
Oracle® Communications
Convergence
Security Guide

Release 3.0.3
F99829-01
August 2024

Oracle Communications Convergence Security Guide, Release 3.0.3

F99829-01

Copyright © 2008, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Convention vi

Documentation Accessibility vi

Diversity and Inclusion vi

1 Convergence Security Overview

Basic Security Considerations 1-1

Understanding the Convergence Environment 1-1

Overview of Convergence Server Security 1-2

Recommended Deployment Topologies 1-2

Operating System Security 1-2

Firewall Port Configuration 1-3

Oracle WebLogic Server Security 1-3

Oracle WebLogic Server in Secure Mode 1-3

Accessing a Web Application Deployed on Oracle WebLogic Server 1-4

Secure Sockets Layer (SSL) 1-4

Configuring SSL in Convergence 1-4

Configuring Authentication-Only SSL 1-5

Enabling SSL for Back-End Servers 1-5

Disabling Non-SSL Connections for Application Servers 1-5

Directory Server Security 1-6

2 Performing a Secure Convergence Installation

Installing Infrastructure Components Securely 2-1

Installing Third-Party Service Applications Securely 2-1

Credentials Required to Install Convergence Components 2-1

3 Implementing Convergence Security

Managing Security of Passwords 3-1

Disabling SSLv3 on Front-End Oracle WebLogic Server Hosts 3-1

iii

Administering Encryption for Secure Authentication 3-2

About Certificate-Based Authentication 3-2

Configuring the Convergence Certificate Mapper 3-2

Mapper File Syntax 3-2

Mapper File Properties and Values 3-3

Sample certmap.conf Mapping 3-6

Enabling Certificate Authentication Support 3-7

About Single Sign-On Security 3-7

About HTML Filtering 3-7

Detecting Security Attacks or Insecure System Use 3-8

Messaging Server Best Practices for Fighting Email Spam 3-8

Limiting Mail Delivery 3-8

Denying Denial of Service Attacks in Messaging Server 3-8

System Logging 3-8

Securing Oracle Outside In Transformation Server 3-8

4 Security Considerations for Developers

Writing a Custom Pluggable SSO Module 4-1

SSO Mechanism in Convergence 4-1

Implementing the Custom SSO Module 4-1

Configuration 4-3

About the sso.notifyserviceimpl Parameter 4-4

Custom SSO Implementation Example 4-4

Summary 4-6

Writing a Custom Authentication Module 4-6

Basic Concepts 4-7

Convergence Authentication Framework 4-7

Contracts Defined by the Authentication Module 4-7

About the Sample Application 4-8

Implementing the Classes Required for the File-Based Authentication Store 4-8

How the Implementation Works 4-13

Compiling the Sample Custom Module 4-15

Configuring the Sample Custom Authentication Module 4-16

Deploying the Authentication Module in the Oracle WebLogic Server 4-17

Debugging and Troubleshooting the Custom Authentication Module 4-17

Disabling the Custom Authentication Module 4-17

Summary 4-17

iv

A Convergence Secure Deployment Checklist

Secure Deployment Checklist A-1

v

Preface

This guide provides guidelines and recommendations for setting up Oracle Communications
Convergence in a secure configuration.

Audience
This document is intended for installers, system administrators, or software technicians who
work with Convergence. This guide assumes you are familiar with the following concepts:

• Oracle WebLogic Server administration

• Convergence Server administration

• System administration and networking

• General deployment architectures

Convention
The following conventions are used throughout the document.

Convention Meaning

Secure communications Usage of secure communications in this document is
referred to Secure Socket Layer (SSL).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vii

1
Convergence Security Overview

This chapter provides an overview of security for Oracle Communications Convergence.

Basic Security Considerations
The following principles are fundamental to using any application securely:

1. Keep software up to date. This includes the latest product release and any patches that
apply to it.

2. Limit privileges as much as possible. Users should be given only the access necessary
to perform their work. User privileges should be reviewed periodically to determine
relevance to current work requirements.

3. Monitor system activity. Establish who should access which system components, how
often they should be accessed, and who should monitor those components.

4. Install software securely. For example, use firewalls, secure protocols (such as SSL),
and secure passwords. See "Performing a Secure Convergence Installation" for more
information.

5. Learn about and use Convergence security features. See "Implementing Convergence
Security" for more information.

6. Use secure development practices. For example, take advantage of existing database
security functionality instead of creating your own application security.

7. Keep up to date on security information. Oracle regularly issues security-related patch
updates and security alerts. You must install all security patches as soon as possible. See
the Oracle Critical Patch Updates and Security Alerts web site:

http://www.oracle.com/technetwork/topics/security/alerts-086861.html

Understanding the Convergence Environment
When planning your Convergence environment, consider the following:

• Which resources require protection?

For example:

– Convergence

– Protocols, such as HTTP, WMAP, WCAP, LDAP, WABP, NABP

– Dependent resources, such as WebLogic Server, DirectoryServer, Messaging Server,
Calendar Server, Oracle Outside In Transformation Server

• From whom do the resources require protection?

In general, resources must be protected from everyone on the Internet. But should the
Convergence deployment be protected from employees on the intranet in your enterprise?
Should your employees have access to all resources within the Oracle WebLogic server
environment? Should the system administrators have access to all resources? Should the
system administrators be able to access all data? You might consider giving access to

1-1

http://www.oracle.com/technetwork/topics/security/alerts-086861.html

highly confidential data or strategic resources to only a few well trusted system
administrators. On the other hand, perhaps it would be best to allow no system
administrators access to the data or resources.

• What happens if protections on strategic resources fail?

In some cases, a fault in your security scheme is easily detected and considered nothing
more than an inconvenience. In other cases, a fault might cause great damage to
companies or individual clients that use Convergence. Understanding the security
ramifications of each resource helps you protect it properly.

Overview of Convergence Server Security
Each installed or integrated component requires special steps and configurations to ensure
complete system security. See the discussion about Convergence deployment architecture in
Convergence System Administrator's Guide for more information about the Convergence
components

The top layer shows the services provided by Convergence. The middle layer represents the
Convergence server itself, deployed to the Oracle WebLogic server domain. The bottom layer
shows the dependencies that the Convergence server has on other applications to provide its
services and features.

Convergence consists of the following core services:

• Service Proxies

• Address Book Service

• Authentication & Authorization

• SSO (Oracle Access Manager/Messaging SSO)

• Configuration management

• Logging

• Basic Monitoring

The service proxies communicate using various protocols to the Oracle Communications
software products that are used to deliver Convergence services.

Recommended Deployment Topologies
Because Convergence is an end-user client program, it occupies the User Tier in any
deployment topology. See the discussion about Convergence deployment architecture in
Convergence System Administrator's Guide for more information about the Convergence
deployment topology.

The general architectural recommendation is to use the well-known and generally accepted
Internet-Firewall-DMZ-Firewall-Intranet architecture. For more information on addressing
network infrastructure concerns, see the Unified Communications Suite wiki:

https://wikis.oracle.com/display/CommSuite/
Determining+Your+Communications+Suite+Network+Infrastructure+Needs

Operating System Security
This section lists Convergence-specific OS security configurations. This section applies to all
supported OSs.

Chapter 1
Overview of Convergence Server Security

1-2

https://wikis.oracle.com/display/CommSuite/Determining+Your+Communications+Suite+Network+Infrastructure+Needs
https://wikis.oracle.com/display/CommSuite/Determining+Your+Communications+Suite+Network+Infrastructure+Needs

Firewall Port Configuration
Convergence communicates with various components on specific ports. Depending on your
deployment and use of a firewall, you might need to ensure that the firewalls are configured to
manage traffic for the following components:

• Oracle WebLogic Server administration server (http 7001, https [default] 7002)

• Convergence (http 8080, https [default] 8181)

• WebMail Server (http 8990, https [default] 8991)

• Contacts Server (http 8080, https [default] 8181)

• Calendar Server (http 8080, https [default] 8181)

• Directory server (ldap 389, ldaps [default] 636)

• Oracle Access Manager (Oracle WebLogic Server default port)

• Outside In Transformation Server (default 60611)

Close all unused ports, especially non-SSL ports. Opt for SSL-enabled ports, instead of non-
SSL ports, for all communications.

For more information about securing your OS, see your OS documentation.

