISC
The 3GPP Release 6 specifications mandate the use of IPv6 (see IETF RFC 2460: Internet
Protocol, Version 6 (IPv6) Specification) for all interfaces, including ISC. Converged Application
Server also supports IPv6.

When using TCP, Converged Application Server does not arbitrarily create new connections for
each SIP Transaction or Dialog. By default, responses to SIP requests are returned using the
connection on which the request was received. If a TCP connection fails, Converged
Application Server establishes a new TCP connection to the target host. This may mean that
responses to SIP requests are returned using TCP connections that are different from the
connection over which the request was sent. Although this conforms to the current best
practice and to "IETF RFC 3261: SIP: Session Initiation Protocol," Oracle has discovered that
many SIP products on the market demonstrate non-compliant behaviors with regard to
handling OSI layer 3 protocols.

Although it is not normally the case that Converged Application Server is deployed directly
facing end-user SIP devices, it is important to understand the impact this behavior might have
in such cases. When interacting with SIP endpoints on the public Internet, TCP connections
are often kept alive indefinitely as a means of overcoming Network Address Translation (NAT)
limitations in many typical broadband routers and residential gateways.

Converged Application Server does not provide an Application Layer Gateway (ALG)
capability, and it is presumed that such capabilities are provided by a standard Session Border
Control function.

Chapter 3
SIP and IMS Service Control

3-3

HTTP User Interface
The 3GPP reference point associated with the HTTP interface provided by Converged
Application Server is “Ut". This interface is primarily used for three purposes:

• As a Web-based User Interface for customer self-care and service configuration,
potentially using HTML, XHTML or other presentation technologies.

• To support content indirection.

• To support XML Configuration Access Protocol (XCAP), required by Presence and
Conference Control Protocol.

Converged Application Server provides HTTP support through its HTTP Servlet Container.
Application developers may implement applications or components that support any or all of
the above use cases for the “Ut" reference point.

Service and Subscriber Data and Authentication
Converged Application Server supports the Sh reference point used to interact with the Home
Subscriber Server (HSS) as the principal provider of IMS Profile data associated with the
Public Identity of the network user or subscriber. In many cases, standard LDAP directory
servers or relational databases are also used as supplementary resources for service or
subscriber data. These may also be accessed via standard interfaces supported by Converged
Application Server.

In many deployments, and for certain types of services such as Presence or media
repositories, subscriber and service data can be accessed using other means. These include
LDAP, HTTP, or access to relational databases.

In non-IMS deployments, the security provider may also be a standard directory accessed via
Lightweight Directory access Protocol (LDAP) or access to a relational database using a
database-specific interface. Most major commercial relational databases provide Java
Database Connectivity (JDBC). A number of high-performance and fault-tolerant JDBC drivers
are available commercially for use with Converged Application Server.

Proxy Registrar

WARNING:

The proxy registrar feature has been deprecated in release 8.0.

The Converged Application Server Proxy Registrar implements the proxy and registrar
functions described in RFC 3261. The Proxy Registrar combines the functionality of a SIP
proxy server and registrar. Its main tasks include registering subscribers, looking up subscriber
locations, and proxying requests onward. The Proxy Registrar is an optional component.

The Proxy Registrar's registrar function processes the REGISTER requests from user agent
clients (UACs) and uses a location service to store a binding (that is, an association) between
a user's address of record (AOR) and one or more contact addresses, typically the IP
addresses of the UACs. The To header field of the REGISTER SIP message sent by a UA
contains the address of record whose registration is to be created, queried, or modified and the

Chapter 3
HTTP User Interface

3-4

CONTACT header field contains the corresponding contact addresses. The bindings between
the AOR and the contact addresses are persistently stored in a database.

Figure 3-2 Registration Flow

Upon receiving requests to the AOR, the proxy function locates the mapped URIs through a
Location Service lookup and then proxies the request using the location information retrieved
by this lookup.

Figure 3-3 illustrates a simplified view of the interaction between UAs when a subscriber, Alice,
calls another subscriber, Bob, who is located in the same domain.

Chapter 3
Proxy Registrar

3-5

Figure 3-3 Interaction of UA Elements During a Call

Bob may be registered from multiple user agents, such as personal phone, work phone, and
computer. In this case, the query for Bob's location will return multiple bindings to the Proxy.
The Proxy will then fork the call, either in parallel or sequentially, to the user agents that Bob is
logged in to.

The Proxy is capable of proxying not only INVITE request, but other non-REGISTER requests
such as MESSAGE, PUBLISH, SUBSCRIBE and so on.

When a caller and callee are in the same domain, the callee's location can be obtained by the
outgoing proxy through the location service. A simplified example of the call flow for this
scenario is shown in Figure 3-4. Note that this example does not include 100 Trying and 180
Ringing responses.

Chapter 3
Proxy Registrar

3-6

Figure 3-4 Call Establishment Flow Between Subscribers in a Single Domain

After the call is established, Alice and Bob's UAs can communicate directly, without using the
Proxy. However, you can configure to route all subsequent traffic through the Proxy as well.
This is the default and is useful if you want the ability to add additional services during the
session.

If the caller and callee are in different domains, the outgoing proxy forwards the INVITE
request to the callee's domain. The incoming proxy in the callee's domain performs the lookup
and returns the callee's location, as illustrated in Figure 3-5.

Chapter 3
Proxy Registrar

3-7

Figure 3-5 Example of a Call Flow Between Two Domains

The Proxy can use ENUM lookup to resolve TEL URLs. The backend for the ENUM service is
a DNS, which stores a mapping between TEL URLs and SIP URIs.

You configure authentication for the Proxy Registrar by editing the sip.xml deployment
descriptor packaged in the Proxy Registrar application. You can also edit advanced parameters
by using the WebLogic Scripting Tool.

Media Server Control
Converged Application Server enables control of media servers using the Media Server
Control API based on JSR309, a standard Java interface. JSR309 (also referred to as JSR 309
and the JSR 309 API) defines an abstract Java interface for the manipulation of audio and
video streams and conferences. Vendors of IP media servers provide JSR 309 based driver
implementations that work with their IP media servers.

The JSR309 architecture assumes a distributed or IMS-like model where the Converged
Application Server and media server reside on separate physical servers. User Agents (such
as soft phones) interact with the applications deployed on Converged Application Server using
the SIP protocol.

Converged Application Server supports media server control by providing built-in JSR309
support. The support includes the Media Server Control API, which provides a standard API for
developing and deploying media rich, JSR-based applications for the Java platform without
having prior knowledge of the underlying Media Server Control protocols.

A Java application that uses the Media Server Control API can use any JSR309-based
implementation with any compatible media server. However, Converged Application Server
provides a built-in JSR309 media driver, JVoiceBridge.

Chapter 3
Media Server Control

3-8

Whether using JVoiceBridge or the driver for another media server, the CAFE and Media
Server Control APIs offer interfaces that ease the task of developing media-rich applications,
such as Conferencing, Ring-back tone, or IVR applications easily using the JSR309 API.

For developers, the Media Server Control API provides a standard API for developing and
deploying media rich, JSR-based applications for the Java platform without having prior
knowledge of the underlying Media Server Control protocols. Moreover, a Java application that
uses the Media Server Control API can use any JSR309-based implementation with any
compatible media server.

For more information, see JSR 309: Media Server Control API, https://jcp.org/en/jsr/
detail?id=309.

Charging and Billing
Converged Application Server provides both a Diameter Rf interface application and a
Diameter Ro interface application to facilitate offline and online charging in IMS networks. See
"Using the Diameter Rf Interface Application for Offline Charging" and "Using the Diameter Ro
Interface Application for Online Charging" in Converged Application Server Diameter
Application Development Guide for information about how to access and use these Diameter
applications in your own SIP Servlets.

Security
Converged Application Server users must be authenticated when they request access to a
protected resource, such as a protected method in a deployed SIP Servlet. Converged
Application Server enables you to perform SIP Servlet authentication using any of the following
techniques:

• DIGEST authentication uses a simple challenge-response mechanism to verify the
identity of a user over SIP or HTTP. See "Configuring Digest Authentication" in Converged
Application Server Administrator's Guide.

• CLIENT-CERT authentication uses an X509 certificate chain passed to the SIP
application to authenticate a user. The X509 certificate chain can be provided in a number
of different ways. In the most common case, two-way SSL handshake is performed before
transmitting the chain to ensure secure communication between the client and server.

• BASIC authentication uses the Authorization SIP header to transmit the username and
password to SIP Servlets. BASIC authentication is not recommended for production
systems unless you can ensure that all connections between clients and the Converged
Application Server instance are secure.

Different SIP Servlets deployed on Converged Application Server can use different
authentication mechanisms as necessary. The required authentication mechanism is specified
in the auth-method element of the SIP Servlet Application's deployment descriptor. The
deployment descriptor may also define resources that are to be protected, listing the specific
role names that are required for access.

Authentication Providers
The Converged Application Server authentication services are implemented using one or more
authentication providers. An authentication provider performs the work of proving the identity of
a user or system process, and then transmitting the identity information to other components of
the system.

Chapter 3
Charging and Billing

3-9

https://jcp.org/en/jsr/detail?id=309
https://jcp.org/en/jsr/detail?id=309

Converged Application Server may be configured to use multiple authentication providers via
different authentication methods. For example, when using Digest authentication an
administrator may configure both a Digest Identity Asserter provider to assert the validity of a
digest, and a second LDAP or RDBMS authentication provider that determines the group
membership of a validated user.

Trusted Host Authentication
Converged Application Server is designed for deployment scenarios where it is adjacent to
trusted hosts and it is not required to fulfill the role of an application layer security boundary
between the trusted and untrusted domains.

Converged Application Server enables administrators to designate network hosts that are
considered to be “trusted." Trusted hosts are hosts for which Converged Application Server
performs no authentication. If the server receives a SIP message having a destination address
that matches a configured trusted hostname, the message is delivered without Authentication.

Converged Application Server supports the P-Asserted-Identity SIP header as described in
IETF RFC 3325: Private Extensions to the Session Initiation Protocol (SIP) for Asserted
Identity within Trusted Networks. This functionality automatically logs in using credentials
specified in the P-Asserted-Identity header when they are received from a trusted host. When
combined with the privacy header, P-Asserted-Identity also determines whether the message
can be forwarded to trusted and non-trusted hosts.

