
Oracle® Communications Design
Studio
Concepts

Release 7.4.2
F30774-01
November 2020

Oracle Communications Design Studio Concepts, Release 7.4.2

F30774-01

Copyright © 2013, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Related Documents vii

Documentation Accessibility viii

1 About Design Studio

Introducing Design Studio 1-1

About Design Studio Solutions 1-1

About Design Studio Roles 1-2

Working with Design Studio for Oracle Communications Applications 1-3

About Design Studio for OSM 1-3

About Design Studio for Inventory 1-3

About Design Studio for ASAP 1-3

About Design Studio for Network Integrity 1-4

About the Design Studio Role in Business Solutions 1-4

About Design Studio Product Architecture 1-4

Working with the Design Studio User Interface 1-5

About Workspaces 1-5

About the Workbench 1-5

About Perspectives 1-5

About Views 1-5

About Editors 1-8

Navigating Across Solutions Using the Design Perspective 1-8

About the Design Perspective Default Layout 1-8

About Context Menu Options 1-9

Example: Navigating Across a Solution Design 1-9

About Design Studio Reporting 1-10

2 Working with Projects, Data Schemas, and Data Elements

Working with Projects 2-1

Importing Projects 2-1

iii

Upgrading Projects 2-2

Controlling Project Visibility in a Workspace 2-2

Working with Model Projects 2-3

Working with Cartridge Projects 2-3

Working with Environment Projects 2-4

Working with Project Dependencies 2-4

Working with Data Schemas 2-5

Working with Data Elements 2-6

About Primitive Data Types 2-6

About Data Element Icons 2-7

Modeling Data Elements 2-8

About the Data Modeling Tabs 2-8

About the Details and Attributes Tabs 2-8

About the Enumerations Tab 2-9

About the Tags Tab 2-10

About the Usage Tab 2-11

About the Notes Tab 2-11

Data Element Application Details 2-12

About Data Modeling Strategies and Techniques 2-12

Leveraging Information from Existing Data Elements 2-12

Organizing and Searching for Data Elements 2-17

Refactoring Data Models 2-18

Working with Predefined Data Models 2-22

Sharing Data Across Application Projects 2-23

About The Data Dictionary 2-23

About Data Leveraging 2-24

3 Working with Design Patterns and Guided Assistance

About Design Patterns 3-1

About Guided Assistance 3-1

About Cheat Sheets 3-2

4 Working with Conceptual Models

About Conceptual Models 4-1

About Conceptual Model Entities 4-4

About Customer Facing Services 4-6

About Resource Facing Services 4-6

About Resources 4-7

About Products 4-7

iv

About Locations 4-8

About Domains 4-8

About Application Roles 4-8

About Provider Functions 4-9

About Functional Areas 4-10

About Fulfillment Patterns 4-10

About Fulfillment Functions 4-10

About Action Parameter Bindings 4-11

About Action Parameter Bindings and CTA Metadata 4-11

About Conceptual Model Entity Relationships 4-12

About Relationship Types 4-14

About Actions 4-15

About Conceptual Model Realization 4-16

About Design Patterns That Realize Conceptual Models 4-17

About Realizing Services in Design Studio for Inventory 4-18

About Realizing Service Components 4-19

About Realizing Resources in Design Studio for Inventory 4-27

About Realizing Locations in Design Studio for Inventory 4-28

About Realizing Technical Actions in Design Studio for ASAP 4-28

About Conceptual Model Synchronization 4-30

About Synchronization Records 4-31

About Importing Conceptual Model from External Catalogs 4-32

About the Common Model Base Data Project 4-34

About Conceptual Models and Service Order Fulfillment 4-34

Conceptual Models and Central Order Management 4-34

Conceptual Models and Service Order Management 4-35

Conceptual Models and Technical Order Management 4-35

5 Design Studio Packaging and Integrated Cartridge Deployment

About Packaging and Cartridge Deployment 5-1

Collaborating in Teams 5-2

Using Software Configuration Management Systems 5-2

Using Continuous Integration 5-2

Communicating Changes 5-3

Working with Design Studio Builds 5-4

About Incremental Builds 5-4

About Clean Builds 5-5

About the Design Studio Builder Process 5-5

Working with Integrated Cartridge Deployment 5-5

About Cartridge Deployment 5-5

v

About the Environment Perspective 5-6

About the Cartridge Management View 5-7

Deployment Synchronization States 5-8

About the Studio Environment Editor 5-9

About Model Variables 5-10

About Cartridge Management Variables 5-10

Preparing Solutions for Production Environments 5-11

Testing Design Studio Solutions 5-11

Testing Activities 5-12

Automating Builds 5-13

About the Cartridge Management Tool 5-13

6 Extending Reference Implementations

A Solution Development Methodology

Working with Project Phases and Tasks A-1

Inception and Requirements Analysis Phase A-1

Functional Design Phase A-2

Construction Phase A-2

System Test Phase A-2

Deployment and Maintenance Phase A-3

Working with Document Artifacts A-3

Glossary

vi

Preface

This guide provides a conceptual introduction to Oracle Communications Design
Studio and it includes concepts related to the modeling and configuration of Oracle
Communications products, and to Design Studio as an integrated design environment.

For detailed steps on how to perform specific tasks, see the Design Studio Help and
Design Studio Developer's Guide.

Audience
This guide is intended for business analysts, architects, development managers,
developers, and designers who are responsible for system integration or solution
development involving the Oracle Communications operational support systems
applications.

Ideally, you should be knowledgeable about your company's business processes, the
resources you need to model, and any products or services your company offers.

Related Documents
For more information, see the following documents in the Oracle Communications
Design Studio documentation set:

• Design Studio Installation Guide: Describes the requirements and procedures for
installing Design Studio.

• Design Studio System Administrator's Guide: Describes information about
administering Oracle Communications Design Studio. This guide includes
information about configuring deployment settings for test environments, backing
up and restoring Design Studio data, and automating builds.

• Design Studio Developer's Guide: Provides common solution development
guidelines and best practices for cartridge design and development. The
recommendations included in this guide apply to all the solutions that leverage
one or more of the supported Oracle Communications applications.

• Design Studio Security Guide: Provides an overview of security considerations,
information about performing a secure installation, and information about
implementing security measures in Design Studio.

• Design Studio Help: Provides step-by-step instructions for tasks you perform in
Design Studio.

Additionally, you may require information from the OSM, UIM, Network Integrity, and
ASAP concepts or developer's guide. These guides are included in their respective
software packages on the Oracle software delivery website.

vii

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
About Design Studio

This chapter provides an overview of Oracle Communications Design Studio, including
an introduction to the Design Studio design environment.

Introducing Design Studio
Design Studio is an integrated design environment (IDE). This design-time
environment enables you to build and configure Oracle service fulfillment and network
and resource management solutions. Design Studio enables you to create and use
solutions quickly by providing a consistent design experience for both technical and
non-technical users.

About Design Studio Solutions
You use Design Studio to design the run-time behavior of Oracle Communications
applications. For example, if you need to provision broadband service orders, you can
use Oracle Communications Order and Service Management (OSM) to manage the
service orders in real-time (you also need a CRM system to capture the order, an
inventory system to create the service, an activation system to activate the service
in the network, and so forth). Before you can do any real-time order management,
however, you first use Design Studio to design the OSM run-time process, to
customize the content of the orders, to customize the tasks, to define the data required
to fulfill the order, and so forth.

In Design Studio, you package this collection of OSM entities and configuration in
an OSM Cartridge project. You create additional Cartridge projects to define other
parts of your business processes (for example, Inventory Cartridge projects that
customize your design and assign run-time processes, Activation Cartridge projects
that contain configuration to activate the service in the network, and so forth). You
create other types of projects to augment the data defined in your Cartridge projects,
such as Model projects that contain data that you define once and use across multiple
applications, and Environment projects that contain information about your run-time
servers.

This collection of projects is called a solution.

You package each Cartridge project into an archive file (the archive file is called
a cartridge), which you deploy from Design Studio to core applications that are
integrated into a run-time environment. When deployed to a run-time environment,
cartridges are interpreted by the application server, which then activates the solution.
You can undeploy cartridges and deactivate them by removing them from the run-time
environment, and you can replace cartridges that exist in the run-time environment
to change a solution. Together, the core applications and the deployed cartridges
comprise the solution operations environment.

When creating new solutions in Design Studio, you can use productized cartridges
(cartridges purchased from Oracle) or reference implementations as starting points to
your solution. Also, you can develop your own solutions.

1-1

While solutions can include only a single application, typically they leverage multiple,
integrated applications. When you design solutions, you can model and configure
entities that cross the boundaries of any one specific application. The Design Studio
environment integrates the applications used in the solution for a consistent and
efficient design experience.

During solution design, you use Design Studio to iteratively design, test, and debug
solutions. You can also use Design Studio to maintain solutions and to change them
over time. For example, you can quickly change your solution based on ongoing
responses from customers, changes in technology, and market analysis. You use
Design Studio to configure solutions at all levels of solution maturity, and over the
lifetime of a solution. As requirements change, and as your communications services
evolve, Design Studio enables you to evolve your solutions. Also, Design Studio
simplifies solution evolution by enabling you to update the solution design and to
release updates that meet the evolving service requirements.

About Design Studio Roles
Team members may play many roles during solution development. Table 1-1 lists the
roles and the tasks each role typically performs in Design Studio.

Table 1-1 Design Studio Roles and Tasks

Role Tasks

Data Modeler Designs the data types and structures necessary to support a
cartridge or solution.

Cartridge Designer Designs deployable components spanning a single product
domain.

Solution Designer Assembles collections of cartridges to deliver a solution
that includes multiple Oracle Communications applications.
Additionally, this role may design additional cartridges to achieve
the desired solution functions.

Developer Builds the code to support the metadata-driven components of a
cartridge. This role may be an expert in development languages
such as Java, XPath, XQuery, or SQL.

Release Engineer Manages the solution development and test environment. This
role configures and automates the solution build and the solution
testing.

Cartridge and Solution
Tester

Deploys cartridge archives to a test environment to certify that
the cartridge or solution is working as intended.

System Administrator Manages the design environment software. This role acquires,
configures, and distributes Design Studio to cartridge designers.

Design Studio Report
Designer

Develops custom reports. This role is a highly-skilled developer
familiar with the technologies needed to produce report designs.
These technologies include XML, XPath, BIRT, JavaScript, and
familiarity with Design Studio cartridge development.

Chapter 1
About Design Studio Roles

1-2

Working with Design Studio for Oracle Communications
Applications

In addition to configuring common design-time models that apply across an entire
solution, you use Design Studio to configure specific design artifacts for one or more
Oracle Communications applications:

• Design Studio for OSM and Design Studio for OSM Orchestration, which you use
to define solutions for OSS service order management and for BSS central order
management, respectively.

• Design Studio for Inventory, which you use to define service and resource
definitions, rules and domain-specific metadata.

• Design Studio for Network Integrity, which you use to configure network discovery,
assimilation, and reconciliation behavior.

• Design Studio for ASAP, which you use to define service actions, network actions
and scripts for service activation.

About Design Studio for OSM
You use Design Studio for OSM to configure and deploy OSM solutions for order
orchestration and for order provisioning. Design Studio for OSM enables you to design
process flows to fulfill requests for orders, such as customer, service, and technical
orders.

Order provisioning functionality enables you to configure and deploy service
provisioning cartridges that include integrations with Oracle Communications
Unified Inventory Management (UIM), Oracle Communications ASAP, and Oracle
Communications IPSA, as well as with third-party applications. Solution integration
with UIM and ASAP is facilitated by Design Studio through design-time integration
capabilities.

About Design Studio for Inventory
You use Design Studio for Inventory to define the configuration of services
and to assign resources to them. Service configuration includes specifications,
characteristics, rules, equipment models, capacity models, and component packaging.
You define the metadata needed to configure services and map the services to logical
and physical resources.

About Design Studio for ASAP
You use Design Studio for ASAP to model services such as voice services (including
wireless, voice over IP), data services (including digital subscriber line, IPTV), and
other services that require controlled and coordinated activation in the network.

As part of the service fulfilment process, Design Studio for ASAP provides a set
of technical actions that you can implement against network and IT resources. You
assemble the technical actions into order handling process flows (using OSM), and
map the attributes and data from orders (at the service level) to specific resources.

Chapter 1
Working with Design Studio for Oracle Communications Applications

1-3

The Design Studio Activation task supports IP Service Activator. For IP Service
Activator, OSM data is transformed to a web service order that is sent to IP Service
Activator to activate the specified services. You can create workflows that integrate IP
Service Activator data and activation actions with other tools and systems.

About Design Studio for Network Integrity
You use Design Studio for Network Integrity to maintain the data integrity of
telecommunications data sources. Using Design Studio for Network Integrity, you can
connect to devices in the network (such as EMS, NMS, and other systems) to retrieve
data; make changes to that discovered data; import inventory data back into the
model; create rules to compare data and identify discrepancies; and integrate with
external systems to update data and resolve any discrepancies.

About the Design Studio Role in Business Solutions
Design Studio is an integral component in the life cycle of the following business
solutions:

• Rapid Offer Design and Order Delivery (RODOD): In this solution, you use
Design Studio to configure the fulfillment flow definitions in OSM to support the
central order management function. You synchronize sales catalogs in Siebel
CRM with OSM by importing sales catalog elements into Design Studio and
mapping them to fulfillment flow functions. Additionally, you can configure the
metadata and policies required to assist the functions of dynamic decomposition
and orchestration plan generation.

• Service and Network Orchestration (SNO): In this solution, you use Design
Studio to define an overall solution model representing a high-level abstraction of
service fulfillment behavior. This model can then be used to automatically realize
a coordinated set of application-specific configurations. This allows a consistent
set of configurations and interfaces to be generated for OSM, UIM, and ASAP. For
more information about SNO, see the SNO Solution page from Oracle Learning
Library:

www.oracle.com/goto/orchestration

• Network and Resource Management (NRM): In this solution, you use Design
Studio to create, manage, and extend cartridges for each domain, or to modify
and extend prebuilt definitions in UIM to define specifications, characteristics, and
rulesets. Additionally, you can extend or modify the definitions to support the logic
and protocol that enables Oracle Communications Network Integrity to discover,
assimilate, and reconcile network configuration data in inventory systems.

About Design Studio Product Architecture
Design Studio builds on an extensible Eclipse platform to facilitate the creation of
service fulfillment and network and resource management solutions. Eclipse provides
a vendor-neutral open development platform comprised of extensible frameworks and
tools for building and deploying software. See the Eclipse website for more information
about the Eclipse platform.

Chapter 1
About the Design Studio Role in Business Solutions

1-4

https://www.oracle.com/goto/orchestration

Working with the Design Studio User Interface
The Design Studio interface includes a number of components to assist you with
configuration. Interface components include workspaces, a workbench, perspectives,
views, editors, menus, and toolbars.

About Workspaces
The workspace contains a collection of your projects. It appears as a directory on your
local machine and it is where Design Studio saves your resources.Your projects exist
independent of a workspace, but can only be used in a workspace. The workspace
directory root is created on your local machine when you create a Design Studio
workspace. The root exists as long as the workspace exists. You can create more than
one workspace, but the only one workspace can be open at a time. Using multiple
workspaces can help you organize complex projects. For example, you can configure
the perspectives in your workspaces to display a specific set of views for specific
projects. Or, you can use one workspace to test projects.

When you start Design Studio, you identify a workspace in which you want to
work. You can switch to a different workspace, when necessary. Design Studio will
automatically close down and restart using the new workspace. See the Design Studio
Help for information about switching workspaces.

About the Workbench
The Design Studio workbench is a set of tools you can use to navigate within and
manipulate the workspace, access functionality, and edit content and properties of
resources.

About Perspectives
Perspectives are collections of views, menus, and toolbars that appear in a specific
layout, and they determine how information appears in the workbench. The Design
Studio provides two predefined perspectives that work together with Eclipse and third-
party perspectives that are used for implementation, debugging, builds, and version
control.

Perspectives are task oriented. For example, you use the Design perspective to model
the entities in your cartridges. You use the Environment perspective to create and
manage the attributes associated with your environment, and to deploy and undeploy
cartridges to run-time environments.

Each perspective contains a default set of views and editors, which you can
customize. The views automatically included in the Design perspective assist you with
cartridge modeling. You can also create your own perspective.

About Views
A view provides access to a specific set of functions, available through the view's
toolbars and context menus. For example, the Problem view displays errors that
exist in the model entities, so you use the Problem view to locate and resolve entity
errors. You use the Dictionary view to model and review data in your workspace. The

Chapter 1
Working with the Design Studio User Interface

1-5

Dictionary view and Problem view each provide access to a different set of Design
Studio functions.

A view can appear by itself, or it can be stacked with other views. You can change the
layout of a perspective by opening and closing views and by docking them in different
positions in the workbench window.

Chapter 1
Working with the Design Studio User Interface

1-6

Figure 1-1 Design Studio Views

Chapter 1
Working with the Design Studio User Interface

1-7

About Editors
An editor is a special type of view that enables you to edit data, define parameters,
and configure settings. Editors contain menus and toolbars specific to that editor and
can remain open across different perspectives.

Design Studio editors are associated with entities. Many Design Studio views enable
you to double-click entities to open the entity in the associated editor. For example,
you can double-click an entity in the Solution, Studio Projects, Data Elements, and
Problems views (among others) to open the associated editor. Additionally, you can
double-click table entries that reference entities to open the entity in the associated
editor.

For example, if you double-click a Process entity in the Studio Projects view, the
Process editor opens. You can create diagrams in the Process editor to illuminate
patterns and identify inefficiencies in tasks and processes. Process editor shapes,
colors, and presentation can communicate information about the flows and processes.

If you double-click a Specification entity in the Studio Projects view, the Specification
editor opens. You can use the Specification editor to define properties of business
entities. The Process editor and the Specification editor are just two of the editors
available in Design Studio.

Design Studio supports drag-and-drop functionality, enabling you to drag files or
entities from the Studio Projects view to editors. Additionally, you can open an editor
associated with an entity by dragging the entity from a view into the editor area.An
asterisk in the editor title bar indicates that the changes you made in an editor are
unsaved.

Navigating Across Solutions Using the Design Perspective
The Design perspective includes a set of linked views that you can use as an entry
point to your domain solutions and to view the relationships among the entities and
elements in a solution.

Team members of varying skills and at varying points in the solution design can
leverage the functionality of the views in the Design perspective. For example:

• Business users and architects who define the underlying concepts of a solution
can use these views to navigate across conceptual models without needing to drill
down to application-specific details.

• Developers can use these views to begin designing application-specific
configurations, using the high-level conceptual model as a starting point.

• Business users can use these views (after a solution is designed and
implemented) to reassemble existing capabilities and map them to new product
offers for customers. From the Solution view, technical users can import product
specifications from a customer catalog and map the product specifications to
existing customer facing service specifications.

About the Design Perspective Default Layout
The default layout of the Design perspective enables you to navigate across different
views while keeping critical information visible. The default layout includes the
Solution, Structure, Data Elements, Notes, and Outline views, among others. These

Chapter 1
Working with the Design Studio User Interface

1-8

views are linked together, such that when you make a selection in one view or editor,
Design Studio updates the content in related views based on the active selection.

For example, the Solution view enables you to organize and view your solutions
through products, services, resources, actions, orders and other categories of entities
that implement a solution. When you filter this view for a specific category of entity (for
example, for all orders defined in the workspace), the view displays all of those types
of entities in the workspace and includes child folders that represent all relationships
to the entities. When you make a selection in the Solution view, Design Studio
updates the content in the Structure, Notes, and Data Elements views to reflect the
relationships and content of the selected entity.