Oracle WebLogic Server Security
The Convergence Server is deployed on the Oracle WebLogic Server domain. For information
about installing and configuring Oracle WebLogic Server, see Creating and Configuring the
WebLogic Domain in the Oracle WebLogic Server Installation Guide.

For information about securing Oracle WebLogic Server 12.2.1.4, see Fusion Middleware
Administering Security for Oracle WebLogic Server.

Run the Oracle WebLogic Server installer in a Secure Administration Server instance. If you do
not run Oracle WebLogic Server as an admin program in a secure mode, then you cannot run
the Convergence init-config program in a secure mode without running into errors. Therefore,
install and configure Oracle WebLogic Server and Convergence in a secure mode.

When you install Oracle WebLogic Server, you should provide the following security
information:

• Administration User and Administration User password

• master password for SSL certificate

• port number for HTTPS port

• secure administration server

Oracle WebLogic Server in Secure Mode
You should enable SSL and configure keystores to install Oracle WebLogic Server in a secure
mode. For more information about enabling SSL and configuring keystores, see "Configuring
Keystores" in the Fusion Middleware Administering Security for Oracle WebLogic Server
Guide.

Oracle WebLogic Server supports the following keystore options in its configuration:

• DemoIdentityandDemoTrust

Chapter 1
Oracle WebLogic Server Security

1-3

• CustomIdentityandCommand-lineTrust

• CustomIdentityandCustomTrust

• CustomIdentityandJavaStandardTrust

Note:

CustomIdentityandCustomTrust and CustomIdentityandJavaStandardTrust are
the only supported keystores for configuring the Convergence in Oracle
WebLogic Server.

Accessing a Web Application Deployed on Oracle WebLogic Server
To access a web application deployed on Oracle WebLogic Server, use the URL http://
localhost/ (or https://localhost/ if it is a secure application), along with the context root
specified for the web application. To access the Oracle WebLogic Server Administration
Console, use the URL https://localhost:7002/console or http://localhost:7001/
console/.

Secure Sockets Layer (SSL)
You can obtain secure connections between applications connected over the Web by using
protocols such as Secure Socket Layer (SSL) or Transport Layer Security (TLS). SSL is often
used to refer to either of these protocols or a combination of the two (SSL/TLS). Due to a
security problem with SSLv3, Convergence recommends that you use only TLS.

If you are using Oracle WebLogic Server, see "Disabling SSLv3 on Front-End Oracle
WebLogic Server Hosts" for more information.

In a Convergence deployment, you can configure SSL between the following components:

• Oracle WebLogic Server administration server port

• Oracle WebLogic Managed Server for Convergence

• Messaging Server

• Contacts Server

• Calendar Server

• Directory server

• Transformation Server

Configuring SSL in Convergence
SSL provides a secure means of communication between the web browser client and the
server.

You can enable SSL in Convergence when you run the Convergence configuration script the
first time, or in the Oracle Weblogic Server. If you are enabling SSL for Convergence in an
application server, you must also set the base.sslport property using the Convergence
iwcadmin command-line utility. For example,

iwcadmin -o base.sslport -v base_ssl_port

Chapter 1
Secure Sockets Layer (SSL)

1-4

See Convergence System Administrator's Guide for more information about the base.sslport
property and the iwcadmin command.

Configuring Authentication-Only SSL
Authentication-Only SSL is a mechanism in which users are authenticated by using the HTTPS
protocol which sends user authentication details in an encrypted format. All other requests
from the Convergence client are performed using the HTTP protocol. To configure
Convergence to use Authentication-only SSL, you set the base.sslport and
base.enableauthonlyssl properties using the iwcadmin command.

For example,

iwcadmin -o base.sslport -v base_ssl_port
iwcadmin -o base.enableauthonlyssl -v true

See Convergence System Administrator's Guide for more information about the base.sslport
and base.enableauthonlyssl properties and the iwcadmin command.

Enabling SSL for Back-End Servers
Using the iwcadmin command, you can enable a secure data connection between
Convergence and the following back-end servers:

• To enable SSL to Messaging Server:

iwcadmin -o mail.enablessl -v true
iwcadmin -o mail.port -v mail_port

Messaging Server must be running in SSL mode.

• To enable SSL to Calendar Server:

iwcadmin -o caldav.enablessl -v true
iwcadmin -o caldav.port -v caldav_port

Calendar Server must be running in SSL mode.

• To enable SSL for Convergence address book, configure Convergence with SSL.

• To enable SSL to Contacts Server:

iwcadmin -o nab.enablessl -v true
iwcadmin -o nab.port -v nab_port

• To enable SSL between Convergence and the directory server:

iwcadmin -o ugldap.enablessl -v true
iwcadmin -o ugldap.port -v ldap_port

Disabling Non-SSL Connections for Application Servers
By default, Convergence listens to requests on both http (non-SSL) and https (SSL)
connections. You should close all non-SSL connections, preventing Convergence from
listening for non-SSL traffic.

To disable non-SSL connections for Oracle WebLogic Server:

1. Log into the Oracle WebLogic Server Administration Console.

2. Click the domain name in the Domain Structure section.

Chapter 1
Secure Sockets Layer (SSL)

1-5

3. Navigate to Environment > Servers and select the Managed Server on which
Convergence is deployed.

4. Navigate to Configuration > General tab and deselect the Listen Port Enabled option.

5. Click Save.

6. Click Activate Changes.

7. Restart Oracle WebLogic Server and Managed Server.

Directory Server Security
To enhance client security in communicating with the directory server, use a strong password
policy for user authentication. For more information on directory server security, see the
discussion on security in Administering Oracle Unified Directory.

Chapter 1
Directory Server Security

1-6

https://docs.oracle.com/en/middleware/idm/unified-directory/12.2.1.4/oudag/advanced-administration-security-access-control-and-password-policies.html

2
Performing a Secure Convergence Installation

This chapter describes planning information for installing Oracle Communications
Convergence securely.

Installing Infrastructure Components Securely
You can deploy Convergence in the Oracle WebLogic server domain. When installing and
configuring the Oracle WebLogic server:

• Configure HTTPS and disable HTTP

• Configure the JMX Port for the Oracle WebLogic server to use SSL

• Configure the Oracle WebLogic server to prevent Denial of Service (DoS) attacks

To configure and administer Oracle WebLogic Server security, see Fusion Middleware
Administering Security for Oracle WebLogic Server Guide.

For information about setting up SSL on Oracle WebLogic Server Enterprise Edition, see
Fusion Middleware Administering Security for Oracle WebLogic Server Guide.

Installing Third-Party Service Applications Securely
To provide its services, Convergence connects to other applications. The following applications
must be installed securely.

• Convergence uses Oracle Communications Messaging Server to provide email services.
See Messaging Server Security Guide for information about installing Messaging Server
securely.

• Convergence can use Oracle Communications Contacts Server to provide address book
services. See Contacts Server Security Guide for information about installing Contacts
Server securely.

• Convergence uses Oracle Communications Calendar Server to provide calendar services.
See Calendar Server Security Guide for information about installing Calendar Server
securely.

• Convergence uses Oracle Outside In Technology to provide preview services of many
common attachment types. See the Oracle WebCentre Content documentation for
information about installing Outside In Technology securely.

Credentials Required to Install Convergence Components
If you are installing the Messaging Server webmail server component on the same host as
Convergence, the Messaging Server installation prompts for the following credentials:

• System user who owns the configuration files for Convergence should also be part of the
System group that owns the configuration files for the Oracle WebLogic server

• Directory Server manager (bind DN and password)

• Messaging Server account passwords

2-1

The Convergence configuration program prompts for authentication credentials for the
following:

• Oracle WebLogic server administration server port number

• Oracle WebLogic server administration user name and password

• User/Group Directory Server manager (bind DN and password)

• Webmail SSL port number

• Webmail Administration user ID and password

• Access in SSL mode between Messaging Server and Convergence

• Calendar Server SSL port number

• Calendar Administration user ID and password

• Access in SSL mode between Calendar Server and Convergence

• Convergence administrator user name and password

Chapter 2
Credentials Required to Install Convergence Components

2-2

3
Implementing Convergence Security

This chapter describes the security features of Oracle Communications Convergence.

Managing Security of Passwords
When using the iwcadmin command, you cannot include the -W password_file parameter
unless the password file is encrypted. For this reason, the -W parameter is omitted from all
examples in this guide.

Use the iwcadmin command to encrypt a password file:

iwcadmin -o admin.adminpwd

If you exclude the -W password_file parameter from your commands, the iwcadmin
command prompts you for the administrator password.