Chapter 3
Security

3-10

Figure 3-6 Asserted Identity Handling in Converged Application Server

It is also possible to use Converged Application Server in scenarios that do not involve trusted
hosts. See "Standards Alignment" for a more detailed description of Converged Application
Server standards compliance.

Chapter 3
Security

3-11

Declarative Security
The SIP Servlet API specification defines a set of deployment descriptor elements that can be
used for providing declarative and programmatic security for SIP Servlets. The primary method
for declaring security constraints is to define one or more security-constraint elements and role
definitions in the sip.xml deployment descriptor. Converged Application Server adds additional
deployment descriptor elements to help developers easily map SIP Servlet roles to actual
principals and/or roles configured by the Converged Application Server administrator.

Protecting the Converged Application Server Domain with a Session Border
Controller

A Session Border Controller (SBC) is a device used in VoIP networks to exert control over the
signaling (and usually also the media streams) involved in setting up, conducting, and tearing
down interactive media communications. SBCs are typically used to secure and protect the
network and other devices in the operator's network from denial of service (DOS) attacks.
Besides security, SBCs also perform functions such as QoS guarantees, regulatory
compliances (lawful intercept), statistics collection, and so on. Services developed and
deployed on Converged Application Server are most commonly hosted inside trusted
networks. It is recommended to protect the network which hosts such services deployed on
Converged Application Server with a Session Border Controller.

Chapter 3
Security

3-12

4
Converged Application Server Cluster
Architecture

This chapter describes the Oracle Communications Converged Application Server cluster
architecture.

Overview of Converged Application Server Clusters
A Converged Application Server cluster consists of multiple Converged Application Server
server instances running simultaneously and working together to provide increased scalability
and reliability. A cluster appears to clients to be a single Converged Application Server
instance. The server instances that constitute a cluster can run on the same machine, or be
located on different machines. You can increase a cluster's capacity by adding additional
server instances to the cluster on an existing machine, or you can add machines to the cluster
to host the incremental server instances. Each server instance in a cluster must run the same
version of Converged Application Server.

Relationship Between Clusters and Domains
A cluster is part of a particular Converged Application Server domain.

A domain is an interrelated set of Converged Application Server resources that are managed
as a unit. A domain includes one or more Converged Application Server instances, which can
be clustered, non-clustered, or a combination of clustered and non-clustered instances. A
domain can include multiple clusters. A domain also contains the application components
deployed in the domain, and the resources and services required by those application
components and the server instances in the domain. Examples of the resources and services
used by applications and server instances include machine definitions, optional network
channels, connectors, and startup classes.

You can use a variety of criteria for organizing Converged Application Server instances into
domains. For instance, you might choose to allocate resources to multiple domains based on
logical divisions of the hosted application, geographical considerations, or the number or
complexity of the resources under management. For additional information about domains see
Understanding Domain Configuration for Oracle WebLogic Server.

In each domain, one Converged Application Server instance acts as the Administration Server:
the server instance which configures, manages, and monitors all other server instances and
resources in the domain. Each Administration Server manages one domain only. If a domain
contains multiple clusters, each cluster in the domain has the same Administration Server. All
server instances in a cluster must reside in the same domain; you cannot "split" a cluster over
multiple domains. Similarly, you cannot share a configured resource or subsystem between
domains.

Relationship Between Coherence and WebLogic Server Clusters
Coherence clusters consist of multiple managed Coherence server instances that work
together to distribute data in-memory to increase application scalability, availability, and

4-1

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/domcf/index.html

performance. A client interacts with the data in a local cache and the distribution and backup of
the data is automatically performed across cluster members.

Coherence clusters are different than Converged Application Server clusters. They use
different clustering protocols and are configured separately. A Converged Application Server
domain can contain a single Coherence cluster. Multiple Converged Application Server clusters
can be associated with a Coherence cluster.

For details on configuring and managing Coherence clusters, see Administering Clusters for
Oracle WebLogic Server.

Objects That Can Be Clustered
A clustered application or application component is one that is available on multiple Converged
Application Server instances in a cluster. If an object is clustered, failover and load balancing
for that object is available. Deploy objects homogeneously—to every server instance in your
cluster—to simplify cluster administration, maintenance, and troubleshooting.

Web applications can consist of different types of objects, including Enterprise Java Beans
(EJBs), servlets, and Java Server Pages (JSPs). Each object type has a unique set of
behaviors related to control, invocation, and how it functions within an application. For this
reason, the methods that Converged Application Server uses to support clustering—and hence
to provide load balancing and failover—can vary for different types of objects. The following
types of objects can be clustered in a Converged Application Server deployment:

• Servlets

• JSPs

• EJBs

• Remote Method Invocation (RMI) objects

• Java Messaging Service (JMS) destinations

• Coherence cluster and managed Coherence servers

• Timer services

Objects That Cannot Be Clustered
The following APIs and internal services cannot be clustered in Converged Application Server:

• File services including file shares

Overview of the Cluster Architecture
Converged Application Server itself provides a multi-tier cluster architecture using Oracle
Coherence. Coherence clusters consist of multiple managed Coherence server instances that
distribute data in-memory to increase application scalability, availability, and performance. An
application interacts with the data in a local cache and the distribution and backup of the data
is automatically performed across cluster members.

Coherence integration aligns the lifecycle of a Coherence cluster member with the lifecycle of a
managed server: starting or stopping a server Java Virtual Machine (JVM) starts and stops a
Coherence cluster member. The first member of the cluster starts the cluster service and is the
senior member.

Chapter 4
Objects That Can Be Clustered

4-2

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/index.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/index.html

Converged Application managed servers that are associated with a Coherence cluster are
referred to as managed Coherence servers. Managed Coherence servers in each tier can be
individually managed but are typically associated with respective Converged Application
Server clusters.

A standard load balancing appliance is used to distribute traffic across the engines in the
cluster. It is not necessary that the load balancer be SIP-aware; there is no requirement that
the load balancer support affinity between Engines and SIP dialogs or transactions. However,
SIP-aware load balancers can provide higher performance by maintaining a client's affinity to a
particular engine.

Figure 4-1 shows an example Converged Application Server cluster in which traffic from the IP
Network is routed through two load balancers, Load Balancer 1 and Load Balancer 2, which
distribute requests to the four Converged Application Server engines in the clusters, Cluster 1
and Cluster 2. Within the same Coherence cluster a single Administration Server handles
administration tasks for all of the Converged Application Server engines.

Figure 4-1 Example Converged Application Cluster

Chapter 4
Overview of the Cluster Architecture

4-3

Note:

There is no arbitrary limit to the number of engines or physical servers within a
Coherence cluster.

Geographically-Redundant Installations
Converged Application Server can be installed in a geographically-redundant configuration for
implementations that employ distributed data centers, and require continuing operation even
after a catastrophic site failure.

The geographically-redundant configuration enables multiple Converged Application Server
installations to replicate call state transactions between one another. If a particular site's
installation were to suffer a critical failure, the administrator could choose to redirect all network
traffic to the secondary, replicated site to minimize lost calls.

For information on configuring geographical redundancy, see "Configuring Geographically-
Redundant Installations" in Converged Application Server Administrator's Guide.

Administration Server
You manage a Converged Application Server domain using an Administration Server. You can
use the Remote Console to configure, deploy, and monitor the Converged Application Server.

Oracle recommends the following best practices for configuring Administration Server and
Managed Server instances in your Converged Application Server domain:

• Run the Administration Server instance on a dedicated machine. The Administration
Server machine should have a memory capacity similar to Managed Server machines,
although a single central processing unit (CPU) is generally acceptable for administration
purposes.

• Configure all Managed Server instances to use Managed Server Independence. This
feature allows the Managed Servers to restart even if the Administration Server is
unavailable. For more information, see Administering Server Startup and Shutdown for
Oracle WebLogic Server for more information.

• Configure the Node Manager utility to automatically restart all Managed Servers in the
Converged Application Server domain. See Understanding the WebLogic Scripting Tool for
more information.

If an Administration Server fails, only configuration, deployment, and monitoring features are
affected, but Managed Servers continue to operate and process client requests. See
Monitoring, Tuning, and Troubleshooting in Oracle Communications Converged Application
Server Administrator's Guide.

Engines
Converged Application Server engines reside in clusters and host the SIP Servlets and other
applications that provide features to SIP clients.

The primary goal of engine clusters is to provide maximum throughput and low response time
to SIP clients. As the number of calls, or the average duration of calls to your system
increases, you can easily add additional engines to your clusters to manage the additional
load.

Chapter 4
Administration Server

4-4

Although engine cluster consists of multiple Converged Application Server instances, you
manage each cluster as a single, logical entity; SIP Servlets are deployed uniformly to all
server instances (by targeting the cluster itself) and the load balancer need not maintain an
affinity between SIP clients and servers in the engine tier.

Note:

Converged Application Server start scripts use default values for many JVM
parameters that affect performance. For example, JVM garbage collection and heap
size parameters may be omitted, or may use values that are acceptable only for
evaluation or development purposes. In a production system, you must rigorously
profile your applications with different heap size and garbage collection settings in
order to realize adequate performance. See "Monitoring, Tuning, and
Troubleshooting the JVM" in Converged Application Administrator's Guide for
suggestions about maximizing JVM performance in a production domain.

Diameter Support
Converged Application Server supports the Diameter base protocol. It supports the IMS Sh
interface provider on engines, which then act as Diameter Sh client nodes. SIP Servlets
deployed on the engines can use the profile service API to initiate requests for user profile
data, or to subscribe to and receive notification of profile data changes. The Sh interface is
also used to communicate between multiple IP Multimedia Subsystem (IMS) Application
Servers.

One or more server instances may be also be configured as Diameter relay agents, which
route Diameter messages from the client nodes to a configured Home Subscriber Server
(HSS) in the network, but do not modify the messages. Oracle recommends configuring one or
more servers to act as relay agents in a domain. The relays simplify the configuration of
Diameter client nodes, and reduce the number of network connections to the HSS. Using at
least two relays ensures that a route can be established to an HSS even if one relay agent
fails.

The relay agents included in Converged Application Server perform only stateless proxying of
Diameter messages; messages are not cached or otherwise processed before delivery to the
HSS.

