Oracle® Communications Network
Integrity
Developer's Guide

Release 8.0
G34175-01
October 2025

ORACLE"

Oracle Communications Network Integrity Developer's Guide, Release 8.0
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

About This Content

1 Using Design Studio to Extend Network Integrity

Installing Design Studio
Configuring Design Studio for Network Integrity
Configuring Network Integrity Preferences
Network Integrity Project Dependencies
Configuring Data Dictionary Preference Settings
About Design Studio Perspectives
About Design Studio Views
Studio Design Perspective Views
Java Perspective Views
About Projects
About the Project Architecture
Working with Projects
Building and Packaging Projects
About the Project Build Order
About Build Artifacts
Packaging Projects
Deploying and Undeploying Cartridges
Creating a Design Studio Environment Project
Creating a Design Studio Environment For Network Integrity
Deploying a Cartridge
Undeploying a Cartridge
Redeploying a Cartridge
Debugging and Testing Cartridges
Starting the WebLogic Server in Test Mode
Configuring Remote Debugger in Design Studio
Sealing and Unsealing Projects
Exporting and Importing Cartridges
Exporting a Cartridge with Source Code
Exporting a Cartridge Without Source Code
About Specifications

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

© © 0 00 0 N N N N O o o 0o g B B W W W NDNDNMNDNMNDNDPRFP P P

=
N O O

October 8, 2025
Page i of ix

Working with Specifications 13
About Model Collections 13
About Specification Helpers 13

Associating Contiguous Slots to a Card 14

About Source Control 16

Working with Source Control for Network Integrity 16

Tips and Tricks 18
About Java Errors in the Generated Controller Class 18
Renaming or Deleting Actions and Processors 18
Adding External Libraries to a Java Build Path 18
About “Missing Required Library" Errors for External Libraries 19
Error Marker on Cartridge but not on any Entities 19

2 Working with Actions

About Actions 1
About Actions and Processors 1
About Action within Actions 2
About the Generated Action MDB and Controller 3
About Scan Parameter Groups 4

Extending the Create Scan Page 5
Extending the Scan Details Page 6
About Conditions 7
About Generated Classes and the Implementation Class 7
Adding Dependent Actions with Conditions as Processors 8
Creating Condition Examples 8
About Model Collections in Actions 8
About For Each Processors 9
About Result Categories 9

About Import Actions 10

About Discovery Actions 10
About Discovery Action Address Handlers 11
About the Address_Handlers Cartridge 12
Implementing Address Handlers 12

About the AddressHandler Interface 12
About Dynamic Address Handlers 13
About Discovery Action Result Categories 16
About the Discovery Action in the Network Integrity Ul 16
About Discovery Action Scan Parameter Groups 17
About scanMode Parameter 18
Customizing Response Timeout for Devices in SNMP Discovery Scan 18
Partial Scan Check 19

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ix

About Assimilation Actions 19

About Discrepancy Detection Actions 20
About Discrepancy Detection 20
Identifying and Resolving Missing Entity Discrepancies at the Root-level 21
About Result Sources 21
About Result Source and Scan Types 22
Generated Action MDB and Controller 22

About Discrepancy Resolution Actions 22
About the Resolution Action Label 23
About Result Sources 24
Generated Action and MDB Controller 25

3 Working with Processors

About Processors 1

About Context Parameters 2
Specifying Context Parameters before Creating Implementation Class 2
About Properties and Property Groups 2
About Generated Code 3
About the Location for Generated Code 3
About the Processor Interface 3
About the PropertyGroup and Properties Classes 4

Implementing a Processor 5

About the Processor Finalizer 5
About the ProcessorFinalizer Interface 5
About Memory Considerations 6

Implementing an Import Processor 6

Implementing a Discovery Processor 7
Implementation Code Example 9

Implementing the SNMP Processor 9
About the Generated Implementation and XML Beans 9
Supporting New MIBs 10

Implementing an Assimilation Processor 10

Implementing a YANG Processor 12
About the Generated Implementation 12
About YANG Files 13

About Discrepancy Detection Processors 13
Discrepancy Detection Processor Patterns 14

Reusing the Base Detect Discrepancy Action 14
About the Base Detection Project and the Default Comparison Algorithm 14
Adding New Filters and Handlers 15
About Filters 16

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page iii of ix

About Handlers 16

Filters and CimType 17
Filter and Handler Examples 18
Adding Post-Processors 21
About Discrepancy Resolution Processors 22
Creating a Discrepancy Resolution Processor 22
Implementing a Discrepancy Resolution Processor 23
About the Implementation Interface 23
About Input Parameters for the Invoke Method 23
Return Type of Invoke Method 23
About the General Flow of the Discrepancy Resolution Processor 24
Fetching Discrepancies 24
Grouping Discrepancies 24
Handling Discrepancies 25
Reporting the Resolution Result 25
Handling Discrepancies Asynchronously 26

4 Working with Discrepancies

About Discrepancies
About the Compare and Reference Sides
About Discrepancy Types
Attribute Value Mismatch
Extra Entity and Missing Entity
Extra Association and Missing Association
Ordering Error and Association Ordering Error
About Discrepancy Status

0O N OO AN NN PP P

About Discrepancy Detail

5 Working with the POMS SDK

About POMS

Working with POMS Entities

Working with POMS Relationships
One-to-one Relationships

One-to-Many or Many-to-Many Relationships
Ordered and Unordered Relationships
Bi-directional Relationships
Relationship Entities
Working with Specifications and Characteristics
Working with the POMS Finder
Find by Entity

A A DA W W WDNDNMNDNMNDNPRE

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page iv of ix

Find by JPQL

Find with Paged Results

POMS SDK Interfaces
About Persist Results

Working with the Extensibility SDK

N O o O

About Extensibility Scenarios

Extending MIB Il SNMP Discovery for Updated Vendor and Interface Type
Extending the MIB Il SNMP Discovery to Change Interface Name Value
Multiple Vendor SNMP Discovery

Multiple Protocol Discoveries

Working with Automatic Discrepancy Resolution

o o W N -

About Automatic Discrepancy Resolution

About the Automatic Discrepancy Resolution Solution
Action and Processors
Scan Parameter Groups and the Network Integrity Ul
Reference Implementations

Implementing Automatic Discrepancy Resolution

Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge Solution
Implementing Automatic Discrepancy Resolution in a Sealed Cartridge Solution

Completing the Automatic Discrepancy Resolution Implementation
Completing Automatic Discrepancy Resolution Using a Properties File
Completing Automatic Discrepancy Resolution with a Custom Processor

Working with Incremental TMF814 Discovery

O 01 O B W W WDNPRFP PP

About Incremental TMF814 Discovery
About the Incremental TMF814 Discovery Solution
Action and Processors
Copying Information From Previous Scan Results
Scan Parameter Groups and the Network Integrity Ul
Reference Implementations
Implementing Incremental TMF814 Discovery
Implementing Incremental TMF814 Discovery in a Sealed Cartridge Solution

Working with CPU Utilization-enabled Discovery

W W NN PP PP

About CPU Utilization-enabled Discovery
About CPU Utilization-enabled Discovery Solution

Developer's Guide

G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of ix

Action and Processors 1
About the Mechanism of Comparing CPU Usage Values 1
Scan Parameter Groups and the Network Integrity Ul 2
Reference Implementations 2
Implementing CPU Utilization-enabled Discovery 2
Implementing CPU Utilization-enabled Discovery in a Sealed Cartridge Solution 2
10 Working with Application Context Work-Managers
ManagedExecutorService Work-Manager Configuration 1
Defining new MES Work-Manager within Network Integrity 1
Using MES Work-Manager within Network Integrity 2
Accessing MES Work-Manager within Network Integrity 2
Persist Results using Multi-Threading 2
Discovery Scan using Multi-Threading 3
Import Scan using Multi-Threading 3
11 Working with the Network Integrity Web Service

About the Network Integrity Web Service 1
Security 1
Model Based 2
Concurrency with Ul and other Web Service Clients 2
Listing of Network Integrity Web Service Operations 2
Network Integrity Web Service Operations 8
Create 9
Entity Type Support 10

Get 10
Entity Type Support 11

Get All 12
Entity Type Support 12

Delete 12
Entity Type Support 13

Update 14
Entity Type Support 15

Find 15
Entity Type Support 15

From and To Range 16
Ascending and Descending 16
Attribute Criteria 16
Multiple Attribute Criteria 17
Extended Attribute Criteria 17

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page vi of ix

Criteria Operators 18
Between/Not Between Operator 21
Data Criteria 21
Conjunction Criteria 21
Find Response 23
Network Integrity Web Service Special Function Operations 23
Start Scan 23
Stop Scan 24
Get Latest Scan Status 24
Submit Discrepancies For Resolution Processing 25
Network Integrity Web Service Scenarios 26
Creating a Scan 26
Starting, Stopping, and Monitoring a Scan 27
Retrieving Scan Results 27
Working with Discrepancies 27
Network Integrity Web Service Samples 28
Contents of the Network Integrity Web Service Samples ZIP File 28
Sample Java Client 28
Sample Soap Ul Project 29
Submitting Request to the Server 30
Specifying User Name and Password in Request 30
12 Working with Scan Run Complete Notifications
About Clients for Monitoring Scan Run Complete Notification Messages
Implementing Custom Code to Stop a Scan
Implementing Custom Code to Reflect Scan Progress for Individual Resources
13 Working with JCA Resource Adapters
About Resource Adapters 1
Understanding JCA Resource Adapter Connectivity Options 2
Understanding JCA Resource Adapters with Network Integrity 2
About Productized SNMP JCA Resource Adapter 3
Installing the SNMP JCA Resource Adapter 3
Extending the SNMP JCA Resource Adapter 3
Record and Playback Mode 4
Invoking the SNMP JCA Resource Adapter in a Network Integrity Cartridge 5
About Third Party or Customized JCA Resource Adapters 5
Building a JCA Resource Adapter in WebLogic 5
Invoking a Third Party or Customized JCA Resource Adapter 5

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vii of ix

14 Working with Reports Extensibility

About Oracle Analytics Publisher
Downloading Oracle Analytics Server
Installing Oracle Analytics Server
Running OAS jar
Completing OAS Installation
RCU Setup
Domain Creation
Reports Provided with Network Integrity
Scan History Report
Discovery Scan Summary Report
Device Discrepancy Detection Summary Report
Device Discrepancy Detection Detail Report
Discrepancy Corrective Action Report
Configuring Oracle Analytics Server
Uploading Data Models

N N 0o MDD DN®OWWNNNR R

Uploading Reports

15 Working with SOA Extensibility

About SOA Extensibility
Purpose of Documentation
Extensibility Tasks
Extensibility Tasks
Installing Oracle Weblogic Server
Installing Oracle JDeveloper
Installing Oracle Application Runtime
Installing Oracle SOA Suite
Creating SOA Metadata Service Schemas
Updating JDeveloper for Latest SOA Composite Editor
Creating WebLogic Domain with SOA Products
Creating and Updating Sample SOA Application Using Network Integrity Web Service
Starting and Stopping SOA Servers
Building and Deploying the SOA Application

© 00 N O O B W W NN PFP P B

[l
o o

Testing Sample SOA application
Testing Network Integrity SOA Application Using EM

el
[SN

Testing Network Integrity SOA Application Using soa-infra
Testing Network Integrity SOA Application Using SOAP Ul Tool

=
=

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page viii of ix

16 Localizing Network Integrity

Software Requirements
Setting the Language Preference in the Browser
Determining the Locale ID
Localizing Network Integrity

About the Localization Pack

Creating the Localization Pack

Deploying the Cartridge Containing the Localized Files

Testing the Network Integrity Localization

Customize Display Labels on the Network Integrity Ul
Localizing Network Integrity Help

About Network Integrity Help

About the Help Files
Localizing the Network Integrity Help Files

© © 00 0 0O N N O D W WDN P

Extracting the Help Files

=
o

Translating the Help Files
Creating the Localized Help JAR File
Configuring the Oracle Help File

=R R
O O S

Deploying the Localized Help System

=
6]

Testing the Network Integrity Help Localization

A Network Integrity Plug-in Validation Error Messages

Error Message Classifications and Conditions A-1
Design Studio Logging A-8

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page ix of ix

ORACLE’

About This Content

Developer's Guide
G34175-01

This guide explains how to extend Oracle Communications Network Integrity through standard
Java practices using Oracle Communications Service Catalog and Design - Design Studio,
which is an Eclipse-based integrated development environment. This guide includes
references to both applications, and often directs the reader to see the Design Studio Help and
the Network Integrity Help for instructions on how to perform specific tasks. This guide should
be read after reading Oracle Communications Network Integrity Concepts, because this guide
assumes that the reader has a conceptual understanding of Network Integrity. This guide
should be read from start to finish because the information presented in a chapter often builds
upon information presented in a preceding chapter. This guide includes examples of typical
development code used in given situations. The guidelines and examples may not be
applicable in every situation.

Audience

This guide is intended for developers who implement code to extend Network Integrity. The
developers should have a good working knowledge of XML and Java development and, in
particular, JDO, standard Java practices, and J2EE principles.

You should read Oracle Communications Network Integrity Concepts before reading this guide.

You should have a good working knowledge of Design Studio.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Pageiofi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Using Design Studio to Extend Network
Integrity

This chapter provides information on Oracle Communications Service Catalog and Design -
Design Studio, an Eclipse-based integration development environment. Design Studio comes
with features specific to Oracle Communications Network Integrity that enable you to extend
Network Integrity.

This chapter contains the following sections:

¢ Installing Design Studio

« About Design Studio Perspectives

e About Design Studio Views

e About Projects
* Working with Projects

* About Specifications

* Working with Specifications

e About Source Control

* Working with Source Control for Network Integrity

e Tips and Tricks

Installing Design Studio

Use Design Studio to extend Oracle products. Different features are available for the different
Oracle features, and each feature provides JAR files that are unique to the product.

See "Design Studio Installation Overview" in Design Studio Installation Guide for information
about installing Design Studio and the Design Studio for Network Integrity feature.

Configuring Design Studio for Network Integrity

Configuring Design Studio for Network Integrity requires:

e Configuring Network Integrity Preferences

* Network Integrity Project Dependencies

« Configuring Data Dictionary Preference Settings

Configuring Network Integrity Preferences

Configuring Network Integrity preferences in Design Studio includes specifying a default
cartridge package name for all created cartridge projects and specifying the default MIB
directory.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 19

ORACLE Chapter 1
About Design Studio Perspectives

To configure Network Integrity preferences, see "Getting Started with Design Studio for
Network Integrity" in Design Studio Modeling Network Integrity Help.

Network Integrity Project Dependencies

All Network Integrity cartridge projects have dependencies on several other Network Integrity
cartridge projects. Before creating a new Network Integrity cartridge project or importing
productized Network Integrity cartridge projects, import the following projects into Design
Studio:

e ora_uim_model
e oOra_uim_mds
e Ora_ni_uim_ocim

* NetworkintegritySDK: this cartridge project contains common software components and
libraries required for creating and extending Network Integrity projects.

These projects are available in the Oracle Communications Network Integrity 7.4.0 Software
Developer Kit (included with the Oracle Communications Network Integrity 7.4.0 software) on
the Oracle software delivery website:

https://edelivery.oracle.com

See "Getting Started with Design Studio for Network Integrity" in Design Studio Modeling
Network Integrity Help for information about importing projects into Design Studio.

Configuring Data Dictionary Preference Settings

You configure data dictionary preference settings to specify the horizontal depth to which any
data dictionary tree can expand.

To configure data dictionary preferences, see "Getting Started with Design Studio for Network
Integrity” in Design Studio Modeling Network Integrity Help.

About Design Studio Perspectives

Perspectives define your Workbench layout and provide different functionality for working with
different types of resources. Several perspectives are available within Design Studio. The
Java, Studio Design, and Studio Environment perspectives are commonly used when
extending Network Integrity.

For instructions on how to open a perspective, see Design Studio Modeling Network Integrity.

About Design Studio Views

Within a given perspective, views further define the Workbench layout and provide different
presentations of resources. Several views are available within Design Studio, and the available
views are dependent upon the perspective.

For instructions on how to open a view in Design Studio, see the Design Studio Help.

Studio Design Perspective Views

When extending Network Integrity in the Studio Design perspective, you commonly use the
Studio Projects view, Solutions view, and the Package Explorer view.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 19

https://edelivery.oracle.com

ORACLE Chapter 1
About Projects

See Design Studio Modeling Network Integrity for more information about perspective views.

Java Perspective Views

When extending Network Integrity in the Java perspective, you commonly use the Navigator
view, Package Explorer view, and Error Log view.

About Projects

Projects contain Network Integrity artifacts that you create and define in Design Studio, such
as custom actions and processors.

Everything you create in Design Studio resides in a project. The name you choose for the
project becomes the name of the integrity archive (IAR) file, and everything you create within
that project is automatically placed in the IAR file.

When extending Network Integrity, you can create one or many projects, depending on how
you choose to organize the extensions.

Network Integrity projects are packaged extensions to the core application. They represent the
necessary components needed for the following:

« Discovering network elements, either from a Network Management System (NMS) or
through direct contact with the Network Element (NE)

e Importing network elements from an inventory system

e Assimilating network data using business logic

» Detecting discrepancies between the network and the inventory system

e Resolving discrepancies, either within the network, or in the inventory system

Network Integrity projects provide the ability to support new functionality as business cases
arise, such as:

* New protocols, such as Command Line Interface (CLI) and Transport Layer Security (TLS)
* New standards, such as a new RFC

* New vendor devices, such as Juniper, Huawei

* New operational or business support systems

See Design Studio Modeling Network Integrity for more information about creating projects.

About the Project Architecture

A Network Integrity cartridge project typically contains the following entities:

e Zero or more actions:
— Zero or more discovery actions
* At least one discovery, file transfer, or file parser processor
— Zero or more assimilation actions
* At least one assimilation processor
— Zero or more import actions

* At least one import, file transfer, or file parser processor

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 19

ORACLE Chapter 1
Working with Projects

— Zero or more discrepancy detection actions
* At least one discrepancy detection processor
— Zero or more discrepancy resolution actions
* At least one discrepancy resolution processor
e Zero or more model collections
e Zero or more specifications
e Zero or more scan parameter groups

Alternatively, your project can contain address handler entities. A project containing address
handler entities cannot contain any other entity types. This allows for a clear segregation of
responsibility. So, for example, you create a project called Address Handlers where different
address handler types exist (for example: IP Address, URL, and so on) and simply reference
those from within their discovery and import cartridge projects. Projects can also reuse actions
from other projects to extend behavior. For example, a Juniper-specific SNMP cartridge project
(that is, containing Juniper MIBs) could extend a generic SNMP cartridge project (MIB |l
only).After all components are defined, projects are packaged into an IAR file and can be
deployed to a running Network Integrity system as a cartridge.

See "Building and Packaging Projects" and "Deploying and Undeploying Cartridges" for more
information.

After a cartridge is deployed, it is available to Network Integrity.
To determine whether a cartridge is deployed in Network Integrity:

1. From the Network Integrity main menu, click Help, and then select About.
The Network Integrity components dialog appears.
2. Select the Components tab.

The Network Integrity product version is displayed with the versions of all cartridges
deployed in Network Integrity.

Working with Projects

When working with projects, see the following:

» Building and Packaging Projects

» Deploying and Undeploying Cartridges

« Debugging and Testing Cartridges

» Sealing and Unsealing Projects

« Exporting and Importing Cartridges

Building and Packaging Projects

Design Studio packages project information into cartridges that can be deployed into Network
Integrity.

Projects can be developed by customers, systems integrators, Professional Services staff, and
third-party vendors.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 19

ORACLE

Chapter 1
Working with Projects

About the Project Build Order

When Design Studio builds a Network Integrity project, the build process takes place in the
following order:

Generation of Java source code: Generators are invoked to generate Java source codes
from Network Integrity models, EJB descriptor files, XML schemas for the SNMP
processor, and the Meta Model XML file.

Java Source Compilation: Eclipse compiles the Java source (including generated Java
source and implemented Java source) into classes.

Building: Builders are invoked to build Ul hints, the Data Dictionary, and specifications.

Validation: Validators are invoked to validate Network Integrity model entities. Validation
errors are raised and an error marker displayed on the related entities in Design Studio. If
any validation errors are raised, the packaging stage does not take place.

Packaging: Packagers are invoked to package the cartridge deployment model XML file,
the Ul hints Metadata Archive (MAR) file, specification Data Access Object (DAO) files,
dependent JAR files, the manifest file for JAR files library for EJB, and the final IAR file for
the Network Integrity cartridge.

About Build Artifacts

Design Studio generates various build artifacts for a Network Integrity project after a successful
build. The generated directories are listed in the following order in the directory structure:

Out: This directory contains all the compiled Java classes.
Generated: Contains the following build artifacts:

— Generated Java sources for actions and processors. If the project is sealed without
Java source, the JAR file is displayed instead.

— SNMP schema artifacts for the SNMP processor.
cartridgeBuild: contains various build artifacts for the Network Integrity cartridge.

cartridgeBin: contains the final packaged Network Integrity cartridge as an IAR file which
can be deployed to the Network Integrity server through the cartridge management web
service (CMWS).

The following directories comprise the normal directory structure for a Network Integrity project.
Do not modify these directories:

Developer's Guide
G34175-01

dataDictionary: contains the Data dictionary.
doc: contains documents.
lib: Copy any third party JAR library into this directory.

Switch to the Packager Explorer view, and modify the Java class path to include any JAR
files that have been added to this directory.

Select the project, and click F5 to refresh the project in Design Studio to get the modified
Java class path affected.

model: contains all Network Integrity models.
out: output directory for compiled Java classes.

resources: contains resources related to Network Integrity. This directory is empty by
default.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 19

ORACLE Chapter 1
Working with Projects

e src: the Java source directory.

Packaging Projects

Packaging a project is the last stage in building a cartridge. The cartridge is packaged as an
IAR file, which can be deployed to the Network Integrity server through the CMWS.

The IAR file contains the following build artifacts:

I AR root/
<cartridge-ejb-jar>.jar - This jar contains manifest.nf file to refer to

the jars under cartridgelLib/<cartridgeNane>.
oracl e. communi cations. platformentity.inpl.SpecificationDAO
oracl e.comuni cations.platformentity.inpl.CharacteristicSpecUsageDAO
oracl e.comunications.platformentity.inpl.CharacteristicSpecificati onDAO
<cartri dgeNane_A>. mar
<cartri dgeNane_B>. mar

<cartridgeName_N>.mar - Miltiple MAR files if this cartridge is reusing

Actions fromother cartridges.
<Acti on_Name_A>_Met aMbdel . xm
<Acti on_Name_B>_Met aMbdel . xn

<Action_Name_N>_MetaMdel . xm - Meta Mdel XM file per Action.
| META- | NF/
cartridge. xn
mani f est. xn
/cartridgeLib/<cartridgeName>/*.jar (any dependent jar files used by
this cartridge, if available)

If a project contains only abstract entities, no IAR file is generated.

Deploying and Undeploying Cartridges
Network Integrity cartridges can be directly deployed or undeployed from Design Studio.

Use the Oracle Cartridge Deployer to deploy or undeploy any productized Network Integrity
cartridge into a production system.

® Note
Before deploying or undeploying cartridges, ensure that:
* You are logged out of the WebLogic Server Administration Console.
* No one else is deploying or undeploying cartridges on the same server.

e Network Integrity is not running a scan that makes use of the cartridge.

Creating a Design Studio Environment Project

Design Studio projects are collections of folders and files that represent the content you are
working on. They are used for builds, version management, sharing, and resource
organization. Projects map to directories in the file system. When you create a project, you
specify a location for it in the file system. Design Studio uses the files and folders in a project to
build a cartridge that you can import into Network Integrity. See "Building and Packaging
Projects” for more information. To deploy or undeploy a cartridge from Design Studio, you must

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 19

ORACLE Chapter 1
Working with Projects

first create a Studio Environment Project. When you create a project, you specify its name and
location for its corresponding file structure.

See Design Studio Modeling Network Integrity for more information on creating an environment
project.

Creating a Design Studio Environment For Network Integrity

Having created a Studio Environment Project, you then create the environment. An
environment represents a connection to a particular server.

See Design Studio Modeling Network Integrity for more information about creating Design
Studio environments.

When creating and working with your environment, consider the following:

* When specifying the name of your environment, incorporate the name of the server.

e If you are using SSL, the CMWS URL must be specified with https. Also, you must
configure the Environment editor SSL tab with the location of the keystore file.

e Configure the Environment editor Properties tab for the following properties:

— wladmin.host.name: The host name or IP address where the Oracle WebLogic
Administration Server is running.

— wladmin.host.port: The port number on which the Oracle WebLogic Administration
Server is running.

— wladmin.server.name: The Oracle WebLogic Administration Server nhame.

Deploying a Cartridge

The Design Studio Network Integrity feature provides the ability to deploy a cartridge into
Network Integrity. For instructions on how to deploy a cartridge, see Design Studio Modeling
Network Integrity .

Undeploying a Cartridge

The Design Studio Network Integrity feature provides the ability to undeploy a cartridge into
Network Integrity. For instructions on how to undeploy a cartridge, see Design Studio Modeling
Network Integrity.

When a cartridge is undeployed, Network Integrity removes all the scan configurations and
scan results associated with the cartridge and all the specifications associated with the
cartridge (except those specifications still in use by other cartridges).If a cartridge has a
dependency on other deployed cartridges, the cartridge cannot be undeployed. For example,
you cannot undeploy the Address_Handlers cartridge if the cartridges using Address_Handlers
are still deployed in Network Integrity. You must undeploy all dependent cartridges from
Network Integrity before Address_Handlers can be undeployed.

The Network Integrity CMWS Adapter automatically performs dependency checks at
deployment or undeployment time and returns error messages if deployment or undeployment
cannot be performed.

Redeploying a Cartridge

The Design Studio Network Integrity feature provides the ability to deploy a cartridge into
Network Integrity, including previously deployed cartridges. For instructions on how to deploy a
cartridge, see Design Studio Modeling Network Integrity.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 19

ORACLE Chapter 1
Working with Projects

You can redeploy a Network Integrity cartridge using Design Studio only if the version of the
redeployed cartridge (build number) is equal to, or greater than, the version of the deployed
cartridge. For example, my_cartridge is already deployed with a build number of 28 (b28). If
my_cartridge is up-versioned to b30, you can deploy it without undeploying my_cartridge (b28)
and deploying it again.

Redeployment removes the deployed cartridge and deploys the new cartridge instead.
Network Integrity does not allow more than one version of the same cartridge to be deployed at
the same time.

Debugging and Testing Cartridges

This section provides information about debugging and testing cartridges in Network Integrity.

Starting the WebLogic Server in Test Mode

To debug a deployed Network Integrity cartridge, start the WebLogic Managed Server in debug
mode (not the Administration Server).

Use the following procedure to start the WebLogic Managed Server in debug mode:

Stop both the Administration Server and Managed Server if they are still running.

Go to directory <WEBLOGIC_HOME>/user_projects/domains/I<DOMAIN>/bin.

Copy the existing startWebLogic.sh script to a new script file, startWebLogic_Debug.sh.
Use a text editor to open startWebLogic_Debug.sh.

After the line ${ JAVA HOMVE}/ bi n/java ${JAVA VM -versi on, add the following two lines:

g w dh PR

echo "Launching Java wi th debug port: 10171"

JAVA_OPTI ONS="- Xdebug - Dj ava. conpi | er =NONE - Xnoagent -
Xrunj dwp: t ransport =dt _socket, server =y, address=10171, suspend=n $JAVA OPTI ONS"

The debug port does not have to be 10171 if the port specified is available.
6. Save this change.

7. Copy the existing startManagedWebLogic.sh script to a new script file,
startManagedWebLogic_Debug.sh.

8. Use a text editor to open startManagedWebLogic_Debug.sh.
9. Find the two lines that are referring to startWebLogic.sh.

10. Replace startWebLogic.sh with startWeblogic_Debug.sh. This change is to start the
WebLogic Managed Server in debug mode by invoking the startWebLogic_Debug.sh
script.

11. Save this change.
12. Start the Administration Server by running the usual start-up script, startWebLogic.sh.

13. Start the Managed Server in debug mode by running the new script,
startManagedWebLogic_Debug.sh.

Configuring Remote Debugger in Design Studio

The Managed Server is now in debug mode. The next step is to configure the debugger in
Eclipse to start remote-debugging the Network Integrity cartridges.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 8 of 19

ORACLE

Chapter 1
Working with Projects

1. From the Design Studio main menu, select Run then Debug Configurations, then open
the Debug Configurations dialog to switch Design Studio to the Java perspective.

From the left panel, select Remote Java Application.

Click New to create a remote Java application debug configuration.
Enter a name for this new debug configuration.

In the Connect tab, click the Browse.

Select an available project that contains the cartridge that to debug.

Ensure that the default setting for Connection Type is Standard (Socket Attach).

® N o g & w DN

Enter the host IP address where the Network Integrity system (WebLogic Managed
Server) is running.

9. Enter the debug port, which should match the debug port entered in "Starting the
WebLogic Server in Test Mode".

10. Keep the default settings for the rest of the tab.
11. Click Apply to save this new remote Java application debug configuration.

Now the developer can start to debug the Network Integrity cartridge (which should be already
deployed on the Network Integrity system) from Design Studio by picking up the debug
configuration just created. There is no difference from debugging a normal local Java
application in Eclipse. We can put a break point in the cartridge Java source and start
debugging from there. For instructions on how to debug a Java program in Eclipse, see the
Eclipse Help topics Java development user guide, Getting Started, Basic tutorial, and
Debugging your programs.

Sealing and Unsealing Projects

Some Network Integrity production cartridges are distributed as sealed projects. Unsealing
Network Integrity production cartridges violates the license, support, and maintenance
agreements with Oracle.

You may encounter build problems if you unseal a sealed cartridge in your workspace. The
error logs may indicate that some dependent JAR files are missing from the workspace. The
main cause for this is that the sealed cartridge may not have included any source code, and
that a Clean operation may delete the JAR file, and then is not able to recreate it. The solution
is to delete the unsealed cartridge, and re-import the sealed cartridge.

See Design Studio Modeling Network Integrity for more information about sealing and
unsealing cartridges.

Exporting and Importing Cartridges

Developer's Guide
G34175-01

This section provides an overview of exporting and importing Network Integrity cartridges.

Cartridge projects can be exported to archive files. This allows the cartridge projects to be
distributed as a single or a set of archive files, rather than as the many files of a cartridge
project. Once a project is exported to an archive file, the archive file can be distributed and
then imported into a different Design Studio or Eclipse workspace.

Before exporting a cartridge project, you should decide whether you want to include your
source code in the archive file. Cartridges can be extended without distributing source code.
However, if you want to allow the user to modify the actual distributed cartridge, then you must
distribute the source code.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 9 of 19

ORACLE

Chapter 1
Working with Projects

Cartridges can also be exported in both sealed and unsealed states. If you are distributing a
cartridge without source code, Oracle recommends you seal the cartridge before exporting it.
This prevents the user from changing the cartridge model and therefore breaking the cartridge.

See Design Studio Modeling Network Integrity for more information about sealing and
unsealing cartridges.

Network Integrity production cartridges are distributed as sealed cartridges. Unsealing Network
Integrity production cartridges violates the license, support, and maintenance agreements with
Oracle.

See the following:

* Exporting a Cartridge with Source Code

* Exporting a Cartridge Without Source Code

Exporting a Cartridge with Source Code

To export a cartridge project containing source code:

1. From the Design Studio File menu, select Export.
The Export Select dialog appears.
2. From the list of export destinations, expand the General node and select Archive File.
3. Click Next.
The Export Archive file dialog appears.
4. Enter a destination archive file:
a. Select the projects that you want to include in the archive.
b. Specify the name and location of the archive file.
c. Inthe Options section, accept the defaults.

d. Click Finish to create an archive file containing the exported projects at the specified
location.

Exporting a Cartridge Without Source Code

Developer's Guide

G34175-01

Before exporting a cartridge project without source code, the project's classpath must be
modified.

See the following:

* Modifying the Classpath

* Exporting the Cartridge

Modifying the Classpath

To modify the classpath:

1. Open the Navigator view.

2. Use the Navigator view to rename the projects output directory out, to classes.

3. From the Design Studio Window menu, select Show View, and select the Package
Explorer view.

4. Right-click the project and select Properties.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 10 of 19

ORACLE’

10.

Developer's Guide
G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

Chapter 1
Working with Projects

The Properties dialog appears.

From the list of properties, select Java Build Path.

The Properties dialog box displays the Java Build Path information.

Select the Source tab.

The Source tab displays the folders on the build path for the selected project.
Remove the source directories that are part of the classpath:

a. Select the source folders on the build path.

b. Click Remove.

Select the Libraries tab, and click Add Class Folder to add the class folder classes to the
classpath.

