
Oracle® Communications MetaSolv
Solution
Custom Extensions Developer's Reference

Release 6.3.1
F28688-02
November 2022

Oracle Communications MetaSolv Solution Custom Extensions Developer's Reference, Release 6.3.1

F28688-02

Copyright © 2017, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

Diversity and Inclusion x

1 Extensions Overview

About Custom Extensions 1-1

Extensions 1-1

Execution Points 1-1

Building Block 1-2

Process Point 1-2

Action Type 1-2

Extension Logic 1-2

Invocation Methods 1-2

MetaSolv Solution UI 1-4

Web Service Clients 1-4

CORBA API Clients 1-4

Polling Servers 1-4

Polling Servers and Supported Execution Points 1-4

2 Defining An Extension

Defining an Extension in the UI 2-1

Type of Extension 2-1

Name of Extension 2-1

Execution Mode 2-2

Associating an Execution Point With an Extension 2-2

Defining the Extension Parameters 2-2

Configuring an Extension 2-2

Configuring Gateway.ini 2-2

Additional Configurations 2-3

iii

Invoking an Extension 2-3

3 Identifying An Execution Point

Component Options 3-1

Building Block Options 3-1

Process Point Options 3-2

Action Type Options 3-3

Component Combinations 3-4

4 Coding The Extension Logic

Inheriting From the Extension Framework 4-1

Accessing Data Passed From the Execution Point 4-1

Overview 4-1

Class Details 4-2

Policy Class 4-2

Entity Class 4-2

A Supported Execution Points

Execution Points A-2

Assign Queues A-3

Business Example A-3

Execution Point Definition A-3

Data Passed / Data Returned A-3

UI Invocation A-4

WebService API Invocation A-4

CORBA API Invocation A-4

Assign Task Jeopardy A-4

Business Example A-4

Execution Point Definition A-5

Data Passed A-5

UI Invocation A-5

WebService API Invocation A-5

CORBA API Invocation A-5

Change Task Completion Date A-6

Business Example A-6

Execution Point Definition A-6

Data Passed A-6

UI Invocation A-6

WebService API Invocation A-7

iv

CORBA API Invocation A-7

Complete Task A-7

Business Example A-7

Execution Point Definition A-7

Data Passed A-7

UI Invocation A-8

WebService API Invocation A-8

CORBA API Invocation A-8

Additional Invocations A-8

Generate Tasks A-8

Business Example A-8

Execution Point Definition A-9

Data Passed A-9

UI Invocation A-9

WebService API Invocation A-9

CORBA API Invocation A-10

Late Task A-10

Business Example A-10

Execution Point Definition A-10

Data Passed A-10

UI Invocation A-11

WebService API Invocation A-11

CORBA API Invocation A-11

Additional Invocations A-11

Potentially Late Task A-11

Business Example A-12

Execution Point Definition A-12

Data Passed A-12

UI Invocation A-12

WebService API Invocation A-13

CORBA API Invocation A-13

Additional Invocations A-13

Provisioning Plan Default A-13

Business Example A-13

Execution Point Definition A-13

Data Passed / Data Returned A-13

UI Invocation A-14

WebService API Invocation A-14

CORBA API Invocation A-14

Reject Task A-14

Business Example A-14

v

Execution Point Definition A-15

Data Passed A-15

UI Invocation A-15

WebService API Invocation A-15

CORBA API Invocation A-15

System Task Failure A-16

Business Example A-16

Execution Point Definition A-16

Data Passed A-16

UI Invocation A-17

WebService API Invocation A-17

CORBA API Invocation A-17

Additional Invocations A-17

Gateway Event Failure A-17

Business Example A-17

Execution Point Definition A-17

Data Passed A-18

UI Invocation A-18

WebService API Invocation A-18

CORBA API Invocation A-19

Additional Invocations A-19

Email CLR/DLR/TCO A-19

Business Example A-19

Execution Point Definition A-20

Data Passed A-20

UI Invocation A-20

WebService API Invocation A-20

CORBA API Invocation A-20

Additional invocations A-20

Select Port Address A-20

Business Example A-21

Execution Point Definition A-21

Data Passed / Data Returned A-21

UI Invocation A-22

WebService API Invocation A-22

CORBA API Invocation A-22

Additional invocations A-22

Select Component or Element for Physical Connection A-22

Business Example A-23

Execution Point Definition A-23

Data Passed / Data Returned A-23

vi

UI Invocation A-24

WebService API Invocation A-24

CORBA API Invocation A-24

Additional invocations A-24

Select Component or Element for Virtual Connection A-24

Business Example A-24

Execution Point Definition A-24

Data Passed / Data Returned A-25

Returned data validation A-25

UI Invocation A-26

WebService API Invocation A-26

CORBA API Invocation A-26

Additional invocations A-26

Select Network System A-26

Business Example A-26

Execution Point Definition A-27

Data Passed / Data Returned A-27

Returned data validation A-28

UI Invocation A-28

WebService API Invocation A-28

CORBA API Invocation A-28

Additional invocations A-28

Select Customer Edge Component A-28

Business Example A-29

Execution Point Definition A-29

Data Passed / Data Returned A-29

Returned data validation A-30

UI Invocation A-30

WebService API Invocation A-30

CORBA API Invocation A-30

Additional invocations A-30

Select End Component For Physical Connection A-31

Business Example A-31

Execution Point Definition A-31

Data Passed / Data Returned A-31

Returned data validation A-32

UI Invocation A-32

WebService API Invocation A-32

CORBA API Invocation A-33

Additional invocations A-33

Select Equipment For CE A-33

vii

Business Example A-33

Execution Point Definition A-33

Data Passed / Data Returned A-33

Returned data validation A-34

UI Invocation A-34

WebService API Invocation A-34

CORBA API Invocation A-34

Additional invocations A-34

DS0/DS1 Automated Design A-35

Business Example A-35

Execution Point Definition A-35

Data Passed / Data Returned A-35

Returned data validation A-36

UI Invocation A-36

WebService API Invocation A-36

CORBA API Invocation A-36

Additional Invocations A-36

Connection Id Automation A-36

Business Example A-37

Execution Point Definition A-37

Data Passed / Data Returned A-37

Returned Data Validation A-37

UI Invocation A-38

WebService API Invocation A-38

CORBA API Invocation A-38

Additional invocations A-38

Select Dedicated Plant A-38

Business Example A-39

Execution Point Definition A-39

Data Passed / Data Returned A-39

Returned data validation A-40

UI Invocation A-40

WebService API Invocation A-41

CORBA API Invocation A-41

Additional Invocations A-41

Create/Update End User Location A-41

Business Example A-42

Execution Point Definition A-43

Data Passed / Data Returned A-43

Returned data validation A-46

UI Invocation A-46

viii

WebService API Invocation A-51

CORBA API Invocation A-51

B Extensions Sample Code

Using Sample Code as a Reference for Best Practices B-1

Exception Handling B-1

E-mail Notification B-1

CORBA API Invocation B-1

Running the Sample Code B-1

AssignWorkQueues B-2

ProvPlanDefault B-3

ExtensionFrameworkOneWayTest B-4

SampleExtensionException B-4

InvokeCorbaAPIExtension B-5

SelectComponent B-6

SelectPort B-7

SelectComponentForVirtual B-8

SelectNetworkSystemForNetDesign B-9

SelectCustEdgeCompForNetDesign B-10

SelectConnectionEndPoints B-12

SelectCustEdgeEquipForNetDesign B-14

DS0/DS1 Automated Design B-16

ConnectionIdAutomation B-26

DedicatedPlantSelection B-32

Create/Update End User Location B-33

Sample Address Validation Return Data Format B-35

ix

Preface

This document explains how to extend the Oracle Communications MetaSolv Solution
(MSS) business logic with custom business through the use of custom extensions.

Audience
This document is for individuals who are responsible for developing software to
integrate an external application with MSS. This document assumes the reader has a
working knowledge of Oracle Database, Oracle WebLogic Server, and Java JEE.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Extensions Overview

This chapter provides basic information about custom extensions and how you can use them
to invoke API calls and send messages that support your business processes.

About Custom Extensions
A custom extension enables you to extend Oracle Communications MetaSolv Solution
functionality with additional business logic specific to your organization. In other words,
extensions provide the ability to make calls to external systems and to send email and JMS
messages at predefined execution points, over and above the functionality supported by the
MetaSolv Solution application and APIs.

You can develop custom extensions that simply send data to another system, or that send
and receive data. An extension that sends data and does not expect a response from an
external system is called asynchronous. An example of an asynchronous extension is an
email message. You may choose to develop an asynchronous extension that sends an email
when a particular process or event occurs in MetaSolv Solution.

An extension that sends data and expects a response from an external system is called
synchronous. An example of an execution point that can be used to develop a synchronous
extension is Assign Queues. You may choose to develop a synchronous extension that
executes a custom Java class when a particular process occurs in MetaSolv Solution. The
Java class executes as its own transaction, separate from the process that initiated it.

Developing a custom extension involves several tasks. These tasks, listed below, appear in a
conceptual order to help you understand extensions. In reality, these tasks would probably be
performed by different people, and at varying times.

1. Define the extension.

2. Identify execution points.

3. Code the extension logic.

Extensions
The first step in developing a custom extension is to define the extension in the MetaSolv
Solution user interface (UI). The extension name that you define is the name of the Java
class that will contain your custom logic.

Execution Points
The second step in developing a custom extension is to define the point at which you want
the custom extension logic to execute; that is, the process or action that triggers the
invocation of your custom code. You define this execution point by identifying three key
pieces of information:

• Building Block

1-1

• Process Point

• Action Type

Building Block
A building block type is a predefined item in MetaSolv Solution, such as a gateway
event, with which you can associate an extension. Building blocks further describe
building block types. For example, using the building block type of Gateway Event
enables you to associate an extension with a gateway event. You then further define
this item by selecting the building block of All Gateway Events. This means you can
associate the extension with all gateway events, as opposed to specific events.

Process Point
A process point describes general processing that takes place in MetaSolv Solution,
for example, gateway event maintenance. To continue with the example used for
building blocks, you can associate a process point of GW (gateway) Event
Maintenance with the extension. This means the extension logic is triggered when
MetaSolv Solution processes some type of gateway event maintenance.

Like building blocks, process points are predefined in MetaSolv Solution.

Action Type
An action type is a specific task or process that takes place in MetaSolv Solution.
When you associate an action type with an extension, you are identifying the specific
action that triggers the extension logic to execute for a particular extension. To
conclude the previous example, you can associate the action type of GW (gateway)
Event Failed with the extension. This means the extension logic is triggered when
MetaSolv Solution processes a gateway event and it fails to successfully complete.

Like building blocks and process points, action types are predefined in MetaSolv
Solution.

Extension Logic
The next step in developing a custom extension is to code a free-form Java class that
provides additional functionality to support your business processes. As examples, you
can code a Java class to:

• Make calls to external systems

• Send email notifications

• Send JMS messages

• Invoke other MetaSolv Solution API calls

Invocation Methods
This section is not listed as a step in the above "About Custom Extensions" because
identifying the execution points is what defines the invocation methods. Therefore, this
is not actually a step that you need to perform. However, it is important to understand
the information contained in this section, so it is included in the overview because it

Chapter 1
Extension Logic

1-2

addresses, at a high level, how custom extension logic is invoked. See "Supported Execution
Points" for specific information regarding invocations for supported execution points.

After you define the extension, associate the execution point, and code the logic for your
custom extension, it is invoked from one or more of the places listed below. The invocations
are dependent upon the execution points associated with your extension.

• MetaSolv Solution UI

• Web Service Clients

• CORBA API Clients

• Polling Servers

Figure 1-1 shows the architecture of MetaSolv Solution and how the various system
components interact to support custom extension functionality.

Figure 1-1 Architecture Supporting Extension Functionality

Chapter 1
Invocation Methods

1-3

MetaSolv Solution UI
You can invoke extension logic through the UI when the specified action, defined by an
execution point (combination of building block, process point, and action type), occurs.
For example, a user assigning a jeopardy code to a task is a specific action that can
invoke an extension, if that action is defined as an execution point. Specifically, you
would choose the execution point combines the building block type of Task Type,
process point of Task Maintenance, and action type of Assign Jeopardy.

Web Service Clients
You can invoke extension logic through a call to an WebService API method when the
specified action, defined by an execution point (combination of building block, process
point, and action type), occurs. For example, a third party calling the
addTaskJeopardyRequest method to assign a jeopardy code to a task is a specific
action that can invoke an extension, if that action is defined as an execution point.
Specifically, you would choose the execution point that combines the building block
type of Task Type, process point of Task Maintenance, and action type of Assign
Jeopardy.

CORBA API Clients
You can invoke extension logic through a call to a CORBA API method when the
specified action, defined by an execution point (combination of building block, process
point, and action type), occurs. For example, a third party calling the
deleteTaskJeopardy method to remove a jeopardy code from a task is a specific action
that can invoke an extension, if that action is defined as an execution point.
Specifically, you would choose the execution point that combines the building block
type of Task Type, process point of Task Maintenance, and action type of Assign
Jeopardy.

Polling Servers
You can invoke extension logic through polling servers as well. These servers, which
need to be configured in the gateway.ini file, are listed on the following page. See
"Additional Configurations" for detailed information regarding these configurations.

Polling servers can invoke extension logic if the action of the polling server is defined
as an execution point. For example, a task that is defined as a system task with a task
execution point of Ready is automatically picked up by the System Task Server when
the task status becomes Ready. If the task completion logic that runs on the server
fails, extension logic can be invoked if it defines that as an execution point.
Specifically, you would choose the execution point that combines the building block
type of Task Type, process point of Task Maintenance, and action type of System Task
Failure.

Polling Servers and Supported Execution Points
The following polling servers can invoke an extension that is defined with the specified
execution points. See "Supported Execution Points" for more information about the
supported execution points.

• Background Processor

Chapter 1
Invocation Methods

1-4

– System Task Failure

• Gateway Event Server

– Gateway Event Failure

• Integration Server

– Gateway Event Failure

– Late Task

– Potentially Late Task

• System Task Server

– System Task Failure

Note:

The Background Processor is not a Java-based polling server. Rather, it is
a PowerBuilder application that runs in the background.

Chapter 1
Invocation Methods

1-5

2
Defining An Extension

This chapter explains how to define a custom extension in the user interface (UI). Online Help
for defining an extension is available in the help topics listed below.

Open the online Help and type the following window or procedure names in the Search field:

• Extensions window

• Extension Summary window

• Extension Parameters window

• Opening the Extension Summary window

• Creating a new Extension

• Editing an existing Extension

• Deleting an existing Extension

• Associating an Execution Point to an Extension

• Disassociating an Execution Point from an Extension

• Editing an Extension Parameter

• Filtering the Extensions list

Defining an Extension in the UI
For specific UI instructions on how to define the extension, see the online Help procedures
Creating a new Extension, Associating a Process Point to an Extension, and Editing an
Extension Parameter.

Type of Extension
When defining an extension, you must select the Type from a drop-down. The following types
display in the drop-down, which is defaulted to Logic.

• Logic

Logic is the only type of extension that is supported at this time. Logic extensions define
associated execution points that, when triggered, invoke the custom extension logic Java
class defined by the extension name.

• Viewable

Viewable extensions are not supported at this time.

Name of Extension
When defining an extension, you must define the name of the extension. The name of the
extension is the name of the Java class that is to be invoked when an associated execution
point is triggered. When naming your extension, be sure to follow Java class naming

2-1

standards such as starting with an upper case letter, using upper and lower case
letters to distinguish words, no spaces, etc. Also, do not include the .java file type
extension in the name of the extension. For example, if you are defining an extension
to call the Java class MySpecificLogic.java, name the extension MySpecificLogic.

Execution Mode
When defining an extension, you must select the Execution Mode from a drop-down.
The following execution modes display in the drop-down, which is defaulted to
Synchronous.

• Synchronous

A synchronous extension executes and returns specified data. The calling process
must wait for the extension to finish before continuing.

• Asynchronous

An asynchronous extension executes and does not return any data, allowing
processing to continue without waiting for the extension to finish.

Associating an Execution Point With an Extension
When defining an extension, you must associate one or more execution points with the
extension. Execution points are predefined combinations of a building block, process
point, and action type. These execution points have "hooks" in the code that, when
triggered, invoke the extension Java class. See "Identifying An Execution Point" for
more information.

Defining the Extension Parameters
When defining an extension, the parameter IDs and their corresponding default names
are displayed on the Extension Parameters window. The types of extension
parameters are predefined for each execution point, such as String, int, etc. The
corresponding default parameter names may be edited so that is has meaning to your
particular usage of it.

Configuring an Extension
This section describes how to configure a custom extension in the gateway.ini file and
additional information regarding configuration requirements.

Configuring Gateway.ini
To enable custom extensions, the following changes must be made in the gateway.ini
file located in the MSLV_Home/server/appserver/gateway directory, where
MSLV_Home is the directory in which the MetaSolv Solution software is installed and
server is the name of the WebLogic server.

Specifying the CLASSPATH tells the framework where to find your custom extension
Java class, which must reside in the path specified in the gateway.ini.

1. Save a copy of the gateway.ini file.

2. Open the original gateway.ini file for editing.

Chapter 2
Configuring an Extension

2-2

3. Add the following line at the end of [Custom] section within the file. (If your gateway.ini
file does not have the [Custom] section, you need to add it.)

• For Windows operating systems

CLASSPATH=MSLV_Home/server/appserver/samples/customExtension;

• For Unix operating systems

CLASSPATH=MSLV_Home//server//appserver//samples//customExtension;

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

4. Save and close the file.

Additional Configurations
See MetaSolv Solution Installation Guide for more information on the configuration
requirements for using custom extensions.

Note:

You need to manually modify the loggingconfig.xml file and integration.XML file
to avoid encountering an error that appears on your Appserver console.
Additionally, when using custom extensions, you must manually modify the
gateway.ini file. See MetaSolv Solution Installation Guide for more information.

If you have performed a full installation, these configurations are already in place. The
configurations described in MetaSolv Solution Installation Guide need to be set up only if you
have upgraded from a release prior to 6.0.12.

Note:

Regarding step 3 in "Configuring Gateway.ini", a full installation puts the classpath
for custom extensions in the gateway.ini file, but you still need to specify the
correct path to your server. For an upgrade, you need to add the classpath for
custom extensions to gateway.ini file as well as specify the correct path to your
server.

Invoking an Extension
Certain execution points are invoked by polling servers. See "Polling Servers" for more
information. Three of these servers are Java-based servers that need to run as part of the
appserver. This is accomplished by configuring the gateway.ini file to define the appropriate
servers within the [Servers] section as follows:

• Gateway Event Server

EVENTPROC=MetaSolv.eventServer.S3Startup

Chapter 2
Invoking an Extension

2-3

• Integration Server

INTEGRATIONSERVER=com.mslv.integration.integrationServer.S3Startup

• System Task Server

SYSTEMTASKSERVERPROC=com.mslv.core.api.internal.WM.systemTaskServer.
SystemTaskServer

The remaining server, the Background Processor, is not part of the appserver and,
therefore, is not configured through the gateway.ini file. To start the background
processor, run jmaster.exe located in the MSS directory.

Chapter 2
Invoking an Extension

2-4

3
Identifying An Execution Point

This chapter explains how to identify an execution point. Once identified, you can then
associate execution points with an extension. See "Defining An Extension" for more
information. Online Help for identifying execution points is available in the help topics listed
below.

Open the online Help and type the following window or procedure names in the Search field:

• Execution Point Search and Results window

• Execution Points window

• Searching for an Execution Point

• Toggling between Execution Point Search and Results

• Filtering the Execution Points list

Component Options
An execution point is defined by a combination of three components: its building block,
process point, and action type. Oracle Communications MetaSolv Solution predefines a
number of options for each of these components, along with the combinations of options that
represent valid execution points. This section describes the options that are available for
each component.

Building Block Options
Building blocks are grouped into building block types. Both building blocks and building block
types are MetaSolv Solution defined data. The following table lists building block types that
appear in the drop-down list on the Execution Point Search window.

