
Oracle® Communications Design
Studio
Modeling OSM Processes

Release 7.4.2
F18569-01
November 2020

Oracle Communications Design Studio Modeling OSM Processes, Release 7.4.2

F18569-01

Copyright © 2008, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility xiii

1 Getting Started with Design Studio for OSM Processes

About Order Modeling Users and Tasks 1-1

Reviewing Design Studio Sample Cartridges 1-3

Creating a Cartridge for Orders That Use Processes 1-4

2 Defining OSM Preferences

Defining Language Preferences 2-1

Defining Diagrammer Preferences 2-2

Defining Order and Service Management General Preferences 2-3

Defining Orchestration Preferences 2-6

Defining Web Browser Preferences 2-6

3 Working with OSM Cartridge Projects

Working with Existing OSM Models 3-1

About Importing Design Studio Cartridges 3-1

About Importing Cartridges Created in OSM Administrator 3-3

About Import Summary Reports 3-6

Importing Existing OSM Models 3-7

Working with the Orchestration Model Project 3-9

Creating the OracleComms_OSM_CommonDataDictionary Model Project 3-9

Working with XML Catalogs 3-9

Enabling and Disabling XML Catalogs for a Cartridge Project 3-10

Specifying XML Catalogs for a Cartridge Project 3-10

Order and Service Management Project Editor 3-12

Project Editor Locations Tab 3-12

Project Editor Manifest Tab 3-12

iii

4 Modeling Data in OSM

About Modeling Data in OSM Cartridge Projects 4-1

About Modeling Control Data 4-3

About Contributing Task Data to a Cartridge Project 4-5

About OSM Data in Model Projects 4-5

About Modeling Data in the Order Template 4-5

About the Order Template Context Menu 4-6

About the Task Editor Task Data Context Menu 4-7

Data Schema Editor OSM Tab 4-8

Using Masks 4-9

About Masks 4-9

Defining Masks for Task Web Client Fields 4-10

Defining Behaviors at the Data Schema Level 4-11

5 Working with Roles

Creating New Roles 5-1

Adding Roles to Multiple Tasks 5-1

Role Editor Role Tab 5-2

6 Working with Processes

About the Process Editor 6-1

Working with Process Editor Menu Controls 6-2

About Task Controls 6-2

About Zoom Controls 6-2

About Layout Controls 6-3

About Print Controls 6-3

About Selection Controls 6-4

Working with the Process Editor Palette 6-5

About the Process Editor Tool Drawer 6-5

About the Process Editor Activities Drawer 6-6

About the Process Editor Flow Drawer 6-8

About the Process Editor Exception Paths Drawer 6-9

Creating New Processes 6-9

Modifying Process Editor Start Properties 6-10

Process Editor Start Properties General Tab 6-11

Designing Tasks and Activities 6-11

Process Editor Activities Properties General Tab 6-13

Process Editor Task Properties Events Tab 6-13

Designing Timer Delays and Event Delays 6-14

iv

Designing Timer Delays 6-14

Applying Order Rules to Timer Delays 6-14

Designing Event Delays 6-15

Designing Subprocesses 6-15

Subprocess Properties General Tab 6-16

Subprocess Properties Process Tab 6-17

Subprocess Properties Exception Map Tab 6-19

Designing Workstream Processes 6-20

Designing Process Sequence and Flow 6-20

Process Editor Flow Properties General Tab 6-21

Process Editor Flow Properties Events Tab 6-22

Designing Exception Paths 6-22

Exception Path Properties General Tab 6-24

Exception Path Properties Restrictions Tab 6-25

Redirect Properties General Tab 6-25

7 Working with Tasks

About Tasks 7-1

About Task Extensions and Inheritance 7-2

About Task States and Statuses 7-2

About Task Rollback Status 7-3

About Task Compensation 7-4

About Task Fallout 7-6

About Enabling Task Web Client Users to Reassign Tasks 7-6

Creating New Tasks 7-7

Defining Task Data 7-8

Adding Data to a Task 7-8

Adding a New Data Structure Definition to a Task 7-9

Adding an Existing Data Structure Definition to a Task 7-10

Assigning Task States and Statuses 7-11

Assigning States to Tasks 7-11

Assigning Statuses to Tasks 7-12

Assigning Task Permissions 7-13

Converting Tasks 7-14

Deleting Unreferenced Tasks 7-14

Working with Automation Plug-Ins 7-15

About Automation Plug-ins 7-15

About Automation Plug-in Types 7-15

About Automation Plug-in Association 7-16

About Automation Message Correlation 7-17

v

Creating New Custom Automation Plug-ins 7-18

Configuring Automation Plug-In Properties 7-19

Example: Modeling a Basic Automator Plug-In 7-21

Working with Manual Tasks 7-23

Defining Manual Task Behaviors 7-24

Working with Automated Tasks 7-25

Defining Automated Task Behaviors 7-25

Adding Automation Plug-ins to Automated Tasks 7-26

Working with Activation Tasks 7-27

About Activation Tasks 7-28

About Service Action Request Mapping 7-28

About Service Action Response Mapping 7-29

About State and Status Transition Mapping 7-30

Modeling Activation Tasks 7-31

Configuring Service Action Requests 7-32

Mapping OSM Data to Service Action XML Parameters 7-34

Configuring Service Action Responses 7-38

Filtering ASAP Response Data 7-40

Configuring Service Action Response State and Status Transitions 7-41

Working with Transformation Tasks 7-42

Task Editor 7-42

Task Editor Activation Task Details Tab 7-43

Task Editor Automation Tab 7-44

Properties View Details Tab 7-45

Properties View External Event Receiver Tab 7-47

Properties View Compensation Tab 7-49

Properties View Correlation Tab 7-50

Properties View XQuery Tab 7-51

Properties View XSLT Tab 7-52

Properties View Routing Tab 7-53

Properties View Custom Plug-in Tab 7-54

Properties View Notes Tab 7-54

Task Editor Behaviors Tab 7-55

Task Editor Compensation Tab 7-55

Task Editor Details Tab 7-58

Task Editor Events Tab 7-60

Task Editor Fallouts Tab 7-61

Task Editor Jeopardy Tab 7-61

Task Editor Jeopardy Details Tab 7-62

Task Editor Jeopardy Conditions Tab 7-62

Task Editor Jeopardy Notify Roles Tab 7-63

vi

Task Editor Jeopardy Polling Tab 7-63

Task Editor Jeopardy Automation Tab 7-64

Task Editor Jeopardy Notes Tab 7-64

Task Editor Permissions Tab 7-64

Task Editor Redo Tab 7-65

Task Editor Request Data Tab 7-66

Properties Activation Order Header Binding View 7-67

Properties Global Parameter Binding View 7-68

Properties Service Action Binding View 7-68

Properties Parameter Binding View 7-69

Task Editor Response Data Tab 7-70

Properties State/Status Transition View 7-71

Response Filter Area 7-71

Task Editor Composite Data View Tab 7-72

Task Editor States/Statuses Tab 7-73

Task Editor Task Data Tab 7-73

Task Data Node Properties View Identification Tab 7-74

Task Data Node Properties View Dictionary Tab 7-75

Task Editor Undo Tab 7-76

8 Working with Order Lifecycle Policies

About Order States and Transactions 8-1

Creating New Order Lifecycle Policies 8-2

Configuring Order Lifecycle Policies 8-3

Order Lifecycle Policy Editor 8-5

Order Lifecycle Policy Permissions Tab 8-5

Order Lifecycle Policy Transition Conditions Tab 8-6

Transition Condition for Checking a Hard Point of No Return 8-7

Order Lifecycle Policy Editor Grace Periods Tab 8-9

9 Working with Data Providers

About Data Providers 9-1

Understanding Built-in Data Provider Types 9-1

Creating New Data Providers 9-2

Configuring Data Providers 9-3

Data Provider Editor 9-4

Data Provider Editor Settings Tab 9-4

Data Provider Editor Interface Tab 9-5

vii

10

Working with Orders

About Order Extensions and Inheritance 10-1

About Reference Nodes 10-2

Creating New Orders 10-3

Defining Order Data 10-3

Adding New Data to an Order 10-4

Adding Existing Data to an Order 10-4

Adding Reference Data Nodes 10-5

Adding a New Data Structure Definition to an Order 10-6

Adding an Existing Data Structure Definition to an Order 10-7

Renaming Data Elements at the Order Level 10-8

Defining Order Behaviors 10-8

Defining Order Details 10-9

Enabling Order Amendment Processing 10-10

Defining Order Rules 10-11

Defining Order Fallout 10-13

Associating Order Fallouts with Data Nodes 10-13

Associating Order Fallouts with Fallout Groups 10-14

Defining Order Data Changed Notifications 10-15

Assigning Order Permissions 10-15

Defining Order Jeopardy Notifications 10-17

Defining Order Event Notifications 10-18

Order Editor 10-18

Order Editor Order Template Tab 10-18

Properties View Order Data Tab 10-19

Properties View Dictionary Tab 10-20

Properties View Key Tab 10-21

Properties View Usage Tab 10-22

Order Editor Behaviors Tab 10-22

Order Editor Details Tab 10-22

Order Editor Amendable Tab 10-24

Order Editor Rules Tab 10-25

Properties View Rules Expression Tab 10-26

Order Editor Fallouts Tab 10-26

Order Editor Fallout Groups Tab 10-27

Order Editor Notification Tab 10-27

Order Editor Notification Details Tab 10-28

Order Editor Notification Notify Roles Tab 10-28

Order Editor Notification Data Changed Tab 10-29

Order Editor Notification Automation Tab 10-29

viii

Order Editor Notification Notes Tab 10-30

Order Editor Permissions Tab 10-31

Order Editor Permissions Details Tab 10-31

Order Editor Permissions Filters Tab 10-32

Order Editor Permissions Query Tasks Tab 10-33

Properties View Filter Expression Tab 10-34

Order Editor Jeopardy Tab 10-34

Order Editor Jeopardy Details Tab 10-35

Order Editor Jeopardy Conditions Tab 10-35

Order Editor Jeopardy Notify Roles Tab 10-36

Order Editor Jeopardy Polling Tab 10-36

Order Editor Jeopardy Automation Tab 10-37

Order Editor Jeopardy Notes Tab 10-37

Order Editor Events Tab 10-38

Order Editor Composite Data View Tab 10-38

11

Working with Behaviors

About Web Client Behavior Support 11-1

Creating New Behaviors 11-2

Defining Behavior Detail Properties 11-2

Behaviors Properties View Details Tab 11-3

Defining Behavior Condition Properties 11-4

About Behavior Condition Properties 11-4

Behaviors Properties View Conditions Tab 11-5

Defining Behavior Notes Properties 11-6

Defining Calculate Behavior Properties 11-6

About Calculate Behaviors 11-7

Calculate Behavior Properties View Calculation Tab 11-8

Defining Constraint Behavior Properties 11-8

Constraint Behavior Properties View Message Tab 11-10

Defining Data Instance Behavior Properties 11-11

About Data Instance Behaviors 11-12

Data Instance Behavior Properties View Data Tab 11-13

Defining Event Behavior Properties 11-15

About Event Behaviors 11-16

Event Behavior Properties View Event Tab 11-16

Defining Information Behavior Properties 11-17

Defining Information Behaviors in Multiple Languages 11-19

Information Behavior Properties View Labels Tab 11-20

Information Behavior Properties View Hints Tab 11-21

ix

Information Behavior Properties View Help Tab 11-22

Defining Lookup Behavior Properties 11-22

About Lookup Behaviors 11-23

Lookup Behavior Properties View Nodeset Tab 11-24

Lookup Behavior Properties View Value/Name Tab 11-25

Defining Read Only Behavior Properties 11-26

About Read Only Behaviors 11-27

Defining Relevant Behavior Properties 11-28

About Relevant Behaviors 11-29

Defining Style Behavior Properties 11-29

Style Behavior Properties View Appearance Tab 11-31

Style Behavior Properties View Layout Tab 11-32

Style Behavior Properties View CSS Style Tab 11-32

12

Working with Jeopardy and Event Notifications

Working with Jeopardy Notifications 12-1

Creating Jeopardy Notifications in the Order Jeopardy Editor 12-1

Creating Jeopardy Notifications in the Task or Order Editor 12-2

Working with Event Notifications 12-4

Creating Order Milestone and Task State Automation Event Notifications 12-5

Creating Process-specific Task Event Notifications 12-6

Properties Events Detail Tab 12-7

Properties Events Notify Roles Tab 12-8

Properties Events Automation Tab 12-9

Event Properties Notes Tab 12-9

Creating Task Status-Based Event Notifications 12-10

Creating Order Data Changed Notifications 12-11

Order Jeopardy Editor 12-13

Order Jeopardy Editor Details Tab 12-13

Order Jeopardy Editor Policy Tab 12-14

Order Jeopardy Editor Policy Tab Duration Value Subtab 12-16

Order Jeopardy Editor Policy Tab Offset Subtab 12-16

Order Jeopardy Editor Policy Tab XQuery Expression Subtab 12-17

Order Jeopardy Editor Policy Tab Unit Type and Default Value Subtab 12-17

Order Jeopardy Editor Policy Tab Data Path Expression Subtab 12-18

Order Jeopardy Editor Automation Tab 12-18

Order Jeopardy Editor Automation Tab Details Subtab 12-19

Order Jeopardy Editor Automation Tab Script Subtab 12-20

Order Jeopardy Editor Automation Tab Routing Subtab 12-21

x

Order Jeopardy Editor Automation Tab Notes Subtab 12-22

13

Packaging and Deploying OSM Cartridges

Packaging Order and Service Management Cartridges 13-1

Multiple Order Data Inconsistencies 13-1

Defining Build-and-Deploy Modes for Automation Plug-ins 13-2

About Build-and-Deploy Modes for Automation Plug-ins 13-3

Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges 13-5

Setting Automation Plug-in Build-and-Deploy Modes for Individual Cartridges 13-6

Testing OSM Cartridge Models 13-7

About Submit Test 13-7

Submitting Test Orders to Run-time Environments 13-8

Managing Changes to Deployed Cartridges 13-9

Managing Orders for Multiple Cartridge Versions 13-10

Modifying Cartridges After Upgrading OSM Versions 13-10

Studio Environment Editor 13-10

Studio Environment Editor Connection Tab 13-11

Studio Environment Editor SSL Tab 13-11

Studio Environment Editor Properties Tab 13-12

Studio Environment Editor Order and Service Management Test Submission
URL Area 13-12

A Automation and Compensation Examples

Predefined Automation Plug-ins A-1

Message Example A-1

Automation Plug-in XQuery Examples A-4

Internal XQuery Sender A-4

External XQuery Automator A-10

External XQuery Sender A-13

Internal XQuery Automator A-14

Automation Plug-in XSLT Examples A-14

Internal XSLT Sender A-14

External XSLT Automator A-21

External XSLT Sender A-24

Internal XSLT Automator A-25

Automation Plug-in Examples for Events, Jeopardies, and Notifications A-25

Event Automators A-25

Jeopardy Automators A-26

Order Notification Automation Plug-ins A-28

Custom Java Automation Plug-ins A-29

xi

Internal Custom Java Automator A-30

Internal Custom Java Sender A-31

External Custom Java Automator that Changes the OSM Task Status A-33

External Custom Java Automator that Updates Order Data A-34

Using OrderDataUpdate Elements to Pass Order Modification Data A-38

Examples of Sending Messages to External Systems A-39

Examples of Handling Responses from External Systems A-41

Compensation XQuery Expressions A-43

Task Re-Evaluation and Rollback XQuery Expressions A-44

In Progress Compensation Include XQuery Expressions A-45

In Progress Compensation Complete XQuery Expressions A-46

In Progress Compensation Grace Period XQuery Expressions A-47

Order Jeopardy Automation XQuery Plug-ins A-49

xii

Preface

This document contains information about the procedures and tasks that are
necessary to configure and deploy Oracle Communications Order and Service
Management (OSM) process entities and cartridges using Oracle Communications
Design Studio.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Getting Started with Design Studio for
OSM Processes

When modeling orders, you can use Oracle Communications Design Studio to define
new order fulfillment processes, tasks, order types, and order policies that control the
order type life cycles. Design Studio enables you to test your Oracle Communications
Order and Service Management (OSM) configurations and resolve configuration
problems.

The OSM provisioning configurations that you create in Design Studio enable you
to provision orders across multiple service and network domains. Design Studio
enables you to define, execute, and control service orders for any domain, including
Broadband access (for example xDSL, fixed wireless, WiMAX), IPTV, VoIP, Voice,
IP-VPN, Mobile, and emerging services. You create these configurations in Design
Studio by defining and relating objects at different levels of abstraction.

Note:

If you upgrade to Order and Service Management 7.x from a prior version
of OSM and your cartridges were developed with OSM Administrator
tool, Oracle recommends that you migrate your cartridges into Oracle
Communications Design Studio. Use Design Studio as the tool to design
and deploy OSM 7.x cartridges. The recommended migration procedure,
common migration issues, and issue resolutions are documented in release
7.3.2 Design Studio Order and Service Management Cartridge Migration
Guide, which is available in the Oracle Help Center:

http://docs.oracle.com/en/industries/communications/design-studio/
index.html

See the following topics when getting started with Design Studio for OSM processes:

• About Order Modeling Users and Tasks

• Reviewing Design Studio Sample Cartridges

• Creating a Cartridge for Orders That Use Processes

About Order Modeling Users and Tasks
The following is a list of roles and the tasks each role typically performs in Design
Studio for OSM processes:

Business Analyst Tasks

Business analysts are responsible for describing the features and services associated
with marketing products and communicating this to the users responsible for building

1-1

http://docs.oracle.com/en/industries/communications/design-studio/index.html
http://docs.oracle.com/en/industries/communications/design-studio/index.html

these products. The business analyst may simply name and describe products and
pass this product description to a configuration modeler, or may perform basic
configuration modeling tasks in Design Studio. This involves the following tasks:

Task For More Information

Configure OSM cartridges "Working with OSM Cartridge Projects"

Model processes "Working with Processes"

"Working with Order Lifecycle Policies"

Model roles "Working with Roles"

Configuration Modeler Tasks

OSM modelers are responsible for creating, modeling, refining, building and deploying
an OSM cartridge. This involves the following tasks:

Task For More Information

Create OSM cartridges "Working with OSM Cartridge Projects"

Model processes "Working with Processes"

"Designing Subprocesses"

"Designing Workstream Processes"

Model roles "Working with Roles"

Model Tasks "Working with Manual Tasks"

"Working with Automated Tasks"

Model Orders "Working with Orders"

"Working with Order Lifecycle Policies"

Refine processes "About Task States and Statuses"

Build, deploy, and undeploy
to and from development
environments

"Packaging and Deploying OSM Cartridges"

Deployment Manager Tasks

Deployment managers are responsible for build management and are usually
advanced users of the version control system. Deployment managers should be
familiar with the tools that Eclipse provides to interface with the version control system
and understand how to package items from source control and build and deploy
configurations to OSM environments. Activities performed by deployment managers in
Design Studio include:

Task For More Information

Build, deploy, and undeploy
to and from development
environments

"Packaging and Deploying OSM Cartridges"

Configure the development
environment

"Packaging and Deploying OSM Cartridges"

See the Eclipse documentation for more information about version control.

Chapter 1
About Order Modeling Users and Tasks

1-2

Cartridge Developer Tasks

Cartridge developers assist OSM configuration modelers in modeling and refining an
OSM cartridge. This involves the following tasks:

Task For More Information

Model the Data Dictionary "Modeling Data"

Model Tasks "Working with Manual Tasks"

"Working with Automated Tasks"

Model Orders "Working with Orders"

"Working with Order Lifecycle Policies"

Refine the process "About Task States and Statuses"

Reviewing Design Studio Sample Cartridges
Design Studio includes two OSM sample cartridges intended to provide examples of
the type of configuration that you can model in a Design Studio OSM cartridge project.
You can use these sample cartridges to familiarize yourself with OSM functionality,
as a reference aid when first learning Design Studio, and as a starting point when
modeling OSM cartridges. Each cartridge contains corresponding documentation to
describe the cartridge content.

To open and review a sample cartridge:

1. Install the Design Studio Samples feature from your internal update site.

For information about installing features, see the Design Studio Installation Guide.

2. From the File menu, select New, and then select Example.

The New Example dialog box is displayed.

3. Expand the Design Studio Order and Service Management Provisioning
Examples directory.

4. Select a sample cartridge.

There are two OSM sample cartridges. Select one of the following:

• Provisioning Broadband and Order Change Demo

• Provisioning View Framework Demo

5. Click Next.

6. Select the example project to contain the sample cartridge.

Do one of the following:

• For the Provisioning Broadband and Order Change Demo, select
bb_ocm_demo.

• Provisioning View Framework Demo, select view_framework_demo.

7. Click Finish.

The project is added to the Studio Projects view. You can expand the project
directory to explore the entities included in the sample cartridge.

8. Access the sample cartridge documentation.

Chapter 1
Reviewing Design Studio Sample Cartridges

1-3

Each cartridge is delivered with a corresponding file that contains documentation
to describe the cartridge functionality. To access the documentation:

a. From the Window menu, select Show View, and then select Package
Explorer.

b. In the Package Explore view, expand the sample cartridge project directory.

For example, expand either the bb_ocm_demo or the
view_framework_demo directory.

c. Expand the doc directory.

d. Double-click the file to open the documentation.

Note:

To run view_framework_demo in an OSM environment, you must define
your Design Studio language preference as English (United States) [en-
us]. See "Defining Language Preferences" for more information.

Creating a Cartridge for Orders That Use Processes
The procedure below outlines the basic steps to create an OSM cartridge configuration
in Design Studio.

After you create a cartridge project, you can model the process flow first or define your
data first (see "Modeling Data" for information about defining data). The steps required
to create the cartridge configuration are the same; only the starting points differ. For
example, if you elect to model your process first, you start by creating a new cartridge
project, then model the process in the Process editor. If you want to define data first,
you can open the Data Schema editor to define as much data as necessary.

The following procedure demonstrates how to create an OSM cartridge, modeling the
process first.

To create a cartridge for orders that use processes:

1. Create an OSM cartridge project.

The OSM cartridge project is your working area for the OSM configuration. When
you create a new cartridge project, Design Studio displays the new cartridge
project in the Studio Projects view of the Design perspective. In addition to the
newly-generated Project entity, the project contains entities for an order and for the
Data Dictionary. See "Creating New Cartridge Projects" for more information.

2. Model the process.

A process is a sequence of tasks that executes either consecutively or
concurrently to fulfill an order or part of an order. Using the Process editor as
a white board, you can create, sequence, and link the tasks that are required to
implement the process flow. See "Working with Processes" for more information.

3. Model the roles.

You can permit specific roles access to a standard set of functions in the Task web
client. See "Working with Roles" for more information.

Chapter 1
Creating a Cartridge for Orders That Use Processes

1-4

4. Model tasks and task data.

A task is one step in a process. The data that you model for the task includes all of
the data that the task requires to complete.

You can define different types of tasks (manual or automation), create the task
data, assign task states and statuses, add behaviors, and define other parameters
as needed. You can associate the task with an existing OSM order or model a
new order (and order template) for the task. See "Working with Tasks" for more
information.

5. Model the order.

You model the data for the order and add behaviors that affect the manner in
which the data appears in the Task web client or Order Management web client.
You can associate a default process, a creation task, and a life-cycle policy with
the order, associate rules with the order, and permit specific roles access to the
order. See "Working with Orders" for more information.

6. Refine the process.

After reviewing your configuration, you may need to make changes, such as
removing tasks from the process flow, renaming tasks, changing the data required
at a task, updating the Data Dictionary, or adding additional states and statuses.

7. Package the cartridge.

Packaging enables you to control which entities, libraries, and resources will
be included in the cartridge when you deploy the cartridge to the OSM run-
time environment. See "Packaging and Deploying OSM Cartridges" for more
information.

8. Deploy and undeploy to and from development environments.

You create an Environment project to contain the information required to connect
to your run-time environment. You can deploy all of the data in your cartridge,
or when possible, deploy only the changes to your cartridge project (using the
Optimize Deploy feature). See "Packaging and Deploying OSM Cartridges" and
"Deploying Cartridge Projects with Optimize Deploy" for more information.

Chapter 1
Creating a Cartridge for Orders That Use Processes

1-5

2
Defining OSM Preferences

When modeling Oracle Communications Order and Service Management (OSM)
cartridges in Oracle Communications Design Studio, see the following topics:

• Defining Language Preferences

• Defining Diagrammer Preferences

• Defining Order and Service Management General Preferences

• Defining Orchestration Preferences

• Defining Web Browser Preferences

Defining Language Preferences
Design Studio for OSM supports multiple languages for fields in the Task web client or
the Order Management web client (through the use of the Information behavior). Use
the language preference settings to define the languages that you intend to use in your
OSM cartridges, and the language with which you prefer to work. You define language
preferences in the Oracle Design Studio Preferences dialog box.

To define OSM language preferences:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. Select Oracle Design Studio.

3. Click New.

The Add Language dialog box is displayed.

4. Select a language from the available options.

5. Click OK.

Design Studio adds the language to the Languages group.

6. (Optional) Define the language display priority.

When multiple languages appear in the Languages group, use the Up and Down
buttons to reposition the language display priority. The language display priority
controls the order in which the languages appear in Design Studio language drop-
down lists.

7. (Optional) Click Remove to delete a language from the Languages group.

8. In Preferred Language, select the language from your language list in which you
prefer to work.

9. Click OK.

Design Studio saves your language preferences and closes the Preferences
dialog box.

2-1

Note:

If you deploy or import into OSM cartridges that support languages that
you have not included in your language group, the system displays a
warning message indicating that the language is not currently supported. To
include that language in your language list, you can return to the Language
Preferences page and add it. Also note that you must specify the English [en]
language setting to use the OSM sample cartridges.

Related Topics

Defining Information Behavior Properties

Defining Information Behaviors in Multiple Languages

Defining OSM Preferences

Defining Diagrammer Preferences
To define OSM diagrammer preferences, from the Window menu, select Preferences,
then expand Oracle Design Studio in the Preferences navigation tree, and then
select Order and Service Management Diagrammer Preferences.

Use the diagram preferences to define aspects of a diagram layout. Offset preferences
control the spacing between elements in the diagram. Segment lengths control
aspects of the link shape. Layout preferences provide control over incremental layout
logic. The default settings will work well in most instances.

Select Incremental Layout if you want the system to consider the current coordinates
of the diagram nodes and links when you click the Layout All Nodes or Layout
Selected Nodes buttons in the Process editor. When enabled, Incremental Layout
retains the relative order of nodes and links and attempts to create a new layout with
similar positions.

The system considers the following settings only if you enable the Incremental
Layout option:

Field Use

Number of link
crossing sweeps

Define the number of sweeps you want the system to use to remove
instances of link crossing. The system uses a complex algorithm
to resolve link crossings; while the number of sweeps influences
the number of resolved crossings, there is not a direct relationship
between the number of sweeps and the number of resolved link
crossings. In some instances, it may be useful to decrease the
number of sweeps to resolve more link crossings.

Link crossing
reduction

Select to reduce the number of crossing links during incremental
layout. When this field is enabled, the system preserves the level
structure and relative order of the nodes but reorders them within the
level structure to avoid link crossings.

Long link crossing
reduction

Select to reduce the number of long crossing links during incremental
layout. When this field is enabled, the system preserves the level
structure and the relative order of the nodes but reroutes link bends to
avoid link crossings.

Chapter 2
Defining Diagrammer Preferences

2-2

Field Use

Allow node level
repositioning

Select this option if you want the system to consider the original node
positions during incremental layout. A primary objective of incremental
layout is to achieve a balanced diagram. To achieve a balanced
diagram, the system may place nodes far from their original positions.
You can enable this field to ensure that the system places nodes as
close to the original position as possible. This decision, however, can
result in an imbalanced layout.

Note: The system does not consider this option if you have enabled
either of the Link crossing reduction or Long Link crossing
reduction fields. The Allow node level repositioning and crossing
reduction fields are mutually exclusive.

Level positioning
range

Define the acceptable range (in pixels) from the original node position
that the system can consider when repositioning nodes during
incremental layout.

Note: The system considers this option only when you enable the
Allow node level repositioning field.

Level positioning
tendency

Define the percentage of the level positioning range to which the
system should adhere when moving nodes from their original position.
Define higher percentages to ensure that the nodes remain closer to
their original positions, and lower percentages to enable the system
more leverage for achieving a balanced diagram. A position tendency
of 0 effectively disables this option.

Note: The system considers this option only when you enable the
Level positioning range field.

Related Topics

Defining Language Preferences

Defining Order and Service Management General Preferences

Defining OSM Preferences

Defining Order and Service Management General
Preferences

To define OSM general preferences, from the Window menu, select Preferences,
then expand Oracle Design Studio in the Preferences navigation tree, and then
select Order and Service Management Preferences.

Defining Build-and-Deploy Modes for Automation Plug-ins

This field is only relevant for cartridges targeted to OSM server versions between7.0.3
and 7.2.4.x. Prior to 7.0.3, only Legacy mode is used. From 7.3 onward, only
Optimized mode is used.

In the Automation plug-in Build and Deploy Mode field, specify whether you want
OSM to process all automation plug-ins in a common (oms.ear) EAR file (by selecting
Optimized (Default)), process each automation plug-in in its own EAR file (by
selecting Legacy), or build the automation components required for OSM to process
automation plug-ins in either Optimized or Legacy mode according to the automation
plug-in dispatch mode defined on the OSM server (by selecting Both (Allow server

Chapter 2
Defining Order and Service Management General Preferences

2-3

preference setting to decide)). For more information on automation plug-in build-
and-deploy modes, see "Defining Build-and-Deploy Modes for Automation Plug-ins".

Setting the Problem Marker Severity for Automation Task Name to Plug-in EJB
Discrepancies

In the Automation Plugin EJB Name Compliance Level list, specify whether you
want Design Studio to display an Error or Warning problem marker when there is
a discrepancy between the automation task entity name and an associated external
plug-in EJB name. If such a discrepancy occurs, you can use the Quick Fix option
from either the warning or error problem marker to revert the plug-in EJB name to
match the automated task name.

Defining Deploy Properties

When installing Design Studio, you can use the install.bat script to install the Design
Studio features and configure the environment automatically. If you use this script, it
will automatically install the necessary libraries and configure the fields below. See
Design Studio Installation Guide for more information about installing Design Studio
and using the script.

If you install Design Studio without using the script, or if you want to change any of the
values after the install, see the information in the table below.

Field Use

WebLogic Home Specify the installation directory for WebLogic (for example,
C:\Oracle\Middleware\wlserver).

If you are using Design Studio on a system that does not already have
the correct version of Oracle Middleware on it, consult the software
requirements in OSM installation Guide for information about the
correct version of the application server to install, and then consult
Fusion Middleware Installation Guide for Oracle WebLogic Server for
information on installing the core WebLogic software. Do not install
a WebLogic domain for Design Studio, which only needs the core
software.

Java SDK Home Specify the installation directory for the Java JDK (for example,
C:\Program Files\Java\jdk1.7.0_85). Select the JDK in the WebLogic
Server installation.

OSM SDK Home Specify the installation directory for the OSM SDK (for example,
C:\OSM\SDK).

If you are using Design Studio on a system that does not already have
the correct version of the OSM SDK on it, first ensure that you have
unpacked the correct version of JBoss on your machine. Then run the
OSM installer on your machine, selecting a Custom Installation and
then selecting only the SDK and (if desired) SDK Samples options
when asked to select components to install. See OSM Installation
Guide for information about the correct version of JBoss to use and for
more information about running the installer.

You should specify the location of a version of the SDK that is
compatible with the value for Target Version that you are selecting in
your projects. See "Project Editor Properties Tab" for more information
about the Target Version field.

Chapter 2
Defining Order and Service Management General Preferences

2-4

Defining Orphaned Task Reference Preferences

In the Delete Orphaned Task References with Activity field, specify whether you
want to delete related task entities when removing tasks from the Process editor.
When you enable this option and delete tasks in the Process editor, the system
checks whether deleted tasks are referenced elsewhere in the workspace. If no task
references exist in the workspace, the system displays a list from which you can select
related entities for removal.

Defining Order Template Inheritance Preferences

When you enable order template inheritance preferences, when an order is extended,
the significance and keys defined on the order are inherited; that is, significance and
keys are included in the information from the base order. In addition to keys and
significance defined on the base order being inherited on the extended order, the
significance of an inherited data element within the order template is also inherited
from the OSM entity that contributes it. If these preferences are not enabled, the
significance of an inherited data element within the order template is inherited from the
data schema rather than from the OSM entity that contributes it.

Offering inheritance within the order template for inheriting significance and keys
enables a level of inheritance that is more complete and increases development
convenience. As such, enabling these preferences is recommended for new cartridge
development. If you are upgrading existing cartridges, refer to the discussion on order
template inheritance and upgrade impacts in OSM Installation Guide before enabling
these preferences.

To define order template inheritance preferences:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. In the Preferences navigation tree, expand Oracle Design Studio and then select
Order and Service Management Preferences.

3. In the Order Template Inheritance area, define your order template inheritance
preferences.

When an inherited data element in the order template has its significance set as
Inherited, enabling and disabling the preference for significance inheritance from
order contributors works as follows:

• Disabled: Significance is inherited from the data schema.

• Enabled: Significance is inherited from the order template of the data
contributor(s). Note that if the significance of the data contributor is set as
Inherited, it inherits its significance from the data schema.

4. Click Apply and then click OK.

Design Studio saves your preferences.

Related Topics

Defining Language Preferences

Defining Diagrammer Preferences

Defining OSM Preferences

Chapter 2
Defining Order and Service Management General Preferences

2-5

Defining Orchestration Preferences
To define OSM orchestration preferences, from the Window menu, select
Preferences, then expand Oracle Design Studio in the Preferences navigation
tree, then select Order and Service Management Preferences, and then select
Orchestration Preferences.

Use orchestration preferences to set options related to orchestration.

Field Use

Product Specification
Mapping Folder

Specify the folder in which Design Studio is to store product-
specification-to-fulfillment-pattern mappings.

When you import common model products or OSM
orchestration product specifications, Design Studio creates
(in the resources folder of the cartridge project) a
productSpecMapping folder that contains all product-
specification-to-fulfillment-pattern mappings. You can
reference this folder location in XQuery expressions
when you configure the order item properties for the
orchestration fulfillment pattern. If you want to maintain the
productSpecMapping folder at an external location (and
reference the folder using a Data Instance), specify the
location of the folder here. See "About XQuery Expressions
for Mapping Product Specifications and Fulfillment Patterns"
for more information.

Prompt To Create
Orchestration Data
Dictionary

Specify whether you want to be prompted to create
the OracleComms_OSM_CommonDataDictionary model
project in your workspace; this model project contains a
predefined data schema which is recommended for modeling
data structures used by orchestration. If you select the check
box, Design Studio prompts you to create the model project
in your workspace when you open or create an orchestration
entity.

See "About Autogeneration of Order Component Control
Data" for more information about this model project.

Defining Web Browser Preferences
When you submit test orders from Design Studio to a run-time environment, Design
Studio opens a browser window in the Design Studio editor area and displays the Task
web client log-in window. For the Task web client to work correctly from inside Design
Studio, you must configure Design Studio to use a supported external browser.

To specify an external browser:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. In the Preferences navigation tree, select Web Browser.

3. In the Web Browser area, select Use external web browser.

4. In External web browser:, select a supported external browser, such as Internet
Explorer.

Chapter 2
Defining Orchestration Preferences

2-6

5. Click OK.

Design Studio saves your preferences.

Related Topics

Submitting Test Orders to Run-time Environments

Chapter 2
Defining Web Browser Preferences

2-7

3
Working with OSM Cartridge Projects

An Oracle Communications Order and Service Management (OSM) cartridge defines
all of the entities and system interfaces required to fulfill an order in the OSM run-time
environment.

The OSM cartridge is your working area for the OSM configuration. You store all
simple data elements and structured data elements in data schemas. The combined
data schemas are referred to as the Data Dictionary. You use subsets of data from the
Data Dictionary to create order data templates. You use data from the order template
to model specific tasks. You associate tasks with a process required to fulfill incoming
customer orders. You can model different types of tasks, such as automated tasks and
manual tasks, and define rules for tasks at the order level. You package all configured
elements and components required for deployment.

When working with OSM cartridge projects, see the following topics:

• Creating New Cartridge Projects

• Closing Projects

• Opening Projects

• Managing Project Dependencies

• Working with Existing OSM Models

• Working with XML Catalogs

• Order and Service Management Project Editor

Working with Existing OSM Models
If you have existing OSM models, you can import the model into Oracle
Communications Design Studio as a single file or as multiple files. When importing
models, Design Studio generates a cartridge project and maps all of the order's data
into the equivalent Design Studio directory structure.

When working with existing OSM models, see the following topics:

• About Importing Design Studio Cartridges

• About Importing Cartridges Created in OSM Administrator

• About Import Summary Reports

• Importing Existing OSM Models

About Importing Design Studio Cartridges
You can import into Design Studio existing OSM models. When importing OSM
models, Design Studio generates a new cartridge project and maps the metadata for
each order into an equivalent Design Studio directory structure.

3-1

Note:

Cartridge dependencies must exist in the workspace before importing a
cartridge project. For example, when importing an OSM project that has a
dependency on a Model project, you must import the Model project first
to avoid problem markers during the project build. Also, when importing
cartridges that have specific languages defined in the OSM model, you must
add those languages to your language preferences. See "Defining Language
Preferences" for more information.

Creating Design Studio Projects

When you import XML models into a workspace, Design Studio creates the following
projects to contain the data:

• A common data model project.

The default name is OracleComms_OSM_CommonDataDictionary. This project
contains the data schemas associated with the imported cartridges, as well as
behaviors and data providers defined at the Data Dictionary level.

• An OSM project for the cartridge.

These projects contain orders, processes, tasks, order life cycle policies, custom
automation plug-ins, and data providers.

For example, consider that you are importing an XML model that contains a cartridge
called DSLService. Upon import, Design Studio creates the following projects:

• A Data Dictionary project.

• A cartridge project for DSLService.

Note:

Design Studio does not import entities that are defined in the import model
but not associated with any orders. For example, if the import model contains
a task that is not used in any processes or referenced by any of the orders,
Design Studio will not import the task. Additionally, Design Studio does not
import entities that are not supported (such as test categories or rules), even
if they are associated with orders.

Design Studio logs all entities it does not import in the Import Summary
report.

Importing Data Types

In Design Studio, you can define numeric data elements as type int, double, float, or
decimal. OSM does not directly support these data types. When you deploy a cartridge
containing these data types, OSM converts them to numeric. Conversely, when you
import numeric types into Design Studio, they are converted to decimal.

Chapter 3
Working with Existing OSM Models

3-2

Note:

Importing cartridges originally created in Design Studio, but exported from
OSM using the XML Import/Export application is not supported.

Improving Design Studio Performance

To improve Design Studio performance during import and during modeling, you can
separate large cartridges into multiple projects that exist in different workspaces.
During the first import, you create the common Data Dictionary that all of the smaller
projects will reference and select a subset of orders to add to the first project. Create
a new workspace for subsequent imports and continue to add subsets of orders. When
you are finished, Design Studio will include multiple projects in multiple workspaces,
each sharing the same Data Dictionary, each with different subsets of orders from
the original cartridge. For example, you might include all VoIP orders in a single
workspace, all Internet orders in another, and so forth.

About Importing Cartridges Created in OSM Administrator
Design Studio replaces much of the functionality previously included in the old OSM
Administrator application. OSM administrator functionality, for example managing
workgroups, schedules, and calendars, is provided in the Administration area of the
OSM Order Management web client. For information about migrating cartridges that
were created in the OSM Administrator into Design Studio, see Design Studio Order
and Service Management Cartridge Migration Guide.

The following table describes how entities defined in the Administrator and imported
into Design Studio are mapped into the Design Studio environment:

Entity Considerations

Cartridge Name and Version At import, Design Studio preserves the namespace and
version, using namespace as the project name, and
version as the version number of the cartridge.

You cannot import into Design Studio a cartridge with
a name identical to an existing Design Studio cartridge
(even if it is a different version), per workspace.

Data Dictionary and Master Order
Template

Design Studio does not require that you build a master
order template or explicitly model order data. As you
model task data, the system automatically builds the
order template.

Design Studio maps all data elements to a Data
Dictionary that you specify in the Import wizard, and
maps order template elements to the Order editor Order
Template tab.

Order Source Design Studio imports the order source. It is visible in
the Order editor Details tab.

Workgroups Design Studio maps workgroups to roles. Permissions
are visible in the Role editor and also in the Order editor
and Task editor Permissions tabs.

Chapter 3
Working with Existing OSM Models

3-3

Entity Considerations

Tasks Manual and automated tasks appear as separate task
entities in the project directory.

If you are importing a cartridge that contains a task
used by multiple order types and sources (using
different views in OSM Administrator), Design Studio
creates duplicate tasks, one for each order, and
renames each task with the original task name
concatenated with the order type and source. Design
Studio updates all references to the task. If the task
name is referenced in an automation map, Design
Studio creates duplicate entries.

Views In Design Studio, views are not independent entities, but
are implicit in the configuration of data nodes in tasks
and order templates. Upon import, the data associated
with an order or task appear in the Order and Task
editors, respectively.

Processes If you associated a process with multiple order type
and sources using rules, Design Studio duplicates the
process for each associated order type and source.
On import, the type/source-to-process mappings are
replaced by an equivalent top-level process and
subprocess.

If you are importing a cartridge that contains a process
used by multiple order types and sources (using
different views in OSM Administrator), Design Studio
creates duplicate processes, one for each order, and
renames each process with the original process name
concatenated with the order type and source. Design
Studio updates all references to the process, including
any references in the automation map.

Rules, event delays, timer delays, subprocesses, and
process exceptions appear in the Process editor, not as
separate entities.

Behaviors Upon import, Design Studio saves behaviors to the
following editors:

• Behaviors defined at the task level appear in the
Behaviors tab of the Task editor.

• Behaviors defined at the order level appear in the
Behaviors tab of the Order editor.

• Behaviors defined at the data element level appear
in the Data Dictionary's OSM tab for the element
definition.

Chapter 3
Working with Existing OSM Models

3-4

Entity Considerations

Rules In Design Studio, rules are defined within a specific
order. Upon import, Design Studio determines which
rules are used by an order and adds those rules to the
Order editor Rules tab.

If you are importing text-based rules (SQL rules),
Design Studio imports the text-based rules as separate
text files, using name_of_the_rule.sql as the rule name.
Design Studio saves the rule to the resources folder
and displays the rule with the other rules in the Order
editor Rules tab. To modify text-based rules, click the
name of the file to access the rule in a SQL editor.

Rule expressions defined with order type and source
operands are not supported in Design Studio. On
import, these operands are mapped to an expression
with the same data element on each side. If the
order-based operand matches the imported order, the
generated expression evaluates to true. For example:

/VPN_Name = /VPN_Name

Otherwise, it evaluates to false:

/VPN_Name_Count ! /VPN_Name_Count

Notifications Design Studio imports polled-type notifications as
jeopardy notifications, and all others as event
notifications.

Design Studio does not support or import system
notifications (notifications that are not associated with
any order, task or activity) or mixed transition notification
types (for example, notifications are both transitional
and polled).

Data Providers Design Studio imports inline, external, and XQuery
instances that are defined as part of an Information rule
as a Data Provider entity type. In Design Studio, you
can use a Data Instance behavior in conjunction with
a Data Provider to retrieve information from an external
system.

Process Exceptions Design Studio maps process exceptions to the Process
editor under the following conditions:

• A restriction defined in the OSM Administrator
must be valid in the imported order, and the type
and source of the imported order must match the
restriction; otherwise, it will not be imported.

• The process exception status used in the OSM
Administrator must be available in the Design
Studio process.

• Activities defined for the process exception must be
available in the Design Studio process.

Automation Maps Design Studio generates automation maps
automatically, based on the configurations of automated
tasks. If you are importing a cartridge with custom
automation plug-ins, you can specify which automation
maps to include from within the Import wizard.

Responsibility and Category Design Studio does not support or import Responsibility
and Category entities created in the OSM Administrator.

Chapter 3
Working with Existing OSM Models

3-5

Entity Considerations

Entity Names If Design Studio detects entity name conflicts, it
automatically renames the entity. Review the Import
Summary report to acquire a list of all entity name
changes made during import. You may be required to
edit references to the affected entity names in Java code
or XSLT files.

Note:

Cartridges created in the OSM Administrator are not necessarily valid upon
import to Design Studio. Design Studio performs logical validations to ensure
that errors are detected before deploying a cartridge to an OSM run-time
environment. For example, if you import a cartridge that contains a rule to
check values of a specific data node, Design Studio ensures that the data
node exists in the corresponding order data. You must resolve all cartridge
errors before deploying to a run-time environment.

Related Topics

Working with Existing OSM Models

About Importing Design Studio Cartridges

Working with OSM Cartridge Projects

About Import Summary Reports
When you import an existing project into Design Studio, the system generates a
summary report that describes the errors generated and the actions Design Studio
took to resolve the error. Design Studio creates an importReport directory in the
project. Then, Design Studio uses the name of the cartridge to generate a default
file name for the Import Summary report and saves the report to the importReport
directory.

The Import Summary report lists the entities in the model that were not imported, (such
as entities that are not associated with orders) and entities that are not supported in
Design Studio (for example, test category or rule entities, even if they are associated
with orders).

Also, if you import a model that includes a task that is used in multiple orders, Design
Studio renames the task and notes in the Import Summary report the original name;
the new name; and the associated order type, source, and view name.

Note:

The Import Summary report lists all entity name changes made during
import. You may be required to edit references to the affected entity names in
Java code or XSLT files.

Chapter 3
Working with Existing OSM Models

3-6

Related Topics

Working with Existing OSM Models

About Importing Design Studio Cartridges

Working with OSM Cartridge Projects

Importing Existing OSM Models
You can import a single order type into a cartridge project, or multiple order types into
a cartridge project. After importing multiple order types into a cartridge project, you can
deploy all or a specified number of the order types to an OSM run-time environment
within the context of a single project.

Note:

Cartridge dependencies must exist in the workspace before importing a
cartridge project. For example, when importing an OSM project that has
a dependency on a Data Dictionary project, you must import the Data
Dictionary project first to avoid problem markers during the project build.

For example, if you have defined a project with metadata to support the DSL services
Add, Delete, and Modify for orders that come from two different sources (Siebel and
Oracle Communications Billing and Revenue Management, for example), you can
deploy the entire configuration to a run-time environment with a single deployment.

To import an OSM model into Design Studio:

1. From the Studio menu, select Show Design Perspective.

2. Right-click in the Solution view or Studio Projects view and select Import, then
select Import Order and Service Management Model.

The Import Order and Service Management wizard is displayed.

3. Click Browse.

An import dialog box opens.

4. Select the file to import.

5. Click OK.

Design Studio returns you to the Import Order and Service Management dialog
box.

6. Click Next.

7. Select the cartridge to import from the Source Cartridge list.

If multiple cartridges exist in the XML model, you must select which cartridge to
import.

8. In the Target Name field, edit the default project name.

The project name must be unique among project entity types. Two projects cannot
share the same name, even if they are different versions.

Chapter 3
Working with Existing OSM Models

3-7

9. In the Target Data Dictionary field, select the dictionary to which the data
elements will be added.

You can add the new data elements to a Data Dictionary that is common to all
cartridges, or to a data dictionary defined for a specific cartridge. To create a new
dictionary, enter the name of a new data dictionary in the Target Data Dictionary.

10. Click Next.

11. Select the orders to import.

Select orders in the Available column and use the arrow buttons to move them to
the Selected column.

12. Click Next.

13. Add one or multiple automation maps to the cartridge.

Click Add to navigate to and select one or multiple automation maps. Click
Remove to delete an automation map from the table.

When you configure automation plug-ins in Design Studio, the system
automatically generates an automation map. However, if you are importing
cartridges that contain custom automation plug-ins, you can include in the import
the automation maps that define the configuration for the custom plug-ins. For
each plug-in, the automation map defines whether the plug-in is associated with a
task, notification, or data change event, the class name of the plug-in, and whether
the plug-in receives information from OSM or from an external system.

Design Studio imports external receivers as a list of XML files into the
customAutomation folder, each containing one external receiver XML fragment.

See "Working with Automation Plug-Ins" for more information.

14. Click Finish.

Design Studio imports the cartridge and adds the new project to the Studio
Projects view.

Note:

If Design Studio detects entity name conflicts on import, it automatically
renames the entity in the imported cartridge. The Import Summary report
lists all entity name changes made during import. You may be required to
edit references to the affected entity names in Java code or XSLT files. See
"About Import Summary Reports" for more information.

Related Topics

About Importing Design Studio Cartridges

About Importing Cartridges Created in OSM Administrator

Creating New Cartridge Projects

Order and Service Management Project Editor

Chapter 3
Working with Existing OSM Models

3-8

Working with the Orchestration Model Project
The OracleComms_OSM_CommonDataDictionary model project enables auto-
generation of orchestration control data. Use the data elements of this model project
to model control data for order items. See "About Modeling Order Component Control
Data" for more information.

Creating the OracleComms_OSM_CommonDataDictionary Model
Project

When you open or create an orchestration entity, Design Studio prompts you to create
the data schema of the OracleComms_OSM_CommonDataDictionary model project
in your workspace.

If you choose not to create the data schema in your workspace, dismiss the prompt
and select the Do not show this prompt in the future check box. When you are
ready to create the data schema in your workspace at a later time, see "Defining OSM
Preferences" for information on re-enabling the prompt.

Working with XML Catalogs
In Design Studio, you model behaviors such as business rules that satisfy the
business requirements of order processing. The business rules are often contained
in resource files such as XQuery files, XSLT files, custom JAR files, third-party
JAR files, and XML files. There can be a large quantity of resources, and some of
those resources need to reference each other. Resources in OSM can be referenced
through URI locators in your data model.

Because a URI must be a physical location on a server, and because the location
of the resource may change depending on the run-time system to which you deploy
your cartridges, using XML Catalogs in OSM is very useful. XML Catalogs provide a
redirection from a URI to another URI. At run time, when OSM processes a URI you
specify as part of the OSM data model, OSM first attempts to resolve the URI against
the XML Catalogs you specified. Based on the mapping defined in the XML Catalogs,
OSM updates the URI to adapt to the environment by resolving the location of the URI
in your data model with the new URI you mapped for it in the XML Catalogs.

When you specify URIs for resources that will be redirected to other URIs at run time
by way of XML Catalogs, one strategy is to treat the URIs defined in your cartridge
design as logical URIs that are replaceable tokens. Using this strategy, it is useful to
have a well-defined naming convention for these URIs; for example, the URI schema
would include your organization name, project name, type of cartridge, and type of
data entity. For more information on packaging resources when using XML Catalogs,
see OSM Developer's Guide.

You can use XML Catalogs for any of the URIs you specify in the Design Studio
editors. You can specify XML Catalogs in your OSM cartridge projects as well as on
the OSM server for different purposes. For detailed information on how to use XML
Catalogs in OSM, see the discussion on XML Catalogs in OSM Developer's Guide.

Related Topics

Enabling and Disabling XML Catalogs for a Cartridge Project

Chapter 3
Working with the Orchestration Model Project

3-9

Specifying XML Catalogs for a Cartridge Project

Enabling and Disabling XML Catalogs for a Cartridge Project
If your target run-time software version is OSM 7.0.3 or later (Target Version field
is set to 7.0.3 or higher), XML Catalog support is enabled by default for all cartridge
projects and it is required to be enabled. Do not disable XML Catalog support.

If your target run-time software version is OSM 7.0.2 or earlier (Target Version field is
set to 7.0.1 or earlier), enable or disable XML Catalog support for a cartridge in your
workspace as follows:

1. From the Studio menu, select Show Design Perspective.

2. In the Studio Projects view, double-click the cartridge project entity for which you
want to enable or disable XML Catalog support.

The cartridge project opens in the Project editor.

3. Click the Cartridge Management Variables tab.

4. In the Name column, click the XML_CATALOG_SUPPORT variable.

5. In the Default Value column, do one of the following:

• To enable the XML Catalog for this cartridge, enter enable.

• To disable the XML Catalog for this cartridge, enter disable.

6. Click Save.

Note:

If your Target Version field is set to 7.0.1 or earlier, you can also enable
XML Catalog support for a cartridge by adding an empty file entitled
enableXMLCatalogSupport in the root directory that contains the cartridge
project cartridgeProject\xmlCatalogs\enableXMLCatalogSupport. If this file
is present, and you have defined the XML_CATALOG_SUPPORT cartridge
management variable, OSM uses the value you configured for the cartridge
management variable to disable XML Catalog support.

For instructions on specifying XML Catalogs for a cartridge, see "Specifying XML
Catalogs for a Cartridge Project".

For more information on how to use the XML Catalog in OSM, including how to
specify XML Catalogs on the OSM server and how to define catalog entries, see OSM
Developer's Guide.

Related Topics

Working with XML Catalogs

Specifying XML Catalogs for a Cartridge Project

Specifying XML Catalogs for a Cartridge Project
To specify XML Catalogs for a cartridge project:

Chapter 3
Working with XML Catalogs

3-10

Caution:

XML Catalogs are system-wide entities. An XML Catalog specified in one
cartridge project is used when processing requests for orders on other
cartridges. Ensure URI/URL naming conventions are established across
cartridges so that OSM resolves URIs as you require for each cartridge.

1. In the Package Explorer view in Design Studio, navigate to the
cartridgeProject\xmlCatalogs\core\ directory.

2. Copy the XML Catalog template file
cartridgeProject\xmlCatalogs\core\xmlCatalogCoreTemplate.xml into the same
directory.

Note:

You can have multiple XML Catalog files within the xmlCatalogs\core
directory if you wish to organize different sets of catalog entries by file.

3. When prompted, rename the file to any filename you want and use the suffix .xml
(for example, catalog.xml).

Note:

You must use the file extension .xml. OSM automatically searches for
files ending in .xml within the xmlCatalogs\core directory and loads any
such files as XML Catalogs.

4. Open the file and enter the XML Catalog entries you require.

You can use any standard XML Catalog entry, but the rewriteURI entry is the most
commonly used for OSM. For information on how OSM uses the rewriteURI entry,
see the discussion on rewriteURI entries in OSM Developer's Guide.

Caution:

It is important to ensure that resources are always uniquely identifiable
to a single XML Catalog entry to guarantee that the correct resource
is located. For information on how to avoid defining mappings that can
be satisfied by more than one entry, see the discussion on defining
rewriteURI entries in OSM Developer's Guide.

5. Save the file.

Related Topics

Working with XML Catalogs

Enabling and Disabling XML Catalogs for a Cartridge Project

Chapter 3
Working with XML Catalogs

3-11

Order and Service Management Project Editor
Use the Order and Service Management Project editor to configure cartridge projects.
As your required data becomes available, you can configure specifications for
packaging and deploying.

See OSM Developer's Guide for information about the Java perspective, including
information about the Package Explorer view, the resources folder, and the src folder.

To access the Project editor, click any OSM Project entity in the Studio Projects view to
display the Project editor in your workspace.

When you create a cartridge, you collect the OSM XML model, automation plug-ins,
task assignment behaviors, and resource files into a single archive file and deploy the
file to the OSM run-time environment.

When configuring cartridge projects, see the following topics:

• Project Editor Properties Tab

• Project Editor Copyright Tab

• Project Editor Dependency Tab

• Project Editor Tag Tab

• Project Editor Packaging Tab

• Project Editor Locations Tab

• Project Editor Model Variables Tab

• Project Editor Cartridge Management Variables Tab

• Project Editor Manifest Tab

Project Editor Locations Tab
Use the Project editor Locations tab to view the location and folder names of your
Java libraries and resources folders.

Project Editor Manifest Tab
Use the Project editor Manifest tab to manage entity-level dependencies in a
cartridge.

Note:

Design Studio populates the entity list based on project-level dependencies
defined in the Dependency tab. If you have not defined any project
dependencies, the entity list will be empty. See "Project Editor Dependency
Tab" for more information.

The cartridge manifest declares two types of entities:

Chapter 3
Order and Service Management Project Editor

3-12

• Exported entities are available, or visible, to other cartridges. By default, all entities
defined in the cartridge are made public for other cartridges to use. You can
remove entities that you do not want to make public.

• Referenced entities are entities that are provided by other cartridges. By default,
all referenced entities in other cartridges are read-only.

The manifest is used by the deploy and undeploy processes to resolve all required
references. If these dependencies are not resolved, the cartridge cannot be deployed
or undeployed.

Exported Entities

Field Use

Entity Type Displays a list of all possible entity types for the cartridge.
Select an entity type to display the entities in the
cartridge.

Note: Exported entity types are predefined and cannot
be removed or opened.

Entity List Displays the entities for the selected entity type. If the
cartridge is sealed, the entity list is read-only.

To exclude entities from the list, deselect the Include
all from project check box, then click Select, and then
from the selection list select only those entities that you
want to include in the solution. For example, you may not
want to make a particular manual task available to other
cartridges and would therefore exclude it.

After the list is populated, you can click Remove to
remove entities or Open to open the corresponding
editor.

Note: Excluding an entity in the Manifest tab removes
it from the validation process only; packaging is not
impacted. If the entity is referenced in the run-time
environment, it is available.

Include all from project By default, the check box is selected. The entity list is
automatically populated with every entity defined in the
cartridge.

To customize the entity list, deselect the check box, and
then click Select to select one or more entities from the
selection list.

Referenced Entities

Field Use

Entity Type Displays a list of all entity types that are referenced by
entities in this cartridge. Select an entity type to display
the referenced entities.

Note: Referenced entity types are predefined and cannot
be removed or opened.

Entity List Displays the referenced entities for the selected entity
type. The list displays in read-only mode.

Right-click an entity type and select Open to open the
corresponding editor.

Chapter 3
Order and Service Management Project Editor

3-13

Related Topics

Order and Service Management Project Editor

Chapter 3
Order and Service Management Project Editor

3-14

4
Modeling Data in OSM

Oracle Communications Order and Service Management (OSM) is a model-driven
software system. The data you model drives the behavior of your overall OSM
solution.

You model data for OSM entities, such as tasks and orders, using simple and
structured data elements from the Oracle Communications Design Studio Data
Dictionary.

When modeling data for OSM entities, see the following topics:

• About Modeling Data in OSM Cartridge Projects

• About Modeling Control Data

• About Contributing Task Data to a Cartridge Project

• About OSM Data in Model Projects

• About Modeling Data in the Order Template

• About the Order Template Context Menu

• About the Task Editor Task Data Context Menu

• Data Schema Editor OSM Tab

• Using Masks

• Defining Behaviors at the Data Schema Level

See "Modeling Data" for general information about modeling data in Design Studio.

About Modeling Data in OSM Cartridge Projects
Modeling data in OSM cartridge projects is the process of defining the order data of
your solution. Order data is data on the incoming sales order, control data used for
orchestration, and any other data used in the order.

You model data in two primary areas:

• Within the data schemas in your workspace

You define data element information in the data schemas of model projects, OSM
cartridge projects, and other Design Studio application feature cartridge projects;
for example, in the data schema of a Design Studio Activation cartridge project.

• Within OSM entities

You model the data elements represented by orders, tasks, products, order
components, and order item specifications in the OSM editors associated with
these OSM entities (by adding data elements from the data schemas).

When you model data in an OSM cartridge project, you first define data element
information within the data schemas of the projects in your workspace and then use
that data element information to model data within OSM entities.

4-1

OSM entities can use any data element defined in any data schema in the workspace,
including data schemas for projects defined outside of OSM. For example, OSM
entities can use an atomic action defined in the data schema of a Design Studio
Activation cartridge project. The data elements OSM can use are visible in the Data
Element view, which displays data schemas and entity types. You can drag data
elements from the Data Element view to OSM entities.

Data is modeled within OSM entities as follows:

• Orders

You add data elements from the data schema of projects onto the Order editor
Order Template tab. OSM uses the data you model here to drive the fulfillment,
provisioning, and system interactions of the order. The Order Template tab is the
hub of modeling data in context of the order and is the focal point for modeling
OSM solution data.

Other OSM entities contribute to data modeled on the Order Template tab of the
order. For example, the order item specification and order components contribute
data to the ControlData structured data element defined on the order.

• Tasks

You add data elements from the data schema of projects or from the Order editor
Order Template tab of orders onto the Task Data area of the Task editor. OSM
uses the data you model here to execute tasks.

• Order items

You add data elements from the data schema of projects onto the Order Item
Specification editor Order Template tab for every order item property on the order
item specification that is required for OSM orchestration. The structure you model
here is referred to as order item control data. OSM uses order item control data
to add order items into the OSM order from the customer orders that come from
the customer relationship management system; order item control data serves as
the storage area on the order for each order item property. See "About Modeling
Control Data" for more information on order item control data.

The data schema recommended for modeling order item
control data structures is the predefined data schema of the
OracleComms_OSM_CommonDataDictionary model project. The data
schema of this model project includes the base structure for
order item control data (ControlData/OrderItem). See "About the
OracleComms_OSM_CommonDataDictionary Model Project" in the Modeling
OSM Orchestration Help for information on this model project.

• Order components

Design Studio automatically adds data elements onto the Order Component
Specification editor Order Template tab. The structure Design Studio models
here is referred to as the order component control data. Order component control
data is automatically generated for an order component that is associated with an
orchestration process and associated to an orchestration fulfillment pattern that is
part of the orchestration plan. Each order component that is used in orchestration
requires order component control data. OSM uses the order component control
data for OSM orchestration; it serves as the storage area for the order component
on the order.

Design Studio automatically adds order component control data to the order
component and the order template of the order. You do not manually add
data elements to the Order Component Specification editor Order Template

Chapter 4
About Modeling Data in OSM Cartridge Projects

4-2

tab unless you do not use the OracleComms_OSM_CommonDataDictionary
model project. See "About Modeling Order Component Control Data" for more
information.

• Composite cartridge views

You add data elements from the data schema of projects or from the Order editor
Order Template tab onto the Task Data area of the Composite Cartridge view
editor. A composite cartridge view is used when you use composite cartridges to
add task data and behaviors to a solution without having to directly modify the
existing component cartridges of that solution. The task data in the composite
cartridge view is additive task data to the overall solution. OSM uses the task
data to execute tasks for function order components you add to a solution. See
"Working with Composite Cartridge Projects" for more information on composite
cartridge views.

Data structures organized in OSM editors, such as structures represented by orders,
tasks, order components, and so on, and the behaviors you apply to data elements
organized in OSM editors are not available for reuse in the workspace by other (non-
OSM) Design Studio application feature cartridge projects.

The data element information defined in the data schemas of the workspace cannot
be overridden in OSM editors. You can augment data elements after you drag them
from data schemas into OSM editors, but you cannot change them. However, you can
configure OSM-specific extensions to schema data elements by using the OSM tab of
the Data Schema editor. See "Data Schema Editor OSM Tab" for more information.

A data element is typically defined at the root level in its associated data schema. If
a data element is defined within another element in the schema, the path of the data
element in the data schema is upheld as the relative path in the editor of the OSM
entity in which the data element can be organized into any data structure. By defining
a data element at the root level in its data schema and upholding its relative path
within OSM entities, you can reuse the data element in multiple entity types without
having to duplicate it in other paths or in other data schemas.

When you add a data element from a data schema of another Design Studio
application feature cartridge project onto an OSM editor, double-clicking the data
element opens the editor in which the data element is defined. For example, if you
are in the Order Template tab of the Order editor, double-clicking a data element that
is part of a service action opens the ASAP Service Action editor, in which the data
element is defined.

Related Topics

About the Order Template Context Menu

About the Task Editor Task Data Context Menu

Design Studio Common Editor Tabs

About Modeling Control Data
Control data is the data OSM requires to perform orchestration. There are two kinds of
control data:

• Order item control data is order items from the customer order that are required in
orchestration

• Order component control data is order components that participate in orchestration

Chapter 4
About Modeling Control Data

4-3

You model order item control data when you configure your order item specification.
Design Studio models order component control data automatically for order
components that are included in the orchestration fulfillment pattern that is part of
the orchestration plan.

Control data is data located in the ControlData structure on the order. Control data
consists of data required to perform OSM orchestration. For example, when you model
order item control data for an IP services order, you include the name of the service
in the control data but exclude the port number for the connection to be provisioned.
Though the port number must be on the order for the service to be activated, it is not
included in order item control data because it is not used by the orchestration process.

Order item properties and order components are OSM entities that contribute to the
ControlData structure on the order by using the following structures in the data model:

• ControlData/OrderItem/

Order item property control data: Order items from the customer order are stored
here and included in the order.

• ControlData/Functions/

Order component control data: An order component that participates in an
orchestration plan must have control data defined in the order template of the
order.

Order component control data requires order item control data. Rather than
copying the order item data to each order component, OSM creates in the order
component control data a reference node back to the ControlData/OrderItem/
Order_Item_Property_Name structure. A reference node back to the original order
item keeps the order components updated with any new order item properties you
might add to your order item specification.

You model the control data structure for order item properties (ControlData/
OrderItem/Order_Item_Property_Name) manually in the Order Template tab of
the Order Item Specification editor. See "Modeling Order Item Control Data" for
information on modeling order item control data.

Design Studio automatically models the control data structure for order components
(ControlData/Functions/Order_Component_Name) associated with orchestration
orders on the Order Template tab of the Order Component Specification editor. See
"Modeling Order Component Control Data Automatically" for more information on how
Design Studio models the order component control data.

Data modeled in the Order Template tabs of the Order Component Specification
editor and the Order Item Specification editor contribute to the order template of the
order.

When working with composite cartridge projects, control data is deployed to your
runtime environment as part of the OSM composite cartridge. As a result, the complete
control data becomes available to the new tasks that are contributed through the
component cartridges of the composite cartridge. See "Working with Composite
Cartridge Projects" for information on creating composite cartridges.

Related Topics

About Modeling Order Component Control Data

About Modeling Order Item Control Data

Chapter 4
About Modeling Control Data

4-4

About Contributing Task Data to a Cartridge Project
You may want to contribute task data to a cartridge project without directly modifying
the modeled data within it. For example, you cannot directly modify the modeled data
in a sealed cartridge project, but you may want to add task data to the existing tasks
within it. You can contribute task data to a cartridge project without directly modifying
it by including it as a component cartridge within a composite cartridge project. See
"Working with Composite Cartridge Projects" for more information.

About OSM Data in Model Projects
Model projects are collections of data elements that can be referenced by other
projects in a workspace. The data elements you define in a model project represent
the foundational data elements of the entire data model and are product-agnostic (not
specific to any one Design Studio application feature cartridge project). Although data
elements in a model project are intended to be product-agnostic, you can configure
OSM-specific extensions to these data elements. Doing so defines OSM-specific
configuration at the root data element, which allows the configuration to be inherited
into a product-related context. OSM behaviors are an example of valid extensions
to schema data elements in a model project. OSM-specific extensions to schema
data elements are configured in the OSM tab of the Data Schema editor. See "Data
Schema Editor OSM Tab" for more information.

The main benefit of model projects is that they provide a common and centralized
repository of data models across Design Studio application feature cartridge projects,
which enables consistent data typing in message interactions across your Operational
Support Systems (OSS) environment.

When you right-click a model project and select Select Data Structure Definition,
you either select an existing data structure definition or create a new data structure
definition. After you create a data structure definition entity, you open it and define its
attributes. Data structure definitions allow you to model complex data types in OSM.
Complex data types, which can contain child elements, allow for the generic and
reusable definition of both abstract (extendable) and concrete (final) data structures.
See "Defining Order Data" for information about adding data structure definitions to an
order.

About Modeling Data in the Order Template
When you model data in the Order Template tab of the Order editor, you add from
the Data Dictionary data elements, including data types such as atomic actions, and
organize them in a way that makes sense in the context of the order.

When you drag a data element from the Data Element view onto a data element in the
order template, all selected nodes of that data element appear in the order template
underneath the data element that was dropped. If a child node of a data element is
selected in the Data Element view, the child node and all its parent nodes up to the
root of the data schema are automatically included.

When you right-click in the order template and select Select from Dictionary, the
Select Data Elements dialog box is displayed. The Select Data Elements dialog
box shows all data elements available in the workspace, unlike the Data Element
view, which shows only data elements and entity types based on the filters you set

Chapter 4
About Contributing Task Data to a Cartridge Project

4-5

for the view. For example, based on the dependencies you defined in the Project
editor Dependencies tab. If you add a data element from the Select Data Elements
dialog box onto the order template from a project that is not defined as a dependency,
Design Studio creates a problem marker. See "Managing Project Dependencies" for
information on defining dependencies for a project.