Figure 1-1 illustrates how making a selection in the Solution view updates the content
in the views linked to the Solution view (in this example, the Structure view).

About Context Menu Options
You can right-click in Design Studio views to open the context menu, which enables
you to perform operations in views and to implement data model changes across a
solution. You can right-click in the Solution view to add new entities, delete existing
entities, or refactor a selected entity. You can maintain focus on a specific entity in the
Solution view and perform many of the same operations in the linked views.

For example, you can highlight an Order entity in the Solution view and rename,
change the location of, copy, or move the data elements included in the Order entity
in the Data Element view. See the Design Studio Help for more information about the
Design Studio context menu and about refactoring entities and data elements.

Example: Navigating Across a Solution Design
The following procedure is an example how you can navigate across a solution using
the Solution view and the related, linked views.

1. From the Studio menu select Show Design Perspective.

2. Click the Solution tab.

The Solution view appears.

3. In the Category field, select a type of entity for which to filter the view.

For example, Select Orders if you want to view all orders in the workspace
and navigate among the entities related to orders, such as tasks, processes,
permissions, and so forth.

When you select a category, the Solution view displays all entities of associated
with the category type.

4. In the Solution view tool bar, ensure that the Show/Hide Folders button is
enabled.

5. Select an entity, and expand the root folder.

The view displays relationships among entities by displaying child folders that
represent relationships to the entity. For some relationships, these folders will
appear even if the relationships are not yet established (the folder will be empty).

6. Navigate through the hierarchy by expanding the nested folders until you reach the
content you need.

7. Add new entities, delete existing entities, or refactor entities in the Solution view.

Chapter 1
Working with the Design Studio User Interface

1-9

By right-clicking and opening the context menu, Design Studio enables you
to perform operations in views and to propagate data model changes across
a solution without sacrificing model integrity. See the Design Studio Help for
more information about the context menu and about refactoring entities and data
elements.

8. Click the Notes tab.

Use the Notes view to provide documentation for the entity or data element
selected in the Solution view. You can annotate entities and data elements when
you want to communicate to other team members information about the solution.

9. Click the Structure tab.

Use the Structure view to view relationships for a selected entity or data element
and perform operations on the relationship contents. The Structure view enables
you to navigate through and to perform operations on relationship folder contents
while maintaining focus on the active entity in the Solution view.

10. Click the Data Elements tab.

Use the Data Element view to view the simple and structured data elements for
the entity selected in the Solution view and to perform operations on those data
elements.

The Data Element view enables you to navigate through and to perform operations
on relationship folder contents while maintaining focus on the active entity.

11. In the Solution view, double-click the selected entity to open it in an editor.

You can edit the data associated with the entity, define parameters, and configure
settings for the entity in the entity editor.

12. Click the Outline tab.

Use the Outline view to view the relationships and to perform operations
applicable to the entity associated with the active editor (this view is linked to
the active editor).

For example, you can view data elements associated with the entity and perform
applicable refactoring operations in the Outline view while keeping the entity open
in the editor.

See "Navigating Across Solutions Using the Design Perspective" for more information.

About Design Studio Reporting
Design Studio enables you to generate reports that include information about an
implemented solution. For example, a report can summarize the structure of the
solution by listing projects and dependencies, or a report can summarize the
composition of a service. Reports can capture the names, types, descriptions, and
relationships of projects, entities, and data elements.

Design Studio reports can be used by team members who have not installed Design
Studio or who require Design Studio configuration data in document form. Design
Studio reporting facilitates information sharing, solution development, and model
review tasks.

Design Studio includes reference reports that provide a foundational set of capabilities.
You can use these reports as is or as a starting point for customizing your own reports.
For example, you can customize the report designs for content, layout, or branding.

Chapter 1
About Design Studio Reporting

1-10

You can also develop your own report designs using the Eclipse Business Intelligence
and Reporting Tools (BIRT) feature. See Design Studio Developer's Guide for more
information about customizing reports.

System administrators can integrate report generation into an automated build system
to automatically generate reports that you can reference when developing solutions.
See Design Studio System Administrator's Guide for more information.

Chapter 1
About Design Studio Reporting

1-11

2
Working with Projects, Data Schemas, and
Data Elements

This chapter provides information about Oracle Communications Design Studio
projects, data schemas, and data elements. Also, it provides high-level information
about modeling data elements.

Working with Projects
Design Studio projects contain artifacts (entities, data, rules, code, and so forth)
that you use to model and deploy Design Studio cartridges. Your solution uses
various types of projects. For example, you use projects to build cartridges that
can be deployed to a server, for version management, for sharing, and for resource
organization.

You can create various types of projects and you can extend cartridges that you
purchase with your own projects. Oracle Communications supports a library of
extensible cartridges that are fully compatible with Design Studio and provide a basis
from which to assemble solutions.

The most common types of projects you use in Design Studio are:

• Model projects, which contain data common to multiple cartridge projects.

• Cartridge projects, which contain collections of entities and supporting artifacts
that represent a cartridge deployed to a run-time environment.

• Environment projects, which you use to manage attributes associated with your
run-time environments.

In each project, you can model the data necessary to achieve your solution (and share
that data across all projects in the workspace) build and package the projects, and test
them in run-time environments.

Application integration and cross-product modeling and data sharing reduce the effort
and time to deploy solutions. Design Studio supports the design-time configuration
for integrated (or standalone) service fulfillment solutions and for network resource
management solutions.

Importing Projects
One way to start working in Design Studio is by importing domain-specific and vendor
cartridges into Design Studio and using these cartridges as the foundation for your
new solutions. For example, if you have obtained cartridges from Oracle, you can
import them into Design Studio and reuse their components to create your own
cartridge projects.

There are multiple methods for importing data into Design Studio. The methods
depend on your own preferences and on the applications with which you are working.
For example, Oracle Communications ASAP enables you to import data directly

2-1

from an existing ASAP run-time environment, and Oracle Communications Order and
Service Management (OSM) enables you to import existing XML data models. When
importing data for Design Studio application plug-ins, it may be necessary to refer to
the Help specific to the application for more information.

Note:

Importing from ASAP run-time environments and from OSM XML models is
intended for migration purposes only.

When importing Design Studio for Inventory cartridge projects that include
changes to tool tips or characteristic display names, you must redeploy the
Oracle Communications Unified Inventory Management (UIM) application
server when you deploy the cartridge that contains the changes.

When you import a cartridge, it becomes a project in the current workspace. Some
cartridges are sealed, meaning that they are read-only. Sealed cartridges cannot be
modified without first being unsealed.

Some projects reference entities in other projects, and these references create
dependencies among the projects. If you import a cartridge project that has
dependencies on other cartridge projects that are not in the current workspace, Design
Studio displays an error. Import all dependent cartridges, then clean all projects to
remove the errors. See "Working with Project Dependencies" for more information.

Upgrading Projects
When working in a new version of Design Studio, you must upgrade projects from the
previous Design Studio version to the latest Design Studio version. Additionally, you
must obtain and import the latest versions of all sealed productized versions if you
want to use the cartridge in the updated version. During the upgrade process, Design
Studio automatically detects old project versions and completes all necessary project
upgrades in the workspace.

See Design Studio Installation Guide for more information about upgrading projects.

Controlling Project Visibility in a Workspace
Design Studio solutions can contain large numbers of productized, sealed, and
application-specific projects that are not directly related to your work. You control
which projects appear in your workspace by creating and applying a filter, called a
working set.

The projects that a working set filters out exist in the workspace and remain open but
do not appear in the Studio Projects view. Also, you can define a separate working set
for the Solution view to control visibility of project entities at the root level.

For example, you can facilitate design modeling and workspace navigation by creating
a working set that displays only those projects related to your present design work.
The working set can filter projects based on the project type and based on a tag that
you associate with a project. Working set filters are limited to the workspace in which
they are defined.

Chapter 2
Working with Projects

2-2

One working set is delivered with Design Studio and is applied to the Studio Projects
view when you install Design Studio. This working set is named Exclude Base
Projects, and it excludes from display all Design Studio base projects, any projects
associated with the Base Project tag, and all non-Design Studio projects (such as
Eclipse projects and Java projects). The Exclude Base Projects working set is not
editable, but you can deactivate this working set filter. See the Design Studio Help for
information about deselecting a working set and for more information about controlling
which projects appear in your workspace.

Working with Model Projects
Model projects are collections of data elements intended to be referenced by other
projects in a workspace to fulfill a solution. Model projects include simple data
elements and structured data elements that are not specific to any one Oracle
Communications application and that enable you to share that data across a solution.

Entities in Design Studio application projects can reference data in a model project.
You can model these data elements once, then configure different applications to
reference these data elements, as appropriate. This modeling strategy enables you to
identify which entities in a solution share the data elements in the solution.

For example, an Activation project entity, an OSM project entity, and an Inventory
project entity can all share the same data elements (for example, the data elements
Caller ID, Call Waiting, and Call Forwarding) created and saved in a model project.

Working with Cartridge Projects
Cartridge projects contain collections of entities that you can deploy to a run-time
environment to support your business processes (for example, cartridges deployed
to Oracle Communications Order and Service Management run-time environments
provision services requested on incoming sales orders). When modeling application-
specific entities in Design Studio, you configure all entities in a cartridge project.

Cartridge projects can have design-time dependencies on other cartridge and model
projects. During project builds, Design Studio adds the necessary design artifacts from
any dependent projects to your cartridge project.

Cartridge projects can be built and packaged into deployable cartridges. A cartridge
is a collection of entities packaged into an archive file, which you can deploy to a
run-time environment.

You can create the following cartridge projects:

• Activation IPSA project

• Activation project

• Activation SRT project

• Integrity project

• Inventory project

• Order and Service Management Composite project

• Order and Service Management project

See the Design Studio Help for more information about these cartridge projects.

Chapter 2
Working with Projects

2-3

Working with Environment Projects
Environment projects enable you to manage the attributes associated with your run-
time environments, including connection attributes, projects ready to be deployed,
projects previously deployed, and associated project attributes such as the version
and build numbers.

You must create at least one environment project. Environment projects can be
shared among all team members who use the same test environment. You work with
environment projects and their entities in the Environment perspective.

Working with Project Dependencies
Projects have dependencies on other projects when entities in one project reference
entities in another project. These dependencies enable you to share data elements
and entities across applications. For example, an OSM project entity might reference
the Caller ID, Call Waiting, and Call Forwarding data elements in a model project.

Defining dependencies among projects helps eliminate circular dependencies and
duplicate data elements from your data solution, and enables you to better understand
how projects are related. Defining project dependencies ensures that all of the data
a cartridge project requires is available when you deploy the cartridge project to a
run-time environment.

When defining project dependencies, you can specify whether the dependency is
required in the Design Studio workspace or whether the dependency is required in the
Design Studio workspace and in the target run-time environment.

When you build a project, Design Studio ensures that all entities that are referenced
in but defined outside of the project are declared. Design Studio saves the project
dependency information and uses this information to validate dependencies at
deployment.

Note:

Oracle recommends that you plan relationships between projects and
configure project dependencies early in your development cycle.

Project Dependency and Data Modeling

Project dependencies control the data that is available when you model cartridge
projects. Design Studio restricts the data that is available (in data selection dialog
boxes and in views) to data defined in the project and in dependent projects only.
Filtering the data that is available helps prevent circular dependencies and unintended
model reuse.

Project Dependency Warnings and Errors

If you configure a cartridge project to reference content in other cartridge projects
without declaring project dependencies, Design Studio creates an error or a warning.
You control this level of severity, based on how you define the diagnostic level in the
Project editor. See the Design Studio Help for more information.

Chapter 2
Working with Projects

2-4

Project Dependency and Cartridge Deployment

The dependencies defined for a project impact the order in which you deploy cartridge
projects. You must deploy all dependent cartridges first. For example, if project A
depends on project B and project C, and project B depends on project C, when you
deploy project A, Design Studio determines that you must deploy projects C and B first
(and in that order).

Working with Data Schemas
A data schema is a formal description of a data model, expressed in terms of
constraints and data types governing the content of elements and attributes.

You use data schemas when defining products, services, and resources, including
the associated actions and the information necessary to perform the processes and
tasks for those actions, as well as the interface definitions for integrating between
applications.

All data elements are created and saved in data schemas, which can be accessible
across all projects in a workspace. Design Studio automatically creates a project-
specific data schema when you create a cartridge project (for example, an OSM,
Activation, Inventory, or Network Integrity project). You can use this default schema to
contain the data you require to model the project, you can create multiple schemas in
the same project, or you can create schemas in common projects. You can model your
cartridge project using data from any combination of these data schemas.

Model project data schemas include data elements that you want to use across a
fulfillment solution. They are product-agnostic; that is, the data elements stored in a
model schema are independent of any application project.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"
 targetNamespace="http://www.oracle.com/ServiceActivation/MobileGSMActivation"
 xmlns="http://www.metasolv.com/ServiceActivation/MobileGSMActivation"
 xmlns:mca-serviceentities="http://www.oracle.com/MCA/ServiceEntities"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:import namespace="http://www.metasolv.com/MCA/ServiceEntities"/>

<xs:element name="C_ACME-GSM_1.0.0_ADD_GSM_SUBSCRIBER">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="TelephoneNumber_TN"
type="TelephoneNumber_TNType"/>
 <xs:element name="TelephoneNumber_TNType"
 type="TelephoneNumber_TNTypeType"/>
 <xs:element name="callDisplay" type="callDisplayType"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:simpleType name="callDisplayType">
 <xs:restriction base="xs:string">
 <xs:maxLength value="255"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="TelephoneNumber_TNType">
 <xs:restriction base="xs:string">
 <xs:maxLength value="255"/>

Chapter 2
Working with Data Schemas

2-5

 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="TelephoneNumber_TNTypeType">
 <xs:restriction base="xs:string">
 <xs:maxLength value="255"/>
 </xs:restriction>
</xs:simpleType>
</xs:schema>

Working with Data Elements
There are two types of data elements, simple data elements and structured data
elements. Simple data elements are reusable data types that contain no child
dependencies. A simple data element has no structure, and is associated (directly or
indirectly) to a primitive data type (Integer, Boolean, String, and so forth). See "About
Primitive Data Types" for more information.

Structured data elements are reusable data types that include embedded data types
and are containers of simple data elements and other structured data elements. For
example, you might create a structured data element called building that contains the
floor, room, aisle, rack, and shelf child data elements.

About Primitive Data Types
Design Studio supports primitive types defined by the XML Schema specification.

Table 2-1 lists the full set of supported types and their formats. These types represent
the foundation from which all data elements in Design Studio are derived.

Table 2-1 Primitive Data Types Supported in Design Studio

Type Format

Structure Hierarchical construct of structures and simple data elements.

Boolean true or false

Date yyyy-mm-dd

For example:

1971-05-21

Date Time yyyy-mm-ddThh:mm:ss.szzzzzz

where zzzzzz represents a time zone, .s represents fractional
seconds

Fractional seconds and time zone are optional.

Use Z for Coordinated Universal Time (UTC), or UTC relative
form (+ | -) hh':'mm

For example:

1971-05-21T14:22:35.2Z, 1971-05-21T14:22:35+05:00

Time hh:mm:ss

For example:

14:22:35

Integer Infinite set {..., -2, -1, 0, 1, 2, ...} using decimal digits

Long Between -9223372036854775808 and 9223372036854775807,
inclusive

Chapter 2
Working with Data Elements

2-6

Table 2-1 (Cont.) Primitive Data Types Supported in Design Studio

Type Format

Float
Double
Heximal

Lexical representation consisting of a significand and an optional
exponent.

For example:

-1E4
1267.43233E12
12.78e-2
12

Hex Binary [0-9a-fA-F] tuples

Must have an even number of hexadecimal digits. Hex binary
allows length restriction.

For example:

A1, 80FF, 18A2C797

String Series of UTF-8 characters.

String allows length restriction (default 0 to 40).

About Data Element Icons
Design Studio communicates properties of data elements with associated icons.
These icons include problem marker severity, data element multiplicity, and some state
details. Data elements that are read-only appear in gray.

Note:

The information conveyed through these icons is also available on the
Details tab.The problem marker information is available in the Problems
view. See Design Studio Help for more information about the Details tab
fields and for more information about the Problems view.

Figure 2-1 displays a list of icons and the manner in which they appear with data
elements.

Chapter 2
Working with Data Elements

2-7

Figure 2-1 Design Studio Data Element Icons

Modeling Data Elements
This section describes the features and functionality you use in Oracle
Communications Design Studio to model solutions for and share data across service
fulfillment and network and resource management business solutions.

About the Data Modeling Tabs
Some Design Studio editors include tabs in which you can model information about
data elements. These tabs appear in multiple Oracle Communications applications
and enable you to configure entities by modeling a data tree to hierarchically represent
all associated data elements. These tabs facilitate reusing data elements within a
modeling solution and provide tools for locating and using existing data elements.

The tabs consist of a data tree and subtabs. You select a data element in the data
tree to review and model details of the selected data element. You open a context
menu from the data tree to perform various types of refactoring operations on the data
elements.

About the Details and Attributes Tabs
You use the Details tab and the Attributes tab to define attributes of a data element
(such as the name and primitive type), as well as specific constraint values for a data
element.

Chapter 2
Modeling Data Elements

2-8

Figure 2-2 Attributes Tab

About the Enumerations Tab
You use the Enumerations tab to define sets of valid values for data elements.

Enumerations define values for data elements that are available for selection in a
run-time environment. For example, you can define a set of values that appear as lists
in the run-time environment.

Chapter 2
Modeling Data Elements

2-9

Figure 2-3 Enumerations Tab

About the Tags Tab
You use the Tags tab to characterize data elements by associating the data elements
with predefined keywords called tags. Tags help you filter and search for data
elements that are associated with specific Oracle Communications applications.

The tags delivered with Design Studio cannot be inherited.

Chapter 2
Modeling Data Elements

2-10

Figure 2-4 Tags Tab

About the Usage Tab
You use the Usage tab to review the projects and entities in which a data element is
used and to review all references to a specified data element.

About the Notes Tab
Use the Notes tab to annotate data elements with descriptions or other applicable
information to support the data element.

Design Studio supports multiple languages for this tab. The field at the top of this tab
displays your list of languages. If your preferences are set up to work in one language
only, the system displays only [default].

Chapter 2
Modeling Data Elements

2-11

Data Element Application Details
You can define for data elements application-specific properties, which you configure
using the application-specific data element tabs. For example, you can define
information for data elements that are tagged as Inventory characteristics, or you can
define behaviors for data elements that will appear in an OSM run-time environment.

Figure 2-5 Application-Specific Tabs

About Data Modeling Strategies and Techniques
Design Studio enables you to:

• Create new data elements that obtain attributes from other data elements. See
"Leveraging Information from Existing Data Elements " for more information.

• Use components and features to search for and organize data elements. See
"Organizing and Searching for Data Elements" for more information.

• Use the refactoring tools to normalize data models. See "Refactoring Data
Models" for more information.

Leveraging Information from Existing Data Elements
To increase modeling efficiency, Design Studio enables you to create new data
elements that obtain attributes from other data elements. In Design Studio, you can
leverage information using two methods:

• Deriving from a base type element (where the new element automatically obtains
the information in the base element

• Extending entities

Deriving from Base Type Elements
Leveraging information already defined for base types enables you to define attributes
once, share the common attributes among multiple entities, and edit those entities in a
single location. Changes that you make to a base type are automatically saved to all
entities that derive from that base type.