Building block type options:

• Task Type

• Gateway Event

• Connection

• Network System

• Address

Table 3-1 lists the building blocks defined by MetaSolv Solution that can be used with
extensions. The building blocks available for selection depend on the building block type
chosen. The building block ID, an Oracle generated number, is included in the information
because it is part of the data that is passed from an execution point to an extension Java
class.

3-1

Table 3-1 Building Block Options

Building block Building block ID

All Task Types 1001

All Gateway Events 1002

[specific task type] [depends on task type]

All Connections 409

All Network Systems 410

All End User Locations -

Specific task types are user defined data stored on the TASK_TYPE table. To support
the Complete Task execution point for individual task types, the building block id field
(ms_bb_id) was added to the TASK_TYPE table. A row is inserted into the
TASK_TYPE table when a new task type is created in Work Management. However,
the ms_bb_id field is not populated with the row insertion, rather, it is populated when
the task is selected from the Name list in the Execution Point Search window. The
Name list displays all task types when you select Task Type in the Building Block
Type list.

Note:

This document does not provide the building block ids for each task type
because they are based on user data. Building block ids are not displayed in
the application, therefore, they must be manually looked up on the
TASK_TYPE table.

Process Point Options
Table 3-2 lists the process points defined by MetaSolv Solution that can be used with
extensions. The process points available for selection depend on the building block
chosen. The process point ID, an Oracle generated number, is included in the
information because it is part of the data that is passed from an execution point to an
extension Java class.

Table 3-2 Process Point Options

Process point Process point ID

Task Generation 1

Task Maintenance 101

GW Event Maintenance 102

PCONDES Maintenance 103

VCONDES Maintenance 105

Network System Design 107

Connection Design 108

Chapter 3
Component Options

3-2

Table 3-2 (Cont.) Process Point Options

Process point Process point ID

Print 140

EUL Maintenance 123

PSR 124

Action Type Options
Table 3-3 lists the action types defined by MetaSolv Solution that can be used with
extensions. The action types available for selection depend on the process point chosen.The
action type ID, an Oracle generated number, is included in the information because it is part
of the data that is passed from an execution point to an extension Java class.

Table 3-3 Action Type Options

Action type Action type ID

Generate 32

Assign Jeopardy 41

Reject 42

Assign Queues 43

Change Completion Date 44

System Task Failure 45

Late 46

Potentially Late 47

GW Event Failure 51

Provision Plan Default 52

Complete 53

Select Component or Element 54

Select Port Address 55

Email 56

Select Network System 60

Select Customer Edge Component 61

Select End Component For Physical Connection 62

Select Equipment For CE 63

DS0/DS1 Automated Design 70

Connection Id Automation 71

Select Dedicated Plant -

Update 91

Create 92

Chapter 3
Component Options

3-3

Component Combinations
As explained in each of the previous component sections, there are dependencies
between the components. Specifically, action types are dependent on process points,
which are dependent on building blocks, which are dependent on building block types.

Table 3-4 shows the current valid combinations that result from these dependencies.
For example, if you choose a building block type of Task Type, your only choice of
building block is currently All Task Types. If you then choose the process point of Task
Generation, your only action type choices are Generate or Provision Plan Default.

Table 3-4 Valid Combinations

Building block
type

Building block Process point Action type

Task Type All Task Types Task Generation • Generate
• Provision Plan Default

Task Type All Task Types Task Maintenance • Assign Jeopardy
• Reject
• Assign Queues
• Change Completion

Date
• System Task Failure
• Late
• Potentially Late
• Complete

Task Type [specific task type] Task Maintenance • Complete

Gateway Event All Gateway Events GW Event Maintenance • GW Event Failed

Connection All Connections Print • Email

Connection All Connections PCONDES Maintenance • Select Component or
Element

• Select Port Address
• Select Dedicated

Plant

Connection All Connections VCONDES Maintenance • Select Component or
Element

Connection All Connections Connection Design • DS0/DS1 Automated
Design

• Connection Id
Automation

• Select Dedicated
Plant

Network System All Network
Systems

Network System Design • Select Network
System

• Select Customer
Edge Component

• Select End
Component For
Physical Connection

• Select Equipment For
CE

Chapter 3
Component Combinations

3-4

Table 3-4 (Cont.) Valid Combinations

Building block
type

Building block Process point Action type

Address All End User
Locations

PSR • Create
• Update

Address All End User
Locations

EUL Maintenance • Create
• Update

Chapter 3
Component Combinations

3-5

4
Coding The Extension Logic

This chapter provides information about coding the extension Java class. Sample code is
provided with your installation of Oracle Communications MetaSolv Solution, and the sample
code provides concrete code examples of extension Java classes. See "Extensions Sample
Code " for detailed information about the sample code.

Inheriting From the Extension Framework
All extension Java classes must extend the extension framework through the class
ExtensionRoot located in the package com.metasolv.custom.common.extension.
Extending the extension framework is necessary to access the data passed from the
execution point. Therefore, all new extension Java classes should contain the following lines
of code, or some derivation of them:

import com.metasolv.custom.common.extension.ExtensionRoot
public class MyExtension extends ExtensionRoot

A derivation of the code could be that the extension Java class directly, or indirectly, extends
ExtensionRoot. For example, all of the sample source code extends SampleExtensionRoot
rather than ExtensionRoot. That is because SampleExtensionRoot extends ExtensionRoot,
adding a middle layer to the inheritance that provides common functionality used by all the
sample classes. You may wish to create a similar class, or even use the
SampleExtensionRoot class, depending on what you are developing.

All of the sample source code implements the class Extension. This is really not necessary
because ExtensionRoot implements Extension. Therefore, by inheritance, any class that
extends ExtensionRoot implements Extension.

Accessing Data Passed From the Execution Point
This section provides an overview about methods of accessing data passed from the
execution point, and provides class details.

Overview
Extension Java classes cannot define input parameters. Rather, data passed from the
execution point can be accessed by the extension Java class through the extension
framework. Specifically, the class ExtensionRoot defines the following methods:

protected final Policy getPolicy()
protected final Entity[] getParameter()

Though these methods are defined as protected, they are available to the extension Java
class because it inherits from the class in which the methods are defined (ExtensionRoot).
From these two methods, the following data can be retrieved:

• Execution mode

4-1

The execution mode tells you if the execution point that invoked the extension
class is defined as synchronous or asynchronous. This information was entered in
the UI when defining the extension.

• Execution point

The execution point tells you the point at which the extension class was invoked.
This information is passed in the form of building block ID, process point ID, and
action type ID. The unique combination defines a specific execution point such as
Assign Queues or Reject Task.

• Execution point data

The execution point data is the specific data that is associated with each
supported execution point. This information is passed in the form of a name/value
pair array. See "Supported Execution Points" for the specific data that is passed
from each execution point.

Class Details
This section provides details about the policy and entity class.

Policy Class
As mentioned in the "Overview" section, the method getPolicy() returns Policy.
However, it actually returns an instance of the class PlugInPolicy, which extends
Policy. Therefore, you can caste the returned Policy to PlugInPolicy, which makes an
instance of the class PlugInPolicy available to the extension Java class.

The class PlugInPolicy defines the following methods:

public String getExecutionMode();
public PlugInExecutionPoint getExecutionPoint();

Calling the method getExecutionMode() from the extension Java class returns a String
that indicates if the execution mode is synchronous or asynchronous. Calling the
method getExecutionPoint() returns an instance of the class PlugInExecutionPoint.

The class PlugInExecutionPoint defines the following methods:

int getBuildingBlock();
int getProcessPoint();
int getActionType();

Calling these methods returns the combination of building block ID, process point ID,
and action type ID that defines an execution point. See "Supported Execution Points"
for more information.

Entity Class
As mentioned in the "Overview" section, the method getParameter() returns an Array
of Entity classes. Another class, ExtensionData, extends the class Entity. Since
ExtensionData is a child of Entity, Entity can be casted to ExtensionData. Casting
Entity to ExtensionData makes the Array of ExtensionData available to the extension
Java class.

The class ExtensionData defines the following method:

public NameValuePair[] getNameValuePairs()

Chapter 4
Accessing Data Passed From the Execution Point

4-2

Calling this method from the extension Java class returns an Array of NameValuePair
classes. The name/value pairs represent the specific data that is defined for each supported
execution point. See "Supported Execution Points" for more information.

Finally, the class NameValuePair defines the following methods:

public String getName();
public String[] getValue();

Calling these methods returns the String name and the String values. It is important to note
that all value data is of type String.

Chapter 4
Accessing Data Passed From the Execution Point

4-3

A
Supported Execution Points

The preceding chapters described what custom extensions are and how to create them. As
mentioned earlier, Oracle Communications MetaSolv Solution predefines the components
used to define execution points: the building blocks, process points, and action types. This
means there are specific execution points that are available for your use.

In addition to predefining "Component Combinations" associated with each execution point,
MetaSolv Solution provides functionality that supports the invocation of a custom extension
Java class for each valid combination. This functionality includes:

• "Hooks" that are triggered by an execution point. These "hooks" call the extension
framework, which determines what extension class to invoke based on which extensions
the execution point is associated with.

• Parameters for each execution point. The parameters are used to pass data that is
pertinent to the execution point to the extension class. This data is then available to the
extension class and can be used to code your specific business logic.

The supported execution points are listed in Table A-1. The execution points are grouped by
building block, and ordered alphabetically. The number of supported execution points
correlates to the number of valid component combinations, and the execution point names
correlate to the action type of each valid combination.

Table A-1 Supported Execution Points

Building Block Execution Point

Task • Assign Queues
• Assign Task Jeopardy
• Change Task Completion Date
• Complete Task
• Generate Tasks
• Late Task
• Potentially Late Task
• Provisioning Plan Default
• Reject Task
• System Task Failure

Gateway Event Gateway Event Failure

Connection • Email CLR/DLR/TCO
• Select Port Address
• Select Component or Element for Physical Connection
• Select Component or Element for Virtual Connection
• DS0/DS1 Automated Design
• Connection Id Automation
• Select Dedicated Plant

Network System • Select Network System
• Select Customer Edge Component
• Select End Component For Physical Connection
• Select Equipment For CE

A-1

Table A-1 (Cont.) Supported Execution Points

Building Block Execution Point

Address • Create
• Update

This appendix provides detailed information for each supported execution point, which
includes:

• A brief description of the execution point.

• A business example of how you might use the execution point.

• The options you should choose when searching for the execution point to
associate it with an extension.

• The data that is sent from the execution point to the extension Java class, and, in
the case of a synchronous call, the data that is returned from the extension Java
class to the execution point. The data is housed in an Array of name/value pairs.
All value data in the name/value pair is of type String.

• How the extension Java class is invoked by the execution point, whether it is by
the UI, web services, CORBA APIs, or polling servers.

Execution Points
This section provides information about the following execution points:

• Assign Queues

• Assign Task Jeopardy

• Change Task Completion Date

• Complete Task

• Generate Tasks

• Late Task

• Potentially Late Task

• Provisioning Plan Default

• Reject Task

• System Task Failure

• Gateway Event Failure

• Email CLR/DLR/TCO

• Select Port Address

• Select Component or Element for Physical Connection

• Select Component or Element for Virtual Connection

• Select Network System

• Select Customer Edge Component

• Select End Component For Physical Connection

Appendix A
Execution Points

A-2

• Select Equipment For CE

• DS0/DS1 Automated Design

• Connection Id Automation

• Select Dedicated Plant

• Create/Update End User Location

Assign Queues
MetaSolv Solution provides the ability to assign a provisioning plan to an order. A
provisioning plan defines tasks, and assigns work queues to the tasks within the provisioning
plan. This execution point enables you to extend logic in the way the work queues are
assigned to tasks within a provisioning plan when tasks are generated for an order.

Business Example
You built provisioning plans and assigned default work queues to the tasks in every plan.
However, for a specific task type, you would like to do the following:

• Assign it to the ABC queue at certain hours of the day, depending on the workload.

• Assign it to the XYZ queue at certain hours of the day, depending on the workload.

• Send an email notification to the owner of each work queue when a task is assigned to
them.

You can use the Assign Queues execution point to extend logic to accomplish those tasks.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-2
when searching for an execution point to associate with the extension:

Table A-2 Assign Queues Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Assign Queues (43)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-3 shows the data that is passed to the extension Java class.

Appendix A
Execution Points

A-3

Table A-3 Assign Queues Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task type Array taskType

Task number Array taskId

Table A-4 shows the data that is returned by the extension Java class.

Table A-4 Assign Queues Name/Value Pair Return Data

Data Description Data Name

Work queue ID Array workQueueId

The work queue ID Array is returned in the same order as the input Arrays of task
types and corresponding task numbers.

UI Invocation
After you assign a provisioning plan to an order, you click the Queues button to assign
the tasks to the appropriate work queues. The execution point is triggered when you
click the Queues button on the Task List tab of the Tasks window.

When you click the Queues button, the task list is sent to the extension. The data
received back populates the Work Queue field for each task. This logic overrides the
default work queues that were assigned to the provisioning plan when it was
established. However, you can still select a different work queue for any or all tasks,
should you need to do so after the extension logic executes.

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

OrderManagement - > assignProvisionPlanProcedureRequest

CORBA API Invocation
The CORBA API method through which the Java class extension is invoked is:

WorkManagement -> generateAndSaveTasks

Assign Task Jeopardy
MetaSolv Solution provides the ability to add, change, and delete jeopardy information
for tasks. This execution point enables you to extend logic that executes when
jeopardy information on a task changes (in the form of add, change, or delete).

Business Example
You assigned a provisioning plan and, from your Work Queue, set up a jeopardy code
on a task. The task ends up going into jeopardy. When the jeopardy status changes,

Appendix A
Execution Points

A-4

the extension logic executes and sends an email notification to the appropriate person
regarding the task jeopardy status.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-5
when searching for an execution point to associate with the extension.

Table A-5 Assign Task Jeopardy Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Assign Jeopardy (41)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension Java class.

Table A-6 shows the data passed to the extension Java class.

Table A-6 Assign Task Jeopardy Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task type taskType

Task number taskId

Work Queue ID workQueueId

UI Invocation
From the Work Queue window, select a task, right-click, and select Jeopardy Status. This
opens the Task Jeopardy Codes window where jeopardy codes can be added, changed, or
deleted. Click OK or the Apply button to trigger the Assign Task Jeopardy execution point.

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

OrderManagement > addTaskJeopardyRequest

CORBA API Invocation
The CORBA API methods through which the Java class extension is invoked are:

• Work Management > addTaskJeopardy

• Work Management > deleteTaskJeopardy

Appendix A
Execution Points

A-5

• Work Management > updateTaskJeopardy

Change Task Completion Date
MetaSolv Solution provides the ability to change a task due date. This execution point
enables you to extend logic that executes when a task due date is changed.

Business Example
You entered an order, assigned a provisioning plan, and then supplemented the order
to change the due date. The extension logic executes and sends an email notification
to the appropriate person regarding the task due date change.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in
Table A-7 when searching for an execution point to associate with the extension.

Table A-7 Change Task Completion Date Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Change Completion Date (44)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from
the extension Java class.

Table A-8 shows the data passed to the extension Java class.

Table A-8 Change Task Completion Date Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task Type taskType

Task number taskId

Work Queue ID workQueueId

New revised completion date newRevisedCompletionDate

UI Invocation
From the Work Queue window, select a task, right-click, and select Service Request
Tasks. This opens the Task List tab of the Tasks window, where task due dates can
be changed. Click OK or the Apply button to trigger the Change Task Completion
Date execution point, which only executes if any task due dates were actually
changed.

Appendix A
Execution Points

A-6

Additionally, you can supplement an order to bring up the Tasks window where task due
dates can be changed.

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

Order Management > processSuppOrder

CORBA API Invocation
The Change Task Completion Date execution point is not triggered by the CORBA API.

Complete Task
MetaSolv Solution provides the ability to complete a task assigned to an order. This execution
point enables you to extend logic that executes when a task completes, either manually from
the UI or automatically from the System Task Server.

Business Example
You entered a PSR order and assigned a provisioning plan comprised of three tasks. The
second task is defined as an execution point and associated to an extension. When the task
completes, the extension logic executes and sends an email notification to the appropriate
person regarding the task completion.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shows in Table A-9
when searching for an execution point to associate with the extension.

Table A-9 Complete Task Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

or

[specific task type] (dynamic)

Process Point Task Maintenance (101)

Action Type Complete (53)

Data Passed
This is required to be a synchronous call because existing logic must know if the extension
logic executed successfully before continuing. While no task related data needs to be
returned from the extension Java class, it must indicate success or failure.

Table A-10 shows the data passed to the extension Java class.

Appendix A
Execution Points

A-7

Table A-10 Complete Task Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task number taskId

UI Invocation
From the Work Queue window within Work Management, select a task, right-click and
select Complete. The extension logic executes after the task completion logic runs
successfully, but before the commit. If the task completion logic fails, the extension
logic does not execute. If the extension logic fails, the task does not complete and a
rollback occurs.

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

Order Management > updateOrderManagementRequest

The updateOrderManagementRequest method defines a choice of input structures. To
complete a task, use the input structure CompleteTaskProcedureValue.

CORBA API Invocation
The CORBA API methods through which the Java class extension is invoked are:

• Work Management > completeTask

• Work Management > completeTaskOnDate

Additional Invocations
This execution point can also be triggered by the System Task Server for cases where
the task is defined as a System Task.

For this to occur, the System Task Server must be configured to run on the appserver.
See "Invoking an Extension" for specific configuration information.

Generate Tasks
MetaSolv Solution provides the ability to generate tasks for an order. This execution
point enables you to extend logic that executes after tasks are generated. Order
management also provides the ability to split a PSR order, a process that also
generates tasks for the new order created as a result of the split. This execution point
also enables you to extend logic that executes after tasks are generated as a result of
a split.

Business Example
You entered a PSR order and assigned a provisioning plan. Two of the service items
on the order are delayed, and you split the order so the remaining items can be
completed. When the order is split, tasks are generated for the new order that is

Appendix A
Execution Points

A-8

created as a result of the split. The extension logic executes and sends an email notification
to the appropriate person regarding the tasks being generated due to the split. Both the
original order and the split order information is made available to the extension.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-11
when searching for an execution point to associate with the extension.

Table A-11 Generate Tasks Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Generation (1)

Action Type Generate (32)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension Java class.

Table A-12 shows the data passed to the extension Java class.

Table A-12 Generate Tasks Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Split document number splitDocumentNumber

The document is always passed to the extension Java class, but the split document number
may or may not be passed, depending on what triggered the task generation. If a split order
triggered the task generation, then the split document number, in addition to the document
number, is passed to the extension Java class.

UI Invocation
From the Product Service Request window within Order Management, select Options from
the menu bar, and then select Task Generation Maintenance. This opens the Plan
Selection tab of the Tasks window. Select a provisioning plan from the list. Click the Task
List tab, and select work queues for each task. Click OK or the Apply button to trigger the
Generate Tasks execution point, which happens immediately following the creation of the
tasks for the order.

WebService API Invocation
The Generate Tasks execution point is not triggered by the WebService API.

Appendix A
Execution Points

A-9

CORBA API Invocation
The Generate Tasks execution point is not triggered by the CORBA API.

Late Task
MetaSolv Solution considers a task late when the current GMT date is greater than the
revised completion date on the task. This execution point enables you to extend logic
that executes when a task becomes late.

This execution point is triggered only once when the task is determined to be late. It
may be triggered again if the revised completion date is updated on the task. There
are new fields on the Task table that indicate if an extension has been invoked.

At the point you define this extension, there could be a large number of late tasks
already existing in the database. Invoking this extension for each of these tasks can
affect system performance. You can manage the system load by modifying the setup
values in the integration.xml file. The maxThreads should always be set to 1.
However, the queueMaxCapacity can be lowered and the dbPollingInterval increased
to allow breaks in the system processing so the late task extensions can be invoked.
The following excerpt from the integeration.xml file illustrates this concept:

<LateTaskExtensionEvent event_name="LateTaskExtensionEvent">
<maxThreads>1</maxThreads>
<queueMaxCapacity>100</queueMaxCapacity>
<dbPollingInterval>5</dbPollingInterval>
</LateTaskExtensionEvent>

Business Example
You entered an order and assigned a provisioning plan. One of the tasks becomes
late. The extension logic executes and sends an email notification to the appropriate
person regarding the late task.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in
Table A-13 when searching for an execution point to associate with the extension.