Figure 1-1 shows how the class folder is added to the classpath.

Figure 1-1 Adding the Class Folder

E [|

% Properties for my_cartridge

type filter test Java Build Path - v
> Resource
AppXray | [# Source | = Projects| B Libraries |<}G Order and Export|
Builders

JARs and class folders on the build path:

Java Build Path
lava Code Style
lava Compiler
Java Editor
Javadoc Location

4 | my_cartridge/classes (class folder) -
D Source attachment: (Nong)
@] Javadoc location: (None)

Add JARs...

Add External JARs...

P:,‘} - - - .
= Mative library location: (Mone) Add Variable..

5?3 Access rules: (Mo restrictions) ’
4 =), JRE System Library [JavaSE-1.6] ’

Oracle Design Studio Busin

Project Facets 5?3 Access rules: No rules defined

Mative library location: (Mone)

Project References Add Class Felder...

m

Refactoring History
Run/Debug Settings

)
)
)
Add Library... |
)
)

resources.jar - ChProgram Files\Java,
rt.jar - C:\Program Files\Java'jrel 7.0

Add External Class Folder..

F1ED

» Task Repository [jssejar - C*\Program Files\Java\jrel.J ;
Tas-k Tz.lgs . o jeejar - C:AProgram Files\Java\jrel 7. Ft
’ Va.h.datlljl"l [charsetsjar - C\Program FileshJava\j| ’ R]
WikiText + [jfrjar - C\Program Files\Java\jrel 7.0
E: access-bridge-64.jar - C:\Program Fi. Migrate JAR File...
> [me dnsns.jar - ChProgram Files'Java'jre
» @: dns_sd.jar - C:\Program Files'Java'jn
+ fad jaccessjar - CAProgram Files\Java\jn
b s _localedata.iar - C:\Program Files\Javi ™
‘ [T P
4 m r
@:I [OK] ’ Cancel
L 4

Select the Order and Export tab, and check the box corresponding to the classes class
folder.

Click OK to complete the modification of the project classpath.

After changing the classpath, if you wish to continue development on the cartridge, you
should restore the classpath to its original configuration.

October 8, 2025
Page 11 of 19

ORACLE

Chapter 1
About Specifications

Exporting the Cartridge
To export the cartridge project:

1. From the Design Studio File menu, select Export.
The Export Select dialog appears.
2. From the list of export destinations, expand the General node and select Archive File.
3. Click Next.
The Export Archive file dialog appears.
4. Enter a destination archive file:
a. Select the projects that you want to include in the archive.

b. For the projects for which you are not including source code, expand the project tree
and deselect the source directories which you previously removed from the classpath.

c. Specify the name and location of the archive file.
d. Inthe Options section, accept the defaults.

e. Click Finish to create an archive file containing the exported projects at the specified
location.

About Specifications

Developer's Guide
G34175-01

Network Integrity cartridges persist their results to persistent object modeling service (POMS)
in the Oracle Communications Information Model. The Information Model defines a base set of
entities and their relationships. Use specifications to extend the Information Model. Most
cartridges must extend the Information Model entities and therefore must make use of
specifications.

Scan parameter groups are a special type of specification. A specification used for model
extension is associated with a single Information Model entity type. Multiple specification types
can be defined for each Information Model entity type. The elements that comprise the
specification are called characteristics.

Specifications can be shared between cartridge projects. Specifications created in a cartridge
project are automatically related to all actions in the same cartridge project. You cannot add
specifications to a model collection in the same cartridge project, but you can make the
cartridge project containing the model collection dependent on another project that contains
the specifications you want to add. Network Integrity ensures that when multiple cartridges are
deployed together, their shared specifications are compatible.

When cartridge code persist information to POMS, it creates Information Model entities and
usually a specific type of specification is attached to each Information Model entity to hold
additional attributes. Within the Network Integrity Ul, an Information Model entity and its
specification are represented as a single object.

All action types must define which specification types (and by extension, which Information
Model entities) they use by creating specifications in the cartridge project or adding
specifications to the model collection. The Model tab defines the list of model collections on
the action. Design Studio generates special classes for specifications, called specification
helpers.

Characteristics on specifications appear in the Network Integrity Ul as displayed information.
Specification characteristics are always read-only in the Network Integrity Ul. By configuring

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 12 of 19

ORACLE Chapter 1
Working with Specifications

characteristics on specification, the following read-only fields can appear in the Network
Integrity Ul:

- Label: Specifies the label that displays in the Ul

e Tool Tip: Specifies a short message when the pointer hovers over the field

Working with Specifications

Working with specifications requires the following high-level steps:

1. Add specifications to your cartridge project:
a. Create or copy specifications and configure them to collect the information you want.
b. Add existing specifications from dependent cartridge projects to the model collection.

2. Configure characteristics on new and copied specifications to appear in the Network
Integrity UI.

To stop using a specification, remove it from the model collection or delete it from the cartridge
project.

See Design Studio Modeling Network Integrity in for more information about specifications.

About Model Collections

Use model collections to add specifications that exist in other cartridge projects. Specifications
from other cartridge projects inherit any changes and configurations you make to them in their
original cartridge project.

See Design Studio Modeling Network Integrity for more information about creating and using
model collections.

About Specification Helpers

Design Studio generates specification helper classes to the following package:

e Cartridge Default Package.Model Collection Name.Model Collection Name

The names of the specification helpers are based on the names of the specifications. For
example if the name of the specification is deviceGeneric, then the name of the specification
helper is DeviceGeneric.

Specification helpers have getter and setter methods for each element in the specification. The
specification helper also has a constructor which takes a POMS entity interface object. A code
sample which illustrates the use of a specification helper is shown below. In the example, the
DeviceGeneric class is the specification helper.

/] create a Logical Device entity which uses

/1 the Device Generic specification.

Logi cal Devi ce | ogi cal Devi ce = PersistenceHel per. makeEntity(Logi cal Device. cl ass);
Devi ceGeneric | ogi cal Devi ceExt = new Devi ceGeneri c(| ogi cal Devi ce);

/] Set static attribute values to Logical Device.

| ogi cal Devi ce. set | d(makeLDevl D(scanResponse)) ;

| ogi cal Devi ce. set Name(rfc1213M b. get SysNane());

| ogi cal Devi ce. set Description(rfcl213M b. get SysDescr());

/1l Set dynanic attributes/characteristics.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 13 of 19

ORACLE

Chapter 1
Associating Contiguous Slots to a Card

| ogi cal Devi ceExt . set Mynt | PAddr ess(scanResponse. get Managenent | P()) ;
| ogi cal Devi ceExt . set SysChj ect I d(rfcl1213M b. get SysChjectl ());

Associating Contiguous Slots to a Card

Sometimes a single card may need multiple holders. The number of holders determines the
number of contiguous slots needed when adding the card to a shelf. This can be determined in
Network Integrity by using Design Studio to configure equipment holder and card specification.

To determine the number of holders required by a card on Network Integrity:

1.
2.

Developer's Guide
G34175-01

Open Design Studio and navigate to your cartridge project.

To configure the equipment holder, in the specification tab of the Equipment Holder
Specification, enable the Enter ID Manually option.

To configure the card specification, create a new characteristic within the card equipment
specification to store the value of required holders and set the default value as the number
of holders the card requires. See Design Studio Modeling Network Integrity for more
information on adding a characteristic to a specification.

Save your cartridge project and build it.
Import the saved specifications into the model collection of the Discovery Cartridge.

In the Discovery Cartridge, within the specification helper class, the following code can be
used to read the number of required holders for a card. If characteristic is available with
default value set, value of characteristic can be read and required number of holders can
be created.

i nt nunmber O Hol der s=1;

Specification hol derspecification = (Specification)

persi st enceMyr . get Cbj ect Byl d(
Speci fication. cl ass,

Hel per Si ngl et onHol der . SPECI FI CATI ON_I D) ;

Set <Char act eri sticSpecUsage> usages =
hol der speci fi cati on. get Characteri sticSpecUsages();

for (CharacteristicSpecUsage usage : usages) {

CharacteristicSpecification tnpCharSpec =

usage. get CharacteristicSpecification();

i f(tnpChar Spec. get Narme() . equal s("requi redHol ders"))
{

Set <Char act eri sti cSpecVal ueUsage> val ues =
usage. get Val ues();
for(CharacteristicSpecVal ueUsage val ueUsage : val ues)
{
Di scret eChar SpecVal ueUsage charusage =
(Di screteChar SpecVal ueUsage) val ueUsage;

bool ean isdefault = charusage. get Def aul t Val ue();

i f(isdefault)

{
String defaul tval ue = charusage. get Val ue();
nunber Of Hol ders = | nteger. parsel nt (defaul tval ue);

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 14 of 19

ORACLE’

Developer's Guide
G34175-01

Chapter 1
Associating Contiguous Slots to a Card

7. Generate the required number of slots based on the value of required holders by
generating unique global IDs for them.

8. Associate the generated slots to the card. You can use the below HelperSingletonHolder
class to fetch the specification of the card.

private static class Hel perSingletonHol der {
private static final |ong SPECH FI CATI ON I D

static {
oracl e. communi cations.inventory.api.entity. Specification
specification =
oracl e. communi cations.integrity.scanCartridges. sdk. hel per. BaseSpecification
Hel per
.| oadSpeci fi cation(

oracl e. conmmuni cations.integrity.fttxsnnpcartridge. nodel coll ections.fttxsnnp
cartridge. equi prent . Generi cEqui prent Speci fi cati on. SPEC_NAME,
new java. util.HashMap<Stri ng,
oracl e. conmuni cations.inventory.api.entity.CharacteristicSpecification>());
SPECI FI CATION_ID = specification.getEntityld();

Figure 1-2 shows a sample discovery scan result wherein a single card entity is associated to
three contiguous slots.

Figure 1-2 Sample Discovery Scan Result for a Card requiring Three Holders

Scan Result Detail @

Manaae Scans > Scan Results > Scan Result Detail

Entity Tree for: Z33-SAMPLE-MAYO-CEO01 (Device) Q Entity Detail (2]
Vewv & % Download
Entity Name Entity Type Attributes
Name card=1-1
» Z33-SAMPLE-MAYO-CEO1 GenericLogicalDeviceSpecification NetworkLocationCode
IsRootElement false
4 Z33-SAMPLE-MAYO-CEO1 GenericPhysicalDeviceSpecification UserLabel active
HELF Software Revision 008
4 SHEI GenericEquipmentShelfSpecification Serial Number FX3517181221
RequiredHoiders
4 slot=1-1-0 GenericEquipmentHolderSpecification Physical Location
= Owner CYAN
b card=1-1 GenericEquipmentSpecification NGEMS e Bk
4 slot=1-1-1 GenericEquipmentHoldersSpecification ModelName DWOM-CARD
U P D 2.0.0.9:Z33-SAMPLE-MAYO-CEQ1 card=1-1:0.0.6-Equipment. Card
b card=1-1 GenericEquipmentSpecification Hardware Revision
Discovered Vendor Name ~ CYAN
4 slot=1-1-2 GenericEquipmentHolderSpecification Discovered Part Number ~ 800-0123-01-03
A Discovered Model Number
b card=1-1 GenericEquipmentSpecification Description
b slot=1-2-0 GenericEquipmentHolderSpecification Relationships
b slot=1-2-1 GenericEquipmentHolderSpecification Child Equipments
None
b slot=1-2-2 GenericEquipmentHolderSpecification
Supported Device Interfaces
b slot=1-32-1 GenericEquipmentHolderSpecification None
b slot=1-32-2 GenericEquipmentHolderSpecification Physical Connectors
b slot=1-32-3 GenericEquipmentHolderSpecification None
b slot=1-33-1 GenericEquipmentHolderSpecification Physical Ports
b slot=1-33-2 GenericEquipmentHolderSpecification None
b slot=1-33-3 GenericEquipmentHolderSpecification Equipment Holders Compact List v
List

Figure 1-3 shows the sample reconciliation results in UIM.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 15 of 19

ORACLE Chapter 1
About Source Control

Figure 1-3 Sample Reconciliation Results on UIM

Equipment Summary - 1200126 - SHELF

General Information Associated Resources Consumers Groups and Infrastructure = Tree View

Equipment View

Actions v View v [Detach

Equipment
4 1] GenericEquipmentShelfSpecification - 1200126 - SHELF
Lﬂ 1 [slot=1-32-1] - GenericEquipmentSpecification - 1200127 - card=1-32
|I| 2 [slot=1-32-3] - GenericEquipmentSpecification - 1200127 - card=1-32
Lﬂ 3 [slot=1-32-2] - GenericEquipmentSpecification - 1200127 - card=1-32
i-_ﬂ 4 [slot=1-33-1] - GenericEquipmentSpecification - 1200142 - card=1-33
Lﬂ 5 [slot=1-33-3] - GenericEquipmentSpecification - 1200142 - card=1-33
i) 6 [slot=1-33-2] - GenericEquipmentSpecification - 1200142 - card=1-33
3 Lﬂ 7 [slot=1-1-0] - GenericEquipmentSpecification - 1200129 - card=1-1
2 Lﬂ 8 [slot=1-1-2] - GenericEquipmentSpecification - 1200129 - card=1-1
4 3 Lﬂ 9 [slot=1-1-1] - GenericEquipmentSpecification - 1200129 - card=1-1
b Lﬂ 10 [slot=1-2-0] - GenericEquipmentSpecification - 1200133 - card=1-2
i3 Lﬂ 11 [slot=1-2-1] - GenericEquipmentSpecification - 1200133 - card=1-2

I Lﬂ 12 [slot=1-2-2] - GenericEquipmentSpecification - 1200133 - card=1-2

If a card with multiple holders is deleted on UIM after reconciliation, then a discovery scan will
generate Entity+ discrepancies on the holders it is associated to. In this case, reconciling one
discrepancy will create a card that is associated to the all the holders, thereby ignoring the
other two discrepancies.

About Source Control

See "Using Design Studio to Extend Network Integrity" in Design Studio Developer's Guide for
information about source control.

Working with Source Control for Network Integrity

When developing cartridge projects for Network Integrity, you may store your work in various
source control systems. The eclipse platform, upon which Design Studio is based, provides
support for integrating with source control systems. Plug-ins are available for most common

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 16 of 19

ORACLE’

Chapter 1
Working with Source Control for Network Integrity

source control systems. The exact behavior of Design Studio when used in an environment
where the files are backed by a source control system depends on the source control system
and the source control Team plug-in that the developer is using.

This section describes which files must be source controlled and which files must be writable to
continue working.

Table 1-1 describes the structure of the directories and the files in a Design Studio for Network
Integrity project and recommends how they should be handled with respect to a source control

system.

Table 1-1 Source Control Handling for Various Files and Directories

Directory or File

Description

Source Control Handling

ProjectDir/

Project's top level directory.

Under source control. All files directly under this
directory must be source controlled.

ProjectDir/cartridgeBin/

Cartridge bin directory is where the
deployable IAR files are located.

This directory should be source controlled but
the contents should not.

ProjectDir/cartridgeBuild/

Cartridge build directory contains files
which are outputs of the cartridge build
process.

This directory should be source controlled but
the contents should not.

ProjectDir/dataDictionary/

This directory contains the files where the
data dictionary information is stored.

This directory and its contents should be source
controlled.

ProjectDir/doc/

This directory contains documentation
files.

This directory and its contents should be source
controlled.

ProjectDir/generated/

This directory contains generated
artifacts of the build process.

This directory should be source controlled.
Except for the src sub-directory, the contents of
this directory should not be source controlled.

ProjectDir/generated/src/

This directory contains generated
artifacts of the build process.

This directory should be source controlled, but it
contents should not.

ProjectDir/integrityLib/

This directory contains jars that are part
of the Network Integrity server Enterprise
Archive (EAR). These jars are in the
project's classpath.

This directory should be source controlled. The
files in this directory should not be source
controlled.

ProjectDir/integrityLib/
packaged

This directory contains jars that are
created by Design Studio for Network
Integrity and which are packaged into the
cartridge IAR file. The jars are added to
the Network Integrity EAR when the
cartridge is deployed. These jars are in
the project's classpath.

This directory should be source controlled. The
files in this directory should not be source
controlled.

ProjectDir/lib/

This directory contains jars and other files
that are not part of the Network Integrity
server EAR. Some of these files are part
of the project classpath.

This directory should be source controlled. The
mds.mar file is output to this directory. The
mds.mar file should not be source controlled.
The user may also want to source control other
files in this directory.

ProjectDir/mdsArtifacts/

This directory contains files that are both
input and outputs of the Ul Hints
infrastructure.

This directory should be source controlled. The
following files under this directory should also be
source controlled:

* MDSAvailablePagePanels.xml

* MDSAvailablePagePanels.xsd

* MDSMetaData.xml

The remaining files in this directory should not be
source controlled.

Developer's Guide
G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 19

ORACLE

Chapter 1
Tips and Tricks

Table 1-1 (Cont.) Source Control Handling for Various Files and Directories

Directory or File

Description Source Control Handling

ProjectDir/model/

This directory contains files that are used | This directory and its contents should be source
to persist the information about controlled.

cartridges, actions, processors, model
collections and address handlers.

ProjectDir/out/ This directory contains output classes. This directory should not be source controlled.
ProjectDir/resources/ This directory is not used. This directory does not need to be source
controlled.

ProjectDir/src/

This directory contains the user supplied | This directory and its contents should be source
code for the cartridge. controlled.

Design Studio for Network Integrity assumes that all files and directories of a cartridge project
are writable. Some source control systems and team plug-ins automatically manage the files
and directories to make them writable as the software needs to write to them. If this is not the
case for your chosen source control/Team plug-in combination, then you should manually
ensure that this is the case before working with a source controlled project.

Tips and Tricks

About Java

This section provides tips and tricks for working with processors in Design Studio and
compiling and building Network Integrity cartridges.

Errors in the Generated Controller Class

Compile errors in the generated Controller class of an action usually mean that there are errors
in the configuration of the processor table of that action. Look for a Design Studio Error on an
action or processor involved in the processor chain. Correct the error, then save all files and
perform a clean operation to regenerate all generated files.

Renaming or Deleting Actions and Processors

When renaming an action or a processor, Design Studio only renames and refactors the
generated Java source code. Likewise, when deleting an action or a processor, Design Studio
only deletes the generated Java source code. These changes result in errors remaining in the
processor implementation code and they must be corrected manually.

Adding External Libraries to a Java Build Path

Developer's Guide
G34175-01

To add an external library to the project for use by a processor, you must first copy the JAR file
into the lib directory of the cartridge project. Then, you must add an entry for this library into the
project's Java Build Path. This can only be done in the Package Explorer or the Navigator view.

From either view, right-click the project and select Properties. In the Properties dialog, select
Java Build Path in the left side, and select the Libraries tab. Now you can select Add
External Jars to add your libraries.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 18 of 19

ORACLE

Chapter 1
Tips and Tricks

About “Missing Required Library" Errors for External Libraries

You have copied the required library JAR files into the lib directory of your cartridge project,
and you have added these libraries into your project's Java Build Path. If you are still getting
missing required library errors, refresh your cartridge project to cause Design Studio to
notice the added library.

To refresh your project, go to the menu Windows, then Show View, then open Package
Explorer, then right-click your project, and select Refresh. Follow this by cleaning and building
the project.

Error Marker on Cartridge but not on any Entities

Developer's Guide
G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

If there is an error marker on the cartridge itself, but there are no error marker on any cartridge
entities (actions, processors, Model Collections, and so on), then try checking the cartridge
project using the Package Explorer view or the Navigator view. Sometimes the error markers
are on some generated artifacts instead.

If there are no error markers on anything else, then try a Refresh and Rebuild operation. Go
into Package Explorer or Navigator view, right-click the top-level project, and select Refresh.
Then, choose the menu Project, then Clean, and choose to clean and rebuild all projects.

October 8, 2025
Page 19 of 19

Working with Actions

This chapter provides information about Oracle Communications Network Integrity actions,
result categories, and discrepancies.

This chapter contains the following sections:

« About Actions

e About Import Actions

« About Discovery Actions

e About Assimilation Actions

« About Discrepancy Detection Actions

« About Discrepancy Resolution Actions

About Actions

Actions are entities that represent a particular software function that a deployed cartridge
performs at run time. A cartridge project usually contains multiple actions.

At run time, when an action is deployed to Network Integrity (by deploying a Network Integrity
cartridge from Oracle Communications Service Catalog and Design - Design Studio, or by
using the Oracle Cartridge Deployer), an action is implemented as a J2EE Message Driven
Bean (MDB).

Actions are of different types:

* Import action: Used for importing data, typically from an inventory system, and persisting
the inventory data in the Results Model using POMS entity managers.

» Discovery action: Used for discovering data, typically from a network, and persisting the
discovered data in the Results Model using POMS entity managers.

* Assimilation action: Used for post-processing previously discovered data, and persisting
the data in the Results Model using POMS entity managers. The assimilation action cannot
produce import results.

« Discrepancy detection action: Used for finding discrepancies between discovered
entities and imported entities.

» Discrepancy resolution action: Used for fixing discrepancies in an external system, or a
network.

See Design Studio Modeling Network Integrity for more information about creating actions.

About Actions and Processors

An action performs a certain function that is supported by a Network Integrity project. To
implement this function, a processor is introduced to implement an atomic sub-function, which
is part of the functions performed by the action. For example, an SNMP discovery action has at
least one processor that performs SNMP polling on network devices and another processor

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 26

ORACLE

Chapter 2
About Actions

that models the discovered raw SNMP data into the Results Model and persists it using POMS
entity managers.

An action contains one or more processors. Each processor is responsible for an atomic
function. By chaining the processors inside an action, the action can perform a complex
function, such as discovering a network, importing an inventory system, assimilating
discovered data, or detecting and resolving discrepancies.

When an action is invoked, the processors are run in the sequence they were placed inside the
action. The code-generated action controller controls processing.

See "Working with Processors " for more information about processors.

About Action within Actions

Developer's Guide

G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

You can add an entire action as a processor in an action. If the action you want to add belongs
to another cartridge project, you must make your project dependent on the one containing the
action you want to add.

You cannot modify the order in which the processors from an imported action are run, but you
can place new processors in between its processors.

For example, Table 2-1 shows two actions.

Table 2-1 Example Action Used as a Processor in Another Action

|
Action A Action B

Action A consists of the following processors: Action B consists of the following processors:

1. Processor Al 1. Processor Bl
2. Processor A2 2. Action A
3. Processor A3 3. Processor B2

The full representation of Action B in Table 2-1 is:

1. Processor B1
2. Action A:
a. Processor Al
b. Processor A2
c. Processor A3
3. Processor B2

In this example, action B actually contains five processors. The sequence of the processors
from action A cannot be changed in action B. However, new processors can be inserted
between the processors from action A.

For example, the Cisco SNMP cartridge contains a discovery action, which extends the
discovery action from the MIB-1I SNMP cartridge.

Figure 2-1 shows the processors contained inside the Discover Generic Cisco SNMP action
(from the Cisco SNMP Cartridge).

October 8, 2025
Page 2 of 26

ORACLE’

Chapter 2

About Actions
Figure 2-1 Discover Generic SNMP Action Processors
Name Provider Cond... Imported Action Owner Action

3 CPU Property Initializer Oracle Commu... Yes & AbstractCPULRIlIzat... a AbstractCPULURlzati...
@ Generic Device CPU Set Process: Network Integr. Yes
3 CPU Utilization Compare Proces Oracle Commu... Yes ¥ AbstractCPUUtIlizati.. "™ AbstractCPUUtilizati..
2 MIB |l Properties Initializer Oracle Commu... 3 Discover MIB 1| SNMP a Discover MIB Il SNMP
3 DI Name Remodel Initializer Oracle Commu... % Discover MIB 1| SNMP " Discover MIB 1l SNMP
= MIB Il SNMP Collector Oradle Commu... i Discover MIB Il SNMP i Discowver MIB Il SNMP
3 MIB Il SNMP Modeler Oracle Commu... % Discover MIB II SNMP ™ Discover MIB 1l SNMP

4 Generic SNMP Logical Collector Metwork Integr...
a Generic SNMP Logical Modeler Network Integr..
% DI Name Remodeler Oracle Commu... W Discover MIB I SNMP & Discover MIB Il SNMP
4 Generic SNMP Physical Collector Metwork Integr..
a Generic SNMP Physical Modeler Metwork Integr...

This discovery action contains Discover MIB Il SNMP as the imported action. By importing the
Discover MIB Il SNMP action, the Discover Generic Cisco action automatically gets the MIB I
discovery functions (logical device discovery) provided by the productized MIB-Il SNMP
cartridge.

In addition, the Discover Generic Cisco action discovers physical devices (through Cisco
SNMP Physical Collector processor and Cisco SNMP Physical Modeler processor), modeling
the logical side (through the Cisco SNMP Logical Collector processor and Cisco SNMP Logical
Modeler processor).

About the Generated Action MDB and Controller

Developer's Guide

G34175-01

Every action becomes a J2EE Message Driven Bean (MDB) at run time. The controller
controls the execution sequence of the processors inside an action.

Both the Action MDB and controller classes are code-generated. No further Java coding is
necessary for either the MDB or the controller class. These two classes are transparent to a
Network Integrity cartridge developer using Design Studio. At design time, the cartridge
developer should not have to implement any Java code for an action because all required Java
implementations for actions are code-generated.

The generated Action MDB and controller classes can be found at the following directory:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_Package\Action_Type\Act
ion_Implementation_Prefix

where the elements on the path are defined as follows:
e Studio_Workspace: Eclipse Workspace root
e NI_Project_Root: Network Integrity project root
* Project_Default_Package: The default package configured in the Project editor
e Action_Type: Select from the available action types:
— assimilationactions
— detectionactions

— discoveryactions

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 26

ORACLE Chapter 2
About Actions

— importactions
— resolutionactions
e Action_Implementation_Prefix: action implementation prefix in lowercase.

The generated MDB class is named: ActionNameMessageDrivenBean.java.
The generated controller class is named ActionNameMessageDrivenBeanController.java.

During design time, compilation errors or warnings against this Java class might occur. These
errors and warnings are cleared after properly implementing and configuring the action (and its
processors).

Figure 2-2 shows the directory that contains the generated MDB and controller classes.

Figure 2-2 Generated MDB and Controller Class Directory

[Project Explorer | %=, Navagator | =" = =0
4 125 Optical UIM_Cartridge -
% cartridgeBin
s cartridgeBuild
% dataDectioneny
b dog
[generated
= plugimbdetabiodel
B s
& META-INF
a4 = ceacle
4 = Commarunel SLOmng
4 [= integrity
a = apticalime anlld:J[
4 | =% detectionesctions
= wdsicthuavwsdbnoediicrepandiel
2 uimdetecttmiBld devicediscrepandies
] UIMDetect TMPE14 DevseDis repandnes Contralled. jave
& UlMDetect TAMEERLd DeviceDiscrepanciesMessagelimenBesn. java
= detectionprocesion
4 [discoverysctions
= dusoverenhancedbuawenu 000
d = discoverenhancedtmfdld
1] Dhigererbnhanced TMFELAC cnbrclier jirva
[Discoverfnhanced TMFE1dMessageDlrivenBesn jraa
= ducoweryprocesion
% ETpoTtactions
= smportprocesson
+ modelcoliections
= resolutionactions
]
% miodel
T |
% MESOUrCES
& §IE
2 upgradelog
DusldMurmbd
x| .classpath
I project
shudio
B Optecal_UIM_Cantridge.integrtycartndge -

About Scan Parameter Groups

Scan parameter groups are a special type of specification that adds fields to the Network
Integrity Ul. You can add fields to the Create Scan page, allowing the Network Integrity user to
pass scan parameter values to run-time scans. You can add fields to the Scan Details page,
displaying the configured scan parameter values on configured scans.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 26

ORACLE

Chapter 2
About Actions

Add and configure characteristics on scan parameter groups to create input fields for scan
parameters in the Network Integrity Ul.

You can add scan parameter groups to the following types of actions:

* Assimilation actions
* Discovery actions
* Import actions

See "Design Studio Modeling Network Integrity" for more information about creating and
configuring scan parameter groups.

Extending the Create Scan Page

Developer's Guide
G34175-01

In Design Studio, you can configure characteristics on scan parameter groups to appear as
input fields on the Create Scan page of the Network Integrity Ul. These input fields allow the
Network Integrity user to pass scan parameters to run-time scans.

For example, if a network device requires a login and password for Network Integrity to
establish a connection, you can add input fields for the user name and password to the Create
Scan page. Network Integrity users can enter the user name and password and save the
values to the scan. Each scan run passes the user name and password parameter values to
the network device to establish a connection.

See Design Studio Modeling Network Integrity for more information about adding and
configuring characteristics on scan parameter groups.

Figure 2-3 shows the Create Scan page. The Scan Action Parameters section lists all the input
fields defined by characteristics on scan parameter groups in Design Studio.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 26

ORACLE Chapter 2

About Actions
Figure 2-3 Create Scan Page
Create Scan @
General Scope Schedule
™ Nama
Tags +
Enabled [Tags
Detect Discrepancies (No [3gs)
" Scan AcHOn piscover Genenc SNIMP Device v
Sean Type 5 Disoovery
Source
Description
[4 Scan Action Parameters
Select Parameter Group SnmpParameters -
" Version vergion s Community String
V3 User Name *Port 181
V3 Context Name * Timeout (seconds) 5
V3 Authentication Protocol - o * & of Retries 2

VI Authentication Password

V3 Privacy Protocol pooe o

" Response Timeout (seconds) &0
¥3 Privacy Password

Scan Mode oo

Extending the Scan Details Page

In Design Studio, you can configure characteristics on scan parameter groups to appear as
read-only fields on the Scan Details page of the Network Integrity Ul. These fields display the
saved scan parameter values on the scan.

See Design Studio Modeling Network Integrity for more information about adding and
configuring characteristics on scan parameter groups.

Figure 2-4 shows the Scan Details page.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 26

ORACLE Chapter 2

About Actions
Figure 2-4 Scan Details Page
|
Scan: test Scan @
Status General | Scan Action | Scope Schedule Blackout
Select Parameter Group SnmpParameters W
Version w3 Community String
V3 User Name Port 161
V3 Context Name Timeout (seconds) 5
V3 Authentication Protocol # of Retries 2
V3 Authentication Password
V3 Privacy Protocol
V3 Privacy Password Response Timeout &0

About Conditions

Design Studio sets conditions for processors used in action executions in Network Integrity.

An action can contain conditions. By creating and applying conditions to processors, at run
time you can dynamically control which processors should be run inside an action based on
the condition (whether true or false). Conditions are implemented as a Java class that
implements the condition interface. Design Studio generates the code for the condition
interface. You then implement the condition interface. Conditions can be applied to one or
more processors. Conditions can be set to be either true or false. One processor can also have
multiple conditions applied. In this case, the processor are run if all the conditions are true

See Design Studio Modeling Network Integrity for more information about creating conditions
and applying them to processors.

About Generated Classes and the Implementation Class

When a condition is configured for an action, Design Studio generates two classes:

e Condition interface, which takes the name
ConditionName_Implementation_PrefixCondition.java

« Request, which takes the name ConditionName_Implementation_PrefixRequest.java

The generated classes are available at:

Studio_Workspace\NI_Project_Root\generated\src\Project_Default_Package\Action_Type\Act
ion_Implementation_Prefix

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 26

ORACLE

Chapter 2
About Actions

@® Note

This directory also contains generated action MDB and controller classes.

The following is a sample generated condition interface which defines one method,
checkCondi ti on. In this sample, Val i dDevi ceRequest is the generated request class for the
condition:

public interface ValidDeviceCondition {

/**
* @aram cont ext
* @aram request
* @eturn @ee bool ean
* @hrows ProcessorException
*/
publi ¢ bool ean checkCondition(Di scoveryProcessor Cont ext context,
Val i dDevi ceRequest request) throws ProcessorException;

Design Studio also generates the skeleton implementation class for this condition interface. To
open the Java editor and start the Java implementation, click the Implementation Class link.

Adding Dependent Actions with Conditions as Processors

When you add an action from a dependent cartridge project, the action comes with its
conditions. The conditions cannot be removed from any processors to which they are applied
in the dependent cartridge project.

You can add and remove additional conditions to processors belonging to actions from
dependent cartridge projects.

By adding new conditions to dependent action processors, you can change whether an
imported processor is run.

Creating Condition Examples

See the following for examples of setting conditions in Network Integrity:

e Multiple Vendor SNMP Discovery

e Multiple Protocol Discoveries

About Model Collections in Actions

Developer's Guide
G34175-01

Use model collections to gather specifications from other, dependent cartridges and make
them available to actions in the current cartridge project.

Adding a model collection to an action enables the generation of the Specification Helper
classes for specifications from other cartridge projects. These classes are by the action for
modeling the discovered data into the Oracle Communications Information Model and
persisting it using POMS entity managers.