Note:

In order to support multiple HSSs, the 3rd Generation Partnership Project (3GPP)
defines the Dh interface to look up the correct HSS. Converged Application Server
does not provide a Dh interface application, and can be configured only with a single
HSS.

Note that relay agent servers do not function as engines: they should not host applications,
store call state data, maintain SIP timers, or even use SIP protocol network resources (sip or
sips network channels).

In summary, Converged Application Server supports the following Diameter functions:

• Diameter Sh interface client node (for querying a Home Subscriber Service)

• Diameter Rf interface client node (for offline charging)

Chapter 4
Diameter Support

4-5

• Diameter Ro interface client node (for online charging)

• Diameter relay node

• HSS simulator node (suitable for testing and development only, not for production
deployment)

Converged Application Server also provides a simple HSS simulator that you can use for
testing Sh client applications. You can configure a Converged Application Server instance to
function as an HSS simulator by deploying the appropriate application.

For information on developing Diameter applications for Converged Application Server, see the
Converged Application Server Diameter Application Development Guide.

Chapter 4
Diameter Support

4-6

https://docs.oracle.com/en/industries/communications/converged-application-server/8.0/diameter/

5
Deployment Scenarios

This chapter describes the Oracle Communications Converged Application Server deployment
considerations architecture.

Overview of Deployment Scenarios
This section describes common Converged Application Server network architectures and
network configuration considerations for each architecture, particularly in relation to the Open
Systems Interconnect (OSI) model. See Converged Application Server Administrator's Guide
for detailed configuration steps described in this section.

Figure 5-1 shows the OSI model layers that are typically affected by the network configuration
requirements for the Converged Application Server deployment.

Figure 5-1 OSI Layers Relevant to Converged Application Server Configuration

Layer 3 (Network) and Layer 4 (Transport) contain the source or destination IP address and
port numbers for both outgoing and incoming transport datagrams. Layer 7 (Application) may
also be affected because the SIP protocol specifies that certain SIP headers include
addressing information for contacting the sender of a SIP message.

Single-NIC Configurations with TCP and UDP Channels
In a simple network configuration for a server having a single network interface controller
(NIC), one or more network channels may be created to support SIP messages over User
Datagram Protocol (UDP) and Transmission Control Protocol (TCP), or Session Initiation
Protocol (SIP) over Transport Layer Security (TLS). It is helpful to understand how this simple

5-1

configuration affects information in the OSI model, so that you can understand how more
complex configurations involving multihomed hardware and load balancers affect the same
information.

Figure 5-2 Single-NIC Network Channel

Figure 5-2 shows a single engine tier server instance with a single NIC. The server is
configured with one network channel supporting SIP over UDP and TCP. (SIP channels always
support both UDP and TCP transports; you cannot support only one of the two.) The scenario
also shows two clients communicating with the server, one over UDP and one over TCP.

For the TCP transport, the outgoing datagram (delivered from Converged Application Server to
the UA) contains the following information:

• Layer 3 includes the source IP address specified by the network channel (10.1.1.10 in the
example above).

• Layer 4 includes the source port number allocated by the underlying operating system.

Incoming TCP datagrams (delivered from the UA to Converged Application Server) contain the
following information:

• Layer 3 includes the destination IP address specified by the network channel (10.1.1.10).

• Layer 4 contains the destination port number specified by the network channel (5060).

For outgoing UDP datagrams, the OSI layer information contains the same information as with
TCP transport. For incoming UDP datagrams, the OSI layer information is the same as TCP
except in the case of incoming datagram Layer 4 information. For incoming UDP datagrams,
Layer 4 contains either:

• The destination port number specified by the network channel (5060), or

• The ephemeral port number previously allocated by Converged Application Server.

By default Converged Application Server allocates ports from the ephemeral port number
range of the underlying operating system for outgoing UDP datagrams. Converged Application
Server allows external connections to use an ephemeral point as the destination port number,
in addition to the port number configured in the network channel. In other words, Converged
Application Server automatically listens on all ephemeral ports that the server allocates. You
can optionally disable Converged Application Server's use of ephemeral port numbers and

Chapter 5
Overview of Deployment Scenarios

5-2

setting a static port, as described in Oracle Communications Converged Application Server
Administrator's Guide.

Multihomed Server Configurations Overview
Engine tier servers in a production deployment frequently utilize multihomed server hardware,
having two or more NICs. Multihomed hardware is typically used for one of the following
purposes:

• To provide redundant network connections within the same subnet. Having multiple NICs
ensures that one or more network connections are available to communicate with SIP data
tier servers or the Administration Server, even if a single NIC fails.

• To support SIP communication across two or more different subnets. For example
Converged Application Server may be configured to proxy SIP requests from UAs in one
subnet to UAs in a second subnet, when the UAs cannot directly communicate across
subnets.

The configuration requirements and OSI layer information differ depending on the use of
multihomed hardware in your system. When multiple NICs are used to provide redundant
connections within a subnet, servers are generally configured to listen on all available
addresses (IP_ANY) as described in "Multihomed Servers Listening On All Addresses
(IP_ANY)".

When using multiple NICs to support different subnets, you must configure multiple network on
the server for each different NIC as described in "Multihomed Servers Listening on Multiple
Subnets".

Multihomed Servers Listening On All Addresses (IP_ANY)
The simplest multihome configuration enables a Converged Application Server instance to
listen on all available NICs (physical NICs as well as logical NICs), sometimes described as
IP_ANY. To accomplish this, you configure a single network channel and specify a channel
listen address of 0.0.0.0.

See information about configuring engine servers to listen on any IP interface in the Converged
Application Server Administrator's Guide.

Multihomed Servers Listening on Multiple Subnets
Multiple NICs can also be used in engine tier servers to listen on multiple subnets. The most
common configuration uses Converged Application Server to proxy SIP traffic from one subnet
to another where no direct access between subnets is permitted. Figure 5-3 shows this
configuration.

Chapter 5
Overview of Deployment Scenarios

5-3

Figure 5-3 Multihomed Configuration for Proxying between Subnets

To configure the Converged Application Server instance in this scenario, you must define a
separate network channel for each NIC used on the server machine. Example 5-1 shows the
config.xml entries that define channels for the sample configuration.

Example 5-1 Sample Network Channel Configuration for NICs on Multiple Subnets

<NetworkAccessPoint ListenAddress="10.1.1.10" ListenPort="5060"
Name="sipchannelA" Protocol="sip"/>
<NetworkAccessPoint ListenAddress="10.2.1.10" ListenPort="5060"
Name="sipchannelB" Protocol="sip"/>

Understanding the Route Resolver
When Converged Application Server is configured to listen on multiple subnets, a feature
called the route resolver is responsible for the following activities:

• Populating OSI Layer 7 information (SIP system headers such as Via and Contact) with
the correct address.

• Populating OSI Layer 3 information with the correct source IP address.

For example, in the configuration shown in Figure 5-3, Converged Application Server must add
the correct subnet address to SIP system headers and transport datagrams in order for each
UA to continue processing SIP transactions. If the wrong subnet is used, replies cannot be
delivered because neither UA can directly access the other UA's subnet.

The route resolver works by determining which NIC the operating system will use to send a
datagram to a given destination, and then examining the network channel that is associated
with that NIC. It then uses the address configured in the selected network channel to populate
SIP headers and Layer 3 address information.

For example, in the configuration shown in Figure 5-3, an INVITE message sent from
Converged Application Server to UAC B would have a destination address of 10.2.1.16. The
operating system would transmit this message using NIC B, which is configured for the
corresponding subnet. The route resolver associates NIC B with the configured sipchannelB
and embeds the channel's IP address (10.2.1.10) in the VIA header of the SIP message. UAC
B then uses the Via header to direct subsequent messages to the server using the correct IP

Chapter 5
Overview of Deployment Scenarios

5-4

address. A similar process is used for UAC A, to ensure that messages are delivered only on
the correct subnet.

IP Aliasing with Multihomed Hardware
IP aliasing assigns multiple logical IP addresses to a single NIC, and is configured in the
underlying server operating system. If you configure IP aliasing and all logical IP addresses are
within the same subnet, you configure Converged Application Server to listen on all addresses.

If you configure IP aliasing to create multiple logical IP addresses on different subnets, you
must configure a separate network channel for each logical IP address. In this configuration,
Converged Application Server treats all logical addresses as separate physical interfaces
(NICs) and uses the route resolver to populate OSI Layer 4 and Layer 7 information based on
the configured channel.

Load Distribution Considerations
A load balancer improves the reliability and scalability of your Converged Application Server
deployment. A load balancer distributes requests among the servers in your deployment and
monitors their availability.

The following sections describe considerations related to exposing an external virtual IP (VIP)
for the Converged Application Server deployment. These sections assume the use of an IP
sprayer. However, your deployment may use other technology to perform the network
dispatching function, such as the DNS Resource Records (RR) feature in the Linux operating
system.

Single VIP Topology
In the simplest scenario, a single IP sprayer gates access to a Load Balancer which distributes
messages to a cluster of engines, as shown in Figure 5-4.

Chapter 5
Load Distribution Considerations

5-5

Figure 5-4 SIngle Load Balancer Configuration

To configure Converged Application Server for use with a single IP sprayer, configure one or
more network channels for each server, and configure the external address setting of each
channel with the virtual IP address of the IP sprayer. The virtual IP address is the address
exposed for the Converged Application Server installation to external clients.

In this configuration, Converged Application Server embeds the external address (or VIP) in
SIP message system headers to ensure that clients can reach the cluster for subsequent
replies.

Multiple VIP Topology
Multiple IP sprayers (or a multihomed node that functions as an IP sprayer) can be configured
to provide several virtual IP addresses for a single Converged Application Server cluster.

To configure Converged Application Server for multiple VIPs, create a dedicated network
channel for each IP sprayer or local server NIC. You then set the channel's external address to
the virtual IP address of the IP sprayer to which the channel connects.

In this configuration, the route resolver associates a configured channel with the NIC used for
originating SIP messages. The public address of the selected channel is then used for
populating SIP system messages. See "Understanding the Route Resolver".