For example, if a structured data element person contains the first_name,
last_name, and social_security_number child elements, you can leverage the

Chapter 2
Modeling Data Elements

2-12

information defined for person by using it as a base type for a new structured
data element called employee. You can add to employee the employee_number,
hire_date, and department child elements. If you make changes to person, Design
Studio automatically updates employee with the same changes.

You can override some of the information derived from the base type element. When
you override these fields, Design Studio does not automatically update that value
when the base type value is changed. Rather, Design Studio retains the override value
that you defined for the subtype field.

Attributes that you can override include the minimum and maximum number of times
the element can appear as a field in a run-time environment, the default value defined
for the element, the length defined for string and HexBinary data elements, internal
documentation for the element, and so forth.

Figure 2-6 Derived Data Elements

Aliased Data Elements

Typically, derived data elements inherit the name of their base type. If you want to
give a derived data element a unique name, you can define an alias for the data
element. You can use an alias to give context to the specific use of a data element or
to distinguish multiple data elements derived from the same base type.

Chapter 2
Modeling Data Elements

2-13

Figure 2-7 Aliased Data Elements

Data Element Recursion

Data element recursion refers to a pattern where a data element repeats in the
ancestry of derived data elements. Recursion provides useful patterns for data
modeling, and Figure 2-8 demonstrates some of these patterns. When recursion is
present, the point of recursion starts an infinite nesting of inherited data elements.
Most variants of structured data element recursion are valid in Design Studio.

Simple data element recursion, however, is not valid in Design Studio models because
a data element can never resolve to a primitive type. Design Studio validates base
type selection to prevent you from defining simple data elements as recursive. If an
invalid recursion occurs, Design Studio generates an error marker during the build
process.

Chapter 2
Modeling Data Elements

2-14

Figure 2-8 Recursion Patterns

Structured data elements with recursion inherit the data elements of the base type.
The Design Studio user interface expands to display a finite number of recursion levels
(the number of levels is configurable in the workspace preferences). All structured
data elements, including derived structured data elements, can be extended to include
additional child data elements.

A recursive reference can be indirect when two structures have data elements that
derive from each other. Indirect relationships can be realized through multiple levels of
derivation and are not immediately apparent. Figure 2-9 illustrates two different data
models using recursion.

Chapter 2
Modeling Data Elements

2-15

Figure 2-9 Data Models Illustrating Recursion

Entity Extensions
You can increase your modeling efficiency by extending entities. Data extensibility
enables you to leverage data when building new, similar entities. For example, you can
extend orders and tasks. When you extend one entity from another, the target entity
inherits all of the data elements defined for the extended entity.

If you extend an entity that includes structured data elements, you can add any
number of additional simple and structured child elements (the inherited data elements
are read-only).

Chapter 2
Modeling Data Elements

2-16

Figure 2-10 Extending Entities

Inheritance

When you extend one entity from another, the target entity inherits all of the data
elements defined for the extended entity. These inherited data elements are read-only.
Unlike data elements inherited from a base type, the inherited data elements can be
extended at any level of the inherited data element.

For example, an OSM manual task can extend another manual task. The data
elements modeled on one manual task are extended to another manual task. The
target entity can include data elements in addition to those data elements the target
entity inherits from the extended entity.

Organizing and Searching for Data Elements
Design Studio helps you keep your data models organized and locate specific data
elements during model configuration.

Data Model Hierarchies
Figure 2-11 defines the categories of projects in which you can model data schema
entities. Understanding to which category a project belongs will help keep your model
organized and efficient. When determining the location for data elements, consider
how specific that data element is to a product or to a domain.

For example, common product projects are often sealed models provided by the
product teams for solution development, whereas domain-specific model projects are
ideal for domain-specific content.

Oracle recommends that you always model in the most generic category possible.

Chapter 2
Modeling Data Elements

2-17

Figure 2-11 Modeling Hierarchies

Dictionary View
You can use the Dictionary view to facilitate data modeling. The Dictionary view
presents a view of the Data Dictionary, including all reusable data elements
contributed by entities in the workspace.

The Dictionary view includes an option to filter data elements visible only to the active
editor, which enables you to hide those elements in the Data Dictionary that are not
intended to be used by specific entities. Additionally, you can filter this view to display
only those entities flagged with a specific tag or defined by a specific entity type.

Search fields provide an additional mechanism to locate data elements.

Navigation and Modeling Tips
Design Studio includes shortcuts for navigation. When switching between views and
editors, these shortcuts help minimize modeling time and effort.

For example, you can double-click any editor or view tab to maximize the editor
or view area. Double-click the tab again to return it to the original size. From
the Dictionary view, double-clicking a data element opens the related entity. Double-
clicking a data element in an editor opens the base type data element. Clicking the
Type field link in the Data Schema editor Details tab opens the base type of an
element.

Also, you can drag data elements from the Dictionary view to an editor data tree when
modeling your solution.

Refactoring Data Models
In Design Studio, refactoring is the process of changing data elements without
modifying the external functional behavior of a solution.

Chapter 2
Modeling Data Elements

2-18

Refactoring in Design Studio enables you to propagate data model changes across
the entire solution without sacrificing model integrity. You can rename, change the
location of, copy, and move data elements. Additionally, refactoring enables you to
copy data elements to create similar data entities, and to create modular and reusable
data structures. See the Design Studio Help for more information.

The following sections include additional information about some of the refactoring
actions, all of which are available from the Refactoring option in content menus.

Renaming Entities and Data Elements
The rename refactoring option ensures that all references are properly updated when
you rename an entity or a data element, and that all aliased names are maintained.

Design Studio displays a detailed list of all the changes to be performed against the
workspace that you can review.

In Figure 2-12, a data element named Caller ID is renamed to Call Display. The
Rename refactoring functionality ensures that the entities that reference the data
element (in this example, an atomic action called Add GSM Subscriber, an OSM
order called Mobile GSM Delivery, and an Inventory supplementary service called
Supplementary Service) are updated with the new data element name, Call Display.

Figure 2-12 Refactoring Solutions Using Renaming

Removing Entities and Data Elements
When you remove entities or data elements from the workspace, Design Studio
locates and removes all referenced instances. When you remove entities or data
elements, ensure that other constructs in the solution are updated appropriately.

In Figure 2-13, a data element named Anonymous Call Reject is deleted. The Design
Studio refactoring functionality ensures that the data element is also deleted from all

Chapter 2
Modeling Data Elements

2-19

entities that reference the data element (in this example, an atomic action, an OSM
order, and an Inventory supplementary service).

Figure 2-13 Refactoring Solutions Using Remove

Making Data Elements Reusable
When a structure nested inside a structure is identified as a data element suitable for
reuse, you can convert that structure into a reusable root level structure.

Often, the action to make an element reusable is combined with an action to move
the data element to a generic location, such as a common data schema entity. In
Figure 2-14, the Subscriber structure will be converted into a reusable data element.
The original structure is a new, derived structure of the same hierarchy.

Chapter 2
Modeling Data Elements

2-20

Figure 2-14 Refactoring using Make Reusable

Replacing Data Elements
Figure 2-15 demonstrates how a data element can be replaced with another
compatible data element to normalize the solution data model, or to migrate to a
newer representation. Depending on the purpose of the replacement, the original data
element may be deprecated or removed after the replacement is complete.

Chapter 2
Modeling Data Elements

2-21

Figure 2-15 Refactoring Solutions Using Replace

When you refactor solutions using the replace and resolve actions, Design Studio
ensures that suitable substitutions are made and that the overall model integrity
is maintained. For example, data element replacements must not break any data
element references or introduce primitive type inconsistencies. Replacements must
meet the following criteria:

• Primitive types must match

• Structure is a match or superset

• Children of structures must be compatible

• Proposed data elements are reusable

• Replacement data element does not create an invalid recursion

• Replacement data element does not reference the data element being replaced

• Resolve action proposals are less specific

Working with Predefined Data Models
Predefined data models that are provided by Oracle Communications applications
include product definitions to support your solution development. You can use
predefined data models as the foundation for your new solutions, and build your own
data models to extend and augment the predefined models.

There are two types of predefined data models: productized models and common
models.

Chapter 2
Modeling Data Elements

2-22

Productized models are predefined cartridges that you can use as the foundation
for your new solutions. For example, Oracle Communications supports a library of
extensible service activation cartridges that provide a basis from which to assemble
services. You can purchase any of these cartridges, import them into Design Studio,
and reuse them to create your own cartridge projects. Productized cartridges include
configuration that supports product definitions.

The following common models might also be required by your Design Studio solution:

• The Activation Routing model includes parameters required to support Design
Studio for ASAP routing capabilities in a central schema. This model enables you
to modify the routing support for each atomic action without requiring you to define
the routing parameters. Design Studio adds this model to the workspace when you
create an Activation project.

• The Order Management Control Data model contains predefined simple data
elements and structured data elements necessary for OSM order templates.
For example, the ControlData structure is a reserved data area managed by
decomposition and orchestration functions. When you create a new OSM project,
Design Studio prompts you to add the model if it is not already present in the
workspace.

• The Activation Task Response model contains the Activation response parameters
as sent from activation work order requests. You use the data in this model to map
activation responses to the OSM task data. When you create a new Activation task
in OSM, Design Studio prompts you to add this model if it is not already present in
the workspace.

You are required to obtain and import the following common models if you are working
with Design Studio for Inventory or Design Studio for Network Integrity:

• The ora_uim_model common model is a read-only project that represents the
UIM model. It supports the ability to define specifications and characteristics and
is also used to validate which entity types can be assigned or referenced by
configuration items.

• The ora_uim_mds common model is a read-only project that represents the fields
available displayed for entities in UIM. This project enables you to define the
layout of fields in entities.

• The NetworkIntegritySDK common model contains software components and
libraries required for creating and extending Design Studio for Network Integrity
cartridge projects.

Sharing Data Across Application Projects
When you design your fulfillment solution, you need to develop a model comprised
of data for use in multiple applications. For example, you may want to create order
templates, atomic actions, and service specifications, and share the data defined
for those entities across your OSM, ASAP, Network Integrity, and UIM applications.
Design Studio enables you to design integrated solutions that reduce occurrences of
design errors when sharing data across applications.

About The Data Dictionary
The Data Dictionary is a logical collection of all data elements and types in a
workspace. The Data Dictionary enables you to leverage common definitions across
an entire Oracle Communications solution.

Chapter 2
Modeling Data Elements

2-23

Design Studio projects are containers of entities, one of which is a data schema. You
save all of your solution data in data schemas (all Design Studio features include data
schemas). All data schemas in a workspace at any given time contribute to the Data
Dictionary. Some Oracle Communications features enable you to create entities and
data elements in specific editors, which are also included in the logical collection. You
can review the Data Dictionary logical collection in the Dictionary view.

The Data Dictionary enables you to:

• Integrate and correlate the data models for multiple applications.

• Reduce the size and complexity of a solution model.

• Simplify the application integration by eliminating data translation among
applications.

• Validate data model integrity.

About Data Leveraging
When modeling entities for your solution, you can use configuration from any other
entity. Data modeling is not limited to using data elements within data schema entities.
Any data configuration that contributes to the Data Dictionary is available for use.

The following sections provide examples of solution modeling using the Data
Dictionary.

Example: Activation Leveraging Inventory Data
Figure 2-16 illustrates how an atomic action (Add GSM Subscriber), created in
an Activation project, can be defined using the Caller ID, Call Waiting, and Call
Forwarding data elements from a service specification created in an Inventory project.

Figure 2-16 Example: Activation Leveraging Inventory Data

Chapter 2
Modeling Data Elements

2-24

Example: OSM Leveraging Activation Data
Figure 2-17 illustrates how an order (Mobile GSM Delivery) created in an OSM project
can use the TN (telephone number) and TN Type (telephone number type) data
elements from a service action modeled in an Activation project.

Figure 2-17 Example: OSM Leveraging Activation Data

Example: OSM Leveraging Inventory Data
Figure 2-18 illustrates how an order (Mobile GSM Delivery) created in an OSM project
can use the Caller ID, Call Waiting, and Call Forwarding data elements from a service
specification modeled in an Inventory project.

Chapter 2
Modeling Data Elements

2-25

Figure 2-18 Example: OSM Leveraging Inventory Data

Chapter 2
Modeling Data Elements

2-26

3
Working with Design Patterns and Guided
Assistance

This chapter provides information about design patterns and guided assistance.

About Design Patterns
In Oracle Communications Design Studio, design patterns are wizards that can be
run to apply sets of resources to a Design Studio workspace and that can be used
to deliver complex sets of preconfigured artifacts that serve some domain-specific
function. They enable you to formalize modeling patterns into reusable components
that can be applied to various solutions, and reduce the time and effort required during
implementation.

During solution design, designers often create and configure complex sets of related
entities and the relationships among them. These sets of tasks can be documented as
best practices and can be used as templates, or design patterns, for reproducing the
configuration.

Design patterns enable automation of complex, repeatable tasks, and enable team
members with varying levels of skill to complete these tasks. For example, a solution
implementation team can develop design patterns to enable network engineers to
manage VPN-related tasks, such as creating and deleting VPNs, adding sites and
removing sites, and so forth.

Typically, designers create design patterns using groups of design artifacts identified
from existing implementations. Designers package the design patterns and distribute
them to solution design teams. Solution design teams can install a design pattern as a
Design Studio feature and, using a wizard, apply the pattern to their workspace. These
wizards ensure compliance with the best practices and reduce the need for coding and
complex configuration. Your teams can use design patterns to reduce errors, simplify
modeling, and increase productivity.

See Design Studio Developer's Guide for more information about creating custom
design patterns. See Design Studio Help for more information about applying design
patterns.

About Guided Assistance
Design Studio guided assistance is a range of context-sensitive learning aides
mapped to specific editors and views in the user interface. For example, when working
in editors, you can open the Guided Assistance dialog box for Help topics, cheat
sheets, and recorded presentations that are applicable to that editor.

When working with guided assistance, you can review the learning aids delivered with
Design Studio, and you can create your own and map them to projects and entities
by using design patterns or by defining values for attributes directly in the guided
assistance extension point.

3-1

See Design Studio Developer's Guide for more information about guided assistance.

About Cheat Sheets
Design Studio supports cheat sheets, which refers to the integration of documented
procedures with wizards in the application. Cheat Sheets are XML documents that can
be interpreted by the Eclipse Cheat Sheet framework, and developers can map cheat
sheets to specific points in the Design Studio user interface (for example, in editors
and views). Users can access the cheat sheets that are relevant to current tasks, and
complete those tasks using the included instructions. You can configure cheat sheets
to provide links to relevant Help topics and facilitate the learning of those procedures.

For example, you can use cheat sheets with design patterns to describe the resources
added to a workspace, and to assist users with any manual steps required after a
design pattern is applied. Cheat sheets are not mandatory for design patterns, but
recommended.

You can develop and edit cheat sheets using the Eclipse Cheat Sheet editor.

See Design Studio Developer's Guide for more information about cheat sheets.

Chapter 3
About Guided Assistance

3-2

4
Working with Conceptual Models

This chapter describes how you use Oracle Communications Design Studio to build a
conceptual model of a service domain.

About Conceptual Models
Conceptual models define the relationships between your commercial products, the
services that they represent, and the resources that are required to implement the
services. They define how commercial products and technical services are related,
and they enable you to associate the products that you sell with the technical services
and resources that are required to fulfill orders.

Conceptual models comprise entities that represent components of a service but that
contain no detailed application-specific information. The information that you define for
conceptual model entities determines how service capabilities can be commercialized.
For example, the conceptual model defines your products and services and the
actions that must be performed in a run-time environment to provision a service order
request.

When designing conceptual models, you define the associations among the
conceptual model entities. You also define the patterns that are used to fulfill service
orders and technical orders. These patterns define how requests to design reusable
service components are fulfilled and how delivery systems activate and manage the
work to be performed on resources in the network.

Figure 4-1 is a simple example that illustrates how a product (called Broadband) that is
sold to a customer is fulfilled by a service (called Broadband Internet Access).

Figure 4-1 Conceptual Model: Products and Services

Figure 4-2 expands on the example and illustrates how you can associate multiple
products to the same service. The Broadband and Broadband Bandwidth products are
now both associated with a single customer facing service, the Broadband Internet
Access service. Also, you can associate the service to a specific location.

4-1

Figure 4-2 Conceptual Model: Products, Services, and Locations

Conceptual models also include definitions of the actions that are required to provision
a service. For example, you can define the actions necessary to add a DSL service for
a new customer or disconnect an existing DSL service for an existing customer.

Figure 4-3 expands the example further. The example shows a small subset of the
technical components required to provision the Broadband Internet Access service;
for example, a resource facing service (DSL) and two resources (customer premise
equipment and a DSL interface, named DSL CPE and ADSL Interface, respectively).

Chapter 4
About Conceptual Models

4-2

Figure 4-3 Conceptual Model: Products, Services, CFS, RFS, and Resources,
and Actions

Figure 4-4 is a simple conceptual model for a broadband domain.

Chapter 4
About Conceptual Models

4-3

Figure 4-4 Conceptual Model Example

You define conceptual models in Design Studio Model projects, which are not
deployed to run-time environments. You convert conceptual model entities into
application entities (you save application entities in application cartridge projects).
This conversion is called realization. You can enrich the application-specific entities
with additional configuration and deploy the application cartridge projects to run-time
environments.

Conceptual model entities can also serve as placeholders for products and
services that are not realized by Oracle Communications applications. For example,
you can use conceptual models to enable Oracle Communications Order and
Service Management (OSM) to work with external systems if you intend to
associate conceptual model entities to applications that are not part of the Oracle
Communications suite of applications.

About Conceptual Model Entities
A conceptual model includes the following entities:

• Customer facing services (CFS), which represent services from a customer
perspective. See "About Customer Facing Services" for more information.

• Resource facing services (RFS), which represent a technical view of a service.
See "About Resource Facing Services" for more information.

• Resources, which represent the entities that are required to configure the service.
See "About Resources" for more information.

Chapter 4
About Conceptual Model Entities

4-4

• Products, which represent commercial products. See "About Products" for more
information.

• Locations, which represent physical locations. See "About Locations" for more
information.

• Actions, which describe how conceptual model entities change, cause change,
or retrieve information. Actions are associated with customer facing services,
resource facing services, and resources. See "About Actions" for more
information.

• Action codes, which represent the specific types of actions permitted for each
type of action. For example, an action can include a number of action codes to
represent create, disconnect, and remove.

• Action parameter bindings, which enable you to identify the conceptual model
entities (such as a resource or a resource facing service) that contribute to the
creation of technical actions, and to map the source data (a conceptual model
entity, attributes defined for a conceptual model entity, and components defined
for a conceptual model entity) to target data (parameters defined for technical
actions). See "About Action Parameter Bindings" for more information.

• Domains, which are groups of entities and actions that you can use to organize
and filter solutions. See "About Domains" for more information.

The following conceptual model entities help to define the model infrastructure and
rarely require updates. You can extend these entities to meet the requirements of a
specific deployment:

• Application roles, which represent types of downstream delivery systems that
are responsible for specific types of delivery, such as activation, supply chain
management, work force management, and so forth. See "About Application
Roles" for more information.

• Functional areas, which are the logical layers of an installation and can be
commercial, service, and technical layers. These layers are supported by an OSM
order type or by an external order management system. See "About Functional
Areas" for more information.