The order template context menu contains actions specific to simple and structured
data elements defined on the order. To access these actions, right-click in the
Order Template area of the Order editor Order Template tab. See "About the Order
Template Context Menu" for information about these actions.

About the Order Template Context Menu
The Order Template context menu contains actions specific to simple and structured
data elements defined on the order. To access these actions, right-click in the Order
Template area of the Order editor Order Template tab. The actions specific to the
Order Template are listed below. For information about the standard data modeling
context menu options, see "Modeling Data Using Context Menus."

Field Use

Select Data Structure Definition Select to add an existing data structure definition or create
a new data structure definition. Data structure definitions
allow you to model complex data types in OSM.

If no data structure definitions are displayed in the
Matching items area, you must define the dependency of
the data structure definition to the model project before you
add it to the order template.

Disable Merge Mode/ Enable
Merge Mode

Select Disable Merge Mode when adding a data element
from the Data Dictionary onto an order so that Design
Studio does not merge the data element with a data
element that is identical, and instead, adds the data
element as a child of the identical data element (creating
a recursive structure).

This setting stays in effect for all OSM editors in which data
elements are added until you change it.

Add To Tasks/Views... Select to add one or more data elements from the order
template to one or more tasks or one or more views in a
single operation.

Use this option for task inheritance and view inheritance of
data elements defined in an order.

Important: Ensure source control is set up. You cannot
undo this action in a single operation. You must individually
remove data elements from each task or view after they are
added.

Set Significance Select to set significance on multiple data elements in a
single operation.

Copy Mnemonic Path Select to copy the path of the selected entity to the
clipboard. This path is then available for you to paste.

If the selected OSM entity has derived complex types, you
can copy the path to the derived type.

Chapter 4
About the Order Template Context Menu

4-6

Field Use

Open In... Select to open the OSM entity that contributes an inherited
data element. This option is available when you select
data elements that are inherited from different OSM entities
(these data elements are grayed out).

This option provides quick access from the order
template tree of the order to the order template tree
of the base entity where the inherited data element is
defined. For example, in orchestration orders, the order
template can have data elements (such as ControlData)
that are contributed from multiple OSM entities (parent
orders, order components (fulfillment functions), order item
specifications, and so on. Using this option, you find out
which entities the data element is inherited from and can
quickly open the order template of those entities.

About the Task Editor Task Data Context Menu
The Task Data context menu contains actions specific to simple and structured data
elements defined on the task. To access these actions, right-click in the Task Data
area of the Task editor Task Data tab. The actions specific to the Task editor are listed
below. For information about the standard data modeling context menu options, see
"Modeling Data Using Context Menus."

Field Use

Select Data Structure
Definition

Select to add a data structure definition to the task. You can select
an existing data structure definition, or create a new data structure
definition. Data structure definitions allow you to model complex
data types in OSM.

If no data structure definitions are displayed in the Matching
items area, you must define the dependency of the data structure
definition to the model project before you add it to the task.

Disable Merge Mode/
Enable Merge Mode

Select Disable Merge Mode when adding a data element from
the Data Dictionary or order template onto a task so that Design
Studio does not merge the data element with a data element that
is identical, and instead, adds the data element as a child of the
identical data element (creating a recursive structure).

This setting stays in effect for all OSM editors in which data
elements are added until you change it.

Set Read Only Select to set multiple data elements on the task as read only in a
single operation.

You often must make task data elements read only. For example,
in a manual task, you do not want users to update certain data
values such as the account ID.

Set Significance Select to set significance on one or more data elements in a
single operation.

Open In... Select to open the editor from which the data element is inherited.

This option applies when you select an inherited data element that
is contributed through a solution or base order.

Chapter 4
About the Task Editor Task Data Context Menu

4-7

Data Schema Editor OSM Tab
Use the Data Schema editor OSM tab to define values for data elements that are
associated with your OSM runtime system. See "Data Schema Editor" for information
on the other tabs in the Data Schema editor.

Field Use

Significant Element Specify whether the OSM server should consider the
corresponding element during amendment processing.
During amendment processing, the OSM system
compensates only for task instances that use significant
data elements as inputs. If an element is not specified
as significant, the system updates the order only with
the changed data (no compensation is required). Data
significance is supported at the Data Dictionary (data
schema), order template, and task-view levels.

Read Only Specify to indicate that the data element is read only.
This option applies only to tasks.

Note: If you are defining an attribute of a data structure
definition element, do not use the Read Only check box
to define the element as read only. Instead, deselect
this check box and use the Behavior field to define a
ReadOnly behavior for the element.

XML Type Specify to indicate that the data structure definition is
an XML data type. Structures defined as XML data
types in the data structure definition can contain XML
documents.

Maximum Numeric Digits Enter the number of digits you want to allow in the OSM
user interface for the corresponding element. This field
is not available for edit if you define an OSM element
mask for the corresponding field.

For data elements that inherit data from a base type,
this field is read-only.

OSM Element Mask Specify the string of characters used to define the
format of the data in the field of the Task web client.
When you create an OSM element mask, you can
restrict user input for a field to a specific format. Use
a mandatory mask character to create a field where a
user must enter information in the appropriate format to
complete the task.

For data elements that inherit data from a base type,
this field is read-only.

See "Using Masks" for more information.

Behaviors Right-click to define behaviors for the corresponding
data element. When you define behaviors at the Data
Dictionary (data schema) level, the behavior can apply
to all orders and tasks in which the data element
appears.

Behaviors inherited from a base type are read-only.

See "Defining Behaviors at the Data Schema Level" for
more information.

Chapter 4
Data Schema Editor OSM Tab

4-8

Related Topics

Using Masks

Defining Behaviors at the Data Schema Level

Design Studio Common Editor Tabs

Using Masks
You use masks in Design Studio to restrict Task web client user input for a field to a
specific format. When using masks, refer to the following topics:

• About Masks

• Defining Masks for Task Web Client Fields

About Masks
Masks enable you to restrict Task web client user input for a field to a specific format.
Using the Data Dictionary editor OSM tab, you can specify the strings of characters
used to define the format of the data in the field and use a mandatory mask character
to create a field where a user must enter information in the appropriate format to
complete the task. See the "Data Schema Editor OSM Tab" for more information.

Use the following mask characters for text fields:

Mask Character Description

Mandatory digit

9 Optional digit

A Mandatory alphanumeric

a Optional alphanumeric

? Mandatory alpha

z Optional alpha

Mask characters serve as placeholders in Task web client fields. All non-mask
characters appear in text type fields; you cannot edit them. For example, if you enter
TEXT in the OSM Element Mask field, it appears in the Task web client field as TEXT.
To use mask characters as literals, you must enter "\" in front of the character.

Use the following mask characters for numeric fields:

Mask Character Description

9 Optional digit

0 Use to the right of the decimal. Displays 0 if no value
is entered.

. Decimal placeholder

, Numeric placeholder

Chapter 4
Using Masks

4-9

Note:

You must include at least one numeric mask character for the field to be
valid. You cannot use quotation marks (" ") for numeric masks.

The following table illustrates how numeric mask characters defined in the Data
Schema editor would affect data entered into the Task web client:

Mask Defined in Data
Dictionary

Entered into the Web Client Displayed in Web Client

9,999 1234 1,234

99.99 34.12345 34.12

99.00 12 12.00

99.00 34.1256 34.13

Related Topics

Defining Masks for Task Web Client Fields

Data Schema Editor

Defining Masks for Task Web Client Fields
Use masks in Design Studio to restrict Task web client user input for a field to a
specific format.

To define a mask for a Task web client field:

1. From the Studio menu, select Show Design Perspective.

2. Click the Data Element tab.

3. Select the data schema entity that contains the field for which you want to define
the mask.

The entity opens in the Data Schema editor.

4. In the Dictionary area, select the data node for which you want to define the mask.

5. Click the Data Schema editor OSM tab.

See "Data Schema Editor OSM Tab" for more information about the fields on this
tab.

6. In the OSM Element Mask field, specify the string of characters used to define the
format of the data in the Task web client field.

Use a mandatory mask character to create a field where a user must enter
information in the appropriate format to complete the task. See "About Masks"
for more information.For elements that inherit data from a base type, this field is
read-only. See "Leveraging Existing Data Information" for more information.

7. Click Save.

Chapter 4
Using Masks

4-10

Related Topics

Data Schema Editor

Modeling Data

Defining Behaviors at the Data Schema Level
On the "Data Schema Editor OSM Tab", you can define behaviors for data, which
enable you to extend the functionality and appearance of order data. Each behavior
type performs an action; for example, calculating or validating data or displaying fields
in read-only mode.

To define behaviors for data:

1. Double-click an element from the Data Element view.

The details for the selected element are displayed in the Data Schema editor.

2. Click the OSM tab.

3. Select the data element for which you will define the behavior.

The Add Behavior dialog box is displayed.

4. In the Behaviors area, right-click and select Add Behavior, and then select the
behavior type.

The newly created behavior appears in the Behaviors list.

5. Select the behavior from the list and click Properties.

The Properties tab opens with the set of properties that you can define for this
behavior type.

See "Working with Behaviors" for information on how to set behavior properties.

Related Topics

Data Schema Editor OSM Tab

Data Schema Editor

Modeling Data

Chapter 4
Defining Behaviors at the Data Schema Level

4-11

5
Working with Roles

When assigning permissions, you can permit specific roles access to functions in
the Oracle Communications Order and Service Management (OSM) Task web client.
When modeling roles, see the following topics:

• Creating New Roles

• Adding Roles to Multiple Tasks

• Role Editor Role Tab

Creating New Roles
You create roles to permit specific user groups access to functions in the Task web
client.

To create a role:

1. From the Studio menu, select New, select Order and Service Management,
select Order Management, then select Role.

The Role wizard is displayed.

2. In the Project field, select the OSM project in which to save this entity.

3. In the Name field, enter a name for the role.

The name must be unique among the role entities in the same namespace.

4. (Optional) Select a location for the role.

By default, Design Studio saves the role to your default workspace location. You
can enter a folder name in the Folder field or select a location different from the
default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

5. Click Finish.

Design Studio adds the role to the project in the Studio Projects view.

Related Topics

Role Editor Role Tab

Adding Roles to Multiple Tasks
When you create a task, you assign a role to it. If you create new roles that require
access privileges to existing tasks, you can add the roles to multiple tasks in a single
operation.

5-1

When you add roles to tasks in a single operation, roles are added with all task
permissions granted. If you add a role to a task where the same role is already added,
any task permissions that are not granted to the existing role remain not granted.

To add roles to multiple tasks in a single operation:

Note:

Ensure source control is set up. This action cannot be undone in a single
operation.

1. In the Studio Projects view, select the roles to add to existing tasks.

2. Right-click on the selected roles and select Add Role(s) to Tasks.

The Select Tasks dialog box is displayed.

3. Select the tasks to which you are adding the roles.

4. Click OK.

The roles are added to all tasks that were selected, and the roles are added with
all task permissions granted (Do, Redo, and Undo).

5. For roles that should not have all task permissions granted, open each task to
which that role was added and set task permissions as needed.

To remove a role from a task, use the Permission tab of the Task editor.

Related Topics

Creating New Roles

Role Editor Role Tab

Role Editor Role Tab
You use the Role editor to assign permissions to role entities. To access the Role
editor, double-click any role entity in the Studio Projects view. The Role editor enables
you to modify the name that displays for the role in the Task web client and to assign
to the corresponding role any combination of the following permissions.

Field Use

Create Versioned Orders Enables users to create orders for different versions of
cartridges. If not granted this permission, users can create
orders only for the default version of the cartridge.

Exception Processing Enables users to alter the flow of a process by applying
exception statuses at any time throughout the process.

Online Reports Enables users to view summarized reports on all orders and
tasks on the system.

Order Priority Modification Enables users to modify the priority of a task in an order.

Reference Number
Modification

Enables users to modify the reference number of an order.

Search View Enables users to access the order Query function.

Chapter 5
Role Editor Role Tab

5-2

Field Use

Task Assignment Enables users to assign tasks to others.

Worklist Viewer Enables users to access the Worklist function.

Related Topics

Creating New Roles

Chapter 5
Role Editor Role Tab

5-3

6
Working with Processes

An Oracle Communications Order and Service Management (OSM) process is a
representation of the activities, or tasks, required to offer a specific service to a
customer. The process representation includes all of the work that must be performed
to complete the order. Rules that you predefine in Design Studio determine which
process an incoming order uses. OSM may include an unlimited number of processes.

When working with processes, see the following topics:

• About the Process Editor

• Working with Process Editor Menu Controls

• Working with the Process Editor Palette

• Creating New Processes

• Modifying Process Editor Start Properties

• Designing Tasks and Activities

• Designing Timer Delays and Event Delays

• Designing Subprocesses

• Designing Workstream Processes

• Designing Process Sequence and Flow

• Designing Exception Paths

• Process Editor Start Properties General Tab

About the Process Editor
The Process editor is a canvas where you can configure new services quickly and
with minimal data; designing with the Process editor is analogous to capturing your
workflow requirements on a white board. Designers using the Process editor to model
new services do not need to understand the OSM technology behind the processes
and integrations. As a designer begins sketching out the initial processes and tasks
in the Process editor, Design Studio simultaneously builds in the background the
corresponding artifacts necessary for deployment to the OSM system.

You can use the diagrammed representations that you design in the Process editor
to illuminate patterns and identify inefficiencies in processes. Process editor shapes,
colors, and presentation can communicate information about the flows and processes.

Related Topics

Working with Processes

6-1

Working with Process Editor Menu Controls
The Process editor context menu provides access to specific actions that enable
creation of OSM processes. Right-click in the Process editor to access the Process
editor context menu.

When working with Process editor menu controls, see the following topics:

• About Task Controls

• About Zoom Controls

• About Layout Controls

• About Print Controls

• About Selection Controls

About Task Controls
Use the following context menu options to control the Process editor task-related
features:

Field Use

Rename Select to modify the display name that represents the entity in
the Process editor.

Note: You can also press the F2 key to rename an entity in the
Process editor.

Assign Order Select to associate the task with an order.

Clear Activity Reference Select to remove from the task any existing entity associations.
The task activity remains in the Process editor if you clear the
reference or if you delete the referenced entity.

Convert to Select to convert the task to a different task type.

Important: When converting from one type of task to another,
the system displays a prompt if the potential for data loss exists
(for example, when converting from an automated task to a
manual task). Consider your task conversions carefully before
implementing.

Related Topics

Working with Processes

Working with Process Editor Menu Controls

About Zoom Controls
The following zoom tools are available in the Process editor context menu and
Process editor toolbar.

Chapter 6
Working with Process Editor Menu Controls

6-2

Note:

In addition to the menu controls, you can press the Control key and
simultaneously rotate your mouse wheel to zoom in and out of a graphic.

Field Use

Zoom In, Zoom Out Select to magnify and reduce the size of a graphic,
respectively.

Reset Zoom Select to reset the graphic to the original size.

Fit to Contents Select to increase or decrease the size of a graphic so
that it fills as much of the editor as possible.

Zoom Box Select to magnify a section of the Process editor. Drag
a selection rectangle with the Zoom Box tool, and that
part of the image will be magnified to fill the editor. If the
Selection tool is active, you can activate the Zoom Box
tool by pressing the Control and shift keys simultaneously
and dragging a selection rectangle in the Process editor
to magnify that area.

Related Topics

Working with Processes

Working with Process Editor Menu Controls

About Layout Controls
Use the following context menu options to control the Process editor layout features:

Field Use

Layout All Nodes Select to automatically arrange all nodes in a standard flow
chart format.

Layout Selected Nodes Select to automatically arrange a selection of the process in
a standard flow chart format. Use a drag selection to activate
multiple tasks for selection.

Related Topics

Working with Processes

Working with Process Editor Menu Controls

About Print Controls
Use the following context menu options to control the Process editor printing features:

Chapter 6
Working with Process Editor Menu Controls

6-3

Field Use

Print Select to print a diagram or a selection of the diagram.

Note: The first time that you invoke a print function, the system
queries the current status of the installed printer, which may
cause an initial delay.

Print Preview Select to display each page to be printed and their
corresponding page margins. On the Print Preview page, click
the Setup button to access the Page Setup page, where you
can scale the selection to fit a specific number of pages, and
modify the layouts, margins, header and footers, and page
order. You can access the page setup properties from Process
editor context menu by selecting Page Setup.

Print Diagram to Image
File

Select to save the image in JPG or PNG format.

Page Setup Select to scale the selection to fit a specific number of pages,
and modify the layouts, margins, header and footers, and page
order.

Set Print Area Select to print a selection of the diagram. Using the Selection
tool, click and drag over the area you want included in the print.

Clear Print Area Select to clear the selected print area and dismiss the selection.

Related Topics

Working with Processes

Working with Process Editor Menu Controls

About Selection Controls
Use the following context menu options to control the Process editor selection
features:

Field Use

Make Select Active Select to enable the Selection tool.The Selection tool enables
you to make an object active. You can also press the Esc key to
activate the Selection tool when other tools in the Tool drawer
are active.

Pan Select to reposition the contents in the process editor. Click the
Pan icon to make the tool active, then drag the graphic into the
desired position. If the Selection tool is active, you can activate
the Pan tool by pressing the Control key and clicking the left
mouse button.

Note: The Pan tool remains active for a single use only. When
you release the left mouse button, the Pan tool is deactivated
and the Selection tool becomes active. If you want the Pan tool
to remain active for multiple instances, activate the Sticky Mode
tool.

Related Topics

Working with Processes

Chapter 6
Working with Process Editor Menu Controls

6-4

Working with Process Editor Menu Controls

Working with the Process Editor Palette
In addition to the actions available on the Eclipse Workbench toolbar (for example,
New, Save, Search, External Tools), the Design Studio for OSM Process editor palette
provides access to specific actions that enable modeling of OSM processes. The
palette appears as a collapsible sidebar in the Process editor. If you prefer to access
the palette tools from a view, you can include the Palette view in your perspective.

The Process editor palette contains four drawers. Click a drawer to expand or collapse
the drawer. Click the Pin Open button to pin the drawer into the open position. The
tools in the Process editor palette drawers are grouped by type:

• Tools

• Activities

• Flows

• Exception Paths

Related Topics

Working with Processes

About the Process Editor Tool Drawer

About the Process Editor Activities Drawer

About the Process Editor Flow Drawer

About the Process Editor Exception Paths Drawer

About the Process Editor Tool Drawer
The Tool drawer contains tools for selecting and positioning activities within the
Process editor.

Field Use

Selection Tool Select existing components. Click the Selection tool, then
click any activity in the Process editor to make that activity
active. Press the Esc key to activate the Selection tool
when other tools in the Tool drawer are active. This tool is
the default cursor tool.

Pan Tool Select to reposition the contents in the Process editor. To
make the Pan tool active, click the Pan Tool icon in the
Process editor tools palette, then drag the graphic into
the desired position. If the Selection tool is active, you
can activate the Pan tool by pressing the control key and
clicking the left mouse button.

Chapter 6
Working with the Process Editor Palette

6-5

Field Use

Zoom Tool Select to magnify a section of the Process editor. Drag a
selection rectangle with the Zoom tool, and that part of the
image will be magnified to fill the editor. If the Selection
tool is active, you can activate the Zoom tool by pressing
the control key and the shift key simultaneously. To reset
the graphic to the original size, right-click in the Process
editor and select Reset Zoom.

Additionally, you can press the Control key and use a
mouse wheel to zoom in and out of a graphic.

Note: You can magnify and reduce the size of a graphic by
using the Zoom In and Zoom Out buttons in the Process
editor toolbar. Click the Zoom In or Zoom Out button to
increase or decrease the size of the graphic.

Magnify Tool Use to magnify the area of the diagram positioned under
the pointer. Press the Alt key and simultaneously click and
hold the left mouse button to activate the Magnify tool.
Release the mouse button and Alt key to deactivate the
tool. While this tool does not appear in the tools palette, it
is available for use in the Process editor and accessible by
the key stroke shortcut noted above.

Related Topics

Working with Processes

Working with the Process Editor Palette

About the Process Editor Activities Drawer
An activity is a unit of work that the system performs. Activity types include processes,
subprocesses, and tasks.

Field Use

Task A task is an activity that cannot be broken into a finer level of
detail. To place a task activity within the Process editor, click
Task, then click inside of the Process editor. The Create Task
wizard appears, where you can define attributes for a new
task or select an existing task.

Subprocess A subprocess is an activity that is included within a process.
Subprocesses can be broken into a finer level of detail (a
process) through a set of activities. To place a subprocess
activity in the Process editor, click the Subprocess button,
then click inside of the Process editor. Right-clicking the
subprocess activity lets you edit the display name and assign
an order.

Chapter 6
Working with the Process Editor Palette

6-6

Field Use

Rule Rules are tasks that evaluate data to determine if a specified
condition exists. Rule tasks are evaluated by the system and
have completion statuses of true or false.

Note: Before you create a rule task, you must first define the
data elements in the Order editor Order Templates tab.

To place a rule activity in the Process editor, click the Rule
button, then click inside of the Process editor. Right-clicking
the rule activity lets you edit the display name, assign an
order, and create an activity reference.

Timer Delay A timer delay pauses an operation until a specified order rule
evaluates as true.

Timer delays and event delays work identically, but differ in
how the rule evaluation is triggered:

• A timer delay is evaluated at specified time intervals.
• An event delay is evaluated only when the data

referenced in the rule changes.
To place a timer delay activity in the Process editor, click the
Timer Delay button, then click inside of the Process editor.
Right-clicking the timer delay activity lets you edit the display
name, assign an order, or create an activity reference.

By default, timer delays use the null_rule. Oracle
recommends using a custom order rule instead. See
"Designing Timer Delays" for more information.

Note: The frequency at which the OSM server evaluates a
delay rule is determined by your OSM server configuration.
See "Installing OSM in GUI Mode" in OSM Installation Guide
for more information.

Event Delay An event delay pauses an operation until a specified order
rule evaluates as true.

Timer delays and event delays work identically, but differ in
how the rule evaluation is triggered:

• A timer delay is evaluated at specified time intervals.
• An event delay is evaluated only when the data

referenced in the rule changes.
To place an event delay activity in the Process editor, click
the Event Delay button, then click inside of the Process
editor. Right-clicking the event delay activity lets you edit the
display name, assign an order, or create an activity reference.

See "Designing Event Delays" for more information about
event delays.

Join Enables you to combine a set of flows into a single flow. The
unified flow can join based on all transitions completing or
any one transition completing.

To place a join activity in the Process editor, click the Join
button, then click inside of the Process editor. Right-clicking
the join activity lets you edit the display name, assign an
order, or create an activity reference.

Chapter 6
Working with the Process Editor Palette

6-7

Field Use

End An event is an occurrence during the course of a business
process. Events affect the flow of the process and usually
have a cause (trigger) or an impact (result). The end event
indicates where a process will end.

To place an end event in the Process editor, click the End
button, then click inside of the Process editor. Right-clicking
the end event lets you edit the display name, assign an order,
or create an activity reference.

Redirect A redirect activity describes a mechanism used to redirect an
operation to a different process.

To place a redirect activity in the Process editor, click the
Redirect button, then click inside of the Process editor.
Right-clicking the redirect activity lets you edit the display
name, assign an order, or create an activity reference.

Related Topics

Working with Processes

Working with the Process Editor Palette

About the Process Editor Flow Drawer
Flows describe how tasks are completed and determine the order of tasks in the
process. To describe the flow between any two activities in the Process editor, click the
appropriate flow button in the Process editor palette, then click the source activity in
the Process editor. A dynamic flow line appears, enabling you to connect the source
activity to any other activity in the Process editor. Click a destination activity to create
the directional flow.

You can use the following options to describe the flow within a process. Each of these
flow options describes a different transition status:

Field Use

Flow Refers to the flow that originates from a start event and
continues through activities via alternative and parallel paths
until it ends at an end event.

True Flow Denotes that the activity executed and completed with a
result that allows the process to continue to the next activity
or end.

False Flow Denotes that the activity executed and completed with a
result that prevents the process from continuing to the next
activity.

Next Flow Denotes advancement to the next activity.

Back Flow Denotes a return to the previous activity.

Finish Flow Denotes the completion of an operation.

Cancel Flow Denotes the cancellation of an operation.

Success Flow Denotes that an operation completed successfully.

Failure Flow Denotes that an operation did not complete successfully.

Chapter 6
Working with the Process Editor Palette

6-8

Note:

Flows are represented in the Process editor by transition arrowheads. When
the Mandatory Check option for a corresponding flow is not enabled, the flow
is represented as a hollow arrowhead. When Mandatory Check is enabled,
the flow is represented as a solid black arrowhead. To ensure that the
system verifies that mandatory fields are present when a task completes,
enable the Mandatory Check option for the corresponding flow in the
Properties view. To access the Properties view, right-click the corresponding
flow and select Show Properties, or see "Process Editor Flow Properties
General Tab" for more information.

Related Topics

Working with Processes

Working with the Process Editor Palette

About the Process Editor Exception Paths Drawer
Exception paths are used in conjunction with redirect and end activities to define
process exceptions. Process exceptions let you alter the normal process flow from
anywhere within a process (or subprocess) at any time during the process execution.
You can also model an exception with role restrictions, thus allowing only selected
roles to throw the exception.

See "Designing Exception Paths" for more information about exception paths.

Related Topics

Working with Processes

Working with the Process Editor Palette

Creating New Processes
You create processes to represent the activities required to offer a specific service to a
customer. The process representation includes all of the work that must be performed
to complete the order.

To create a new process entity:

1. From the Studio menu, select New, select Order and Service Management,
select Order Management, then select Process.

2. In the Project field, select the OSM project to which to add the process.

3. In the Order field, associate the process to an order.

If no order exists (the field is blank), you can create the process entity and then
later create an order to associate with the process.

4. In the Name field, enter a name for the process.

Ensure that the process name is unique among the process entity types. Two
processes cannot share the same name.

Chapter 6
Creating New Processes

6-9

5. (Optional) Select a location for the process.

By default, Design Studio saves the process to your default workspace location.
You can enter a folder name in the Folder field, or select a location different from
the system-provided default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

6. Click Finish.

Design Studio displays the process entity under the selected project in the Studio
Projects view.

Related Topics

Working with Processes

Modifying Process Editor Start Properties
You can define properties at the process level, including the expected duration of the
process, the reference name, and whether it is a workstream process.

To modify Process editor start properties:

1. In the Process editor, right-click the Start node and select Show Properties.

The Properties view opens for the process.

2. For each property, click inside the Value field.

Design Studio displays a list of values for the corresponding property. See
"Process Editor Start Properties General Tab" for more information about the fields
and values.

3. Select the desired value.

4. Click Save.

Note:

You can double-click the Start entity in the Process editor to open the
associated order in the Order editor.

Related Topics

Working with Processes

Designing Workstream Processes

Working with Orders

Chapter 6
Modifying Process Editor Start Properties

6-10

Process Editor Start Properties General Tab
Use the Process Editor Start Properties General tab to define properties at the process
level, including the expected duration of the process, the reference name, and whether
it is a workstream process.

Field Use

Duration Define the expected duration of the process in weeks, days,
hours, minutes, and seconds.

Process History Select True if you want this process to appear in the Process
History - Summary Table window in the Task web client. If you
do not want this process to appear in the Process History -
Summary Table window in the Task web client, select False.

Reference Displays the order with which this process is associated. To
change the association, click the Select button to access a list
of orders.

Workstream Select True to define the process as a workstream process. See
"Designing Workstream Processes" for more information.

X, Y coordinates Indicates the present X and Y pixel coordinates for the Start
entity.

Related Topics

Working with Processes

Modifying Process Editor Start Properties

Designing Tasks and Activities
A task is one step in a process. You design process flows with tasks, subprocesses,
rules, or other process information. There are multiple methods for including new tasks
and activities into a Process editor design model.

To add tasks to a process:

1. From the Process editor palette, select Task from the Activities drawer.

2. Click inside the Process editor.

The Create Task wizard is displayed.

3. Select the task to add to the process.

You can create a new task or select an existing task.

To create and add a new task to the process, select Create a New Task. See
"Creating New Tasks" for more information.

To select an existing task to add to the process

a. Select Select an existing Task.

b. Click Select.

The Task Selection dialog box is displayed. To view all available tasks for all
projects, enter an asterisk (*) into the Select an item to open field.

Chapter 6
Designing Tasks and Activities

6-11

To filter for specific tasks, type any character or string of characters contained
in the task name to display only the tasks containing those characters.

c. Select the desired task and click OK.

The name of the selected task is displayed in the Task field.

4. Click Finish.

The new task appears in the Process editor and under the selected project in the
Studio Projects view.

5. (Optional) Drag existing tasks from the Studio Projects view into your process
design.

When you drag existing tasks from the Studio Projects view onto the Process
editor, the system copies to the new process the associated data defined for the
existing task.

6. (Optional) Copy existing tasks from a different process design model.

To use an existing task or set of tasks from a different process design model, use
the Select tool in the Process editor palette to select the tasks you want to use,
copy those tasks (select Edit, Copy), then paste the tasks into the new process
design model. The system copies to the new process the associated data defined
for the existing task.

7. Click Save.

To include other activity types in a process:

1. From the Process editor palette, select an activity from the Activities drawer.

2. Click inside the Process editor to place the object.

3. Right-click on the activity.

The context menu is displayed. You can edit the display name, assign an order to
the activity, and create or clear an activity reference.

4. (Optional) Double-click subprocess entities to open them in a separate Process
editor tab.

In the new tab, edit the display name and model the tasks, activities, and flows
associated with the subprocess.

5. Repeat these steps as appropriate.

6. Click Save.

Related Topics

Designing Subprocesses

Working with Process Editor Menu Controls

Working with the Process Editor Palette

Working with Processes

Working with Tasks

Chapter 6
Designing Tasks and Activities

6-12

Process Editor Activities Properties General Tab
Use the Process editor Properties view General tab to define values for the Activities
drawer entities, including tasks, rules, delays, and join entities.

See "Designing Subprocesses" for information about subprocess properties. See
"Designing Exception Paths" for more information about the redirect entity.

Field Use

Compensation Appears for rule entity properties only.

Define how the OSM run-time environment evaluates the
corresponding entity during compensation. Select Redo if the
OSM server should undo the original operation and re-evaluate
it. Select Do nothing if you do not want to OSM server to re-
evaluate the entity operation.

Condition Appears for delay and rule entity properties only.

Select the predefined rule which must evaluate to true for the
rule or delay entity to transition. For timer delay entities, Oracle
recommends selecting a custom order rule rather than using the
default null_rule.

See "Defining Order Rules" for more information about order
rules.

Description (Optional) Enter a description or the intended use for the
corresponding task.

Display Name Enter the name of the task that represents how an entity
appears in the Task web client and throughout the Design Studio
editors.

Join Type Select All to have the task begin when all transitions flowing to
the task have completed or select Any to have the task begin
when any one transition flowing to the task has completed.
Selecting Any will create one instance of the task for each
incoming transition.

Process History Select True if you want this task to appear in the Process History
- Summary Table window in the Task web client. Otherwise,
select False.

Reference Displays the task associated with the selected task entity. To
change the association, click the corresponding ellipsis button to
access a list of Tasks.

X, Y coordinates Indicates the present X and Y pixel coordinates for the task
entity.

Related Topics

Working with Processes

Modifying Process Editor Start Properties

Process Editor Task Properties Events Tab
Use the Process Editor Task Properties view Events tab to create event notifications
for a single task instance in a specific process that only triggers when the task reaches
a specific state or status and (optionally) if a specific rule evaluates to true. Use

Chapter 6
Designing Tasks and Activities

6-13

the Details sub-tab to choose the task and transitional events, specify the rule that
triggers the event, set the priority level, enable or disable the event, and specify
whether to send the notification by email. Use the Automation sub-tab to create
automation plug-ins to perform the work of the notification.

See "Properties Events Detail Tab" for more information about the fields on the Detail
sub-tab. See "Creating Process-specific Task Event Notifications" for information about
creating event notifications at the Process editor level.

Related Topics

Working with Event Notifications

Configuring Automation Plug-In Properties

Designing Timer Delays and Event Delays
Timer delays and event delays pause an operation until an order rule evaluates
as true. Timer delays and event delays work identically, but the timing for the rule
evaluation differs as follows:

• The order rule on a timer delay is evaluated at specified time intervals. The
frequency at which the OSM server evaluates the timer delay rule is determined by
your OSM server configuration. See OSM Installation Guide for more information.

• The order rule on an event delay is evaluated only when the data referenced in the
rule changes.

Note:

Compensation ignores timer delays and event delays when undoing and
redoing the tasks in a process.

See "About the Process Editor Activities Drawer" for information about adding timer
delays and event delays to a process.

Designing Timer Delays
By default, timer delays use the null_rule. To use OSM resources efficiently and
minimize database table entries, Oracle recommends that you define a custom order
rule and apply it to the timer delay. By applying an order rule to the timer delay, you
avoid creating a separate automated task to evaluate the rule.

See "Defining Order Rules" and "Applying Order Rules to Timer Delays" for more
information.

Applying Order Rules to Timer Delays
To apply an order rule to a timer delay:

1. In the Process editor, right-click the timer delay.

2. Select Show Properties.

Chapter 6
Designing Timer Delays and Event Delays

6-14

The Properties view for the timer delay opens.

3. Select the Condition property and click inside the Value field.

4. Select a custom order rule for the timer delay.

5. Click Save.

Designing Event Delays
Because event delays can only detect data changes that happen after the event delay
starts, you must model your cartridges so that the event delay starts before the task or
process that triggers the data change.

For example, imagine you have a cartridge project with two parallel processes.
Process A includes an event delay that pauses until Process B updates some order
data. If you model the project so that Process A reaches the event delay before
Process B begins, when Process B updates the data, the event delay detects the data
change, evaluates the order rule, and resumes Process A if the rule evaluates as true.

However, if you model the project so that Process B updates the data before Process
A reaches the event delay, the event delay does not detect the data change, does not
evaluate the order rule, and continues to delay Process A indefinitely.

Designing Subprocesses
A subprocess is a type of task that represents a previously defined process. You can
reuse existing processes by dragging them onto subprocess entities in the Process
editor. The process associated with the subprocess task is triggered by the evaluation
of a rule. You can use a subprocess task within a process or it can be executed
outside the process, as another process on its own.

To design a subprocesses:

1. From the Studio Projects view, drag one or multiple existing processes onto the
subprocess entity in the Process editor.

2. Right-click the subprocess and select Assign Order.

The Order Selection dialog box is displayed.

3. Select the order type to associate with the subprocess.

4. Click OK.

5. Right-click the subprocess entity and select Show Properties.

6. In the Properties view General tab, define the basic information about the
subprocess.

For example, you can define subprocess description and display name. See
"Subprocess Properties General Tab " for more information.

7. In the Properties view Process tab, associate the subprocesses to the rules that
trigger their execution.

You define process and rule combinations that determine which process the
system initiates when a rule evaluates to True. The system evaluates each rule
in the order that you specify. When a rule evaluates to True, the system runs the
corresponding process and ignores the remaining processes. See "Subprocess
Properties Process Tab " for more information.

Chapter 6
Designing Subprocesses

6-15

8. In the Properties view Exception Map tab, define how the subprocess task
handles process exceptions.

For example, you can map subprocess exceptions to the completion statuses of
the subprocess task, or to exceptions on the parent process. See "Subprocess
Properties Exception Map Tab " for more information.

9. Click Save.

Note:

Do not deploy updated process flows (for example, adding additional parallel
tasks to a subprocess) to an OSM run-time environment until all orders
submitted to the process have completed.

Related Topics

Subprocess Properties General Tab

Subprocess Properties Process Tab

Subprocess Properties Exception Map Tab

Designing Exception Paths

Working with Processes

Working with Orders

Subprocess Properties General Tab
You use the Subprocess Properties General tab to define general information about
the subprocess, such as the description and display name.

Field Use

Description Enter a description of a task to help differentiate between tasks
used more than once in the same process flow.

Display Name Enter the name that you want to appear in the subprocess task
entity in the Process editor.

Process History Select True if you want this task to appear in the Process History
- Summary Table window in the Task web client. Otherwise,
select False.

X, Y coordinates Coordinates that indicate where in the Process editor the
subprocess task exists.

Related Topics

Designing Subprocesses

Working with Processes

Chapter 6
Designing Subprocesses

6-16

Subprocess Properties Process Tab
When creating a subprocess task, you can associate the subprocess with a list of
process and rule combinations, and sequentially order them. The first rule an order
satisfies defines the process that is used as the subprocess.

Select the Properties view Process tab to define the values for the following:

Field Use

Pivot Node Click Select to access the Order Template Selection
dialog box, where you can select the data element on
which OSM will spawn the individual instances. For
example, if you have subprocess that will create an email
address for every person in a list, you might select the
node Person as the pivot node, so that the subprocess
repeats, spawning an instance for each person.

Sequential If you anticipate that a large number of task instances
will appear in the Task web client Worklist, and you
prefer that the system display the instances in the
worklist one at a time, you can specify a sorting option.

Specifying a sorting option here causes OSM to execute
the task instances sequentially, instead of in parallel, and
to display the individual instances in the worklist one at
a time, in the specified order. As you complete each task
instance, OSM spawns the next instance.

You can select one of the following sorting methods:

Non Sequential: The subprocess initiates every
instance simultaneously.

No Sorting: The Task web client Worklist displays the
instances of the task in the order that they are spawned.

Ascending: The Task web client Worklist displays the
instances of the task in ascending order, based on the
attribute (date, alpha, or numeric) of the data element
that you select in the Sort Element field.

Descending: The Task web client Worklist displays the
instances of the task in descending order, based on the
attribute (date, alpha, or numeric) of the data element
that you select in the Sort Element field.

Chapter 6
Designing Subprocesses

6-17

Field Use

Sort Element If you selected a reusable structure as the pivot node,
click Select to identify which of the data elements the
system should use to determine the order in which to
display the individual task instances in the Task web
client Worklist. This option is available only when you
sort the task instances in descending or ascending
order.

For example, consider that you have three levels of
DSL service: Regular, Gold, and Platinum. You want
to ensure that customers ordering the Platinum level of
service have priority over the lower two levels. In the
Pivot Node field, you might select the reusable structure
called service_type, which contains the attributes
regular, gold, and platinum. In the Sequential field, you
can select ascending, then select the value platinum in
the Sort Element field to ensure that the orders with the
Platinum level of service are initiated first.

Continue if rule failed Select if want the process to continue if none of the rules
associated with the subprocesses equate to True.

Association The Association table lists the process and rule
combinations that determine which process the system
will initiate when a rule in the table evaluates to True.
The system evaluates each rule in the order that they
appear in the Association table. When a rule evaluates
to True, the system runs the corresponding process and
ignores the remaining processes. You can prioritize the
processes listed in the table by using the Move Up and
Move Down buttons.

Click Add to display the Add Rule and Process
Association dialog box. In the dialog box, indicate which
rule and process combination triggers the subprocess.
To change the order of the process rule combinations,
highlight a combination and click the Move Up or Move
Down button. Select a process rule combination and
click the Modify button to change the combination pair,
or click the Remove button to delete from the list.

If you drag a process from the Studio Projects view on to
a subprocess entity, the system automatically adds that
process to the Association table, and uses null_rule as
the default rule. Select the table row and click Modify to
change the rule and process combination.

Note: You can manipulate ordered tables in Design
Studio using keyboard controls. For example, you can
launch the Add Rule and Process Association dialog box
by pressing the Insert key on your keyboard. You can
highlight a table row and press the Delete key to delete
a process and rule combination from the table. Use the
Control key in conjunction with the arrow keys to select
one or multiple table rows and move those rows up or
down in the index order.

Related Topics

Designing Subprocesses

Chapter 6
Designing Subprocesses

6-18

Working with Processes

Subprocess Properties Exception Map Tab
When you use a subprocess task in a process, you can define how the subprocess
task handles process exceptions. You can map subprocess exceptions to the
completion statuses of the subprocess task, or to exceptions on the parent process.
Using the subprocess mappings, a parent process can raise a process exception or
complete the subprocess task. Additionally, a parent process can set the exception
status, terminate the subprocesses, and set the process status. The list of subprocess
mappings is ordered by priority. If a lower priority subprocess exception occurs after a
higher priority exception, the lower priority exception is ignored. The subprocess task
does not complete until all subprocess tasks are completed or terminated.

For example, consider that you have a process called create_vpn. Within that process,
there is a subprocess called validate_address. The subprocess validate_address
can throw an exception when an address is invalid. Using the exception mapping
functionality, you can instruct the parent process and subprocesses to take specific
actions when the subprocesses throw exceptions. When validate_address throws the
invalid_address exception, you can instruct it to complete or to raise an exception. If
you are creating a VPN for a business that contains multiple physical locations, you
might have multiple instances invoked for the validate_address subprocess. Exception
mapping enables you to indicate whether the parent process create_vpn should
terminate all of the invoked instances, terminate only the offending instance, or ignore
the exception altogether.

Use the Properties view Exception Map tab to define values for the following:

Field Use

Process Select the subprocess for which you want to map exceptions.
You can map exceptions to any of the subprocesses included in
the Association table on the Properties view Process tab.

Exception Select an exception to associate with the subprocess. Only
those exceptions defined for the subprocess you selected in the
Process field are available for mapping.

Action Select an option to determine what action the parent process
should take when the subprocess defined in the Process field
throws the exception defined in the Exception field. Select:

• Complete Task to complete the task and indicate normal
flow.

• Raise Exception to raise an exception status defined in the
parent process. If you select this option, you must also
select an exception throw value. The values available in the
Throw field are those exception options that are defined at
the parent process level.

Terminate Define how invoked threads should be affected by the exception.
Select from the following options:

• All instances (All): Select to instruct the system to stop all
subprocess threads.

• Excepting instance only (One): Select to instruct the system
to stop the subprocess thread that raised the exception.

• None (Ignore): Select to instruct the system to continue
normal execution.

Chapter 6
Designing Subprocesses

6-19

Related Topics

Designing Subprocesses

Working with Processes

Designing Workstream Processes
A workstream process enables Task web client users to execute a series of
sequenced order tasks through a wizard-like interface. When a process, or
subprocess, is defined as a workstream, Task web client users flow from task to
task after each transition without being returned to the worklist to initiate the next
transition. Instead, the next task is invoked automatically, eliminating the need to
manually navigate through the worklist to retrieve the next task.

Workstreams are designed by business analysts or process modelers in much the
same way standard processes are designed, using the Process editor. To make a
process a workstream process, right-click the Start node in the Process editor and
select Show Properties to display the Properties view. Then, click the Workstream
property and change the value to True.

Related Topics

Working with Processes

Designing Process Sequence and Flow
When you create a process, you can use the Process editor to describe the sequence
in which tasks should complete and the manner in which the process flows from
one task to the next. You create the structure of the process by manually dragging
tasks into place, or by using the Process editor layout tools. To describe the link
between tasks, you use the elements from the Process editor Flows and Exception
Path drawers. Flows describe how tasks are completed and determine the order of
tasks in the process.

To sequence tasks:

1. Drag the tasks and activities into the desired order.

When multiple tasks are active, you can move them simultaneously. To make
multiple tasks active, drag a selection rectangle around the tasks that you want to
move, then move the group of task into the new position.

2. (Optional) Click the Layout All Nodes icon, located in the Process editor toolbar.

Alternately, you can right-click in the Process editor to access Layout All Nodes
from the context menu. The Layout All Nodes feature automatically arranges the
process nodes in a standard flow chart format.

3. (Optional) Select multiple tasks in the Process editor and click the Layout
Selected Nodes icon, located in the Process editor toolbar.

Alternately, you can right-click in the Process editor to access Layout Selected
Nodes from the context menu. The Layout Selected Nodes feature automatically
arranges only a selected section of the process.

4. Click Save.

Chapter 6
Designing Workstream Processes

6-20

To link tasks:

1. In the Process editor palette Flows drawer, click a flow activity.

2. In the Process editor, click the Start node and then click the first task to link the
two objects together.

3. From the palette, use the actions in the Flow and Exception Paths drawers to link
all of the tasks.

Click the Toggle Sticky Tool Mode button to repeatedly link tasks in the Process
editor.

4. Right-click a flow and select Status.

Select the task exit status for the flow. The available options include the statuses
you previously defined for the task in the Task editor States/Statuses tab.

5. (Optional) Click the Layout All Nodes button in the Process editor toolbar.

The Layout All Nodes feature automatically displays the process flow in an
organized and neat arrangement.

To arrange only a section of the process, use a drag selection to activate multiple
tasks and click the Layout Selected Nodes button in the Process editor toolbar.

6. Click Save.

Related Topics

Working with Process Editor Menu Controls

Designing Exception Paths

Working with Processes

Working with Tasks

Process Editor Flow Properties General Tab
Use the Process editor Flow Properties view General tab to define attributes for
process flows.

Field Use

Condition This property applies only to transitions that are part of a
workstream process. You can apply rules to the transition that must
evaluate to True for the transition to occur. Select the Condition row
to access all rules defined in the order.

Note: Selecting a condition in a transition not part of a workstream
process will produce a build warning.

Note: If all of a task's transitions include conditional rules that
evaluate to false during run-time, the OSM server considers the task
to be the terminal task, as there are no additional valid transitions to
consider.

Mandatory Check Select True to ensure that the system verifies that mandatory fields
are present when a task completes.

Reporting Status Enter the reporting status that you want to display in the Task web
client. This status is tracked in the client's History. The Reporting
Status Value field is an open text field. In the Value field enter a
status name to indicate how the transition should be reported.

Chapter 6
Designing Process Sequence and Flow

6-21

Field Use

Status Select the task exit status that represents this flow. The available
options include the statuses you previously defined for the task in
the Task editor States/Statuses tab.

Related Topics

Working with Processes

Modifying Process Editor Start Properties

Process Editor Flow Properties Events Tab
Use the Properties Events Details tab create event notifications for a single task
transition in a specific process that only triggers if a specific rule evaluates to true.
When defining event notifications for task transitions in the Process editor Properties
Events tab, you can name the task and transitional events, specify the rule that
triggers the event, set the priority level, enable or disable the event, specify whether
to send the notification by email, and create automation plug-ins to perform the work
of the notification. See "Properties Events Detail Tab" for more information about the
fields on the Events Detail tab. See "Creating Task Status-Based Event Notifications"
for information about creating event notifications at the Process editor level.

Related Topics

Working with Event Notifications

Configuring Automation Plug-In Properties

Designing Exception Paths
An exception is a mechanism used to interrupt or stop an order, or to redirect it to
a task in the process to a different process. The choices are defined by the system
administrator and identified by the exception statuses. Exceptions may be used to
cancel an in-flight order, to add supplemental information to an order and redirect the
order to an earlier task in the process, or to take other actions defined in the original
process.

Exception statuses are user-defined statuses used to alter a process flow from
anywhere in the process. The exceptions can be defined with restrictions that allow
only specified workgroups, activities, or order type/sources (or combinations of these)
to raise the exception.

Chapter 6
Designing Exception Paths

6-22

Note:

If you have previously defined a process exception in the OSM Administrator,
and intend to import it into Design Studio, you must ensure that:

• You define (in the OSM Administrator Process Exception Definition tab)
the status used in the process exception in any task that can initiate the
exception.

• You create a process exception restriction (in the OSM Administrator
Process Exception Restriction tab) that specifies the tasks can raise the
exception.

Exception paths are used in conjunction with the Redirect and End activities to define
process exceptions:

• The End activity stops the work order from continuing.

• The Redirect activity redirects the work order to another task in the same process
or to a different process.

Note:

End and Redirect activities cannot be defined as the source end of a path.

In the Process editor, visual cues enable you to distinguish flow transitions from
exception paths: exception paths are represented by an exception path source marker
(lightning bolt icon) and a dashed line.

Chapter 6
Designing Exception Paths

6-23

Note:

You can only configure two or more exception paths with the same status in
the same process if the following conditions are met:

• All the exception paths must start from a task, a rule, or a subprocess.

• All the exception paths terminate on the same redirect or end.

• In the properties of the path, the Reporting Status, Role Restriction, and
Order Restriction must be the same.

To model exception paths in the Process editor

1. To model a Stop exception, draw an exception path from an activity to an End
activity.

Linking the path from the Start activity applies the exception to the entire process;
linking from a task within the process applies the exception to that task.

2. To model a Redirect exception, draw an exception path from an activity to a
Redirect activity. The Redirect activity supports both process-level and activity-
level redirection.

Related Topics

Working with Event Notifications

Configuring Automation Plug-In Properties

Exception Path Properties General Tab

Exception Path Properties Restrictions Tab

Redirect Properties General Tab

Designing Subprocesses

Creating Task Status-Based Event Notifications

Working with Processes

Exception Path Properties General Tab
Use the Exception Path Properties General tab to define the reporting status that
will display in the Task web client and the task completion status that initiates the
exception.

Field Use

Reporting Status Enter the reporting status that you want to display in the Process
Exception section of the Task web client. This status is tracked in
the client's History. The Reporting Status Value field is an open
text field. In the Value field enter a status name to indicate how the
exception should be reported.

Chapter 6
Designing Exception Paths

6-24

Field Use

Status Specify the task completion status that initiates the exception. If
the exception is thrown from the Start activity, the values available
include all of the statuses defined within the process. If the exception
is thrown from a specific activity, the values available include only
those statuses defined for that specific activity.

Related Topics

Designing Exception Paths

Working with Processes

Exception Path Properties Restrictions Tab
Use the Exception Path Properties Restrictions tab to restrict exceptions to specific
roles.

Field Use

Role Restriction To restrict the ability to throw an exception to specific
roles, select Allow Restricted Roles, then select those
roles from the Available list and move them into the
Selected list using the arrow buttons.

Available, Selected Move roles between the Available and Selected fields
by highlighting one or multiple roles and clicking the
appropriate arrow button. To move all roles from one
column to the other, use the double arrow buttons.

Related Topics

Designing Exception Paths

Working with Processes

Redirect Properties General Tab
Use the Redirect Properties General tab define to which process and to which task
within that process you want the order redirected.

Field Use

Reference Select the process to which you want the order redirected. To
select the process, click inside the Value field to access the
ellipsis button. Click the ellipsis button and select a process from
the entity list.

Note: After you define the Reference process, you can double-
click the Redirect entity to open the process in the Process
editor.

Chapter 6
Designing Exception Paths

6-25

Field Use

Reference Task Select the task to which you want the order redirected. When
you specify a process in the Reference field, you can also
redirect to a specific starting point within that process. The
process will run to completion from the task that you select here.
If you select no task here, the process will start with the first
task.

X, Y coordinates These coordinates indicate where on the Process editor canvas
the Redirect activity exists.

Related Topics

Designing Exception Paths

Working with Processes

Chapter 6
Designing Exception Paths

6-26

7
Working with Tasks

A task is one step in a process (a process is a sequence of tasks that run either
consecutively or concurrently to fulfill an order or part of an order). In Oracle
Communications Design Studio, you model tasks and the data necessary to execute
them. The tasks are executed in an Oracle Communications Order and Service
Management (OSM) run-time environment.

When working with tasks, see the following topics:

• About Tasks

• Creating New Tasks

• Defining Task Data

• Assigning Task States and Statuses

• Assigning Task Permissions

• Converting Tasks

• Deleting Unreferenced Tasks

• Working with Automation Plug-Ins

• Working with Manual Tasks

• Working with Automated Tasks

• Working with Activation Tasks

• Working with Transformation Tasks

• Task Editor

About Tasks
A task is a specific activity that must be carried out to complete the order. OSM has
more than one type of task:

• A manual task requires user intervention, which is performed through the OSM
Task web client. See "Working with Manual Tasks" for more information.

• An automated task is run without manual intervention and is used to handle
interaction with external fulfillment systems. See "Working with Automated Tasks"
for more information.

• An activation task is a type of automated task that interacts with Oracle
Communications ASAP or Oracle Communications IP Service Activator. See
"Working with Activation Tasks" for more information.

• A transformation task is a type of automated task that accesses the OSM
order transformation manager. See "Working with Transformation Tasks" for more
information.

7-1

All types of tasks share many of the same modeling activities, such as defining task
data, details, and compensation. Some configuration steps, however, are specific to
each task type.

Related Topics

Creating New Tasks

Task Editor

About Task Extensions and Inheritance
During task creation, you can base new tasks on the functionality of an existing task
by using the extend feature. When you extend a task, the extended task inherits all
of the data, rules, and behaviors of the parent task. For example, if you have multiple
tasks that all require the same data subset, you can create a base task that contains
this data, then extend from this task to create as many new tasks as necessary. You
can add new data and behaviors to each of the new tasks to create unique task and
behavior functionality.

You cannot edit task data inherited from a parent task. For example, if you are working
with a task that includes data inherited from a parent task, you cannot remove,
rename, or reposition data elements inherited from the parent task, make changes
to inherited behaviors, and so forth. Nodes inherited from the extended task are
represented by a black icon and cannot be removed from the task. New nodes that
you add to the task are represented by a green icon and can be removed from the
task.

Additionally, tasks in a cartridge project can inherit from tasks in a different cartridge
project, if the order with which the task is associated extends the order from the same
source cartridge. For example, a task named Task2 in a cartridge named Cartridge2
can inherit data from a task named Task1 in a cartridge named Cartridge1, but only
when the order (with which the task is associated) in Cartridge2 extends the order
(with which Task1 is associated) in Cartridge1.

Note:

Design Studio does not permit cyclic referencing. For example, if task T2
extends from task T1, and task T3 extends from task T2, then you cannot
extend task T1 from task T3.

Related Topics

Task Editor

Creating New Tasks

About Task States and Statuses
A task state determines the milestone of a task in a process. The default states are:

• Received: The task has been received in the system and is waiting to be
accepted.

Chapter 7
About Tasks

7-2

• Accepted: The assigned user (or system) has accepted the task. The task is
locked so that it cannot be modified or completed by other users and systems.

• Completed: The task is finished.

• Assigned: (manual tasks only) The task has been assigned to a user.

• Create Activation Work Order Failed: (activation tasks only) The task attempted to
create a work order in the activation system but work order creation failed.

These states are mandatory and cannot be removed. You can define additional
states (user-defined states) to support your business processes. If a task cannot be
completed on time, you can change the task state to Suspended.

A task status describes how a task was completed and determines the next task
in the process. Several default statuses are given for each task type. For example,
the default statuses for a manual task are Back, Cancel, Finish, and Next. The
default statuses for an automated or transformation task are Failure and Success.
The default statuses for activation tasks are Success, Activation Failed, and Update
OSM Order Failed. You can select from the set of additional predefined statuses
(Delete, False, Rollback, Submit, Failed, and True), and you can also define your own.

Note:

A status represents a transition between tasks. The statuses that you define
in the Task editor States/Statuses tab appear as task transition options in
the Task web client. Statuses that you define for a task but fail to use in
the process still appear in the Task web client as transition options. If a
user selects one of these unmapped options, the OSM server terminates the
process.

Related Topics

Assigning Task States and Statuses

About Task Rollback Status

Task Editor States/Statuses Tab

About Task Rollback Status
When you execute a rollback from within a given task, the system executes an
update that restores the order to the state that the order was in when the previous
task finished. The system accomplishes this by deleting the new nodes, inserting the
removed nodes, and restoring the updated nodes with the data they held before the
current state.

If you are within a subprocess, you can roll back only to previous subprocess tasks.
You cannot roll back from the first subprocess task to the previous parent task. This
means that if you want to roll back an entire subprocess task, you must complete the
subprocess, proceed to the next task in the main process, then roll back to the parent
process task that spawned the subprocess in question.

Because the rollback executes when the Task web client user clicks the Back button,
the order advances according to how you define the rollback status in the process.

Chapter 7
About Tasks

7-3

If a task is at the rollback status, the Mandatory Check option is disabled for that
task. See "Process Editor Flow Properties General Tab" for more information about the
Mandatory Check option.

Related Topics

Working with Manual Tasks

Designing Workstream Processes

About Task States and Statuses

Task Editor States/Statuses Tab

About Task Compensation
Compensation refers to the changes OSM makes to an order when a customer
requests a change to the order after the service fulfillment process has been initiated
or when a failure occurs during order processing that triggers compensation for
fallout management purposes. OSM manages these in-flight changes, called order
amendments, by analyzing the tasks performed in the process and determining
whether data has changed. This analysis, called Order Change Management, is
necessary when, for example:

• A consumer orders high-speed internet access, then calls back midway through
the service fulfillment process to change bandwidth or cancel the order.

• A business customer orders VoIP service for several office locations and then calls
back multiple times to change the feature sets for the various offices as the order
is being processed.

• An error occurs in an in-flight order where a user or an automation plug-in can
raise an exception, trigger fallout, and make changes to compensate for errors that
caused the error.

In Design Studio, you configure the manner in which OSM manages these changes to
in-flight orders by indicating how the run-time environment compensates the task if it is
affected by an amendment.

Note:

Compensation ignores timer delays and event delays between tasks while
undoing or redoing the tasks in a process.

Execution Modes

Tasks can execute in one of the following possible execution modes:

• Do is the default mode for a task that executes under normal processing.

• Undo reverses the effects of the associated Do operation.

• Redo combines both Undo and Do operations in a single operation.

• Do in Fallout is the mode that a task uses after the task has moved from the Do
execution mode because of a failure condition. You can use this mode to manually

Chapter 7
About Tasks

7-4

investigate and resolve failure conditions or trigger automation plug-ins set to run
in the fallout mode.

• Undo in Fallout is the mode that a task uses after the task has moved from
the compensation Undo execution mode because of a failure condition. You can
use this mode to manually investigate and resolve failure conditions or trigger
automation plug-ins set to run in the fallout mode.

• Redo in Fallout is the mode that a task uses after the task has moved from
the compensation Redo execution mode because of a failure condition. You can
use this mode to manually investigate and resolve failure conditions or trigger
automation plug-ins set to run in the fallout mode.

On the Compensation Strategy tab of the Task editor, you define how the run-time
environment compensates tasks if they are affected by an amendment. Each section
on this tab represents a scenario to consider when determining a compensation
strategy for the task.

You can model a static compensation strategy from the predefined list or a dynamic
compensation strategy based on an XQuery expression that compares data from the
revision order with the results of a comparison between the current order perspective
and the historical order perspective. Dynamic compensation strategies can be useful if
you want to model different compensation types based on revision order data values.
For example, you could model the XQuery to select an Undo then do compensation
strategy if the revision order bandwidth parameter is greater than 50 MB, and only a
Redo compensation strategy if the bandwidth parameter is less than 50 MB.

You can also configure whether a task is included in compensation when it is
completed or in progress, or you can use an XQuery expression that evaluates
whether an in progress task can be included in compensation based on order data.
This ability is important for long running tasks where a response to a request takes
hours or even days but still needs to be considered in compensation. If you specify
that a task can be compensated while it is in progress, you can also specify whether
a grace period should be observed before performing the compensation. In addition,
you must use an XQuery expression to evaluate any changes to the compensating
task data to identify when the compensation has completed and the task can enter into
normal do mode again.

For example, some automated plug-ins communicating with workforce management
systems may involve the dispatching of personnel to perform work over several
days. In such cases the automation plug-in sends the dispatch request to the
workforce management system, and remains in progress until such time as the work
is completes. If a revision order were to arrive that changes some aspects of the
work required by the dispatched personnel, then the in progress automation plug-in
responsible for sending the original request should be included in the compensation
plan. You can specify an XQuery that evaluates data on the in progress task
communicating to the work force management system that determines if the task
needs to be compensated. In addition, you can specify whether a wait period should
be observed before starting compensation. You must also write an XQuery that
determines when compensation has completed, for example, when the task receives
the response from the new request indicating the workforce management system has
received the new work details and has begun to processing the request.

See "Compensation XQuery Expressions" for more information about compensation
XQuery expressions.

Chapter 7
About Tasks

7-5

Note:

If you modify the default strategy settings, ensure that you analyze the task
within the context of the entire workflow because modifying strategy settings
in one task can adversely effect subsequent tasks and task data.

Related Topics

Task Editor Compensation Tab

About Task Fallout
Fallout refers to orders that encounter problems during fulfillment and therefore fall out
of normal processing. OSM places these orders in Failed state (you can also manually
fail orders in the Order Management web client).

In the Design Studio Order editor, you associate a fallout name with one or multiple
data nodes whose values you will want to review (in the Order Management web
client) when the corresponding type of fallout occurs. In the Task editor, you associate
tasks with the types of fallout that can occur for the task.

See "Task Editor Fallouts Tab" when modeling task fallout in Design Studio.

Ensure that the Exception Processing permission is assigned to roles that are
assigned to fallout tasks.

See "Role Editor Role Tab" for information on assigning permissions to role entities.

Related Topics

Defining Order Fallout

Order Editor Fallouts Tab

Order Editor Fallout Groups Tab

About Enabling Task Web Client Users to Reassign Tasks
A Task web client user can reassign a task only after you configure the task for
reassignment in Design Studio for OSM.

Before a Task web client user can reassign a task, you must ensure the following:

• You have added the Assigned state to the task. See ""Assigning Task States and
Statuses" for more information.

• You have added a role to the task that is responsible for reassigning the task. See
"Assigning Task Permissions" for more information.

• You have an Oracle WebLogic Server user account that is a member of the role
entity, using the Administration area of Order Management web client, that has
the Task Assignment permission applied. See "Role Editor Role Tab" for more
information.

See OSM Task Web Client User's Guide for information about reassigning a task.

Chapter 7
About Tasks

7-6

Creating New Tasks
You create tasks to include in processes that represent the activities required to offer
a specific service to a customer. When creating tasks, you can create new tasks with
minimal information or select an existing task upon which to base the new task entity.

To create new tasks:

1. From the Studio menu, select New, then select Order and Service
Management, and then do one of the following:

• Select Order Management, then select Activation Task

• Select Order Management, then select Automated Task

• Select Order Management, then select Manual Task

• Select Order Transformation, then select Transformation Task

2. In the Project field, select the appropriate OSM project for this task.

By default, the project under which the process was created is selected.

3. (Optional) In the Extends field, select an existing task to leverage the task data
and extend the functionality of that existing task.

Click Select and select a task for the Extends field. If a suitable task does not yet
exist, click New to create the task. See "About Task Extensions and Inheritance"
for more information.

4. (For activation tasks only) In the Activation System field, select the activation
system type that the task will be communicating with.

5. Associate the task with an order, if necessary.

If you are creating a new task from the Design Studio main menu, you must
associate the task with an order, and the Order field appears in the wizard. When
you add tasks to the Process editor using the Task tool from the Activities drawer,
the task is already associated with an order through the Process entity, and the
Order field will not appear in the wizard.

Note:

If you are planning to use the task for an order (OrderA) and also an
order (OrderB) that is extended from that order, you must select the
parent order (OrderA) here.

6. In the Name field, enter a name for the new task.

The name must be unique among the task entity types. Two tasks cannot share
the same name, even if they are different types of tasks. For example, an
automated task and a manual task cannot share the same name.

7. (Optional) Select a location for the task.

By default, Design Studio saves the task to your default workspace location. You
can enter a folder name in the Folder field, or select a location different from the
system-provided default. To select a different location:

a. Click the Folder field Browse button.

Chapter 7
Creating New Tasks

7-7

b. Navigate to the directory in which to save the entity.

c. Click OK.

8. (For transformation tasks only) In the Transformation Manager field, select a
transformation manager to be called from the task.

9. (For transformation tasks only) In the Order Component field, select an order
component to be used in the task.

10. Click Finish.

Design Studio displays the new task entity under the selected project in the Studio
Projects view.

Related Topics

Task Editor

About Task Extensions and Inheritance

Defining Task Data
Task data is the data that the task requires for completion. You can add data to a task
directly, or it can be provided on the order data or inherited from a different task. You
can model task data in several ways using the Task Data tab of the Task editor. If you
created the task using the Create Task wizard and you specified an existing task to
use, that task's data is displayed in the Task Data area.

When extending the task data, see the following topics:

• Creating Simple Data Elements, Structured Data Elements, and Data Structure
Definitions

• Adding Data to a Task

• About the Task Editor Task Data Context Menu

Note:

Different tasks can have different default values for the same data element.
Because of this, whenever you add data from the Data Dictionary to a task,
the default value defined in the Data Dictionary will not be inherited by the
data element on the task.

Adding Data to a Task
You can add any data defined in the Data Dictionary or the order to the task data.

To add data you have previously created:

1. Right-click inside the Task editor Task Data tab.

See "Task Editor Task Data Tab" for more information about the fields on this tab.
When modeling data for activation tasks, navigate to the Task Request Data tab
and right-click in the Task Data area.

2. Select Select from Order Template or Select from Data Schema.

Chapter 7
Defining Task Data

7-8

A dialog box is displayed, enabling you to select data elements.

Note:

You can alternatively select Open Data Element view and then drag
data elements from the Data Dictionary onto the Task Data area.

3. Select which data you want to add to the task.

Tip:

When selecting data to add to the task:

• Press and hold the Shift key to select multiple consecutive elements.
Or, press and hold the Control key to select multiple non-consecutive
elements.

• Select a parent node to add all data elements (simple and structured
data elements) in its hierarchy.

• Select a child node to add only the child node and its parent nodes.
Design Studio automatically adds parent nodes associated to the
child node up to the root of the data schema.

4. Click OK.

Design Studio adds the elements to the Task editor Task Data area.

5. Click Save.

Related Topics

Working with Orders

Task Data Node Properties View Identification Tab

Task Data Node Properties View Dictionary Tab

Task Editor

Adding a New Data Structure Definition to a Task
You can create and add a new data structure definition to a task. See "About OSM
Data in Model Projects" for more information about data structure definitions.

To add a new data structure definition to a task:

1. Right-click inside the Task editor Task Data tab.

See "Task Editor Task Data Tab" for more information about the fields on this tab.
When modeling data for activation tasks, navigate to the Task Request Data tab
and right-click in the Task Data area.

2. Select Select Data Structure Definition.

A dialog box is displayed, enabling you to select data structure definitions.

Chapter 7
Defining Task Data

7-9

Note:

You can alternatively select Open Data Element view and then drag
data elements from the Data Dictionary onto the Task Data area.

3. Select the data that you want to add to the task.

4. Click OK.

Design Studio adds the data structure definitions to the Task editor Task Data
area.

5. Click Save.

Related Topics

Working with Orders

Task Editor

Adding an Existing Data Structure Definition to a Task
To add data structure definitions that you have previously created:

1. Right-click inside the Task editor Task Data tab.

See "Task Editor Task Data Tab" for more information about the fields on this tab.
When modeling data for activation tasks, navigate to the Task Request Data tab
and right-click in the Task Data area.

2. Select Select Data Structure Definition.

A dialog box is displayed, enabling you to select data structure definitions.

3. Select the data structure definitions that you want to add to the task.

Tip:

When selecting data structure definitions to add to the task:

• Press and hold the Shift key to select multiple consecutive elements.
Or, press and hold the Control key to select multiple non-consecutive
elements.

• Select a parent node to add all data elements (simple and structured
data elements) in its hierarchy.

• Select a child node to add only the child node and its parent nodes.
Design Studio automatically adds parent nodes associated to the
child node up to the root of the data schema.

4. Click OK.

Design Studio adds the data structure definition, and all its child data elements
and structures, to the Task editor Task Data area.

Chapter 7
Defining Task Data

7-10

Note:

Derived data structure definitions are not displayed in the Task Data
area.

5. Click Save.

Related Topics

Working with Orders

Task Editor

Assigning Task States and Statuses
When you create a task, the system assigns three mandatory processing states, which
cannot be removed, to the task: Accepted, Completed, and Received. You can also
select additional predefined states. Similarly, you assign completion statuses to the
task by selecting from a list of predefined statuses or by adding your own.

When assigning task states and statuses, see the following topics:

• About Task States and Statuses

• About Task Rollback Status

• Assigning States to Tasks

• Assigning Statuses to Tasks

Assigning States to Tasks
When you create a task, the system assigns three mandatory processing states, which
cannot be removed, to the task: Accepted, Completed, and Received. You can also
assign additional states to tasks and remove states that are assigned to tasks.

To assign predefined states to tasks:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this
tab.

2. In the States area, click the Select button.

The Select a State dialog box is displayed.

3. Select a user-defined state to assign to the task.

See "About Task States and Statuses" for more information about mandatory task
states and user-defined task states.

4. Click OK.

To create a new state and assign it to a task:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this
tab.