Network Address Translation Options
In the most common case, a load balancer is configured using destination NAT to provide a
public IP address that clients use for communicating with one or more internal (private)
Converged Application Server addresses. Load balancers may also be configured using

Chapter 5
Network Address Translation Options

5-6

source NAT, which modifies the Layer 3 address information originating from a private address
to match the virtual IP address of the load balancer itself.

With the default route resolver behavior, a Converged Application Server engine originates
UDP packets having a source IP address that matches the address of a local NIC (the private
address). This can be problematic for applications that try to respond directly to the Layer 3
address embedded in the transport packet, because the local server address may not be
publicly accessible. If your applications exhibit this problem, Oracle recommends that you
configure the load balancer to perform source NAT to change the transport Layer 3 address to
a publicly-accessible virtual IP address.

IP Masquerading Alternative to Source NAT
If you choose not to enable source NAT on your load balancer, Converged Application Server
provides limited IP masquerading functionality. To use this functionality, configure a logical
address on each engine tier server using the public IP address of the load balancer for the
cluster. (Duplicate the same logical IP address on each engine tier server machine). When a
local server interface matches the IP address of a configured load balancer (defined in the
public address of a network channel), Converged Application Server uses that interface to
originate SIP UDP messages, and the Layer 3 address contains a public address.

Caution:

Using the Converged Application Server IP masquerading functionality can lead to
network instability, because it requires duplicate IP addresses on multiple servers.
Production deployments must use a load balancer configured for source NAT, rather
than IP masquerading, to ensure reliable network performance.

You can disable IP masquerading functionality by using the startup option:

-Dwlss.udp.lb.masquerade=false

See the Converged Application Server Administrator's Guide for more information on startup
options.

Example Scenarios
This section describes Converged Application Server deployment scenarios. In particular, it
describes considerations related to SIP, load balancer, and Network Address Translation
(NAT), and shows the message flows in such scenarios.

Note:

For more information about implementation-dependent issues surrounding NAT, see
the Internet Engineering Task Force (IETF) document NAT Behavioral Requirements
for Unicast UDP at the IETF website:

http://www.ietf.org/rfc/rfc4787.txt

Chapter 5
Example Scenarios

5-7

http://www.ietf.org/rfc/rfc4787.txt

When deployed with multiple SIP-aware load balancers, the Converged Application Server
deployment also typically includes an IP sprayer or network-level load balancer to perform IP-
level message distribution.

You can also deploy the Converged Application Server with load balancers that are not SIP-
aware, meaning that they do not consider existing SIP dialogues when routing requests to
servers. The following sections describe the scenario given a non-SIP aware load balancer.

Example Deployment with a Non-SIP Aware Load Balancer
Figure 5-5 shows the sample network topology described in this section. A Converged
Application Server cluster, consisting of engines WLSS 1 and WLSS 2, is configured on private
IP network 10.1/16 (an internal 16-bit subnet). The cluster's public IP address is 1.2.3.4, which
is the virtual IP address configured on the load balancer.

The User Agent, UAC A, with IP address 2.3.4.5 never sees the internal IP addresses
configured for the Converged Application Server cluster. Instead, it sends requests to, and
receives responses from 1.2.3.4.

The sections that follow discuss configuring the Converged Application Server cluster and load
balancer for the example system.

Figure 5-5 Example Network Topology

Converged Application Server Configuration
The Converged Application Server cluster configuration specifies the public address as 1.2.3.4,
and the public port as 5060 for each engine. The default route on both Converged Application
Server engines points to the load balancer's 10.1/16 network interface: 10.1.3.4. The
Converged Application Server (servers WLSS 1 and WLSS 2) routing table is shown in
Example 5-2.

Chapter 5
Example Scenarios

5-8

Example 5-2 Converged Application Server Routing Table

$ /sbin/route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.1.0.0 * 255.255.0.0 U 0 0 0 eth0
default 10.1.3.4 0.0.0.0 UG 0 0

Load Balancer Configuration
The load balancer is configured with a virtual IP address of 1.2.3.4, and two real servers,
WLSS 1 and WLSS 2, having addresses 10.1.1.1 and 10.1.1.2, respectively. The load balancer
also has an internal IP address of 10.1.3.4 configured on the 10.1/16 network. The UAC
address, 2.3.4.5, is reachable from the load balancer by static route configuration on the load
balancer. The load balancer routing table is shown in Example 5-3.

Example 5-3 Load Balancer Routing Table

$ /sbin/route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.1.0.0 * 255.255.0.0 U 0 0 0 eth1
1.2.0.0 * 255.255.0.0 U 0 0

Because the SIP protocol specification (RFC 3261) dictates the destination IP address and
UDP port numbers that user agents must use when sending requests or responses, the NAT
configuration of the load balancer must be done in a way that does not violate RFC 3261
requirements. Three setup options can be used to accomplish this configuration:

• NAT-based Configuration

• maddr-based Configuration

• rport-based Configuration

The sections that follow describe each approach.

NAT-based Configuration
The default UDP NAT behavior for load balancers is to perform destination IP address
translation in the public to private network direction, and source IP address translation in the
private to public network direction. This means setting up destination address translation in the
UAC to Converged Application Server (2.3.4.5 to 1.2.3.4) direction without source address
translation, and source address translation in the Converged Application Server to UAC
(10.1/16 to 2.3.4.5) direction without destination address translation.

Figure 5-6 illustrates the UDP packet flow for a SUBSCRIBE/200 OK transaction.

Chapter 5
Example Scenarios

5-9

Figure 5-6 SUBSCRIBE Sequence

In the figure, the source and destination IP addresses of the UDP packets are shown under the
message path arrow. In the UAC-to-Converged Application Server direction, the load balancer
translates the destination IP address but not the source IP address. In the Converged
Application Server-to-UAC direction, the load balancer translates the source IP address but not
the destination IP address.

Example 5-4 shows the complete message trace (including IP and UDP headers, as well as
the SIP payload) for the sequence from Figure 5-6.

Example 5-4 Complete SUBSCRIBE Message Trace

No. Time Source Destination Protocol Info
 1 1.425250 2.3.4.5 1.2.3.4 SIP Request:
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1
 From: sipp <sip:sipp@2.3.4.5>;tag=1
 To: sut <sip:subscribe@1.2.3.4:5060>
 Call-ID: 1-25923@2.3.4.5
 Cseq: 1 SUBSCRIBE
 Contact: sip:sipp@2.3.4.5:9999
 Max-Forwards: 70
 Event: ua-profile
 Expires: 10
 Content-Length: 0

No. Time Source Destination Protocol Info
 2 2.426250 2.3.4.5 10.1.1.1 SIP Request:
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Chapter 5
Example Scenarios

5-10

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 10.1.1.1 (10.1.1.1)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1
 From: sipp <sip:sipp@2.3.4.5>;tag=1
 To: sut <sip:subscribe@1.2.3.4:5060>
 Call-ID: 1-25923@2.3.4.5
 Cseq: 1 SUBSCRIBE
 Contact: sip:sipp@2.3.4.5:9999
 Max-Forwards: 70
 Event: ua-profile
 Expires: 10
 Content-Length: 0

No. Time Source Destination Protocol Info
 3 3.430903 10.1.1.1 2.3.4.5 SIP Status:
200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol
 Status-Line: SIP/2.0 200 OK
 Message Header
 To: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
 Content-Length: 0
 Contact:
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>
 CSeq: 1 SUBSCRIBE
 Call-ID: 1-25923@2.3.4.5

Figure 5-7 shows the message sequence that results from the Converged Application Server
subsequently sending a NOTIFY request to the UAC:

Figure 5-7 NOTIFY Sequence

Chapter 5
Example Scenarios

5-11

As in the previous sequence, the IP address translation takes place in the Converged
Application Server to UAC direction for the source IP address, and UAC to Converged
Application Server direction for the destination IP address.

Note that this setup does not require the load balancer to maintain session state information or
to be SIP-aware. The complete message trace from is shown in Example 5-5 below.

Example 5-5 Complete NOTIFY Message Trace

No. Time Source Destination Protocol Info
 1 5.430952 10.1.1.1 2.3.4.5 SIP
Request: NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol
 Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0
 Message Header
 To: sipp <sip:sipp@2.3.4.5>;tag=1
 Content-Length: 0
 Contact:
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>
 CSeq: 1 NOTIFY
 Call-ID: 1-25923@2.3.4.5
 Via: SIP/2.0/UDP
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749adee
ce4e
 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
 Max-Forwards: 70

No. Time Source Destination Protocol Info
 2 6.430952 1.2.3.4 2.3.4.5 SIP Request:
NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 1.2.3.4 (1.2.3.4), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 9999 (9999)
Session Initiation Protocol
 Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0
 Message Header
 To: sipp <sip:sipp@2.3.4.5>;tag=1
 Content-Length: 0
 Contact:
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>
 CSeq: 1 NOTIFY
 Call-ID: 1-25923@2.3.4.5
 Via: SIP/2.0/UDP
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749adee
ce4e
 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
 Max-Forwards: 70

No. Time Source Destination Protocol Info
 3 7.431367 2.3.4.5 1.2.3.4 SIP Status: 200 OK

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol

Chapter 5
Example Scenarios

5-12

 Status-Line: SIP/2.0 200 OK
 Message Header
 Via: SIP/2.0/UDP
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749adee
ce4e
 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
 To: sipp <sip:sipp@2.3.4.5>;tag=1;tag=1
 Call-ID: 1-25923@2.3.4.5
 CSeq: 1 NOTIFY
 Contact: <sip:2.3.4.5:9999;transport=UDP>

If NAT is performed on both the source (SNAT) and destination IP addresses, the configuration
does not work because the load balancer usually relies on a specific destination port number
value to be sent in responses to requests. That port number value is dictated by RFC 3261,
and must come from the Via header, which presents a conflict with load balancer's NAT
requirements. RFC 3261 requires that responses to SIP requests be sent to the IP address
used to send the request (unless maddr is present in the Via, as described in maddr-based
Configuration). Consequently, in step 3 in Figure 5-8 below, Converged Application Server
sends a 200 OK response to the load balancer internal IP address (10.1.3.4) and port 5060.
That response is then dropped.

Figure 5-8 Source and Destination NAT

Example 5-6 shows the complete message trace.