See Convergence System Administrator's Guide for more information about the iwcadmin
command.

Disabling SSLv3 on Front-End Oracle WebLogic Server Hosts
Identify the http-listener for the publicly accessible port that has SSL/TLS enabled on which
requests for Convergence are received.

To disable SSLv3 on front-end Oracle WebLogic Server hosts:

1. Log into the Oracle WebLogic Server Administration Console.

2. In the Domain Structure section, expand the Environment node.

3. Click Servers. The Summary of Servers page appears.

4. Click the name of the Managed Server in which Convergence is deployed. The settings
page for the selected server appears.

5. Click Lock & Edit.

6. Click the Configuration tab, and then the Server Start tab.

7. Add weblogic.security.SSL.protocolVersion and
weblogic.security.SSL.minimumProtocolVersion parameters to the Arguments field.
For example,

-Dweblogic.security.SSL.protocolVersion=TLS1 -Dhttps.protocols=TLSv1: This property
value enables any protocol starting with TLS for messages that are sent and
accepted; for example, TLS V1.0, TLS V1.1, and TLS V1.2.

-Dweblogic.security.SSL.protocolVersion=ALL: This is the default behavior. If ALL is
selected, the default value depends on the JSSE provider and JDK version. For the
supported protocol version table for Sun JSEE, see https://docs.oracle.com/
javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider.

• For information on specifying the SSL protocol version, see Fusion Middleware
Administering Security for Oracle WebLogic Server Guide.

3-1

https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider

8. Click Save and Activate Changes.

9. Restart the Oracle WebLogic Server.

Administering Encryption for Secure Authentication
Administering encryption for secure authentication includes:

• Configuring Convergence for SSL

See "Secure Sockets Layer (SSL)" for more information.

• Setting up Certificate-based Authentication

See "About Certificate-Based Authentication" for more information.

About Certificate-Based Authentication
This section explains key concepts about certificate-based authentication and how to set it up.

Configuring the Convergence Certificate Mapper
A certificate mapper is used to map a certificate presented by a client to the user in the
directory that should be associated with that certificate. Certificate mapping determines how
Convergence scans user entries in the directory server. Use certmap.conf to configure how a
client certificate is mapped to a directory server entry. You can edit the certmap.conf file to
add entries to match the structure of your directory server and to list the certificates you want
your users to have. Users can be authenticated based on attributes and their corresponding
values used in the subjectDN.

The mapping file defines the following information:

• The directory server tree location from where searches begin (Base DN)

• Certificate attributes the server should use as search criteria when searching for the entry
in the directory server

• Whether the server must go through an additional verification process

Mapper File Syntax
The file contains one or more named mappings, each applying to a different CA. Note that only
lower-case entries can be used in <name>. A mapping has the following syntax:

certmap=<name1>,<name2>,<name3>...
<name1>.<property1>=<value>
<name1>.<property2>=<value>

For example:

certmap default,<name>,<name1>
default.<property1> =<value>

default.<property2> =<value>

<name>.<property1> =<value>
<name>.<property2> =<value>

<name1>.<property1> =<value>
<name1>.<property2> =<value>

Chapter 3
Administering Encryption for Secure Authentication

3-2

The first line specifies a name(s) for the entry. You can use any name for the entry. If a mapper
entry for a specific CA (as present in the IssuerDN in the client certificate) does not exist, the
default configuration/mapping is used. Thus, it is recommended to configure default mappings.

Mapper File Properties and Values
The certmap.conf file has the following properties:

IssuerDN

The certificate authority IssuerDN of the certificates to which the map applies. (DN format as
defined in RFC 2253). The IssuerDN must match the IssuerDN of the CA that issued the client
certificate. For example, the following two IssuerDN lines have different space separating the
attributes, but the server treats these as two separate entries:

certmap sun1 ou=Sun Certificate Authority,o=Sun, c=US
certmap sun2 ou=Sun Certificate Authority, o=Sun, c=US

The following are the valid syntax for IssuerDN:

• empty - The corresponding map is invalid. The server will fall back to use the default map.
(For example: usps.IssuerDN=).

• commented out/not set - The corresponding map is invalid. The server will fall back to use
the default map.

• Valid RFC 2253 DN - This map will be used for all the certificates, whose IssuerDN
matches this DN.

DNComps

The DNComps property is used to configure the directory server tree location from where the
server begins its search (Base DN).

Specifies a comma separated list of relative distinguished name components of the base DN
for a directory server search to find the user entry matching the certificate. The components
are taken from the subject DN of the certificate.

The server gathers values for these attributes from the client certificate and uses the values to
form a directory server DN, which determines where the server starts its search in the directory
server. For example, if you set DNComps to use the o and c attributes of the DN, the server
starts the search from the o=org, c=country entry in the directory server, where org and
country are replaced with values from the DN in the certificate.

Any attribute for which a mapping is defined but is not contained in the certificate subject is not
included in the generated base DN.

The following are the valid syntax for DNComps:

• empty - The server performs a sub-tree search with base DN as the configured Base DN
(dcroot) in convergence configuration. (For example: default.DNComps=)

• commented out - take the existing user's DN from the cert and this becomes the Base DN.
(For example: #default.DNComps=ou,o)

• attribute names - a comma separated list of attributes to form DN. The attribute values are
taken from the subject DN of the certificate.

Attribute substitutions - attribute and their corresponding directory server attribute to be
used as a substitute while constructing the Base DN. The attribute values are taken from
the subject DN of the certificate. (For example: default.DNComps=ou=OrgUnit,o).

Chapter 3
About Certificate-Based Authentication

3-3

Table 3-1 lists the supported attributes for this mapper (as per RFC 2253 and RFC 5280).

Table 3-1 Supported attributes for DNComps

Attribute Keyword Description

cn Common name

l Location

street Street

ou Organization unit

o Organization

c Country

uid Unique ID

emailaddress Email address (RFC 822)

s State

serialsnumber Serial number for a name

dnq/dnqqualifier DN specific information

t Person's title (rank)

surname Last name

givenname First name

initials Initials

generation Example, jr, III

ip IP address

FilterComps

FilterComps specifies a comma separated list of attributes to form a filter for a directory server
search to find the user entry matching the certificate. The values for the filter are taken from
the Subject DN of the client certificate.

If multiple attribute mappings are defined, then the server combines them with an AND search.
For example, if two mappings are defined cn and uid, and the server is presented with a
certificate having a subject of UID=john.doe@example.com,CN=John Doe,O=Example
Corp,C=US, then it generates a search filter of (&(cn=John Doe)
(uid=john.doe@example.com)).

Any attribute for which a mapping is defined but is not contained in the certificate subject is not
included in the generated search filter. All attributes that can be used in generated search
filters should have corresponding indexes in all back-end databases that can be searched by
this certificate mapper. For the mapping to be successful, the generated search filter must
match one user in the directory (within the scope of the base DNs for the mapper). If no users
or multiple users match the generated criteria, the mapping fails.

The following are the valid syntax for FilterComps:

• empty - The generated search filter is (objectclass=*) (For example: default.FilterComps=)

• commented out - The generated search filter is (objectclass=*) (For example:
#default.DNComps=cn)

• attribute names - a comma separated list of attributes to form a search. The attribute
values are taken from the subject DN of the certificate. If multiple attribute mappings are
defined, then the server combines them with an AND search.

Chapter 3
About Certificate-Based Authentication

3-4

Attribute substitutions - attribute and their corresponding directory server attribute to be
used as a substitute while constructing the search filter. The attribute values are taken from
the subject DN of the certificate. (For example:
default.FilterComps=uid=employeeID,emailaddress=mail)

Table 3-2 lists the supported attributes for this mapper (as per RFC 2253 and RFC 5280).

Table 3-2 Supported attributes for FilterComps

Attribute Keyword Description

cn Common name

l Location

street Street

ou Organization unit

o Organization

c Country

uid Unique ID

emailaddress Email address (RFC 822)

s State

serialsnumber Serial number for a name

dnq/dnqqualifier DN specific information

t Person's title (rank)

surname Last name

givenname First name

initials Initials

generation Example, jr, III

ip IP address

CmapLdapAttr

CmapLdapAttr specifies the name of the directory server attribute in the directory containing
the subject DN of the certificate.