Chapter 7
Assigning Task States and Statuses

7-11

2. In the States area, click the corresponding Add button.

The Add State dialog box is displayed.

3. Enter a name and a display name for the new state.

4. Click OK.

To remove a state assignment for a task:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this
tab.

2. Select a state and click Remove to delete a state from the list.

Assigning Statuses to Tasks
You assign completion statuses to the task by selecting from a list of predefined
statuses or by adding your own. You can also remove statuses that are assigned to
the task.

To assign statuses to tasks:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this
tab.

2. In the Statuses area, click the corresponding Select button.

The Select a Status dialog box is displayed.

3. Select a predefined status to assign to the task.

See "About Task States and Statuses" for more information about statuses.

4. Click OK.

To create a new status and assign it to a task:

1. In the Task editor, click the States/Statuses tab.

See "Task Editor States/Statuses Tab" for more information about the fields on this
tab.

2. In the Status area, click the corresponding Add button.

The Add Status dialog box is displayed.

3. Enter a name and a display name for the new status.

4. Select a value for the Constraint field.

All statuses have a corresponding constraint severity level that determines the
transition behavior of the task when a constraint violation occurs. When you add a
new status and select the associated default constraint, the system displays a list
of available values.

See "Defining Constraint Behavior Properties" for more information.

5. Click OK.

To remove the status assignment from a task:

1. In the Task editor, click the States/Statuses tab.

Chapter 7
Assigning Task States and Statuses

7-12

See "Task Editor States/Statuses Tab" for more information about the fields on this
tab.

2. Select a status and click Remove to delete a status from the list.

Assigning Task Permissions
You assign execution modes to roles for each task to specify which roles can perform
the execution mode. For example, you can restrict a particular role from performing a
redo on a task.

To add a role to the Permissions table:

1. In the Task editor, click the Permissions tab.

2. Select an existing role or create a new role to add to the Task Permissions table.

Do one of the following:

• Click Select to add an existing role to the list.

• Click New to create a new role.

See "Creating New Roles" for more information.

Note:

For automated and transformation tasks, Oracle recommends that
you select or create an automation role. Assign the oms-automation
user to this role using the OSM Administration area of the Order
Management web client, and assign permissions for automated tasks
to the automation role only. Using an automation role ensures that only
automation plug-ins process automated tasks.

See OSM Order Management Web Client User's Guide for more
information about assigning users to roles.

3. For each role listed in the Role Name column, select or deselect, as appropriate,
the Do, Undo, Redo, Do in Fallout, Undo in Fallout, and Redo in Fallout, check
boxes to enable or disable access to the task execution modes.

See "Task Editor Permissions Tab" for more information about task execution
modes.

4. (Optional) To view the permissions defined for a role, select a role and click
Open. The system displays the role in the Role editor, where you can view the
permissions assigned to the role. You assign permissions to a role to give the
users in that role access to related functions in the Task web client.

5. (Optional) To delete a role assignment for a task, select the role and click
Remove.

Related Topics

Working with Roles

Working with Manual Tasks

Chapter 7
Assigning Task Permissions

7-13

Converting Tasks
Design Studio enables process modelers to create tasks in the absence of detailed
design-level information. Consequently, as you model your tasks, you may need to
convert the task from one type to a different type.

You can convert between manual, automated, activation, and transformation tasks.

Caution:

When converting from one type of task to another, Design Studio displays
a prompt if the potential for data loss exists (for example, when converting
from an automated task to a manual task). Consider your task conversions
carefully before implementing them.

To convert a task to a different task type:

1. In the Process editor, right-click a task and select Convert.

2. Select the task type to which you want to convert.

Related Topics

Deleting Unreferenced Tasks

Working with Tasks

Deleting Unreferenced Tasks
When you delete an activity from the Process editor, the system identifies all
referenced task entities. If no other activities reference the task, you can define your
OSM system preferences to delete these orphaned tasks.

To define OSM general preferences to delete unreferenced tasks:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. In the Preferences navigation tree, expand Oracle Design Studio, and then select
Order and Service Management Preferences.

3. In the Delete Orphaned Task References with Activity field, do one of the
following:

• If you want the system to automatically delete orphaned tasks, select Always.

• If you want the orphaned tasks to remain in the workspace, select Never.

• If you want the system to display a prompt for the user, select Prompt.

Chapter 7
Converting Tasks

7-14

Note:

If activities other than the deleted activity reference a task, the system
does not delete the task or display a prompt, because the task is still
required elsewhere.

4. Click OK.

Design Studio saves your preferences.

Related Topics

Converting Tasks

Working with Tasks

Working with Automation Plug-Ins
You use automation plug-ins to implement specific business logic automatically. You
can create automation plug-ins to update order data, complete order tasks with
appropriate statuses, set process exceptions, react to system notifications and events,
send requests to external systems, and process responses from external systems.

When working with automation plug-ins, see the following topics:

• About Automation Plug-ins

• Creating New Custom Automation Plug-ins

• Configuring Automation Plug-In Properties

• Example: Modeling a Basic Automator Plug-In

Related Topics

About Tasks

Task Editor

About Automation Plug-ins
When learning about automation plug-ins, see the following topics:

• About Automation Plug-in Types

• About Automation Plug-in Association

• About Automation Message Correlation

About Automation Plug-in Types
There are two basic types of delivered automation plug-ins: Sender and Automator.
Each type can be implemented using XSLT or XQuery, and each type can be defined
as an internal event receiver (the JMS message that triggers the call to the plug-in is
generated by OSM) or as an external event receiver (the JMS message that triggers
the call to the plug-in is generated by an external system).

Chapter 7
Working with Automation Plug-Ins

7-15

• Automator plug-ins receive information from OSM or from an external system,
then perform some work. Depending on how you configure the plug-in, it can also
update the order data. See "Predefined Automation Plug-ins" for sample XQuery
and XSLT automators.

• Sender plug-ins receive information from OSM or from an external system.
They perform some business logic, and they may or may not update an order,
depending on your configuration. Additionally, they can produce outgoing JMS or
XML messages to an external system. When generating JMS messages, you can
define JMS messages to connect to a topic or queue. See "Predefined Automation
Plug-ins" for sample XQuery and XSLT senders.

Note:

XQuery automation types cannot be implemented when using releases prior
to OSM 7.0.

Related Topics

Adding Automation Plug-ins to Automated Tasks

Task Editor Automation Tab

About Automation Plug-in Association
When you add an automated task to a process, you must associate at least one
automation plug-in for the task. To associate an automation plug-in for a task, you
open the automated task entity in the Automated Task editor, and add the plug-in
to the task in the Automation tab. When you deploy your cartridge to the run-time
environment, the OSM server detects a task that has an automation plug-in associated
with it and the server triggers the plug-in to perform its processing.

An automated task might have only a single automation plug-in associated with it. For
example, you might associate a built-in Automator plug-in with the task to interrogate
the task data, perform some calculation, update the order data, and transition the task.
In this example, as soon as the Automator plug-in has finished processing, it updates
the task with an exit status, and the OSM server moves to the next task.

An automated task can have multiple associated automation plug-ins. For example,
you might want to associate multiple plug-ins with a task to represent conversations
with external systems. You can associate a built-in Sender plug-in to receive the task
data and send it to an external system for processing. That external system might
send an acknowledgment back to a queue, where a second Automator plug-in (one
that is defined as an external event receiver: it receives data from external system
queues) consumes the reply and updates the order data with the response. A third
Sender plug-in might send the external system a message to begin processing, and
a fourth Automator plug-in can receive the "processing complete" message from the
external system, update the order, and transition the task.

Related Topics

Adding Automation Plug-ins to Automated Tasks

Task Editor Automation Tab

Chapter 7
Working with Automation Plug-Ins

7-16

About Automation Message Correlation
Automation plug-ins defined as external event receivers are designed to process
JMS messages from external systems. JMS messages are asynchronous, therefore
external event receivers provide a method of correlating responses to requests
previously delivered to enable you to map OSM orders to external system orders.

To correlate responses, the plug-in sets a property on the outbound JMS message,
with the name of the value set for the correlation property in the automationmap.xml
file and a value decided by your business logic.

For example, business logic might dictate that you correlate on a reference number.
The external system copies the properties that you defined for the correlation on the
request and includes that data in the response.

You can use the Message Property Selector field to filter messages placed on the
queue and determine which automation to run. You define the Message Property
Selector value as a Boolean expression that is a string with a syntax similar to the
where clause of an SQL select statement. For example, the syntax may be:

"salary>64000 and dept in ('eng','qa')"

When the condition evaluates to true, the message is picked up and processed by the
automation that defined that condition.

In a second example, consider that an external system defines five order types
and OSM defines a different automation to process each order type. Each
automation defines a different value in the Message Property Selector field, such as
orderType=1, orderType=2, and so forth. When a message is sent to the queue by the
external system, and the message includes the order type upon which the condition is
based, the automation framework evaluates each condition until one evaluates to true.
If more than one automation defines the same condition, the first one that evaluates to
true is picked up and processed.

Chapter 7
Working with Automation Plug-Ins

7-17

Note:

When you define only one automation plug-in external event receiver for
each automated task, and you use the Optimized build-and-deploy mode
to build and deploy automation plug-ins, you are not required to enter a
selector in the Message Property Selector field. (For OSM 7.3 servers
and later, Optimized is the only build-and-deploy mode available.) In this
case, automated tasks can share the same JMS queue without a message
property selector being set. You must set a message property selector when
you do any of the following:

• Define multiple automation plug-in external event receivers for the same
automated task.

• Set up other applications (besides OSM) to share the same queue that
an external event receiver is listening on.

• Use the Legacy build-and-deploy mode to build and deploy cartridges
with automation plug-ins.

• Use the Both (Allow server preference to decide) build-and-deploy mode
to build and deploy cartridges with automation plug-ins and configure the
OSM server dispatch mode for the Internal mode.

See "Defining Build-and-Deploy Modes for Automation Plug-ins" for
information on build-and-deploy modes.

Related Topics

Adding Automation Plug-ins to Automated Tasks

Task Editor Automation Tab

Creating New Custom Automation Plug-ins
Automation plug-ins enable you to extend OSM behavior by running specific business
logic when events occur, sending and receiving data to and from external systems,
and updating orders.

Design Studio supports two types of built-in automation plug-ins: Sender and
Automator. Additionally, you can create your custom automation plug-ins using the
custom automation plug-in template. You can, for example, write your own custom
code to make CORBA or web services calls to external systems and register the
custom plug-in against an automated task.

To create a custom automation plug-in:

1. From the Studio menu, select New, then select Order and Service
Management, and then select Custom Automation Plug-in.

The Custom Automation Plug-in wizard is displayed.

2. In the Project field, select the project in which to save the new custom plug-in.

3. In the Name field, enter a name for the plug-in.

The name must be unique among the automation entity types within the same
namespace.

Chapter 7
Working with Automation Plug-Ins

7-18

4. Click Finish.

The Custom Automation Plug-in editor is displayed.

5. Click Select.

The Select Java Class dialog box is displayed. Select from the src folder the Java
class that implements the automation interface. See OSM Developer's Guide for
more information about Java classes and custom plug-ins.

6. Click OK.

7. In the XML template field, enter the XML required for the plug-in's implementation.

8. In the Documentation field, enter information about the plug-in.

Related Topics

Example: Modeling a Basic Automator Plug-In

Working with Automated Tasks

Configuring Automation Plug-In Properties
After you add a plug-in to the Design Studio entity, you define the plug-in properties.

Note:

The type of automation (for example, an XSLT Sender) and the automation
function (for example, a task event) determine which tabs appear in the
Properties view.

To configure automation plug-ins:

1. From the Studio menu, select Show Design Perspective.

2. In an OSM entity editor Automation subtab, select an automation plug-in. You can
configure automation plug-ins in the following editors:

• The Order editor Jeopardy tab Automation subtab.

• The Order editor Notifications tab Automation subtab.

• The Order editor Events tab Automation area.

• The Manual and Automated Task editor Jeopardy tabs Automation subtabs.

• The Manual and Automated Task editor Events tabs Automation subtabs.

• The Process editor, flow lines with status transition defined in the Properties
subtab Events subtab Automation subtab.

• The Process editor exception path flow lines in the Properties subtab Events
subtab Automation subtab.

• The Process editor Automated and Manual Tasks in the Properties subtab
Events subtab Automation subtab.

3. Click Properties.

Chapter 7
Working with Automation Plug-Ins

7-19

The Properties view is displayed showing the automation plug-in properties tabs.
If you selected properties from the process editor properties sub-tab, then the
Properties view displays in a Additional Properties dialog box.

4. Click the Details tab.

In the Details tab, you can name the plug-in and identify the user whose
credentials will be used to run the automation plug-in. See "Properties View
Details Tab" for more information.

5. Click the Compensation tab.

Note:

This tab is called the Execution Mode tab in the Manual and Automated
Task editor Events tabs Automation subtabs.

6. In the Compensation tab, specify the execution modes in which the plug-in will
run when called.

See "Properties View Compensation Tab" for more information.

7. (For external event receivers only) Click the External Event Receiver tab.

Define the name of the external system from which the plug-in receives messages.
Additionally, you can define whether the plug-in filters for specific properties on the
incoming message header or body. Finally, you can provide specific connection
information if the messages are retrieved from an external system. See "Properties
View External Event Receiver Tab" for more information.

8. (For external event receivers only) Click the Correlation tab.

Map messages from external systems to specific OSM tasks. You can use the
JMSCorrelationID or enter an XPath expression to filter for a specific element in
the XML body of the message. See "Properties View Correlation Tab" for more
information.

9. (For XSLT types only) Click the XSLT tab.

Define where the XSLT style sheet is located, caching properties for the style
sheet, and the exit status that the plug-in should use if it throws an exception.

See "Properties View XSLT Tab" for more information.

10. (For XQuery types only) Click the XQuery tab.

Define where the XQuery file is located, caching properties for the file, and the exit
status that the plug-in should use if it throws an exception.

See "Properties View XQuery Tab" for more information.

Note:

XQuery automation types cannot be implemented when using releases
prior to OSM 7.0.

11. (For Sender types only) Click the Routing tab.

Chapter 7
Working with Automation Plug-Ins

7-20

Define where the automation plug-in should send messages, and where the
external systems should send responses. See "Properties View Routing Tab " for
more information.

12. Click the Notes tab.

Document the intended use of the automation plug-in.

13. Click Save.

Example: Modeling a Basic Automator Plug-In
This example demonstrates how to configure an Automator plug-in that receives data
from an internal OSM JMS queue and updates order data using an XSLT style sheet.
In the example, assume that the XSLT style sheet includes conditional logic to apply a
level 1 priority to the order if the order is from a specific customer.

This example demonstrates how to:

1. Create an automated task and add the relevant task data.

2. Add an automation plug-in to the automated task.

3. Configure the automation plug-in properties.

Note:

An automated plug-in exists within the context of a Design Studio cartridge
project, order, process, and automated task. For purposes of demonstration,
this example assumes the existence of multiple Design Studio entities.
For example, it assumes the existence of a cartridge project called
DSLCartridge, an order called DSLOrder, a process called DSLProcess,
and an XSLT style sheet called check_customer.xslt that populates default
values in the order data. It assumes that the Data Dictionary includes the
two data nodes, customer_name and order_priority. It also assumes that the
new automated task will be added to the DSLProcess entity. The naming
conventions used in this example are for illustrative purposes only.

Step 1: Creating the automated task

1. From the Studio menu, select New, then select Order and Service
Management, and then select Automated Task.

The Automated Task wizard is displayed.

2. In the Automated Task wizard, enter or select the following values:

• In the Project field, enter DSLCartridge.

• In the Order list, select DSLOrder.

• In the Name field, enter Check_Customer.

See "Creating New Tasks" for more information.

3. Click Finish.

The new automated task is displayed in the Automated Task editor.

4. Click the Task Data tab.

Chapter 7
Working with Automation Plug-Ins

7-21

In this example, you will update the order_priority field with a default value of 1 if
the order is from a specific customer.

Note:

Normally, the task data includes all of the data that the task requires
to complete. To simplify the example, this task includes only the two
pertinent fields: customer_name and order_priority. See "Defining Task
Data" for more information.

5. Right-click in the Task Data area and select Select from Data Schema.

The Select Data Elements dialog box is displayed.

6. Select the data nodes customer_name and order_priority.

7. Click OK.

The two data nodes are displayed in the Task Data area.

8. Click the Permissions tab.

On the Permissions tab, you can ensure that only the automation role has
permissions for automated tasks. See the note in "Assigning Task Permissions"
for more information.

You are now ready to add a plug-in to the automated task.

Step 2: Adding the automation plug-in to the automated task

1. In the Automated Task editor, click the Automation tab.

2. Click Add.

The Add Automation dialog box is displayed.

3. In the Name field, enter Check_Customer.

4. In the Automation Type field, select XSLT Automator.

5. Click OK.

The Check_Customer plug-in is displayed in the Automation list.

6. From the Automation list, select the Check_Customer plug-in.

7. Click Properties.

The Properties view is displayed showing the automation plug-in properties tabs.

You are now ready to define the automation plug-in properties.

Step 3: Defining automation plug-in properties

1. In the Automated Task editor Properties view Details tab, accept the default value
in the EJB Name field.

2. Ensure that the model variable that defaults to the Run As field points to a
user name set up in the WebLogic Server Administration console. When you
deploy the cartridge, the user in the Run As field is added automatically to the
OSM_automation group.

Chapter 7
Working with Automation Plug-Ins

7-22

For more information about users and groups, see the discussion of setting up
security in OSM System Administrator's Guide. For more information about model
variables, see "Project Editor Model Variables Tab."

3. Click the XSLT tab.

On the XSLT tab, you define where the XSLT style sheet is located and the status
to set if the automation fails. In this example, you define a location on your local
machine where the XSLT file is stored.

4. Select Absolute Path.

5. In the XSLT field, enter the location of the XSLT file.

For this example, enter
C:\oracle\user_projects\domains\osmdomain\xslt\DSLCartridge\1.0.0\check_
customer.xslt.

6. In the Exception field, select Failure.

This field represents the exit status that the plug-in should use if it throws
an exception. The options available in this field include any status values you
assigned to the task.

7. Select Update Order.

This option ensures that the default values obtained from the XSLT style sheet are
saved to the order data.

8. Click Save.

You have completed the basic configuration for an Automator plug-in defined as an
internal event receiver.

Note:

Successful automation requires a complete automation build file in the
cartridge. If no automation build file exists, Quick Fix generates one.

Related Topics

Configuring Automation Plug-In Properties

Working with Automated Tasks

Working with Manual Tasks
A manual task is a task that must be performed by a person. For example, a manual
task could involve a technician who travels to a customer's home to install a phone
line. The system displays the description of the manual task in the Task web client
worklist and query list.

After you have created a manual task entity using the Manual Task wizard or the
Create Task wizard, you can start modeling the task data and assigning other
attributes. When modeling manual tasks, see "Defining Manual Task Behaviors" for
more information.

Chapter 7
Working with Manual Tasks

7-23

Related Topics

About Tasks

Task Editor

Defining Manual Task Behaviors
The Manual Task editor Task Data tab enables you to define behaviors at the task
level. Behaviors provide a way to extend the functionality and appearance of task data.
Each behavior type performs an action; for example, calculating or validating data, or
displaying fields in read-only or read-write modes. When you define a behavior at the
task level, the behavior applies only to the task.

When defining behaviors at the task level, you can use the Task editor Task Data
tab to create the behavior, the Properties view for the behavior to refine the behavior
information, and the Task editor Behaviors tab to view all of the behaviors defined for
a task.

To define a behavior at the task level:

1. From the Studio menu, select Show Design Perspective.

2. Use the Studio Projects view.

3. Double-click the manual task entity for which you are defining the behavior.

Design Studio displays the task in the Manual Task editor.

4. In the Task Data area, select the data node upon which to model the behavior.

See "Task Editor Task Data Tab" for more information about the fields on this tab.

5. Right-click in the Behaviors area and select Add Behavior.

6. Select a behavior from the list.

Note:

The Calculation, Event, and Lookup behavior types cannot be defined
for structured data elements. These behaviors are not relevant because
structured data elements do not represent actual data and cannot be
acted upon in this way.

Design Studio adds the behavior to the Behaviors area. Each behavior type
enables you to dynamically control a specific aspect of your order data model.

7. In the Behaviors area, click the behavior to open the Properties view.

The Properties view is displayed with the set of properties that you must define
for the corresponding behavior type. See "Working with Behaviors" for more
information.

8. Click Save.

Chapter 7
Working with Manual Tasks

7-24

Note:

After you define the behavior properties, you can click the Task editor
Behaviors tab review all of the behavior properties information defined for
the task. See "Task Editor Behaviors Tab" for more information.

Working with Automated Tasks
An automated task is completed by an external OSM agent or by automation plug-ins.
You can create an automated task to connect to a database, transform some data, or
communicate with an external system.

When you create an automated task you must also configure at least one automation
plug-in to perform the intended operation. Design Studio provides several built-in
automation plug-ins, or you can develop your own plug-in using a custom template. An
automated task might have a single automation plug-in associated with it (for example,
to interrogate the task data, perform some calculation, and update the order data), or
it might have multiple automation plug-ins associated with it (one to send information
to an external system; one to receive replies from the external system; and another to
perform some calculation, update the order, and transition the task).

After you have created an Automated Task entity using the Automated Task wizard,
you can start modeling the task and configuring the automation plug-ins.

See OSM Developer's Guide for more information about automation.

When modeling automated tasks, see the following topics:

• Adding Automation Plug-ins to Automated Tasks

Related Topics

Working with Automation Plug-Ins

Defining Automated Task Behaviors
The Automated Task editor Task Data tab enables you to define behaviors at the task
level. Behaviors provide a way to extend the functionality and appearance of task data.
Each behavior type performs an action; for example, calculating or validating data, or
displaying fields in read-only or read-write modes. When you define a behavior at the
task level, the behavior applies only to the task.

When defining behaviors at the task level, you can use the Task editor Task Data
tab to create the behavior, the Properties view for the behavior to refine the behavior
information, and the Task editor Behaviors tab to view all of the behaviors defined for
a task.

To define a behavior at the task level:

1. From the Studio menu, select Show Design Perspective.

2. Use the Studio Projects view.

3. Double-click the automated task entity for which you are defining the behavior.

Design Studio displays the task in the Automated Task editor.

Chapter 7
Working with Automated Tasks

7-25

4. In the Task Data area, select the data node upon which to model the behavior.

See "Task Editor Task Data Tab" for more information about the fields on this tab.

5. Right-click in the Behaviors area and select Add Behavior.

6. Select a behavior from the list.

Note:

The Calculation, Event, and Lookup behavior types cannot be defined
for structured data elements. These behaviors are not relevant because
structured data elements do not represent actual data and cannot be
acted upon in this way.

Design Studio adds the behavior to the Behaviors area. Each behavior type
enables you to dynamically control a specific aspect of your order data model.

7. In the Behaviors area, click the behavior to open the Properties view.

The Properties view is displayed with the set of properties that you must define
for the corresponding behavior type. See "Working with Behaviors" for more
information.

8. Click Save.

Note:

After you define the behavior properties, you can click the Task editor
Behaviors tab to review all of the behavior properties information defined
for the task. See "Task Editor Behaviors Tab" for more information.

Adding Automation Plug-ins to Automated Tasks
When using automated tasks in a process, you must create the automation plug-ins
that perform the processing for the task. Automation plug-ins enable the system
integrator to extend OSM behavior by running specific business logic when events
occur or by sending data to and receiving data from external systems. Design
Studio supports two types of built-in automation plug-ins: Sender and Automator. See
"Working with Automation Plug-Ins" for information about built-in automation types.

To add an automation plug-in to an automated task:

1. From the Studio menu, select Show Design Perspective.

2. Use the Studio Projects view.

3. Double-click an automated task.

Design Studio displays the corresponding automated task in the Automated Task
editor.

4. Click the Automation tab.

5. In the Automation tab of the Automated Task editor, click Add.

Chapter 7
Working with Automated Tasks

7-26

The Add Automation dialog box is displayed.

6. In the Name field, enter a name for the plug-in.

The name must be unique among the plug-in entity types within the same
namespace.

7. Select the plug-in type.

For example, select the Automator type if the plug-in receives data and performs
some work. Select the Sender type if the plug-in receives data, perform some
work, and then sends data to external systems.

8. In the Event Type field, do one of the following:

• If the plug-in receives data from external systems via topics or queues, select
External Event Receiver.

Automations defined as external event receivers receive incoming JMS or
XML messages from external systems and can automatically convert and
correlate message data. Additionally, Sender plug-ins defined as external
event receivers can generate new outbound messages based on received
messages.

• If the plug-in receives data from the OSM order, select Internal Event
Receiver.

Automations defined as internal event receivers receive messages from an
internal queue to which the automation framework subscribes. Messages sent
by OSM to the internal queue are triggered by internal events.

9. Click OK.

The newly created plug-in is displayed in the Automation list.

10. Select the plug-in from the list and click Properties.

The Properties view is displayed with information that varies by plug-in type
(Automator or Sender) and by event receiver type (Internal or External). See
"Configuring Automation Plug-In Properties" for more information.

Related Topics

Working with Automated Tasks

Working with Activation Tasks
Activation tasks provide integration between OSM and either ASAP or IP Service
Activator. You can model a process flow that includes one or more tasks that activate
services in a network using those systems.

Before modeling activation tasks, you must import at least one ASAP or IP Service
Activator service cartridge, which you use to define relationships between tasks and
service actions. See "Importing Activation Cartridge Projects" for more information.

When you create a first activation task in a workspace, Design Studio creates a data
dictionary project called ActivationOSMIntegrationDataDictionary containing the data
schema structure for ASAP and IP Service Activator. Data elements are annotated
on the Notes tab of the Data Schema editor. The ASAP data schema is called
ASAP_OSM. The IP Service Activator data schema is called IPSA.

When modeling activation tasks, see the following topics:

Chapter 7
Working with Activation Tasks

7-27

• About Activation Tasks

• Modeling Activation Tasks

About Activation Tasks
The interaction between OSM and the activation system is established through a
service request and response, which you configure by mapping OSM task data to
system parameters.

For ASAP, the OSM data is transformed to an OSS/J or web services order and sent to
ASAP to activate the specified services.

For IP Service Activator, the OSM data is transformed to a web services order that is
sent to IP Service Activator to activate the specified services.

The activation system returns event responses or exceptions, depending on the result
of the activation.

Using the activation task, you can:

• Update OSM orders with data from all events and exceptions returned by the
activation system (either ASAP or IP Service Activator).

• Map OSM data to Activation order headers, global parameters, and service action
parameters.

• Automatically map OSM data to global or service action parameters with the same
name.

• Define conditional transition states and statuses for completion events and
completion exceptions returned by the activation system.

• Enter Map and Key security credentials for web services orders.

Mapping OSM data to ASAP and IP Service Activator parameters ensures:

• That OSM sends the data that the activation system requires for service actions
(the request)

• That OSM orders are updated with the right information returned from the
activation system (the response)

• That the OSM activation task transitions properly when the integration is complete

See the following topics for more information on service action requests:

• About Service Action Request Mapping

• About Service Action Response Mapping

• About State and Status Transition Mapping

About Service Action Request Mapping
The service action request is made up of the following data:

• OSM header data: information that applies to the customer or to all line items on
the order

• OSM task data: information that is available to the task and necessary for the task
to complete

Chapter 7
Working with Activation Tasks

7-28

The service action is made up of the following data:

• Activation order header data: information that applies to the entire work order

• Service action data: information that is required to activate a service

• Global parameters data: information that you define once and which applies to
multiple service actions

You define parameter values in the Design Studio Properties view. For service action
and global parameters, you can define default mapping information. For activation
order header parameters, you can define either default mapping information or default
actions (for example, the default value for the srqAction parameter is ADD).

Some parameters in the activation order headers are prepopulated with default values,
indicated by a check mark when you first expand the Activation Order Headers in the
Service Actions tree.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

Modeling Activation Tasks

About Service Action Response Mapping
You create data structures in OSM to contain the response information returned
from ASAP and IP Service Activator. For each event and exception returned by the
activation system, you select the parameter values you want to retain, then identify the
OSM data structure to which these parameters are added. When the activation system
returns an event or exception, OSM updates the order data with the parameter values
that you selected.

The list of events and exceptions and activation response parameters are different for
each activation system.

The activation response parameters for ASAP can be customized.

The activation response parameters for IP Service Activator cannot be modified and
conform to how IP Service Activator expects to receive response data from OSM.

The infoParm parameter is significantly more complex for IP Service Activator than it is
for ASAP.

When an activation task is configured with IP Service Activator service actions
that require an IP Service Activator transaction to fulfill the activation request, the
transaction structure in the InfoParms structure contains information relating to the IP
Service Activator transaction

When an activation task is configured with IP Service Activator service actions that
look up data (such as for navigation service actions), the return data conforms to the
infoParms structure in the activation response, with one infoParm per service action.

Related Topics

Configuring Service Action Responses

Task Editor Response Data Tab

Chapter 7
Working with Activation Tasks

7-29

Modeling Activation Tasks

About State and Status Transition Mapping
Using the Task editor Response Data tab, you can configure state and status
transitions for completion events and exceptions returned by the activation system.
You can define multiple transitions (each with an XPath expression) to model different
scenarios for variations in the response data. For example, if an ASAP or IP Service
Activator parameter returns the value DSL, you may want the task to transition to a
DSL task; when the same parameter returns the value VOIP, you want the task to
transition a different task.

You can define state transitions for user-defined states only. You cannot define
transitions for system states, such as received, accepted, and completed. You define
the condition in the Properties views. At run time, OSM evaluates the conditions in the
order you have defined them and stops evaluating when a condition evaluates to true.

Completion events and exceptions must include a default transition in the event that
all specified conditions fail. You can change or delete the predefined default values, or
you can create your own. You can change or delete the predefined default values
or you can create your own. If you define no default conditions for the required
completion events and exceptions (no condition is defined with XPath expression
true()) Design Studio creates a problem marker.

The following table lists completion events and exceptions that require a default
transition configuration:

Name Activation System Type

orderCompleteEvent ASAP and IP Service Activator Event

orderCreateEvent ASAP only Event

orderEstimateEvent ASAP only Event

orderFailEvent ASAP and IP Service Activator Event

orderNEUnknownEvent ASAP only Event

orderRollbackEvent ASAP only Event

orderSoftErrorEvent ASAP only Event

orderStartupEvent ASAP only Event

orderTimeoutEvent ASAP only Event

orderTimeoutWarningEvent ASAP and IP Service Activator Event

createOrderByValueException ASAP and IP Service Activator Exception

getOrderByKeyException ASAP only Exception

queryManagedEntitiesException ASAP only Exception

Related Topics

Configuring Service Action Response State and Status Transitions

Task Editor Response Data Tab

Modeling Activation Tasks

Chapter 7
Working with Activation Tasks

7-30

Modeling Activation Tasks
You model activation tasks to integrate OSM with either and ASAP or IP Service
Activator. You can model a process flow that includes one or more tasks that activate
services in a network.

Note:

Before modeling activation tasks, ensure that you have defined the Design
Studio preferences for the OSM SDK and WebLogic Server installations. See
"Defining Order and Service Management General Preferences" for more
information.

To model an activation task:

1. Import an ASAP or IP Service Activator service cartridge.

See "Importing Activation Cartridge Projects" for more information.

2. Create an Activation Task entity.

You create an Activation Task entity to hold all of the information necessary to
send a request to the activation system, receive the response, update the order,
and transition the task. See "Creating New Tasks" for information about creating
tasks, and see "Designing Tasks and Activities" for information about creating
tasks from the Process editor.

Note:

The first time that you create an Activation Task entity in a workspace,
Design Studio automatically creates a new project to contain data
elements necessary for integration between OSM and the activation
system. This project is sealed and the data within should not be
changed.

3. Model the activation task data.

You select the data that the activation task requires from the order data or from a
data dictionary. See "Defining Task Data" for more information.

4. Configure the mapping information needed to make the service action request to
the activation system.

See "Configuring Service Action Requests" for more information.

5. Configure the mapping information needed to update OSM orders with the
response data returned by the activation system.

See "Configuring Service Action Responses" for more information.

6. Configure state and status transitions for completion events and completion
exceptions returned by the activation system.

Chapter 7
Working with Activation Tasks

7-31

See "Configuring Service Action Response State and Status Transitions" for more
information.

7. Configure activation task details.

You define the attributes that enable the activation task to execute properly in the
Activation environment. See "Task Editor Details Tab" and "Task Editor Activation
Task Details Tab" for more information.

8. Define activation task compensation strategies.

You specify how to compensate an activation task if the task is affected by
amendment processing. See "Task Editor Redo Tab" and "Task Editor Undo Tab"
for more information.

9. Configure activation task states and statuses.

A task state determines the milestone of a task in a process. A task status
describes how a task was completed and determines the next task in the process.
See "About Task States and Statuses" and "Assigning Task States and Statuses"
for more information.

10. Configure activation task permissions.

You assign execution modes to roles for each task to specify which roles
can perform the execution mode. See "Assigning Task Permissions" for more
information.

11. (Optional) Configure activation task jeopardies.

You can configure conditional jeopardy notifications to alert users or systems
that the activation task may be at risk. See "Task Editor Jeopardy Tab" for more
information.

12. (Optional) Configure task state automation events.

You configure state-based event notifications to alert users or systems of changes
to the activation task state. See "Task Editor Events Tab" for more information.

Configuring Service Action Requests
You configure service action requests by mapping OSM order header and task data to
Activation order header, service action, and global parameters. Additionally, you can
define conditional logic to determine when service actions should be added to a work
order request.

Note:

See "Modeling ASAP Services" and "Defining Service Action Properties" for
more information about creating and configuring service actions.

To configure service action requests:

1. Associate service actions with the activation task:

a. On the Request Data tab, right-click in the Service Actions area and select
Add Service Action.

Chapter 7
Working with Activation Tasks

7-32

Note:

Service actions for IP Service Activator are available in reference
Design Studio IP Service Activator projects or are generated by
Design Studio when a CTM template is imported into an Activation
IPSA project. See "About CTM Templates" for more information.

b. Right-click the service action to either change the sequence of service actions,
open them in the Service Action editor, or remove them from the task.

2. (Optional) Define new global parameters.

You can define service actions as global parameters to avoid mapping the
parameter multiple times:

a. In the Request Data tab, right-click in the Service Actions area and select
Add Global Parameters.

The Add Global Parameter dialog box is displayed.

b. In the Name field, select the desired parameter, enter the value, and click OK.

3. Map OSM data to Activation order header, service action, and global scalar
parameters:

Note:

For details about mapping and optionally transforming OSM data to
service action XML parameters, see "Mapping OSM Data to Service
Action XML Parameters."

a. In the Request Data tab Task Data area, select Order Header or Task Data.

Depending on your selection, the fixed order header data or the task data
defined for the activation task is displayed in the Task Data area.

b. In the Service Actions area, expand the Activation Order Headers folder,
the Global Parameters folder, or any service action folder to display the
parameters.

Required service action parameters are displayed with an asterisk after the
parameter name.

c. Drag an OSM order header or a task data node onto an Activation order
header, service action, or global parameter.

A check mark appears next to the parameter to indicate that it is mapped
to OSM data. Right-click the parameter and select Properties to review the
mapping information, default value, and condition expression, depending on
the parameter.

Chapter 7
Working with Activation Tasks

7-33

Note:

To automatically build XPath expressions, press and hold the Alt
key, then drag OSM data from the Task Data area to the Properties
view Binding field. Constants or default values must be enclosed
within apostrophes (' ').

4. (Optional) Automatically map task data to global parameters:

a. In the Request Data tab Task Data area, select Task Data.

b. In the Task Data area, right-click a data structure and select Auto map
parameter.

Design Studio automatically maps the data structure, including its child elements,
to a global parameter of the same name (case sensitive).

5. Define conditional logic for service actions and parameters.

You define conditional logic (as an XPath expression) to determine when to
include a service action on a work order request. See "Properties Service Action
Binding View" for more information.

6. Add service action parameters to OSM task data.

You can add all parameters of a service action to a selected OSM data structure.
Service action parameters are not added to the structure if it contains a child
element with the same name as the parameter. See "Task Editor Request Data
Tab" for more information.

Note:

Design Studio limits the maximum length of service action parameters
to 1000 characters when adding them to a structure. If you create data
elements for service action parameter fields manually (using the Data
Schema editor), ensure that you set the maximum length of the new
data element equal to the maximum length defined for the service action
parameter.

Related Topics

About Service Action Request Mapping

Task Editor Request Data Tab

Mapping OSM Data to Service Action XML Parameters

Modeling Activation Tasks

Modeling Activation Tasks

Mapping OSM Data to Service Action XML Parameters
The Activation Task editor supports the following ways of mapping OSM data to ASAP
and IP Service Activator service action XML data types:

Chapter 7
Working with Activation Tasks

7-34

• Mapping OSM XML data to an ASAP or IP Service Activator XML parameter
without modeling the XML structure using an XPath expression. See "Mapping
OSM Data to Service Action XML Parameters Using XPath" for more information.

• Mapping and optionally transforming OSM XML data structures with child
elements to an ASAP or IP Service Activator XML parameter using an XSLT
snippet. See "Mapping OSM Data to Service Action XML Parameters Using XSLT"
for more information.

Related Topics

About Service Action Request Mapping

Task Editor Request Data Tab

Modeling Activation Tasks

Mapping OSM Data to Service Action XML Parameters Using XPath
To map OSM XML data to ASAP or IP Service Activator parameters using an XPath
expression:

1. Open a data schema associated to an OSM project.

The Data Schema editor is displayed.

2. Right-click in the parameter area and select Add Structure (CTRL + ALT + S).

The Create Data Schema Structure dialog box is displayed.

3. Do the following:

a. In the Name field, enter a name for the structure. For example,
XMLTypeNoChildren.

b. Click Finish.

The empty structure is displayed in the Data Schema editor parameter area.

4. Open an OSM order that you want to associate the structure to.

The Order editor is displayed.

5. Right-click in the Order Template area and select Select from Dictionary.

The Select Data Elements dialog box is displayed.

6. Select the empty structure.

7. Click OK.

The structure is displayed in the Order Template area.

8. Open an Activation Task that you want to associate the structure to.

The Activation Task editor is displayed.

9. In the Request Data tab Task Data area, select Task Data.

10. Right-click in the Task Data area and select Select from Order Template.

The Select an Order Template Node dialog box is displayed.

11. Select the empty structure.

12. Click OK.

The structure is displayed in the Task Data area.

Chapter 7
Working with Activation Tasks

7-35

13. In the Service Actions area, right-click and select Add Service Action.

The Select a Service Action dialog box is displayed.

14. Select a service action that includes the XML parameter you want to map to the
empty OSM structure.

15. Click OK.

The service action is displayed in the Service Actions area.

16. Expand the newly added service action.

All parameters associated to the service action appear.

17. From the Task Data area, drag the empty structure to the corresponding service
action XML parameter in the Service Action area.

A check mark appears next to the parameter to indicate that it is mapped to the
OSM structure.

18. Click the service action parameter. Verify the following fields in the Properties tab:

a. In the Binding Type field, ensure that the XPath expression field is selected.

b. In the Binding field, ensure that the XPath expression references the OSM
structure. For example: osm:XMLTypeNoChildren

Related Topics

Mapping OSM Data to Service Action XML Parameters

Mapping OSM Data to Service Action XML Parameters Using XSLT
To map and optionally transform OSM XML data structures with child elements to an
ASAP or IP Service Activator XML parameter using XSLT snippets:

1. Open a data schema associated to an OSM project.

The Data Schema editor is displayed.

2. Create an OSM structure with any number of child elements and child structures
with child elements.

3. Open an OSM order that you want to associate the structure to.

The Order editor is displayed.

4. Right-click in the Order Template area and select Select from Dictionary.

The Select Data Elements dialog box is displayed.

5. Select the structure.

6. Click OK.

The structure is displayed in the Order Template area.

7. Open an Activation Task that you want to associate the structure to.

The Activation Task editor is displayed.

8. In the Request Data tab Task Data area, select Task Data.

9. Right-click in the Task Data area and select Select from Order Template.

The Select an Order Template Node dialog box is displayed.

10. Select the empty structure and click OK.

Chapter 7
Working with Activation Tasks

7-36

The structure is displayed in the Task Data area.

11. Right-click in the Service Actions area and select Add Service Action.

The Select a Service Action dialog box is displayed.

12. Select a service action that includes the XML parameter you want to map to the
OSM structure.

13. Click OK.

The service action is displayed in the Service Actions area.

14. Expand the newly added service action.

All parameters associated with the service action are displayed.

15. From the Task Data area, drag the structure to the corresponding service action
XML parameter in the Service Action area.

A check mark appears next to the parameter to indicate that it is mapped to the
OSM structure.

Note:

The OSM structure and children do not map to structures in the Service
Actions area, only to individual parameters.

16. Click the service action parameter. Verify the following fields in the Properties tab:

a. In the Binding Type field, ensure that the XSLT snippet field is selected.

b. In the Binding field, ensure that the XSLT snippet maps the OSM structure to
the ASAP or IP Service Activator structure.

For example:

<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>stuff1</mslv-sa:name>
 <mslv-sa:xmlValue>
 <ASAPproj:XMLData xmlns:ASAPproj="http://xmlns.oracle.com/
communications/sce/dictionary/ASAPproj/ASAPproj">
 <ASAPproj:data>
 <ASAPproj:Title>
 <xsl:value-of select="osm:XMLData/osm:data/
osm:Title"/>
 </ASAPproj:Title>
 <ASAPproj:LineItem>
 <xsl:value-of select="osm:XMLData/osm:data/
osm:LineItem"/>
 </ASAPproj:LineItem>
 </ASAPproj:data>
 <ASAPproj:XMLId>
 <xsl:value-of select="osm:XMLData/osm:XMLId"/>
 </ASAPproj:XMLId>
 <ASAPproj:XMLType>
 <xsl:value-of select="osm:XMLData/osm:XMLType"/>
 </ASAPproj:XMLType>
 </ASAPproj:XMLData>
 </mslv-sa:xmlValue>
 <mslv-sa:type>OPTIONAL_XML</mslv-sa:type>
</mslv-sa:serviceValue>

Chapter 7
Working with Activation Tasks

7-37

Note:

By default, Design Studio assumes that the OSM and Activation
parameters structures are identical. If the parameters are different,
modify the default mapping as described in the next step.

c. (Optional) If the default XSLT expression mapping does not correspond to
the ASAP or IP Service Activator parameter structure, change the parameter
mappings within the <mslv-sa:xmlValue> element.

For example:

<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>stuff1</mslv-sa:name>
 <mslv-sa:xmlValue>
 <ASAPproj:NewValue1 xmlns:ASAPproj="http://xmlns.oracle.com/
communications/sce/dictionary/ASAPproj/ASAPproj">
 <ASAPproj:NewValue2>
 <ASAPproj:NewValue3>
 <xsl:value-of select="osm:XMLData/osm:data/
osm:Title"/>
 </ASAPproj:NewValue3>
 <ASAPproj:NewValue4>
 <xsl:value-of select="osm:XMLData/osm:data/
osm:LineItem"/>
 </ASAPproj:NewValue4>
 </ASAPproj:NewValue2>
 <ASAPproj:NewValue5>
 <xsl:value-of select="osm:XMLData/osm:XMLId"/>
 </ASAPproj:NewValue5>
 <ASAPproj:NewValue6>
 <xsl:value-of select="osm:XMLData/osm:XMLType"/>
 </ASAPproj:NewValue6>
 </ASAPproj:NewValue1>
 </mslv-sa:xmlValue>
 <mslv-sa:type>OPTIONAL_XML</mslv-sa:type>
</mslv-sa:serviceValue>

where NewValue1 to NewValue6 correspond to the ASAP or IP Service
Activator XML parameters.

Related Topics

Mapping OSM Data to Service Action XML Parameters

Configuring Service Action Responses
You create data structures in OSM to contain the response information returned from
ASAP or IP Service Activator. For each event and exception returned by the activation
system, you select which parameter values to retain, then identify the data structure
to which these parameters are added. When the activation system returns an event or
exception, OSM updates the order data with the selected response parameter values.

To configure service action responses:

1. In the Activation Task editor Response Data tab, select an event or exception
from the Event/Exception area.

Chapter 7
Working with Activation Tasks

7-38

All of the data an event or exception returns appears in the Activation Response
area.

2. Add an OSM data structure from the order template or from a data dictionary to
contain the information returned by the service action response:

a. Right-click in the Response Data Location area or the OSM Data Binding area
and select Select from Order Template or Select from Data Dictionary.

If you select a structure from a data dictionary, Design Studio automatically
adds that structure to the order template.

b. Select a structure from the dialog box and click OK.

The structure is displayed in the Response Data Location and OSM Data
Binding area.

Note:

Do not add a data structure that uses a distributed order template.
Attempting to map a response value to a data element in a
distributed order template will cause an error. For more information
about distributed order templates, see OSM Concepts.

3. Do at least one of the following:

• Map fixed activation response structures to task data structures:

a. Click the Set Data Location subtab.

b. In the Activation Response area, check the activation response elements
or structures that you want to map to task data structures.

c. In the Response Data Location area, right-click a task data structure and
select Set as Data Location.

Design Studio adds the data you selected for the event or exception in the
Activation Response area to the structure in the Response Data Location
area. When the event or exception is returned from the activation system,
OSM adds the data values to the OSM structure.

• Bind activation response elements to arbitrary task data elements:

a. Click the Response Data Mapping subtab.

b. In the Activation Response area, drag an activation response data
element onto a task data element in the OSM Data Binding area.

The task data element is checked.

If you select no data in the Activation Response area for an event or exception,
OSM ignores that event or exception when it is returned by the activation system.

4. (Optional; ASAP only) Define conditional mappings for service action response
parameters. See "Filtering ASAP Response Data."

This step enables you to reduce the response data returned to OSM.

Chapter 7
Working with Activation Tasks

7-39

Note:

The information returned by IP Service Activator infoparms is structured
to enable a detailed mapping of return data back to OSM order data.
Therefore, there is no need to filter the amount of response data.

The ASAP Infoparm is less structured.

5. Right-click the OSM structure and select Open Properties View.

The Properties view for the task data node is displayed.

6. Click the Identification tab.

See "Task Data Node Properties View Identification Tab" for more information.

7. Select Override Data Dictionary Minimum/Maximum.

8. In the Maximum field, select Unbounded.

9. Click Save.

Related Topics

Task Editor Response Data Tab

About Service Action Response Mapping

Modeling Activation Tasks

Filtering ASAP Response Data
The amount of response data returned by an activation system can be very large,
while the needed data might be quite small. Parsing large amounts of response data
can affect OSM performance. If you notice a reduction in OSM performance due to
large amounts of response data, you can specify a condition on specific parameters to
limit the response data. You can create response data limitations for as many events
or exceptions as you choose by binding the activation response data to the desired
OSM data.

To limit response data:

1. In the Task editor Response Data tab, select an event or exception from the
Event/Exception field.

2. In the Response Mapping area, click the Set Data Location tab.

3. In the Activation Response area, right-click InfoParm.

The Response Filter Properties view is displayed.

4. Drag a parameter into the Response Filter Condition field.

The XPath representation of the parameter is created in the Condition field.

5. Add the desired condition to the XPath representation.

For example, consider that you only want to update infoParm data in OSM if
the serviceId infoParm parameter from orderCompleteEvent is equal to 2. First,
select orderCompleteEvent in the Event/Exception field. Then click Detailed
Parameters and infoParm in the Activation Response field. Drag serviceId into
the Condition field. The XPath representation of serviceID is as follows:

Chapter 7
Working with Activation Tasks

7-40

mslv-sa:serviceId

Now set the desired condition by adding ='2':

mslv-sa:serviceId='2'

6. Click Save.

Related Topics

Configuring Service Action Responses

About Service Action Response Mapping

Modeling Activation Tasks

Response Filter Area

Configuring Service Action Response State and Status Transitions
For completion events and exceptions returned by the activation system, you can
configure state and status transitions.

To configure state and status transitions:

1. In the Activation Task editor Response Data tab, select an event or exception
from the Event/Exception field.

Predefined default states and status transitions appear in the Transition to State
and Status area.

2. Click the Add button.

The State/Status Selection dialog box is displayed.

3. In the Condition Name field, enter a name for the transition.

4. Select the State or Status option.

If you select State, select a user-defined state. If you select Status, select a
predefined task status. See "About Task States and Statuses" and "Assigning Task
States and Statuses" for more information.

5. Click OK.

Design Studio adds the new transition to the table.

6. (Optional) Select a transition row and click Move Up or Move Down to change the
order of the transitions.

The order in which they appear in the table determines the order in which OSM
evaluates the conditions at run time.

7. Select a transition row and click Properties.

The Properties view for the state/status transition is displayed.

8. In the Condition field, define an XPath expression to define the conditions under
which the transition occurs.

See "Properties State/Status Transition View" for more information about defining
conditions.

9. Click Save.

Chapter 7
Working with Activation Tasks

7-41

Related Topics

About State and Status Transition Mapping

Task Editor Response Data Tab

Modeling Activation Tasks

Working with Transformation Tasks
Transformation tasks enable you to access a transformation manager from an OSM
process. These tasks are similar to automated tasks, except that the automation
plug-in is prepopulated when the task is created. However, you are not restricted to
using the provided automation plug-in. All of the plug-in configuration options that are
available with automated tasks are also available with transformation tasks.

Model your order transformation manager entities before you model the transformation
task. For more information about modeling order transformation, see OSM Concepts.

Related Topics

Working with Automated Tasks

Working with Order Item Parameter Bindings

Working with Transformation Sequences

Working with Transformation Managers

Working with Mapping Rules

Task Editor
Use the Task editor to model the tasks you use in your processes to offer a specific
service to a customer. Each task type has its own set of tabs in the Task editor. The
following table lists the Task editor tabs that appear for each task type.

Tab Name Manual Task Automated
Task

Activation Task Transformation
Task

Task Editor Activation Task Details Tab No No Yes No

Task Editor Automation Tab No Yes No Yes

Task Editor Behaviors Tab Yes Yes No No

Task Editor Compensation Tab Yes Yes No Yes

Task Editor Details Tab Yes Yes Yes Yes

Task Editor Events Tab Yes Yes Yes Yes

Task Editor Fallouts Tab Yes Yes No Yes

Task Editor Jeopardy Tab Yes Yes Yes Yes

Task Editor Permissions Tab Yes Yes Yes Yes

Task Editor Redo Tab No No Yes No

Task Editor Request Data Tab No No Yes No

Task Editor Response Data Tab No No Yes No

Chapter 7
Working with Transformation Tasks

7-42

Tab Name Manual Task Automated
Task

Activation Task Transformation
Task

Task Editor Composite Data View Tab Yes Yes No Yes

Task Editor States/Statuses Tab Yes Yes Yes Yes

Task Editor Task Data Tab Yes Yes No Yes

Task Editor Undo Tab No No Yes No

The following field is common to multiple tabs in the Task editor:

Field Use

Description Edit the display name of the task.

Task Editor Activation Task Details Tab
The Task editor Activation Task Details tab appears for activation task types.

Use the Activation Task Details tab to define the attributes that enable the activation
task to execute properly in the Activation environment. For example, you can
associate an activation task with an order, specify the user to run this task, and provide
the details for the response queue name, maximum cache size, and cache time-out.

Field Use

Activation System Displays the activation system against which the activation task is registered.

Run As Enter the OSM user name (security principal) that can execute this task. A password is
not necessary to authenticate this user because only an administrator has the authority
to deploy components into the server.

Ensure that the user is set up in the WebLogic Server console. For more information
about setting up users and groups, see OSM System Administrator's Guide.

Note: Oracle recommends using the DEFAULT_AUTOMATION_USER cartridge model
variable in the Run As field. See "Project Editor Model Variables Tab" for more
information.

Maximum Number in
Cache

Specify the maximum number of entries in the cache that are maintained at any one
time.

Cache Timeout Specify the number of seconds for which the cache is valid.

Exception Select the exit status to use when an exception occurs during the activation task
processing. Status options include any status values you assigned to the task.

Activation Order ID
Node

Select a data node to store the order ID. The activation order ID is used by the defined
compensation strategy when a task is affected by amendment processing. See "Task
Editor Redo Tab" and "Task Editor Undo Tab" for more information.

OSSJ Enter the location to which OSM sends OSSJ service action requests. Configure this
attribute if you want to connect to an ASAP instance using Java message service (JMS).

Depending on how you set up your cartridge project model variables, you can use the
default values or define your own queue location names. See "Project Editor Model
Variables Tab" for more information.

Chapter 7
Task Editor

7-43

Field Use

Web services Enter the location to which OSM sends web services service action requests. Configure
this attribute if you want to connect to an activation system instance using web services
messages. You must also configure the Map and Key fields to secure the web services
messages.

Depending on how you set up your cartridge project model variables, you can use the
default values or define your own queue location names. See "Project Editor Model
Variables Tab" for more information.

Map and Key for
Activation Credential

ASAP and IP Service Activator secure web services service actions with a web services
user name and password located in the activation system WebLogic server. You must
store this user name and password within the Fusion Middleware Credential Store
Framework (CSF) using the credStoreAdmin.bat tool located in the OSM_home/SDK/
XMLImportExport folder, where OSM_home is the location where the OSM software is
installed. The credStoreAdmin.bat tool creates a map and a key that corresponds to the
ASAP Web Services user name and password. For more information about this tool, see
the OSM System Administrator's Guide.

Environment ID Enter the activation system environment ID to which the service action requests are sent.

Note: When you create cartridges, some of the variable information to define may
depend on a specific environment. If you do not have environment specific values for
variables that you will need at run time, you can create tokens for the variables and later
define specific variable values for each environment in which you will use the variable.
Tokens are place holders for environment-specific values that can be defined at the time
of deployment. See "Project Editor Model Variables Tab" for more information.

Response Queue Enter the JNDI name of the response queue on which this automator listens. If you do
not enter a value, the system uses a default value. Values must be defined in WebLogic
Server.

Design Studio populates this field with a default value if service action requests are
configured to be submitted using OSSJ.

When service action requests are configured to be submitted using web services, you
must define a response queue.

JMS topic for events Enter the location to which service action responses are sent. Depending on how you set
up your cartridge project model variables, you can use the default values or define your
own topic location names. See "Project Editor Model Variables Tab" for more information.

If you are using store and forward (SAF) to communicate to an ASAP instance located
on a different WebLogic server, Oracle recommends selecting the Use a queue check
box to use a queue instead of a topic. For more information about SAF, see the OSM
Installation Guide.

Related Topics

Modeling Activation Tasks

About Activation Tasks

Task Editor Automation Tab
The Task editor Automation tab appears for automation and transformation task
types.

The Automation tab displays a list of automation plug-ins registered against the
automated task. When the OSM server encounters the task during run-time it triggers
the plug-ins to begin the work that they are designed to perform.

Chapter 7
Task Editor

7-44

When modeling automated tasks in the Automation tab, see the following topics for
more information:

• Properties View Details Tab

• Properties View External Event Receiver Tab

• Properties View Compensation Tab

• Properties View Correlation Tab

• Properties View XQuery Tab

• Properties View XSLT Tab

• Properties View Routing Tab

• Properties View Custom Plug-in Tab

• Properties View Notes Tab

Field Use

Name Displays the name of the automation plug-in. Click the value in the Name column to change or
edit the name.

Note: Design Studio displays the automation plug-ins in the Automation tab alphabetically in
ascending or descending order. The order in which the plug-ins appear does not indicate or
affect the order in which the plug-ins will perform during run time. When you have multiple
automation plug-ins registered against an automated task, you must ensure that the plug-
ins are consuming only those messages that are pertinent to the plug-in operation. See
"Properties View External Event Receiver Tab" for information about how to filter for specific
message properties.

Type Displays the automation plug-in type. There are two basic types of built-in automation plug-ins:
Sender and Automator. Each type can be implemented by an XSLT style sheet or by XQuery.
Additionally, you can create your own custom plug-in using the customer plug-in template. See
"Working with Automation Plug-Ins" for more information.

Note: XQuery automation types cannot be implemented when using releases prior to OSM
7.0.

Event Type Displays whether an automation plug-in receives data from an external system queue or from
an internal OSM queue. See "Configuring Automation Plug-In Properties" for more information.

Properties Select an automation plug-in from the Automation table and click Properties to access the
Automation Plug-in Properties tabs. See "Configuring Automation Plug-In Properties" for more
information.

Remove Select an automation plug-in from the Automation table and click Remove to delete the
automation from the list of plug-ins registered against the task.

Add Click to add an automation plug-in to the list of plug-ins registered against the task. See
"Adding Automation Plug-ins to Automated Tasks" for more information.

Properties View Details Tab
Use the Properties view Detail tab to define information that is common to all types of
automation plug-in and event receiver types.

Field Use

Name Enter a plug-in name. The name must be unique among plug-in entities in the same namespace.

Note: While plug-in names can be any arbitrary name that you assign to the automation, Oracle
recommends that you use a consistent naming pattern for all of the automations that you create.

Chapter 7
Task Editor

7-45

Field Use

EJB Name Edit the system-provided default EJB name. The default value with which Design Studio initially
populates this field depends on where the automation is defined:

• If the automation is defined for a task (automated task, task state-based event notification,
task jeopardy notification), the EJB name defaults to TaskName.AutomationName, where
TaskName is the name you provided when defining the task, and AutomationName is the
name you provided when defining the automation.

• If the automation is defined for an order (order milestone-based event notification, order
data changed event notification, order jeopardy notification), the EJB name defaults to
OrderName.AutomationName, where OrderName is the name you provided when defining
the order, and AutomationName is the name you provided when defining the automation.

• If the automation is defined for a process (task state-based event notification, task status-
based event notification), the EJB name defaults to ProcessName.AutomationName, where
ProcessName is the name you provided when defining the task, and AutomationName is the
name you provided when defining the automation.

Note: The EJB name must be unique per OSM server. However, as there is no method for
predicting to which OSM server the cartridge will be deployed, you should ensure uniqueness
across all automation plug-ins defined for a cartridge. The default EJB name guarantees this
uniqueness; therefore, Oracle recommends that you do not change the defaulted EJB name.

See "Working with Jeopardy and Event Notifications" for more information jeopardy and event
notifications.

Run As Enter the OSM user name (security principal) whose credentials are used to execute this
automation plug-in. A password is not necessary to authenticate this user because only an
administrator has the authority to deploy components into the server.

The value of this field must reflect the user ID that is used to run the automation:

• The user ID must be set up in the WebLogic Server Administration console. See the
discussion of setting up security in OSM System Administrator's Guide for more information.

• The user ID must be defined in the OSM Administration area of the Order Management web
client (a workgroup in OSM Administration is a role in Design Studio). See "Working with
Roles" for more information.

• The user ID must be assigned to the workgroup in the OSM Administration area of the Order
Management web client that corresponds to the role defined on the Permissions tab of the
Design Studio task, order, or process that defines the automation.

Note: Oracle recommends using the DEFAULT_AUTOMATION_USER cartridge model variable in
the Run As field. See "Defining Model Variables" for more information.

Event Type This field is enabled only for automations defined for automated tasks. Select one of the following:

• External Event Receiver if the plug-in will receive data from external systems via topics or
queues.

Automations defined as external event receivers receive incoming JMS or XML messages
from external systems, and can automatically convert and correlate message data.
Additionally, Sender plug-ins defined as external event receivers can generate new outbound
messages based on received messages.

• Internal Event Receiver if the plug-in receives data from the OSM order data.

Automations defined as internal event receivers receive messages from an internal queue to
which the automation framework subscribes. Messages sent by OSM to the internal queue
are triggered by internal events.

Note: If you intend to secure automations such that different user IDs have access to run different
automations, Oracle recommends that you incorporate these changes after you ensure that the
automations are working successfully.

Changing a plug-in's automation event type may result in the loss of any data that is not common
between the event receiver types.

Chapter 7
Task Editor

7-46

Field Use

Fail Task on
Automation
Exception

Select this check-box to fail the task if an exception occurs when running the automation plug-in.
The plug-in can throw any exception and OSM retries the plug-in as many times as configured
on the JMS destination retry. On the last retry attempt OSM fails the task and logs the exception
message as the failure reason.

Related Topics

Example: Modeling a Basic Automator Plug-In

Working with Automated Tasks

Configuring Automation Plug-In Properties

Properties View External Event Receiver Tab
Use the Properties view External Event Receiver tab to define how OSM retrieves
and processes messages placed on the queue by external systems.

The Properties view External Event Receiver tab appears only for Automator and
Sender plug-in types defined as external event receivers. External event receivers
listen to external system queues or topics for JMS messages. To define a plug-in as
an external event receiver, select the External Event Receiver option on the Add
Automation dialog box when creating a new automation entry.

Field Use

JNDI Name Enter the name of the external system from which the plug-in receives messages. JNDI
Name is mandatory and contains a system-supplied default value which you must change
to reflect your own system topology. The JNDI Name must be unique in the workspace.

The default value with which Design Studio initially populates this field depends on where
the automation is defined:

• If automation is defined for a task (automated task, task state-based
event notification, task jeopardy notification), the JNDI name defaults to
TaskName.AutomationName.jndiName, where TaskName is the name you provided
when defining the task, and AutomationName is the name you provided when
defining the automation.

• If automation is defined for an order (order milestone-based event notification,
order data changed event notification, order jeopardy notification), the JNDI name
defaults to OrderName.AutomationName.jndiName, where OrderName is the name
you provided when defining the order, and AutomationName.jndiName is the name
you provided when defining the automation.

• If automation is defined for a process (task state-based event
notification, task status-based event notification), the JNDI name defaults to
ProcessName.AutomationName.jndiName, where ProcessName is the name you
provided when defining the task, and AutomationName is the name you provided
when defining the automation.

Destination Type Select the type of the response destination. A JMS destination is either a javax.jms.Queue
or a javax.jms.Topic. Topics are generally used when messages are published for general
availability to multiple external systems. Queues are generally used if the sender wants
only a single external system to consume the message.

URL, Initial Context
Factory, Connection
Factory

(Optional) Enter this information to connect to an external application server. Specify
the URL and the InitialContextFactory class for the JNDI provider, and specify the
ConnectionFactory class for the JMS server.

Chapter 7
Task Editor

7-47

Field Use

Message Property
Selector

Enter a selector based on the message properties applied to the external queue. Using an
XPath expression or query statement in this field enables you to filter incoming messages
to only those messages with specific properties defined at the header level. Using a
message property enables you to interrogate the message on the external queue and
determine which plug-in should perform the processing of this task instance.

When you have multiple plug-ins with identical event receiver types defined for a task,
the OSM server will select the first plug-in whose message property selector evaluates to
true. A message on an external JMS queue can be consumed only once. Consequently,
it is critical to ensure that your plug-ins consume the appropriate messages. Useful
properties for selection include source, type, process, process status, or priority.

For example, for a single task, you might create multiple external event receiver Automator
plug-ins, each defined with a mutually exclusive message property to distinguish between
task priority levels, where one plug-in processes tasks defined as high priority, and a
different plug-in processes tasks defined as low priority.

Note: See the JMS specification for the syntax of this selector expression on the Oracle
Technology Network website at:

http://www.oracle.com/technetwork/java/jms/index.html

Note: When you define only one automation plug-in external event receiver for each
automated task, and you use the Optimized build-and-deploy mode to build and deploy
automation plug-ins, you are not required to enter a selector in the Message Property
Selector field. (For OSM 7.3 servers and later, Optimized is the only build-and-deploy
mode available.) In this case, automated tasks can share the same JMS queue without a
message property selector being set. You must set a message property selector when you
do either of the following:

• Define multiple automation plug-in external event receivers for the same automated
task.

• Use the Legacy build-and-deploy mode to build and deploy cartridges with
automation plug-ins.

• Use the Both (Allow server preference to decide) build-and-deploy mode to build and
deploy cartridges with automation plug-ins and configure the OSM server dispatch
mode for the Internal mode.

For information on build-and-deploy modes, see "Defining Build-and-Deploy Modes
for Automation Plug-ins."

Note: XPath and XQuery fields are limited to 4000 characters.

Chapter 7
Task Editor

7-48

http://www.oracle.com/technetwork/java/jms/index.html

Field Use

XML Message Body
Selector

In the Select field, enter an XPath expression to select an element from the XML body
content. In the Compare field, enter the string value of the element to determine the
match. Using an XPath expression in this field enables you to filter incoming messages to
only those messages defined with specific properties in the body of incoming messages.

The XML Message Body Selector function is deprecated, but it is supported for backward
compatibility. Oracle recommends that you use an alternate way of filtering messages
such as message property selector.

For example, the following sample response from the external system includes a
<typeOrder> element that defines the order type:

<orderResponse xmlns="http://xmlns.oracle.com/communications/sce/
dictionary/OsmCentralOMExample/interactionResponse" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <numSalesOrder>1</numSalesOrder>
 <numOrder>3</numOrder>
 <typeOrder>NEW</typeOrder>
 <errorCode>0</errorCode>
 <message>OK</message>
 <status>A</status>
</orderResponse>

For this example response, to consume only the NEW type of order, you can use either of
the following in the Select field:

• For a non-namespace-aware query:

/*[local-name() ='orderResponse']/*[local-name()='typeOrder']/text()

• For a namespace-aware query:

/*[local-name() ='orderResponse'
and namespace-uri()=' ://xmlns.oracle.com/communications/sce/dictionary/
OsmCentralOMExample/interactionResponse']/*[local-name()='typeOrder'
and namespace-uri()='://xmlns.oracle.com/communications/sce/dictionary/
OsmCentralOMExample/interactionResponse']/text()

In both cases, you would set the Compare field to NEW. All selected messages that
contain a typeOrder parameter value of NEW (for example, as opposed to Revision, or
Follow-On) would be directed to the automation plug-in.

Note: You can use the XML Message Body Selector with response messages of type
XMLMessage. OSM ignores the selector for other message types, such as TextMessage.
If you need to use the message body selector ensure that messages are of type
XMLMessage message. For non-XMLMessage messages you are restricted to the
Message Property Selector.

Note: XPath and XQuery fields are limited to 4000 characters.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Compensation Tab
Use the Properties view Compensation tab to define the execution modes that
automation plug-in can process. This tab appears only for Automator and Sender
plug-in types defined as an Internal Event Receiver.

Chapter 7
Task Editor

7-49

Field Use

Execution Mode Specify the execution modes that this plug-in can run when invoked. For more information
about execution modes, see "About Task Compensation."

Select one of the following execution modes from the Normal column for execution modes that
occur when the task is processing normally:

• Select Do to indicate that the automation should run during normal order processing.
Deselect this check box and select Redo or Undo to restrict the automation to
compensation processing only.

Note: If you select no check boxes on this tab, automation processing defaults to the Do
execution mode.

• Select Redo to indicate whether the automation should run again if the automation
executed once but the order has changed since then.

• Select Undo to indicate whether the action taken by an automation should be undone
when the automation executed but the order has changed since then. You can also
exclude certain data structure and elements from being undone on a task by setting the
Ignore rollback during undo check box in the Order editor, Order Template, Properties
View Order Data tab (see "Properties View Order Data Tab").

Select one of the following execution modes from the Fallout column for execution modes that
occur when the task has failed:

• Select Do so that if the task fails when running in the normal Do execution mode, the
automation task can still run plug-ins configured with the Do in fallout mode. Deselect
this check box and select Redo or Undo to restrict the automation to compensation
processing only.

• Select Redo so that if the task fails when running in the normal Redo execution mode, the
automation task can still run plug-ins configured with the Redo in fallout mode.

• Select Undo so that if the task fails when running in the normal Redo execution mode, the
automation task can still run plug-ins configured with the Undo in fallout mode. You can
also exclude certain data structure and elements from being undone on a task by setting
the Ignore rollback during undo check box in the Order editor, Order Template, Properties
View Order Data tab (see "Properties View Order Data Tab").

Note: Design Studio has validations in place that prevent you from defining more than one
internal event receiver automation with the same execution mode per automated task or
automated notification. For example, an automated task can not define two internal event
receiver automations that both have Do selected for the execution mode. However, an
automated task can define three internal event receiver automations if each defines a different
execution mode (Do, Redo, and Undo).

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Correlation Tab
Use the Correlation tab to specify how an in-bound response from an external system
correlates back to the original outbound message that initiated the communication with
the external system.

The Properties view Correlation tab appears only for Automator and Sender plug-in
types defined as external event receivers. The Correlation parameter is mandatory
and defaults to Message Property, which in turn defaults to JMSCorrelationID.