Example 5-6 Complete Failing SUBSCRIBE Message Trace

No. Time Source Destination Protocol Info
 1 1.425250 2.3.4.5 1.2.3.4 SIP Request:
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1
 From: sipp <sip:sipp@2.3.4.5>;tag=1
 To: sut <sip:subscribe@1.2.3.4:5060>

Chapter 5
Example Scenarios

5-13

 Call-ID: 1-25923@2.3.4.5
 Cseq: 1 SUBSCRIBE
 Contact: sip:sipp@2.3.4.5:9999
 Max-Forwards: 70
 Event: ua-profile
 Expires: 10
 Content-Length: 0

No. Time Source Destination Protocol Info
 2 2.426250 10.1.3.4 10.1.1.1 SIP Request:
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 10.1.3.4 (10.1.3.4), Dst: 10.1.1.1 (10.1.1.1)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: sip (5060)
Session Initiation Protocol
 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1
 From: sipp <sip:sipp@2.3.4.5>;tag=1
 To: sut <sip:subscribe@1.2.3.4:5060>
 Call-ID: 1-25923@2.3.4.5
 Cseq: 1 SUBSCRIBE
 Contact: sip:sipp@2.3.4.5:9999
 Max-Forwards: 70
 Event: ua-profile
 Expires: 10
 Content-Length: 0

No. Time Source Destination Protocol Info
 3 3.430903 10.1.1.1 10.1.3.4 SIP
Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 10.1.3.4 (10.1.3.4)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol

maddr-based Configuration
When the maddr parameter is present in the Via header, the response is sent to the IP address
specified in the maddr rather than to the received IP address (even when SNAT is enabled).

In the example below, the UAC specifies a maddr set to 2.3.4.5 in the Via header.
Consequently, the response from the SIP server makes it to the UAC.

Chapter 5
Example Scenarios

5-14

Figure 5-9 maddr Sequence

Example 5-7 shows the complete message trace represented by Figure 5-9.

Example 5-7 Complete maddr Message Trace

No. Time Source Destination Protocol Info
 1 1.425250 2.3.4.5 1.2.3.4 SIP Request:
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 2.3.4.5:9999;maddr=2.3.4.5;branch=1
 From: sipp <sip:sipp@2.3.4.5>;tag=1
 To: sut <sip:subscribe@1.2.3.4:5060>
 Call-ID: 1-25923@2.3.4.5
 Cseq: 1 SUBSCRIBE
 Contact: sip:sipp@2.3.4.5:9999
 Max-Forwards: 70
 Event: ua-profile
 Expires: 10
 Content-Length: 0

No. Time Source Destination Protocol Info
 2 2.426250 10.1.3.4 10.1.1.1 SIP Request:
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 10.1.3.4 (10.1.3.4), Dst: 10.1.1.1 (10.1.1.1)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: sip (5060)
Session Initiation Protocol
 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 2.3.4.5:9999;maddr=2.3.4.5;branch=1
 From: sipp <sip:sipp@2.3.4.5>;tag=1

Chapter 5
Example Scenarios

5-15

 To: sut <sip:subscribe@1.2.3.4:5060>
 Call-ID: 1-25923@2.3.4.5
 Cseq: 1 SUBSCRIBE
 Contact: sip:sipp@2.3.4.5:9999
 Max-Forwards: 70
 Event: ua-profile
 Expires: 10
 Content-Length: 0

No. Time Source Destination Protocol Info
 3 3.430903 10.1.1.1 2.3.4.5 SIP Status:
200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol
 Status-Line: SIP/2.0 200 OK
 Message Header
 To: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
 Content-Length: 0
 Contact:
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>

rport-based Configuration
RFC 3581 improves SIP and NAT interactions by allowing the client to request that the server
send responses to a UDP port number from the request rather than from the Via. In order for
both SUBSCRIBE and NOTIFY to work correctly, both the UAC as well as Converged
Application Server must support RFC 3581.

Figure 5-10 illustrates the SUBSCRIBE flow.

Figure 5-10 rport SUBSCRIBE Sequence

The complete message trace from the figure is shown in Example 5-8 below.

Chapter 5
Example Scenarios

5-16

Example 5-8 Complete Message Trace for rport SUBSCRIBE

No. Time Source Destination Protocol Info
 1 1.425250 2.3.4.5 1.2.3.4 SIP Request:
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)
Session Initiation Protocol
 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 2.3.4.5:9999;rport;branch=1
 From: sipp <sip:sipp@2.3.4.5>;tag=1
 To: sut <sip:subscribe@1.2.3.4:5060>
 Call-ID: 1-25923@2.3.4.5
 Cseq: 1 SUBSCRIBE
 Contact: sip:sipp@2.3.4.5:9999
 Max-Forwards: 70
 Event: ua-profile
 Expires: 10
 Content-Length: 0

No. Time Source Destination Protocol Info
 2 2.426250 10.1.3.4 10.1.1.1 SIP Request:
SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 10.1.3.4 (10.1.3.4), Dst: 10.1.1.1 (10.1.1.1)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: sip (5060)
Session Initiation Protocol
 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP 2.3.4.5:9999;rport;branch=1
 From: sipp <sip:sipp@2.3.4.5>;tag=1
 To: sut <sip:subscribe@1.2.3.4:5060>
 Call-ID: 1-25923@2.3.4.5
 Cseq: 1 SUBSCRIBE
 Contact: sip:sipp@2.3.4.5:9999
 Max-Forwards: 70
 Event: ua-profile
 Expires: 10
 Content-Length: 0

No. Time Source Destination Protocol Info
 3 3.430903 10.1.1.1 10.1.3.4 SIP
Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 10.1.3.4 (10.1.3.4)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 2222 (2222)
Session Initiation Protocol
 Status-Line: SIP/2.0 200 OK
 Message Header
 To: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
 Content-Length: 0
 Contact:
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>

Chapter 5
Example Scenarios

5-17

 CSeq: 1 SUBSCRIBE
 Call-ID: 1-25923@2.3.4.5

Figure 5-11 shows the NOTIFY message flow.

Note that while source address NAT is enabled for both directions (UAS to Converged
Application Server and Converged Application Server to UA), the load balancer can correctly
identify the destination address in Step 3 by relying on receiving responses on the same port
number as the one used to send requests. This implies that the load balancer maintains state.

Figure 5-11 rport NOTIFY Sequence

Example 5-9 shows the complete message trace from the figure.

Example 5-9 Complete Message Trace for rport NOTIFY

No. Time Source Destination Protocol Info
 1 5.430952 10.1.1.1 2.3.4.5 SIP
Request: NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)
Session Initiation Protocol
 Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0
 Message Header
 To: sipp <sip:sipp@2.3.4.5>;tag=1
 Content-Length: 0
 Contact:
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>
 CSeq: 1 NOTIFY
 Call-ID: 1-25923@2.3.4.5
 Via: SIP/2.0/UDP
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749adee
ce4e;rport
 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
 Max-Forwards: 70

Chapter 5
Example Scenarios

5-18

No. Time Source Destination Protocol Info
 2 6.430952 1.2.3.4 2.3.4.5 SIP Request:
NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 1.2.3.4 (1.2.3.4), Dst: 2.3.4.5 (2.3.4.5)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 9999 (9999)
Session Initiation Protocol
 Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0
 Message Header
 To: sipp <sip:sipp@2.3.4.5>;tag=1
 Content-Length: 0
 Contact:
<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>
 CSeq: 1 NOTIFY
 Call-ID: 1-25923@2.3.4.5
 Via: SIP/2.0/UDP
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749adee
ce4e;rport
 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
 Max-Forwards: 70

No. Time Source Destination Protocol Info
 3 7.431367 2.3.4.5 1.2.3.4 SIP Status: 200 OK

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)
User Datagram Protocol, Src Port: 9999 (9999), Dst Port: (2222)
Session Initiation Protocol
 Status-Line: SIP/2.0 200 OK
 Message Header
 Via: SIP/2.0/UDP
1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749adee
ce4e;rport
 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03
 To: sipp <sip:sipp@2.3.4.5>;tag=1;tag=1
 Call-ID: 1-25923@2.3.4.5
 CSeq: 1 NOTIFY
 Contact: <sip:2.3.4.5:9999;transport=UDP

Chapter 5
Example Scenarios

5-19

6
Standards Alignment

This chapter describes how Oracle Communications Converged Application Server complies
with various specifications and RFCs.

Overview of Converged Application Server Standards Alignment
Converged Application Server is developed with special attention to Internet Engineering Task
Force (IETF) and 3rd Generation Partnership Project (3GPP) specifications. Feature
development is prioritized according to general market trends, both observed and predicted. In
cases where certain specifications are obsolete or where Internet drafts are formalized as
'Request For Comments' standards, Converged Application Server places priority on
compliance with those specifications. In cases where specifications are part of a larger release
plan, as with the 3GPP, Oracle prioritizes compliance with the latest ratified release (in this
case, Release 12). This should not be presumed to mean that the product is not compliant with
subsequent versions of component specifications, although this document does not summarize
compliance with those specifications.

Java Sun Recommendation (JSR) Standards Compliance
Converged Application Server is compliant with Java EE version 7.0 and the corresponding
Java EE component specifications.

Converged Application Server is further enhanced by the addition of a SIP Servlet container
defined by JSR 359: "SIP Servlet API."

Converged Application Server has executed all related Test Compatibility Kits (TCKs) and has
met the formal requirements established by Sun Microsystems for formal public statements of
compliance.

IETF RFC Compliance
The following table lists the Converged Application Server level of compliance to common IETF
Requests for Comment (RFCs) and Internet drafts. The level of compliance is defined as
follows:

• Yes—Indicates that Converged Application Server directly supports the feature or
specification.

• Yes (Platform)—Indicates Converged Application Server can host applications or
components that implement the RFC. However, the RFC or feature has no impact on the
transaction layer of the protocol or on the behavior of the SIP Servlet container.