Table A-13 Late Task Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Late (46)

Data Passed
This is required to be a synchronous call because existing logic must know if the
extension logic executed successfully before continuing. While no task related data
needs to be returned from the extension Java class, it must indicate success or failure.

Appendix A
Execution Points

A-10

Table A-14 the data passed to the extension Java class.

Table A-14 Late Task Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task number or identifier taskId

Task type taskType

Work queue identifier workQueueId

Organization for employee organizationName

Employee name employeeName

Error text for failure errorText

UI Invocation
The Late Task execution point is not triggered by the UI.

WebService API Invocation
The Late Task execution point is not triggered by the WebService API.

CORBA API Invocation
The Late Task execution point is not triggered by the CORBA API.

Additional Invocations
This execution point is triggered by the Integration Server.

For this to occur, the Integration Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

Potentially Late Task
MetaSolv Solution provides the ability to define the potentially late window of time for each
task type. MetaSolv Solution considers a task potentially late when the revised completion
date on the task, minus the time defined as the potentially late window, is less than the
current GMT date. This comparison takes into account the calendar that is set up by the
organization. The calendar relationship is determined from the task's work queue, which is
then associated with an employee, and each employee is associated with organization. For
an organization, the calendar may reflect non-work days, which would be considered in
determining if a task was potentially late.

This execution point enables you to extend logic that executes when a task becomes
potentially late. Note the following regarding the Potentially Late Task execution point:

• This execution point is triggered only once when the task is determined to be potentially
late. It may be triggered again if the revised completion date is updated on the task.
There are new fields on the Task table that indicate if an extension has been invoked.

• If the potentially late server event is disabled during the window of time for a potentially
late task, and the task passes from a potentially late task to a late task, the Potentially

Appendix A
Execution Points

A-11

Late Task execution point trigger does not execute. When the server event is
enabled, and the task is now late, then the Late Task execution point is triggered.

Business Example
You entered an order and assigned a provisioning plan with a task that defines a
potentially late window. The task becomes potentially late. The extension logic
executes and sends an email notification to the appropriate person regarding the
potentially late task.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in
Table A-15 when searching for an execution point to associate with the extension.

Table A-15 Potentially Late Task Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Potentially Late (47)

Data Passed
This is required to be a synchronous call because existing logic must know if the
extension logic executed successfully before continuing. While no task related data
needs to be returned from the extension Java class, it must indicate success or failure.

Table A-16 shows the data passed to the extension Java class.

Table A-16 Potentially Late Task Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task number or identifier taskId

Task type taskType

Work queue identifier workQueueId

Organization for employee organizationName

Employee name employeeName

Error text for failure errorText

UI Invocation
The Potentially Late Task execution point is not triggered by the UI.

Appendix A
Execution Points

A-12

WebService API Invocation
The Potentially Late Task execution point is not triggered by the WebService API.

CORBA API Invocation
The Potentially Late Task execution point is not triggered by the CORBA API.

Additional Invocations
This execution point is triggered by the Integration Server.

For this to occur, the Integration Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

Provisioning Plan Default
MetaSolv Solution provides the ability to assign a provisioning plan to an order. This
execution point enables you to extend logic to default the appropriate provisioning plan to an
order, rather than having to specify a particular provisioning plan.

Business Example
You built provisioning plans and assigned default work queues to the tasks in every plan. An
extension could be added for defaulting a provisioning plan, allowing you to put logic around
the default. For example, you can reduce the number of errors that are made in assigning a
provisioning plan to an order by basing the assignment on specific data. Additionally, when
the extension logic executes, you can send an email notification to the appropriate person
regarding the defaulted provisioning plan.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-17
when searching for an execution point to associate with the extension.

Table A-17 Provision Plan Default Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Task Types (1001)

Process Point Task Generation (1)

Action Type Provision Plan Default (52)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-18 shows the data passed to the extension Java class.

Appendix A
Execution Points

A-13

Table A-18 Provisioning Plan Default Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Organization organization

Jurisdiction jurisdiction

Service type group serviceTypeGroup

Order status status

Table A-19 shows the data returned by the extension Java class.

Table A-19 Provisioning Plan Default Name/Value Pair Return Data

Data Description Data Name

Provision plan ID provisionPlanId

UI Invocation
From a Service Request window (ISR, PSR, etc.) within Order Management, select
Options from the menu bar, and then select Task Generation Maintenance. This
opens the Plan Selection tab of the Tasks window. The Provisioning Plan Default
execution point is triggered just prior to the Tasks window being displayed. If custom
logic is executed, and a valid provisioning plan is returned from the extension, that
plan is automatically populated in the drop-down list and the display proceeds to the
Task Gantt tab. The user may return to the Plan Selection tab to change the selected
plan.

WebService API Invocation
The Provisioning Plan Default execution point is not triggered by the WebService API.

CORBA API Invocation
The Provisioning Plan Default execution point is not triggered by the CORBA API.

Reject Task
MetaSolv Solution provides the ability to reject a task. This execution point enables
you to extend logic that executes when a specified task is rejected.

Business Example
You assigned a provisioning plan and, from your Work Queue, reject a task. The
extension logic executes and sends an email notification to the appropriate person
regarding the rejected task.

Appendix A
Execution Points

A-14

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-20
when searching for an execution point to associate with the extension.

Table A-20 Reject Task Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type Reject (42)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from the
extension Java class.

Table A-21 shows the data passed to the extension Java class.

Table A-21 Reject Task Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task type taskType

Task number taskId

Work Queue ID workQueueId

Previous task status priorTaskStatus

Reject reason note

UI Invocation
From the Work Queue window, select a task, right-click, and select Reject Task. This opens
the Reject Task window where you select, from a list of predecessor tasks, the task to be set
back to Ready status. All tasks between the initial selection and this second selection (tasks
in that provisioning plan for that order) are set back to Pending status. Click OK to trigger the
Reject Task execution point. A list of affected tasks is sent to the extension.

WebService API Invocation
The Reject Task execution point is not triggered by the WebService API.

CORBA API Invocation
The CORBA API method through which the Java class extension is invoked is:

Work Management > rejectTask

Appendix A
Execution Points

A-15

System Task Failure
MetaSolv Solution provides the ability to define a task as a system task. This indicates
that the task's completion logic automatically runs on the System Task Server when
the task becomes Ready or when the task start date is reached. However, the system
task's completion logic may fail. When a system task cannot be completed, the System
Task Server rolls back the transaction, transfers the task to the Exception queue, and
logs information to the Server Log table. The server log entries associated with a task
can be viewed from the work queue by selecting the task, and then clicking the Server
Log tab. Tasks are not completed if a gateway event is in error or if a why-missed
code cannot be defaulted.

This execution point enables you to extend logic that executes when a system task
fails to complete. This execution point is asynchronous so that the continuation of the
System Task Server process is not jeopardized.

Business Example
You entered an order and assigned a provisioning plan with a system task. The task
becomes Ready, the System Task Server picks up the task and attempts to complete
it, but fails. The extension logic executes and sends an email notification to the
appropriate person regarding the failed system task.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in
Table A-22 when searching for an execution point to associate with the extension.

Table A-22 System Task Failure Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Task Types (1001)

Process Point Task Maintenance (101)

Action Type System Task Failure (45)

Data Passed
This is a recommended asynchronous call, therefore no data should be returned from
the extension Java class.

Table A-23 shows the data passed to the extension Java class.

Table A-23 System Task Failure Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Task number or identifier taskId

Task type taskType

Appendix A
Execution Points

A-16

Table A-23 (Cont.) System Task Failure Name/Value Pair Input Data

Data Description Data Name

Work queue identifier workQueueId

Error text for failure errorText or note

UI Invocation
The System Task Failure execution point is not triggered by the UI.

WebService API Invocation
The System Task Failure execution point is not triggered by the WebService API.

CORBA API Invocation
The System Task Failure execution point is not triggered by the CORBA API.

Additional Invocations
• This execution point is triggered by the System Task Server.

For this to occur, the System Task Server must be configured to run on the appserver.
See "Invoking an Extension" for specific configuration information.

• This execution point is triggered by the Background Processor.

For this to occur, the Background Processor must be running. See "Invoking an
Extension" for specific information on how to run the Background Processor.

Gateway Event Failure
MetaSolv Solution provides the ability to change the status of a gateway event to Error. This
execution point enables you to extend logic that executes after the gateway event status
change has completed. This execution point is asynchronous so the continuation of the
Gateway Event Server process is not jeopardized.

Business Example
You entered an order and assigned a provisioning plan with a task that has an auto-complete
gateway event associated with it. When the task becomes Ready, the gateway event
automatically fires, but fails. The gateway event status is set to Error, and the extension logic
executes and sends an email notification to the appropriate person regarding the failed
gateway event.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-24
when searching for an execution point to associate with the extension.

Appendix A
Execution Points

A-17

Table A-24 Gateway Event Failure Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Gateway Events (1002)

Process Point GW Event Maintenance (102)

Action Type GW Event Failed (51)

Data Passed
This is required to be an asynchronous call. Data cannot be returned from the
extension Java class.

The data passed to the Gateway Event Failure extension depends on the gateway
event type. There are four types of gateway events listed below. Table A-25 shows all
the data inputs, but these vary based on gateway event type.

• Service Request or Order Type

• Service Item or Item Level Type

• Equipment Type

• Design Type

Table A-25 shows the data passed to the extension Java class.

Table A-25 Gateway Event Failure Data Value Input by Event Type

data value Order Type Item Level Type Equipment Type Design Type

documentNumber yes yes no no

taskId yes yes no no

taskType yes yes no no

gatewayName yes yes yes yes

gatewayEventType yes yes yes yes

gatewayEventId yes yes yes yes

gatewayEventName yes yes yes yes

gatewayEventVersion yes yes yes yes

serviceItemId yes yes no no

errorText yes, if exists yes, if exists yes, if exists yes, if exists

UI Invocation
The Gateway Event Failure execution point is not triggered by the UI.

WebService API Invocation
The WebService API method through which the Java class extension is invoked is:

Appendix A
Execution Points

A-18

Order Management > updateOrderManagementRequest

Note:

The updateOrderManagementRequest method defines several choices of input
structures. The invocation is applicable only when the input structure chosen is
TaskGWEventValue.

CORBA API Invocation
The CORBA API method through which the Java class extension is invoked is:

Work Management > updateGWEvent

Additional Invocations
• This execution point is triggered by the Gateway Event Server.

For this to occur, the Gateway Event Server must be configured to run on the appserver.
See "Invoking an Extension" for specific configuration information.

• This execution point is triggered by the Integration Server.

For this to occur, the Integration Server must be configured to run on the appserver. See
"Invoking an Extension" for specific configuration information.

Email CLR/DLR/TCO
MetaSolv Solution provides the ability to perform a process from the connection print window.
This execution point enables you to extend logic that activates upon clicking of the OK button
on the print window after closing the email recipient's window. To open the email recipient's
window, in the Preference window, set the Enable HTML Email option to true and select the
Email option in the Print window. The Enable HTML Email preference is located under
Preferences > Inventory Management > Connection Design.

You can modify the sample code to fit the email protocol used at a customer site. The sample
extension uses the ByteArrayDataSource method in the mailapi.jar file. The sample email
extension exists in the SendEmailAttachment folder.

If required, download the mailapi.jar file from the Oracle Web site. After downloading, you
can include the JAR in the CLASSPATH of the appserver environment.

Business Example
You can use this custom extension in several ways. One possible use of this extension is to
retrieve the saved HTML files from the database and email the files to the appropriate
recipients. Other possibilities include displaying the HTML files on an Intranet or providing
access to the HTML files from other applications. The HTML attachment exists as a CLOB in
the Email_Job_Attachment table.

Appendix A
Execution Points

A-19

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in
Table A-26 while searching for an execution point to associate with the extension.

Table A-26 Email CLR/DLR/TCO Execution Point

Field Name Option

Execution Mode Asynchronous

Building Block All Connections (409)

Process Point Print (140)

Action Type Email(56)

Data Passed
As this is an asynchronous call, therefore extension Java class does not return data.

Table A-27 shows the data passed to the extension Java class.

Table A-27 Email CLRD/DLR/TCO Name/Value Pair Input Data

Data Description Data Name

JobId jobid

UI Invocation
From the Connection print window, select the Email check box and click OK. The
execution occurs on the Print window but the logic waits until the user clicks OK on the
Recipient window and the Recipient window closes. If the user clicks Cancel on the
Recipients window, the extension does not execute.

WebService API Invocation
The Email CLR/DLR/TCO execution point is not triggered by the WebService API.

CORBA API Invocation
The Email CLR/DLR/TCO execution point is not triggered by the CORBA API.

Additional invocations
This execution point is not triggered anywhere else.

Select Port Address
MetaSolv Solution provides the ability to automatically design physical connections
through the PCONDES task. This execution point enables you to extend logic that is
triggered when the PCONDES task is executed, either manually from the UI or
automatically from the System Task Server. The extension logic enables you to select

Appendix A
Execution Points

A-20

the appropriate port address to use in the physical design of the connection. It executes prior
to the existing PCONDES auto-provisioning logic. If a port address is successfully selected
by the extension logic, the existing PCONDES auto-provisioning logic is bypassed. If a port
address is not selected by the extension logic, the existing PCONDES auto-provisioning logic
still executes.

Business Example
You enter a PSR order and assign a provisioning plan that defines the PCONDES task as a
system task. The PCONDES task is used to automatically design physical connections.
When the status of the PCONDES task becomes Ready, the System Task Server processes
the task. The extension logic executes and, based on the selection logic in the extension and
the information on the order, the appropriate port address is selected for the design of the
physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-28
when searching for an execution point to associate with the extension.

Table A-28 Select Port Address Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point PCONDES Maintenance(103)

Action Type Select Port Address Element(55)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-29 shows the data that is passed to the extension Java class.

Table A-29 Select Port Address Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Circuit design ID circuitDesignId

Service item ID servItemId

End user location ID endUserLocationId

Rate code rateCode

Network system component ID nsCompId

Network system ID nsId

Network system component key Array nsCompKey (String Array comprised of nsCompId and
nsId)

Appendix A
Execution Points

A-21

Pass nsCompId and nsId, or pass an Array of nsCompKeys; do not pass both sets of
data. If the input data is comprised of the Array of nsCompKeys, custom logic can be
written to select which component id is used. Having this option of input data allows for
you to customize your extension code to account for things like load balancing
between different elements. For example, if there are three valid elements from which
to choose, custom code can select the element which has the most or least capacity
available, depending on your specific business requirements.

Table A-30 shows the data that is returned by the extension Java class.

Table A-30 Select Port Address Name/Value Pair Return Data

Data Description Data Name

Equipment ID equipmentId

Port Address Sequence portAddrSeq

UI Invocation
From the Work Queue window within Work Management, select a PCONDES task,
right-click and select Auto Provision. The extension logic executes prior to the
existing PCONDES auto provision logic. If a port address is successfully selected by
the extension logic, the existing PCONDES auto provision logic is bypassed. However,
if a port address is not selected by the extension logic, the existing PCONDES auto
provision logic still executes.

WebService API Invocation
The Select Port Address execution point is not triggered by the WebService API.

CORBA API Invocation
The Select Port Address execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where
the PCONDES task is defined as a System Task.

For this to occur, the System Task Server must be configured to run on the appserver.
See "Invoking an Extension" for specific configuration information.

Select Component or Element for Physical Connection
MetaSolv Solution provides the ability to automatically design physical connections
through the PCONDES task. This execution point enables you to extend logic that is
triggered when the PCONDES task is executed, either manually from the UI or
automatically from the System Task Server. The extension logic enables you to select
the appropriate component or element to use in the physical design of the connection.
It executes prior to the existing PCONDES auto-provisioning logic. If a component or
element is successfully selected by the extension logic, the existing PCONDES auto-
provisioning logic is bypassed. If a component or element is not selected by the
extension logic, the existing PCONDES auto-provisioning logic still executes.

Appendix A
Execution Points

A-22

Business Example
You enter a PSR order and assign a provisioning plan that defines the PCONDES task as a
system task. The PCONDES task is used to automatically design physical connections.
When the status of the PCONDES task becomes Ready, the System Task Server processes
the task. The extension logic executes and, based on the selection logic in the extension and
the information on the order, the appropriate component or element is selected for the design
of the physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-31
when searching for an execution point to associate with the extension.

Table A-31 Select Component or Element for Physical Connection Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point PCONDES Maintenance(103)

Action Type Select Component or Element(54)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-32 shows the data that is passed to the extension Java class.

Table A-32 Select Component or Element for Physical Connection Name/Value Pair
Input Data

Data Description Data Name

Document number documentNumber

Circuit design ID circuitDesignId

Service item ID servItemId

End user location ID endUserLocationId

Table A-33 shows the data that is returned by the extension Java class.

Table A-33 Select Component or Element for Physical Connection Name/Value Pair
Return Data

Data Description Data Name

Network system component key Array nsCompKey (String Array comprised of nsCompId
and nsId)

Appendix A
Execution Points

A-23

UI Invocation
From the Work Queue window within Work Management, select a PCONDES task,
right-click and select Auto Provision. The extension logic executes prior to the
existing PCONDES auto provision logic. If a component or element is successfully
selected by the extension logic, the existing PCONDES auto provision logic is
bypassed. However, if a component or element is not selected by the extension logic,
the existing PCONDES auto provision logic still executes.

WebService API Invocation
The Select Component or Element for Physical Connection execution point is not
triggered by the WebService API.

CORBA API Invocation
The Select Component or Element for Physical Connection execution point is not
triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where
the PCONDES task is defined as a System Task.

For this to occur, the System Task Server must be configured to run on the appserver.
See "Invoking an Extension" for specific configuration information.

Select Component or Element for Virtual Connection
MetaSolv Solution provides the ability to automatically design virtual connections
through the VCONDES task. This execution point enables you to extend logic that is
triggered when the VCONDES task is executed, either manually from the UI or
automatically from the System Task Server. The extension logic enables you to select
the appropriate component or element to use in the virtual design of the connection. It
executes prior to the existing VCONDES auto-provisioning logic. If a component or
element is successfully selected by the extension logic, the existing VCONDES auto-
provisioning logic is bypassed. If a component or element is not selected by the
extension logic, the existing VCONDES auto-provisioning logic still executes.

Business Example
You enter a PSR order and assign a provisioning plan that defines the VCONDES task
as a system task. The VCONDES task is used to automatically design virtual
connections. When the status of the VCONDES task becomes Ready, the System
Task Server processes the task. The extension logic executes and, based on the
selection logic in the extension and the information on the order, the appropriate
component or element is selected for the design of the virtual connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in
Table A-34 when searching for an execution point to associate with the extension.

Appendix A
Execution Points

A-24

Table A-34 Select Component or Element for Virtual Connection Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point VCONDES Maintenance (105)

Action Type Select Component or Element (54)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-35 shows the data that is passed to the extension Java class.

Table A-35 Select Component or Element for Virtual Connection Name/Value Pair
Input Data

Data Description Data Name

Document number documentNumber

Circuit design ID circuitDesignId

Service item ID servItemId

Connection Spec nstCompTypeConId

Network Configuration Type nstConfigTypeId

Component Type networkComponentType

Table A-36 shows the data that is returned by the extension Java class.

Table A-36 Select Component or Element for Virtual Connection Name/Value Pair
Return Data

Data Description Data Name

Network system component key Array nsCompKey

(String Array comprised of nsCompId and nsId)

Returned data validation
The data returned by the VCONDES Maintenance - Select Component custom extension
must adhere to certain rules. All components (NS_ID/NS_COMP_ID combination) must pass
the following validation logic:

• The NS_COMP_ID must exist in the database.

• The component type of the returned NS_COMP_ID must match the
networkComponentType input parameter.

• The NS_ID must exist in the database.

Appendix A
Execution Points

A-25

• The network configuration type of the returned NS_ID must match the
nstConfigTypeId input parameter.

UI Invocation
From the Work Queue window within Work Management, open the Service Request
Virtual Connections window by double-clicking a VCONDES task and then select Auto
Provision from the Options menu. The extension logic executes prior to the existing
VCONDES auto provision logic. If a component or element is successfully selected by
the extension logic, the existing VCONDES auto provision logic is bypassed. However,
if a component or element is not selected by the extension logic, the existing
VCONDES auto provision logic still executes.