If an action is imported into another action in a different cartridge project, the Network Integrity
packager uses the model collections to determine how to build the specification DAO files so
that all specifications (from both the imported action and the current action) are included.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 8 of 26

ORACLE

Chapter 2
About Actions

See "About Model Collections" for more information about model collections.

About For Each Processors

An action can contain a For Each processor. The action controller sets the execution sequence
of the processors based on the order in which the processors are configured. Usually a
processor is invoked only once, and when it has run, the controller invokes the next processor,
until all processors in an action are invoked. However, one or more processors may be run
repeatedly. For example, when importing an inventory system, it is typical to first get a list of
devices from the inventory system, then go through the list of devices and import each device
singly into Network Integrity. In this example, the processor importing a single device is
repeatedly run for all the devices in the returned device list. You can use For Each processors
to create a loop, containing one or more processors, to repeatedly run the processors. Design
Studio for Network Integrity supports nested For Each processors.

A For Each processor expects a collection as the input parameter so that it can iterate through
the collection and, for each object in the collection, invoke the processors inside the loop.
There must be a preceding processor that outputs an array or a Java object that implements
java.lang./terable (for example, java.util.List) as an output parameters to create a For Each
processor.

See Design Studio Modeling Network Integrity for more information about creating For Each
processors.

About Result Categories

Result category is a mandatory field for the following action types:
» Discovery action

e Import action

* Assimilation action

Result category is the identifier for a result group. An action configured with a result category
persists the results to the corresponding result group after being deployed and run in Network
Integrity. The result category is visible in the Network Integrity Ul when displaying the scan
results.

Figure 2-5 shows the result category in the Network Integrity Ul. The discovered device is
stored under the result category, Device.

@ Tip

Provide an appropriate result category when configuring an action, because this value
is displayed in the Network Integrity Ul.

Figure 2-5 Result Category in Network Integrity Ul

Scan Result Details: MIB I1(2)

View - Reviey

Category
_DEVl-::E)]

—

Mame
rot7206-2 — — - —10.156.68. 194

Discrenancies 3__-:’[h:r Detach

—
1T
)
i
=
3

— w | Network Address

Result Category

Developer's Guide

G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 9 of 26

ORACLE Chapter 2
About Import Actions

Result categories identify a result group that an action adds the results to the result group. The
result category value configured for the action must match the result group name in the Java
implementation (the addToResul t method) for the discovered data. See Network Integrity
Information Model Reference for information about using result categories in modeling results.

For more information about this Java implementation, see "Working with Processors ".

Design Studio does not explicitly validate this result category hame against the actual result
group name specified in the Java implementation.

The result category and action define a result source for the following action types:

* Discrepancy detection action
« Discrepancy resolution action

Both actions work on results (to perform discrepancy detection or resolution, respectively)
based on the result source.

For example, a discovery action persists discovered data in two result categories:

e Device
* Workstation

A discrepancy detection action works on discovered data stored in the result categories that
match the result groups in the Java implementation. If the result category configured for the
discovery action does not match the actual result group name in the Java implementation, but
the discovery detection action is configured with the result source based on the result category
configured in Design Studio, the discrepancy detection action is not able to find the results to
perform discrepancy detection at run time. In other words the result group name does not
match the result category defined in result source.

About Import Actions

Import actions are used to import data from an inventory system into Network Integrity. The
data is stored in the Oracle Communications Information Model representation and is flagged
as having come from the inventory system. The Network Integrity GUI displays and reports on
the data discovered by an import action. The data can also subsequently be processed by
discrepancy actions that compare network-discovered data to inventory-discovered data, and
reports differences between them.

Import actions are edited in Design Studio. As a result of the editing, Design Studio generates
most of the required deployment artifacts. However, you must supply some Java
implementation. After this is done, and all error problems are cleared, and if the import action is
not abstract, Design Studio automatically packages the action into a cartridge Integrity ARtifact
(IAR) file that can be easily deployed into the Network Integrity server. Then, on the Network
Integrity server, an import scan can be created and run, and the scan results viewed or
reported on.

See Design Studio Modeling Network Integrity for more information about creating and
configuring import actions and processors.

See "Implementing an Import Processor" for more information.

About Discovery Actions

The discovery action discovers data, typically from the network, and persists it to the Oracle
Communications Information Model. The discovery action accesses the network using a
variety of technologies and protocols, such as simple network management protocol (SNMP).

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 10 of 26

ORACLE

Chapter 2
About Discovery Actions

Because SNMP is such an important protocol for network discovery, Network Integrity provides
specific features to allow streamlined development of SNMP network discovery cartridges
within Design Studio for Network Integrity. See "Implementing the SNMP Processor" for more
information.

See "Implementing a Discovery Processor"” for more information.

See Design Studio Modeling Network Integrity for more information about creating and
configuring discovery actions and processors.

About Discovery Action Address Handlers

Developer's Guide

G34175-01

Discovery scans are often used to scan multiple devices in the network. A discovery scan can
use a variety of protocols to perform a scan. To facilitate scan processing, Network Integrity
supports an address expansion and validation software component called an address handler.
Address handlers perform two functions:

e They validate that a user-supplied address string is syntactically correct for a protocol.

* They expand address strings which represent multiple addresses, into a collection of
individual addresses.

This allows the user to configure a scan of multiple addresses using a compact, efficient
notation; for example: the notation 10.156.67.1-254 expresses the range of addresses
from 10.156.67.1 to 10.156.67.254, which is 254 addresses.

Discovery actions can optionally specify an address handler to use. It is best practice to create
an address handler whenever address validation is desired. Addresses are validated when a
scan configuration for the discovery action is saved, and also when the scan is run.

In addition, address strings representing multiple addresses are expanded into a collection of
addresses when the scan runs. When an address string is expanded into multiple addresses,
Network Integrity calls into the discovery action multiple times until each individual address has
been scanned. The scanning of multiple addresses is done in parallel.

Address handlers are created in Design Studio for Network Integrity. Design Studio for Network
Integrity generates some artifacts for the address handlers. However, you should supply
implementation code to complete the address handler.

Address handlers become stateless session beans in the run-time environment. Cartridge
projects containing address handlers must be deployed before any cartridge project that uses
the address handlers are deployed.

@ Note

Address handlers cannot be created in the same cartridge project as actions. To add
address handlers to actions, you must make the cartridge project that contains the
actions dependent on the project that contains the address handlers.

You can download the and import the Address_Handler cartridge project which contains
several basic address handlers. See "About the Address_Handlers Cartridge" for more
information.

See Design Studio Modeling Network Integrity for information about creating address handlers.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 11 of 26

ORACLE Chapter 2
About Discovery Actions

About the Address_Handlers Cartridge

Network Integrity provides the Address_Handlers cartridge which implements the following
address handlers:

e IPAddressHandler validates and expands both IPv4 and IPv6 address.
It validates and expands the following IP address formats:
— Single IP addresses; for example: 10.156.67.123
— IP address ranges using “-"; for example: 10.156.67.10-125
— IP address ranges using “*"; for example: 10.156.67.*%, equal to 10.156.67.0-255

— IP addresses using Classless Inter-Domain Routing (CIDR); for example:
10.156.67.0/24

e URLAddressHandler validates URL syntax addresses.

e File TransferAddressHandler validates addresses and paths used by the file transfer
processor, as follows.

— Allows the field to contain one or two tokens delimited by "/*
— Using a single token identifies:

* The absolute path to files that are local to the Network Integrity server, for
example: /tmp

— Using two tokens identifies:
* The remote location and absolute path
* Host_name/path, for example: someserver.us.com/tmp/test
* IPV4Address/path, for example: 10.156.58.63/tmp/test
* |IPV6Address/path
— Validates the proper format of IPV4 and IPV6Address

@® Note

The file transfer processor does not support address expansion and relative paths.

e Corba URLAddressHandler validates that the address entered in Network Integrity is a
properly formatted IPv4 or IPv6 CorbalLoc URL. For more information, see "About the
CORBA Cartridge" in Network Integrity CORBA Cartridge Guide.

Implementing Address Handlers

You must specify the implementation class for an address handler. See Design Studio
Modeling Network Integrity for more information.

About the AddressHandler Interface

Address handlers must implement the AddressHandler interface which is shown and described
in the following section:

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 12 of 26

ORACLE Chapter 2
About Discovery Actions

package oracl e. comunications.integrity.api;

import java.util.List;
i mport oracl e.conmuni cations.integrity.conon. AddressHandl er Excepti on;
i mport oracl e.conmuni cations.integrity.common. AddressesSt at us;

/**

* AddressHandl er is conmon interface which should be inplenented by the
* class inplenmenting the Address expansion and validation of addresses.
*|

public interface AddressHandl er {

/**

* This method expands the list of address or addressRange provided.

* @aram addressRangelList - a list of String representing either an address or an
address range

* @eturn List - a list of Strings each of which represents an individual address

* @hrows AddressHandl er Exception

*/

public List<String> expandAddressRange(List<String> addressRangeList) throws
Addr essHandl er Excepti on;

/**
* This method validates the list of address provided.
* @ar am addr ess
* @eturn AddressesStatus
* @hrows AddressHandl er Exception
*/
public AddressesStatus validate(List<String> address) throws
Addr essHandl er Excepti on;

/**

* This method validates the single address provided.

* @ar am addr ess

* @eturn bool ean

* @hrows AddressHandl er Exception

*/

public bool ean validate(String address) throws AddressHandl er Excepti on;

/**

* This method counts the number of addresses after expansion of address paraneter
passed.

* Here maxCountLimt can be NULL. If maxCountLinmit is NULL, method return the total
count of expanded address.

* |f maxCountLimt is specified, method does not count the expanded address

* beyound that limt and returns the maxCountLimt + 1.

* @ar am addr essRangeli st

* @ar am maxCount Li mi t

* @eturn int

* @hrows AddressHandl er Exception

*/

public int countExpandedAddresses(List<String> addressRangelist, |nteger
maxCount Limit) throws AddressHandl er Excepti on;
}

About Dynamic Address Handlers

When you configure a Network Integrity discovery scan, you specify one or more addresses as
the scope for the discovery scan.

The discovery scan scope can point to one or more addresses.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 13 of 26

ORACLE

Developer's Guide

G34175-01

Chapter 2
About Discovery Actions

When the network changes, you likely need to modify the discovery scope to add or remove
addresses.

You can create an address handler that references a file at run time, dynamically populating
the discovery scan scope.

See Design Studio Modeling Network Integrity for information about creating an address
handler.

The following sections explain how to implement a dynamic address handler.

Validating the Address Handler

Validation methods are invoked to validate user-entered addresses. In this sample, an address
is expected to be a path to a file (absolute, or relative to the WebLogic Server Network Integrity
domain). This validation method checks each address, and the result indicates which
addresses (if any) are not valid:

@verride
public bool ean validate(String address) throws AddressHandl er Exception {
File file = new Fil e(address);
if (!file.exists() || !'file.isFile()) {
return fal se;

}

return true;

}

You must also implement a list variant of the validation method without additional validation
logic. The following sample shows the method for implementing a list variant.

@verride
publ i c AddressesStatus validate(List<String> addresses)
throws AddressHandl er Exception {
AddressesStatus result = new AddressesStatus();
for (String address : addresses) {
if (!validate(address)) {
result.getlnval i dAddressList().add(address);

}

}
result.set Al l AddressValid(result.getlnvalidAddressList().isEmty());

return result;
}

Expanding Address Handlers

When you run a scan, the address handler invokes address expansion methods to derive
individual address from ranges of addresses.

The expandAddressRange method takes the addresses (as entered on the Scope tab) and
returns a list of expanded addresses.

The file is read line by line and the following logic is applied:

e Remove leading and trailing white space
e Ignore empty lines
e Ignore comments (starting with #)

e When a line starts with $, it indicates a malformed address and the address expansion
fails.

The explicit validate method is not invoked for expanded addresses.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 14 of 26

ORACLE Chapter 2
About Discovery Actions

The use of a LinkedHashSet avoids issues with duplicate addresses in the file, while still
preserving the order. In this sample, each input address references a file.

@verride
public List<String> expandAddressRange(Li st<String> addresses)
throws AddressHandl er Exception {
Set <String> expandedAddresses = new Li nkedHashSet <String>();
for (String address : addresses) {
expandedAddr esses. addAl | (readAddr essesFronFi | e(address));
}

return new ArraylLi st (expandedAddr esses);
}
public List<String> readAddressesFronFile(String path)
throws AddressHandl er Exception {
try {
Buf f er edReader reader = new Buf f eredReader (new Fi | eReader (path));
try {
List<String> addresses = new ArrayList<String>();
String address = null;
while ((address = reader.readLine()) !'= null) {
/1 ignore blank lines, and coment lines (starting with #)
address = address.trim();
if (! address.isEnpty() && ! address.startsWth("#")) {

/1 Address validation applies only to addresses entered as Scope for scan. In
this exanple, further validation may be of interest in case file content is malfornmed.
This illustrates howto reject an illegal dynanic address

if (address.startsWth("$")) {

t hrow new Addr essHandl er Exception("Illegal address \"" + address + "\" found
infile\"" + path + "\"");

}

addr esses. add(addr ess) ;

}
}
return addresses;
} finally {
reader. cl ose();
}
} catch (I Oexception ex) {
t hrow new Addr essHand| er Exception("Unable to read addresses fromfile \"" + path +
"\"",oex);
}
}

The following sample shows a method that returns the count of the expanded addresses. For
certain types of address handlers, counting is more efficient than expansion. For example,

a /24 IP address range is 256 addresses. In this sample, addresses are expanded and
counted.

@verride
public int countExpandedAddresses(List<String> addresses, Integer maxCount)
throws AddressHandl er Exception {
return expandAddr essRange(addresses). size();

}

Testing the Dynamic Address Handler

To test a dynamic address handler, create a discovery action in Design Studio that uses the
dynamic address handler you implemented. See Design Studio Modeling Network Integrity for
information about creating actions.

To test the dynamic address handler:

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 15 of 26

ORACLE

Chapter 2
About Discovery Actions

1. Deploy the cartridge containing the dynamic address handler and the discovery action.

2. Create an address.txt address file that is accessible to the application server. The file is
created in the Weblogic domain home directory with the following content:

Sone Address
Anot her Address
Address 3

In Network Integrity Ul, create a scan and select the discovery action you created.
In the Scope tab, specify the addresses.txt file.

Run the scan.

o g 0 »

On the Scan Results page, click Display Addresses to see the expanded addresses that
were read from the file.

7. Edit the addresses.txt file and change the last address:

Sone Address
Anot her Address
New Address

8. Run the scan again and view the addresses to see the new addresses that were read from
the file.

About Discovery Action Result Categories

A discovery action must be configured with a valid result category. For example, a discovery
action that discovers devices should be configured with the Device result category.

See "About Result Categories" for more information.

See Design Studio Modeling Network Integrity for more information about adding a result
category to a discovery action.

About the Discovery Action in the Network Integrity Ul

Developer's Guide
G34175-01

After successfully building a discovery action in Design Studio (see "Building and Packaging
Projects"), deploy the cartridge to Network Integrity (see "Deploying and Undeploying

Cartridges").

When the cartridge containing the discovery action is successfully deployed to Network
Integrity, log on to the Network Integrity Ul and configure a scan using the deployed discovery
action.

The recently deployed discovery action is available in the Scan Action list when creating a
scan configuration. See "Using Network Integrity" in Network Integrity Help for more
information about creating a scan.

Figure 2-6 displays a discovery action called Discover Sample Device.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 16 of 26

ORACLE Chapter 2
About Discovery Actions

Figure 2-6 Creating a New Scan Configuration

Create Scan @

General | Scope Schedule

* Name
Enabled
Detect Discrepancies [

* Scan Action pjscover Generic SNMP Device v

Scan Type | Assimilate IP Links

Assimilate SDH Optical Circuits
Source
Discover Enhanced TMFE14

Description | piscover Ericsson Xmi

) Discover Generic SNMP Device
4 Scan Action Parame

Discover MIB Il SNMP
Select Parameter Gry
Discover Optical Devices FTP

Discover Optical UlM

About Discovery Action Scan Parameter Groups

You can configure scan parameter groups for a discovery action. Add characteristics to scan
parameter groups to appear in the Network Integrity Ul as scan parameters. For example,
consider the following scan parameters:

e Port: The port number that a discovery command is sent to.
e Username: The user name to make the connection.
* Password: The password to make the connection.

e Scan Mode: The scan mode to be assigned to the scan.

@ Note

While performing SNMP scans, the mode from the Global property file takes
precedence over individual scan modes.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 17 of 26

ORACLE Chapter 2
About Discovery Actions

When a scan is created using Discover Sample Device (see "About the Discovery Action in the
Network Integrity UI"), the Scan Action Parameters section on the Create Scan page is filled
with SNMP scan parameters.

About Discovery Action Scan Parameter Groups displays the Scan Action Parameters area
with SNMP scan parameters configured.

Figure 2-7 Configured SNMP Scan Parameters

4 Scan Action Parameters

Select Parameter Group SnmpParameters w

" Version yersign 2¢ v Community String public
V3 User Name * Port 161
V3 Context Name * Timeout (seconds) 5
V3 Authentication Protocol ppne * # of Retries 2

V3 Authentication Password

V3 Privacy Protocol pgne

* Response Timeout {seconds) 60
V3 Privacy Password

Scan Mode pommal w

To make configuration items available in the Network Integrity Ul, add and configure
characteristics on scan parameter groups. See Design Studio Modeling Network Integrity for
more information.

See "About Scan Parameter Groups" for more information.

About scanMode Parameter

You can choose and assign a scan mode to each SNMP scan by using a configurable
scanMode parameter. However, if a scan mode is already set in the Global property file, then
that mode takes precedence regardless of the mode chosen on the user interface. If the Global
property file does not exist, then the mode chosen on the interface is applied to the scan. The
scan will be run on the mode chosen on the Ul if the scan mode set on the Global property file
is custom.

You can set the scanMode parameter with the required value while editing the corresponding
SNMP scan or creating a new SNMP scan. While creating a new SNMP scan, the parameter
value is set to nhormal by default.

Customizing Response Timeout for Devices in SNMP Discovery Scan

You can customize response timeout for devices in SNMP discovery scan using Response
Timeout field on Edit Scan or Create Scan pages.

Setting the response timeout for a scan enables you to stop any device or devices that take
longer than the required time, without disturbing the scan.

You can set the response timeout only for SnmpParameters group of a Discovery Scan.
To customize the response timeout for a Discovery scan:

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 18 of 26

ORACLE

Chapter 2
About Assimilation Actions

1. Go to Manage Scans.
2. Select the required SNMP Discovery scan from Search Results.
OR, click the Create icon to create a new scan.

3. From the Edit Scan or Create Scan page, enter the corresponding SNMP Discovery scan
details.

4. Under Scan Action Parameters section, select SnmpParameters from Select
Parameter Group list.

5. Set the required timeout value in Response Timeout.

® Note

The default value of the Response Timeout parameter is 60 seconds.

6. Click Save and Close.

The scan is set with the required response timeout value.

Partial Scan Check

In order to implement a scan to only look for failed resources, it is necessary for all the OOB
and custom cartridges to include a check in the collector and parser processors for CORBA
and FTP-based discovery cartridges. This partial scan check will be used to check if a
resource needs to be rescanned or not.

The following code fragment describes a sample of the check to be included.

i f(context.discoverFronPervi ousScan(me. nane, ne.nativeEMSNane)!=null) {
conti nue;

}

About Assimilation Actions

Developer's Guide

G34175-01

Assimilation actions perform additional processing on existing Network Integrity network data
to derive additional, often higher level, information from the data. For example, an assimilation
action might be used to derive connectivity relationships between endpoints discovered by
previous scans. Assimilation actions cannot manipulate or edit scan results.

Assimilation scans are different from other types of scans in that they do not retrieve their data
from external sources. Instead, assimilation scans work on the scan results of other discovery,
import, or assimilation scans. When you run an assimilation scan, the scan selects other scans
as inputs to the assimilation scan in the Scope page of the Network Integrity GUI. You can
select discovery, import, or other assimilation scans as input.As with other scan types, the data
from assimilation actions is stored in the Oracle Communications Information Model
representation. The data from assimilation scans is flagged as having come from the network.
The Network Integrity GUI displays and reports on the data discovered by an assimilation
action. The data can also subsequently be processed by discrepancy actions, which compare
network discovered data to inventory discovered data and report where differences are found.

Assimilation actions are edited in Design Studio. As a result of the editing, Design Studio
generates most of the required deployment artifacts. However, you must supply some Java
implementation. After this is done, and all error problems are cleared, and if the assimilation
action is not abstract, Design Studio automatically packages the action into a cartridge Integrity
ARtifact (IAR) file, which can be easily deployed into the Network Integrity server. Then, on the

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 19 of 26

ORACLE

Chapter 2
About Discrepancy Detection Actions

Network Integrity server, an assimilation scan can be created and run, and the scan results
viewed or reported on.

See "Implementing an Assimilation Processor" for more information.

See "Getting Started with Design Studio for Network Integrity” in Design Studio Help for more
information on creating assimilation actions and processors.

About Discrepancy Detection Actions

The discrepancy detection action is a Network Integrity operation that compares discovery and
import scan results, and reports on their differences by generating discrepancies.

A discrepancy detection action can be run immediately following a discovery, import, or
assimilation scan. (Select the Detect Discrepancy check box in the scan configuration to set
the trigger.) The entity results from the triggering scan become the Compare entities for the
detection action. The action then uses a matching algorithm to find from the other side, and
precedes with the comparisons.

See "About the Compare and Reference Sides" for a fuller description of the two sides of
entities of discrepancy detection.

See "About the Base Detection Project and the Default Comparison Algorithm” for a
description of the comparison algorithm.

Create a discrepancy detection action whenever new discovery, import, or assimilation actions
are created, because every detection action is configured to receive results from specific
actions only. See "About Result Sources" for more information.

See "About Discrepancy Detection Processors" for more information.

See Design Studio Modeling Network Integrity for more information about creating discrepancy
detection actions and processors.

About Discrepancy Detection

Developer's Guide
G34175-01

Discrepancy detection triggers immediately after a scan is finished. A scan is configured to use
a single type of action, and therefore only generates Discovery results (representing network
entities) or Import results (representing inventory system entities). Therefore, when the
discrepancy detection action triggers, it has immediate access to one side of results: the
compare entities.

For the other side of the results, the detection action searches the Network Integrity database
for results with the following criteria:

e The results must come from the opposite system from the triggered scan. For example, if
the detection action triggers from a discovery scan, then the detection action searches the
database for Import result.

e The results have a matching name and result category (as configured by result source).
e The results must come from the most recent scan result.

If no matching results are found, then EXTRA_ENTITY discrepancies are generated for each
root entity on that result.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 20 of 26

ORACLE’

Chapter 2
About Discrepancy Detection Actions

Identifying and Resolving Missing Entity Discrepancies at the Root-level

Network Integrity supports identifying and resolving the missing entity discrepancies at root-

level entities such as Physical Device, Logical Device and Service. By default, this feature is
disabled. To enable it, set the filegenerateMissingRootLevelDiscrepancies property in the
system-config.properties file to true.

The UIM integration cartridge contains the required matcher and a resolution procedure, where
the missing entity is handled as follows:

1. Run the Import scan for Node A and Node B that are available in UIM.

2. Run the Discovery scan for Node A and Node B with discrepancy enabled.

@® Note

If NI discovers Node B, then NI will show the discrepancy on Node A as a missing
entity.

3. Click Review Discrepancies to view the list of discrepancies, select the corresponding
discrepancy Entity-.

4. From Actions, select Correct in UIM to remove Node A in UIM.

About Result Sources

Developer's Guide
G34175-01

A result source specifies a list of scan actions that can trigger a discrepancy detection action.
The triggering action must be a discovery, import, or assimilation action. By default, results
from all categories are included in the discrepancy detection. It is possible to choose a subset
of the categories to apply the discrepancy detection.

For example, Figure 2-8 illustrates a Cisco router discovery action that produces results in 2
categories: Device and VPN. Two separate detection actions are written to compare the
results. Each detection action specifies a result source with the same action, but different result
category. For example, the device discrepancy detection action receives results of Device
category only.

Figure 2-8 Discrepancy Detection Actions (Example 1)

Result
Categories

Device Discrepancy

Detection Action
Device * Result Source:
+ Action: Discovery Action 1

Discovery + Result Category: Device
Action 1

L

Y

VPN Discrepancy
Detection Action
Result Source
¢ Action: Discovery Action 1
. Result Category: VPN

VPN

b J

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 21 of 26

ORACLE Chapter 2
About Discrepancy Resolution Actions

A result source that does not specify a result category matches every result category
generated by the scan action. Figure 2-9 illustrates a Cisco discrepancy detection action that
receives both device and VPN categories of results.

Figure 2-9 Discrepancy Detection Action (Example 2)

Result
Categories
) Discrepancy
_ Device Detection Action
D'SO_D""EW > W o p| ReEsult Source:
Action 1 * Action: Discovery Action 1
+ Result Category: Nonea
VPN

The result source is a mandatory field; there must be at least one entry in the table. Design
Studio marks the discrepancy detection action with an error during a project build if the table
has no entries.

@® Note

No two discrepancy detection actions can have the same result source.

About Result Source and Scan Types

Typically a result source configuration detection action has a single action as the result source:
usually the discovery action. This detection action triggers when a scan is configured using that
exact discovery action, and the Detect Discrepancy option is checked. This detection action
does not trigger by scans configured with any other discovery or import action. Do not set the
Detect Discrepancy option on the Import scan, because this might not trigger a detection
action at all.

Generated Action MDB and Controller

The detection action is implemented as an MDB. See "About the Generated Action MDB and
Controller" for more information.

About Discrepancy Resolution Actions

A discrepancy resolution action is an extendable Network Integrity operation which acts on an
external system to resolve a discrepancy. For example, a resolution action updates a mismatch
in an inventory system using information gathered from the network or generates a trouble
ticket to kick off a network configuration change process.

A discrepancy resolution action operation is initiated by the Network Integrity user on the
Manage Discrepancy page, using the following steps:

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 22 of 26

ORACLE

Chapter 2
About Discrepancy Resolution Actions

1. The user identifies the desired resolution action on selected discrepancies. Each
discrepancy can have only one resolution action set.

2. The user submits the discrepancies with identified resolution actions to the system.

On receiving the submitted discrepancies, Network Integrity groups them based on their scan
origin, result category, and resolution label, and then invokes the appropriate discrepancy
resolution action.

The action then examines each discrepancy in detail, using the contained information to figure
out the appropriate steps to resolve the problem.

As with other types of actions, a discrepancy resolution action is made up of a sequence of
discrepancy resolution processors. The processors are shown in the Processor table in Design
Studio. At the beginning of an action operation, these processors are invoked serially from top
of the table to bottom. The first processor is given the list of submitted discrepancies marked.
This processor determines a subset of these discrepancies to handle (which can range from
none to all), performs the resolution operation, and sets their status to Processed or Failed.
Then, the next processor is given the remaining discrepancies for processing, and so on.

The action is complete when all the processors are invoked. If there are any discrepancies
which remain unhandled at the end, their status is automatically set to Not Implemented.

The following sections in this chapter describe general information about implementing a
resolution action. For a detailed discussion of a working sample, see the following documents
included with the cartridges:

e SNMP Discovery and UIM Integration Cartridge Guide
e Network Integrity MIB-II UIM Integration Guide

See "About Discrepancy Resolution Processors" for more information.

See Design Studio Modeling Network Integrity for more information about creating discrepancy
resolution actions and processors.

About the Resolution Action Label

Developer's Guide
G34175-01

The Resolution Action Label identifies the discrepancy resolution action in the Network
Integrity Ul. It is displayed as a command in the Actions menu of the Discrepancy Search
Results table of the Review Discrepancies page.

Figure 2-10 displays the label corresponding to the command.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 23 of 26

ORACLE Chapter 2
About Discrepancy Resolution Actions

Figure 2-10 Resolution Action Label in Actions Menu of Network Integrity Ul

Search Results @

View v Submit [}) Refresh SelectAll % Download = Detach

Correct IP Links in UM . .
. Entity Attribute /
Entity Type Relationship

Comrect SDH Connectivity and Service in UIM

Correct in MSS GenericEqui... physicalPorts
Correct in UIM GenericEqui physicalPorts
Reconcile WDM Services to UlM

GenericEqui physicalPorts

1 Ignore
GenericEqui... physicalPorts
4
GenericEqui... physicalPorts
Edit

_ v GenericEqui physicalPorts
4 ——

This label is a mandatory field. Design Studio reports an error if this label has no value. The
use of a command phrase as the label string is recommended. Some example labels are:

e Correct in Inventory System
e Open a Trouble Ticket

The label input field allows you to choose either a label from another discrepancy resolution
action defined within your workspace, or to type in a new label. A label can be shared by
multiple actions; this implies that multiple actions are sharing a single menu item in the Actions
menu of the Discrepancies page.

Network Integrity determines the correct action to invoke based on a combination of the label
and the result source.

@ Note

No two discrepancy resolution actions can have the same label and the same result
source.

About Result Sources

The result source is a list of discrepancy filtering criteria. Each criterion represents a single
source of discrepancy, and is specified by a combination of the originating scan action and a
result category. A resolution action only receives discrepancies from the specified result
categories which were created by scans using the specified actions.

Figure 2-11 shows an example of result sources being applied in Network Integrity.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 24 of 26

ORACLE Chapter 2
About Discrepancy Resolution Actions

Figure 2-11 Result Source Example 1

Result
Categories

Device Discrepancy

Detection Action
Device #*| Result Source:
« Action: Discovery Action 1

Discovery + Result Category: Device
Action 1

"

h

VPN Discrepancy
Detection Action
Result Saurca:
* Action: Discovery Action 1
. Result Category: VPN

VPN

v

A criterion that does not specify any result category matches all result categories generated by
the scan action in the criterion.

Figure 2-12 shows a representation of the discrepancy types.

Figure 2-12 Result Category Example

Result
Categories
) Discrepancy
- Device Detection Action
D'S?DVEW p p| Result Source:
Action 1 = Action: Discovery Action 1
+ Result Category: None
VPN
'-.___.-"..___‘H

The result source is a mandatory field; there must be at least one entry in the table. Design
Studio marks a discrepancy resolution action with an error during a project build if this table
has no entries.

@® Note

No two discrepancy resolution actions can have the same label and the same result
source.

Generated Action and MDB Controller

The discrepancy resolution action is implemented as an MDB, just like any other Network
Integrity action.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 25 of 26

ORACLE Chapter 2
About Discrepancy Resolution Actions

See "About the Generated Action MDB and Controller” for more information.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 26 of 26

Working with Processors

This chapter provides information about Oracle Communications Network Integrity processors.
This chapter contains the following sections:

This chapter contains the following sections:

About Processors

 Implementing a Processor

 Implementing an Import Processor

 Implementing a Discovery Processor

* Implementing the SNMP Processor

 Implementing an Assimilation Processor

« About Discrepancy Detection Processors

e About Discrepancy Resolution Processors

About Processors

In Network Integrity, processor entities are the building-blocks for actions, as they implement
atomic sub-functions for actions.

For example, an SNMP processor is included in an action to poll network devices; a modeler
processor is included in an action to model raw SNMP data from a network device and add it to
a database. Combined, these two processors comprise a discovery action that polls SNMP-
enabled network devices and persists the modeled SNMP data.

By adding multiple processors to an action, the action performs several complex function by
running the processors according to the sequence in which they were added to the action.

Processors are of different types:

* Import processor: Part of an import action.
- Discovery processor: Part of a discovery action that can discover anything.

* SNMP processor: Part of a discovery action that is prebuilt to discover only SNMP-
enabled devices.

* Assimilation processor: Part of an assimilation action.

* File transfer processor: Used to retrieve files from local or remote directories. For more
information, see "Overview" in Network Integrity File Transfer and Parsing Guide.

* File parsing processor: Used to parse data retrieved by the File Transfer processor so
that the data is available to other processors. For more information, see "Overview" in
Network Integrity File Transfer and Parsing Guide.

- Discrepancy detection processor: Part of a discrepancy detection processor action.

» Discrepancy resolution processor: Part of a discrepancy resolution action.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 26

ORACLE

Chapter 3
About Processors

* Yet Another Next Generation (YANG) processor: Part of a discovery action that is pre-
built to discover only YANG-enabled devices. This processor forms appropriate the
Network Configuration (NETCONF) or Representational State Transfer Configuration
(RESTCONF) protocol request based on selected nodes from the YANG models.

Unlike actions, processors are not visible in Network Integrity.

About Context Parameters

Configure input and output parameters for processors.
Input and output parameters are optional for a processor.

After adding input and output parameters for the processor, Oracle Communications Service
Catalog and Design - Design Studio generates the request and response Java classes based
on the input and output parameters.