6-1

Table 6-1 Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

761 DoD Standard
Transmission Control
Protocol

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc761.txt
768 User Datagram

Protocol
Yes Converged Application Server supports applications that conform

to this specification. See

http://www.ietf.org/rfc/rfc768.txt
1157 A Simple Network

Management
Protocol (SNMP)

Yes Converged Application Server supports SNMP V2c traps. See

http://www.ietf.org/rfc/rfc1157.txt

1847 Security Multiparts for
MIME: Multipart/
Signed and Multipart/
Encrypted

Yes (Platform) Converged Application Server supports applications that
consume or generate signed or encrypted multipart MIME
objects. See

http://www.ietf.org/rfc/rfc1847.txt
1901 Introduction to

Community-based
SNMPv2

Yes Converged Application Server supports SNMP V2c traps. See

http://www.ietf.org/rfc/rfc1901.txt

1905 Protocol Operations
for Version 2 of the
Simple Network
Management
Protocol (SNMPv2)

Yes Converged Application Server supports SNMP V2c traps. See

http://www.ietf.org/rfc/rfc1905.txt

1906 Transport Mappings
for Version 2 of the
Simple Network
Management
Protocol (SNMPv2)

Yes Converged Application Server supports SNMP over both TCP and
UDP. See

http://www.ietf.org/rfc/rfc1906.txt

1907 Management
Information Base for
Version 2 of the
Simple Network
Management
Protocol (SNMPv2)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc1907.txt

2183 Communicating
Presentation
Information in
Internet Messages:
The Content-
Disposition Header
Field

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2183.txt

2246 The TLS Protocol
Version 1.0

Yes Converged Application Server supports TLS. See

http://www.ietf.org/rfc/rfc2246.txt
2460 Internet Protocol,

Version 6 (IPv6)
Specification

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2460.txt
2543 SIP: Session

Initiation Protocol (v1)
Yes Converged Application Server supports backward compatibility as

described in this specification. See

http://www.ietf.org/rfc/rfc2543.txt

Chapter 6
IETF RFC Compliance

6-2

http://www.ietf.org/rfc/rfc761.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1847.txt
http://www.ietf.org/rfc/rfc1901.txt
http://www.ietf.org/rfc/rfc1905.txt
http://www.ietf.org/rfc/rfc1906.txt
http://www.ietf.org/rfc/rfc1907.txt
http://www.ietf.org/rfc/rfc2183.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2543.txt

Table 6-1 (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

2571 An Architecture for
Describing SNMP
Management
Frameworks

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2571.txt

2572 Message Processing
and Dispatching for
the Simple Network
Management
Protocol (SNMP)

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2572.txt

2573 SNMP Applications Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2573.txt
2574 User-based Security

Model (USM) for
version 3 of
theSimple Network
Management
Protocol (SNMPv3)

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2574.txt

2575 View-based Access
Control Model
(VACM) for the
Simple Network
Management
Protocol (SNMP)

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2575.txt

2576 Coexistence between
Version 1, Version 2,
and Version 3 of the
Internet-standard
Network
Management
Framework

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2576.txt

2616 Hypertext Transfer
Protocol — HTTP 1.1

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2616.txt
2617 HTTP Authentication:

Basic and Digest
Access
Authentication

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2617.txt

2782 A DNS RR for
specifying the
location of services
(DNS SRV)

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2782.txt

2786 Diffie-Helman USM
Key Management
Information Base and
Textual Convention

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2786.txt

Chapter 6
IETF RFC Compliance

6-3

http://www.ietf.org/rfc/rfc2571.txt
http://www.ietf.org/rfc/rfc2572.txt
http://www.ietf.org/rfc/rfc2573.txt
http://www.ietf.org/rfc/rfc2574.txt
http://www.ietf.org/rfc/rfc2575.txt
http://www.ietf.org/rfc/rfc2576.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2782.txt
http://www.ietf.org/rfc/rfc2786.txt

Table 6-1 (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

2806 URLs for Telephone
Calls

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2806.txt
2848 The PINT Service

Protocol: Extensions
to SIP and SDP for IP
Access to Telephone
Call Services

Yes (Platform) Note that implementing PINT services implies a pre-IMS
architecture. Although Oracle favors the 3GPP/TISPAN
architecture and approach to class 4/5 Service Emulation and
does not advocate PINT, it is possible to implement PINT service
elements using Converged Application Server. See

http://www.ietf.org/rfc/rfc2848.txt
2960 Stream Control

Transmission
Protocol

Yes SCTP supported only for Diameter traffic. See

http://www.ietf.org/rfc/rfc2960.txt

2976 The SIP INFO
Method

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc2976.txt
3204 MIME media types for

ISUP and QSIG
Objects

Yes (Platform) Converged Application Server does not directly consume or
generate ISUP and QSIG objects, but it supports applications that
consume or generate these objects. See

http://www.ietf.org/rfc/rfc3204.txt
3261 SIP: Session

Initiation Protocol
Yes Converged Application Server supports applications that conform

to this specification. See

http://www.ietf.org/rfc/rfc3261.txt
3262 Reliability of

Provisional
Responses in the
Session Initiation
Protocol (SIP)

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3262.txt

3263 Session Initiation
Protocol (SIP):
Locating SIP Servers

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3263.txt
3264 An Offer/Answer

Model with Session
Description Protocol
(SDP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3264.txt

3265 Session Initiation
Protocol (SIP)-
Specific Event
Notification

Yes

(Platform)

Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3265.txt

3268 Advanced Encryption
Standard (AES)
Ciphersuites for
Transport Layer
Security (TLS)

Yes (Platform) Converged Application Server supports cryptographic services,
but specific algorithms that are used are subject to local
availability and export control. See

http://www.ietf.org/rfc/rfc3268.txt

3311 The Session Initiation
Protocol (SIP)
UPDATE Method

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3311.txt

Chapter 6
IETF RFC Compliance

6-4

http://www.ietf.org/rfc/rfc2806.txt
http://www.ietf.org/rfc/rfc2848.txt
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc2976.txt
http://www.ietf.org/rfc/rfc3204.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3262.txt
http://www.ietf.org/rfc/rfc3263.txt
http://www.ietf.org/rfc/rfc3264.txt
http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3311.txt

Table 6-1 (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3312 Integration of
Resource
Management and
Session Initiation
Protocol (SIP).

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3312.txt

3313 Private Session
Initiation Protocol
(SIP) Extensions for
Media Authorization

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3313.txt

3323 A Privacy Mechanism
for the Session
Initiation Protocol
(SIP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3323.txt

3325 Private Extensions to
the Session Initiation
Protocol (SIP) for
Asserted Identity
within Trusted
Networks

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3325.txt

3326 The Reason Header
Field for the Session
Initiation Protocol
(SIP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3326.txt

3327 Session Initiation
Protocol (SIP)
Extension Header
Field for Registering
Non-Adjacent
Contacts.

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3327.txt

3351 User Requirements
for the Session
Initiation Protocol
(SIP) in Support of
Deaf, Hard of Hearing
and Speech-impaired
Individuals

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3351.txt

3372 Session Initiation
Protocol for
Telephones (SIP-T):
Context and
Architectures

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3372.txt

3420 Internet Media Type
message/sipfrag

Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3420.txt
3428 Session Initiation

Protocol (SIP)
Extension for Instant
Messaging

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3428.txt

Chapter 6
IETF RFC Compliance

6-5

http://www.ietf.org/rfc/rfc3312.txt
http://www.ietf.org/rfc/rfc3313.txt
http://www.ietf.org/rfc/rfc3323.txt
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc3326.txt
http://www.ietf.org/rfc/rfc3327.txt
http://www.ietf.org/rfc/rfc3351.txt
http://www.ietf.org/rfc/rfc3372.txt
http://www.ietf.org/rfc/rfc3420.txt
http://www.ietf.org/rfc/rfc3428.txt

Table 6-1 (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3455 Private Header (P-
Header) Extensions
to the Session
Initiation Protocol
(SIP) for the 3rd-
Generation
Partnership Project
(3GPP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3455.txt

3515 The Session Initiation
Protocol (SIP) Refer
Method.

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3515.txt
3524 Mapping of Media

Streams to Resource
Reservation Flows

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3524.txt
3556 Session Description

Protocol (SDP)
Bandwidth Modifiers
for RTP Control
Protocol (RTCP)
Bandwidth

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3556.txt

3578 Mapping of Integrated
Services Digital
Network (ISDN) User
Part (ISUP) Overlap
Signalling to the
Session Initiation
Protocol (SIP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification, but it does not provide an ISUP interface. See

http://www.ietf.org/rfc/rfc3578.txt

3581 An Extension to the
Session Initiation
Protocol (SIP) for
Symmetric Response
Routing

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3581.txt

3589 Diameter Command
Codes for Third
Generation
Partnership Project
(3GPP) Release 5

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3589.txt

3588 Diameter Base
Protocol

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3588.txt
3605 Real Time Control

Protocol (RTCP)
attribute in Session
Description Protocol
((SDP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See http://www.ietf.org/rfc/
rfc3605.txt

Chapter 6
IETF RFC Compliance

6-6

http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3515.txt
http://www.ietf.org/rfc/rfc3524.txt
http://www.ietf.org/rfc/rfc3556.txt
http://www.ietf.org/rfc/rfc3578.txt
http://www.ietf.org/rfc/rfc3581.txt
http://www.ietf.org/rfc/rfc3589.txt
http://www.ietf.org/rfc/rfc3588.txt
http://www.ietf.org/rfc/rfc3605.txt
http://www.ietf.org/rfc/rfc3605.txt

Table 6-1 (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3608 Session Initiation
Protocol (SIP)
Extension Header
Field for Service
Route Discovery
During Registration.