Unless this attribute is empty, the baseDN is the convergence configured Base DN (DC root)
with a search filter containing subject DN. For the mapping to be successful, the certificate
mapper must match exactly one user (within the scope of the base DNs for the mapper). If no
entries or multiple entries match, the server performs a search with the baseDN generated
from the corresponding DNComps and the search filter from the corresponding FilterComps.

The following is the valid syntax for CmapLdapAttr:

• Attribute name - is a name for the attribute in the directory server that contains subject DNs
from all certificates belonging to the user. (For example:
default.CmapLdapAttr=certSubjectDN)

VerifyCert

VerifyCert tells the server whether it should compare the client's certificate with the certificate
found in the directory server. It takes two values: on and off. This feature is useful to ensure
your end-users have a valid, un-revoked certificate. However, you should only use this property
if your directory server contains certificates.

Chapter 3
About Certificate-Based Authentication

3-5

The default behavior is the same as off, meaning client certificates are not checked to be valid
and not revoked.

The following is the valid syntax for VerifyCert:

• on - compares client certificate with the certificate found in the userCertificate attribute in
user directory server entry (For example: default.VerifyCert=on)

Sample certmap.conf Mapping
The certmap.conf file should have at least one entry. The following examples illustrate the
different ways you can use the certmap.conf file.

The following example represents a certmap.conf file with only one default mapping:

certmap=default
default.DNComps=ou, o, c
default.FilterComps= emailaddress=mail, uid
default:verifycert=on
default.issuerDN=default

Using this example, the server starts its search at the directory server branch point containing
the entry {{ou=orgunit, o=org, c=country}} where orgunit, org, and country are replaced
with the values from the subject's DN in the client certificate.

The server then uses the values for email address and user ID from the certificate to search for
a match in the directory server. The search filter would be &(mail=<email>)(uid=<uid>)).
When it finds an entry, the server verifies the certificate by comparing the one the client sent to
the one stored in the directory.

The following example file has two mappings, one for default and another for the US Postal
Service:

certmap=default,usps
default.DNComps=
default.FilterComps=emailaddress, uid
usps.IssuerDN=ou=United States Postal Service, o=usps, c=US
usps.DNComps=ou,o,c
usps.FilterComps=emailaddress=mail
usps.verifycert=on
default.issuerDN=default

When the server gets a certificate from someone other than the USPS, it uses the default
mapping, which starts at the configured base DN (DC root) and searches for an entry matching
the client's user ID and email address. If the certificate is from the USPS, the server starts its
search at the base DN containing the organizational unit and searches for matching email
addresses. Note that if the certificate is from the USPS, the server verifies the certificate; other
certificates are not verified.

Note:

The IssuerDN in the certificate must be identical to the IssuerDN listed in the first line
of the mapping. In the previous example, a certificate from an issuer DN that is
o=United States Postal Service,c=US will not match because there is no space
between the o and the c attributes.

Chapter 3
About Certificate-Based Authentication

3-6

The following example uses CmapLdapAttr to scan the directory server database for the
certSubjectDN attribute whose value exactly matches the entire subject DN taken from the
client certificate.

certmap=myco
myco.IssuerDN=ou=My Company Inc, o=myco, c=US
myco.CmapLdapAttr=certSubjectDN
myco.DNComps=o, c
myco.FilterComps=emailaddress=mail, uid
myco.verifycert=on

If the client certificate subject is:

uid=Walt Whitman, o=LeavesOfGrass Inc, c=US

the server first searches for entries that contain the following information:

certSubjectDN=uid=Walt Whitman, o=LeavesOfGrass Inc, c=US

If a matching entry is found, the server verifies the entry. If no matching entries are found, the
server uses DNComps and FilterComps to search for matching entries. In this example, the
server would search for uid=Walt Whitman in all entries under o=LeavesOfGrass Inc, c=US.

Enabling Certificate Authentication Support
To enable certificate authentication support using the iwcadmin command, set the
auth.cert.enable property to true. Then restart the Weblogic Server.

If the form-based option is set to true, and certificate-based authentication is disabled, when
the user accesses Convergence without certificate authentication, a login page is displayed.
Additionally, Convergence can be accessed on another port.

To enable fallback to form-based authentication when certification authentication is enabled,
set auth.cert.enablefallback to true using the iwcadmin command.

About Single Sign-On Security
You can enhance Convergence security with single sign-on (SSO).

Oracle recommends that you deliver SSO functionality using Oracle Access Manager. You can
also use Trusted Circle SSO.

See Convergence System Administrator's Guide for information about enabling SSO.

You can write your own customized SSO module for Convergence. See "Writing a Custom
Pluggable SSO Module" for more information. The SSO module is not an SSO provider, but
rather enables an entire site with the same SSO provider to use SSO between Convergence
and other web applications.

About HTML Filtering
You can configure Convergence to filter embedded HTML content from email messages,
because such content could contain malicious code. When HTML filtering is enabled,
Convergence searches incoming messages and removes specified elements, attributes,
protocols, and CSS properties, and then permits the email to be accessed by the user.

By default, HTML filtering is enabled.

Chapter 3
About Single Sign-On Security

3-7

See the discussion about HTML filtering in Convergence System Administrator's Guide for
more information.

Detecting Security Attacks or Insecure System Use
The following sections can help monitor Convergence for security threats and prevent possible
attacks.

Messaging Server Best Practices for Fighting Email Spam
Email spam detection and prevention is a complex issue that is difficult to eliminate. You can
reduce its impact on your system, internal users, and external email recipients.

See Messaging Server Security Guide for more information.

Limiting Mail Delivery
Messaging Server provides a number of mechanisms to limit or throttle email delivery. These
mechanisms can help prevent intentional or accidental Denial-of-Service attacks.

See Messaging Server Security Guide for more information.

Denying Denial of Service Attacks in Messaging Server
You can configure Messaging Server to prevent denial of service (DoS) attacks in several
ways. For more information, see Messaging Server Security Guide.

System Logging
Repeated login failures could be indicative of an external party trying to gain access to an
account. You can review directory server logs for failed logon attempts. With Oracle Internet
Directory, logon failures are recorded as Bind Failures in the access log file access.txt. See
your directory server documentation for more information about logging.

Securing Oracle Outside In Transformation Server
You can install Oracle Outside Transformation Server In to enable Convergence to preview all
kinds of attachments in the browser. Oracle Outside In is an optional module.

The Convergence server authenticates users before they can view attachments. Convergence
generates a session cookie that contains a server-generated URL for each attachment request
to the Outside In proxy. The proxy sends the request to the Transformation Server, which
renders the attachment for the user to view.

The server generated URL is not displayed in Convergence.

If you integrate Convergence with Oracle Outside In Transformation Server, you must
configure the Outside In Transformation Server to prevent security attacks.

• Configure a time out to purge files stored in the transformation server. By default, the time
out is set to 5 minutes.

• Configure each user directory to store a maximum number of files before replacing existing
older files. By default, each user directory can hold a maximum of 10 files.

Chapter 3
Detecting Security Attacks or Insecure System Use

3-8

See the discussion about managing attachment life cycles in Convergence System
Administrator's Guide for more information.

By default, Convergence imposes a maximum size on outgoing email attachments of 5MB.
Depending on how Oracle Outside In Transformation Server is set up, you may need to adjust
the maximum attachment size to decrease the risk of overloading the transformation server.

Chapter 3
Securing Oracle Outside In Transformation Server

3-9

4
Security Considerations for Developers

This chapter describes how you can write custom modules that enhance security for Oracle
Communications Convergence.

Writing a Custom Pluggable SSO Module
This information describes how to write a pluggable custom Single Sign-On (SSO) module for
Convergence. Convergence offers two Single Sign-on mechanisms:

• Access Manager SSO (Legacy Mode and Realm mode).

• Messaging SSO (also referred to as Trusted Circle SSO).

By itself, the pluggable custom SSO module is not an SSO provider nor is it a replacement for
any identity or access management services. Instead, the pluggable custom SSO module
allows a site to use SSO between Convergence and another web application, where they all
use the same SSO provider for identity or access management.

If you want your deployment to use a different SSO mechanism, you must write and implement
an SSO module. Internally, Convergence uses a proxy-auth mechanism to perform SSO with
Oracle Communications back-end servers. The back-end servers are: Messaging Server and
Calendar Server. Convergence enables you to write custom SSO modules to provide Single
Sign-On.

