
Oracle® Communications IP Service
Activator
SDK Base Cartridge Developer Guide

Release 7.5
F59545-01
September 2022

Oracle Communications IP Service Activator SDK Base Cartridge Developer Guide, Release 7.5

F59545-01

Copyright © 2011, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

1 Base Cartridge Guide Overview

Developing Base Cartridges with the SDK 1-1

Core Cartridges 1-1

Vendor Cartridges 1-1

SDK Installation 1-1

Additional Documentation 1-1

2 Building Base Cartridges

Building a Base Cartridge 2-1

Creating a Base Cartridge Source Directory and Skeleton Properties File 2-2

Performing Device Characterization and Customizing the Skeleton Properties File 2-2

Generating Cartridge Source Files 2-2

Customizing the Cartridge Source Files 2-2

Compiling and Packaging the Cartridge 2-2

Performing Standalone Tests 2-2

Performing End-to-End Tests 2-3

About the Provided Sample Base Cartridge 2-3

Components of the Provided Sample Base Cartridge 2-3

Completing the Sample 2-3

Purpose of the Provided Sample Base Cartridge 2-3

Sample Skeleton Properties File 2-4

Creating a Base Cartridge Source Directory and Skeleton Properties File 2-4

Performing Device Characterization and Editing the Skeleton Properties File 2-5

Discovery Method 2-5

External Discovery 2-6

Access: Logging In 2-6

iii

Logging In 2-6

Logging Out 2-8

Configuration Mode 2-8

Prompt Matching 2-8

Audit Commands 2-9

Saving the Running Configuration 2-10

Configuration Version 2-10

SkeletonGeneratorProperties 2-11

Generating Cartridge Source Files 2-11

Generating the Sample Base Cartridge Source Files 2-12

Result of Generation Process 2-12

Generating Your Base Cartridge Source Files 2-13

Result of the Generation Process 2-14

Troubleshooting the Cartridge Generation 2-14

Using an Alternate Directory Structure 2-14

Base Cartridge Generator Message Logging 2-14

Troubleshooting Property File Attributes 2-14

Customizing the Cartridge Source Files 2-15

Device Model Schema Definition 2-15

Service Model to Device Model Transform 2-15

Device Model Validation 2-15

Annotated Device Model to CLI Transform 2-15

Message Pattern Definitions 2-16

Device Response Analysis 2-16

Example Device Response Pattern Match 2-16

Defining Device Response Patterns 2-17

Defining Success Response Patterns 2-17

Defining Warning Response Patterns 2-18

Defining Error Response Patterns 2-18

Options 2-18

Defining Options 2-19

Registering Options 2-19

Implementing Options 2-20

Customizing the Registry 2-20

Cisco Sample 2-21

Customization File Entries 2-22

Raising Faults 2-23

Completing the Sample Cartridge Source Files 2-23

Compiling the Cartridge 2-24

Troubleshooting Cartridge Compilation 2-24

Manifest File 2-25

iv

Implementing Pre- and Post-Checks 2-25

Testing in a Standalone Environment 2-25

Unit Tests 2-25

Device Tests 2-25

Troubleshooting the Standalone Tests 2-26

Testing in an IP Service Activator Environment 2-26

Verification of Deployment 2-27

Free-form Testing Using CTM 2-27

Problem Isolation and Resolution 2-27

Audit Trail Logging 2-27

Setting Audit Trail Logging Properties 2-28

Adjusting the Audit Trail Logging Level 2-29

Adjusting the Audit Trail Log File Size and Number of Previous Versions 2-29

Adjusting the Audit Trail Log File Rollover Strategy 2-29

Device Model Upgrades 2-30

Identifying that a Device Model Upgrade is Required 2-30

Updating the Cartridge Version 2-30

Updating the Device Model Upgrade Transform 2-31

Unit Testing the Device Model Upgrade Transform 2-31

Network Processor NpUpgrade 2-32

Audit 2-32

Uninstalling Base Cartridges 2-32

Removing a Generated Cartridge from the SDK 2-33

Uninstalling the SDK 2-33

A Base Cartridge Generation Properties

B Generated Skeleton Base Cartridge Source Files

About the Generated Skeleton Base Cartridge Source Files B-1

Generated Skeleton Base Cartridge Source File Details B-2

v

Preface

This guide explains how to use the Oracle Communications IP Service Activator SDK
to create base cartridges which integrate with the network processor to enable basic
communications with devices.

Audience
This guide is intended for system developers developing base cartridges using the
SDK.

Before reading this guide, you should have familiarity with IP Service Activator.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Base Cartridge Guide Overview

This chapter provides a brief overview of the concepts involved in creating base cartridges
with the SDK.

Developing Base Cartridges with the SDK
Base cartridges provide a framework to allow the Network Processor to perform basic
communication functions with a device. These functions include logging in and out of the
device, sending commands or configlets, performing audits, and interpreting responses from
the device as successes, warnings, or failures.

Base cartridges do not contain implementations of services. Additional services targeting
specific vendor device types are added through integrated service cartridges. Refer to IP
Service Activator SDK Service Cartridge Developer Guide for details.

Configuration policies are implemented in conjunction with supporting service cartridges. For
additional information on creating configuration policies, refer to IP Service Activator SDK
Configuration Policy Extension Developer Guide.

Core Cartridges
Oracle Communications IP Service Activator existing cartridges, known as core cartridges,
include the functions provided by both a base and service cartridges all in the same package.

The base cartridge with separate related service cartridges is the preferred method of
supporting new services to maximize scalability and flexibility.

Vendor Cartridges
A base or core cartridge can be combined with a number of service cartridges to create a
vendor cartridge, which contains the functionality to connect to a specific device type, and
apply the services provided by the service cartridges.

SDK Installation
For SDK installation, configuration, and custom cartridge upgrade instructions, refer to IP
Service Activator SDK Installation and Setup Guide.

Additional Documentation
Additional documentation is available on the SDK, its concepts and documents, and how to
create cartridges and configuration policies.

Refer to Next steps in learning about the SDK in IP Service Activator SDK Installation and
Setup Guide.

1-1

2
Building Base Cartridges

This chapter explains how to build base cartridges using the SDK. It discusses the sample
Cisco base cartridge source files provided with the SDK. A brief overview of the steps
required to build base cartridges is given, followed by detailed sections explaining all the
required activities. Included are steps to try out the procedures on the supplied sample Cisco
base cartridge source files.

Note:

For details on installing the SDK and the required third party tools, plus a detailed
overview of all SDK concepts, a discussion of cartridge components, and an
explanation of how cartridges integrate with the network processor, refer to IP
Service Activator SDK Installation and Setup Guide.

This guide assumes:

• That Oracle Communications IP Service Activator is deployed to a directory which will be
referred to as Service_Activator_home. This directory is typically

C:\Program Files\Oracle Communications\Service Activator

• That you have successfully installed the SDK to a directory which will be referred to as
SDK_home

• That the required versions of additional third party tools to support the SDK are installed
correctly

• That you have set up the required environment variables to support the SDK functions

For details on installing the SDK and the third party tool versions, refer to IP Service Activator
SDK Developer Overview Guide.

Building a Base Cartridge
This section lists the steps required to build a base cartridge. Following a brief introduction to
these steps, each step and all the activities required to execute it are covered in detail.

The steps to build a base cartridge are:

• Creating a Base Cartridge Source Directory and Skeleton Properties File

• Performing Device Characterization and Customizing the Skeleton Properties File

• Generating Cartridge Source Files

• Customizing the Cartridge Source Files

• Compiling and Packaging the Cartridge

• Performing Standalone Tests

• Performing End-to-End Tests

2-1

Creating a Base Cartridge Source Directory and Skeleton Properties
File

In order to create your own base cartridge, you need to establish a uniquely named
directory structure for the source files, and create the skeleton properties file that will
be used to generate the starting source files.

Performing Device Characterization and Customizing the Skeleton
Properties File

This step is an analysis of how the device performs the functions that the base
cartridge is going to manage. You will need to gather information on login and logout
sequences, prompts, and more.

Each cartridge you create with the SDK requires a skeleton properties file. In this file,
you will edit the property values that control the generation of the cartridge source
files. For complete details on all properties, refer to "Base Cartridge Generation
Properties".

Generating Cartridge Source Files
This step uses the SDK tools to read the skeleton properties file and create the
skeleton cartridge source files.

Customizing the Cartridge Source Files
This step is where most of your development effort will be spent. The key cartridge
source components include:

• Device Model (DM) schema definition

• Service Model (SM) to DM transform

• DM validation

• Annotated DM to CLI transform

• Message (success/warning/error) pattern definitions

There are many other source file components you may need to create or modify
including files that support audit services, options, capabilities, and pre- and post-
checks. These are described later in this chapter.

Compiling and Packaging the Cartridge
This step uses the SDK tools to compile and package the cartridge.

Performing Standalone Tests
Unit and device tests are created as part of the generated skeleton source files and
are run using the SDK tools.

Chapter 2
Building a Base Cartridge

2-2

Performing End-to-End Tests
To perform end-to-end testing, you'll need to deploy your cartridge into a test IP Service
Activator system.

About the Provided Sample Base Cartridge
This section describes the provided sample base cartridge.

Components of the Provided Sample Base Cartridge
A sample working base cartridge for Cisco IOS devices, called cisco, is provided with the
SDK in the form of:

• A skeleton.properties file

This file is used to generate the source files for the sample base cartridge. For more
information, see "Generating the Sample Base Cartridge Source Files".

• Three pre-edited source files that demonstrate the edits required by the generated source
files to produce a working cisco sample base cartridge.

– ...\audit\auditTemplate.xml

– ...\messages\successMessages.xml

– ...\xquerylib\dm2cli-common.xq

The provided sample source files are located in

SDK_home\samples\baseCartridge\cisco\...

while the generated sample cartridge source files are placed in

SDK_home\baseCartridges\cisco\...

Completing the Sample
To complete the sample, you can copy the provided files over their generated counterparts; or
you can edit the generated files.

Purpose of the Provided Sample Base Cartridge
The pre-completed skeleton properties file illustrates how to populate the fields in the file for a
working base cartridge. The provided sample source files are based on those generated by
the sample base cartridge skeleton.properties file, but are customized further for Cisco IOS.
This illustrates the typical post-generation steps you need to perform.

It can be useful to perform a diff between the customized sample source files and a set of
generated sample skeleton source files, and then examine the difference between them.

The main values provided by the base cartridge sample are:

• Shows how to fill out the skeleton properties for a base cartridge

• Provides material to increase your understanding of the roles of the various prompt-
related regular expressions

Chapter 2
About the Provided Sample Base Cartridge

2-3

• Demonstrates implementation of the config version check optional function

• Lets you inspect the generated source files to see how a simple, working, base
cartridge is constructed.

• Lets you complete, compile and package the overwritten generated sample source
files into a working base cartridge and deploy it in a test system.

• Lets you take a copy of the provided skeleton properties file, relocate and rename
it, and use it as the starting point to generate your own skeleton cartridge source
files.

Sample Skeleton Properties File
The sample skeleton properties file that is used to create the source files for the cisco
sample base cartridge is called

SDK_home\samples\baseCartridge\cisco\skeleton.properties

This properties file is pre-populated with the information needed to construct the
starting source files for the cisco sample base cartridge - a working base cartridge that
will support Cisco IOS devices.

Some of the generated source files will require editing or you can overwrite them with
the provided source files.

As you read through the base cartridge creation steps, instructions are given on how
to use the sample to test some of the SDK tools and commands.

Refer to "Base Cartridge Generation Properties" for details on all the properties
implemented in the sample properties file which create the source files for the sample.

Creating a Base Cartridge Source Directory and Skeleton
Properties File

To create your own base cartridge, you will need to establish a directory structure for
the source files, and create a skeleton properties file to generate the starting source
files.