Yes (Platform) Converged Application Server supports applications that conform
to this specification, but it does not provide a means of storing the
ServiceRoute established during registration. This functionality
can be implemented as part of the application. See

http://www.ietf.org/rfc/rfc3608.txt

3665 Session Initiation
Protocol (SIP) Basic
Call Flow Examples.

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3665.txt
3666 Session Initiation

Protocol (SIP) Public
Switched Telephone
Network (PSTN) Call
Flows

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3666.txt

3680 A Session Initiation
Protocol (SIP) Event
Package for
Registrations

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3680.txt

3689 General
Requirements for
Emergency
Telecommunication
Service (ETS)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3689.txt

3690 IP Telephony
Requirements for
Emergency
Telecommunication
Service (ETS)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3690.txt

3702 Authentication,
Authorization, and
Accounting
Requirements for the
Session Initiation
Protocol (SIP)

Yes Converged Application Server version supports JDBC and LDAP.
See

http://www.ietf.org/rfc/rfc3702.txt

3725 Best Current
Practices for Third
Party Call Control
(3pcc) in the Session
Initiation Protocol
(SIP)

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3725.txt

3761 The E.164 to Uniform
Resource Identifiers
(URI) Dynamic
Delegation Discovery
System (DDDS)
Application (ENUM)

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3761.txt

Chapter 6
IETF RFC Compliance

6-7

http://www.ietf.org/rfc/rfc3608.txt
http://www.ietf.org/rfc/rfc3665.txt
http://www.ietf.org/rfc/rfc3666.txt
http://www.ietf.org/rfc/rfc3680.txt
http://www.ietf.org/rfc/rfc3689.txt
http://www.ietf.org/rfc/rfc3690.txt
http://www.ietf.org/rfc/rfc3702.txt
http://www.ietf.org/rfc/rfc3725.txt
http://www.ietf.org/rfc/rfc3761.txt

Table 6-1 (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3764 Enumservice
Registration for
Session Initiation
Protocol (SIP)
Addresses-of-Record

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3764.txt

3824 Using E.164 numbers
with the Session
Initiation Protocol
(SIP)

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3824.txt

3826 The Advanced
Encryption Standard
(AES) Cipher
Algorithm in the
SNMP User-based
Security Model

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3826.txt

3840 Indicating User Agent
Capabilities in the
Session Initiation
Protocol (SIP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3840.txt

3841 Caller Preferences for
the Session Initiation
Protocol (SIP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3841.txt
3853 S/MIME Advanced

Encryption Standard
(AES) Requirement
for the Session
Initiation Protocol
(SIP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3853.txt

3891 The Session Initiation
Protocol (SIP)
'Replaces' Header

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3891.txt
3892 The Session Initiation

Protocol (SIP)
Referred-By
Mechanism

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3892.txt

3893 Session Initiation
Protocol (SIP)
Authenticated Identity
Body (AIB) Format

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3893.txt

3903 Session Initiation
Protocol (SIP)
Extension for Event
State Publication

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3903.txt

3911 The Session Initiation
Protocol (SIP) "Join"
Header

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3911.txt

Chapter 6
IETF RFC Compliance

6-8

http://www.ietf.org/rfc/rfc3764.txt
http://www.ietf.org/rfc/rfc3824.txt
http://www.ietf.org/rfc/rfc3826.txt
http://www.ietf.org/rfc/rfc3840.txt
http://www.ietf.org/rfc/rfc3841.txt
http://www.ietf.org/rfc/rfc3853.txt
http://www.ietf.org/rfc/rfc3891.txt
http://www.ietf.org/rfc/rfc3892.txt
http://www.ietf.org/rfc/rfc3893.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3911.txt

Table 6-1 (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

3959 The Early Session
Disposition Type for
the Session Initiation
Protocol (SIP)

Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3959.txt

3960 Early Media and
Ringing Tone
Generation in the
Session Initiation
Protocol (SIP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc3960.txt

3966 The tel URI for
Telephone Numbers

Yes See

http://www.ietf.org/rfc/rfc3966.txt
4028 Session Timers in the

Session Initiation
Protocol (SIP)

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc4028.txt
4032 Update to the

Session Initiation
Protocol (SIP)
Preconditions
Framework

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc4032.txt

4244 An Extension to the
Session Initiation
Protocol (SIP) for
Request History
Information

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc4244.txt

4320 Actions Addressing
Identified Issues with
the Session Initiation
Protocol's (SIP) Non-
INVITE Transaction

Yes Converged Application Server supports applications that conform
to this specification, specifically including:

• If the application or proxy does not respond to a non-invite
request before TimerE reaches T2, the container responds
with a 100 TRYING message.

• A system parameter that disables this feature: -
Dwlss.send100ForNonInviteTransaction=false. The
parameter is true by default.

See http://www.ietf.org/rfc/rfc4320.txt
4321 Problems Identified

Associated with the
Session Initiation
Protocol's (SIP)
Non_INVITE
Transaction

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc4321.txt

4474 Enhancements for
Authenticated Identity
Management in the
Session Initiation
Protocol (SIP)

Yes Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc4474.txt.

Chapter 6
IETF RFC Compliance

6-9

http://www.ietf.org/rfc/rfc3959.txt
http://www.ietf.org/rfc/rfc3960.txt
http://www.ietf.org/rfc/rfc3966.txt
http://www.ietf.org/rfc/rfc4028.txt
http://www.ietf.org/rfc/rfc4032.txt
http://www.ietf.org/rfc/rfc4244.txt
http://www.ietf.org/rfc/rfc4320.txt
http://www.ietf.org/rfc/rfc4321.txt
http://www.ietf.org/rfc/rfc4474.txt

Table 6-1 (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

4483 A Mechanism for
Content Indirection in
Session Initiation
Protocol (SIP)
Messages

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc4483.txt.

4566 SDP: Session
Description Protocol

Yes Converged Application Server supports applications that
consume or generate SDP. See

http://www.ietf.org/rfc/rfc4566.txt
4916 Connected Identity in

the Session Initiation
Protocol (SIP)

Yes See

https://tools.ietf.org/html/rfc4916

5393 Addressing an
Amplification
Vulnerability in
Session Initiation
Protocol (SIP)
Forking Proxies

Partial Converged Application Server supports the Max-Breadth Header
portion of JSR 359, section 12.2.11, “Max-Breadth Check."
Specifically, it implements a Max-Breadth header to limit the
number of parallel forks that can be made on a SIP request by the
downstream proxies. See

https://www.jcp.org/en/jsr/detail?id=359
5626 Managing Client-

Initiated Connections
in the Session
Initiation Protocol
(SIP)

Yes Converged Application Server supports JSR 359, section 17.4,
“Managing Client Initiated Connections," which includes support
for UDP/TCP with cluster deployment. See

https://www.jcp.org/en/jsr/detail?id=359

5630 The Use of the SIPS
URI Scheme in the
Session Initiation
Protocol (SIP)

Yes When a proxy sends a request using a SIPS Request-URI and
receives one of:

• A 3XX response with a SIP Contact header field
• A 416 response
• A 480 (Temporarily Unavailable) response with a Warning

header with warn-code 380 "SIPS Not Allowed" response
The proxy must not recurse on the response. In this case, the
proxy should forward the best response instead of recursing. This
allows the UAC to take the appropriate action.

When a proxy sends a request using a SIP Request-URI and
receives:

• A 3XX response with a SIPS Contact header field
• A 480 (Temporarily Unavailable) response with a Warning

header with warn-code 381 "SIPS Required"
The proxy must not recurse on the response. In this case, the
proxy should forward the best response instead of recursing. This
allows the UAC to take the appropriate action.

5888 The Session
Description Protocol
(SDP) Grouping
Framework

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

http://www.ietf.org/rfc/rfc5888.txt

5806 Diversion Indication
in SIP

Yes Converged Application Server supports applications that conform
to this specification. See

https://datatracker.ietf.org/doc/rfc5806/

Chapter 6
IETF RFC Compliance

6-10

http://www.ietf.org/rfc/rfc4483.txt
http://www.ietf.org/rfc/rfc4566.txt
https://tools.ietf.org/html/rfc4916
https://www.jcp.org/en/jsr/detail?id=359
https://www.jcp.org/en/jsr/detail?id=359
http://www.ietf.org/rfc/rfc5888.txt
https://datatracker.ietf.org/doc/rfc5806/

Table 6-1 (Cont.) Converged Application Server IETF Compliance

RFC or
Specification
Number

Title Compliant? Additional Information

5954 Essential Correction
for IPv6 ABNF and
URI Comparison in
RFC 3261

Yes Converged Application Server now includes a task to update the
equals() and hashcode() methods of SipURIImpl based on this
RFC. See

https://tools.ietf.org/html/rfc5954
6026 Correct Transaction

Handling for 2xx
Responses to
Session Initiation
Protocol (SIP)
INVITE Requests

Yes Converged Application Server supports applications that conform
to this specification. See

https://tools.ietf.org/html/rfc6026

6141 Re-INVITE and
Target-Refresh
Request Handling in
the Session Initiation
Protocol (SIP)

Yes Converged Application Server supports applications that conform
to this specification. See

https://tools.ietf.org/html/rfc6141

6665 SIP-Specific Event
Notification

Yes Converged Application Server supports applications that conform
to this specification. See

https://tools.ietf.org/html/rfc6665
draft-donovan-
mmusic-183-00

SIP 183 Session
Progress Message
Draft

Yes (Platform) Converged Application Server supports applications that conform
to this specification. See

https://datatracker.ietf.org/doc/html/draft-
donovan-mmusic-183-00

3GPP R12 Specification Conformance
Converged Application Server is fully compliant with the latest 3GPP Release 12 specification,
and does not impose any restrictions on implementing applications or functions that are
compliant with those associated with the Application Server entity described in the
specification. In some cases, applications must implement support for SIP methods or
headers. The default behavior of the Converged Application Server Sip Servlet Container is to
pass unrecognized headers, request methods and payloads to SIP Servlets using normal SIP
Servlet API procedures.

Chapter 6
3GPP R12 Specification Conformance

6-11

https://tools.ietf.org/html/rfc5954
https://tools.ietf.org/html/rfc6026
https://tools.ietf.org/html/rfc6141
https://tools.ietf.org/html/rfc6665
https://datatracker.ietf.org/doc/html/draft-donovan-mmusic-183-00
https://datatracker.ietf.org/doc/html/draft-donovan-mmusic-183-00

A
SIP Servlet API Service Invocation

This appendix describes the Service invocation method of the SIP Servlet API.

SIP Servlet API Overview
The SIP Servlet API provides a model for application composition and interaction. Service
Interaction which is analogous with a simplistic implementation of the Service Capability
Interaction Manager (SCIM) alluded to by the 3GPP. Handling of all incoming requests is
governed by the Converged Application Server SIP Servlet Container in accordance with the
SIP Servlet API specification.

Oracle Communications Converged Application Server's SIP Servlet Container filters received
Initial SIP requests and applies a set of defined rules (Servlet Mapping Rules) to determine
which SIP Servlets within the deployed applications shall be invoked to service that particular
request. This order is always sequential and is defined in a configuration file built up through
successive deployments of SIP applications.