Specifying Context Parameters before Creating Implementation Class

When creating a processor, it is a good practice to properly configure the context parameters
before saving the processor. This way Design Studio properly generates the skeleton
implementation Java class for the processor with the correct input and output parameters. If
the input and output context parameters are modified later, the generated Interface changes,
but Design Studio does not automatically update the implementation class. The user must
manually update the implementation class to comply with the changed interface.

About Properties and Property Groups

Developer's Guide

G34175-01

A property group is a logical container configured on a processor. A property group can be
added to multiple processors. Property group names must be unique within a processor.

Properties are added to property groups and are assigned property values to pass to the
processor.

Property groups do not inherently pass any values to the processor other than the values
belonging to its properties.

Property groups and properties are configured on processors on the Properties tab of the
Processor editor.

Property groups can be configured as Managed groups, where the values for the properties it
contains can be set at run time using the MBean interface. See "Network Integrity System
Administration Overview" in Network Integrity System Administrator's Guide for more
information. Only managed groups can contain sensitive properties.

Property groups can be configured as Map groups, where the property group produces a
simplified API for properties that are used as maps.

Design Studio generates a Java class for the property group so that you can extend a cartridge
to access the property values it contains using getter and setter methods.

A property consists of a name-value pair that is passed to the processor through the property
group. Property names must be unique within the property group.

The property value can be set in the following ways:

e At design time, by setting the property with a static value.

e At deployment time, by setting the property with a cartridge model variable.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 26

ORACLE Chapter 3
About Processors

e Atrun time, using the MBean interface, by configuring its property group as a managed
group.

You can configure properties as sensitive. To be configured as sensitive, the properties must
be contained in managed property groups and their values must be encrypted. See "Network
Integrity System Administration Overview" in Network Integrity System Administrator's Guide
for information about how to encrypt property values.

You can set the encrypted value of a sensitive property with a model variable at deployment
time, or you can set it at run time using the MBean interface.

For more information about setting sensitive properties, see Design Studio Modeling Network
Integrity.

For more information on adding property groups to a processor, adding properties to a property
group, and setting cartridge model variables, see Design Studio Modeling Network Integrity.

About Generated Code

This section describes code generation for processors in Network Integrity:

e About the Location for Generated Code

* About the Processor Interface

* About the PropertyGroup and Properties Classes

About the Location for Generated Code

Design Studio code-generates the relevant Java classes for the processor. The generated
code is located at:

Studio_Workspace\NI_Project_Root\generated\src\Project Default Package\Processor_Type
\Processor_Implementation_Prefix

where:
e Studio_Workspace is the Eclipse Workspace root
e NI_Project_Root is the Network Integrity project root
* Project_Default_Package is the default package configured in the Project editor
e Processor_Type is run time following action types:
— discoveryprocessors
— importprocessors
— assimilationprocessors
— detectionprocessors
— resolutionprocessors

e Processor_Implementation_Prefix is the action implementation prefix in lowercase.

About the Processor Interface

Every processor has a generated interface. The generated processor interface class is named
Processor_NameProcessorinterface.java.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 26

ORACLE

Chapter 3
About Processors

In general, the generated processor interface has the invoke method defined. The interface
has two forms of invoke methods, depending on whether there is an output parameter defined
for the processor.

/1 Signature for processor which does not have output paraneters
public void invoke(<Processor_Specific_Context> context,
Exanpl eProcessor Request request) throws ProcessorException {
/] TODO Aut o- generated method stub

/1 Signature for processor which has output paraneters
public Exanpl eProcessor Response i nvoke(<Processor_Speci fic_Context > context,
Exanpl eProcessor Request request) throws ProcessorException {
/] TODO Aut o- generated method stub
return null;

The generated processor interface has a slightly different signature, depending on the type of
processor: for example, Processor_Specific_Context differs between processor types. See
individual chapters on specific processors for more information.

About the PropertyGroup and Properties Classes

Developer's Guide

G34175-01

A properties class is always code-generated for the processor, whether the processor has
property groups and properties configured or not. The properties class is used as an input
parameter for the constructor of the generated request class.

The generated properties class is named Processor_NameProcessorProperties.java.

The generated properties class has a public method, String[] getValidProperties(). This
method returns a string array that contains a list of valid property group names configured for
this processor. If the processor has no property groups configured, this method returns an
empty array.

If the processor has property groups and properties configured, for each property group a
PropertyGroup class is code-generated.

The generated PropertyGroup class is named PropertyGroup_NamePropertyGroup.java.

The generated PropertyGroup class represents the configured property group and all of its
properties. The generated properties class has the getter methods to get each PropertyGroup
directly, and has all the setter methods to modify the property values.

The generated PropertyGroup class has a public method, String[] getValidProperties(). This
method returns a string array that contains a list of valid properties names configured for this
property group. If the property group has no property configured, this method returns an empty
array.

If the property group is not configured as a Map group, the generated PropertyGroup class
provides getter methods for all the properties configured in this property group.

If the property group is configured as a Map group, the generated PropertyGroup class does
not provide getter methods for all the properties configured in this property group. Instead, the
API for the property group resembles a Java Map, where the property values are retrieved and
set using the property name passed as a value.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 26

ORACLE Chapter 3
Implementing a Processor

Implementing a Processor

Implementing a processor is done in the Processor editor Details tab. See Design Studio
Modeling Network Integrity for specific configuration details.

You can click the Implementation Class link to open the Java editor for this implementation
Java class. Design Studio auto-generates the skeleton Java implementation class, which
implements the processor interface with an empty implementation method.

You must decide whether to complete implementing the method. If you modify the processor
(for example, by adding output parameters or removing parameters), the implementation class
displays a compiling error. This is expected because the skeleton implementation class is
regenerated. You must modify the implementation class to match the changed processor
interface.

When you delete a processor, you must manually delete the implementation class of the
processor. Design Studio does not automatically delete an implementation class when you
delete a processor.

For information about how to implement a processor, see the individual processor section.

About the Processor Finalizer

When a processor deals with resources (for example, sockets and files), it is necessary to
clean up the resources used or created while the processor runs. Using a finalizer on the
processor ensures that the used or created resources get cleaned up, whether the action fails
or is successful. When implemented, the finalizer cleans up the resources used or created by
the processor. It is not mandatory to implement the finalizer if the processor does not deal with
a resource, or if the resource is used only within the processor (in which case the processor
implementation should make sure the local resource is closed properly). The processor must
implement the finalizer if the processor allocates a resource that is to be output for use by
other processors.

Finalizers that are not inside a For Each loop are called by the action controller class (code-
generated) before it completes. Finalizers that are inside a For Each loop are called by the
action controller class at the end of the For Each loop. In all cases, finalizers are called in the
reverse order to which they are registered (finalizers registered first are called last; finalizers
registered last are called first).

About the ProcessorFinalizer Interface

The processor implementation class must implement the interface
oracle.communications.sce.integrity.sdk.processor.ProcessorFinalizer to have the action
controller clean up the resources that are used or created by the processor. If a processor
does not use or create a resource, it does not implement the ProcessorFinalizer interface.

The processor defines only one method:

public void cl ose(bool ean failed);

The processor that implements the ProcessorFinalizer interface must implement this method to
close all the resources used or created during the execution of this processor. This method
takes an input parameter as Boolean. If there is an exception during the execution of the
processors, the action controller calls the finalizer by passing True to this method; otherwise
the action controller calls the finalizer by passing False to the method, in the successful case.
The processor might implement the close logic differently for both successful and failed

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 26

ORACLE

Chapter 3
Implementing an Import Processor

scenarios: for example, if it is a failed scenario, the close method might log an error message
before closing the resources.

The following code shows how to implement the ProcessorFinalizer for a sample processor:

public class Sanpl eProcessor|npl inplements Sanpl eProcessorlnterface, ProcessorFinalizer
{
public Sanpl eProcessor Response i nvoke(Sanpl eProcessor Request request)
throws ProcessorException {
/'l 1nplement the Processor here...

}

public void close(bool ean failed) {
if(failed) {
/1 something is failed, log extra error nessage here.
}

/'l close the InputStream here.
try {
myl nput St ream cl ose()
} catch(l OException ioe) {
/1 1og the | OException here...
}

}

About Memory Considerations

The action controller class calls the finalizers for both successful and failed scenarios. The
finalizers that are not inside a For Each loop do not begin until the end of the action. The
finalizers that are inside a For Each loop do not begin until the end of the loop. When a
processor that implements the ProcessorFinalizer completes the execution, it is still in the
scope of the action. The processor does not get purged by the garbage collector to release the
memory.

If a processor implements the ProcessorFinalizer, it is a good practice to limit the number of
member variables for that processor and ensure that the processor is not using a large amount
of memory. If the processor uses a lot of memory, it is a good practice to release the memory
as soon as it is no longer required. For example, if a processor is using a large HashMap, and
it also implements the ProcessorFinalizer, the processor should clear the contents of the
HashMap when it is done using it and assign the null pointer to this HashMap.

Implementing an Import Processor

Developer's Guide
G34175-01

Many deployment artifacts for the import action and its processors are generated automatically
while editing. However, you must supply implementations for the import processors using the
invoke method.

Two forms of this method are shown in the following code fragments:

/1 Signature for processor which does not have output paraneters
public void invoke(Di scoveryProcessor Cont ext context,
Exanpl eProcessor Request request) throws ProcessorException {
/1 TODO Aut o-generated method stub

}

/1 Signature for processor which has output paraneters
publ i ¢ Exanpl eProcessor Response i nvoke(Di scoveryProcessor Cont ext context,
Exanpl eProcessor Request request) throws ProcessorException {
/] TODO Aut o-generated method stub

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 26

ORACLE

}

Chapter 3
Implementing a Discovery Processor

return null;

The parameters and return type of the invoke method are:

e Processor_NameProcessorResponse: This is the return type, for processors that have
output parameters. For processors that do not have output parameters, the return type is
void. This class is generated by Design Studio. It is a value object containing values for
each of the processor's output parameters. For processors that have output parameters,
the invoke method must create a ProcessorResponse object, set its values and return the
ProcessorResponse object.

e Processor_NameProcessorRequest: This is a value object that has the following getters:

If scan parameter groups are specified for the import action, there is a getter that
returns a scan parameter groups value object.

If properties are defined for the import processor, there is a getter that returns a
Processor_NameProcessorProperties value object.

There is a getter for each input parameter that is defined for the processor.

There is a getter method called getScopeAddress. This method is not useful for
import processor implementation. Instead, the inventory system address and
authentication information should be retrieved using the POMS API.

See "Working with the POMS SDK" for more information.

This class is generated by Design Studio.

« DiscoveryProcessorContext context: This is an SDK type that has the following methods:

getActionName: Returns the name of the action that the processor is running under.
getProcessorName: Returns the name of the processor.

persistResults: Causes POMS objects to be flushed to the database. This helps to
reduce memory consumption. See "About Persist Results" for more information.

addToResult: Adds a graph of POMS objects to the database under a result group.
This method takes three parameters:

* String resultGroupName: this is the name of a result group under which the results
are persisted.

* String resultGroupType: this is the type of the result group under which the results
are persisted. This should match a category defined on the action.

* DiscrepancyEnabled result: this is the root of result object graph to be persisted.

getResultGroup: Used to get an existing result group from your current scan if you
must access the graph of POMS objects previously added to a result group. This
method takes two parameters:

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of result group under which the results are
persisted. This should match a category defined on the action.

Implementing a Discovery Processor

Configuration of the discovery action and its discovery processors results in the generation of
many deployment artifacts. However, you must supply implementations for the discovery
processors.

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 26

ORACLE

Developer's Guide

G34175-01

Chapter 3
Implementing a Discovery Processor

The implementation needs to implement the invoke method. Two forms of this method are
shown:

/1 Signature for processor which does not have output paraneters
public void invoke(Di scoveryProcessor Cont ext context,
Exanpl eProcessor Request request) throws ProcessorException

{
/] TODO Aut o- generated method stub

}

/1 Signature for processor which has output paraneters
publ i ¢ Exanpl eProcessor Response i nvoke(Di scoveryProcessor Cont ext context,
Exanpl eProcessor Request request) throws ProcessorException

{
/] TODO Aut o- generated method stub

return null;

}

The parameters and return type of the invoke method are:

e Processor_NameProcessorResponse: This is the return type, for processors that have
output parameters. For processors that do not have output parameters, the return type is
void. This class is generated by Design Studio. It is a value object containing values for
each of the processor's output parameters. For processors that have output parameters,
the invoke method must create a ProcessorResponse object, set it values and return the
ProcessorResponse object.

* Processor_NameProcessorRequest: This is a value object that has the following getters:

— If scan parameter groups are specified for the discovery action, there is a getter that
returns a scan parameter groups value object.

— If properties have been defined for the discovery processor, there is a getter that
returns a Processor_NameProcessorProperties value object.

— There is a getter method for each input parameter that is defined for the processor.

— There is a getter method named getScopeAddress(). This method returns the scope
address configured for this discovery action.

This class is generated by Design Studio.

* DiscoveryProcessorContext context: This is an SDK type, which has the following
methods:

— getActionName: Returns the name of the action that the processor is running under.
— getProcessorName: Returns the name of the processor.

— persistResults: Causes POMS objects to be flushed to the database. This helps to
reduce memory consumption. See "About Persist Results" for more information.

— addToResult: Adds a graph of POMS objects to the database under a result group.
This method takes three parameters:

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of the result group under which the results
are persisted. This should match a category defined on the action.

* DiscrepancyEnabled result: This is the root of result object graph to be persisted.

— getResultGroup: Used to get an existing result group from your current scan if you
must access the graph of POMS objects previously added to a result group. This
method takes two parameters:

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 8 of 26

ORACLE Chapter 3
Implementing the SNMP Processor

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of result group under which the results are
persisted. This should match a category defined on the action.

Implementation Code Example

The following Java code snippet demonstrates how to implement the invoke method for a
discovery processor, and how to add results to the result group using the addToResult()
method.

publ i ¢ Sanpl eProcessor Response i nvoke(
Di scover yProcessor Cont ext cont ext,
Sanpl eProcessor Request request) throws ProcessorException {
Sanpl eProcessor Response nodel er Response = new Sanpl eProcessor Response() ;
Sanpl eDevi ce devi ce;

/] Get the input Sanple Response Document from the Request.
/1 This input response document nodels the sanple device.
Sanpl eResponseType response = request. get Sanpl eResponseDocunent () ;

try {
/'l Make the Sanple Device

devi ce = makeSanpl eDevi ce(response);

/1 Add the device to the result group "Device", which matches
/1 the result category configured in the Discovery Action.
cont ext . addToResul t (devi ce. get Nane(), "Device", device);

model er Response. set Sanpl eDevi ce(devi ce);

} catch (Exception e) {
/1 Handl e exception here...

}

return nmodel er Response;

}

Implementing the SNMP Processor

There is no coding required for the SNMP processor. The Processor Interface, Request/
Response, Properties, and the relevant helper classes of an SNMP processor are all code -
generated and fully implemented.

The only configuration required for the SNMP processor is to configure the list of polled object
IDs (OIDs). Before configuring the OIDs for the SNMP processor, the MIB directory must be
properly specified for the Network Integrity preference. If the MIB directory is not properly
specified in the preference, you cannot configure the SNMP processor.

See Design Studio Modeling Network Integrity for more information about configuring SNMP
processors.

About the Generated Implementation and XML Beans

The SNMP processor is a completely code-generated discovery processor. Along with the
usual discovery processor implementations (see "Implementing a Discovery Processor"),
Design Studio also generates the strongly-typed SNMP XML response document schema
based on the OIDs configured for the SNMP processor.

The generated SNMP XML response document schemas are available at the following
directory:

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 9 of 26

ORACLE

Chapter 3
Implementing an Assimilation Processor

Project_Root\generated\SNMP_Processor_Name_snmpdiscoveryprocessor.
Under this directory, the following sub-directories exist:

e lib: Contains the compiled XML Beans JAR file for the strongly-typed SNMP XML response
document schemas

* snmpClasses: Contains the XML Beans Java classes for the strongly-typed SNMP XML
response document schemas

* snmpSchemas: Contains the generated strongly-typed SNMP XML response document
schemas

* xmlSrc: Contains the compiled XML Beans Java source for the generated strongly-typed
SNMP XML response document schemas.

It is recommended to first look at the schemas generated in this directory to understand how to
access the compiled XML Beans object for the SNMP response document.

The remaining implementations for the SNMP processor are at the following directory:

Studio_Workspace\N|_Project_Root\generated\src\Project Default Package\snmpdiscoveryp
rocessors\SNMP_Processor_Implementation_Prefix

The SNMP processor always has an output parameter, which is the SNMP XML response
document (XML Beans object). This is available in the Response class for the SNMP
processor.

Supporting New MIBs

When the productized Network Integrity cartridges are imported into Design Studio (see
"Exporting and Importing Cartridges"), Network Integrity cartridges are bundled with a set of
MIB files, which is the same set of MIB files bundled with the SNMP Resource Adapter (see
"Working with JCA Resource Adapters").

If you must create a Network Integrity cartridge to poll certain MIB OIDs for certain specific
devices, which are not part of the bundled MIB files, you must get the MIB file (or set of MIB
files) that has the definitions of those MIB OIDs required to implement the new cartridge.

The new MIB files must be manually copied to the MIB directory configured in the Design
Studio preference (see Design Studio Modeling Network Integrity). After the new MIB files are
copied to the MIB directory, the new MIB files are available to be loaded in Design Studio.
There is no need to restart Design Studio.

@® Note

The MIB files in Design Studio and on the SNMP resource adapter must match. See
"Working with JCA Resource Adapters" for information about supporting new MIBs for
the SNMP resource adapter.

Implementing an Assimilation Processor

Developer's Guide
G34175-01

Many deployment artifacts for the assimilation action and its processors are generated
automatically while editing. However, you must supply implementations for the assimilation
processors using the invoke method.

Two forms of this method are shown in the following code fragments:

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 10 of 26

ORACLE

Developer's Guide

G34175-01

Chapter 3
Implementing an Assimilation Processor

/1 Signature for processor which does not have output paraneters
public void invoke(AssimlationProcessorContext context,
Exanpl eProcessor Request request) throws ProcessorException {
/1 TODO Aut o-generated method stub

}

/1 Signature for processor which has output paraneters
publ i ¢ Exanpl eProcessor Response i nvoke(Assi m | ati onProcessor Cont ext context,
Exanpl eProcessor Request request) throws ProcessorException {
/1 TODO Aut o-generated method stub
return null;

}

The parameters and return type of the invoke method are:

e Processor_NameProcessorResponse: This is the return type, for processors that have
output parameters. For processors that do not have output parameters, the return type is
void. This class is generated by Design Studio. It is a value object containing values for
each of the processor's output parameters. For processors that have output parameters,
the invoke method must create a ProcessorResponse object, set its values and return the
ProcessorResponse object.

e Processor_NameProcessorRequest: This is a value object, which has the following
getters:

— If scan parameter groups are specified for the assimilation action, there is a getter that
returns a scan parameter groups value object.

— If properties are defined for the assimilation processor, there is a getter that returns a
Processor_NameProcessorProperties value object.

— There is a getter for each input parameter that is defined for the processor.
This class is generated by Design Studio.

e AssimilationProcessorContext context: this is an SDK type, which has the following
methods:

— getActionName: Returns the name of the action under which the processor is
running.

— getProcessorName: Returns the name of the processor

— persistResults: Causes POMS obijects to be flushed to the database. This helps to
reduce memory consumption. See "About Persist Results" for more information.

— addToResult: Adds a graph of POMS objects to the database under a result group.
This method takes three parameters:

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of the result group under which the results
are persisted. This should match a category defined on the action.

* DiscrepancyEnabled result: This is the root of result object graph to be persisted.

— getLatestReultGroupsinScope: Returns an IteratorDisResultGroup, which is the
latest results in scope. This is essentially the discovery or assimilation scan inputs to
the assimilation action.

— getLatestScanRunsinScope: Returns an IteratorDisScanRun, which is the latest
scan runs in scope.

This is also essentially the discovery or assimilation scan inputs to the assimilation
action but includes several other objects from the Network Integrity model.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 11 of 26

ORACLE Chapter 3
Implementing a YANG Processor

These additional Network Integrity model objects might be useful in performing out
assimilation processing in some cases.

— getPreviousAssimilationScanRun: Returns the latest completed scan run for the
current assimilation scan. Use this to look at previous results, comparing current scope
with previous scope.

— haveAllLatestScansinScopeChanged: Returns true if any of the following conditions
are met; false otherwise:

* This is the first scan run for the assimilation scan.

* The latest scan run of every scan that is in the scope of both the previous
assimilation run and the current assimilation run is more recent than the previous
assimilation run.

— havelLatestScaninScopeChanged: Returns true if any of the following conditions are
met; false otherwise:

* This is the first scan run for the assimilation scan.
* At least one scan run in scope is more recent than latest assimilation scan run.

* The scope of the assimilation scan has changed between this run and the previous
run.

This function avoids unnecessary assimilation processing.

— getResultGroup: Used to get an existing result group from your current scan if you
need to access the graph of POMS objects previously added to a result group. This
method takes two parameters:

* String resultGroupName: This is the name of a result group under which the
results are persisted.

* String resultGroupType: This is the type of result group under which the results are
persisted. This should match a category defined on the action.

Implementing a YANG Processor

There is no coding required for the YANG processor. The processor interface, request and
response, properties, and the implementation for a YANG processor are code-generated and
fully implemented. The helper classes and data structures are part of the Network Integrity
Software Development Kit (SDK). No code implementation is required for this processor.

The only configuration required for the YANG processor is the list of YANG paths. Before you
configure the paths for the YANG processor, you must specify the YANG directory in the
Network Integrity preferences within Design Studio. If the YANG directory is not correctly
specified, you cannot configure the YANG processor.

The output generated from the YANG processor is a request. You can use this request in the
next processor to make NETCONF/RESTCONF calls.

See Design Studio Modeling Network Integrity for more information about configuring YANG
processors.

About the Generated Implementation

The YANG processor is a completely code-generated discovery processor. It forms the
appropriate RESTCONF or NETCONF request based on the selected nodes from YANG
models.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 12 of 26

ORACLE Chapter 3
About Discrepancy Detection Processors

The details of the YANG processor implementation is as follows:

1. The YANG processor receives a property from Network Integrity. This property contains all
the YANG Paths selected on the processor, and the type of protocol selected.

2. Based on the protocaol, it calls the YangRequestHelper class (part of the Network Integrity
SDK) to form the appropriate request.

e For NETCONF protocol, it forms a single RPC XML request for all the different YANG
models and paths.

e For RESTCONF protocol, it forms a list of HTTP/HTTPS URL (based on the
RESTCONF scan parameter: SSL enabled). It will form one URL for each YANG
parent container node, such as the YANG node present in top level hierarchy of a
YANG model. Example: interfaces-state present in ietf-interfaces yang.

3. The output of this processor is a YangProcessorResponseType object. It contains:
e String protocolType: This object contains selected protocol information.

e String netconfRequest: This object contains RPC XML request if case if protocol is
NETCONF

e Map<Container, String> resultMap: This object contains the formed RESTCONF URL
against each Container. In the case of NETCONF, it contains the container
information and RPC XML (same as netconfRequest for all containers).

— The Container data structure has:
String parentContainer: YANG node present in top level hierarchy of a YANG
model.

List<String> filters: List of paths selected inside that parent container.

4. The output of the YANG processor is used by next Discovery processor to make query and
obtain response. Further, the response can be used for modeling devices.

About YANG Files

YANG files for a device usually come as a set. After you set the YANG path in the Network
Integrity preference, you open or reopen the YANG processor to refresh the loaded YANG files.
If you add new YANG files to the folder, you can use the Load YANG button to load these files.
You add new YANG files as part of the design process.

To add new YANG files, you place the file in the folder, select the paths you want to query, and
then build and deploy the cartridge. No extra configuration is required in Network Integrity.

About Discrepancy Detection Processors

The discrepancy detection processor is the atomic sub-function of a discrepancy detection
action. The typical tasks of a detection processor are different than the scan-related processors
(discovery, import, and assimilation) and include the following:

* Create and add filters to alter the default behavior of the base discrepancy detection
action.

« Perform post-processing on the set of discrepancies produced by the base discrepancy
detection action.

See "Discrepancy Detection Processor Patterns" for more information about the various
patterns for detection action-processor implementation.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 13 of 26

ORACLE Chapter 3
About Discrepancy Detection Processors

Discrepancy Detection Processor Patterns

There are several patterns of processor used inside a discrepancy detection action. Each
successive pattern introduces a new level of flexibility, power, and complexity. The patterns are
listed below, in order from the simplest to the most complex:

1. Reusing the base detect discrepancy action.
2. Adding new filters and handlers.

3. Adding post-processors.

Reusing the Base Detect Discrepancy Action

This usage pattern provides a baseline comparison algorithm between the compare and the
reference sides. A discrepancy detection action using this pattern has the ability to compare
exact entity attributes and associations, and can generate five of the seven types of
discrepancy. (Ordering Errors and Association Ordering Errors are not detected by the baseline
comparison algorithm, because it assumes that there are no ordered relationships.)

To use this pattern, use following steps:

1. Create a discrepancy detection action.

2. Add the Detect Discrepancies action as a processor. The Detect Discrepancies action
belongs to the NetworkintegritySDK project, which all Network Integrity cartridge project
are dependent on by default.

3. Set the result source.

See Design Studio Modeling Network Integrity for information about the tasks above.

About the Base Detection Project and the Default Comparison Algorithm

The Base Detection project contains a reusable discrepancy detection action called Detect
Discrepancies. This discrepancy detection action is abstract and cannot be deployed by itself.
It is intended to be imported by virtually all other discrepancy detection actions. The Detect
Discrepancies action implements a general comparison algorithm that can work with all entity
types and specifications, and can detect and report all seven types of discrepancy.

This ability enables a cartridge developer to build a working discrepancy detection cartridge for
arbitrary discovered data without writing code. Its behavior is customizable, by using the
techniques described in the following processor patterns.

The default comparison algorithm is outlined below.

1. The detector loops over the compare root entities.

2. The detector checks if each compare root entity should be considered for discrepancy
detection. If it should not, the root entity is ignored, and the detector begins processing the
next compare.

3. ArootEntityHandler finds the matching reference root entity for the compare root entity.
The default rootEntityLoader uses the Name field to find the matching reference root
entity. If no reference root entity is found, an EXTRA_ENTITY discrepancy is generated.

4. The attributes of the matching entities are compared, and an
ATTRIBUTE_VALUE_MISMATCH discrepancy is generated for each attribute with different
values. If an attribute contains an ordered list of values, an ORDERING_ERROR
discrepancy is generated if the order of the values does not match.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 14 of 26

ORACLE

Chapter 3
About Discrepancy Detection Processors

The associations of the matching entities are compared, and an EXTRA_ASSOCIATION or
MISSING_ASSOCIATION discrepancy is generated for unmatched target entities of an
association. The default relationship handler uses the Name field to match related entities
of the compare and reference sides. If an association is an ordered association, an
ASSOCIATION_ORDERING_ERROR discrepancy is generated if the order of the
matching associated entities is different.

The child relationship of the matching entities is compared, and an EXTRA_ENTITY or
MISSING_ENTITY discrepancy is generated for unmatched child entities. The default
relationship handler uses the Name field to match child entities of the compare and
reference sides. If a child relationship is an ordered association, then an
ORDERING_ERROR discrepancy is generated if the order of the matching child entities is
different.

The comparison continues by applying the above algorithm to all children entities
recursively, until all entities have been checked. The comparison also stops at a given
entity if one of the following is true: the entity is a compare root entity, or the entity is
flagged as a shadow entity.

The Detect Discrepancy action creates discrepancies with a default severity of CRITICAL for
EXTRA_ENTITY and MISSING_ENTITY, and WARNING for the other types.

Adding New Filters and Handlers

This usage pattern builds on the Reuse pattern by adding filters and handlers to customize the
general comparison algorithm. The following changes can be achieved:

Which root discovery entities are of interest.

How to match discovery entities to import entities.

Which attributes are not significant for a particular entity type.

How to compare a particular attribute.

Which relationships to consider for a particular entity type.

What severity to apply to a discrepancy.

Define a relationship as ordered (to automatically add ORDERING checks).

Set a default/suggested resolution action (such as Ignore or Correct in UIM).

To use this pattern, follow the Reuse pattern to create your detection action, and then create
one new detection processor, and move it above the discrepancy detector processor in the
table. This new processor becomes the filter initializer processor for the detection action. (For
example, in Figure 3-1, a new action follows this pattern by having its own Sample Filter
Initializer processor placed above the imported discrepancy detector processor.)

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 15 of 26

ORACLE Chapter 3
About Discrepancy Detection Processors

Figure 3-1 Sample Filter Initializer

08 “r0D
¥ Discrepancy Detection Action : myDD
Descimpiteain gD

Action Frocessors

This section thows Processons related to this Action

Mame Prrvnder Condrsonal Irmpedted Actsn Dot Actsdn
ik Sample Filter Initializer Metwork Integeity Cartridge..
i Dacrepancy Detector Orache Communications I8 Detece Drscrepansies I Detect Dricrepansies
Move Down Select.. Open Remiowe Add For Each... Add.

¥ Condition

Detmbs Feogedsors Medel Retult Source | Condisond | Realuatson

The main task of a filter initializer Processor is to register filters and handlers for use by the
subsequent discrepancy detector processor. Handlers are code that implements various
behaviors used during discrepancy detection. Filters are code that manipulates the handlers to
be used by discrepancy detection.

About Filters

There are four different types of filters that can be added by the processor:

- AttributeFilter: This filter is called during the assignment of attribute handlers for the given
entity type. This filter can add, modify and remove handlers from the given
attributeHandlers.

< RelationshipFilter: This filter is called during the assignment of relationship handlers for a
given entity type. This filter can add, modify and remove handlers from the given
relationshipHandlers.

- DiscrepancyfFilter: This filter is called during assignment of discrepancy handlers for a
given entity type. This filter can modify or remove the default discrepancyHandler.

* RootEntityFilter: This filter is called during the assignment of the root entity handler for a
given entity type. This filter can replace the default rootEntityHandler with another one.

About Handlers

There are four types of handlers that can be manipulated by their associated filters:

« AttributeHandler: This handler can change the mapping of attributes, or change the
behavior of the comparison operation. For example, a string comparison is normally case-
sensitive. An attributeHandler can be added to cause a case-insensitive comparison to be
used instead.

Network Integrity provides a DefaultAttributeHandler class which implements the
necessary AttributeHandler interface and the default case-sensitive string comparison
behavior. To override this behavior, create a class which subclasses
DefaultAttributeHandler, and then override the following method:

protected bool ean equal sNonNul | (Qbj ect al, Cbject a2);

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 16 of 26

ORACLE

Chapter 3
About Discrepancy Detection Processors

« RelationshipHandler: This handler can change the mapping of relationships. For
example, a relationship comparison would normally check the identically-named
relationship on the reference entity. A relationshipHandler can be added which causes a
differently-named relationship to be used instead.

Network Integrity provides a DefaultRelationshipHandler class that implements the
necessary RelationshipHandler interface, and has knowledge of all relationships for each
supported Oracle Communications Information Model entity type. The following method
can be overridden by a new subclass to alter the default behavior.

protected bject getKey(DiscrepancyEnabled entity)

This method gets a key value that distinguishes a single entity from a set of entities within
a single relationship. The DefaultRelationshipHandler implementation returns the value
of the Name attribute for the input entity.

- DiscrepancyHandler: This handler can change the fields of a discrepancy immediately
after it is generated. It can also completely remove the discrepancy. An example of its use
is to adjust the severity value of a discrepancy of a Devicelnterface entity based on its
Speed value.

Network Integrity provides a non-accessible default DiscrepancyHandler implementation
which does nothing. To override this behavior, create a class which implements the
DefaultHandler interface, and implement the following method.

Di sDi screpancy processDi screpancy(Di screpancyEnabl ed currentEntity,
Di sDi screpancy generat edDi screpancy)

The overridden method should alter the input generatedDiscrepancy, and then return it.

* RootEntityHandler: This handler changes the algorithm for finding a matching reference
entity for an input compare entity. An example of its use is to change the default
comparison criteria to using the ID field to find the match, instead of the default of using
Name field.

See "Using Root Entity Filter and Handler" for a full example of the proper setup and usage
of a root entity handler.

Filters and CimType

Developer's Guide

G34175-01

Filters register against one or more types of Information Model entities produced by a
Discovery, Import, or Assimilation scan. Filters can also register against one of more
specifications of an entity type, for more fine-grained control.