Note:

When deciding upon a directory structure for a new base or service cartridge
care must be taken to choose a unique base directory name. If the path of a
file in the new cartridge is the same as the path of a file in a deployed
cartridge, undesirable behavior could occur.

The simplest method is to copy the sample skeleton.properties file and edit it for your
own use.

To copy and edit the sample file:

1. Create a unique name that identifies the type of device the cartridge will support
for your new base cartridge. This name will be referred to as target_device_name.

Chapter 2
Creating a Base Cartridge Source Directory and Skeleton Properties File

2-4

2. Create a new directory to hold your cartridge source files. For example:

SDK_home\baseCartridges\target_device_name

3. Copy the sample skeleton.properties file into your directory:

copy SDK_home\samples\baseCartridge\cisco\skeleton.properties
SDK_home\baseCartridges\target_device_name

4. Edit your skeleton.properties file and change cisco to the target_device_name in the
following entries:

base cartridge name
sdk_global_cartridgeName=target_device_name
. . .
packaging structure
sdk_global_package=com.metasolv.serviceactivator.cartridges.target_device_name

Performing Device Characterization and Editing the Skeleton
Properties File

To construct a base cartridge, you will need to identify the key aspects of a device's
characteristics in order to configure the cartridge to appropriately interface with the device.
This information is used to edit the skeleton properties file. The skeleton properties file is
used to generate a set of customized cartridge source files for you to use as the starting point
for your base cartridge.

As you gather the information in the categories below, refer to "Base Cartridge Generation
Properties" for details on the how the information you collect is specified in the skeleton
properties file.

Basic device characteristics include:

• Discovery method: how IP Service Activator will be able to discover the device

• Access: how to log in and log out of the device

• Configuration mode: commands for entering and exiting a read/write configuration-type
mode (e.g. privileged mode)

• Prompts: the characters used by the device to represent a user-input prompt in various
modes and circumstances

• Audit commands: commands to retrieve the entire running configuration for the device
for the purposes of comparing a persisted expected configuration with the actual
configuration that is on the device

• Saving the running configuration: commands to manage start-up and running
configurations

Discovery Method
IP Service Activator primarily uses SNMP for discovery. The policy server component queries
the device using SNMP MIBs and constructs the device topology, its interfaces and sub-
interfaces in the IP Service Activator object model.

The amount of detail on the device retrieved through this basic SNMP discovery process may
be sufficient to start construction of your base cartridge. You can test this by discovering your
device as you normally would in the IP Service Activator client. Refer to the Service Activator
online Help for more information about discovering one or more devices.

Chapter 2
Performing Device Characterization and Editing the Skeleton Properties File

2-5

For additional information, see the discussion of network discovery and representation
in IP Service Activator Concepts.

External Discovery
If the basic IP Service Activator SNMP discovery process does not properly discover
the device, or leaves out critical details (such as interfaces, sub-interfaces, or VCs),
consider developing an external discovery process.

An external discovery process consists of an application, typically written in Java, that
connects to the device and then constructs the device topology and its parts in IP
Service Activator using one of the available programming interfaces. The connection
method can be telnet, SNMP, or whatever else is appropriate.

For Java-based external discovery processes, OJDL is the appropriate programming
interface. If the external discovery process is authored using a shell script or perl, for
example, then OSS Integration Manger (OIM) CLI commands would be used to
interface with IP Service Activator.

Note:

It is beyond the scope of this document to describe exactly how to program
an external discovery process. However, relevant programming interface
information can be found in IP Service Activator OSS Java Development
Library Guide and IP Service Activator OSS Integration Manager Guide.

The parsing of information retrieved from the device for relevant information is in the
domain of the external discovery process.

At a minimum, an external discovery process should create a device object in IP
Service Activator with the required attributes set (such as device type, version, and so
forth). It should create the main interfaces under the device with appropriate attributes
such as interface type, bandwidth, speed, etc. If necessary, it should populate IP
Service Activator with any sub-interfaces present on the device.

Access: Logging In
This section describes the two aspects of the access device characteristic.

Logging In
When you create your cartridge's skeleton properties file, it must be configured for one
of the login methods supported by the SDK. These are:

• TACACS

• SSH

• Anonymous

• Password-only

All of these login methods have similarities. Typically, the device presents a prompt for
a username, and then a prompt for a password. The anonymous login method

Chapter 2
Performing Device Characterization and Editing the Skeleton Properties File

2-6

involves no prompts. The password-only login method prompts only for a password without a
user name.

The skeleton properties which indicate the login methods supported by the device are:

• sdk_authenticationTacacs_supported

• sdk_authenticationSsh_supported

• sdk_authenticationAnonymous_supported

• sdk_authenticationPasswordOnly_supported

Note:

At least one of these properties must be set to true.

The login prompts used by the device are defined in the properties file as regular
expressions. For example:

 sdk_authenticationTacacs_useridPrompt=.*Username:

In this example, .*Username: is a regular expression that matches any line ending with the
text "Username:". When the network processor matches input received from the device using
this regular expression, it is recognized as a prompt for a TACACS username. The network
processor then sends the username to the device.

Depending on the login procedure for the device, supply values appropriately for related login
properties. For example, if you set sdk_authenticationTacacs_supported to true in the
properties file, you will also need to specify values for many of the following additional
properties:

• sdk_authenticationTacacs_useridPrompt

• sdk_authenticationTacacs_passwdPrompt

• sdk_authenticationTacacs_errorPrompt

• sdk_authenticationTacacs_enablePasswdPrompt

• sdk_authenticationTacacs_enablePasswdPasswdPrompt

• sdk_authenticationTacacs_enablePasswdErrorPrompt

If the device has two levels of authentication, then the ..._enablePasswdPrompt property
should also be defined. The device presents this prompt when a user attempts to enter
privileged mode (e.g. by entering the enable command on a Cisco device).

Tip:

To get the required prompt information for setting the login properties, connect to an
actual device and take note of the prompts the device presents. Be sure to test
invalid parameters so you can capture error messages returned, and use these in
setting the various login error properties.

Chapter 2
Performing Device Characterization and Editing the Skeleton Properties File

2-7

Logging Out
Set the sdk_logoutCommand_cmd property to the exact command used to log out of
the device.

Configuration Mode
Most devices have two modes of operation: user (read-only), and configuration (read-
write) mode. User mode allows you to query the device about its hardware,
configuration or statistics, but bars you from making changes. Configuration mode
allows modification of the device's configuration. For example, Cisco devices use the
command configure terminal (or conf t for short).

In the skeleton properties file, specify the exact commands to enter and exit
configuration mode on the device:

• sdk_configMode_cmd

• sdk_configModeTerminate_cmd

Prompt Matching
The Network Processor determines when a command it has sent to a device has been
received by the reception of a prompt from the device.

The response time varies by device and command. On a slow connection, sending
and receiving the command, and receiving the prompt may take a number of seconds.
The Network Processor waits until it has received the return prompt to be sure that the
command was received correctly.

Care must be taken when configuring a regular expression to match a prompt because
prompts are configurable on a per-device basis. Additionally, prompts can change
throughout the communication session.

For example, when a device is being configured, the prompt may change to show
which area of the configuration is currently being worked on.

In a session:

• The device presents the prompt mydevice> after successful login.

• The prompt changes to mydevice# when the user enters privileged mode.

• The prompt changes to mydevice(config)# when configuring.

• The prompt may change to variants of mydevice(config-*)# when configuring.

In order to match a prompt, the Network Processor attempts to discover the prompt
upon logging in. It remembers the original prompt and uses it throughout the
communication session.

When configuring your base cartridge, the sdk_getConfiguration_matchPattern
property defines a regular expression to be used by the Network Processor to discover
the prompt upon login by matching the pattern with the responses from the device.
There are also properties to define text which precedes and text which follows the
prompt.

Table 2-1 lists the prompt definition properties and their matched regular expression.

Chapter 2
Performing Device Characterization and Editing the Skeleton Properties File

2-8

Table 2-1 Prompt Definition Properties

Prompt Definition Property Description of Regular Expression

sdk_getConfiguration_matchPatt
ern

After a successful login, Network Processor uses this expression to
match on the prompt. The expression must contain one group that
matches the core prompt. The network processor then uses this
core prompt as a pattern to match on.

Example:

sdk_getConfiguration_matchPattern=([^>#\\n]*)[>#]

This specifies that the prompt includes everything except the
characters ">" and "#" or a new line that comes before one of the
characters ">" or "#". The prompt "mydevice>" would match and the
word "mydevice" would become the core prompt pattern.

sdk_getConfiguration_prePendP
attern

Regular expression to match text which prepends the prompt, such
as a command number (e.g. “10: mydevice>:), or whites pace.

Example:

sdk_getConfiguration_prePendPattern=\\n

This specifies that the prompt could be preceded by a blank line.

sdk_getConfiguration_appendPa
ttern

Regular expression to match text which follows the prompt, such as
a special character

Example:

sdk_getConfiguration_appendPattern=(([>#])|(\\(.*\\)#))

This specifies that the prompt could be followed by the characters
">" or "#", or some context in parentheses followed by the character
"#". It would match with:

 mydevice>
 mydevice#
 mydevice(config)#
 mydevice(config-pmap)#

sdk_getConfiguration_errorPatte
rn

Regular expression to match error response from login.

sdk_getConfiguration_hostPatter
n

Pattern to match the hostname within the prompt.

For complete details on all properties, refer to "Base Cartridge Generation Properties".

Audit Commands
An audit compares the configuration that the Network Processor has persisted for the device
with the actual configuration that is retrieved from the device. Commands not administered by
IP Service Activator are filtered out.

In order to perform an audit, the Network Processor must be able to parse all of the
commands on the device. Most devices allow this by providing a command that returns the
entire configuration of the device (e.g. show-running-configuration on Cisco).

The required properties to configure auditing for a base cartridge are:

Chapter 2
Performing Device Characterization and Editing the Skeleton Properties File

2-9

• sdk_audit_supported

• sdk_showRunningConfig_supported

• sdk_showRunningConfig_cmd

To enable auditing, the base cartridge properties sdk_audit_supported and
sdk_showRunningConfig_supported should be set to true. The property
sdk_showRunningConfig_cmd should be set to the exact command to retrieve the
current configuration of the device.

For complete details on these properties, refer to "Base Cartridge Generation
Properties".

Saving the Running Configuration
Some devices have both a running configuration — the configuration that is currently
executing on the device, and a startup configuration — the configuration that is loaded
upon restart of the device. The startup configuration is stored on disk whereas the
running configuration is usually only stored in memory.

Devices with running and startup configurations typically support the copying of one
configuration to the other. For example, when a new configuration is applied to a
device it may then be backed up to the startup configuration.

The properties that are used by the SDK to support this are:

• sdk_saveRunningConfig_supported: set this to true to indicate support for copying
the running configuration to the startup configuration

• sdk_saveRunningConfig_cmd: set this to the exact command to copy the running
configuration to the startup configuration

Configuration Version
IP Service Activator, when generating device models, generates a new configuration
version statement that conforms to the following format:

YYYY-MM-DDTHH:MM:SS.sssZ

This configuration version is stored in the device model and is written to the device
along with the general configuration commands.

The configuration version, read back from the device during audit and subsequent
configuration updates, is used to determine if the last persisted device model is in sync
with what is on the device. If the device and device model configuration versions
match, then the last persisted device model should match with the commands on the
device. If the configuration versions don't match, then either the last persisted device
model is out of date or the device is out of sync with IP Service Activator.

The configuration version functionality consists of several sub-functions that an SDK
developer needs to be aware of.