Chapter 7
Task Editor

7-50

Field Use

Correlation Select the method for correlating responses from external systems with the originating
response:

• Based on a Message Property.

Message property correlation provides the ability to correlate the incoming message
with the appropriate automated task, based on a message property defined in the
message header. Message property correlation is the simplest and most commonly used
form of correlation. The default message property is JMSCorrelationID, which is a JMS-
generated number that is placed in the header of all OSM outbound messages. You have
the option to change the message property to something other than JMSCorrelationID,
and being responsible for setting the value on all outbound messages that expect an
in-bound response.

• Based on an element in the XML Body

XML body correlation provides the ability to correlate a response message based on a
message property defined in the message body, such as particular data field. If used, the
XML Body field is defined as an XPath.

The Correlation parameter is mandatory and defaults to Message Property, and the system
sets the corresponding default value for the Message Property field to JMSCorrelationID.

Message
Property or XML
Body

This field is conditional to the selection that you make in the Correlation field. If you selected
Message Property in the Correlation field, the system supplies the standard JMS correlation
property JMSCorrelationID. The OSM order correlates with incoming events from external
systems when the JMSCorrelationID on the order and on the message matches.

If you selected XML Body in the Correlation field, you can enter an XPath expression to point
to an element in the XML body of the message. The value for this element in the OSM order
must match the value for the same element on the incoming message.

Note: XPath and XQuery fields are limited to 4000 characters.

Related Topics

About Automation Message Correlation

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Properties View XQuery Tab
Use the XQuery tab to specify your XQuery file so the predefined automation plug-in
can access it. This tab appears for XQuery type plug-ins only.

Note:

XQuery automation types cannot be implemented when using releases prior
to OSM 7.0.

Chapter 7
Task Editor

7-51

Field Use

Script Specify which method to use to retrieve the XQuery file. Select from the following options:

• Bundle in: Select this option, then click the XQuery field Select button to identify the file
from the resources directory. Design Studio will bundle this file with the PAR file during
the build.

• Absolute path: Select this option and enter the physical location of the file. At run time,
OSM retrieves the file from the server.

• URL: Specify a URL to access the file.
Note: Oracle recommends that you select Bundle in for production mode, as this mode pulls
the files into the OSM PAR file. As a result, you can deploy the EAR file (which contains
the PAR file) to any server and, at run time, the application can locate the files. If you select
Absolute Path or URL for production mode, you can deploy the EAR file (which contains the
PAR file) to any server but are responsible for ensuring the files reside in specified location
on the server.

Conversely, Absolute Path or URL are optimal for testing mode because they do not require
a rebuild and redeploy to pick up changes to the XQuery.

Maximum Number
in Cache

Specify the maximum number of XQuery files that can be maintained in the cache at any one
time.

Cache Timeout Enter the number of seconds before the OSM server refreshes the cache.

Exception Select the exit status that the plug-in should use if it throws an exception. Status options
include any status values you assigned to the task.

Note: This field does not apply to an automation plug-in for an order milestone automation
event notification (at the order level); it applies to setting up an automation at the task level.

Update Order Select this option if you want to update (add, change, or delete) the OSM order data with the
data retrieved from an external system. This field appears for Automator automation plug-ins
only.

Related Topics

About Automation Message Correlation

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Properties View XSLT Tab
Use the Properties view XSLT tab to specify the location of your XSLT file so the
predefined automation plug-in can access it. This tab appears for all plug-ins except
for custom plug-ins.

You can use XSLT to perform some business logic against a task, and determine the
exit status based on the processing results. XSLT enables you to model complex
calculations, such as date-based calculations, mathematical expressions, calls to
external systems, and so forth. Additionally, you can update the order data with the
results from your XSLT calculations. Finally, you can use the XSLT style sheet to
transform data when sending and receiving data from external systems.

Chapter 7
Task Editor

7-52

Field Use

Script Specify which XSLT style sheet you want to use to transform documents. Select from the
following options:

• Bundle in: Select this option, then click the Select button to identify a style sheet from
the resources directory. Design Studio will bundle this XSLT file with the PAR file during
the build.

• Absolute path: Select this option and enter the physical location of the XSLT file. At run
time, OSM retrieves the file from the server.

• URL: Specify a URL to access the file.
Note: Oracle recommends that you select Bundle in for production mode, as this mode
pulls the XSLT files into the OSM PAR file. As a result, you can deploy the EAR file (which
contains the PAR file) to any server and, at run time, the application can locate the XSLT
files. If you select Absolute Path or URL for production mode, you can deploy the EAR file
(which contains the PAR file) to any server but are responsible for ensuring the XSLT files
reside in specified location on the server.

Absolute Path or URL are optimal for testing mode because they do not require a rebuild
and redeploy to pick up changes to the XSLT.

Maximum Number
in Cache

Specify the maximum number of XSLT style sheets that can be maintained in the cache at
any one time.

Cache Timeout Enter the number of seconds before the OSM server refreshes the cache.

Exception Select the exit status that the plug-in should use if it throws an exception. Status options
include any status values you assigned to the task.

Note: This field does not apply to an automation plug-in for an order milestone automation
event notification (at the order level); it applies to setting up an automation at the task level.

Transformer
Factory

(Optional) If you have developed a custom TransformerFactory for XSLT transformation,
specify the location. Design Studio provides a default TransformerFactory.

Update Order Select this option if you want to update (add, change, or delete) the OSM order data with the
data retrieved from an external system. This field appears for Automator automation plug-ins
only.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Routing Tab
Use the Properties view Routing tab to specify where to send XML messages and
where external systems can deliver responses. The Properties view Routing tab
appears for all non-custom XSLT Sender plug-ins.

On the Routing to subtab you can specify where to send the XML Request message
(JMS Destination). On the Routing Reply to subtab you can specify where the
external system can deliver the XML Response or Exception message.

Chapter 7
Task Editor

7-53

Field Use

JNDI Name Enter the name of the queue to which the automation plug-in sends messages (on the To
tab) or to which external systems send response (on the Reply To tab). JNDI Name is
mandatory. Edit the system-supplied default value to reflect your own system topology. The
JNDI name must be unique in the workspace.

Destination Type Select the type of the message destination. A JMS destination is either a javax.jms.Queue
or a javax.jms.Topic. You might use a topic, for example, if you want to publish messages
for general availability to multiple external systems (on the To tab) or subscribe to a queue
with multiple listeners (on the Reply To tab). You might use queues if you want only a
single external system to consume the message.

URL, Initial Context
Factory, and
Connection Factory

(Optional) Enter this information to connect to an external application server. Specify
the URL and the InitialContextFactory class for the JNDI provider, and specify the
ConnectionFactory class for the JMS server

Send Null Message Select this option if you want to send a JMS message to an external system even if the
message body is empty.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Custom Plug-in Tab
Use the Properties view Custom Plug-in tab to define a custom automation plug-in
entity in Design Studio. The Custom Automation Plug-in editor associates a Java class
representing the custom automation plug-in to the custom automation plug-in entity.

This tab appears when the selected plug-in is a custom automation plug-in. The value
is initialized with the value of the XML template for the type of custom automation
plug-in.

See OSM Developer's Guide for more information about defining the custom
automation plug-in.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Working with Automated Tasks

Properties View Notes Tab
Use the Properties view Notes tab to describe the intended use for the plug-in. The
Properties view Notes tab is common to all types of automation plug-ins and event
receiver types.

Related Topics

Example: Modeling a Basic Automator Plug-In

Configuring Automation Plug-In Properties

Chapter 7
Task Editor

7-54

Working with Automated Tasks

Task Editor Behaviors Tab
The Task editor Behaviors tab appears for manual and automated task types.

Use the Behaviors tab to view all of the behaviors defined for the data nodes in a
manual task and an automated task.

The Behaviors table displays the name and type of the task, whether the behavior
is enabled, the inheritance properties, the path name of the data node on which the
behavior is defined, and the task where the behavior was originally defined.

The information on the Behaviors tab is read-only. To change the information that
appears on this tab, select a behavior from the table and click the Properties button
to access the Behaviors Properties tabs. See "Working with Behaviors" for more
information about the defining behavior properties.

Task Editor Compensation Tab
The Task editor Compensation tab appears for manual, automated, and
transformation task types.

Use the Compensation tab to define your compensation strategy for manual and
automated tasks.

Note:

Although compensation strategies are defined on an individual task basis,
they must be analyzed within the context of the workflow.

Field Use

When this task
needs to be re-
evaluated,
compensate
by:

A task is re-evaluated by the system if it has visibility to order data (data that is defined as
significant) that has changed as a result of an order amendment or as a result of amendment
compensation performed on another task to which the task has visibility. The default option,
which is to redo the task, applies to tasks that are linear in nature and have the same
completion status (no branching).

Select Redo (one single operation) to instruct the system to perform Undo and Do operations
in a single operation. This option is recommended, when possible, as it performs the fewest
number of Undo and Do operations necessary for compensation.

Select Undo then do (two separate operations) to undo this task and all successor tasks and
roll back all order changes, then perform the Do operation again. Use this option to rollback all
order changes and re-perform the task from the beginning.

Select Do Nothing to instruct the system to bypass updating the affected task. For example,
you might select this option if a similar task downstream in the process will be compensated,
thereby optimizing the compensation plan.

Select Compensation Expression to create an XQuery expression in the Compensation
Expression field that dynamically selects a compensation strategy (Redo, Undo then do, or
Do nothing) based on revision order data. See "Compensation XQuery Expressions" for more
information about compensation strategy XQuery expressions.

Chapter 7
Task Editor

7-55

Field Use

When this task
is no longer
required,
compensate
by:

A task or subprocess is no longer required when:

• The order is canceled. When an order is canceled, the system executes an undo on all
of the completed tasks and subprocesses and returns the order to the creation task. The
tasks and subprocesses associated with the order are no longer required because the
order has been canceled.

• A branch becomes obsolete. A branch becomes obsolete when the redo processing of a
particular task or subprocesses causes that task or subprocess to a) exit with a different
completion status and b) start a new branch. Because the tasks and subprocesses in the
obsolete branch are no longer required, they are undone, one task or subprocess at a time,
starting with the last completed task or subprocess in the branch.

• When the task re-evaluate compensation strategy is selected as Undo then do and if this
option is selected as Undo, then all the tasks are undone based on their corresponding
compensation strategy. If this option is selected as Do Nothing, the corresponding tasks
are not undone.

In both scenarios, the system rolls back the order changes. The difference between them is the
creation of a compensation undo task. Undoing the task and rolling back order changes creates
an undo task; automatically rolling back order changes does not create an undo task. Undo
compensation tasks created for manual tasks appear in the Task web client Worklists and must
be manually acknowledged in order to be rolled back.

This also applies to a task which has an Undo then do compensation strategy for when the
task needs to be re-evaluated. When the task needs to be undone (as a part of Undo then
do), it follows the compensation strategy for when the task is no longer required (either Do
nothing or Undo). When the task needs to be compensated, it gets undone first and then done.
The task does not come into Undo in the worklist, but only goes to Do (in amending) or Do (in
progress).

Select Undo to create an undo read-only task in the Task web client.

Select Do Nothing to instruct the system that no compensation is necessary.

Select Compensation Expression to create an XQuery expression in the Compensation
Expression field that dynamically selects a compensation strategy (Undo or Do nothing) based
on revision order data. See "Compensation XQuery Expressions" for more information about
compensation strategy XQuery expressions.

Chapter 7
Task Editor

7-56

Field Use

When an
amendment
occurs this
task will be
compensated if
it is:

Most tasks should only be included in amendment processing after the task has completed.
However, you may want to include in progress tasks in amendment processing when the tasks
are long running, for example when interacting with a workforce management system where
task fulfillment can take hours or even days to complete.

Select Completed to instruct the system to include the task in amendment processing only
when the task is completed.

Select Completed or in progress to instruct the system to include the task in amendment
processing when the task is completed or when the task is in progress. A task is considered to
be in progress when the task is in the Accepted state or in any user-defined state. You can also
further refine when an in progress task is included into amendment processing by specifying
the In Progress Compensation Include Expression and the In Progress Compensation
Complete Expression XQuery expressions.

Select In Progress Compensation Include Expression to create an XQuery expression
that further specifies when instances of this in progress task can be included in amendment
processing based on revision order data. For example, the expression may determine that the
task only be included in amendment processing when it includes product A rather than product
B. See "Compensation XQuery Expressions" for more information about compensation strategy
XQuery expressions.

Select In Progress Compensation Complete Expression to create an XQuery expression
in the Compensation Expression field that runs whenever data is updated on the task that
checks when compensation has completed based on the order data changes. For example,
the order amendment could specify that the task run in redo mode. The task re-sends a
request for a customer service with changes to an external fulfillment system that returns
an acknowledgement response that the XQuery expression recognizes as completing the
compensation for the in progress redo task. The task can then return to the normal do execution
mode and waits for the external system to functionally complete the task and respond so that
the task can be completed. See "Compensation XQuery Expressions" for more information
about compensation strategy XQuery expressions.

When an
amendment
occurs if this
task is in
progress it will:

If amendment processing occurs while a task is in progress, you can specify what kind of grace
period should be enforced before the task can run in the compensation execution mode.

Select Wait for the grace period to instruct the task to run in the compensation execution
mode when the grace period specified on the order-life cycle for the Process Amendment
transition.

Select Be excluded from the grace period to instruct the task to run immediately regardless of
the grace period specified on the order-life cycle for the Process Amendment transition.

Select Wait for specified duration to statically configure the grace period for the task by
seconds, minutes, hours, or days.

Select Dynamic Expression to create an XQuery expression that dynamically specified the
wait duration based on revision order data. This expression runs regardless of what option is
specified from the above list. See "Compensation XQuery Expressions" for more information
about compensation strategy XQuery expressions.

Chapter 7
Task Editor

7-57

Note:

If an amendment is received while a task is in a fallout execution mode, the
following will happen:

• If the task is not configured to be compensated if it is in progress, the
execution mode of the task will not change as a result of the amendment
order.

• If the task is configured to be compensated if it is in progress, and the
amendment contains changes to significant data:

– If the task is still needed after the changes to the order from the
amendment are considered, it will transition automatically to (normal)
Redo mode.

– If the task is no longer needed after the changes to the order from
the amendment are considered, it will transition automatically to
(normal) Undo mode.

In both of these cases, your automation code (for either Redo or Undo
execution mode) should contain both a check to see if the task has
been in a fallout execution mode, and also any code that is needed to
resolve any actions that have been taken in the fallout execution mode.
For example, if your automation for Do in Fallout mode opens a trouble
ticket, your Redo automation should check to see whether it needs to
close a trouble ticket.

• If the amendment order contains no changes to significant data, the
execution mode of the task will not change as a result of the amendment
order.

Related Topics

About Task Compensation

Working with Tasks

Task Editor Details Tab
The Task editor Details tab appears for manual, automated, activation, and
transformation task types.

Use the Details tab to define attributes that you can use to extend the task definition.

For all tasks in a process, there are properties that you define in Design Studio that the
OSM server requires to properly execute the task. These properties include the order
with which the task is associated, the amount of time in which you expect the task to
complete, the group responsible for completing the task, and the manner in which the
tasks are assigned. You configure these details on the Task editor Details tab. The
Details tab also contains properties that enable you to add or remove a parent task
(and its inherited data), and to model the data node on which a multi-instance process
relies to create multiple instances of the task.

Chapter 7
Task Editor

7-58

Field Use

Extends Select an existing or create a new task to extend this task (the task's data is inherited)
by clicking the Select button. To create a new task that this task would be an extension
of, click New. After you have selected or created an task, click Open to access the Task
editor. Click Clear (red X) to clear the selected value from the field.

Using task inheritance, you can leverage existing task data when building new, similar
tasks. See "About Task Extensions and Inheritance" for more information.

Order The order associated with a task determines the overall data set that will be available to
the task when you model the task data.

Note: If you are planning to use the task for an order (OrderA) and also an order (OrderB)
that is extended from that order, you must select the parent order (OrderA) here.

Pivot Node (Optional) Select the Pivot node for this task. When OSM executes the corresponding task
at run-time, the system generates a separate task instance for each separate value of
the pivot node in the order. For example, if the pivot node is an address field, and three
addresses are included in the order, the system generates three separate task instances
when this task occurs in a process.

Note: OSM compensation processing does not support task pivot nodes.

Expected Duration
and Calculate using
Workgroup Calendar

Specify the length of time expected to complete the task. By default, the expected duration
of a task is set to 1 day (system time). You can select any value up to 999 in weeks, days,
hours, minutes, or seconds.

You can also calculate the duration based on your workgroup calendar by selecting
Calculate using Workgroup Calendar. If you have more than one workgroup with
different calendars all responsible for the same task, the calculation is based on the first
available workgroup that has access to the task.

Expected durations can be useful during reporting and jeopardy processing.

Order Priority Offset Select a value between 9 and -9 to differentiate this task's priority within the order. For
example, if the order is created at priority 6, and this task is assigned a priority offset of
-2, then this task would run at priority 4 while other tasks in the order would run at priority
6. Similarly, you could assign a task a priority offset of +2 which would mean that the task
would run at a slightly higher priority than other tasks in the order.

Responsibility Select which department or team is responsible for this task. The default value is System.

You can select System or enter a value that is meaningful within the context of your
system topology. This field is only visible to the reporting API.

Namespace Based
on Task Name

(Automated, Activation, and Transformation tasks only)

Select this option to use a namespace for the task that is based on the task name.

Assignment
Algorithm

(Manual tasks only)

(Optional) Select the algorithm to use when automatically assigning tasks to users. OSM
provides two default algorithms: Load Balancing and Round Robin.

The Load Balancing algorithm attempts to distribute tasks based on a user's current
workload. The OSM server assigns tasks after determining which user in the workgroup
has the fewest number of assigned tasks.

The Round Robin algorithm assigns tasks in a predefined order among the users in the
workgroup.

You can add custom assignment algorithms to OSM, using OSM's cartridge management
tools. For custom algorithms, you must manually enter the algorithm name in the
Assignment Algorithm field.

If you do not specify an algorithm in this field, you must manually assign tasks.

JNDI Name (Manual tasks only)

Enter the JNDI name for custom assignment algorithms.

Chapter 7
Task Editor

7-59

Field Use

Transformation
Manager

(Transformation tasks only)

Enter the name of the transformation manager to be called when this transformation task
is reached. Do any of the following:

• Click Select to select an existing transformation manager.
• Click New to create a new transformation manager. See "Creating New

Transformation Managers" for more information.
• Click Open to open the selected transformation manager in the Transformation

Manager editor.

Order Component (Transformation tasks only)

Enter the name of the order component that provides context for this transformation task
and assists in order item selection. Do any of the following:

• Click Select to select an existing order component.
• Click New to create a new order component. See "Creating New Order Component

Specifications" for more information.
• Click Open to open the selected order component in the Order Component editor.
If you are not using the default provided automation plug-in for the transformation task, this
field may be optional, depending on the way your automation is written.

Update Order
with Transformation
Response

(Transformation tasks only)

Select this option to enable OSM to persist the transformed order items on the order.

Note:

You cannot use pivot nodes to model multiple instances of activation
tasks. To model multiple activation task instances, create a multi-instance
subprocess that contains only the activation task.

Related Topics

Defining Task Data

Working with Tasks

Task Editor Events Tab
The Task editor Events tab appears for manual, automated, activation, and
transformation task types.

Use the Events tab to create task state automation event notifications. You select the
task state that triggers the automation, and then configure the automation plug-in that
will perform the work.

Field Use

State The State column displays the states for which you have defined automation events. When
the task reaches the corresponding state, the OSM server triggers the automation event
plug-in.

Name In the Automation column, the Name field displays the name of automation plug-in.

Chapter 7
Task Editor

7-60

Field Use

Automation Type Displays the automation plug-in type.

See "Working with Automation Plug-Ins" for more information.

Add Click the State column Add button to add a predefined task state to the list. Click Add in the
Automation column to define a new automation plug-in for the corresponding task state.

Remove Select a state or an automation plug-in and click Remove to delete the entity from the list of
events.

Properties Select an automation plug-in and click Properties to configure the properties of the new
plug-in. See "Configuring Automation Plug-In Properties" for more information.

The Properties button appears only after you have added at least one automation plug-in to
the table.

Related Topics

Creating Order Milestone and Task State Automation Event Notifications

Working with Event Notifications

Task Editor Fallouts Tab
The Task editor Fallouts tab appears for manual, automated, and transformation task
types.

Use the Fallouts tab to specify the types of fallout that can occur for a task.

Click Add to open the Select Fallouts dialog box, where you can select fallouts
previously defined on the Order editor Fallouts tab.

Select any fallout defined in the Name column and click Remove to delete the fallout
from the list.

Select any fallout defined in the Name column and click Open to open the fallout in
the Order editor Fallouts tab.

Related Topics

About Task Fallout

Task Editor Jeopardy Tab
The Task editor Jeopardy tab appears for manual, automated, activation, and
transformation task types.

Use the Jeopardy tab to create jeopardy notifications when certain conditions arise in
a task and you want to alert users or systems of processes, orders, or tasks that may
be at risk.

The Jeopardy tab has the following subtabs:

• Task Editor Jeopardy Details Tab

• Task Editor Jeopardy Conditions Tab

• Task Editor Jeopardy Notify Roles Tab

• Task Editor Jeopardy Polling Tab

Chapter 7
Task Editor

7-61

• Task Editor Jeopardy Automation Tab

• Task Editor Jeopardy Notes Tab

Task Editor Jeopardy Details Tab
Use the Jeopardy Details tab to name the jeopardy, select the notification rule, set
the priority level, enable or disable the notification, and specify whether to send the
notification by email.

Field Use

Name Enter a name to identify the jeopardy.

Rule Select the rule the system should evaluate before generating this jeopardy. This field defaults to the
system-based null_rule.

If you do not change the default value, OSM will always trigger this notification at the specified polling
interval. See "Defining Order Rules" for more information about setting up new rules.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The notification with the highest priority is
evaluated first.

Enabled Select this option to enable this jeopardy notification, or deselect the option if you intend to implement
the notification at a later time.

Email Select this option to send email notifications to all users in the workgroup associated with the specified
role.

By default, notifications appear in the Notifications page of the Task web client. However, you can
specify that notifications be sent by email by selecting the Email check box.

When you assign users to a workgroup in the OSM Administration area of the Order Management web
client, you can set up OSM to notify users by email. When a notification occurs, the system sends a
notification ID number through email.

See OSM Order Management Web Client User's Guide for information about configuring email
notification properties for user roles. See OSM Installation Guide for information about configuring
the outgoing email server.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Task Editor Jeopardy Conditions Tab
Use the Jeopardy Conditions tab to select the conditions under which the jeopardy
should be raised. For example, you can raise a jeopardy when this task exceeds the
expected or a given duration.

Field Use

Raise a Jeopardy
when Process Duration
Exceeds

Raise a jeopardy if the process to which the task is associated has exceeded the
Expected Duration of the order (defined on the Order editor Details tab) or Given
Duration, specified by the time interval defined in the adjacent field.

Raise a Jeopardy when
Task Duration Exceeds

Raise a jeopardy if the task has exceeded the Expected Duration (defined on the
Task editor Details tab) or Given Duration, specified by the time interval defined in
the adjacent field.

Chapter 7
Task Editor

7-62

Field Use

Raise a Jeopardy when
the order is received
within

Raise a jeopardy if the order has been received and the time interval defined in the
adjacent field has been exceeded.

Multiple events per Task
instance

When a task has multiple instances, select this option if, when a jeopardy notification
is triggered, you want a notification triggered for every task instance.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Task Editor Jeopardy Notify Roles Tab
Use the Jeopardy Notify Roles tab to select the roles to be notified when the
jeopardy occurs.

Select a predefined jeopardy from the list in the left column to activate a list of
available roles. See "Working with Roles" for information about defining roles. Using
the directional arrow buttons, move the roles (those groups to whom you want the
notification sent) into the Selected Column.

If the jeopardy notification is sent to an external system via an automation plug-
in, ensure that you include the role whose credentials are used when running
the automation plug-in. See "Configuring Automation Plug-In Properties" for more
information.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Task Editor Jeopardy Polling Tab
Use the Jeopardy Polling tab to select the interval at which the OSM server
evaluates the condition that triggers the jeopardy notification. You can define the
polling so that the system checks for the condition only once, or you can define the
polling at hourly, daily, weekly, or monthly intervals.

Field Use

Interval Select the interval at which the OSM server evaluates the condition that triggers the jeopardy
notification. Select Once if you want the system to check for the condition only once when the order
is received. When you select Once, the system disregards the Next Start field.

Use the Hours, Days, and Months fields to define a specific interval at which the OSM server
evaluates the condition that triggers the jeopardy notification. For example, if you want the system to
check for the condition every two days, select the Day(s) option and from the drop-down list select 2.

Next Start Select the date and time that you want the notification to begin checking. You can specify a date for
any polling interval. The system uses the current date and time as the default value.

Chapter 7
Task Editor

7-63

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Working with Tasks

Task Editor Jeopardy Automation Tab
Use the Jeopardy Automation tab to configure an automation plug-in that performs
the work or sends data to an external system when the jeopardy notification is
triggered. OSM supports one automation plug-in per Jeopardy.

Field Use

Add Click Add to open the Add Automation dialog box is displayed, where you can define a new
automation plug-in for the jeopardy notification.

Name Enter a name for the automation entry.

Automation Type Select the automation plug-in type from the available list.

Click OK to add the automation entry to the Jeopardy Automation table.

Properties Select any entry in the table and click to define the automation properties. See "Configuring
Automation Plug-In Properties" for more information about defining automation properties in
the Properties view.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Task Editor Jeopardy Notes Tab
Use the jeopardy Notes tab to denote the intended use of the notification or any
additional information that you want to append to the jeopardy data.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Tasks

Task Editor Permissions Tab
The Task editor Permissions tab appears for manual, automated, activation, and
transformation task types.

Use the Permissions tab to assign roles to each of the three possible task execution
modes.

Chapter 7
Task Editor

7-64

Field Use

Do, Redo,
Undo, Do in
Fallout, Redo
in Fallout, and
Undo in
Fallout

For each role listed in the Role Name column, select or deselect, as appropriate, the Do, Undo,
Redo, Do in Fallout, Redo in Fallout, and Undo in Fallout check boxes to enable or disable
access to the task execution modes.

These options represent the three possible task execution modes:

• Do is the default mode for a task that executes under normal processing.
• Undo reverses the effects of the associated Do operation.
• Redo combines both Undo and Do operations in a single operation.
• Do in Fallout is the mode for a task that executes when the task fails while running in Do

mode.
• Undo in Fallout is the mode for a task that executes when the task fails while running in Undo

mode.
• Redo in Fallout is the mode for a task that executes when the task fails while running in Redo

mode.

Select Click Select to select a predefined role to add to the permissions list. If no roles have been
previously defined, click New to create a role.

You must define at least one role in the permissions list for every task.

New Click New to open the Role wizard and create a new role to assign to the task. To select a role
that was previously defined, click Select.

You must define at least one role in the permissions list for every task.

Open Select any role in the Role Name column and click Open to open the role in the Role editor.

Remove Select any role in the Role Name column and click Remove to delete the role from the task
permissions list.

Related Topics

Assigning Task Permissions

Task Editor Redo Tab
The Task editor Redo tab appears for activation task types.

Use the Redo tab to define part of your compensation strategy for activation tasks: to
redo tasks that are affected by amendments. Complete the compensation strategy for
activation tasks on the Undo tab. See "Task Editor Undo Tab" for more information.

Field Use

Compensatio
n Strategy

Specify the compensation strategy to redo a task when it is affected by an amendment:

• Select Manual if manual intervention is required at run time.
• Select Ignore to instruct OSM to skip this task.
• Select Undo then do to instruct OSM to undo the task and redo the task as two separate

transactions. The task is redone using the same request mapping defined on the Request
Data tab.

• Select Redo (amend existing order) to instruct OSM to undo the task and redo the task as
a single transaction, sending the oderByValueRequest parameter with the replace command,
replacing the original order with the new command. The task is redone using the same
request mapping defined on the Request Data tab

• Select Redo (new order) to instruct OSM to send a new order to the activation system. The
new order can be configured with new request mappings.

Chapter 7
Task Editor

7-65

Field Use

Use existing
request
mapping

When Compensation Strategy is set to Redo (new order), the Redo operation uses the same
request mapping settings as the original order.

Re-configure
request
mapping

When Compensation Strategy is set to Redo (new order), you can specify new request
mapping settings for the Redo operation. The Task Data area and Service Actions area behave
as they do on the Request Data tab. See "Task Editor Request Data Tab" for more information.

Related Topics

Modeling Activation Tasks

About Activation Tasks

Task Editor Request Data Tab
The Task editor Request Data tab appears for activation task types.

Use the Request Data tab to configure service action requests by mapping OSM
order header and task data to Activation order header, service action, and global
parameters.

See the following topics for more information:

• Properties Activation Order Header Binding View

• Properties Global Parameter Binding View

• Properties Service Action Binding View

• Properties Parameter Binding View

Field Use

Task Data area Select one of the following values:

• Select Order Header to display the standard order header fields request parameters.
• Select Task Data to display the task data request parameters. Right-click a data element

in this view and select Auto map parameter to automatically map the element to a service
action parameter that shares the same name (case insensitive).

See "Configuring Service Action Requests" for information about mapping. See "Defining Task
Data" for information about adding OSM data to the activation task.

Chapter 7
Task Editor

7-66

Field Use

Service Action
area

Displays the request parameters to which you can map OSM data. Expand the Activation
Order Headers folder, the Global Parameters folder, or any service action to review the
parameters available for mapping. Check marks indicate which parameters are mapped to OSM
data.

Note: Some Activation order header parameters require default values. Before mapping OSM
data to Activation order header parameters, note which parameters are prepopulated with a
check mark to determine those that require default values.

Right-click in the Service Actions area to access the context menu. The Service Actions area
context menu enables you to add service data to a task, define new global parameters,
associate additional service actions to the tasks, remove parameters, and remove mapping
information.

Note: When adding service action parameters to OSM task data, you can add all parameters
of a service action to a selected OSM data structure. Service action parameters are not added
to the structure if it contains a child element with the same name as the parameter. Design
Studio limits the maximum length of service action parameters to 1000 when adding them to
a structure. If you create data elements for service action parameter fields manually (using the
Data Schema editor), ensure that you set the maximum length of the new data element equal to
the maximum length defined for service action parameter.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

About Service Action Request Mapping

Modeling Activation Tasks

Properties Activation Order Header Binding View
Use the Activation Order Header Binding view to review and edit mapping
information between OSM data and Activation order header parameters.

Field Use

Order Header Displays the parameter label.

Condition Enter the condition that determines whether the parameter is included in the request. If the
condition evaluates to true, the parameter is sent.

Binding Type Select to define the expression path as an XPath Expression or as an XSLT Snippet. For
example, you might define the expression path as an XSLT snippet if you are mapping OSM data
to a compound order header parameter.

Binding Displays the mapping information for an order header parameter.

Note: If you are mapping OSM data to a compound parameter, you can reference the
CreateOrderByValueRequest_generated.xsl file to ensure that all XPath expressions are
defined correctly. To review the CreateOrderByValueRequest_generated.xsl file, switch to the
Java perspective and click the Package Explorer tab. Each activation task is listed in the
Activation directory in the project resources folder.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

Chapter 7
Task Editor

7-67

About Service Action Request Mapping

Modeling Activation Tasks

Properties Global Parameter Binding View
Use the Global Parameter Binding view to review and edit mapping information
between OSM data and global parameters.

Field Use

Parameter Displays the parameter label.

Condition Enter the condition that determines whether the parameter is included in the request. If the
condition evaluates to true, the parameter is sent.

Binding Type Select this option to define the expression path as an XPath Expression or as an XSLT
Snippet. For example, you might define the expression path as an XSLT snippet if you are
mapping OSM data to a compound global parameter.

Binding Displays the mapping information for a global parameter.

Note: If you are mapping OSM data to a compound parameter, you can reference the
CreateOrderByValueRequest_generated.xsl file to ensure that all XPath expressions are
defined correctly. To review the CreateOrderByValueRequest_generated.xsl file, switch to
the Java perspective and click the Package Explorer tab. Each activation task is listed in the
Activation directory in the project resources folder.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

About Service Action Request Mapping

Modeling Activation Tasks

Properties Service Action Binding View
Use the Service Action Binding view to review and edit mapping information
between OSM data and service action parameters and to define the conditions under
which the service is added to the request.

Field Use

Service
Action

Displays the service action to which the selected parameter is associated.

View Node Displays the activation system parameter name.

Condition Enter the condition that determines whether the service is included in the request. If the condition
evaluates to true, the parameter is sent.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

About Service Action Request Mapping

Chapter 7
Task Editor

7-68

Modeling Activation Tasks

Properties Parameter Binding View
Use the Parameter Binding view to review and edit mapping information between
OSM data and service action parameters and to review the default information defined
for the service action.

Field Use

Service Action Displays the service action to which the selected parameter is associated.

Parameter Displays the parameter name.

Default Value Displays the default value defined for a parameter. You define service action parameters in the
Service Action editor.

Condition Enter the condition that determines whether the parameter is included in the request. If the
condition evaluates to true, the parameter is sent.

Binding Type Select this option to define the expression path as an XPath Expression or as an XSLT
Snippet. For example, you might define the expression path as an XSLT snippet if you are
mapping OSM data to an ASAP compound parameter.

Binding Displays the mapping information for a parameter in a service action folder. Consider the
following example, which demonstrates a mapping of OSM data elements dsl, VoIP, and tv to
an ASAP compound parameter. In this example, you would select XSLT Snippet in the Binding
Type field and enter the following:

<xsl:if test="osm:feature/osm:dsl='true'">
 <mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>OLD_SERVICE</mslv-sa:name>
 <mslv-sa:value>DSL</mslv-sa:value>
 </mslv-sa:serviceValue>
</xsl:if>

<xsl:if test="osm:feature/osm:VoIP='true'">
 <mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>OLD_SERVICE</mslv-sa:name>
 <mslv-sa:value>VOIP</mslv-sa:value>
 </mslv-sa:serviceValue>
</xsl:if>

<xsl:if test="osm:feature/osm:tv='true'">
 <mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
 <mslv-sa:name>OLD_SERVICE</mslv-sa:name>
 <mslv-sa:value>TV</mslv-sa:value>
 </mslv-sa:serviceValue>
</xsl:if>

Note: If you are mapping OSM data to a compound parameter, you can reference the
CreateOrderByValueRequest_generated.xsl file to ensure that all XPath expressions are
defined correctly. To review the CreateOrderByValueRequest_generated.xsl file, switch to
the Java perspective and click the Package Explorer tab. Each activation task is listed in the
Activation directory in the project resources folder.

Related Topics

Configuring Service Action Requests

Task Editor Request Data Tab

Chapter 7
Task Editor

7-69

About Service Action Request Mapping

Modeling Activation Tasks

Task Editor Response Data Tab
The Task editor Response Data tab appears for activation task types.

Use the Response Data tab to map responses to OSM data structures and configure
state and status transitions for completion events and exceptions returned by the
activation system.

Field Use

Event/Exception Select an event or an exception. For each event or exception, you define:

• The response data to use to update the OSM order
• The location in OSM where the response data is to be copied
• A state or status transition.
Events and exceptions that include any mapping or transition configuration are
represented by a shaded (green) flag icon. Events and exceptions with no configuration
defined are represented by an empty (or gray) flag icon.

Activation Response Select the data returned from the activation system that updates the OSM order. If you do
not select a data field for an event or exception, OSM ignores that event or exception.

Response Data
Location

Define the OSM data structure to contain the data returned from an event or exception.
For each event or exception, you select an existing data structure from the order template
or from the data dictionary and right-click that data structure to define the data location.
See "Configuring Service Action Responses" for more information.

OSM Data Binding Bind activation response elements to arbitrary task data elements by dragging elements
from the Activation Response area onto OSM data structures.

Note: Do not add an OSM data structure in this field that uses a distributed order
template. Attempting to map a response value to a data element in a distributed order
template will cause an error. For more information about distributed order templates, see
OSM Concepts.

Transition to State or
Status

Displays default transitions defined for completion events and exceptions. You can define
additional state transitions for user-defined states and additional transitions for predefined
task statuses using the Add button.

Move Up and Move
Down

Select a state or status transition row in the Transition to State or Status table and click
Move Up and Move Down to change the order in which OSM evaluates the transition
conditions at run time.

Properties Select a state or status transition row in the Transition to State or Status table and
click Properties to define the condition against which OSM evaluates the transition. See
"Properties State/Status Transition View" for more information.

Response Filter Enables you to limit the amount of response data sent to update OSM order data. See
"Response Filter Area" and "Filtering ASAP Response Data" for more information.

Remove Select a state or status transition row in the Transition to State or Status table and click
Remove to delete the transition.

Add Click Add to define a new user-defined state or status transition for a selected event or
exception.

Related Topics

Configuring Service Action Responses

About Service Action Response Mapping

Chapter 7
Task Editor

7-70

Modeling Activation Tasks

Response Filter Area

Properties State/Status Transition View
Use the Properties State/Status Transition view to define the condition against
which OSM evaluates (at run time) a state or status transition for a service action
response.

Field Use

Condition Name Displays the condition name as defined on the Response Data tab in the Transition to State
or Status table.

State/Status Displays a user-defined state or status transition as defined on the Response Data tab in the
Transition to State or Status table. Click Select to change the state or status.

Condition Define the condition against which OSM evaluates the transition. At run time, OSM evaluates
the conditions in an order you define and stops evaluating when a condition evaluates to true.

For example, consider that you want to define a condition for the orderFailEvent to transition
the task to a suspended state (NEUnknown) because of a network element error. You can
define the condition in the following manner:

contains($osmOrderDocument/osm:GetOrder.Response/osm:_root/
osm:ASAPResponse/osm:EventData/osm:reason[starts-
with(.,'orderFailEvent')], 'SARM_MSG:Routing Error')

Note: The $osmOrderDocument is a variable that represents the OSM order data. Completion
events and exceptions must include a default transition should all specified conditions fail. You
can change or delete the predefined default values, or you can create your own. However, if
you define no default conditions for ASAP completion events and exceptions (no condition is
defined with XPath expression true()) Design Studio creates a problem marker.

Related Topics

Configuring Service Action Responses

About Service Action Response Mapping

Task Editor Response Data Tab

Modeling Activation Tasks

Response Filter Area
Use the Response Filter area to display and define conditional mappings for service-
action response parameters and value items. For example, you may want to update
order parameters with response data only when certain infoParms have a certain
value. In the Response Filter area, you can specify an XPath condition which
determines whether or not to update OSM order data with response data.

Field Use

Event/Exception
Name

Name of the event or exception on which to filter parameters or value items.

Filter on Select the parameters on which to filter. Select from either infoParm or Command
History value item.

Chapter 7
Task Editor

7-71

Field Use

Condition Define the conditional mappings of the infoParm or value item parameters by dragging
and dropping the desired parameters or items from the Activation Response area into
the Condition field. When the XPath representation of a parameter is displayed, set the
desired condition by entering an XPath operator.

For example, if you only want to update an order when the serviceId infoParm
parameter from orderCompleteEvent is equal to two. First, select orderCompleteEvent
in the Event/Exception field. Then, in the Activation Response area, click Detailed
Parameters and infoParm. Drag and drop serviceId into the Condition field. The
XPath representation of serviceId will appear as follows:

mslv-sa:serviceId

Now set the desired condition by adding ='2'

mslv-sa:serviceId='2'

Related Topics

Filtering ASAP Response Data

Configuring Service Action Responses

About Service Action Response Mapping

Task Editor Response Data Tab

Modeling Activation Tasks

Task Editor Composite Data View Tab
The Task editor Composite Data View tab appears for manual, automated, and
transformation task types.

Use the Composite Data View tab to display all of the data that is available to a task
within the context of an OSM solution. For example, if you added a new fulfillment
function to extend a solution, you would see the additional data nodes required by the
function as well as any new control data. The task data in the Composite Data View
tab is read-only. You model the data in the Task Data tab of the Composite Cartridge
View editor.

Tip:

A The composite data view has at least the same number or more data
nodes than its corresponding task view.

Field Use

Solution Select the solution to display all of the task data associated with the solution.

Task Data Displays all of the data that is available to a task, including additional data that has been contributed
within the context of a solution. You cannot modify any data that appears in the Task Data area.

Behaviors Displays all of the behaviors defined for each data node. Select a data node in the Task Data area
to view the behaviors defined for the node. You cannot modify any behaviors that appear in the
Behaviors area.

Chapter 7
Task Editor

7-72

Related Topics

Working with Composite Cartridge Views

Working with Composite Cartridge Projects

Task Editor States/Statuses Tab
The Task editor States/Statuses tab appears for manual, automated, activation, and
transformation task types.

Use the States/Statuses tab to add, remove, and assign predefined states and
statuses to tasks, and to define status severity levels.

Field Use

Name Displays the database name of the entity. Select the value in the column to rename.

Display Name Displays the name of the entity as it will appear in the Task web client. Select the value in the
column to rename.

Note: Design Studio automatically capitalizes display names.

Constraint Sets the Constraint severity level, which determines the transition behavior of a task when
a constraint violation is encountered. The Constraint value represents the highest allowable
Constraint behavior violation value with which the task transition will be allowed to occur. Select
one of the following:

• Critical: The transition is allowed for all constraint violations.
• Error: The transition allowed for all constraint violations except Critical.
• Warning: The transition is allowed for all constraint violations except Critical and Error (this

is the default).
• Valid: The transition is allowed only for a Valid constraint violation.
• None: The transition is not allowed for any constraint violations.
See "Defining Constraint Behavior Properties" for more information.

Related Topics

Assigning Task States and Statuses

About Task States and Statuses

Task Editor Task Data Tab
The Task editor Task Data tab appears for manual, automated, and transformation
task types.

Use the Task Data tab to define which data is necessary to complete the task. You
can drag data from the Data Element view into the Task Data area, or right-click in
the Task Data area to select data from the Order Template or Data Dictionary dialog
boxes.

When modeling task data using the Task Data tab, see the following topics for more
information:

• Task Data Node Properties View Identification Tab

• Task Data Node Properties View Dictionary Tab

Chapter 7
Task Editor

7-73

Field Use

Task Data Displays the data that the task requires to complete. The order in which the data appears in the
Task Data area is the order in which it appears in the Task web client (or the order in which the
data appears in the XML API if this task is an automated task intended to integrate with an external
system).

Select a data node, right-click and select Move Up or Move Down to reposition the node in the task
view.

See "About the Task Editor Task Data Context Menu" for descriptions of other actions you can
perform in the Task Data context menu.

Behaviors Displays all of the behaviors defined for each data node. Select a data node in the Task Data area to
view the behaviors defined for the node, or to create new behaviors. When defining behaviors at the
task level, you can use the Task editor Task Data tab to create the behavior, the Behavior Properties
tabs to refine the behavior information, and the Task editor Behaviors tab to quickly view all of the
behaviors defined for a task.

See the following topics for information about defining behaviors:

• Defining Manual Task Behaviors
• Defining Automated Task Behaviors

Related Topics

Defining Task Data

Working with Tasks

Task Data Node Properties View Identification Tab
Use the Task Data Node Properties View Identification tab to edit the information
defined for the corresponding data element at the task level.

Right-click any attribute in the Task editor Task Data tab and select Open Properties
View to edit the data element properties at the task level.

Field Use

Name Displays the name of the element as defined in the Data Dictionary. The name of
the node is not available for edit. You can edit the value in the Display Name field
on the Data Schema editor Details subtab to edit the manner in which the element
displays.

Path Displays an XPath expression to define the location of the node in the Data
Dictionary.

Default Value Select this option and enter a value to initially populate the field associated with this
data node in the Task web client.

Read Only Select this option to make the field read-only field (for this task only) in the Task web
client.

Significance By default, a node inherits significance from its parent. At the task level, you can
define the significance as Not Significant if you do not want to use the node during
amendment processing.

During amendment processing, the OSM system compensates only for task
instances that use significant data elements as inputs. If an element is not specified
as significant, the system updates the order only with the changed data (no
compensation is required). Data significance is supported at the data dictionary,
order template, and task view levels.

Chapter 7
Task Editor

7-74

Field Use

Override Data Dictionary
Minimum/Maximum

You can define the Minimum and Maximum values at the task level:

In the Minimum field, select the number of times the global element referenced can
appear in an instance document. Select 0 if you want the element to be optional. By
default, nodes are optional at the task level.

In the Maximum field, select the maximum number of times the global element
referenced can appear. Select unbounded to indicate there is no maximum number of
occurrences.

Apply To Children Select this option to propagate the Read-Only, Significance, and Override Data
Dictionary fields to all direct children of the selected element. The Confirm Change
dialog box appears. Select Recursive in the Confirm Change dialog box to apply
the changes to all other children of the selected element. All changes are saved
immediately upon confirmation.

Contributor Identifies the task that contributes the data element. For example, consider that
you have 2 tasks, Task1 and Task2. Task2 extends Task1 and also contains 1
additional data element, billing_start_date. The contributor for all of the data elements
(except for billing_start_date) appears as Task1. The contributor for billing_start_date
appears as Task2.

Related Topics

Defining Task Data

Working with Tasks

Task Data Node Properties View Dictionary Tab
Use the Task Data Node Properties View Dictionary tab to edit the information defined
for the corresponding data element at the task level.

Right-click any attribute in the Task editor Task Data tab and select Open Properties
View to edit the data element properties at the task level.

Field Use

Name Displays the name of the element as defined in the Data Dictionary. The name of the node is
not available for edit. You can edit the value in the Display Name field on the Data Schema
editor Details subtab to edit the manner in which the element displays.

Display Name Displays the name of the element as it will appear in the Task web client. You can define
different display names for the languages that you support in the Task web client. Only those
languages defined on the Windows, Preferences, Oracle Design Studio dialog box appear as
options. See "Defining OSM Preferences" for more information about defining languages for
use in OSM.

Type Displays the data element type. This field is read-only.

Max Length Maximum number of units of length for a string element type. This field is read-only.

Minimum or
Maximum

Displays the Minimum and Maximum field values as defined in the Data Dictionary. See
"Task Data Node Properties View Identification Tab" for information about overriding this value.

Path Displays an XPath expression to define the location of the node in the Data Dictionary. This
field is read-only.

Namespace Identifies the namespace in which this cartridge exists, and identifies cartridge version within
the namespace, if applicable.

Chapter 7
Task Editor

7-75

Related Topics

Defining Task Data

Working with Tasks

Task Editor Undo Tab
The Task editor Undo tab appears for IP Service Activator and ASAP activation tasks.
(A new activation task is designated to be either an IP Service Activator or ASAP
activation task when you choose the Activation System value on the Activation Task
Wizard.)

Use the Undo tab to define part of your compensation strategy for activation tasks: to
undo tasks that are affected by amendments. Complete the compensation strategy for
activation tasks on the Redo tab. See "Task Editor Redo Tab" for more information.

Field Use

Compensation
Strategy (ASAP
only)

Specify the compensation strategy to undo a task when it is affected by an amendment:

• Select Manual if manual intervention is required at run time.
• Select Ignore to instruct OSM to skip this task.

Compensation
Strategy (IP Service
Activator only)

Specify the compensation strategy to undo a task when it is affected by an amendment:

• Select Manual if manual intervention is required at run time.
• Select Ignore to instruct OSM to skip this task.
• Select Undo to instruct OSM to cancel the original task, or to cancel another task.

Cancel original order
(IP Service Activator
only)

When Compensation Strategy is set to Undo, this option cancels the original order id.

Create a new order
to undo (IP Service
Activator only)

When Compensation Strategy is set to Undo, you can configure a new task to undo, by
specifying the data node that contains the Activation order ID. The Activation order ID is
configured on the Activation Task Details tab. See "Task Editor Activation Task Details
Tab" for more information.

Related Topics

Modeling Activation Tasks

About Activation Tasks

Chapter 7
Task Editor

7-76

8
Working with Order Lifecycle Policies

Every order you model within Oracle Communications Design Studio must be
associated with an order lifecycle policy. An order lifecycle policy controls which
transactions a role can perform while the order is in a particular order state. For
example, while an order is in the In Progress state, you might want your Customer
Service role to perform the Update Order, Cancel Order, and Suspend Order
transactions, while your Fallout role performs Raise Exception.

When working with order lifecycle policies, see the following topics:

• About Order States and Transactions

• Creating New Order Lifecycle Policies

• Configuring Order Lifecycle Policies

• Order Lifecycle Policy Editor

About Order States and Transactions
An order's progress in an Oracle Communications Order and Service Management
(OSM) run-time environment is tracked by its state at various stages of its life cycle.
Transitions from one order state to another are achieved through transactions. Each
order state is associated with a set of transactions that can be performed while the
order is in that particular state. See OSM Concepts for information about order states
and transactions.

Transactions are not enabled until roles are assigned to them. In the Order Lifecycle
Policy editor, enabled transactions are represented by a fully-shaded diamond-shaped
icon. Disabled (unassigned) transactions are represented with a diamond icon that
contains no shading. If all transactions for a particular state are enabled, the state
is represented with a fully-shaded diamond icon; partial-enabling is represented with
a half shaded diamond. The following graphic demonstrates the use of differently
shaded icons in the Order Lifecycle Policy editor left-column state and transaction
menu tree, using the delivered default order lifecycle policy, which contains a minimum
set of order state and transaction combinations assigned to all roles:

8-1

You can create a custom policy with no default transactions and no role assignments,
and then model it using the Order Lifecycle Policy editor. Depending upon your
business processes, you may configure one general policy that supports many
different order types, or you may need to configure a unique policy for each order
type.

Related Topics

Working with Order Lifecycle Policies

Working with Orders

Creating New Order Lifecycle Policies
You create new order lifecycle policies to control which transactions a role can perform
while the order is in a particular order state.

To create an order lifecycle policy:

1. From the Studio menu, select New, select Order and Service Management,
select Order Management, then select Order Lifecycle Policy.

2. In the Project field, select the OSM project in which to save this entity.

3. In the Name field, enter a name for the policy.

The name must be unique among order lifecycle policy entity types in the same
namespace.

4. (Optional) Select a location for the order lifecycle policy.

Chapter 8
Creating New Order Lifecycle Policies

8-2

By default, Design Studio saves the order lifecycle policy to your default
workspace location. You can enter a folder name in the Folder field, or select
a location different from the system-provided default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

5. Click Next.

6. (Optional) Create the policy with a custom configuration.

You can create custom configuration using the Create default order lifecycle
policy for the selected roles check box. Do one of the following:

• To create the policy with no default transactions and no role assignment,
deselect the check box.

• To create the policy with the default set of transactions but modify the role
assignment, leave the check box selected and move the selected roles to the
available roles as appropriate.

7. Click Finish.

The newly created policy is displayed under the selected project in the Studio
Projects view.

Related Topics

Configuring Order Lifecycle Policies

Working with Order Lifecycle Policies

Working with Orders

Configuring Order Lifecycle Policies
You configure order lifecycle policies to control which transactions a role can perform
while the order is in a particular order state.

To configure lifecycle order policies:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click any order lifecycle policy entity.

The Order Lifecycle Policy editor opens and displays the lifecycle policy.

4. (Optional) Create permissions for multiple state and transaction combinations.

When creating permissions for multiple state and transaction combinations, do the
following:

a. Click Grant Permission.

The Add Permissions to Transactions dialog box opens.

b. Press and hold the Shift key to select multiple consecutive state and
transaction pairs. Or, press and hold the Control key to select multiple non-
consecutive pairs.

Chapter 8
Configuring Order Lifecycle Policies

8-3

c. In the Roles list, select the roles to which you want to add permissions.

d. Click the arrow buttons to move the selected roles from the Available list to the
Selected list.

e. Click OK.

5. In the left-column state and transaction menu tree, expand an order state to see
the related transactions.

6. Select a transaction in the left-column state and transaction menu tree.

If you previously defined permissions for the transaction, the permitted roles are
displayed in the Permissions tab Selected area. The transaction you select here is
the transaction for which you want to define permissions. For example, select the
Suspend Order transaction to permit a specific group of users to suspend orders.

7. Click the Permissions tab Add button.

Design Studio adds a default display name to the Permissions area.

8. Select the default name and rename the permission, as appropriate.

9. Ensure that the new permission is actively selected.

10. In the Roles Available area, select the roles to which you will give transaction
permissions.

11. Click the arrow keys to move the selected roles into the Selected area.

12. (Optional) With the new permission actively selected, click the Add button in the
Condition area.

Design Studio adds a condition with a default name Condition and a
corresponding XPath expression with the default value true().

13. (Optional) Modify the default XPath expression for the permission condition.

The XPath expression must evaluate to true before the selected roles are
permitted access to the transaction. See "Order Lifecycle Policy Permissions Tab"
for more information.

14. (Optional) Click the Transition Condition tab.

Use the Transition Condition tab to define the conditions that control whether
the order can transition to the transaction. When adding transaction transition
conditions:

a. Click the Transition Condition tab Add button.

Design Studio adds a condition with a default name Condition and a
corresponding XPath expression with the default value true().

b. Modify the default XPath expression for the transition condition.

If the condition for a particular transaction transition evaluates to false, then
the transaction is disabled while the order is in the surrounding order state.

See "Order Lifecycle Policy Transition Conditions Tab" for more information.

15. (Optional) Click the Grace Period tab.

The Grace Period tab appears for the Suspend Order, Process Amendment, and
Cancel Order transactions only. You can define grace periods by wait duration and
by event frequency.

16. Click Save.

Chapter 8
Configuring Order Lifecycle Policies

8-4

Order Lifecycle Policy Editor
Use the Order Lifecycle Policy editor to add permissions to order transactions. If you
create a policy based on the default configuration, any roles you have defined within
Design Studio are automatically preselected for the default transactions. You can add
permissions to a group of transactions, or to a single transaction.

The following fields are common among multiple Order Lifecycle Policy editor subtabs.

Field Use

Display Name Edit the display name for the order lifecycle policy.

State and Transaction menu tree This menu tree (at the left side of the Order Lifecycle
Policy editor) contains a list of the order states and the
transactions that can occur for each order state.

Expand an order state folder to reveal the related
transactions. Select a transaction in this column to
configure permissions for the transaction. Click the Add
Permissions button to configure permissions for multiple
transactions simultaneously.

See the following topics when using the Order Lifecycle Policy editor:

• Order Lifecycle Policy Permissions Tab

• Order Lifecycle Policy Transition Conditions Tab

• Order Lifecycle Policy Editor Grace Periods Tab

Order Lifecycle Policy Permissions Tab
Use the Order Lifecycle Policy editor to add permissions to order transactions.

Field Use

Permissions Select a transaction from the left-column order state and
transaction menu tree and click the Permissions field
Add button to add a new permission for the selected
transaction. Select any permission and click Remove to
delete the permission from the list.

Select the default name and rename the permission, as
appropriate. See "Configuring Order Lifecycle Policies"
for information about assigning roles to permissions.

Roles Select a permission in the Permissions field to view
the roles assigned to the permission. All of the roles
defined in the workspace in the Available Column. To
permit a role to perform the transaction associated with
the permission, select a role and click the arrow keys to
move roles into the Selected area.

Click the Create Role button to create and add a new
role. See "Creating New Roles" for more information.

Chapter 8
Order Lifecycle Policy Editor

8-5

Field Use

Conditions Define conditions for the permissions.

Select a permission and click the Add button in the
Condition area. Select the default name condition and
the default XPath expression true() to modify the values.
Select any condition and click Remove to delete the
condition from the list.

OSM evaluates the condition for a permission when
the transaction is attempted. If it evaluates to true, the
assigned roles are able to perform the transaction. If
it evaluates to false, the assigned roles are unable to
perform the transaction.

Note: XPath uses path expressions to select data nodes
in XML documents. A path expression with a single dot
(.) represents the current node. Two dots (..) represents
the parent of the current node. A slash (/) represents the
root node. XPath and XQuery fields are limited to 4000
characters.

Related Topics

Configuring Order Lifecycle Policies

Working with Order Lifecycle Policies

Working with Orders

Order Lifecycle Policy Transition Conditions Tab
Use the Order Lifecycle Policy Transition tab to define conditions for transaction
transitions.

Field Use

Conditions Define conditions for the transaction transition.

Click the Add button in the Condition area to add a
condition for the selected transaction in the left-column
states and transactions menu tree. Select the default
name condition and the default XPath expression true()
to modify the values. Select any condition and click
Remove to delete the condition from the list.

OSM evaluates the condition when the order transitions
to the selected transaction. If the condition evaluates to
false, then the transaction is disabled while the order is
in the surrounding order state.

Expression When you add a condition, the default XPath expression
true() is automatically added.

Note: XPath uses path expressions to select data nodes
in XML documents. A path expression with a single dot
(.) represents the current node. Two dots (..) represents
the parent of the current node. A slash (/) represents the
root node. XPath and XQuery fields are limited to 4000
characters.

Chapter 8
Order Lifecycle Policy Editor

8-6

Field Use

Message Add a human readable message to display in error logs
if the condition evaluates to false.

Display as Add an error severity to associate with a condition that
evaluates to false. Select one of the following:

• VALID:
• WARNING:
• ERROR:
• CRITICAL:

Related Topics

Configuring Order Lifecycle Policies

Working with Order Lifecycle Policies

Working with Orders

Transition Condition for Checking a Hard Point of No Return
The following XQuery can be used to check whether a hard point of no return has
been reached, so that an amendment can be rejected if it is received after a hard point
of no return. This XQuery checks to see whether there have been any revisions to
significant data for order items that have reached a hard point of no return. Business
considerations will determine what state/transition combinations will need to check for
the point of no return, but at a minimum it should be defined in the In Progress state
for the Submit Amendment transition.

To use this XQuery, follow the standard procedure for updating the lifecycle policy,
creating a new transition condition and using the XQuery below in the Expression
box for that condition. See "Configuring Order Lifecycle Policies" for more information
about updating the lifecycle policy.

declare variable $PONR_NOT_YET := "NOT YET";

(: Checks for Hard Point Of No Return, return = true means no PONR
 has been reached. Raise an error if PONR has been reached. :)
declare function local:allowRevision(
 $taskData as element()) as xs:boolean {
 let $rootData := $taskData/_root
 let $changes := $taskData/RevisionPerspective/Changes
 return
 if (fn:exists($rootData) and fn:exists($changes))
 then (
 let $changedOrderItems as element()* :=
 local:getChangedOrderItems($rootData, $changes)
 let $revisionOrderItemsPastHardPONR as xs:string* :=
 for $orderItem in $changedOrderItems
 return local:getOrderItemsPastHardPONR($orderItem)
 return fn:not(fn:exists($revisionOrderItemsPastHardPONR)))
 else fn:true() };

declare function local:getChangedOrderItems(
 $root as element(),
 $changes as element()) as element()* {
 let $indices := local:getOrderItemIndicesForChecking($changes)

Chapter 8
Order Lifecycle Policy Editor

8-7

 let $distinctIndicies := fn:distinct-values($indices)
 for $index in $distinctIndicies
 return local:getOrderItem($root, $index) };

declare function local:getOrderItemIndicesForChecking(
 $changes as element()) as xs:string* {
 for $change in $changes/*[@significant = "true"]
 return local:getOrderItemIndex($change) };

declare function local:getOrderItemIndex(
 $changeNode as element()) as xs:string* {
 let $changeType := local-name($changeNode)
 let $tokens := fn:tokenize($changeNode/@path, "/")
 let $t1 := $tokens[position() = 2]
 let $t2 := $tokens[position() = 3]
 let $t3 := $tokens[position() = 4]
 let $t4 := $tokens[position() = 5]
 return
 if (fn:starts-with($t1, "ControlData")
 and fn:starts-with($t2, "Functions")) then
 (: /ControlData/Functions/*Function/orderItem/... :)
 local:getOrderItemIndexInFunction(
 fn:root($changeNode)/GetOrder.Response/_root,
 (: Functions/@index, if exists :)
 fn:substring-before(fn:substring-after($t2,"'"), "'"),
 (: e.g. SyncCustomerFunction/@index :)
 fn:substring-before(fn:substring-after($t3,"'"), "'"),
 (: e.g. orderItem/@index :)
 fn:substring-before(fn:substring-after($t4,"'"), "'"))
 else
 "" };

declare function local:getOrderItemIndexInFunction(
 $root as element(),
 $functionsIndex as xs:string,
 $functionIndex as xs:string,
 $orderItemIndex as xs:string) as xs:string* {
 if (fn:boolean($functionsIndex)) then
 $root/ControlData/Functions[@index = $functionsIndex]/*[@index =
 $functionIndex]/orderItem[@index =
 $orderItemIndex]/orderItemRef/@referencedIndex
 else
 $root/ControlData/Functions/*[@index = $functionIndex]/orderItem[@index =
 $orderItemIndex]/orderItemRef/@referencedIndex };

declare function local:getOrderItem(
 $root as element(),
 $orderItemIndex as xs:string) as element()* {
 $root/ControlData/OrderItem[@index = $orderItemIndex] };

declare function local:getOrderItemsPastHardPONR(
 $orderItem as element()) as xs:string* {
 let $lineId as xs:string := local:getLineId($orderItem)
 let $pointOfNoReturn as xs:string := local:getPointOfNoReturn($orderItem)
 let $isHardPONRReached := if ($pointOfNoReturn = "HARD")
 then true()
 else false()
 return
 if ($isHardPONRReached)
 then $lineId
 else () };

Chapter 8
Order Lifecycle Policy Editor

8-8

declare function local:getLineId(
 $orderItem as element()) as xs:string {
 fn:normalize-space($orderItem/LineID/text()) };

declare function local:getPointOfNoReturn(
 $orderItem as element()) as xs:string {
 let $ponrData := fn:normalize-space($orderItem/PoNR/text())
 let $ponrCode :=
 if (fn:empty($ponrData))
 then $PONR_NOT_YET
 else (
 let $lastPonrValue :=
 fn:normalize-space($orderItem/PoNR[last()]/text())
 return
 (: We are looking for strings with either [xxxx]xxxx or
 xxxx format. Return what is in the [] or the whole string
 if no brackets. :)
 let $hard1 := fn:tokenize($lastPonrValue, "\[|\]")
 return fn:concat($hard1[1] , $hard1[2])
)
 return
 $ponrCode };

(: Detect false revision order. return = true means
 there are significant data changes in the revision order :)
declare function local:doSignificantChangesExist(
 $taskData as element()) as xs:boolean {
 let $dataChanges :=
 $taskData/RevisionPerspective/Changes/*[@significant='true']
 return
 if (fn:exists($dataChanges))
 then true()
 else false() };

(: Only do the complex calculation for a valid revision.:)
let $taskData := fn:root(.)/GetOrder.Response
let $isValidRevision := local:doSignificantChangesExist($taskData)
return if ($isValidRevision)
then
 local:allowRevision($taskData)
else
 fn:true()

Order Lifecycle Policy Editor Grace Periods Tab
Use the Order Lifecycle Policy Editor Grace Periods tab to specify a period of time that
the system should wait before suspending, amending, or canceling an order.

A grace period specifies a period of time to wait for all accepted tasks to complete
before transitioning an order. You can specify a grace period for the Suspend Order,
Process Amendment, and Cancel Order transactions. Grace periods are defined by a
wait duration and an event frequency.

Field Use

Wait Duration Select Indefinitely (the default setting) or specify a time frame using
the minimum and maximum times that the system waits before
forcing the transition.

Chapter 8
Order Lifecycle Policy Editor

8-9

Field Use

Event Frequency Specify the frequency at which the system should generate a
jeopardy notification (defined as every hour, by default) while the
wait duration remains unsatisfied.

Related Topics

Configuring Order Lifecycle Policies

Working with Order Lifecycle Policies

Working with Orders

Chapter 8
Order Lifecycle Policy Editor

8-10

9
Working with Data Providers

You use data providers in Oracle Communications Order and Service Management
(OSM) in conjunction with Data Instance behaviors to augment order information by
retrieving information from external systems. When modeling data providers, see the
following topics:

• About Data Providers

• Creating New Data Providers

• Data Provider Editor

Related Topics

Working with Behaviors

About Data Providers
You use data providers in conjunction with Data Instance behaviors to augment order
information by retrieving information from external systems. After you've defined a
data provider, you can reuse or extend the configuration for multiple Data Instance
behaviors.

For example, consider that you have a task that requires information that is not
included in an order, such as a customer name and address. To obtain this
information, you can define in the Task editor a Data Instance behavior called
Customer ID. When you define the properties for the data instance, you can specify an
existing data provider or create a new data provider that will describe the configuration
necessary to retrieve the information from the external CRM system. If, to attach to
the external CRM system, you know that you will need to include a host value and a
password, you can use the Data Provider editor to add host and password as input
parameters and define default values for these parameters, written as an XPath or
XQuery expression.

Related Topics

Understanding Built-in Data Provider Types

Data Provider Editor

Data Provider Editor Settings Tab

Working with Data Providers

Defining Data Instance Behavior Properties

Understanding Built-in Data Provider Types
Design Studio provides several built-in data provider types intended to retrieve
external XML instances from the following sources:

9-1

Data Provider Description

Objectel Use to invoke an Objectel server extension. The returned XML
document is used as the external instance. This adapter provides a
reliable transport call into Objectel. Although JMS is an asynchronous
protocol, the adapter itself is not. While JMS simplifies transaction
management, recovery, offline capabilities, and security, these
benefits are not really of relevance when considered within the context
of a Data Instance rule. The JMS adapter utilizes additional resources
in the application server in the form of temporary JMS destinations
to which Objectel sends the response. These can be expensive if an
order has many adapters being called concurrently. Oracle does not
recommend this adapter in this situation.

Objectel is an inventory tracking application designed to assist
telecommunication and network engineers with the documentation of
the equipment used in providing data and voice communications, with
the creation of facilities, and with the assignment of customer circuits.

Order Use order data from any OSM order as an external instance.

Property File Reads the data instance data values from a property file.

SOAP Invoke SOAP web services using HTTP protocol and utilize the
responses.

XML Attachment Use an XML file that has been attached to any OSM order as an
external instance.

XML File Use an XML file accessible from any standard URL as an external
instance. This built-in data provider is useful for integrating external
XML data located in a file system, FTP site, from HTTP, or in a
Java .jar file.

XML Validation Use to validate any XML document using a schema. Both the
document and the schema can be either elements or URLs.

JDBC Query any JDBC database, then use the results within a behavior.
This built-in data provider is useful for acquiring information stored in
an external database.

Web Service Use to invoke OSM Web Service operations GetOrder and FindOrder.
This built-in data provider acts as a wrapper around the OSM Web
Service API allowing these operations to be invoked from external
instances.

For more information about the built-in data provider parameters, and examples, see
OSM Modeling Guide.

Related Topics

About Data Providers

Working with Data Providers

Creating New Data Providers
You create data providers to use in conjunction with Data Instance behaviors to
augment order information by retrieving information from external systems.

To create a new data provider:

Chapter 9
Creating New Data Providers

9-2

1. From the Studio menu, select New, select Order and Service Management,
select Order Management, then select Data Provider.

2. In the Project field, select the project in which to save this entity.

3. In the Name field, enter a name for the data provider.

The name must be unique among the data provider entity types in the same
namespace.

4. (Optional) Select a location for the data provider.

By default, Design Studio saves the data provider to your default workspace
location. You can enter a folder name in the Folder field, or select a location
different from the system-provided default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

5. In the Provider Type field, select the provider type for the data provider.

Design Studio provides a list of built-in data providers that you can configure to
retrieve external XML instances. The SOAP provider type is the default setting.

6. Click Finish.

Design Studio adds the data provider to the appropriate project in the Studio
Projects view.

Related Topics

About Data Providers

Configuring Data Providers
You configure data providers to define the input and output parameters.

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click any data provider entity.

The Data Provider editor opens and displays the data provider.

4. In the Settings tab, configure any values that you would like to change for your
implementation.

If you are configuring a custom data provider, you must enter a value in the
Provider Class field.

5. Click the Interface tab.

If you are using a built-in data provider type, the required parameters for your
type have been included automatically in the Parameter field. Parameters with an
asterisk after the name must be configured with values.

6. For each of the provided parameters, click on the parameter name and do the
following:

a. Select either XPATH or XQUERY in the Default Value drop-down list,
depending on the format of the value you are going to provide.

Chapter 9
Configuring Data Providers

9-3

b. Enter the value of the parameter in the Default Value field.

See OSM Modeling Guide for more information about the required parameters for
each data provider type.