In Java code, the entity type and specification are designated by using the class CimType. To
register a filter against an entity type (for example, Equipment), use the single parameter
constructor for CimType:

G niType eqType = new C nType(Equi prent . cl ass);

To register a filter against a particular specification (for example, cevSensorClock, an
Equipment specification defined in the Cisco UIM cartridge), use the two-parameter constructor
for CimType:

Ci nifype cl ockEqType = new Ci nilype(Equi pnent. cl ass, "cevSensord ock");

It is possible to take advantage of the inheritance model of the Information Model entity classes
to register quickly against several classes with one call. For example, all Information Model
entities that support discrepancy detection inherit from the class DiscrepancyEnabled.
Therefore, the following code CimType can register a filter against everything:

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 17 of 26

ORACLE Chapter 3
About Discrepancy Detection Processors

Ci nifype al | Type = new C nilype(Di screpancyEnabl ed. cl ass);

Filter and Handler Examples

The following examples demonstrate the types of filters and handlers. The prerequisite tasks
for all examples are to:

Create a discrepancy detection action.
Set the result source.
Add the detect discrepancy action as a processor.

Create a filter initializer processor.

a » 0 b PR

Move the new processor above the discrepancy detector processor.

Using Attribute Filter and Handler (Static Attribute)

The following code fragments shows how to add an attribute filter to ignore the static attribute
description on LogicalDevices. The result of this code is that the new detection action does
not generate any description Attribute Value Change discrepancies on LogicalDevices.

1. Define the filter class and remove the handler for the attribute description.

private class Logical DeviceAttributeFilter inplements AttributeFilter {
public void filterAttributes(C nlype cinlype, Map<String, AttributeHandl er>
attributeHandl ers) {
attributeHandl ers. renove(“description");

}
}

2. Inthe processor invoke method, get the generic discrepancy detector from the context.
CGenericDi screpancyDet ector detector = context.getDi screpancyDetector();

3. Inthe invoke method, create the CIMType object to name the entity type, and add the
custom filter.

G nifype | dType = new G nType(Logi cal Devi ce. cl ass);
detector.addFil ter(ldType, new Logical Devi ceAttributeFilter());

Using Attribute Filter and Handler (Characteristic)

The following code fragments show how to add an attribute filter to ignore the characteristic
systemObjectld on LogicalDevice entities with the specification DemoLogicalDevice. The
main difference between this example and the previous example is step 3, where the
specification name must be included in the CimType constructor.

1. Define the filter class and remove the handler for the attribute systemObijectid.

private class DenmolLogical DeviceAttributeFilter inplenents AttributeFilter {
public void filterAttributes(
G nifype ci niype,
Map<String, AttributeHandl er> attributeHandl ers) {
attributeHandl ers. renove(“systembjectld");

}
2. Inthe processor invoke method, get the generic discrepancy detector from the context.
Generi cDi screpancyDet ector detector = context.getD screpancyDetector();

3. Inthe invoke method, create the CIMType object to name the entity type and the
specification, and add the custom filter.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 18 of 26

ORACLE

Developer's Guide

G34175-01

Chapter 3
About Discrepancy Detection Processors

G nifype | dType = new G mType(Logi cal Devi ce. cl ass, "DenplLogi cal Device");
detector.addFil ter(ldType, new DenolLogical DeviceAttributeFilter());

Using Relationship Filter and Handler

In this example, the discrepancy detection action skips the physicalPorts relationship of all
Equipment entities. By using the following code fragment, the new detection action no longer
examines any children ports of equipment.

1. Define the filter class and remove the relationship handler for the relationship
physicalPorts.

private class Equi pment Rel ati onshipFilter inplenments RelationshipFilter {
public void filterRelationships(
G niType ci nType,
Map<String, Rel ationshipHandl er> rel ationshi pHandl ers) {
rel ationshi pHandl ers. renove(" physi cal Ports");

}
2. Inthe processor invoke method, get the generic discrepancy detector from the context.

CGenericDi screpancyDet ector detector = context.getDi screpancyDetector();

3. Inthe invoke method, create the CIMType object to name the entity type, and add the
custom filter.

G niType eqType = new Ci nType(Equi prent . cl ass);
detector. addFi | ter (eqType, new Equi prent Rel ationshi pFilter());

Using Discrepancy Filter and Handler

This example sets the severity to Minor on every Missing Entity and Extra Entity discrepancy
generated by the new detection action. Use the following code fragment for this task:

1. Define the filter class and add a new discrepancy handler. This handler performs a
discrepancy type check, and sets the severity accordingly.

private class CustonDi screpancyFilter inplenments DiscrepancyFilter {
public DiscrepancyHandl er filterD screpancies(
G niType ci nType,
Di screpancyHandl er handler) {
return new Di screpancyHandl er() {
public DisDiscrepancy processDi screpancy(
Di screpancyEnabl ed ci nBase,
Di sDi screpancy di sDi screpancy) {
i f (DisDiscrepancyType. EXTRA ENTITY ==
di sDi screpancy. get Type()
|
Di sDi screpancyType. M SSI NG _ENTI TY ==
di sDi screpancy. get Type()) {
di sDi screpancy. set Severity(Di sDi screpancySeverity. M NOR);
}

return disDi screpancy;
}; I/ end return new()

}
2. Inthe processor invoke method, get the generic discrepancy detector from the context.

CGenericDi screpancyDet ector detector = context.getDiscrepancyDetector();

3. Inthe same invoke method, create the CIMType object to name the entity type, and add

the custom filter.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 19 of 26

ORACLE

Developer's Guide
G34175-01

Chapter 3
About Discrepancy Detection Processors

Ci nifype al | Type = new C nilype(Di screpancyEnabl ed. cl ass);
detector.addFilter(all Type, new CustonDi screpancyFilter());

Using Root Entity Filter and Handler

This advanced technique in this example changes the matching algorithm that finds the
matching reference entity for any compare entity. The default algorithm finds matches based
on a comparison of the value of the name attribute. This example changes the comparison to
use the nativeEmsName attribute instead. Comparision can also be done using the
characteristic(s).

@ Note
This feature is used in the MIB Il UIM cartridge.

The example is in two parts. The first part alters the root entity handler to match compare root
entities with reference root entities using the nativeEmsName attribute. The second part uses
relationship handlers to make the discrepancy detector use nativeEmsName attribute to
distinguish the children.

First, the root entity filter and handler code fragments are as follows:

1. Define a method in the new processor to create the root entity filter. This filter creates a
new root entity handler and returns it.

private RootEntityFilter getRootEntityFilter() {
return new RootEntityFilter() {
@verride
public RootEntityHandl er filterRootEntities(
Ci nifype arg0, RootEntityHandl er argl) {
return new Mat chRoot Enti t yByNati veEnmsNanel nst eadOf Name() ;

b
}

2. Define a private class that extends from DefaultRootEntityHandler. This class is the one
created in step 1. Override the getReferenceRootEntity() method as follows. Notice the
use of a string array containing the string nativeEmsName to specify the use of this
attribute. Also notice the use of a RuntimeException to report problems.

private class MatchRoot EntityByNati veEmsNanel nst eadOf Nane
extends Defaul t Root EntityHandl er {

@verride
public DiscrepancyEnabl ed get Ref erenceRoot Entity(Di screpancyEnabl ed conmpar eRoot)

try {
PonsManager Fact ory factory = new PonsManager Fact ory();
Di sResul t GoupManager Di sResul t G oupManager =
factory. get Di sResul t G oupManager () ;
Di sResul t G oup g = Di sResul t GoupManager . get Di sResul t G oup(
(Persistent) conpareRoot);
return new Ref erenceRoot Fi nder (g).
findRef erenceRoot ((Persi stent) conpareRoot,
new String[] { "nativeEnsNane" });
} catch (Exception e) {
| ogger. | og(Level . SEVERE,
"Error while getting reference root, conpareRoot " +
conpar eRoot, e);
throw new Runti meExcepti on(

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 20 of 26

ORACLE

Chapter 3
About Discrepancy Detection Processors

"Error while getting reference root, Aborting discrepancy
generation",

}

e);

@verride
public String[] getMtchingAttributes(){
return new String[]{NATI VE_EVS_NAME};
}
}

3. Inthe invoke method of the processor, create the CIMType object to cover all entity types,

and add the root entity filter defined in step 1.

Ci niType al | Type = new C nilype(Di screpancyEnabl ed. cl ass);
context.get Root EntityLoader().addFilter(allType, getRootEntityFilter());

Part two adds a relationship filter to each entity type that the detection processor expects to
encounter. This code fragment example shows a change to a single entity type. It changes the
LogicalDevice to Devicelnterface child relationship to match using nativeEmsName instead of
name. Normally, this code pattern needs to be repeated once for each entity type. (See the
MIB 1l UIM and Cisco UIM cartridge packs for a full example.)

1. Define the relationship handler as a class inside the processor's class. This class should
inherit from DefaultRelationshipHandler, and override the getKey() method to return

public class MtchDevlntfByNativeEmsName extends Defaul t Rel ationshi pHandl er {
@verride
protected oject getKey(DiscrepancyEnabled entity) {
return ((Devicelnterface) entity).getNativeEmsName();

}
}

2. Inthe processor invoke method, get the generic discrepancy detector from the context.
CGenericDi screpancyDet ector detector = context.getDi screpancyDetector();

3. Inthe same invoke method, create the CIMType object to name the entity type, and add
the custom filter.

G nifype | dType = new G nType(Logi cal Devi ce. cl ass);
detector.addFilter(ldType, new Rel ationshipFilter() {
@verride
public void filterRelationships(
G niType ci nType,
Map<String, RelationshipHandl er> relationshipHandlers) {
rel ationshi pHandl ers. put ("devi cel nterface",
new Mat chDevl nt f ByNat i veEnsNane());
} /1 end filterRelationships
} /1 end new Rel ationshi pFilter
), /1 end addFilter

Adding Post-Processors

Developer's Guide
G34175-01

This usage pattern builds on the Reuse pattern and adds processors after the discrepancy
detector processor. These post-processors access the full set of detected discrepancies
using the getDiscrepancies() method of the DiscrepancyDetectionProcessorContext object
(context). Because they are not persisted until all processors in the action have run, the
discrepancies can be manipulated completely by the post-processors. They can be modified or
removed. Also, new discrepancies can be added.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 21 of 26

ORACLE Chapter 3
About Discrepancy Resolution Processors

Although all fields of a discrepancy can be modified by using setters, there are many fields that
should not be altered. The following discrepancy fields can be safely changed by post-
processors:

e priority, notes, discrepancyOwner
- severity, compareValue, referenceValue

e operation + operationldentifiedBy + status (status set to OPERATION_IDENTIFIED)
(Must be set together.)

Any other discrepancy fields should not be altered; otherwise, discrepancy resolution actions
may suffer errors and failures.

An example of the use of post-processors is to automatically assign all CRITICAL severity
discrepancies to a specific department (using the discrepancyOwner field). The following
code snippet from a post-processor shows how this is done.

@verride

public void invoke(Di screpancyDetecti onProcessor Context context,
Di screpancyPost Processor Processor Request request)
throws ProcessorException {

for (DisDiscrepancy discrepancy : context.getDi screpancies()) {
i f (discrepancy.getSeverity().equals(
Di sDi screpancySeverity. CRITICAL)) {
di screpancy. set Di screpancyOaner (" Sherl ock Hol mes");

}

About Discrepancy Resolution Processors

The only type of processor available to the discrepancy resolution action is the discrepancy
resolution processor.

As with other types of actions, the list of processors are invoked serially from top of the table to
bottom. The first processor is given the list of submitted discrepancies. This processor
determines a subset of these discrepancies to handle (which can range from none to all),
perform the resolution operation, and set their status to either Processed or Failed.

Then, the next processor is given the remaining discrepancies for processing, and so on. The
action is complete when all the processors are invoked. If there are any discrepancies which
remain at the end, their status is set to Not Implemented.

The discrepancy resolution processor is the Java implementation of a discrepancy resolution
action. The processor performs the following tasks:

« Filter through its input list of discrepancies to process only those discrepancies it can
handle

e Communicate with the discovery or import system to correct a discrepancy
* Report the status of a correction operation

See "Implementing a Processor" for more information.

Creating a Discrepancy Resolution Processor

See Design Studio Modeling Network Integrity for information about creating a discrepancy
resolution processor.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 22 of 26

ORACLE Chapter 3
About Discrepancy Resolution Processors

Implementing a Discrepancy Resolution Processor

This section provides details about the discrepancy resolution processor implementation.

About the Implementation Interface

The processor implementation class derives from a Design Studio-generated interface class.
There is a single abstract method that the implementation class must implement. The abstract
method has the following interface:

publi ¢ <Processor_Name>Response i nvoke(
Di scover yResol uti onProcessor Cont ext context,
<Processor _Nanme>Request request)
t hrows ProcessorException
{
}

About Input Parameters for the Invoke Method

Table 3-1 describes the methods provided to the developer by the first parameter, context,
outlined in "About the Implementation Interface".

Table 3-1 Methods from the context Parameter
]

Context method Return Object Class Description

getActionName() String Getter for the name of the action.

getProcessorName() String Getter for the name of this processor.

getUnhandledDiscrepancies() Collection DisDiscrepancy | Getter for a list of unprocessed discrepancies for this
invocation.

getAllDiscrepancies() Collection DisDiscrepancy | Getter for a list of processed and unprocessed
discrepancies for this invocation.

discrepancyProcessed(DisDiscrep | void Sets the status of the input discrepancy to

ancy disc) OPERATION_PROCESSED.

discrepancyFailed(DisDiscrepancy | void Sets the status of the input discrepancy to

disc, String failureMessage) OPERATION_FAILED, and also sets the failure
message.

discrepancyReceived(DisDiscrepa | void Sets the status of the input discrepancy to

ncy disc) OPERATION_RECEIVED.

The second parameter, request, contains getters for each item in the Input Parameters table. It
also contains a getter to retrieve the groups and items listed in the Properties tabbed page.

Return Type of Invoke Method

The return type of the invoke method varies, depending on the output parameters setting in
the Context Parameters tabbed page.

If there is no output parameter, then the return type is void.

If there are one or more output parameters, then the return type is a generated class with the
name Processor_NameResponse. This Response class has getters and setters for each item
in the Output Parameters table.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 23 of 26

ORACLE

Chapter 3
About Discrepancy Resolution Processors

About the General Flow of the Discrepancy Resolution Processor

The usual pattern for implementing a discrepancy resolution processor is as follows:

1. Fetch the list of unhandled discrepancies using context.getUnhandledDiscrepancies()

2. Allocate discrepancies based on logical groupings; for example: all discrepancies on a
single card and on its children port.

Keep discrepancies that can be handled by this processor, and ignore or remove other
discrepancies.

3. For each group, perform operations to fix the discrepancies, Then, based on operation
results, set their status to Processed or Failed.

An error message can be saved in the Failure Reason field of the discrepancy, which is
displayed in the Network Integrity UI.

4. Set output parameters.

Fetching Discrepancies

The discrepancy resolution processor can use the context input parameter to fetch the list of
discrepancies to process. In the general flow, the processor uses the method
getUnhandledDiscrepancies() on context to retrieve a list of discrepancies that are not yet
handled by any previous processors.

It is also possible to retrieve the original full list of discrepancies by using the method
getAllDiscrepancies(), but this list includes discrepancies that are already handled by a prior
resolution processor.

It is possible to make updates to already handled discrepancies, such as updating the Notes
field to add more text.

See "About Discrepancies” for more information about the attributes of a Discrepancy object.

Grouping Discrepancies

Developer's Guide

G34175-01

Usually, a single resolution processor is responsible for handling the discrepancies of a single
entity type; for example: logical device or device interface only, or more frequently an explicit
set of specifications of an entity type.

Sometimes, a processor specializes in handling discrepancies of a very specific nature.
Therefore, the next logical task is to examine each unhandled discrepancy, to determine how it
should be handled by this processor.

A processor frequently uses one or more of the following discrepancy attributes as criteria for
handling. Of course, it may use all other attributes as criteria for determining special handling,
if necessary.

See "About Discrepancies" for a detailed explanation of these attributes:

« Type: Indicates the error being reported; for example: attribute mismatch, missing entity,
and so on.

« externalEntityType, staticEntityType: Indicates the type and specification of the target
entity.

- attributeOrRelationshipName: Indicates the attribute or the association that has the
discrepancy.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 24 of 26

ORACLE

Chapter 3
About Discrepancy Resolution Processors

e compareValue, referenceValue: Each attribute indicates the value of an attribute on one
side of the comparison.

« compareEntity, referenceEntity: Each attribute is a reference to one entity being compared,;
see "About the Compare and Reference Sides" and "About Discrepancy Types" for
important information on what entity each attribute is actually referencing.

« childTargetEntity: This is an additional entity reference used only for Association or Entity
discrepancy types; see "About Discrepancy Types" for more information.

Handling Discrepancies

Now that the target has been identified and grouped, the processor can decide whether to
proceed with the handling. If the processor can resolve this discrepancy, then the processor
can make appropriate API calls necessary to make the desired resolution on the system, and
report the result.

See "Reporting the Resolution Result".

Alternatively, the processor can decide to skip the discrepancy, and begin processing the next
one. The skipped discrepancy subsequently appears in the unhandled list of discrepancies for
the next processor.

Reporting the Resolution Result

Developer's Guide
G34175-01

When a discrepancy has resolved successfully, simply pass this discrepancy into the context
using the method discrepancyProcessed. This sets the discrepancy status to Processed.

cont ext . di screpancyProcessed(discrepancy);

If the processor fails to resolve a discrepancy, it should set the discrepancy status to Failed
using the method discrepancyFailed in the context.

This method takes an additional String argument, which the processor can set a short
message to be displayed in the Ul. The string is stored in the reasonForFailure attribute of the
discrepancy.

@® Note

This error message is limited to a maximum of 255 characters.

cont ext . di screpancyFai |l ed(discrepancy, "Sanple error message.");

If the processor needs to make a series of asynchronous invocations to handle a discrepancy,
it can set the discrepancy status to Received at the end of the first invocation.

This indicates to Network Integrity and to Network Integrity users that the discrepancy
resolution is in progress. This is done using the method discrepancyReceived in the context.

cont ext . di screpancyRecei ved(di screpancy);

See "About Discrepancy Status" for an explanation of the transition rules for status values.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 25 of 26

ORACLE

Chapter 3
About Discrepancy Resolution Processors

Handling Discrepancies Asynchronously

Developer's Guide
G34175-01

There are situations in which a discrepancy resolution operation cannot be completed within a
single invocation. For example, the CORBA interface for an external system to create a trouble
ticket requires the caller to supply a callback object for the notification of the final operation
result and ticket ID.

In this example, the resolution processor code can prepare the callback object and make the
initial CORBA call to submit the trouble ticket, and then it must return from the invoke method.
The subsequent resolution handling code must reside in the callback object, and receives the
notification, updating the discrepancy status accordingly.

In such cases, the processor should set the status of the discrepancy to RECEIVED using
context.discrepancyReceived() at the end of the handling code in the processor's invoke
method. This indicates to Network Integrity and to Network Integrity users that resolution
processing is in progress, and that additional status updates arrive later.

You must also save the entitylD of the discrepancy (using discrepancy.getEntityld()) during
the processor's invoke method. When the subsequent resolution handing operation reaches
its conclusion, the status of the original discrepancy must be updated to PROCESSED or
FAILED. This is done through the Network Integrity web service by first retrieving the
discrepancy using the entitylD, and then updating the status of the discrepancy.

The topic of how to save the entitylD and how to create the subsequent code invocation is
beyond the scope of this guide. You may use any techniques available in J2EE to perform
these tasks.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 26 of 26

Working with Discrepancies

This chapter provides an overview of discrepancies in Oracle Communications Network
Integrity.

About Discrepancies

When Network Integrity detects a difference while comparing import and discovery data, it
generates a discrepancy. The discrepancy captures all vital information about the difference,
such as the entity and the name of the attribute or relationship containing the difference, the
type of difference, and the values on both sides (that is to say, on the Compare, and the
Reference sides).

These topics are further explored in:

About the Compare and Reference Sides

« About Discrepancy Types

* About Discrepancy Status

« About Discrepancy Detail

About the Compare and Reference Sides

When dealing with discrepancies, the data from the two sides are named Compare and
Reference. The significance is that the Compare side is the side of the scan that triggered the
discrepancy comparison.

If a scan using a discovery action was also configured to detect discrepancies, the
discrepancies created by that scan have discovery data on the Compared side, and import
data on the Reference side.

On the other hand, if a scan uses an import action with detect discrepancies configured, the
Compared fields of a discrepancy contain import data, and the Reference fields contain
discovery data.

The discrepancy field CompareSource holds a value that indicates the origin of the compare-
side data. The value is NETWORK for a discovery or an Assimilation scan, or INVENTORY for
an import scan.

Table 4-1 shows CompareSource values for different discrepancy origins.

Table 4-1 Listing CompareSource Values for Different Discrepancy Origins

Discrepancy Compared Side | CompareSource Reference Side | ReferenceSource
Origin

Discovery Scan Discovery Data NETWORK Import Data INVENTORY
Import Scan Import Data INVENTORY Discovery Data NETWORK
Assimilation Scan | Discovery Data NETWORK Import Data INVENTORY

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE Chapter 4
About Discrepancies

About Discrepancy Types

There are seven types of discrepancy; they can be divided into four groups of related issues.

e Attribute Value Mismatch. See "Attribute Value Mismatch".

e Extra Entity, Missing Entity. See "Extra Entity and Missing Entity".

e Extra Association, Missing Association. See "Extra Association and Missing Association".

e Ordering Error, Association Ordering Error. See "Ordering Error and Association Ordering
Error".

Network Integrity does not allow new discrepancy types to be defined.

Attribute Value Mismatch

This discrepancy indicates that an entity exists in both the Compare and Reference results, but
an attribute was found not to have the same value on both sides.

Each discrepancy reports a mismatch problem on a single attribute. An entity can have
multiple Attribute Value Mismatch discrepancies reported, if it has several mismatched
attributes on both sides.

Table 4-2 shows discrepancy attributes and descriptions.

Table 4-2 Attribute Value Mismatch: List of Discrepancy Attributes

DisDiscrepancy Attribute Description

compareEntity This is the target entity whose attribute has a mismatched value.
referenceEntity This is the matching entity on the other side of the discrepancy detection.
childTargetEntity Not used. This has no value.

attributeOrRelationshipName This holds the name of the attribute containing the mismatch.
compareValue The value of the attribute on the target entity.

referenceValue The value of the attribute on the matching entity on the other side.

Extra Entity and Missing Entity

This discrepancy indicates that an entity (and any dependent children) is present on one side
of the comparison, but is absent from the other side.

An Extra Entity discrepancy indicates that the entity is present in the Compared side, but not in
the Reference side.

In Figure 4-1, the example for the Extra Entity discrepancy shows an FDDI card in slot 7
present on the Compared side that is missing on the Reference side.

A Missing Entity discrepancy indicates the reverse: the entity is absent is the Compared side,
but present in the Reference side.

In Eigure 4-1, the example for the Missing Entity discrepancy shows that slot 7 is missing an
FDDI card on the Compared side that is present on the Reference side.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE’

Chapter 4
About Discrepancies

Figure 4-1 Examples of Extra Entity and Missing Entity

Extra Entity Missing Entity
(Entity+) (Entity-)
Slat 7 : Slot 7 Slot 7 : Slot 7
FDDI Card | | | | FDODICard
| I
| I
Compared Side | Reference Side Compared Side l Reference Side

Table 4-3 shows discrepancy attributes and descriptions.

Table 4-3 Discrepancy Attributes and Descriptions

DisDiscrepancy Attribute Description

compareEntity

This is the parent entity on one side of the comparison.

referenceEntity

This is the parent entity on the other side of the comparison.

childTargetEntity

This is the extra child entity on one side.
The entity exists on the Compared entity tree when the discrepancy type is Extra Entity.

The entity exists on the Reference entity tree when the discrepancy type is Missing
Entity.

attributeOrRelationshipName This holds the name of the association on the parent entity, which references the

childTargetEntity.

compareValue

Not used. This has no value.

referenceValue

Not used. This has no value.

Developer's Guide
G34175-01

When resolving an Extra/Missing Entity discrepancy, the processor is tasked with either adding
or removing an object from its target system. The processor must consider the system that it is
managing (Import/Inventory or Discovery/Network), and examine the following discrepancy
fields to determine the appropriate action:

e DiscrepancyType
e CompareSource

For example: A discrepancy resolution processor is created to make corrections to an
inventory system. When this processor receives an Extra Entity discrepancy, it must check the
value of CompareSource. If this value is NETWORK, the extra entity occurs in the network,
and therefore it must be missing from the inventory system. The processor takes the corrective
action of creating this entity in the inventory system.

However, if the discrepancy type is still Extra Entity, and CompareSource value is
INVENTORY, the extra entity occurs in inventory.

Table 4-4 shows the resolution operations for the example processor, given the actual factors
to be considered. The Present in columns indicate the system has the extra entity. The
Resolution Operation column lists the appropriate inventory operation to resolve this
discrepancy.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE

Chapter 4
About Discrepancies

Table 4-4 Appropriate Resolution Operations for Sample Processor

Discrepancy Type | Compare Source |Referece Source |Presentin Present in Resolution
Network Inventory Operation
Extra Entity Network Inventory Yes No Add the network
entity into
Inventory.
Missing Entity Network Inventory No Yes Remove the

inventory entity.

® Note

Table 4-4 assumes that the discrepancy detection action was triggered from a
Discovery scan.

If the discrepancies are generated by a discrepancy detection action that listens for results
from Import scans, the compare source and reference source are reversed, and subsequently,
the appropriate inventory operations are reversed as well. (This situation is not usual, but is
certainly possible.) See Table 4-5 for this example.

Table 4-5 Appropriate Resolution Operations for Sample Processor (Import Scan)

Discrepancy Type | Compare Source |Referece Source |Presentin Present in Resolution
Network Inventory Operation
Extra Entity Inventory Network No Yes Remove the
inventory entity.
Missing Entity Inventory Network Yes No Add the network
entity into
Inventory.

Network Integrity does not report Missing Entity discrepancies on the circuit of a root entity
when the root entity is absent from either the Compared side or the Reference side.

For example, if a discovery scan finds Devicel with circuits A and B in the network, and the
same device exists in inventory, but with circuits A, B, and C, Network Integrity reports a
Missing Entity discrepancy on circuit C in the network.

In the above example, Network Integrity can fully compare the results for Devicel from the
Compared side and the Reference side.

However, by default, when Devicel is not listed in the discovery results, Network Integrity does
not report Missing Entity discrepancies on the device.

You can build a discrepancy detection action or extend the base discrepancy detection action
to report missing Entity discrepancies on root entities. See "About Discrepancy Detection
Actions" for more information.

Extra Association and Missing Association

Developer's Guide

G34175-01

This discrepancy indicates that an association in one entity (source) referencing another entity
(target) is present on one side of the comparison, but is absent from the other side.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE’

Chapter 4
About Discrepancies

An Extra Association discrepancy indicates that the association is present in the Compared
side, but not in the Reference side.

In Figure 4-2, the example for the Extra Association discrepancy shows a Mapped Device
Interface association from Port 1 to Interface 2 present on the Compared side that is missing
on the Reference side.

A Missing Association discrepancy indicates the reverse: the association is absent in the
Compared side, but is present in the Reference side.

In Figure 4-2, the example for the Missing Association discrepancy shows that the Mapped
Device Interface association from Port 1 to Interface 2 is missing on the Compared side but is
present on the Reference side.

Each discrepancy indicates a problem with a single direction of association. If two entities have
a bidirectional association with each other, and this bidirectional association is completely
missing on one side, two discrepancies are generated by Network Integrity.

Figure 4-2 Examples of Extra Association and Missing Association

Extra Association Missing Association

(Assoct) (Assoc-)

Card 1 Device 2

Card 1 Device 2 Card 1 Device 2 Card 1 Device 2

Compared Side

| |
| |
| |
Port 1 nterface zj | | Port 1 Interface 2 Port 1 Interfaca 2 | | {[Pori Intesface 2
| |
| |
! '

Reference Side Compared Side Reference Side

Table 4-6 shows discrepancy attributes and descriptions.

Table 4-6 Extra Association and Missing Association: List of Discrepancy Attributes

DisDiscrepancy Attribute Description

compareEntity

This is the source entity on one side of the comparison.

referenceEntity

This is the source entity on the other side of the comparison.

childTargetEntity

This is the target entity of the association.
The entity exists on the Compared side when the discrepancy type is Extra Association.
It exists on the Reference side when the discrepancy type is Missing Entity.

attributeOrRelationshipName This holds the name of the association on the source entity which references the

childTargetEntity.

compareValue

Not used. This has no value.

referenceValue

Not used. This has no value.

Developer's Guide
G34175-01

The processor must examine the discrepancy to determine whether the appropriate resolution
operation is to add the association, or to remove it.

Table 4-7 shows the appropriate operation, given the values of discrepancy type, compare
source, and reference source within the discrepancy.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE

Table 4-7 Appropriate Resolution Operations for Sample Processor
|

Chapter 4
About Discrepancies

Discrepancy Type | Compare Source |Reference Present in Present in Resolution
Source Network Inventory Operation
Extra Association Network Inventory Yes No Add the
association into
the inventory
entity.
Missing Association | Network Inventory No Yes Remove the

association from
the inventory
entity.

If the discrepancies are generated by a discrepancy detection action that listens for results
from Import scans, the compare source and reference source are reversed, and subsequently,
the appropriate inventory operation are reversed as well. (This situation is not usual, but is
certainly possible.)

Table 4-8 shows the appropriate operation for this particular situation.

Table 4-8 Appropriate Resolution Operations for Sample Processor (Import Scan)
|

Discrepancy Type | Compare Source | Reference Source | Presentin Present in Resolution
Network Inventory Operation
Extra Association | Inventory Network No Yes Remove the
association from
the inventory entity.
Missing Inventory Network Yes No Add the
Association association into the

inventory entity.

Ordering Error and Association Ordering Error

In some cases, the ordering of child or associated entities is significant. This discrepancy
indicates that matched entities appear in different orders between the two sides. The only
difference between the two types of discrepancy is that an Ordering Error indicates a problem
with a parent/child association, while an Association Ordering Error indicates a problem with
some other association.

Table 4-9 shows discrepancy attributes and descriptions.

Table 4-9 Ordering Error and Association Ordering Error: List of Discrepancy Attributes

e ___|
DisDiscrepancy Attribute

Description

compareEntity

This is the source/parent entity on one side of the comparison.

referenceEntity

This is the source/parent entity on the other side of the comparison.

childTargetEntity

Not used. This has no value.

attributeOrRelationshipName

This holds the name of the association having the ordering problem.

compareValue

Not used. This has no value.

referenceValue

Not used. This has no value.

Developer's Guide
G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

ORACLE Chapter 4
About Discrepancies

About Discrepancy Status

The discrepancy status field identifies the state of a discrepancy within its life cycle. Table 4-10
lists the possible discrepancy statuses.

Table 4-10 Discrepancy Statuses

Status Status Change Trigger Valid Follow-On Statuses

Opened NA Ignored, Identified

Ignored Ul command Opened, Identified

Identified Ul command Submitted, Ignored, Opened

Submitted Programmatic operation Received, Failed, Processed, Not Implemented
Received Programmatic operation Failed, Processed

Failed Ul command Ignored, Identified

Not Implemented NA NA

Processed NA NA

Figure 4-3 shows the discrepancy status lifecycle diagram.

Figure 4-3 Discrepancy Status Life Cycle

L Fre-submitted

statuses
Identified].
¥

R — Submitted |- ——T—T——1

lgnored

a4

Fost-submitted
” statuses

",
'3

3,

Implemented Processed

= Final statuses

Every discrepancy begins with a status of OPENED when it is first detected. It can then be
moved to one of two states by a user using a web Ul operation:

e IDENTIFIED, by using a resolution action menu item

* IGNORED, by using the Ignore menu item

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE

Chapter 4
About Discrepancies

When a discrepancy is in the IDENTIFIED state, a user can use the Submit operation to move
it to the SUBMITTED state. At this point, the discrepancy has moved out of user control, and
into the control of a resolution action.

The resolution action processes the submitted discrepancy, and reports the outcome by setting
the status to:

* PROCESSED, or
* FAILED

If the status is PROCESSED, the operation has succeeded, and the discrepancy can no longer
be acted upon. If the status is FAILED, it becomes available for the user to specify an operation
again, just like when it was first opened.

A resolution action may set a discrepancy status to RECEIVED immediately after the submit
operation. This status indicates that the resolution operation is in progress, and reports its final
operation status later.

About Discrepancy Detall

Table 4-11 lists all the attributes of a discrepancy. The Java type of a discrepancy is
DisDiscrepancy. Use Java getter and setter patterns to retrieve and set the attribute's value.
For example use the getPriority() method to get the value of priority, and setPriority(String)
method to change its value.

Although the setters for all attributes are public, most fields should not be directly set by the
processors. The following fields are safe to be used by processor Java implementations:

e priority
* notes
e discrepancyOwner

The status and failureReason fields should be set using the context methods when inside a
processor invoke method. Otherwise, they can also be set using setters.