• Configuration versioning in the target and last device models

• Configuration versioning on the network devices

• Configuration version pre-check prior to committing configuration changes to a
device

Chapter 2
Performing Device Characterization and Editing the Skeleton Properties File

2-10

• Configuration version auditing

The first function is always performed by the cartridge framework. In other words, the target,
and consequently, the last device models automatically contain configuration version
information.

The last three functions are optional in the SDK. An SDK developer can enable them with the
sdk_configurationversion_supported property. When set to true, the source file generator
generates XQuery functions responsible for the following:

• Transforming the configuration version in the annotated device model into CLI
commands.

• Retrieving the configuration version from the device, comparing it with the configuration
version in the last device model and, when out-of-sync, raising faults that prevent making
further configuration changes to a device that is out of sync.

SkeletonGeneratorProperties
The configuration version functions are further parameterized using 4 more properties which
are only relevant when sdk_configversion_supported is set to true.

These properties are:

• sdk_configversion_updateCmd=alias exec IpsaConfigVersion: the prefix of the CLI
command that updates the configuration version on the device. The entire command is
formed by appending the configuration version to it. For example:

alias exec IpsaConfigVersion 2007-08-12T12:59:00.234Z
• sdk_configversion_removeCmd=no alias exec IpsaConfigVersion: the prefix of the CLI

command that removes the configuration version from the device. The entire command is
formed by appending the configuration version to it. For example:

no alias exec IpsaConfigVersion? 2007-08-12T12:59:00.234Z
• sdk_configversion_showCmd=show aliases exec | include IpsaConfigVersion: the CLI

command that retrieves the configuration version from the device. The result from this
command is expected to be a single line which, among other things, must contain the
configuration version.

• sdk_configversion_extractCmd=IpsaConfigVersion? +(.+): a regular expression that,
when applied against the result from sdk_configversion_showCmd must match, so that
its first group is bound to the configuration version string.

The values assigned to the above properties illustrate what is suitable for generating a
skeleton cisco IOS cartridge.

Generating Cartridge Source Files
The SDK provides a tool to generate the base cartridge source files from the skeleton
properties file. Once the source files are generated, you will need to edit the source files to
complete your base cartridge.

Chapter 2
Generating Cartridge Source Files

2-11

Note:

Ensure that you save copies of any cartridge source files you alter prior to re-
generating from the skeleton.properties file to ensure that you do not lose
customization work. Alternatively, modify the skeleton.properties file so that
a new target directory name is used. In either case, you will need to manually
merge any alterations you made in the previous iteration if you want those
changes to persist.

Generating the Sample Base Cartridge Source Files
To generate the sample base cartridge source files using the data from the sample
skeleton properties file:

1. Set the cartridge version string variable. For example, if the cartridge version is
1.0, on a Windows host, type the command:

set VERSION_STRING=1.0
2. In SDK_home, either:

• Run the included batch file to run the cartridge generator script:

genbc samples\baseCartridge\cisco\skeleton.properties

or

• Type in the command to run the cartridge generator script:

ant -DtemplateType=baseCartridge -
DpropFile=SDK_home\samples\baseCartridge\cisco\skeleton.properties

Note:

To use the batch file, you must first add SDK_home\bin to your PATH
variable where SDK_home is the SDK directory.

Result of Generation Process
The directory structure you created previously (see "Creating a Base Cartridge Source
Directory and Skeleton Properties File") has been extended by using the
sdk_global_cartridgeName value from the skeleton properties file. The cartridge
source files generated under SDK_home\baseCartridges\sdk_global_cartridgeName\
include:

• build.xml: ant build file to build the base cartridge

• src\synonyms.xml: used by the audit process

• src\...\audit\auditTemplate.xml: stub file for audit commands

• src\...\capabilities\empty_caps.xml: stub file for capabilities information

• src\...\messages\: contains .xml files with success, error and warning message
patterns

Chapter 2
Generating Cartridge Source Files

2-12

• src\...\options\options.xsd: stub schema file for cartridge options

• src\...\schema\devicemodel.xsd: contains the stub base cartridge device model
schema

• src\...\test\: resources for testing the base cartridge

• src\...\transforms\: transforms including pre-check, SM to DM, annotated DM to CLI, DM
validation, and a restore template for Configuration Management support

• src\...\xquerylib\: additional XQueries for SM to DM, DM to CLI, DM upgrade, DM
version and pre-check.

• src\...\cisco\auditLogging.properties: used to set property values for audit logging

• src\...\cisco\Registry.xml: identifies the base cartridge instance

• src\...\cisco\Customization.xml: can be used to override Registry.xml

A log file is also created within the logs directory:

• SDK_home\logs\generator.log

To continue working with the sample base cartridge, go to "Completing the Sample Cartridge
Source Files".

Generating Your Base Cartridge Source Files
When you create your own base cartridge, the cartridge name and the root folder for the
generated source are based on the sdk_global_cartridgeName property value in the skeleton
properties file. See "Creating a Base Cartridge Source Directory and Skeleton Properties
File" for details. The property value is incorporated into the cartridge source files in place of
sdk_global_CartridgeName.

To generate your skeleton base cartridge source files using your customized skeleton
properties file:

1. Set the cartridge version string variable. For example, if the cartridge version is 1.0, on a
Windows host, type the command:

set VERSION_STRING=1.0
2. In SDK_home, either:

• Run the included batch file to run the cartridge generator script:

genbc \baseCartridges\<sdk_global_cartridgeName>\skeleton.properties

or

• Type in the command to run the cartridge generator script:

ant -DtemplateType=baseCartridge -
DpropFile=SDK_home\baseCartridges\sdk_global_cartridgeName\skeleton.properties

Note:

To use the batch file, you must first add SDK_home\bin to your PATH variable
where SDK_home is the SDK directory.

Chapter 2
Generating Cartridge Source Files

2-13

Result of the Generation Process
This extends the SDK directory structure in a similar manner to what is described in
"Generating the Sample Base Cartridge Source Files".

Note:

It is possible to use a different name for the skeleton properties file. If you
choose to do this, supply the new name instead of skeleton.properties in
the ant commands.

Troubleshooting the Cartridge Generation
This section discusses where to find information to help you resolve cartridge
generation issues.

Using an Alternate Directory Structure
If you are not using the standard directory structure to lay out all the configuration
policies, base cartridges and service cartridges being developed using the SDK, then
you must modify the Java sample build.xml file to ensure that all instances of sdkDir
are replaced with valid paths to the respective files. The preferred way to do this is to
set sdkDir to the top level directory for all the SDK-based artifacts.

Base Cartridge Generator Message Logging
The logging level of the cartridge generator can be controlled by editing the settings in
the SDK_home\config\logging.properties file.

The default is to log debug level messages. Output is sent to both stdout and a logging
file: SDK_home\logs\generator.log.

Troubleshooting Property File Attributes
If a mandatory attribute in the cartridge properties file is missing, source file generation
will terminate prematurely. Refer to the log file to ensure that mandatory values are
set. Lines such as:

Verify property set: propertyName propertyValue

indicate that the mandatory attribute named is being verified.

Lines such as:

Testing property: propertyName propertyValue

indicate that the propertyValue is being tested to ensure it compiles as a proper regular
expression. If propertyValue does not compile correctly, code generation does not
stop, but the following message is generated:

Testing property (suspicious pattern): sdk_testBadRegex_Pattern |)_+

Chapter 2
Generating Cartridge Source Files

2-14

Customizing the Cartridge Source Files
When creating your cartridges, you will need to make appropriate edits to the skeleton source
files to support the particular functionality you want to implement for your device.

The key cartridge source components you need to create and/or modify include:

• Device Model (DM) schema definition

• Service Model (SM) to Device Model transform

• Device Model validation

• Annotated Device Model to CLI transform

• Message (success/warning/error) pattern definitions

There are many other source file components you may need to create or modify including
files that support audit services, options, capabilities, and pre- and post-checks. These are
described later in this chapter.

Device Model Schema Definition
This device model extends the Network Processor's base device model to realize the new
services being administered by the cartridge.

Service Model to Device Model Transform
This XQuery or java transform transforms the device-independent service model to a device-
specific device model.

It is essential that the service model Definition IDs, which identify policy definitions, and
Association IDs, which identify the links between defined policies and their target objects and
their representative concretes in IP Service Activator, flow through from the service model to
the device model.

Device Model Validation
If the cartridge registry entry <dmValidation> contains a dmValidation entry, the Network
Processor will invoke this function to validate the transformed device model. This would
capture logical faults as opposed to syntax faults which would be caught by the device model
validation using deviceModel.xsd.

Annotated Device Model to CLI Transform
The Network Processor compares the target device model with the last device model that
was persisted to the database after the last successful push to the device. The Network
Processor annotates the target device model. For each policy object, the annotation includes
the smId, a dmId that is generated by the Network Processor and a changeType which
indicates whether configuration is being added, deleted or modified on the device.

The Network Processor invokes the <dmToCli> entry in the cartridge instance. This
transforms the annotated device model into a CLI document that is a list of native
configuration commands to be sent to the device.

Chapter 2
Customizing the Cartridge Source Files

2-15

Message Pattern Definitions
As part of the creation of a base cartridge, you will need to create success, error, and
warning message pattern files. This section explains how to analyze device responses
and create the appropriate entries in the message XML files.

For an overview of the concepts behind message files, refer to IP Service Activator
SDK Developer Overview Guide.

Device Response Analysis
To analyze the device's response to issued commands, the responses are matched
against known success, warning, and error patterns. Note the following:

• A response from the execution of a single command may include multiple
messages, and may be split across more than one line.

• The response is treated as a single line for pattern matching.

• In order to handle cases where responses match multiple types of response,
patterns, a comparison order is employed as follows:

– Success patterns are matched first. If the command response matches a
success pattern, the command response is a success response.

– If the command response does not match any success pattern, warning
patterns are matched. The command response may be a blocking or non-
blocking warning response.

– If the command response does not match any success pattern or warning
pattern, error patterns are matched. The command response may be an error
response, if a match is found, or unknown error response, if a match is not
found. The difference is that the fault message for a known error response will
include the message associated with the error pattern.

– If the command response does not match any success pattern, or warning
pattern, or error pattern, the response is considered an unknown error
response.

Example Device Response Pattern Match
This section contains an example of a response to a command which matches multiple
types of response patterns.

Command sent:

rate-limit output access-group 100 8000 2000 2000 conform-action set-mpls-exp-
transmit 0 exceed-action set-mpls-exp-transmit 1

Response received:

 Illegal normal burst size
 Increasing normal burst size to 4470
 Illegal extended burst size
 Increasing extended burst size to 4470
 "set-mpls-exp-imposition-transmit" and "set-mpls-exp-imposition-continue"
 not allowed in output rate-limit command.

Blocking warning pattern matched:

Chapter 2
Customizing the Cartridge Source Files

2-16

<!-- in theory, we could ignore this and continue. However, we receive the same
message when removing the policing rule. This means a user could see the warning,
correct the problem, and then see the warning return. -->
 <cmd:warningPattern blocking="true">
 <cmd:pattern>(?s).*Illegal .* burst size.*Increasing .* burst size.*</cmd:pattern>
 </cmd:warningPattern>
<cmd:warningPattern>

In this example the actual response pattern to match against the command response is:

(?s).*Illegal .* burst size.*Increasing .* burst size.*

The response also matches this unknown error response:

"set-mpls-exp-imposition-transmit" and "set-mpls-exp-imposition-continue"
 not allowed in output rate-limit command.

However, blocking warning patterns are matched first, so the outcome is:

Response is a blocking warning response.

Defining Device Response Patterns
As part of the base cartridge creation process, you must define the list of device command
response patterns. Valid response pattern files are in XML format and conform to the
cliModel.xsd schema.

Note:

Success, warning, and error response patterns are all defined as regular
expressions.

