
Oracle® Communications Converged
Charging System
Network Bridge Cloud Native Installation and
Administration Guide

Release 2.0
F61229-01
March 2023



Oracle Communications Converged Charging System Network Bridge Cloud Native Installation and
Administration Guide, Release 2.0

F61229-01

Copyright © 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

1   Overview of the Network Bridge Cloud Native Deployment

About the Network Bridge Cloud Native Deployment 1-1

Network Bridge Cloud Native Architecture 1-1

About Network Bridge Pods 1-1

Part I   Installing Network Bridge

2   Setting Up Prerequisite Software

Network Bridge Prerequisite Tasks 2-1

Creating a Kubernetes Cluster 2-2

Installing Docker 2-3

Installing Helm 2-3

Installing MySQL NDB Operator 2-4

Installing an Ingress Controller 2-5

Installing Jaeger 2-6

Installing Kubernetes Metrics Server 2-6

Installing Prometheus Operator 2-6

Installing Grafana 2-6

3   Preparing Your Network Bridge Cloud Native Environment

Tasks for Preparing Your Cloud Native Environment 3-1

Downloading the Network Bridge Cloud Native Deployment Package 3-1

Extracting the Helm Chart 3-2

Loading Network Bridge Component Images 3-2

iii



Creating Secrets for Container Registry Authorization 3-3

4   Configuring Network Bridge for 5G to 4G Payload Transformation

About Configuring Network Bridge for 5G-to-4G Payload Conversion 4-1

Configuring Mandatory Values for 5G-to-4G Conversion 4-2

Configuring Network Bridge Components 4-5

5   Configuring Network Bridge for 5G-to-5G Payload Conversion

About Configuring Network Bridge for 5G-to-5G Payload Mediation 5-1

Configuring Mandatory Values for 5G-to-5G Payload Conversion 5-2

Configuring the Mediation Component for 5G-to-5G Payload Conversion 5-4

REST Services Configuration for 5G-to-5G Payload Conversion 5-10

Configuring a Mutation Processor 5-10

Configuring a KIE Processor 5-11

Configuring a REST Processor 5-11

Configuring a GRPC Processor 5-12

Example Processor Configuration for REST Services 5-13

Defining Mutation Rules for Payload Conversion 5-14

Configuring the Criterion Section 5-15

Configuring the Mutation Section 5-17

Example Mutation Rule File 5-19

Defining Business Rules in DRL Files 5-20

Sample N40 Proxy Configuration 5-21

6   Deploying Network Bridge

Deploying Network Bridge Cloud Native 6-1

Part II   Administering Network Bridge

7   Managing Network Bridge Pods

Setting up Autoscaling of Network Bridge Pods 7-1

8   Tracing the Flow of API Calls

About Tracing 8-1

Enabling Tracing in Network Bridge 8-1

iv



9   Monitoring Network Bridge Processes

About Monitoring Network Bridge Cloud Native 9-1

Setting Up Monitoring of Network Bridge Components 9-1

Enabling the Network Bridge Service Monitor 9-2

Network Bridge Cloud Native Metrics 9-2

Mediation and REST Proxy Metrics 9-3

Diameter Adapter Metrics 9-4

Diameter Proxy Metrics 9-6

10  
 

Using Network Bridge Logging

About Logging 10-1

Accessing the Network Bridge Logs 10-1

Changing the Log Levels 10-2

v



Preface

This guide describes how to install and administer Oracle Communications Network
Bridge on a cloud native environment.

Audience
This guide is intended for anyone who installs, configures, administers, customizes, or
uses Network Bridge.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


1
Overview of the Network Bridge Cloud Native
Deployment

Oracle Communications Network Bridge is a cloud native application in a containerized and
orchestrated deployment architecture.

For more information about Network Bridge, see "About Network Bridge" in Network Bridge
User Guide.

Topics in this document:

• About the Network Bridge Cloud Native Deployment

• Network Bridge Cloud Native Architecture

• About Network Bridge Pods

About the Network Bridge Cloud Native Deployment
Network Bridge is available as a cloud native deployment, supporting a Kubernetes-
orchestrated containerized multiservice architecture to facilitate continuous integration,
continuous delivery, and DevOps practices.

Network Bridge cloud native supports the following deployment models:

• On Private Kubernetes Cluster: Network Bridge cloud native can run on a general
deployment of Kubernetes.

• On Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE): Network Bridge
cloud native can run on Oracle's hosted Kubernetes OKE service.

• On Oracle Cloud Native Environment: Network Bridge cloud native can run on the Oracle
Cloud Native Environment.

Network Bridge Cloud Native Architecture
In the Network Bridge cloud native architecture, each component runs as a container and is
deployed as a Kubernetes pod, which is the fundamental building block of Kubernetes. Many
of the core Network Bridge components can be deployed and managed as multiple replicas
within a Kubernetes replica set.

About Network Bridge Pods
Table 1-1 lists the pods for Network Bridge whose containers are created and services are
exposed through them.

1-1



Table 1-1    Network Bridge Pods

Pod Replica Type Admin Port Container Port Service Type

diameter-
adapter-d2h

Multiple 8081/TCP 8080/TCP

1408/TCP

ClusterIP

diameter-
adapter-h2d

Multiple 8081/TCP 8080/TCP

1408/TCP

ClusterIP

diameter-proxy Multiple 8081/TCP 8080/TCP

1408/TCP

ClusterIP

diameter-proxy-
db-job

Single 8081/TCP N/A ClusterIP

egress Multiple 8081/TCP 8080/TCP

1408/TCP

ClusterIP

mediation Multiple 8081/TCP 8080/TCP

1408/TCP

ClusterIP

oc-ccs-ndb-
mgmd

Single 8081/TCP 1186/TCP ClusterIP

oc-ccs-ndb-
mysqld

Single 8081/TCP 3306/TCP ClusterIP

oc-ccs-ndb-
ndbmtd

Single 8081/TCP 1186/TCP ClusterIP

Chapter 1
About Network Bridge Pods

1-2



Part I
Installing Network Bridge

This part provides information about configuring and deploying Oracle Communications
Network Bridge in your cloud native environment. It contains the following chapters:

• Setting Up Prerequisite Software

• Preparing Your Network Bridge Cloud Native Environment

• Configuring Network Bridge for 5G to 4G Payload Transformation

• Configuring Network Bridge for 5G-to-5G Payload Conversion

• Deploying Network Bridge



2
Setting Up Prerequisite Software

You perform prerequisite tasks, such as installing Kubernetes and Helm, before deploying
Oracle Communications Network Bridge on your cloud native environment.

Topics in this document:

• Network Bridge Prerequisite Tasks

• Creating a Kubernetes Cluster

• Installing Docker

• Installing Helm

• Installing MySQL NDB Operator

• Installing an Ingress Controller

• Installing Jaeger

• Installing Kubernetes Metrics Server

• Installing Prometheus Operator

• Installing Grafana

Caution:

Oracle does not provide support for any prerequisite third-party software installation
or configuration. The customer needs to handle any installation or configuration
issues related to non-Oracle prerequisite software.

Network Bridge Prerequisite Tasks
As part of preparing your environment for Network Bridge cloud native, you choose, install,
and set up external applications and services in ways that are best suited for your cloud
native environment. The following shows the high-level prerequisite tasks:

1. Ensure you have downloaded the latest supported software compatible with Network
Bridge cloud native. See "Network Bridge Cloud Native Software Compatibility" in CCS
Compatibility Matrix.

2. Create a Kubernetes cluster.

3. Install a container platform supported by Kubernetes, such as Docker, Podman, or
containerd.

4. Install Helm.

5. Install MySQL NDB Operator.

6. Install an ingress controller.

2-1



7. If you plan to trace the flow of API calls through Network Bridge, install and
configure Jaeger.

For more information about tracing, see "Tracing the Flow of API Calls".

8. If you plan to autoscale your pods using Kubernetes Horizontal Pod Autoscaler:

• Install and configure Kubernetes Metrics Server.

• Install and configure a service mesh, such as Istio.

For more information about autoscaling, see "Setting up Autoscaling of Network
Bridge Pods".

9. If you plan to monitor Network Bridge operations:

• Install and configure Prometheus Operator.

• Install and configure Grafana.

For more information, see "Monitoring Network Bridge Processes".

Prepare your environment with these technologies installed, configured, and tuned for
performance, networking, security, and high availability. Make sure backup nodes are
available in case of system failure in any of the cluster's active nodes.

Creating a Kubernetes Cluster
Kubernetes is an open-source system for automating the deployment, scaling, and
management of containerized applications. It groups containers into logical units for
easy management and discovery. When you deploy Kubernetes, you get a physical
cluster with machines called nodes. A reliable cluster must have multiple worker nodes
spread over separate physical infrastructure, and a very reliable cluster must have
multiple primary nodes spread over separate physical infrastructure.

Figure 2-1 illustrates the Kubernetes cluster and the components that it interacts with.

Figure 2-1    Overview of the Kubernetes Cluster

Chapter 2
Creating a Kubernetes Cluster

2-2



Set up a Kubernetes cluster for your Network Bridge cloud native deployment, securing
access to the cluster and its objects with the help of service accounts and proper
authentication and authorization modules. Also, set up the following in your cluster:

• Volumes: Volumes are directories that are accessible to the containers in a pod and
provide a way to share data. The Network Bridge cloud native deployment package uses
persistent volumes for sharing data in and out of containers, but does not enforce any
particular type. You can choose from the volume type options available in Kubernetes.

• A networking model: Kubernetes assumes that pods can communicate with other pods,
regardless of which host they land on. Every pod gets its own IP address, so you do not
need to explicitly create a link between pods or map container ports to host ports. Several
implementations are available that meet the fundamental requirements of Kubernetes’
networking model. Choose the networking model depending on the cluster requirement.

Typically, you don't use Kubernetes nodes directly to run or monitor Kubernetes workloads.
Instead, you reserve worker node resources for running the Kubernetes workload. Multiple
cluster users (manual and automated) require a point from which to access and operate the
cluster. For example, you can use kubectl commands or Kubernetes APIs. For this purpose,
set aside a separate host or set of hosts. You can restrict operational and administrative
access to the Kubernetes cluster to these hosts. To reduce cluster exposure and promote the
traceability of actions, give specific users named accounts on these hosts.

Typically, the Continuous Delivery pipeline automation deploys directly on a set of operations
hosts or leverages runners deployed on operations hosts. These hosts must run Linux, with
all interactive-use packages installed to support tools such as Bash, Wget, cURL, Hostname,
Sed, AWK, cut, and grep. An example is the Oracle Linux 7.6 image on Oracle Cloud
Infrastructure.

In addition, you need the appropriate tools to connect to your overall environment, including
the Kubernetes cluster. For instance, for a Container Engine for Kubernetes (OKE) cluster,
you must install and configure the Oracle Cloud Infrastructure Command Line Interface.

Additional integrations may need to include LDAP for users to log in to this host, appropriate
NFS mounts for home directories, security lists and firewall configuration for access to the
overall environment, and so on.

For more information about Kubernetes, see "Kubernetes Concepts" in the Kubernetes
documentation.

Installing Docker
Use the Docker platform to containerize CCS products. Install Docker Engine if you want to
use the prebuilt images provided with the Network Bridge cloud native deployment package.

You can use Docker Engine or any container runtime that supports the Open Container
Initiative, as long as it supports the Kubernetes version specified in "Network Bridge Cloud
Native Software Compatibility" in CCS Compatibility Matrix.

Installing Helm
Helm is a package manager that helps you install and maintain software on a Kubernetes
system. In Helm, a package is called a chart, consisting of YAML files and templates
rendered into Kubernetes manifest files. The Network Bridge cloud native deployment
package includes Helm charts that help create Kubernetes objects, such as ConfigMaps,
Secrets, controller sets, and pods, with a single command.

Chapter 2
Installing Docker

2-3

https://kubernetes.io/docs/concepts/


The Network Bridge package also includes a values.yaml file, which contains the
default configuration for a cloud native deployment. You can change the Network
Bridge configuration by creating an override-values.yaml file and modifying the keys
and values you want to change. The settings in this file will override the default values
when you deploy Network Bridge or update your Network Bridge release.

Helm leverages kubeconfig for users running the helm command to access the
Kubernetes cluster. By default, this is $HOME/.kube/config. Helm inherits the
permissions set up for this access into the cluster. If you configure role-based access
control (RBAC), ensure you grant sufficient cluster permissions to users running Helm.

To install Helm, see the Helm installation documentation at: https://helm.sh/docs/intro/
install/.

Installing MySQL NDB Operator
Network Bridge components use MySQL NDB Operator to store session information.
Ensure that you install MySQL NDB Operator before deploying Network Bridge.

Note:

If you attempt to deploy Network Bridge prior to installing MySQL NDB
Operator, you will receive an error message similar to the following:

Error: INSTALLATION FAILED: unable to build kubernetes objects from 
release manifest: resource mapping not found for name: "ccs-ndb" 
namespace: "" from "": no matches for kind "NdbCluster" in version 
"mysql.oracle.com/v1"ensure CRDs are installed first

To deploy MySQL NDB Operator on your Network Bridge cloud native environment,
run the following command:

helm install --repo https://mysql.github.io/mysql-ndb-operator/ ndb-
operator ndb-operator -n NdbOperator --create-namespace \
   --set image=container-registry.oracle.com/mysql/commercial-ndb-
operator:8.0.32

If successful, you should see something similar to this:

NAME: ndb-operator
LAST DEPLOYED: Fri Oct 28 03:42:38 2023
NAMESPACE: NdbOperator
STATUS: deployed
REVISION: 1
TEST SUITE: None

For more information, see the MySQL NDB Operator README on the GitHub website: 
https://github.com/mysql/mysql-ndb-operator/blob/main/README.md.