SSO Mechanism in Convergence
As with any SSO-aware application, when a user is authenticated by using Access Manager
for example, Convergence loads the authentication module to validate the user. On successful
validation, the user is allowed to access the application. If the validation is not successful, the
user is redirected to the login page.

Implementing the Custom SSO Module
Before designing a solution for the custom SSO module, Convergence SSO provider
framework needs to be implemented:

• All custom SSO modules must implement SSOProvider interface.

• Convergence stores and accesses user data in a directory server (Schema 1 or Schema
2). This is called UG LDAP.

• UG LDAP uses the directory server filter to identity user in UG LDAP.

• The SSO provider must provide the UG LDAP user identifier and domain identifier.

• After SSO validation the implementation must provide valid uid and valid domain/
organization of the user in UG LDAP. This information will be obtained by SSO framework
by invoking getUid() and getDomain() method of custom SSO Provider.

• The SSO implementation can use any other class that requires custom SSO module to
work.

To write a custom SSO module:

4-1

1. Convergence defines a set of interfaces and class that need to be implemented. They are:

• SSOProvider.java

• SSOListener.java

SSOProvider and SSOListener interfaces have to be implemented by the same class.

2. Configure the SSO module using the iwcadmin command.

The following example shows the reference implementation for SSOProvider.java:

package com.sun.comms.client.security.sso;

import java.util.Properties;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* Custom SSO provider must implement this interface.
*/
public interface SSOProvider {
 /**
 * SSO framework in Convergence will invoke this method by passing all required SSO
configuration, that are configured in configuration.
 * Implementation can store this info for future use. keys in initConfig are case
sensitive.
 */
 public void init(Properties initConfig);

 /**
 * This method will be invoked by SSO framework after calling init() method.
Implementation can have SSO validation code here.
 * If SSO validation or Single-Sign-On is successful, this method should return true.
 * If SSO validation succeeds implementation must not create http session here. It
is taken care of by SSO framework
 */
 public boolean SingleSignOn(HttpServletRequest request,HttpServletResponse response)
throws SingleSignOnException;

 /**
 * This method will be invoked by SSO framework when user logs out of application
and Single-Sign-Off is enabled in configuration.
 * If SSO validation or Single-Sign-Off is successful, this method should return
true.
 * Implementation can perform SSO provider specific Single-Sign-Off here like
cleanup SSO cookies in response.
 */
 public boolean SingleSignOff(HttpServletRequest request,HttpServletResponse
response) throws SingleSignOffException;

 /**
 * This method will be called by SSO framework if Single-Sign-On succeeds.
Implementation must provide a uid (user identifier) of the user
 * in UG LDAP. This will be used by framework to load authenticated user from UG
LDAP.
 */
 public String getUid();

 /**
 * This method will be called by SSO framework if Single-Sign-On succeeds.
Implementation must provide a domain/organization (domain identifier) of the user
 * in UG LDAP. Framework will use this to locate the user under this domain in UG
LDAP.

Chapter 4
Writing a Custom Pluggable SSO Module

4-2

 */
 public String getDomain();

 /**
 * How much more time SSO token is valid with SSO Provider? Currently not used by
framework and hence can be ignored.
 */
 public long getTimeLeft();

}

The following example shows the reference implementation for SSOListener.java:

package com.sun.comms.client.security.sso;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

/*
* If SSO provider needs to perform some post Single-Sign-On operation. This interface
must be implemented.
*/
public interface SSOListener {
 /**
 * This method will be invoked by framework if Single-Sign-On operation succeeded,
user entry is loaded and http session is created.
 * Implementation can do postSignOn related tasks here e.g. registering token
listener for sso token notification etc.
 *
 * @param request - Http request for single sign on
 * @param response - Http response for single sign on
 * @param session- Convergence session that is created after successful single sign
on
 */
 public void postSignOn(HttpServletRequest request,HttpServletResponse
response,HttpSession session);

}

SingleSignOffException - Exception thrown if SingleSignOff fails for any abnormal condition.

SingleSignOnException - Exception thrown if SingleSignOn fails for any abnormal condition.

Note:

While implementing the custom SSO module, iwc.jar should be available in the
classpath of development environment. The iwc.jar file requires SSO module
classes.

Configuration
Once the required classes for the SSO module are created, you must configure it to work with
Convergence server. To configure the SSO module, perform the following operations:

1. Configure the SSO module using the iwcadmin command:

Chapter 4
Writing a Custom Pluggable SSO Module

4-3

iwcadmin -o sso.enable -v "true"
iwcadmin -o sso.enablesignoff -v "true"
iwcadmin -o sso.servicename -v CUSTOM_SSO
iwcadmin -o sso.ssoserviceimpl -v "com.client.sample.CustomSSOProvider"
iwcadmin -o sso.misc.config_name1 -v "Config_Val1"
iwcadmin -o sso.misc.cofnig_name2 -v "Config_Val2"

Note:

All the miscellaneous configuration parameters such as config_name1 and
config_name2 and their values are case-sensitive. These parameters should
match with the SSOProvider classes' init() method.

2. Create a JAR file with all custom classes and supporting classes.

3. If you are using Oracle WebLogic Server, copy the JAR file to Convergence -
Convergence_Domain/servers/Managed_Server/tmp/_WL_user/Convergence/
war_folder/war/WEB-INF/lib directory.

• Shutdown all servers in the domain.

• Start the Administration Server and all Managed Servers in the domain.

Note:

The Administration Server does not automatically copy files in the lib directory to
Managed Servers on remote machines. If you have Managed Servers that do not
share the same physical domain directory as the Administration Server, you must
manually copy JAR file(s) to the Convergence_Domain/servers/
Managed_Server/tmp/_WL_user/Convergence/war_folder/war/WEB-INF/lib
directory on the Managed Server machines.

About the sso.notifyserviceimpl Parameter
In addition, you might choose to enable the sso.notifyserviceimpl parameter, which can be any
user defined class that can listen to events from an SSO provider such as Access Manager.
The class name is available through configuration properties passed to the custom
SSOProvider implementation class (for example: NotificationServiceImplementation as key). In
a custom SSO Provider implementation, you can obtain the class name, create the object, and
register it as a listener for SSO events such as token expiration, single sign off notification, and
so forth. This implementation is an SSO Provider specific class like AMSDK; it is different from
SSOListener.

Custom SSO Implementation Example
The following example (CustomSSOProvider.java) shows a custom SSO reference
implementation:

**** BEGIN com/client/sample/CustomSSOProvider.java ****

package com.client.sample;

import com.sun.comms.client.logging.IwcLogger;
import com.sun.comms.client.security.sso.SSOProvider;

Chapter 4
Writing a Custom Pluggable SSO Module

4-4

import com.sun.comms.client.security.sso.SSOListener;
import com.sun.comms.client.security.sso.RenewSSO;
import com.sun.comms.client.security.sso.SingleSignOffException;
import com.sun.comms.client.security.sso.SingleSignOnException;
import com.sun.comms.client.security.sso.GeneralSSOException;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import java.util.Properties;
import org.apache.commons.logging.Log;

public class CustomSSOProvider
implements SSOProvider,SSOListener,RenewSSO
{

 private static final Log logger = IwcLogger.getLogger(IwcLogger.AUTH_LOGGER);

 public CustomSSOProvider() {
 logger.debug("Custom SSO Provider created");
 }

 public void init(Properties props)
 {
 logger.debug("init() called");
 }

 public String getDomain()
 {
 logger.debug("getDomain() called");
 return "domain.com";
 }

 public long getTimeLeft()
 {
 logger.debug("getTimeLeft() called");
 return 3600;
 }

 public String getUid()
 {
 logger.debug("getUid() called");
 return "uid";
 }

 public void refreshSSO(HttpServletRequest request,HttpServletResponse response)
 throws GeneralSSOException {
 logger.debug("refreshSSO() called");
 }

 public boolean SingleSignOn(HttpServletRequest request, HttpServletResponse response)
 throws SingleSignOnException
 {
 logger.debug("SingleSignOn() called");
 return true;
 }

 public void postSignOn(HttpServletRequest request, HttpServletResponse response,
HttpSession session) {
 String sessionid = session.getId();
 String token = (String) session.getAttribute("USER_TOKEN");
 String cookieValue = "jid=" + sessionid + ":token=" + token;;

Chapter 4
Writing a Custom Pluggable SSO Module

4-5

 logger.debug("postSignOn() called - create a new cookie SSOIwcAuth=" + cookieValue);