Defining Success Response Patterns
The location of the successMessages.xml file is referenced in the successMessages
element in each registry entry in the Registry.xml file.

To define success patterns:

1. Edit successMessages.xml and add success patterns as necessary, based on your
observations of responses received from the actual device when particular commands
are sent.

Success patterns are specified as regular expressions. For example, the following success
pattern contains a comment between <!-- and --> and a pattern which will match a response
containing the text QoS Reserved Bandwidth has been modified. Configuration may be
affected."

<cmd:successPattern>
 <!-- -undo qos reserved-bandwidth command being issued -->
 <cmd:pattern>(?s).*QoS Reserved Bandwidth has been modified. Configuration may be
affected.*</cmd:pattern>
</cmd:successPattern>

Chapter 2
Customizing the Cartridge Source Files

2-17

Defining Warning Response Patterns
The location of the warningMessages.xml file is referenced in the warningMessages
element in each registry entry in the Registry.xml file.

To define warning patterns:

1. Edit warningMessages.xml and add warning patterns as necessary.

A warning pattern is non-blocking by default.

For example:

<cmd:warningPattern>
 <cmd:pattern>(?s).*startup-config file open failed.*</cmd:pattern>
</cmd:warningPattern>

To define a warning pattern as blocking:

1. In the warning pattern definition, set blocking="true"

For example:

<cmd:warningPattern blocking="true">
 <cmd:pattern>(?s).*Illegal .* burst size.*Increasing .* burst size.*</
cmd:pattern>
 </cmd:warningPattern>
<cmd:warningPattern>

Defining Error Response Patterns
The location of the errorMessages.xml file is referenced in the errorMessages
element in each registry entry in the Registry.xml file.

To define error patterns:

1. Edit errorMessages.xml and add error patterns as necessary.

For example, the following error pattern contains a comment between <!-- and -->
and a pattern which will match a response containing the text Invalid input. The
fault message will include the rejected command and the message Invalid input
associated with the error pattern.

<cmd:errorPattern>
 <cmd:pattern>(?s).*Invalid input.*</cmd:pattern>
 <cmd:message>Invalid input</cmd:message>
</cmd:errorPattern>

Options
Using the options framework in IP Service Activator, you can customize the
configuration style for different device types and IOS combinations.

To do this, you define and document configuration options for a cartridge, and
implement the variations in the service model to device model transform, and the
annotated device model to CLI transform, based on the option values.

Option values for specific device type and IOS combinations are specified in option
configuration files, which are registered by cartridge units in the Registry.xml file. The

Chapter 2
Customizing the Cartridge Source Files

2-18

option configuration files, and the registry entries that reference them, may be customized by
the system administrator once the cartridge is deployed.

Defining Options
When you use the cartridge skeleton generator tool to generate the base cartridge source
files, a skeleton XML schema file named options.xsd is automatically created. This file
contains the schema for the cartridge configuration options. Occurrences of $
{sdk_global_cartridgename} are substituted with your cartridge's name in the resultant
options.xsd file.

Add configuration option definitions to an options file to handle such things as device
command format variants.

Using options.xsd as a starting point, create one configuration option file for each set of
device type, and IOS combinations for which the same set of option values are required. For
example, if option values correspond to command variants, then a configuration option file
defines the set of command variants for a set of device type and IOS combinations.

Configuration options defined in options.xsd include:

• Name: xml element name such as
cartridge.sdk_global_cartridgeName.sampleEnumerationOption

• Type: defines restrictions on the allowable values

• Default value: the value to be used if the option value is unspecified

Example option definition from options.xsd:

<xs:element name="cartridge.<sdk_global_cartridgeName>.sampleEnumerationOption"
minOccurs="0" default="value3">
 <xs:simpleType>
 <xs:restriction base="opt:StringValue">
 <xs:enumeration value="value1"/>
 <xs:enumeration value="value2"/>
 <xs:enumeration value="value3"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Document the details of the configuration options for the cartridge such that the options may
be configured at deployment time. For each option, this includes:

• The option name

• Possible values

• Default value

• The effect of setting the option values such as command variants

Registering Options
Option files for base cartridges are registered by cartridges in the Registry.xml file and
options files for service cartridges are registered in the Extension.xml file. A valid option
configuration file for a cartridge is in XML format and conforms to the cartridge options
schema.

Here is an example of an option configuration file which uses the options defined in the
sample options.xsd schema. Substitute the cartridge name for $

Chapter 2
Customizing the Cartridge Source Files

2-19

{sdk_global_cartridgeName}. In this example, value1 is set for
sampleEnumerationOption, and the default values defined for the remaining options
will be used.

<?xml version="1.0" encoding="UTF-8"?>
 <base:options xsi:type="CartridgeOptions" xmlns="http://www.metasolv.com/
serviceactivator/${sdk_global_cartridgeName}/options" xmlns:base="http://
www.metasolv.com/serviceactivator/options" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <cartridge.${sdk_global_cartridgeName}.sampleEnumerationOption>value1</
sampleEnumerationOption>
 </base:options>

To register an option configuration file, add a reference to it in the <options> entries in
the Registry.xml file.

Implementing Options
Variations in the service model to device model, and device model to CLI transforms
are implemented based on option values. For this purpose, the option values are
made available to the transforms at execution time. The options-common.xq module
in the networkprocessor.jar file can be imported by the XQuery modules
implementing the transforms, to provide methods for retrieving the option values.

To import options-common.xq:

1. Enter the following command syntax:

import module namespace options = "options-common-functions" at "resource://
metasolvcom/metasolv/serviceactivator/networkprocessor/xquerylib/options-
common.xq";

A sample XQuery code to retrieve sample option value (where value3 is the default
value) follows:

if (options:getStringOption("cartridge.$
{sdk_global_cartridgeName}.sampleEnumerationOption", "value3") = "value1") then
. . .

Customizing the Registry
When a cartridge is installed, by extracting it to the Service_Activator_home directory,
it creates a sample registry configuration directory under it such as
Service_Activator_home\Config\networkprocessor\ciscoSampleRegistry. The
name of the sample directory is sdk_global_cartridgeNameSampleRegistry. This
directory contains samples of the various configuration files that you may want or need
to customize.

One of the main files that you will need to edit, to customize any SDK registry entry, is
the customization registry file. A sample of this file exists in the sample directory. The
name of the file is sdk_global_cartridgeName.xml. To use the customization registry
file to customize the SDK registries, edit the file and then copy it to the directory
Service_Activator_home\Config\networkprocessor\Custom\Registries. The next
time the Network Processor is restarted, the customizations will override the
cartridge's registry entries.

The name of the file, as it exists in the
Service_Activator_home\Config\networkprocessor\Custom\Registries directory is

Chapter 2
Customizing the Cartridge Source Files

2-20

not actually important. It is the name field within the file that indicates which SDK registry the
customization will edit.

The customization file must conform to the cartridge.xsd schema.

Cisco Sample
A sample custom Cisco registry follows:

<?xml version="1.0" encoding="UTF-8"?>
<registry xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/serviceactivator/networkprocessor/
cartridgeregistry/ ../cartridge.xsd"
xmlns="http://www.metasolv.com/serviceactivator/networkprocessor/cartridgeregistry/">
 <customizations>
 <name>cisco</name>
 <audit>
 <auditTemplate>
 <auditTemplateEntry>
 <auditTemplateFile>com/metasolv/serviceactivator/
cartridges/cisco/units/cu1/audit/auditTemplate.xml</auditTemplateFile>
 <appliesTo>
 <deviceTypes useRegex="true">.*</deviceTypes>
 <osVersions useRegex="true">.*</osVersions>
 </appliesTo>
 </auditTemplateEntry>
 </auditTemplate>
 </audit>
 <messages>
 <success>com/metasolv/serviceactivator/cartridges/cisco/messages /
successMessages.xml</success>
 <warning>com/metasolv/serviceactivator/cartridges/cisco/ messages/
warningMessages.xml</warning>
 <error>com/metasolv/serviceactivator/ cartridges/cisco/messages /
errorMessages.xml</error>
 </messages>
 <capabilities>
 <capabilitiesEntry>
 <capsFile>com/metasolv/serviceactivator/cartridges /cisco/capabilities/
cisco_default.xml</capsFile>
 <appliesTo>
 <deviceTypes useRegex="true">Cisco.*</deviceTypes>
 <osVersions useRegex="true">.*</osVersions>
 </appliesTo>
 </capabilitiesEntry>
 </capabilities>
 <options>
 <optionsEntry>
 <optionsFile>com/metasolv/serviceactivator/cartridges/cisco/options/
cisco_options.xml</optionsFile>
 <appliesTo>
 <deviceTypes useRegex="true">Cisco.*</deviceTypes>
 <osVersions useRegex="true">.*</osVersions>
 </appliesTo>
 </optionsEntry>
 </options>
 </customizations>
</registry>
</registry>

Chapter 2
Customizing the Cartridge Source Files

2-21

Customization File Entries
The relevant parts of the customization file are:

• AuditTemplate

– Specifies a list of auditTemplateEntry. Each entry specifies an
auditTemplateFile and the deviceTypes and osVersions that the audit
template is to be used for.

– The auditTemplateFile specifies the path to the auditTemplate file relative to
the directory Service_Activator_home\Config\networkprocessor.

– When multiple auditTemplateEntry are specified, the first matching entry is
used for a device. For this reason, more specific device specifications should
be placed before less specific device specifications.

– When a custom auditTemplate entry is specified, it replaces all auditTemplate
entries that may have been specified in the default registry. The custom
entries are not merged with the default entries; they replace the default
entries.

• AuditQuery

– Specifies a list of auditQueryEntry. Each entry specifies an auditQueryFile
and the deviceTypes and osVersions that the audit query file is to be used
for.

– The auditQueryFile specifies the path to the auditQuery file relative to the
directory Service_Activator_home\Config\networkprocessor.

– When multiple auditQueryEntry are specified, the first matching entry is used
for a device. For this reason, more specific device specifications should be
placed before less specific device specifications.

– When a custom auditQuery entry is specified, it replaces all auditQuery entries
that may have been specified in the default registry. The custom entries are
not merged with the default entries; they replace the default entries.

– auditQuery is only be valid for specific cartridges.

• Success

– Specifies a custom success messages file. The path to the file is specified
relative to the directory Service_Activator_home\Config\networkprocessor.

• Warning

– Specifies a custom warning messages file. The path to the file is specified
relative to the directory Service_Activator_home\Config\networkprocessor.

• Error

– Specifies a custom error messages file. The path to the file is specified relative
to the directory Service_Activator_home\Config\networkprocessor.

• Capabilities

– Specifies a list of capabilitiesEntry. Each entry specifies a capabilitiesFile
and the deviceTypes and osVersions that the capabilities file is to be used
for.

– The capabilitiesFile specifies the path to the capabilities file relative to the
directory Service_Activator_home\Config\networkprocessor.

Chapter 2
Customizing the Cartridge Source Files

2-22

– When multiple capabilitiesEntry are specified, the first matching entry is used for a
device. For this reason, more specific device specifications should be placed before
less specific device specifications.

– When a custom capabilities entry is specified, it replaces all capabilities entries that
may have been specified in the default registry. The custom entries are not merged
with the default entries; they replace the default entries.

• Options

– Specifies a list of optionsEntry. Each entry specifies an optionsFile and the
deviceTypes and osVersions that the options file is to be used for.

– The optionsFile specifies the path to the options file relative to the directory
Service_Activator_home\Config\networkprocessor.

– When multiple optionsEntry are specified, the first matching entry is used for a
device. For this reason, more specific device specifications should be placed before
less specific device specifications.

– When a custom options entry is specified, it replaces all options entries that may
have been specified in the default registry. The custom entries are not merged with
the default entries; they replace the default entries.