WebService API Invocation
The Select Component or Element for Virtual Connection execution point is not
triggered by the WebService API.

CORBA API Invocation
The Select Component or Element for Virtual Connection execution point is not
triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where
the VCONDES task is defined as a System Task. For this to occur, the System Task
Server must be configured to run on the appserver. See "Invoking an Extension" for
specific configuration information.

Select Network System
MetaSolv Solution provides the ability to automatically design physical connections
through the NETDESIGN task. This execution point enables you to extend logic that is
triggered when the NETDESIGN task is executed automatically from the System Task
Server. The extension logic enables you to select the appropriate network system to
use in the physical design of the connection. It executes prior to the NETDESIGN task.
If a network system is successfully selected by the extension logic, the existing
NETDESIGN auto-provisioning logic is bypassed. If a network system is not selected
by the extension logic, the existing NETDESIGN auto-provisioning logic still executes.

Business Example
You enter a PSR order and assign a provisioning plan that defines the NETDESIGN
task as a system task. The NETDESIGN task is used to automatically design physical
connections. When the status of the NETDESIGN task becomes Ready, the System
Task Server processes the task. The extension logic executes and, based on the
selection logic in the extension and the information on the order, the appropriate
network system is selected for the design of the physical connection.

Appendix A
Execution Points

A-26

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-37
when searching for an execution point to associate with the extension.

Table A-37 Select Network System Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Network Systems (410)

Process Point Network System Design (107)

Action Type Select Network System (60)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-38 shows the data that is passed to the extension Java class.

Table A-38 Select Network System Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Table A-39 shows the data that is returned by the extension Java class.

Table A-39 Select Network System Name/Value Pair Return Data

Data Description Data Name

Activity code activityCd

ArrayList of CaContainer objects, which contains
CA names and values

CaList

Short name of network system nsNmShort

Long name of network system nsNmLong

Description desc100

Network system ID nsId

Hard/soft code hardSoftCdExtension

Network system customer system ID nsCustomerSysId

Network system provider system ID nsProviderSysId

template name templateName

Appendix A
Execution Points

A-27

Returned data validation
The data returned by the NETDESIGN Maintenance - Select Network System custom
extension must adhere to certain rules. Network System details returned by the
extension must pass the following validation logic:

• SHORT_NAME is mandatory, and the length of the value should be less than 20
characters.

• ACTIVITY_IND must be either "N" (new) or "C"(change).

• NS_ID must exist in the database.

• STATUS must be "Pending" or "Inservice"

• HARD_SOFT_ASSIGN_CD must be "soft" or "hard" or "none".

• NS_TEMPLATE_NAME is mandatory and must exist in the database.

• DESC_100 must be less than 100 characters.

• LONG_NAME must be less than 50 characters.

• CUSTOMER_SYS_ID and PROVIDER_SYS_ID accepts a maximum of 20
characters.

• Customer attribute (CA) Name must exist in the database.

UI Invocation
UI invocation of the Select Network System execution point is not available. While the
NETDESIGN task can be defined as a manual task and accessed from the Work
Queue window within Work Management, if accessed in this manner, the execution
point is not invoked.

WebService API Invocation
The Select Network System execution point is not triggered by the WebService API.

CORBA API Invocation
The Select Network System execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where
the NETDESIGN task is defined as a System Task. For this to occur, the System Task
Server must be configured to run on the appserver. See "Invoking an Extension" for
specific configuration information.

Select Customer Edge Component
MetaSolv Solution provides the ability to automatically design physical connections
through the NETDESIGN task. This execution point enables you to extend logic that is
triggered when the NETDESIGN task is executed automatically from the System Task
Server. The extension logic enables you to select the customer edge component to
use in the physical design of the connection. It executes prior to the existing

Appendix A
Execution Points

A-28

NETDESIGN auto-provisioning logic. If a customer edge component is successfully selected
by the extension logic, the existing NETDESIGN auto-provisioning logic is bypassed. If a
customer edge component is not selected by the extension logic, the existing NETDESIGN
auto-provisioning logic still executes.

Business Example
You enter a PSR order and assign a provisioning plan that defines the NETDESIGN task as a
system task. The NETDESIGN task is used to automatically design physical connections.
When the status of the NETDESIGN task becomes Ready, the System Task Server
processes the task. The extension logic executes and, based on the selection logic in the
extension and the information on the order, the appropriate customer edge component is
selected for the design of the physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-40
when searching for an execution point to associate with the extension.

Table A-40 Select Customer Edge Component Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Network Systems (410)

Process Point Network System Design (107)

Action Type Select Customer Edge Component (61)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-41 shows the data that is passed to the extension Java class.

Table A-41 Select Customer Edge Component Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Table A-42 shows the data that is returned by the extension Java class.

Table A-42 Select Customer Edge Component Name/Value Pair Return Data

Data Description Data Name

Activity code activityCd

ArrayList of CaContainer objects, which define CA
names and values

CaList

Customer Edge name nsCompName

Customer edge location name locationName

Appendix A
Execution Points

A-29

Table A-42 (Cont.) Select Customer Edge Component Name/Value Pair Return Data

Data Description Data Name

Customer edge type nsCompType

Network component ID nsCompIdThruExtension

Customer edge number, which is used along with
nsCompName to uniquely differentiate each
customer edge

ceNumberThruExt

Network system component network element ID nsCompNetworkElementId

Returned data validation
The data returned by the NETDESIGN Maintenance - Select Customer Edge
Component custom extension must adhere to certain rules. All components must pass
the following validation logic:

• ACTIVITY_IND must be either "N" (new) or "C" (change).

• CE_NAME is mandatory must be unique.

• CE_LOCATION_NAME must exist in the database.

• CE_TYPE must exist in the database.

• Customer attribute (CA) Name must exist in the database.

• COMP_ID must exist in the database.

UI Invocation
UI invocation of the Select Customer Edge Component execution point is not
available. While the NETDESIGN task can be defined as a manual task and accessed
from the Work Queue window within Work Management, if accessed in this manner,
the execution point is not invoked.

WebService API Invocation
The Select Customer Edge Component execution point is not triggered by the
WebService API.

CORBA API Invocation
The Select Customer Edge Component execution point is not triggered by the CORBA
API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where
the NETDESIGN task is defined as a System Task. For this to occur, the System Task
Server must be configured to run on the appserver. See "Invoking an Extension" for
specific configuration information.

Appendix A
Execution Points

A-30

Select End Component For Physical Connection
MetaSolv Solution provides the ability to automatically design physical connections through
the NETDESIGN task. This execution point enables you to extend logic that is triggered when
the NETDESIGN task is executed automatically from the System Task Server. The extension
logic enables you to select an end component for the physical connection to use in the
physical design of the connection. It executes prior to the existing NETDESIGN auto-
provisioning logic. If an end component for the physical connection is successfully selected
by the extension logic, the existing NETDESIGN auto-provisioning logic is bypassed. If an
end component for the physical connection is not selected by the extension logic, the existing
NETDESIGN auto-provisioning logic still executes.

Business Example
You enter a PSR order and assign a provisioning plan that defines the NETDESIGN task as a
system task. The NETDESIGN task is used to automatically design physical connections.
When the status of the NETDESIGN task becomes Ready, the System Task Server
processes the task. The extension logic executes and, based on the selection logic in the
extension and the information on the order, the appropriate end component for the physical
connection is selected for the design of the physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-43
when searching for an execution point to associate with the extension.

Table A-43 Select End Component For Physical Connection Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Network Systems (410)

Process Point Network System Design (107)

Action Type Select End Component For Physical Connection (62)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-44 shows the data that is passed to the extension Java class.

Table A-44 Select End Component For Physical Connection Name/Value Pair Input
Data

Data Description Data Name

Document number documentNumber

Table A-45 shows the data that is returned by the extension Java class.

Appendix A
Execution Points

A-31

Table A-45 Select End Component For Physical Connection Name/Value Pair
Return Data

Data Description Data Name

String object that contains the connection identifier
(ecckt)

HashMap key

End points for connection defines the following
details:

HashMap value:
EndPointsForConnection Object

Activity indicator activityInd

One end of the connection customEdgeName

Other end of the connection providerEdgeName

Used along with customer edge name to uniquely
differentiate CE

customerEdgeNumber

Used along with provider edge name to uniquely
differentiate PE

providerEdgeNumber

Network system name in which PE is present providerEdgeNetwork SystemName

Network system name which needs to be
embedded as part of the VPN network

providerEdgeParent NetworkName

Connection identifier / name conEcckt

Returned data validation
The data returned by the NETDESIGN Maintenance - Select End Component For
Physical Connection custom extension must adhere to certain rules. End components
of each connection must pass the following validation logic:

• ACTIVITY_IND must be "N" or "C".

• CE_NAME must be the same as what is returned from the Select Customer Edge
Component extension.

• PE_NAME must exist in the database.

• PE_NETWORK_NAME must exist in the database and component with
PE_NAME must be part of this network.

• CONNECTION_ECCKT must exist in the database and it must be part of the order
given in the input parameter.

UI Invocation
UI invocation of the Select End Component For Physical Connection execution point is
not available. While the NETDESIGN task can be defined as a manual task and
accessed from the Work Queue window within Work Management, if accessed in this
manner, the execution point is not invoked.

WebService API Invocation
The Select End Component For Physical Connection execution point is not triggered
by the WebService API.

Appendix A
Execution Points

A-32

CORBA API Invocation
The Select End Component For Physical Connection execution point is not triggered by the
CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where the
NETDESIGN task is defined as a System Task. For this to occur, the System Task Server
must be configured to run on the appserver. See "Invoking an Extension" for specific
configuration information.

Select Equipment For CE
MetaSolv Solution provides the ability to automatically design physical connections through
the NETDESIGN task. This execution point enables you to extend logic that is triggered when
the NETDESIGN task is executed automatically from the System Task Server. The extension
logic enables you to select the equipment for the customer edge to use in the physical design
of the connection. It executes prior to the existing NETDESIGN auto-provisioning logic. If
equipment for the customer edge is successfully selected by the extension logic, the existing
NETDESIGN auto-provisioning logic is bypassed. If equipment for the customer edge is not
selected by the extension logic, the existing NETDESIGN auto-provisioning logic still
executes.

Business Example
You enter a PSR order and assign a provisioning plan that defines the NETDESIGN task as a
system task. The NETDESIGN task is used to automatically design physical connections.
When the status of the NETDESIGN task becomes Ready, the System Task Server
processes the task. The extension logic executes and, based on the selection logic in the
extension and the information on the order, the appropriate equipment for the customer edge
is selected for the design of the physical connection.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-46
when searching for an execution point to associate with the extension.

Table A-46 Select Equipment For CE Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Network Systems (410)

Process Point Network System Design (107)

Action Type Select Equipment For CE (63)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Appendix A
Execution Points

A-33

Table A-47 shows the data that is passed to the extension Java class.

Table A-47 Select Equipment For CE Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Table A-48 shows the data that is returned by the extension Java class.

Table A-48 Select Equipment For CE Name/Value Pair Return Data

Data Description Data Name

CE name that the equipment needs to be
associated with

customerEdgeName

Used along with customer edge name to
uniquely differentiate CE

customerEdgeNumber

Equipment ID which must be associated with
the CE

equipIdThruExtension

Returned data validation
The data returned by the NETDESIGN Maintenance - Select Equipment For CE
custom extension must adhere to certain rules. All components and equipment
returned from the extension must pass the following validation logic:

• EQUIPMENT_ID must exist in the database.

• CUSTOMEREDGE_NAME must exist in the database, and must be same as that
of CE returned from the Select Customer Edge Component extension.

UI Invocation
UI invocation of the Select Equipment For CE execution point is not available. While
the NETDESIGN task can be defined as a manual task and accessed from the Work
Queue window within Work Management, if accessed in this manner, the execution
point is not invoked.

WebService API Invocation
The Select Equipment For CE execution point is not triggered by the WebService API.

CORBA API Invocation
The Select Equipment For CE execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where
the NETDESIGN task is defined as a System Task. For this to occur, the System Task
Server must be configured to run on the appserver. See "Invoking an Extension" for
specific configuration information.

Appendix A
Execution Points

A-34

DS0/DS1 Automated Design
MetaSolv Solution provides the ability to automate the provisioning of Facility circuits with
rate codes DS0 and DS1 through the AUTODSGN task. This execution point enables you to
extend logic that is triggered when the AUTODSGN task is executed automatically from the
System Task Server. The extension logic enables you to provide the assignment information
to use in the provisioning of the connection. If the assignment information is not provided in
the extension, the default auto-provisioning logic executes. The default auto-provisioning
logic makes an equipment port assignment at either end of the circuit and makes a "next-
available" channel assignment to a parent circuit, which is coterminous with the circuit being
auto-provisioned.

Business Example
You enter a PSR order and assign a provisioning plan that defines the AUTODSGN task as a
system task. The AUTODSGN task is used to automatically provision the Facility circuits with
rate codes DS0 and DS1.

When the status of the AUTODSGN task becomes Ready, the System Task Server
processes the task. The extension logic executes and, based on the assignment information
in the extension and the circuit information on the order, the appropriate DS0 and DS1 facility
circuits are automatically provisioned. After the assignments are made, the extension logic
would also create design issues using the appropriate information from the order. The status
of the circuits will be changed to Record Issued.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-49
when searching for an execution point to associate with the extension.

Table A-49 DS0/DS1 Automated Design Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point Connection Design (108)

Action Type DS0/DS1 Automated Design (70)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-50 shows the data that is passed to the extension Java class.

Table A-50 DS0/DS1 Automated Design Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Appendix A
Execution Points

A-35

Table A-50 (Cont.) DS0/DS1 Automated Design Name/Value Pair Input Data

Data Description Data Name

Circuit Design ID circuitDesignId

Table A-51 shows the data that is returned by the extension Java class.

Table A-51 DS0/DS1 Automated Design Name/Value Pair Return Data

Data Description Data Name

A Java container object that holds the
assignment information to use in the
automated provisioning of the circuit.

provisioningInfoContainer

Returned data validation
The data returned by the DS0/DS1 Automated Design execution point must adhere to
certain rules. See "DS0/DS1 Automated Design" for detailed parameter-level validation
information.

UI Invocation
UI invocation of the DS0/DS1 Automated Design execution point is not available.
While the AUTODSGN task can be defined as a manual task to design the
connections and accessed from the Work Queue window within Work Management, if
accessed in this manner, the execution point is not invoked.

WebService API Invocation
The DS0/DS1 Automated Design execution point is not triggered by the WebService
API.

CORBA API Invocation
The DS0/DS1 Automated Design execution point is not triggered by the CORBA API.

Additional Invocations
This execution point can also be triggered by the System Task Server for cases where
the AUTODSGN task is defined as a System Task. For this to occur, the System Task
Server must be configured to run on the appserver. See "Invoking an Extension" for
specific configuration information.

Connection Id Automation
MetaSolv Solution provides the ability to automate the generation of Connection Id for
the circuits created in PSR orders through the CKTID task. This execution point
enables you to extend logic that is triggered when the CKTID task is executed
automatically from the System Task Server. The extension logic enables you to
provide the required information to be used in the Connection Id generation.

Appendix A
Execution Points

A-36

Business Example
You enter a PSR order and assign a provisioning plan that defines the CKTID task as a
system task. The CKTID task is used to automatically generate the Connection Id for the
appropriate products on the PSR order. When the status of the CKTID task becomes Ready,
the System Task Server processes the task. The extension logic executes and based on the
information in the extension and the information on the order, the appropriate Connection Ids
are generated automatically.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-52
when searching for an execution point to associate with the extension.

Table A-52 Connection Id Automation Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point Connection Design (108)

Action Type Connection Id Automation (71)

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-53 shows the data that is passed to the extension Java class.

Table A-53 Connection Id Automation Name/Value Pair Input Data

Data Description Data Name

Document number documentNumber

Service Item ID circuitDesignId

Table A-54 shows the data that is returned by the extension Java class.

Table A-54 Connection Id Automation Name/Value Pair Return Data

Data Description Data Name

A Java container object that contains
information that is used in the automated
generation of the connection ID.

ConnectionIdAutomationData

Returned Data Validation
The data returned by the Connection Id Automation execution point must adhere to certain
rules. See "Connection Id Automation" for detailed parameter-level validation information.

Appendix A
Execution Points

A-37

UI Invocation
UI invocation of the Connection Id Automation execution point is not available. While
the CKTID task can be defined as a manual task to design the connections and
accessed from the Work Queue window within Work Management, if accessed in this
manner, the execution point is not invoked.

WebService API Invocation
The Connection Id Automation execution point is not triggered by the WebService API.

CORBA API Invocation
The Connection Id Automation execution point is not triggered by the CORBA API.

Additional invocations
This execution point can also be triggered by the System Task Server for cases where
the CKTID task is defined as a System Task. For this to occur, the System Task Server
must be configured to run on the appserver. See "Invoking an Extension" for specific
configuration information.

Select Dedicated Plant
MetaSolv Solution provides the ability to implement your custom logic to determine the
appropriate dedicated plant assignment for the service being provisioned through the
Automated Design (AUTODSGN) or Physical Connection Design (PCONDES) tasks,
in scenarios where the core logic does not meet your business requirements.

For example, consider a scenario where a dedicated plant, DP1, has a priority of 1 and
another dedicated plant, DP2, has its priority set as 2 on the Plant Administration tab
of the Product Catalog window. If you determine that DP2 is more suitable for the
service being provisioned, you can create and implement your custom logic to change
the priority of DP2 to 1. As a result, the core logic processes the information returned
by the extension and selects DP2 when provisioning the service.

During service provisioning, the core logic first queries for a dedicated plant
reservation for the order. If a reserved dedicated plant is found, the reservation is
redeemed and the assignment is made. Otherwise, the core logic queries for all the
dedicated plants at the service address on the order.

In addition, the core logic filters the following:

• Dedicated plants that are already assigned.

• Dedicated plants that have blocking condition codes on the cable pair or port
address.

• Dedicated plants that have non-owned reservations on the cable pair or port
address.

The core logic calls the custom extension logic only if multiple dedicated plants (both
supported and unsupported) are available.

The custom extension logic can use the Item Spec ID or Spec Name values to
determine which dedicated plant must be selected. For items that require manual

Appendix A
Execution Points

A-38

design, this logic does not provide any output dedicated plant and displays an error message.
In this case, the AUTODSGN and PCONDES tasks fail and an error message is logged. You
can view this error on the Server Logs tab in the Work Queue Manager window.

After calling the custom extension, the core logic goes through all of the dedicated plants in
the same order as they are populated within the OutputDedicatedPlantList parameter. The
core logic then validates whether each dedicated plant is valid for the service being
provisioned and assigns the service to the supporting dedicated plant based on its priority. If
no supporting dedicated plants are returned by the custom extension, the AUTODSGN and
PCONDES tasks fail and an error message is logged. You can view this error on the Server
Logs tab in the Work Queue Manager window.

Business Example
You enter a PSR order and assign a provisioning plan that defines the AUTODSGN or
PCONDES tasks as a system task. When the status of the AUTODSGN or PCONDES tasks
becomes Ready, the System Task Server processes the tasks. The extension logic executes
and based on the information in the extension and the information on the order, the extension
logic validates whether each dedicated plant is valid for the service being provisioned and
assigns the service to the supporting dedicated plant based on its priority.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-55
when searching for an execution point to associate with the extension.

Table A-55 Select Dedicated Plant Execution Point

Field Name Option

Execution Mode Synchronous

Building Block All Connections (409)

Process Point PCONDES Maintenance (103), Connection Design
(108)

Action Type Select Dedicated Plant

Data Passed / Data Returned
This is a recommended synchronous call, therefore data should be returned from the
extension Java class.

Table A-56 shows the data that is passed to the extension Java class.

Table A-56 Select Dedicated Plant Name/Value Pair Input Data

Data Description Data Name

Order being processed. documentNumber

Circuit design ID of the service being designed. circuitDesignId

Service item being designed. ServItemId

Appendix A
Execution Points

A-39

Table A-56 (Cont.) Select Dedicated Plant Name/Value Pair Input Data

Data Description Data Name

List of available dedicated plants.