Table 4-11 Discrepancy Attributes

DisDiscrepancy Attribute | Type Description

type

DisDiscrepancyType The discrepancy type.

(Enum) Valid values are:

. ATTRIBUTE_VALUE_MISMATCH

. EXTRA_ENTITY

. MISSING_ENTITY

. EXTRA_ASSOCIATION

. MISSING_ASSOCIATION

. ORDERING_ERROR

e ASSOCIATION_ORDERING_ERROR

severity DisDiscrepancySeverity | The severity of the discrepancy.
(Enum) The values are (from most severe to least):
 CRITICAL
¢ MAJOR
e MINOR
. WARNING
entityName String The name of the entity for which this discrepancy is raised.

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE’

Table 4-11 (Cont.) Discrepancy Attributes
|

Chapter 4
About Discrepancies

DisDiscrepancy Attribute | Type Description

externalEntityType String The name of the specification, if the entity has a specification.
Otherwise, the same value as staticEntity Type.

staticEntity Type String The name of the base entity type of the entity.

attributeOrRelationshipName | String This holds the name of the attribute or relationship having the

discrepancy.

compareEntity long (Weak Reference) [This is the entitylD of the entity for which this discrepancy is
raised.
compareSystem DisSource (Enum) Indicates whether the compare data comes from Network

(Discovery) or Inventory (Import) system. Valid values are
NETWORK and INVENTORY.

compareValue String This is used by attribute value mismatch discrepancies to hold the
value of the attribute on the compare side.

compareSource String The source value of the compareEntity. This value is copied from
the Source field of the Scan configuration used to discover/import
this entity into Network Integrity.

referenceEntity long (Weak Reference) | This is the entitylD of the entity of the discrepancy on the opposite
side to the compareEntity.

referenceSystem DisSource (Enum) This indicates whether the reference data comes from Network

(Discovery) or Inventory (Import) system. Valid values are
NETWORK and INVENTORY.

referenceValue String This is used by attribute value mismatch discrepancies to hold the
value of the attribute on the reference side.
referenceSource String This is the source value of the referenceEntity. This value is copied

from the Source field of the Scan configuration used to discover/
import this entity into Network Integrity.

childTargetEntity

long (Weak Reference)

Used by Extra/Missing discrepancies to indicate the child/target
entitylD of the entity of an association.

ancestorEntityName String This is the name of the ancestor (parent) entity for the discrepancy.
ancestorEntityType String This is the name of the specification, if the ancestor entity has a
specification. Otherwise, it takes the same value as
ancestorStaticEntity Type.
ancestorStaticEntity Type String This is the name of the base entity type of the ancestor entity.
parentResultGroup DisResultGroup This is a reference of the parent scan result detail (that is, the
result group) of the compareEntity.
path String This is the path to the entity for this discrepancy.
It is a comma-delimited list of entity IDs that describes the path
from the root entity.
For Missing Entity and Missing Association discrepancies, it is the
path to the compareEntity followed by the entitylD of the
referenceEntity.
For other discrepancy types, it is the path to the compareEntity.
priority String This is a user-editable field used to indicate the priority of this
discrepancy.
This would typically be used for customer-specific categorization,
enabling a finer control than using severity alone.
notes String This is a user-editable field for comments.

Developer's Guide
G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

ORACLE Chapter 4
About Discrepancies

Table 4-11 (Cont.) Discrepancy Attributes

e _________________________ __|
DisDiscrepancy Attribute | Type Description

discrepancyOwner String This is a user-editable field used to indicate an external owner of
the discrepancy.

It may be used for other purposes if desired.

operation String This holds the name of the resolution action being invoked.
operationldentifiedBy String This is the ID of the user who identified the resolution action (the
Ul action to set the resolution operation, before the submit
operation).
operationSubmittedBy String This is the ID of the user who submitted the resolution action.
submittedTime Date This is the timestamp when the status changed to
OPERATION_SUBMITTED.
status DisDiscrepancyStatus | This is the current status of this discrepancy.
(Enum) Valid values are:

» DISCREPANCY_OPENED

* DISCREPANCY_IGNORED

* OPERATION_IDENTIFIED

» OPERATION_SUBMITTED

» OPERATION_RECEIVED

* OPERATION_NOT_IMPLEMENTED
* OPERATION_PROCESSED

» OPERATION_FAILED

lastStatusChangeTime Date This is the timestamp when the status attribute was last updated.

reasonForFailure String This holds the error message set by the processor using
context.discrepancyFailed() method.

entitylD long This is an Internal identifier.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 10 of 10

Working with the POMS SDK

This chapter provides information about how the persistent object modeling service (POMS)
manages persistent data in Oracle Communications Network Integrity.

This chapter contains the following sections:
e About POMS

Working with POMS Entities
« Working with POMS Relationships

* Working with Specifications and Characteristics

* Working with the POMS Finder

« About Persist Results

About POMS

POMS manages all persisted data for Network Integrity. You use POMS for most cartridge
development, but you rarely need to deal explicitly with persistence details.

POMS includes the Java definition of the entities and relationships described in Oracle
Communications Information Model Reference.

While POMS includes both interface and implementation classes for the entities, you work only
with interfaces. These interfaces provide getters and setters for attributes and relationships.
Use the PersistenceHelper POMS SDK class to instantiate entities.

You can use the POMS SDK Finder class to find and retrieve existing persisted entities.

POMS is built on the EclipseLink Java persistence APl (JPA) platform. You do not usually need
to know EclipseLink or JPA to use the POMS SDK. The exception is find operations where you
may have to know Java Persistence Query Language (JPQL). See "Working with the POMS
Finder" for more information about the find operations.

Table 5-1 describes the POMS SDK APIs.

Table 5-1 POMS SDK API Description

. ___|
POMS SDK APIs Description

Entities The POMS SDK represents modelled entities as Java interfaces with getters
and setters for attributes and relationships. See "Working with POMS

Relationships".

Specifications and The POMS SDK includes APIs that allow you to operate on specifications and
characteristics characteristics. See "Working with Specifications and Characteristics".
PersistenceHelper The POMS SDK provides methods to instantiate a POMS entity or POMS

Finder. See "Working with POMS Entities" and "POMS SDK Interfaces".

Finder The POMS SDK provides various methods to define a query and retrieve
matching persisted entities. See "Working with the POMS Finder" and "POMS
SDK Interfaces".

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE Chapter 5
Working with POMS Entities

Working with POMS Entities

The POMS Java interface for an entity has the same name as the entity described in the model
document. For example, entity Equipment becomes:

public interface Equi prent

Attributes are accessed with familiar Java getters and setters. For example. The Equipment
name attribute is defined by:

public java.lang. String get Nane();
public void setName(java.lang.String name);

An entity may contain enumerated values for certain attributes. POMS implements these as
Java enumerations. For example, the EMSServiceState from LogicalDevice has the
following:

publ i c enum EMSServi ceState {
UNKNOWR(" UNKNOWK"),
IN_SERVI CE("1 N_SERVI CE"),
QUT_OF_SERVI CE("QUT_OF_SERVI CE"),
TESTING "TESTING'),
I N_MAI NTENANCE("1 N_MAI NTENANCE");

public oracle.communi cations.inventory.api.entity. EMSServiceState

get Nati veEnsServi ceState();

public void

set Nati veEnsServi ceState(oracl e.comunications.inventory.api.entity. EMSServiceState
nativeEnsServiceState);

When creating results, for example in a discovery processor, you must instantiate POMS
entities. Use the PersistenceHelper class, passing the desired entity class to the makeEntity
method:

Equi pnent equi pment = Persi st enceHel per. makeEntity(Equi pnent. cl ass);

Working with POMS Relationships

Related entities are also accessed with getters and setters.

One-to-one Relationships

When a relationship refers to a single entity, the entity is accessed directly. For example, the
mapped physical and logical devices:

public oracl e.comuni cations.inventory.api.entity.Logical Device get MappedLogi cal Devi ce();
public void

set MappedLogi cal Devi ce(oracl e. cormuni cations.inventory.api.entity.Logical Device
mappedLogi cal Devi ce);

One-to-Many or Many-to-Many Relationships

When a relationship refers to multiple entities, the entities are accessed through a collection.
For example, the equipment to physical port relationship:

public java.util.List<oracle.comrmnications.inventory.api.entity.Physical Port>
get Physi cal Ports();

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE

Chapter 5
Working with POMS Relationships

public void
set Physi cal Ports(java.util.List<oracle.conmunications.inventory.api.entity.Physical Port>
physi cal Ports);

A getter never returns null for the collection. If there are no related entities, an empty collection
is returned. That means the developer can safely add entities without creating a collection. For
example:

equi pment . get Physi cal Port s() . add(physi cal Port)

Ordered and Unordered Relationships

POMS uses a List for the collection because the Oracle Communications Information Model
defines an ordered relationship for physical ports on equipment. In other cases, order does not
matter and so POMS uses a Set for the collection. For example, the parent relationship from
Equipment to EquipmentHolder:

public

java.util. Set<oracl e.comunications.inventory.api.entity.Equi pment Hol der Equi pnent Rel >

get Par ent Equi prrent Hol der s() ;

public void

set Par ent Equi pment Hol der s(j ava. util. Set <oracl e. conmuni cations. i nventory.api.entity. Equi pm
ent Hol der Equi pnent Rel > equi prent Hol ders) ;

Bi-directional Relationships

Certain relationships in the model are bi-directional. POMS includes accessors on entities on
both sides of a bi-directional relationship, and the relationship can be set from either side. The
physical device to logical device relationship described in the "One-to-one Relationships”
example is bi-directional. The other side of this relationship, on the logical device, is defined
as:

public java.util.List<oracle.commnications.inventory.api.entity.Physical Device>

get MappedPhysi cal Devi ces();

public void

set MappedPhysi cal Devi ces(java. util.List<oracle.conmunications.inventory.api.entity.Physi
cal Devi ce> mappedPhysi cal Devi ces);

This is a many-to-one relationship, so there is a collection on the logical device side and single
entity on the physical device side. To relate a physical and logical device, you can either set
from the physical device:

physi cal Devi ce. set MappedLogi cal Devi ce(l ogi cal Devi ce);

or set from the logical device:

| ogi cal Devi ce. get MappedPhysi cal Devi ces (). add(physi cal Device);

Relationship Entities

Developer's Guide
G34175-01

In some cases, the model defines an intermediate relationship entity instead of relating two
entities directly. For example, the Information Model defines EquipmentEquipmentRel to
relate two pieces of equipment. To create this type of relationship, instantiate the relationship
entity and set the related entities. For the equipment to equipment example:

Equi pnent Equi prent Rel par ent Equi pnent Rel =

Per si st enceHel per. makeEnti t y(Equi pment Equi prent Rel . cl ass) ;
par ent Equi pnent Rel . set Chi | dEqui prrent (equi prrent) ;

par ent Equi pment Rel . set Par ent Equi pnent (par ent Equi pnent) ;

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE Chapter 5
Working with Specifications and Characteristics

Working with Specifications and Characteristics

You can use the generated specification helper classes to avoid directly dealing with
specifications and characteristics. See "About Specifications" and "Working with
Specifications" for a description of the underlying API and for more information on when to
directly manipulate specifications.

You can determine if an entity supports characteristics and specification by referencing the
model documentation, or by checking the POMS interface. Entities that support characteristics
and specifications extend the CharacteristicExtensible interface. For example:

oracl e. communi cations. i nventory. api . CharacteristicExtensible
<oracl e. communi cations.inventory. api.entity. Equi pment Characteri stic>;

The specification and characteristics are related entities like any other, characteristics being
multi-valued:

public oracle.conmuni cations.inventory.api.entity. Equi pnent Specification

get Speci fication()

public void

set Speci fication(oracle.comunications.inventory.api.entity.Equi pment Specification
specification);

public java.util.Set<oracle.comunications.inventory.api.entity.Equi pnentCharacteristic>
get Characteristics();

public void

set Characteristics(java.util.Set<oracle.comunications.inventory.api.entity.EquipmentCha
racteristic> characteristics);

As a convenience, POMS also lets you access a characteristic by name through the map
returned by getCharacteristicMap:

public java.util.Mp<String,
oracl e. communi cations.inventory.api.entity. Equi pment Characteristic>
get CharacteristichMp();

Working with the POMS Finder

You can use the POMS Finder to retrieve previously persisted data, however, you do not
typically need to use the Finder.

The most basic use of the Finders is "Find by Entity”. More powerful and flexible queries are
possible with the Java Persistence Query Language (JPQL). You can also control whether
entities are returned completely or a with a subset of attributes. You can also use paging to
return data in manageable chunks where queries might return a large volume of data.

Find by Entity

To find entities matching an example entity, instantiate an entity of the appropriate type and set
one or more attributes. Use the findByEntity method to return a collection of matching entities.
Here is an example that looks for the specification for a Cisco 3640 physical device:

Finder finder = PersistenceHel per. makeFi nder();
Physi cal Devi ceSpeci fication exanple =

Per si st enceHel per. makeEntity(Physi cal Devi ceSpeci fication. cl ass);
exanpl e. set Nane(" G sc03640") ;

Col | ecti on<Physi cal Devi ceSpeci fication> specifications =

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE Chapter 5
Working with the POMS Finder

finder.findByEntity(exanmple, "nane");
if (specifications.size() == 1) {

Systemout. println("found specification");
}

Find by JPQL

Java Persistence Query Language (JPQL) is a powerful way to express queries. The following
examples can be understood without knowing JPQL, especially if the developer is familiar with
SQL; however, you must learn JPQL to build their own queries.

For an introduction to JPQL, use the following link:

htt p://downl oad. or acl e. coni | avaee/ 6/ tutorial /doc/ bnbtg. ht m .

To perform a JPQL query use the following workflow:

1. Instantiate a Finder.

2. Initialize any parameters (these parameters are bound to variables in the JPQL
expression).

3. Specify the desired result type.
4. Use the findByJPQL method to return matching results.

In following example queries, the first is equivalent to the example in the "Find by Entity"
section and returns a particular specification. The second uses a join in the JPQL expression
to return all physical devices that use this specification.

Finder finder = PersistenceHel per. makeFi nder();

finder. addParanet er ("name", "C sco3640");

finder.setRsul tCl ass(Physical Devi ceSpecification. class);

Col | ecti on< Physi cal Devi ceSpeci fication> specifications = finder.findByJPQ(
"SELECT o FROM Physi cal Devi ceSpecification o " +
"WHERE 0. name = :name");

finder.setRsul t Gl ass(Physical Devi ce. cl ass);

Col | ection< Physi cal Devi ce> ci sco3640Devi ces = finder.findByJPQL(
"SELECT o FROM Physi cal Device o JON o.specification s " +
"WHERE s.name = :name");

A JPQL query does not need to return complete entities. It can return one or more attributes
from matched entities. To return only name and ID from a physical device, the developer would
modify the previous example as follows:

Col | ection cisco3640Devi ces = finder.findByJPQ(
"SELECT o. nane, 0.id FROM Physi cal Device o JON o.specification s WHERE
S.nane = :nane");
for (Qect device : cisco3640Devices) {
Cbject[] attributes = (cisco3640Devi cesObject[]) device;
Systemout. println("Found Ci sco 3640 naned " + attributes[0] + " withid " +
attributes[1]);

}

The code snippet also shows how to iterate over the results. Since the returned type is not a
POMS entity, the attribute values are available as Object arrays. You would not set the result
class in this case.

While JPQL and the Finder support operations that modify persisted data (update, delete, and
S0 on), you should never modify POMS data with JPQL. The Finder is intended only for read
operations.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 8

http://download.oracle.com/javaee/6/tutorial/doc/bnbtg.html

ORACLE Chapter 5
Working with the POMS Finder

Find with Paged Results

When working with a large number of entities, process them in smaller batches to reduce
memory usage. The Finder supports paged results. Initialize the Finder normally, then specify
the range of value to retrieve. This modifies the original physical device example to page
through devices 20 at a time:

int pageSize = 20;
int start = 0;
while (true) {
finder.setRange(start, start + pageSize - 1);
Col | ecti on<Physi cal devi ce> ci sc03640Devi ces = finder.findByJPQ(
"SELECT o FROM Physi cal Device o JON o.specification s WHERE s. nane = :nane");
for (Physical Device device : cisco3640Devices) {
System out. println(device. get Nane());
if (cisco3640Devices.size()) < pageSize) {
br eak;

}

start += pageSi ze;

}
POMS SDK Interfaces

The following are the PersistenceHelper APl methods:

public static < E extends Object > E makeEntity(Cass< E > entity);
public static oracle.commnications.platform persistence. Finder makeFinder() ;

The following are the Finder APl methods:
/**

Set the result Cass to query.

*

*

* @aramresul td ass

* the interface of each result in the result set
*/

public void setResultCd ass(C ass resultd ass);

/**
Set the range of the result set to return, starting of the zero-based

start index and ending at the end index, exclusive. For exanple,
set Range(0,5) returns 5 results indexed at 0 thru 4.

<p>
Setting the range is neaningless if the order of the results is not
consistent. setOrdering i s assuned.

@aram start

zero-based start index
@ar am end

endi ng index, exclusive
@ee javax.j do. Query#set Range

E S R N N

*/
public void setRange(long start, long end);

/**

* Add the paraneter nane and value that are used to define the filter.

*

* <p>

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE Chapter 5
About Persist Results

Paranet er names begi nning with an underscore ('_') are illegal. They may
conflict with additional parameters used internally by this Finder.

*
*
*
* @ar am nanes
* the paraneter nane to be declared
* @ar am par am
* the paraneter value to be bound to the query
* @hrows java.lang.!Ilegal Argument Exception
* if illegal parameters are passed

*/

public void addParaneter(String name, bject paranm;

/**

* Find entities by exanple.

* Any non-null attributes in the exanple entity is used as the search criteria,
however

* the attribute nanes in the nustUseAttributes argument are used as criteria if the

* attribute is null.

*

* <p>

* This is a convenience nethod that perforns a sinple query in one call.

* |ncremental query construction is not over-witten by calling this

* met hod.

*

* @aramentity

* the exanple entity which non-null attributes are used as the search
criteria.

* @aramattributes

* list of attribute nanes which must be used as search criteria even if
their val ues

* in the example entity are null.

* @aram <E>

* a oracl e. communi cations. pl at f orm persi st ence. Persi stent type

* @eturn Collection of results of the matching entities

*/

public < E extends Persistent > Collection< E > findByEntity(E entity, String ...
nmust UseAttributes);

/**

* This method returns the result of executing a JPQL search using the passed
expressi on.

* The caller can pass the query paraneter with {@ink #addParaneter(Integer,
(bj ect) addParaneter} or

* {@ink #addParameter(String, Object) addParaneter}.

*

* @aram jpqgl The JPQL

* @eturn Collection of search results
*/

public Collection findByJPQ.(String jpql);

About Persist Results

The persistResults method is available in the context of discovery, import and assimilation scan
action types. This method persists in-memory result entities to the database and invalidates
the entities. You may or may not need to explicitly call this method, depending on the sort of
results that your action produces for a given invocation.

If the result set is small (for example, one result group for a particular device), then there is no
need to call this method. Your result entities are automatically persisted when the action
completes.

If the result set is large (for example multiple devices imported from an inventory system), call
persistResults to write the information to the database, reducing memory consumption. In the

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE Chapter 5
About Persist Results

context of an import action, you would likely want to call the persistResults after results for
each device are modeled.

Since persistResults invalidates any in-memory entities, you should not hold a reference to any
result entity across a call to persist results.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 8 of 8

Working with the Extensibility SDK

This chapter provides information about the extensibility SDK for Oracle Communications
Network Integrity.

This chapter contains the following sections:

« About Extensibility Scenarios

« Extending MIB Il SNMP Discovery for Updated Vendor and Interface Type

 Extending the MIB Il SNMP Discovery to Change Interface Name Value
e Multiple Vendor SNMP Discovery

e Multiple Protocol Discoveries

About Extensibility Scenarios

Cartridge projects and actions in Network Integrity are extensible using Oracle
Communications Service Catalog and Design - Design Studio for Network Integrity. The
productized and sample cartridges provided by Network Integrity are designed to be
completely extensible and re-usable.

When you make a cartridge project dependent on another, you allow the dependent cartridge
project access to the extensible elements from the base cartridge project.

The following sections are examples of some common extensibility scenarios.

Each of the scenarios follows a detailed example but is meant to demonstrate the many
extensibility features and methods within Network Integrity cartridge development. The
following concepts are demonstrated in the scenarios:

e Re-using existing actions

e Conditional execution using conditions

* The use of specifications and characteristics to extend the model

e The use of input and output parameters

e The use of scan parameter groups and characteristics to extend the Network Integrity Ul
» Using filters to modify default discrepancy detection behavior

* What extension points are available in productized cartridges

The scenarios are made up of high-level steps. For more detailed steps, see Design Studio
Modeling Network Integrity.

See the following extensibility scenarios:

« Extending MIB Il SNMP Discovery for Updated Vendor and Interface Type

Describes how to update the vendor number and interface type mapping tables in the MIB
Il SNMP Discovery cartridge.

¢ Extending the MIB Il SNMP Discovery to Change Interface Name Value

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 11

ORACLE

Chapter 6
Extending MIB Il SNMP Discovery for Updated Vendor and Interface Type

Describes how to extend the MIB Il SNMP Discovery action to map the SNMP variable
ifName to the interface entity name rather than the entity interface description.

e Multiple Vendor SNMP Discovery

Describes how to extend an existing cartridge to discover device data from multiple
vendors.

e Multiple Protocol Discoveries

Describes how to extend an existing cartridge to discover data using multiple protocols.

Extending MIB Il SNMP Discovery for Updated Vendor and
Interface Type

Developer's Guide
G34175-01

This scenario describes the steps required to update the vendor number and interface type
mapping tables in the MIB 1| SNMP Discovery cartridge. The vendor number table translates
an enterprise object identifier number to a vendor name. The interface type table translates an
ifType value into a human readable name. These mapping tables are created and output by
the MIB Il Properties Initializer processor.

The following tasks are performed in this example:

e Adds a new interface type (#333, “tachyonEther")
e Adds a new vendor number (#90210, “West Beverly Hills School District")

* Changes an existing vendor name (#34416, from “Ottawa Area Intermediate School
District" to “Ottawa Area Middle School District")

The following cartridges must be loaded in the Design Studio and not have any errors:

e Address_Handlers
e MIB_Il_Model
* MIB_II_SNMP_Cartridge

This scenario is made up of high-level steps that are explained in greater detail in the Design
Studio Modeling Network Integrity Help.

To extend the MIB || SNMP Discovery cartridge project for updated vendor and interface type
information:

1. Create a Network Integrity cartridge project called Vendor_Type_Update. Make your
cartridge project dependent on the MIB_II_ SNMP__Cartridge cartridge project.

2. Create a discovery action called Discover Updated MIB Il SNMP.
3. In Discover Updated MIB Il SNMP, add the Discover MIB Il SNMP action as a processor.

4. Create a discovery processor called MIB Il Properties Updater and place it after the MIB
Il Properties Initializer processor. This processor will be used to update the two mapping
tables.

5. Open the Processor editor Context Parameters tab for MIB Il Properties Updater and add
snmplfTypeMap and snmpVendorNameMap as input parameters. These parameters are
the output from the MIB |l Property Initializer processor.

6. Create the implementation class for this discovery processor. See "Implementing a
Processor” for instructions on how to add an implementation class to a processor.

7. Add the implementation code into the body of the invoke method of the discovery
processor implementation class, similar to the following:

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 11

ORACLE’

8.

Chapter 6
Extending the MIB Il SNMP Discovery to Change Interface Name Value

/1 Renane 34416 from"Cttawa Area Internedi ate School District"”

/I to "Ortawa Area Mddle School District"

/1 Add a new vendor ID 90210 = West Beverly Hills School District
Il

Map<String, String> vendor NameMap = request. get SnnpVendor NaneMap() ;
vendor NameMap. put ("34416", "Cttawa Area M ddle School District");
vendor NameMap. put ("90210", "West Beverly Hills School District");

/1 Add a new interface type 333 as tachyonEther.

Il

Map<String, String> ifTypeMap = request. get Snnpl f TypeMap();
i f TypeMap. put (333", "tachyonEther");

Build, deploy, and test your cartridge.

Figure 6-1 shows the processor workflow of the Discover Updated MIB Il SNMP action and the
placement of the MIB Il Properties Updater processor.

This discovery action inherits all the processors from the Discover MIB Il SNMP action. See
"Overview" in MIB-II SNMP Cartridge Guide for more information.

Figure 6-1 Discover Updated MIB Il SNMP Action

m)

MIB Il Properties Updater
MIB Il SNMP Collector
MIB Il SNMP Modeler

MIEB Il Properties Initializer

Extending the MIB Il SNMP Discovery to Change Interface Name

Value

Developer's Guide

G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

This scenario describes the steps required to extend the MIB II SNMP discovery action to map
the ifName to the interface name rather than the interface description. In addition, this scenario
exposes a scan parameter that the end-user can use to control the behavior of the interface

name mapping.

October 8, 2025
Page 3 of 11

ORACLE

Developer's Guide
G34175-01

Chapter 6
Extending the MIB Il SNMP Discovery to Change Interface Name Value

@® Note

Changing how the name field is mapped affects how generic discrepancy detection
looks up import entities because the lookup is done using name field (this can be
modified using discrepancy detection filters, see "About Filters" for details). If the
interface name field is modified for discovery, but is not modified on the import data,
many ‘extra entity' discrepancies are produced because discrepancy detection is
unable to find the interface of the import side.

Avoid this issue by ensuring that the name field for discovery and import are identical,
or by using a different field than name to look up the interface on the import side. An
example of using a different field is in the Detect MIB Il UIM Discrepancies action in
the MIB_II_UIM_Cartridge. This discrepancy detection action overrides the default
lookup to use the NativeEMSName instead of the name field.

The following high-level steps are involved in this scenario:

* Create new Network Integrity cartridge project

* Create new discovery action that re-uses an existing discovery action
« Create new scan parameter groups with new characteristics

e Add new processor to change mapping of interface name

The following cartridges must be loaded in the Design Studio and not have any errors:

e Address_Handlers
e MIB_Il_Model
* MIB_II_SNMP_Cartridge

This scenario is made up of high-level steps that are explained in greater detail in the Design
Studio Modeling Network Integrity Help.

To extend the MIB || SNMP cartridge to change the interface name value:

1. Create a Network Integrity cartridge project called InterfaceName. Make your cartridge
project dependent on the MIB_II_SNMP_Cartridge cartridge project.

2. Create a discovery action called Discover Custom MIB Il SNMP.
3. In Discover Custom MIB Il SNMP, add the Discover MIB Il SNMP action as a processor.

4. Create a scan parameter group called MiBlICustomParameters. Add the scan parameter
group to the Discover Custom MIB Il SNMP action.

5. For MIBIICustomParameters, create a characteristic called maplfDescTolnterfaceName.
6. Add two enumeration values to maplfDescTolnterfaceName:

a. Open the Data Schema editor for maplfDescTolnterfaceName.

b. Click the Enumerations subtab.

c. Add an enumeration called True and another called False.

d. Inthe Default column, set True to be the default value.

7. Onthe Scan Parameter Group editor Layouts tab for MIBlICustomParameters, do the
following:

a. Select maplfDescTolnterfaceName.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 11

ORACLE

Developer's Guide

G34175-01

10.

11.

12.

13.

Chapter 6
Extending the MIB Il SNMP Discovery to Change Interface Name Value

The Ul Settings area displays the scan parameter values for
maplfDescTolnterfaceName.

b. Inthe Display Name field, enter Map Description to Interface Name.
This is the name that will appear in the Network Integrity Ul for the scan parameter.
Save all changes.

In the Discover Custom MIB Il SNMP action, create a discovery processor called Custom
Interface Name Modeler.

Open the Processor editor Context Parameters tab for Custom Interface Name Modeler
and add logicalDevice as an input parameter. This parameter is the output from the MIB II
SNMP Modeler processor.

On the Processor editor Details tab, create the implementation class for the discovery
processor.

Add the implementation code similar to the following:

@® Note

Import statements are required to successfully compile the following code, the
imports should all be resolvable by Eclipse with the existing classpath, no
classpath changes are necessary.

@verride

public void invoke(Di scoveryProcessor Cont ext context,
Cust om nt er f aceNameMbdel er Processor Request request)
throws ProcessorException {

Il if the user specified they do not want the ifDesc as the nane of the interface
then use the ifName instead

if
("fal se".equal sl gnoreCase(request.get M bii CustonParameters().getMaplfDescTol nterfaceN
ame())) {
Li st <Devi cel nterface> devicelnterfaces =
request . get Logi cal Devi ce() . get Devi cel nterfaces();
changel nt er f aceNameTol FName(devi cel nterfaces);
}
}

private void changel nt er faceNaneTol FNanme(Li st <Devi cel nterface> devi celnterfaces) {
/'l 1oop through every interface and change the mappi ng.
for (Devicelnterface devicelnterface : devicelnterfaces) {
/1 the Discover MB Il SNVP Discovery Action is inserting the ifName into the
Vendor I nt erfaceNunber so the followi ng code copies that to the nane field
devi cel nterface. set Name(devi cel nt er f ace. get Vendor | nt er f aceNunber ());
/1 Change interface name on any sub-interfaces as well
changel nt er f aceNaneTol FNane(devi cel nter f ace. get Subl nterfaces());
}

}

To register discrepancy detection and discrepancy resolution on the new Discover Custom
MIB Il SNMP discovery action, add new result sources to the Detect MIB Il UIM
Discrepancies and Resolve MIB Il in UIM in the MIB_II_UIM_Cartridge that register for
results from the Discover Custom MIB Il SNMP discovery action. See "About Discrepancy
Detection Actions" and "About Discrepancy Detection Processors" for details.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 11

ORACLE’

Chapter 6
Multiple Vendor SNMP Discovery

Figure 6-2 shows the processor workflow of the Discover Custom MIB || SNMP action and
the placement of the Custom Interface Name Modeler processor.

This discovery action inherits all the processors from the Discover MIB || SNMP action.
See "Overview" in MIB-Il SNMP Cartridge Guide for more information.

Figure 6-2 Discover Custom MIB Il SNMP Action

),

MIB Il Properties Initializer

MIB Il SNMP Collector

MIB Il SNMP Modeler

Custom Interface Name Modeler

Multiple Vendor SNMP Discovery

This scenario describes the steps required to extend an existing cartridge to discover data from
devices from multiple vendors.

Developer's Guide
G34175-01

The following cartridges must be loaded in the Design Studio and not have any errors:

Address_Handlers
ora_ni_uim_devices
MIB_Il_SNMP_Cartridge
MIB_II_UIM_Cartridge
Generic_ SNMP_Model
Generic_SNMP_Cartridge
UIM_Integration_Cartridge

There are multiple scenarios, depending on your objectives.

One way is you want to discover devices from a single vendor. You should then extend the
MIBII SNMP cartridge by reusing the Discover MIB Il SNMP action and adding an SNMP
Collector and an SNMP Modeler for the vendor. The SNMP Collector polls vendor-specific
MIBs and the SNMP Modeler models the devices based on the collected SNMP OIDs.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 11

ORACLE

Developer's Guide

G34175-01

Chapter 6
Multiple Vendor SNMP Discovery

Another way is you want to discover multiple vendor devices, for example, Cisco and Juniper
devices. You should extend the Discover Generic SNMP action in the
Generic_SNMP_Cartridge.

Use the sysObjectld from RFC1213MIB to determine a device vendor. For example, Cisco
devices have the sysObijectld value that starts with 1.3.6.1.4.1.9, and Juniper device have the
sysObijectld value starting with 1.3.6.1.4.1.2636. Set up a range of IP addresses and scan
those IP addresses by polling the sysObijectld. Based on the sysObjectValue returned,
configure two conditions: one returns true if the sysObjectld value starting with 1.3.6.1.4.1.9
(meaning it is a Cisco device), or return false if otherwise; the other return true if the
sysObijectld value starting with 1.3.6.1.4.1.2636 (meaning it is a Juniper device), or return false
if otherwise.

The Generic_SNMP_Cartridge contains the Discover Generic SNMP action. Create a
discovery action by reusing this Discover generic SNMP action, which gives this new discovery
action all the functions to discover the generic SNMP devices (including the MIB 1l SNMP
discovery). Extend this discovery action to support Juniper devices by creating a Juniper
SNMP collector and a Juniper modeler to this discovery action. The two conditions determine
when to run the Cisco related collectors and modelers and when to run the Juniper collector
and modeler based on the device type.

This scenario is made up of high-level steps that are explained in greater detail in Design
Studio Modeling Network Integrity .