Raising Faults
You can have your cartridge raise a fault to the Network Processor using the method
AddFaultByThreadAndAbort() which is part of the FaultCollector. This method raises a fault
and causes transformation to abort immediately.

The AddFaultByThreadAndAbort() method throws an AbortTransformException
exception.

Since this java exception is invoked in an XQuery, Saxon throws it to syserr. On UNIX, the
Network Processor shell script is modified to discard all syserr output.

Completing the Sample Cartridge Source Files
To complete the sample cartridge source files:

1. Do one of the following:

• Copy the files provided in SDK_home\samples\baseCartridge\cisco\ over their
counterparts in the generated source directory (SDK_home\baseCartridge\cisco\)

or

• Edit the generated sample source files to complete their content development.

The provided files demonstrate the edits required to complete the generated sample
source to produce a working sample base cartridge.

You can examine the contents of the sample files and by highlighting in some manner
(change bars, etc.), you can observe what was added, or modified to complete the
sample.

The files to be copied or edited are:

• successMessages.xml

• dm2cli-common.xq.xml

Chapter 2
Customizing the Cartridge Source Files

2-23

• auditTemplate.xml

Compiling the Cartridge
Base cartridge source files are compiled using ant. The compilation process creates
the required XML beans for the cartridge and packages them into a .zip file.

Note:

An existing CLASSPATH environment variable may interfere with the
CLASSPATH required by the SDK. It is therefore recommended that the
CLASSPATH environment variable be unset in the session where the SDK is
being used. For example:

set CLASSPATH=

To compile the cartridge:

1. Set the cartridge version string variable. For example, if the cartridge version is
1.0, on a Windows host, type the command:

set VERSION_STRING=1.0
2. Compile the ciscoBanner sample service cartridge source files using the following

command:

ant package -f SDK_home\baseCartridges\cisco\build.xml
3. Once you have completed editing your base cartridge source files, compile them

using the following command:

ant package -f SDK_home\baseCartridges\sdk_global_cartridgeName\build.xml

This results in the following additions to the cartridge directory structure:

SDK_home\baseCartridges\sdk_global_cartridgeName\
build.xml
AuditTrailsReports
beansrc
classes
lib
 sdk_global_cartridgeName.jar
 sdk_global_cartridgeNametests.jar
package
 sdk_global_cartridgeName-baseCartridge-${env.VERSION_STRING}.zip
 sdk_global_cartridgeName-baseCartridge-${env.VERSION_STRING}.manifest

Troubleshooting Cartridge Compilation
Compilation problems are caused by schema or XQuery errors. To debug these
problems, load the schema into an XML schema aware editor. This makes it much
easier to find and correct problems in the schema.

Chapter 2
Compiling the Cartridge

2-24

Manifest File
When an SDK cartridge is built, a manifest file is created listing all of the files that are
packaged into the cartridge zip file. Installation of the cartridge places the manifest file into
the uninstall directory of the IP Service Activator installation.

Implementing Pre- and Post-Checks
Pre- and post-checks provide the ability verify information on a device when the annotated
DM to CLI transform executes, before the general configuration is sent. This allows you to
confirm that prerequisites to the configuration are met.

After configuration is sent, you have the opportunity to have a post-check invoked to verify
some aspect of the commands that were sent to the device.

For further information on pre- and post-checks, see IP Service Activator SDK Developer
Overview Guide.

Testing in a Standalone Environment
Test scripts are created as part of the base cartridge skeleton generation process. For more
information, see "Generating Cartridge Source Files".

Unit Tests
The unit test is generated with the skeleton cartridge source files.

To run unit tests:

1. After you have compiled the cartridge, enter the following command:

ant unittests -f=SDK_home\baseCartridges\sdk_global_cartridgeName\build.xml
This runs tests which are intended to prove that the main transform stages of the cartridge
(i.e. service model to device model and annotated device model to CLI) will generate the
output documents correctly.

Device Tests
The device test is generated with the skeleton cartridge source files. Its configuration can be
modified after the skeleton has been generated. The device test configuration file is:

SDK_home\cartridges\sdk_global_cartridgeName\test\devicetests\DeviceTests.properties

DeviceTests.properties contains parameters for running the device test, including the host
to connect to and the userid and password.

To run device tests:

1. Enter the following command:

ant devicetests
SDK_home\cartridges\sdk_global_cartridgeName\test\devicetests\DeviceTests.propertie
s

Chapter 2
Testing in a Standalone Environment

2-25

The device tests validate that the login and prompt checks are correct for the actual
device. If any are incorrect, one of the following errors results:

• Incorrect login prompt

• Incorrect password prompt

• Timeout attempting to read the default prompt. This indicates a problem with the
promptMatchPattern

Note:

When managing a Cisco device with old alias information for
IpsaConfigVersion configured on the device, the device state changes to
Intervention Required due to IP Service Activator validation pre-check. If this
behavior is undesired during device testing, manually remove the alias
command from the device, delete the error message in the IP Service
Activator client, and re-commit the transaction.

Troubleshooting the Standalone Tests
Typical login and prompt problems include:

• Connectivity to the device.

If there are problems connecting to the device, ensure the device supports telnet
connections to the default port (23).

• If the command executor is unable to determine the login or password prompt,
ensure its regular expression matches the responses seen when logging in
manually.

• Timeouts waiting for prompts.

The command executor can time-out waiting for a prompt if the regular expression for
it is incorrect. Ensure the regular expression matches the device responses correctly.

Success/error message problems:

• Errors while sending commands.

If errors are encountered while sending commands, the device may be sending
responses that are not defined in the success messages file. This can apply to any
non-login command sent to the device. Any responses outside of the prompt that
are not defined in the success messages file are considered errors.

Testing in an IP Service Activator Environment
To run the cartridge in an IP Service Activator environment:

1. Unzip the cartridge file sdk_global_cartridgeName-baseCartridge-$
{env.VERSION_STRING}.zip to the runtime environment of the Network
Processor Network_Processor_home.

2. Restart the network processor to load sdk_global_cartridgeName.jar.

To observe the cartridge loading operation see:

Chapter 2
Testing in an IP Service Activator Environment

2-26

• Service_Activator_home\logs\networkProcessor.log

• Service_Activator_home\AuditTrails\npsdk_global_cartridgeName.log

Verification of Deployment
Once the Network Processor has started, it will raise information faults in the system
indicating each cartridge registered. The new base cartridge should be indicated. If this does
not happen, check the network processor log; it will contain the details on why the cartridge
was not loaded. If the log does not indicate the problem, check that the cartridge was
deployed to the correct location.

Free-form Testing Using CTM
If the CTM module is installed, it can be used to send commands to the base cartridge.

To configure CTM:

1. Find TABLE in database called XTM_DRIVER_TYPE

2. Add the name of your new cartridge's driverType to the list

For example, from the sqlplus command line:

insert into xtm_driver_type values (‘cisco');

Problem Isolation and Resolution
Problems with the base cartridge should fall into one of the following categories:

• Environmental/loading of the base cartridge

• Cartridge transform errors: if the transform has been customized, it must produce the
correct results. If not, this can cause configuration to be rejected and faults to be raised.

• Device discovery: ensure that the core IP Service Activator system can discover the
device. If the SNMP discovery works but the capabilities fetch fails, this can indicate the
cartridge is not registered for the correct device type/OS combination.

• Device access: ensure the correct session type (SSH/telnet) has been selected as well
as the correct userid and password. If problems persist, ensure the same prompts are
used in the device tests. These can be used to help isolate the problem.

• Command problems:

– The auditTrail log shows commands being sent to the device. Use the auditTrail log
to identify commands begin sent and whether or not they are being accepted.

– Attempt the same commands manually on the device. Take note of any responses
from the device. These may need to be added to the success messages for the
cartridges.

Audit Trail Logging
Audit trail logging records the commands sent to devices by the base cartridge, and any
service cartridges that extend the services of the base cartridge.

Chapter 2
Audit Trail Logging

2-27

Setting Audit Trail Logging Properties
The default audit logging properties are defined in auditLogging.properties in the
cartridge jar file.

Once the cartridge is deployed, the audit logging properties can be overridden by the
system administrator. For this purpose, the cartridge .zip file includes a copy of the
auditLogging.properties file in the vendor specific sampleRegistry directory located in:

Service_Activator_home\Config\networkProcessor\sdk_global_cartridgeNameSamp
leRegistry\auditLogging.properties

where sdk_global_cartridgeName is the name of the cartridge.

When the skeleton cartridge source files are generated, occurrences of
sdk_global_deviceNameLowerCase, as shown below in the source
auditLogging.properties template file, are replaced with value of the property
sdk_global_deviceName converted to all lowercase characters. The property
sdk_global_deviceName is a property in the skeleton.properties file. For example, if
sdk_global_deviceName=Cisco then cisco will be substituted for
sdk_global_deviceNameLowerCase in the output auditLogging.properties file.

To set different default values for the audit logging properties:

1. edit auditLogging.properties. For example:

Audit output
There are alternatives for file rollover.
#
The current default is to rollover a log when it reaches 8MB.

log4j.appender.sdk_global_deviceNameLowerCaseAudit=org.apache.log4j.RollingFi
leAppender
log4j.appender.sdk_global_deviceNameLowerCaseAudit.MaxFileSize=8MB
log4j.appender.sdk_global_deviceNameLowerCaseAudit.MaxBackupIndex=1
#
An alternative would be to rollover at the end of each day.
To do this, replace the 3 lines shown above with the following.

log4j.appender.sdk_global_deviceNameLowerCaseAudit=org.apache.log4j.DailyRoll
ingFileAppender
log4j.appender.sdk_global_deviceNameLowerCaseAudit.DatePattern='.'yyyy-MM-
dd
#
log4j.loggerFactory=com.metasolv.serviceactivator.util.logging.TraceLoggerFac
tory
log4j.logger.com.metasolv.serviceactivator.networkprocessor.AuditLogger.sdk_g
lobal_deviceNameLowerCase=info, sdk_global_deviceNameLowerCaseAudit
log4j.appender.sdk_global_deviceNameLowerCaseAudit=org.apache.log4j.RollingFi
leAppender
log4j.appender.sdk_global_deviceNameLowerCaseAudit.File=AuditTrails/
npsdk_global_cartridgeName.audit.log
log4j.appender.sdk_global_cdeviceNameLowerCaseAudit.MaxFileSize=8MB
log4j.appender.sdk_global_cdeviceNameLowerCaseAudit.MaxBackupIndex=1
log4j.appender.sdk_global_deviceNameLowerCaseAudit.layout=org.apache.log4j.Pa
tternLayout
log4j.appender.sdk_global_deviceNameLowerCaseAudit.layout.ConversionPattern=%
d{yyyy-MM-dd HH:mm:ss}%m%n

To override the default audit logging properties once the cartridge is deployed:

Chapter 2
Audit Trail Logging

2-28

1. Append the contents of auditLogging.properties found in the install directory at

Service_Activator_home\Config\networkProcessor\sdk_global_cartridgeNameSample
Registry\auditLogging.properties

to the logging.properties file located in

Service_Activator_home\Config\networkProcessor\com\metasolv\serviceactivator\ne
tworkprocessor\logging.properties

2. Adjust audit logging properties as necessary.

Adjusting the Audit Trail Logging Level
To change the audit trail logging level from debug to info:

1. Modify the line:

log4j.logger.com.metasolv.serviceactivator.networkprocessor.AuditLogger.sdk_global_
cartridgeName=debug, ${sdk_global_cartridgeName}Audit

to:

log4j.logger.com.metasolv.serviceactivator.networkprocessor.AuditLogger.sdk_global_
cartridgeName=info, sdk_global_cartridgeNameAudit

Adjusting the Audit Trail Log File Size and Number of Previous Versions
To change the audit log file size:

1. Modify the value of MaxFileSize. For Example:

 log4j.appender.sdk_global_cartridgeNameAudit.MaxFileSize=8MB
To change the number of previous versions of the audit log file:

1. Modify the value of MaxBackupIndex. For example:

log4j.appender.sdk_global_cartridgeNameAudit.MaxBackupIndex=1

Adjusting the Audit Trail Log File Rollover Strategy
IP Service Activator uses a rollover strategy to prevent log files from becoming too large.