7. (Optional) Specify a value in the Results Documents field. If you do not provide
an XML structure, the system will not display the parameters on the Data Instance
Behavior Properties tab.

If you do not provide an XML structure, the system will not display the parameters
on the Data Instance Behavior Properties tab.

Related Topics

About Data Providers

About Data Instance Behaviors

Data Provider Editor
Use the Data Provider editor to configure the system settings and interface parameters
necessary to retrieve information from external systems. You use data providers in
conjunction with Data Instance behaviors to augment order information by retrieving
information from external systems.

When configuring system settings and interface parameters in the Data Provider
editor, see the following topics:

• Data Provider Editor Settings Tab

• Data Provider Editor Interface Tab

Data Provider Editor Settings Tab
Use the Data Provider editor Settings tab to configure the external system settings for
data providers.

Field Use

Provider Type Select a built-in data provider or a custom data provider that you will
create.

You can switch between one provider type and another. If at
least one parameter value already exists for the provider type
you are changing, a warning message appears indicating that
the parameters of the new provider type will replace the existing
provider type parameters.

Provider Class If you select Custom in the Provider Type field, you must provide a
class name.

Chapter 9
Data Provider Editor

9-4

Field Use

Scope Specify how OSM should cache external data instances. Select one
of the following cache levels from the Scope field:

• System (the default): The system caches and reuses external
data instances system-wide. Use this scope level if retrieving
the external instance is expensive and performed frequently.
The system reuses the cached instance results only if the
actual resolved values of all parameters are identical and the
lookup adapter class is the same.

• Node: The system caches external data instances at the node
level. This level of cache is specific to the user, session, and
task. For example, the system retrieves any given external
instance when a view node on an order is instantiated. The
system reuses the external instance across all instances of
the node regardless of how many instances of that view node
exist in the order. Use this setting if it is moderately expensive
to retrieve the external instance and the field referencing the
external instance is a multi-instance node. The system only
re-uses cached instances across multi-instance nodes if the
actual resolved values of all parameters are identical and the
lookup adapter class is the same.

• None: The system retrieves external data instances for each
instance of the field on the order and they are not cached.

Maximum Time,
Maximum number
cached

If you select System or Node in the Scope field, specify the
following cache settings:

• In Maximum Time, specify the maximum time (in milliseconds)
for which a cached external instance is valid. For example,
enter 5000 to define the <timeout> as 5 seconds.

• In Maximum number cached, specify the maximum number of
actual entries in the cache that is maintained at any one time
for this defined external instance.

For information about building a custom Data Provider, see the OSM Modeling Guide.

Related Topics

Working with Data Providers

Data Provider Editor

Defining Data Instance Behavior Properties

Data Provider Editor Interface Tab
Use the Data Provider editor Interface tab to define the input parameters and default
settings for the external system and specify the provider class and cache settings.

Chapter 9
Data Provider Editor

9-5

Field Use

Parameters When you create a new data provider, Design Studio displays all
of the mandatory and optional parameters based on the selected
provider type. Mandatory parameters are shown with an asterisk
(*) to differentiate them from optional parameters.

Click Add to add an input parameter, and select the new
parameter to rename it. Input parameters specify named
parameters whose values are used when retrieving an external
instance. The value is determined at run time and is based on
the XPath or XQuery expression you define in the Default Value
field.

Default Value Define the content of the associated parameter element as an
XPath to a node or as an XQuery expression.

• XPath supports functions in expressions and provides for
a core library of functions dealing with strings, numbers,
Booleans, and node sets. In addition to the core XPath
functions defined by the XPath standard, a number
of extended functions are supported with OSM. These
extended functions provide additional functionality that
is useful to create behaviors but does not conform to
the XPath standard. For more information about XPath
functions, see OSM Developer's Guide.

• XQuery enables the use of sophisticated expressions
and XML transformations. XQuery syntax is backwards
compatible with XPath 1.0 and contains additional syntax
elements. You can use XQuery in situations where a more
expressive language or transformation abilities are needed.

Result Document (Optional) Specify the structure of the XML document. Though
this field is optional, if you do not provide an XML structure,
the system will not display the parameters on the Data Instance
Behavior Properties tab.

Note:

XPath and XQuery fields are limited to 4000 characters

Related Topics

Working with Data Providers

Data Provider Editor Settings Tab

Defining Data Instance Behavior Properties

Chapter 9
Data Provider Editor

9-6

10
Working with Orders

When you create an Oracle Communications Order and Service Management (OSM)
project, an order entity is automatically generated and placed in your project directory.
You can create additional order entities using the Order wizard.

You model various aspects of the order using the tabs in the Order editor; for example,
the order data, behaviors, rules, properties, and permissions. Every order you create
must also be associated with an order lifecycle policy, which you configure using the
Order Lifecycle Policy editor. See "Working with Order Lifecycle Policies" for more
information.

When modeling orders, see the following topics:

• About Order Extensions and Inheritance

• About Reference Nodes

• Creating New Orders

• Defining Order Data

• Defining Order Behaviors

• Defining Order Details

• Enabling Order Amendment Processing

• Defining Order Rules

• Defining Order Fallout

• Defining Order Data Changed Notifications

• Assigning Order Permissions

• Defining Order Jeopardy Notifications

• Defining Order Event Notifications

• Order Editor

Related Topics

Modeling Data

About Order Extensions and Inheritance
During order creation, you can base new orders on the functionality of an existing
order by using the extend feature. When you extend an order, the extended order
inherits all of the data, tasks, rules, and behaviors of the parent order. For example, if
you have multiple order types that all require the same subset of processes and tasks,
you can create a base order that contains this data, then extend from this order to
create as many new orders as necessary. You can add new data and behaviors to
each of the new orders to create unique order templates and behavior functionality.
To implement changes to the inherited data, you edit the data in the parent order

10-1

and Oracle Communications Design Studio automatically implements those changes
among all of the extended orders.

You cannot edit order data inherited from a parent order. For example, if you are
working in an order that includes data inherited from a parent order, you cannot
remove, rename, or reposition data elements inherited from the parent order, make
changes to inherited behaviors, and so forth.

The child order does not inherit any configuration details specified in the parent
order Details, Amendable, Notifications, Permissions, Jeopardies, Events, or
Composite Data View tabs. You must manually set these configuration details for
each child order.

Note:

Design Studio does not permit cyclic referencing. For example, if order O2
extends from order O1, and order O3 extends from order O2, then you
cannot extend order O1 from order O3.

About Reference Nodes
A reference node is a data node that is created by referencing another data node
within the order template. The reference data node has the same data typing and
structure of the node that it is referencing. However, the reference data node is a
distinct instance of the data structure that it references.

Reference data nodes enable you to create information once and reuse it in multiple
locations in your data model. A reference node points back to a single data node
location and ensures that you can efficiently manage and update a node when it is
used in multiple locations.

Note:

This feature is not available in releases prior to OSM 7.0.

For example, imagine that you create a data structure called customer that
includes all of the information required for a customer profile: the data element
customerName, the structure address, the element phoneNumber, and so forth.
Another data structure, called devices, contains a list of devices, and each device
requires the customer profile information. Rather than remodeling the customer profile
data for each device, you can create a reference node to the customer structure. If
the customer information changes (for example, they require a new type of address),
you are not required to change the information at every instance where the customer
profile information is referenced, but only once in the customer structure.

You must set up reference nodes at order creation time as part of coding the
automation plug-ins that call the CreateOrderBySpecification web service operation.
For an example of how you set up reference nodes when you create an order using
the CreateOrderBySpecification web service operation, see the discussion on setting
up reference nodes in OSM Developer's Guide.

Chapter 10
About Reference Nodes

10-2

You must create a reference node association in the order template. See "Adding
Reference Data Nodes" for information about adding a reference node to an order
template.

Creating New Orders
You create orders to configure the data and properties of incoming orders.

To create orders:

1. From the Studio menu, select New, select Order and Service Management,
select Order Management, then select Order.

2. In the Project field, select the OSM project in which to save this entity.

3. (Optional) In the Extends field, select an existing order to leverage the order data
and extend the functionality of that existing order.

Click Select and select an order for the Extends field. If a suitable order does not
yet exist, click New to create the order. When finished, click OK. Your selection
populates the corresponding Extends field in the Order wizard. See "About Order
Extensions and Inheritance" for more information.

4. In the Name field, enter a name for the order.

The name must be unique among order entity types in the same namespace.

5. (Optional) Select a location for the order.

By default, Design Studio saves the order to your default workspace location. You
can enter a folder name in the Folder field or select a location different from the
default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

6. Click Finish.

Design Studio creates the order entity and saves it to the selected project in the
Studio Projects view.

Related Topics

Working with Orders

Defining Order Data
The data that you define for an order is available to the tasks included in the process
associated with the order. When defining order data, see the following topics:

• Adding New Data to an Order

• Adding Existing Data to an Order

• Adding a New Data Structure Definition to an Order

• Adding an Existing Data Structure Definition to an Order

• Adding Reference Data Nodes

Chapter 10
Creating New Orders

10-3

• Renaming Data Elements at the Order Level

• About Modeling Data in the Order Template

Related Topics

Order Editor

Adding New Data to an Order
You can create new data in the Data Dictionary and add it to the order.

To create new data:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an existing order.

The Order editor opens with the Order Template tab active. See "Order Editor
Order Template Tab" for more information.

4. Right-click inside the Order editor Order Template tab and select Open Data
Element view.

The Data Element view opens.

5. Right-click inside the Data Element view and select Add Simple Schema
Element or Add Structured Schema Element.

The Create Data Schema Element dialog box or the Create Data Schema
Structure dialog box is displayed.

6. Complete the form and click Finish.

7. Drag the new data from the Data Element view into the Order editor Order
Template tab.

Tip:

Press and hold the Shift key to select multiple consecutive elements.
Press and hold the Control key to select multiple non-consecutive
elements.

Related Topics

Order Editor

Adding Existing Data to an Order
You select data previously created in the data dictionary to add to an order.

To add data you have previously created:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an existing order.

Chapter 10
Defining Order Data

10-4

The Order editor opens with the Order Template tab active. See "Order Editor
Order Template Tab" for more information.

4. Right-click inside the Order editor Order Template tab and select Select from
Data Dictionary.

The Select Data Elements dialog box is displayed.

Note:

You can alternatively select Open Data Element view and then drag
and drop data elements from the Data Dictionary onto the Order
Template tab.

5. Select the data you want to add to the order.

Tips:

When selecting data to add to the order template:

• Press and hold the Shift key to select multiple consecutive elements.
Press and hold the Control key to select multiple non-consecutive
elements.

• Select a parent node to add all data elements (simple and structured
data elements) in its hierarchy.

• Select a child node to add only the child node and its parent nodes.
Design Studio automatically adds parent nodes associated to the
child node up to the root of the data schema.

6. Click OK.

Design Studio adds the data to the Order editor Order Template tab.

7. Click Save.

Related Topics

Order Editor

About Modeling Data in the Order Template

Adding Reference Data Nodes
When modeling data in the order template, you can add reference nodes. A reference
data node is a data node that is created by referencing another data node within the
order template. The reference data node has the same data typing and structure of the
node that it is referencing. However, the reference data node is a distinct instance of
the data structure that it references.

For example, OrderItemRef is a reference data node for an order component that
references the orderItem data structure in the order template. The OrderItemRef
reference data node is a distinct instance of orderItem in the order component, but

Chapter 10
Defining Order Data

10-5

shares the structure of orderItem - a data node that is already defined and contributed
by the Order Item Specification.

Note:

This feature is not available in releases prior to OSM 7.0.

To add a reference node:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an existing order.

The Order editor opens with the Order Template tab active. See "Order Editor
Order Template Tab" for more information.

4. Add a reference node to the root-level of the order template or to a data structure
by doing one of the following:

a. To add a reference node to the root-level of the order template, in the
Order editor Order Template tab, right-click in the tab area and select Add
Reference Node.

b. To add a reference node to a data structure, in the Order editor Order
Template tab, right-click on the data structure and select Add Reference
Node.

The Reference Node Creation dialog box is displayed.

5. Select the data node to which the reference node will point.

At run time, the reference node will obtain its value from the data node that you
select.

6. Click OK.

7. Click Save.

You must set up reference nodes at order creation time in addition to creating the
reference node association in the order template; otherwise, the reference node will
be empty at run time. For an example of how to set up reference nodes when you
create an order using the CreateOrderBySpecification web service operation, see the
discussion on setting up reference nodes in OSM Developer's Guide.

Related Topics

About Reference Nodes

Order Editor

Adding a New Data Structure Definition to an Order
You can create a data structure definition and add it to an order.

To create a data structure definition:

1. From the Studio menu, select Show Design Perspective.

Chapter 10
Defining Order Data

10-6

2. Click the Studio Projects tab.

3. Double-click the existing order to which you want to add a data structure definition.

The Order editor opens with the Order Template tab active. See "Order Editor
Order Template Tab" for more information.

4. In the Order editor Order Template tab, right-click on the data element, select
Select Data Structure Definition and click New.

The Data Structure Definition wizard is displayed.

5. Enter a name for the data structure definition.

6. Click Finish.

7. Click Save.

Related Topics

About Modeling Data in the Order Template

Order Editor

Adding an Existing Data Structure Definition to an Order
You can add an existing data structure definition to an order.

To add a data structure definition to an order:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click the existing order to which you want to add a data structure definition.

The Order editor opens with the Order Template tab active. See "Order Editor
Order Template Tab" for more information.

4. In the Order editor Order Template tab, right-click on the data element, select
Select Data Structure Definition.

5. In Matching items, select a data structure definition.

6. Click OK.

The data structure definition is added to the order, and all child data elements and
structures of the data structure definition are also added and displayed.

Note:

Derived data structure definitions are not displayed in the order template.

7. Click Save.

Related Topics

About Modeling Data in the Order Template

Order Editor

Chapter 10
Defining Order Data

10-7

Renaming Data Elements at the Order Level
You rename a data element at the order level by providing an alias for the data
element in the Order editor Order Template tab. When you rename data elements
at the order level, Design Studio automatically updates that data element name in
all associated tasks and extended orders. However, the data element instance in the
Data Dictionary is not affected by the change.

For example, consider that you have a data model that contains two instances of a
data element called EmployeeID: one defined as a string (defined by the employee's
name and a two-digit number), the other defined as an integer (defined by a six-digit
number). To avoid data type collisions in the run-time environment, you can rename
one instance of the EmployeeID data element at the order level.

To rename data elements at the order level:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click the existing order that contains the data element to rename.

The Order editor opens with the Order Template tab active. See "Order Editor
Order Template Tab" for more information.

4. In the Order editor Order Template tab, right-click on the data element, select
Refactoring, and then select Rename.

The Rename Order Template Node dialog box is displayed.

The dialog box displays the current data element node name and the data element
node name as defined in the Data Dictionary. The rename that you make here
does not affect the node name at the Data Dictionary level.

5. In the Name field, enter the new name for the data element.

6. (Optional) Click the Preview button.

The Rename Order Template Node dialog box shows all instances of the data
element defined in related tasks and extended orders that will change after you
rename it at the order level.

If the rename is not allowed, a problem error is displayed. You can check the error
log for information on why the rename failed.

Click Continue to proceed.

7. Click OK.

Design Studio implements the change immediately in the project.

Related Topics

Order Editor

Defining Order Behaviors
Behaviors provide a way to extend the functionality and appearance of order data.
Each behavior type performs an action; for example, calculating or validating data or
displaying fields in read-only or read-write modes. When you define a behavior at the
order level, the behavior applies to all manual tasks in the order model.

Chapter 10
Defining Order Behaviors

10-8

To define a behavior at the order level:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an existing order.

The Order editor opens with the Order Template tab active. See "Order Editor
Order Template Tab" for more information.

4. In the Order editor Order Template tab area, select the data node upon which to
model the behavior.

5. Right-click in the Behaviors area and select Add Behavior.

Each behavior type enables you to dynamically control a specific aspect of your
order data model.

6. Select a behavior type from the list.

Note:

You cannot define Calculation, Event, and Lookup behaviors for
structured data elements, because structured data elements do not
represent actual data.

Design Studio adds the behavior to the Behaviors area.

7. In the Behaviors area, click the new behavior.

The Behaviors Properties view opens, which includes a set of properties that you
must define for the corresponding behavior type. See "Working with Behaviors" for
more information about defining behavior properties.

8. (Optional) In the Order editor, click the Behaviors tab.

Use the Order editor Behaviors tab to quickly view all of the behaviors defined for
the data nodes in an order. See "Order Editor Behaviors Tab" for more information.

Related Topics

Order Editor

Defining Order Details
Order details define the process, order lifecycle policy, and creation task associated
with the order type. The details also include an execution priority and whether the
order type inherits from and extends another order type.

To define order details:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an existing order.

The Order editor opens with the Order Template tab active. See "Order Editor
Order Template Tab" for more information.

Chapter 10
Defining Order Details

10-9

4. Click the Order editor Details tab.

See "Order Editor Details Tab" for more information about the fields on this tab.

5. In the Extends field, determine whether to inherit order attributes from another
order.

Orders can inherit data from other orders, which enables you to leverage
order data when building new, similar orders. See "About Order Extensions and
Inheritance" for more information.

6. In the Subject field, select an order subject.

The order subject can be used to filter the orders in the OSM web clients.

7. In the Lifecycle Policy field, select a lifecycle policy to control which order state
and transaction combinations a role can perform for this order type.

See "Working with Order Lifecycle Policies" for more information.

8. In the Default Process field, select the process to which this order is submitted.
See "Working with Processes" for more information.

9. In the Creation Task field, select the task that creates and submits the order
before the workflow begins. The creation task defines the data that is required to
be present when the order is created.

10. In the Priority Range field, specify a minimum and maximum priority for the order
to execute within.

For example, if you specify a range of 5 to 7 and the order is created with a priority
of less than 5, the priority value will be rounded up to 5. If the order is created with
a priority of more than 7, the priority value will be rounded down to 7.

11. Click Save.

Related Topics

Order Editor

Enabling Order Amendment Processing
To enable OSM to amend in-flight orders, you must configure the order to allow
amendment processing. By default, orders are not amendable.

To enable order amendment processing:

1. From the Studio menu, select Show Design Perspective.

2. Double-click any order in the Solution view or Studio Projects view.

The order opens in the Order editor.

3. Click the Amendable tab.

4. Select the Amendable option.

5. Click the Add button in the Key area.

Design Studio adds a key with a default name key and a corresponding XPath
expression with the default value true().

6. In the Expression field, specify an order key as an XPath to a node that will
uniquely match an amended order to its corresponding OSM order.

Chapter 10
Enabling Order Amendment Processing

10-10

For example, you might specify a customer reference ID as an XPath. You can
select a data node from the Data Element view and drag the selected data node
into the XPath Expressions field to define the XPath expression. See "Order
Editor Amendable Tab " for more information about defining order keys.

7. Select one or more events to be published at run time for this order type.

If you select no events, the system publishes no events. See "Order Editor
Amendable Tab " for more information.

8. Specify the version as an XPath to a node that will return a numeric value
representing the version of an amended order.

Amendments with higher versions are considered to be more recent than
amendments with lower versions. If there are multiple queued amended orders for
the same original order, OSM processes only the most recent amendment version.

9. Click Save.

Related Topics

Working with Event Notifications

Working with Orders

Defining Order Rules
You define rules for orders to evaluate the order contents. Rules are used in process
flow decisions, conditional transitions, subprocess logic, delay activities, jeopardies,
and events and enable you to evaluate against the content of an order by comparing
data node to data node or data node to a fixed value. When you compare data to
data, you compare the contents of two data nodes (of the same type); for example,
you might compare a due date with a payment date, based on some condition. When
you compare data to a value, you compare a data node to a fixed value.

When you first create an order, the system automatically assigns to the order a
system-based null_rule which always evaluates to true. This default configuration
ensures that the order will be submitted to a process. You cannot remove the
null_rule or modify its definition; however, you can define any number of your own
custom rules.

To define rules for orders:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an order.

The order displays in the Order editor.

4. Click the Rules tab.

See "Order Editor Rules Tab" for more information about the fields on this tab.

5. In the Rules area, click the corresponding Add button.

The Add Rule dialog box is displayed.

6. In the Name field, enter a name for the new rule.

The name must be unique among rule entity types in the same namespace.

Chapter 10
Defining Order Rules

10-11

7. Click OK.

The new rule is displayed in the Name column. You can select the rule entity in the
Name column at any time to edit the rule name.

8. In the Name column, select the new rule entity.

9. In the Definition tab, click the Add button.

The Order Template Selection dialog box is displayed.

10. Select the node against which the rule will evaluate.

You can select one node for the rule or select multiple nodes to create multiple
rules.

You can right-click a data structure definition node to specify a derived complex
type.

11. Click OK.

12. Select the node you just added.

13. Click the Properties button.

The Properties view Rules Expressions tab is displayed, where you can
define values for the fields in the remaining steps. See "Properties View Rules
Expression Tab" for more information.

14. In the Data field, enter the XPath expression to identify the location of the data
node.

You can also select a data node from the Data Element view and drag the selected
data node into the Data field to define the XPath expression. To drag a data node
into the Properties view Rules Expressions tab, press and hold the Alt key before
you select and drag the data node to the field.

Additionally, you can click the corresponding Select button to select another data
node.

15. In the Operator field, select an operator from the list.

The options available in the Operator field depend on the data type used in the
Data field.

16. In the Data/Value field, enter an XPath expression or enter a fixed value.

You can select a data node from the Order Template tab and drag the selected
data node into the Data/Value field to define the XPath expression. To drag a data
node into the Properties view Rules Expressions tab, press and hold the Alt key
before you select and drag the data node to the field.

Additionally, you can click the corresponding Select button to select another data
node.

17. In the Order editor Definition tab, click Add to add another expression to the rule.

Each condition is separated by either And or Or (And is the default).

Related Topics

Order Editor

Modeling Data

Chapter 10
Defining Order Rules

10-12

Defining Order Fallout
Fallout refers to orders that encounter problems during fulfillment and therefore fall out
of normal processing. OSM places these orders in Failed state (you can also manually
fail orders in the Order Management web client).

When defining order fallouts, see the following topics:

• Associating Order Fallouts with Data Nodes

• Associating Order Fallouts with Fallout Groups

Associating Order Fallouts with Data Nodes
In Design Studio, you associate a fallout name with one or multiple data nodes whose
values you will want to review (in the Customer Management web client) when the
corresponding type of fallout occurs.

To associate order fallouts with data nodes:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an order.

The order displays in the Order editor.

4. Click the Fallout tab.

See "Order Editor Fallouts Tab" for more information about the fields on this tab.

5. In the Name area, click the corresponding Add button.

The Add Fallout dialog box is displayed.

6. In the Name field, enter a name for the new order fallout.

The name must be unique among fallout types in the same namespace.

7. Click OK.

The new order fallout is displayed in the Name column. You can select the value in
the Name column at any time to edit the name.

8. Select the new order fallout in the Name column.

9. Enter a display name for the order fallout.

You can associate the display name that appears in the Task web client with a
specific language by using the optional language attribute. Only those languages
defined appear as options. See "Defining Language Preferences" for information
about defining languages for use in OSM.

10. In the Nodes area, click the Add button.

The Order Template Node Selection dialog box is displayed.

11. Select one or multiple data nodes whose values you will want to review (in the
Order Management web client) when this fallout occurs.

You can right-click a data structure definition node to specify a derived complex
type.

Chapter 10
Defining Order Fallout

10-13

12. (Optional) In the Nodes area, click the Remove button to delete the association
with the data node.

13. Click Save.

Related Topics

Associating Order Fallouts with Fallout Groups

Order Editor

Associating Order Fallouts with Fallout Groups
You can group similar types of fallouts into groups, enabling you to review multiple
fallouts together in the Order Management web client when the corresponding types of
fallout occur.

To associate order fallouts with fallout groups:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click an order.

The order displays in the Order editor.

4. Click the Fallout Groups tab.

See "Order Editor Fallout Groups Tab" for more information about the fields on this
tab.

5. In the Name area, click the corresponding Add button.

The Add Fallout Group dialog box is displayed.

6. In the Name field, enter a name for the new fallout group.

The name must be unique among fallout group types in the same namespace.

7. Click OK.

The new fallout group is displayed in the Name column. You can select the value
in the Name column at any time to edit the name.

8. In the Name column, select the new fallout group.

9. Enter a display name for the fallout group.

You can associate the display name that appears in the Task web client with a
specific language by using the optional language attribute. Only those languages
defined appear as options. See "Defining Language Preferences" for information
about defining languages for use in OSM.

10. In the Fallouts area, click the Add button.

The Select Fallouts dialog box is displayed.

11. Select one or multiple fallouts to group together.

12. (Optional) In the Fallouts area, click the Remove button to delete the association
with the data node.

13. Click Save.

Chapter 10
Defining Order Fallout

10-14

Related Topics

Associating Order Fallouts with Data Nodes

Order Editor

Defining Order Data Changed Notifications
You define order data changed notifications to update external systems with status
updates when a specific data node in the order data is updated with a new value. Data
change notifications are triggered by changes to order data.

See "Creating Order Data Changed Notifications" for information about creating data
change notifications at the order level.

Note:

This feature is not available in releases prior to OSM 7.0.

Related Topics

Working with Orders

Working with Jeopardy and Event Notifications

Assigning Order Permissions
When you assign permissions to orders, you define how specified roles can search for
orders in the Task web client, which fields of data they can see, whether the roles can
add additional columns of data to their Worklist, Notification, and Query pages, and
whether they can create orders of the associated type.

To assign order permissions:

1. From the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

3. Double-click any order entity.

The order displays in the Order editor.

4. Click the Permissions tab.

See "Order Editor Permissions Tab" for more information about the fields on this
tab.

5. Do one of the following:

• To select from existing roles, click Select.

• To create a new role, click New.

See "Creating New Roles" for more information.

6. (Optional) To view permissions for existing roles, select the role and click Open.

Chapter 10
Defining Order Data Changed Notifications

10-15

The system displays the role in the Role editor, where you can view the
permissions assigned to the role. You assign permissions to a role to give the
users in that role access to related functions in the Task web client. See "Role
Editor Role Tab" for more information.

7. (Optional) Select a role and click Remove if you want to delete an associated role
from the task.

8. (Optional) Click the Details tab.

See "Order Editor Permissions Details Tab" for more information about the fields
on this tab. On the Details tab, you can:

• Enable the associated role to create this order type in the Task web client by
selecting Create Orders.

• Define a set of flexible headers for Task web client users.

Flexible headers are additional columns of data that Task web client users
can add (through the preferences settings) to their Worklist, Notification, and
Query pages. Click Add to select the data nodes that represent the flexible
header columns. After adding a data node, select the name or description to
edit those values.

Note:

If you change the flexible headers and re-deploy the cartridges while
users are logged in to the OSM web clients, users may have to log
out and log back in to see the changes.

9. (Optional) Limit the orders a role can view.

To limit the orders a role can view:

a. Click the Filters tab.

See "Order Editor Permissions Filters Tab" for more information about the
fields on this tab.

b. Click Add.

The Order Template Node Selection dialog box is displayed.

c. Select the data node on which to define the condition that limits the orders the
role can view.

Note:

If you apply a filter to a multi-instance data element, the filter will
always be evaluated based on the first instance of the data. It is not
possible to specify another instance of the data element to use.

d. Click the Properties button.

The Filter Expressions tab is displayed, where you can define values for the
fields on the Filters tab. See "Properties View Filter Expression Tab" for more
information.

Chapter 10
Assigning Order Permissions

10-16

e. In the Data field, enter the XPath expression to identify the location of the data
node.

You can also select a data node from the Data Element view and drag the
selected data node into the Data field to define the XPath expression. To drag
a data node into the Filter Expressions tab, press and hold the Alt key before
you select and drag the data node to the field. Click the corresponding Select
button to select a different data node.

f. In the Operator field, select an operator from the list.

The options available in the Operator field depend on the data type used in
the Data field.

g. Select either the Data option button or the Value option button to specify the
expression that the condition evaluates against.

h. In the Order editor Filters tab, click Add to add another expression to the rule.

Each condition is separated by either And or Or (And is the default).

10. Click the Query Task tab.

Use the Query Task tab to select the task that will generate the query view used
by Task web client users.

When selecting query tasks:

• Click New to create a new query task and add the task to the order.

• Click Add to add an existing task to the order.

• Select any task and click Open to review the task in the Task editor.

You can associate multiple query tasks with an order, and define each task
as the Summary view, the Detail view, or the Default view. See "Order Editor
Permissions Query Tasks Tab" for more information about the fields on this
tab.

11. Click Save.

Related Topics

Order Editor Permissions Details Tab

Order Editor Permissions Filters Tab

Working with Orders

Defining Order Jeopardy Notifications
You define order jeopardy notifications when you want to alert users or systems that
an order may be at risk. Jeopardy notifications are based on rules that you configure
in Design Studio and which the OSM server evaluates at regular intervals. A jeopardy
notification can be sent to a user group or may be consumed by an automation plug-in.

See "Creating Jeopardy Notifications in the Task or Order Editor" for information about
defining jeopardy notifications at the order level.

Related Topics

Working with Orders

Chapter 10
Defining Order Jeopardy Notifications

10-17

Working with Jeopardy and Event Notifications

Defining Order Event Notifications
You define order event notifications to generate a milestone-based event that works
with automation plug-ins. You select the order milestone that triggers the automation
and then configure the automation plug-in that will perform the work.

See "Creating Order Milestone and Task State Automation Event Notifications" for
information about creating order event notifications.

Related Topics

Working with Orders

Working with Jeopardy and Event Notifications

Order Editor
Use the Order editor to model order attributes, such as the order data, behaviors,
rules, properties, and permissions. Every order you create must also be associated
with an order lifecycle policy. See "Working with Order Lifecycle Policies" for more
information.

When working with the Order editor, see the following topics:

• Order Editor Order Template Tab

• Order Editor Behaviors Tab

• Order Editor Details Tab

• Order Editor Amendable Tab

• Order Editor Rules Tab

• Order Editor Fallouts Tab

• Order Editor Fallout Groups Tab

• Order Editor Notification Tab

• Order Editor Permissions Tab

• Order Editor Jeopardy Tab

• Order Editor Events Tab

• Order Editor Composite Data View Tab

Order Editor Order Template Tab
Use the Order editor Order Template tab to model all of the data necessary to
provision the order. You can drag data from the Dictionary view into the Order
Template area, or right-click in the Order Template area to select data from the Data
Dictionary dialog box. The following table describes the fields on the Order Editor
Order Template tab.

Chapter 10
Defining Order Event Notifications

10-18

Field Use

Order
Template

Contains all of the data necessary to fulfill or provision an order. This area represents a template
from which you can select the data nodes that tasks require during the fulfillment or provisioning
process.

To hide all data elements related to control data (the reserved ControlData area that OSM uses for
executing orchestration), deselect the Show Control Data check box.

See "About the Order Template Context Menu" for descriptions of other actions you can perform
in the Order Template context menu.

Behaviors Displays all of the behaviors defined for each data node in the order template. Select a data node
in the Order Template area to view the behaviors defined the node, or to create new behaviors.
When defining behaviors at the order level, you can use the Order editor Order Template tab
to create the behavior, the Behavior Properties tabs to refine the behavior information, and the
Order editor Behaviors tab to quickly view all of the behaviors defined for a task. See "Defining
Order Behaviors" for more information.

When modeling order data, see the following topics for additional information:

• Properties View Order Data Tab

• Properties View Dictionary Tab

• Properties View Key Tab

• Properties View Usage Tab

Related Topics

Defining Order Data

Properties View Order Data Tab
Use the Properties view Order Data tab to access and edit the information defined
for the corresponding data element at the order template level. You can right-click any
attribute in the Order editor Order Template field and select Open Properties View to
open the Properties view Order Data tab. The following table describes the fields on
the Properties view Order Data tab.

Field Use

Name The system displays the name of the node as defined in the Data Dictionary. The name of the
node is not available for edit on this tab. You can edit the value in the Display Name field in the
Data Schema editor Details subtab to edit the manner in which the element displays in the Task
web client.

Path The system displays an XPath expression to define the location of the node in the Data
Dictionary.

Chapter 10
Order Editor

10-19

Field Use

Contributing
Template

Displays the parent structure when the selected structure has been extended from a base
structure.

During order creation, you can base new orders on the functionality of an existing order by
using the extend feature. When you extend an order, the extended order inherits all of the data,
tasks, rules, and behaviors of the parent order.

You can add new data and behaviors to each of the new orders to create unique order
templates and behavior functionality. To implement changes to the inherited data, you edit the
data in the parent order, and Design Studio automatically implements those changes among all
of the extended orders.See "About Order Extensions and Inheritance" for more information.

Additionally, the contributing template can reflect that the data node was contributed by an order
component.

Data Dictionary The system displays the name of the data schema (within the Data Dictionary) in which the
node is defined.

XML Type Select to signify that the structure is an XML data type. Structures defined as XML data types in
the Data Dictionary can contain XML documents.

Note: Before you use XML data types, copy all relevant schema (XSD) files into the cartridge
project. Use the Java perspective Package Explorer view to copy the schema files into the
dataDictionary folder.

Note: This feature is not available in releases prior to OSM 7.0.

See the Eclipse Java Development User Guide for more information about the Java perspective.

Significance By default, a node inherits significance from its parent. At the order level, you can define
the significance as Not Significant if you do not want to use the node during amendment
processing.

During amendment processing, the OSM system compensates only for order instances that use
significant data elements as inputs. If an element is not specified as significant, the system
updates the order only with the changed data (no compensation is required). Data significance
is supported at the Data Dictionary, the order template, and the task levels.

Ignore rollback
during undo

There may be data on an order or task that you want to exclude from rollback in cases when
the order or task is running in undo mode. For example, you may want to retain data related to
status messages when a task rolls back during a fallout scenario where the status messages
may contain important troubleshooting information. If you set this value for a structure, all child
structures and elements also ignore rollback during the undo execution mode.

You typically set this value for data generated during order processing, for example, with
external fulfillment state updates, external processing states updates, or status nodes for
external response messages. Oracle recommends that you not set this value for data from
the upstream system, for example, from the original order.

Oracle recommends that when you set this value, you also set the significance value to Not
Significant.

Note: Do not set this value for ControlData fulfillment state and processing state elements
because OSM calculates these elements based on data received from external system where
Ignore rollback during undo is appropriate to set.

Related Topics

Defining Order Data

Order Editor Order Template Tab

Properties View Dictionary Tab
Use the Properties view Dictionary tab to access and edit the information defined for
the corresponding data element at the order template level. You can right-click any

Chapter 10
Order Editor

10-20

attribute in the Order Template area and select Open Properties View to access and
edit the information defined for the corresponding data element at the order template
level. The following table describes the fields on the Properties view Dictionary tab.

Field Use

Name The system displays the name of the node as defined in the Data Dictionary. The name of the node
is not available for edit. You can edit the value in the Display Name field in the Data Schema editor
Details subtab to edit the manner in which the element displays in the Task web client.

Display
Name

You can associate the display name with a specific language by using the optional language
attribute. Only those languages defined appear as options. See "Defining OSM Preferences" for
information about defining languages for use in OSM.

Type Displays the data element type. This field is read only.

Max Length Specify the maximum number of units of length for a string element type. You must define the
maximum length with a non-negative integer.

Minimum Select the number of times the global element referenced can appear in an instance document.
Select 0 if you want the element to be optional.

Maximum Select the maximum number of times the global element referenced can appear. Select
unbounded to indicate there is no maximum number of occurrences.

Path The system displays an XPath expression to define the location of the node in the Data Dictionary.

Namespace Identifies the namespace in which this cartridge exists, and identifies the cartridge version within
the namespace, if applicable.

Related Topics

Defining Order Data

Order Editor Order Template Tab

Properties View Key Tab
Use the Properties view Key tab to access and edit the key information defined for
the corresponding data element at the order template level. You can right-click any
attribute in the Order Template area and select Open Properties View to access and
edit the information defined for the corresponding data element at the order template
level. The following table describes the fields on the Properties view Key tab.

Field Use

Key
XPath Expression

If this node is a multi-instance data node, you can specify one or more order data keys to
uniquely match the data instance from an revision order to a data instance on the current
order data.

The order data key of a node must be an XPath that points to data within its scope. If the node
is a group node, the XPath expression must point to its children nodes; if the node is a value
node, it can only point to itself. If no keys are defined, OSM uses the relative position of the
changed data when comparing the revision order data with the current order data.

You can select a data element from the Order editor Order Template tab and drag the
selected data node into the XPath Expression field to define the XPath expression.

Note: XPath uses path expressions to select data nodes in XML documents. A path
expression with a single dot (.) represents the current node. Two dots (..) represents the
parent of the current node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Chapter 10
Order Editor

10-21

Related Topics

Defining Order Data

Order Editor Order Template Tab

Properties View Usage Tab
Use the Properties View Usage tab to view in which tasks and cartridges the
corresponding data element is defined. You can right-click any attribute in the Order
Template area and select Open Properties View to access and edit the information
defined for the corresponding data element at the order template level.

Select any row in the table and click Open to open the task in the appropriate editor.

Related Topics

Defining Order Data

Order Editor Order Template Tab

Order Editor Behaviors Tab
Click the Order editor Behaviors tab to quickly view all of the behaviors defined for
the data nodes in an order. The Behaviors table displays the name and type of the
behavior, whether the behavior is enabled, the inheritance properties, the path name
of the data node on which the behavior is defined, and the order where the behavior
was originally defined.

The information on the Order editor Behaviors tab is read only. To change the
information that appears on this tab, select a behavior from the table and click the
Properties button to access the Behaviors Properties tabs. See "Working with
Behaviors" for more information about defining behavior properties.

Related Topics

Defining Order Behaviors

Working with Orders

Order Editor Details Tab
Use the Order editor Details tab to define the order attributes that you use to
associate the order with other entities, enabling the order to execute correctly in the
OSM run-time environment. The following table describes the fields on the Order
editor Details tab.

Field Use

Extends You can select an existing or create a new order to extend this order (the order's data is inherited)
by clicking the Select button. To create a new order that this order would be an extension of, click
New. After you have selected or created an order, click Open to access the Order editor. Click
Clear (red X) to clear the selected value from the field.

Order data extensibility enables you to leverage order data when building new, similar orders.

Chapter 10
Order Editor

10-22

Field Use

Lifecycle
Policy

Select an existing or create a new lifecycle policy to control which order state/transaction
combinations a role can perform for this order type. Every order you create within Design Studio
must be associated with an order lifecycle policy.

Default
Process

Select an existing or create a new process to which the order is submitted.

When the selected default process is an orchestration process, Design Studio looks for the Data
Dictionary project OracleComms_OSM_CommonDataDictionary, which contains definitions of
common OSM structures such as control data, base order item data elements, base function data
elements, and so on. If the Data Dictionary does not exist, you will be prompted to import it. After
the Data Dictionary is imported, Design Studio automatically attaches base control data such as
ControlData/Functions and ControlData/OrderItem from the imported Data Dictionary to the
order.

Order Item Identifies whether an order item specification is associated with the order through the following
relationship: Order > Orchestration Process > Orchestration Sequence > Order Item Specification.

If no process (or a provisioning process) is associated with the order, None is displayed.

If an orchestration process is associated with the order but there is no association with an order
item through the relationship path, No Order Item Configured is displayed.

Creation Task Select an existing or create a new task to create and submit the order before the workflow begins.

The creation task defines which subset of data is required to create the order.

When at the creation task, an order has not been submitted to a process and has had no work
completed. The creation task has two associated states, submit and cancel. Additionally, you can
define statuses for the creation task on the Task editor States/Statuses tab.

You need a creation task for any order creation (manual, automated, etc.). If you want to enable
behaviors when creating an order, select manual tasks as creation tasks for an order.

If the order associated with the creation task is defined as amendable (on the Order editor
Amendable tab), do not include optional fields in the creation task as this can cause unexpected
results. When including optional fields in the creation task, the original order is submitted with all
optional fields left empty. The optional fields are later populated during task execution. When a
revision order is submitted with the optional fields now populated, the system treats the optional
fields on the revision as different instances of the fields from the ones populated on the original
order and OSM triggers compensation.

Note: You can automate order creation using the XML API or the web service interface. See OSM
Developer's Guide for more information.

Order Source Enter an order source for the order if you would like it to be different from the order name. In the
order structure, there are separate fields for order source and order type. If you leave this field
blank, both fields on the order will default to the order name when the cartridge is built. If you enter
a value in this field, it will be used for the order source field, and the order name will continue to be
used for the order type.

Order Source
Description

Enter a description of the order source if desired. If this value is not entered, it will be defaulted
to the order name when the cartridge is built. This description will be displayed in the Task web
client.

Priority
Range

Specify a minimum and maximum priority for the order to execute within. For example, if you
specify a range of 5-7 and the order is created with a priority of less than 5, the priority value will
be rounded up to 5. If the order is created with a priority of more than 7, the priority value will be
rounded down to 7.

Realizes If this order is a concrete implementation of a Functional Area from the PSR model, click Select to
select the Functional Area.

If a Functional Area has been defined for the order, you can click Open to open the Functional
Area.

This association can also be defined in the Functional Area. See "About Functional Areas" for
more information.

Chapter 10
Order Editor

10-23

Related Topics

Defining Order Details

Working with Orders

Order Editor Amendable Tab
Use the Order editor Amendable tab to configure the order to allow amendment
processing. The following table describes the options on the Order editor Amendable
tab.

Options Use

Not Amendable Select to indicate that there can be no amendment processing against this order.

Amendable Select to allow amendment processing against this order.

Key Specify an order key as an XPath to a node that will uniquely match an amended order to its
corresponding OSM order.

For example, you might specify a customer reference ID as an XPath using the following
expression:

_root/Cust_Ref_ID
Alternatively, you can select a data node from the Data Element view and drag the selected
data node into the XPath Expressions field to define the XPath expression. To drag a data
node into the XPath Expressions field, press and hold the Alt key before you select and
drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path
expression with a single dot (.) represents the current node. Two dots (..) represents the
parent of the current node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Version Specify the version as an XPath to a node that will return a numeric value representing the
version of an amended order.

Amendments with higher versions are considered to be more recent than amendments with
lower versions. If there are multiple queued amended orders for the same original order,
OSM processes only the most recent amendment version.

You can select and drag a data node from the Data Element view into the XPath
Expressions field to define the XPath expression. To drag a data node into the XPath
Expressions field, press and hold the Alt key before you select and drag the data node to
the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path
expression with a single dot (.) represents the current node. Two dots (..) represents the
parent of the current node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Events Select one or more events to be published at run time for this order type. OSM events are
sent to the JMS destination OrderStateChange.Event queue and are published as topics.
External systems can subscribe to this queue and retrieve the published events.

Amendment
Abandoned

Select to publish this event when multiple amendments have been sent to OSM and an
amendment has rendered an earlier version of amendment unnecessary.

If an amendment is in progress, OSM puts any subsequent amendments in a queue for
processing. If multiple amendments have been sent to OSM, the server processes the next
amendment in the queue by selecting the highest version (optionally defined in the Version
field) or the amendment with the most recent timestamp if no version has been defined.
When multiple amendments are queued, the OSM server processes only the most recent
amendment.

Chapter 10
Order Editor

10-24

Options Use

Amendment
Completed

Select to publish this event when amendment processing has completed.

Amendment
Started

Select to publish this event when amendment processing begins for any revision order.

Amendment
Queued

Select to publish this event when amendment processing for a revision order is queued.

Amendment
Terminating

Select to publish this event when amendment processing for a revision order is in the process
of getting terminated.

Amendment
Terminated

Select to publish this event when amendment processing for a revision order is terminated.

State Change Select to publish this event when the order transitions from one state to another.

Order Created Select to publish this event when the order is created in OSM.

Order Removed Select to publish this event when the order has been deleted.

Order Editor Rules Tab
Use the Order editor Rules tab to create rule definitions at the order level. When
modeling rules, see "Properties View Rules Expression Tab" for more information. The
following table describes the fields on the Order editor Rules Definition tab. The
Order editor Rules Comments tab and the Order editor Rules Notes tab are blank
fields.

Field Use

Condition When defining multiple rule expressions, each rule expression is separated by an And or an Or.

And is the default value, and indicates that both the expression before and the expression after And
must evaluate to true if the rule is to evaluate to true. Use Or to indicate that either the expression
before or the expression after Or can evaluate to true if the rule is to evaluate to true.

Data Enter the XPath expression to identify the location of the data node.

You can also select a data node from the Data Element view and drag the selected data node into
the Data field to define the XPath expression. To drag the selected data node into the Data field,
press and hold the Alt key before you select and drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression with
a single dot (.) represents the current node. Two dots (..) represents the parent of the current node.
A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Operator Select an operator from the list.

Note: When selecting an operator from the Operator field of the Order editor Rules tab, all
possible operators are displayed, whether or not they are valid. To ensure only valid operators
are displayed, choose an operator from the Properties view Rules Expression tab. The options
available in the Properties view Rules Expression tab in the Operator field depend on the data
type used in the Data field. See "Properties View Rules Expression Tab" for more information.

Chapter 10
Order Editor

10-25

Field Use

Data/Value Enter an XPath expression or enter a fixed value.

You can select a data node from the Order Template tab and drag the selected data node into the
Data/Value field to define the XPath expression. To drag the selected data node into the Data/Value
field, press and hold the Alt key before you select and drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression with
a single dot (.) represents the current node. Two dots (..) represents the parent of the current node.
A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Properties View Rules Expression Tab
Use the Properties view Rules Expression tab to define rule expressions. To access
the Rules Expression tab, select a rule attribute on the Order editor Rules tab
Definition tab and click Properties.

The fields on the Rules Expression tab are identical to those on the Definition tab.
However, the options that are available for the Value field and the Operator lookup list
on the Rules Expression tab change depending on the element type. For example,
if you select an element that is a lookup type, the values that you defined in the
Data Dictionary for this element appear as available options in the list. If you define a
datetime element, the options available enable you to define a system datetime or a
calendar datetime.

Related Topics

Defining Order Rules

Working with Orders

Order Editor Fallouts Tab
Use the Order editor Fallouts tab to create new order fallouts. You associate data
nodes with the fallout and review the values for those data nodes in the Order
Management web client when the corresponding fallout occurs for an order. The
following table describes the fields on the Order editor Fallouts tab.

Field Use

Display Name You can associate the fallout display name at the order template level to a specific language by
using the optional language attribute. Only those languages defined on the Oracle Design Studio
dialog box appear as options. See "Defining OSM Preferences" for information about defining
languages for use in OSM.

Name Click Add to open the Add Fallout dialog box, where you can create a new fallout category
to associate with the order. Select any fallout category defined in the Name column and click
Rename to specify a different fallout name, or click Remove to delete the fallout category from
the list.

Nodes Associate the data nodes whose values you will want to review (in the Order Management web
client) when this fallout occurs.

Click the corresponding Add button to open the Order Template Node Selection dialog box,
where you can select one or multiple data nodes to associate with the fallout. Select any data
node and click Remove to delete the node from the list.

Chapter 10
Order Editor

10-26

Related Topics

Defining Order Fallout

Order Editor Fallout Groups Tab

Order Editor Fallout Groups Tab
Use the Order editor Fallout Groups tab to link similar types of fallouts together. You
associate data nodes with the fallout and review the values for those data nodes in the
Order Management web client when the corresponding fallout occurs for an order. The
following table describes the fields on the Order editor Fallout Groups tab.

Field Use

Display Name You can associate the fallout group display name at the order template level to a specific
language by using the optional language attribute. Only those languages defined on the Oracle
Design Studio dialog box appear as options. See "Defining OSM Preferences" for information
about defining languages for use in OSM.

Name Click Add to open the Add Fallout Group dialog box, where you can create a new fallout group to
associate with the order. Select any fallout group defined in the Name column and click Rename
to specify a different fallout group name, or click Remove to delete the fallout group from the list.

Fallouts Associate the fallout groups whose values you will want to review (in the Order Management web
client) when this fallout occurs.

Click the corresponding Add button to open the Order Select Fallouts dialog box, where you can
select one or multiple data fallouts to associate with the fallout group. Select any fallout and click
Remove to delete the fallout from the list.

Related Topics

Defining Order Fallout

Order Editor Fallouts Tab

Order Editor Notification Tab
Use the Order editor Notification tab to create order data changed notifications. Order
data changed notifications are triggered by changes to order data.

Note:

This feature is not available in releases prior to OSM 7.0.

When modeling order data changed notifications, see the following topics:

• Order Editor Notification Details Tab

• Order Editor Notification Notify Roles Tab

• Order Editor Notification Data Changed Tab

• Order Editor Notification Automation Tab

• Order Editor Notification Notes Tab

Chapter 10
Order Editor

10-27

The above tabs apply to existing event notifications in the list. Until you add an event
notification (by clicking Add), they are not accessible.

Order Editor Notification Details Tab
Use the Order editor Notification Details tab to name the notification, set the priority
level, enable or disable the notification, and specify whether to send the notification by
email. The following table describes the fields on the Order editor Notification tab.

Note:

This feature is not available in releases prior to OSM 7.0.

Field Use

Name Enter a name to identify the notification.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The notification with the highest priority is
evaluated first.

Enabled Select to enable this notification, or deselect the option if you intend to implement the notification at a
later time.

Email Select to send email notifications to all users in the workgroup associated with the specified role.

When you assign users to a workgroup in the OSM Administration area of the Order Management web
client, you can set up OSM to notify users by email when a notification occurs with the notification ID
number.

See OSM Order Management Web Client User's Guide for information about configuring email
notification properties for user roles.

Note: Order-data-changed notifications are intended to update external systems with status updates
when a specific data node in the order data is updated with a new value. The OSM server does not
send order-data-changed event notifications to Task web client Notifications pages. When notifying
users, the server sends these notifications to email addresses only.

Related Topics

Creating Order Data Changed Notifications

Working with Event Notifications

Working with Orders

Order Editor Notification Notify Roles Tab
Use the Order editor Notification Notify Roles tab to select the roles to be notified
when the notification occurs.

Note:

This feature is not available in releases prior to OSM 7.0.

Chapter 10
Order Editor

10-28

Select a predefined notification from the list in the Available column to activate a list
of available roles. See "Working with Roles" for information about defining roles. Using
the directional arrow buttons, move the roles (those groups to whom you want the
notification sent) into the Selected column.

If the notification is sent to an external system via an automation plug-in, ensure that
you include the role whose credentials are used when running the automation plug-in.
See "Working with Automated Tasks" for more information.

Related Topics

Creating Order Data Changed Notifications

Working with Jeopardy Notifications

Working with Orders

Order Editor Notification Data Changed Tab
Use the Order editor Notification Data Changed tab to identify the data node for
which changes to the value triggers the data change notification. All of the data nodes
visible in the order template (defined on the Order editor Order Template tab) are
available as options.

Click Add to open the Order Template Node Selection dialog box, where you can
select the data node. Select any node defined in the Nodes column and click Remove
to delete the node from the list.

Note:

This feature is not available in releases prior to OSM 7.0.

Related Topics

Creating Order Data Changed Notifications

Working with Event Notifications

Working with Orders

Order Editor Notification Automation Tab
Use the Notification Automation tab to configure an automation plug-in that performs
the work or sends data to an external system when the notification is triggered. The
following table describes the fields on the Order editor Notification Automation tab.

Note:

This feature is not available in releases prior to OSM 7.0.

Chapter 10
Order Editor

10-29

Field Use

Name Enter a name for the automation plug-in.

Automation
Type

Select the automation plug-in type from the available list.

Click OK to add the automation entry to the Automation table.

View Click an automation, and click Select in the View field to choose a query task to use with the
automation.

You must define an OSM user in the automation plug-in Run As field to run the automation plug-in
and configure one or more roles and default query tasks using the Order editor Permissions
tab. Associate the roles with the OSM user using the OSM Administration area of the Order
Management web client.

If the Run As OSM user has more than one role, each with a different default query task, then
multiple query task views are available to run the automation plug-in. You can select a query task
to allow OSM to predictably use one query view to run the automation plug-in.

If the query task view has already been selected, click Open to view the query task. To create a
new query task, click New to start the New Studio Entity wizard.

Note: You must configure the View field if you are creating an OSM 7.2 (or later) cartridge. You
can deploy older cartridges with the OSM 7.2 (or later) server, but random selection of query task
views may occur if an OSM user has more than one role, each with a different default query task.

Note:

See "Configuring Automation Plug-In Properties" for information about
defining automation properties on the Properties tab.

Related Topics

Creating Order Data Changed Notifications

Working with Event Notifications

Working with Orders

Order Editor Notification Notes Tab
Use the Order editor Notification Notes tab to denote the intended use of the
notification or any additional information that you want to append to the notification
data.

Note:

This feature is not available in releases prior to OSM 7.0.

Related Topics

Creating Order Data Changed Notifications

Working with Event Notifications

Working with Orders

Chapter 10
Order Editor

10-30

Order Editor Permissions Tab
Use the Order editor Permissions tab to assign roles to the order and to customize
the role settings. The following table describes the fields on the Order editor
Permissions tab.

Field Use

Roles Add the roles who will have access to this order type in the Task web client. Click Select to select from
existing roles or New to create a new role. To view permissions for existing roles, select the role and click
Open. The system displays the role in the Role editor, where you can view the permissions assigned to
the role. Select a role and click Remove if you want to delete an associated role from the task.

When modeling order permissions, see the following topics for more information:

• Order Editor Permissions Details Tab

• Order Editor Permissions Filters Tab

• Order Editor Permissions Query Tasks Tab

• Properties View Filter Expression Tab

Related Topics

Working with Roles

Order Editor Permissions Tab

Assigning Order Permissions

Order Editor Permissions Details Tab
You use the Order editor Permissions Details tab to enable roles to create orders
of this type and to define the flexible headers available to Task web client users. The
following table describes the fields on the Order editor Permissions Details tab.

Field Use

Create Orders Select to enable the associated role to create this order type.

Flexible
Header

Flexible headers are additional columns of data that Task web client users can add (through the
preferences settings) to their Worklist, Notification, and Query view lists.

You define which data nodes the users can add in the Flexible Header field. The roles
associated with the order can add these data nodes to their view lists so that they can view
the data without having to access the corresponding editor.

Click the Add button to access a list of data elements defined in the order template. The
Description name you enter appears in the column header of the Task web client Worklist,
Notifications, and Query views.

Note: If you change the flexible headers and re-deploy the cartridges while users are logged in to
the OSM web clients, users may have to log out and log back in to see the changes.

Chapter 10
Order Editor

10-31

Note:

Flexible headers are displayed as lookup lists or as range fields. If flexible
headers are enumerated by the designer, they are displayed as lookup lists.
If they are not enumerated, they are displayed as range fields.

When entering data into range fields, either enter data only in the From field
or enter data in both the From and To fields. Filling only the From field
queries only that exact data; filling both the From and To fields queries the
range entered.

See "Enumerations Tab" and "Settings Tab" for more information about
creating lookup lists and range fields.

Related Topics

Assigning Order Permissions

Order Editor Permissions Tab

Order Editor Permissions Filters Tab
Use the Order editor Permissions Filters tab to limit the orders a role can view.

Click Add to open the Order Template Node Selection dialog box, where you can
select the data node to filter on. To remove a filter, select any filter node defined in the
Filters table and click Remove to delete the filter node from the list.

To specify filter values for a filter node, select it and click Properties. Modify values
in the Filter Expression editor to configure your filter. For example, if you want a role
to view orders only from Paris, select the data element city from the order template,
and click Properties. In the Filter Expression editor, select the = operator, and enter
Paris in the Value field. You can also filter using And/Or combinations. For example,
if you want a role to view orders from either Paris or London, add another similar line
separated by Or and specify London. The following table describes the fields on the
Order editor Permissions Filters tab.

Field Use

Condition When defining multiple rule expressions, each rule expression is separated by an And or an Or.

Or is the default value, and indicates that either the expression before or the expression after Or
can evaluate to true if the rule is to evaluate to true. Use And to indicate that both the expression
before and the expression after And must evaluate to true if the rule is to evaluate to true.

Data Enter the XPath expression to identify the location of the data node.

You can also select a data node from the Data Element view and drag the selected data node into
the Data field to define the XPath expression. To drag the selected data node into the Data field,
press and hold the Alt key before you select and drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression
with a single dot (.) represents the current node. Two dots (..) represents the parent of the current
node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Operator Select an operator from the list. The options available in the Operator field depend on the data type
used in the Data field.

Chapter 10
Order Editor

10-32

Field Use

Data/Value Enter an XPath expression or enter a fixed value.

You can select a data node from the Order Template tab and drag the selected data node into
the Data/Value field to define the XPath expression. To drag the selected data node into the Data/
Value fields, press and hold the Alt key before you select and drag the data node to the field.

Note: XPath uses path expressions to select data nodes in XML documents. A path expression
with a single dot (.) represents the current node. Two dots (..) represents the parent of the current
node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Assigning Order Permissions

Order Editor Permissions Tab

Order Editor Permissions Query Tasks Tab
Use the Order editor Permissions Query Tasks tab to select the task that will
generate the query view used by Task web client users. You can select any manual,
automated, or activation task already defined, or create a new task specifically for
the run-time query. The following table describes the fields on the Order editor
Permissions Query tab.

Field Use

Name Select the task that will generate the query view used by Task web client users.

At run time, the OSM server returns a specific set of data when you use the search query functionality
in the Task web client. You determine which data set the OSM server returns by creating or selecting
a query task. The data associated with the task that you select here will be the data returned to you
from the run-time query.

You can select a task that you use elsewhere in processes, or you can create a task that is used only
for run-time queries. You can associate multiple query tasks with each order and define each task as
the Summary view, the Detail view, or the Default view.

Summary Select to display the corresponding task data set in the Order Management web client Summary
tab. The Summary tab provides a selection of the most important information about the selected
order, component, or item and appears when you open the Order Details page. You can include data
from multiple query tasks in the Summary tab. The Order Management web client displays on the
Summary tab all of the data from all of the tasks for which you specify the Summary option.

Details Select to display the task data set in the Order Management web client Data tab. The tasks for which
you select this option appear as choices in the Order Management web client Data tab View field. You
can specify that multiple tasks appear as options in the View field; each option will present the web
client user with a different view, each containing a specific set of data.

Chapter 10
Order Editor

10-33

Field Use

Default Select to specify that the OSM server displays this task data set when returning search queries in the
Task web client.

Select this option when configuring query tasks for cartridges intended for OSM 6.3.1 environments.
You can select only one query task as the default option.

Note:

To see an attachment that is created in a previous task, you must have a
role that has a query task with the Default option selected.

Related Topics

Assigning Order Permissions

Order Editor Permissions Tab

Properties View Filter Expression Tab
Use the Order editor Properties view Filter Expression tab to define rule expressions.
To access the Filter Expression tab, select a conditional expression on the Order
editor Permissions Filter tab and click Properties.

The fields on the Filter Expression tab are identical to those on the Order editor
Permissions Filters tab. When you select values on this tab, they appear in the Order
editor Permissions Filter tab. See "Order Editor Permissions Filters Tab" for more
information.

Related Topics

Assigning Order Permissions

Order Editor Permissions Tab

Order Editor Jeopardy Tab
Use the Order editor Jeopardy tab to create jeopardy notifications when certain
conditions arise in an order and you want to alert users or systems of processes,
orders, or tasks that may be at risk.

When modeling jeopardy notifications, see the following topics:

• Order Editor Jeopardy Details Tab

• Order Editor Jeopardy Conditions Tab

• Order Editor Jeopardy Notify Roles Tab

• Order Editor Jeopardy Polling Tab

• Order Editor Jeopardy Automation Tab

• Order Editor Jeopardy Notes Tab

Chapter 10
Order Editor

10-34

Order Editor Jeopardy Details Tab
Use the Order editor Jeopardy Details tab to name the jeopardy, select the
notification rule, set the priority level, enable or disable the notification, and specify
whether to send the notification by email. The following table describes the fields on
the Order editor Jeopardy Details tab.

Field Use

Name Enter a name to identify the jeopardy.

Rule Select the rule the system should evaluate before generating this jeopardy. This field defaults to the
system-based null_rule.

If you do not change the default value, OSM will always trigger this notification at the specified polling
interval. See "Defining Order Rules" for more information about setting up new rules.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The notification with the highest priority is
evaluated first.

Enabled Select to enable this jeopardy notification, or deselect the option if you intend to implement the
notification at a later time.

Email Select to send email notifications to all users in the workgroup associated with the specified role.

By default, notifications appear in the Notifications page of the Task web client. However, you can
specify that notifications be sent by email by selecting the Email check box.

When you assign users to a workgroup in the OSM Administration area of the Order Management web
client, you can set up OSM to notify users by email. When a notification occurs, the system sends a
notification ID number through email.

See OSM Order Management Web Client User's Guide for information about configuring email
notification properties for user roles. See OSM Installation Guide for information about configuring
the outgoing email server.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Order Editor Jeopardy Conditions Tab
Use the Order editor Jeopardy Conditions tab to select the conditions under which
the jeopardy should be raised. For example, you can raise a jeopardy when this order
exceeds the expected or a given duration or when the order is received within a
certain number of days. The following table describes the fields on the Order editor
Jeopardy Conditions tab.

Field Use

Order State Select the state that the order must be in before the jeopardy notification is triggered:
In Progress or Completed.

Raise a Jeopardy when
the order is received
within

This field is available only when you have selected In Progress in the Order State
field. For orders that are in progress, you can raise a jeopardy if the order has been
received and has exceeded the time interval defined in the adjacent field.

Chapter 10
Order Editor

10-35

Field Use

Raise a Jeopardy when
the order is completed
within

This field is available only when you have selected Completed in the Order State
field. For orders that are completed, you can raise a jeopardy if the order has been
completed and has exceeded the time interval defined in the adjacent field.

Raise a Jeopardy
when Process Duration
Exceeds

After selecting this field, select either Expected Duration or Given Duration to raise
a jeopardy if the process to which the order is associated has exceeded the expected
duration of the order (defined on the Order editor Details tab) or given duration,
specified by the time interval defined in the adjacent field.

Order Editor Jeopardy Notify Roles Tab
Use the Order editor Jeopardy Notify Roles tab to select the roles to be notified when
the jeopardy occurs.

Select a predefined jeopardy from the list in the left column to activate a list of
available roles. See "Working with Roles" for information about defining roles. Using
the directional arrow buttons, move the roles (those groups to whom you want the
notification sent) from the Available column into the Selected column.

If the jeopardy notification is sent to an external system via an automation plug-
in, ensure that you include the role whose credentials are used when running
the automation plug-in. See "Configuring Automation Plug-In Properties" for more
information.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Order Editor Jeopardy Polling Tab
Use the Order editor Jeopardy Polling tab to select the interval at which the OSM
server evaluates the condition that triggers the jeopardy notification. You can define
the polling so that the system checks for the condition only once, or you can define the
polling at hourly, daily, weekly, or monthly intervals. The following table describes the
fields on the Order editor Jeopardy Polling tab.

Field Use

Interval Select the interval at which the OSM server evaluates the condition that triggers the jeopardy
notification. Select Once if you want the system to check for the condition only once when the order is
received. When you select Once, the system disregards the Next Start field.

Use the Hours, Days, and Months fields to define a specific interval at which the OSM server
evaluates the condition that triggers the jeopardy notification. For example, if you want the system to
check for the condition every two days, select the Day(s) option and, from the list, select 2.

Next Start Select the date and time that you want the notification to begin checking. You can specify a date for
any polling interval. The system uses the current date and time as the default value.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Chapter 10
Order Editor

10-36

Working with Jeopardy Notifications

Working with Orders

Order Editor Jeopardy Automation Tab
Use the Order editor Jeopardy Automation tab to configure an automation plug-in
that performs the work or sends data to an external system when the jeopardy
notification is triggered. OSM supports one automation plug-in per jeopardy.

You can also modify the properties of automation plug-ins. See "Configuring
Automation Plug-In Properties" for more information about defining automation
properties on the Properties tab.

The following table describes the fields on the Order editor Jeopardy Automation tab.

Field Use

Name Enter a name for the automation entry.

Automation
Type

Select the automation plug-in type from the available list.

Click OK to add the automation entry to the Jeopardy Automation table.

View Click an automation, and click Select in the View field to choose a query task to use with the
automation.

You must define an OSM user in the automation plug-in Run As Property field to run the
automation plug-in and configure one or more roles and default query tasks using the Order editor
Permissions tab. Associate the roles with the OSM user using the OSM Administration area of the
Order Management web client.

If the Run As OSM user has more than one role, each with a different default query task, then
multiple query task views are available to run the automation plug-in. You can select a query task to
allow OSM to predictably use one query view to run the automation plug-in.

If the query task view has already been selected, click Open to view the query task. To create a
new query task, click New to start the New Studio Entity wizard.

See "Order Editor Permissions Query Tasks Tab" for more information about query tasks.

Note: You must configure the View field if you are creating an OSM 7.2 (or later) cartridge. You can
deploy older cartridges with the OSM 7.2 (or later) server, but random selection of query task views
may occur if an OSM user has more than one role, each with a different default query task.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Order Editor Jeopardy Notes Tab
Use the Order editor Notes tab to denote the intended use of the notification or any
additional information that you want to append to the jeopardy data.

Related Topics

Creating Jeopardy Notifications in the Task or Order Editor

Working with Jeopardy Notifications

Working with Orders

Chapter 10
Order Editor

10-37

Order Editor Events Tab
Use the Order editor Events tab to create order milestone event notifications.
You select the order milestone that triggers the automation and then configure the
automation plug-in that will perform the work.

You can configure the properties of automations. See "Configuring Automation Plug-In
Properties" for more information.

The following table describes the fields on the Order editor Events tab.

Field Use

Milestone The Milestone column displays the milestones for which you have defined automation events.
When the order reaches the corresponding milestone, the OSM server triggers the automation
event plug-in.

Name In the Automation column, the Name field displays the name of automation plug-in.

Automation
Type

Displays the automation plug-in type.

See "Working with Automation Plug-Ins" for more information.

View Click an automation, and click Select in the View field to choose a query task to use with the
automation.

You must define an OSM user in the automation plug-in Run As Property field to run the
automation plug-in and configure one or more roles and default query tasks using the Order editor
Permissions tab. Associate the roles with the OSM user using the OSM Administration area of
the Order Management web client.

If the Run As OSM user has more than one role, each with a different default query task, then
multiple query task views are available to run the automation plug-in. You can select a query task
to allow OSM to predictably use one query view to run the automation plug-in.

If only one default query task is available in the Order Editor Query Task tab, then this query task
is automatically added to the View field when you create a new automation. See "Order Editor
Permissions Query Tasks Tab" for more information.

If the query task view has already been selected, click Open to view the query task. To create a
new query task, click New to start the New Studio Entity wizard.

Note: You must configure the View field if you are creating an OSM 7.2 (or later) cartridge. You
can deploy older cartridges with the OSM 7.2 (or later) server, but random selection of query task
views may occur if an OSM user has more than one role, each with a different default query task.

Related Topics

Creating Order Milestone and Task State Automation Event Notifications

Working with Event Notifications

Working with Orders

Order Editor Composite Data View Tab
Use the Order editor Composite Data View tab to display all of the data that
is available to the order within the context of an OSM solution. The data in the
Composite Data View tab is read only. The following table describes the fields on
the Order editor Composite Data View tab.

Chapter 10
Order Editor

10-38

Tip:

The composite data view may have fewer data nodes than its corresponding
order template view. For example, if a particular function is not included in
the solution, its /ControlData/Functions/Order_Component_Name structure
will not be in the composite data view.

Field Use

Solution Select the solution to display all of the order data associated with the solution.

Order
Template

Displays all of the data necessary to fulfill or provision an order within the context
of a solution. You cannot modify any data that appears in the Order Template
area.

Show
Control
Data

By default, the check box is selected and all control data is shown. If the default
process in the Details tab is an orchestration process, control data elements are
created automatically and populated to the Order Template and Task Data areas.

Deselect the check box if you do not want to show control data.

Behaviors Displays all of the behaviors assigned to each data node. Select a data node in
the Order Template area to view the behaviors assigned to the node. You cannot
modify any behaviors that appear in the Behaviors area.

Related Topics

Working with Composite Cartridge Views

Working with Composite Cartridge Projects

Chapter 10
Order Editor

10-39

11
Working with Behaviors

Behaviors provide a way to exercise greater control over validation and presentation
of order data to Oracle Communications Order and Service Management (OSM) web
client users. Each behavior type lets you dynamically control a specific aspect of your
order data model.