 Cookie cookie = new Cookie("SSOIwcAuth", cookieValue);
 cookie.setPath("/");
 cookie.setDomain(".example.com");
 response.addCookie(cookie);
 }

 public boolean SingleSignOff(HttpServletRequest request, HttpServletResponse response)
 throws SingleSignOffException
 {
 logger.debug("SingleSignOff() called");
 return true;
 }
}

**** END com/client/sample/CustomSSOProvider.java ****

For Oracle WebLogic Server:

[/tmp/test]$ cat compile.sh
#!/usr/bin/bash

echo "Compiling...."
/usr/jdk/instances/jdk1.8.0/bin/javac -classpath \
/opt/sun/comms/iwc/web-src/server/WEB-INF/lib/commons-logging-1.1.jar:/opt/sun/comms/iwc/
web-src/server/WEB-INF/lib/iwc.jar:/Weblogic_Home/server/lib/javax.javaee-api.jar \
com/client/sample/CustomSSOProvider.java

echo "Creating JAR file"
/usr/jdk/instances/jdk1.8.0/bin/jar -cvf customsso.jar \
com/client/sample/CustomSSOProvider.class

Summary
Convergence enables you to write your own custom SSO authentication modules. To write a
custom SSO module, the Convergence SSO framework requires that you implement the
following interfaces:

• SSOProvider

• SSOListener

Additionally, you can also use other classes that help you to implement the SSO module.
Finally, you must configure Convergence to use the custom SSO module that you created
using the iwcadmin command.

Writing a Custom Authentication Module
Convergence server provides an interface that enables you to create custom user
authentication in the form of a customizable Java-based authentication module. The custom
authentication module allows an organization to use a non-Oracle directory server mechanism
(for example, an RDBMS, flat-text file or third-party directory server) to provide authentication
functionality.

By default, Convergence uses Oracle Supported Directory Server for authentication store.

Chapter 4
Writing a Custom Authentication Module

4-6

Basic Concepts
This section defines the terms and describes the authentication framework architecture and its
components.

Convergence uses the following repositories to store user data:

• User Authentication Store: Contains user credentials, such as user name, password,
domain information, and a unique identifier to identify the user in the User or Group
directory server store.

• User/Group LDAP Store (UG LDAP): Contains user preferences such as the user time
zone, language preference, and user theme. Convergence uses Schema 1 or Schema 2 to
store user information in the User or Group directory server.

Convergence Authentication Framework
This section describes how the authentication framework works in Convergence.

1. The authentication module first authenticates the user in the authentication store using the
configured authentication module. The default authentication module that works by default
is Oracle Unified Directory.

2. On successful authentication, the authentication module gets the user specific attributes
like user ID, the domain of the user, organization, and a unique identifier.

3. The authentication framework loads the user from the User Group directory server using
the user ID (userID) and domain name (userDomain).

Contracts Defined by the Authentication Module
Before designing a solution for the custom authentication module, you must be aware of the
contracts that the Convergence authentication framework needs for successful transfer of
information between the authentication store, the Convergence authentication framework, and
UG LDAP.

• The authentication module must provide a mechanism to identify a user in the UG LDAP
after successful authentication. The custom authentication can have any authentication
store that can use any type of identifier to authenticate the user. The authentication
mechanism should provide a relationship between the authenticated user and UG LDAP.
After successful authentication, the authentication module should provide a unique
identifier to locate the user in the UG LDAP. For example, if both authentication store and
UG LDAP use the same identifier to locate the user, after successful authentication, the
authentication module must set userID and userDomain parameters in the HTTP request
by using callback handler objects. These parameters are used by UG LDAP filter to load
the user from the UG LDAP. In our example, the user ID (example scott) is the unique
identifier used to locate the user in UG LDAP.

• All the custom authentication modules must implement the following three classes:

– JAAS LoginModule interface. Convergence uses JAAS LoginModule as an interface
for all its login modules. The custom authentication module must implement this
interface. Although the authentication module uses the JAAS framework for
authentication, it does not use all the advanced capabilities like authentication
chaining, and multiple login modules.

Chapter 4
Writing a Custom Authentication Module

4-7

– HttpCallbackHandler. An abstract class that implements the CallbackHandler of
JAAS. This class must be implemented to handle custom callbacks. All custom
authentication modules must implement this class to handle custom callbacks.

– Convergence uses the JAAS LoginCallback and CallbackHandler interface to get
and set information between the authentication module and Convergence application.
Since Convergence is a web application, authentication is performed through HTTP
based request and response. Convergence provides an abstract class:
HttpCallbackHandler, which implements CallbackHandler interface of JAAS.

• After successful authentication, the authentication module must set the UserPrincipal
object in the Subject. This can be done in commit method of login module. UserPrincipal
must be created using loginID of the user.

• Custom authentication modules must not create HTTP session (HTTPSession) object.
Convergence authentication framework takes care of initializing the session.

About the Sample Application
This section describes the various files that are created for the custom authentication module
to work. Use this as a reference to create other custom authentication modules to suit your
enterprise' needs. The sample authentication module can be used as is by copying the source
files and following the steps as mentioned in the following sections.

Caution:

If you must change the core class file names provided in this section, you must
appropriately refactor the code. Some files use objects created by other core classes
of the custom authentication module.

This example describes an authentication module for a file based user data store. The
following is a sample set of data that could be used to store user information in the data store.

userinfo.txt

smith:xxxx:siroe.com
jack:xxxx:siroe.com
scott:xxxx:test123:siroe.com

In the example, each attribute is separated by a colon. For example, the first record of the file
provides information about the user ID smith whose password is xxxx with domain siroe.com.

Implementing the Classes Required for the File-Based Authentication Store
This section describes the classes that are used to implement the authentication module for a
file-based user store. The following are the core class:

• SunTestLoginModule.java

package com.sun.comms.test;

import com.sun.comms.client.logging.IwcLogger;
import com.sun.comms.client.security.auth.UserPrincipal;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

Chapter 4
Writing a Custom Authentication Module

4-8

import java.util.Map;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;
import org.apache.commons.logging.Log;
import com.sun.comms.test.SunTestAuthCallBack;

public class SunTestLoginModule implements LoginModule {

 private Subject subject;
 private CallbackHandler cbh;
 private Map sharedState;
 private Map options;
 private boolean succeeded;
 private UserPrincipal up;
 private SunTestAuthCallBack mcb = null;
 private String credFile = "";
 private final static Log logger = IwcLogger.getLogger(IwcLogger.AUTH_LOGGER);

 public void initialize(Subject subject, CallbackHandler callbackHandler,
Map<String, ?> sharedState, Map<String, ?> options) {
 this.subject = subject;
 this.cbh = callbackHandler;
 this.sharedState = sharedState;
 this.options = options;
 credFile = (String) options.get("CredentialFile");
 }

 public boolean login() throws LoginException {
 Callback[] callbacks = new Callback[1];
 mcb = new SunTestAuthCallBack();
 callbacks[0] = mcb;

 if (cbh == null) {
 throw new LoginException("Error: no CallbackHandler available " +
 "to gather authentication information from the user");
 }

 try {
 // Get userid and pwd from request
 cbh.handle(callbacks);
 } catch (Exception ex) {
 throw new LoginException("SunTestLoginModule: login failed");
 }

 String[] userInfo = attemptLogin();

 if (userInfo != null && userInfo.length==3) {
 mcb.setUserInfo(userInfo[0], userInfo[2]);
 succeeded = true;
 return true;
 } else {
 System.err.println("Unable to find user entry");
 throw new FailedLoginException("Unable to find user entry");
 }
 }

 private String[] attemptLogin() throws LoginException {

Chapter 4
Writing a Custom Authentication Module

4-9

 if(credFile==null)
 throw new LoginException("User database file is not set configuration.");

 File loginFile = null;
 String userID = mcb.getUserName();
 String userPwd = mcb.getUserPwd();

 if (userID == null || userPwd == null) {
 throw new LoginException("Required user credential not found");
 }

 try {
 loginFile = new File(credFile);
 if (loginFile.exists()) {

 BufferedReader reader = new BufferedReader(new
FileReader(loginFile));
 String userEntry = null;
 while ((userEntry = reader.readLine()) != null) {
 String[] usrAcc = userEntry.split(":");
 if (usrAcc != null && usrAcc.length == 3) {
 if (userID.equals(usrAcc[0]) && userPwd.equals(usrAcc[1])) {
 return usrAcc;
 }
 }
 }