You must set the following attributes for this parameter:

• ded_cc_grp_id: Unique key of the available dedicated
plants.

• last_modified_date: Last modified date of the
available dedicated plants.

• supports_product: True or False.
• equipment_id: Equipment ID of the card used to build

the available dedicated plants.
• item_spec_id: Specification ID of the service being

designed.
• item_spec_nm: Specification name of the service

being designed.
• priority_seq: Priority sequence of the equipment set

within the Plant Administration tab.

InputDedicatedPlantList

This parameter is not populated. numberOfBondedPairs

Table A-57 shows the data that is returned by the extension Java class.

Table A-57 Select Dedicated Plant Name/Value Pair Return Data

Data Description Data Name

List of dedicated plants to assign.

This parameter contains the following attributes:

• ded_cc_grp_id: Unique key of the available
dedicated plants.

• last_modified_date: Last modified date of the
available dedicated plants.

• supports_product: True or False.
• equipment_id: Equipment ID of the card used to

build the available dedicated plants.
• item_spec_id: Equipment specification ID of the

service being designed.
• item_spec_nm: Equipment specification name of

the service being designed.
• priority_seq: Priority sequence of the equipment

set on the Plant Administration tab.

OutputDedicatedPlantList

Error message to be sent to the server log. ErrorMessage

Returned data validation
The data returned by the Select Dedicated Plant execution point must adhere to
certain rules. See "DedicatedPlantSelection" for detailed parameter-level validation
information.

UI Invocation
UI invocation of the Select Dedicated Plant execution point is not available.

Appendix A
Execution Points

A-40

WebService API Invocation
The Select Dedicated Plant execution point is not triggered by the WebService API.

CORBA API Invocation
The Select Dedicated Plant execution point is not triggered by the CORBA API.

Additional Invocations
This execution point can also be triggered by the System Task Server for cases where the
AUTODSGN/PCONDES tasks are defined as a System Task. For this to occur, the System
Task Server must be configured to run on the appserver. See "Invoking an Extension" for
specific configuration information.

Create/Update End User Location
This execution point enables you to implement your custom logic that validates the end user
location address information and returns the following return codes that determine the
behavior of the application based on the custom logic:

• Success: Creates or updates the end user location.

• Failure: Does not create or update the end user location.

• Warning: Provides you with options that enable you to do one of the following:

– Create or update end user location address information with the data returned by
your custom logic

– Create or update end user location address information with the original data you
entered in the MSS application

This execution point is triggered when you do any of the following:

• Create or update end user location address information in the PSR Ordering Dialog

• Create or update service locations on a PSR order

• Create or update end user location address information on the PRILOC/SECLOC Info
tab of the Product Service Request window

• Create or update end user location address information in the End User Location
Maintenance window

Custom Extension Success Scenario Example

The following list includes examples of situations when the custom extension logic may return
the Success return code based on your custom logic:

• No matching address already exists

• The address information you enter is correct

When the extension returns the Success return code, the MSS application creates or updates
the end user location.

Appendix A
Execution Points

A-41

Custom Extension Failure Scenario Example

The following list includes examples of situations when the custom extension logic
may return the Failure return code based on your custom logic:

• A matching address already exists

• The address information you enter is incorrect

• No new end user location should be created with the data you enter

When the extension returns the Failure return code, the return text that you specified
in your custom logic is displayed, and the MSS application does not create or update
the end user location address information.

Custom Extension Warning Scenario Example

The following list includes examples of situations when the custom extension logic
may return the Warning return code based on your custom logic:

• A partially matching address already exists

• The address information you enter is partially correct

When the extension returns the Warning return code, one of the following occurs:

• In the End User Location window and on the PRILOC/SECLOC Info tab of the
Product Service Request window, the Custom Address Validation window is
displayed, which displays those values in red that are different than the values you
specified in the input. Do one of the following:

– Click OK to create or update the end user location address information with
the data returned by your custom logic

– Click Override to create or update the end user location address information
with the original data you entered in the MSS application

• At the top of the PSR Ordering Dialog, only those values are displayed in red that
are different than the values you specified in the input. Do one of the following:

– Click Next to create or update the end user location address information with
the data returned by your custom logic

– Click Override to create or update the end user location address information
with the original data you entered in the MSS application

Note:

You can limit user access to the Override option in the Security
Permissions window.

Business Example
You enter a PSR order and click Add Service Location to add a new end user
location. In the End User Location Maintenance window, enter the required information
in the fields and click OK. The execution point is triggered and it returns Success,
Failure, or Warning return codes that determine the behavior of the application based

Appendix A
Execution Points

A-42

on your custom logic. See Table A-61 for more information about the MSS UI windows from
where you can trigger the execution point.

Execution Point Definition
When defining the extension in MetaSolv Solution, choose the options shown in Table A-58
when searching for an execution point to associate with the extension.

Table A-58 Create/Update Execution Points

Field Name Option

Execution Mode Synchronous

Building Block All End User Locations

Process Point EUL Maintenance (123), PSR (124)

Action Type Update (91), Create (92)

Data Passed / Data Returned
This is a synchronous call, therefore data should be returned from the extension Java class.

Table A-59 shows the data that is passed to the extension Java class.

Table A-59 Create/Update Name/Value Pair Input Data

Data Name Data
Type

Data Description

addressId String Unique identifier for an address.

This is 0 or null for a new end user location that you want to create.

addressComponents String Address components, such as House Number, Street Name, City
Name, and so on. Specify this information as String in the following
format:

<ADDRESS>
 <sfname></sfname>
 <structureFormatComponents>
 <id></id>
 <name></name>
 <componentType></componentType>
 <value></value>
 </structureFormatComponents>
</ADDRESS>

eulName String Name of the end user location.

countryId String ID of a country.

locationId String ID of the location.

This is 0 or null for a new end user location that you want to create.

addressFormat String Address structure format for the address.

Table A-60 shows the data that is returned by the extension Java class.

Appendix A
Execution Points

A-43

Table A-60 Create/Update Name/Value Pair Return Data

Data Name Data
Type

Mandatory/
Optional

Data Description

returnCode String Mandatory Return code that you want the extension logic to
return:

• Success
• Failure
• Warning

returnText String Mandatory if
you specify the
returnCode as
Failure;
otherwise, it is
optional.

Text that you want the extension logic to return for
the Success, Failure, and Warning return codes.

Appendix A
Execution Points

A-44

Table A-60 (Cont.) Create/Update Name/Value Pair Return Data

Data Name Data
Type

Mandatory/
Optional

Data Description

returnAddrCom
ponents

String The
returnAddrCom
ponents or
returnAddrId is
mandatory if
you specify the
returnCode as
Warning.

The
returnAddrCom
ponents is
ignored if you
specify
returnAddrId.

Returns only those address components that are
different than the address components you
specified in the input.

Address components, such as House Number,
Street Name, City Name, and so on, that are
returned as String by the extension logic in the
following format:

<ADDRESS>
 <sfname></sfname>
 <structureFormatComponents>
 <id></id>
 <name></name>
 <componentType></componentType>
 <value></value>
 </structureFormatComponents>
</ADDRESS>

where:

• sfname: Indicates the address format of the
end user location. Refer to the
SF_STRUCT_FORMAT_NM column in the
SF_COMP table.

• id: Indicates the structure format component
ID for an address component in the end user
location. Refer to the SF_COMP_ID column
in the SF_COMP table.

• name: Indicates the structure format
component name for an address component
in the end user location. Refer to the
COMP_NM column in the SF_COMP table.

• componentType: Indicates the structure
format component type for an address
component in the end user location. Refer to
the COMP_TYPE column in the SF_COMP
table.

• value: Indicates the value of the structure
format component based on the
componentType.

For example:

The Street Name address component of type
N has the actual value, for example, ABC
Street.

The State Code address component of type
G has the value ID, for example, 123, which
indicates the value ID of the state and not the
actual name of the state.

Appendix A
Execution Points

A-45

Table A-60 (Cont.) Create/Update Name/Value Pair Return Data

Data Name Data
Type

Mandatory/
Optional

Data Description

returnAddrId String The
returnAddrCom
ponents or
returnAddrId is
mandatory if
you specify the
returnCode as
Warning.

Unique identifier returned for an address.

Returned data validation
The data returned by the Create and Update execution points must adhere to certain
rules. See "Create/Update End User Location" for detailed parameter-level validation
information.

UI Invocation
Table A-61 lists the MSS UI windows that trigger the execution point when you create
or update end user locations.

Table A-61 MSS UI Windows That Trigger the Execution Point

Building
Block
Type

Building
Block
Name

Process
Point

Action
Type

MSS UI Windows

Address
(411)

All End
User
Locations

EUL
Maintenance
(123)

Create
(92)

End User Location Maintenance Window
The execution point is triggered when you do
the following:

• When creating a new end user location, in
the End User Location Maintenance
window, enter the required information in
the fields and click OK.

See "Creating or Updating an End User
Location from the End User Location
Maintenance Window" for more
information.

Address
(411)

All End
User
Locations

EUL
Maintenance
(123)

Update
(91)

End User Location Maintenance Window
The execution point is triggered when you do
the following:

• When updating an end user location, in the
End User Location Maintenance window,
update the existing information in the fields
and click OK.

See "Creating or Updating an End User
Location from the End User Location
Maintenance Window" for more
information.

Appendix A
Execution Points

A-46

Table A-61 (Cont.) MSS UI Windows That Trigger the Execution Point

Building
Block
Type

Building
Block
Name

Process
Point

Action
Type

MSS UI Windows

Address
(411)

All End
User
Locations

PSR (124) Create
(92)

End User Location Maintenance Window
The execution point is triggered when you do
the following:

• When creating a service location, in the
End User Location Maintenance window,
enter the required information in the fields
and click OK.

See "Creating or Updating a Service
Location on a PSR order" for more
information.

PSR Ordering Dialog
The execution point is triggered when you do
one the following:

• In the PSR Ordering Dialog, click the add a
new customer location link and enter the
required information in the fields, and then
either click Add Another or click Next.

See "Creating or Updating an End User
Location from the PSR Ordering Dialog" for
more information.

PRILOC/SECLOC Assignment Window
The execution point is triggered when you do
the following:

• In the PRILOC/SECLOC Assignment
window, click the address icon.

In the Address Maintenance window, enter
the required information in the fields and
click OK.

See "Creating or Updating an End User
Location on the PRILOC/SECLOC Info Tab
on a PSR Order" for more information.

Appendix A
Execution Points

A-47

Table A-61 (Cont.) MSS UI Windows That Trigger the Execution Point

Building
Block
Type

Building
Block
Name

Process
Point

Action
Type

MSS UI Windows

Address
(411)

All End
User
Locations

PSR (124) Update
(91)

End User Location Maintenance Window
The execution point is triggered when you do
the following:

• When updating a service location, in the
End User Location Maintenance window,
update the existing information in the fields
and click OK.

See "Creating or Updating a Service
Location on a PSR order" for more
information.

PSR Ordering Dialog
The execution point is triggered when you do
one the following:

• In the PSR Ordering Dialog, click an
existing location and update the existing
information in the fields and click Next.

See "Creating or Updating an End User
Location from the PSR Ordering Dialog" for
more information.

PRILOC/SECLOC Assignment Window
The execution point is triggered when you do
the following:

• In the PRILOC/SECLOC Assignment
window, click the address icon.

In the Address Maintenance window,
update the existing information in the fields
and click OK.

See "Creating or Updating an End User
Location on the PRILOC/SECLOC Info Tab
on a PSR Order" for more information.

Creating or Updating an End User Location from the End User Location
Maintenance Window

To create or update an end user location from the End User Location Maintenance
window:

1. On the navigation bar, select Application Setup, click Location and Geography
Setup, and then click End User Locations.

The End User Location Search window is displayed.

2. Do one of the following:

• To create a new end user location, click Add New.

• To update an existing end user location, specify your search criteria and click
Search, and then double-click the end user location.

The End User Location Maintenance window is displayed.

3. Enter the required information in the fields and click OK.

Appendix A
Execution Points

A-48

The execution point is triggered. The end user location address information is sent to the
custom logic (extension Java class) and one of the following occurs.

• The extension returns the Success return code. In this case, the end user location is
created or updated.

• The extension returns the Failure return code and displays the return text specified in
the custom logic. In this case, the end user location is not created or updated.

• The extension returns the Warning return code. In this case, the Custom Address
Validation window is displayed, which displays those values in red that are different
than the values you specified in the input. Do one of the following:

– Click OK to create or update the end user location address information with the
data returned by your custom logic.

– Click Override to create or update the end user location address information with
the original data you entered in the MSS application.

Creating or Updating a Service Location on a PSR order

To create or update a service location on a PSR order:

1. Open a PSR order.

2. Under Order Maintenance, click Services.

3. Do one of the following:

• To add a new service location, click Add Service Location.

The End User Location Search window is displayed.

– Click New Location.

• To update an existing service location, right-click a service location and select
Update Service Location.

The End User Location Maintenance window is displayed.

4. Enter the required information in the fields and click OK.

The execution point is triggered. The end user location address information is sent to the
custom logic (extension Java class) and one of the following occurs:

• The extension returns the Success return code. In this case, the end user location is
created or updated.

• The extension returns the Failure return code and displays the return text specified in
the custom logic. In this case, the end user location is not created or updated.

• The extension returns the Warning return code. In this case, the Custom Address
Validation window is displayed, which displays those values in red that are different
than the values you specified in the input. Do one of the following:

– Click OK to create or update the end user location address information with the
data returned by your custom logic.

– Click Override to create or update the end user location address information with
the original data you entered in the MSS application.

Creating or Updating an End User Location from the PSR Ordering Dialog

To create or update an end user location from the PSR Ordering Dialog:

1. Open a PSR order.

Appendix A
Execution Points

A-49

2. Under Order Maintenance, click Services.

3. Select a product from the hierarchy.

4. Under Service Item Actions, click the Configure Product link.

The PSR Ordering Dialog is displayed.

5. In the Do you want to include any of these existing locations? window, do one of
the following:

• To add a new location, click the add a new customer location link and enter
the required information in the fields and do one of the following:

– Click Add Another

– Click Next

• To update an existing location, click an existing location and update the fields
as required and click Next.

The execution point is triggered.

6. The end user location address information is sent to the custom logic (extension
Java class) and one of the following occurs:

• The extension returns the Success return code. In this case, the end user
location is created or updated.

• The extension returns the Failure return code and displays the return text
specified in the custom logic. In this case, the end user location is not created
or updated.

• The extension returns the Warning return code. In this case, at the top of the
PSR Ordering Dialog, only those values are displayed in red that are different
than the values you specified in the input. Do one of the following:

– Click OK to create or update the end user location address information
with the data returned by your custom logic.

– Click Override to create or update the end user location address
information with the original data you entered in the MSS application.

Creating or Updating an End User Location on the PRILOC/SECLOC Info Tab on
a PSR Order

To create or update an end user location on the PRILOC/SECLOC Info tab on a PSR
order:

1. Open a PSR order.

2. Under Order Maintenance, click Services.

3. Expand the circuit product node and select a circuit.

4. Click the PRILOC/SECLOC Info tab.

5. Under the PRILOC section, do one of the following:

• To assign a new primary/secondary location, click the Assign link.

• To edit an existing primary/secondary location, click the Edit link.

The PRILOC/SECLOC Assignment window is displayed.

6. On the PRILOC tab, select the End User option and complete the required fields.

7. On the SECLOC tab, select the End User option and complete the required fields.

Appendix A
Execution Points

A-50

8. Click the address icon.

The Address Maintenance window is displayed.

9. Complete the required fields and click OK.

The execution point is triggered. The end user location address information is sent to the
custom logic (extension Java class) and one of the following occurs:

• The extension returns the Success return code. In this case, the end user location is
created or updated.

• The extension returns the Failure return code and displays the return text specified in
the custom logic. In this case, the end user location is not created or updated.

• The extension returns the Warning return code. In this case, the Custom Address
Validation window is displayed, which displays those values in red that are different
than the values you specified in the input. Do one of the following:

– Click OK to create or update the end user location address information with the
data returned by your custom logic.

– Click Override to create or update the end user location address information with
the original data you entered in the MSS application.

WebService API Invocation
The Create and Update execution points are not triggered by the WebService API.

CORBA API Invocation
The Create and Update execution points are not triggered by the CORBA API.

Appendix A
Execution Points

A-51

B
Extensions Sample Code

This appendix provides information about the extensions sample code that comes with your
installation.

Using Sample Code as a Reference for Best Practices
This section provides information regarding best practices for writing Java classes to extend
the Oracle Communications MetaSolv Solution application logic. The best practices are
explained by referencing the provided sample code. The sample code demonstrates how to
throw an exception, send an email notification, and call a CORBA API method from an
extension class.

Exception Handling
The mss_ext_samples.jar file contains the class SampleExtensionException.java. This
class provides sample code that throws an exception from an extension class. The result of
an extension class throwing an exception is an entry in the appserver log appserverlog.xml
file (for 6.3.1.452 or earlier) or the appserver.log file (for 6.3.1.558 or later) that shows the
error text provided by the extension class. The appserver log file located in the MSLV_Home/
server/appserver/logs directory. No error is shown to the user.

Below is a sample of the message text logged to the appserver log file when this class
executes:

PlugInReturn object returned from Extension contained errors:
Testing Extension Exception - Sample Error Message
processPoint 101 ActionType 46 BuildingBlock 1001 Caller USER.

E-mail Notification
The mss_ext_samples.jar file contains the class ExtensionFrameworkOneWayTest.java.
This class provides sample code that sends an email notification from an extension class.

CORBA API Invocation
The mss_ext_samples.jar file contains the class InvokeCorbaAPIExtension.java. This class
provides sample code that invokes a CORBA API method from an extension class. The
sample code calls the CORBA API method getOrganization, which is defined in the
TaskCompletionSubsession of the Work Management CORBA API.

Running the Sample Code
The extensions sample code provides concrete examples of how to code specific logic in the
extension Java class such as error handling, sending an email notification, and making an
API call. When executed, the sample code also provides concrete examples of the outcome
of these actions. You can define any of the sample classes as an extension in the UI,

B-1

associate an execution point with the extension, and then trigger the execution point to
invoke the sample class extension and see the outcome.

The extension sample code provided with your installation of MetaSolv Solution is
listed below, including the first release in which it is supported. All sample code related
files are located in the mss_ext_samples.jar file. The installer copies the
mss_ext_samples.jar file to your MSLV_Home/appserver/samples directory, where
MSLV_Home is the directory in which MetaSolv Solution is installed.

• For a full installation, the contents of the mss_ext_samples.jar file are extracted
into the appropriate path under your MSLV_Home directory. The appropriate path
for each file is identified by the path specified in the .jar file.

• For an upgrade, you must manually extract the contents of the
mss_ext_samples.jar file into the appropriate path under your MSLV_Home
directory. The appropriate path for each file can be identified by the path specified
in the .jar file.

Sample code options:

• AssignWorkQueues

• ProvPlanDefault

• ExtensionFrameworkOneWayTest

• SampleExtensionException

• InvokeCorbaAPIExtension

For each sample, the following file types exist in the mss_ext_samples.jar file. (The
only exception is the InvokeCorbaAPIExtension sample, which does not have a
supporting XML file because there is no input data needed for this sample.)

• .java: the extension Java source file

• .class: the corresponding compiled Java class file

• .xml: the supporting xml file that defines sample input data and sample
configuration data that is passed to the extension logic

For example, the following three files that support the AssignWorkQueues sample
exist in the mss_ext_samples.jar file:

• AssignWorkQueues.java

• AssignWorkQueues.class

• AssignWorkQueues.xml

AssignWorkQueues
The AssignWorkQueues sample is provided to show extension logic that assigns
specific work queues, and uses a synchronous example. The sample logic shows how
to return the specific data that the Assign Queues execution point is expecting. When
the sample code is executed, it also shows the outcome of this action. Specifically, the
data that was passed back to the execution point is logged for your viewing.