To configure a log file to roll over when it reaches a specified size:

1. Use the following settings in the auditLogging.properties file:

log4j.appender.sdk_global_cartridgeNameAudit=org.apache.log4j.RollingFileAppender
log4j.appender.sdk_global_cartridgeNameAudit.MaxFileSize=8MB
log4j.appender.sdk_global_cartridgeNameAudit.MaxBackupIndex=1

To configure a log file to roll over at the end of each day:

1. Use the following settings in the auditLogging.properties file:

log4j.appender.sdk_global_cartridgeNameAudit=org.apache.log4j.DailyRollingFileAppen
der
log4j.appender.sdk_global_cartridgeNameAudit.DatePattern='.'yyyy-MM-dd

Chapter 2
Audit Trail Logging

2-29

Device Model Upgrades
Once a cartridge is constructed and deployed, it will carry with it a device model
version identifier (e.g 1.0). If a subsequent release of the cartridge is constructed
which involves a non-trivial device model change, then the device model version would
be incremented to 2.0, as an example, to distinguish it from the predecessor cartridge.

In order to deploy the updated cartridge into the production environment, an upgrade
path for any existing persisted device models is required.

The cartridge developer is responsible for identifying that a device model upgrade is
required, and if so:

• Updating the cartridge version

• Updating and unit testing the upgrade source code related to the modified device
model

The following sections describe this process in detail.

Identifying that a Device Model Upgrade is Required
Once a cartridge is deployed in production, a non-trivial change to the
devicemodel.xsd in the next version of the cartridge will require a custom upgrade
transform.

Examples of non-trivial changes are:

• You introduce mandatory elements

• You remove elements

• You completely modify an existing elements

• You reorder elements

Updating the Cartridge Version
When you create a cartridge, within the skeleton.properties file, the cartridge version
is set in the <sdk_cartridgeVersion> property. This cartridge version is used to identify
the version of the device model as seen in the cartridge file:

SDK_Home\basecartridges\cisco\src\com\metasolv\serviceactivator\cartridges\ci
sco\xquerylib\dm-version.xq

Increment the cartridge version whenever a significant change to the device model has
occurred which requires a non-trivial upgrade to an existing device model. For more
information about Device Model upgrades, see IP Service Activator SDK Developer
Overview Guide.

The cartridge version is set in the file dm-version.xq:

declare variable $dmver:version := "2.0";

The version format can be a, a.b, or a.b.c (i.e. major, major.minor, major.minor.sub-
minor), where a, b, c represent numeric values.

Chapter 2
Device Model Upgrades

2-30

Updating the Device Model Upgrade Transform
When you use the cartridge skeleton generator tool to generate the base cartridge source
files, a skeleton XQuery file called DmUpgrade.xq is automatically created.

To implement the upgrade transform:

1. Edit DmUpgrade.xq.

For example, if the device model has an existing element named 'myelement' which
requires an upgrade transform, implement the upgrade transform in DmUpgrade.xq as
follows:

(: -*- nxml -*- :)
 import module namespace dmver = "dm-<sdk_global_cartridgeName>-version" at "dm-
version.xq";

declare namespace dm="http://www.metasolv.com/serviceactivator/
<sdk_global_cartridgeName>";
 declare namespace lib="http://www.metasolv.com/serviceactivator/devicemodel";

<lib:device xsi:type="dm:<sdk_global_cartridgeName>Device" xmlns:dm="http://
www.metasolv.com/serviceactivator/<sdk_global_cartridgeName>">
 {
 dmver:getUpgradeAppInfo(),
 for $element in /lib:device/*
 return
 if (fn:local-name($element) = 'appInfo') then ()
 else if (fn:local-name($element) = 'myelement') then
 (: implement transform for 'myelement' here :)
 else $element
 }
</lib:device>

Unit Testing the Device Model Upgrade Transform
When you use the cartridge skeleton generator tool to generate the base cartridge source
files, a skeleton java file named DmUpgradeTests.java is automatically created. This file
contains the device model upgrade unit tests.

To test the upgrade transform for an existing element in the device model named 'myelement'
that requires an upgrade transform implemented in DmUpgrade.xq:

1. Create a sample device model XML file that includes data requiring an upgrade. In the
sample code below, the file is named sampleDeviceModel.xml.

2. Implement a test in DmUpgradeTests.java.

The test will load sampleDeviceModel.xml, transform the XML using the upgrade
transform, and use methods in BaseSdkTest to verify the resulting upgraded device
model, thereby validating the upgrade transform.

In the sample code below, the test method is named testUpgradeFromVersionX.

3. Run the unit tests using the following command syntax:

ant unittests SDK_home\cartridges\sdk_global_cartridgeNamebuild.xml
A code sample follows:

Chapter 2
Device Model Upgrades

2-31

 package ${sdk_global_package}.test;

 import com.metasolv.serviceactivator.sdk.test.TestUtilsInterface;
 import com.metasolv.serviceactivator.sdk.test.BaseSdkTest;
 import com.metasolv.serviceactivator.util.XmlUtil;
 import org.apache.xmlbeans.XmlObject;
 import java.io.File;

 public class DmUpgradeTests extends BaseSdkTest {
 static private final String testUpgradeFromPackageName = "$
{sdk_global_customPackage}/test/models/upgradeFrom";
 public static final String dmUpgradeTransform = "${sdk_global_customPackage}/
xquerylib/DmUpgrade.xq";
 static private final String upgradeFromDeviceModelXmlFile =
testUpgradeFromPackageName + "/sampleDeviceModel.xml";
 static private TestUtilsInterface testUtils = null;

 protected void setUp() throws Exception {
 testUtils = getTestUtils();
 }

 public void testUpgradeFromVersionX() throws Exception {
 XmlObject oldDm = loadXml(DmUpgradeTests.upgradeFromDeviceModelXmlFile);
 XmlObject upgradedDm = transform(oldDm, null,
DmUpgradeTests.dmUpgradeTransform, false);
 // System.out.println("Transformed:\n" + XmlUtil.bean2xml(upgradedDm));

 // use methods in BaseSdkTest to verify upgradedDm here
 }
 }

Network Processor NpUpgrade
DMUpgrade.xq is executed by the Network Processor when an upgrade procedure is
invoked.

Audit
Audit functionality is controlled by an audit template and an audit query file. The
names of these files are specified in the Registry.xml file.

The audit template file is used by the audit process for devices provisioned using a
command line interface (CLI).

The audit query file is used by the audit process for devices provisioned using an XML
interface. Different audit template and audit query files can be specified for different
device types and OS versions.

For complete details on audit, refer to IP Service Activator SDK Developer Overview
Guide.

Uninstalling Base Cartridges
Cartridges are uninstalled using the uninstallCartridge.sh script, which resides in the
bin directory of the IP Service Activator installation. This script takes the name of the
manifest file, which contains a list of all installed cartridge files, as a parameter, and
uses its contents to uninstall the cartridge. (See "Manifest File".)

Chapter 2
Audit

2-32

You can include the base directory of the IP Service Activator installation as a parameter to
the script. If you do not, the script queries the ORCHcore package to locate the base
directory of the IP Service Activator installation.

The uninstallCartridge.sh script sorts the manifest file in reverse order, then deletes files,
and then directories. Only empty directories are removed; this ensures that the script will not
remove directories used by other cartridges.

You can use a relative path to specify the manifest file, but it must be relative to the current
directory (where you are running the uninstall script from). You can also use an absolute path.
To verify that the manifest file is in the directory, use the command “ls<manifest>" using the
same value that is provided to the script.

To uninstall the base cartridge:

1. Enter the following command:

uninstallCartridge manifest_file [Service_Activator_Home] [-k | -v]

Use the -k option to leave empty directories. The -v (verbose) option produces extra
output from the script.

2. After the cartridge is uninstalled, restart the Network Processor.

Note:

Uninstalling a cartridge or configuration policy developed using the SDK does not
remove the Network Processor's device model entries that reference this cartridge
or configuration policy. This information is maintained because it is unknown
whether you are uninstalling the cartridge or configuration policy to remove it or to
upgrade it.

Removing a Generated Cartridge from the SDK
To remove a generated cartridge from the SDK installation:

1. Delete all contents under SDK_home\cartridges\sdk_global_cartridgeName.

Uninstalling the SDK
To uninstall the SDK:

1. Delete all contents under SDK_home.

Chapter 2
Uninstalling Base Cartridges

2-33

A
Base Cartridge Generation Properties

This appendix provides details on the parameters you can configure in the
skeleton.properties file used to generate base cartridge source files.

This file contains a number of properties that customize the generated base cartridge source.

Property names are of the form sdk_context_type and are composed of three parts:

• sdk: indicates an SDK variable

• context: describes of the context in which the variable applies

• type: indicates how the variable is being used, and may imply a restriction on the possible
values:

– If supported appears in the type, a boolean value should be entered.

– If pattern appears in the type, a regular expression (regex) pattern should be
entered.

– If prompt appears in the type, a device response should be entered in the form of a
regex pattern.

– If cmd appears in the type, a device specific command should be entered.

Boolean variables are validated to ensure that the values conform to boolean values (true or
false).

Regex patterns are validated to ensure that they can be compiled.

Note:

For certain regular expressions in the skeleton.properties file, it maybe necessary
to use an escape character to precede certain special characters in order for them
to be translated to the generated source code correctly. This is dependent on
whether you are using XQuery or Java based transforms. For example, many
regexes specifying prompt string matches appear in dm2cli-common.xq.

Table A-1 shows the naming and packaging properties.

Table A-1 Naming and Packaging Properties

Property Description Example

sdk_global_cartridgeName This is the cartridge name. This variable is used
throughout the cartridge code in generating file
names and source code variable names.

This property is mandatory.

cisco

A-1

Table A-1 (Cont.) Naming and Packaging Properties

Property Description Example

sdk_global_cartridgeVersion This is the cartridge version that is being
developed. It is used at run time to verify that a
device model is still valid in the event of an
upgrade of the cartridge.

This property is mandatory.

1.0

sdk_global_package This is the cartridge path in dotted notation used
for packaging. Its value is translated to a directory
structure for the source files path generation. The
value is used in build scripts, java source code and
support files.

The generated files are placed in:

SDK_home\baseCartridges\sdk_global_cartridge
Name\src\sdk_global_package

This property is mandatory.

com.metasolv.serviceac
tivator.cisco becomes
com\metasolv\servicect
ivator\cisco

Table A-2 shows the device type identification properties used in the JUnit test
environment.

Table A-2 Device Type Identification Properties

Property Description Example

sdk_global_deviceName Device name as it will be used with the Registry.xml
for which this cartridge is being constructed.

This property is a key property that is used to assign
the driverType value for this base cartridge. The
driverType value will be set to the value of this
property converted to all lowercase characters. For
more details about base cartridge Registry.xml, see
IP Service Activator SDK Developer Overview Guide
for more details.

This property is mandatory.

Cisco

sdk_global_deviceDescription Device description as it will be used with the Service
Model for which this cartridge is being constructed.

This property is mandatory.

Cisco Internetwork
Operating System
Software IOS (tm)
RSP Software (RSP-
PV-M), Version
12.2(8)T, RELEASE
SOFTWARE (fc2) TAC

sdk_global_deviceModel Device Model that this cartridge is being constructed
for. Used in Registry.xml and in the test environment.