 } else {
 System.err.println("Unable to find user database file " + credFile);
 throw new LoginException("Unable to find user database file " +
credFile);
 }
 } catch (IOException ex) {
 System.err.println("Unable to load user database file " + credFile);
 throw new LoginException("Unable to load user database file " +
credFile);
 }
 return null;
 }

 public boolean commit() throws LoginException {
 if (succeeded == false) {
 return false;
 } else {
 // add a Principal (authenticated identity) to the Subject
 UserPrincipal userPrincipal = new UserPrincipal(mcb.getUserName());

 if (!subject.getPrincipals().contains(userPrincipal)) {
 subject.getPrincipals().add(userPrincipal);
 }
 }
 return true;
 }

 public boolean abort() throws LoginException {
 return true;
 }

 public boolean logout() throws LoginException {
 return true;
 }
}

Chapter 4
Writing a Custom Authentication Module

4-10

• SunTestAuthCallBack.java

package com.sun.comms.test;

import com.sun.comms.client.security.auth.LoginCallback;
import java.io.Serializable;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.Locale;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SunTestAuthCallBack implements LoginCallback, Serializable {

 HttpServletRequest req;
 HttpServletResponse res;
 String username = null;
 String pwd = null;

 protected String name = null;
 protected String host = null;
 protected String user = null;
 protected String userDomain = null;
 protected Locale locale = null;
 protected String serverName = null;

 SunTestAuthCallBack(){

 }

 public void setData(HttpServletRequest request,HttpServletResponse response){
 this.req = request;
 this.res = response;
 username = (String)req.getParameter("username");
 pwd = (String)req.getParameter("password");

 }

 public String getUserName(){
 return username;
 }

 public String getUserPwd(){
 return pwd;
 }

 public void setUserInfo(String uid,String domain){
 req.setAttribute("loginID", uid);
 req.setAttribute("userDomain", domain);
 }

 public boolean setData(Object obj) {
 throw new UnsupportedOperationException("Not supported yet.");
 }

 public Locale getLocale() {

 if (locale == null)
 return Locale.getDefault();

Chapter 4
Writing a Custom Authentication Module

4-11

 return locale;
 }

 /**
 * set the client locale
 */

 public void setLocale(Locale locale) {
 if (locale != null)
 this.locale = locale;
 }

 /**
 * get the host name of the machine running the console.
 * this may be required for auditing purposes
 */

 public String getHost() {

 if (host == null) {
 try {
 host = InetAddress.getLocalHost().getHostName();
 } catch (UnknownHostException ukhe) {
 host = null;
 }
 }

 return host;
 }

 /**
 * set the host name of the machine
 */

 public void setHost(String host) {
 if (host != null)
 this.host = host;
 }

 @Override
 public void loadData() {
 throw new UnsupportedOperationException("Not supported yet.");
 }
}

• AppTestCallbackHandler.java

package com.sun.comms.test;

import com.sun.comms.client.logging.IwcLogger;
import com.sun.comms.client.security.auth.modules.HttpCallbackHandler;
import com.sun.comms.client.web.RequestContextProvider;
import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.commons.logging.Log;
import com.sun.comms.test.SunTestAuthCallBack;

public class AppTestCallbackHandler extends HttpCallbackHandler {
 private final static Log logger = IwcLogger.getLogger(IwcLogger.AUTH_LOGGER);
 public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

Chapter 4
Writing a Custom Authentication Module

4-12

 if (callbacks == null) {
 throw new IOException("Empty or null callback array");
 }

 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof SunTestAuthCallBack) {
 SunTestAuthCallBack nc = (SunTestAuthCallBack)callbacks[i];
 nc.setData(RequestContextProvider.getHttpRequest(),
RequestContextProvider.getHttpResponse());
 System.err.println("request and response set in
AppTestCallbackHandler");
 }else
 System.err.println("Callback objects are not instance of
SunTestAuthCallBack");
 }
 }
}

How the Implementation Works
For every authentication request, the Convergence authentication framework reads the
configured login module class name, call back handler class name and executes it using JAAS
framework.

The JAAS framework calls the initialize() method by passing all the required arguments. One
important argument is the Map option of the initialize() method. Convergence's authentication
framework populates this object with all Misc parameters of CustomJAASService
configuration.

In this example, we pass the directory location of user database CredentialFile as part of Misc
parameter to SunTestLoginModule. The other arguments are:

• Subject subject - represents Subject that is being authenticated.

• CallbackHandler callbackHandler - Object that is responsible for handling custom
callbacks.

• Map sharedState - Not used by Convergence and hence ignore it.

After successful initialization, the login module obtains all the required information about the
callback handler and all the required configuration. The JAAS framework then invokes the
login() method. This method performs the authentication, which is module specific. In this
sample, login() method first creates callback object(s):

Callback[] callbacks = new Callback[1];
mcb = new SunTestAuthCallBack();

The call back object is aware of how to obtain the authentication related information such as
the username, password, and so on. This is returned as a HTTP request. Once call back
objects are created, it passes callback objects to CallBackHandler's handle method.

cbh.handle(callbacks);

callbackhandler knows how to handle call back objects. For example, the method used for
callback object, the data to be passed to it, and so on.

the handle() method of callback handler then calls callback object's setData() by passing
request and response objects:

SunTestAuthCallBack nc = (SunTestAuthCallBack)callbacks[i];
nc.setData(

Chapter 4
Writing a Custom Authentication Module

4-13

 RequestContextProvider.getHttpRequest(),
 RequestContextProvider.getHttpResponse());

Now, the Callback's setData() extracts the required information from request and response. In
this sample, it gets request parameter username and password from request.

this.req = request;
 this.res = response;
 username = (String)req.getParameter("username");
 pwd = (String)req.getParameter("password");

The callback object now has all information that is required to authentication the user from the
HTTP request. Now login method() calls an internal method attemptLogin(). This method
obtains login information from the callback object:

String userID = mcb.getUserName();
 String userPwd = mcb.getUserPwd();

and loads the user database file and performs authentication. If authentication is successful
this method returns String array with userID and userDomain, which is identifier to locate
user in UG LDAP.

If attemptLogin() method is successful, login() method sets userID and userDomain info
back into HTTP request by calling callback object's setUserInfo() method:

mcb.setUserInfo(userInfo[0], userInfo[2]);

Here, userInfo[0] is unique identified to locate user in UG LDAP. For example, uid and
userInfo[2] is domain/organization name in UG LDAP under which user entry is available. This
method sets this information as parameters in the HTTP request attribute:

public void setUserInfo(String uid,String domain){
 req.setAttribute("loginID", uid);
 req.setAttribute("userDomain", domain);
 }

The authentication framework uses the loginID and userDomain to get the information from
the request. All custom modules must use same names for these parameters. This is
mandatory for Convergence' authentication framework. The login() method returns true. Now
JAAS framework will call commit() method of LoginModule, where UserPrincipal object is
populated into authenticated Subject object. This is mandatory for Convergence'
authentication framework.

UserPrincipal userPrincipal = new UserPrincipal(mcb.getUserName());

 if (!subject.getPrincipals().contains(userPrincipal)) {
 subject.getPrincipals().add(userPrincipal);
 }

Here, UserPrincipal object takes userName of the user, which is nothing but unique identifier
used to locate user entry in UG LDAP.

On successful completion of the commit() method, the control goes back to Convergence'
authentication framework. This step marks the end of the authentication process. The
authentication framework now has all the required information like: loginID, userDomain and
authenticated Subject with UserPrincipal objects. The Convergence authentication
framework then loads the user from the UG LDAP.

Chapter 4
Writing a Custom Authentication Module

4-14

Compiling the Sample Custom Module
If you must change the core class file names provided in this section, you must appropriately
refactor the code. Some files use objects created by other core classes of the custom
authentication module.

Note:

The paths used in the following example may differ for your installation.

1. In a temporary directory in /com/sun/comms. For example, create /com/sun/comms/
test.

Note:

The JAR file must be created by following the Java packaging layout rules. For
example, the classes in this sample are packaged as com.sun.comms. So the
Java files must be copied under the directory structure: com/sun/comms.

2. Copy the sample code provided earlier into the files
AppTestCallbackHandler.java,SunTestAuthCallBack.java, and
SunTestLoginModule.java under /com/sun/comms/ test directory.