To run the AssignWorkQueues sample code:

1. Through the UI, define a synchronous extension with the name
AssignWorkQueues.

Appendix B
Running the Sample Code

B-2

2. Through the UI, associate the Assign Queues execution point with the extension by
searching for the following criteria:

• Building Block: All Task Types

• Process Point: Task Maintenance

• Action Type: Assign Queues

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed.

server is the name of the WebLogic server.

5. Look at the AssignWorkQueues.xml file to understand what the expected results should
be in step 7. Specifically, the AssignWorkQueues.xml file defines four tasks and the
corresponding work queues to which the tasks are assigned. The work queues are
returned by the AssignWorkQueues extension logic.

6. Through the UI, trigger the execution point by assigning work queues.

7. Verify the outcome by looking in the UI, and by looking in the appserver log file located in
the MSLV_Home/server/appserver/logs directory.

ProvPlanDefault
The ProvPlanDefault sample is provided to show extension logic that defaults a provisioning
plan, and uses a synchronous example. The sample logic shows how to return the specific
data that the Provisioning Plan Default execution point is expecting. When the sample code is
executed, it also shows the outcome of this action. Specifically, the data that was passed
back to the execution point is logged for your viewing.

To run the ProvPlanDefault sample code:

1. Through the UI, define a synchronous extension with the name ProvPlanDefault.

2. Through the UI, associate the Provisioning Plan Default execution point with the
extension by searching for the following criteria:

• Building Block: All Task Types

• Process Point: Task Generation

• Action Type: Provision Plan Default

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file
located in the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

Appendix B
Running the Sample Code

B-3

5. Look at the ProvPlanDefault.xml file to understand what the expected results
should be in step 7. Specifically, the ProvPlanDefault.xml file defines a specific
provisioning plan ID that is returned by the ProvPlanDefault extension logic.

6. Through the UI, trigger the execution point by assigning a provisioning plan to an
order.

7. Verify the outcome by looking in the UI, and by looking in the appserver log file
located in the MSLV_Home/server/appserver/logs directory.

ExtensionFrameworkOneWayTest
The ExtensionFrameworkOneWayTest sample is provided to show extension logic that
sends an email notification. When the sample code is executed, it shows the outcome
of this action, and the notification is logged for your viewing. This sample also shows:

• How to read an XML file and determine what execution point invoked it.

• How to send an email notification.

• How to read the input name/value pair Array and put that data into an email.

To run the ExtensionFrameworkOneWayTest sample code:

1. Through the UI, define an extension with the name
ExtensionFrameworkOneWayTest.

2. Through the UI, associate an execution point with the extension by searching for
criteria such as:

• Building Block: All Task Types

• Process Point: Task Maintenance

• Action Type: Assign Jeopardy

3. Ensure the gateway.ini entry that defines the sample code path reflects the
correct location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml
file located in the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Look at the ExtensionFrameworkOneWayTest.xml file to understand what the
expected results should be in step 7. Modify the data, such that the email recipient
is a valid address that can check for the mail notification, and the SmtpServerKey
value is valid for your location.

6. Through the UI, trigger the execution point that was selected in step 2.

7. Verify the outcome by looking in designated email inbox, and by looking in the
appserver log file located in the MSLV_Home/server/appserver/logs directory.

SampleExtensionException
The SampleExtensionException sample is provided to show extension logic that sends
an email notification and throws an exception. The code always throws an exception.
When the sample code is executed, it shows the outcome of this action in the form of

Appendix B
Running the Sample Code

B-4

the email notification, and in the form of a logged error if the extension is defined as
synchronous.

Note:

If the extension is defined as asynchronous, the extension framework does not log
an error, but it does send an email notification.

If the extension is defined as synchronous, the extension framework logs an error to
the log file, in addition to sending the email notification.

Perform the following steps to run the SampleExtensionException sample code:

1. Through the UI, define a synchronous extension with the name
SampleExtensionException.

2. Through the UI, associate an execution point with the extension by searching for criteria
such as:

• Building Block: All Task Types

• Process Point: Task Maintenance

• Action Type: Assign Jeopardy

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml file
located in the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Look at the SampleExtensionException.xml file to understand what the expected
results should be in step 7. Modify the data, such that the email recipient is a valid
address that can check for the exception notification, and the SmtpServerKey value is
valid for your location.

6. Through the UI, trigger the execution point that was selected in step 2.

7. Verify the outcome by looking in the appserver log file located in the MSLV_Home/server/
appserver/logs directory.

InvokeCorbaAPIExtension
The InvokeCorbaAPIExtension sample is provided to show how to code CORBA API calls in
the extension logic. When the sample code is executed, it also shows the outcome of this
action. Specifically, the sample calls the CORBA API method getOrganization(), so the
organization is logged for your viewing.

To run the InvokeCorbaAPIExtension sample code:

1. Through the UI, define an extension with the name InvokeCorbaAPIExtension.

2. Through the UI, associate an execution point with the extension by searching for criteria
such as:

Appendix B
Running the Sample Code

B-5

• Building Block: All Task Types

• Process Point: Task Maintenance

• Action Type: Assign Jeopardy

3. Ensure the gateway.ini entry that defines the sample code path reflects the
correct location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by checking the loggingconfig.xml
file located in the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Through the UI, trigger the execution point that was selected in step 2.

6. Verify the outcome by looking in the appserver log file located in the MSLV_Home/
server/appserver/logs directory.

SelectComponent
The SelectComponent sample is provided to show extension logic that selects a
component or element, and uses a synchronous example. The sample logic shows
how to return the specific data that the Select Component or Element execution point
is expecting. When the sample code is executed, it also shows the outcome of this
action. Specifically, the data that was passed back to the execution point is logged for
your viewing.

This sample is very specific in its function. Other samples are open-ended and can
apply to several execution points. This sample code calls specific methods to
accomplish the component selection. Java documentation is provided in the sample
code to give you additional information about the methods that the sample code calls.

To run the SelectComponent sample code:

1. Through the UI, define a synchronous extension with the name SelectComponent.

2. Through the UI, associate the Select Component or Element execution point with
the extension by searching for the following criteria:

• Building Block: All Connections

• Process Point: PCONDES Maintenance

• Action Type: Select Component or Element

3. Ensure the gateway.ini entry that defines the sample code path reflects the
correct location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure the logging level is set correctly by checking the loggingconfig.xml file
located in the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Through the UI:

• Set up a DSLAM network location.

Appendix B
Running the Sample Code

B-6

• Add a network element of type DSL Multiplexer to the DSLAM network location.

• Add a DSL card with an available port matching the rate code of the ordered service
to the DSL Multiplexer.

• Enter a PSR order with an end user location that has the same zip code as the
DSLAM network location.

• On the PSR order, add a service to the end user location that can be auto
provisioned.

• Assign a provisioning plan to the order that defines the PCONDES task.

6. Through the UI, trigger the execution point by completing the PCONDES task.

7. Verify the outcome by looking in the UI, and by looking in the appserver log file located in
the MSLV_Home/server/appserver/logs directory.

SelectPort
The SelectPort sample is provided to show extension logic that selects a port address, and
uses a synchronous example. The sample logic shows how to return the specific data that
the Select Port Address execution point is expecting. When the sample code is executed, it
also shows the outcome of this action. Specifically, the data that was passed back to the
execution point is logged for your viewing.

This sample is very specific in its function. Other samples are open-ended and can apply to
several execution points. This sample code calls specific methods to accomplish the port
selection. Java documentation is provided in the sample code to give you additional
information about the methods that the sample code calls.

To run the SelectPort sample code:

1. Through the UI, define a synchronous extension with the name SelectPort.

2. Through the UI, associate the Select Port Address execution point with the extension by
searching for the following criteria:

• Building Block: All Connections

• Process Point: PCONDES Maintenance

• Action Type: Select Port Address

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

where:

MSLV_Home is the directory in which the MetaSolv Solution software is installed

server is the name of the WebLogic server

5. Through the UI:

• Set up a DSLAM network location.

• Add a network element of type DSL Multiplexer to the DSLAM network location.

• Add a DSL card with an available port matching the rate code of the ordered service
to the DSL Multiplexer.

Appendix B
Running the Sample Code

B-7

• Enter a PSR order with an end user location that has the same zip code as the
DSLAM network location.

• On the PSR order, add a service to the end user location that can be auto
provisioned.

• Assign a provisioning plan to the order that defines the PCONDES task.

6. Through the UI, trigger the execution point by completing the PCONDES task.

7. Verify the outcome by looking in the UI, and by looking in the appserver log file
located in the MSLV_Home/server/appserver/logs directory.

SelectComponentForVirtual
The SelectComponentForVirtual sample is provided to show extension logic that
selects a component or element for a virtual connection using a synchronous call. The
sample logic reads the values (NS_ID and NS_COMP_ID) from the corresponding
XML file. Even though the sample logic uses values from an XML file instead of
performing actual logic to retrieve those values, it does demonstrate how to format the
return data as required by the calling method. When the sample code is executed, it
shows the outcome of this action by logging the input parameters to the console.

To run the SelectComponentForVirtual sample code:

1. Through the UI, define a synchronous extension with the name
SelectComponentForVirtual.

2. Through the UI, associate the Select Component or Element execution point with
your newly created extension by searching for the following criteria:

• Building Block-All Connections

• Process Point-VCONDES Maintenance

• Action Type-Select Component or Element

3. Ensure the gateway.ini entry that defines the sample code path reflects the
correct location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectComponentForVirtual.xml file in the MSLV_Home/server/
appserver/samples/customExtension/xml directory, where MSLV_Home is the
directory in which the MetaSolv Solution software is installed and server is the
name of the WebLogic server.

The keys in this file represent the desired Network System (NS_ID) and
Component (NS_COMP_ID) for the virtual connection to be provisioned to. This
file is read by the custom extension in step 6, and therefore you must modify these
key values to represent the actual corresponding data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file
located in the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order with one or more virtual connections.

• Assign a provisioning plan to the order that defines the VCONDES task.

• Open the Service Request Virtual Circuits window by opening the VCONDES
task.

• Select one or more connections and then select Auto Provision from the
Options menu.

Appendix B
Running the Sample Code

B-8

• Verify the outcome by looking in the UI, and by looking in the server.mss.xml file
located in the MSLV_Home/server/appserver/logs directory.

SelectNetworkSystemForNetDesign
The use of the Select Network System execution point is demonstrated through the
SelectNetworkSystemForNetDesign sample code.

The SelectNetworkSystemForNetDesign sample is provided to show extension logic that
selects a network system for a network design automation. The sample logic reads the
expected values (which are listed below in sample XML file) from the corresponding XML file,
but shows how to return the data that the Select Network System execution point is
expecting. Even though the sample logic uses values from an XML file instead of performing
actual logic to retrieve those values, it does demonstrate how to format the return data as
required by the calling method.

To run the SelectNetworkSystemForNetDesign sample code:

1. Through the UI, define a synchronous extension with the name
SelectNetworkSystemForNetDesign.

2. Through the UI, associate the SelectNetworkSystem execution point with your newly
created extension by searching for the following criteria:

• Building Block - Network System

• Process Point - Network System Design

• Action Type - Select Network System

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectNetworkSystemForNetDesign.xml file in the MSLV_Home/
server/ appserver/samples/customExtension/xml directory, where MSLV_Home is the
directory in which the MetaSolv Solution software is installed and server is the name of
the WebLogic server.

The keys in this file are listed below in the provided sample data. The sample data
represents the network system properties that would be designed as part of automation
of NETDSGN task. This file is read by the custom extension in step 6, so you must
modify the key values provided in the sample data to represent the actual corresponding
data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order.

• Assign a provisioning plan to the order that defines the NETDSGN task and assign
this task to the SYSTEM work queue.

The following example shows the SelectNetworkSystemForNetDesign.xml file format when
using the SelectNetworkSystem execution point:

<?xml version="1.0" encoding="UTF-8"?>

<SAMPLEDATA>
<RETURNDATA KEY="NS_ID" VALUE="user input value"/>
<RETURNDATA KEY="ACTIVITY_IND" VALUE="user input value"/>

Appendix B
Running the Sample Code

B-9

<RETURNDATA KEY="NS_TEMPLATE_NAME" VALUE="user input value"/>
<RETURNDATA KEY="SHORT_NAME" VALUE="user input value"/>
<RETURNDATA KEY="LONG_NAME" VALUE="user input value"/>
<RETURNDATA KEY="DESC_100" VALUE="user input value"/>
<RETURNDATA KEY="HARD_SOFT_ASSIGN_CD" VALUE="user input value"/>
<RETURNDATA KEY="CUSTOMER_SYS_ID" VALUE="user input value"/>
<RETURNDATA KEY="PROVIDER_SYS_ID" VALUE="user input value"/>
<CUSTOM_ATTRIBUTE NAME="user input value">
<VALUE>user input value</VALUE>
</CUSTOM_ATTRIBUTE>
<CUSTOM_ATTRIBUTE NAME="user input value">
<!-- to delete existing CA value below tag should be used(applicable
for multi-valued CA's)-- >
<VALUE DELETE="TRUE">CA Value</VALUE>
</CUSTOM_ATTRIBUTE>
<!—- add custom attribute tags as needed, depending on CA's that are
populated for the network system -->
</SAMPLEDATA>

Table B-1 describes the keys in the SelectNetworkSystemForNetDesign.xml file.

Table B-1 SelectNetworkSystemForNetDesign Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

ACTIVITY_IND Activity indicator Mandatory Char "N" or "C" for
new and change
activities

NS_TEMPLATE_

NAME

Network system template name For New activity,
this field is
mandatory

String N/A

SHORT_NAME Network system name Few New
activity, this field
is mandatory

String N/A

LONG_NAME Long name for network system Optional String N/A

DESC_1OO Network system description Optional String N/A

NS_ID Network system ID (can be
populated in update activity)

Optional Int N/A

HARD_SOFT_ASSIGN_
CD

Hard soft value Optional String HARD/SOFT/
NONE

CUSTOMER_SYS_ID Customer system ID N/A String N/A

PROVIDER_SYS_ID Provider system ID Optional String N/A

NAME

(custom attribute name)

CA name Mandatory if CA
has to be
populated

String N/A

VALUE

(custom attribute value)

CA value Mandatory if CA
has to be
populated

String N/A

SelectCustEdgeCompForNetDesign
The use of the Select Customer Edge Component execution point is demonstrated
through the SelectCustEdgeCompForNetDesign sample code.

Appendix B
Running the Sample Code

B-10

The SelectCustEdgeCompForNetDesign sample is provided to show extension logic that
selects a customer edge components for a network design automation. The sample logic
reads the expected values (which are listed below in sample XML file) from the
corresponding XML file, but shows how to return the data that the Select Customer Edge
Component execution point is expecting. Even though the sample logic uses values from an
XML file instead of performing actual logic to retrieve those values, it does demonstrate how
to format the return data as required by the calling method.

To run the SelectCustEdgeCompForNetDesign sample code:

1. Through the UI, define a synchronous extension with the name
SelectCustEdgeCompForNetDesign.

2. Through the UI, associate the Select Customer Edge Component execution point with
your newly created extension by searching for the following criteria:

• Building Block - Network System

• Process Point - Network System Design

• Action Type - Select Customer Edge Component

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectCustEdgeCompForNetDesign.xml file in the MSLV_Home/
server/ appserver/samples/customExtension/xml directory, where MSLV_Home is the
directory in which the MetaSolv Solution software is installed and server is the name of
the WebLogic server.

The keys in this file are listed below in the provided sample data. This data represents
the customer edge component properties that would be designed as part of NETDSGN
task automation. This file is read by the custom extension in step 6, so you must modify
the key values provided in the sample data to represent the actual corresponding data in
your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order.

• Assign a provisioning plan to the order that defines the NETDSGN task and assign
this task to SYSTEM work queue.

The following example shows the SelectCustEdgeCompForNetDesign.xml file format when
using the Select Customer Edge Component execution point:

<?xml version="1.0" encoding="UTF-8"?>

<SAMPLEDATA>
<CUSTOMEREDGE>
<RETURNDATA KEY="ACTIVITY_IND" VALUE="N"/>
<RETURNDATA KEY="CE_NAME" VALUE="user input value"/>
<RETURNDATA KEY="CE_LOCATION_NAME" VALUE="user input value"/>
<RETURNDATA KEY="CE_TYPE" VALUE="CUST_SITE"/>
<RETURNDATA KEY="CE_NUMBER" VALUE="12"/>
<CUSTOM_ATTRIBUTE NAME=" user input value ">
<VALUE>CA Value</VALUE>
<!-- to delete existing CA value below tag should be
used(applicable for multi-valued CA's)-- >
<VALUE DELETE="TRUE">CA Value</VALUE>
</CUSTOM_ATTRIBUTE>

Appendix B
Running the Sample Code

B-11

<!-— add custom attribute tags as many as you want depending on CA's
that need to be populated for network systems -->
</CUSTOMEREDGE>
<!—- add custom attribute tags as needed, depending on CA's that are
populated for the network system -->
</SAMPLEDATA>

Table B-2 describes the keys in the SelectCustEdgeCompForNetDesign.xml file.

Table B-2 SelectCustEdgeCompForNetDesign Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

ACTIVITY_IND Activity indicator Mandatory Char "N" or "C" for
new and change
activities

CE_NAME Customer edge component
name

For New activity,
this field is
mandatory

String N/A

CE_NUMBER Integer number used with
CE_NAME to uniquely identify
each CE

Optional Int N/A

CE_LOCATION_

NAME

CLLI code of customer edge
location. It should be the same
as location name on the order.

For New activity,
this field is
mandatory.

String N/A

CE_TYPE Type of customer edge
component

For New activity,
this field is
mandatory.

String Sample data:
CUST_SITE,
CE_RTR

NS_COMP_ID Network component ID (can be
populated in update activity)

Optional Int N/A

NETWORK_ELEMENT_I
D

Network element ID Optional String N/A

NAME

(custom attribute name)

CA name Mandatory if CA
has to be
populated

String N/A

NAME

(custom attribute value)

CA value Mandatory if CA
has to be
populated

String N/A

SelectConnectionEndPoints
The use of the Select End Component For Physical Connection execution point is
demonstrated through the SelectConnectionEndPoints sample code.

The SelectConnectionEndPoints sample is provided to show extension logic that
selects a connection end point for each physical connection present on a PSR order.
The sample logic reads the expected values (which are listed below in a sample XML
file) from the corresponding XML file, but shows how to return the data that the Select
End Component For Physical Connection execution point is expecting. Even though
the sample logic uses values from an XML file instead of performing actual logic to
retrieve those values, it does demonstrate how to format the return data as required by
the calling method.

Appendix B
Running the Sample Code

B-12

Perform the following steps to run the SelectConnectionEndPoints sample code:

1. Through the UI, define a synchronous extension with the name
SelectConnectionEndPoints.

2. Through the UI, associate the Select End Component For Physical Connection execution
point with your newly created extension by searching for the following criteria:

• Building Block - Network System

• Process Point - Network System Design

• Action Type - SelectEndComponentForPhysicalConnection

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectConnectionEndPoints.xml file in the MSLV_Home/server/
appserver/samples/customExtension/xml directory, where MSLV_Home is the
directory in which the MetaSolv Solution software is installed and server is the name of
the WebLogic server.

The keys in this file represent the desired Network System (NS_ID) and Component
(NS_COMP_ID) for the virtual connection to be provisioned to. This file is read by the
custom extension in step6, and therefore you must modify these key values to represent
the actual corresponding data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order and order for physical connections.

• Assign a provisioning plan to the order that defines the NETDSGN task and assign
this task to SYSTEM work queue.

The following example shows the SelectConnectionEndPoints.xml file format when using
the Select End Component For Physical Connection execution point:

<?xml version="1.0" encoding="UTF-8"?>

<SAMPLEDATA>
<CONNECTION>
<RETURNDATA KEY="ACTIVITY_IND" VALUE="(N)ew or (C)hange"/>
<RETURNDATA KEY="CE_NAME" VALUE="customer edge comp name"/>
<RETURNDATA KEY="CE_NUMBER" VALUE="customer edge number"/>
<RETURNDATA KEY="PE_NAME" VALUE="provider edge name"/>
<RETURNDATA KEY="PE_NUMBER" VALUE="provider edge number"/>
<RETURNDATA KEY="PE_NETWORK_NAME" VALUE="network system name of PE"/>
<RETURNDATA KEY="CONNECTION_ECCKT" VALUE="connection name"/>
<RETURNDATA KEY="PE_PARENT_NETWORK_NAME" VALUE="outer network of PE"/>
<!— CONNECTION tags can be added as needed, depending on the number of
physical connections on the order. -->
</SAMPLEDATA>

Table B-3 describes the keys in the SelectConnectionEndPoints.xml file.