• Provider functions, which are processing components that perform a defined set
of tasks based on their role in a solution. Provider functions comprise standard
sets of unique capability, defined by the input the function accepts (an order or
standard request), the output it generates (an order or standard request), and
the data that drives the provider function description and purpose. Design Studio
includes the configuration for some provider functions, such as Calculate Service
Order, Design and Assign, Calculate Technical Order, and Activation. See "About
Provider Functions" for more information.

• Fulfillment patterns, which describe the high-level functions that are required to
process an action or a conceptual model entity. See "About Fulfillment Patterns"
for more information.

• Fulfillment functions, which represent the work to be performed against an action.
Fulfillment functions can be augmented with conditions to determine whether the
function is to be performed against an action. See the Design Studio Help for more
information.

Chapter 4
About Conceptual Model Entities

4-5

About Customer Facing Services
Customer facing services represent the commercial view of the services that you
provide to your customer (a service represents the way that a product is realized
and delivered to a customer). You can use the same CFS to fulfill different but
similar product offers. For example, the same Broadband_Internet_Access CFS can
be used to fulfill an order for a Broadband product and a Broadband_Bandwidth
product.

You relate the data elements defined for customer facing services to data elements
defined on products. Additionally, you associate customer facing services with
resource facing services (as components). For example, you can associate with a CFS
the resource facing services available to fulfill the service, such as DSL or DOCSIS.

Service actions change a customer facing service. Service actions represent requests
to change a customer facing service in the technical inventory. These actions are used
during product-to-service mapping and during run-time Calculate Service Order and
Design and Assign provider function activities.

Customer facing services are represented in Design Studio for Inventory as Service
specifications and as Service Configuration specifications.

Customer facing services are associated with products through primary and
auxiliary relationships. See "About Conceptual Model Entity Relationships" for more
information.

Use the following set of guidelines when creating customer facing services:

• Define customer facing services to support multiple products. A CFS can support
multiple products if it is not defined for a specific technology.

• Define customer facing services to include attributes of the service that are
important to a customer, and hide technology details that are not relevant to a
customer.

• Define customer facing services to represent a single domain. For example, the
Broadband_Internet_Access CFS represents the Broadband domain.

• Define customer facing services with no explicit dependencies to other customer
facing services. An explicit dependency is a direct relationship. Oracle does
not recommend, for example, that you create a relationship between the
Broadband_Internet_Access CFS and an Email CFS.

About Resource Facing Services
A resource facing service (RFS) describes how customer facing services are
configured. For example, you can fulfill a customer facing service named
Broadband_Internet_Access using multiple modes of delivery, each represented
by a resource facing service, such as DSL, DOCSIS, or Fiber. You determine the
resource facing service used to provide the commercial-level services during service
design.

Resource facing services are technology-specific but not vendor-specific. Resource
facing services have associations with resources or with other, finer-granulated
resource facing services. For example, the DSL RFS has an association with the CPE
(customer premise equipment) resource to represent a cable modem.

Chapter 4
About Conceptual Model Entities

4-6

Resource facing services can be defined as targets for technical actions, which
represent operations that make changes in the network. Resource facing services are
represented in Design Studio for Inventory as Service specifications and as Service
Configuration specifications.

About Resources
Resources are entities that are required to configure a service. A resource is a specific
object in the network and in the inventory that can be consumed, referenced, or
shared by a service when provisioning a resource facing service. Resources can be
physical, such as a port, or logical, such as bandwidth. Examples of resources include
IP addresses, VoIP phones, and DSLAM ports.

Resources have associations with other resources and can be defined as targets for
technical actions.

Technical actions represent changes to the network. For example, a technical action
to add customer premise equipment (CPE) is defined with the data required by the
network to recognize the connection made by the new CPE.

Resources can be converted to Design Studio for Inventory entities. See "About
Realizing Resources in Design Studio for Inventory" for more information.

Additionally, you can define resources that you intend to realize in external systems
and realize the entities manually. You can also define resources as Other if no Design
Studio for Inventory resources meet your business requirements, and realize the
entities manually. See "About Conceptual Model Realization" for more information.

About Products
A product is an entity that your business sells. A product defines a set of product
characteristics, validation rules, and relationships. For example, you might create
products for Broadband, Broadband_Bandwidth, and Email products.

You can create products in Design Studio, or you can import products into Design
Studio. For example, when new products are added to the product catalog, the
corresponding product must be imported into Design Studio. After you create or import
products, you can create or review the associated attributes in the Product editor.

Products are used by orchestration processes to map order lines to fulfillment actions
and to map order lines to Service specifications.

Note:

Conceptual model products are not realized as application entities.

For products, you define primary and auxiliary relationships to customer facing
services. See "About Conceptual Model Entity Relationships" for more information.

Use the following guidelines when creating products:

• Ensure that your products represent functionality meaningful to a customer.

• Define products to facilitate reuse in multiple bundled offers. Minimize overlap
among product definitions to ensure that a simple assembly of product offers can

Chapter 4
About Conceptual Model Entities

4-7

be maintained. Duplication among product definitions can complicate customer
relationship management processes and increase operations cost.

• Define products so that they do not expose unnecessary details. For example,
a Broadband product includes only data elements that represent the properties
of the service being ordered, such as upload speed, download speed, service
address, customer ID, and so forth. Products do not include data elements that
represent technical elements of the service, such as the MAC address or IP
address of the home location register (HLR) server.

About Locations
A location represents a geographical place that is relevant to services or resources.
Locations are realized as Design Studio for Inventory Place specifications defined as
type Site. For example, in a Broadband service, the DSL RFS for a DSL service can
be associated with a location to represent the address of the customer.

When realizing Location entities, Design Studio also creates a Place Configuration
specification.

About Domains
A domain is a group of entities and actions that you can use to organize and filter
solutions (you do not realize domain entities as application entities). For example,
you can create a domain called Alcatel_DSLAMs that contains the resources (the
Alcatel devices) that can be used as a DSLAM. You can include conceptual model
entities in multiple domains, and you can create a hierarchy of domains that include
subdomains. Subdomains can decompose into smaller groupings (for example, into
broadband products and broadband services). Domains can be used as subdomains,
and subdomains can be shared across multiple domains.

You can filter the Solution view to display domains and view and navigate among only
those entities that are associated with domains.

At run time, the Order and Service Management application uses the domain and the
provider function to decide which transformation sequence to use. For example, to
ensure that the TS-1 transformation sequence is always used for the Mobile domain
and that the TS-2 transformation sequence is always used for the Carrier Ethernet
domain, you would model the data in Design Studio such that the Mobile domain
and CSO provider function combination uses TS-1 and the Carrier Ethernet and CSO
provider function uses TS-2.

About Application Roles
An application role represents a type of downstream delivery system that is
responsible for a specific type of delivery, such as activation, supply chain
management, work force management, and so forth. Design Studio includes a set
of predefined application roles. You can create your own application roles using the
Application Role editor.

When you create a new action, Design Studio prompts you to select an action type of
service or technical. If you select an action type of technical, Design Studio requires
that you also select an application role. Design Studio populates the Action editor
Action Codes tab with the specialized action code names defined for the application
role. A specialized action code is an action code that you rename to align a technical
action with a downstream fulfilment system.

Chapter 4
About Conceptual Model Entities

4-8

For example, you may need to rename the Create action code to Activate to better
align with code defined in a downstream activation system. For a supply chain
management system, you may need to rename the Create action code to Ship. You
may need to rename the Remove action code to Uninstall to better align with a
downstream workforce management system.

Additionally, the Application Role editor enables you to define multiple specialized
action code names for each default action code. For example, a downstream
fulfillment system may require multiple versions of the Modify action code. You can
differentiate between these versions by defining two unique specialized action code
names, such as Change and Revise.

About Provider Functions
Provider functions are processing components that perform a defined set of tasks
based on the provider function role in a solution. Design Studio includes the
configuration for some provider functions, such as Calculate Service Order, Design
and Assign, Calculate Technical Order, and Activation.

Provider functions accept conceptual model entities and the actions that are
associated with those entities as input and generate conceptual model entities or their
actions as output. The output that provider functions generate is used as input by
other, downstream provider functions. Calculate Service Order accepts products as
input and generates the service actions associated with customer facing services as
output. This output is required as input by the Design and Assign provider function,
which generates output that is required by the Calculate Technical Order provider
function.

For example, during the fulfillment of a new wireless voice service, the Design and
Assign provider function creates instances of Service specifications and Service
Configuration specifications that are required to deliver the service (the telephone
number, the bandwidth, and so forth). Information about these specifications and the
actions that are associated with them is used by Calculate Technical Order to calculate
the difference between the current and the requested state of a configuration and to
identify the technical actions that are required to achieve the requested changes.

Provider function definitions determine the types of components that are available to
model for a conceptual model entity. A conceptual model entity is associated with
a provider function when the conceptual model entity is defined as an input type.
The components that you can define for a conceptual model entity are limited to the
output types defined on all provider functions with which the conceptual model entity is
associated.

For example, consider that you are defining components for a Customer Facing
Service entity, and that there exists in the workspace only one provider function,
named Design and Assign. And, consider that this provider function defines the
Customer Facing Service entity as input and defines the Resource Facing Service
entity and the Location entity as output.

In this example, when configuring components for a Customer Facing Service entity,
you can define as components only resource facing services and locations. If you
need to add the resources as components of a customer facing service (such as when
modeling a Carrier Ethernet) you can edit the Design and Assign provider function
definition to add the Resource entity an output type.

Provider functions are associated with OSM transformation sequences and
orchestration processes.

Chapter 4
About Conceptual Model Entities

4-9

About Functional Areas
Functional areas describe the logical layers of an installation, and can be commercial,
service, and technical layers. These layers are supported by an OSM order type or by
an external order management system.

When configuring functional areas, you specify whether the functional area supports
actions. If it does, you indicate which conceptual model entities support the type of
actions defined by the functional area and whether these actions are multi-instance.
For example, the Service functional area supports actions, but only on customer
facing services, resource facing services, and resources. The Technical functional
area also supports actions, but those actions can be associated only to resource
facing services and resources.

You can define default data elements for service actions associated with a functional
area. When a service action is created, the default data elements defined in the
Functional Area editor appear on the Service Action editor Data Elements tab. The
data elements that you add to a functional area are automatically associated with
an implicit parameter tag to make the data elements read-only in the Service Action
editor.

Functional areas are associated with a list of action codes. Each action code
represents an action that can be performed on a conceptual model entity. When a
new action of the type defined by the functional area is created, all of the action
codes defined in the functional area are added to the new action. You can define the
applicability of each default data element to the service action codes associated the
functional area.

About Fulfillment Patterns
Fulfillment patterns define a set of high-level functions that can be performed to
process an action or conceptual model entity. For example, a fulfillment pattern can
define the functions that are required to process conceptual model entities and actions
for provisioning, billing, or installation. In OSM, you associate fulfillment patterns with
the processes that execute the order items.

You can associate any conceptual model entity or action to a fulfillment pattern. For
example, you can associate multiple products to one fulfillment pattern, which enables
you to introduce new products with minimal configuration in Design Studio. Fulfillment
patterns realize as OSM fulfillment patterns.

About Fulfillment Functions
Fulfillment functions are operations that can be performed to process an order item.
In the context of the conceptual model, the line item is an action or a product. After
you create fulfillment functions, you associate them with fulfillment patterns. You also
associate actions with fulfillment patterns, and the fulfillment pattern associated with
any action determines which fulfillment functions can be associated with the action.

Fulfillment functions can be realized as OSM Order Component specifications. In
OSM, line items are sent to a fulfillment pattern, which includes a set of order
components that can be used to process the line item. The order components
represent work that needs to be done against the line item. The fulfillment pattern
determines which order components are to be used based on the conditions and

Chapter 4
About Conceptual Model Entities

4-10

dependencies defined in OSM. Each order component can have dependencies
to other components (for example, one component may require that another be
completed first).

About Action Parameter Bindings
Action parameter bindings represent the aggregate of an entity and its parameters in
the context of an application role. They enable you to identify the conceptual model
entities (such as a resource or a resource facing service) that contribute to the creation
of technical actions, and to bind the source data (a conceptual model entity, attributes
defined for a conceptual model entity, and components defined for a conceptual model
entity) to target data (parameters defined for technical actions).

A technical action represents a unit of work that is performed to realize a resource or
a resource facing service in a network. Technical actions are performed by a fulfillment
system. For example, an activation system performs technical actions to configure a
network; a shipping system performs technical actions to pick, pack, and ship physical
goods; and a work force management system performs technical actions to dispatch
work to a technician.

During service order fulfillment, a design and assign process produces a service
configuration that defines the technical actions that must be executed to fulfill the
requested service action. The subject and the target of a technical action each bind
to a resource or to an RFS that is assigned to or referenced by a CFS or by an
RFS service configuration. A technical action also defines parameters that describe
the work to be done, and these parameters also bind to properties of a resource or of
an RFS assigned to or referenced by the service configuration. In Design Studio, you
model these bindings in Action Parameter Binding entities.

At run-time, after a requested service is designed, a calculate technical actions
process compares the current configuration against the requested configuration. To
determine if there are differences between the current and requested configurations,
the process analyzes the action parameter bindings and determines whether any
of the parameters have differences. A difference in any parameter means that the
technical action must be performed (but only under specific conditions; for example,
a technical action may be required only when a subject resource is newly allocated).
Using this method, the calculate technical actions process identifies all of required
technical actions that must be performed to affect the necessary changes in the
network (and to activate the services).

About Action Parameter Bindings and CTA Metadata
The process that compares a current configuration against a requested configuration
is called the Calculate Technical Actions (CTA) provider function. The metadata that
is necessary for the CTA provider function to calculate the delta is contained in an
XML file for each Service specification in the Inventory system. Action parameter
bindings help you create the metadata in the XML files by graphically illustrating how
the attributes in the conceptual model contribute to the parameters in the technical
actions.

The CTA metadata in the XML files is not, however, generated automatically in Design
Studio. Rather, Design Studio enables you to complete the modeling necessary to
facilitate the CTA processes. To automate the creation of CTA metadata, you must
develop a CTA metadata generator. This generator explores the conceptual model
configuration and generates the necessary metadata.

Chapter 4
About Conceptual Model Entities

4-11

You can leverage the Design Studio Exchange Format and create your own CTA
metadata generator, or you can use the example that is included in the Oracle
Communications RSDOD Reference Solution, which is available on the Oracle
Technology Network. See Design Studio Developer's Guide for more information
about the Design Studio Exchange Format. See the Oracle Communications RSDOD
Reference Solution Developers Guide for more information about generating CTA
metadata.

About Conceptual Model Entity Relationships
The conceptual model entities and the relationships among them form a model of
your service domain. These associations are called named relationships, and you add
named relationships to entities by defining components.

A component is a container that represents all of the viable configurations that
can be defined for the relationship. For example, the Broadband_Internet_Access
customer facing service (CFS) can include the Access component. The Access
component represents all of the resource facing services that can be used to deliver
the Broadband_Internet_Access service.

Note:

The types of components that are available to model for conceptual
model Customer Facing Service, Resource Facing Service, and Resource
entities are determined by provider function definitions. See "About Provider
Functions" for more information.

When you first begin modeling, you may not have information about a component
except for the name and component type. For example, early in conceptual model
design, you may not yet have specific details about the Access component except
to know that the Broadband_Internet_Access CFS requires specific technologies
to support the service. The Access component name describes the role of the
relationship (Access) and the component type describes the specification (a resource
facing service).

To complete the model, you define the component options. For example, the
Access component may include DSL, Fiber, and DOCSIS options. Figure 4-5
illustrates how these options are instances of resource facing services, and they
all represent viable resource facing services that can support access for the
Broadband_Internet_Access CFS. The type of access that you provision may
depend on the geographic location, where one location requires you to use DSL,
another requires you to use DOCSIS, and a third requires Fiber.

Chapter 4
About Conceptual Model Entity Relationships

4-12

Figure 4-5 Defining Conceptual Model Components

Figure 4-6 illustrates how the DSL RFS also has named relationships defined as
components. For example, the DSL RFS can have an Account component, a CPE
(customer premise equipment) component, and a DSL_Interface component. Each of
these components defines the viable resources that can be used to provision a service
in the network. For example, the DSL_Interface component can be defined with two
options: an ADSL_Interface resource and a VDSL_Interface resource.

Chapter 4
About Conceptual Model Entity Relationships

4-13

Figure 4-6 Defining Components at the RFS Level

About Relationship Types
Conceptual model entities have associations with other entities through named
relationships, which are defined as components. Each component associated with a
conceptual model entity is defined with a specific relationship type.

The following relationship types exist in Design Studio:

• Primary relationships are used to associate products to services. In a run-time
application, this type of relationship is used to instantiate a new service order
line. The Primary type defines relationships between a product and a customer
facing service (CFS). For example, when a customer orders the Mobile product,
the Mobile CFS fulfills the order; the CFS connects the ordered product with the
technical aspects required to fulfill the product services.

For each product, you define a Primary relationship to a single CFS. Every CFS
must have a Primary relationship defined with at least one product.

In some scenarios, the Primary type can define a relationship between a product
and a resource. For example, if a customer orders a mobile phone case, there is

Chapter 4
About Conceptual Model Entity Relationships

4-14

no service required to provision the case. In this scenario, you associate the Case
resource with the Mobile product.

• Auxiliary relationships are used to associate products to services, but this type of
relationship is used by run-time applications to enrich existing service order lines
(it does not instantiate a new order line). The Auxiliary type defines relationships
between a product and a CFS (and in some rare cases, between a product and a
resource).

A CFS can define any number of Auxiliary relationships with products, but the
Auxiliary relationships cannot exist independent of a Primary relationship. For
example, the Mobile product may include a number of features, such as call
waiting, caller ID, and so forth. Each of these features may be defined as
a product. The Mobile product defines a primary relationship to the Mobile
CFS. The CallerID product and the Call_Waiting product both define auxiliary
relationships to the Mobile CFS.

• Exclusive relationships are used to model run-time constraints that ensure that
entities are not shared with other service instances. For example, telephone
numbers cannot be used by multiple instances of a mobile service. In this
example, there is an exclusive relationship between the Mobile resource facing
service (RFS) and the TelephoneNumber resource. The Exclusive type defines
relationships among CFSs, RFSs, and resources.

• Shared relationships are used to model run-time constraints to ensure that source
entities can be shared with other service instances. For example, because an
HLR can maintain several user accounts simultaneously (and is not exclusive to
any one service), there is a shared relationship between the Mobile RFS and the
HomeLocationRegister resource.The Shared type defines relationships among
customer facing services, resource facing services, and resources.

• Reference relationships are used to model run-time constraints to ensure that
a target entity references a source entity. For example, you define a Reference
relationship between a Broadband CFS and a London location (representing the
geographical address). When defining Reference relationships, there is no source
entity capacity requirement. The Reference type defines relationships among
customer facing services, resource facing services, and resources.

• ConfigHierarchy relationships are used to model a specific run-time constraint
in Oracle Communications Unified Inventory Management (UIM) in which no
real entity is referenced. Instead, an intermediate hierarchical structure is
referenced at run-time. You can use this new relationship to characterize the
relationship between a resource facing service and a resource component.
The ConfigHierarchy relationship indicates that a UIM realization of a resource
component should result in a hierarchy of configuration items and should not
generate a UIM entity.

About Actions
Design Studio includes the definitions for two action families, service and technical:

• Service Actions are the signatures of design operations that apply to customer
facing services, resource facing services, or to resources. Actions are executed at
run-time to initiate design and assign activities. Service actions are grouped into
families that represent the range of operations that can be invoked on the entity,
and each action consists of a specific set of parameters.