3. Compile the java class files.

• For Oracle WebLogic Server:

cd /temporary_directory/com/sun/comms/test
javac -classpath /opt/sun/comms/iwc/web-src/server/WEB-INF/lib/iwc.jar:/opt/sun/
comms/iwc/web-src/server/WEB-INF/lib/commons-logging-api-1.1.1.jar:Weblogic_Home/
server/lib/javax.javaee-api.jar
AppTestCallbackHandler.java SunTestAuthCallBack.java SunTestLoginModule.java

where, Weblogic_Home is the directory in which the Oracle WebLogic Server software
is installed

4. Create a JAR archive.

cd temporary_directory
jar -cvf SunTestLogin.jar com

Note:

If your custom authentication module requires any additional JAR files or classes,
these must be bundled along with the JAR file.

5. Place the JAR file in the following directories.

• For Oracle WebLogic Server: Convergence_Domain/servers/Managed Server/tmp/
_WL_user/Convergence/war_folder/war/WEB-INF/lib

Chapter 4
Writing a Custom Authentication Module

4-15

Note:

The custom authentication module must be on the system that can be accessed
by Oracle WebLogic Server. It is best to place the JAR file on a location outside
of the Convergence installation or deployed directories. See your Oracle
WebLogic Server documentation for more information.

Configuring the Sample Custom Authentication Module
This section describes the steps to configure the custom authentication module with
Convergence. Since this example comes bundled with Convergence server, all that is required
is to configure Convergence by setting the appropriate configuration parameters. The following
are the instructions to enable the custom authentication module to use a file based
authentication store.

To configure the sample custom authentication module:

1. Set the auth.custom.service name parameter in Convergence to indicate that a custom
authentication module is being used.

iwcadmin -o auth.custom.servicename -v "JAAS_CUSTOM"
2. Set the auth.custom.loginimpl parameter to the login module implementation created for

custom authentication module.

iwcadmin -o auth.custom.loginimpl -v "com.sun.comms.test.SunTestLoginModule"
3. Set the auth.custom.callbackhandler parameter to the custom callback handler used for

the custom authentication module.

iwcadmin -o auth.custom.callbackhandler -v
"com.sun.comms.test.AppTestCallbackHandler"

4. Set the auth.misc.CredentialFile parameter to the directory where the authentication
store is available. In this case, the authentication store is a file.

Note:

Here, the value of auth.misc.CredentialFile is case-sensitive. While reading
these parameters inside custom authentication module the name should match
the configuration.

iwcadmin -o auth.misc.CredentialFile -v "/var/opt/SUNWiwc/config/userinfo.txt"

If you have created a custom authentication module for a different authentication store, you
must follow the steps described below to enable the authentication module to work with
Convergence.

1. Compile the custom authentication module source files and bundle them as a Java
archive. See "Compiling the Sample Custom Module" for more information.

2. Configure Convergence to use the custom authentication module.

a. Set the auth.custom.service configuration parameter to "JAAS_CUSTOM".

b. Set the auth.custom.loginimpl configuration parameter to the custom login module
implementation of the authentication module

Chapter 4
Writing a Custom Authentication Module

4-16

c. Set the auth.custom.callbackhandler to the call back handler of the custom
authentication module.

d. Set any miscellaneous parameters that you have used for your custom authentication
module by setting the auth.misc configuration parameter.

3. Deploy the custom module. See "Deploying the Authentication Module in the Oracle
WebLogic Server" for more information.

Deploying the Authentication Module in the Oracle WebLogic Server
Restart the Oracle WebLogic server so that the module is updated in the classpath of the
application server.

Debugging and Troubleshooting the Custom Authentication Module
This section provides instructions on how to debug and troubleshoot the authentication
module.

1. Set Convergence logging to DEBUG level.

iwcadmin -o log.AUTH.level -v DEBUG
2. Restart the Oracle WebLogic Server.

3. Use the tail command to see the log messages generated.

Disabling the Custom Authentication Module
To change the custom authentication module to the default authentication module, run
following command.

iwcadmin -o auth.ldap.enable -v true

Restart the Oracle WebLogic server to ensure that the changes take effect in your deployment.

Summary
This section provides a recap of how to create a custom authentication module.

• Every custom authentication module should implement the following three classes:

– A class that implements LoginModule interface

– A class that extends HttpCallBackHander class

– A (set of) class(es) that implements CallBack interface

If your custom authentication module requires other classes that are specific to your
implementation of the authentication module, the classes must be implemented.

• The iwc.jar should be there in classpath, while developing custom authentication module
as it uses few Convergence specific classes like HttpCallBackHandler and UserPrincipal.

• As a best practice, it is good to bundle all dependent classes in a jar file. These should be
made available in the web container's class path.

• Implementation of LoginModule interface and HttpCallBackHander class needs to be
configured using the command line interface.

• Any additional configuration specific to custom authentication module can be configured as
Misc parameter using CLI

Chapter 4
Writing a Custom Authentication Module

4-17

• The custom authentication module must set two HTTP request attributes, userid and
userDomain after successful authentication.

• The userDomain must be a valid domain entry in UG LDAP under which, Convergence can
uniquely locate user entry by using user id as an identifier.

• The custom authentication module must create UserPrincipal object using userid and set it
in Subject after successful authentication.

Chapter 4
Writing a Custom Authentication Module

4-18

A
Convergence Secure Deployment Checklist

The following security checklist provides guidelines to help you secure Oracle Communications
Convergence.

Secure Deployment Checklist
• Install only the components you require.

• Lock and expire default user accounts.

• Use a strong directory server password policy for user authentication.

• Enforce the use of access controls by using the Authorization Policies.

• Require clients to authenticate.

• Restrict network access by doing the following:

– Use firewalls.

– Never leave an unnecessary hole in a firewall.

– Monitor who accesses your systems.

– Restrict system access by IP addresses.

– Encrypt network traffic.

• Apply all security patches and workarounds.

• Encrypt sensitive information.

• Contact Oracle Security Products if you discover a vulnerability in any Oracle product.

A-1

	Contents
	Preface
	Audience
	Convention
	Documentation Accessibility
	Diversity and Inclusion

	1 Convergence Security Overview
	Basic Security Considerations
	Understanding the Convergence Environment
	Overview of Convergence Server Security
	Recommended Deployment Topologies
	Operating System Security
	Firewall Port Configuration

	Oracle WebLogic Server Security
	Oracle WebLogic Server in Secure Mode
	Accessing a Web Application Deployed on Oracle WebLogic Server

	Secure Sockets Layer (SSL)
	Configuring SSL in Convergence
	Configuring Authentication-Only SSL
	Enabling SSL for Back-End Servers
	Disabling Non-SSL Connections for Application Servers

	Directory Server Security

	2 Performing a Secure Convergence Installation
	Installing Infrastructure Components Securely
	Installing Third-Party Service Applications Securely
	Credentials Required to Install Convergence Components

	3 Implementing Convergence Security
	Managing Security of Passwords
	Disabling SSLv3 on Front-End Oracle WebLogic Server Hosts
	Administering Encryption for Secure Authentication
	About Certificate-Based Authentication
	Configuring the Convergence Certificate Mapper
	Mapper File Syntax
	Mapper File Properties and Values
	Sample certmap.conf Mapping

	Enabling Certificate Authentication Support

	About Single Sign-On Security
	About HTML Filtering
	Detecting Security Attacks or Insecure System Use
	Messaging Server Best Practices for Fighting Email Spam
	Limiting Mail Delivery
	Denying Denial of Service Attacks in Messaging Server
	System Logging

	Securing Oracle Outside In Transformation Server

	4 Security Considerations for Developers
	Writing a Custom Pluggable SSO Module
	SSO Mechanism in Convergence
	Implementing the Custom SSO Module
	Configuration
	About the sso.notifyserviceimpl Parameter

	Custom SSO Implementation Example
	Summary

	Writing a Custom Authentication Module
	Basic Concepts
	Convergence Authentication Framework
	Contracts Defined by the Authentication Module

	About the Sample Application
	Implementing the Classes Required for the File-Based Authentication Store
	How the Implementation Works
	Compiling the Sample Custom Module
	Configuring the Sample Custom Authentication Module
	Deploying the Authentication Module in the Oracle WebLogic Server
	Debugging and Troubleshooting the Custom Authentication Module
	Disabling the Custom Authentication Module
	Summary

	A Convergence Secure Deployment Checklist
	Secure Deployment Checklist