Behaviors can be created for manual tasks only. They can be created at the data
element level (most general), the order level (more specific), or the task level (most
specific). After the behavior is created, you can model the actions you want it to
perform through its properties settings.

When modeling behaviors, see the following topics for more information:

• About Web Client Behavior Support

• Creating New Behaviors

• Defining Behavior Detail Properties

• Defining Behavior Condition Properties

• Defining Behavior Notes Properties

• Defining Calculate Behavior Properties

• Defining Constraint Behavior Properties

• Defining Data Instance Behavior Properties

• Defining Event Behavior Properties

• Defining Information Behavior Properties

• Defining Lookup Behavior Properties

• Defining Read Only Behavior Properties

• Defining Relevant Behavior Properties

• Defining Style Behavior Properties

Note:

See OSM Concepts for more information about behavior default values,
inheritance, and declarative syntax.

About Web Client Behavior Support
The following table identifies whether the Task web client or the Order Management
web client can display OSM data behavior information.

11-1

Behavior Name Task Web Client Support Order Management Web Client
Support

Calculate Behavior Yes Yes

Constraint Behavior Yes No

Data Instance Behavior N/A N/A

Event Behavior Yes No

Information Behavior Yes Yes

Lookup Behavior Yes Yes, partial

Read Only Behavior Yes Yes

Relevant Behavior Yes Yes

Style Behavior Yes Yes, partial

See OSM Concepts for more information about how the web clients use and display
OSM data behavior information.

Related Topics

Working with Behaviors

Creating New Behaviors

Creating New Behaviors
Behaviors can be created for manual and automated tasks. They can be created at
the data element level (most general), the order level (more specific), or the task level
(most specific). See the following topics for information about creating new behaviors:

• See "Defining Behaviors at the Data Schema Level" for information about creating
behaviors at the data schema level.

• See "Defining Manual Task Behaviors" for information about creating manual
behaviors at the task level.

• See "Defining Automated Task Behaviors", for information about creating
automated behaviors at the task level.

• See "Defining Order Behaviors" for information about creating behaviors at the
order level.

Defining Behavior Detail Properties
Behavior detail properties are common to all behaviors. You can disable behaviors
temporarily, override the manner in which behaviors are inherited, determine where a
behavior was initially defined, and so forth.

Chapter 11
Creating New Behaviors

11-2

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define behavior property details:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab.

Related Topics

Behaviors Properties View Details Tab

Working with Behaviors

Behaviors Properties View Details Tab
Use the Behaviors Properties View Details tab to enable behaviors and to force local,
specific exceptions to the way behaviors are evaluated for a given node.

The Properties view Details tab is common to all behaviors.

Field Use

Name Displays the name of the behavior. To rename a behavior, from the Behaviors
area right-click the behavior and select Rename.

Note: The name of the behavior can only be changed in the location at which
the behavior is defined.

Type Displays the type of behavior selected.

Path Displays the node context on which the behavior is defined.

Origin Displays where the behavior is defined. The behavior's inheritance properties
are determined by the definition location.

Enabled Deselect to disable the behavior in the run-time environment. If you disable a
behavior and deploy the cartridge, the OSM server will ignore this behavior. For
example, you can disable behaviors during testing. By default, this check box is
selected.

Final Select to prevent another behavior of the same type, for the same node, at the
same or more specific level from overriding that behavior.

Override Select to indicate that the behavior takes precedence over any other behavior of
the same type, for the same node, at the same or more general (order) level.

Note: Override does not function if the behavior that you are trying to override
has the Final attribute enabled.

Chapter 11
Defining Behavior Detail Properties

11-3

Related Topics

Defining Behavior Detail Properties

Working with Behaviors

Defining Behavior Condition Properties
You can apply conditions to a behavior that determine if it is applied, based on the
view data.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define behavior conditions:

1. From the Design perspective, right-click a behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Conditions tab.

The Behaviors Properties view Conditions tab is displayed.

3. Click Add.

A new condition is displayed in the Condition field with the default name
Condition. The default XPath expression true() appears in the XPath Expression
field.

4. Select the default condition name to change the default name.

5. Select the default XPath expression to replace it or modify it.

6. Click Remove to delete a selected condition.

Related Topics

About Behavior Condition Properties

Behaviors Properties View Conditions Tab

Working with Behaviors

About Behavior Condition Properties
You can apply conditions to any behavior to determine the conditions under which the
behavior should apply. You can add conditions as XPath expressions against which
the behavior can run a Boolean compare. If the Boolean compare returns true, the
behavior is applied.

For example, to associate a behavior with a postal code field in a web client to target
all customers in a specific region, you might apply the condition:

Chapter 11
Defining Behavior Condition Properties

11-4

../postal_code = '95419'

You can select a data node from the Order Template tab (when working in the Order
editor) or from the Task Data tab (when working in a Task editor) and drag the
selected data node into the XPath Expressions field to define the XPath expression.
To drag a data node into the Properties view Conditions tab, press and hold the Alt key
before you select and drag the data node to the XPath Expressions field.

Note:

XPath uses path expressions to select data nodes in XML documents. A
path expression with a single dot (.) represents the current node. Two dots
(..) represents the parent of the current node. A slash (/) represents the root
node.

XPath and XQuery fields are limited to 4000 characters.

When no condition is defined for the behavior, the OSM server will always apply the
behavior. When you define multiple conditions for the behavior, all conditions must
evaluate to true for the OSM server to apply the behavior.

Defining Constraint Behavior Condition Properties

When defining conditions for Constraint behaviors, you specify the conditions that
must be satisfied to avoid triggering the behavior. If any one of the conditions defined
for the Constraint behavior are not met (those that evaluate to false), the OSM server
triggers the constraint and displays the appropriate message to the user, based on the
severity level. If no conditions are specified, the constraint will not be triggered.

Note:

See OSM Concepts for more information about behavior default values,
inheritance, and declarative syntax.

Related Topics

Defining Behavior Condition Properties

Behaviors Properties View Conditions Tab

Working with Behaviors

Behaviors Properties View Conditions Tab
Use the Behaviors Properties View Conditions tab to apply conditions to a behavior to
determine when the behavior should apply.

The Properties view Conditions tab is common to all behaviors.

Chapter 11
Defining Behavior Condition Properties

11-5

Field Use

Add Click to apply a new condition to the behavior.

Conditions Displays the list of conditions defined for the corresponding
behavior. Select a condition to rename it.

XPath Expression Displays the XPath Expression that defines the logic of the
corresponding condition. Select the expression to modify or
remove it.

To drag a data node into the Properties view Conditions tab,
press and hold the Alt key before you select and drag the data
node to the XPath Expressions field.

XPath and XQuery fields are limited to 4000 characters.

Remove Click to remove the highlighted condition.

Related Topics

Defining Behavior Condition Properties

About Behavior Condition Properties

Working with Behaviors

Defining Behavior Notes Properties
On the Properties view Notes tab, you can describe the intended use of the behavior.
For example, you might describe the functionality of a complex behavior, or provide
instructions for implementation or testing.

Related Topics

Working with Behaviors

Defining Calculate Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors
and select Open Properties View to access the behavior properties.You use the
Properties view tabs to model Calculate behaviors.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define Calculate behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Calculation tab.

Chapter 11
Defining Behavior Notes Properties

11-6

3. In the XPath Expression field, enter the calculation as a mathematical expression
or as an XPath expression.

See "Calculate Behavior Properties View Calculation Tab" for more information.

4. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab. See "Defining
Behavior Detail Properties" for more information about the options that you can
define on this page.

5. (Optional) Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Calculate behavior. See
"Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

6. (Optional) Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation
about the Calculate behavior.

Related Topics

Calculate Behavior Properties View Calculation Tab

About Calculate Behaviors

Working with Behaviors

About Web Client Behavior Support

About Calculate Behaviors
The Calculate behavior enables you to calculate a field's value based on a formula that
references other field values. When defining Calculate behaviors on the Calculation
Behaviors Properties tabs, you can use XPath expressions to support numeric
operations and string concatenations. For example:

XPath Expression Result

../loopback Set the current field equal to the value found in
the ../loopback field

concat('S',instance('interfacedeta
il')/Port)

Set the current field equal to a concatenation
between the letter S and the value found
in the Port field that is returned by the
peinterefacedetails data provider.

instance('interfacedetail')/
portType

Set the current field equal to the portType
returned by the interfacedetail data instance
provider.

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax. For more information about XPath specifications, see the
World Wide Web Consortium (W3C) website at:

http://www.w3.org/TR/xpath20/

Chapter 11
Defining Calculate Behavior Properties

11-7

http://www.w3.org/TR/xpath20/

Note:

XPath uses path expressions to select data nodes in XML documents. A
path expression with a single dot (.) represents the current node. Two dots
(..) represents the parent of the current node. A slash (/) represents the root
node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Calculate Behavior Properties View Calculation Tab

Defining Calculate Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Calculate Behavior Properties View Calculation Tab
On the Properties view Calculations tab, you can define the expression that will
produce the calculation.

Field Use

XPath Expression Enter a mathematical expression or an XPath Expression.

You can select a data node from the Order Template tab (when
working in the Order editor), or from the Task Data tab (when
working in a Task editor) and drag the selected data node into the
XPath Expression field to define the XPath expression. To drag a
data node into the Properties view Calculation tab, press and hold
the Alt key before you select and drag the data node to the XPath
Expressions field.

Note: XPath uses path expressions to select data nodes in XML
documents. A path expression with a single dot (.) represents the
current node. Two dots (..) represents the parent of the current
node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Defining Calculate Behavior Properties

About Calculate Behaviors

Working with Behaviors

Defining Constraint Behavior Properties
The Constraint behavior enables you to specify conditions that must be satisfied for
a given data node to be considered valid. If the condition is not satisfied (that is, if it
evaluates to false), messages are displayed to the user.

Chapter 11
Defining Constraint Behavior Properties

11-8

When editing order and task data in an editor, you can right-click data node behaviors
and select Open Properties View to access the behavior properties.You use the
Properties view tabs to model Constraint behaviors.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define Constraint behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Message tab.

3. In the Language field, select a predefined language in which to display the
message to the web client user.

See "Defining OSM Preferences" for more information.

4. In the Message field, enter the text that you want to display to the web client user
when the OSM server applies a Constraint behavior.

5. In the Display As field, define the level of severity of the message.

The level of severity in conjunction with the task status severity setting affects
how the OSM server proceeds after a Constraint behavior has been triggered.
See "Constraint Behavior Properties View Message Tab" and "Task Editor States/
Statuses Tab" for more information.

6. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab. See "Defining
Behavior Detail Properties" for more information about the options that you can
define on this page.

7. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Constraint behavior.

Note:

The OSM server applies Constraint behaviors when any Constraint
behavior conditions evaluate to false. If you define no conditions for the
Constraint behavior, the OSM server will never apply the behavior in the
web client.

See "Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

8. Click the Notes tab.

Chapter 11
Defining Constraint Behavior Properties

11-9

Use the Notes tab to describe the functionality or include internal documentation
about the Constraint behavior.

Note:

See OSM Concepts for more information about behavior default values,
inheritance, and declarative syntax.

Related Topics

Constraint Behavior Properties View Message Tab

Working with Behaviors

About Web Client Behavior Support

Constraint Behavior Properties View Message Tab
Use the Properties view Message tab to define the language, content, and severity
level of the message. For data element level Constraint behaviors, the severity level,
in conjunction with the task status severity level, affects whether or not the task is
allowed to transition.

Field Use

Language Select the display language for the message.

Message Enter one or more messages to display when a condition is not
satisfied.

Display as Select the severity level as follows:

• Critical: On save, OSM does not save the order data and
displays the message in bold red text, with the "ERROR"
label.

• Error: On save, OSM saves the order data and displays the
message in red text, with the "ERROR" label.

• Warning: On save, OSM saves the order data and displays
the message in yellow text, with the "WARNING" label.

• Valid: On save, OSM saves the order data and displays the
message in green text, with the "INFO" label.

Related Topics

Defining Constraint Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Task Editor States/Statuses Tab

Chapter 11
Defining Constraint Behavior Properties

11-10

Defining Data Instance Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors
and select Open Properties View to access the behavior properties.You use the
Properties view tabs to model Data Instance behaviors.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define data instance behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Data tab.

3. In the Language field, select a predefined language in which to display the
message to the web client user.

See "Defining OSM Preferences" for more information.

4. Specify whether to use a data provider to retrieve the data from an external
system, or to statically define the data inline.

• To use a data provider to retrieve the information, proceed to step 5.

• To statically define the data inline, select Inline enter the XML information into
the XML field, then skip to step 11.

5. In the Data Provider field, click Select.

The Select Data Provider dialog box is displayed.

Alternately, you can click New to create a new data provider. See "Creating New
Data Providers " for more information about creating new data providers for Data
Instance behaviors.

6. Select a data provider from the list.

7. Click OK.

The input parameters defined for the data provider are displayed in the
Parameters field.

8. In the Parameters field, select an input parameter.

9. In the Expression field, define the value for the input parameter that the data
provider requires when retrieving the data from the external system.

The value is evaluated at run-time and is based on the XPath or XQuery
expression you define in the Expression field.

10. (Optional) Select Use Default Expression to use the default expression data
defined for the parameters.

Chapter 11
Defining Data Instance Behavior Properties

11-11

For example, if you were creating a Data Instance behavior to obtain a list of
available ports from inventory, you might define an end point parameter to provide
the server connection information required to connect to the inventory system.
You can define (in the Data Provider editor) the default information defined for the
end point parameter, and use that information for the corresponding Data Instance
behavior.

11. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab. See "Defining
Behavior Detail Properties" for more information about the options that you can
define on this page.

12. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Data Instance behavior.
See "Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

13. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation
about the Data Instance behavior.

Related Topics

Data Instance Behavior Properties View Data Tab

About Data Instance Behaviors

Working with Behaviors

Working with Data Providers

About Data Instance Behaviors
The Data Instance behavior differs significantly from all other behavior types in that it
does not define any behavior. All other behavior types define some sort of action to
be performed; for example, a calculation or a lookup. You can use a Data Instance
behavior to obtain data that is not included in the order data and make that data
available to other behaviors. There are two methods for obtaining the data for the Data
Instance behavior:

• You can use a data provider, which is an adapter that can retrieve data in an
XML format from external systems. Design Studio delivers several built-in data
provider types intended to retrieve external XML instances from specific sources,
such as an Objectel server extension or a SOAP web service. Additionally, you
can create your own custom data provider. See "Working with Data Providers" for
more information.

• You can statically define data inline in XML format (or create an XQuery statement
to retrieve an XML document) on the Data Instance Behavior Properties Data
tab. For example, consider that you are creating a data instance behavior that
will eventually retrieve a list of available ports from your inventory system. Early
in the development cycle, the API required to connect to the inventory system
may not be implemented correctly or completely. You can use the inline feature to
statically define a dummy payload that represents the data that you anticipate will
be returned from the inventory system to test the behavior functionality.

Chapter 11
Defining Data Instance Behavior Properties

11-12

Note:

See OSM Concepts for more information about behavior default values,
inheritance, and declarative syntax.

Related Topics

Data Instance Behavior Properties View Data Tab

Defining Data Instance Behavior Properties

Working with Behaviors

Working with Data Providers

About Web Client Behavior Support

Data Instance Behavior Properties View Data Tab
Use the Properties view Data tab to define the data provider configuration that will
interface with the external system.

Field Use

Language You can declare Data Instance behaviors specific to a
given language by using the optional Language attribute.
If this attribute is set, OSM automatically selects
the appropriate instance using the user's language
preferences set in the web browser.

Note: If you declare multiple language-based instances,
consider the following:

• To appear in the Language drop-down list,
languages other than the default must be selected
from the Oracle Design Studio languages group.
See "Defining Language Preferences."

• One Data Instance behavior is created per language
selected.

• In order to differentiate among language-based
behaviors, the system appends (internally) a
language code to the data instance name using
the "name of the data instance"_"language code"
pattern. For example:

DataInstanceX_en-ca

The language codes used are from the Oracle
Design Studio languages group.

• If you need to refer to this instance from any other
behavior (for example, Lookup), you must specify
the full value in the behavior's XPath expression. For
example:

instance('DataInstanceX_en-ca')/
lookupEntry

Chapter 11
Defining Data Instance Behavior Properties

11-13

Field Use

Data Provider You can reuse an existing data provider configuration for
this Data Instance behavior by clicking the Select button.
To create a new data provider configuration, click New.
After you have selected or created a data provider, click
Open to access the Data Provider editor, where you can
define input parameters, result documents, and cache
settings. Click Clear (red X) to clear the selected value
from the field.

Parameters, Expression, Use
Default Expression

Select a parameter to define the value for the input
parameter that the data provider requires when retrieving
the data from the external system. The value is evaluated
at runtime and is based on the XPath or XQuery
expression you define in the Expression field. Select the
Use Default Expression option if you want to use the
default values for the input parameters that you defined
using the Data Provider editor Interface tab.

You can select a data node from the Order Template tab
(when working in the Order editor) or from the Task Data
tab (when working in a Task editor) and drag the selected
data node into the Parameters field to define the XPath
expression.

Note: To drag a data node into the Properties view Data
tab, press and hold the Alt key before you select and
drag the data node to the XPath Expressions field.

XPath uses path expressions to select data nodes in
XML documents. A path expression with a single dot (.)
represents the current node. Two dots (..) represents the
parent of the current node. A slash (/) represents the root
node.

XPath and XQuery fields are limited to 4000 characters.

Inline Select if you want to make static information available
to the task. This option assumes that the information
is not located on an external system. When you select
this option, you can declare an XML document statically
within the XML field.

Note: You can use the Inline option early in development
cycles when you know you want to employ a data
provider to an external system, but you haven't yet
built it. Using the Inline option, you can create an
dummy information structure for testing purposes. You
can remove the inline XML static information and clear
the inline option later in the cycle after you build the data
provider configuration. When using the Inline option,
consider that there exists no XML validation in the static
document field.

Related Topics

Defining Data Instance Behavior Properties

About Data Instance Behaviors

Working with Behaviors

Chapter 11
Defining Data Instance Behavior Properties

11-14

Defining Event Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors
and select Open Properties View to access the behavior properties.You use the
Properties view tabs to model Event behaviors.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define Event behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Events tab.

3. Specify when the OSM server should apply the Event behavior.

Select:

• Save to apply the event when the user clicks the Task web client Save button.

• Refresh to apply the event immediately after the user leaves the field
associated with the Event behavior.

4. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab. See "Defining
Behavior Detail Properties" for more information about the options that you can
define on this page.

5. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Event behavior.

See "Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

6. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation
about the Event behavior.

Related Topics

About Event Behaviors

Event Behavior Properties View Event Tab

Working with Behaviors

Chapter 11
Defining Event Behavior Properties

11-15

About Event Behaviors
The Event behavior specifies an action to perform when a given event occurs.
Currently, there is one supported event: value-changed. When data associated with
the node for which an event rule is defined is changed, the event rule signals the OSM
server to re-render the view and return the new results to the Task web client.

For example, you can combine the Event behavior with Relevant Behaviors to display
certain fields in an Task web client based on user selection. Consider that you use a
Payment Type field with Cash and Credit Card as options. You can create an Event
behavior for the Payment Type to re-render the view after the user tabs out of the field.
You can create Relevant rules for Credit Card Number, Expiration, and so forth, so
that fields relevant to a credit card payment appear in an Task web client when a user
selects the Payment Type of Credit Card.

Note:

See OSM Concepts for more information about behavior default values,
inheritance, and declarative syntax.

Related Topics

Defining Event Behavior Properties

Event Behavior Properties View Event Tab

Working with Behaviors

About Web Client Behavior Support

Event Behavior Properties View Event Tab
On the Properties view Event tab, you can specify how the OSM server should re-
render an Task web client view when an event behavior occurs.

Field Use

Save Select to signal the OSM server to re-render the Task web client
view only after the user clicks the Task web client Save button.

Refresh Select to signal the OSM server to re-render the Task web client
view immediately after the user moves out of the field associated
with the behavior.

Related Topics

Defining Event Behavior Properties

About Event Behaviors

Working with Behaviors

Chapter 11
Defining Event Behavior Properties

11-16

Defining Information Behavior Properties
The Information behavior enables you to create labels, hints (tool tips), and help
information for data nodes that appear in a web client. Before you define a behavior's
properties, you must first create the behavior at either the data element level, task
level, or order level.

When editing order and task data in an editor, you can right-click a behavior and select
Open Properties View to access the behavior properties.You use the Properties view
tabs to model Information behaviors.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define Information behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Labels tab.

3. In the Language field, select a predefined language in which to display the label to
the web client user.

See "Defining Language Preferences" for more information about defining and
using languages in Design Studio. See "Defining Information Behaviors in Multiple
Languages " for information about how to change the language in which data fields
appear in the web client.

4. In the XPath Expression field, enter an XPath Expression or enter a literal
(enclosed by single quotes) to describe the label that you want to display to the
web client user.

See "Information Behavior Properties View Labels Tab " for more information
about entering XPath expressions.

5. Click the Hints tab.

6. In the Language field, select a predefined language in which to display the hint to
the web client user when they scroll over the associated field.

See "Defining OSM Preferences" for more information about defining and using
languages in Design Studio. See "Defining Information Behaviors in Multiple
Languages " for information about how to change the language in which hints
are displayed in the web client.

7. In the XPath Expression field, enter an XPath Expression or enter a literal
(enclosed by single quotes) to describe the hint that you want to display to the
web client user.

See "Information Behavior Properties View Hints Tab" for more information about
entering XPath expressions.

Chapter 11
Defining Information Behavior Properties

11-17

8. Click the Help tab.

9. In the Language field, select a predefined language in which to display the help
text to the web client user when they click Help button for the associated field.

See "Defining OSM Preferences" for more information about defining and using
languages in Design Studio.

10. In the Topic field, enter the topic name for this help message.

11. In the Message field, enter the help documentation that will be displayed in the
web client when the user clicks the associated field Help button.

Use valid HTML to enter the help message.

12. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab. See "Defining
Behavior Detail Properties" for more information about the options that you can
define on this page.

13. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Information behavior.
See "Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

14. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation
about the Information behavior.

Note:

When you define Information behavior properties for a data element with a
range where the minimum is zero, the Task web client applies the behavior
only when you add a data node. If there are no data nodes, the help or
hint does not appear, and the field uses the Display Name from the Data
Dictionary.

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

Related Topics

Defining Information Behaviors in Multiple Languages

Information Behavior Properties View Labels Tab

Information Behavior Properties View Hints Tab

Information Behavior Properties View Help Tab

Working with Behaviors

About Web Client Behavior Support

Chapter 11
Defining Information Behavior Properties

11-18

Defining Information Behaviors in Multiple Languages
You can use Information behaviors to configure web client labels and field level tool
tips (called hints in Design Studio) in multiple languages. The configuration that you
complete in Design Studio can enable a web client to display field labels and hints in
a preferred language when a web client detects changes to Internet browser language
preferences.

The following example demonstrates how to define labels in a preferred language. The
steps for defining hints are identical, except that you define the language and XPath
expression in the Information Properties view Hints tab.

To create labels and hints in multiple languages:

1. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

2. In the Preferences dialog box, click Oracle Design Studio.

The Design Studio Language Preferences options are displayed.

3. Add the language to the group of languages with which you intend to work.

See "Defining OSM Preferences" for more information about adding languages to
the Preferences dialog box.

4. Click OK.

Design Studio closes the Preference dialog box.

5. Determine at which level you will create the Information behavior.

You can create behaviors at the data, order, and task levels. For example,
behaviors defined at the data level apply to the data node in all orders and tasks;
behaviors applied at the order level apply to all tasks in the order; and behaviors
defined at the task level apply to a single task in the order.

• See "Defining Behaviors at the Data Schema Level" for information about
creating behaviors at the data schema level.

• See "Defining Manual Task Behaviors" for information about creating
behaviors at the task level.

• See "Defining Order Behaviors" for information about creating behaviors at the
order level.

6. In the Data Schema, Order, or Task editor, select a data node and create the
Information behavior.

7. Right-click the Information behavior icon and select Open Properties View.

The Information Properties view Labels tab is displayed.

8. In the Information Properties view Labels tab Language field, select the
language for which you want to define a label.

No changes to Language field are necessary if you are defining labels in the
default language.

Chapter 11
Defining Information Behavior Properties

11-19

Note:

By default, the system uses the Display Name defined for the data
node and the default language defined in the Design Studio Preferences
dialog box when labeling fields in the web client.

9. In the XPath Expression field, enter the text for the new label.

Use single quotes to wrap the text when entering literals in an XPath expression.
See "Information Behavior Properties View Labels Tab " for more information
about entering XPath expressions.

10. Click Save.

11. Clean, build, and deploy your cartridge to the run-time environment.

See "Packaging and Deploying OSM Cartridges" for more information and
cleaning, building, and deploying cartridges.

12. In the web client, navigate to the browser language preferences to select the
language in which you defined your labels and hints.

For example, in Internet Explorer:

a. Select Tools, Internet Options.

b. Click Language.

The Language Preferences dialog box is displayed.

c. Click Add.

The Add Language dialog box is displayed.

d. Select the language in which you created new field labels or hints in Design
Studio.

e. Click OK.

f. Select the language, and click Move Up to move the language to the first
position.

g. Click OK.

The system displays the new labels in the web client.

Related Topics

Information Behavior Properties View Labels Tab

Information Behavior Properties View Hints Tab

Information Behavior Properties View Help Tab

Working with Behaviors

Information Behavior Properties View Labels Tab
On the Properties view Labels tab, you can create labels by selecting a language
and defining an expression.

Chapter 11
Defining Information Behavior Properties

11-20

Field Use

Language You can declare Information behaviors specific to a given language
by using the optional Language attribute. If this attribute is set,
OSM automatically selects the appropriate instance using the user's
language preferences set in the web browser.

XPath Expression Enter a mathematical expression or an XPath Expression.

You can select a data node from the Order Template tab (when
working in the Order editor) or from the Task Data tab (when
working in a Task editor) and drag the selected data node into the
XPath Expression field to define the XPath expression. To drag
a data node into the Properties view Labels tab, press and hold
the Alt key before you select and drag the data node to the XPath
Expressions field.

XPath uses path expressions to select data nodes in XML
documents. A path expression with a single dot (.) represents the
current node. Two dots (..) represents the parent of the current
node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Defining Information Behavior Properties

Working with Behaviors

Information Behavior Properties View Hints Tab
On the Properties view Hints tab, you can create hints (tool tips) in the web client by
selecting a language and defining a message.

Field Use

Language You can declare Information behaviors specific to a given language
by using the optional Language attribute. If this attribute is set,
OSM automatically selects the appropriate instance using the user's
language preferences set in the web browser.

XPath Expression Enter a mathematical expression or an XPath Expression.

You can select a data node from the Order Template tab (when
working in the Order editor), or from the Task Data tab (when
working in a Task editor) and drag the selected data node into the
XPath Expression field to define the XPath expression. To drag a
data node into the Properties view Hint tab, press and hold the
Alt key before you select and drag the data node to the XPath
Expressions field.

XPath uses path expressions to select data nodes in XML
documents. A path expression with a single dot (.) represents the
current node. Two dots (..) represents the parent of the current
node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Defining Information Behavior Properties

Chapter 11
Defining Information Behavior Properties

11-21

Working with Behaviors

Information Behavior Properties View Help Tab
On the Properties view Help tab, you can create context-sensitive, online help in the
web client by selecting a language and defining the help topic and text.

Field Use

Language You can declare Information behaviors specific to a given language
by using the optional Language attribute. If this attribute is set,
OSM automatically selects the appropriate instance using the user's
language preferences set in the web browser.

Topic Enter the topic name for this help message.

Message Enter the help documentation that will be displayed in the web client
when the user clicks the associated field Help button.

Note: Use valid HTML to enter the help message.

Related Topics

Defining Information Behavior Properties

Working with Behaviors

Defining Lookup Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors
and select Open Properties View to access the behavior properties.You use the
Properties view tabs to model Lookup behaviors.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define Lookup behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Nodeset tab.

3. In the XPath Expression field, enter the XPath expression that selects the set of
data nodes that will comprise the lookup results.

4. Click the Value/Name tab.

A default column, called ValueColumn, is displayed in the Value Name table.
The OSM server uses this value to populate the data node to which the Lookup
behavior is attached.

Chapter 11
Defining Lookup Behavior Properties

11-22

5. (Optional) Click Add.

Design Studio creates an additional column in the drop down list. For example,
you can add a second column to create a label for the data retrieved.

6. Specify the value that OSM server should use for the corresponding data node.

If you have multiple columns defined in the Value Name table, select the column
whose value you want the OSM server to use for the data node, and click Set as
Value.

For example, if you have two columns, a code column and description column, you
might elect to have the user make a selection based on the description field, but
identify the code column as the value that the OSM server should use to update
the task.

7. In the Name field, enter a name for the selected column value.

8. In the Node field, enter an XPath expression to define the relative path to the node
in the nodeset.

For example, if the nodeset contains 2 data nodes, you must identify which of the
two data nodes the OSM server should retrieve for the select column.

9. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab. See "Defining
Behavior Detail Properties" for more information about the options that you can
define on this page.

10. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Lookup behavior. See
"Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

11. Click the Notes.

Use the Notes tab to describe the functionality or include internal documentation
about the Lookup behavior.

Related Topics

Lookup Behavior Properties View Nodeset Tab

Lookup Behavior Properties View Value/Name Tab

About Lookup Behaviors

Working with Behaviors

Working with Behaviors

About Lookup Behaviors
Use the Lookup behavior to specify a set of dynamically generated field value choices
to be included in a drop down list. The Lookup behavior can retrieve data of any type,
and can obtain the data from the task view data or from an external system, (such as
Objectel) using a Data Instance behavior. You can also define the behavior to display
multiple columns to the end user.

Chapter 11
Defining Lookup Behavior Properties

11-23

You attach Lookup behaviors to simple type data nodes, and define the location of
the data using an XPath expression. When the Lookup behavior retrieves the data, it
expects a repeating XML data structure that it will use to build the list of options.

When configuring Lookup behavior properties, you define where the OSM server
should obtain the information, how much information to present in the drop down list,
the order in which the options should be presented to the user, and the value that the
OSM server uses for the data node (for which the Lookup behavior is defined) when
a user makes a selection. For example, consider that you want a Lookup behavior
to retrieve a code and a description of mobile phone handset color options. You can
create a Data Instance behavior to retrieve the available handset color options from
inventory, and display those options to the user with a Lookup behavior:

Code Column Value Description Column Value

12HS00B Blue Handset

12HS00S Silver Handset

12HS00R Red Handset

You might elect to display only the description to the user (in a single column) but
update the task data with the code value.

Note:

See OSM Concepts for more information about behavior default values,
inheritance, and declarative syntax.

Related Topics

Lookup Behavior Properties View Nodeset Tab

Lookup Behavior Properties View Value/Name Tab

Defining Lookup Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Lookup Behavior Properties View Nodeset Tab
Use the Properties view Nodeset tab to define the XPath expression that selects the
set of nodes that comprise the lookup results. You can enter the expression or drag
the desired nodes into the XPath Expression field.

Chapter 11
Defining Lookup Behavior Properties

11-24

Field Use

XPath Expression Enter an XPath expression.

You can select a data node from the Order Template tab (when
working in the Order editor), or from the Task Data tab (when
working in a Task editor) and drag the selected data node into
the XPath Expression field to define the XPath expression. To
drag a data node into the Properties view Nodeset tab, press
and hold the Alt key before you select and drag the data node to
the XPath Expressions field.

XPath uses path expressions to select data nodes in XML
documents. A path expression with a single dot (.) represents
the current node. Two dots (..) represents the parent of the
current node. A slash (/) represents the root node.

XPath and XQuery fields are limited to 4000 characters.

Related Topics

Defining Lookup Behavior Properties

Working with Behaviors

About Lookup Behaviors

Lookup Behavior Properties View Value/Name Tab
Use the Lookup Behavior Properties View Value/Name tab to specify the value that the
OSM server should use for a data node, and to create multiple columns to display in
the web client.

Note:

You can convert a label to a value by selecting the Set as Value check box.
When you do this, the previous value automatically becomes a label.

Field Use

Set as Value If you have multiple columns defined in the Value Name
table, select the column whose value you want the OSM
server to use for the data node, and click Set as Value.
This value will be stored in the order.

For example, if you have two columns, a code column and
description column, you might elect to have the user make
a selection based on the description field, but identify the
code column as the value that the OSM server should use
to update the task.

Only one column in a lookup behavior can be used for Set
as Value. Use the Hidden field to determine whether the
column used as Set as Value is also used as a display
column.

Name Enter a name for the lookup value result.

Chapter 11
Defining Lookup Behavior Properties

11-25

Field Use

Hidden Specify whether the column is displayed or not. By
default, the column is displayed.

If more than one column is displayed, the value displayed
in the field will be the value in the first visible column.

Position Define the column's position in the lookup result.

Sort Direction Specify how the column is sorted. Indicate either
Ascending or Descending.

Sort Order Determine how the column is used to sort the lookup. For
example, if this value is 1, it is the primary sort key.

Selection Severity Select how open the field is to users entering data that is
not on the list of values defined in the lookup. Valid values
are:

• VALID: A value that is not on the list is valid.
• WARNING: A value that is not on the list generates

a warning but can be saved to the order and the task
transitioned.

• ERROR: A value that is not on the list generates
an error but can be saved to the order. The task
cannot be transitioned until the value that is not on
the lookup list is removed.

• CRITICAL: (default) A value that is not on the list
generates an error and cannot be saved to the order.
The task cannot be transitioned until the value that is
not on the lookup list is removed

Node (Mandatory) Enter an XPath expression to define the
relative path to the node in the nodeset.

Language Select the display language.

Description Enter a brief description of the layout.

Related Topics

Defining Lookup Behavior Properties

Working with Behaviors

About Lookup Behaviors

Defining Read Only Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors
and select Open Properties View to access the behavior properties.You use the
Properties view tabs to model Read Only behaviors.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

Chapter 11
Defining Read Only Behavior Properties

11-26

To define Read Only behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab. See "Defining
Behavior Detail Properties" for more information about the options that you can
define on this page.

3. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Read Only behavior.
See "Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

4. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation
about the Read Only behavior.

Related Topics

About Read Only Behaviors

Working with Behaviors

About Read Only Behaviors
The Read Only behavior enables you to target specific conditions when the OSM
server should make a field read-only in the Task web client. Information is always
read-only in the Order Management web client. You can use the Read Only behavior
to make fields read only or read/write, depending on the content of other fields.

For example, assume that a view has an IP Allocation {static, DHCP}, an IP Address,
a Subnet Mask, and a Default Gateway field. You can create a read-only rule on IP
address, Subnet Mask, and Default Gateway that evaluates to True when the value
DHCP is selected for the IP Allocation field.

See OSM Concepts for more information about behavior default values, inheritance,
and declarative syntax.

Note:

If a data node's Read Only behavior evaluates to true, all children of that
data node are read-only.

About Read Only Behaviors and Read Only Task View Options

In Design Studio, you can define a data node as read-only by creating a Read Only
behavior, and by defining the data node as read-only at the task view level:

Chapter 11
Defining Read Only Behavior Properties

11-27

• Defining a Read Only behavior for a data node enables you to apply specific
conditions to determine when the OSM server should make the associated field in
the Task web client read-only.

• Defining a data node as read-only at the task view level ensures that a field always
is displayed as read-only in the Task web client (in the context of the associated
task). See "Task Data Node Properties View Identification Tab" for information
about defining data nodes as read-only at the task view level.

Note:

If a Read Only behavior and a task view read-only option conflict for the
same data node, the OSM server defaults to the Read Only behavior. For
example, consider that you have identified a data node as read-only on the
Task Data Node Properties View Identification tab, and you've also defined
a Read Only behavior for that same data node. If the behavior evaluates to
false, the Task web client field associated with the data node will be editable.

Related Topics

Defining Read Only Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Defining Relevant Behavior Properties
When editing order and task data in an editor, you can right-click data node behaviors
and select Open Properties View to access the behavior properties.You use the
Properties view tabs to model Relevant behaviors.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define Relevant behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab. See "Defining
Behavior Detail Properties" for more information about the options that you can
define on this page.

3. Click the Conditions tab.

Chapter 11
Defining Relevant Behavior Properties

11-28

Use the Conditions tab to add conditional logic to the Relevant behavior. See
"Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

4. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation
about the Relevant behavior.

Related Topics

About Relevant Behaviors

Working with Behaviors

About Relevant Behaviors
Use the Relevant behavior to make fields hidden or visible, depending on the content
of other fields. You can apply a Relevant behavior to a group node to hide all of its
children when the behavior evaluates to false.

The Relevant behavior is usually combined with an Event behavior. When you
associate a Relevant behavior to a field, the fields in the web client can only be hidden
or revealed upon an OSM server refresh.

For example, if a user selects the value Check in the Payment Method field, the Credit
Card Number and Type fields become non-relevant, and should be hidden. In this
example, you define an Event behavior to refresh the web client window when the user
tabs out of the Payment Method field. Additionally, you define Relevant behaviors for
the Credit Card Number and Type fields to evaluate to false when the user selects
Check as the payment method.

Note:

See OSM Concepts for more information about behavior default values,
inheritance, and declarative syntax.

Related Topics

Defining Relevant Behavior Properties

Working with Behaviors

About Web Client Behavior Support

Defining Style Behavior Properties
Use the Style behavior to control the appearance of a given node in the web client.
You can apply multiple Style behaviors to a data node, each defined with specific
conditions such that when one condition evaluates to true, the OSM server will apply
the corresponding style behavior. For example, you can specify that the font color for a
field in the web client appear black unless a user enters an invalid value, in which case
you specify the font color to change to red.

Chapter 11
Defining Style Behavior Properties

11-29

OSM applies style behaviors to all compensation strategies: Redo, Undo, and Do
Nothing.

When editing order and task data in an editor, you can right-click data node behaviors
and select Open Properties View to access the behavior properties.You use the
Properties view tabs to model Style behaviors.

Note:

The level at which you create a behavior (at the data element level,
task level, or order level) determines where you access and configure the
behavior's properties. See "Creating New Behaviors" for more information.

To define Style behavior properties:

1. From the Design perspective, right-click the behavior and select Open Properties
View.

The Behaviors Properties view is displayed.

2. Click the Appearance tab.

Use the Appearance tab to specify how field options are displayed, whether
to include line breaks after fields, and whether to hide sensitive information in
field contents. See "Style Behavior Properties View Appearance Tab" for more
information.

3. Click the Layout tab.

Use the Layout tab to group child nodes into tabs or table columns. These options
are available only for structures that contain child nodes. See "Style Behavior
Properties View Layout Tab" for more information.

4. Click the CSS Style tab.

On the CSS Style tab, you can add HTML formatting to field values and labels in
the web client. Enter HTML directly into the CSS Style Attribute fields for values
and labels, or enter a class name to control the formatting for values and labels.
See "Style Behavior Properties View CSS Style Tab" for more information.

5. Click the Details tab.

The Behaviors Properties view Details tab is displayed. The Name, Type, and
Path field values are read-only, and cannot be modified on this tab. See "Defining
Behavior Detail Properties" for more information about the options that you can
define on this page.

6. Click the Conditions tab.

Use the Conditions tab to add conditional logic to the Style behavior. See
"Defining Behavior Condition Properties" for more information about defining
conditions for behaviors.

7. Click the Notes tab.

Use the Notes tab to describe the functionality or include internal documentation
about the Style behavior.

Chapter 11
Defining Style Behavior Properties

11-30

Note:

See OSM Concepts for more information about behavior default values,
inheritance, and declarative syntax.

Related Topics

Style Behavior Properties View Appearance Tab

Style Behavior Properties View Layout Tab

Style Behavior Properties View CSS Style Tab

Working with Behaviors

About Web Client Behavior Support

Style Behavior Properties View Appearance Tab
Use the Properties view Appearance tab to define attributes that control the
appearance of a given node in the web client.

The Appearance tab is rendered differently based on whether the behavior is defined
for an element or a structure. For an element, all fields are enabled except Locate
in, which deals with page layouts for structures. For a structure, all fields are disabled
except Locate in.

Field Use

Appearance Select a value to control the appearance of the node
based on one of the following selections:

• Default: Uses the default node appearance
• Compact: A fixed number of choices are rendered,

with scrolling facilities, as needed
• Full: All choices are rendered at all times
• Minimal: A minimum number of choices are

rendered, with the ability to temporarily render
additional choices

Locate in Specifies the page on which the group is placed. New
Page locates the group in a newly created page, without
a title.

Place on New Line Select to place the node at the start of a new line and to
define a condition under which the line break is inserted.

Make it a Password Field Select to protect the contents of nodes containing
sensitive information and to define a condition under
which the field is secret.

Related Topics

Defining Style Behavior Properties

Working with Behaviors

Chapter 11
Defining Style Behavior Properties

11-31

Style Behavior Properties View Layout Tab
Use the Properties view Layout tab to define attributes that control the appearance of
a given node in the web client.

The Layout tab is rendered differently based on whether the behavior is defined for
an element or a structure. For an element, all fields are disabled because the tab
deals with page layouts for structures. For a structure with child elements, all fields are
enabled.

Field Use

None Select to specify no layout. This is the default.

Page Layout Select to specify how to organize a group's child nodes into
tabbed pages. When you select this option, you can also enter a
name and language for the layout, as well as a brief description.

To use this layout, the node must be a complex type. A complex
type element is an element that contains other elements or
attributes.

Table Layout Select to place the group in a table format. Child nodes within
the group are represented by columns, and instances of the
group are represented by rows. Columns are displayed from left
to right in the same order that they appear from top to bottom
in a view that does not use the table layout. You can choose to
hide a child node so that it does not appear in the table.

To use this layout, the node must be a complex type and have
children. A complex type element is an element that contains
other elements or attributes.

Related Topics

Defining Style Behavior Properties

Working with Behaviors

Style Behavior Properties View CSS Style Tab
Use the Properties view CSS Style tab to define attributes that control the appearance
of a given node in the web client.

Note:

If you define a CSS Class for a Style behavior, the CSS class must exist
when deploying OSM. Otherwise, WebLogic Server throws an error and the
default class is used.

Chapter 11
Defining Style Behavior Properties

11-32

FIeld Use

CSS Style Attribute Enter a CSS style attribute to change the field value
format of the data node associated with the style
behavior. For example, to customize the color and
background color of the field value, you might enter:

color:#EE7500;BACKGROUND-COLOR: #FFFFDD

CSS Class Name Enter a CSS class name defined in a customPrint.css or
customScreen.css file to change the field value format
of the data node associated with the style behavior.

Label CSS Style Attribute Enter a CSS style attribute to change the field label
format of the data node associated with the style
behavior. For example, to customize the color and
background color of the field label, you might enter:

color:#EE7500;BACKGROUND-COLOR: #FFFFDD

Label CSS Class Name Enter a CSS class name defined in a customPrint.css or
customScreen.css file to change the field label format of
the data node associated with the style behavior.

Related Topics

Defining Style Behavior Properties

Working with Behaviors

Chapter 11
Defining Style Behavior Properties

11-33

12
Working with Jeopardy and Event
Notifications

There are two basic types of notifications that you can configure in Oracle
Communications Design Studio: jeopardy notifications and event notifications:

• Use jeopardy notifications when certain conditions arise in an order or task and
you want to alert users or systems of processes, orders, or tasks that may be at
risk.

• Use event notifications to alert users of changes to order milestones or task states.

When modeling notifications, see the following topics:

• Working with Jeopardy Notifications

• Working with Event Notifications

• Order Jeopardy Editor

Working with Jeopardy Notifications
A jeopardy notification is a message that you can configure in Design Studio to
occur under specific conditions, and to be sent to specific users or systems. You
can configure jeopardy notifications to be sent once, periodically, or when certain
conditions arise in an order or task to alert users or systems of processes, orders, or
tasks that may be at risk.

Jeopardies are rule-based. When you create a new jeopardy notification, you select a
predefined rule that must evaluate to true before OSM can trigger the notification.

When working with jeopardy notifications, see the following topics:

• Creating Jeopardy Notifications in the Order Jeopardy Editor

• Creating Jeopardy Notifications in the Task or Order Editor

Creating Jeopardy Notifications in the Order Jeopardy Editor
Create jeopardy notifications using the Order Jeopardy editor when you want the most
flexibility in defining the jeopardy conditions to alert users or systems of orders that
may be at risk.

To create a jeopardy notification:

1. From the Studio menu, select New, select Order and Service Management,
select Order Management, then select Order Jeopardy.

The Order Jeopardy wizard is displayed.

2. In the Project field, select the project in which to save the order jeopardy.

3. In the Name field, enter a name for the order jeopardy.

12-1

The name must be unique among order jeopardy entity types within the same
namespace.

4. In the Namespace field, select an existing namespace or enter a unique
namespace in which to include the order jeopardy.

Design Studio uses the last saved namespace as the default.

5. (Optional) Select a location for the order jeopardy.

By default, Design Studio saves the entity to your default workspace location. You
can enter a folder name in the Folder field or select a location different from the
system-provided default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

6. Click Finish.

Design Studio adds the new order jeopardy to the Studio Projects view and opens
the new entity in the Order Jeopardy editor.

7. In the Details tab, configure the required fields, which are Target Order and
Roles, as well as any optional fields appropriate for your situation.

For more information about the fields in this tab, see "Order Jeopardy Editor
Details Tab."

8. In the Policy tab, configure the conditions under which the jeopardy should be
raised.

For more information about the fields in this tab, see "Order Jeopardy Editor Policy
Tab."

9. (Optional) In the Automation tab, configure the information about any automation
that should be triggered when the jeopardy notification is raised.

For more information about the fields in this tab, see "Order Jeopardy Editor
Automation Tab."

Related Topics

Order Jeopardy Editor

Creating Jeopardy Notifications in the Task or Order Editor
Create jeopardy notifications when certain conditions arise in an order or task and you
want to alert users or systems of processes, orders, or tasks that may be at risk.

You can also associate rules to jeopardy notifications that can trigger automations.

Note:

For order jeopardy notifications, the Order Jeopardy editor provides more
functionality than jeopardy notifications configured in the Order editor.
For more information, see "Creating Jeopardy Notifications in the Order
Jeopardy Editor."

Chapter 12
Working with Jeopardy Notifications

12-2

To create a jeopardy notification:

1. In the Order editor or Task editor, click the Jeopardy tab.

2. Under the Jeopardy column, click Add.

The Jeopardy wizard is displayed.

3. In the Name field, enter a name for the jeopardy.

The name must be unique among notification entities in the same namespace.

4. In the Rule field, select the rule that must evaluate to true before OSM can trigger
this jeopardy notification.

Design Studio uses the null_rule as the default value. Unless you select a
different rule, OSM triggers this notification at run-time at the specified polling
interval whenever the specified jeopardy conditions are met. See "Defining Order
Rules" for more information about setting up new rules.

5. In the Priority field, select a priority for the notification.

1 is the highest priority. OSM evaluates jeopardies with the highest priority first.
For notifications that are sent to external systems, this field represents the JMS
queue priority.

6. Select Enabled.

You can deselect the Enable option if you want to include the rule in the cartridge
but disable the rule at run-time. For example, you might use this feature during
design or testing phases, or if you intend to implement the notification at a later
time.

7. Specify whether to send the notification to specific email accounts.

By default, notifications appear in the Notifications page of the Task web client.
However, you can specify that notifications be sent to a user's email account
by selecting the Email check box. You associate users with email accounts in
Administrator.

See OSM Order Management Web Client User's Guide for information about
configuring email notification properties for user roles.

8. Click Next.

9. Specify the conditions under which the jeopardy notification should be triggered.

10. Click Next.

11. Select the roles to be notified when the jeopardy is triggered.

See "Working with Roles" for more information.

12. Click Next.

13. Specify how often the OSM server should re-evaluate the jeopardy condition.

14. Click Finish.

The jeopardy notification is added to the order or task, as appropriate.

You can edit or add any jeopardy notification attributes at any time by navigating to
the Jeopardy subtabs.

15. In the order Jeopardy column, select the jeopardy for which you want to add an
automation plug-in.

16. In the Automation column, click Add.

Chapter 12
Working with Jeopardy Notifications

12-3

The Add Automation dialog box is displayed, which enables you to create the
automation plug-in.

17. Enter a name for the automation plug-in, select the appropriate Automation Type
from the available list, and click OK.

The newly created plug-in is displayed in the Automation column.

18. Select the automation plug-in.

When you select the automation plug-in, Design Studio displays its Properties tab.
Use the subtabs to configure the plug-in. The tabs will vary depending on the type
of plug-in selected.

See "Configuring Automation Plug-In Properties" for more information.

19. For Order jeopardy, if the automation plug-in has an OSM user in the automation
plug-in Run As property field with more than one role, click Select from the View
field to choose a query task view to use for the automation plug-in. If only one
default query task exists in the Order editor Permissions tab, then Design Studio
automatically associates it with new automations.

Related Topics

Order Editor Jeopardy Tab

Task Editor Jeopardy Tab

Working with Orders

Working with Tasks

Working with Event Notifications
Event notifications are based on changes to order milestones or a task states. The
type of the event notification determines where you configure the notification, whether
it can be sent to a work group, or whether it will be automatically consumed by an
automation plug-in. There are three types of event notifications:

• Task status-based event notifications are triggered by rules that evaluate when a
task transitions to a specific status or exception path within a process. You define
task status event notifications using the Properties Events tab in the Process
editor. See "Creating Task Status-Based Event Notifications" for more information.

• Order milestone and task state automation event notifications are triggered when
an order transitions to a specific milestone or when a task transitions to a specific
state. When you configure a milestone-based or state-based event notification
for an order in the Order editor or for a task in the Task editor, the notification
triggers automatically upon reaching the specified order milestone or task state,
and the notification is consumed by an automation plug-in that performs the work.
When you configure a task state-based event notification for a specific task in the
Process editor, you can also include an additional rule that must evaluate to true
before OSM triggers the notification, and you can elect to send the notification to a
work group.

See "Creating Order Milestone and Task State Automation Event Notifications"
and "Creating Process-specific Task Event Notifications" for more information.

• order data changed notifications are triggered by changes made to the order data.
You can configure order data changed notifications to update external systems

Chapter 12
Working with Event Notifications

12-4

(such as CRM) with status updates when a specific data node in the order data is
updated with a new value. You configure order data changed notifications in the
Order editor Notifications tab. See "Creating Order Data Changed Notifications" for
more information.

Note:

Order data changed notifications are not available when using releases
prior to OSM 7.0.

Related Topics

Working with Jeopardy and Event Notifications

Working with Orders

Creating Order Milestone and Task State Automation Event
Notifications

You create order milestone and task state automation event notifications at the order
or task level. You select the order milestone (in the Order editor Events tab) or the task
state (in the Task editor Events tab) that triggers the automation, and then configure
the automation plug-in that will perform the work.

For example, when a task reaches the Assigned state, you can automate an external
lookup before allowing the workflow to continue.

To create an order milestone or task state automation event notification:

1. Determine the level at which to create the event notification.

For example, if you want the notification to trigger when the order reaches the
completion milestone, define the notification at the order level. To create an event
at the order level, navigate to the Order editor Events tab. To create an event at
the task level, navigate to the Task editor Events tab.

2. From the Order editor or the Task editor Events tab, click Add in the Milestone or
State column, respectively.

A Selection dialog box opens, which lists all of the milestones or states that have
been defined for this order or task.

3. Select a milestone or task from the list of options.

For order events, the milestones include Completion, Creation, Deletion,
Exception. For task events, all of the states that you have defined on the Task
editor States/Statuses tab appear in the list of options.

4. Click OK.

5. In the order event Milestones column or the task event States column, select the
milestone or state for which you want to add an automation plug-in.

6. In the Automation column, click Add.

The Add Automation dialog box is displayed, which enables you to create the
automation plug-in.

Chapter 12
Working with Event Notifications

12-5

7. Enter a name for the automation plug-in, select the appropriate action from the
available list, and click OK.

The newly created plug-in is displayed in the Automation column.

8. Select the automation plug-in.

When you select the automation plug-in, Design Studio displays its Properties tab.
Use the subtabs to configure the plug-in. The tabs will vary depending on the type
of plug-in selected.

See "Configuring Automation Plug-In Properties" for more information.

9. For Order Events, if the automation plug-in has an OSM user in the automation
plug-in Run As property field with more than one role, click Select from the View
field to choose a query task view to use for the automation plug-in. If only one
default query task exists in the Order editor Permissions tab, then Design Studio
automatically associates it with new automations.

Related Topics

Task Editor Events Tab

Order Editor Events Tab

Working with Event Notifications

Working with Orders

Working with Tasks

Creating Process-specific Task Event Notifications
You can configure task state-based event notifications for all instances of task in a
specific process or for a single instance of a task in the process. When you configure a
state-based event notification for a specific task in the Process editor, you can include
rules which must evaluate to true before the notification is triggered. When the task
reaches the specified state, OSM evaluates the rule to determine whether the event
notification is triggered.

To create process-specific task event notifications:

1. From the Process editor, select the task to which the event applies.

The Properties tab for the selected task opens.

2. Click the Events tab.

3. Click Add.

The Event wizard is displayed.

4. In the Name field, enter the mnemonic for the task event.

The name must unique among the notification types within the same namespace.

5. In the Display Name field, enter the name of the task event that should be
displayed to users.

6. In the Rule field, select the rule that must evaluate to true before OSM can trigger
this event notification.

The null_rule is the default value for this field. If you do not change the default
value, the OSM server will always trigger this notification when the corresponding

Chapter 12
Working with Event Notifications

12-6

task reaches the specific state. See "Defining Order Rules" for information about
setting up new rules.

7. In the Priority field, select a priority for the notification.

1 is the highest priority. For notifications that are sent to external systems, this field
represents the JMS queue priority.

8. Select Enabled.

Deselect this option if you intend to implement the task event notification at a later
time.

9. Specify whether to send the notification to specific email accounts.

By default, notifications appear in the Notifications page of the Task web client.
However, you can specify that notifications be sent to a user's email account
by selecting the Email check box. You associate users with email accounts
in Administrator. See OSM Order Management Web Client User's Guide for
information about configuring email notification properties for user roles. See OSM
Installation Guide for information about configuring the outgoing email server.

10. In the State field, specify the state that the task must be in before OSM evaluates
the rule associated with the event.

The three mandatory states (accepted, completed, received) and all custom states
that you defined on the Task editor States/Statuses tab appear as values.

11. Click Next.

12. Select the roles to be notified when the event is triggered.

See "Working with Roles" for more information.

13. Click Finish.

The event notification is added to the event table.

14. Select the event.

When you select the event, Design Studio activates the Event subtabs. You can
add any undefined elements at any time by using these subtabs. See the following
topics for defining the values in the Events subtabs:

• Properties Events Detail Tab

• Properties Events Notify Roles Tab

• Properties Events Automation Tab

• Event Properties Notes Tab

Related Topics

Working with Event Notifications

Working with Processes

Properties Events Detail Tab
Use the Properties Events Details tab to name task state-based and task status-
based event notifications, specify the rule that triggers the event, set the priority level,
enable or disable the event, and specify whether to send the notification by email.

Chapter 12
Working with Event Notifications

12-7

Field Use

Name Enter the mnemonic for the notification.

Display Name Enter the name to be displayed to the user.

Rule Select the rule the system should evaluate before generating
this notification. This field defaults to the system-based null_rule.

If you do not change the default value, OSM will always trigger
this notification when the task reaches the specified state or
when the task transitions to the specified status. See "Defining
Order Rules" for more information about setting up new rules.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The
notification with the highest priority is evaluated first.

Enabled Select to enable this notification, or deselect the option if you
intend to implement the notification at a later time.

Email Select to send email notifications to all users in the workgroup
associated with the specified role.

By default, notifications appear in the Notifications page of the
Task web client. However, you can specify that notifications be
sent by email by selecting the Email check box.

When you assign users to a workgroup in the OSM
Administration area of the Order Management web client, you
can set up OSM to notify users by email. When a notification
occurs, the system sends a notification ID number through
email.

See OSM Order Management Web Client User's Guide for
information about configuring email notification properties for
user roles.

State Appears for task entities only. Select the state to which the task
must be in before OSM evaluates the rule associated with the
event.

The three mandatory states (accepted, completed, received)
and all custom states that you defined on the Task editor States/
Statuses tab appear as values.

Related Topics

Creating Task Status-Based Event Notifications

Creating Process-specific Task Event Notifications

Working with Processes

Working with Event Notifications

Properties Events Notify Roles Tab
Use the Properties Events Notify Roles tab to select the roles to be notified when the
event occurs.

Select a predefined notification from the list in the left column to activate a list of
available roles. See "Working with Roles" for information about defining roles. Using
the directional arrow buttons, move the roles (those groups to whom you want the
notification sent) into the Selected Column.

Chapter 12
Working with Event Notifications

12-8

If the notification message will be consumed by an automation plug-in, ensure that you
include the role whose credentials are used when running the automation plug-in. See
"Working with Automated Tasks" for more information.

Related Topics

Creating Task Status-Based Event Notifications

Creating Process-specific Task Event Notifications

Working with Processes

Working with Event Notifications

Properties Events Automation Tab
Use the Properties Events Automation tab to configure an automation plug-in that
performs the work or sends data to an external system when the notification is
triggered.

Field Use

Add Click to open the Add Automation dialog box opens.

Name Enter a name for the automation entry.

Action Select the automation plug-in type from the available list.

Click OK to add the automation entry to the Automation table.

Properties Select any entry in the table and click to define the automation
properties.

See "Configuring Automation Plug-In Properties" for information
about defining automation properties on the Properties tab.

Related Topics

Creating Task Status-Based Event Notifications

Creating Process-specific Task Event Notifications

Working with Processes

Working with Event Notifications

Event Properties Notes Tab
Use the Event Properties Notes tab to denote the intended use of the event, or any
additional information that you want to append to the event configuration.

Related Topics

Creating Task Status-Based Event Notifications

Creating Process-specific Task Event Notifications

Working with Processes

Working with Event Notifications

Chapter 12
Working with Event Notifications

12-9

Creating Task Status-Based Event Notifications
Task status-based event notifications are triggered by rules that evaluate when a task
moves to a specific status or exception within a process. For example, you might
define a failure status that prompts an evaluation against a rule that, when evaluating
to true, generates a notification to your fallout specialist. See "Defining Order Fallout"
for more information.

You can define task status-based event notifications using the Properties Events tab
in the Process editor. When you create a task status-based event notification, the
notification applies to a single task flow or exception path.

To create a task status-based event notification:

1. From the Process editor, select the flow or exception path to which the event
applies.

The Properties tab for the selected transition opens.

2. Click the Events tab.

3. Click Add.

The Event wizard is displayed.

4. In the Name field, enter a name for the task status-based event.

Ensure that the name is unique among the notification entity types. Two
notifications cannot share the same name.

5. In the Rule field, select the rule that must evaluate to true before OSM can trigger
this event notification.

The null_rule is the default value for this field. If you do not change the default
value, the OSM server will always trigger this notification when the task transitions
to the specified status or exception path. See "Defining Order Rules" for more
information about setting up new rules.

6. In the Priority field, select a priority for the notification.

1 is the highest priority. For notifications that are sent to external systems, this field
represents the JMS queue priority.

7. Select Enabled.

Deselect this option if you intend to implement the task status-based event
notification at a later time.

8. Specify whether to send the notification to specific email accounts.

By default, notifications appear in the Notifications page of the Task web client.
However, you can specify that notifications be sent to a user's email account
by selecting the Email check box. You associate users with email accounts in
the Administration area of the Order Management web client. See OSM Order
Management Web Client User's Guide for information about configuring email
notification properties for user roles.

9. Click Next.

10. Select the roles to be notified when the event is triggered.

See "Working with Roles" for more information.

11. Click Finish.

Chapter 12
Working with Event Notifications

12-10

The event notification is added to the event table.

12. Select the event.

When you select the event, Design Studio activates the Event subtabs. You can
add any undefined elements at any time by using these subtabs. See the following
topics for defining the values in the Events subtabs:

• Properties Events Detail Tab

• Properties Events Notify Roles Tab

• Properties Events Automation Tab

• Event Properties Notes Tab

Related Topics

Working with Processes

Working with Event Notifications

Creating Order Data Changed Notifications
Order data changed notifications are triggered by changes to the order data. You can
configure order data changed notifications to update external systems (such as CRM)
with status updates when a specific data node in the order data is updated with a new
value.

Note:

This feature is not available when using releases prior to OSM 7.0.

You can create order data changed notifications at the order level from the Order
editor Notifications tab.

To create order data changed notifications:

1. In the Order editor, click the Notifications tab.

2. Under the Event Notifications column, click Add.

The Event wizard is displayed, where you can select conditions for the notification
and the roles to be notified. You can define this information in the wizard, or later
by using the Notifications subtabs.

3. In the Name field, enter a name for the notification.

Ensure that the name is unique among the notification entity types. Two
notifications cannot share the same name.

4. In the Priority field, select a priority for the notification.

1 is the highest priority. For notifications that are sent to external systems, this field
represents the JMS queue priority.

5. Select Enabled.

Deselect this option if you intend to implement the notification at a later time.

6. Specify whether to send the notification to specific email accounts.

Chapter 12
Working with Event Notifications

12-11

You can specify that notifications be sent to a user's email account by selecting the
Email check box. You associate users with email accounts in the Administration
area of the OSM Order Management web client application. See OSM Order
Management Web Client User's Guide for information about configuring email
notification properties for user roles.

Note:

Order data changed notifications are intended to update external
systems with status updates when a specific data node in the order data
is updated with a new value. The OSM server does not send order data
changed event notifications to Task web client Notifications pages. When
notifying users, the server sends these notifications to email addresses
only.

7. Click Next.

8. Select the roles to be notified when the notification is triggered.

See "Working with Roles" for more information.

9. Click Finish.

The notification is added to the order.

You can edit or add any notification attributes at any time by navigating to the
Notifications subtabs.

10. In the Automation column, click Add.

The Add Automation dialog box is displayed, which enables you to create the
automation plug-in.

11. Enter a name for the automation plug-in, select the appropriate Automation Type
from the available list, and click OK.

The newly created plug-in is displayed in the Automation column.

12. Select the automation plug-in.

When you select the automation plug-in, Design Studio displays its Properties tab.
Use the subtabs to configure the plug-in. The tabs will vary depending on the type
of plug-in selected.

See "Configuring Automation Plug-In Properties" for more information.

13. For Order data change notifications, if the automation plug-in has an OSM user
in the automation plug-in Run As property field with more than one role, click
Select from the View field to choose a query task view to use for the automation
plug-in. If only one default query task exists in the Order editor Permissions tab,
then Design Studio automatically associates it with new automations.

14. Click the Data Changed subtab.

15. Click the Add.

The Order Template Node Selection dialog box is displayed.

16. Select a data node that, when updated with a new value, will trigger the
notification.

17. Click OK.

Chapter 12
Working with Event Notifications

12-12

The data node is added to the Nodes table

18. Click Save.

Related Topics

Order Editor Notification Tab

Working with Orders

Working with Automated Tasks

Order Jeopardy Editor
Use the Order Jeopardy editor to model jeopardy conditions.

The following fields are common to all Order Jeopardy editor tabs:

Field Use

Description Edit the display name of the order jeopardy.

Namespace Select an existing namespace or enter a unique namespace in
which to include the order jeopardy. Design Studio uses the last
saved namespace as the default.

When working with the Order Jeopardy editor, see the following topics:

• Order Jeopardy Editor Details Tab

• Order Jeopardy Editor Policy Tab

• Order Jeopardy Editor Automation Tab

Order Jeopardy Editor Details Tab
Use the Order Jeopardy editor Details tab to define the conditions under which the
jeopardy will be evaluated. The following table describes the fields on the Order
Jeopardy editor Details tab.

Note:

See "Order Jeopardy Editor" for information about fields that appear on all of
the Order Jeopardy editor tabs.

Chapter 12
Order Jeopardy Editor

12-13

Field Use

Operational Select this option to indicate that the primary configuration for
this jeopardy is to be in a file in the system where OSM is
running.

When you select this option, you should configure the jeopardy
in the normal manner. However, only the automation information
for this configuration (and the automation plug-in, if any) is
deployed to OSM with your cartridge. For the rest of the
configuration, the next time the cartridge is built, a sample
configuration file corresponding to your configuration of the
jeopardy will be generated and placed in the samples/
orderJeopardy folder for your cartridge. You can see this folder
in the Package Explorer view. You can then copy or move the file
to the server where OSM is running. You use the
oracle.communications.ordermanagement.order.Operational
OverrideFileURLs parameter in the oms-config.xml file to
indicate the location of the file you have configured. For more
information about configuring operational jeopardy files on the
OSM server, see OSM System Administrator's Guide.

Target Order Click Select next to this field to select the order to which this
order jeopardy will apply.

View Click Select next to this field to select the task view the order
jeopardy will use to obtain data to be used in the configuration.

Rule Click Select next to this field to select a rule to use to limit when
this order jeopardy will be evaluated.

Priority Enter a priority from 1 to 255 (1 is the highest priority). The
notification with the highest priority is evaluated first.

Enabled Select to enable this jeopardy notification, or deselect if you
intend to implement the notification at a later time.

Roles Select the roles that have permission to respond to this
notification. Do any of the following:

• Click Select to select an existing role.
• Select a role and click Remove to remove the role from the

list for this order jeopardy.
• Click Add to create a new role. See "Creating New Roles"

for more information.
• Select a role and click Open to open the role in the Role

editor.

Related Topics

Creating Jeopardy Notifications in the Order Jeopardy Editor

Order Jeopardy Editor

Order Jeopardy Editor Policy Tab
Use the Order Jeopardy editor Policy tab to define the order states and duration for
the timer. The following table describes the fields on the Order Jeopardy editor Policy
tab.

Chapter 12
Order Jeopardy Editor

12-14

Note:

See "Order Jeopardy Editor" for information about fields that appear on all of
the Order Jeopardy editor tabs.

When configuring order jeopardy policy timer duration, see also the following topics:

• Order Jeopardy Editor Policy Tab Duration Value Subtab

• Order Jeopardy Editor Policy Tab Offset Subtab

• Order Jeopardy Editor Policy Tab XQuery Expression Subtab

• Order Jeopardy Editor Policy Tab Unit Type and Default Value Subtab

• Order Jeopardy Editor Policy Tab Data Path Expression Subtab

Field Use

Start Condition Specify the order states that, when the order enters one of them,
should start the jeopardy timer.

This should be set if the value being returned in the Timer
Duration area is a duration, rather than a date/time. If this value
is not set, OSM will expect a date/time value to be returned from
the configuration in the Timer Duration area. Since the Specify a
Duration Value and Use the Order Expected Duration options
always return a duration, this value should always be set if either
of those options is selected.

Do any of the following:

• Click Select to add one of the available order states to the
list of states.

• Select one of the states in the list and click Remove to
remove the state from the list of states.

• Select one of the states in the list and click Open to open
the Order State editor for that order state.

Pause Timer and Block
Jeopardy

Specify the order states that, when the order enters one of them,
should pause the jeopardy timer. This should not be set if Start
Condition does not have a value. If Start Condition has a
value, this field is optional.

Do any of the following:

• Click Select to add one of the available order states to the
list of states.

• Select one of the states in the list and click Remove to
remove the state from the list of states.

• Select one of the states in the list and click Open to open
the Order State editor for that order state.

Stop Condition Specify the order states that, when the order enters one of them,
should stop the jeopardy timer. This value should always be set.

Do any of the following:

• Click Select to add one of the available order states to the
list of states.

• Select one of the states in the list and click Remove to
remove the state from the list of states.

• Select one of the states in the list and click Open to open
the Order State editor for that order state.

Chapter 12
Order Jeopardy Editor

12-15

Field Use

Timer Duration Sets the time after which a jeopardy will be raised. Do one of the
following:

• Select Specify a Duration Value to specify a specific
duration before a jeopardy notification is raised.

• Select Use the Order Expected Duration to use the
expected duration of the order to determine when a
jeopardy notification is raised.

• Select Specify an XQuery Expression to return a
duration or date/time to provide an XQuery expression
to determine the duration before a jeopardy notification is
raised. The XQuery expression can return either a duration
or a date/time value.

• Select Specify a Data Path Expression to contain a
duration or date/time to provide the path to a data element
on the order that will contain the duration before a jeopardy
notification is raised. The data path expression can return
either a duration or a date/time value.