Chapter 2
Installing MySQL NDB Operator

2-4

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://github.com/mysql/mysql-ndb-operator/blob/main/README.md


Installing an Ingress Controller
You use an ingress controller to expose Network Bridge services outside the Kubernetes
cluster and allow clients to communicate with Network Bridge. Ingress controllers monitor
ingress objects and act on the configuration embedded in these objects to expose Network
Bridge HTTP and T3 services to the external network.

Adding an external load balancer provides highly reliable single-point access to the services
exposed by the Kubernetes cluster. In this case, the services are exposed by the ingress
controller on behalf of the Network Bridge cloud native instance. Using a load balancer
removes the need to expose Kubernetes node IPs to the larger user base, insulates users
from changes (in terms of nodes appearing or being decommissioned) to the Kubernetes
cluster, and enforces access policies.

Add an ingress controller, such as NGINX, Istio, or Traefik, to your Network Bridge cloud
native system that has:

• Path-based routing for the Kubernetes Cluster service.

• TLS enabled between the client and the load balancer to secure communications outside
of the Kubernetes cluster.

After you install an ingress controller, you must define the rules for directing requests from the
following 5G services to the mediation service and mediation port:

• /nchf-convergedcharging/v3/*

• /npcf-smpolicycontrol/v1/*

The following shows example rules for mapping requests to the mediation service and the
mediation port (8080). Although this example is for NGINX, you can use any ingress
controller.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: ingress-oc-ccs
  namespace: ingressNameSpace
spec:
  ingressClassName: nginx
  rules:
  - http:
      paths:
      - path: /nchf-convergedcharging/v3
        pathType: Prefix
        backend:
          service:
            name: mediation
            port:
              number: 8080
      - path: /npcf-smpolicycontrol/v1
        pathType: Prefix
        backend:
          service:
            name: mediation

Chapter 2
Installing an Ingress Controller

2-5



            port:
              number: 8080

Installing Jaeger
You use the Jaeger tracing tool to help you trace the flow of messages through
Network Bridge components. It makes it easier to troubleshoot issues that may be
encountered.

To install Jaeger, see the Jaeger documentation at: https://www.jaegertracing.io/docs/
latest/.

Installing Kubernetes Metrics Server
Metrics Server collects resource metrics from kubelets and exposes them through the
Metrics API. These metrics are used by Kubernetes Horizontal Pod Autoscaler to
automatically adjust the CPU and memory usage in your Network Bridge pods.

To install Metrics Server, see the Kubernetes Metrics Server documentation at: https://
kubernetes-sigs.github.io/metrics-server/.

Installing Prometheus Operator
Prometheus Operator in an open-source toolkit that scrapes metric data from Network
Bridge and then stores it in a time-series database. You use it to monitor the operation
of Network Bridge processes. See "Monitoring Network Bridge Processes" for more
information.

To install Prometheus Operator, see the prometheus-operator GitHub website at: 
https://github.com/prometheus-operator/prometheus-operator.

Installing Grafana
Grafana is an open-source tool for viewing metric data that is stored in Prometheus
Operator. You can use the Grafana Dashboards shipped with Network Bridge to view
Network Bridge performance data.

To install Grafana, see the Grafana Loki installation documentation at: https://
grafana.com/docs/loki/latest/installation/helm/.

Chapter 2
Installing Jaeger

2-6

https://www.jaegertracing.io/docs/latest/
https://www.jaegertracing.io/docs/latest/
https://kubernetes-sigs.github.io/metrics-server/
https://kubernetes-sigs.github.io/metrics-server/
https://github.com/prometheus-operator/prometheus-operator
https://grafana.com/docs/loki/latest/installation/helm/
https://grafana.com/docs/loki/latest/installation/helm/


3
Preparing Your Network Bridge Cloud Native
Environment

Prepare your cloud native environment by downloading the cloud native deployment package
for Oracle Communications Network Bridge, extracting the Helm charts, and loading the
Network Bridge component images.

Topics in this document:

• Tasks for Preparing Your Cloud Native Environment

• Downloading the Network Bridge Cloud Native Deployment Package

• Extracting the Helm Chart

• Loading Network Bridge Component Images

• Creating Secrets for Container Registry Authorization

Tasks for Preparing Your Cloud Native Environment
As part of preparing your cloud native environment for Network Bridge, you download the
Network Bridge package and load the necessary component images into your Kubernetes
container system. The following shows the high-level tasks:

1. Download the Network Bridge cloud native deployment package to your cloud native
environment.

2. Extract the Network Bridge Helm charts from the downloaded package.

3. Load the Network Bridge component images into your container runtime.

4. (Optional) Create Secrets for your container registry.

Downloading the Network Bridge Cloud Native Deployment
Package

To download the Network Bridge cloud native deployment package, go to the Oracle software
delivery website (https://edelivery.oracle.com). Search for and then download Oracle
Communications Converged Charging System 2.0.0.0.0.

Table 3-1 lists the packages in the downloaded archive files. Replace version with the release
number. For example, for release 2.0.0, the file name for Oracle Communications Network
Bridge Diameter Adapter would be oc-ccs-diameter-adapter-2.0.0.tar.

Table 3-1    Network Bridge Component Packages

Component Package Name File Name

Oracle Communications Network Bridge Database Client oc-ccs-db-client-version.tar

3-1

https://edelivery.oracle.com


Table 3-1    (Cont.) Network Bridge Component Packages

Component Package Name File Name

Oracle Communications Network Bridge Diameter Adapter oc-ccs-diameter-adapter-version.tar

Oracle Communications Network Bridge Diameter Proxy oc-ccs-diameter-proxy-version.tar

Oracle Communications Network Bridge Mediation oc-ccs-mediation-version.tar

Oracle Communications Network Bridge Helm Chart oc-ccs-helm-chart-version.tgz

Extracting the Helm Chart
Extract the Network Bridge Helm chart by running this command:

oc-ccs-helm-chart-version.tgz

Loading Network Bridge Component Images
Images shipped with the Network Bridge cloud native deployment package are in the
form of TAR files. After downloading the TAR files, load them as images into your
container runtime.

For example, to load the Mediation image into a Docker system, you would do this:

1. Download the oc-ccs-mediation-version.tar file to the system where Docker is
installed, where version is the release number such as 2.0.0.

2. Load the Mediation image into Docker by entering this command:

docker load --input oc-ccs-mediation-version.tar

3. Verify that the image is loaded correctly by entering this command:

docker images mediation:version

The image details should be listed in one row.

If you use an internal registry to access images from different Kubernetes nodes, push
the images from the local system to the registry server. For example, if the registry is
identified by RepoHost:RepoPort, you'd push the Mediation image to the registry like
this:

1. Tag the image with the registry server by entering this command:

docker tag mediation:version RepoHost:RepoPort/oracle/cagbu/ccs/
network-bridge/mediation:version

2. Push the image to the registry server by entering this command:

docker push RepoHost:RepoPort/oracle/cagbu/ccs/network-bridge/
mediation:version

Chapter 3
Extracting the Helm Chart

3-2



Creating Secrets for Container Registry Authorization
You can automatically pull images from your private container registry by creating an
ImagePullSecrets, which contains a list of authorization tokens (or Secrets) for accessing a
private container registry. You then add references to the ImagePullSecrets in your
override-values.yaml file for the Network Bridge's Helm chart. This allows pods to submit
the Secret to the private container registry whenever they want to pull images.

To automatically pull images from a private container registry, create a Secret outside of the
Helm chart by entering this command:

kubectl create secret docker-registry SecretName --docker-
server=RegistryServer --docker-username=UserName --docker-password=Password -
n NameSpace

where:

• SecretName is the name of your Kubernetes Secret.

• RegistryServer is the fully qualified domain name (FQDN) of your private container
registry (repoHost:repoPort).

• UserName and Password are the user name and password for your private container
registry.

• NameSpace is the namespace you will use for installing the Network Bridge Helm chart.

For example:

kubectl create secret docker-registry cgbu-docker-registry --docker-
server=mydockerimages.com:0000/ --docker-username=xyz --docker-
password=password -n NetworkBridge

Chapter 3
Creating Secrets for Container Registry Authorization

3-3



4
Configuring Network Bridge for 5G to 4G
Payload Transformation

You can configure Oracle Communications Network Bridge to perform protocol translation
between a 5G Network Function (NF) and 4G Network Element (NE). To do so, you configure
an override-values.yaml file and then deploy Network Bridge on a cloud native environment.

Topics in this document:

• About Configuring Network Bridge for 5G-to-4G Payload Conversion

• Configuring Mandatory Values for 5G-to-4G Conversion

• Configuring Network Bridge Components

About Configuring Network Bridge for 5G-to-4G Payload
Conversion

You can use Network Bridge to dynamically transform HTTP usage requests from 5G
networks into the Diameter protocol, so they can be processed by a 4G LTE online charging
system (OCS) or a policy-driven charging system. Network Bridge converts the usage
requests according to the rules defined in the Network Bridge rule files.

Note:

The Network Bridge package includes rule files that support the following
conversions. You do not need to configure or customize the rule files for 5G NF to
4G NE conversion.

• Interworking between 5GC SMF and EPC OCS – N40 interface to Gy interface

• Interworking between 5GC SMF and EPC PCRF – N7 interface to Gx interface

Configuring Network Bridge for 5G NF to 4G NE conversion includes these high-level steps:

1. Creating an override-values.yaml file for the Network Bridge Helm chart.

2. Configuring the mandatory values for Network Bridge.

See "Configuring Mandatory Values for 5G-to-4G Conversion".

3. (Optional) Configuring one or more of the Network Bridge components. These
components are preconfigured to work for most systems, but you may want to tune their
values for a production system.

4-1



Note:

This step is not required for simple or demonstration systems.

See "Configuring Network Bridge Components".

4. (Optional) Configuring your components to support autoscaling.

See "Setting up Autoscaling of Network Bridge Pods".

5. (Optional) Configuring your components for tracing using Jaeger.

See "Tracing the Flow of API Calls".

6. (Optional) Configuring Prometheus to scrape metric data from your components
for display in Grafana Dashboards.

See "Monitoring Network Bridge Processes".

7. Deploy Network Bridge on your cloud native environment.

See "Deploying Network Bridge".

Configuring Mandatory Values for 5G-to-4G Conversion
To configure Network Bridge for 5G NF to 4G NE conversion, set the following keys in
your override-values.yaml file for oc-ccs-helm-chart-version. These keys are
required for creating a simple or demonstration version of Network Bridge that you can
start using right away.

These keys apply to all Network Bridge components, but they can be overridden for a
specific component by setting a different value in the component's key. For example, to
use a different pull policy for the Mediation component, set the network-
bridge.mediation.mediation.imagePullPolicy key.

Note:

The &keyName and *keyName values are Helm references. If a key in the
values.yaml file includes one of these references, you must also include the
reference in your override-values.yaml file.

imageRepository: &imageRepository my.example.com:9999
imagePullSecrets: &imagePullSecrets Secret
imagePullPolicy: &imagePullPolicy IfNotPresent
protocolTranslationFilePath: &protocolTranslationFilePath "config/
protocolTranslation"
nodeSelector: &nodeSelector
   env: oc-ccs

partOfLabel: &partOfLabel oc-ccs

loggingPattern: &loggingPattern "%d{ISO8601_OFFSET_DATE_TIME_HHCMM} | 
%5p | %X{traceId} | %-20.20thread | %-25.25logger{25} | %m%n"

Chapter 4
Configuring Mandatory Values for 5G-to-4G Conversion

4-2



tracingEnabled: &tracingEnabled true
tracingHost: &tracingHost jaeger-example
tracingPort: &tracingPort 14268
serviceMonitorEnabled: &serviceMonitorEnabled true

grafanaDashboardsEnabled: &grafanaDashboardsEnabled true
grafanaNamespace: &grafanaNamespace GrNameSpace

# Component images
mediationImage: &mediationImage "ccs/network-bridge/mediation:2.0.0"
egressImage: &egressImage "ccs/network-bridge/mediation:2.0.0"
diameterAdapterImage: &diameterAdapterImage "ccs/network-bridge/diameter-
adapter:2.0.0"
diameterProxyImage: &diameterProxyImage "ccs/network-bridge/diameter-
proxy:2.0.0"
dbClientImage: &dbClientImage "ccs/infra/db-client:2.0.0"

grafanaDashboards:  
   enabled: *grafanaDashboardsEnabled  
   grafanaNamespace: *grafanaNamespace  
   labels:    
      grafana_dashboard: "1"    
      release: prometheus  
   annotations:    
      k8s-sidecar-target-directory: "/tmp/dashboards/ccs"
serviceMonitor:  
   namespace: SmNameSpace

Table 4-1 describes each key.

Table 4-1    Mandatory Network Bridge Keys

Key Description

imageRepository Specifies the registry server where you pushed images, typically in this
format: RepoHost:RepoPort.

This value is added as a prefix to all image names when you install or
upgrade Helm charts.

imagePullSecrets Specifies the name of the Secret that contains credentials for
accessing images from your private image server. The default is
regcred.

This is added to each pod to give it permission to pull the image from
your private registry server. See "Creating Secrets for Container
Registry Authorization" for more information.

imagePullPolicy Specifies when Kubernetes pulls images:

• Always: It always pulls an image from the repository.
• IfNotPresent: It pulls an image only when one does not exist on a

node. This is the default.
• Never: It never pulls the image from the repository.

protocolTranslationFilePat
h

Specifies the directory in which the protocol translation files are
located.

The default is config/protocolTranslation.