To extend a cartridge to discover devices from multiple vendors:

1. Create a Network Integrity cartridge project called Multi-Vendor. Make your cartridge
project dependent on the Generic_ SNMP_Cartridge cartridge project.

2. Create a discovery action called Discover Multi-Vendor.
3. In Discover Multi-Vendor, add the Discover Generic SNMP action as a processor.

4. Manually copy the JUNIPER-MIB to the MIB directory and to the SNMP adapter on the
Network Integrity server. See "Supporting New MIBs" and "Extending the SNMP JCA
Resource Adapter" for more information.

5. Create an SMMP processor called Juniper SNMP Collector and add it to Discover Multi-
Vendor as the last processor.

6. In Juniper SNMP Collector, add the OID jnxBoxDescr (from JUNIPER-MIB).

In a production environment, you would add more OIDs to poll and model more
information.In this example, only the description field is polled.

7. Create an SNMP processor called Juniper SNMP Modeler and add it to Discover Multi-
Vendor as the last processor. This processor takes the SNMP output parameter from
Juniper SNMP Collector as its input parameter. Implement this processor by implementing
the invoke method. In this example, only the description field for the Juniper device is
logged. In a realistic scenario, the complete model of the Juniper device would exist in this
invoke method.

The following is the Java snippet for the invoke method.

@verride
public void invoke(Di scoveryProcessor Cont ext context,
Juni per Processor Processor Request request) throws ProcessorException {
| ogger.log(Level .INFO, "Processing Juniper device " + request.get ScopeAddress());
Juni per SNMPCol | ect or ResponseType responseDoc =
request . get Juni per SNMPCol | ect or ResponseDocunent () ;
Di scoveryResul t Type result = responseDoc. get Di scoveryResul t();
Juni perM bM b j uni perM bResults = resul t. get Juni per M bResul ts();
i f(juniperMbResults !'=null) {

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 11

ORACLE

Developer's Guide

G34175-01

10.

11.

12.

13.

Chapter 6
Multiple Vendor SNMP Discovery

| ogger. |l og(Level . INFO "Juniper Device Description: " +
j uni per M bResul t's. get JnxBoxDescr());

}
}

Create an SNMP processor called Cisco SNMP Collector and add it to Discover Multi-
Vendor as the last processor.

Add the OIDs from downloaded CISCO MIBS within Cisco SNMP Collector.

Create an SNMP processor called Cisco SNMP Modeler and add it to Discover Multi-
Vendor as the last processor. This processor takes the SNMP output parameter from Cisco
SNMP Collector as its input parameter. Implement this processor by implementing the
invoke method. In this example, only the description field for the Cisco device is logged. In
a realistic scenario, the complete model of the Cisco device would exist in this invoke
method.

Create a Cisco condition that checks the sysObjectld to determine whether a device is a
Cisco device or not. This condition takes the mibiisnmpCollectorResponseDocument (an
output parameter from MIB Il SNMP Collector) as the input parameter. The following is a
Java snippet for this Cisco condition:

public class CiscoConditionlnpl inplements G scoCondition {
private static final String CISCO PREFIX = "1.3.6.1.4.1.9.";
@verride
public bool ean checkCondition(Di scoveryProcessor Cont ext context,
Ci scoRequest request) throws ProcessorException {
M BI | SNMPCol | ect or ResponseType snnpResponse = request
. get M bi i snnpCol | ect or ResponseDocunent () ;
| ogger. | og(Level . I NFQ, "CiscoConditionlnpl"
+ cont ext. get Processor Nane());
i f (snnmpResponse != null
&& snnpResponse. get Di scoveryStatus() == Di scoveryStatus. SUCCESS) {
| ogger.log(Level.INFQ, "C scoConditionlnpl discovery succeeded");
i f (snmpResponse. get Di scoveryResult().get Rfc1213M bResults() != null) {
String sysQojectld = snnpResponse. get Di scoveryResul t ()
.get Rf c1213M bResul t s(). get SysChj ect 1 () ;
| ogger.log(Level.INFQ, "Ci scoConditionlnpl raw sys object id:" +
syshj ectd);
if (sysObjectld !'=null) {
if (sysOhjectld.startsWth(".")) {
syshj ectld = sysChjectld. substring(1);
}
return sysCbjectld. startsWth(Cl SCO_PREFI X);
}
}
}
return fal se;
}
}

12. Create a Juniper condition, that checks the sysObijectld to determine whether a device
is a Juniper device. This condition takes the mibiisnmpCollectorResponseDocument (an
output parameter from MIB || SNMP Collector) as the input parameter. This Juniper
condition is similar to the Cisco condition. The difference is that the sysObjectld for Juniper
device starts with 1.3.6.1.4.1.2636.

Apply the Cisco condition to the following processors and set Equals to true:

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 8 of 11

ORACLE’

Chapter 6
Multiple Protocol Discoveries

a. Cisco SNMP Collector
b. Cisco SNMP Modeler
14. Apply the Juniper condition to the following Juniper processors and set Equals to true:
a. Juniper SNMP Collector
b. Juniper SNMP Modeler

Figure 6-3 shows the processor workflow of the Discover Multi-Vendor action and the
placement of the Juniper SNMP Collector and Juniper Modeler processors.

This discovery action inherits all the processors from the Discover Generic SNMP action. See
SNMP Discovery and UIM Integration Cartridge Guide for more information.

Figure 6-3 Discover Multi-Vendor Action

I 0092>

| SNMP Collector
vice UIM Importer
Cisco Modeler

DI Name Remodeler
Juniper Modeler
Cisco SNMP Collectar

MIB Il SNMP Modeler

MIB
Juniper SNMP Collector

CPU Property Initialize
MIB Il Properties Initializer
DI Name Remodel Initialize

UpdateMotificationStatus

Logical De
Generic SNMP Physical Modeler

Generic Device CPU Set Processor
Generic SNMP Logical Collector
Generic SNMP Logical Modeler

Generic SNMP Physical Collector

CPU Utilization Compare Processor

Multiple Protocol Discoveries

Developer's Guide

G34175-01

This scenario describes the steps required to extend an existing cartridge to discover data
using multiple protocols.

The following cartridges must be imported into the Design Studio and build without errors:

e Address_Handlers

e ora_ni_uim_device

¢ MIB_Il_SNMP_Cartridge

e« MIB_Il_UIM_Cartridge

e Generic_SNMP_Model

e Generic_SNMP_Cartridge
¢ UIM_Integration_Cartridge

In this scenario, a range of devices can be discovered. Some devices are SNMP-enabled;
some devices support an alternate protocol (for example, TL1). With a list of IP addresses for
each of these devices, the discovery action can dynamically discover a device using either
SNMP or the alternate protocol.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 9 of 11

ORACLE

Developer's Guide

G34175-01

Chapter 6
Multiple Protocol Discoveries

The Generic_SNMP_Cartridge contains the sample Discover Generic SNMP Device action.
Create a discovery action that reuses the Discover Generic SNMP Device action. This
discovery action can be extended to support the alternate protocol by creating a discovery
processor that implements the alternate protocol to this discovery action. To use a JCA
resource adapter for this alternate protocol, see "Working with JCA Resource Adapters".

Create a condition that checks whether the SNMP polling to a device is successful or not. If a
device supports SNMP, this condition returns true; otherwise if the device supports the
alternate protocol, this condition returns false. By applying this condition to the processors, the
discovery action can dynamically discover a device using either SNMP or the alternate
protocol.

This scenario is made up of high-level steps that are explained in greater detail in Design
Studio Modeling Network Integrity.

To extend a cartridge to discover devices using multiple protocols:

1. Create a discovery action called Discover MultiProtocol and make it dependent on the
Generic_SNMP_Cartridge cartridge project.

2. Create a discovery action called Discover Multi-Protocol.
3. In Discover Multi-Protocol, add the Discover Generic SNMP action as a processor.

4. Create a discovery processor called Alternate Protocol Collector to implement the
alternate protocol to discover a device and add it to Discover Multi-Protocol as the last
processor.

5. Implement Alternate Protocol Collector by implementing the invoke method. In this
example, one line is logged indicating that this processor implements an alternate protocol.
In a realistic scenario, implement the alternate protocol to discover a device in this invoke
method. The following is the Java snippet for the invoke method:

@verride
public void invoke(Di scoveryProcessor Context context,
Al ternat ePr ot ocol Col | ect or Processor Request request)
throws ProcessorException {
| ogger.log(Level . INFO "SNWP Failed - using alternate protocol to discover
device " + request. get ScopeAddress());

}

6. Create a condition called ShmpSucceeds that checks the SNMP results from MIB I
Collector to determine whether the SNMP discovery on a device is successful or not. This
condition takes mibiisnmpCollectorResponseDocument (an output parameter from MIB I
SNMP Collector) as the input parameter. The following is a Java snippet for this
SnmpSucceeds condition:

public class SnnpSucceedsConditionlnpl inplements SnnmpSucceedsCondition {
@verride
public bool ean checkCondition(Di scoveryProcessor Cont ext context,
SnnpSucceedsRequest request) throws ProcessorException {
M Bl | SNMPCol | ect or ResponseType snnpResponse =
request . get M bi i snnpCol | ect or ResponseDocunent () ;
return snnpResponse != null && snnpResponse. get Di scoveryStatus() ==
Di scoverySt at us. SUCCESS;
}
}

7. Apply the SnmpSucceeds condition to the following processors and set the Equals to be
true:

« MIB Il SNMP Collector
o MIB Il SNMP Modeler

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 10 of 11

ORACLE Chapter 6
Multiple Protocol Discoveries

* Generic SNMP Logical Collector
* Generic SNMP Logical Modeler

e DI Name Remodeler

e Generic SNMP Physical Collector
* Generic SNMP Physical Modeler

By applying the SnmpSucceeds condition, these processors are invoked only if the
SnmpSucceeds condition returns true.

8. Apply the SnmpSucceeds condition to the Alternate Protocol Collector processor and set
the Equals to be false.

Figure 6-4 shows the processor workflow of the Discover MultiProtocol action and the
placement of the Alternate Protocol Collector processor.

This discovery action inherits all the processors from the Discover Generic SNMP action. See
SNMP Discovery and UIM Integration Cartridge Guide for more information.

Figure 6-4 Discover MultiProtocol Action

D)D) 0020204

CPU Property Initializer
Generic Device CPU Set Processor
CPU Utilization Compare Processor
MIB Il Properties Initializer
DI Name Remodel Initializer
MIB Il SNMP Collector
MIB Il SNMP Modeler
Logical Device UIM Importer
Generic SNMP Logical Collector
Generic SNMP Logical Modeler
DI Name Remodeler
Generic SNMP Physical Collector
Generic SNMP Physical Modeler
UpdateNotificationStatus
Alternate Protocol Collector

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 11 of 11

Working with Automatic Discrepancy
Resolution

This chapter explains how to design a discrepancy detection action that allows Oracle
Communications Network Integrity to automatically resolve specific types of discrepancies.

About Automatic Discrepancy Resolution

Automatic discrepancy resolution enables Network Integrity to automatically resolve specific
discrepancies without the user having to interact with the Ul. Discrepancies are resolved as
part of the discrepancy detection scan.

Network Integrity identifies automatically resolved discrepancies. In the scan results,
automatically resolved discrepancies have the value autoResolve in the Submitted By and
Resolved By columns.

The NetworkintegritySDK cartridge project contains an abstract action that makes up the
framework for automatic discrepancy resolution.

Using the Design Studio for Integrity feature, extend cartridges that detect discrepancies with
the abstract automatic discrepancy resolution action. Oracle Communications Service Catalog
and Design - Design Studio creates the framework implementation for you to complete.

You can complete the implementation by creating either a custom processor or with a
properties file.

After you deploy your cartridges with the new implementation into the run-time application,
users of Network Integrity can configure scans that automatically resolve all the discrepancies
matching the implementation you created.

About the Automatic Discrepancy Resolution Solution

This section describes the components that make up the automatic discrepancy resolution
framework. Also, this section identifies reference implementations that you can use as
examples to help create your own solution.

Action and Processors

Developer's Guide
G34175-01

The NetworkintegritySDK cartridge project contains an abstract discrepancy detection action
called Auto Resolve Discrepancies. This abstract action contains the framework for automatic
discrepancy resolution.

The Auto Resolve Discrepancies action has the following processors:

e Check Auto Resolution Selected: This processor verifies whether a scan is configured with
the Auto Resolve Discrepancies option enabled. If enabled, this processor sets a flag to
run the next processors. This processor also filters the discrepancies to be resolved based
on the types selected in the UL. If no types are selected, all discrepancies are considered
for resolution.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE’

Chapter 7
About the Automatic Discrepancy Resolution Solution

* Identify Auto Resolving Discrepancies: This processor identifies the discrepancies that

match the customized implementation.

* Prepare Resolving Discrepancies: This processor puts all the identified discrepancies in

the DISCREPANCY_SUBMITTED state.

The automatic discrepancy resolution implementation can be completed with either a custom
processor or with a properties file. If you complete the implementation with a custom
processor, you must create a new discrepancy detection processor in the action that extends

the Auto Resolve Discrepancies action.

Figure 7-1 illustrates the processor workflow of the automatic discrepancy resolution solution.
The DD Processor for Java Implementation processor is not required for an implementation

that uses a properties file.

Figure 7-1 Auto Resolve Discrepancies Processor Workflow

)4

Check Auto Resolution Selected
DD Processor for Java
Implementation

Prepare Resolving Discrepancies

Identify Auto Resolving Discrepancies

Scan Parameter Groups and the Network Integrity Ul

NetworklIntegritySDK contains a scan parameter group called AutoResolutionParameter. This
scan parameter group adds the Auto Resolve Discrepancies check box to the Network
Integrity Ul Scan Configuration screen. It also adds check boxes for selecting various
discrepancy types for automatic resolution. Table 7-1 lists the discrepancies that appear on the

ul.

Table 7-1 AutoResolutionParameter Checkboxes

Discrepancy Type

Description

Auto Resolve Discrepancies

Select this checkbox to enable Auto Resolution.

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

ORACLE Chapter 7
Implementing Automatic Discrepancy Resolution

Table 7-1 (Cont.) AutoResolutionParameter Checkboxes

- __________________________|
Discrepancy Type Description

Resolve in Sequence Auto Resolution is performed in parallel threads by
default. Select this checkbox to resolve
discrepancies one after other.

Extra Entity (Entity+) This check box allows Extra Entity discrepancy
types to be selected for auto resolution.

Missing Entity (Entity-) This check box allows Missing Entity discrepancy
types to be selected for auto resolution.

Extra Association (Assoc+) This check box allows Extra Association
discrepancy types to be selected for auto
resolution.

Missing Association (Assoc-) This check box allows Missing Association
discrepancy types to be selected for auto
resolution.

Attribute Mismatch (Attribute) This check box allows attribute value mismatch
discrepancy types to be selected for auto
resolution.

By default, automatic discrepancy resolution is carried out in parallel. You can select the
Resolve in Sequence check box to resolve discrepancies sequentially.

Reference Implementations

The Network Integrity MSS Integration cartridge demonstrates a complete reference
implementation of automatic discrepancy resolution using a custom processor and a properties
file.

The Network Integrity Optical UIM Integration cartridge demonstrates a complete reference
implementation of automatic discrepancy resolution using a custom processor.

The Network Integrity Optical TMF814 CORBA cartridge includes the
AutoResolutionParameter scan parameter group.

Implementing Automatic Discrepancy Resolution

This section assumes that you already have valid, deployable cartridges that perform
discovery, import, and discrepancy detection, to which you are adding automatic discrepancy
resolution.

If your existing cartridge solution is made up of unsealed cartridges, see "Implementing
Automatic Discrepancy Resolution in an Unsealed Cartridge Solution.

If your existing cartridge solution contains one or more sealed cartridges, see "Implementing
Automatic Discrepancy Resolution in a Sealed Cartridge Solution".

Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge
Solution

See Design Studio Modeling Network Integrity for information about any of the steps in this
section.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE

Chapter 7
Implementing Automatic Discrepancy Resolution

To implement automatic discrepancy resolution when working with unsealed cartridges:

1. Inyour cartridge with a fully implemented discrepancy detection action:

e Add the abstract Auto Resolve Discrepancies action from NetworkintegritySDK as a
processor to a discrepancy detection action.

e Move the processors belonging to Auto Resolve Discrepancies to the end of the
Action Processors list.

2. Inyour cartridge with a fully implemented import or discovery action, add the
AutoResolutionParameter scan parameter group.

Add the scan parameter group to the action that is the result source for discrepancy
detection action.

3. Complete and customize the implementation for automatic discrepancy resolution. See
"Completing the Automatic Discrepancy Resolution Implementation” for more information.

4. Save and close all files.

5. Build, deploy, and test your cartridge.

Implementing Automatic Discrepancy Resolution in a Sealed Cartridge

Solution

Developer's Guide
G34175-01

See Design Studio Modeling Network Integrity for information about any of the steps in this
section.

To implement automatic discrepancy resolution when working with a sealed cartridge:

1. Create a new cartridge.
2. Add the following dependencies to the new cartridge:

« All sealed and unsealed cartridges being extended by the new cartridge

® Note

The new cartridge needs to extend a discovery action and a discrepancy
detection action. These actions may belong to one or more cartridges. At least
one of these cartridges is sealed.

e ora_ni_uim_device
* NetworkintegritySDK
* Address Handler
3. Create a new discovery action in the new cartridge.
4. For the new discovery action:
« Specify IPAddressHandler as the address handler.
» Specify Device as the result category.
* Add discoveryAction as a processor.
Where discoveryAction is a discovery action from another cartridge.

* Add the AutoResolutionParameter scan parameter group.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE’

9.

Chapter 7

Completing the Automatic Discrepancy Resolution Implementation

e Add or create any additional scan parameter groups required to configure the new

discovery action.
Create a new discrepancy detection action in the new cartridge.
For the new discrepancy detection action:

e Add ddAction as a processor.

Where ddAction is a discrepancy detection action from another cartridge that uses the

result source from discoveryAction.

* Add the abstract Auto Resolve Discrepancies action as a processor.

* Move the processors belonging to Auto Resolve Discrepancies to the end of the

Action Processors list.

» Specify the new discovery action as the result source.

For the discrepancy resolution action whose result source is ddAction, add the new

discrepancy detection action as a result source.

Complete and customize the automatic discrepancy resolution implementation for the new
cartridge. See "Completing the Automatic Discrepancy Resolution Implementation” for

more information.

Save and close all files.

10. Build, deploy, and test your cartridge.

Completing the Automatic Discrepancy Resolution
Implementation

You can complete the automatic discrepancy resolution implementation in the following ways:

Completing Automatic Discrepancy Resolution Using a Properties File

Completing Automatic Discrepancy Resolution with a Custom Processor

Completing Automatic Discrepancy Resolution Using a Properties File

Create a file called autoResolve.properties in the Isrc directory in the cartridge with the
automatic discrepancy resolution action. Use this properties file to configure the discrepancies
that can be automatically resolved.

The autoResolve.properties file is a list of property/value pairs. The accepted properties are:

See "About Discrepancy Types" for more information about discrepancies.

extraEntities, for resolving extra entity discrepancies.
missingEntities, for resolving missing entity discrepancies.
mismatches, for resolving attribute value mismatch discrepancies.
extraAssociation, for resolving extra association discrepancies.

missingAssociation, for resolving missing association discrepancies.

The properties file uses the following syntax:

property=res_| abel 1l:entity_typel[spec_namel:attrib_listl]|spec_name2:attrib_list2]{}...

where:

Developer's Guide
G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

ORACLE Chapter 7
Completing the Automatic Discrepancy Resolution Implementation

e property is one of the accepted properties. Each property can appear once in the
properties file. Each property can specify multiple resolution labels, entity types,
specification names, and attribute lists.

* res_label is the resolution label you want Network Integrity to use to resolve the
discrepancy. You can specify multiple resolution labels to resolve discrepancies to different
inventory systems.

e entity_type is a type of entity (for example, an Equipment or a Physical Device entity).

e spec_name is the specification for the entity type. You can omit spec_name if the same
resolution label applies to all specifications for the entity type.

e attrib_list is a comma-separated list of attributes on the entity or specification to be
resolved.

Example 7-1 demonstrates an automatic discrepancy resolution implementation completed
using a properties:

Example 7-1 Sample autoResolve.properties File

extraEntities=Correct in MSS: Equi pment[tnf814Equi pment Generic]{}Correct in
Ul M Logi cal Devi ce[devi ceGeneri c| Net work Devi ce]
m ssi ngEntities=Correct in MS:Equiprent{}Correct in
Ul M Logi cal Devi ce[devi ceGeneri c]
m smat ches=Cor r ect
in MSS: Equi pnent[:serial Nunber]{}Correct in
U M Physi cal Devi ce[Generi cPhysi cal Devi ceSpeci fi cati on: sof t wareVer, seri al Nunber |
CGeneri cPhysi cal Devi ceSpeci fi cation: har dwar eRev]
extraAssoci ations=Correct in U M Logical Device

Example 7-1 demonstrates a properties file that does all of the following:

e The line starting with extraEntities resolves in MSS all extra entity discrepancies on
equipment entities with the tmf814EquipmentGeneric specification, and resolves in UIM all
extra entity discrepancies on logical device entities with the deviceGeneric or Network
Device specifications.

e The line starting with missingEntities resolves in MSS all missing entity discrepancies on
logical device entities with the deviceGeneric specification.

e The line starting with mismatches resolves in MSS all serial number attribute value
mismatch discrepancies on equipment entities, and resolves in UIM all software version
and serial number attribute value mismatch discrepancies on physical device entities with
the GenericPhysicalDeviceSpecification specification, and all hardware revision attribute
value mismatch discrepancies on physical device entities with the
GenericPhysicalDeviceSpecification specification.

* The line starting with extraAssociation resolves in UIM all extra association discrepancies
on logical device entities.

See the reference implementation properties file in the MSS Integration cartridge to use as a
starting point. The reference properties file includes comments, examples, syntax, and tips to
help you complete your implementation.

Completing Automatic Discrepancy Resolution with a Custom Processor

See Design Studio Modeling Network Integrity for information about any of the steps in this
section.

To implement automatic discrepancy resolution with a custom processor:

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 7
Completing the Automatic Discrepancy Resolution Implementation

1. Inthe action that contains the Auto Resolve Discrepancies action, create a new
discrepancy detection processor.

2. Move the new processor after the Check Auto Resolution Selected processor.

3. Add autoResolutionManager as an input parameter for the new discrepancy detection
processor.

4. Create and complete the implementation class for the new discrepancy detection
processor.

See the reference implementation class from the Optical UIM Integration cartridge to use
as a starting point. The reference implementation class includes comments, examples,
syntax, and tips to help you complete your own implementation.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 7

Working with Incremental TMF814 Discovery

This chapter explains how to design a discovery action that allows Oracle Communications
Network Integrity to discover only the network elements that have changed in the network
since the last discovery scan.

About Incremental TMF814 Discovery

Incremental TMF814 discovery enables Network Integrity to discover only the network
elements, such as managed elements (MES), topological kinks (TLs), and subnetwork
connections (SNCs), that have changed in the network since the last discovery scan; thus,
avoiding the need to discover the entire network.

The NetworkIntegritySDK cartridge project contains an abstract action that makes up the
framework for incremental TMF814 discovery.

Using the Design Studio for Integrity feature, extend cartridges to run incremental discovery
using the abstract incremental discovery action.

After you deploy your cartridges with the new implementation into the run-time application,
users of Network Integrity can configure scans that discover only the network elements that
have changed in the network since the previous discovery scan.

About the Incremental TMF814 Discovery Solution

This section describes the components and the framework that make up the incremental
TMF814 discovery. Also, this section identifies reference implementations that you can use as
examples to help create your own solution.

Action and Processors

The NetworkIntegritySDK cartridge project contains an abstract discovery action called
Abstract Incremental Discovery, which contains the framework for incremental TMF814
discovery.

The Abstract Incremental Discovery action has the following processor:

* Incremental Discovery Initializer: This processor validates the scan parameters and
verifies whether the scan is enabled for incremental scan.

Copying Information From Previous Scan Results

The scanCartridgeSDK cartridge project contains the framework that copies the information
from previous scan results. The EntityCopier object provides the extensible interface that the
copier entities extend. The EntityCopierFactory object generates the copier instances.

Table 8-1 lists the copier objects used to copy information from the results of the previous
scan.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE Chapter 8
About the Incremental TMF814 Discovery Solution

Table 8-1 Copier Objects From Previous Scan Results

Entity Name Entity Copier
DevicelnterfaceConfigurationltem DevicelnterfaceConfigltemCopier
Devicelnterface DevicelnterfaceCopier
Equipment EquipmentCopier
EquipmentHolder EquipmentHolderCopier
InventoryGroup InventoryGroup
LogicalDeviceConfigurationltem LogicalDeviceConfigltemCopier
LogicalDevice LogicalDeviceCopier
Medialnterface MedialnterfaceCopier
PhysicalDevice PhysicalDeviceCopier
PhysicalPort PhysicalPortCopier

Pipe PipeCopier
PipeTerminationPoint PipeTerminationPointCopier
TrailPath TrailPathCopier

Service ServiceCopier

You must create your own copier objects for any custom entities in your custom cartridge
projects. Then you must modify the EntityCopier object to implement custom copier objects,
and extend the EntityCopierFactory object to add the new copier(s).

The EntityCopier interface has the following methods:

e copyEntity(T entity) - create a new T entity and copy all its attributes & specification
characteristics from T entity.

« deepCopyEntity(T entity) - create a new T entity and copy all its attributes, calls the
deepCopyEntity() for its child entities to be created.

For example, deepCopyEntity() of LogicalDeviceCopier, returns a new LogicalDevice with
its complete hierarchy which includes Medialnterfaces, Device Interfaces,
LogicalDeviceConfigurationltems, children of Medialnterfaces, Devicelnterfaces as similar
to the givenLogicalDevice entity. CopyEntity() of LogicalDevice returns the new
LogicalDevice entity by copying all attributes and specification characteristic from the given
LogicalDevice entity.

Scan Parameter Groups and the Network Integrity Ul

NetworkIntegritySDK contains a scan parameter group called IncrementalScanParameter. This
scan parameter group adds the Incremental Scan check box to the Network Integrity Ul Scan
Configuration screen.

Reference Implementations

The Network Integrity Incremental TMF814 Discovery cartridge demonstrates a complete
reference implementation of incremental TMF814 discovery. The Incremental TMF814
Discovery cartridge includes the IncrementalScanParameter scan parameter group.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE’

Chapter 8
Implementing Incremental TMF814 Discovery

Implementing Incremental TMF814 Discovery

This section assumes that you already have valid, deployable cartridges that perform
discovery, import, and discrepancy detection, to which you are adding incremental TMF814
discovery. You can implement incremental TMF814 discovery in a sealed cartridge solution.

Implementing Incremental TMF814 Discovery in a Sealed Cartridge Solution

See the Design Studio for Network Integrity Help for information about any of the steps in this

section.

To implement incremental TMF814 discovery when working with a sealed cartridge:

1. Create a new cartridge.

2. Add the following dependencies to the new cartridge:

All sealed and unsealed cartridges being extended by the new cartridge

@® Note

The new cartridge needs to extend a discovery action and a discrepancy
detection action. These actions may belong to one or more cartridges. At least
one of these cartridges is sealed.

ora_ni_uim_device
NetworkIntegritySDK
Address Handler

3. Create a new discovery action in the new cartridge.

4. For the new discovery action:

Specify IPAddressHandler as the address handler.

Specify Device as the result category.

Add discoveryAction as a processor.

Where discoveryAction is a discovery action from another cartridge.
Add Abstract Incremental Discovery action as a processor.

Add the IncrementalScanParameter scan parameter group.

Add or create any additional scan parameter groups required to configure the new
discovery action.

5. Complete and customize the incremental discovery implementation for the new cartridge.

6. Save and close all files.

7. Build, deploy, and test your cartridge.

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 3

Working with CPU Utilization-enabled
Discovery

This chapter explains how to design a discovery action that allows Oracle Communications
Network Integrity to discover devices based on their CPU utilization.

About CPU Utilization-enabled Discovery

CPU utilization-enabled discovery provides the mechanism to manage the discovery of devices
based on their CPU utilization. This is an optional feature that enables you to configure the
CPU utilization threshold value in cartridges, which enables the scan to skip the devices that
are running above the specified CPU utilization threshold value.The NetworkIntegritySDK
cartridge project contains an abstract action with two processors and one scan parameter
group that constitute the framework for CPU utilization-enabled discovery. See "Action and
Processors" and "Scan Parameter Groups and the Network Integrity UI" for more
information.Using Design Studio for this feature, extend cartridges to run discovery using the
Abstract CPU Utilization Discovery action.After you deploy your cartridges with the new
implementation into the run-time application, users of Network Integrity can configure scans
that discover only those devices that are running below the user-specified CPU utilization
threshold value.

About CPU Utilization-enabled Discovery Solution

This section describes the components and the framework that make up the incremental
TMF814 discovery. Also, this section identifies reference implementations that you can use as
examples to help create your own solution.

Action and Processors

The NetworkIntegritySDK cartridge project contains an abstract discovery action called
Abstract CPU Utilization Discovery, which contains the framework for CPU utilization-enabled
discovery.

The Abstract CPU Utilization Discovery action has the following processors:

e CPU Property Initializer: This processor initializes the cpuProperties file that contains
the deviceCPUValue variable, which is required to store the CPU utilization value of the
device obtained by the network.

* CPU Utilization Compare Processor: This processor is responsible for comparing the
user-specified threshold value with the CPU utilization value of the device obtained by the
network.

About the Mechanism of Comparing CPU Usage Values

The NetworkintegritySDK cartridge project contains the framework that compares the CPU
utilization threshold value specified by the user and the CPU utilization value obtained from the
network device. The user-specified CPU utilization threshold value is obtained by the CPU

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE

Chapter 9
Implementing CPU Utilization-enabled Discovery

Utilization Parameters scan parameter group. The Device CPU Set Processor uses the
cpuProperties file to set the CPU value of the device in the deviceCPUValue variable. This
value is used as an input for the CPU Utilization Compare Processor to compare the CPU
utilization value specified by the user and that of the device.

Scan Parameter Groups and the Network Integrity Ul

A new scan parameter group, CPU Utilization Parameters, has been added in the
NetworkIntegritySDK cartridge. The CPU Utilization Parameters scan parameter group is
available for selection in the Select Parameter Group list under the Scan Action Parameters
area.

In the Network Integrity Ul Scan Configuration screen, selecting the CPU Utilization
Parameters scan parameter group displays the CPU Utilization % field, which enables you to
specify the CPU utilization threshold value between 1 to 99.

Reference Implementations

The Network Integrity Generic SNMP cartridge demonstrates a complete reference
implementation of discovery based on CPU utilization. The Generic SNMP cartridge includes
the CPU Utilization Parameters scan parameter group from the NetworkintegritySDK
cartridge. See Network Integrity SNMP Discovery and UIM Integration Cartridge Guide for
more information.

Implementing CPU Utilization-enabled Discovery

This section assumes that you already have valid, deployable cartridges that perform
discovery, import, and discrepancy detection, to which you are adding CPU utilization-enabled
discovery. You can implement CPU utilization-enabled discovery in a sealed cartridge solution.

Implementing CPU Utilization-enabled Discovery in a Sealed Cartridge

Solution

Developer's Guide
G34175-01

You can implement CPU utilization-enabled discovery for any device that supports polling for
CPU utilization.

See Design Studio Modeling Network Integrity for information about any of the steps in this
section.

To implement CPU utilization-enabled discovery when working with a sealed cartridge:

1. Create a new cartridge.
2. Add the following dependencies to the new cartridge:

« All sealed and unsealed cartridges being extended by the new cartridge

@® Note

The new cartridge needs to extend a discovery action and a discrepancy
detection action. These actions may belong to one or more cartridges. At least
one of these cartridges is sealed.

e ora_ni_uim_device

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE

Chapter 9
Implementing CPU Utilization-enabled Discovery

NetworkintegritySDK
Address Handler

3. Create a new discovery action in the new cartridge.

4. For the new discovery action:

Specify IPAddressHandler as the address handler.

Specify Device as the result category.

Add discoveryAction as a processor.

Where discoveryAction is a discovery action from another cartridge.
Add Abstract CPU Utilization Discovery action as a processor.

Add the CPU Utilization Parameters scan parameter group.

Add or create any additional scan parameter groups required to configure the new
discovery action.

Add new processors to obtain the CPU usage value of the device from the network.
Set the deviceCPUValue variable in cpuProperties file for the Device CPU Set
Processor as follows:

request . get CouProperties(). set Devi ceCPU(devi ceCPWVal ue) ;

This sets the value of the deviceCPUValue variable, which is used by the CPU
Utilization Compare Processor (from NetworkintegritySDK cartiridge) to compare the
user-specified CPU utilization threshold value with CPU utilization value (set in
deviceCPUValue variable) of the device.