Related Topics

Creating Jeopardy Notifications in the Order Jeopardy Editor

Order Jeopardy Editor

Order Jeopardy Editor Policy Tab Duration Value Subtab
Use the Order Jeopardy editor Policy tab, Duration Value subtab to set the details of
the duration timer. This subtab is available if the Specify a Duration Value option is
selected in the Order Jeopardy editor Policy tab, Timer Duration area.

Field Use

Duration Amount Enter the number of duration units to wait before raising a
jeopardy on the order.

Duration Unit Select the appropriate units for the duration value from the list.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Policy Tab Offset Subtab
Use the Order Jeopardy editor Policy tab, Offset subtab to set the details of an offset
to the calculated duration. This subtab is available for all timer duration options.

Field Use

Apply an offset or use
a percentage of the
duration

Select this option to provide an offset using the other fields in
this subtab.

Percentage Select this option to configure the offset in terms of the
percentage of the duration. For example, you could raise a
jeopardy when 90% of the order's expected duration has passed.

Chapter 12
Order Jeopardy Editor

12-16

Field Use

Add Select this option to add a fixed amount of time to the duration.

Subtract Select this option to subtract a fixed amount of time from the
duration.

Offset/Percentage Amount If you have selected Percentage, enter a number between 1 and
100 to indicate the percentage of the total duration that should
elapse before the jeopardy is raised.

If you have selected Add or Subtract, enter the number of offset
units to add or subtract from the duration.

Offset Unit Set the units for the offset amount. This field is not available
when the Percentage option is selected.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Policy Tab XQuery Expression Subtab
Use the Order Jeopardy editor Policy tab, XQuery Expression subtab to use an
XQuery expression to determine the duration. This subtab is available if the Specify
an XQuery Expression to evaluate the duration option is selected in the Order
Jeopardy editor Policy tab, Timer Duration area.

Field Use

Expression Enter the XQuery expression to use to determine the duration.

Data Changed area Select Once when the timer starts to evaluate the expression
once only.

Select When any of the following nodes change to evaluate
the expression when the timer starts and also when any of the
specified order nodes change. When this option is selected, you
should also provide a list of data nodes by doing any of the
following:

• Click Select to select the data node from a list of available
nodes.

• Select a node in the list and click Remove to remove the
data node from the list.

• Select a node in the list and click Open to open the
Order Template tab of the Order editor with the data node
selected.

If no data nodes are provided and the When any of the
following nodes change option is selected, the expression is only
evaluated when the timer starts.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Policy Tab Unit Type and Default Value Subtab
Use the Order Jeopardy editor Policy tab, Unit Type and Default Value subtab to set
the unit type of the duration and a default value if the value is not found. This subtab

Chapter 12
Order Jeopardy Editor

12-17

is available if the Specify an Xquery Expression to evaluate the duration option or
the Specify a Data Path Expression to evaluate the duration option is selected in
the Order Jeopardy editor Policy tab, Timer Duration area.

Field Use

Expression Units Select the units of measure used in the returned duration value.

Default Enter the default value to be used if the XQuery expression or
data path do not return a valid value. The value in this field is
expressed in the units selected in the Expression Units field.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Policy Tab Data Path Expression Subtab
Use the Order Jeopardy editor Policy tab, Data Path Expression subtab to set the
details of the duration jeopardy timer. This subtab is available if the Specify a Data
Path Expression to evaluate the duration option is selected in the Order Jeopardy
editor Policy tab, Timer Duration area.

Field Use

Data Path Select the data node that contains the duration. Do any of the
following:

• Click Select to select the data node from a list of available
nodes.

• Click Remove to remove the data node from the field.
• Click Open to open the Order Template tab of the Order

editor with the data node selected.

Related Topics

Order Jeopardy Editor Policy Tab

Order Jeopardy Editor Automation Tab
Use the Order Jeopardy editor Automation tab to configure an automation that
is triggered by the jeopardy. The following table describes the fields on the Order
Jeopardy editor Automation tab.

Note:

See "Order Jeopardy Editor" for information about fields that appear on all of
the Order Jeopardy editor tabs.

When configuring order jeopardy automations, see also the following topics:

• Order Jeopardy Editor Automation Tab Details Subtab

• Order Jeopardy Editor Automation Tab Script Subtab

Chapter 12
Order Jeopardy Editor

12-18

• Order Jeopardy Editor Automation Tab Routing Subtab

• Order Jeopardy Editor Automation Tab Notes Subtab

Field Use

Trigger Automation when
Jeopardy is Raised

Select this option to cause an automation plug-in to be called
when the order jeopardy is raised.

Automation Type Select the automation plug-in type from the available list.

See "Working with Automation Plug-Ins" for more information
about the different automation types.

Custom Automation
Plugin

If you selected Custom Automation in the Automation Type field,
enter the name of the custom plug-in.

Related Topics

Order Jeopardy Editor

Working with Automation Plug-Ins

Order Jeopardy Editor Automation Tab Details Subtab
Use the Order Jeopardy editor Automation tab, Details subtab to provide information
about the automation to trigger if the order jeopardy is raised.

Field Use

Name Enter a plug-in name. The name must be unique among plug-in
entities in the same namespace.

Note: While plug-in names can be any arbitrary name that you
assign to the automation, Oracle recommends that you use a
consistent naming pattern for all of the automations that you
create.

Chapter 12
Order Jeopardy Editor

12-19

Field Use

Run As Enter the OSM user name (security principal) whose credentials
are used to execute this automation plug-in. A password
is not necessary to authenticate this user because only an
administrator has the authority to deploy components into the
server.

The value of this field must reflect the user ID that is used to run
the automation:

• The user ID must be set up in the WebLogic Server
Administration console. See the discussion of setting up
security in OSM System Administrator's Guide for more
information.

• The user ID must be defined in the OSM Administration
area of the Order Management web client (a workgroup
in OSM Administration is a role in Design Studio). See
"Working with Roles" for more information.

• The user ID must be assigned to the workgroup in the OSM
Administration area of the Order Management web client
that corresponds to the role defined on the Permissions tab
of the Design Studio task, order, or process that defines the
automation.

Note: Oracle recommends using the
DEFAULT_AUTOMATION_USER cartridge model variable in
the Run As field. See "Defining Model Variables" for more
information.

Related Topics

Order Jeopardy Editor Automation Tab

Order Jeopardy Editor Automation Tab Script Subtab
Use the Order Jeopardy editor Automation tab, Script subtab, to provide information
about an XQuery script to make available to the automation.

Chapter 12
Order Jeopardy Editor

12-20

Field Use

Script Specify which method to use to retrieve the XQuery file. Select
from the following options:

• Absolute path: Select this option and enter the physical
location of the file. At run time, OSM retrieves the file from
the server.

• URL: Specify a URL to access the file.
• Bundle in: Select this option, then click the XQuery

field Select button to identify the file from the resources
directory. Design Studio will bundle this file with the PAR file
during the build.

Note: Oracle recommends that you select Bundle in for
production mode, as this mode pulls the files into the OSM PAR
file. As a result, you can deploy the EAR file (which contains
the PAR file) to any server and, at run time, the application
can locate the files. If you select Absolute Path or URL for
production mode, you can deploy the EAR file (which contains
the PAR file) to any server but are responsible for ensuring the
files reside in specified location on the server.

Conversely, Absolute Path or URL are optimal for testing mode
because they do not require a rebuild and redeploy to pick up
changes to the XQuery.

For information about the XQuery file referenced here, see
"Order Jeopardy Automation XQuery Plug-ins."

Maximum Number of
Stylesheets in Cache

Specify the maximum number of XQuery style sheets that can
be maintained in the cache at any one time.

Cache Timeout in
Seconds

Enter the number of seconds before the OSM server refreshes
the cache.

Transformer Factory If you have developed a custom TransformerFactory for XSLT
transformation, specify the location. Design Studio provides a
default TransformerFactory.

Update Order Select this option if you want to update (add, change, or delete)
the OSM order data with the data retrieved from an external
system. This field appears for Automator automation plug-ins
only.

Related Topics

Order Jeopardy Editor Automation Tab

Order Jeopardy Editor Automation Tab Routing Subtab
Use the Order Jeopardy editor Automation tab, Routing subtab, to specify where to
send XML messages and where external systems can deliver responses.

In the To area, you can specify where to send the request message. In the Reply To
area, you can specify where the external system can deliver the response or exception
message.

Chapter 12
Order Jeopardy Editor

12-21

Field Use

JNDI Name Enter the name of the queue to which the automation plug-in
sends messages (on the To tab) or to which external systems
send response (on the Reply To tab). JNDI Name is mandatory.
Edit the system-supplied default value to reflect your own system
topology. The JNDI name must be unique in the workspace.

Destination Type Select the type of the message destination. A JMS destination
is either a javax.jms.Queue or a javax.jms.Topic. You might
use a topic, for example, if you want to publish messages for
general availability to multiple external systems (on the To tab)
or subscribe to a queue with multiple listeners (on the Reply To
tab). You might use queues if you want only a single external
system to consume the message.

Initial Context Factory,
Connection Factory, and
URL

Enter this information to connect to an external application
server. Specify the URL and the InitialContextFactory class for
the JNDI provider, and specify the ConnectionFactory class for
the JMS server

Send Null Message Select this option if you want to send a JMS message to an
external system even if the message body is empty.

Related Topics

Order Jeopardy Editor Automation Tab

Order Jeopardy Editor Automation Tab Notes Subtab
Use the Order Jeopardy editor Automation tab, Notes subtab, to provide information
to other Design Studio users about the automation.

Enter the information you wish to provide in the field on this subtab.

Related Topics

Order Jeopardy Editor Automation Tab

Chapter 12
Order Jeopardy Editor

12-22

13
Packaging and Deploying OSM Cartridges

You package Oracle Communications Order and Service Management (OSM)
cartridge projects to control which entities, libraries, and resources to include in the
cartridge PAR file. After packaging cartridge projects, you can deploy them to OSM
run-time environments.

When packaging and deploying cartridge projects, see the following topics:

• Packaging Order and Service Management Cartridges

• Defining Build-and-Deploy Modes for Automation Plug-ins

• Deploying Cartridge Projects

• Testing OSM Cartridge Models

• Managing Changes to Deployed Cartridges

Packaging Order and Service Management Cartridges
Before you can deploy to the OSM run-time environment, you must determine which
entities, libraries, and resources to include in the cartridge. Design Studio enables you
to model multiple order types within a single project and deploy those order types to an
OSM run-time environment within the context of a single project. For example, if you
have defined a project with data to support the DSL services Add, Delete, and Modify
for orders that come from 2 different sources (Siebel and Portal, for example), you can
deploy the entire configuration to a run-time environment in one deployment cycle.

When packaging OSM cartridge projects, see the following topics:

• Multiple Order Data Inconsistencies

• Building and Packaging Projects

Multiple Order Data Inconsistencies
When you combine multiple orders into a single project and deploy the cartridge to
an OSM run-time environment, the OSM server combines the order data from each
order into single master order template. Consequently, when packaging cartridges
that contain multiple order types, the system automatically detects order data
inconsistencies across order types and creates problem markers to identify the
conflict. You must resolve all problem marker errors before you can deploy the
cartridge.

For example, consider that two orders packaged in the same project both contain the
ID data element. In Order 1, the ID data element is defined as a string (intended to be
populated by a customer name and set of digits). In Order 2, the ID data element is
defined as an integer (intended to be populated by a unique set of digits). In the run
time environment, the OSM server has no ability to discern whether to treat the ID data
element as a string data type or as an int data type. In this example, Design Studio
would create a problem marker which you must resolve before deploying the cartridge.

13-1

Additionally, it is possible to introduce data inconsistencies when you have included
the same data element in multiple orders, each defined with conflicting behaviors. For
example, it is possible to model in Order 1 a Read Only behavior for the ID data
element that evaluates to true when the field value equals 10001, while in Order 2,
model a Read Only behavior for the ID data element that evaluates to true when the
field value does not equal 10001. Because the OSM server is not able to resolve these
types of conflicts, Design Studio detects them and forces you to resolve them prior to
deployment.

Related Topics

Packaging and Deploying OSM Cartridges

Defining Build-and-Deploy Modes for Automation Plug-ins

Note:

The information in this topic applies between the OSM 7.0.3 and 7.2.4.x
releases. Design Studio uses only the Legacy build-and-deploy mode for
releases before OSM 7.0.3, and uses only the Optimized build-and-deploy
mode starting in OSM 7.3.

When you deploy cartridges with automation plug-ins to your OSM run-time
environment (automation plug-ins for automation tasks as well as for activation tasks),
you can define a configuration to have Design Studio build and deploy automation
plug-ins in a particular way. Prior to OSM 7.0.3, when you built and deployed a
cartridge that included automation plug-ins, OSM ran each automation plug-in in
that cartridge in its own separate EAR file; this method of building and deploying
automation plug-ins is now referred to as the Legacy build-and-deploy mode. Legacy
mode simply refers to the manner in which automation plug-ins were deployed and
executed prior to OSM 7.0.3. As of release OSM 7.0.3, you can build and deploy
a cartridge in Design Studio using the Optimized build-and-deploy mode, the default
mode; this mode improves the performance of processing of automated or activation
tasks and improves the performance of build and deployment of cartridges with such
tasks.

Note:

The Legacy build-and-deploy mode is deprecated, but it is supported for
backward compatibility in OSM server versions before OSM 7.3.

Note:

XML Catalog support is required to be enabled for all cartridges as of release
OSM 7.0.3.

Chapter 13
Defining Build-and-Deploy Modes for Automation Plug-ins

13-2

Related Topics

About Build-and-Deploy Modes for Automation Plug-ins

Setting Automation Plug-in Build-and-Deploy Modes for Individual Cartridges

Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges

About Build-and-Deploy Modes for Automation Plug-ins

Note:

The information in this topic applies between the OSM 7.0.3 and 7.2.4.x
releases. Design Studio uses only the Legacy build-and-deploy mode for
releases before OSM 7.0.3, and uses only the Optimized build-and-deploy
mode starting in OSM 7.3.

Build-and-deploy modes for automation plug-ins affect how the plug-ins are processed
at run time. See "Defining Build-and-Deploy Modes for Automation Plug-ins" for
introductory information on build-and-deploy modes. A dispatch mode setting on the
OSM server controls the automation plug-in dispatch mode of the OSM system, which
is directly related to the build-and-deploy mode you configure in Design Studio. The
build-and-deploy mode configured in Design Studio controls building and deploying the
automation components required for Legacy mode or Optimized mode; it can also be
configured to build and deploy the automation components required for both modes.

• The Optimized mode enables the automation plug-ins to be deployed and
executed more efficiently (automation plug-ins can run in a common EAR file).

• The Legacy mode deploys and executes the automation plug-in in a manner
consistent with previous OSM releases (each automation plug-in runs in its own
EAR file).

• The mode entitled Both (Allow server preference to decide) indicates the
automation plug-in can run in either Optimized or Legacy mode (Design Studio
builds the cartridge with the automation components required for either mode).

If you build and deploy the automation components required for both modes, OSM
executes the automation plug-in at run time in the mode specified by the dispatch
mode setting on the OSM server. See the discussion on automation plug-in dispatch
modes in OSM Developer's Guide for information on how to define the dispatch mode
setting on the OSM server.

The following table summarizes the effective mode OSM uses at run time based on
how the automation plug-in build-and-deploy mode and the server dispatch mode are
set as of OSM 7.0.3:

Automation Plug-in Build-and-
Deploy Mode (set in Design
Studio)

OSM Server Dispatch
Mode

Effective Mode Used at
Run Time

Optimized Legacy Optimized

Optimized Internal Optimized

Chapter 13
Defining Build-and-Deploy Modes for Automation Plug-ins

13-3

Automation Plug-in Build-and-
Deploy Mode (set in Design
Studio)

OSM Server Dispatch
Mode

Effective Mode Used at
Run Time

Legacy Legacy Legacy

Legacy Internal Legacy

Both Legacy Legacy

Both Internal Optimized

You can set the automation plug-in build-and-deploy mode in two levels:

• Global preference: Set the mode for all cartridges in the same workspace by
setting a global preference. To specify a build-and-deploy mode for all cartridges in
the same workspace, see "Setting Automation Plug-in Build-and-Deploy Modes for
All Cartridges."

• Cartridge-level preference: Set the mode for individual cartridges by setting a
cartridge management variable. To specify a build-and-deploy mode for individual
cartridges, see "Setting Automation Plug-in Build-and-Deploy Modes for Individual
Cartridges."

Note:

The cartridge-level preference overrides the global preference.

Design Studio uses the following build-and-deploy modes when a cartridge is
deployed:

• If the Target Version field is to 7.3 or later, the Design Studio build-and-deploy
mode is set to Optimized and cannot be changed.

• If the Target Version field is set to an OSM release between OSM 7.0.3 and OSM
7.2.4; for example, set to 7.0.3, Design Studio uses the build-and-deploy mode
that you set for the individual cartridge (the default mode is Optimized) or the
mode you set as the global preference.

• If the Target Version field is set to 7.0.1 or below, the Design Studio build-and-
deploy mode is set to Legacy and cannot be changed.

Note:

Optimized mode is not available when using OSM server releases
7.0.2 or earlier. Legacy mode is not available when using OSM server
releases 7.3 or later.

Chapter 13
Defining Build-and-Deploy Modes for Automation Plug-ins

13-4

Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges

Note:

The information in this topic applies between the OSM 7.0.3 and 7.2.4.x
releases. Design Studio uses only the Legacy build-and-deploy mode for
releases before OSM 7.0.3, and uses only the Optimized build-and-deploy
mode starting in OSM 7.3.

You can set the build-and-deploy mode of automation plug-ins for all cartridges in the
same workspace as a global preference.

To set the automation plug-in build-and-deploy mode for all cartridges:

1. From the Window menu, select Preferences, then select Oracle Design Studio,
and then select Order and Service Management Preferences.

2. In the Build and Deploy Mode field, do one of the following:

• To build and deploy cartridges so that automation plug-ins are run in a
common EAR file (deploys and executes automation plug-ins more efficiently),
select Optimized.

• To build and deploy cartridges so that each automation plug-in is run in its own
EAR file (deploys and executes the automation plug-in in a manner consistent
with previous OSM releases), select Legacy.

• To build and deploy the automation components for both Optimized and
Legacy modes, select Both (Allow server preference to decide).

If you set this option, the automation plug-in can execute at run time in
either Optimized mode or Legacy mode because the automation components
required for both are built and deployed. In this case, OSM uses the
automation plug-in dispatch mode defined on the OSM server at run time.

Design Studio builds and deploys all cartridges with the mode you specify as a
global preference.

Note:

Cartridges for which you have a set a different build-and-deploy mode at
the cartridge level will build and deploy in that mode.

Note:

Oracle recommends using Optimized mode because this mode improves
the performance of building and deploying cartridges that include
automation plug-ins.

3. Click OK.

Chapter 13
Defining Build-and-Deploy Modes for Automation Plug-ins

13-5

Design Studio saves your deployment preferences and closes the Preferences
dialog box.

Related Topics

Defining Build-and-Deploy Modes for Automation Plug-ins

About Build-and-Deploy Modes for Automation Plug-ins

Setting Automation Plug-in Build-and-Deploy Modes for Individual Cartridges

Defining Order and Service Management General Preferences

Setting Automation Plug-in Build-and-Deploy Modes for Individual
Cartridges

Note:

The information in this topic applies between the OSM 7.0.3 and 7.2.4.x
releases. Design Studio uses only the Legacy build-and-deploy mode for
releases before OSM 7.0.3, and uses only the Optimized build-and-deploy
mode starting in OSM 7.3.

If your OSM server is a version between OSM 7.0.3 and 7.2.4.x, you can set the build-
and-deploy mode of automation plug-ins for each cartridge in your workspace. Setting
the build-and-deploy mode for an individual cartridge overrides the build-and-deploy
mode set as a global preference; that is, OSM uses the mode you set at the cartridge
level at run time. For OSM 7.3 and later, all cartridges use optimized mode.

To set automation plug-in build-and-deploy mode preferences for a specific cartridge in
your workspace:

1. From the Studio menu, select Show Design Perspective.

2. In the Studio Projects view, double-click the Project entity for which you want to set
the build-and-deploy mode preference.

The project opens in the Project editor.

3. Click the Cartridge Management Variables tab.

4. Add the BUILD_DEPLOY_MODE variable.

5. In the Default Value column, do one of the following:

• To build and deploy this cartridge so that automation plug-ins are run in a
common EAR file (deploys and executes automation plug-ins more efficiently),
enter optimized.

• To build and deploy this cartridge so that each automation plug-in is run in
its own EAR file (deploys and executes the automation plug-in in a manner
consistent with previous OSM releases), enter legacy.

• To build and deploy the automation components for both Optimized and
Legacy modes, enter both.

Chapter 13
Defining Build-and-Deploy Modes for Automation Plug-ins

13-6

If you set this option, OSM uses the automation plug-in dispatch mode defined
on the OSM server at run time.

6. Click Save.

Related Topics

Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges

Defining Build-and-Deploy Modes for Automation Plug-ins

About Build-and-Deploy Modes for Automation Plug-ins

Project Editor Cartridge Management Variables Tab

Testing OSM Cartridge Models
Design Studio enables you to make changes to OSM cartridges, deploy them to an
environment, and review the changes without leaving the Design Studio user interface.
Using the Submit Test feature, you can submit sample XML orders to run-time
environments for the purpose of reviewing the cartridge model behavior. Once you
have deployed the full cartridge to an environment, you can use the Optimize Deploy
feature in conjunction with Submit Test to model and test your cartridges efficiently.

When testing OSM cartridge models, see the following topics:

• About Submit Test

• Submitting Test Orders to Run-time Environments

About Submit Test
The Design Studio Submit Test feature enables you to submit a sample XML order to
a run-time environment for the purpose of testing your cartridge model. For example,
if you were creating recognition rules for an orchestration cartridge, you could submit
sample orders to ensure that the OSM server was properly recognizing the input
messages for each recognition rule and directing the order to the right cartridge.
Additionally, you could target the sample order to a specific version of a cartridge, test
OSM behaviors, and so forth.

When submitting sample orders to run-time environments, the root level of the sample
order XML document must be either the CreateOrder or the CreateOrderBySpec XML
API request. For example:

<?xml version="1.0" encoding="UTF-16"?>
<ord:CreateOrder xmlns:ord="http://xmlns.oracle.com/communications/
ordermanagement">
<zeb:order xmlns:zeb="http://www.example.org/zebra" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance">
 <zeb:sampleLine>
 <zeb:lineName>newPhoneLine</zeb:lineName>
 <zeb:class>potsService</zeb:class>
 </zeb:sampleLine>
</zeb:order>
</ord:CreateOrder>

You save all sample XML orders in a project samples directory, accessible from the
Package Explorer view.

Chapter 13
Testing OSM Cartridge Models

13-7

Submitting Test Orders to Run-time Environments
The Design Studio Submit Test feature enables you to submit a sample XML order to a
run-time environment for the purpose of testing your cartridge model.

To submit test orders to run-time environments:

1. From the Package Explorer view, copy a sample XML order into the project
samples directory.

2. Connect to an environment.

See "Testing Run-Time Environment Connectivity" for more information.

Note:

When connecting to the environment, ensure that the account that you
use to log-in is set up properly in WebLogic. To submit tests from
Design Studio, user accounts must be assigned to the OMS_client and
OMS_ws_api groups in WebLogic.

3. If necessary, deploy the full cartridge to the run-time environment.

See "Deploying Cartridge Projects" for more information.

4. From the Studio menu, select Show Design Perspective.

5. In the Studio Projects view, right-click a cartridge and select Submit Test.

If you have successfully connected to an environment, and your project contains a
valid sample order in the project samples directory, Design Studio displays a list
of environments and files available to submit.

6. Select an environment and order combination.

The Console view is displayed, indicating the status of the submitted order. If the
connection is successful, the Console view displays the OSM server response,
which includes the order ID, version number, the cartridge name, and so forth.
Design Studio opens a browser window in the editor area that points to the log-in
window for the environment.

Note:

For the browser window in the editor area of Design Studio to work with
OSM, you must configure Eclipse to use a supported external browser.
See "Defining Web Browser Preferences" for more information.

Chapter 13
Testing OSM Cartridge Models

13-8

Note:

Starting with OSM 7.2, order IDs are allocated in blocks. For OSM
running on a standalone database, there is no visible impact. However,
if OSM is running on an Oracle RAC database, Order IDs are assigned
from different blocks, one for each Oracle RAC instance. This means
that when orders are submitted, the Order IDs may not be sequential.

7. Log into the environment.

The web client displays a list of orders submitted to the environment.

8. Locate the table row that contains your sample order.

For example, you might locate the row using the order ID displayed in the Console
view.

9. Double-click the sample order to open the order and review the order data in the
web client tabs.

For example, if you were submitting a sample order for an orchestration cartridge,
you could review the information in the Summary tab, Data tab, Orchestration Plan
tab, and so forth.

For information about the fields in the Order Management web client, see OSM
Order Management Web Client User's Guide. For information about the fields in
the Task web client, see OSM Task Web Client User's Guide.

10. (Optional) Update the cartridge with additional changes, save the changes, and
use the optimize deploy feature to deploy only the cartridge metadata changes.

See "Deploying Cartridge Projects with Optimize Deploy" for more information.

11. (Optional) Connect to another environment to test the cartridge model in multiple
environments.

For each environment that you submit tests to, Design Studio opens a separate
browser window. See "Testing Run-Time Environment Connectivity" for more
information.

12. (Optional) Clear the environment connection information if you want to submit a
sample order as a different user.

From the Studio Projects view, right-click a cartridge and select Submit Test, then
select an environment, then select Clear Environment Credentials to clear the
environment connection information.

Managing Changes to Deployed Cartridges
You cannot deploy modified versions of existing deployed cartridges with the same
name and version - Design Studio always increments the version number by default.
However, if you have small changes to make that do not include changes to the order
template or data dictionary, you can override the existing cartridge.

For larger changes to a cartridge, including introducing new tasks, changing data
types, or adding new orders, you should deploy a new version of the cartridge.
Otherwise, you might encounter errors such as missing or extra nodes when running
orders.

Chapter 13
Managing Changes to Deployed Cartridges

13-9

If orders are originating in an upstream system, they won't automatically be routed to
the new cartridge. Upstream systems must be modified so that new orders specifically
target the new version of the cartridge.

OSM performance can be impacted if you have many versions of a cartridge deployed
at the same time. For example, you might experience slower Worklist response time.
Factors which contribute to possible performance issues when you have multiple
cartridge versions include the number of versions, the design complexity of your
cartridges including the number of tasks in your orders, the number of OSM users,
your hardware and so on.

Managing Orders for Multiple Cartridge Versions
In-progress orders for an existing cartridge are not impacted by the deployment of a
new version of that cartridge, nor are they automatically migrated to the new version
of the cartridge. For new orders to be created by default against the new version of
the cartridge, the Default option (in the Project editor Properties tab) for the cartridge
should be selected before it is deployed. Orders can be targeted to previous versions
of a cartridge by specifying the version numbers in the order. See the discussion of
the Project editor Properties Tab in the OSM Modeling Processes Online help for more
details.

It is possible to send a revision order from a newer version of a cartridge against an
in-flight order from an older version of the cartridge. The order will process only data
that was contained in the original cartridge metadata.

XMLIE provides scripts to migrate orders from one cartridge version to another. For
details, see the discussion on migrating orders in OSM System Administrator's Guide.

When an older cartridge version is no longer needed, consider removing it from OSM.
You may wish to back up completed orders associated with the cartridge before
undeploying it because the completed orders may be purged from the system.

To avoid purging orders from an old cartridge, you can create a different cartridge
version for modeling changes, then create and process new orders with the new
cartridge namespace and version. The old orders are processed with the old cartridge
version. You can also disable the creation tasks of the old cartridge to ensure that no
new orders are created with the old cartridge version.

Modifying Cartridges After Upgrading OSM Versions
If the OSM software is upgraded to a new version, all cartridges in use must be rebuilt
using the updated SDK and redeployed. See the discussion on Upgrading OSM in
OSM Installation Guide for details on upgrading cartridges when you upgrade to a new
version of OSM.

Studio Environment Editor
Use the Studio Environment editor to define the run-time environment connection
information, to define the Secure Socket Layer (SSL) keystore file location, and to
review and edit the cartridge and model variables defined for the cartridge.

When defining run-time environment connection information, see the following topics:

• Studio Environment Editor Connection Tab

Chapter 13
Studio Environment Editor

13-10

• Studio Environment Editor SSL Tab

• Studio Environment Editor Properties Tab

Studio Environment Editor Connection Tab
Use the Studio Environment editor Connection tab to define the connection
parameter necessary to connect to the run-time environment.

Field Use

Address Enter the WebLogic IP address (or the fully qualified domain
name if DNS is enabled) and port necessary to connect to the
OSM run-time environment.

During initial OSM installation, the OSM installer program
connects to a running Oracle WebLogic server to automatically
deploy the cartridge_management_ws.ear file, which contains
the Cartridge Management Web Service that enables you
to connect to OSM from Design Studio. In the Studio
Environment editor Address field, Design Studio displays
a default destination URL for this Oracle WebLogic server.
However, you must edit the IP address/server name and port
number to match your own server address configuration:

http://IPAddressOrQualifiedDomanName:port/
cartridge/wsapi

where

IPAddressOrQualifiedDomanName is the IP address or server
name of the Oracle WebLogic server that you connected to
during installation and port is the Oracle WebLogic server port
number configured to receive web requests.

Note: If you are deploying to a clustered environment, specify
the proxy server for IPAddressOrQualifiedDomanName

See OSM Installation Guide for more information about installing
OSM and connecting to Oracle WebLogic servers.

Related Topics

Testing Run-Time Environment Connectivity

Studio Environment Editor

Studio Environment Editor SSL Tab
Use the Studio Environment editor SSL tab to encrypt your cartridge data prior to
deployment.

Note:

Before you deploy cartridges from Design Studio using an SSL connection,
you must enable SSL in the WebLogic server to ensure that the Cartridge
Management Web Service accepts the SSL connection. See Design Studio
System Administrator's Guide for more information.

Chapter 13
Studio Environment Editor

13-11

Field Use

Keystore Identify the location of your keystore file. The keystore is a
file (encrypted with a password) that contains private keys and
trusted certificates.

Studio Environment Editor Properties Tab
Use the Studio Environment editor Properties tab to review and edit the model and
cartridge default variables defined for all of the cartridges in the workspace.

Column Use

Name Displays the name of the variable. Design Studio displays all
cartridge model and cartridge management variables that are
defined in the workspace.

Environment Value Displays the default value defined for the variable. You can select
this value to change the default value to an environment-specific
value. Default values are represented by blue diamond-shaped
icons.

Source Cartridge Displays the name of the cartridge from which Design Studio
has retrieved the variable and the default value. When a variable
is used in multiple cartridges, the name that appears in this
column is the name of the first cartridge in which Design Studio
encounters the variable.

Note: When defining default values for variables, employ the
same default value for a variable across all cartridges in a
workspace. If a variable defined in multiple cartridges does
not share the same variable value, a warning appears in the
Problems view.

Related Topics

Project Editor Model Variables Tab

Studio Environment Editor

Studio Environment Editor Order and Service Management Test
Submission URL Area

Use the Studio Environment Editor Order and Service Management Test Submission
URL Area in the Connection Information tab on the Studio Environment Editor to
specify URLs to submit test orders and to connect to the OSM Order Management
web client.

Field Use

Order Submission URL Use this to specify the URL for order submission if different from
the default URL specified in Address in the Connection area.

Source Cartridge Use this to specify the URL to log in to the Order Management
web client if different from the default Cluster/Server URL
specified in the Connection area.

Chapter 13
Studio Environment Editor

13-12

Related Topics

Testing Run-Time Environment Connectivity

Studio Environment Editor

Studio Environment Editor Connection Tab

Chapter 13
Studio Environment Editor

13-13

A
Automation and Compensation Examples

You need to create automation plug-ins to use the Oracle Communications Order and
Service Management (OSM) automation task and automated notification functionality.
For information about the code required for the automation plug-ins, refer to the
following topics:

• Predefined Automation Plug-ins

• Custom Java Automation Plug-ins

• Compensation XQuery Expressions

• Order Jeopardy Automation XQuery Plug-ins

Predefined Automation Plug-ins
The following topics provide automation plug-in examples for the predefined
automation plug-in implementations that support XQuery and XSLT automations:

• Message Example

• Automation Plug-in XQuery Examples

• Automation Plug-in XSLT Examples

• Automation Plug-in Examples for Events, Jeopardies, and Notifications

Message Example
The predefined automation plug-in examples presuppose the following sample order:

<?xml version="1.0" encoding="UTF-8"?>
<ws:CreateOrder xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
 <ProcessSalesOrderFulfillmentEBM xmlns="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/SalesOrder/V2" xmlns:sord="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/SalesOrder/V2" xmlns:aia="http://www.oracle.com/XSL/
Transform/java/oracle.apps.aia.core.xpath.AIAFunctions" xmlns:xref="http://
www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions">
 <corecom:EBMHeader xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/
Core/Common/V2">
 <corecom:EBMID>2d323736303332343736363930353735</corecom:EBMID>
 <corecom:EBMName>{http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2} ProcessSalesOrderFulfillmentEBM</corecom:EBMName>
 <corecom:EBOName>{http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2} SalesOrderEBO</corecom:EBOName>
 <corecom:CreationDateTime>2009-03-09T18:46:36-07:00</
corecom:CreationDateTime>
 <corecom:VerbCode>process</corecom:VerbCode>
 <corecom:MessageProcessingInstruction>
 <corecom:EnvironmentCode>PRODUCTION</corecom:EnvironmentCode>
 </corecom:MessageProcessingInstruction>
 <corecom:Sender>
 <!-- Information about the sender - for example, a Siebel CRM -->

A-1

 </corecom:Sender>
 <corecom:BusinessScope></corecom:BusinessScope>
 <corecom:EBMTracking></corecom:EBMTracking>
 </corecom:EBMHeader>
 <DataArea>
 <corecom:Process xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/
Core/Common/V2"/>
 <ProcessSalesOrderFulfillment>
 <corecom:Identification xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessComponentID schemeID="SALESORDER_ID"
schemeAgencyID="COMMON">34333939373132333239373135353138</
corecom:BusinessComponentID>
 <corecom:ID schemeID="SALESORDER_ID"
schemeAgencyID="SEBL_01">ScenarioA2</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="SALESORDER_ID"
schemeAgencyID="SEBL_01">88-2SGSG</corecom:ID>
 </corecom:ApplicationObjectKey>
 <corecom:Revision>
 <corecom:Number>1</corecom:Number>
 </corecom:Revision>
 </corecom:Identification>
 <OrderDateTime>2009-03-09T18:40:21Z</OrderDateTime>
 <RequestedDeliveryDateTime>2009-03-10T00:00:00Z</
RequestedDeliveryDateTime>
 <TypeCode>SALES ORDER</TypeCode>
 <FulfillmentPriorityCode>9</FulfillmentPriorityCode>
 <FulfillmentSuccessCode>DEFAULT</FulfillmentSuccessCode>
 <FulfillmentModeCode>DELIVER</FulfillmentModeCode>
 <SalesChannelCode/>
 <ProcessingNumber/>
 <ProcessingTypeCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:Code>OPEN</corecom:Code>
 <corecom:Description/>
 </corecom:Status>
 <corecom:BusinessUnitReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessUnitIdentification>
 <corecom:ID schemeID="ORGANIZATION_ID"
schemeAgencyID="SEBL_01">0-R9NH</corecom:ID>
 </corecom:BusinessUnitIdentification>
 </corecom:BusinessUnitReference>
 <corecom:CustomerPartyReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:CustomerPartyAccountIdentification>
 <corecom:BusinessComponentID
schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="COMMON">2d353537333130353233303536343833</
corecom:BusinessComponentID>
 <corecom:ID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="SEBL_01">88-2PB18</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="SEBL_01">88-2PB18</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:CustomerPartyAccountIdentification>
 <corecom:CustomerPartyAccountName>Adam,10000</
corecom:CustomerPartyAccountName>

Appendix A
Predefined Automation Plug-ins

A-2

 <corecom:CustomerPartyAccountContactIdentification>
 <corecom:BusinessComponentID
schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="COMMON">2d353130393634353031313333353938</
corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="SEBL_01">88-2MKA1</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:CustomerPartyAccountContactIdentification>
 <corecom:CustomerPartyAccountContactAddressCommunication>
 <corecom:AddressCommunication>
 <corecom:Address>
 <!-- Enter Address Nodes -->
 </corecom:Address>
 </corecom:AddressCommunication>
 </corecom:CustomerPartyAccountContactAddressCommunication>
 <corecom:CustomerPartyAccountTypeCode>RESIDENTIAL
</corecom:CustomerPartyAccountTypeCode>
 </corecom:CustomerPartyReference>
 <corecom:PriceListReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:PriceListIdentification>
 <corecom:ID>88-2D1YC</corecom:ID>
 </corecom:PriceListIdentification>
 </corecom:PriceListReference>
 <corecom:ShipToPartyReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:LocationReference>
 <corecom:Address>
 <!-- Enter Address Nodes -->
 </corecom:Address>
 </corecom:LocationReference>
 <corecom:CustomerPartyAccountIdentification>
 <corecom:BusinessComponentID
schemeID="CUSTOMERPARTY_ACCOUNTID" schemeAgencyID="COMMON"/>
 </corecom:CustomerPartyAccountIdentification>
 <corecom:CustomerPartyAccountContactIdentification>
 <corecom:BusinessComponentID
schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="COMMON">2d353130393634353031313333353938</
corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="SEBL_01">88-2MKA1</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:CustomerPartyAccountContactIdentification>
 </corecom:ShipToPartyReference>
 <corecom:ParentSalesOrderReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:SalesOrderIdentification>
 <corecom:BusinessComponentID schemeID="SALESORDER_ID"
schemeAgencyID="COMMON"/>
 </corecom:SalesOrderIdentification>
 </corecom:ParentSalesOrderReference>
 <corecom:ProjectReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ProjectIdentfication>
 <corecom:ID schemeID="PROJECT_ID" schemeAgencyID="SEBL_01"/>
 </corecom:ProjectIdentfication>
 </corecom:ProjectReference>

Appendix A
Predefined Automation Plug-ins

A-3

 <corecom:SalespersonPartyReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:PartyIdentification>
 <corecom:ID schemeID="SALESPERSON_PARTYID"
schemeAgencyID="SEBL_01">0-1</corecom:ID>
 </corecom:PartyIdentification>
 </corecom:SalespersonPartyReference>
 <!-- Enter order line items here -->
 </ProcessSalesOrderFulfillment>
 </DataArea>
 </ProcessSalesOrderFulfillmentEBM>
</ws:CreateOrder>

Automation Plug-in XQuery Examples
The following topics provide XQuery automation plug-in examples for automation
tasks:

• Internal XQuery Sender

• External XQuery Automator

• External XQuery Sender

• Internal XQuery Automator

Internal XQuery Sender
The Automated Task editor internal XQuery automator receives task data from OSM
and sends data to an external system. You can send a message to an external system
using whatever protocol that system requires, such as, Telnet, HTTP, CORBA, SOAP,
or web services.

The XQuery has the following characteristics:

• XQuery context in prolog: The input document for any automated task automation
plug-in is the order data defined in the Automation Task editor Task Data tab.
You can access this data by declaring the TaskContext OSM Java class. Always
declare this class along with the $context java binding. For example:

declare namespace context = "java:com.mslv.oms.automation.TaskContext";
...
declare variable $context external;

• Prolog: You must declare ScriptSenderContextInvocation in any internal XQuery
automator which extends ScriptReceiverContextInvocation. Always declare this
class along with the $automator java binding. For example:

declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptSenderCon
textInvocation";
...
declare variable $automator external;

Oracle recommends that you use the standard Apache log class. Always declare
this class along with the $log java binding.

declare namespace log = "java:org.apache.commons.logging.Log";
...
declare variable $log external;

Appendix A
Predefined Automation Plug-ins

A-4

You must use the TextMessage class for sending JMS based messages. Always
declare this class along with the $outboundMessage Java binding. You can use
JMS text based messages to send OSM Web Service messages to other OSM
systems, such as a service order from an OSM COM system to an OSM SOM
system.

declare namespace outboundMessage = "java:javax.jms.TextMessage";
...
declare variable $outboundMessage external;

Note:

If you need to support any other protocol for sending messages, you can
implement a custom Java automation plug-in for the protocol or import a
helper function implementation that supports the protocol.

• Body: The body for an internal XQuery sender can contain the following elements:

– Use outboundMessage to set up the standard WebLogic JMS message
properties for web services:

outboundMessage:setStringProperty($outboundMessage,
'_wls_mimehdrContent_Type', 'text/xml; charset="utf-8"'),

– Use outboundMessage to set up the OSM Web Service URI JMS message
property:

outboundMessage:setStringProperty($outboundMessage, 'URI', '/osm/wsapi'),

– You can optionally use outboundMessage with the XML API to populate
a JMS property value from order data. For example this code sets up an
Ora_OSM_COM_OrderId parameter that is populated with the OSM order ID:

outboundMessage:setStringProperty($outboundMessage,
'Ora_OSM_COM_OrderId', /oms:GetOrder.Response/oms:OrderID),

– You can optionally use outboundMessage to set the JMS Correlation ID for
the automation task before sending the message. This allows OSM to route
a return message with the same corresponding JMS property value to an
external XQuery automator on the same automation task as the original
sender automation plug-in. For example, the following code sets the JMS
correlation ID using the original OSM COM order:

outboundMessage:setJMSCorrelationID($outboundMessage, concat($order/
oms:_root/oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/
ebo:DataArea/ebo:ProcessSalesOrderFulfillment/corecom:Identification/
corecom:ID/text(),'-COM')),

If this code were applied to "Message Example," the return value would be a
concatenation of ScenarioA2 and -COM: ScenarioA2-COM.

Appendix A
Predefined Automation Plug-ins

A-5

Note:

Other correlation scenarios are possible. For example, you may
send a message from an automation task without expecting any
response to the same automation task. In this scenario, another
automation task further down in the process may be dedicated to
receiving the response message, in which case an automation plug-
in would be required that would set the correlation ID expected from
the return message for that automated task. See the chapter about
using automation in OSM Developer's Guide for more information
about asynchronous communication scenarios.

– Access to the task level order data (the task view) using the XML API
GetOrder.Response function call. For example, the following code provides
access to all order data passed into the task as a variable that is then used in
other variables to access different parts of the data:

let $order := /oms:GetOrder.Response
let $othervariable := $order/oms:_root/oms:orderid

– Any XQuery logic your plug-in requires, such as if-then or if-then-else
statements that evaluate based on one or more parameters within the
response message. For example, there could be a choice of two or more
messages that could be sent depending on the order data values, or you might
log a message.

– A completeTaskOnExit method statement that completes the plug-in and
transitions the task to the next task based on the status selected if the plug-
in is intended to end the task. Typically, an automated task would contain
an internal XQuery sender plug-in for sending a message and an external
XQuery receiver plug-in for receiving a message, but you can also create an
automation that only sends an order with another automation that receives the
order. This can be useful if the response message takes a long time to return.
If you are expecting the system to respond that you sent the message to, you
must configure the internal XQuery sender with a reply to queue that listens for
a message acknowledgement, whether the response is returned to an external
automator on the same automation task or on another automation task.

The following example provides the code for an XQuery that sends a message from an
OSM system in the COM role to an OSM system in the SOM role using the OSM Web
Service interface and assumes JMS communication over T3S.

declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptSenderContext
Invocation";
declare namespace context = "java:com.mslv.oms.automation.TaskContext";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace outboundMessage = "java:javax.jms.TextMessage";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace to="http://TechnicalOrder";
declare namespace provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
ProvisioningOrder/V1";
declare namespace corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/
V2";
declare namespace env="http://schemas.xmlsoap.org/soap/envelope/";
declare namespace cord="http://oracle.communications.c2a.model/internal/order";
declare namespace ebo="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/

Appendix A
Predefined Automation Plug-ins

A-6

SalesOrder/V2";

declare variable $automator external;
declare variable $context external;
declare variable $log external;
declare variable $outboundMessage external;

let $order := /oms:GetOrder.Response
let $technicalActions := $order/oms:_root/oms:TechnicalActions
let $ebm := $order/oms:_root/oms:messageXmlData
let $bi := $order/oms:_root/oms:CaptureInteractionResponse

return(
outboundMessage:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type',
'text/xml; charset="utf-8"'),
outboundMessage:setStringProperty($outboundMessage, 'URI', '/osm/wsapi'),
outboundMessage:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID),
outboundMessage:setJMSCorrelationID($outboundMessage, concat($order/oms:_root/
oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/ebo:DataArea/
ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/text(),'-
COM')),
log:info($log,concat('Sending Service Order for COM order: ', $order/
oms:OrderID)),
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security xmlns:wsse = "http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsu = "http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-4799946">
 <wsse:Username>demo</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0#PasswordText">passw0rd</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ord:CreateOrder>
 <ebo:ProcessProvisioningOrderEBM xmlns:ebo="http://
xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
<ebo:DataArea>
 <corecom:Process xmlns="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2" xmlns:aia="http://
www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.xpath.AIAFunctions"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1" xmlns:provord="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1"/>
 <provord:ProcessProvisioningOrder xmlns="http://
xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1"
xmlns:aia="http://www.oracle.com/XSL/Transform/java/
oracle.apps.aia.core.xpath.AIAFunctions" xmlns:xref="http://www.oracle.com/XSL/
Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1" xmlns:provord="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
 <corecom:SalesOrderReference>
 <corecom:SalesOrderIdentification>
 {$order/oms:_root/oms:ServiceOrder/
cord:Order/cord:CustomerDetails/cord:OrderNumber/corecom:Identification/*}

Appendix A
Predefined Automation Plug-ins

A-7

 </corecom:SalesOrderIdentification>
 </corecom:SalesOrderReference>

<provord:RequestedDeliveryDateTime>2010-07-16T08:24:38Z </
provord:RequestedDeliveryDateTime>
 <provord:TypeCode>SALES ORDER</provord:TypeCode>
 <provord:FulfillmentPriorityCode>5</
provord:FulfillmentPriorityCode>
 <provord:FulfillmentSuccessCode>DEFAULT </
provord:FulfillmentSuccessCode>
 <provord:FulfillmentModeCode>DELIVER</
provord:FulfillmentModeCode>
 <provord:ProcessingNumber/>
 <provord:ProcessingTypeCode/>
 <corecom:Status xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:BusinessUnitReference
xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessUnitIdentification>
 <corecom:ID schemeID="ORGANIZATION_ID"
schemeAgencyID="SEBL_01">0-R9NH</corecom:ID>
 </corecom:BusinessUnitIdentification>
 </corecom:BusinessUnitReference>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:CustomerParty/corecom:CustomerPartyReference}
 <corecom:ParentProvisioningOrderReference
xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ProvisioningOrderIdentification>
 <corecom:BusinessComponentID
schemeID="SALESORDER_ID" schemeAgencyID="COMMON"/>
 </corecom:ProvisioningOrderIdentification>
 </corecom:ParentProvisioningOrderReference>
 {
 for $x in $order/oms:_root/oms:ServiceOrder/
cord:Order/cord:ServiceOrderLine
 return
 <provord:ProvisioningOrderLine>
 <corecom:Identification xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessComponentID>{concat($x/
@id,'')} </corecom:BusinessComponentID>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID
schemeID="SALESORDER_LINEID" schemeAgencyID="SEBL_01">{concat($x/@id,'')}</
corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <provord:OrderQuantity>1</provord:OrderQuantity>
 <provord:ServiceActionCode>{$x/cord:Action/
text()} </provord:ServiceActionCode>
 <provord:ServicePointCode/>
 <corecom:Status xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:ServiceAddress xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">

Appendix A
Predefined Automation Plug-ins

A-8

 <corecom:Identification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON"
schemeID="CUSTOMERPARTY_ADDRESSID">2d323733323231313531313836313331</
corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID
schemeAgencyID="SEBL_01" schemeID="CUSTOMERPARTY_ADDRESSID">88-2KKNH</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <corecom:LineOne>{$x/cord:Address/
cord:LineOne/text()} </corecom:LineOne>
 <corecom:CityName>{$x/cord:Address/
cord:CityName/text()} </corecom:CityName>
 <corecom:StateName>{$x/cord:Address/
cord:StateName/text()} </corecom:StateName>
 <corecom:ProvinceName>{$x/cord:Address/
cord:ProvinceName/ text()}</corecom:ProvinceName>
 <corecom:CountryCode>{$x/cord:Address/
cord:CountryCode /text()}</corecom:CountryCode>
 <corecom:PostalCode>{$x/cord:Address/
cord:PostalCode /text()}</corecom:PostalCode>
 </corecom:ServiceAddress>
 <corecom:ItemReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ItemIdentification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON" schemeID="ITEM_ITEMID"/>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="ITEM_ITEMID"
schemeAgencyID="SEBL_01">{concat($x/cord:InstanceID/text(),'')}</corecom:ID>
 </corecom:ApplicationObjectKey>
 <corecom:AlternateObjectKey>
 <corecom:ContextID/>
 </corecom:AlternateObjectKey>
 <corecom:SupplierItemID/>
 </corecom:ItemIdentification>
 <corecom:Name>{concat($x/@name,'')}</
corecom:Name>
 <corecom:ClassificationCode
listID="PermittedTypeCode"></corecom:ClassificationCode>
 <corecom:ClassificationCode
listID="BillingProductTypeCode"/>
 <corecom:ClassificationCode
listID="FulfillmentItemCode">{concat($x/@name,'')}</corecom:ClassificationCode>
 <corecom:ServiceIndicator>false</
corecom:ServiceIndicator>
 <corecom:TypeCode>SERVICE</corecom:TypeCode>
 <corecom:Description/>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 {
 for $y in $x/cord:Attribute
 return
 <corecom:Specification>
 <corecom:ServiceActionCode> </
corecom:ServiceActionCode>
 <corecom:Name>{concat($y/
@name,'')} </corecom:Name>
 <corecom:DataTypeCode>Text</

Appendix A
Predefined Automation Plug-ins

A-9

corecom:DataTypeCode>
 <corecom:Value>{$y/cord:Value/
cord:value/text()} </corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>

<corecom:PrimaryClassificationCode>{concat($x/@name,'')} </
corecom:PrimaryClassificationCode>
 <corecom:ServiceInstanceIndicator>true </
corecom:ServiceInstanceIndicator>
 </corecom:ItemReference>

<provord:ProvisioningOrderLineSpecificationGroup>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 <corecom:Specification>

<corecom:Name>ParentSalesOrderLine</corecom:Name>
 <corecom:Value>{$x/
cord:primaryMapping/text()} </corecom:Value>
 </corecom:Specification>
 {
 for $z in $x/cord:secondaryMapping
 return
 <corecom:Specification>

<corecom:Name>ParentSalesOrderLine</corecom:Name>
 <corecom:Value>{$z/text()}</
corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>
 </
provord:ProvisioningOrderLineSpecificationGroup>
 </provord:ProvisioningOrderLine>
 }
 </provord:ProcessProvisioningOrder>
 </ebo:DataArea>
 </ebo:ProcessProvisioningOrderEBM>
 </ord:CreateOrder>
 </soapenv:Body>
</soapenv:Envelope>

External XQuery Automator
The Automated Task editor external XQuery automator receives task data from an
external system and optionally updates OSM order data. The XQuery has the following
characteristics:

• XQuery context in prolog: The input document for any automated task automation
plug-in is the order data defined in the Automation Task editor Task Data tab.
You can access this data by declaring the TaskContext OSM Java class. Always
declare this class along with the $context java binding. For example:

declare namespace context = "java:com.mslv.oms.automation.TaskContext";
...
declare variable $context external;

Appendix A
Predefined Automation Plug-ins

A-10

• Prolog: You must declare ScriptReceiverContextInvocation in any external XQuery
automator. Typically, you can use the getOrderAsDOM method to receive external
messages and the setUpdateOrder method to update the order data. Always
declare this class along with the $automator java binding. For example:

declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptReceiverC
ontextInvocation";
...
declare variable $automator external;

Oracle recommends that you use the standard Apache log class. Always declare
this class along with the $log java binding.

declare namespace log = "java:org.apache.commons.logging.Log";
...
declare variable $log external;

Another necessary declaration includes the xmlapi namespace, that you can use
with the ScriptReceiverContextInvocation getOrderAsDom method to retrieve the
order data for the task as a variable. This task data variable can be used in an
OrderDataUpdate to update the order data with the data values received in the
response message, if an update to the order data is required. For example:

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
let $taskData := fn:root(automator:getOrderAsDOM($automator))/
oms:GetOrder.Response

• Body: The body for an external XQuery automator can contain the following
elements:

– Any XQuery logic your plug-in requires, such as if-then or if-then-else
statements that evaluate based on one or more parameters within the
response message, or you might log a message.

– A setUpdateOrder method statement that indicates whether there is an order
data update. This method should be identical to what you selected in the
Design Studio automation plug-in Properties View XQuery Tab Update Order
check box.

– A completeTaskOnExit method statement that completes the plug-in and
transitions the task to the next task based on the status selected, if the plug-in
is intended to end the task. Since there can be multiple plug-ins within a task,
you would only need this method in the last plug-in listed. For example, the
Failed status might transition to a fallout task, and the Succeed status may
transition to the next task in the process.

– An OrderDataUpdate statement that updates the order data based on the
information returned in the response. See "Using OrderDataUpdate Elements
to Pass Order Modification Data" for more information about structuring order
update code.

– Indexing: Order data in OSM often includes multiple data instances. For
example, an orchestration order must include the ControlData/OrderItem
and ControlData/Functions multi-instance nodes. Multi-instance nodes in
solution cartridges are possible for any data element where the maximum
cardinality of the node is greater than 1. When updating a multi-instance
data node using automations use the node index to reference the specific
node instance you want to update. The node index is available in the XML
API GetOrder.Response. See OSM Developer's Guide for an example of a
GetOrder response message with indexing.

Appendix A
Predefined Automation Plug-ins

A-11

The following example triggers different order data updates based on the status
message returned from an external system. In this case, the external system is
another OSM instance running in the SOM role:

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptReceiverConte
xtInvocation";
declare namespace context = "java:com.mslv.oms.automation.TaskContext";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace su="http://StatusUpdate";
declare namespace so="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2";
declare namespace corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/
V2";

declare variable $automator external;
declare variable $context external;
declare variable $log external;

let $response := fn:root()/su:StatusUpdate (: fn:root(.) :)
let $items := fn:root()/su:StatusUpdate/su:OrderItem

let $taskData := fn:root(automator:getOrderAsDOM($automator))/
oms:GetOrder.Response
let $component := if (fn:exists($taskData/oms:_root/oms:ControlData/
oms:Functions/*/oms:componentKey)) then $taskData/oms:_root/oms:ControlData/
oms:Functions/*[fn:position()=1] else ()

return (
if($response/su:status/text()='SOM_Completed') then (
 log:info($log,concat('Received SOM Status Update: SOM_Completed;
', $response/su:status/text())),
 automator:setUpdateOrder($automator,"true"),
 context:completeTaskOnExit($context,"success"),
 (
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/
2002/10/25">
 {
 for $item in $items
 for $parent in $item/su:ParentLineId
 for $orderComponentItem in $component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/
corecom:ApplicationObjectKey/corecom:ID/text() = $parent/text()]
 return (
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}">
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
)

 }
 </OrderDataUpdate>
)
) else if($response/su:status/text()='SOM_Failed') then (

 log:info($log,concat('Received SOM Status Update: SOM_Failed; ', $response/
su:status/text())),
 automator:setUpdateOrder($automator,"true"),
 context:completeTaskOnExit($context,"failure"),

Appendix A
Predefined Automation Plug-ins

A-12

 (
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/
2002/10/25">
 {
 for $item in $items
 for $parent in $item/su:ParentLineId
 for $orderComponentItem in $component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/
corecom:ApplicationObjectKey/corecom:ID/text() = $parent/text()]
 return (
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}">
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
)

 }
 </OrderDataUpdate>
)
) else (
 log:info($log,concat('Received SOM Status Update: SOM_InProgress or
SOM_Canceled; ', $response/su:status/text())),
 automator:setUpdateOrder($automator,"true"),
 (
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/
2002/10/25">
 {
 for $item in $items
 for $parent in $item/su:ParentLineId
 for $orderComponentItem in $component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/
corecom:ApplicationObjectKey/corecom:ID/text() = $parent/text()]
 return (
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}">
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
)

 }
 </OrderDataUpdate>
)
)
)

External XQuery Sender
The Automated Task editor external XQuery sender receives task data from an
external system, then sends the data (after possibly transforming the data) to another
external system or even returns the data back to the original external system. This
XQuery combines characteristics of external XQuery automators and internal XQuery
senders. See "External XQuery Automator" and "Internal XQuery Sender " for more
information.

Appendix A
Predefined Automation Plug-ins

A-13

Note:

You must declare ScriptSenderContextInvocation in any external XQuery
sender which inherits the ScriptReceiverContextInvocation class and
methods used in internal or external automators.

Internal XQuery Automator
The Automated Task editor internal XQuery automator receives task data from
OSM, then processes the data. For example, such an automation might perform
computational actions on the data or other similar logic. This XQuery combines
characteristics of external XQuery automators and internal XQuery senders. See
"External XQuery Automator" and "Internal XQuery Sender " for more information.

Note:

You must declare ScriptReceiverContextInvocation class in an internal
XQuery automator.

Automation Plug-in XSLT Examples
The following topics provide XSLT automation plug-in examples for automation tasks.

• Internal XSLT Sender

• External XSLT Automator

• External XSLT Sender

• Internal XSLT Sender

Internal XSLT Sender
The Automated Task editor internal XSLT automator receives task data from OSM and
sends data to an external system. You can send a message to an external system
using whatever protocol that system requires, such as, Telnet, HTTP, CORBA, SOAP,
or web services.

The XSLT has the following characteristics:

• XSLT context: The input document for any automated task automation plug-in
is the order data defined in the Automation Task editor Task Data tab. You can
access this data by declaring the TaskContext OSM Java class. Always declare
this class along with the context java variable. For example:

xmlns:context="java:com.mslv.oms.automation.TaskContext"
...
<xsl:param name="context"/>

• Initial namespace declarations: You must declare ScriptSenderContextInvocation
in any internal XSLT automator which extends ScriptReceiverContextInvocation.
Always declare this class along with the automator java variable. For example:

Appendix A
Predefined Automation Plug-ins

A-14

xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin
.ScriptSenderContextInvocation"
...
<xsl:param name="automator"/>

Oracle recommends that you use the standard Apache log class. Always declare
this class along with the log java variable.

xmlns:log="java:org.apache.commons.logging.Log"
...
<xsl:param name="log"/>

You must use the TextMessage class for sending JMS based messages. Always
declare this class along with the outboundMessage Java variable. You can use
JMS text based messages to send OSM Web Service messages to other OSM
systems, such as a service order from an OSM COM system to an OSM SOM
system.

xmlns:outboundMessage="java:javax.jms.TextMessage"
...
<xsl:param name="outboundMessage"/>

Note:

If you need to support any other protocol for sending messages, you can
implement a custom Java automation plug-in for the protocol or import a
helper function implementation that supports the protocol.

• Body: The body for an internal XSLT sender can contain the following elements:

– Use outboundMessage to set up the standard WebLogic JMS message
properties for web services:

<xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage,
'_wls_mimehdrContent_Type', 'text/xml; charset="utf-8"')"/>

– Use outboundMessage to set up the OSM Web Service URI JMS message
property:

<xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'URI', '/osm/wsapi')"/>

– You can optionally use outboundMessage with the XML API to populate
a JMS property value from order data. For example this code sets up an
Ora_OSM_COM_OrderId parameter that is populated with the OSM order ID:

<xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID)"/>

– You can optionally use outboundMessage to set the JMS Correlation ID for
the automation task before sending the message. This allows OSM to route
a return message with the same corresponding JMS property value to an
external XQuery automator on the same automation task as the original
sender automation plug-in. For example, the following code sets the JMS
correlation ID using the original OSM COM order:

<xsl:variable name="void"
select="java:setJMSCorrelationID($outboundMessage, concat($order/

Appendix A
Predefined Automation Plug-ins

A-15

oms:_root/oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/
ebo:DataArea/ebo:ProcessSalesOrderFulfillment/corecom:Identification/
corecom:ID/text(),'-COM'))"/>

If this code were applied to "Message Example", the return value would be a
concatenation of ScenarioA2 and -COM: ScenarioA2-COM.

Note:

Other correlation scenarios are possible. For example, you may
send a message from automation task without expecting any
response to the same automation task. In this scenario, another
automation task further down in the process may be dedicated to
receiving the response message, in which case an automation plug-
in would be required that would set the correlation ID expected from
the return message for that automated task. See the chapter about
using automation in OSM Developer's Guide for more information
about asynchronous communication scenarios.

– Access to the task level order data (the task view) using the XML API
GetOrder.Response function call. For example, the following code provides
access to all order data passed into the task as a variable that is then used in
other variables to access different parts of the data:

 <xsl:template match="/">
 <xsl:variable name="order" select="oms:GetOrder.Response"/>
 <xsl:variable name="othervariable" select="$order/oms:_root/
oms:orderid"/>

– Any XSLT logic your plug-in requires, such as if-then or if-then-else statements
that evaluate based on one or more parameters within the response message.
For example, there could be a choice of two or more messages that could be
sent depending on the order data values, or you might log a message.

– A completeTaskOnExit method statement that completes the plug-in and
transitions the task to the next task based on the status selected if the plug-
in is intended to end the task. Typically, an automated task would contain
an internal XSLT sender plug-in for sending a message and an external
XSLT receiver plug-in for receiving a message, but you can also create an
automation that only sends an order with another automation that receives the
order. This can be useful if the response message takes a long time to return.
If you are expecting the system to respond that you sent the message to, you
must configure the internal XSLT sender with a reply to queue that listens for
a message acknowledgement, whether the response is returned to an external
automator on the same automation task or on another automation task.

The following example provides the code for an XSLT that sends a message from an
OSM system in the COM role to an OSM system in the SOM role using the OSM Web
Service interface and assumes JMS communication over T3S.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns="http://www.metasolv.com/OMS/OrderDataUpdate"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="http://xml.apache.org/xslt/java"
 xmlns:xalan="http://xml.apache.org/xslt"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.Scr

Appendix A
Predefined Automation Plug-ins

A-16

iptSenderContextInvocation"
 xmlns:context="java:com.mslv.oms.automation.TaskContext"
 xmlns:log="java:org.apache.commons.logging.Log"
 xmlns:outboundMessage="java:javax.jms.TextMessage"
 xmlns:to="http://TechnicalOrder"
 xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
ProvisioningOrder/V1"
 xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ebo="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 exclude-result-prefixes="xsl java xalan oms com ser soapenv xsi"
 xmlns:fn="http://www.w3.org/2005/02/xpath-functions">

 <!-- * -->
 <xsl:param name="automator"/>
 <xsl:param name="log"/>
 <xsl:param name="context"/>
 <xsl:param name="outboundMessage"/>

 <!-- * -->

 <xsl:output method="xml" indent="yes" omit-xml-declaration="no" xalan:indent-
amount="5"/>
 <xsl:template match="/">
 <xsl:variable name="order" select="oms:GetOrder.Response"/>
 <xsl:variable name="technicalActions" select="$order/oms:_root/
oms:TechnicalActions"/>
 <xsl:variable name="ebm" select="$order/oms:_root/oms:messageXmlData"/>
 <xsl:variable name="bi" select="$order/oms:_root/
oms:CaptureInteractionResponse"/>
 <xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type',
'text/xml; charset="utf-8"')"/>
 <xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'URI', '/osm/wsapi')"/>
 <xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID)"/>
 <xsl:variable name="void"
select="java:setJMSCorrelationID($outboundMessage, concat($order/oms:_root/
oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/ebo:DataArea/
ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/text(),'-
COM'))"/>
 <xsl:variable name="log" select=java:info($log,concat('Sending Service
Order for COM order: ', $order/oms:OrderID))"/>
 <xsl:call-template name="sendSomOrder"/>
 </xsl:template>
 <!-- ==================================
 Create the SOAP message for the sendSomOrder call
 ==================================== -->
 <xsl:template name="sendSomOrder">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security xmlns:wsse = "http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsu = "http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-4799946">
 <wsse:Username>demo</wsse:Username>

Appendix A
Predefined Automation Plug-ins

A-17

 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0#PasswordText">passw0rd</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ord:CreateOrder>
 <ebo:ProcessProvisioningOrderEBM xmlns:ebo="http://
xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
<ebo:DataArea>
 <corecom:Process xmlns="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2" xmlns:aia="http://
www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.xpath.AIAFunctions"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1" xmlns:provord="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1"/>
 <provord:ProcessProvisioningOrder xmlns="http://
xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1"
xmlns:aia="http://www.oracle.com/XSL/Transform/java/
oracle.apps.aia.core.xpath.AIAFunctions" xmlns:xref="http://www.oracle.com/XSL/
Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions"
xmlns:oms="urn:com:metasolv:oms:xmlapi:1" xmlns:provord="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
 <corecom:SalesOrderReference>
 <corecom:SalesOrderIdentification>
 {$order/oms:_root/oms:ServiceOrder/
cord:Order/cord:CustomerDetails/cord:OrderNumber/corecom:Identification/*}
 </corecom:SalesOrderIdentification>
 </corecom:SalesOrderReference>

<provord:RequestedDeliveryDateTime>2010-07-16T08:24:38Z </
provord:RequestedDeliveryDateTime>
 <provord:TypeCode>SALES ORDER</provord:TypeCode>
 <provord:FulfillmentPriorityCode>5</
provord:FulfillmentPriorityCode>
 <provord:FulfillmentSuccessCode>DEFAULT </
provord:FulfillmentSuccessCode>
 <provord:FulfillmentModeCode>DELIVER</
provord:FulfillmentModeCode>
 <provord:ProcessingNumber/>
 <provord:ProcessingTypeCode/>
 <corecom:Status xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:BusinessUnitReference
xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessUnitIdentification>
 <corecom:ID schemeID="ORGANIZATION_ID"
schemeAgencyID="SEBL_01">0-R9NH</corecom:ID>
 </corecom:BusinessUnitIdentification>
 </corecom:BusinessUnitReference>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:CustomerParty/corecom:CustomerPartyReference}
 <corecom:ParentProvisioningOrderReference
xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ProvisioningOrderIdentification>
 <corecom:BusinessComponentID
schemeID="SALESORDER_ID" schemeAgencyID="COMMON"/>

Appendix A
Predefined Automation Plug-ins

A-18

 </corecom:ProvisioningOrderIdentification>
 </corecom:ParentProvisioningOrderReference>
 {
 for $x in $order/oms:_root/oms:ServiceOrder/
cord:Order/cord:ServiceOrderLine
 return
 <provord:ProvisioningOrderLine>
 <corecom:Identification xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessComponentID>{concat($x/
@id,'')} </corecom:BusinessComponentID>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID
schemeID="SALESORDER_LINEID" schemeAgencyID="SEBL_01">{concat($x/@id,'')}</
corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <provord:OrderQuantity>1</provord:OrderQuantity>
 <provord:ServiceActionCode>{$x/cord:Action/
text()} </provord:ServiceActionCode>
 <provord:ServicePointCode/>
 <corecom:Status xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:ServiceAddress xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:Identification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON"
schemeID="CUSTOMERPARTY_ADDRESSID">2d323733323231313531313836313331</
corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID
schemeAgencyID="SEBL_01" schemeID="CUSTOMERPARTY_ADDRESSID">88-2KKNH</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <corecom:LineOne>{$x/cord:Address/
cord:LineOne/text()} </corecom:LineOne>
 <corecom:CityName>{$x/cord:Address/
cord:CityName/text()} </corecom:CityName>
 <corecom:StateName>{$x/cord:Address/
cord:StateName/text()} </corecom:StateName>
 <corecom:ProvinceName>{$x/cord:Address/
cord:ProvinceName/ text()}</corecom:ProvinceName>
 <corecom:CountryCode>{$x/cord:Address/
cord:CountryCode /text()}</corecom:CountryCode>
 <corecom:PostalCode>{$x/cord:Address/
cord:PostalCode /text()}</corecom:PostalCode>
 </corecom:ServiceAddress>
 <corecom:ItemReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ItemIdentification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON" schemeID="ITEM_ITEMID"/>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="ITEM_ITEMID"
schemeAgencyID="SEBL_01">{concat($x/cord:InstanceID/text(),'')}</corecom:ID>
 </corecom:ApplicationObjectKey>

Appendix A
Predefined Automation Plug-ins

A-19

 <corecom:AlternateObjectKey>
 <corecom:ContextID/>
 </corecom:AlternateObjectKey>
 <corecom:SupplierItemID/>
 </corecom:ItemIdentification>
 <corecom:Name>{concat($x/@name,'')}</
corecom:Name>
 <corecom:ClassificationCode
listID="PermittedTypeCode"></corecom:ClassificationCode>
 <corecom:ClassificationCode
listID="BillingProductTypeCode"/>
 <corecom:ClassificationCode
listID="FulfillmentItemCode">{concat($x/@name,'')}</corecom:ClassificationCode>
 <corecom:ServiceIndicator>false</
corecom:ServiceIndicator>
 <corecom:TypeCode>SERVICE</corecom:TypeCode>
 <corecom:Description/>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 {
 for $y in $x/cord:Attribute
 return
 <corecom:Specification>
 <corecom:ServiceActionCode> </
corecom:ServiceActionCode>
 <corecom:Name>{concat($y/
@name,'')} </corecom:Name>
 <corecom:DataTypeCode>Text</
corecom:DataTypeCode>
 <corecom:Value>{$y/cord:Value/
cord:value/text()} </corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>

<corecom:PrimaryClassificationCode>{concat($x/@name,'')} </
corecom:PrimaryClassificationCode>
 <corecom:ServiceInstanceIndicator>true </
corecom:ServiceInstanceIndicator>
 </corecom:ItemReference>

<provord:ProvisioningOrderLineSpecificationGroup>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 <corecom:Specification>

<corecom:Name>ParentSalesOrderLine</corecom:Name>
 <corecom:Value>{$x/
cord:primaryMapping/text()} </corecom:Value>
 </corecom:Specification>
 {
 for $z in $x/cord:secondaryMapping
 return
 <corecom:Specification>

<corecom:Name>ParentSalesOrderLine</corecom:Name>
 <corecom:Value>{$z/text()}</
corecom:Value>
 </corecom:Specification>

Appendix A
Predefined Automation Plug-ins

A-20

 }
 </corecom:SpecificationGroup>
 </
provord:ProvisioningOrderLineSpecificationGroup>
 </provord:ProvisioningOrderLine>
 }
 </provord:ProcessProvisioningOrder>
 </ebo:DataArea>
 </ebo:ProcessProvisioningOrderEBM>
 </ord:CreateOrder>
 </soapenv:Body>
</soapenv:Envelope>
</xsl:template>
 <!-- * -->
 <xsl:template match="* | @* | text()">
 <!-- do nothing -->
 <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

External XSLT Automator
The Automated Task editor external XSLT automator receives task data from an
external system and optionally updates OSM order data. The XSLT has the following
characteristics:

• XSLT context in prolog: The input document for any automated task automation
plug-in is the order data defined in the Automation Task editor Task Data tab.
You can access this data by declaring the TaskContext OSM Java class. Always
declare this class along with the context java binding. For example:

xmlns:context="java:com.mslv.oms.automation.TaskContext"
...
<xsl:param name="context"/>

• Prolog: You must declare ScriptReceiverContextInvocation in any external XQuery
automator. Typically, you can use the getOrderAsDOM method to receive external
messages and the setUpdateOrder method to update the order data. Always
declare this class along with the automator java binding. For example:

xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin
.ScriptReceiverContextInvocation"
...
<xsl:param name="automator"/>

Oracle recommends that you use the standard Apache log class. Always declare
this class along with the $log java binding.

xmlns:log="java:org.apache.commons.logging.Log"
...
<xsl:param name="log"/>

Another necessary declaration includes the xmlapi namespace, that you can use
with the ScriptReceiverContextInvocation getOrderAsDom method to retrieve the
order data for the task as a variable. This task data variable can be used in an
OrderDataUpdate to update the order data with the data values received in the
response message, if an update to the order data is required. For example:

Appendix A
Predefined Automation Plug-ins

A-21

xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
<xsl:variable name="taskData"
select="fn:root(java:getOrderAsDOM($automator))/oms:GetOrder.Response"/>

• Body: The body for an external XSLT automator can contain the following
elements:

– Any XSLT logic your plug-in requires, such as if-then or if-then-else statements
that evaluate based on one or more parameters within the response message,
or you might log a message.