Chapter 4
Configuring Mandatory Values for 5G-to-4G Conversion

4-3



Table 4-1    (Cont.) Mandatory Network Bridge Keys

Key Description

nodeSelector Specifies the nodes on which to deploy Network Bridge components.
Labels appear underneath nodeSelector in a set of key-value pairs.

partOfLabel Specifies the value to assign to the component's app.kubernetes.io/
part-of label. This label identifies the application that the resource
belongs to.

loggingPattern Specifies the format and syntax of log files.

tracingEnabled Specifies whether tracing through Jaeger is enabled.

The default is false.

tracingHost Specifies the host name for the Jaeger server. The default is jaeger-
all-in-one.jaeger.svc.cluster.local.

This key applies only if tracing is enabled.

tracingPort Specifies the port number for Jaeger. The default is 14268.

This key applies only if tracing is enabled.

serviceMonitorEnabled Specifies whether to enable Kubernetes ServiceMonitor, which is used
to monitor a group of services.

The default is false.

grafanaDashboardsEnable
d

Specifies whether to enable Grafana Dashboards for Grafana Operator.

The default is false.

grafanaNamespace Specifies the namespace on which Grafana is deployed. The default is
kube-logging.

This key applies only if Grafana Dashboards are enabled.

mediationImage Specifies the name of the Mediation image.

The default is ccs/network-bridge/mediation:2.0.0.

egressImage Specifies the name of the Egress image.

The default is ccs/network-bridge/mediation:2.0.0.

diameterAdapterImage Specifies the name of the Diameter Adapter image.

The default is ccs/network-bridge/diameter-adapter:2.0.0.

diameterProxyImage Specifies the name of the Diameter Proxy image.

The default is ccs/network-bridge/diameter-proxy:2.0.0.

dbClientImage Specifies the name of the Database Client image.

The default is ccs/infra/db-client:2.0.0.

grafanaDashboards.labels.
grafana_dashboard

Specifies the labels to add to Grafana CRDs. This helps Grafana
discover the dashboards. The default is 1.

This key applies only if Grafana Dashboards are enabled.

grafanaDashboards.labels.
release

Specifies the release name on which Grafana Operator is deployed.
The default is prometheus.

This key applies only if Grafana Dashboards are enabled.

grafanaDashboards.annota
tions.k8s-sidecar-target-
directory

Specifies the directory in which the Grafana Dashboards are deployed.
The default is /tmp/dashboards/ccs.

This key applies only if Grafana Dashboards are enabled.

serviceMonitor.namespace Specifies the namespace in which the Service Monitor is deployed.

This key applies only if Service Monitor is enabled.

Chapter 4
Configuring Mandatory Values for 5G-to-4G Conversion

4-4



Configuring Network Bridge Components
The following Network Bridge components contain default values that will work for most test
and demonstration systems, but you can configure them according to your business
requirements.

• MySQL NDB component. For information about this component's keys, view the oc-ccs/
charts/oc-network-bridge-0.2.0.tgz/charts/oc-nb-mediation/values.schema.json file
in a Markdown viewer.

• Mediation component. For information about this component's keys, view the oc-ccs/
charts/oc-network-bridge-0.2.0.tgz/charts/oc-nb-mediation/values.schema.json file
in a Markdown viewer.

• Egress component. For information about this component's keys, view the oc-ccs/
charts/oc-network-bridge-0.2.0.tgz/charts/oc-nb-mediation/values.schema.json file
in a Markdown viewer.

• HTTP to Diameter Adapter component. For information about this component's keys,
view the oc-ccs/charts/oc-network-bridge-0.2.0.tgz/charts/oc-nb-diameter-adapter/
values.schema.json file in a Markdown viewer.

• Diameter to HTTP Adapter component. For information about this component's keys,
view the oc-ccs/charts/oc-network-bridge-0.2.0.tgz/charts/oc-nb-diameter-adapter/
values.schema.json file in a Markdown viewer.

• Diameter Proxy component. For information about this component's keys, view the oc-
ccs/charts/oc-network-bridge-0.2.0.tgz/charts/oc-nb-diameter-proxy/
values.schema.json file in a Markdown viewer.

Chapter 4
Configuring Network Bridge Components

4-5



5
Configuring Network Bridge for 5G-to-5G
Payload Conversion

You can configure Oracle Communications Network Bridge to mediate payloads between two
5G Network Functions (NFs). To do so, you create a mutation rules file, configure an
override-values.yaml file, and then deploy Network Bridge on a cloud native environment.

Topics in this document:

• About Configuring Network Bridge for 5G-to-5G Payload Mediation

• Configuring Mandatory Values for 5G-to-5G Payload Conversion

• Configuring the Mediation Component for 5G-to-5G Payload Conversion

• Defining Mutation Rules for Payload Conversion

• Defining Business Rules in DRL Files

• Sample N40 Proxy Configuration

About Configuring Network Bridge for 5G-to-5G Payload
Mediation

You can use Network Bridge to interconnect two 5G NFs that support different payload
formats. In this case, Network Bridge acts as an N40 proxy, dynamically transforming HTTP
message payloads according to your defined rules.

To configure Network Bridge to mediate payloads between 5G NFs:

1. Create an override-values.yaml file for the Network Bridge Helm chart.

2. Configure the mandatory values for 5G-to-5G payload conversion.

See "Configuring Mandatory Values for 5G-to-5G Payload Conversion".

3. Configure the Mediation component for 5G-to-5G payload conversion.

See "Configuring the Mediation Component for 5G-to-5G Payload Conversion".

4. Define how to mutate message payloads.

See "Defining Mutation Rules for Payload Conversion".

5. (Optional) Define any business rules for modifying messages.

See "Defining Business Rules in DRL Files".

6. (Optional) Configure the Mediation component to support autoscaling.

See "Setting up Autoscaling of Network Bridge Pods".

7. (Optional) Configure your Mediation component for tracing using Jaeger.

See "Tracing the Flow of API Calls".

5-1



8. (Optional) Configure Prometheus to scrape metric data from your Mediation
component for display in Grafana Dashboards.

See "Monitoring Network Bridge Processes".

9. Deploy Network Bridge on your cloud native environment.

See "Deploying Network Bridge".

Configuring Mandatory Values for 5G-to-5G Payload
Conversion

To configure Network Bridge for 5G NF to 5G NF payload conversion, set the following
keys in your override-values.yaml file for oc-ccs-helm-chart-version. These keys
are required for creating a simple or demonstration version of Network Bridge that you
can start using right away.

These keys apply to all Network Bridge components, but you can override a key's
value for a specific component. For example, to use a different pull policy for the
Mediation component, set the network-bridge-restproxy.rest-
proxy.imagePullPolicy key to another value.

Note:

The &keyName and *keyName values are Helm references. If a key in the
values.yaml file includes one of these references, you must also include the
reference in your override-values.yaml file.

imageRepository: &imageRepository "repository.example.com:7840"
imagePullSecrets: &imagePullSecrets regcred
imagePullPolicy: &imagePullPolicy IfNotPresent
protocolTranslationFilePath: &protocolTranslationFilePath "config/
protocolTranslation"
nodeSelector: &nodeSelector

partOfLabel: &partOfLabel oc-ccs

loggingPattern: &loggingPattern "%d{ISO8601_OFFSET_DATE_TIME_HHCMM} | 
%5p | %X{traceId} | %-20.20thread | %-25.25logger{25} | %m%n"

tracingEnabled: &tracingEnabled true
tracingHost: &tracingHost jaeger-all-in-one.jaeger.svc.cluster.local
tracingPort: &tracingPort 14268
serviceMonitorEnabled: &serviceMonitorEnabled true

grafanaDashboardsEnabled: &grafanaDashboardsEnabled true
grafanaNamespace: &grafanaNamespace kube-logging

grafanaDashboards:
  enabled: *grafanaDashboardsEnabled
  grafanaNamespace: *grafanaNamespace
  labels:

Chapter 5
Configuring Mandatory Values for 5G-to-5G Payload Conversion

5-2



    grafana_dashboard: "1"
    release: prometheus
  annotations:
    k8s-sidecar-target-directory: "/tmp/dashboards/ccs"
serviceMonitor:
  enabled: *serviceMonitorEnabled
  namespace:

Table 5-1 describes each key.

Table 5-1    Mandatory Keys for 5G-to-5G Payload Conversion

Key Description

imageRepository Specifies the registry server where you pushed images, typically in this
format: RepoHost:RepoPort.

This value is added as a prefix to all image names when you install or
upgrade Helm charts.

imagePullSecrets Specifies the name of the Secret that contains credentials for
accessing images from your private image server. The default is
regcred.

The Secret is added to each pod to permit it to pull the image from your
private registry server. See "Creating Secrets for Container Registry
Authorization" for more information.

imagePullPolicy Specifies when Kubernetes pulls images:

• Always: It always pulls an image from the repository.
• IfNotPresent: It pulls an image only when one does not exist on a

node. This is the default.
• Never: It never pulls the image from the repository.

partOfLabel Specifies the value to assign to the component's app.kubernetes.io/
part-of label. This label identifies the application that the resource
belongs to.

nodeSelector Specifies the nodes on which to deploy Network Bridge components.
Labels appear underneath nodeSelector in a set of key-value pairs.

loggingPattern Specifies the format and syntax of logs.

tracingEnabled Specifies whether tracing through Jaeger is enabled.

The default is false.

tracingHost Specifies the host name for the Jaeger server. The default is jaeger-
all-in-one.jaeger.svc.cluster.local.

This key only applies if tracing is enabled.

tracingPort Specifies the port number for Jaeger. The default is 14268.

This key only applies if tracing is enabled.

serviceMonitorEnabled Specifies whether to enable a Kubernetes Service Monitor, which can
monitor a group of services.

The default is false.

grafanaDashboardsEnable
d

Specifies whether to enable Grafana Dashboards for Grafana Operator.

The default is false.

grafanaNamespace Specifies the namespace on which Grafana is deployed. The default is
kube-logging.

This key only applies if Grafana Dashboards are enabled.

Chapter 5
Configuring Mandatory Values for 5G-to-5G Payload Conversion

5-3



Table 5-1    (Cont.) Mandatory Keys for 5G-to-5G Payload Conversion

Key Description

grafanaDashboards.labels.
grafana_dashboard

Specifies the labels to add to Grafana CRDs. Labels help Grafana
discover dashboards. The default is 1.

This key applies only if Grafana Dashboards are enabled.

grafanaDashboards.labels.
release

Specifies the release name on which Grafana Operator is deployed.
The default is prometheus.

This key only applies if Grafana Dashboards are enabled.

grafanaDashboards.annota
tions.k8s-sidecar-target-
directory

Specifies the directory in which the Grafana Dashboards are deployed.
The default is /tmp/dashboards/ccs.

This key only applies if Grafana Dashboards are enabled.

serviceMonitor.namespace Specifies the namespace in which the Service Monitor is deployed.

This key only applies if Service Monitor is enabled.

Configuring the Mediation Component for 5G-to-5G Payload
Conversion

To configure the Mediation component for 5G-to-5G payload conversion, set the
following keys in your override-values.yaml file:

network-bridge-restproxy:
  enabled: false
  restProxyImage: &restProxyImage "ccs/network-bridge/mediation:2.0.0"
  # Network Bridge Top Level
  name: network-bridge
  fullname: "network-bridge-restproxy"

  rest-proxy:
    enabled: true
    imageRepository: *imageRepository
    imagePullSecrets: *imagePullSecrets
    imagePullPolicy: *imagePullPolicy
    partOfLabel: *partOfLabel
    mediation:
      name: rest-proxy
      fullname: "rest-proxy"
      additionalLabels: { }
      annotations: { }
      nodeSelector: *nodeSelector
      client:
        connect-timeout-millis: 2000
        read-timeout-millis: 2000
        follow-redirects: true
        max-redirects: 5
        additionalAttributes: { }
      kieRulesConfigMapOverride: MyKieRules
      mutatorRulesConfigMapOverride: MyMutationRules
      restServices:

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-4



        - name: "all_sbi"
          config:
            path: "/{:npcf-smpolicycontrol\/v1\/sm-policies($|\/[^/]+\/
(update|delete)($|\/$))|nchf-convergedcharging\/v3\/chargingdata($|\/[^/]+\/
(update|release)($|\/$))|nchf-convergedcharging\/v3\/notify($|\?
notifyUri=.*)}"
          processors:
            - name: "kie_processor"
              type: KIE_PROCESSOR
              config:
                rules-path: "/app/config/rules"
      grpcServices: [ ]
      container:
        image: *restProxyImage
      terminationGracePeriodSeconds: 60
      resources:
        memoryRequest: "256Mi"
        cpuRequest: "250m"
        memoryLimit: "2048Mi"
        cpuLimit: "500m"
      replicas: 1
      jvmOpts: "-XX:+UseG1GC -XX:MaxGCPauseMillis=50 -
XX:InitialRAMPercentage=80 -XX:MaxRAMPercentage=80 -XX:MinRAMPercentage=80 -
Dlog4j.configurationFile=config/log4j2.yaml"
      restartCount: 0
      hpa:
        enabled: true
        minReplicas: 1
        maxReplicas: 8
        metrics:
          cpuAverageUtilization: 65
        scaleDown:
          selectPolicy: Max
          stabilizationWindowSeconds: 300
          periodSeconds: 180
        scaleUp:
          selectPolicy: Max
          stabilizationWindowSeconds: 5
          periodSeconds: 20
      service:
        type: ClusterIP
        additionalLabels: { }
        additionalAnnotations: { }
      adminService:
        type: ClusterIP
        additionalLabels: { }
        additionalAnnotations: { }
      logging:
        format:
          type: TEXT
          pattern: *loggingPattern
        rootLevel: INFO
        packageLogging:
          - name: com.oracle.cagbu
            level: INFO

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-5



          - name: io.helidon
            level: INFO
          - name: org.jboss
            level: INFO
          - name: io.jaegertracing.internal.reporters
            level: WARN
      tracing:
        enabled: *tracingEnabled
        service: mediation
        maxQueueSize: 42
        flushIntervalMs: 10001
        host: *tracingHost
        port: *tracingPort
        samplerType: ratelimiting
        samplerParam: 1
        samplerManager:
        logSpans: true
        webServer:
          spans:
            httpRequest:
              contentWrite: false
              contentRead: false

    grafanaDashboards:
      enabled: *grafanaDashboardsEnabled
      grafanaNamespace: *grafanaNamespace
      labels:
        grafana_dashboard: '1'
        release: prometheus
      annotations:
        k8s-sidecar-target-directory: "/tmp/dashboards/ccs"

    serviceMonitor:
      enabled: *serviceMonitorEnabled
      namespace:

    ingress:
      ingressClassName:

Table 5-2 describes each key.