Appendix B
Running the Sample Code

B-13

Table B-3 SelectConnectionEndPoints Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

ACTIVITY_IND Activity indicator Mandatory Char "N" or "C"

CE_NAME Customer edge component
name.

This should be the CE_NAME
value returned from the
SelectCusotmerEdgeComponen
t exeution point.

This is one end of the
connection.

For New activity,
this field is
mandatory.

String N/A

CE_NUMBER Integer number used with
CE_NAME to uniquely identify
each CE.

This should be the
CE_NUMBER value returned
from the
SelectCustomerEdgeComponen
t execution point.

Optional Int N/A

PE_NAME Provider edge component name.

This is the other end of the
connection.

For New activity,
this field is
mandatory.

String N/A

PE_NUMBER Integer number used with
PE_NAME to uniquely identify
each PE.

Optional Int N/A

PE_NETWORK_NAME Represents immediate parent
network system of PE.

This network should have a
component with PE_NAME and
PE_NUMBER values.

For New activity,
this field is
mandatory.

String N/A

PE_PARENT_

NETWORK_NAME

This field is useful when multiple
layers of embedded networks
exist for PE.

Optional String N/A

CONNECTION_

ECCKT

Connection name Mandatory String N/A

SelectCustEdgeEquipForNetDesign
The use of the Select Equipment For CE execution point is demonstrated through the
SelectCustEdgeEquipForNetDesign sample code.

The SelectCustEdgeEquipForNetDesign sample is provided to show extension logic
that selects an equipment and customer edge component so that the customer edge
can be associated with equipment. The sample logic reads the expected values (which
are listed below in a sample XML file) from the corresponding XML file, but shows how
to return the data that the Select Equipment For CE execution point is expecting. Even
though the sample logic uses values from an XML file instead of performing actual
logic to retrieve those values, it does demonstrate how to format the return data as
required by the calling method.

Appendix B
Running the Sample Code

B-14

To run the SelectCustEdgeEquipForNetDesign sample code:

1. Through the UI, define a synchronous extension with the name
SelectCustEdgeEquipForNetDesign.

2. Through the UI, associate the Select Equipment For CE execution point with your newly
created extension by searching for the following criteria:

• Building Block - Network System

• Process Point - Network System Design

• Action Type - Select Equipment For CE

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the SelectCustEdgeEquipForNetDesign.xml file in the MSLV_Home/
server/ appserver/samples/customExtension/xml directory, where MSLV_Home is the
directory in which the MetaSolv Solution software is installed and server is the name of
the WebLogic server.

The keys in this file represent the desired Network System (NS_ID) and Component
(NS_COMP_ID) for the virtual connection to be provisioned to. This file is read by the
custom extension in step6, and therefore you must modify these key values to represent
the actual corresponding data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order and order for physical connections.

• Assign a provisioning plan to the order that defines the NETDSGN task and assign
this task to SYSTEM work queue.

The following example shows the SelectCustEdgeEquipForNetDesign.xml file format when
using the Select Equipment For CE execution point:

<?xml version="1.0" encoding="UTF-8"?>
<SAMPLEDATA>
<CUSTOMEREDGE NAME="CE name"
CE_NUMBER="CE number"
EQUIPMENT_ID="equipment id" />
</CUSTOMEREDGE>
<!—- add CUSTOMEREDGE tags as needed, depending on number of equipments
associated with customer edge comp -->
</SAMPLEDATA>

Table B-4 describes the keys in the SelectCustEdgeEquipForNetDesign.xml file.

Table B-4 SelectCustEdgeEquipForNetDesign Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

CE_NAME Customer edge component name.

This should be the CE_NAME value
returned from the
SelectCusotmerEdgeComponent
execution point.

Mandatory String N/A

Appendix B
Running the Sample Code

B-15

Table B-4 (Cont.) SelectCustEdgeEquipForNetDesign Keys

Key Name Description Mandatory/
Optional

Data Type Sample/
Valid Values

CE_NUMBER Integer number used with CE_NAME to
uniquely identify each CE.

This should be the CE_NUMBER value
returned from the
SelectCusotmerEdgeComponent
execution point.

Optional Int N/A

EQUIPMENT_I
D

Equipment ID Mandatory Int N/A

DS0/DS1 Automated Design
The use of the DS0/DS1 Automated Design execution point is demonstrated through
the FacilityAutomatedDesign sample code.

The FacilityAutomatedDesign sample logic in the Java file shows the users how to
provide the desired input assignment information (which is listed in the tables below).
The sample logic demonstrates how to format and pass the data as required by the
calling method.

To run the FacilityAutomatedDesign sample code:

1. Through the UI, define a synchronous extension with the name
FacilityAutomatedDesign.

2. Through the UI, associate an execution point with the extension by searching for
criteria such as:

• Building Block: Connection

• Process Point: Connection Design

• Action Type: DS0/DS1 Automated Design

3. Ensure the gateway.ini entry that defines the sample code path reflects the
correct location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the FacilityAutomatedDesign file in the MSLV_Home/server/
appserver/samples/customExtension/com/metasolv/custom/vendor/
extension/FacilityAutomatedDesign directory, where MSLV_Home is the
directory in which the MetaSolv Solution software is installed and server is the
name of the WebLogic server.

The parameters in this file are listed below in the provided sample data. The
sample data represents the assignments that would be designed as part of
automation of the AUTODSGN task. This file is read by the custom extension in
step 6, so you must modify the parameter values provided in the sample data to
represent the actual corresponding data in your database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file
located in the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order.

Appendix B
Running the Sample Code

B-16

• Assign a provisioning plan to the order that defines the AUTODSGN task and assign
this task to SYSTEM work queue.

Table B-5 describes the input parameters that need to be set in
com.mslv.core.pi.internal.NetProv.ConnDesign.containerData.ProvisioningContainer.

Table B-5 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ProvisioningContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

networkBlocks Collection of all the Network
Assignment containers -
NetworkAssignmentData.

Optional Vector If not provided
in the Custom
Extension code,
AUTODSGN
assumes no
Optical
Provisioning
needs to be
done.

faciltyBlocks Collection of all the Facility
Assignment containers -
ChannelContainer.

Optional Vector If not provided
in the Custom
Extension code,
AUTODSGN
assumes no
Facility
Assignment
needs to be
done.

equipmentBlocks Collection of all the Equipment
Assignment containers -
PortContainer.

Optional Vector If not provided
in the Custom
Extension code,
AUTODSGN
assumes no
Equipment
Assignment
needs to be
done.

cableBlocks Collection of all the Cable Pair
Assignment containers -
CablePairBlockContainer.

Optional Vector If not provided
in the Custom
Extension code,
AUTODSGN
assumes no
Cable Pair
Assignment
needs to be
done.

crossReferenceBloc
ks

Collection of all the Cross
Reference containers -
CrossReferenceContainer.

Optional Vector If not provided
in the Custom
Extension code,
AUTODSGN
assumes no
Cross
Reference
needs to be
added.

Appendix B
Running the Sample Code

B-17

Table B-5 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ProvisioningContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

miscInfoBlocks Collection of all the
Miscellaneous Information.
The miscellaneous information
has to be passed in a String
variable. Only 16 characters
can be added in one design
line and the rest will be
wrapped in the subsequent
lines. The first 160 characters
will be taken for the
assignment if the length
exceeds 160 characters.

Optional Vector If not provided
in the Custom
Extension code,
AUTODSGN
assumes no
Miscellaneous
Information
needs to be
added.

foreignInfoBlocks Collection of all the Foreign
Info containers -
ForeignInfoContainer.

Optional Vector If not provided
in the Custom
Extension code,
AUTODSGN
assumes no
Foreign Info
needs to be
added.

notesBlocks Collection of all the Notes
containers - NotesContainer.

Optional Vector If not provided
in the Custom
Extension code,
AUTODSGN
assumes no
notes are to be
added.

Table B-6 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.NetworkAssignmentDat
a.

Table B-6 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.NetworkAssignmentData

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

channelAssignment
s

Collection of all the Channel
Assignment containers - one
element for one channel
position.

At least one element is
mandatory

Vector of
ChannelAssign
mentData

If no element is
present in the
ChannelAssign
ments Vector,
the
AUTODSGN
task will error
out.

portAssignments Collection of all the Port
Assignment containers.

Optional Vector of
PortAssignment
Data

N/A

Appendix B
Running the Sample Code

B-18

Table B-6 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.NetworkAssignmentData

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

commonNetworkNs
Id

Network ID of common Network
System

Mandatory Int Should be a
valid Network
system ID,
otherwise the
AUTODSGN
task will error
out.

origCompId Originating Component ID Mandatory Int Should be a
valid
Component Id
within the
Network
specified
above,
otherwise the
AUTODSGN
task will error
out.

termCompId Terminating Component ID Mandatory Int Should be a
valid
Component ID
within the
Network
specified
above,
otherwise the
AUTODSGN
task will error
out.

additionalAssignme
ntSeqNbr

Additional assignment sequence
number

Optional Int N/A

blockType WP: Working Path

PP: Protect Path (implies wp +
pp)

Mandatory String WP and PP are
the only valid
values,
otherwise the
AUTODSGN
task will error
out.

Table B-7 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ChannelAssignmentData.

Appendix B
Running the Sample Code

B-19

Table B-7 Input Parameters to Set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ChannelAssignmentData

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

parentCircuitDesignId Circuit Design ID of the Parent
Connection.

Mandatory Int Should be a valid
Circuit Design ID
within the Network
specified above,
otherwise the
AUTODSGN task
will error out.

circuitPositions Circuit positions from the root
parent circuit.

Mandatory ArrayList If given positions
are not valid, the
AUTODSGN task
will error out.

protectPathIndicator Y: Yes (for protect path segment)

N: No (for working path
segment)

Mandatory Char If not populated
with one of the
mentioned values,
the AUTODSGN
task will error out.

mainNetworkNsId Network System ID. Optional Int Should be a valid
Network System
ID.

sameChannelIndicator Same channel Indicator. Optional Char N/A

Table B-8 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.PortAssignmentData.

Table B-8 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.PortAssignmentData.

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error
Conditions

Root Equipment id This represents base equipment
(rack) on which required CARD is
mounted.

Mandatory long If this is provided
in input, but does
not exist in the
inventory, the
AUTODSGN task
will error out.

associatedToOrig True: port associated at Originating
Node.

False: Port associated at
Terminating Node

Mandatory Boolean N/A

Port Sequence Port on the equipment to which the
connection needs to be assigned.

Mandatory long If not provided,
the AUTODSGN
task will error out.

mountingPositions List of mounting position numbers.
This represents position of CARD
with respect to RACK (root
equipment) to which connection has
to be assigned.

Optional ArrayList N/A

Appendix B
Running the Sample Code

B-20

Table B-9 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ChannelContainer.

Table B-9 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ChannelContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

parentCircuitId Circuit Design ID of the Parent
Connection.

Mandatory Int Should be a valid
Circuit Design ID,
otherwise the
AUTODSGN task
will error out.

channelPositionNbr Circuit position to which the child
circuit should be assigned.

Mandatory Int If given position is
not valid, the
AUTODSGN task
will error out.

Table B-10 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.PortContainer.

Table B-10 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.PortContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

equipmentId The equipment on which the port
assignment has to be made.

Mandatory Int If this is provided
in input, but does
not exist in the
inventory, the
AUTODSGN task
will error out.

Port Sequence Port on the equipment to which
the connection needs to be
assigned.

Mandatory Int If given port
address is not
valid, the
AUTODSGN task
will error out.

aZOtherCd The code which identifies the side
of the port assignment.

Mandatory Char The valid values
are A, Z and O.

Table B-11 describes the input parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairBlockContainer.

Table B-11 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairBlockContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

sideOfCircuitInd The indicator which determines
the side of the circuit where the
cable pair assignment has to be
made. The valid values are A, Z
and I.

Mandatory Char If the value is
anything other than
A, Z and I, the
AUTODSGN task
will error out.

Appendix B
Running the Sample Code

B-21

Table B-11 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairBlockContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

sideOfCircuitSeque
nceNumber

The sequence number to identify
the specific cable pair assignment
within a Cable Pair Block. There
can be multiple cable pair
assignments under the
sideOfCircuitindicator 'I'.

Conditional Boolean Mandatory if the
sideOfCircuitInd is
'I'

cablePairSetVector Collection of all the Cable Pair Set
information.

Mandatory Vector of
CablePairS
etContaine
r

N/A

Table B-12 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairSelfContainer

Table B-12 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CablePairSetContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error Conditions

additionaldBLoss Allows the user to enter
additional DB Loss for that
Cable Pair Set.

Optional Float N/A

additionalResistance Allows the user to enter
additional Resistance for that
Cable Pair Set.

Optional Float N/A

cableContainerVector Collection of all the Cable pair
information.

Mandatory Vector of
CableCont
ainer

N/A

Table B-13 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CableContainer.

Table B-13 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CableContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

cableId The cable ID of the desired
Cable.

Mandatory Int If this does not exist in
the inventory, the
AUTODSGN task will
error out.

Appendix B
Running the Sample Code

B-22

Table B-13 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CableContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

cableComplementId The Cable Complement ID of the
desired Cable complement.

Mandatory Int If this does not exist in
the inventory, the
AUTODSGN task will
error out. The
Complement should
have the above
mentioned cable ID
associated to it.

pairFibreChannelId
entifier

The identifier of the desired pair
or fibre.

Mandatory Int The pair should exist for
the specified Cable and
Cable Complement and
be in unassigned status.
If not, the AUTODSGN
task will error out.

functionCode The Function code for the pair. Conditional

This code is optional if
the user preference,
Functional Code is
Required, is set to N.

String If the specified value is
not one from the valid
value list - T, R, S1, S2,
X1, X2 - the
AUTODSGN task will
error out.

pendingDate The pending date of the pair. Optional String Should be a valid date,
if not the AUTODSGN
task will error out.

remarks Remarks for the pair. Optional String The terminal pair should
be in unassigned status.
If not, the AUTODSGN
task will error out.

terminalPairsOrigin
ating

The terminal pairs to be
assigned on the Originating end
if the Originating location is a
Terminal Pair.

Optional Int [] The terminal pair should
be in unassigned status.
If not, the AUTODSGN
task will error out.

terminalPairsTermin
ating

The terminal pairs to be
assigned on the Terminating end
if the Terminating location is a
Terminal Pair.

Optional Int [] If this does not exist in
the inventory, the
AUTODSGN task will
error out.

separationsRouteC
ode

The Identifier of the Separations
route code to be assigned to the
Pair assignment.

Optional String If this does not exist in
the inventory, the
AUTODSGN task will
error out.

Appendix B
Running the Sample Code

B-23

Table B-13 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CableContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

srLocationdId The originating location of the
Separations Route.

Conditional Int It is mandatory if the
separations route code
is populated in the
container. Also, if the
combination of
Separations Route
code, Originating
location ID and
terminating location ID
is invalid, the
AUTODSGN task will
error out.

srLocationdId2 The terminating location of the
Separations Route.

Conditional Int It is mandatory if the
separations route code
is populated in the
container. Also, if the
combination of
Separations Route
code, Originating
location ID and
terminating location ID
is invalid, the
AUTODSGN task will
error out.

numOfWires The number of wires to be
assigned.

Optional Int N/A.

Table B-14 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CrossReferenceContai
ner.

Table B-14 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CrossReferenceContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

crossReferenceType The type of the Cross
reference.

Optional String If not provided, the
value will be taken
from the preference.
If provided, the value
should be one from
the valid value list -
SYNONYM,
ALIASCUSTOMER,
ALIASPROVIDER,
CHILD, CKR.

crossReferenceValue The Cross Reference value to
be assigned.

Mandatory String If not provided, the
AUTODSGN task will
error out.

Appendix B
Running the Sample Code

B-24

Table B-14 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.CrossReferenceContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

status The status of the Cross
reference circuit.

Optional Char N/A

accessProviderServC
enter

The ICSC (Inter-Exchange
Carrier Service Provider Code)
value to be assigned.

Optional String The value should be
a valid ICSC, if not,
the AUTODSGN task
will error out.

accessCust The CCNA (Customer Carrier
Naming Abbreviation) value to
be assigned.

Optional String The value should be
a valid CCNA, if not,
the AUTODSGN task
will error out.

associatedLocationId The location ID corresponding
to the Location to be assigned.
For End User locations, the ID
in the location_id_sr column
from End_user_location table
should be used.

Optional Int The value should be
a valid Location ID, if
not, the AUTODSGN
task will error out.

Table B-15 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerDataForeignInfoContainer.

Table B-15 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ForeignInfoContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

AZTransmissionLevel The value to be entered in the
AZTransmissionLevel column
of the Design line.

Optional String N/A

noteIndicator The value to be entered in the
note indicator column.

Optional Char If the value is
one in the
following list -
I, O, D or 0 -
the
AUTODSGN
task will error
out.

equipTypeFacilityDesig The value to be entered in the
equipTypeFacilityDesig column
of the Design line.

Optional String N/A

incrementalMileage The value to be entered in the
incrementalMileage column of
the Design line.

Optional String N/A

location The value to be entered in the
location column of the Design
line.

Optional String N/A

Appendix B
Running the Sample Code

B-25

Table B-15 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ForeignInfoContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data Type Error
Conditions

miscInfo The value to be entered in the
miscInfo column of the Design
line.

Optional String N/A

relayRackFacilityType The value to be entered in the
relayRackFacilityType column
of the Design line.

Optional String N/A

signalVoice The value to be entered in the
signalVoice column of the
Design line.

Optional String N/A

unitChannel The value to be entered in the
unitChannel column of the
Design line.

Optional String N/A

ZATransmissionLevel The value to be entered in the
ZATransmissionLevel column of
the Design line.

Optional String N/A

Table B-16 describes the parameters to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.NoteContainer.

Table B-16 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.NotesContainer

Parameter Name Description Mandatory/Optional/
Conditional

Data
Type

Error Conditions

noteIndicator The value to be entered in
the note indicator column.

Mandatory Char If this is not provided in
input, the AUTODSGN
task will error out. If the
value is one in the
following list - I, O, D or 0
- the AUTODSGN task
will error out.

noteText The value to be entered as
a note to the circuit.

Mandatory String If this is not provided in
input, the AUTODSGN
task will error out.

ConnectionIdAutomation
The use of the Connection Id Automation execution point is demonstrated through the
ConnectionIdAutomation sample code.

The ConnectionIdAutomation sample is provided to show extension logic that receives
the information required for the Connection Id generation. The sample logic reads the
expected values (which are listed below in a sample XML file) from the corresponding
XML file, but shows how to return the data that the Connection Id Automation
execution point is expecting. Even though the sample logic uses values from an XML
file instead of performing actual logic to retrieve those values, it does demonstrate how
to format the return data as required by the calling method.

Appendix B
Running the Sample Code

B-26

Perform the following steps to run the ConnectionIdAutomation sample code:

1. Through the UI, define a synchronous extension with the name ConnectionIdAutomation.

2. Through the UI, associate the Connection Id Automation execution point with your newly
created extension by searching for the following criteria:

• Building Block: Connection

• Process Point: Connection Design

• Action Type: Connection Id Automation

3. Ensure the gateway.ini entry that defines the sample code path reflects the correct
location of the sample files extracted from the mss_ext_samples.jar file.

4. Navigate to the ConnectionIdAutomation.xml file in the MSLV_Home/server/
appserver/samples/customExtension/xml directory, where MSLV_Home is the
directory in which the MetaSolv Solution software is installed and server is the name of
the WebLogic server.

The keys in this file represent the desired information using which the Connection Id
should be generated. This file is read by the custom extension in step 6, and therefore
you must modify these key values to represent the actual corresponding data in your
database.