Chapter 4
About Actions

4-15

These actions are used during product-to-service mapping and during run-time
Calculate Service Order and Design and Assign provider function tasks. Service
actions include a group of action codes, each of which can be performed against
the associated specification. For example, a service action can affect change to
a customer facing service because it includes the action codes Add, Move, and
Delete.

• Technical actions are requests to downstream delivery systems to make changes
in the network (the downstream delivery systems are represented by an
application role). Technical actions are associated with resource facing services
or with resources. Technical Action entities do not inherit the data elements
defined on the associated specification because technical actions can include data
elements defined on any entity in the conceptual model. Technical Action entities
are realized as Design Studio for ASAP service actions (CSDLs) or as Design
Studio for Network Integrity scan actions.

Conceptual model entities are the subjects of actions. You associate actions with
entities to indicate that the action or group of actions can be performed against the
associated entity. You can create your own actions, or you can configure Design
Studio to create actions automatically when you create new entities.

All customer facing services are associated with one service action only. By default,
when you create new customer facing services, Design Studio automatically creates
a new Service Action entity and associates it with your new CFS. The new Service
Action entity inherits all of the data elements defined on the CFS. This default
inheritance enables you to keep the data synchronized between customer facing
services and the service actions that are performed on the customer facing services.

Also, the service action includes a set of default data elements that are inherited from
the associated functional area. These default data elements are associated with the
Implicit Parameter tag (in the Functional Area editor) and they are not editable.

A service or technical action must have access to a specific set of data required
to perform the action against an entity, and you identify which of the inherited data
elements are applicable to the action. On the Action editor Data Map tab, you can
specify whether a data element is required by an action by defining applicability to
specific action codes (for service actions) or by defining applicability to specialized
aliases defined for the action codes (for technical actions). For example, you can
specify whether a data element value must be supplied to or returned by each action
in an associated action family. You can overwrite the applicability settings for inherited
data elements, and you can change the information defined for the data elements
inherited from the functional area.

You can associate resource facing services and resources with one service action
and with multiple technical actions. For example, a resource that represents customer
premise equipment can be the subject an action that ships the equipment to a
customer, and can also be the subject of an action that facilitates the return of the
equipment.

Conceptual model service actions are realized as Design Studio for Inventory rulesets.
Conceptual model technical actions are realized as Design Studio for ASAP service
actions (CSDLs) or as Design Studio for Network Integrity scan actions.

About Conceptual Model Realization
In Design Studio, realization is the conversion of a conceptual model entity into an
application entity. Conceptual model entities represent abstractions of services, so you

Chapter 4
About Conceptual Model Realization

4-16

cannot deploy conceptual model entities to run-time environments. Rather, you convert
conceptual model entities into application entities, and then deploy the application
projects that contain the realized entities to run-time environments.

You run design patterns to realize conceptual model entities. When creating a
conceptual model entity, you identify which application entity it realizes and which
design pattern performs the realization.

You realize the following conceptual model entities:

• Customer facing services and resource facing services, which are realized in
Design Studio for Inventory projects as Service specifications and as Service
Configuration specifications. See "About Realizing Services in Design Studio for
Inventory" for more information.

• Resources, which are realized in Design Studio for Inventory projects as Inventory
entities. For example, you can realize resources as Logical Device specifications,
Logical Device Account specifications, Telephone Number specifications, and so
forth. When realizing Resource entities, Design Studio also creates a configuration
specification. See "About Realizing Resources in Design Studio for Inventory" for
more information.

• Service actions, which are realized in Design Studio for Inventory projects as
rulesets and Java code structures. However, design patterns do not automatically
generate rulesets, so you must create the rulesets in an Inventory project. The
Design Patterns and code generators for realizing Service Actions are packaged
with the SNO Reference Implementation.

• Technical actions, which are realized in Design Studio for ASAP projects as
service actions or in Design Studio for Network Integrity projects as scan
actions. Realizations of signatures for other downstream delivery systems can be
supported by crafting Design Patterns that support these delivery systems.

• Action parameter bindings, which are realized for Inventory projects as metadata
that controls the behavior of Calculate Technical Order Functionality. The
metadata generator for realizing Action Parameter Bindings is packaged with the
SNO Reference Implementation.

• Locations, which are realized in Design Studio for Inventory projects as Place
specifications defined as type Site. Design Studio also generates a corresponding
Place Configuration specification. See "About Realizing Locations in Design Studio
for Inventory" for more information.

• Fulfillment patterns, which are realized in Design Studio for OSM projects as
fulfillment patterns.

About Design Patterns That Realize Conceptual Models
Design Studio design patterns are wizards that automate complex, repeatable tasks
that team members can perform. Design Studio includes default design patterns that
you can use to automate the realization of conceptual model entities into application
entities. You run these design patterns using the Design Pattern wizard and you can
set up conceptual model entities to run the design patterns automatically. You can
also create your own design patterns. See "Working with Design Patterns and Guided
Assistance" for more information about design patterns.

After you run a conceptual model entity's design pattern once, Design Studio
automatically reruns design pattern when you make changes to the entity.

Chapter 4
About Conceptual Model Realization

4-17

When a design pattern creates a realized application entity, the pattern uses the
name of the conceptual model entity as a prefix for naming the realized application
entity. For example, you create a customer facing service (CFS) named Broadband
and then run the Default Customer Facing Service Realization design pattern for
the Broadband CFS entity. When configuring the design pattern, you provide values
for the Major, Minor, and Fix configuration version fields, for which, for example
you might input 1, 0, and 0, respectively. When the pattern is run, Design Studio
creates a Service Specification entity named Broadband and a Service Configuration
Specification entity named Broadband_Configuration_v1-0-0.

Note:

See the Design Studio Help for more information about renaming conceptual
model entities subsequent to application entity realization.

You can keep conceptual model entities and the realized application entities
synchronized so that any changes you make to the conceptual model entities are
automatically updated in the application entities. However, changes that you make to
application entities are not automatically updated in conceptual model entities.

Design Studio conceptual model design patterns are associated by hierarchical
relationships so that when you synchronize the conceptual model entity with the
application entity, the design pattern automatically runs all relevant child design
patterns to realize the entire conceptual entity tree.

For example, you define a CFS with two associated resource facing services (RFS),
and each RFS includes three resources. The first time that you run the Default
Customer Facing Service Realization design pattern, the Design Pattern wizard
prompts you to input the information it requires to run the pattern. When the design
pattern completes, Design Studio automatically runs the Default Resource Facing
Service Realization design pattern twice (once for each RFS) and the Default
Resource Realization design pattern six times (once for each resource in each RFS).

About Realizing Services in Design Studio for Inventory
When you realize customer facing services and resource facing services using the
Default Customer Facing Service and the Default Resource Facing Service design
patterns, the design patterns automatically create Design Studio for Inventory Service
specifications and Design Studio for Inventory Service Configuration specifications.
The design patterns save these specifications in the Inventory project that you specify
when running the design pattern.

Only those data elements tagged as a Characteristic (at the Data Dictionary
level) and as Persisted (on the conceptual model entity) are added to the Service
specification during realization. When you add data elements to Resource Facing
Service, Resource, and Location entities, Design Studio automatically applies the
Persisted tag to data elements. When adding data elements to Customer Facing
Service entities, you must apply the Persisted tag, if applicable.

You can also tag data elements as Changeable if you expect these elements to
change frequently or if you need to track the life cycle of a service. When realizing
customer facing services and resource facing services, the default design patterns
save data elements that are tagged as Changeable to the Service Configuration

Chapter 4
About Conceptual Model Realization

4-18

specifications. Also, the design patterns save structured data elements to the
corresponding Service Configuration specification. Data elements that are tagged
as Changeable and Persisted, and structured data elements that are tagged as
Persisted are added to the Service Configuration specification (as configuration items)
during realization.

See the Design Studio Help for more information about using tags.

Note:

When realizing conceptual model entities for Inventory, ensure that all data
elements defined on the conceptual model entity refer to a base element.

For example, if on the conceptual model entity you define a structured data
element with child data elements, ensure that the child data elements all
reference a base element. During realization, the structured data element
is added to the Configuration specification as a configuration item. Child
structured data elements are added to the Configuration specification as
child configuration items. Child simple data elements are added to the
Configuration specification as characteristics.

About Realizing Service Components
When customer facing services and resource facing services define components, the
Customer Facing Service Realization design pattern and the Resource Facing
Service Realization design pattern create a configuration item for each component
that resolves to a conceptual model entity that can be realized.

The default design patterns add the configuration item to the Service Configuration
specification. The design patterns also do the following:

• Tag the configuration items as Realization Item, which identifies the element
as data that is realized from a conceptual model specification to an Inventory
configuration item.

• Add specification options to the configuration items. See Modeling Inventory in the
Design Studio Help for more information about specification options.

• Assign the specification option Item Option Type value based on the relationship
type defined between the conceptual model entity and the component. See
Modeling Inventory in the Design Studio Help for more information about
specification options.

• Remove orphaned data elements and add new data elements, configuration items,
and specification options during synchronization.

For example, a DSL_RFS resource facing service can define simple data elements,
as illustrated in Figure 4-7. The UploadSpeed simple data element is tagged as a
Characteristic, as Changeable, and as Persisted:

Chapter 4
About Conceptual Model Realization

4-19

Figure 4-7 DSL_RFS Simple Data Elements

In this example, the DSL_RFS resource facing service also defines three resource
components: AAA_Account, CPE, and DSL_Interface, as illustrated in Figure 4-8:

Chapter 4
About Conceptual Model Realization

4-20

Figure 4-8 DSL_RFS Components

Figure 4-8 also shows that the DSL_Interface component is defined with two options,
the ADSL_Interface resource and the VDSL_Interface resource. When you define
multiple options for a component, you also define rules to determine which option is
used at run time. You define these rules on the Rules tab of the Service Configuration
specification.

When you realize the DSL_RFS service using the Resource Facing Service
Realization design pattern, the pattern creates a Service specification and a Service
Configuration specification. Data elements defined on the DSL_RFS service are
saved to the Service Configuration specification if they are defined as Changeable.
Additionally, the design pattern saves all structured data elements to the Service
Configuration specification.

Resource components are added as configuration items on the Service Configuration
specification. In this example, the resource components AAA_Account, CPE, and
DSL_Interface are added as configuration items on the Service Configuration
specification, as illustrated in Figure 4-9:

Chapter 4
About Conceptual Model Realization

4-21

Figure 4-9 Configuration Items Defined on the Service Configuration
Specification

When you run the Resource Facing Service Realization design pattern, you can
select the Create Nested Configuration Items option to include a more detailed data
tree on the service configuration. When you select this option, the components defined
for resources are added to the service configuration as child configuration items. This
configuration item hierarchy is the realization of all resources that are modeled as
components on a resource facing service.

For example, the DSL_RFS resource facing service defines the CPE component. The
CPE component defines a single option, the DSL_CPE component, as illustrated in
Figure 4-10:

Chapter 4
About Conceptual Model Realization

4-22

Figure 4-10 The CPE Component and the DSL_CPE Option

The DSL_CPE component defines a single option, the VoD_Access component, as
illustrated in Figure 4-11:

Chapter 4
About Conceptual Model Realization

4-23

Figure 4-11 The DSL_CPE Resource and the VoD_Access Component

In this example, after the Resource Facing Service Realization design pattern is run
with the Create Nested Configuration Items option selected, the design pattern adds
to the DSL_RFS Service Configuration specification a child configuration item for the
video on demand component, VoD_Access, as illustrated in Figure 4-12:

Chapter 4
About Conceptual Model Realization

4-24

Figure 4-12 Resource Attributes and Components Added as Child
Configuration Items

Figure 4-13 shows how the DSL_CPE resource realization is configured (in the
Realization area) and shows the realized application entity, an Inventory Logical
Device specification named DSL_CPE (in the Realized By table):

Chapter 4
About Conceptual Model Realization

4-25

Figure 4-13 DSL_CPE Properties

The DSL_CPE Logical Device specification appears as a specification option for the
CPE configuration item on the Service Configuration specification, as illustrated in
Figure 4-14:

Chapter 4
About Conceptual Model Realization

4-26

Figure 4-14 Specification Options Defined for Configuration Items

About Realizing Resources in Design Studio for Inventory
When you create a conceptual model Resource entity, you define how the resource
is realized in Inventory by selecting an Inventory resource as the implementation
method. When you realize resources using the Default Resource Realization design
pattern, the design pattern creates an Inventory entity specification and creates a
corresponding Configuration specification.

When you realize resources with one of the following implementation methods,
the design pattern creates the Inventory entity and a corresponding Configuration
specification:

• Logical Device Account

• Logical Device

• Flow Interface

• Network

• Pipe

When you realize resources with one of the following implementation methods, the
design patterns creates an Inventory entity, a Configuration specification of type
Logical Device, and a Logical Device specification container that includes the name
of the resource:

Chapter 4
About Conceptual Model Realization

4-27

• Connectivity

• Customer Network Address

• Custom Object

• Device Interface

• Flow Identifier

• IPv4Address

• IPv6Address

• Media Stream

• Property Location

• Telephone Number

The default design pattern saves data elements tagged as Characteristic (at the
Data Dictionary level) and as Persisted (on the conceptual model entity) to the
specification, and saves data elements that are tagged as Characteristic, Persisted,
and Changeable to the Configuration specification. Also, the design pattern saves
structured data elements tagged as Persisted to the Configuration specification (as
configuration items).

You can define the implementation method as a resource that exists outside of
Inventory if the entity must realize as a resource that is different from the available
realization options. When you select this option, there is no design pattern that
generates a realization entity in Design Studio for Inventory (you can, however, write
your own design pattern). See Design Studio Developer's Guide for more information
about developing design patterns.If you elect to create nested configuration items
when running the Default Resource Facing Service Realization design pattern,
resource components and their data elements are saved to the Service Configuration
specification as child configuration items. Design Studio adds structured data elements
to the Service Configuration specification and adds simple data elements to the
Service Configuration specification if they are defined with the Changeable tag.

About Realizing Locations in Design Studio for Inventory
A location represents a geographical place that is relevant to services or resources.
The Default Location Realization design pattern generates a Place specification
defined as type Site and a generates a corresponding Place Configuration
specification. The Location Realization (deprecated) design pattern generates a
Place specification of type Address. To generate a Place specification defined with a
different type, you must navigate to the realized entity and change the entity type, or
create your own design pattern.

The Default Location Realization design pattern saves data elements tagged as
Characteristic (at the Data Dictionary level) and as Persisted (on the conceptual
model entity) to the Place specification, and saves data elements that are tagged as
Characteristic, Persisted, and Changeable to the Place Configuration specification.
Also, the design pattern saves structured data elements tagged as Persisted to the
Place Configuration specification.

About Realizing Technical Actions in Design Studio for ASAP
Service Action entities in Design Studio for ASAP are realized from conceptual model
Technical Action entities.

Chapter 4
About Conceptual Model Realization

4-28

Technical action families include a set of action codes that are mapped to a
corresponding set of specialized action names that are specific to an application role.
The action codes that initially appear are those defined by the action type (or the
Technical functional area).

For example, Figure 4-15 shows a technical action named TA_ACT_DSL. This
technical action includes the action codes Create, Modify, and Remove, which
are mapped to the specialized action names Activate, Alter, and Deactivate. The
specialized action names are specific to the Activation application role.

Note:

Technical Action Generation design pattern may not work in end-to-end
scenario because of the naming and the action code discrepancies.

Figure 4-15 Technical Action Editor Action Codes Tab

After you run the Activation Technical Action Realization design pattern, keep the
conceptual model Technical Action entities and the ASAP Service Action entities
synchronized by running the Activation Service Action Synchronization design
pattern. Figure 4-16 illustrates how to set up a technical action that is realized by
an ASAP service action.

Chapter 4
About Conceptual Model Realization

4-29

Figure 4-16 Technical Action Editor Properties Tab

After you complete the realization, the Solution view displays the entities and the
relationships among them.

About Conceptual Model Synchronization
You synchronize conceptual model entities with application model entities to ensure
that the configuration of the application entities and the related conceptual model
entities remain aligned.

After you realize conceptual model entities into application-specific entities, you can
enrich the application entities with data required by the application. During this
process, you may be required to change the entities in the application project. For
example, you may need to add new characteristics to a Service specification that
is realized from an RFS. If the data that you add is required by multiple entities

Chapter 4
About Conceptual Model Synchronization

4-30

across applications, Oracle recommends that you make the change to the associated
conceptual model specification, then synchronize the projects.

When you synchronize conceptual model and application projects, Design Studio does
not modify or delete the data elements that you defined on the application entities.
During synchronization, Design Studio recreates in the application entities only the
data elements and configuration items inherited from the conceptual model entities.

You synchronize conceptual model entities with application model entities by re-
running the realization design patterns. You can configure these design patterns to run
automatically (when an entity is saved), or you can run the design patterns manually
by selecting a pattern from a context menu. Also, you can perform a bulk update by
running a design pattern for an entity and instructing Design Studio to run all required
design patterns for all child entities in the hierarchy.

Before you can synchronize a conceptual model entity and an application entity, you
must realize the conceptual model entity in an application project. You provide data in
the Design Pattern wizard that Design Studio uses to generate the application-specific
configuration. To keep the entities synchronized, Design Studio re-runs the design
pattern in the background using the data that you previously specified.

If you do not want to synchronize automatically, you can synchronize manually. For
example, if you need to track all changes to conceptual model entities and application
model entities, you can disable automatic synchronization until you have finished the
analysis and determined the impact of the changes. When finished, you can select
Synchronize All from the context menu to perform a bulk update on a hierarchy of
conceptual model entities. See the Design Studio Help for more information.

You can synchronize the following conceptual model entities with their associated
application entities:

• Customer Facing Service

• Resource Facing Service

• Resource

• Location

If you rename a conceptual model entity, and you subsequently use the Design Studio
synchronize feature to ensure that the configuration of the application entities and the
related conceptual model entities remains aligned, Design Studio looks for a realized
application entity with the same name as the conceptual model entity. If no application
entity with the same name exists, Design Studio creates a new application entity. In
this scenario, Design Studio creates two realized entities, one created initially with
original name, and one created after synchronization with the new name.

To avoid creating multiple realized entities after renaming a conceptual model entity,
you must manually update the realized application entity names before using the
Synchronize feature. See the Design Studio Help for more information about renaming
conceptual model entities.

About Synchronization Records
When you run design patterns, Design Studio saves the values that you supply in a
synchronization record. Design Studio uses these values to re-run the design pattern
automatically (if you have defined the conceptual model entity to run automatically)
and to keep the conceptual model entities synchronized with the realized application
entities.

Chapter 4
About Conceptual Model Synchronization

4-31

Design Studio saves synchronization records in the synchronizationRecords
folder, which is viewable only from the Package Explorer view. You can open
any .SyncRecord file in the Synchronization Record editor if you need to correct
invalid data in the record.

If a valid synchronization record does not exist for a conceptual model specification,
the Synchronize and Synchronize All context menu options are not available when
you right-click the specification in the Solution view.

If a valid synchronization record exists for a conceptual model entity and you re-
run the design pattern for that entity, Design Studio uses the information in the
synchronization record to pre-populate the values in the Design Pattern wizard.

About Importing Conceptual Model from External Catalogs
You can import conceptual models from external catalogs using Exchange Format
XML. The Exchange Format XML file is a consistent representation of Design Studio
entities and external catalog system entities. You can import multiple entities across
multiple projects with a single input XML file.