Note:

You can also view key descriptions by opening the oc-ccs/charts/oc-
network-bridge-0.2.0.tgz/charts/oc-nb-mediation/values.schema.json file
in a Markdown viewer.

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-6



Table 5-2    Mediation Component Keys

Key Path in values.yaml Description

enabled network-bridge-
restproxy

Specifies whether Network Bridge as a REST
proxy is enabled.

The default is false.

restProxyImage network-bridge-
restproxy

Specifies the name of the REST Proxy image. The
default is ccs/network-bridge/mediation:2.0.0.

name network-bridge-
restproxy

Sets the name of the application. This is used to
identify the application in the cluster.

fullname network-bridge-
restproxy

Sets the full name of the application.

enabled network-bridge-
restproxy.rest-proxy

Enables the Mediation component as a REST
Proxy.

The default is true.

imageRepository network-bridge-
restproxy.rest-proxy

Specifies the registry server where you pushed
images, typically in this format:
RepoHost:RepoPort.

Note: The component uses the global
imageRepository setting by default. Set this key
only if you want to use a different registry server.

imagePullSecrets network-bridge-
restproxy.rest-proxy

Specifies the name of the Secret that contains
credentials for accessing images from your private
image server.

Note: The component uses the global
imageRepository setting by default. Set this key
only if you want to use a different Secret.

imagePullPolicy network-bridge-
restproxy.rest-proxy

Sets when Kubernetes pulls images: Always,
IfNotPresent, or Never.

Note: The component uses the global
imagePullPolicy setting by default. Set this key
only if you want to use a different setting.

partOfLabel network-bridge-
restproxy.rest-proxy

Sets the value to assign to the component's
app.kubernetes.io/part-of label. This label
identifies the application that the resource belongs
to.

name network-bridge-
restproxy.rest-
proxy.mediation

Sets the name of the component. This is used to
identify the component in the cluster.

fullname network-bridge-
restproxy.rest-
proxy.mediation

Sets the full name of the component. This name
will be used in place of the ReleaseName-Name
pattern.

additionalLabels network-bridge-
restproxy.rest-
proxy.mediation

Specifies the additional labels to add to a
Kubernetes custom resource definition (CRD).

annotations network-bridge-
restproxy.rest-
proxy.mediation

Specifies the additional annotations to add to a
Kubernetes CRD.

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-7



Table 5-2    (Cont.) Mediation Component Keys

Key Path in values.yaml Description

client.* network-bridge-
restproxy.rest-
proxy.mediation

The details for configuring the client:

• connect-timeout-millis: Sets the time to wait
in milliseconds for a connection to be
established with the service. The default is
2000.

• read-timeout-millis: Sets the time to wait in
milliseconds to read a response from the
service. The default is 2000.

• follow-redirects: Enables GET methods to
follow redirects provided in the response. The
default is true.

• max-redirects: Sets the maximum number of
chained redirects that are allowed. The
default is 5.

• additionalAttributes: Specifies the additional
attributes for configuring the web client.

kieRulesConfigMapOv
erride

network-bridge-
restproxy.rest-
proxy.mediation

Specifies the name of the ConfigMap that
contains your KIE rule file. If not specified,
Network Bridge uses the rules defined in the
default KIE rule file. This value applies to
KIE_PROCESSOR type processors only.

See "Defining Business Rules in DRL Files" for
more information.

mutatorRulesConfigM
apOverride

network-bridge-
restproxy.rest-
proxy.mediation

Specifies the name of the ConfigMap that
contains your mutation rule file. If not specified,
Network Bridge uses the rules defined in the
default mutation rule file. This value applies to
MUTATOR_PROCESSOR type processors only.

See "Defining Mutation Rules for Payload
Conversion" for more information.

restServices.* network-bridge-
restproxy.rest-
proxy.mediation

Specifies how to process REST service
messages.

See "REST Services Configuration for 5G-to-5G
Payload Conversion" for more information.

grpcServices.* network-bridge-
restproxy.rest-
proxy.mediation

Specifies how to process gRPC service
messages.

terminationGracePerio
dSeconds

network-bridge-
restproxy.rest-
proxy.mediation

Specifies the amount of time, in seconds, the
Mediation pod needs to shut down gracefully.

The value must be a non-negative integer. A value
of 0 specifies to terminate immediately, and a nil
value specifies to use the default grace period.

The grace period is the duration in seconds after
which the processes running in the pod are sent a
termination signal. The processes are forcibly
halted with a kill signal. Set this value longer than
the expected cleanup time for your process.

The default is 60.

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-8



Table 5-2    (Cont.) Mediation Component Keys

Key Path in values.yaml Description

resources.* network-bridge-
restproxy.rest-
proxy.mediation

Specifies the minimum and maximum amount of
memory and CPU that can be used.

See "Setting up Autoscaling of Network Bridge
Pods" for more information.

replicas network-bridge-
restproxy.rest-
proxy.mediation

Specifies the desired number of pod replicas.

This key is ignored if HPA is enabled.

jvmOpts network-bridge-
restproxy.rest-
proxy.mediation

Specifies the JVM options to use when starting
the Mediation component.

restartCount network-bridge-
restproxy.rest-
proxy.mediation

Specifies the number of times the service has
been restarted. Increment this value by 1 and run
the Helm upgrade command to force a rolling
restart of the Mediation pods.

hpa.* network-bridge-
restproxy.rest-
proxy.mediation

Specifies the minimum and maximum number of
pod replicas that can be deployed, the scale-up
rules, and the scale-down rules.

See "Setting up Autoscaling of Network Bridge
Pods" for more information.

type network-bridge-
restproxy.rest-
proxy.mediation.servic
e

Specifies how the service is exposed:

• NodePort: Builds on ClusterIP and allocates
a port on every node that routes to ClusterIP.

• ClusterIP: Allocates a cluster-internal IP
address for load balancing to endpoints.

The default is ClusterIP.

type network-bridge-
restproxy.rest-
proxy.mediation.admin
Service

Specifies how the admin service is exposed:

• NodePort: Builds on ClusterIP and allocates
a port on every node that routes to ClusterIP.

• ClusterIP: Allocates a cluster-internal IP
address for load balancing to endpoints.

The default is ClusterIP.

logging.* network-bridge-
restproxy.rest-
proxy.mediation

Specifies the logging levels for the Mediation
component.

See "Using Network Bridge Logging" for more
information.

tracing.* network-bridge-
restproxy.rest-
proxy.mediation

Specifies how to set up tracing for the Mediation
component.

See "Tracing the Flow of API Calls" for more
information.

ingressClassName network-bridge-
restproxy.rest-
proxy.mediation.ingre
ss

Specifies the Class Name for the Ingress
Controller.

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-9



REST Services Configuration for 5G-to-5G Payload Conversion
You can configure the Mediation component to listen for REST services from a specific
URL and then call one or more processors. To do so, add a restServices section
under network-bridge-restproxy.rest-proxy.mediation. The restServices section
uses this syntax:

restServices:
  - name: "Example Name"
    config:
      path: "*"
    processors:
      - ProcessorN
      - ProcessorN
      - ProcessorN
      ...

Replace ProcessorN with the keys for one or more of these processor types:

• KIE processor. See "Configuring a KIE Processor".

• Mutation processor. See "Configuring a Mutation Processor".

• REST processor. See "Configuring a REST Processor".

• gRPC processor. See "Configuring a GRPC Processor".

For an example of how to configure this section, see "Example Processor
Configuration for REST Services".

Configuring a Mutation Processor
You use a Mutation processor to transform REST request and response messages
according to the rules defined in a mutation rule file. You configure the processor by
using these keys in the restServices.processors section of your override-
values.yaml file:

- name: mutation-response
  type: MUTATOR_PROCESSOR
  config:
    rules-path: "src/test/resources/mutation/rules"
    rule-names:
     - reWriteResponse

where:

• name: Specifies the name of the mutation processor instance.

• config.rules-path: Specifies the file system path that contains your mutation rule
file.

• config.rule-names: Specifies the names of one or more rules to run against
incoming REST messages. The listed names must match the rule names in your
mutation rule file.

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-10



Configuring a KIE Processor
You use a KIE processor to convert REST messages according to the rules defined in a DRL
file. You configure the KIE processor by using these keys in the restServices.processors
section of your override-values.yaml file:

- name: "kie_processor"
  type: KIE_PROCESSOR
  config:
    rules-path:"/app/config/rules" 

where:

• name: Specifies the name of the KIE processor instance.

• config.rules-path: Specifies the system path to your DRL business rule files.

Configuring a REST Processor
You use a REST processor to optionally add a header to REST messages before sending
them to a specified URI.

You can also add fault tolerance to the REST processor, which is achieved through a
combination of retries and a circuit breaker. Retries automatically attempt to run the
processor multiple times if it fails to respond. For example, if a REST processor request fails
due to a temporary error, the processor can retry the call after a specified interval to check if
the error has been resolved. Retries can increase the chances of successfully calling the
service and reduce the overall impact of temporary errors.

The circuit breaker prevents cascading processor failures by automatically failing fast when a
processor fails too often. The circuit breaker monitors the health of a processor by tracking
the number of failures the processor encounters. If the number of failures exceeds a
threshold, the circuit breaker trips, and all subsequent calls to the processor fail automatically
without actually trying to run the processor. This prevents further failures and allows the
system to recover more quickly. After a specified period of time, the circuit breaker is reset,
and processor calls are allowed to go through.

You define the REST processor by using these keys in the restServices.processors section
of your override-values.yaml file:

- name: sample-rest-processor
  type: REST_PROCESSOR        
  config:           
    uri: "http://sample.example.com"     
    destUriHeader: dest_uri   
  faultTolerance:     
    retry: 
      delay: 5       
      calls: 3
      delayFactor: 1.0
    circuitBreaker: 
      delay: 500
      errorRatio: 20       

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-11



      successThreshold: 10
      volume: 2

where:

• name: Specifies the name of the REST processor instance.

• config.uri: Specifies the URI to send messages to.

• config.destUriHeader: Sets the metadata parameter that indicates the host to
send REST requests to.

• faultTolerance.retry.delay: Sets the duration, in milliseconds, to wait before
retrying the process in case of failure.

• faultTolerance.retry.calls: Sets the maximum number of times to retry the
process in case of failure.

• faultTolerance.retry.delayFactor: Sets the multiplication factor of delay between
two consecutive retries.

• faultTolerance.circuitBreaker.delay: Sets the duration, in milliseconds, to wait
before retrying the process in case of failure.

• faultTolerance.circuitBreaker.errorRatio: Specifies the percentage of failures
that will open the circuit breaker.

• faultTolerance.circuitBreaker.successThreshold: Specifies the number of
successful calls that will close a half-open breaker.

• faultTolerance.circuitBreaker.volume: Specifies the size of the processing
window.

Configuring a GRPC Processor
You use a gRPC processor to convert REST messages into an internal gRPC format
for intercomponent communication.

Note:

This processor is not typically needed for 5G-to-5G payload conversion.

You configure the gRPC processor by using these keys in the
restServices.processors section of your override-values.yaml file:

- name: "grpc"
  type: GRPC_PROCESSOR
  config:
    host: "egress"
    port: 1408

where:

• name: Specifies the name of the gRPC processor instance.

• config.host: Specifies the host name of the server to send messages to.

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-12



• config.port: Specifies the port to send messages to.

Example Processor Configuration for REST Services
The following example processor configuration for REST services specifies to do the
following:

1. Listen for REST messages from a 5G SBI path.

2. Call kie_processor to convert incoming REST messages according to the DRL files in
the /app/config/rules file path.

3. Call mutation-request to mutate incoming REST messages by applying the
addChargingInfo and addHeaders rules from the mutation rule file stored in src/test/
resources/mutation/rules.

4. Call sample-rest-processor to add the destination:dest_uri header to messages
before sending them to the http://sample.example.com server. If a call to the server
fails, sample-rest-processor will retry the call up to three times, five milliseconds apart.

5. When processing response messages from the 5G NF, call mutation-response to
mutate REST messages by applying the reWriteResponse rule from the mutation rule
file stored in src/test/resources/mutation/rules.

restServices:
  - name: "all_sbi"
    config:
      path: "/{:npcf-smpolicycontrol\/v1\/sm-policies($|\/[^/]+\/(update|
delete)($|\/$))|nchf-convergedcharging\/v3\/chargingdata($|\/[^/]+\/(update|
release)($|\/$))|nchf-convergedcharging\/v3\/notify($|\?notifyUri=.*)}"
    processors:
      - name: "kie_processor"
        type: KIE_PROCESSOR
        config:
          rules-path:"/app/config/rules"  
     - name: mutation-request
       type: MUTATOR_PROCESSOR
       config:
          rules-path: "src/test/resources/mutation/rules"
          rule-names:
           - addChargingInfo
           - addHeaders
      - name: sample-rest-processor
        type: REST_PROCESSOR        
        config:           
          uri: "http://sample.example.com"           
          destUriHeader: dest_uri         
        faultTolerance:           
          retry:             
            delay: 5             
            calls: 3
            delayFactor: 1.0
      - name: mutation-response
        type: MUTATOR_PROCESSOR
        config:
          rules-path: "src/test/resources/mutation/rules"

Chapter 5
Configuring the Mediation Component for 5G-to-5G Payload Conversion

5-13



          rule-names:
           - reWriteResponse

Defining Mutation Rules for Payload Conversion
For 5G-to-5G payload conversion, you create a mutation rule file that defines:

• The criteria that the HTTP message must meet to be transformed. If you include
multiple requirements, the message must meet them all to be transformed.