This property is mandatory

2611

sdk_global_deviceVersion Device version that this cartridge is being constructed
for.

This property is mandatory.

12.2(11)T8

Table A-3 shows the Device Model schema properties.

Appendix A

A-2

Table A-3 Device Model Schema Properties

Property Description Example

sdk_deviceModel_namespace Target namespace of the device model schema for
this base cartridge.

This property is mandatory.

--

sdk_deviceModel_namespaceAbbr Abbreviation of the target namespace of the device
model schema for this base cartridge. This is used
as a namespace prefix.

This property is mandatory.

dmcisco

sdk_deviceModel_prefix A complex type with the name
sdk_deviceModel_prefixDevice which extends
BaseDevice will be generated in the deviceModel
schema for this base cartridge.

This property is mandatory.

Cisco becomes
CiscoDevice

Table A-4 shows the options schema properties.

Table A-4 Options Schema Properties

Property Description Example

sdk_options_namespace Target namespace of the options schema for this
service cartridge.

This property is mandatory.

--

sdk_options_namespaceAbbr Abbreviation of the target namespace of the
options schema for this cartridge. This is used as
a namespace prefix.

This property is mandatory.

ciscopt

Table A-5 shows the test environment properties.

Note:

Be aware of the final usage of properties and code appropriately - they could end
up in either dm2cli-common.xq or in java.

Table A-5 Test Environment Properties

Property Description Example

sdk_test_userName Login userid for device to be used in testing the
cartridge.

Note: TACACS access is only supported for testing.

This property is mandatory

userid

Appendix A

A-3

Table A-5 (Cont.) Test Environment Properties

Property Description Example

sdk_test_userPasswd Login password for device to be used in testing the
cartridge.

Note: TACACS access is only supported for testing.

This property is mandatory.

userPasswd

sdk_test_hostip IP address for the device to be used in testing the
cartridge.

This property is mandatory.

2.2.2.2

sdk_test_cmd A simple command to be used to determine if device
access is available.

This property is mandatory.

show run

sdk_test_matchPattern Pattern to match the general device prompt.

The sample matchPattern matches zero or more
characters with the exception of: >, #, or \n (newline),
and is followed by either one of > or #.

The group of characters preceding the > or # is the
hostname.

Note: You must use a syntax that conforms to java.

This property is mandatory.

([ˆ>#\\n]*)[>#]

sdk_test_prePendPattern Pattern that can prefix the general prompt.

The prepend pattern is prepended to the prompt
pattern. It should be used if the prompt has something
at its beginning that must be explicitly matched.

The sample prepend pattern matches \n (the newline
character).

Note: You must use a syntax that conforms to java.

This property is mandatory.

\\n

sdk_test_appendPattern Pattern to match the config t prompt.

The append pattern is appended to the prompt pattern.
It should be used if the prompt has something at its end
that must be explicitly matched.

The sample append pattern matches one of the
following:

>, #, or zero or more characters in parentheses followed
by #

Note: You must use a syntax that conforms to java.

This property is mandatory.

(([>#])|(\\\\(.*\\\
\)#))

Table A-6 shows the properties to support saving of the running configuration.

Table A-6 Properties to Support Saving of the Running Configuration

Property Description Example

sdk_saveRunningConfig_supported Boolean value to indicate if running config should
be saved to the device after each configuration
change.

This property is mandatory.

True

Appendix A

A-4

Table A-6 (Cont.) Properties to Support Saving of the Running Configuration

Property Description Example

sdk_saveRunningConfig_cmd Command to send to the device to save running
config.

This property is optional.

copy running-
config startu-
config

sdk_startUpSavedConfig_timeout Timeout in seconds for sdk_start command.

This property is optional.

600

Table A-7 shows the Audit properties.

Table A-7 Audit Properties

Property Description Example

sdk_audit_supported Command sent to the device to determine if device is
supported.

This property is mandatory

True

sdk_auditTerminalLengthZero_suppor
ted

Boolean value to indicate if the device needs to have
a command sent that sets the terminal length to 0.

This property is mandatory.

True

sdk_auditTerminalLengthZero_cmd Command to send to the device to set terminal length
to 0.

This property is optional.

terminal
length 0

sdk_auditShowRunningConfig_cmd Command to instruct the device to display all of the
running configuration

This property is optional.

show running-
config

sdk_auditShowRunningConfig_conditi
onalPrompt

Regular expression which matches the returned
running configuration - the successful response to
sdk_auditShowRunningConfig_cmd (see above).

The example matches multiple lines of text consisting
of any characters followed by the text end on a
separate line followed by zero or more characters.

This property is optional.

.*(?m)ˆend$.*

sdk_auditShowCommandsLogout_cm
d

Command to send to the device to log out after
executing sdk_auditshowRunningConfig_cmd.

This property is optional

Logout

sdk_auditShowCommandsLogout_con
ditionalPrompt

Regular expression to match the device's successful
response after executing the
sdk_auditShowCommandsLogout_cmd to logout
after displaying the running configuration.

The example matches any character zero or more
times

This property is optional.

.*

Table A-8 shows the Restore properties.

Appendix A

A-5

Table A-8 Restore Properties

Property Description Example

sdk_restore_supported Boolean value to indicate if the device supports the
ability to copy all configuration from a network server to
the device startup configuration.

This property is optional.

True

sdk_restore_copyTftpCmd Command to send to the device to copy all
configuration from a network server.

This property is optional.

copy tftp
startup-config

sdk_restore_copyTftpAddressProm
pt

Device prompt for the location after executing
sdk_restore_copyTftpCmd.

This property is optional.

.*Address or
name of remote
host.*

sdk_restore_copyTftpSourceFilePro
mpt

Device prompt for the source after executing
sdk_restore_copyTftpCmd
This property is optional.

.*Source
filename.*

sdk_restore_copyTftpDestinationFil
ePrompt

Device prompt for the destination after executing
sdk_restore_copyTftpCmd.

This property is optional.

.*Destination
filename.*

sdk_restore_copyTftpDestinationFil
eCmd

Destination to send to the device to set the destination
for the sdk_restore_copyTftpCmd command to be
the device startup configuration

This property is optional.

startup-config

sdk_restore_reloadCmd Command to send to the device to reload the operating
system after all configuration is restored to the startup
configuration.

This property is optional.

reload

sdk_restore_reloadPrompt Device prompt for confirmation to proceed with
reloading the operating system after executing
sdk_restore_reloadCmd.

This property is optional.

.*Proceed with
reload.*

sdk_restore_reloadConfirmationCm
d

Command to send to the device to confirm that the
reload should proceed after receiving the device
prompt sdk_restore_reloadPrompt.

This property is optional.

y

Table A-9 shows the properties for support of Network Processor DM synchronization
with the device.

Table A-9 Properties for Support of Network Processor DM Synchronization with the Device

Property Description Example

sdk_configversion_supported Boolean value to indicate if the cartridge should
support the ability to specify configuration
versions.

This property is mandatory

True

Appendix A

A-6

Table A-9 (Cont.) Properties for Support of Network Processor DM Synchronization with the
Device

Property Description Example

sdk_configversion_text The text that specifies the configuration version on
the device. When reading back the configuration
version, the configuration version is found by
searching for the variable's value.

This property is optional.

IpsaConfigVersion

sdk_configversion_updateCmd Prefix of the CLI command that updates the
configuration version on the device. The entire
command is formed by appending the
configuration version to it.

This propety is optional.

alias exec
IpsaConfigVersion

sdk_configversion_removeCm
d

Prefix of the CLI command that removes the
configuration version from the device. The entire
command is formed by appending the
configuration version to it.

This property is optional.

no alias execc
IpsaConfigVersion

sdk_configversion_showCmd The CLI command that retrieves the configuration
version from the device. The result from this
command is expected to be a single line which
among other tokens must contain the
configuration version.

This property is optional.

show aliases exec |
include
IpsaConfigVersion

sdk_configversion_extractCmd This is a regular expression that when applied
against to the result from
sdk_configversion_showCmd must match, so
that its first group is bound to the configuration
version string.

This property is optional

IpsaConfigVersion +(.+)

Table A-10 shows Prompt Matching properties.

Table A-10 Prompt Matching Properties

Property Description Example

sdk_getConfiguration_matchPattern Pattern to match the general device prompt.

Note: You must use syntax that conforms with
XM

This property is optional.

([ˆ>#\\n]*)
[>#]

sdk_getConfiguration_prePendPatter
n

Pattern that can prefix the general prompt.

Note: You must use syntax that conforms with
XML.

This property is optional.

\\n

sdk_getConfiguration_appendPatter
n

Pattern to match the config t prompt

Note: You must use syntax that conforms with
XML.

This property is optional.

(([>#])|(\\(.*\
\)#))

Appendix A

A-7

Table A-10 (Cont.) Prompt Matching Properties

Property Description Example

sdk_getConfiguration_errorPattern Prompt from device if login failed.

This property is optional.

.*Username:

sdk_getConfiguration_hostPattern Pattern to match the hostname within the
prompt

Note: You must use syntax that conforms with
XML.

This property is optional.

[\\w\\.\\-]+

Table A-11 shows the TACACS authentication support properties.

Table A-11 TACACS Authentication Support Properties

Property Description Example

sdk_authenticationTacacs_support
ed

Boolean value to indicate if cartridge is to support
this type of login access to device.

This property is mandatory.

True

sdk_authenticationTacacs_useridP
rompt

Prompt from device to enter userid.

This property is optional.

.*Username:

sdk_authenticationTacacs_passwd
Prompt

Prompt from device to enter password.

This property is optional.

.*Password:

sdk_authenticationTacacs_errorPr
ompt

Prompt from device if userid or password is bad.

This property is optional.

.*Username:

sdk_authenticationTacacs_enable
PasswdPrompt

Prompt from device to enter enable userid if
applicable.

This property is optional.

.+

sdk_authenticationTacacs_enable
PasswdPasswdPrompt

Prompt from device to enter enable password if
applicable.

This property is optional.

.*Password:

sdk_authenticationTacacs_enable
PasswdErrorPrompt

Prompt from device if enable userid\password is
bad.

This property is optional.

.*Bad secrets

Table A-12 shows the SSH authentication support properties.

Table A-12 SSH Authentication Support Properties

Property Description Example

sdk_authenticationSsh_supported Boolean value to indicate if cartridge is to support this
type of login access to device.

This property is mandatory.

True

sdk_authenticationSsh_useridPrompt Prompt from device to enter userid.

This property is optional.

.+

Appendix A

A-8

Table A-12 (Cont.) SSH Authentication Support Properties

Property Description Example

sdk_authenticationSsh_passwdPrompt Prompt from device to enter password.

This property is optional.

.*Password:

sdk_authenticationSsh_enablePasswdEr
rorPrompt

Prompt from device if enable password is bad.

This property is optional.

.*Bad
secrets

Table A-13 shows anonymous authentication support properties.

Table A-13 Anonymous Authentication Support Properties

Property Description Example

sdk_authenticationAnonymous_supported Boolean value to indicate if cartridge is to
support this type of login access to device.

This property is mandatory.

True

sdk_authenticationAnonymous_passwdPrompt Prompt from device to enter password.

This property is optional.

.*Password:

sdk_authenticationAnonymous_useridPrompt Prompt from device to enter the userid.

This property is optional.

.+

sdk_authenticationAnonymous_enablePasswdP
rompt

Prompt from device to enter enable password
if applicable.

This property is optional.

.*Password:

sdk_authenticationAnonymous_enablePasswdE
rrorPrompt

Prompt from device if enable password is
bad.

This property is optional.

.*Bad secrets

Table A-14 shows the password only authentication support properties.