The import operations do not update sealed projects, read-only projects, or read-only
entities.

You can import the following conceptual model entities, along with supporting data
elements, data schemas, and model projects, into Design Studio:

• Product

• Customer facing service

• Resource facing service

• Resource

• Service action

• Technical action

You can perform a partial or complete import of the XML file.

Note:

Partial import is the default option.

A partial import:

• Creates new projects, entities, and elements if they are not present in the
workspace

• Appends new information and updates the existing information for entities or
elements

• Leaves existing information on entities and elements, if information is not included
in the import file

• Renames the existing entities or elements if their names are changed and the IDs
are not changed, in the input file

Chapter 4
About Importing Conceptual Model from External Catalogs

4-32

• Renames the manually created entities or elements if new names are provided
in the input file and the IDs in input file are same as the IDs in .studioModel
exchange format export file

Note:

Partial import does not support the removal of information from existing
entities or elements.

A complete import:

• Creates new entities or elements if they are not present in the workspace

• Replaces existing information on entities and elements with information that is
provided in the import file

• Removes information from existing entities or elements if that information is not
included for these entities or elements in the input file

• Renames the existing entities or elements if their names are changed and the IDs
are not changed, in the input file

• Renames the manually created entities or elements if new names are provided
in the input file and the IDs in input file are same as the IDs in .studioModel
exchange format export file

• Deletes the existing elements that are created manually or through import, if their
information is missing in the input file

• Deletes the existing entity references (such as components to CFS/RFS/
Resource, other reference relations to CFS/RFS/Resource) that are created
manually or through import, if their information is missing in the input file

• Handles enumerations as follows:

– Removes existing information of entities or elements if they are missing from
the input file

– Updates existing entities or elements with information that is modified in the
input file

• Handles non-list or elements (for example, Copyright information, project name) as
follows:

– Defaults existing entities or elements with information that is missing from the
input file

– Updates existing entities or elements with information modified in the input file

Note:

Unique external identifiers must be provided for new instances of projects,
entities, and elements that are imported.

Identifiers for existing or imported projects, entities, and elements cannot be
modified by import operations.

Chapter 4
About Importing Conceptual Model from External Catalogs

4-33

About the Common Model Base Data Project
To build a representation of a service domain in Design Studio, you must first generate
the Common Model Base Data project using the Common Model Base Data design
pattern. The Common Model Base Data project contains predefined rules and data
for processing the entities and actions in your conceptual model, such as action
codes, relationship rules, and entities that support conceptual modeling. This data is
foundational to the conceptual model design required for service fulfillment solutions.

See the Design Studio Help for information about generating the Common Model Base
Data project.

About Conceptual Models and Service Order Fulfillment
This section describes how a Design Studio conceptual model contributes to each
layer of service fulfillment run-time order orchestration.

A typical service order includes a service request by a customer (for example, for
Broadband service with 50 Mbps download speed and 25 Mbps upload speed).
When the order is received, the CRM system creates a service request and sends
the request to an order and service management orchestration system. The order
and service management orchestration system identifies and configures the service
components that are required to fulfill the order (for example, configuring access from
the customer premise equipment to the network, dispatching technicians to perform
physical work on the network, executing actions in the network to deliver the service,
and so forth). The service is subsequently delivered to the customer, and the customer
sends payment for the service.

The orchestration of a service order spans the following run-time business processes:

• Central Order Management, which includes the processes required to capture the
order data and send the data to an order and service management system. See
"Conceptual Models and Central Order Management" for more information.

• Service Order Management, which includes the processes required to manage
and provision the service order. See "Conceptual Models and Service Order
Management" for more information.

• Technical Order Management, which includes processes required to execute the
technical actions in the network. See "Conceptual Models and Technical Order
Management" for more information.

Conceptual Models and Central Order Management
At the Central Order Management layer, order data is captured and sent to OSM.
This layer includes processes that transform the customer order into a service order.
During this transformation, the actions requested against the products are transformed
into actions to be performed against services. This layer also includes processes that
submit requests to the service order management layer to execute the service order
and processes that enable the service order management layer to communicate order
updates to the order capture systems (for example, the order is complete, the order
failed, and so forth).

To support the Central Order Management layer, Design Studio solution designers
must define in the conceptual model:

Chapter 4
About the Common Model Base Data Project

4-34

• The mapping rules for all products in each domain. The mapping rules define how
actions defined against products on a customer order are transformed into actions
defined against services on service orders. Solution designers also map customer
facing services to specific instances of Service Order Management (for example,
to mobile services or to fixed services).

• The order item parameter bindings for each product supported in the conceptual
model. The order item parameter binding specifies where to find on an incoming
order line the parameter data that matches the conceptual definition. At run time,
the order item parameter bindings validate the sales order line input against the
product definition.

Conceptual Models and Service Order Management
The Service Order Management layer includes processes that:

• Identify the technical components required to deliver service

• Determine the technical actions to be performed against the technical components

• Submit requests to the Technical Order Management layer to execute those
actions

• Send order updates to the Central Order Management layer and receive updates
from the Technical Order Management layer

To support the Service Order Management layer, Design Studio solution designers
must first build a representation of the service in the conceptual model to enable
the run-time processes to determine the technical components required to provision
a service. Solution designers create the customer facing services, resource facing
services, and resources; define the service actions on the customer facing services;
convert the conceptual model into application projects; and enrich the conceptual
model data with application-specific data.

Note:

You program service actions in Design Studio for Inventory using Java and
rulesets.

Also, to determine the technical actions required to provision a service, a solution
designer must define which resources are the targets of the actions and define the
data required to perform the actions.

Finally, solution designers create order item parameter bindings for each service action
in the conceptual model. The order item parameter binding specifies where to find on
an incoming order line the parameter data that matches the conceptual definition. At
run time, the order item parameter bindings validate the provisioning order line input
against the service action definition.

Conceptual Models and Technical Order Management
The Technical Order Management layer is a collection of processes required to
execute the technical actions in the network. This layer includes the processes that
ship resources to customers, request services from partners, dispatch technicians to

Chapter 4
About Conceptual Models and Service Order Fulfillment

4-35

perform manual work in the network, and execute commands on network devices to
activate the services.

To determine the commands required for the network devices, solution designers
define the technical actions for RFS and resources in Design Studio conceptual
models.

Additionally, solution designers create order item parameter bindings for each
technical action in the conceptual model. The order item parameter binding specifies
where to find on an incoming order line the parameter data that matches the
conceptual definition. At run time, the order item parameter bindings validate the
technical order line input against the service action definition.

Chapter 4
About Conceptual Models and Service Order Fulfillment

4-36

5
Design Studio Packaging and Integrated
Cartridge Deployment

This chapter provides Oracle Communications Design Studio information about
building, packaging, and deploying cartridge projects to environments. Additionally, this
chapter describes tools and processes that you can use to prepare your solutions for a
production environment.

About Packaging and Cartridge Deployment
When building, packaging, and deploying cartridge projects:

• Oracle recommends that you review Design Studio Developer's Guide and the
developer's guide for each Oracle Communications application in your solution.
These guides provide information about packaging and cartridge development.

• You can automate the process of building and packaging applications. See Design
Studio System Administrator's Guide for more information about automating build
processes.

• Package projects to facilitate the import of solution components into the Design
Studio workspace and the deployment of an OSS solution.

• Create a model project to contain all simple data elements and structured data
elements that you use in multiple applications. Package these model projects
separately from your application-specific cartridge projects (for example, Inventory,
OSM, ASAP, and Network Integrity projects) and define project dependencies to
use these model definitions.

• Group all cartridge projects by application for ease of maintenance.

• Create separate cartridge projects for content that is not specific to a solution
domain. This enables reuse.

• When defining entities, ensure that you organize them such that they do not create
any cyclic dependencies when defining project dependencies.

• When organizing application-specific components, consider that the requirements
may differ among applications. For example:

– For Oracle Communications Unified Inventory Management (UIM) solution
components, you can package Service, Resource, and Infrastructure
specifications in different cartridge projects and define project dependencies
accordingly. You can package multiple UIM cartridges together and deploy
them collectively. See UIM System Administrator's Guide for more information
about grouping and deploying multiple cartridges.

– For OSM solution components, you can package cartridge projects based
on the function they perform. For example, you can separate cartridge
projects containing service orders from those that contain technical orders.
You can divide the cartridge projects for each function into smaller component
cartridge projects. You can assemble component cartridge projects serving
a particular function in a composite cartridge project. Composite cartridge

5-1

projects simplify the deployment of OSM cartridges, because when you
deploy a composite cartridge, Design Studio automatically deploys all included
component cartridges, as well.

Collaborating in Teams
Because solution development workflow among project team members is complex,
Oracle recommends the following practices to facilitate the editing and sharing of
solution components.

Using Software Configuration Management Systems
Use a software configuration management (SCM) system to coordinate concurrent
revisions and establish baselines of software. A baseline is a snapshot of the state
(a particular revision) of all artifacts contributing to the overall solution at a particular
milestone in the project schedule, as the team works iteratively and incrementally
toward completion.

The Eclipse platform provides support for SCM systems. Two examples of SCM
systems are Subversion and Git. You can install the plug-ins for Subversion or Git
(Subclipse and Egit, respectively) in Design Studio for either one of these SCM
systems, or use a different SCM system that is supported by Eclipse. See the Eclipse
Help for more information about using Subversion or Git with Eclipse.

Note:

Do not check into an SCM repository any artifacts in the bin, cartridgeBuild,
and out directories of any cartridge project. These directories contain
artifacts that are generated temporarily during builds and do not need to
be stored.

See Design Studio Developer's Guide for more information about working with source
control.

Using Continuous Integration
Design Studio enables you to implement continuous integration software development.
Continuous integration employs processes that allow you to continually verify software
quality.

In a continuous integration development environment, developers check-in code, and
that code is picked up by automated builds. Metrics on code quality are gathered
(based on industry standard rules or custom defined rules) and the metrics are made
available to a management team through a version of management reporting.

Continuous integration offers many advantages for a project team, where each
member is contributing components that must function in close collaboration with
components developed by others. Continuous integration processes help discover
when these components stop functioning together.

Chapter 5
Collaborating in Teams

5-2

Building Projects

Individual developers can perform a build locally (in their own Design Studio
workspace) and check-in the resulting cartridge binary to the SCM repository to share
the new build with the team. However, Oracle recommends enabling a continuous
integration server to perform automated builds using source artifacts retrieved directly
from the SCM repository. You can run Design Studio using Apache Ant to facilitate
automated builds.

Note:

Oracle recommends that solution developers disable the Build
Automatically setting in the Project menu in Design Studio. Initiate builds
explicitly, when you need them, by cleaning the project. The Clean build
option enables you to run a build only when a set of coordinated changes are
ready to deploy and test. See Design Studio Help for more information about
these options.

See Design Studio System Administrator's Guide for more information about
automating builds. See the Design Studio Help for more information about building
and packaging projects.

Setting Up Integration Test Environments

Oracle recommends setting up an integration test environment, to continuously deploy
solution components and test them together in integrated scenarios. Integration test
environments facilitate discovery of incompatibilities, breakage, and errors related to
component interaction and collaboration. See "Testing Design Studio Solutions" for
more information.

Using Continuous Integration Systems

You can use a continuous integration system like Hudson to automate builds and
test continuously. Hudson makes it easier for developers to integrate changes to a
project and provides a way for various teams to frequently obtain fresh builds. Hudson
supports software like Apache Subversion and Git, and can generate a list of changes
made into the build from the VCS system. Hudson also executes Apache Ant and
Apache Maven based projects, as well as arbitrary shell scripts and Windows batch
commands.

Communicating Changes
Because changes to solution components occur during solution development, it is
essential to understand the impact of any changes on other solution components
and communicate them to other team members. When making changes, consider the
following:

• Changes made to a common data model, such as removing simple or structured
data elements or updating their definitions, may impact application-specific
cartridge projects that have a project dependency on the model project.

• Changes made to a data model defined in an application-specific cartridge project
may impact other cartridge projects that share those definitions.

Chapter 5
Collaborating in Teams

5-3

• Changes that affect the content of a request or response of web service
operations used for integration between applications (such as capture interaction,
process interaction, createOrderByValue, and so forth) can impact other solution
components.

Working with Design Studio Builds
Builds are processes that update existing resources and create new resources. You
run builds against projects to create or modify workspace resources. The type of
project determines the type of build. For example, when you run a build for a
Java project, the build converts each Java source file (.java files) into one or more
executable class files (.class files).

You run build processes against projects to create or modify workspace resources.
There are two kinds of builds:

• Incremental builds, which affect only the resources that have changed since the
previous build was computed.

• Clean builds, which affect all resources.

There are two ways to run builds: automatically and manually.

• Automatic builds are always incremental and always affect all projects in the
workspace.

• Manual builds can be incremental or clean, for specific projects or for the entire
workspace.

Build processes detect errors in your projects. You must resolve all errors in a
cartridge project before you can deploy it to a run-time environment.

About Incremental Builds
By default, incremental builds are performed automatically when you save resources.
To ensure that builds are performed automatically when you save resources, you must
confirm that the Build Automatically option is selected (you can access this option from
the Project menu).

You can disable automatic building and manually invoke incremental builds, if, for
example, you want to finish implementing cartridge changes before building the
project.

To manually run incremental builds on projects, disable Build Automatically. When
you disable Build Automatically, the incremental build options become available. You
can:

• Select Build All to build all projects in the workspace.

• Select Build Project to clean a specific project.

These options affect only the resources that have changed since the last build. You
can also manually run clean builds against specific projects or against all projects in
the workspace.

Chapter 5
Working with Design Studio Builds

5-4

About Clean Builds
You run clean builds by selecting Clean from the Project menu. In the Clean dialog
box, you can clean all projects in the workspace or limit the clean and build to a
specific project or group of projects. Additionally, you can start a build immediately if
you want to clean and build the selected projects in a single step.

About the Design Studio Builder Process
The Design Studio Builder process generates several artifacts automatically every
time you create a cartridge project or make a change to a cartridge project. You can
access the following from the Package Explorer view of the Java perspective or from
the Navigator view of the Resource perspective:

• The cartridge archive file that Design Studio sends to the run-time server when
deploying a cartridge. The file is located in the cartridgeBin directory.

• A pre-compressed version of the cartridge archive file, which contains all
folders, subfolders, and files in the archive. This directory is contained in the
cartridgeBuild directory. When you make a change to a cartridge, the Builder
process makes changes in the cartridgeBuild directory, then it builds the file.

Note:

The Builder process is automated; consequently, you should not make any
changes in the cartridgeBuild or cartridgeBin directories (any changes you
make will be overwritten) or check these directories into source control.

Working with Integrated Cartridge Deployment
After building and packaging Inventory, OSM, Activation, and Network Integrity
cartridge projects, you can deploy them from Design Studio to test environments.
Design Studio-integrated cartridge deployment enables you to manage cartridges
in the test environment consistently, manage common test environment connection
parameters across the design team, and compare cartridge version and build numbers
in the development environment with those of the cartridges deployed in the test
environment.

You manage the cartridge project variables and the system parameters for run-time
application instances in environment projects. You can save these environment
projects in source control and share them among solution designers.

About Cartridge Deployment
The following tasks are done once before deploying cartridge projects from Design
Studio. The information can then be shared among team members:

1. Create an Environment project.

2. Create a new Environment entity to contain the connection parameters necessary
to connect to the test environment.

Chapter 5
Working with Integrated Cartridge Deployment

5-5

3. Query the test environment to determine what's already on the test environment
server.

4. Define any environment-specific variables for the test environment.

The final two steps in the deployment process are to deploy and test your cartridges.
You perform these steps iteratively, in combination with making incremental design
improvements or updates and building the cartridge projects as necessary.

About the Environment Perspective
The Environment perspective is a collection of views that enable you to create and
manage the attributes associated with your environment. You use the Environment
perspective to deploy and undeploy cartridge projects to one or more test
environments.

Two important components of the Environment perspective are the Studio
Environment Editor and the Cartridge Management view. The Cartridge Management
view displays the selected environment information obtained from the most recent
queried state. See "About the Cartridge Management View" and "About the Studio
Environment Editor" for more information.

Design Studio requires a WebLogic user name and password from any person
attempting to deploy to an environment (to protect against unauthorized access to
environment servers). Design Studio collects authentication details for connection
when required, and securely disposes this information when the application closes.

See Design Studio System Administrator's Guide for information about setting up
users for Design Studio deployment.

Chapter 5
Working with Integrated Cartridge Deployment

5-6

Figure 5-1 Environment Perspective

About the Cartridge Management View
After you query the test environment, you can use the Cartridge Management view to
review and manage your cartridge project deployments. The Cartridge Management
view is a dashboard. It facilitates the deployment process and enables collaboration
among team members by displaying all of the cartridge projects in the workspace and
all of the cartridges deployed to the server. For example, if you're uncertain whether to
deploy your piece of the solution, you can query an environment to see what versions
of a cartridge other team members have deployed.

The Cartridge Management view includes a status column to indicate which cartridges
have been deployed and, if so, whether they are synchronized with the target
environment. You use the Cartridge Management view to deploy cartridges in the
Design Studio workspace and undeploy them from run-time environments.

The Deployed Versions table lists which cartridge version and build combination is
currently deployed in the target environment (for the selected cartridge). The last
refresh time appears at the bottom of the table. Design Studio refreshes the table after
cartridge queries, imports, deploys, and undeploys.

Chapter 5
Working with Integrated Cartridge Deployment

5-7

Figure 5-2 Cartridge Management View

Deployment Synchronization States
The Cartridge Management view includes reconciliation details of environments and
the present workspace. When you query an environment, Design Studio displays the
cartridges in the workspace, those on the server, and whether the cartridges are
synchronized.

The synchronization states are:

• In-synch, meaning that the cartridge exists in the workspace and in the run-time
environment, and the versions are identical.

• Out-of-synch, meaning that the cartridge exists in the workspace and in the
run-time environment, but the versions are not synchronized.

• On server, not in workspace, meaning that the cartridge exists in the run-time
environment but it does not exist in the workspace.

• In workspace, not on server, meaning that the cartridge exists in the workspace
but it does not exist in the run-time environment.

State information is updated each time a cartridge management action occurs or when
you explicitly query the environment.

Chapter 5
Working with Integrated Cartridge Deployment

5-8

Figure 5-3 Cartridge Deployment Synchronization

About the Studio Environment Editor
The Studio Environment editor enables you to define the run-time environment
connection information, define the Secure Sockets Layer (SSL) keystore file location,
review and edit the cartridge and model variables defined for cartridge projects, and to
define application-specific connection information.

Figure 5-4 Studio Environment Editor

Chapter 5
Working with Integrated Cartridge Deployment

5-9

About Model Variables
When you create cartridge projects, some of the information you provide may depend
on a specific environment. If you have environment-specific values for variables that
you will need at run time, you can create tokens for the variables and later define
values for each environment in which you will use the variable. These tokens, also
known as model variables, are placeholders for environment-specific values that can
be defined at the time of deployment.

For example, consider that you must define the credentials used for running
automated tasks in two different environments (your testing environment and your
production environment) and that the value required by the testing environment is
different than that required by the production environment. Rather than editing the
variable value in the source code each time you deploy to one of these environments,
you can create a model variable, then define environment-specific values for that
variable.

Model variables enable you to realize run-time-specific values at deployment time.
During model design, you use a placeholder variable to represent the specific
environment value.

Select the Sensitive option on the Model Variables tab to secure model variable
values from unwanted disclosure. Variables marked as sensitive are protected using
encryption.