• The transformation to perform on the HTTP message, such as changing a field in
the request header or JSON body.

Note:

To configure Network Bridge as an N40 proxy, you must add three rules with
the following names to the file: addChargingInfo, addHeaders, and
reWriteResponse.

To define the rules for 5G payload conversion:

1. Create a mutation rule file in YAML format and open it in a text editor.

Alternatively, you can start with the example oc-ccs/charts/oc-network-
bridge-0.2.0.tgz/charts/oc-nb-mediation/data/mutation-rules/
exampleRule.yaml file.

2. Add a rule name and a brief description. For example:

ruleName: "addChargingInfo"
ruleDescription: "My new rule adds a field to the JSON body."

3. Add a criterion section that defines one or more criteria that an HTTP message
must meet. To specify that all HTTP messages meet the requirements, leave the
criterion section empty.

For example, this shows a simple criterion section that requires a message to
contain a POST HTTP method:

criterion:
   value:      
      method:        
         criteriaType: EQUAL        
         value: POST

For more information, see "Configuring the Criterion Section".

4. Add a mutation section that specifies how to transform the HTTP message.

For example, this shows a simple mutation section that modifies the JSON body
by changing the ratingGroup value to 15.

mutation:
  json:    

Chapter 5
Defining Mutation Rules for Payload Conversion

5-14



    body:      
    - mutationType: JSON_PATCH 
      jsonPatch:          
      - op: replace 
        path: /multipleUnitUsage/ratingGroup 
        value: "15"

For more information, see "Configuring the Mutation Section".

5. Save and close the file.

For more information about configuring the mutation rule file, see "Example Mutation
Rule File".

You can also view descriptions of each key in the mutation rule file by opening the oc-
ccs/charts/oc-network-bridge-0.2.0.tgz/charts/oc-nb-mediation/
mutator.rules.schema.json file in a Markdown viewer.

6. Create a ConfigMap from your mutation rule file by running this command:

kubectl create configmap ConfigMapName --from-file=Path

where ConfigMapName is your desired name for the ConfigMap, and Path is the
directory that contains the mutation rule file.

7. Configure Network Bridge to use your mutation rule file by doing the following in your
override-values.yaml file:

• Set the network-bridge-restproxy.rest-
proxy.mediation.mutatorRulesConfigMapOverride key to ConfigMapName.

This configures Network Bridge to use your mutation rule file for all
MUTATOR_PROCESSOR type processors.

• Ensure you add a section to your override-values.yaml file for calling a
MUTATOR_PROCESSOR type processor when processing REST services. For
more information, see "Configuring a Mutation Processor".

Configuring the Criterion Section
The criterion section specifies the fields and values the HTTP message must contain to
qualify for transformation. The criteria can include a required value for a single field, a
required key-value pair for a field, or a value for a JSON field.

The criterion section uses the following syntax:

criterion:
   GroupType
   GroupType
   ...

Replace GroupType with one or more of the following group types:

Chapter 5
Defining Mutation Rules for Payload Conversion

5-15



• value: Requires a URI, method, or status code to match a single string value. For
example, requiring a message to contain a URI of https://hostname:httpsPort/
nchf-convergedcharging/v3/chargingdata. The value group type uses this
syntax:

value:      
   ValueObject:        
      criteriaType: CriteriaType        
      value: Value

where:

– ValueObject is one of these: uri, method, or statusCode.

– CriteriaType specifies the criteria type. Supported values are EQUALS,
EQUALS_IGNORE_CASE, NOT_EQUALS,
NOT_EQUALS_IGNORE_CASE, IS_NOT_NULL, IS_NULL, and REGEX.

– Value specifies the required value.

• keyValue: Requires a header or query parameter to contain a specified key-value
pair, such as a message must include Accept-Language:en-US in its header. The
keyValue group type uses this syntax:

keyValue:      
   MapName:        
   - criteriaType: CriteriaType          
     key: KeyName          
     value: Value

where:

– MapName is either headers or queryParams.

– CriteriaType specifies the criteria type. Supported values are EQUALS,
EQUALS_IGNORE_CASE, NOT_EQUALS,
NOT_EQUALS_IGNORE_CASE, IS_NOT_NULL, IS_NULL, and REGEX.

– KeyName specifies the required key.

– Value specifies the required value.

• json: Requires a JSON path to match a string value, such as the message body
must contain a JSON path of $.SequenceNumber. The json group type uses this
syntax:

json:      
   body:        
   - criteriaType: CriteriaType          
     value: MatchValue

where:

– CriteriaType specifies the criteria type. Supported values are REGEX and
JSON_PATH.

– Value specifies the required JSON string value.

Table 5-3 describes each criteria type.

Chapter 5
Defining Mutation Rules for Payload Conversion

5-16



Table 5-3    Criteria Types

Criteria Type Description Supported Group
Types

EQUALS The value must match, and the value is case-sensitive. value
keyValue

EQUALS_IGNORE_
CASE

The value must match, and the value is not case-sensitive. value
keyValue

NOT_EQUALS The value must not match, and the value is case-sensitive. value
keyValue

NOT_EQUALS_IGN
ORE_CASE

The value must not match, and the value is not case-sensitive. value
keyValue

IS_NOT_NULL The value is not null. value
keyValue

IS_NULL The value is null. value
keyValue

REGEX The value must match the specified regular expression. value
keyValue
json

JSON_PATH The JSON string must contain the specified JSON_PATH. json

Configuring the Mutation Section
The mutation section specifies how to transform an HTTP message, such as by adding,
replacing, or removing fields in the request URL and body. It uses the following syntax:

mutation:
   GroupType
   GroupType
   ...

Replace GroupType with one or more of the following:

• value: Modifies a single string value in a URI, method, or status code. For example, by
changing the HTTP method to PUT. The value group type uses this syntax:

value:
  ValueObject:
    mutationType: MutationType
    value: Value

where:

– ValueObject is one of these: uri, method, or statusCode.

– MutationType specifies the transformation to make. Supported values are REPLACE
and REGEX_REPLACE.

– Value specifies the new value.

Chapter 5
Defining Mutation Rules for Payload Conversion

5-17



• keyValue: Modifies a key-value pair in a header or query parameter, such as by
adding Authority: example.com:1534 to the header. The keyValue group type
uses this syntax:

keyValue:      
   MapName:        
   - mutationType: MutationType
     key: KeyName
     value: Value

where:

– MapName is either headers or queryParams.

– MutationType specifies the transformation to make. Supported values are
REPLACE, ADD, COPY, and DELETE.

– KeyName specifies the key on which to act.

– Value specifies a new or modified value.

• json: Modifies a specified string in the JSON body, such as by adding or changing
a field.

json:
   body:
   - mutationType: MutationType
     MutationSpecificParameters

where:

– MutationType specifies the transformation to make. Supported values are
REGEX_REPLACE, DELETE, JSON_PATCH, JSON_PATH, and
REPLACE_JSON.

– MutationSpecificParameters specifies more information about the
transformation. The fields in this section are dependent on the mutation type.

Table 5-4 describes each mutation type.

Table 5-4    Mutation Types

Mutation Type Description Supported Group
Types

REPLACE Replaces an existing key's value with a new value. value
keyValue

REGEX_REPLACE Replaces a value based on the specified regular expression. value
json

ADD Adds a key-value pair to the header or query parameter. keyValue

COPY Copies one key to another key with the same value. keyValue

DELETE Removes a key-value pair or JSON parameter. keyValue
json

Chapter 5
Defining Mutation Rules for Payload Conversion

5-18



Table 5-4    (Cont.) Mutation Types

Mutation Type Description Supported Group
Types

JSON_PATCH Performs the specified operation on the JSON body. It includes
these parameters:

• op: The operation to perform on the JSON field: add, copy,
test, remove, replace, or move.

• path: Specifies the location in the JSON body to change.
• value: Specifies the value.
For more information, see RFC 6902.

json

JSON_PATH Performs a JSON path mutation.

For more information, see JsonPath on the GitHub website: https://
github.com/json-path/JsonPath.

json

REPLACE_JSON Replaces the entire JSON body with the new values. json

Example Mutation Rule File
The following shows a sample mutation rule file for updating the request header and JSON
body in an incoming HTTP message:

ruleName: "Sample Rule"
ruleDescription: "This sample rule updates the request header and adds a 
field to the JSON body"
criterion:
  json:
    body:
      - criteriaType: "JSON_PATH"
        value: "$.invocationSequenceNumber"
mutation:
  keyValue:
    headerMap:
      - mutationType: REPLACE
        key: location
        value: https://new.example.com
      - mutationType: ADD
        key: HTTP2-Settings
        value: token64
  json:
    body:
      - mutationType: JSON_PATCH
        jsonPatch:
          - op: add
            path: /multipleUnitInformation/ratingStamp
            value: "Gold"

In this example, Network Bridge would check if an incoming HTTP message includes an
invocationSequenceNumber field or array in its JSON body. If an HTTP message meets the
criteria, Network Bridge would do the following:

• Replace the value of the location header field with https://new.example.com.

Chapter 5
Defining Mutation Rules for Payload Conversion

5-19

https://datatracker.ietf.org/doc/html/rfc6902/
https://github.com/json-path/JsonPath
https://github.com/json-path/JsonPath


• Add the HTTP2-Settings header field with the value set to token64.

• In the JSON body, add the ratingStamp field set to Gold in the
multipleUnitInformation array. If the body doesn't contain the
multipleUnitInformation array, it would be added.

Table 5-5 shows a sample HTTP message before and after it has been mutated by
Network Bridge using the sample rules. The fields that have been changed or added
are shown in bold.

Table 5-5    Sample HTTP Message Mutation

HTTP
Messag
e Part

Before Mutation After Mutation

Header
connection: keep-alive
content-length: 154
content-type: application/json
location: https://
original.example.com
date: Tue, 12 Jul 2024 08:21:13 +0530

connection: keep-alive
content-length: 154
content-type: application/json
location: https://new.example.com
HTTP2-Settings: token64
date: Tue, 12 Jul 2024 08:21:13 +0530

JSON
Body {

   "invocationTimeStamp": 
"2024-7-11T13:00:33.882+05:30",
   "invocationSequenceNumber": 1,
   "multipleUnitInformation": [
      {
         "resultCode": "SUCCESS",
         "ratingGroup": 10,
         "grantedUnit": {},
         "validityTime": 3600
      }
   ]
}

{
   "invocationTimeStamp": 
"2024-7-11T13:00:33.882+05:30",
   "invocationSequenceNumber": 1,
   "multipleUnitInformation": [
      {
         "resultCode": "SUCCESS",
         "ratingGroup": 10,
         "grantedUnit": {},
         "validityTime": 3600,
         "ratingStamp": "Gold"
      }
   ]
}

Defining Business Rules in DRL Files
Creating DRL files allows you to customize how Network Bridge transforms 5G
message payloads.

To define business rules for 5G payload conversion:

1. Create a DRL file that applies rules on HTTP messages.

For information about creating DRL files, see the Drools documentation at: https://
docs.drools.org/latest/drools-docs/docs-website/drools/introduction/index.html.

2. In your file, add rules for converting HTTP message payloads based on your
business logic.

Chapter 5
Defining Business Rules in DRL Files

5-20

https://docs.drools.org/latest/drools-docs/docs-website/drools/introduction/index.html
https://docs.drools.org/latest/drools-docs/docs-website/drools/introduction/index.html


3. Create a ConfigMap from your DRL file by running this command:

kubectl create configmap ConfigMapName --from-file=Path

where ConfigMapName is your desired name for the ConfigMap, and FilePath is the
directory that contains the DRL file.

4. In your override-values.yaml file, set the network-bridge-restproxy.rest-
proxy.mediation.kieRulesConfigMapOverride key to ConfigMapName.

This configures Network Bridge to use your DRL file for all KIE_PROCESSOR type
processors.

Sample N40 Proxy Configuration
The following shows sample override-values.yaml entries for configuring Network Bridge as
an N40 proxy, with tracing, autoscaling, and monitoring through Prometheus and Grafana all
enabled.