Within the deployment descriptor for each SIP application that is deployed, a sequence of
conditions, called Servlet Mapping Rules, is defined. These rules determine which Servlets will
handle any initial request. As the request object is "routed" between Servlets, the path from
Servlet to Servlet is recorded in a fashion equivalent to that of the Record-Route and Via
headers used in SIP requests. This route is stored as part of the SIP application session and is
appended to subsequent requests within the same dialogue in either "forward" or "reverse"
order depending on the orientation of the “From" and “To" tags for the request. This internal
"route" is stripped from the request object before a SIP request leaves Converged Application
Server and is not visible to external SIP servers. It is again added whenever a new request
within an existing dialog is received.

The SIP Servlets (SIP/HTTP application) that are invoked in this manner are unaware that any
other SIP/HTTP application exists. This is one of the fundamental characteristics of the SIP
Servlet programming model. Making maximal use of this model requires that the Servlet
container be treated by the developer as if it is a logical sub-network, with the container
effectively acting as an intermediary proxy. In many ways, the SIP Servlet Container may be
compared with the Serving CSCF function in an IMS architecture.

Servlet Mapping Rules: Objects, Properties and Conditions
Servlet mapping rules are defined by the service developer and are detailed in the application's
deployment descriptor. A deployment descriptor is an XML-based text file whose elements
describe how to assemble and deploy the unit into a specific environment. Each element
consists of a tag and a value expressed in the following syntax: <tag>value</tag>. Usually
deployment descriptors are automatically generated by deployment tools, so you will not have
to manage them directly. Deployment descriptor elements contain behavioral information about
components not included directly in code. Their purpose is to tell the Deployer how to deploy
an application, not tell the server how to manage components at runtime.

In the context of SIP applications, the deployment descriptor is contained within the Servlet
archive (SAR) file that is deployed on Converged Application Server. There may be more than
one Servlet mapping rule defined within the deployment descriptor for the application (SIP/

A-1

HTTP application). In this case, these rules must be applied in the order in which they are
defined in the deployment descriptor.

Example A-1 provides an example of a simple Servlet mapping rule found in a typical
deployment descriptor.

Note:

Servlet mapping rules are entirely concerned with the content of the SIP message
being processed. It is not possible to use information regarding the actual IP address
and port number on which the request was received as service trigger points unless
this information matches the request URI of the Sip message.

The Servlet mapping rule shown in Example A-1 illustrates the following Boolean expression:

(Method="INVITE" OR Method = “MESSAGE" OR Method="SUBSCRIBE") AND
(Method="INVITE" OR Method = “MESSAGE" OR (NOT Header = “from" Match = “Bob"))

Note:

This is the same logical condition used in the Initial filter Criteria example provided in
3GPP TS 29.228 Annex C expressed as a Servlet Mapping Rule.

Example A-1 Example Servlet Mapping Rule

<servlet-mapping>
<servlet-name>servlet1</servlet-name>
<pattern>
 <and>
 <or>
 <equal>
 <var>request.method</var>
 <value>INVITE</value>
 </equal>
 <equal>
 <var>request.method</var>
 <value>MESSAGE</value>
 </equal>
 <equal>
 <var>request.method</var>
 <value>SUBSCRIBE</value>
 </equal>
 </or>
 <or>
 <equal>
 <var>request.method</var>
 <value>INVITE</value>
 </equal>
 <equal>
 <var>request.method</var>
 <value>MESSAGE</value>
 </equal>
 <not>

Appendix A
Servlet Mapping Rules: Objects, Properties and Conditions

A-2

 <equal>
 <var>request.from.display-name</var>
 <value>Bob</value>
 </equal>
 </not>
 </or>
 </and>
</pattern>
</servlet-mapping>

Supported Service Trigger Points
Service Point Triggers are the attributes of a SIP request that may be evaluated by Servlet
Mapping Rules. See the section on Triggering Rules in the specification for more information.

Request Object
The Request Object is a Java representation of a SIP request.

• method: the request method, a string

• uri: the request URI; for example a SipURI or a TelURL

• from: an Address representing the value of the From header

• to: an Address representing the value of the To header

URI
• scheme: the URI scheme

SipURI (extends URI)
• scheme: a literal string – either “sip" or “sips"

• user: the “user" part of the SIP/SIPS URI

• host: the “host" part of the SIP/SIPS URI. This may be a domain name or a dotted decimal
IP address.

• port: the URI port number in decimal format; if absent the default value is used (5060 for
UDP and TCP, 5061 for TLS).

• tel: if the “user" parameter is not “phone", this variable is undefined. Otherwise, its value is
the telephone number contained in the “user" part of the SIP/SIPS URI with visual
separators stripped. This variable is always matched case insensitively (the telephone
numbers may contain the symbols ‘A', ‘B', ‘C' and ‘D').

• param.name: value of the named parameter within a SIP/SIPS URI; name must be a valid
SIP/SIPS URI parameter name.

TelURL (extends URI)
• scheme: always the literal string “tel"

• tel: the tel URL subscriber name with visual separators stripped off

• param.name: value of the named parameter within a tel URL; name must be a valid tel
URL parameter name

Appendix A
Servlet Mapping Rules: Objects, Properties and Conditions

A-3

Address
• uri: the URI object; see URI, SipURI, TelURL types above

• display-name: the display-name portion of the From or To header

Conditions and Logical Connectors
• equal: compares the value of a variable with a literal value and evaluates to true if the

variable is defined and its value equals that of the literal. Otherwise, the result is false.

• exists: takes a variable name and evaluates to true if the variable is defined, and false
otherwise.

• contains: evaluates to true if the value of the variable specified as the first argument
contains the literal string specified as the second argument.

• subdomain-of: given a variable denoting a domain name (SIP/SIPS URI host) or
telephone subscriber (tel property of SIP or Tel URLs), and a literal value, this operator
returns true if the variable denotes a subdomain of the domain given by the literal value.
Domain names are matched according to the DNS definition of what constitutes a
subdomain; for example, the domain names “example.com" and
“research.example.com“are both subdomains of “example.com". IP addresses may be
given as arguments to this operator; however, they only match exactly. In the case of the
tel variables, the subdomain-of operator evaluates to true if the telephone number denoted
by the first argument has a prefix that matches the literal value given in the second
argument; for example, the telephone number “1 212 555 1212" would be considered a
subdomain of “1212555".

• and: contains a number of conditions and evaluates to true if and only if all contained
conditions evaluate to true

• or: contains a number of conditions and evaluates to true if and only if at least one
contained condition evaluates to true

• not: negates the value of the contained condition.

The equal and contains operators optionally ignore character case when making comparisons.
The default is case-sensitive matching.

Appendix A
Servlet Mapping Rules: Objects, Properties and Conditions

A-4

	Contents
	About This Guide
	1 Overview of Converged Application Server Architecture
	About the Converged Application Server
	Converged Application Server Architecture
	Configuring and Administering the Converged Application Server Deployment
	Remote Console

	2 Developing Applications for Converged Application Server
	Overview of Developing Applications for Converged Application Server
	SIP Protocol Support
	Simplicity and Ease of Use
	Converged Applications
	Application Composition
	Highly Reliable Implementation

	Overview of the SIP Servlet Container
	SIP Dialog Handling

	Using the SIP Servlet API
	The SipServlet Object
	SIP Factory
	SIP Messages
	SipSession
	SipApplicationSession
	Application Timers
	SIP Servlet Application Example: Converged SIP and HTTP Application
	SIP Servlet Application Example: SUBSCRIBE and NOTIFY

	Converged Application Server Profile API
	Using Document Keys for Application-Managed Profile Data
	Monitoring Profile Data

	Developing "Zero Downtime" Upgradable Applications
	Requirements and Restrictions for Upgrading Deployed Applications

	Developing IR.92 Supplementary Services
	About Converged Application Server and VoLTE
	Communication Diversion
	Communication Barring
	Communication Hold
	Setting the Communication Hold Bandwidth

	Originating Identification Presentation and Restriction
	Privacy Service Behavior
	Providing Privacy for the History-Info Header

	Communication Waiting
	Supporting Network- and Terminal-based Communication Waiting

	Message Waiting Indication
	Announcement Support

	Developing Services Using XCAP
	About XCAP and VoLTE

	3 Converged Application Server in the Network
	Converged Application Server in a Typical Service Provider Network
	SIP and IMS Service Control
	ISC and the 3GPP SIP Profile
	AS Session Case Determination Requirement of ISC
	Transport Layer Issues Related to ISC

	HTTP User Interface
	Service and Subscriber Data and Authentication
	Proxy Registrar
	Media Server Control
	Charging and Billing
	Security
	Authentication Providers
	Trusted Host Authentication
	Declarative Security
	Protecting the Converged Application Server Domain with a Session Border Controller

	4 Converged Application Server Cluster Architecture
	Overview of Converged Application Server Clusters
	Relationship Between Clusters and Domains
	Relationship Between Coherence and WebLogic Server Clusters
	Objects That Can Be Clustered
	Objects That Cannot Be Clustered
	Overview of the Cluster Architecture
	Geographically-Redundant Installations

	Administration Server
	Engines
	Diameter Support

	5 Deployment Scenarios
	Overview of Deployment Scenarios
	Single-NIC Configurations with TCP and UDP Channels
	Multihomed Server Configurations Overview
	Multihomed Servers Listening On All Addresses (IP_ANY)
	Multihomed Servers Listening on Multiple Subnets
	Understanding the Route Resolver
	IP Aliasing with Multihomed Hardware

	Load Distribution Considerations
	Single VIP Topology
	Multiple VIP Topology

	Network Address Translation Options
	IP Masquerading Alternative to Source NAT

	Example Scenarios
	Example Deployment with a Non-SIP Aware Load Balancer
	Converged Application Server Configuration
	Load Balancer Configuration
	NAT-based Configuration
	maddr-based Configuration
	rport-based Configuration

	6 Standards Alignment
	Overview of Converged Application Server Standards Alignment
	Java Sun Recommendation (JSR) Standards Compliance
	IETF RFC Compliance
	3GPP R12 Specification Conformance

	A SIP Servlet API Service Invocation
	SIP Servlet API Overview
	Servlet Mapping Rules: Objects, Properties and Conditions
	Supported Service Trigger Points
	Request Object
	URI
	SipURI (extends URI)
	TelURL (extends URI)
	Address

	Conditions and Logical Connectors