Table A-14 Password Only Authentication Support Properties

Property Description Example

sdk_authenticationPasswordOnly_suppor
ted

Boolean value to indicate if cartridge is to
support this type of login access to device.

This property is mandatory.

True

sdk_authenticationPasswordOnly_passw
dPrompt

Prompt from device to enter password.

This property is optional.

.*Password:

Note:

You must set at least one of the
sdk_authenticationauthentication_style_supported parameters from to true.

Table A-15 shows the logout properties.

Appendix A

A-9

Table A-15 Logout Properties

Property Description Example

sdk_logoutCommand_cmd Command to exit the device session. Exit

Table A-16 shows the configuration behavior properties.

Table A-16 Configuration Behavior Properties

Property Definition Example

sdk_configMode_retryNum Property to tell the network processor how many times to retry a
command.

This property is mandatory.

2

sdk_configMode_waitTime Property to tell the network processor how long to wait to see if a
command is successful or not.

This property is mandatory.

20

sdk_configMode_cmd Command to enter the device config entry mode.

This property is optional.

config

sdk_configModeTerminate_cmd Command to exit the device config entry mode.

This property is optional.

end

sdk_testBadRegex_Pattern This property is not used in the generated skeleton files. It is for
testing the SkeletonGenerator to determine if bad regexes are
being caught. You can remove the property from the file if desired.

This property is optional.

|)_*

Appendix A

A-10

B
Generated Skeleton Base Cartridge Source
Files

This appendix describes the generated base cartridge source files.

About the Generated Skeleton Base Cartridge Source Files
The directory, SDK_home\samples\baseCartridge\sdk_global_cartridgeName
\skeleton.properties, contains the list of editable properties that control base cartridge
construction. For example, SDK_home\samples\baseCartridge\cisco\skeleton.properties
contains the list of editable properties that control the base cartridge construction for the
sample Cisco base Cartridge. This skeleton.properties file is fully populated and can be
used to construct a Cisco demonstration cartridge.

To generate the sample base cartridge source files using the data from the skeleton
properties file:

1. Go to the SDK directory:

cd SDK_home
2. Do one of the following:

• Run the included batch file to run the cartridge generator script:

genbc samples\baseCartridge\cisco\skeleton.properties

or

• Type in the command to run the cartridge generator script:

ant -DtemplateType=baseCartridge -
DpropFile=SDK_home\samples\baseCartridge\cisco\skeleton.properties

Note:

to use the batch file, you must first add SDK_home\bin to your PATH variable
where SDK_home is the directory where the SDK was installed (typically
C:\Program Files\Oracle Communications\IP Service Activator\ipsaSDK).

This results in the following directory structure:

 SDK_home
 logs
 generator.log
 baseCartridges
 sdk_global_cartridgeName
 build.xml
 src
 synonyms.xml

B-1

 <sdk_global_package> (com)
 <sdk_global_package> (.metasolv)
 <sdk_global_package> (..serviceactivator)
 <sdk_global_package> (...cartridges)
 <sdk_global_package> (....cisco)
 audit
 auditTemplate.xml
 capabilities
 empty_caps.xml
 messages
 errorMessages.xml
 successMessages.xml
 warningMessages.xml
 options
 options.xsd
 schema
 devicemodel.xsd
 test
 devicetests
 DeviceAccessTests.java
 DeviceTests.properties
 models
 sampleServiceModel.xml
 upgradeFrom
 sampleDeviceModel.xml
 DMUpgradeTests.java
 transformUnitTests.java
 transforms
 annotatedDm2Cli.xq
 dm2cli-precheck.xq
 dm-validation.xq
 restoreTemplate.xml
 sm2dm.xq
 xquerylib
 dm2cli-common.xq
 dmUpgrade.xq
 dm-version.xq
 sm2dm-common.xq
 precheck-cfg-version.xq
 auditLogging.properties
 Customization.xml
 Registry.xml

Generated Skeleton Base Cartridge Source File Details
Table B-1 shows the details for the generated skeleton base cartridge source file.

Table B-1 Generated Base Cartridge Source File Details

Component File Description

synonyms.xml This file is used to identify the synonyms for configuration commands that are
displayed in a different manner after coming back from a device. Specifying a
synonym for a command enables the audit functionality to correctly determine if a
configuration command sent to the device is equivalent to the command coming back
from the device. This file is coordinated with content in auditTemplate.xml.

Appendix B
Generated Skeleton Base Cartridge Source File Details

B-2

Table B-1 (Cont.) Generated Base Cartridge Source File Details

Component File Description

auditTemplate.xml This file is used to identify each and every command pattern that could be sent to the
device. This file is used by the audit mechanism to filter out commands that are not
administered by the cartridge.

auditLogging.properties This file is used to control the following attributes of the cartridge auditTrail log:

• filename
• rollover strategy
• debug level

Registry.xml This file is used to register cartridges with the Network Processor. When the Network
Processor executes a configuration change on a particular device, it finds the
cartridge that administers the device in question through the registration process.

Customization.xml This file is used to override the Registry.xml and serves as a sample.

empty_caps.xml This file is a aample capabilities file. Capabilities provide privileges to the device and
its subordinate interfaces to support various policies. The sample, being empty, will
provide no capabilities to the device and it subordinate interfaces. The user needs to
provide capability entries in order to provide privileges to the device during the IP
Service Activator device discovery process.

errorMessages.xml This file contains error patterns for commands generated by the base cartridge. If the
response from the device matches one of the known error patterns, then a fault
(Error) is raised against the device itself, all the concretes affected by that
transaction are rejected and the partially implemented configuration is rolled back.

warningMessages.xml This file contains warning patterns (blocking or non-blocking) for commands
generated by the base cartridge. If the response from the device matches a non-
blocking warning pattern, a fault (Warning) is raised. If the response from the device
matches a blocking warning pattern, a fault is raised, and all concretes affected by
that transaction are rejected and the partially implemented configuration is rolled
back.

successMessages.xml This file contains success patterns for commands generated by the base cartridge. If
the device response to sending a command matches a success pattern, or there is no
response at all (only a prompt), then the command is considered successful.

options.xsd This file is a XML schema file that defines the base options elements and types. The
cartridge developer must extend this schema with their own cartridge specific options
schema. A sample options document is provided when the cartridge generation tool
executed.

deviceModel.xsd This file is an extension of the base_deviceModel.xsd owned by the network
processor framework. The deviceModel.xsd is owned by the cartridge and can be
edited to add content to enable the support of new services that the cartridge will be
administering.

DeviceTest.properties This file contains properties used by the device tests. This file can be edited after the
generation of skeleton file.

DeviceAccessTests.java This file is a java class that tests the device connectivity.

sampleServiceModel.xml This file is a sample service model used for JUnit testing by
TransformUnitTesting.java and is an instance of a run time service model.

sampleDeviceModel.xml This file is a sample device model used by DMUpgradeTests.java.

Appendix B
Generated Skeleton Base Cartridge Source File Details

B-3

Table B-1 (Cont.) Generated Base Cartridge Source File Details

Component File Description

TransformUnitTests.java • method testBasicServiceModelToDeviceModelTransform: tests the ability
to transform the sampleServiceModel to a proper deviceModel

• method testBasicDeviceModelToCommandDocumentAddTransform: tests
the ability to transform the deviceModel to a proper cliDocument which is adding
cmds to the device

• method testBasicDeviceModelToCommandDocumentDeleteTransform:
tests the ability to transform the deviceModel to a proper cliDocument which is
deleting cmds from the device

DMUpgradeTests.java This file is used for testing cartridge upgrade scenarios.

sm2dm.xq This file contains the XQuery source code that transforms a service model to a device
model.

annotatedDM2Cli.xq This file contains the XQuery source code that transforms an annotated device model
to a CLI document.

dm2cli-precheck.xq This file contains the XQuery source code that performs pre-check functionality, which
is used by the annotatedDM2Cli.xq.

dmValidation.xq This file contains the XQuery source code providing the ability to raise fault to the
system console.

sm2dm-common.xq This file contains the XQuery source code used to support sm2dm.xq.

dm2cli-common.xq This file contains the XQuery source code used to support annoatedDM2Cli.xq.

dmUpgrade.xq This file contains the XQuery source code used to support executing a DM upgrade if
cartridge DM has been enhanced.

dm-version.xq This file contains the XQuery source code used to identify which cartridge version is
in use.

precheck-cfg-version.xq This file contains the XQuery source code used to write version information to the
device in order to ensure that the network processor device model is in sync with the
device.

Appendix B
Generated Skeleton Base Cartridge Source File Details

B-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Base Cartridge Guide Overview
	Developing Base Cartridges with the SDK
	Core Cartridges
	Vendor Cartridges

	SDK Installation
	Additional Documentation

	2 Building Base Cartridges
	Building a Base Cartridge
	Creating a Base Cartridge Source Directory and Skeleton Properties File
	Performing Device Characterization and Customizing the Skeleton Properties File
	Generating Cartridge Source Files
	Customizing the Cartridge Source Files
	Compiling and Packaging the Cartridge
	Performing Standalone Tests
	Performing End-to-End Tests

	About the Provided Sample Base Cartridge
	Components of the Provided Sample Base Cartridge
	Completing the Sample
	Purpose of the Provided Sample Base Cartridge
	Sample Skeleton Properties File

	Creating a Base Cartridge Source Directory and Skeleton Properties File
	Performing Device Characterization and Editing the Skeleton Properties File
	Discovery Method
	External Discovery

	Access: Logging In
	Logging In
	Logging Out

	Configuration Mode
	Prompt Matching
	Audit Commands
	Saving the Running Configuration
	Configuration Version
	SkeletonGeneratorProperties

	Generating Cartridge Source Files
	Generating the Sample Base Cartridge Source Files
	Result of Generation Process

	Generating Your Base Cartridge Source Files
	Result of the Generation Process

	Troubleshooting the Cartridge Generation
	Using an Alternate Directory Structure
	Base Cartridge Generator Message Logging
	Troubleshooting Property File Attributes

	Customizing the Cartridge Source Files
	Device Model Schema Definition
	Service Model to Device Model Transform
	Device Model Validation
	Annotated Device Model to CLI Transform
	Message Pattern Definitions
	Device Response Analysis
	Example Device Response Pattern Match

	Defining Device Response Patterns
	Defining Success Response Patterns
	Defining Warning Response Patterns
	Defining Error Response Patterns

	Options
	Defining Options
	Registering Options
	Implementing Options

	Customizing the Registry
	Cisco Sample
	Customization File Entries

	Raising Faults
	Completing the Sample Cartridge Source Files

	Compiling the Cartridge
	Troubleshooting Cartridge Compilation
	Manifest File
	Implementing Pre- and Post-Checks

	Testing in a Standalone Environment
	Unit Tests
	Device Tests
	Troubleshooting the Standalone Tests

	Testing in an IP Service Activator Environment
	Verification of Deployment
	Free-form Testing Using CTM
	Problem Isolation and Resolution

	Audit Trail Logging
	Setting Audit Trail Logging Properties
	Adjusting the Audit Trail Logging Level
	Adjusting the Audit Trail Log File Size and Number of Previous Versions
	Adjusting the Audit Trail Log File Rollover Strategy

	Device Model Upgrades
	Identifying that a Device Model Upgrade is Required
	Updating the Cartridge Version
	Updating the Device Model Upgrade Transform
	Unit Testing the Device Model Upgrade Transform
	Network Processor NpUpgrade

	Audit
	Uninstalling Base Cartridges
	Removing a Generated Cartridge from the SDK
	Uninstalling the SDK

	A Base Cartridge Generation Properties
	B Generated Skeleton Base Cartridge Source Files
	About the Generated Skeleton Base Cartridge Source Files
	Generated Skeleton Base Cartridge Source File Details