Note:

The &keyName and *keyName values are Helm references. If a key in the
values.yaml file includes one of these references, you must also include it in your
override-values.yaml file.

imageRepository: &imageRepository repository.example.com:7840
imagePullSecrets: &imagePullSecrets regcred
imagePullPolicy: &imagePullPolicy IfNotPresent

partOfLabel: &partOfLabel network-bridge-restproxy
nodeSelector: &nodeSelector
#Sample:
#   key: value

loggingPattern: &loggingPattern "%d{ISO8601_OFFSET_DATE_TIME_HHCMM} | %5p | 
%X{traceId} | %-20.20thread | %-25.25logger{25} | %m%n"

tracingEnabled: &tracingEnabled true
tracingHost: &tracingHost jaeger-all-in-one.jaeger.svc.cluster.local
tracingPort: &tracingPort 14268
serviceMonitorEnabled: &serviceMonitorEnabled true

grafanaDashboardsEnabled: &grafanaDashboardsEnabled true
grafanaNamespace: &grafanaNamespace kube-logging

grafanaDashboards:
  enabled: *grafanaDashboardsEnabled
  grafanaNamespace: *grafanaNamespace
  labels:
    grafana_dashboard: "1"
    release: prometheus

Chapter 5
Sample N40 Proxy Configuration

5-21



  annotations:
    k8s-sidecar-target-directory: "/tmp/dashboards/ccs"
serviceMonitor:
  enabled: *serviceMonitorEnabled
  namespace: SmNameSpace

network-bridge-restproxy:
  enabled: false
  restProxyImage: &restProxyImage "ccs/network-bridge/mediation:2.0.0"
  # Network Bridge Top Level
  name: network-bridge
  fullname: "network-bridge-restproxy"

  rest-proxy:
    enabled: true
    imageRepository: *imageRepository
    imagePullSecrets: *imagePullSecrets
    imagePullPolicy: *imagePullPolicy
    partOfLabel: *partOfLabel
    mediation:
      name: rest-proxy
      fullname: "rest-proxy"
      additionalLabels: { }
      annotations: { }
      nodeSelector: *nodeSelector
      client:
        connect-timeout-millis: 2000
        read-timeout-millis: 2000
        follow-redirects: true
        max-redirects: 5
        additionalAttributes: { }
      kieRulesConfigMapOverride: MyKieRules
      mutatorRulesConfigMapOverride: MyMutationRules
      restServices:
        - name: "all_sbi"
          config:
            path: "/{:npcf-smpolicycontrol\/v1\/sm-policies($|\/[^/]+\/
(update|delete)($|\/$))|nchf-convergedcharging\/v3\/chargingdata($|
\/[^/]+\/(update|release)($|\/$))|nchf-convergedcharging\/v3\/notify($|
\?notifyUri=.*)}"
          processors:
            - name: "kie_processor"
              type: KIE_PROCESSOR
              config:
                rules-path:"/app/config/rules"  
            - name: mutation-request
              type: MUTATOR_PROCESSOR
              config:
                rules-path: "src/test/resources/mutation/rules"
                rule-names:
                  - addChargingInfo
                  - addHeaders
            - name: sample-rest-processor
              type: REST_PROCESSOR        
              config:           

Chapter 5
Sample N40 Proxy Configuration

5-22



                uri: "http://sample.example.com"           
                destUriHeader: dest_uri         
              faultTolerance:           
                retry:             
                delay: 5             
                calls: 3
                delayFactor: 1.0
            - name: mutation-response
              type: MUTATOR_PROCESSOR
              config:
                rules-path: "src/test/resources/mutation/rules"
                rule-names:
                  - reWriteResponse
      grpcServices: [ ]
      container:
        image: *restProxyImage
      terminationGracePeriodSeconds: 60
      resources:
        memoryRequest: "256Mi"
        cpuRequest: "250m"
        memoryLimit: "2048Mi"
        cpuLimit: "500m"
      replicas: 1
      jvmOpts: "-XX:+UseG1GC -XX:MaxGCPauseMillis=50 -
XX:InitialRAMPercentage=80 -XX:MaxRAMPercentage=80 -XX:MinRAMPercentage=80 -
Dlog4j.configurationFile=config/log4j2.yaml"
      restartCount: 0
      hpa:
        enabled: true
        minReplicas: 1
        maxReplicas: 8
        metrics:
          cpuAverageUtilization: 65
        scaleDown:
          selectPolicy: Max
          stabilizationWindowSeconds: 300
          periodSeconds: 180
        scaleUp:
          selectPolicy: Max
          stabilizationWindowSeconds: 5
          periodSeconds: 20
      service:
        type: ClusterIP
        additionalLabels: { }
        additionalAnnotations: { }
      adminService:
        type: ClusterIP
        additionalLabels: { }
        additionalAnnotations: { }
      logging:
        format:
          type: TEXT
          pattern: *loggingPattern
        rootLevel: INFO
        packageLogging:

Chapter 5
Sample N40 Proxy Configuration

5-23



          - name: com.oracle.cagbu
            level: INFO
          - name: io.helidon
            level: INFO
          - name: org.jboss
            level: INFO
          - name: io.jaegertracing.internal.reporters
            level: WARN
      tracing:
        enabled: *tracingEnabled
        service: mediation
        maxQueueSize: 42
        flushIntervalMs: 10001
        host: *tracingHost
        port: *tracingPort
        samplerType: ratelimiting
        samplerParam: 1
        samplerManager:
        logSpans: true
        webServer:
          spans:
            httpRequest:
              contentWrite: false
              contentRead: false

    grafanaDashboards:
      enabled: *grafanaDashboardsEnabled
      grafanaNamespace: *grafanaNamespace
      labels:
        grafana_dashboard: '1'
        release: prometheus
      annotations:
        k8s-sidecar-target-directory: "/tmp/dashboards/ccs"

    serviceMonitor:
      enabled: *serviceMonitorEnabled
      namespace:

    ingress:
      ingressClassName:

Chapter 5
Sample N40 Proxy Configuration

5-24



6
Deploying Network Bridge

You deploy Oracle Communications Network Bridge on a cloud native environment by
running the Helm install command.

Topics in this document:

• Deploying Network Bridge Cloud Native

Deploying Network Bridge Cloud Native
To deploy Network Bridge on your cloud native environment:

1. Create a namespace for the Network Bridge Helm chart:

kubectl create namespace NBNameSpace

where NBNameSpace is the namespace in which to create Kubernetes objects for the
Network Bridge Helm chart.

2. Validate the content of your Helm chart by running the Helm lint command:

helm lint --strict oc-ccs-helm-chart-version --values oc-ccs-helm-chart-version/
values.yaml --values OverrideValuesFile

You'll see this if the command completes successfully:

1 chart(s) linted, no failures
3. Validate the values in your override-values.yaml file by using the helm template

command:

helm template NBReleaseName oc-ccs-helm-chart-version

where NBReleaseName is the release name for oc-ccs-helm-chart-version and is used
to track this installation instance.

4. Deploy Network Bridge by running this command:

helm install NBReleaseName oc-ccs-helm-chart-version --namespace 
NBNameSpace --values override-values.yaml 

5. Verify that the pods were deployed successfully by running this command:

kubectl -n NbNameSpace get pods

You should see something similar to this:

NAME                                    READY   STATUS      RESTARTS   AGE
diameter-adapter-d2h-6f79d95887-lp7qs   1/1     Running     0          
6d17h

6-1



diameter-adapter-h2d-5496bf8d94-vjgn7   1/1     Running     
0          6d17h
diameter-proxy-d5ccf6dbd-l968b          1/1     Running     
0          6d17h
diameter-proxy-db-job-22bsg             0/1     Completed   
0          7d5h
egress-7b974f4488-wx9qz                 1/1     Running     
0          7d4h
mediation-75f9dcd99d-vrrwg              1/1     Running     
0          7d4h
oc-ccs-ndb-mgmd-0                       1/1     Running     
0          7d5h
oc-ccs-ndb-mgmd-1                       1/1     Running     
0          7d5h
oc-ccs-ndb-mysqld-0                     1/1     Running     
0          7d5h
oc-ccs-ndb-mysqld-1                     1/1     Running     
0          7d5h
oc-ccs-ndb-ndbmtd-0                     1/1     Running     
0          7d5h
oc-ccs-ndb-ndbmtd-1                     1/1     Running     
0          7d5h

Chapter 6
Deploying Network Bridge Cloud Native

6-2



Part II
Administering Network Bridge

This part describes how to perform administration tasks on your cloud native deployment of
Oracle Communications Network Bridge. It contains the following chapters:

• Managing Network Bridge Pods

• Tracing the Flow of API Calls

• Monitoring Network Bridge Processes

• Using Network Bridge Logging



7
Managing Network Bridge Pods

You can manage the pods in your Oracle Communications Network Bridge cloud native
deployment by setting up autoscaling.

Topics in this document:

• Setting up Autoscaling of Network Bridge Pods

Setting up Autoscaling of Network Bridge Pods
You can use the Kubernetes Horizontal Pod Autoscaler to automatically scale up or scale
down the number of pod replicas based on a pod's CPU or memory utilization. In Network
Bridge cloud native deployments, the Horizontal Pod Autoscaler can monitor and scale these
pods:

• mediation

• egress

• diameter-adapter-h2d

• diameter-adapter-d2h

• diameter-proxy

Changing the number of replicas in a Network Bridge autoscalable ReplicaSet results in a
rebalancing of the in-memory cache distribution across the replicas. This rebalancing activity
consumes incremental CPU and memory resources and can take multiple seconds to
complete. Therefore, your autoscaling design should attempt to strike a balance between
optimizing infrastructure resource usage and minimizing changes to the number of replicas in
a ReplicaSet due to autoscaling.

To set up and enable autoscaling for Network Bridge pods:

1. Ensure that your Network Bridge cluster is set up and the system is in the
UsageProcessing state.

2. Open your override-values.yaml file.

3. Enable the Horizontal Pod Autoscaler in all of the pods by setting these keys to true:

• For the mediation pod: network-bridge.mediation.mediation.hpa.enabled

• For the mediation pod in a REST proxy: network-bridge-restproxy.rest-
proxy.mediation.hpa.enabled

• For the egress pod: network-bridge.egress.mediation.hpa.enabled

• For the diameter-adapter-h2d pod: network-bridge.diameter-adapter-
h2d.protocolTransform.hpa.enabled

• For the diameter-adapter-d2h pod: network-bridge.diameter-adapter-
d2h.protocolTransform.hpa.enabled

• For the diameter-proxy pod: network-bridge.diameter-
proxy.diameterProxy.hpaEnabled

7-1



4. For each pod, specify the minimum and maximum amount of memory and CPU
that can be used.

Set these keys under the resources section of each pod. For example, under
diameter-adapter-h2d.protocolTransform.resources.

• memoryRequest: Set this to the minimum amount of memory required for a
Kubernetes node to deploy a pod.

If the minimum amount is not available, the pod's status is set to Pending.

• cpuRequest: Set this to the minimum CPU amount, in milli-cores, that must
be available in a Kubernetes node to deploy a pod. For example, enter 1000m
for 1 CPU core.

If the minimum CPU amount is not available, the pod's status is set to
Pending.

• memoryLimit: Set this to the maximum amount of memory that a pod can
utilize.

• cpuLimit: Set this to the maximum amount of CPU that a pod can utilize.

5. For each pod, specify the minimum and maximum number of pod replicas that can
be deployed.

Set these keys under the hpa section of each pod. For example, under the
network-bridge.egress.mediation.hpa section.

• minReplicas: Set this to the minimum number of pod replicas to deploy when
scale down is triggered.

If a pod's average utilization goes below cpuAverageUtilization, the
Horizontal pod Autoscaler decreases the number of pod replicas down to this
minimum count.

• maxReplicas: Set this to the maximum number of pod replicas to deploy
when scale up is triggered.

If a pod's average utilization goes above cpuAverageUtilization, the
Horizontal pod Autoscaler increases the number of pod replicas up to this
maximum count.

• metrics.cpuAverageUtilization: Set this as a target or threshold for average
CPU usage across all of the pod's replicas with the same entry point. For
example, if a cluster has three mediation pod replicas, the average will be the
sum of CPU usage divided by three. The default is 65%.

The autoscaler increases or decreases the number of pod replicas to maintain
the average CPU utilization you specified across all pods.

6. For each pod, specify the rules for scaling down pods.

Set these keys under the hpa.scaleDown section of each pod. For example,
under the network-bridge.egress.mediation.hpa.scaleDown section.

• selectPolicy: Specifies Min, Max, or Disabled.

– Min selects the policy with the smallest change in the replica count.

– Max selects the policy with the largest change in the replica count.

– Disabled prevents autoscaling in the scale down direction.

• stabilizationWindowSeconds: Specifies the duration, in seconds, of the
stabilization window when scaling down pods.

Chapter 7
Setting up Autoscaling of Network Bridge Pods

7-2



• periodSeconds: Specifies the number of seconds for which metrics should be
collected before scaling.

7. For each pod, specify the rules for scaling up pods.

Set these keys under the hpa.scaleUp section of each pod. For example, under the
network-bridge.egress.mediation.hpa.scaleUp section.

• selectPolicy: Specifies Min, Max, or Disabled.

– Min selects the policy with the smallest change in the replica count.

– Max selects the policy with the largest change in the replica count.

– Disabled prevents autoscaling in the scale down direction.

• stabilizationWindowSeconds: Specifies the duration, in seconds, of the
stabilization window when scaling up pods.

• periodSeconds: Specifies the number of seconds for which metrics should be
collected before scaling.

8. To lower the heap memory used by the pods, set the appropriate JVM parameters in the
jvmOpts key.

Memory-based scale down occurs only if the amount of pod memory decreases. You can
decrease pod memory by using JVM garbage collection (GC).

9. Save and close your override-values.yaml file.

10. Do one of the following:

• Deploy Network Bridge (if you have not already deployed Network Bridge). See
"Deploying Network Bridge".

• If you have already deployed Network Bridge, update your Network Bridge release:

helm upgrade NBReleaseName oc-ccs-helm-chart-version --values 
override-values.yaml -n NBNameSpace

where:

– NBReleaseName is the release name for the Network Bridge deployment.

– version is the Network Bridge release number, such as 2.0.0.

– NBNameSpace is the namespace in which to create Kubernetes objects for the
Network Bridge Helm chart.

Chapter 7
Setting up Autoscaling of Network Bridge Pods

7-3



8
Tracing the Flow of API Calls

In your Oracle Communications Network Bridge cloud native system, you can trace the flow
of API calls made to Network Bridge through Jaeger.