5. Ensure the logging level is set correctly by checking the loggingconfig.xml file located in
the MSLV_Home/server/appserver/config directory.

6. Through the UI:

• Enter a PSR order and order for physical connections.

• Assign a provisioning plan to the order that defines the CKTID task and assign this
task to SYSTEM work queue.

Notes:

• The CKTID Task Automation is applicable only to the circuits that are ordered through
PSR.

• The out-of-the-box algorithm applies the automated circuit id generation to traditional
circuits (CIRCUIT and INTRNCKT Item types) and template-based connections
(CONNECTOR item types).

• The out-of-the-box functionality for traditional circuits generates either CLS or CLF type
circuits.

• The out-of-the-box functionality for template-based connections uses the current process
to generate OTS type circuits.

• The only valid connection formats for the custom extension and out-of-the-box
functionality are CLS, CLF, OTF, and OTS.

• The only valid circuit types are C, F, and S.

• If the custom extension does not pass back an ID for CLS or CLF formats, the core code
builds the correctly formatted ID.

• If the custom extension does not pass back an ID for OTS, the core code appends the
Constant for Freeformat Circuit ID preference with “/" and a unique serial number to
generate a unique ID.

• Network Location A and Z typically comes from the order information.

Appendix B
Running the Sample Code

B-27

• If CE process point is not defined, then out-of-the-box functionality generates the
Connection ID and other mandatory data that is required for circuit generation.

• The information that is populated on the order is used for the out-of-the-box
functionality and for the extension logic. If the extension does not populate
information that is populated on the order, the order information is used. If the
extension populates the information differently than the order, the extension
information is used. If the extension does populate the information differently than
the order, the order information remains intact and the process does not update
the original order information.

• Prior to 6.2.1, the current logic is used for template-based connections. If you have
defined a stored procedure to define the Connection ID, it continues to still define
the Connection ID. If you have not defined a stored procedure, the current default
logic is executed. You can completely customize all the circuit information on a
template-based connection using the new extension.

• Currently, when you double-click the CKTID task and if there are CONNECTORS
included in the task, the InvAutoIdProcess method is called to automatically
generate the Connection ID. The code verifies if this extension has been
implemented, if it has, then the InvAutoIdProcess method is not executed. An
extension is considered implemented if an Extension Point has been associated to
the Extension Summary.

• If the custom extension does not pass back an ID for OTS, the core code appends
the Constant for Freeformat Circuit ID preference with “/" and a unique serial
number to generate a unique ID.

The following fields are populated on the PSR Order:

• Document Number

• Serv Item Id

• Item Type Cd

• Item Alias

• Rate Code

• Framing

• Line Coding

• Framing ANSI indicator

• Jurisdiction Code

• Service Type Category

• Service Type Code

• Network Location A (Originating Location)

• Network Location Z (Terminating Location)

Note:

There is currently an inconsistency between traditional and template-
based connections and that is being addressed on another task.

Appendix B
Running the Sample Code

B-28

The following example shows the ConnectionIdAutomation.xml file format when using the
Connection Id Automation execution point:

<?xml version="1.0" encoding="UTF-8"?>
<SAMPLEDATA>
<RETURNDATA KEY="NETWORK_LOCATION_A" VALUE=""/>
<RETURNDATA KEY="NETWORK_LOCATION_Z" VALUE=""/>
 <RETURNDATA KEY="RATE_CODE" VALUE="DS1"/>
 <RETURNDATA KEY="SERVICE_TYPE_CATEGORY" VALUE="CLCI-SS LATA Access"/>
 <RETURNDATA KEY="SERVICE_TYPE_CODE" VALUE="DO"/>
 <RETURNDATA KEY="CONNECTION_TYPE" VALUE="S"/>
 <RETURNDATA KEY="CONNECTION_FORMAT" VALUE="CLS"/>
 <RETURNDATA KEY="FRAMING" VALUE="CBIT"/>
 <RETURNDATA KEY="LINE_CODING" VALUE="2B1Q"/>
 <RETURNDATA KEY="FRAMING_ANSI_INDICATOR" VALUE="Y"/>
 <RETURNDATA KEY="ALLOW_LOWER_RATES_INDICATOR" VALUE="Y"/>
 <RETURNDATA KEY="JURISDICTION_CODE" VALUE="0"/>
 <RETURNDATA KEY="PROTECTED_CIRCUIT_INDICATOR" VALUE="N"/>
 <RETURNDATA KEY="PARTITION_GROUP_ID" VALUE=""/>
 <RETURNDATA KEY="PREFIX" VALUE="EX"/>
 <RETURNDATA KEY="MODIFIER" VALUE="--"/>
 <RETURNDATA KEY="SERIAL_NUMBER" VALUE=""/>
 <RETURNDATA KEY="SUFFIX" VALUE=""/>
 <RETURNDATA KEY="TELCO_ID" VALUE="QFWU"/>
 <RETURNDATA KEY="SEGMENT" VALUE=""/>
 <RETURNDATA KEY="NETWORK_CHANNEL_SERVICE_CODE" VALUE=""/>
 <RETURNDATA KEY="NETWORK_CHANNEL_OPTION_CODE" VALUE=""/>
 <RETURNDATA KEY="FACILITY_DESIGNATION" VALUE=""/>
 <RETURNDATA KEY="FACILITY_TYPE" VALUE=""/>
 <RETURNDATA KEY="GENERATED_CONNECTION_ID" VALUE=""/>
</SAMPLEDATA>

Table B-17 describes the input parameters that need to be set in
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ConnectionIdAutomationData.

Table B-17 Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ConnectionIdAutomationData

Parameter
Name

Description Mandatory/Optional/
Conditional

Data
Type

Sample/
Valid
Values

NETWORK_LO
CATION_A

Location ID value of the primary location on the
network location table. Network Location A
typically comes from the order information.

Mandatory Int N/A

NETWORK_LO
CATION_Z

Location ID value of the secondary location on
the network location table. Network Location Z
typically comes from the order information.

Conditional.

Mandatory for circuit
type F or S.

Optional for circuit
type C.

Int N/A

RATE_CODE The rate code of the circuit. Optional String N/A

SERVICE_TYP
E_CATEGORY

The service type category of the circuit. Mandatory String N/A

SERVICE_TYP
E_CODE

The service type code of the circuit. Mandatory String N/A

Appendix B
Running the Sample Code

B-29

Table B-17 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ConnectionIdAutomationData

Parameter
Name

Description Mandatory/Optional/
Conditional

Data
Type

Sample/
Valid
Values

CONNECTION_
TYPE

The circuit type of the connection. Mandatory Char Valid
values:

• C
• F
• S

CONNECTION_
FORMAT

The format of the connection to be created. Mandatory String Valid
values:

• CLF
• CLS
• OTS
• OTF

LINE_CODING The line coding value to be assigned to the
circuit.

Optional String N/A

FRAMING The framing value to be assigned to the circuit. Optional String N/A

FRAMING_ANS
I_INDICATOR

The framing ANSI value to be assigned to the
circuit.

Optional Char N/A

ALLOW_LOWE
R_RATES_INDI
CATOR

The allow lower rate indicator to be stored for
the circuit.

Default is N.

Optional Char N/A

JURISDICTION
_CODE

The Jurisdiction code of the circuit. Mandatory String N/A

FACILITY_DESI
GNATION

The facility designation of the circuit to be
created.

If the custom extension does not pass back a
designation the core algorithm is used to
generate the designation.

The core algorithm queries all designations
between the two network locations, adds one,
and compares the value to make sure it is within
the CLF Designation Range if it exists. If no
range has been set up, the range is 0-999999.

Conditional.

Mandatory for only
CLF.

String N/A

FACILITY_TYP
E

The type of facility for the circuit.

Defaults to service type code ID if not provided.

Conditional.

Mandatory for only
CLF.

String N/A

MODIFIER The modifier to be used for the connection ID
generation in CLS format.

Conditional.

Mandatory for only
CLS.

String N/A

TELCO_ID The Telco ID to be used for the connection ID
generation in CLS format.

If this is not provided in the extension, the value
in the preference, Service Request >
Connection > Default Telco Id for Automation to
default the Telco ID, is considered.

Conditional.

Mandatory for only
CLS.

String N/A

Appendix B
Running the Sample Code

B-30

Table B-17 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ConnectionIdAutomationData

Parameter
Name

Description Mandatory/Optional/
Conditional

Data
Type

Sample/
Valid
Values

SERIAL_NUMB
ER

The serial number to be used for the connection
ID generation in CLS format.

The system wide sequence is used to generate
Serial Number if not provided.

Conditional.

Mandatory for only
CLS.

String N/A

PARTITION_GR
OUP_ID

Enables you to assign partition group to the
connection.

Conditional.

The field is mandatory
if the security
preference, Use
Partition Level
Security for Access
to Inventory Data, is
set to Y. If the
extension does not
pass a value the
system defaults the
value to 101 – All
Access.

Int N/A

PROTECTED_
CIRCUIT_INDIC
ATOR

The serial number to be used for the connection
ID generation.

Default is N.

Optional Char N/A

NETWORK_CH
ANNEL_SERVI
CE_CODE

The network channel service code to be used
for the connection ID generation.

Optional String N/A

NETWORK_CH
ANNEL_OPTIO
N_CODE

The network channel option code to be used for
the connection ID generation.

Optional String N/A

PREFIX The prefix value to be used for the connection ID
generation in CLS format.

If the value is not provided, the system uses the
system preference value under Service Request
> Connection > Default Prefix for CLS Circuit
IDs.

If preference also is not set, prefix will be 2
empty spaces.

Conditional.

Mandatory for only
CLS.

String N/A

SUFFIX The suffix value to be used for the connection ID
generation in CLS format.

Conditional.

Mandatory for only
CLS.

String N/A

SEGMENT The segment value to be used for the
Connection ID generation in CLS format.

Conditional.

Mandatory for only
CLS.

String N/A

Appendix B
Running the Sample Code

B-31

Table B-17 (Cont.) Input Parameters to Set In
com.mslv.core.api.internal.NetProv.ConnDesign.containerData.ConnectionIdAutomationData

Parameter
Name

Description Mandatory/Optional/
Conditional

Data
Type

Sample/
Valid
Values

GENERATED_
CONNECTION_
ID

This parameter holds the generated connection
ID.

If the custom extension does not pass back an
ID for CLS or CLF formats, the core code builds
the correctly formatted ID.

If the custom extension does not pass back an
ID for OTS, the core code appends the
Constant for Freeformat Circuit ID preference
with “/" and a unique serial number to generate
a unique ID.

Conditional.

Required for OTF.

Optional for CLS, CLF,
and OTF.

String N/A

DedicatedPlantSelection
The DedicatedPlantSelection sample code demonstrates the use of the Select
Dedicated Plant action type.

The DedicatedPlantSelection sample code provides information about how to provide
the input information and return the data.

The sample code reverses the prioritized sort order of the input dedicated plant list and
populates this reversed list in the output dedicated plant list.

To run the DedicatedPlantSelection sample code:

1. Create a synchronous extension with the name DedicatedPlantSelection.

2. Associate the Select Dedicated Plant execution point with the
DedicatedPlantSelection extension by searching for the following criteria:

For the PCONDES Task:

• Building Block Type = Connection

• Building Block Name = All Connections

• Process Point = PCONDES Maintenance

• Action Type = Select Dedicated Plant

For the AUTODSGN task:

• Building Block Type = Connection

• Building Block Name = All Connections

• Process Point = Connection Design

• Action Type = Select Dedicated Plant

3. Ensure that the gateway.ini entry that defines the sample code path reflects the
correct location of the sample files extracted from the mss_ext_samples.jar file.

4. Ensure that the logging level is set correctly by verifying the loggingconfig.xml
file located in the MSLV_Home/server/appserver/config directory.

Appendix B
Running the Sample Code

B-32

5. Do one of the following:

• To automate the PCONDES task:

– Enter a PSR order for physical connections.

– Assign a provisioning plan to the order that contains the PCONDES task and
assign this task to the SYSTEM work queue.

• To automate the AUTODSGN task:

– Enter a PSR order for circuits that have either a DS0 or N/A rate code and have
been ordered as either a Circuit or Line product.

– Assign a provisioning plan to the order that contains the AUTODSGN task and
assign this task to the SYSTEM work queue.

Table B-18 lists the input parameters that you must set in
com.mslv.core.api.internal.NetProv.containerData.design.DedicatedPlantExtensionD
ata.

Table B-18 Input parameters to be set in
com.mslv.core.api.internal.NetProv.containerData.design.DedicatedPlantExtensionData

Parameter Name Description

OutputDedicatedPlantList List of dedicated plants to assign.

This parameter contains the following attributes:

• ded_cc_grp_id: Unique key of the available dedicated plants.
• last_modified_date: Last modified date of the available dedicated plants.
• supports_product: True or False.
• equipment_id: Equipment ID of the card used to build the available dedicated

plants.
• item_spec_id: Equipment specification ID of the service being designed.
• item_spec_nm: Equipment specification name of the service being designed.
• priority_seq: Priority sequence of the equipment set on the Plant

Administration tab.

ErrorMessage Error message to be sent to the server log.

Create/Update End User Location
The use of the Create/Update End User Location execution point is demonstrated through
the SampleAddressValidation sample code.

The SampleAddressValidation sample is provided to show extension logic that receives the
information required for validating the end user locations when you do any of the following:

• Create or update end user location address information in the PSR Ordering Dialog

• Create or update service locations on a PSR order

• Create or update end user location information on the PRILOC/SECLOC Info tab of the
Product Service Request window

• Create or update end user location address information in the End User Location
Maintenance window

The sample logic reads the expected values from the corresponding XML file and shows how
to return the data that the Create and Update execution points are expecting. In addition, the

Appendix B
Running the Sample Code

B-33

sample logic can also access any third party systems, run direct database queries,
and so on.

To run the SampleAddressValidation sample code:

1. Define a synchronous extension and specify a name for the extension. For
example, SampleAddressValidation.

The extension name that you define must match the name and letter case of the
Java class (for example, SampleAddressValidation.class) that contains your
custom logic.

The SampleAddressValidation.class and SampleAddressValidation.java files
are located at:

MSLV_Home/server/appserver/samples/customExtension/com/metasolv/
custom/vendor/extension/SampleAddressValidation

where:

• MSLV_Home is the directory in which the MetaSolv Solution software is
installed

• server is the name of the WebLogic server

2. Ensure the gateway.ini entry that defines the sample code path reflects the
correct location of the sample files extracted from the mss_ext_samples.jar file.

3. Associate the Create/Update End User Location execution point with the
SampleAddressValidation extension by searching using the following criteria:

• Building Block Type = Address

• Building Block Name = All End User Locations

• Process Point = PSR, EUL Maintenance

• Action Type = Create, Update

4. Navigate to the SampleAddressValidation.xml file in the MSLV_Home/server/
appserver/samples/customExtension/xml directory.

The SampleAddressValidation.xml file is read by the custom extension when it
is triggered, and therefore you must modify the file and format the return data as
required by the calling method. See "Sample Address Validation Return Data
Format" for more information.

5. Trigger the execution point by doing one of the following:

• Create or update end user location address information in the PSR Ordering
Dialog

• Create or update service locations on a PSR order

• Create or update end user location address information on the PRILOC/
SECLOC Info tab of the Product Service Request window

• Create or update end user location address information in the End User
Location Maintenance window

6. Verify the outcome by looking in the UI, and by looking in the appserver log file
located in the MSLV_Home/server/appserver/logs directory.

Appendix B
Running the Sample Code

B-34

Sample Address Validation Return Data Format
The following are examples of the return data format in the SampleAddressValiation.xml
file for custom extension success, failure, and warning scenarios:

Success Scenario Sample Data

<SAMPLEDATA>
 <RETURNCODE>SUCCESS</RETURNCODE>
 <RETURNTEXT>This is a success message.</RETURNTEXT>
 <ADDRESS></ADDRESS>
 <ADDRESSID></ADDRESSID>
</SAMPLEDATA>

Failure Scenario Sample Data

<SAMPLEDATA>
 <RETURNCODE>FAILURE</RETURNCODE>
 <RETURNTEXT>This is a failure message.</RETURNTEXT>
 <ADDRESS></ADDRESS>
 <ADDRESSID></ADDRESSID>
</SAMPLEDATA>

Warning Scenario Sample Data 1

<SAMPLEDATA>
 <RETURNCODE>WARNING</RETURNCODE>
 <RETURNTEXT>This is a warning message.</RETURNTEXT>
 <ADDRESS>
 <sfname>MSAG</sfname>
 <structureFormatComponents>
 <id>33</id>
 <name>Street Name</name>
 <componentType>N</componentType>
 <value>Demo Street</value>
 </structureFormatComponents>
 </ADDRESS>
 <ADDRESSID></ADDRESSID>
</SAMPLEDATA>

In sample data 1 for the warning scenario, if you leave the <ADDRESSID> tag blank, the
values within the <ADDRESS> tag are considered by the custom extension.

Warning Scenario Sample Data 2

<SAMPLEDATA>
 <RETURNCODE>WARNING</RETURNCODE>
 <RETURNTEXT>This is a warning message.</RETURNTEXT>
 <ADDRESS>
 <sfname>MSAG</sfname>
 <structureFormatComponents>
 <id>33</id>
 <name>Street Name</name>
 <componentType>N</componentType>
 <value>Demo Street</value>
 </structureFormatComponents>
 </ADDRESS>
 <ADDRESSID>153</ADDRESSID>
</SAMPLEDATA>

Appendix B
Running the Sample Code

B-35

In sample data 2 for the warning scenario, if you specify a value within the
<ADDRESSID> tag, the values within the <ADDRESS> tag are ignored by the custom
extension.

Appendix B
Running the Sample Code

B-36

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Extensions Overview
	About Custom Extensions
	Extensions
	Execution Points
	Building Block
	Process Point
	Action Type

	Extension Logic
	Invocation Methods
	MetaSolv Solution UI
	Web Service Clients
	CORBA API Clients
	Polling Servers
	Polling Servers and Supported Execution Points

	2 Defining An Extension
	Defining an Extension in the UI
	Type of Extension
	Name of Extension
	Execution Mode
	Associating an Execution Point With an Extension
	Defining the Extension Parameters

	Configuring an Extension
	Configuring Gateway.ini
	Additional Configurations

	Invoking an Extension

	3 Identifying An Execution Point
	Component Options
	Building Block Options
	Process Point Options
	Action Type Options

	Component Combinations

	4 Coding The Extension Logic
	Inheriting From the Extension Framework
	Accessing Data Passed From the Execution Point
	Overview
	Class Details
	Policy Class
	Entity Class

	A Supported Execution Points
	Execution Points
	Assign Queues
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Assign Task Jeopardy
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Change Task Completion Date
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Complete Task
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Generate Tasks
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Late Task
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Potentially Late Task
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Provisioning Plan Default
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	Reject Task
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	System Task Failure
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Gateway Event Failure
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Email CLR/DLR/TCO
	Business Example
	Execution Point Definition
	Data Passed
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Port Address
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Component or Element for Physical Connection
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Component or Element for Virtual Connection
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Network System
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Customer Edge Component
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select End Component For Physical Connection
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Equipment For CE
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	DS0/DS1 Automated Design
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Connection Id Automation
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned Data Validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional invocations

	Select Dedicated Plant
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation
	Additional Invocations

	Create/Update End User Location
	Business Example
	Execution Point Definition
	Data Passed / Data Returned
	Returned data validation
	UI Invocation
	WebService API Invocation
	CORBA API Invocation

	B Extensions Sample Code
	Using Sample Code as a Reference for Best Practices
	Exception Handling
	E-mail Notification
	CORBA API Invocation

	Running the Sample Code
	AssignWorkQueues
	ProvPlanDefault
	ExtensionFrameworkOneWayTest
	SampleExtensionException
	InvokeCorbaAPIExtension
	SelectComponent
	SelectPort
	SelectComponentForVirtual
	SelectNetworkSystemForNetDesign
	SelectCustEdgeCompForNetDesign
	SelectConnectionEndPoints
	SelectCustEdgeEquipForNetDesign
	DS0/DS1 Automated Design
	ConnectionIdAutomation
	DedicatedPlantSelection
	Create/Update End User Location
	Sample Address Validation Return Data Format