About Cartridge Management Variables
Cartridge management variables specify deployment directives that affect the behavior
of a cartridge project deployment. For example, a variables can indicate whether a
component should restart after deployment or whether run-time data should be purged
as part of deployment. Design Studio variables can be defined at a project level or as
overriding values specific to an environment.

Select the Sensitive option on the Cartridge Management Variables tab to secure
cartridge management variable values from unwanted disclosure. This option should
be used in conjunction with SSL communication to fully secure variable values.
Variables marked as sensitive are protected using encryption.

Chapter 5
Working with Integrated Cartridge Deployment

5-10

Figure 5-5 Cartridge Management Variables

Preparing Solutions for Production Environments
Deployment to production environments should be done through a controlled and
scripted process. This process should be verified in a staging environment prior to
execution against a production environment.

When preparing your solutions for a production environment, you can use the Design
Studio testing tools to ensure that solutions are free from errors, and use the Cartridge
Management Tool and automated build processes to automate the production process.

Testing Design Studio Solutions
Oracle recommends setting up an integration test environment to continuously deploy
solution components and test them together in integrated scenarios. Integration test
environments facilitate early discovery of incompatibilities, breakage, and mismatches
in component interaction and collaboration.

An integration test environment is composed of the following:

• A server run-time environment

Chapter 5
Preparing Solutions for Production Environments

5-11

The environment includes the database server, application servers, OSS
applications, and service provisioning solution components. Oracle recommends
that you develop scripts that automate the deployment of solution components that
are produced by a successful automated build.

• An automated test driver

The automated test driver initiates the execution of automated tests and collects
the test results for reporting quality metrics.

• Set-up and tear-down scripts

These scripts load seed data, purge test data, and reset the state of the system to
ensure that test execution is reliably repeated.

Testing Activities
Table 5-1 lists some solution testing activities, tools, and recommendations.

Table 5-1 Recommended Test Activities

Activity Tool Recommendations

Unit and integration
testing for ASAP
solution components

Design Studio
for ASAP
(manual)soapUI
(automated)

Configure ASAP to run in development/test
and loopback mode when testing network
elements.Use the createOrderByValue request to
submit an order for execution.Represent each test
case by the CSDLs that are captured on the
order and submitted to ASAP for execution.Use
HermesJMS to listen for events from the JMS
Topic to validate whether an order executed
successfully.

Unit and integration
testing for OSM
solution components

Design Studio
for OSM
(manual)soapUI
(automated)

Configure store-and-forward queues in OSM to
forward to emulators (mock implementations that
reply with prerecorded results) for UIM and ASAP.
Mocking is optional. Oracle recommends that
you call UIM and OSM in an integration test
environment, if mocking is unavailable.Represent
each test case by the product actions captured
on the AIAProvisioningOrderEBM and submitted
to OSM for execution.

Unit and integration
testing for UIM
solution components

soapUI Create a test case with test steps that call
the web service operations (captureInteraction,
processInteraction, updateInteraction) in
sequence. The captureInteraction request carries
the inputs for autodesign into the business
interaction. The processInteraction response
returns the result of autodesign. Use XPath
expressions to validate the autodesign logic.

Manual integration
and system testing
for end-to-end
scenarios

Design Studio for
OSM

In a fully integrated test environment, submit
customer orders as AIA ProvisioningOrder EBMs
that have coverage of the end-to-end scenarios.

Automated
integration and
system testing for
end-to-end scenarios

soapUI In a fully integrated test environment, submit
customer orders as AIA ProvisioningOrder EBMs
that have coverage of the end-to-end scenarios.
Oracle recommends that you use automated
testing.

Chapter 5
Preparing Solutions for Production Environments

5-12

Automating Builds
You can configure automated builds to script build processes of cartridge projects. For
example, multiple team members can check projects into a source control system,
which itself is connected to a secure server maintained by a system administrator.
The administrator can schedule automated builds so that official builds can be made
available to organizations, such as testing or operations. When using automated
builds, no user interface interaction is necessary to build your cartridge projects.

To automate Design Studio builds, create a process that builds a cartridge project, and
schedule that process to run using a build automation system.

Running frequent automated builds to verify and test code integrations and to check
run-time product archives helps to detect integration errors.

See Design Studio System Administrator's Guide for more information about
automating builds.

About the Cartridge Management Tool
The Oracle Communications Cartridge Management Tool (CMT) is available on the
Oracle software delivery website. The CMT is a command line tool that enables you to
deploy cartridges to run-time environments. Oracle recommends that you use the CMT
to deploy to production run-time environments.

See Design Studio Developer's Guide for more information about the CMT.

Chapter 5
Preparing Solutions for Production Environments

5-13

6
Extending Reference Implementations

Oracle Communications reference implementations provide starting points for you and
facilitate system integration and solution development. Reference implementations do
not implement complete sets of features and actions for a domain, and they are not
comprehensive solutions.

When developing and extending OSS solutions, begin with the following:

1. Gain an understanding of the service domains.

2. Identify the types of customer-facing services.

3. Identify the actions that a customer can request for services on an order.

4. Identify the input parameters of each action by determining information elements.

5. Describe the steps in the business process for how each action is realized in the
network.

For example, describe the work that is performed and network elements that are
configured.

6. Identify the types of resources and resource facing services that drive the
business process and realize the actions in the network.

7. Describe the administrative policies and behaviors that determine how each
resource is managed.

For example, administrative policies might include capacity management, and
behaviors might include the lifecycle, searching, and selecting an instance of a
resource for use by a service.

8. Describe how the resources can be organized in the inventory with respect to
readiness for provisioning.

9. Identify the interfaces and protocols for integration for steps in the business
process that involve application integration not supported by the reference
implementation.

6-1

A
Solution Development Methodology

This appendix describes solution development methodologies.

Working with Project Phases and Tasks
This section describes project phases and associated tasks that you can use during
operations support systems (OSS) solution development. These example phases and
tasks focus on service fulfillment scenarios.

This list is not intended to be prescriptive; it is provided as one part of a best practice
approach to solution methodology.

1. Inception and requirements analysis

See "Inception and Requirements Analysis Phase" for more information.

2. Functional design

See "Functional Design Phase" for more information.

3. Construction

See "Construction Phase" for more information.

4. System test

See "System Test Phase" for more information.

5. Deployment and maintenance

See "Deployment and Maintenance Phase" for more information.

Inception and Requirements Analysis Phase
During the inception phase, you define the goals of the project.

During requirements analysis phase, you:

• Identify the types of service to be fulfilled and the actions that can be ordered for
those services.

• Identify the types of resources (for example, devices) in the network (and for
suppliers and partners) on which services will be provisioned.

• Describe the business processes for realizing those service actions in the network.

• Describe the business policies (life cycle, capacity, allocation) for managing
services and the resources that support those services.

• Identify any application integrations (beyond what is supported by the service
provisioning reference implementation).

• Define the scope of the project with respect to the requirements identified.

• Develop a work breakdown structure and task dependencies for the chosen
scope.

A-1

• Estimate the effort required to perform the work.

• Develop a schedule based on the work breakdown, effort, and development
resource assignments.

Functional Design Phase
During the functional design phase, you:

• Model services and actions.

• Describe the behavior of realizing service actions in the network.

• Model service configurations and resources to support the realization of service
actions in the network.

• Describe auto-design behavior for service actions to design the necessary service
configurations and assign the necessary resources.

• Describe interfaces and protocols for application integration (beyond what is
supported by the service provisioning reference implementation).

Note:

Proving at-risk aspects of the solution architecture can require that you
perform some tasks in the functional design phase and construction phase
concurrently, enabling the team to clarify requirements and evaluate design
alternatives.

Construction Phase
During the construction phase, you:

• Test the technical design, code, and integration. Additionally, perform unit tests
and test all components that implement the solution.

• Develop documentation such as user guides, administration guides, and online
help.

• Develop data migration plan and scripts.

System Test Phase
During the system test phase, you:

• Develop automated tests and manual test procedures with coverage of the
functional requirements (end-to-end scenarios).

• Develop automated tests for non-functional requirements (performance, scalability,
availability, and maintainability).

• Set up the test environment with hardware, platform components, and
applications.

• Deploy solution components to test environment.

• Execute tests, report bugs, and fix bugs.

Appendix A
Working with Project Phases and Tasks

A-2

• Test data migration.

Note:

Complete test development in conjunction with the construction phase. Test
development includes the development of tools or scripts for generating data,
including installed base of subscribers, services, and resources, for example.

Deployment and Maintenance Phase
During deployment and maintenance phase, you:

• Evaluate hardware sizing and procure hardware and software platform
components.

• Set up the production environment with hardware, platform components, and
applications.

• Deploy solution components to the production environment.

• Migrate data from the legacy environment.

• Train users and administrators.

Working with Document Artifacts
Table A-1 lists an example set of document artifacts that your team can create and
share among stakeholders during solution development. This list is not intended to
be prescriptive; it is provided as one part of a best practice approach to solution
methodology.

Table A-1 Example Document Artifacts

Document Use

Requirements • Defines the functional or business requirements the OSS
system should meet.

• Documents the requirements analysis phase conclusions.

Functional Specifications • Documents the services and actions to be supported.
• Documents the use case for each service action and the

flow through each application component; for example,
through Oracle Communications Order and Service
Management (OSM), Oracle Communications Unified
Inventory Management (UIM), Oracle Communications
Network Integrity, and Oracle Communications ASAP.

• Documents the function that each application component
should perform internally for each service action.

• Documents any application extensions and business logic to
be implemented.

Integration Specifications • Documents the integration architecture.
• Documents each interface (for example, UIM to OSM and

OSM to ASAP), the integration technology used, and the
interface protocols.

Appendix A
Working with Document Artifacts

A-3

Table A-1 (Cont.) Example Document Artifacts

Document Use

Technical Design • Documents the list of cartridges to be developed or
extended, and all the cartridge dependencies.

• Identifies all major Oracle Communications Design Studio
entities, including UIM rulesets, OSM XQueries, ASAP
CSDLs and ASDLs, and so forth.

• Identifies all major Java classes and methods to be
implemented to extend the solution.

Note: You can create one technical design document for each
application component.

Test Strategy • Describes the testing methods to be used during solution
development, such as unit testing, integration testing, and
performance testing.

• Describes the methods for testing environments, tools, and
hardware.

• Documents test metrics and measures to be used.

Test Cases • Describes the test cases for each test type (for example, for
unit testing and integration testing).

Technical Architecture • Documents the technical architecture of the system
implemented.

• Documents the implemented integration architecture,
including JMS resources.

• Documents the environment specifications, such as
hardware, operating system, and database specifications.

• Lists all application components that require backup, such
as WebLogic domains, database schemas, and application
home directories.

User Guides, Administration
Guides, and Online Help

• Describe the documentation to support the solution.

Appendix A
Working with Document Artifacts

A-4

Glossary

action
A specific operation to be performed by a system during solution processing. An action
is an interface to be implemented by some system.

action family
A group of actions, designated by action codes, that can be performed against an
entity. There are two types of action families, service action families and technical
action families.

Activate Technical Order (ATO)
A provider function that generates activation commands for and manages dialogs with
specific network devices, based on activation-relevant lines in a technical order.

application role
A type of system in IT architecture. In a multi-layered fulfillment solution, application
roles correspond to a fulfillment system type. Examples of application roles include
service order management, service and resource management, and activation.

artifact
A general term for the things you can define in Design Studio, such as entities and
data elements.

ASAP
Oracle Communications ASAP equips telecommunications service providers with a
single platform for automated service activation. ASAP receives service requests from
any source and transmits the required service activation information to any destination
network device.

ASAP's core architecture isolates business semantics (rules and behavior) from
technology semantics (interface implementations and protocols). This architecture
allows ASAP to handle multiple, heterogeneous network technologies and supports
various interfaces.

Glossary-1

base type element
A data element from which other data elements obtain attributes.

To increase modeling efficiency when modeling simple and structured data elements
in Design Studio, you can create new data elements that derive from existing base
types. Rather than referencing one of the primitive types (String, Boolean, Integer, and
so forth), you reference another data element as their data type. In Design Studio,
this is called deriving from a base type element, where the new element automatically
obtains the information in the base element.

See data element for more information.

BIRT
(Business Intelligence and Reporting Tools) An Eclipse-based, open-source reporting
system for web applications, especially those based on Java and Java EE. BIRT has
two main components: a report designer based on Eclipse, and a run-time component
that you can add to your application server.

build
A process that updates existing resources and creates new resources. You run
builds against projects to create or modify workspace resources. The type of project
determines the type of build. For example, when you run a build for a Java project, the
build converts each Java source file (.java files) into one or more executable class files
(.class files).

Calculate Service Order (CSO)
A provider function that takes as input order items on a customer order and generates
as output order items in a service order. To convert customer order lines into service
order lines, CSO uses relationships and mappings defined between products and
customer facing services.

Calculate Technical Order (CTO)
A provider function that calculates the difference between a current and requested
state of a configuration, identifies the technical actions that are required to achieve
the requested changes, and creates a technical order (based on the required technical
actions and the dependencies between technical actions) to effect the change in the
network.

cartridge
A collection of entities and data defined in Design Studio and packaged in an archive
file for deployment to a run-time server. In Design Studio, you build cartridges in
cartridge projects. You can create your own custom cartridges to extend Oracle
Communications applications. Additionally, you can obtain from Oracle customized

Glossary

Glossary-2

cartridges that support integration with other common applications, and cartridge
packs that bundle cartridges containing data for particular technology domains.

cartridge designer
A person tasked with design of a deployable component spanning a single product
domain. This person is considered an expert for a product in Oracle Communications
and focuses on design in a single product domain. Some cartridge designers may be
competent in this role for more than one product domain.

Cartridge Management Web Service
A web service that enables life cycle management of cartridge project (for example,
deploy, undeploy, redeploy, and so forth).

cartridge project
A Design Studio project that contains a collection of application-specific entities and
data. The collection of entities is packaged into an archive file, which you can deploy
to a run-time environment.

Cartridge projects are the only Design Studio projects that are deployable to run-time
environments.

CFS
See customer facing service.

clean build
A build that resolves any dependencies or similar errors from all previous build results.
Clean builds update all resources within the scope of the build.

CMWS
See Cartridge Management Web Service.

composite design pattern
A design pattern that leverages the logic of existing design patterns and combines
that logic with its own configuration. The ability to share logic among design patterns
enables you to define common logic in a single design pattern and leverage that
logic, as required. When users run a composite design pattern, the design pattern
presents all of the fields, pages, and custom logic defined in all of the leveraged
design patterns. See design pattern.

Glossary

Glossary-3

CSO
See Calculate Service Order (CSO).

CTO
See Calculate Technical Order (CTO).

customer facing service
A technology-agnostic, vendor-agnostic object representing a service.

customer order
A type of order processed by OSM, where the subjects of the order line actions are
products.

central order management (COM)
An application role that accepts customer orders from CRM systems and orchestrates
the orders among multiple BRM (billing and revenue management), SOM (service
order management), WFM (workforce management), and SCM (supply chain
management) system instances.

Data Dictionary
A logical collection of data elements and data types in a workspace, enabling you to
leverage common definitions across an entire Oracle Communications solution. For
example, the Data Dictionary enables you to create order templates, atomic actions,
and service specifications, and share the data defined for those entities across your
OSM, ASAP, and Inventory applications.

Entities in a workspace contribute data types to the Data Dictionary, and data schemas
in a workspace (which are accessible across all projects) contribute data elements to
the Data Dictionary. The Data Dictionary enables you to integrate and correlate data
models for multiple applications, reduce the size and complexity of a solution model,
simplify the application integration by eliminating data translation among applications,
and validate data model integrity. See also data schema.

data element
A structured or simple type data definition. When modeling data for a project, you
create data elements that you can reuse throughout your model. There are two types
of data elements: simple data elements and structured data elements.

See simple data element and structured data element for more information.

data model
The data configuration required by your solution design. A data model includes simple
and structured data elements that are defined in data schemas. Design Studio refers

Glossary

Glossary-4

to the logical collection of all data schemas and data types in the workspace as
the Data Dictionary. See simple data element, structured data element, and Data
Dictionary for more information.

data modeler
A person responsible for designing the data types and structures necessary to support
a cartridge or solution.

data schema
An XML schema that provides a formal description of a data model, expressed in
terms of constraints and data types governing the content of elements and attributes.

All data elements are created and saved in data schemas, which can be accessible
across all projects in a workspace. Design Studio automatically creates a project-
specific data schema when you create a cartridge project. You can use this default
schema to contain the data you require to model the project, you can create multiple
schemas in the same project, or you can create schemas in common projects. You can
model your cartridge project using data from any combination of these data schemas.

Design and Assign Service Order (DASO)
A provider function that assembles a future-state design configuration for a customer
facing service. DASO takes as input the existing configuration. This provider function
interprets the constraints of the request, and generates as output a service design
configuration containing all data required for delivery.

design pattern
A template containing a self-describing set of entities that can be applied to a Design
Studio workspace. Solution designers use design patterns to deliver to end-users sets
of pre-configured entities (and their relationships) that serve some domain-specific
function. Design patterns enable you to create complex modeling patterns using a
wizard. This approach reduces implementation time and effort.

Design Studio
An integrated design environment for the development of solutions based on the
Oracle Communications OSS Applications. Design Studio enables solution designers
to configure application-specific and multi-application solutions by leveraging
application-specific concepts. Design Studio is built on an open architecture based
on the Eclipse framework, and it uses a wide variety of innovative technologies.

editor
An editor is a type of view that enables you to edit data, define parameters, and
configure settings. Editors contain menus and toolbars specific to that editor and can

Glossary

Glossary-5

remain open across different perspectives. You can open entities in editors at any time
to modify existing projects and elements.

entity
A functional unit created and edited in Design Studio; for example, tasks, processes,
physical and logical resources, and projects. Entities are collected in projects and
deployed to run-time environments to support your business processes.

enumerations
Values defined for data elements that are available for selection in a run-time
environment. For example, you can define a set of values for data elements that
appear as lists in run-time environments.

environment project
A project that enables you to manage the attributes associated with your run-time
environments, including connection attributes, projects ready to be deployed, projects
previously deployed, and associated project attributes such as the version and build
numbers.

Exchange Format
An XML document based on the data model defined for Design Studio projects. The
XML document is generated by a project build. The Exchange Format represents
the output of Design Studio configuration in a published XML format, facilitates the
exchange of solution modeling information between Design Studio and other systems
or applications, and enables you to extend Design Studio functionality.

extended entity
An entity with defined attributes that you leverage when creating new, similar entities.
When you extend one entity from another, the target entity inherits all of the data
elements defined for the extended entity. In Design Studio, you can extend orders and
tasks.

Inherited data elements are read-only. If you extend an entity that includes structured
data elements, you can add any number of additional simple and structured child
elements.

feature
A package of plug-ins that create a single, installable, and updatable unit. Features are
delivered as JAR files, and each plug-in included in a feature is included as a separate
JAR file.

Glossary

Glossary-6

Design Studio is a collection of features and plug-ins that you install with a single
executable archive file.

fulfillment
Operations that fulfill a customer's order, such as providing, modifying, resuming, or
canceling a customer's requested products and services.

guided assistance
A range of context-sensitive learning aides mapped to specific editors and views in
the user interface. For example, when working in editors, you can open the Guided
Assistance dialog box for Help topics, cheat sheets, and recorded presentations that
are applicable to that editor.

incremental build
A build performed automatically in Design Studio when you save resources. You can
disable incremental building and manually run builds if, for example, you want to finish
implementing cartridge changes before building the project.

manifest
A file that can contain information about the files packaged in a JAR file. By editing
information that the manifest contains, you enable the JAR file to serve a variety of
purposes.