Topics in this document:

• About Tracing

• Enabling Tracing in Network Bridge

About Tracing
You can trace the flow of messages through Network Bridge by using the Jaeger tracer tool
integrated with the Helidon framework. You use this tool to understand any request failures
and to troubleshoot performance issues in Network Bridge.

Helidon is a collection of Java libraries used by Network Bridge, and Jaeger is an open-
source tracing system that is used with Helidon. For more information about Helidon and
Jaeger, see:

• "MP - Jaeger Tracing" in the Helidon documentation

• "Introduction" in the Jaeger documentation

In a Network Bridge cloud native deployment, you can trace these components:

• Mediation component

• Egress component

• HTTP to Diameter Adapter component

• Diameter to HTTP Adapter component

• Diameter Proxy component

To set up tracing in Network Bridge cloud native:

1. Install Jaeger Operator. See the Jaeger Operator for Kubernetes documentation: https://
www.jaegertracing.io/docs/1.41/operator/.

2. Enable Jaeger tracing in Network Bridge cloud native. See "Enabling Tracing in Network
Bridge".

Afterward, you can use the Jaeger UI to start visualizing and analyzing the trace data.

Enabling Tracing in Network Bridge
By default, tracing is disabled in Network Bridge cloud native.

To enable tracing with Jaeger:

1. Create an override-values.yaml file for oc-ccs-helm-chart-version.

2. Enable tracing across all Network Bridge components by setting these keys:

8-1

https://helidon.io/docs/v2/#/mp/tracing/03_jaeger
https://www.jaegertracing.io/docs/1.41/
https://www.jaegertracing.io/docs/1.41/operator/
https://www.jaegertracing.io/docs/1.41/operator/


• tracingEnabled: Set this to true.

• tracingHost: Set to this to the host name of the server on which tracing is
running. For example: opentelemetry.teleemtry.svc.cluster.local.

• tracingPort: Set this to the trace server port.

3. (Optional) Customize how Network Bridge samples messages. Set these keys
under the tracing section of each Network Bridge component:

• service: Set this to the name of the service.

• maxQueueSize: Set this to the maximum queue size for Jaeger reporters.
The default is 42 spans.

• flushIntervalMs: Specify the amount of time, in milliseconds, that events are
held in the queue before sending a batch. The default is 10002 (about 10
seconds).

• samplerType: Specify the sampling strategy to use: const, probabilistic,
ratelimiting, or remote. The default is ratelimiting.

– const: The sampler performs the same action, defined in the
samplerParam key, on all traces.

Set the samplerParam key to 1 to sample all traces or to 0 to sample
none of the traces.

– probabilistic: The sampler randomly samples traces with the rate
specified in the samplerParam key.

Set the samplerParam key to the rate at which to sample traces. For
example, 0.1 specifies to sample 10% of all traces, and 0.2 specifies to
sample 20% of all traces.

– ratelimiting: The sampler ensures that traces are sampled at a constant
rate, which is defined in the samplerParam key.

Set the samplerParam key to the number of requests to sample per
second. For example, 2.0 specifies to sample requests at the rate of 2
traces per second.

– remote: The sampler consults the Jaeger agent for the appropriate
sampling strategy to use in the current service.

Set the samplerManager key to the host name and port number of the
Sampler Manager in the format JaegerHost:PortNumber.

• logSpans: Specify whether to log spans for diagnostic purposes. A span is a
logical unit of work that has an operation name, a start time, and the duration.
The default is true.

4. Save and close your override-values.yaml file.

5. Deploy or redeploy the Network Bridge Helm release by running the helm install
command:

helm install NbReleaseName oc-ccs-helm-chart-version –-values override-
values.yaml -n NbNameSpace

where:

• NbReleaseName is the release name for the Network Bridge Helm chart and
is used to track this installation instance.

Chapter 8
Enabling Tracing in Network Bridge

8-2



• NbNameSpace is the namespace in which to create Kubernetes objects for the
Network Bridge Helm chart.

The following sample override-values.yaml file configures tracing for the Mediation
component. It specifies to create a queue the size of 42 spans, to hold events in the queue
for 10 seconds, to sample all traces, and to log spans.

tracing:
  service: mediation
  maxQueueSize: 42
  flushIntervalMs: 1000
  samplerType: const
  samplerParam: 1
  samplerManager:
  logSpans: true

Chapter 8
Enabling Tracing in Network Bridge

8-3



9
Monitoring Network Bridge Processes

You can monitor system processes, such as memory and thread usage, in your Oracle
Communications Network Bridge components in a cloud native environment.

Topics in this document:

• About Monitoring Network Bridge Cloud Native

• Setting Up Monitoring of Network Bridge Components

• Enabling the Network Bridge Service Monitor

• Network Bridge Cloud Native Metrics

About Monitoring Network Bridge Cloud Native
You can set up monitoring of your Network Bridge cloud native components using a
Kubernetes Service Monitor, Prometheus Operator, and Grafana Dashboards. Service
Monitor exposes JVM and application metric data through a single endpoint in an
OpenMetrics/Prometheus exposition format. Prometheus then scrapes the metrics and stores
them for analysis and monitoring through the Grafana Dashboards.

Network Bridge cloud native exposes metric data for the following components:

• Mediation component

• Egress component

• HTTP to Diameter Adapter component

• Diameter to HTTP Adapter component

• Diameter Proxy component

Setting Up Monitoring of Network Bridge Components
Setting up monitoring of Network Bridge cloud native components involves the following high-
level tasks:

1. Deploying the following prerequisite software on your Network Bridge cloud native
environment:

• Deploying Prometheus Operator on your Network Bridge cloud native environment.
See "Installing Prometheus Operator".

• Deploying Grafana on your Network Bridge cloud native environment. See "Installing
Grafana".

For the list of compatible versions, see "Network Bridge Cloud Native Software
Compatibility" in CCS Compatibility Matrix.

2. Enabling the Network Bridge Service Monitor and Grafana Dashboards.

9-1



Enabling the Network Bridge Service Monitor
By default, the Network Bridge Service Monitor and Grafana Dashboards are disabled.
You must enable both if you want to monitor your system's processes using
Prometheus and Grafana.

To enable the Service Monitor and Grafana Dashboards:

1. Create an override-values.yaml file for the oc-ccs-helm-chart-version Helm
chart.

2. Enable the Network Bridge Service Monitor and Grafana Dashboards by setting
these keys:

• serviceMonitorEnabled: Set this to true

• grafanaDashboardsEnabled: Set this to true

• grafanaNamespace: Set this to the namespace in which to deploy the
Grafana Dashboards.

• serviceMonitor.namespace: Set this to the namespace in which to deploy the
Service Monitor CRD.

3. Optionally, modify the default settings for Grafana:

• granfanaDashboards.labels.grafana_dashboard: Specify the labels to add
to the Grafana CRDs. This helps Grafana discover the dashboards.

• granfanaDashboards.labels.release: Set this to the release name in which
Grafana is deployed.

• granfanaDashboards.annotations.k8s-sidecar-target-directory: Set this to
the directory for the Grafana sidecar.

4. Save and close your override-values.yaml file.

5. Run the helm upgrade command to update your Network Bridge Helm release:

helm upgrade NbReleaseName oc-ccs-helm-chart-version --namespace 
NbNameSpace --values override-values.yaml

where NbReleaseName is the release name for Network Bridge, and
NbNameSpace is the namespace in which to create Kubernetes objects for the
Network Bridge Helm chart.

Network Bridge Cloud Native Metrics
Network Bridge cloud native collects metrics in the following groups to produce data
for monitoring your components:

• Mediation and REST Proxy Metrics

• Diameter Adapter Metrics

• Diameter Proxy Metrics

Chapter 9
Enabling the Network Bridge Service Monitor

9-2



Mediation and REST Proxy Metrics
The Mediation and REST Proxy group contains standard metrics about the central
processing unit (CPU) and memory utilization of JVMs, which are members of the Network
Bridge grid. It also contains metrics for tracking the processing performance of requests to
and responses from the Mediation, Egress, and REST Proxy components. Table 9-1 lists the
metrics in this group.

Table 9-1    Mediation and REST Proxy Metrics

Metric Name Type Description

jvm_buffer_count_buffers Gauge Contains the estimated number buffers in the
JVM memory pool.

jvm_buffer_memory_used_bytes Gauge Contains an estimated amount of memory
the JVM is using for the buffer pool.

jvm_buffer_total_capacity_bytes Gauge Contains the estimated total capacity of the
buffers in this pool.

jvm_gc_live_data_size_bytes Gauge Contains the size, in bytes, of the long-lived
heap memory pool after reclamation.

jvm_gc_max_data_size_bytes Gauge Contains the maximum size of the long-lived
heap memory pool.

jvm_gc_memory_allocated_bytes_total Counter Tracks the total size of increases to the
young heap memory after one GC to before
the next one.

jvm_gc_memory_promoted_bytes_total Counter Tracks the total size of incremental increases
to the old generation memory pool from
before GC to after GC.

jvm_gc_pause_seconds Summary Contains information about the time spent in
GC pause.

jvm_gc_pause_seconds_max Gauge Contains the maximum amount of time spent
in GC pause.

jvm_memory_committed_bytes Gauge Contains the amount of memory, in bytes,
that is committed for the JVM to use.

jvm_memory_max_bytes Gauge Contains the maximum amount of memory,
in bytes, that can be used for memory
management.

jvm_memory_used_bytes Gauge Contains the amount of memory used, in
bytes.

jvm_threads_daemon_threads Gauge Contains the current number of live daemon
threads.

jvm_threads_live_threads Gauge Contains the current number of live threads,
including both daemon and non-daemon
threads.

jvm_threads_peak_threads Gauge Contains the peak live thread count since the
JVM started or the peak was reset.

jvm_threads_states_threads Gauge Contains the current number of threads in
the NEW state.

log4j2_events_total Counter Tracks the total number of fatal-level log
events.

Chapter 9
Network Bridge Cloud Native Metrics

9-3



Table 9-1    (Cont.) Mediation and REST Proxy Metrics

Metric Name Type Description

nb_mediation_mutation_execution_sec
onds

Histogram Contains the time taken to perform a
mutation.

nb_mediation_mutation_execution_sec
onds_max

Gauge Contains the time taken to perform a
mutation.

nb_mediation_processor_circuit_breake
r_state

Gauge Contains the current state of the circuit
breaker: CLOSED (0.0), HALF_OPEN (1.0),
or OPEN (2.0).

nb_mediation_processor_failed_total Counter Tracks the total number of failed events.

nb_mediation_processor_retries_total Counter Tracks the total number of retries.

nb_mediation_processor_seconds Histogram Contains information about the time taken to
process the request.

nb_mediation_processor_seconds_max Gauge Contains the time taken to process the
request.

nb_mediation_request_failed_total Counter Tracks the total number of failed mediation
requests.

nb_mediation_request_seconds Histogram Provides information about the total amount
of time to process the request.

nb_mediation_request_seconds_max Gauge Contains the total amount of time to process
the request.

nb_mediation_rule_matches_total Counter Tracks the number of times a rule has been
matched.

process_cpu_usage Gauge Contains the recent CPU usage for the JVM
process.

process_files_max_files Gauge Contains the maximum number of file
descriptors.

process_files_open_files Gauge Contains the number of open file descriptors.

process_start_time_seconds Gauge Contains the start time of the process since
the UNIX epoch time.

process_uptime_seconds Gauge Contains the JVM's total amount of uptime.

system_cpu_count Gauge Contains the number of processors available
to the JVM.

system_cpu_usage Gauge Contains the recent CPU usage for the entire
system.

system_load_average_1m Gauge Contains the total number of runnable
entities queued to available processors, and
the number of runnable entities running on
the available processors averaged over a
period of time.

Diameter Adapter Metrics
The Diameter Adapter Metrics group contains standard metrics about the CPU and
memory utilization of JVMs and the processing performance of requests to and
responses from the HTTP-to-Diameter Adapter and Diameter-to-HTTP Adapter
components. Table 9-2 lists the metrics in this group.

Chapter 9
Network Bridge Cloud Native Metrics

9-4



Table 9-2    Diameter Adapter Metrics

Metric Type Description

jvm_buffer_count_buffers Gauge Contains the estimated number of buffers in
the JMV memory pool.

jvm_buffer_memory_used_bytes Gauge Contains an estimated amount of memory
the JVM is using for the buffer pool.

jvm_buffer_total_capacity_bytes Gauge Contains the estimated total capacity of the
buffers in this pool.

jvm_gc_live_data_size_bytes Gauge Contains the size, in bytes, of the long-lived
heap memory pool after reclamation.

jvm_gc_max_data_size_bytes Gauge Contains the maximum size of the long-lived
heap memory pool.

jvm_gc_memory_allocated_bytes_total Counter Tracks the total size of increases to the
young heap memory after one GC to before
the next one.

jvm_gc_memory_promoted_bytes_total Counter Tracks the total size of incremental increases
to the old generation memory pool from
before GC to after GC.

jvm_gc_pause_seconds Summary Contains information about the time spent in
GC pause.

jvm_gc_pause_seconds_max Gauge Contains the maximum amount of time spent
in GC pause.

jvm_memory_committed_bytes Gauge Contains the amount of memory, in bytes,
that is committed for the JVM to use.

jvm_memory_max_bytes Gauge Contains the maximum amount of memory,
in bytes, that can be used for memory
management.

jvm_memory_used_bytes Gauge Contains the amount of memory used, in
bytes.

jvm_threads_daemon_threads Gauge Contains the current number of live daemon
threads.

jvm_threads_live_threads Gauge Contains the current number of live threads,
including both daemon and non-daemon
threads.

jvm_threads_peak_threads Gauge Contains the peak live thread count since the
JVM started or the peak was reset.

jvm_threads_states_threads Gauge Contains the current number of threads in
the NEW state.

log4j2_events_total Counter Tracks the total number of fatal-level log
events.

nb_diameter_adapter_processor_failed
_total

Counter Tracks the total number of failed events.

nb_diameter_adapter_processor_retrie
s_total

Counter Tracks the total number of processor retries.

nb_diameter_adapter_processor_secon
ds

Histogram Provides information about the time taken to
process the request.

nb_diameter_adapter_processor_secon
ds_max

Gauge Contains the time taken to process the
request.