– A setUpdateOrder method statement that indicates whether there is an order
data update. This method should be identical to what you selected in the
Design Studio automation plug-in Properties View XSLT Tab Update Order
check box.

– A completeTaskOnExit method statement that completes the plug-in and
transitions the task to the next task based on the status selected, if the plug-in
is intended to end the task. Since there can be multiple plug-ins within a task,
you would only need this method in the last plug-in listed. For example, the
Failed status might transition to a fallout task, and the Succeed status may
transition to the next task in the process.

– An OrderDataUpdate statement that updates the order data based on the
information returned in the response. See "Using OrderDataUpdate Elements
to Pass Order Modification Data" for more information about structuring order
update code.

– Indexing: Order data in OSM often includes multiple data instances. For
example, an orchestration order must include the ControlData/OrderItem
and ControlData/Functions multi-instance nodes. Multi-instance nodes in
solution cartridges are possible for any data element where the maximum
cardinality of the node is greater than 1. When updating a multi-instance
data node using automations use the node index to reference the specific
node instance you want to update. The node index is available in the XML
API GetOrder.Response. See OSM Developer's Guide for an example of a
GetOrder response message with indexing.

The following example triggers different order data updates based on the status
message returned from an external system. In this case, the external system is
another OSM instance running in the SOM role:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns="http://www.metasolv.com/OMS/
OrderDataUpdate"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="http://xml.apache.org/xslt/java"
 xmlns:xalan="http://xml.apache.org/xslt"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1"

xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.Scr
iptReceiverContextInvocation"
 xmlns:context="java:com.mslv.oms.automation.TaskContext"
 xmlns:log="java:org.apache.commons.logging.Log"
 xmlns:su="http://StatusUpdate"
 xmlns:so="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2"
 xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 exclude-result-prefixes="xsl java xalan oms soapenv xsi">

 <!-- * -->

Appendix A
Predefined Automation Plug-ins

A-22

 <xsl:param name="automator"/>
 <xsl:param name="log"/>
 <xsl:param name="context"/>

 <!-- * -->
 <xsl:output method="xml" indent="yes" omit-xml-declaration="no" xalan:indent-
amount="5"/>

 <xsl:template match="/">
 <xsl:variable name="taskData"
select="fn:root(java:getOrderAsDOM($automator))/oms:GetOrder.Response"/>
 <xsl:variable name="response" select="fn:root()/su:StatusUpdate (:
fn:root(.) :)"/>
 <xsl:variable name="items" select="fn:root()/su:StatusUpdate/su:OrderItem"/>
 <xsl:variable name="component" select="if (fn:exists($taskData/oms:_root/
oms:ControlData/oms:Functions/*/oms:componentKey)) then $taskData/oms:_root/
oms:ControlData/oms:Functions/*[fn:position()=1] else ()"/>
 <xsl:apply-templates/>
</xsl:template>

<!-- Match the status SOM_Complete -->
 <xsl:template match="$response[su:status/text()='SOM_Completed']">
 <xsl:variable name="log" select="java:info($log,concat('Received SOM Status
Update: SOM_Completed; ', $response/su:status/text()))"/>
 <xsl:variable name="automator" select="java:setUpdateOrder($automator,
true())"/>
 <xsl:variable name="context" select="java:completeTaskOnExit($context,
success())"/>
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/
2002/10/25">
 <xsl:for-each select="su:ParentLineId">
 <xsl:variable name="parent" select="."/>
 <xsl:for-each select="$component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/
corecom:ApplicationObjectKey/corecom:ID/text() = $parent/text()]">
 <xsl:variable name="index" select="@index"/>
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}>
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
 </xsl:for-each>
 </xsl:for-each>
 </OrderDataUpdate>
 </xsl:template>

<!-- Match the status SOM_Failed -->
 <xsl:template match="$response[su:status/text()='SOM_Failed']">
 <xsl:variable name="log" select="java:info($log,concat('Received SOM Status
Update: SOM_Failed; ', $response/su:status/text()))"/>
 <xsl:variable name="automator" select="java:setUpdateOrder($automator,
true())"/>
 <xsl:variable name="context" select="java:completeTaskOnExit($context,
success())"/>
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/
2002/10/25">
 <xsl:for-each select="su:ParentLineId">
 <xsl:variable name="parent" select="."/>
 <xsl:for-each select="$component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/
corecom:ApplicationObjectKey/corecom:ID/text() = $parent/text()]">

Appendix A
Predefined Automation Plug-ins

A-23

 <xsl:variable name="index" select="@index"/>
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}>
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
 </xsl:for-each>
 </xsl:for-each>
 /OrderDataUpdate>
 </xsl:template>

 <xsl:template match="$response[su:status/text()='']">
 <xsl:variable name="log" select="java:info($log,concat('Received SOM Status
Update: SOM_InProgress or SOM_Canceled; ', $response/su:status/text()))"/>
 <xsl:variable name="automator" select="java:setUpdateOrder($automator,
false())"/>
 <xsl:variable name="context" select="java:completeTaskOnExit($context,
success())"/>
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/
2002/10/25">
 <xsl:for-each select="su:ParentLineId">
 <xsl:variable name="parent" select="."/>
 <xsl:for-each select="$component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/
corecom:ApplicationObjectKey/corecom:ID/text() = $parent/text()]">
 <xsl:variable name="index" select="@index"/>
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}>
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
 </xsl:for-each>
 </xsl:for-each>
 </OrderDataUpdate>
 </xsl:template>

<!-- * -->
 <xsl:template match="* | @* | text()">
 <!-- do nothing -->
 <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

External XSLT Sender
The Automated Task editor external XSLT sender receives task data from an external
system, then sends the data (after possibly transforming the data) to another external
system or even returns the data back to the original external system. This XSLT
combines characteristics of external XSLT automators and internal XSLT senders. See
"External XSLT Automator" and "Internal XSLT Sender " for more information.

Note:

You must declare ScriptSenderContextInvocation in any external XSLT
sender which inherits the ScriptReceiverContextInvocation class and
methods used in internal or external automators.

Appendix A
Predefined Automation Plug-ins

A-24

Internal XSLT Automator
The Automated Task editor internal XSLT automator receives task data from
OSM, then processes the data. For example, such an automation might perform
computational actions on the data or other similar logic. This XSLT combines
characteristics of external XSLT automators and internal XSLT senders. See "External
XSLT Automator" and "Internal XSLT Sender " for more information.

Note:

You must declare ScriptReceiverContextInvocation class in an internal XSLT
automator.

Automation Plug-in Examples for Events, Jeopardies, and Notifications
The following topics provide XQuery automation plug-in examples for:

• Event Automators

• Jeopardy Automators

• Jeopardy Automators

Event Automators
An event automation plug-in can be triggered when an order or a task transitions
into a defined milestone. The automation can be any internal XQuery, XSLT, or
custom automation since the milestone event, by definition, can only be triggered
by milestones happening within an order or a task. For more information about the
characteristics for these automations, see "Automation Plug-in XQuery Examples,"
"Automation Plug-in XSLT Examples," and "Custom Java Automation Plug-ins."

Note:

For an event automation plug-in you must declare the
OrderNotificationContext instead of TaskContext. For example:

declare namespace context =
"java:com.mslv.oms.automation.OrderNotificationContext";

The following example is an internal sender automation plug-in that uses methods
available to the OrderNotificationContext class to get milestone data from the order
and sends an notification message to an external system. Because this sender
does not expect a response message (a fire-and-forget message), you must use
the OrderNotificationContext class ackNotificationOnExit method to clear the JMS
correlation ID for the notification. Also, events do not transition tasks, so you must
not specify completeTaskOnExit in a notification.

declare namespace saxon="http://saxon.sf.net/";
declare namespace xsl="http://www.w3.org/1999/XSL/Transform";

Appendix A
Predefined Automation Plug-ins

A-25

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace outboundMessage = "java:javax.jms.TextMessage";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model";
declare namespace context =
"java:com.mslv.oms.automation.OrderNotificationContext";

declare variable $context external;
declare variable $log external;
declare variable $outboundMessage external;

let $taskData := fn:root(.)/oms:GetOrder.Response
let $correlationId := $taskData/oms:_root/oms:Id/text()
let $controlDataArea := if (fn:exists($taskData/oms:_root/oms:ControlData))
 then $taskData/oms:_root/oms:ControlData
 else ()

return
(
log:info($log, fn:concat('COMCartridge: Invoking orderCompletionNotification
for order[',$taskData/oms:OrderID/text(),'] with correlation [',
$correlationId,']')),
context:ackNotificationOnExit($context),
outboundMessage:setStringProperty($outboundMessage, "COMCorrelationID",
$correlationId),
outboundMessage:setStringProperty($outboundMessage, "SUB_FOLDER_NAME", $taskData/
oms:_root/oms:OrderNumber/text()),
outboundMessage:setStringProperty($outboundMessage, "COMMilestone",
"COMOrderCompleteEvent"),
<orderNotification xmlns="http://xmlns.oracle.com/communications/sce/dictionary/
CommonResourcesCartridge/Notifications"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <OSMOrderId>{$taskData/oms:OrderID/text()}</OSMOrderId>
 <Id>{$correlationId}</Id>
 <OrderNumber>{$taskData/oms:_root/oms:OrderNumber/text()}</OrderNumber>
 {
 for $serviceInstance in $controlDataArea/oms:OrderItem
 return
 <Instance>
 <InstanceID>{$serviceInstance/oms:instanceID/text()}</InstanceID>
 <OrderLineId>{$serviceInstance/oms:orderLineId/text()}</OrderLineId>
 <Status>{$serviceInstance/oms:status/text()}</Status>
 </Instance>
 }
</orderNotification>
)

Jeopardy Automators
An order jeopardy automation plug-in can be triggered when a particular condition is
met, such as when a task exceeds the expected duration configured for the task or
when the process that the task is a part of exceeds its excepted process duration.
The automation can be any internal XQuery, XSLT, or custom automation since the
jeopardy, by definition, can only be triggered by events happening within the task or
the process. For more information about the characteristics for these automations, see
"Automation Plug-in XQuery Examples," "Automation Plug-in XSLT Examples," and
"Custom Java Automation Plug-ins."

Appendix A
Predefined Automation Plug-ins

A-26

Note:

For an order level jeopardy automation plug-in you must declare the
OrderNotificationContext instead of TaskContext. For example:

declare namespace context =
"java:com.mslv.oms.automation.OrderNotificationContext";

For a task level jeopardy automation plug-in, if the task level jeopardy
condition Multiple events per Task instance is set indicating that the task
is a multi-instance task and the event should be triggered for each instance,
then you must declare TaskNotificationContext so that the task data is
passed to each instance of the event. If the task is not a multi-instance task,
then OrderNotificationContext should be declared.

The following example is an internal automator plug-in that uses methods available
to the OrderNotificationContext class to get notification details from the task in
combination with the XML API Notification.Request that logs the jeopardy notification
details. Other jeopardy examples could also send an email or trigger a pager.

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptReceiverConte
xtInvocation";
declare namespace context =
"java:com.mslv.oms.automation.OrderNotificationContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare option saxon:output "method=xml";
declare option saxon:output "saxon:indent-spaces=2";

declare variable $automator external;
declare variable $context external;
declare variable $log external;

declare variable $exitStatus := "success";

let $thisOrderId := context:getOrderId($context)
(: let $taskMnemonic := context:getTaskMnemonic($context) :)
let $notificationName := context:getNotificationName($context)
let $notificationType := context:getNotificationType($context)
let $orderId := fn:root(.)/oms:GetOrder.Response/oms:_root/oms:orderId
let $xmlRequest := '<Notifications.Request
xmlns="urn:com:metasolv:oms:xmlapi:1" />'
let $notifications := context:processXMLRequest($context, $xmlRequest)
return (
 log:info($log, fn:concat("XQuery jeopardy: order[", $thisOrderId,
 "], notificationContext [", context:getClass($context),
 "], notificationName[", $notificationName,
 "], notificationType[", $notificationType,
 "], notifications[", $notifications,
 "] entered order ID [", $orderId/text(), "]")),
 <placeholder/>
)

Appendix A
Predefined Automation Plug-ins

A-27

Order Notification Automation Plug-ins
An order notification automation plug-in can be triggered when specified data
changes in the order. For example, you can monitor order status changes using
the orchestration data element ControlData/OrderFulfillmentState or individual order
item status changes using ControlData/OrderItem/OrderItemFulfillmentState so
OSM triggers an internal XQuery sender automation plug-in that sends these status
changes to another system, such as from a SOM OSM system to a COM OSM
system, or from a COM OSM system to a CRM.

The automation can be any internal XQuery, XSLT, or custom automation since the
notification, by definition, can only be triggered by a change in the internal order data.
For more information about the characteristics for these automations, see "Automation
Plug-in XQuery Examples," "Automation Plug-in XSLT Examples," and "Custom Java
Automation Plug-ins."

Note:

For an order notification automation plug-in you must declare the
OrderDataChangeNotificationContext instead of TaskContext. For example:

declare namespace context =
"java:com.mslv.oms.automation.OrderDataChangeNotificationContext";

The following example is an internal XQuery sender that sends any order and order
item fulfillment state changes to another OSM system. It also provides stubs for
transforming the fulfillment states to external system message formats.

declare namespace osm="urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace to="http://TechnicalOrder";
declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptSenderContext
Invocation";
declare namespace su="http://StatusUpdate";
declare namespace context =
"java:com.mslv.oms.automation.OrderDataChangeNotificationContext";
declare namespace outboundMessage = "java:javax.jms.TextMessage";

declare variable $log external;
declare variable $outboundMessage external;

(:
 This function is for indication purposes only.
 OSM Fulfillment State can be mapped according the expectation of Upstream
:)
declare function local:getUpstreamFulfillmentState($fulfillmentState as
xs:string) as xs:string {
 (: fn:concat('Order_Upstream_' , $fulfillmentState) :)
 fn:concat('' , $fulfillmentState)
};

(:
 This function is for indication purposes only.
 OSM Fulfillment State can be mapped according the expectation of Upstream

Appendix A
Predefined Automation Plug-ins

A-28

:)
declare function local:getUpstreamOrderItemFulfillmentState($fulfillmentState as
xs:string) as xs:string {
 (: fn:concat('OrderItem_Upstream_' , $fulfillmentState) :)
 fn:concat('' , $fulfillmentState)
};

let $order := ..//osm:GetOrder.Response
let $orderFulfillmentState := $order/osm:_root/osm:ControlData/
osm:OrderFulfillmentState
let $mappedUpstreamFulfillmentState := if(exists($orderFulfillmentState)) then
local:getUpstreamFulfillmentState($orderFulfillmentState/text()) else ()

return
(
log:info($log,'Sending Upstream Fulfillment State'),
outboundMessage:setStringProperty($outboundMessage, "SOMTOMCorrelationHeader",
concat($order/osm:_root/osm:messageXmlData/to:TechnicalOrder/to:SOMOrderId/
text(),'-SOM')),
if (fn:count($order/osm:_root/osm:ControlData/osm:OrderItem)=0) then (
<StatusUpdate xmlns="http://StatusUpdate">
<numSalesOrder>{$order/osm:Reference/text()}</numSalesOrder>
<numOrder>{$order/osm:OrderID/text()}</numOrder>
<typeOrder>{$order//osm:OrderHeader/osm:typeOrder/text()}</typeOrder>
<errorCode>0</errorCode>
<status>cancelled</status>
</StatusUpdate>
) else (
<StatusUpdate xmlns="http://StatusUpdate">
<numSalesOrder>{$order/osm:Reference/text()}</numSalesOrder>
<numOrder>{$order/osm:OrderID/text()}</numOrder>
<typeOrder>{$order//osm:OrderHeader/osm:typeOrder/text()}</typeOrder>
<errorCode>0</errorCode>
<status>{$mappedUpstreamFulfillmentState}</status>
{
 for $orderItem in $order/osm:_root/osm:ControlData/osm:OrderItem
 where exists($orderItem/osm:OrderItemFulfillmentState)
 return
 <OrderItem>
 <LineName>{$orderItem/osm:LineName/text()}</LineName>
 <LineId>{$orderItem/osm:LineId/text()}</LineId>
 <ParentLineId>{$orderItem/osm:ParentLineId/text()}</ParentLineId>
 <SpecificationName>{$orderItem/osm:TypeCode/text()}</
SpecificationName>
 <Status>{local:getUpstreamOrderItemFulfillmentState($orderItem/
osm:OrderItemFulfillmentState/text())}</Status>
 </OrderItem>
 }
</StatusUpdate>
)
)

Custom Java Automation Plug-ins
This topic provides common usage examples for custom Java automation plug-ins.

• Internal Custom Java Automator

• Internal Custom Java Sender

• External Custom Java Automator that Changes the OSM Task Status

Appendix A
Custom Java Automation Plug-ins

A-29

• External Custom Java Automator that Updates Order Data

• Using OrderDataUpdate Elements to Pass Order Modification Data

• Examples of Sending Messages to External Systems

• Examples of Handling Responses from External Systems

Internal Custom Java Automator
A basic internal custom Java automator has the following characteristics:

• The name of the custom automation package. For example:

package com.mslv.oms.sample.atm_frame;

• Import statements required for this custom automation plug-in. For example:

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

• An arbitrary class name that extends AbstractAutomator. For the automation
framework to call an internal custom Java automator, the plug-in must extend
the AbstractAutomator class. This class resides in the com.mslv.automation.plugin
package. For example:

 public class MyPlugin extends AbstractAutomator {

• The required run method, as dictated by the parent class, AbstractAutomator

 protected void run(String inputXML, AutomationContext context)
 throws com.mslv.oms.automation.AutomationException {

• Cast the AutomationContext object to the TaskContext object. This example
assumes that the custom automation plug-in is triggered by an automated task,
so the code is expecting the context input an argument to be an instance of the
TaskContext object.

 TaskContext taskContext = (TaskContext)context;

Note:

You can use the TaskContext object to do many things, such as
complete the task, suspend it, and so on. For more information about
this class, see the OSM Javadocs.

• Call a method on the TaskContext object to retrieve the task name.

 String taskName = taskContext.getTaskMnemonic();

• Add any require business logic.

 this.performAutomation(taskname);

The following example shows the minimal amount of code required for a custom
automation plug-in to run. This example assumes that it is triggered by an automated
task.

package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;

Appendix A
Custom Java Automation Plug-ins

A-30

 import com.mslv.oms.automation.*;
 import java.rmi.*;

 public class MyPlugin extends AbstractAutomator {
 protected void run(String inputXML, AutomationContext context)
 throws com.mslv.oms.automation.AutomationException {
 try {
 TaskContext taskContext = (TaskContext)context;
 String taskName = taskContext.getTaskMnemonic();
 this.performAutomation(taskname);
 catch(RemoteException ex) {
 throw new AutomationException(ex); }
 catch(AutomationException x) {
 throw x; }
 }
 }

Internal Custom Java Sender
A basic internal custom Java sender has the following characteristics:

• The name of the custom automation package. For example:

package com.mslv.oms.sample.atm_frame;

• Import statements required for this custom automation plug-in. For example:

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

• An arbitrary class name that extends AbstractSendAutomator. For the
automation framework to call an internal custom Java sender, the plug-in
must extend the AbstractSendAutomator class. This class resides in the
com.mslv.automation.plugin package. For example:

 public class MyPlugin extends AbstractSendAutomator {

• The required run method, as dictated by the parent class, AbstractSendAutomator

 protected void run(String inputXML, AutomationContext context)
 throws com.mslv.oms.automation.AutomationException {

• Cast the AutomationContext object to the TaskContext object. This example
assumes that the custom automation plug-in is triggered by an automated task,
so the code is expecting the context input an argument to be an instance of the
TaskContext object.

 TaskContext taskContext = (TaskContext)context;

Note:

You can use the TaskContext object to do many things, such as
complete the task, suspend it, and so on. For more information about
this class, see the OSM Javadocs.

• Call a method on the TaskContext object to retrieve the task name.

 String taskName = taskContext.getTaskMnemonic();

Appendix A
Custom Java Automation Plug-ins

A-31

• Sets the text for the outbound message, which is sent to the external message
queue defined by the automation definition. The custom code does not establish
a connection to an external system or send the message; the automation
framework handles the connection and sends the message upon completion of
the makeRequest method.

 outboundMessage.setText("Received task event for task = " +
taskName);}

Note:

OSM provides outboundMessage in the OSM automation framework as
a JMS message with text content. If you require other message formats
or protocols, do not use outboundMessage. You must implement an
internal custom java automator or helper class with the required code.

The following example shows the minimal amount of code required for a custom
automation plug-in that sends data to run. This example assumes that it is triggered by
an automated task.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import javax.jms.TextMessage;
 import java.rmi.*;

 public class MyPlugin extends AbstractSendAutomator {
 protected void makeRequest(String inputXML, AutomationContext context,
 TextMessage outboundMessage)
 throws com.mslv.oms.automation.AutomationException {
 try {
 TaskContext taskContext = (TaskContext)context;
 String taskName = taskContext.getTaskMnemonic();

 // optional - You can use this code if you want to define your own
correlation ID rather than an autogenerated correlation ID.
 Correlator correlator = getCorrelator(context);
 correlator.add(createCustomCorrelationId(taskContext));

 outboundMessage.setText("Received task event for task = " + taskName);}
 catch(javax.jms.JMSException ex) {
 throw new AutomationException(ex); }
 catch(RemoteException x) {
 throw new AutomationException(x); }
 }

 private String createCustomCorrelationId(TaskContext taskContext) {
 // Create a custom correlation ID using task name and unique order history
ID
 // Actual correlation calculation depends on solution logic
 String corrId = taskContext.getTaskMnemonic()
 + "-"
 + String.valueOf(taskContext.getOrderHistoryId());
 return corrId;
 }

 }

Appendix A
Custom Java Automation Plug-ins

A-32

External Custom Java Automator that Changes the OSM Task Status
A basic external custom Java automator that changes the OSM task status has the
following characteristics:

• The name of the custom automation package. For example:

package com.mslv.oms.sample.atm_frame;

• Import statements required for this custom automation plug-in. For example:

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

• An arbitrary class name that extends AbstractAutomator. For the automation
framework to call an external custom Java sender, the plug-in must extend the
AbstractAutomator class. This class resides in the com.mslv.automation.plugin
package. The name reflects that this example is an external event receiver,
receiving information from ASAP. For example:

 public class AsapResponseHandler extends AbstractAutomator {

• The required run method, as dictated by the parent class, AbstractAutomator.

 public void run(String inputXML, AutomationContext task)
 throws AutomationException {

• Cast the AutomationContext object to the TaskContext object. This example
assumes that the custom automation plug-in is triggered by an automated task,
so the code is expecting the context input an argument to be an instance of the
TaskContext object.

 TaskContext taskContext = (TaskContext)context;

Note:

You can use the TaskContext object to do many things, such as
complete the task, suspend it, and so on. For more information about
this class, see the OSM Javadocs.

• Call a method on the TaskContext object to retrieve the task name.

 String taskName = taskContext.getTaskMnemonic();

• Logs the information regarding the response that the plug-in is handling.
AtmFrameCatalogLogger is available to this example plug-in based on the
package in which the plug-in resides. You must replace this with your own solution
logic.

 AtmFrameCatalogLogger.logTaskEventResponse
 (taskName,tctx.getOrderId(),tctx.getOrderHistoryId(),inputXML);

Appendix A
Custom Java Automation Plug-ins

A-33

Note:

The automation framework keeps track of the order ID and the order
history ID of the task that triggered the automation. There are two ways
you can get the Order History ID:

– By parsing the inputXML

– By calling the TaskContext.getOrderHistoryId method as shown in
this example.

In most cases, these return the same order history ID. However, if you
use automation to handle task events, the order history ID obtained from:

– Parsing the inputXML returns the order history ID as it was when the
task was generated

– Calling the TaskContext.getOrderHistoryID method returns the order
history ID as it is now (current)

• Update the task status by calling a method on the TaskContext object.

 tctx.completeTaskOnExit("activation_successful"); }

The following example shows an external custom automator that updates the OSM
task status. This example assumes that the automation definition is an external
event receiver that is receiving a message from ASAP, and that it is triggered by an
automated task.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

 public class AsapResponseHandler extends AbstractAutomator {
 public void run(String inputXML, AutomationContext task)
 throws AutomationException {
 try {
 TaskContext tctx = (TaskContext)task;
 String taskName = tctx.getTaskMnemonic();
 AtmFrameCatalogLogger.logTaskEventResponse
 (taskName,tctx.getOrderId(),tctx.getOrderHistoryId(),inputXML);
 tctx.completeTaskOnExit("activation_successful"); }
 catch(RemoteException ex) {
 throw new AutomationException(ex); }
 catch(AutomationException x) {
 throw x; }
 }
 }

External Custom Java Automator that Updates Order Data
If an automated task sends data to an external system and the external system sends
a response back, you may need to update OSM with the data received from the
external system.

Appendix A
Custom Java Automation Plug-ins

A-34

The following example shows how to update data in OSM. The code is an example
of updating OSM with data received from Oracle Communications Unified Inventory
Management (UIM) when calling the server extension FRDemo.AssignFacilities.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;
 import java.util.*;
 import java.io.*;
 import java.net.*;
 import org.xml.sax.*;
 import org.w3c.dom.*;
 import javax.xml.parsers.*;

 public class UIMResponseHandler extends AbstractAutomator {

 public void run(String inputXML, AutomationContext task)
 throws AutomationException {
 try {
 TaskContext tctx = (TaskContext)task;
 String taskName = tctx.getTaskMnemonic();
 AtmFrameCatalogLogger.logTaskEventResponse
 (taskName,tctx.getOrderId(),tctx.getOrderHistoryId(),inputXML);

 // Using the data returned from UIM, update the OSM order data
 String updateXml = generateOMSUpdateString(inputXML);
 tctx.updateOrderData(updateXml);

 // Complete the OSM task with the correct status
 tctx.completeTaskOnExit("success"); }

 catch(OrderUpdateException ex) {
 throw new AutomationException(ex); }
 catch(RemoteException ex) {
 throw new AutomationException(ex); }
 catch(AutomationException x) {
 throw x; }
 }

 static private String generateOMSUpdateString(String inputXML) {
 StringBuffer osmUpdate = new StringBuffer("");
 try {
 osmUpdate = new StringBuffer
 ("<OrderDataUpdate xmlns=\"http://www.w3.org/2001/XMLSchema\""+
 " xmlns:xs=\"http://www.w3.org/2001/XMLSchema\"" +
 " xmlns:odu=\"http://www.oracle.com/OMS/OrderDataUpdate\"" +
 " targetNameSpace=\"http://www.oracle.com/OMS/OrderDataUpdate\">");

 // Use updates from UIM to update OSM
 osmUpdate.append("<AddMandatory>true</AddMandatory>");
 DocumentBuilderFactory docBuilderFactory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = docBuilderFactory.newDocumentBuilder();
 Document doc = parser.parse(new StringBufferInputStream(inputXML));
 Element root = doc.getDocumentElement();
 root.normalize();
 NodeList a_site_list = root.getElementsByTagName("a_site information");
 NodeList a_site_data = a_site_list.item(0).getChildNodes();

Appendix A
Custom Java Automation Plug-ins

A-35

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/a_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 NodeList z_site_list = root.getElementsByTagName("z_site_information");
 NodeList z_site_data = z_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/z_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 osmUpdate.append("</OrderDataUpdate>");

 System.out.println(omsUpdate.toString()); }

 catch(Exception e) {
 System.out.println(e.getMessage()); }

 return omsUpdate.toString();
 }
 }

The following code snippets from this example show:

• How to display where OSM data is updated, using XML input to describe which
data nodes to update.

 tctx.updateOrderData(updateXml);

• How to build the OrderDataUpdate XML string to update the data in OSM using
data garnered by parsing the UIM XML. See "Using OrderDataUpdate Elements
to Pass Order Modification Data" for more information. This differs for every order
template and every external system. This code represents the translation step
where you convert the data from the format of an external system to the format
that OSM expects.

 static private String generateOMSUpdateString(String inputXML) {
 StringBuffer osmUpdate = new StringBuffer("");
 try {
 osmUpdate = new StringBuffer
 ("<OrderDataUpdate xmlns=\"http://www.w3.org/2001/XMLSchema\""+
 " xmlns:xs=\"http://www.w3.org/2001/XMLSchema\"" +
 " xmlns:odu=\"http://www.oracle.com/OMS/OrderDataUpdate\"" +
 " targetNameSpace=\"http://www.oracle.com/OMS/OrderDataUpdate\">");

 // Use updates from UIM to update OSM
 osmUpdate.append("<AddMandatory>true</AddMandatory>");
 DocumentBuilderFactory docBuilderFactory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = docBuilderFactory.newDocumentBuilder();
 Document doc = parser.parse(new StringBufferInputStream(inputXML));
 Element root = doc.getDocumentElement();

Appendix A
Custom Java Automation Plug-ins

A-36

 root.normalize();
 NodeList a_site_list = root.getElementsByTagName("a_site
information");
 NodeList a_site_data = a_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/a_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 NodeList z_site_list =
root.getElementsByTagName("z_site_information");
 NodeList z_site_data = z_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/z_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 osmUpdate.append("</OrderDataUpdate>");

 System.out.println(omsUpdate.toString()); }

 catch(Exception e) {
 System.out.println(e.getMessage()); }

 return omsUpdate.toString();
 }

The structure of the XML document to update OSM data is as follows:

<OrderDataUpdate xmlns=\"http://www.w3.org/2001/XMLSchema\"
xmlns:xs=\"http://www.w3.org/2001/XMLSchema\"
xmlns:odu=\"http://www.oracle.com/OMS/OrderDataUpdate\"
targetNameSpace=\"http://www.oracle.com/OMS/OrderDataUpdate\">
<AddMandatory>true</AddMandatory>
<Add path=\"/service_details/new_number\">98765</Add>
<Update path=\"/customer_details/service_address/street\">55 Updated St</
Update>
<Delete path=\"/service_details/current_account_number\"></Delete>
</OrderDataUpdate>

This example illustrates adding a data node (Add path), updating a data node
(Update path), and deleting a data node (Delete path).

• How to specify a mandatory parameter. If set to true, the following rules apply:

 osmUpdate.append("<AddMandatory>true</AddMandatory>");

– If you delete a mandatory node, AddMandatory replaces the node and
populates it with the default value.

– If the update is missing a mandatory node, AddMandatory adds the missing
node and populates it with the default value.

Appendix A
Custom Java Automation Plug-ins

A-37

Note:

If you add a mandatory field, but do not include a value,
AddMandatory will not add a default value and the request will
generate an error-error code 200.

Using OrderDataUpdate Elements to Pass Order Modification Data
You use OrderDataUpdate XML elements to pass data add, modify and delete data
nodes in an order.

OrderDataUpdate elements can be passed as a parameter to updateOrderData().
XSL translations whose results are passed to setUpdateOrder() must be in
OrderDataUpdate format. See the OSM Javadocs for details on both methods. You
can also pass OrderDataUpdate format elements to the DataChange Web Service
(see the SDK schema OrderManagementWS.xsd) and UpdateOrder.request XML API
call (see the SDK schema oms-xmlapi.xsd).

For update and delete operations on multi-instance nodes, you must specify the
order node index as it exists in the input XML. Specify the order node index as
"[@index='index_value']" where index_value is the order node index.

The following example shows how to specify the addition of an order node with
OrderDataUpdate. The path attribute identifies the parent node under which to add
the element:

<OrderDataUpdate>
 <Add path="/">
 <ProvisioningOrderResponse>
 <OrderInformation>
 <OrderNumber>1238723</OrderNumber>
 </OrderInformation>
 </ProvisioningOrderResponse>
 </Add>
</OrderDataUpdate>

The following example shows a combined update and delete operation on a multi-
instance node using OrderDataUpdate. In Delete attributes, the path attribute identifies
the data to delete. In Update attributes, the path attribute identifies the data to update.
Indexes are required on Update and Delete attributes when modifying multi-instance
nodes. Note how the order node index values are specified in the Update and Delete
attributes.

<OrderDataUpdate>
 <Delete path="/client_info/address[@index='80132']/city" />
 <Update path="/client_info/address[@index='76579']/city">Newark</Update>
 <Update path="/customer_details/service_address/street">55 Updated St</Update>"
 <Delete path="/service_details/current_account_number"></Delete>
</OrderDataUpdate>

See "External Custom Java Automator that Updates Order Data" for an example
in which OrderDataUpdate XML data is created dynamically within Java code and
passed to UpdateOrderData().

The schema for OrderDataUpdate is as follows:

Appendix A
Custom Java Automation Plug-ins

A-38

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://
www.metasolv.com/OMS/OrderDataUpdate" xmlns:odu="http://www.metasolv.com/
OMS/OrderDataUpdate" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <element name="OrderDataUpdate">
 <complexType>
 <choice maxOccurs="unbounded">
 <element ref="odu:Add"/>
 <element ref="odu:Delete"/>
 <element ref="odu:Update"/>
 </choice>
 </complexType>
 </element>

 <element name="Add">
 <annotation>
 <documentation>It contains a node to be added. The path attribute
identifies the parent node under which to add the element.</documentation>
 </annotation>
 <complexType>
 <sequence>
 <any/>
 </sequence>
 <attribute name="path" type="string" use="required"/>
 </complexType>
 </element>

 <element name="Delete">
 <annotation>
 <documentation>It contains a node to be deleted. The path attribute
identifies the node to delete.</documentation>
 </annotation>
 <complexType>
 <attribute name="path" type="string" use="required"/>
 </complexType>
 </element>

 <element name="Update">
 <annotation>
 <documentation>It contains a node to update. The path attribute identifies
the node to update.</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="path" type="string" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
</schema>

Examples of Sending Messages to External Systems
Automation simplifies the process of sending messages to external systems. The
automation framework does the following:

Appendix A
Custom Java Automation Plug-ins

A-39

• Assumes the protocol is JMS. The products (Siebel, OSM, UIM, ASAP, IP Service
Activator) all have JMS APIs.

• Takes care of establishing and maintaining the various JMS connections.

• Constructs the JMS messages, setting the required message properties.

• Guarantees delivery of the message and handles any errors or exceptions. It
retries until the message is delivered.

• Automatic message correlation.

• Poison message handling.

An OSM event that is sent to an external system follows this process flow:

1. OSM runs an automation that triggers an automation plug-in.

2. Internally, the automation framework maps the plug-in, using the
automationMap.xml configuration, onto custom business logic and calls the
makeRequest method on the custom automator class.

3. The makeRequest method performs some business logic and sets the content of
the outbound message.

4. The automation framework adds properties to the outbound message to aid in
correlating external system responses to requests.

5. The automation framework uses information from the automationMap.xml to
send the JMS message to the JMS queue representing the external system.

The following example shows a custom automation plug-in that sends data to an
external system.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import javax.jms.TextMessage;
 import java.rmi.*;

 public class ObjectelPlugin extends AbstractSendAutomator {

 protected void makeRequest(String inputXML, AutomationContext context,
TextMessage outboundMessage) throws com.mslv.oms.automation.AutomationException
{

 try {
 TaskContext taskContext = (TaskContext)context;
 String taskName = taskContext.getTaskMnemonic();
 AtmFrameCatalogLogger.logTaskEvent(taskName, taskContext.getOrderId(),
taskContext.getOrderHistoryId(), inputXML);

 //
 // Set the outgoing message
 //
 String xmlRequest =
"<Message type=\"ni\"><iLibPlus:findFunctionalPortOnLocation.Request
xmlns:iLibPlus=\"http://www.oracle.com/
objectel\"><location><DS><AG2ObjectID>189438</
AG2ObjectID><AG2ParentID>189428</AG2ParentID><CLLIX>XML.CO.1</
CLLIX><SiteName>XML.CO.1</SiteName></DS></location><feType>PP</
feType><portType>$FEP</portType><selectionMethod>LOAD_BALANCE</
selectionMethod><portSelectionAttribName><string>AG2ObjectID</

Appendix A
Custom Java Automation Plug-ins

A-40

string><string>AG2ParentID</string><string>AG2PortLabel</string></
portSelectionAttribName><portSelectionAttribValue><string>189508</
string><string>189478</string><string>F-31-OC-48</string></
portSelectionAttribValue><portUpdateAttribName/><portUpdateAttribValue/></
iLibPlus:findFunctionalPortOnLocation.Request></Message>";
 outboundMessage.setText(xmlRequest);

 } catch(javax.jms.JMSException x) {
 throw new AutomationException(x);
 } catch(RemoteException ex){
 throw new AutomationException(ex);
 }
 }
 }

The following code snippets from this example show:

• how to generate an output XML string. In this example it is hard coded. In a
business case you would use business logic to transform OSM data into what the
external system expects

 String xmlRequest =
"<Message type=\"ni\"><iLibPlus:findFunctionalPortOnLocation.Request
xmlns:iLibPlus=\"http://www.oracle.com/
objectel\"><location><DS><AG2ObjectID>189438</
AG2ObjectID><AG2ParentID>189428</AG2ParentID><CLLIX>XML.CO.1</
CLLIX><SiteName>XML.CO.1</SiteName></DS></location><feType>PP</
feType><portType>$FEP</portType><selectionMethod>LOAD_BALANCE</
selectionMethod><portSelectionAttribName><string>AG2ObjectID</
string><string>AG2ParentID</string><string>AG2PortLabel</string></
portSelectionAttribName><portSelectionAttribValue><string>189508</
string><string>189478</string><string>F-31-OC-48</string></
portSelectionAttribValue><portUpdateAttribName/><portUpdateAttribValue/></
iLibPlus:findFunctionalPortOnLocation.Request></Message>";

• how to set the output data:

 outboundMessage.setText(xmlRequest);

• How this code does not establish a connection to an external system or send a
message. After the data is set in the code, the message is automatically sent upon
exit of the makeRequest method.

Examples of Handling Responses from External Systems
In Message Property Correlation, the following steps describe how responses from
external systems are handled.

1. The plug-in populates the message content.

2. The plug-in sets a property on the outbound JMS message, with name of the value
set for correlationproperty in the automationMap.xml file, and a value decided by
the business logic. For example, you could use this to correlate on a reference
number.

3. If the value of the correlationproperty in the automationMap.xml file is set to
the value JMSCorrelationID, the plug-in is not required to set the property on the
outbound message (as described in Step 2). The automation framework does this
automatically.

Appendix A
Custom Java Automation Plug-ins

A-41

4. The automation framework saves the message properties set for each message
with the event information.

5. The automation framework sets the replyTo property on the JMS message.

6. The external system copies the properties on the request message to the
response message.

7. The external system sends the message to the reply queue specified in the
automationMap.xml file.

8. The automation framework uses the configuration in the automationMap.xml
file to map messages from external systems to plug-ins. The plug-ins are
automators written by system integrators. Configuration of an automator for
receiving messages from an external system are defined within Design Studio
and saved to the automationMap.xml file.

9. The automation framework uses the message properties of the response, plus
the correlation information saved in step four above, to reload a Context for the
response message.

10. The run method of the external system automator is called and is passed the
Context created in step 9.

11. The automator performs business logic, such as completing the task.

The following example shows a custom automation plug-in that handles and
processes response messages from an external system.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

 public class UIMResponseHandler extends AbstractAutomator {

 public void run(String inputXML, AutomationContext task)
 throws AutomationException {

 try {
 TaskContext tctx = (TaskContext)task;

 tctx.completeTaskOnExit("success");

 } catch(RemoteException ex){
 throw new AutomationException(ex);
 } catch(AutomationException x) {
 throw x;
 }
 }
}

This automation plug-in does not need to send JMS messages to any system, so it
extends AbstractAutomator and is intended to process Task automation responses, so
it casts the Context to a TaskContext then completes the task.

The following example shows what the external system is expected to do for the
message property correlation to work.

 public void sendMessage(Message originalMessage) {
 try {
 //

Appendix A
Custom Java Automation Plug-ins

A-42

 // Set up the JMS connections
 //
 QueueConnectionFactory connectionFactory =
(QueueConnectionFactory)jndiCtx.lookup(connectionFactoryName);
 QueueConnection queueConnection = connectionFactory.createQueueConnection();
 QueueSession queueSession = queueConnection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);
 Queue replyQueue = (Queue)originalMessage.getJMSReplyTo();
 QueueSender queueSender = queueSession.createSender(replyQueue);

 //
 // Create the message
 //
 TextMessage textMessage =
queueSession.createTextMessage(((TextMessage)originalMessage).getText());
 textMessage.setStringProperty("MESSAGE_NAME","ActivationResponse");
 textMessage.setJMSCorrelationID(originalMessage.getJMSCorrelationID());

 //
 // Send the message
 //
 queueSender.send(textMessage, javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY, 1800000);

 } catch(javax.jms.JMSException ex){
 ex.printStackTrace();
 } catch(javax.naming.NamingException ex){
 ex.printStackTrace();
 }
 }

The following code snippets from this example show:

• how the external system chooses which JMS destination to send the reply to.

Queue replyQueue = (Queue)originalMessage.getJMSReplyTo();
QueueSender queueSender = queueSession.createSender(replyQueue);

• the external system setting a property that identifies the nature of the JMS
message. This implies that the automation was defined with a message property
selector select statement that matches these parameters.

textMessage.setStringProperty("MESSAGE_NAME","ActivationResponse");

• the external system echoing the correlation information onto the reply
message. This implies that the automation was defined to correlate based on
JMSCorrelationID.

textMessage.setJMSCorrelationID(originalMessage.getJMSCorrelationID());

Compensation XQuery Expressions
The following topics provide information about automation and manual task
compensation XQuery expressions.

• Task Re-Evaluation and Rollback XQuery Expressions

• In Progress Compensation Include XQuery Expressions

• In Progress Compensation Complete XQuery Expressions

• In Progress Compensation Grace Period XQuery Expressions

Appendix A
Compensation XQuery Expressions

A-43

For general OSM XQuery information, see "General XQuery Information."

Task Re-Evaluation and Rollback XQuery Expressions
You can dynamically assign compensation strategies to tasks by creating XQuery
expressions in the Design Studio Task Editor Compensation tab for re-evaluation
compensation strategies or compensation strategies for when a task is no longer
required.

Note:

If the XQuery expression is invalid OSM logs the error but does not rollback
the transaction. Instead, OSM uses the static compensation strategy as the
default.

This section refers to the Design Studio OSM Automated Task or Manual Task
editor, Compensation tab Compensation Expression XQuery field for re-evaluation
compensation strategies:

• Context: The context for this XQuery is the current order data. You can get the
current order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response
function in the XQuery body to extract the order information. You
must declare the java:oracle:communications.ordermanagement.compensation.
ReevaluationContext OSM Java package that provides methods that access the
contemporary and historical order perspectives and compares the two. You can
use the results of this comparison to determine what compensation strategy is
required for a task based on revision order data.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle.communications.ordermanagement.compensation.ReevaluationContext"
;
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

For more information about the classes in the OSM packages, install the OSM
SDK and extract the OSM Javadocs from the OSM_home/SDK/osm7.w.x.y.z-
javadocs.zip file (where OSM_home is the directory in which the OSM software is
installed and w.x.y.z represents the specific version numbers for OSM). See OSM
Installation Guide for more information about installing the OSM SDK.

• Body: The body must return a valid compensation option.

For example, the following XQuery expression creates variables for the
ReevaluationContext methods. The expression then checks that a specific value
exists in the $value variable and that the value in the $significantValue variable
both exists and is significant. If the value exists and is significant, then the
expression sets the compensation strategy for the task to Undo then Do
(undoThenDo in the ReevaluationContext Java class). If not, then the expression

Appendix A
Compensation XQuery Expressions

A-44

sets the compensation strategy to Redo (redo in the ReevaluationContext Java
class).

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)
let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//
orderItemRef/specificationGroup//specification[value='100']
let $significantValue := $diffDoc/Changes/Add[@significant='true']/
specification[value='100']
let $currentValue := $ropDoc/ GetOrder.Response/_root/service[name='BB']//
orderItemRef/specificationGroup//specification[value='100']

return if (fn:exists($value) and fn:exists($significantValue))
then
 context:undoThenDo($context)
else
 context:redo($context)

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab Compensation Expression XQuery field for when a task is no
longer required. The context, prolog, and body are similar to the XQuery expression
for the re-evaluation strategy, except that the XQuery expression implements
the java:oracle:communications.ordermanagement.compensation.RollbackContext
package.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle.communications.ordermanagement.compensation.RollbackContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)

let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//orderItemRef/
specificationGroup//specification[value='100']
return if (fn:exists($value))
then
 context:undo($context)
else
 context:doNothing($context)

In Progress Compensation Include XQuery Expressions
You can determine if an in progress task should be compensated by writing an XQuery
expression in the Design Studio Task Editor Compensation tab.

Appendix A
Compensation XQuery Expressions

A-45

Note:

If the XQuery expression is invalid OSM logs the error and includes the in
progress task in the compensation plan as it defaults the expression to true.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab, In Progress Compensation Include Expression XQuery field
for dynamically defining when in progress tasks should be included in compensation.
This XQuery expression runs when OSM first analyzes the task for compensation:

• Context: The context for this XQuery is the current task order data. You can get
the current task order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response
function in the XQuery body to extract the order information.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

• Body: Based on task context data, the body must return true if the in progress task
requires compensation or false if it does not.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;

let $inputDoc := self::node()
let $value := $inputDoc/GetOrder.Response/_root/data

return (
 if (fn:contains($value, "includeInCompensation")) then
 fn:true()
 else
 fn:false()
)

In Progress Compensation Complete XQuery Expressions
You can determine when the compensation for an in progress task is complete by
writing an XQuery expression in the Design Studio Task Editor Compensation tab.

Note:

If the XQuery expression is invalid OSM logs the error and includes the in
progress task in the compensation plan as it defaults the expression to true.

Appendix A
Compensation XQuery Expressions

A-46

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab, In Progress Compensation Complete Expression XQuery field
for dynamically defining when in progress tasks completes compensation activities.
This XQuery expression runs whenever data changes on the compensating task:

• Context: The context for this XQuery is the current task order data. You can get
the current task order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response
function in the XQuery body to extract the order information.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

• Body: Based on task context data, the body must return true if the in progress task
has completed all compensation activities or false if it has not.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;
let $inputDoc := self::node()
let $value := $inputDoc/GetOrder.Response/_root/data
return (
 if (fn:contains($value, "compensationDone")) then
 fn:true()
 else
 fn:false()

In Progress Compensation Grace Period XQuery Expressions
You can determine whether a grace period should be observed before starting
compensation for an in progress task by writing an XQuery expression in the Design
Studio Task Editor Compensation tab.

Note:

If the XQuery expression is invalid OSM logs the error and includes the in
progress task in the compensation plan as it defaults the expression to true.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab, When an amendment occurs if this task is in progress it will:
tab, Dynamic Expression XQuery field for dynamically defining the grace period for
an in progress task based on task data. This XQuery expression runs after OSM has
determined whether the in progress task needs to be compensated:

• Context: The context for this XQuery is the current task order data. You can get
the current task order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response
function in the XQuery body to extract the order information. You can also declare

Appendix A
Compensation XQuery Expressions

A-47

the $gracePeriod variable in the XQuery prolog which contains the grace period
specified on the order life-cycle policy.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $gracePeriod external;
declare variable $log external;
declare variable $context external;

• Body: The XQuery body returns a duration value based on the XQuery you enter:

PyYmMdDThHmMsS

where

– P begins the expression.

– yY specifies the year.

– mM specifies the month.

– dD specifies the day.

– T separates the parts of the expression indicating the date from the parts of
the expression indicating the time.

– hH specifies the hour.

– mM specifies the minutes.

– sS specifies the seconds.

For example, this XQuery uses order data to define the specific grace period duration
for the task. The last statement calls the $gracePeriod variable which represents the
grace period duration specified on the order life-cycle policy:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;
declare variable $gracePeriod external;

let $inputDoc := self::node()
let $value := $inputDoc/GetOrder.Response/_root/data

return (
 if (fn:contains($value, '-immediate-')) then
 xs:duration('PT0S')
 else if (fn:contains($value, '-override-')) then
 xs:duration('PT20S')
 else if (fn:contains($value, '-negative-')) then
 xs:duration('-PT10S')
 else if (fn:contains($value, '-invalidNumber-')) then
 fn:number(0)
 else if (fn:contains($value, '-invalidString-')) then
 xs:string('UNKNOWN')
 else
 xs:duration(fn:concat('PT', $gracePeriod, 'S'))

Appendix A
Compensation XQuery Expressions

A-48

Order Jeopardy Automation XQuery Plug-ins
This topic provides information about order jeopardy XQuery expressions. These
XQuery expressions apply to order jeopardies configured in the Order Jeopardy editor,
not order jeopardies configured in the Order editor.

For general OSM XQuery information, see "General XQuery Information."

You can configure automations for order jeopardies in the Order Jeopardy editor,
Automation tab. If you choose to use an XQuery automation type, create an XQuery
file and reference it in the Script subtab Script field.

• Context: The context for this XQuery is the Order Jeopardy Notification context.

• Prolog: You should declare the XML namespace for the Order Jeopardy
Notification context, and if you are using a date (rather than a duration) you can
declare a namespace for the date format as well.

For example:

declare namespace context =
"java:oracle.communications.ordermanagement.orderjeopardy.automation.OrderJeo
pardyNotificationContext";
declare namespace dateFormat = "java:java.text.DateFormat";

You should then declare the $context variable to contain the actual context:

declare variable $context external;

Then if you want to use order data in your XQuery, you can get the order data into
a variable. For example:

let $orderData := fn:root(automator:getOrderAsDOM($automator))/
oms:GetOrder.Response

You can then access individual data elements on the order. For example:

let $date := $orderData/oms:_root/oms:ojPostponeDate/text()

• Body: There are several calls you can use in the order jeopardy XQuery file in
addition to the normal calls available for notification plug-ins. Following are brief
descriptions of the available calls:

– postponeTimerOnExit(interval): If this call receives a numeric parameter, it
postpones the due date for the number of milliseconds contained in the
parameter.

– postponeTimerOnExit(dateTime): If this call receives a date/time parameter, it
postpones the due date to the indicated date/time.

– logAndParkNotificationOnExit(logMessage): This call acknowledges the
notification with the passed-in message, but does not reset/deactivate the
notification. It will still be available in the Order Management web client.

– ackNotificationOnExit: This call acknowledges and resets/deactivates the
notification.

– getNotificationAckStatus: This call returns true if the notification has been
acknowledged, and false if it has not.

The following example postpones the jeopardy to a specified date:

Appendix A
Order Jeopardy Automation XQuery Plug-ins

A-49

declare namespace context =
"java:oracle.communications.ordermanagement.orderjeopardy.automation.OrderJeo
pardyNotificationContext";
declare namespace dateFormat = "java:java.text.DateFormat";

declare variable $context external;

let $dateFormat := dateFormat:getDateTimeInstance(3, 3)
let $date := dateFormat:parse($dateFormat, "09/30/15 03:30 PM")
return
 context:postponeTimerOnExit($context, $date)

Appendix A
Order Jeopardy Automation XQuery Plug-ins

A-50

	Contents
	Preface
	Documentation Accessibility

	1 Getting Started with Design Studio for OSM Processes
	About Order Modeling Users and Tasks
	Reviewing Design Studio Sample Cartridges
	Creating a Cartridge for Orders That Use Processes

	2 Defining OSM Preferences
	Defining Language Preferences
	Defining Diagrammer Preferences
	Defining Order and Service Management General Preferences
	Defining Orchestration Preferences
	Defining Web Browser Preferences

	3 Working with OSM Cartridge Projects
	Working with Existing OSM Models
	About Importing Design Studio Cartridges
	About Importing Cartridges Created in OSM Administrator
	About Import Summary Reports
	Importing Existing OSM Models

	Working with the Orchestration Model Project
	Creating the OracleComms_OSM_CommonDataDictionary Model Project

	Working with XML Catalogs
	Enabling and Disabling XML Catalogs for a Cartridge Project
	Specifying XML Catalogs for a Cartridge Project

	Order and Service Management Project Editor
	Project Editor Locations Tab
	Project Editor Manifest Tab

	4 Modeling Data in OSM
	About Modeling Data in OSM Cartridge Projects
	About Modeling Control Data
	About Contributing Task Data to a Cartridge Project
	About OSM Data in Model Projects
	About Modeling Data in the Order Template
	About the Order Template Context Menu
	About the Task Editor Task Data Context Menu
	Data Schema Editor OSM Tab
	Using Masks
	About Masks
	Defining Masks for Task Web Client Fields

	Defining Behaviors at the Data Schema Level

	5 Working with Roles
	Creating New Roles
	Adding Roles to Multiple Tasks
	Role Editor Role Tab

	6 Working with Processes
	About the Process Editor
	Working with Process Editor Menu Controls
	About Task Controls
	About Zoom Controls
	About Layout Controls
	About Print Controls
	About Selection Controls

	Working with the Process Editor Palette
	About the Process Editor Tool Drawer
	About the Process Editor Activities Drawer
	About the Process Editor Flow Drawer
	About the Process Editor Exception Paths Drawer

	Creating New Processes
	Modifying Process Editor Start Properties
	Process Editor Start Properties General Tab

	Designing Tasks and Activities
	Process Editor Activities Properties General Tab
	Process Editor Task Properties Events Tab

	Designing Timer Delays and Event Delays
	Designing Timer Delays
	Applying Order Rules to Timer Delays

	Designing Event Delays

	Designing Subprocesses
	Subprocess Properties General Tab
	Subprocess Properties Process Tab
	Subprocess Properties Exception Map Tab

	Designing Workstream Processes
	Designing Process Sequence and Flow
	Process Editor Flow Properties General Tab
	Process Editor Flow Properties Events Tab

	Designing Exception Paths
	Exception Path Properties General Tab
	Exception Path Properties Restrictions Tab
	Redirect Properties General Tab

	7 Working with Tasks
	About Tasks
	About Task Extensions and Inheritance
	About Task States and Statuses
	About Task Rollback Status
	About Task Compensation
	About Task Fallout
	About Enabling Task Web Client Users to Reassign Tasks

	Creating New Tasks
	Defining Task Data
	Adding Data to a Task
	Adding a New Data Structure Definition to a Task
	Adding an Existing Data Structure Definition to a Task

	Assigning Task States and Statuses
	Assigning States to Tasks
	Assigning Statuses to Tasks

	Assigning Task Permissions
	Converting Tasks
	Deleting Unreferenced Tasks
	Working with Automation Plug-Ins
	About Automation Plug-ins
	About Automation Plug-in Types
	About Automation Plug-in Association
	About Automation Message Correlation

	Creating New Custom Automation Plug-ins
	Configuring Automation Plug-In Properties
	Example: Modeling a Basic Automator Plug-In

	Working with Manual Tasks
	Defining Manual Task Behaviors

	Working with Automated Tasks
	Defining Automated Task Behaviors
	Adding Automation Plug-ins to Automated Tasks

	Working with Activation Tasks
	About Activation Tasks
	About Service Action Request Mapping
	About Service Action Response Mapping
	About State and Status Transition Mapping

	Modeling Activation Tasks
	Configuring Service Action Requests
	Mapping OSM Data to Service Action XML Parameters
	Mapping OSM Data to Service Action XML Parameters Using XPath
	Mapping OSM Data to Service Action XML Parameters Using XSLT

	Configuring Service Action Responses
	Filtering ASAP Response Data
	Configuring Service Action Response State and Status Transitions

	Working with Transformation Tasks
	Task Editor
	Task Editor Activation Task Details Tab
	Task Editor Automation Tab
	Properties View Details Tab
	Properties View External Event Receiver Tab
	Properties View Compensation Tab
	Properties View Correlation Tab
	Properties View XQuery Tab
	Properties View XSLT Tab
	Properties View Routing Tab
	Properties View Custom Plug-in Tab
	Properties View Notes Tab

	Task Editor Behaviors Tab
	Task Editor Compensation Tab
	Task Editor Details Tab
	Task Editor Events Tab
	Task Editor Fallouts Tab
	Task Editor Jeopardy Tab
	Task Editor Jeopardy Details Tab
	Task Editor Jeopardy Conditions Tab
	Task Editor Jeopardy Notify Roles Tab
	Task Editor Jeopardy Polling Tab
	Task Editor Jeopardy Automation Tab
	Task Editor Jeopardy Notes Tab

	Task Editor Permissions Tab
	Task Editor Redo Tab
	Task Editor Request Data Tab
	Properties Activation Order Header Binding View
	Properties Global Parameter Binding View
	Properties Service Action Binding View
	Properties Parameter Binding View

	Task Editor Response Data Tab
	Properties State/Status Transition View
	Response Filter Area

	Task Editor Composite Data View Tab
	Task Editor States/Statuses Tab
	Task Editor Task Data Tab
	Task Data Node Properties View Identification Tab
	Task Data Node Properties View Dictionary Tab

	Task Editor Undo Tab

	8 Working with Order Lifecycle Policies
	About Order States and Transactions
	Creating New Order Lifecycle Policies
	Configuring Order Lifecycle Policies
	Order Lifecycle Policy Editor
	Order Lifecycle Policy Permissions Tab
	Order Lifecycle Policy Transition Conditions Tab
	Transition Condition for Checking a Hard Point of No Return

	Order Lifecycle Policy Editor Grace Periods Tab

	9 Working with Data Providers
	About Data Providers
	Understanding Built-in Data Provider Types

	Creating New Data Providers
	Configuring Data Providers
	Data Provider Editor
	Data Provider Editor Settings Tab
	Data Provider Editor Interface Tab

	10 Working with Orders
	About Order Extensions and Inheritance
	About Reference Nodes
	Creating New Orders
	Defining Order Data
	Adding New Data to an Order
	Adding Existing Data to an Order
	Adding Reference Data Nodes
	Adding a New Data Structure Definition to an Order
	Adding an Existing Data Structure Definition to an Order
	Renaming Data Elements at the Order Level

	Defining Order Behaviors
	Defining Order Details
	Enabling Order Amendment Processing
	Defining Order Rules
	Defining Order Fallout
	Associating Order Fallouts with Data Nodes
	Associating Order Fallouts with Fallout Groups

	Defining Order Data Changed Notifications
	Assigning Order Permissions
	Defining Order Jeopardy Notifications
	Defining Order Event Notifications
	Order Editor
	Order Editor Order Template Tab
	Properties View Order Data Tab
	Properties View Dictionary Tab
	Properties View Key Tab
	Properties View Usage Tab

	Order Editor Behaviors Tab
	Order Editor Details Tab
	Order Editor Amendable Tab
	Order Editor Rules Tab
	Properties View Rules Expression Tab

	Order Editor Fallouts Tab
	Order Editor Fallout Groups Tab
	Order Editor Notification Tab
	Order Editor Notification Details Tab
	Order Editor Notification Notify Roles Tab
	Order Editor Notification Data Changed Tab
	Order Editor Notification Automation Tab
	Order Editor Notification Notes Tab

	Order Editor Permissions Tab
	Order Editor Permissions Details Tab
	Order Editor Permissions Filters Tab
	Order Editor Permissions Query Tasks Tab
	Properties View Filter Expression Tab

	Order Editor Jeopardy Tab
	Order Editor Jeopardy Details Tab
	Order Editor Jeopardy Conditions Tab
	Order Editor Jeopardy Notify Roles Tab
	Order Editor Jeopardy Polling Tab
	Order Editor Jeopardy Automation Tab
	Order Editor Jeopardy Notes Tab

	Order Editor Events Tab
	Order Editor Composite Data View Tab

	11 Working with Behaviors
	About Web Client Behavior Support
	Creating New Behaviors
	Defining Behavior Detail Properties
	Behaviors Properties View Details Tab

	Defining Behavior Condition Properties
	About Behavior Condition Properties
	Behaviors Properties View Conditions Tab

	Defining Behavior Notes Properties
	Defining Calculate Behavior Properties
	About Calculate Behaviors
	Calculate Behavior Properties View Calculation Tab

	Defining Constraint Behavior Properties
	Constraint Behavior Properties View Message Tab

	Defining Data Instance Behavior Properties
	About Data Instance Behaviors
	Data Instance Behavior Properties View Data Tab

	Defining Event Behavior Properties
	About Event Behaviors
	Event Behavior Properties View Event Tab

	Defining Information Behavior Properties
	Defining Information Behaviors in Multiple Languages
	Information Behavior Properties View Labels Tab
	Information Behavior Properties View Hints Tab
	Information Behavior Properties View Help Tab

	Defining Lookup Behavior Properties
	About Lookup Behaviors
	Lookup Behavior Properties View Nodeset Tab
	Lookup Behavior Properties View Value/Name Tab

	Defining Read Only Behavior Properties
	About Read Only Behaviors

	Defining Relevant Behavior Properties
	About Relevant Behaviors

	Defining Style Behavior Properties
	Style Behavior Properties View Appearance Tab
	Style Behavior Properties View Layout Tab
	Style Behavior Properties View CSS Style Tab

	12 Working with Jeopardy and Event Notifications
	Working with Jeopardy Notifications
	Creating Jeopardy Notifications in the Order Jeopardy Editor
	Creating Jeopardy Notifications in the Task or Order Editor

	Working with Event Notifications
	Creating Order Milestone and Task State Automation Event Notifications
	Creating Process-specific Task Event Notifications
	Properties Events Detail Tab
	Properties Events Notify Roles Tab
	Properties Events Automation Tab
	Event Properties Notes Tab

	Creating Task Status-Based Event Notifications
	Creating Order Data Changed Notifications

	Order Jeopardy Editor
	Order Jeopardy Editor Details Tab
	Order Jeopardy Editor Policy Tab
	Order Jeopardy Editor Policy Tab Duration Value Subtab
	Order Jeopardy Editor Policy Tab Offset Subtab
	Order Jeopardy Editor Policy Tab XQuery Expression Subtab
	Order Jeopardy Editor Policy Tab Unit Type and Default Value Subtab
	Order Jeopardy Editor Policy Tab Data Path Expression Subtab

	Order Jeopardy Editor Automation Tab
	Order Jeopardy Editor Automation Tab Details Subtab
	Order Jeopardy Editor Automation Tab Script Subtab
	Order Jeopardy Editor Automation Tab Routing Subtab
	Order Jeopardy Editor Automation Tab Notes Subtab

	13 Packaging and Deploying OSM Cartridges
	Packaging Order and Service Management Cartridges
	Multiple Order Data Inconsistencies

	Defining Build-and-Deploy Modes for Automation Plug-ins
	About Build-and-Deploy Modes for Automation Plug-ins
	Setting Automation Plug-in Build-and-Deploy Modes for All Cartridges
	Setting Automation Plug-in Build-and-Deploy Modes for Individual Cartridges

	Testing OSM Cartridge Models
	About Submit Test
	Submitting Test Orders to Run-time Environments

	Managing Changes to Deployed Cartridges
	Managing Orders for Multiple Cartridge Versions
	Modifying Cartridges After Upgrading OSM Versions

	Studio Environment Editor
	Studio Environment Editor Connection Tab
	Studio Environment Editor SSL Tab
	Studio Environment Editor Properties Tab
	Studio Environment Editor Order and Service Management Test Submission URL Area

	A Automation and Compensation Examples
	Predefined Automation Plug-ins
	Message Example
	Automation Plug-in XQuery Examples
	Internal XQuery Sender
	External XQuery Automator
	External XQuery Sender
	Internal XQuery Automator

	Automation Plug-in XSLT Examples
	Internal XSLT Sender
	External XSLT Automator
	External XSLT Sender
	Internal XSLT Automator

	Automation Plug-in Examples for Events, Jeopardies, and Notifications
	Event Automators
	Jeopardy Automators
	Order Notification Automation Plug-ins

	Custom Java Automation Plug-ins
	Internal Custom Java Automator
	Internal Custom Java Sender
	External Custom Java Automator that Changes the OSM Task Status
	External Custom Java Automator that Updates Order Data
	Using OrderDataUpdate Elements to Pass Order Modification Data
	Examples of Sending Messages to External Systems
	Examples of Handling Responses from External Systems

	Compensation XQuery Expressions
	Task Re-Evaluation and Rollback XQuery Expressions
	In Progress Compensation Include XQuery Expressions
	In Progress Compensation Complete XQuery Expressions
	In Progress Compensation Grace Period XQuery Expressions

	Order Jeopardy Automation XQuery Plug-ins