All Oracle Communications features have manifest file.

metadata
The data definitions you model for entities, specifications, actions, and all other Design
Studio artifacts.

model project
A collection of data elements that can be referenced by other projects in a workspace.
Model projects include business entities and schema entities that are not specific to
any one Oracle Communications application and that enable you to leverage common
definitions and share that data across a solution.

model variable
A variable that you create as a placeholder for environment-specific values that you
will need at run time.

When you create cartridge projects, some of the information you provide may depend
on a specific environment. If you have environment-specific values for variables that
you will need at run time, you can create tokens for the variables and later define

Glossary

Glossary-7

values for each environment in which you will use the variable. See token for more
information.

namespace
A method for uniquely naming elements and attributes in an XML document. Design
Studio supports entity and cartridge namespaces. You pair the entity or cartridge name
with a namespace name to create a fully qualified namespace. For example, you can
pair entity names with a namespace name to enable different groups of Design Studio
users to create different entities without concern for naming conflicts. Services can
be implemented independently by different teams and then deployed into a single
run-time environment.

Network Integrity
Oracle Communications Network Integrity enables you to keep two data sources
(such as an inventory system and a live network) synchronized. This improves data
accuracy, which increases your service provisioning success rate. It enables better
business planning, based on having an accurate view of your inventory, and supports
scheduled or ad-hoc audits to ensure alignment of inventory with your network.
Network Integrity can also be used as a convenient way to load initial network data
into your inventory system.

operator
A person responsible for managing a product run-time system, performing functions
such as installing cartridges to production systems.

optimize deploy
Optimize deploy is a method of deployment that, when enabled, attempts to deploy
only the changes you have made in your Design Studio cartridge project. For example,
you can use optimize deploy when testing or debugging changes to your cartridge
data.

Oracle Communications Design Studio for ASAP
A feature included in the Design Studio preconfigured installation that you use to
define service actions, network actions, and scripts for service activation.

See feature for more information.

Oracle Communications Design Studio for Inventory
A feature included in the Design Studio preconfigured installation that you use to
define service and resource definitions, rules, and domain-specific metadata.

Glossary

Glossary-8

See feature for more information.

Oracle Communications Design Studio for Network Integrity
A feature included in the Design Studio preconfigured installation that you use to
configure network discovery, assimilation, and reconciliation behavior.

See feature for more information.

Oracle Communications Design Studio for Order and Service Management
A feature included in the Design Studio preconfigured installation that you use to
define solutions for OSS service order management and for BSS central order
management, respectively.

See feature for more information.

Oracle Communications Design Studio for Order and Service Management Orchestration
A feature included in the Design Studio preconfigured installation that you use to
define solutions for BSS central order management.

See feature for more information.

Oracle WebLogic Server
Oracle's application server for building and deploying enterprise Java EE applications.
The WebLogic server hosts the Design Studio application servers.

orchestration
The process used to manage the fulfillment of a complex order. Order fulfillment often
requires interaction with many fulfillment systems. Various dependencies may require
that these interactions be run in a specific order to ensure that order items are sent to
the proper systems, and that the required steps, in the proper sequence, are run.

Orchestrate Customer Order (OCO)
A provider function that decomposes and distributes lines of customer orders. OCO
takes simple offers, bundled offers, and products as input and creates child orders for
use in other fulfillment functions and systems.

Orchestrate Service Order (OSO)
A provider function that decomposes and distributes lines of a service order. OSO
creates requests to SRM systems to build service designs and delivery plans, then
creates a child order to execute the delivery plan.

Glossary

Glossary-9

Orchestrate Technical Order
A provider function that coordinates the delivery of changes to a network based
on a set of technical actions defined in a technical order. Orchestrate Technical
Order decomposes a technical order into order components that are used to make
changes or perform operations in activation, workforce management, supply chain
management, and automated test systems. For example, this provider function
determines which resources to ship to customers, whether technicians must be
dispatched to complete physical work in the network, and what commands to execute
on devices in the network.

Order and Service Management (OSM)
Oracle Communications Order and Service Management (OSM) coordinates the order
fulfillment functions required to complete a customer order created in a customer
relationship management (CRM) system, or other order-source system. As an order
management system, OSM receives and recognizes customer orders and coordinates
the actions to fulfill the order across provisioning, shipping, inventory, billing, and other
fulfillment systems. OSM occupies a central place in order management solutions.

order subject type
A classification of orders based on the type of entity acted upon. Order subjects can
be of customer, service, or technical types. Order lines are requests against items of
one order subject type. For example, a product offer line item is a request against
a customer order; a customer facing service line item is a request against a service
order; and a resource facing service or resource line item is a request against a
technical order.

panel
A portion of a user interface that you can collapse to hide or expand to display.

persisted data element
A data element defined on a conceptual model entity. Only persisted data elements
are added to Inventory specifications when you realize the conceptual model entity.
Persisted data elements are required throughout the lifecycle of a service.

perspective
A defined set and layout of views and editors in the workbench window.

Perspectives determine how information appears in the workbench, in menus, and in
toolbars. Each perspective contains a default set of views and editors, which you can
customize. The Design Studio perspectives work together with other perspectives that
are used for implementation, debugging, builds, and version control.

Glossary

Glossary-10

plug-in
Modular, extendable, and sharable units of code that enable integration of tools within
Eclipse. Each plug-in specifies its own dependencies and specifies the set of Java
packages it provides. Additionally, plug-ins integrate with other plug-ins.

Plug-ins can be exported as directories or JAR files, shared among different
applications, and grouped into features.

POMS
Persistent Object Modeling Service. POMS provides the modeling language, tooling,
and framework for modeling entities, the relationship between entities and capabilities
that entities have. POMS then generates the plain old Java objects (POJOs) that
represent the entities and the relationships between the entities and persists them in a
relational database schema.

POMS generates a Java interface as well as a Java implementation with the
annotations required by JPA, specifically the EclipseLink JPA implementation, which
is required for managing the persistence of the objects. The service also provides
framework that provides methods for performing CRUD operations on the entities
within a transaction.

The metadata that represent the modeling language is called Entity Relationship
Model Language (ERML).

product
A conceptual model entity that represents something that your business sells.
Because Design Studio is primarily used for service fulfillment rather than sales,
products are often identifiers associated with information from other systems.

Project
An entity that contains artifacts (entities, data, rules, code, and so forth) that you use
to model and deploy Design Studio cartridges. Your solution uses various types of
projects. For example, you use projects for version management, for single sourcing
data, for resource organization, and to build cartridges that can be deployed to a
server.

You can create various types of projects and you can extend cartridges that you
purchase with your own projects. Oracle Communications supports a library of
extensible cartridges that are fully compatible with Design Studio and provide a basis
from which to assemble solutions.

Glossary

Glossary-11

project dependency
A state in which entities in one project reference entities in another project, creating
a dependent relationship between the projects. For example, an application project
might reference data elements defined in a common model project.

provider function
A standard set of unique capabilities, defined by the input the provider function
accepts (an order or standard request), the output it generates (an order or standard
request), the data that guides the provider function behavior, and a description the
provider function purpose. Examples of provider functions include Orchestrate Service
Order, Calculate Technical Order, and Orchestrate Technical Order.

provisioning
A set of processes that provide the data necessary for enabling a service, with the
actual enabling done by activation.

Rapid Service Design
The configuration of the OSS system to reflect evolving business requirements.
A service provider's technical community uses application tools and a standard
methodology to complete this design, which includes:

• A technical catalog that contains an information model (with PSR entities) and a
functional model that contains fulfillment patterns for service order management,
technical order management, and design and assign patterns.

• A technical Inventory that includes assignable resources and network targets.

• A service design methodology that uses an information model as an anchor.

• A dynamic provider function pattern that contains anchor entities, request types,
fulfillment patterns, and transformation sequences.

• An order to activation provider function blueprint that maps provider functions to
service order management, technical order management, service and resource
management, and activation applications. The blueprint also contains order
contracts and provider functions.

refactor
The process of changing data elements without modifying the external functional
behavior of a solution.

Refactoring in Design Studio enables you to propagate data model changes across
the entire solution without sacrificing model integrity. You can rename, change the
location of, copy, and move data elements. Additionally, refactoring enables you to

Glossary

Glossary-12

copy data elements to create similar data entities, and to create modular and reusable
data structures.

Report Development Kit (RDK)
A set of tools delivered with Design Studio that facilitate the creation of custom report
designs. The RDK includes a library of key BIRT objects required to retrieve data from
Design Studio models, reference report designs, a published Design Studio exchange
format, and sample XML files that you can use to test report design features.

See Design Studio Developer's Guide for more information about developing your own
reports.

resource
A specific object in the network and in the inventory that can be allocated for use by a
service.

resource facing service
A technology-specific, vendor-agnostic object representing a service.

RFS
See resource facing service.

root data element
A data element found at the root of a schema entity. A root has no parent data
element.

schema entity
An independent resource containing a set of data elements.

service
An entity that represents the way that a product is realized and delivered to a
customer. For example, if you sell DSL Gold as a product, it is delivered as a DSL
Gold service, enabled by appropriate resources.

service design methodology
A framework, the terminology, and a set of processes that describe the workflow
necessary to manage products and services in B/OSS environments.

Glossary

Glossary-13

service domain
A group of services provided by a service provider that includes all of the technical
services and resources to support a set of customer facing services. A service domain
is also referred to as a service family, a line of service, or a play. Examples of a service
domain include mobile, broadband, and IPTV.

service fulfillment
A business process in which a customer order is accepted and a new service is
provisioned to meet it.

service order
A type of order processed by OSM, where the subjects of the order line actions are
customer facing service instances.

service order management (SOM)
An application role that accepts service orders and orchestrates them among multiple
service relationship management (SRM) system instances.

simple data element
Reusable data types that contain no child dependencies. A simple data element has
no structure, and is associated (directly or indirectly) to a primitive type (integer,
Boolean, string, and so forth).

specification
A blueprint that defines the composition of an entity, including the attributes and
relationships between an entity and other objects. There are different types of
specifications for different types of entities, such as telephone numbers, networks,
customer facing services, and resources. Specifications are defined in Design Studio
and deployed into run-time environments, where entities can be created based on
them.

solution
In Design Studio, a solution is a model that meets the requirements of use cases
that solve a market problem. You use Oracle Communications applications to design
solutions that deliver services to customers for multiple service domains.Design Studio
documentation generally focuses on solutions for service fulfillment (or Concept-to-
Activate, which aligns closely with Product Lifecycle Management, Operations &
Fulfillment processes in the TMF Business Process Framework). Solutions can be
single-product but typically refer to a suite of products that provide a set of end-to-end
use-cases for both manual and automated processes in the design and run time.

Glossary

Glossary-14

solution designer
A person responsible for pulling a collection of cartridges together to deliver a multi-
product solution; an activity that may involve the design of additional cartridges to
perform the desired solution functions. The solution designer focuses on cross-product
interactions, rather than on the details of a single product.

solution tester
A person who validates that a cartridge or solution is functioning correctly. The solution
tester deploys cartridge archives, produced by Design Studio, to a test environment to
certify that the cartridge or solution is functioning as intended.

structured data element
Reusable data types that include embedded data types and are containers of simple
data elements and other structured data elements.

technical catalog
A catalog of services, resources, fulfillment patterns, and other artifact definitions and
metadata organized to support service fulfillment, assurance, and other operational
support system (OSS) processes.

technical order
A type of order processed by OSM, where the subjects of the order line actions are
resource facing service instances or resource instances, or a combination of resource
facing service instances or resource instances.

technical order management
An application role that accepts technical orders and orchestrates them among
multiple activation, WFM (workforce management), and SCM (supply chain
management), and PGW (packet data network gateway) system instances.

token
A placeholder for environment-specific values that can be defined at the time of
deployment.

Unified Inventory Management (UIM)
Oracle Communications Unified Inventory Management gives service providers
a single, comprehensive, accurate view of customer services and maps these
services to logical and physical resources, ensuring that trusted, actionable, real-time

Glossary

Glossary-15

information is available to any business process for both current and next-generation
services and technologies.

view
A presentation of information in the workbench. Views enable you to customize the
manner in which information is presented, and provide access to a specific set of
functions, available through the view's toolbars and context menus.

For example, the Problem view displays errors that exist in the model entities, so
you use the Problem view to locate and resolve entity errors. You use the Data
Element view to model and review data in your workspace. The Data Element view
and Problem view each provide access to a different set of Design Studio functions.

A view can appear by itself, or it can be stacked with other views. You can change the
layout of a perspective by opening and closing views and by docking them in different
positions in the workbench window.

workbench
A set of tools you can use to navigate within and manipulate the workspace, access
functionality, and edit content and properties of resources.

working set
A configuration that describes a subset of files, classes, folders, and projects.
Working sets help you categorize resources across projects into a contextually
relevant representation. Working sets facilitate efficient modeling in large, multi-project
solutions by enabling you to limit visibility to relevant projects only.

workspace
A representation of your data. Workspaces are directories on your local machine that
contain resources, including projects at the top of a tree structure and folders and files
underneath. A workspace root directory is created internally when you create a Design
Studio workspace. You can create more than one workspace, but you can have only
one workspace open at a time.

Glossary

Glossary-16

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility

	1 About Design Studio
	Introducing Design Studio
	About Design Studio Solutions
	About Design Studio Roles
	Working with Design Studio for Oracle Communications Applications
	About Design Studio for OSM
	About Design Studio for Inventory
	About Design Studio for ASAP
	About Design Studio for Network Integrity

	About the Design Studio Role in Business Solutions
	About Design Studio Product Architecture
	Working with the Design Studio User Interface
	About Workspaces
	About the Workbench
	About Perspectives
	About Views
	About Editors
	Navigating Across Solutions Using the Design Perspective
	About the Design Perspective Default Layout
	About Context Menu Options
	Example: Navigating Across a Solution Design

	About Design Studio Reporting

	2 Working with Projects, Data Schemas, and Data Elements
	Working with Projects
	Importing Projects
	Upgrading Projects
	Controlling Project Visibility in a Workspace
	Working with Model Projects
	Working with Cartridge Projects
	Working with Environment Projects
	Working with Project Dependencies

	Working with Data Schemas
	Working with Data Elements
	About Primitive Data Types
	About Data Element Icons

	Modeling Data Elements
	About the Data Modeling Tabs
	About the Details and Attributes Tabs
	About the Enumerations Tab
	About the Tags Tab
	About the Usage Tab
	About the Notes Tab
	Data Element Application Details

	About Data Modeling Strategies and Techniques
	Leveraging Information from Existing Data Elements
	Deriving from Base Type Elements
	Aliased Data Elements
	Data Element Recursion

	Entity Extensions
	Inheritance

	Organizing and Searching for Data Elements
	Data Model Hierarchies
	Dictionary View
	Navigation and Modeling Tips

	Refactoring Data Models
	Renaming Entities and Data Elements
	Removing Entities and Data Elements
	Making Data Elements Reusable
	Replacing Data Elements

	Working with Predefined Data Models
	Sharing Data Across Application Projects
	About The Data Dictionary
	About Data Leveraging
	Example: Activation Leveraging Inventory Data
	Example: OSM Leveraging Activation Data
	Example: OSM Leveraging Inventory Data

	3 Working with Design Patterns and Guided Assistance
	About Design Patterns
	About Guided Assistance
	About Cheat Sheets

	4 Working with Conceptual Models
	About Conceptual Models
	About Conceptual Model Entities
	About Customer Facing Services
	About Resource Facing Services
	About Resources
	About Products
	About Locations
	About Domains
	About Application Roles
	About Provider Functions
	About Functional Areas
	About Fulfillment Patterns
	About Fulfillment Functions
	About Action Parameter Bindings
	About Action Parameter Bindings and CTA Metadata

	About Conceptual Model Entity Relationships
	About Relationship Types

	About Actions
	About Conceptual Model Realization
	About Design Patterns That Realize Conceptual Models
	About Realizing Services in Design Studio for Inventory
	About Realizing Service Components

	About Realizing Resources in Design Studio for Inventory
	About Realizing Locations in Design Studio for Inventory
	About Realizing Technical Actions in Design Studio for ASAP

	About Conceptual Model Synchronization
	About Synchronization Records

	About Importing Conceptual Model from External Catalogs
	About the Common Model Base Data Project
	About Conceptual Models and Service Order Fulfillment
	Conceptual Models and Central Order Management
	Conceptual Models and Service Order Management
	Conceptual Models and Technical Order Management

	5 Design Studio Packaging and Integrated Cartridge Deployment
	About Packaging and Cartridge Deployment
	Collaborating in Teams
	Using Software Configuration Management Systems
	Using Continuous Integration
	Communicating Changes

	Working with Design Studio Builds
	About Incremental Builds
	About Clean Builds
	About the Design Studio Builder Process

	Working with Integrated Cartridge Deployment
	About Cartridge Deployment
	About the Environment Perspective
	About the Cartridge Management View
	Deployment Synchronization States

	About the Studio Environment Editor
	About Model Variables
	About Cartridge Management Variables

	Preparing Solutions for Production Environments
	Testing Design Studio Solutions
	Testing Activities

	Automating Builds
	About the Cartridge Management Tool

	6 Extending Reference Implementations
	A Solution Development Methodology
	Working with Project Phases and Tasks
	Inception and Requirements Analysis Phase
	Functional Design Phase
	Construction Phase
	System Test Phase
	Deployment and Maintenance Phase

	Working with Document Artifacts

	Glossary
	action
	action family
	Activate Technical Order (ATO)
	application role
	artifact
	ASAP
	base type element
	BIRT
	build
	Calculate Service Order (CSO)
	Calculate Technical Order (CTO)
	cartridge
	cartridge designer
	Cartridge Management Web Service
	cartridge project
	CFS
	clean build
	CMWS
	composite design pattern
	CSO
	CTO
	customer facing service
	customer order
	central order management (COM)
	Data Dictionary
	data element
	data model
	data modeler
	data schema
	Design and Assign Service Order (DASO)
	design pattern
	Design Studio
	editor
	entity
	enumerations
	environment project
	Exchange Format
	extended entity
	feature
	fulfillment
	guided assistance
	incremental build
	manifest
	metadata
	model project
	model variable
	namespace
	Network Integrity
	operator
	optimize deploy
	Oracle Communications Design Studio for ASAP
	Oracle Communications Design Studio for Inventory
	Oracle Communications Design Studio for Network Integrity
	Oracle Communications Design Studio for Order and Service Management
	Oracle Communications Design Studio for Order and Service Management Orchestration
	Oracle WebLogic Server
	orchestration
	Orchestrate Customer Order (OCO)
	Orchestrate Service Order (OSO)
	Orchestrate Technical Order
	Order and Service Management (OSM)
	order subject type
	panel
	persisted data element
	perspective
	plug-in
	POMS
	product
	Project
	project dependency
	provider function
	provisioning
	Rapid Service Design
	refactor
	Report Development Kit (RDK)
	resource
	resource facing service
	RFS
	root data element
	schema entity
	service
	service design methodology
	service domain
	service fulfillment
	service order
	service order management (SOM)
	simple data element
	specification
	solution
	solution designer
	solution tester
	structured data element
	technical catalog
	technical order
	technical order management
	token
	Unified Inventory Management (UIM)
	view
	workbench
	working set
	workspace