Chapter 9
Network Bridge Cloud Native Metrics

9-5



Table 9-2    (Cont.) Diameter Adapter Metrics

Metric Type Description

nb_diameter_adapter_request_failed_to
tal

Counter Tracks the total number of failed events.

nb_diameter_adapter_request_seconds Histogram Tracks the delta between the Usage
UsageDate and the time the service received
the event.

nb_diameter_adapter_request_seconds
_max

Gauge Tracks the delta between the Usage
UsageDate and the time the service received
the event.

process_cpu_usage Gauge Contains the recent CPU usage for the JVM
process.

process_files_max_files Gauge Contains the maximum number of file
descriptors.

process_files_open_files Gauge Contains the number of open file descriptors.

process_start_time_seconds Gauge Contains the start time of the process since
the UNIX epoch time.

process_uptime_seconds Gauge Contains the JVM's total amount of uptime.

system_cpu_count Gauge Contains the number of processors available
to the JVM.

system_cpu_usage Gauge Contains the recent CPU usage for the entire
system.

system_load_average_1m Gauge Contains the total number of runnable
entities queued to available processors, and
the number of runnable entities running on
the available processors averaged over a
period of time.

Diameter Proxy Metrics
The Diameter Proxy group contains standard metrics about the CPU and memory
utilization of JVMs and the processing performance of requests to and responses from
the Diameter Proxy component. Table 9-3 lists the metrics in this group.

Table 9-3    Diameter Proxy Metrics

Metric Type Description

jvm_buffer_count_buffers Gauge Contains the estimated number of buffers
in the JVM memory pool.

jvm_buffer_memory_used_bytes Gauge Contains an estimated amount of
memory the JVM is using for the buffer
pool.

jvm_buffer_total_capacity_bytes Gauge Contains the estimated total capacity of
the buffers in this pool.

jvm_gc_live_data_size_bytes Gauge Contains the size, in bytes, of the long-
lived heap memory pool after
reclamation.

Chapter 9
Network Bridge Cloud Native Metrics

9-6



Table 9-3    (Cont.) Diameter Proxy Metrics

Metric Type Description

jvm_gc_max_data_size_bytes Gauge Contains the maximum size of the long-
lived heap memory pool.

jvm_gc_memory_allocated_bytes_to
tal

Counter Tracks the total size of incremental
increases to the young heap memory
after one GC to before the next one.

jvm_gc_memory_promoted_bytes_t
otal

Counter Tracks the total size of incremental
increases to the old generation memory
pool from before GC to after GC.

jvm_gc_pause_seconds Summary Contains information about the time spent
in GC pause.

jvm_gc_pause_seconds_max Gauge Contains the maximum amount of time
spent in GC pause.

jvm_memory_committed_bytes Gauge Contains the amount of memory, in bytes,
that is committed for the JVM to use.

jvm_memory_max_bytes Gauge Contains the maximum amount of
memory, in bytes, that can be used for
memory management.

jvm_memory_used_bytes Gauge Contains the amount of memory used, in
bytes.

jvm_threads_daemon_threads Gauge Contains the current number of live
daemon threads.

jvm_threads_live_threads Gauge Contains the current number of live
threads, including both daemon and non-
daemon threads.

jvm_threads_peak_threads Gauge Contains the peak live thread count since
the JVM started or the peak was reset.

jvm_threads_states_threads Gauge Contains the current number of threads in
the NEW state.

log4j2_events_total Counter Tracks the total number of fatal-level log
events.

nb_diameter_proxy_message_secon
ds

Histogram Timer information about for recording
messages to and from the Diameter
Proxy.

nb_diameter_proxy_message_secon
ds_max

Gauge Timer for recording messages to and
from the Diameter Proxy.

nb_diameter_proxy_open_connectio
ns

Gauge Tracks the number of open Diameter
connections.

nb_diameter_proxy_peer_event_tota
l

Counter Tracks the total number of Diameter Peer
events.

nb_diameter_proxy_processor_failed
_total

Counter Tracks the total number of failed events.

nb_diameter_proxy_processor_retrie
s_total

Counter Tracks the total number of processor
retries.

nb_diameter_proxy_processor_seco
nds

Histogram Contains the time taken to process the
request.

Chapter 9
Network Bridge Cloud Native Metrics

9-7



Table 9-3    (Cont.) Diameter Proxy Metrics

Metric Type Description

nb_diameter_proxy_processor_seco
nds_max

Gauge Contains the time taken to process the
request.

nb_diameter_proxy_request_failed_t
otal

Counter Tracks the total number of failed Diameter
Proxy requests.

nb_diameter_proxy_request_second
s

Histogram Contains information about the total
amount of time to process a request.

nb_diameter_proxy_request_second
s_max

Gauge Contains the total amount of time to
process the request.

process_cpu_usage Gauge Contains the recent CPU usage for the
JVM process.

process_files_max_files Gauge Contains the maximum number of file
descriptors.

process_files_open_files Gauge Contains the number of open file
descriptors.

process_start_time_seconds Gauge Contains the start time of the process
since the UNIX epoch time.

process_uptime_seconds Gauge Contains the JVM's total amount of
uptime.

system_cpu_count Gauge Contains the number of processors
available to the JVM.

system_cpu_usage Gauge Contains the recent CPU usage for the
entire system.

system_load_average_1m Gauge Contains the total number of runnable
entities queued to available processors,
and the number of runnable entities
running on the available processors
averaged over a period of time.

Chapter 9
Network Bridge Cloud Native Metrics

9-8



10
Using Network Bridge Logging

In your Oracle Communications Network Bridge cloud native system, you can review log files
to troubleshoot errors and monitor system activity.

Topics in this document:

• About Logging

• Accessing the Network Bridge Logs

• Changing the Log Levels

About Logging
Network Bridge cloud native uses the Apache Log4j2 Java logging utility to log information
and errors about the following:

• Start up and shut down activity

• Interaction with external applications at integration points, including interactions with the
ingress controller, 5G Network Function (NF), and 4G Network Element (NE).

• Network Manager components: Mediation, HTTP to Diameter Adapter, Diameter Proxy,
Diameter to HTTP Adapter, and Egress.

For general information about Java logging, see Java Platform, Standard Edition Core
Libraries. For information about Log4j2, see: https://logging.apache.org/log4j/2.x/manual/
index.html.

When you deploy Network Bridge cloud native, logging is automatically set up and running in
your Network Bridge cloud native environment with default settings.

• To access the log files, see "Accessing the Network Bridge Logs".

• To change the default Network Bridge logging levels, see "Changing the Log Levels".

Accessing the Network Bridge Logs
You access the logs by using the kubectl command in the Network Bridge namespace.

To access the logs:

1. Retrieve the names of the Network Bridge pods by entering this command:

kubectl -n NBNameSpace get pods

where NBNameSpace is the namespace in which Kubernetes objects for the Network
Bridge Helm chart reside.

The following is an example of the command's output, with the pod names in bold:

NAME                                    READY   STATUS      RESTARTS   AGE
diameter-adapter-d2h-6f79d95887-lp7qs   1/1     Running     0          

10-1

https://logging.apache.org/log4j/2.x/manual/index.html
https://logging.apache.org/log4j/2.x/manual/index.html


6d17h
diameter-adapter-h2d-5496bf8d94-vjgn7   1/1     Running     
0          6d17h
diameter-proxy-d5ccf6dbd-l968b          1/1     Running     
0          6d17h
diameter-proxy-db-job-22bsg             0/1     Completed   
0          7d5h
egress-7b974f4488-wx9qz                 1/1     Running     
0          7d4h
mediation-75f9dcd99d-vrrwg              1/1     Running     
0          7d4h
oc-ccs-ndb-mgmd-0                       1/1     Running     
0          7d5h
oc-ccs-ndb-mgmd-1                       1/1     Running     
0          7d5h
oc-ccs-ndb-mysqld-0                     1/1     Running     
0          7d5h
oc-ccs-ndb-mysqld-1                     1/1     Running     
0          7d5h
oc-ccs-ndb-ndbmtd-0                     1/1     Running     
0          7d5h
oc-ccs-ndb-ndbmtd-1                     1/1     Running     
0          7d5h

2. Access the logs for a pod by entering this command:

kubectl -n NBNameSpace logs PodName

For example, to access the mediation logs, you would enter:

kubectl -n NBNameSpace logs mediation-75f9dcd99d-vrrwg
The following is an example of the logs for the Mediation component:

2023-11-30T19:53:49,745+00:00 | INFO |  | main       | .helidon.common.LogConfig 
| Logging at initialization configured using defaults
2023-11-30T19:53:50,626+00:00 | INFO |  | main       | iation.factory.KieFactory 
| Loading rules file from '/app/config/rules' with glob pattern 'glob:/app/
config/rules/*.drl' 
2023-11-30T19:53:51,030+00:00 | INFO |  | main       | iation.factory.KieFactory 
| Adding rules file: '/app/config/rules/pt_n40_to_gy.drl'

Note:

This task shows how to access a single log at a time. To tail logs from
multiple pods, Oracle recommends using the Kubernetes Stern tool.

Changing the Log Levels
You can change each Network Bridge component's logging at the root level and the
package level to one of the following:

• TRACE: This log level provides verbose information, including each row loaded
into the database.

Chapter 10
Changing the Log Levels

10-2



• DEBUG: This log level provides information about the steps for each loading function.

• WARN: This log level provides non-critical warnings.

• INFO: This log level provides a one-line summary of each file processed.

• ERROR: This log level provides only error information.

To change the log levels for a Network Bridge component:

1. Create an override-values.yaml file for your Network Bridge Helm chart.

2. To set a component's root-level logging, set the logging.rootLevel key to the desired
logging level.

3. To set a component's package-level logging, set the following keys:

• logging.packageLogging.name: The name of the logging package, such as
io.helicon or org.jboss.

• logging.packageLogging.level: The logging level, such as TRACE, DEBUG,
WARN, INFO, or ERROR.

4. Save and close your override-values.yaml file.

5. Update your Network Bridge Helm release:

helm upgrade NBReleaseName oc-ccs-helm-chart-version --values override-
values.yaml -n NBNameSpace

The following shows sample logging settings for the HTTP to Diameter Adapter component:

network-bridge:
   diameter-adapter-h2d:
      protocolTransform:
         logging:
            format:          
               type: TEXT          
               pattern: *loggingPattern        
            rootLevel: DEBUG        
            packageLogging:          
               - name: com.oracle 
                 level: DEBUG          
               - name: io.helidon            
                 level: DEBUG          
               - name: io.jaegertracing.internal.reporters            
                 level: DEBUG          

Chapter 10
Changing the Log Levels

10-3


	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview of the Network Bridge Cloud Native Deployment
	About the Network Bridge Cloud Native Deployment
	Network Bridge Cloud Native Architecture
	About Network Bridge Pods

	Part I Installing Network Bridge
	2 Setting Up Prerequisite Software
	Network Bridge Prerequisite Tasks
	Creating a Kubernetes Cluster
	Installing Docker
	Installing Helm
	Installing MySQL NDB Operator
	Installing an Ingress Controller
	Installing Jaeger
	Installing Kubernetes Metrics Server
	Installing Prometheus Operator
	Installing Grafana

	3 Preparing Your Network Bridge Cloud Native Environment
	Tasks for Preparing Your Cloud Native Environment
	Downloading the Network Bridge Cloud Native Deployment Package
	Extracting the Helm Chart
	Loading Network Bridge Component Images
	Creating Secrets for Container Registry Authorization

	4 Configuring Network Bridge for 5G to 4G Payload Transformation
	About Configuring Network Bridge for 5G-to-4G Payload Conversion
	Configuring Mandatory Values for 5G-to-4G Conversion
	Configuring Network Bridge Components

	5 Configuring Network Bridge for 5G-to-5G Payload Conversion
	About Configuring Network Bridge for 5G-to-5G Payload Mediation
	Configuring Mandatory Values for 5G-to-5G Payload Conversion
	Configuring the Mediation Component for 5G-to-5G Payload Conversion
	REST Services Configuration for 5G-to-5G Payload Conversion
	Configuring a Mutation Processor
	Configuring a KIE Processor
	Configuring a REST Processor
	Configuring a GRPC Processor
	Example Processor Configuration for REST Services


	Defining Mutation Rules for Payload Conversion
	Configuring the Criterion Section
	Configuring the Mutation Section
	Example Mutation Rule File

	Defining Business Rules in DRL Files
	Sample N40 Proxy Configuration

	6 Deploying Network Bridge
	Deploying Network Bridge Cloud Native


	Part II Administering Network Bridge
	7 Managing Network Bridge Pods
	Setting up Autoscaling of Network Bridge Pods

	8 Tracing the Flow of API Calls
	About Tracing
	Enabling Tracing in Network Bridge

	9 Monitoring Network Bridge Processes
	About Monitoring Network Bridge Cloud Native
	Setting Up Monitoring of Network Bridge Components
	Enabling the Network Bridge Service Monitor
	Network Bridge Cloud Native Metrics
	Mediation and REST Proxy Metrics
	Diameter Adapter Metrics
	Diameter Proxy Metrics


	10 Using Network Bridge Logging
	About Logging
	Accessing the Network Bridge Logs
	Changing the Log Levels