5. Complete and customize the incremental discovery implementation for the new cartridge.

6. Save and close all files.

7. Build, deploy, and test your cartridge.

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 3

Working with Application Context Work-
Managers

This chapter provides information about the use of WebLogic's ManagedExecutorService
work-manager in Oracle Communications Network Integrity.

This chapter contains the following sections:

« ManagedExecutorService Work-Manager Configuration

e Persist Results using Multi-Threading

e Discovery Scan using Multi-Threading

e Import Scan using Multi-Threading

ManagedExecutorService Work-Manager Configuration

A ManagedExecutorService extends the Java SE ExecutorService to provide methods for
submitting tasks for execution in a Java EE environment. A ManagedExecutorService is
usually used to run short-duration asynchronous tasks such as processing of asynchronous
methods in Enterprise JavaBean (EJB). When tasks are executed using
ManagedExecutorService, they run in managed threads, within the context of the application
that submitted them. Each task also has its own explicit transaction and does not participate in
the application component’s transaction.

Defining new MES Work-Manager within Network Integrity

Developer's Guide
G34175-01

You can define a new ManagedExceutorService work-manager for Network Integrity inside
weblogic-application.xml under the META-INF folder of Networkintergrity.ear. The scope of this
work-manager is limited to the application context.

<wor k- manager >
<name>wn wor kManager </ nane>
<max-t hreads- constraint >
<nanme>Wor kManager _maxt hr eads</ nane>
<count >5</ count >
<queue- si ze>1000</ queue- si ze>
</ max- t hr eads- const r ai nt >
</ wor k- manager >
<managed- execut or - servi ce>
<nanme>wrVES</ nane>
<di spat ch- pol i cy>wni wor kManager </ di spat ch- pol i cy>
</ managed- execut or - servi ce>
<resour ce- env-description>
<resour ce-env-ref-name> java: app/ env/ wrVES </resour ce- env-
ref - name>
<resource-link> wnVES </ resource-|ink>
</resource-env-description>

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE

Chapter 10
Persist Results using Multi-Threading

* max-threads-constraint: Defines the maximum number of active threads that the work-
manager will utilise.

* max-threads-constraint - name: Name of the max-threads-constraint.
* max-threads-constraint — count: Number of asynchronous threads.

* max-threads-constraint — queue-size: Size of the queue where all the submitted tasks
are held until they get picked up by JVM processor.

Using MES Work-Manager within Network Integrity

To make the work-manager available to Network Integrity, the below configuration must be
added inside the application.xml under META_INF folder of Networkintegrity.ear file.

<resour ce-env-ref >
<resour ce- env-ref - name>j ava: app/ env/ wrVES</ r esour ce- env-r ef - nane>
<resource-env-ref-
t ype>j avax. ent er pri se. concurrent . ManagedExecut or Ser vi ce</resour ce- env-r ef -
type>
</resource-env-ref>

Accessing MES Work-Manager within Network Integrity

You can use the below sample code snippet to access MES work-manager inside any java
class to process the tasks asynchronously.

private ManagedExecut or Service nes;
private static String MANAGED EXECUTOR_SERVI CE | MPORT_JNDI =
"java: app/ env/ waMES" ;
Initial Context ctx =
oracl e. conmuni cations. platformutil.UWils.getlnitial Context();
mes = (ManagedExecut or Servi ce)
ct x. | ookup(MANAGED EXECUTOR_SERVI CE_| MPORT_JNDI) ;

Persist Results using Multi-Threading

Developer's Guide

G34175-01

Network Integrity core has an API persistResults() which persists the entities from the result
group.

The process of storing the entities happens in a sequence. If the data volume is high, you may
need to store the results simultaneously. You can enable the parallel processing by enabling
the PersistResultsinParallel parameter. It is disabled by default. For more information on
enabling this parameter, see “NIConfigurationService MBean” in Network Integrity System
Administrator's Guide. When this parameter is enabled, Network Integrity will persist multiple
entities in a separate asynchronous task by using the MES work-manager configuration.

Network Integrity uses the below MES work-manager configuration by default. You may
change the thread count based on the requirement.

<wor k- manager >
<name>wn1 | nt egri t yWor kManager </ name>
<mex-t hreads- constraint>
<name>| nt egri t yWor kManager _nmaxt hr eads</ nane>
<count >5</ count >

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE Chapter 10
Discovery Scan using Multi-Threading

</ max-t hr eads- const rai nt >
</ wor k- manager >

Discovery Scan using Multi-Threading

The below work-manager configuration is used by NI discovery scans enabled by multi-
threading feature. You may adjust the configuration based on your requirements.

<wor k- manager >
<name>wn | nt egri t yDi scover Wr kManager </ nane>

<max-t hreads-constraint >
<name>I nt egrit yDi scover Wr kManager _maxt hr eads</ name>
<count >5</ count >
<queue- si ze>50000</ queue- si ze>

</ max-t hr eads- const r ai nt >

</ wor k- manager >

<resour ce-env-ref>

<resour ce- env-ref - name>j ava: app/ env/integrityDi scover MES</
resour ce- env-ref - name>

<resour ce-env-ref-
t ype>j avax. ent er pri se. concurrent . ManagedExecut or Ser vi ce</r esour ce- env-r ef -
type>
</resource-env-ref>

Import Scan using Multi-Threading

The below work-manager configuration is used by NI import scans enabled by multi-threading
feature. You may adjust the configuration based on your requirements.

<wor k- manager >

<name>wn1 | ntegri tyl nport Wor kManager </ nane>

<mex-t hreads- constraint>
<name>| nt egri tyl mpor t Wor kManager _naxt hr eads</ name>
<count >5</ count >
<queue- si ze>50000</ queue- si ze>

</ max-t hr eads- constr ai nt >
</ wor k- manager >

<resour ce-env-ref >

<resour ce- env-ref - name>j ava: app/ env/ i ntegrityl nport MES</
resour ce- env-ref - name>

<resource-env-ref-
t ype>j avax. ent er pri se. concurrent . ManagedExecut or Ser vi ce</resour ce- env-r ef -
type>
</resource-env-ref>

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 3

Working with the Network Integrity Web
Service

This chapter provides information about the Oracle Communications Network Integrity Web
service.

This chapter contains the following sections:

« About the Network Integrity Web Service

¢ Network Integrity Web Service Operations

* Network Integrity Web Service Special Function Operations

* Network Integrity Web Service Scenarios

* Network Integrity Web Service Samples

About the Network Integrity Web Service

The Network Integrity Web service enables Oracle Communications products and third party
applications to interact with Network Integrity and reduces integration complexity by providing a
standards-based interface. With the API, clients can externally manage Network Integrity
through Web services.

At a high-level the Network Integrity Web service supports:

e Configuring all types of scans

e Running discovery and reconciliation scans

e Retrieving scan results including any found discrepancies

e Initiating corrective actions such as reconciling discrepancies in Inventory systems.

Most operations that can be done in the Network Integrity Ul can be done through the Web
service. One operation that is currently not possible is to create or update the Import System
configured in the Network Integrity Ul. This is a one-time setup that must be done in the
Network Integrity Ul and cannot be done through the Web service.

The Network Integrity Web service is standards based using JAX-WS over HTTP.

Security

The Network Integrity Web service uses the same security as the Network Integrity Ul. Any
user who is able to login into the Web Ul can also use the Web service. This is assigned using
NetworklIntegrityRole.

@ Note

All Network Integrity Web service requests (Soap Ul requests and automated Web
service requests) must include a time stamp to access Network Integrity Web service.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 30

ORACLE

Chapter 11
About the Network Integrity Web Service

Model Based

The Network Integrity Web service operates on the Network Integrity Model. Knowledge of the
entities, attributes and relationships in the Network Integrity model is essential for using the
Web service.

For Network Integrity entity, attribute and relationship names, see Network Integrity Information
Model Reference.

For cartridge entity, parameter, and relationship names and descriptions, see your cartridge
documentation.

Concurrency with Ul and other Web Service Clients

Web service operations take immediate effect in the system and therefore there is scope for
collisions with users working in the Network Integrity Ul. If the Web service operation collides
with an update that another user has done in the Network Integrity Ul or another Web service
client, then an error is returned to a client. For example, if a Web service client deletes a
DisConfig (scan) while a user is editing the same scan in the Network Integrity Ul, the user
receives an error when that user attempt to save changes. If two clients (Web service client or
Network Integrity Ul user) are trying to update/delete the same entity, the last client to commit
changes receives the error.

Listing of Network Integrity Web Service Operations

All Network Integrity Web service operations must include a time stamp to satisfy the Web
service security policy. See "Security" for more information.

Table 11-1 describes the DisConfig operations. See Network Integrity Information Model
Reference for more information on the DisConfig entity.

Table 11-1 DisConfig Operations

Operation

Description

createDisConfig

This operation creates a new scan in the system (DisConfig is equivalent to scan in the Network
Integrity Ul).

deleteDisConfig

This operation deletes a scan from the system. All results and discrepancies produced by this scan are
deleted as well. A fault is returned if the delete fails.

This delete operation returns a fault if the scan to be deleted has discrepancies in the Received or the
Submitted state. Add <v1:forceDelete>YES</v1:forceDelete> to the delete request to force the scan
to delete and bypass this particular fault.

findDisConfig

This operation finds scans in the system based on search criteria provided in the request. Full scan
data is returned but client applications can limit the amount of data returned, or support paging, by
providing a fromRange and toRange in the request. A fault with a faultstring is returned if the find fails.

getDisConfig

This operation gets the details about a scan. It requires the DisConfig entity ID to be passed in the
request, and returns the full details of the scan including scan parameters, Scope Addresses, and
Schedule information in the response, if found. If not found, a fault is the response.

updateDisConfig

This operation updates a scan in the system. All the values for the scan are required in the request.
The client application should perform a get operation and update the required values for the update
operation. A fault with a faultstring is returned if the update fails.

Developer's Guide
G34175-01

Table 11-2 describes the DisScanRun operations. See Network Integrity Information Model

Reference for more information on the DisScanRun entity.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 30

ORACLE

Chapter 11
About the Network Integrity Web Service

Table 11-2 DisScanRun Operations

Operation

Description

findDisScanRun

This operation finds scan results in the system based on search criteria provided in the request
(DisScanRun is equivalent to scan results in the Network Integrity Ul). Full scan result data is
returned but client applications can limit the amount of data returned, or support paging, by providing
a fromRange and toRange in the request. A fault with a faultstring is returned if the find fails.

deleteDisScanRun

This operation deletes scan results from the system. All results and discrepancies attached to the
scan results are deleted as well. A fault with a faultstring is returned if the delete fails.

getDisScanRun

This operation gets all the details about an instance of scan results. The operation requires the
Discrepancy entity id to be passed in the request, and returns the full details of the Discrepancy
including references to the compare and reference Oracle Communications Information Model entities
which the discrepancy was found on. If not found, a fault is the response.

Table 11-3 describes the DisBlackoutSchedule operations. See Network Integrity Information

Model Reference for more information on the DisBlackoutSchedule entity.

Table 11-3 DisBlackoutSchedule Operations

Operation

Description

createDisBlackoutSchedule This operation creates a new blackout schedule in the system. A recurrence rule, duration,

and start time are required in the request. The blackout schedule can be assigned to scan
configurations on creation, or they can be associated later with an update operation.

deleteDisBlackoutSchedule This operation deletes a blackout schedule in the system. If any scans are associated with

the blackout schedule then the associations are removed as well. A fault with a faultstring
is returned if the delete fails.

getAllDisBlackoutSchedule This operation returns the full details of all the blackout schedules in the system. An empty

response is returned if no blackout schedules exist in the system.

getDisBlackoutSchedule This operation requires the blackout schedule entity id to be passed in the request, and

returns the full details of the blackout schedule in the response if found. If not found, a fault
is the response.

updateDisBlackoutSchedule This operation updates a blackout schedule in the system. All the values for the blackout

schedule are required in the request, not just the values changing. A fault with a faultstring
is returned if the update fails.

Table 11-4 describes the DisTag operations. See Network Integrity Information Model
Reference for more information on the DisTag entity.

Table 11-4 DisTag Operations

Operation

Description

createDisTag

This operation creates a new tag, a name for the tag is required. The parent tag entity id can be
provided in the creation or can be add after in an update request. A fault with a faultstring is returned
if the delete fails.

deleteDisTag This operation deletes the specified tag and all child tags. The entity id of the tag to be deleted is
required. If any scans are associated with the tag then the associations are removed as well. A fault
with a faultstring is returned if the delete fails.

getDisTag This operation requires the tag entity id to be passed in the request, and returns the full details of the

tag including all child tags in the response, if found. If not found, a fault is the response.

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 30

ORALCLE Chapter 11
About the Network Integrity Web Service

Table 11-4 (Cont.) DisTag Operations

e __|
Operation Description

getAllRootDisTags | This operation returns the full details of all the tags configured in the system. The root tags returned
also include the details of children tag entities. A fault with a faultstring is returned if an error occurs.

updateDisTag This operation updates a tag, an entity id and name for the tag is required. All the values for the

blackout schedule are required in the request, not just the values that are changing. Modifications to
the hierarchy must be performed on the child tag, for example, to make a child tag a root tag call the
update operation with no parent tags specified. A fault with a faultstring is returned if the update fails.

Table 11-5 describes the DisDiscrepancy operations. See Network Integrity Information Model
Reference for more information on the DisDiscrepancy entity.

Table 11-5 DisDiscrepancy Operations

|
Operation Description

findDisDiscrepancy This operation finds Discrepancies in the system based on search criteria provided in the
request. The search criteria available in the Web service operation is the same as the criteria
available in the Network Integrity Ul (DisScanRun is equivalent to scan results in the Network
Integrity Ul). Full Discrepancy data is returned but client applications can limit the amount of data
returned, or support paging, by providing a fromRange and toRange in the request. A fault with a
faultstring is returned if the find fails.

getDisDiscrepancy This operation gets all the details about a Discrepancy. The operation requires the Discrepancy
entity id to be passed in the request, and returns the full details of the Discrepancy including
references to the compare and reference Information Model entities which the discrepancy was
found on. If not found, a fault is the response.

updateDisDiscrepancy | This operation updates a discrepancy in the system. All the values for DisDiscrepancy are
required in the request, not just the values changing. The valid values of status are:

. DISCREPANCY_OPENED

. DISCREPANCY_IGNORED

. OPERATION_IDENTIFIED

. OPERATION_SUBMITTED

. OPERATION_RECEIVED

. OPERATION_NOT_IMPLEMENTED

. OPERATION_PROCESSED

. OPERATION_FAILED

The operation value is equivalent to resolution action value in the Network Integrity Ul and the
valid values are dependent on what discrepancy resolution are currently installed in the system.
A fault with a faultstring is returned if the update fails.

Table 11-6 describes the DisPlugin operations. See Network Integrity Information Model
Reference for more information on the DisPlugin entity.

Table 11-6 DisPlugin Operation

|
Operation Description

getAllDisAssimilationPlugin This operation returns details about all assimilation plugins deployed in the
system (AssimilationPlugin is equivalent to assimilation/scan action in the
Network Integrity Ul).

getAllDisInventorylmportPlugin This operation returns details about all import plugins deployed in the system
(InventorylmportPlugin is equivalent to import/scan action in the Network
Integrity Ul).

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 30

ORACLE Chapter 11
About the Network Integrity Web Service

Table 11-6 (Cont.) DisPlugin Operation

e
Operation Description

getAlIDisNetworkDiscoveryPlugin This operation returns details about all discovery plugins deployed in the
system (NetworkDiscoveryPlugin is equivalent to discovery/scan action in the
Network Integrity Ul).

getAllDisDiscrepancyDetectionPlugin This operation returns details about all discrepancy detection plugins deployed
in the system (Discrepancy Detection Plugin is equivalent to a discrepancy
detection action)

getAllDisDiscrepancyResolutionPlugin This operation returns details about all discrepancy resolution plugins deployed
in the system (Discrepancy Resolution Plugin is equivalent to a discrepancy
resolution action)

getDisAssimilationPlugin This operation returns details about an assimilation plugin deployed in the
system (AssimilationPlugin is equivalent to assimilation/scan action in the
Network Integrity Ul). The request requires an Assimilation Plugin entity id to
be passed, and returns the full details of the Assimilation Plugin in the
response if found. If not found, a fault is the response.

getDislnventorylmportPlugin This operation returns details about an import plugin deployed in the system
(InventorylmportPlugin is equivalent to import/scan action in the Network
Integrity Ul). The request requires an Import Plugin entity id to be passed, and
returns the full details of the Import Plugin in the response if found. If not found,
a fault is the response.

getDisNetworkDiscoveryPlugin This operation returns details about a discovery plugin deployed in the system
(NetworkDiscoveryPlugin is equivalent to discovery/scan action in the Network
Integrity Ul). The request requires a Discovery Plugin entity id to be passed,
and returns the full details of the Discovery Plugin in the response if found. If
not found, a fault is the response.

getDisDiscrepancyDetectionPlugin This operation returns details about an discrepancy detection plugin deployed
in the system (Discrepancy Detection Plugin is equivalent to a discrepancy
detection action). The request requires an Discrepancy Detection Plugin entity
id to be passed, and returns the full details of the Discrepancy Detection Plugin
in the response if found. If not found, a fault is the response.

getDisDiscrepancyResolutionPlugin This operation returns details about an discrepancy resolution plugin deployed
in the system (Discrepancy Resolution Plugin is equivalent to a discrepancy
resolution action). The request requires an Discrepancy Resolution Plugin
entity id to be passed, and returns the full details of the Discrepancy
Resolution Plugin in the response if found. If not found, a fault is the response.

Table 11-7 describes the DefaultDisInvetoryConfig operations.

Table 11-7 DefaultDisInventoryConfig

o,
Operation Description

getDefaultDisInventoryConfig This operation returns the inventory system configured in the Network Integrity system.
This is the inventory system configuration that is entered in the “Manage Import System"
task of the Network Integrity Ul. The Import System cannot be created or updated
through the Web service; it must be done using the Network Integrity Ul.

Table 11-8 describes the Special operations.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 30

ORACLE

Chapter 11
About the Network Integrity Web Service

Table 11-8 Special Operations

Operation

Description

startScan

This operation starts a scan. The response returns a reference to the scan result entity so that
the client application can monitor the progress of the scan. (DisScanRun is equivalent to the
scan results in the Network Integrity Ul). If the scan is already running or in the process of
stopping then the startScan operation fails. If the scan could not be started, a fault with a reason
is the response.

stopScan

This operation stops a scan that is running. The scan is set to a STOPPING state immediately
and then transition to STOPPED when actually ended. If the scan is not currently running, this
call is a no-op. If the scan could not be set to Stopping, a fault with a reason is the response.

submitDisDiscrepancyR
esolutionOperations

This operation submits the list of discrepancies provided in the request for resolution processing.
The status of the discrepancies must be 'OPERATION_IDENTIFIED' to submit them, otherwise a
fault is returned. A fault with a faultstring is returned if the operation fails.

getLatestScanStatus

This operation returns the scan status for the most recent execution of a scan. This operation is
more efficient than getDisScanRun and therefore is more appropriate for client applications that
are monitoring the status of a scan (DisConfig is equivalent to scan in the Network Integrity Ul).
A fault with a faultstring is returned if the operation fails.

Table 11-9 describes the Information Model entity operations. Information Model entities are
described in Oracle Communications Information Model Reference and Network Integrity
Information Model Reference.

Table 11-9 Information Model Entity Operations

Operation

Description

getRootEntity

This operation gets all the details about a discovered, imported, or assimilated root
Information Model entity. The root entity id for the request is obtained from either a
getDisScanRun operation response or findDisScanRun operation response. The id is
found in the 'rootEntityRefsRef' element in the result groups. Multiple ids can be passed in
the request. The response entity can be many different types depending on what the
cartridge persisted in the result group. An example root entity type is Physical Device or
Logical Device, but other Information Model types are possible. If not found, a fault is the
response.

getResultEntity

A generic operation to get any type of Information Model entity given an entityld and the
entity type. Multiple entities can be retrieved in a single request. If not found, a fault is the
response.

getSpecification

This operation gets all the details about specification deployed in the system. Most
Information Model entities support specifications which is blueprint for what
characteristics are supported, among other things. All the characteristics defined in this
specification are returned. Specifications are deployed to the system when cartridges
containing them are deployed. If not found, a fault is the response.

getLogicalDevice

This operation requires the LogicalDevice entity id to be passed in the request, and
returns the full details of the LogicalDevice if found. If not found, a fault is the response.

getDevicelnterface

This operation requires the Devicelnterface entity id to be passed in the request, and
returns the full details of the Devicelnterface if found. If not found, a fault is the response.

getMedialnterface

This operation requires the Medialnterface entity id to be passed in the request, and
returns the full details of the Medialnterface if found. If not found, a fault is the response.

getLogicalDeviceAccount

This operation requires the LogicalDeviceAccount entity id to be passed in the request,
and returns the full details of the LogicalDeviceAccount if found. If not found, a fault is the
response.

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 30

ORACLE Chapter 11
About the Network Integrity Web Service

Table 11-9 (Cont.) Information Model Entity Operations

Operation Description

getPhysicalDevice This operation requires the PhysicalDevice entity id to be passed in the request, and
returns the full details of the PhysicalDevice if found. If not found, a fault is the response.

getEquipment This operation requires the Equipment entity id to be passed in the request, and returns
the full details of the Equipment if found. If not found, a fault is the response.

getEquipmentHolder This operation requires the EquipmentHolder entity id to be passed in the request, and
returns the full details of the EquipmentHolder if found. If not found, a fault is the
response.

getPhysicalPort This operation requires the PhysicalPort entity id to be passed in the request, and returns
the full details of the PhysicalPort if found. If not found, a fault is the response.

getPhysicalConnector This operation requires the PhysicalConnector entity id to be passed in the request, and
returns the full details of the PhysicalConnector if found. If not found, a fault is the
response.

getCustomObject This operation requires the CustomObject entity id to be passed in the request, and

returns the full details of the CustomObiject if found. If not found, a fault is the response.

getCustomNetworkAddress This operation requires the CustomNetworkAddress entity id to be passed in the request,
and returns the full details of the CustomNetworkAddress if found. If not found, a fault is
the response.

getTelephoneNumber This operation requires the TelephoneNumber entity id to be passed in the request, and
returns the full details of the TelephoneNumber if found. If not found, a fault is the
response.

getinventoryGroup This operation requires the InventoryGroup entity id to be passed in the request, and
returns the full details of the InventoryGroup if found. If not found, a fault is the response.

getService This operation requires the Service entity id to be passed in the request, and returns the
full details of the Service if found. If not found, a fault is the response.

getNetwork This operation requires the Network entity id to be passed in the request, and returns the
full details of the Network if found. If not found, a fault is the response.

getNetworkNode This operation requires the NetworkNode entity id to be passed in the request, and
returns the full details of the NetworkNode if found. If not found, a fault is the response.

getNetworkEdge This operation requires the NetworkEdge entity id to be passed in the request, and
returns the full details of the NetworkEdge if found. If not found, a fault is the response.

getPipe This operation requires the Pipe entity id to be passed in the request, and returns the full
details of the Pipe if found. If not found, a fault is the response.

getPipeTerminationPoint This operation requires the PipeTerminationPoint entity id to be passed in the request,
and returns the full details of the PipeTerminationPoint if found. If not found, a fault is the
response.

getPipeDirectionality This operation requires the PipeDirectionality entity id to be passed in the request, and
returns the full details of the PipeDirectionality if found. If not found, a fault is the
response.

getTrailPath This operation requires the TrailPath entity id to be passed in the request, and returns the
full details of the TrailPath if found. If not found, a fault is the response.

getGeographicPlace This operation requires the GeographicPlace entity id to be passed in the request, and
returns the full details of the GeographicPlace if found. If not found, a fault is the
response.

getGeographicAddress This operation requires the GeographicAddress entity id to be passed in the request, and
returns the full details of the GeographicAddress if found. If not found, a fault is the
response.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 30

ORACLE’

Chapter 11
Network Integrity Web Service Operations

Table 11-9 (Cont.) Information Model Entity Operations

Operation

Description

getGeographicAddressRange

This operation requires the GeographicAddressRange entity id to be passed in the
request, and returns the full details of the GeographicAddressRange if found. If not found,
a fault is the response.

getGeographicLocation

This operation requires the GeographicLocation entity id to be passed in the request, and
returns the full details of the GeographicLocation if found. If not found, a fault is the
response.

getGeographicSite This operation requires the GeographicSite entity id to be passed in the request, and
returns the full details of the GeographicSite if found. If not found, a fault is the response.
getNetworkNodeRole This operation requires the NetworkNodeRole entity id to be passed in the request, and

returns the full details of the NetworkNodeRole if found. If not found, a fault is the
response.

getPhysicalConnectorRole

This operation requires the PhysicalConnectorRole entity id to be passed in the request,
and returns the full details of the PhysicalConnectorRole if found. If not found, a fault is
the response.

getPipeRole

This operation requires the PipeRole entity id to be passed in the request, and returns the
full details of the PipeRole if found. If not found, a fault is the response.

getPhysicalPortRole

This operation requires the PhysicalPortRole entity id to be passed in the request, and
returns the full details of the PhysicalPortRole if found. If not found, a fault is the
response.

getDevicelnterfaceRole

This operation requires the DevicelnterfaceRole entity id to be passed in the request, and
returns the full details of the DevicelnterfaceRole if found. If not found, a fault is the
response.

getLogicalDeviceRole

This operation requires the LogicalDeviceRole entity id to be passed in the request, and
returns the full details of the LogicalDeviceRole if found. If not found, a fault is the
response.

getCustomObjectRole

This operation requires the CustomObjectRole entity id to be passed in the request, and
returns the full details of the CustomObjectRole if found. If not found, a fault is the
response.

getPhysicalDeviceRole

This operation requires the PhysicalDeviceRole entity id to be passed in the request, and
returns the full details of the PhysicalDeviceRole if found. If not found, a fault is the
response.

getEquipmentRole

This operation requires the EquipmentRole entity id to be passed in the request, and
returns the full details of the EquipmentRole if found. If not found, a fault is the response.

getNetworkEdgeRole

This operation requires the NetworkEdgeRole entity id to be passed in the request, and
returns the full details of the DeviNetworkEdgeRole celnterface if found. If not found, a
fault is the response.

getPlaceRole

This operation requires the PlaceRole entity id to be passed in the request, and returns
the full details of the PlaceRole if found. If not found, a fault is the response.

getNetworkRole

This operation requires the NetworkRole entity id to be passed in the request, and returns
the full details of the NetworkRole if found. If not found, a fault is the response.

Network Integrity Web Service Operations

Most of the operations defined in the Network Integrity Web service follow the naming pattern

of:

e Create

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 8 of 30

ORACLE

Create

Developer's Guide
G34175-01

Chapter 11
Network Integrity Web Service Operations

¢ Get

° GetAll
e Delete
* Update
e Fin

However, a few of the Web service operations do not follow this pattern. See "Network Integrity
Web Service Special Function Operations" for more information.

Each create operation inserts a new entity into the system. For example, the
createDisBlackoutSchedule operation creates a new blackout schedule in the system.

If successful, the changes are immediately available in the system and can be viewed in the
Network Integrity UL.

The request for each create operation is named create<EntityType>Request. The request
contains the full details of the new entity to be created. Multiple entities cannot be created in a
single request, only a single entity is supported.

The following fields should not be supplied in the create request as they are populated
automatically by the system.

e entityld

e entityVersion

* lastModifiedDate
* lastModifiedUser
« createdDate

* createdUser

The response from each create operation is hamed create<EntityType>Response and
contains the entityld of the created entity if the operation was successful. The entityld returned
is used in subsequent get and delete operations.

If a create operation fails, the response contains a fault with a faultCode, faultString, and extra
CrudFault details.

Example 11-1 Create Request

<vl: creat eDi sTagRequest >
<vl:di sTag>
<v13: name>Sanpl e Tag</v13: nane>
<v13: description>Created through Wb Service</v13: description>
</v1:di sTag>
</v1l:createD sTagRequest >

Example 11-2 Create Response

<ns118: cr eat eDi sTagResponse>
<ns118: di sTagRef >
<ns2:entityl d>9584</ns2: entityld>
</ ns118: di sTagRef >
</ ns118: cr eat eDi sTagResponse>

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 9 of 30

ORACLE

Chapter 11
Network Integrity Web Service Operations

Example 11-3 Create Failure (a hame was not specified for the tag)

<ns2: Faul t >
<faul t code>ns2: Server</faul t code>
<faul t string> LLEGAL_NAME</faul tstring>
<detail >
<ns158: crudFaul t >
<ns152: root St ackTrace/ >
</ ns158: crudFaul t >
</detail >
</ ns2: Faul t >

Entity Type Support

Get

Developer's Guide
G34175-01

Each create operation supports the following entity types:

« DisBlackoutSchedule
* DisTag
* DisConfig

Each get operation retrieves an entity from the system. The get request requires a unique
entity id and the entity details are returned in the response. For example, the
getDisBlackoutSchedule operation returns all the details of a specific blackout schedule in the
system.

The request for each get operation is named get<EntityType>Request. The request contains
a single entityld of the entity to be retrieved. Only one entityld can be specified in the request,
multiples are ignored. The exception to this is the getRootEntity and getResultEntity
operations; these operations accept multiple entity id values.

If the entityld provided is not found in the system a fault is returned, not an empty response.

The response from each get operation is named get<EntityType>Response and contains the
details of the entity retrieved from the system.

If a get operation fails, the response contains a fault with a faultCode, faultString, and extra
CrudFault details.

Example 11-4 Get Request

<v1: get Di sTagRequest >
<v1: di sTagRef >
<vll:entityl d>9586</v1l:entityld>
</v1: di sTagRef >
</v1: get Di sTagRequest >

Example 11-5 Get Response

<ns118: get Di sTagResponse>
<ns118: di sTag>
<ns2:entityl d>9586</ns2:entityl d>
<ns2:entityVersion>1</ns2:entityVersion>
<ns12: par ent Ref >
<ns2:entityl d>9584</ns2:entityl d>
</ ns12: par ent Ref >
<ns12: name>Sanpl e Child Tag</ns12: nane>
<ns12: description>Child Created through W</ ns12: descri pti on>

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 10 of 30

ORACLE

</ ns118: di sTag>

</ ns118: get Di sTagResponse>

Example 11-6 Get Failure (entity id was not found)

<ns2: Faul t >

<faul t code>ns2: Server</faul t code>

Chapter 11
Network Integrity Web Service Operations

<faul tstring>Cannot find Tag with entity Id 9586</faul tstring>

<detail >
<ns158: crudFaul t >
<ns151: root St ackTrace/ >
</ ns158: crudFaul t >
</detail >

</ ns2: Faul t >

Entity Type Support

Each get operation supports the following entity types:

Developer's Guide
G34175-01

DisBlackoutSchedule
DisTag

DisConfig

DisDiscrepancy
DisInventorylmportPlugin
DisNetworkDiscoveryPlugin
DisAssimilationPlugin
DisDiscrepancyResolutionPlugin
DisDiscrepancyDetectionPlugin
DisScanRun

RootEntity

ResultEntity

Specification
DefaultDisInventoryConfig
Devicelnterface
PhysicalDevice
EquipmentHolder
Medialnterface

Equipment

LogicalDevice

PhysicalPort
PhysicalConnector

CustomObject

Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 30

ORACLE Chapter 11
Network Integrity Web Service Operations

Get All

Each get all operation retrieves all entities of a certain type from the system. For example, the
getAllDisBlackoutSchedule operation returns all the details of all the blackout schedules
currently in the system.

These operations are only available for entities that would not typically have many entries in
the system and that do not support a find operation.

The request for each get all operation is named getAll<EntityType>Request. The request
does not support any request parameters.

The response from each get all operation is named getAll<EntityType>Response and
contains the details of all the entities retrieved from the system.

If a get all operation fails, the response contains a fault with a faultCode, faultString, and extra
CrudFault details. Since the get all operations do not take any input parameters, they should
only fail due to environment or authentication issues.

Example 11-7 Get All Request

<v1l: get Al | Root Di sTagsRequest/ >

Example 11-8 Get All Response

<ns118: get Al | Root Di sTagsResponse>
<ns118: root Di sTags>
<ns2:entityl d>9584</ns2: entityld>
<ns2:entityVersion>3</ns2:entityVersion>
.etc
</ ns118: r oot Di sTags>
<ns118: root Di sTags>
<ns2:entityl d>9585</ns2: entityld>
<ns2:entityVersion>3</ns2:entityVersion>
.etc
</ ns118: r oot Di sTags>
</ ns118: get Al | Root Di sTagsResponse>

Entity Type Support

Each get all operation supports the following entity types:

« DisBlackoutSchedule

e RootDisTag

e DisInventorylmportPlugin

» DisNetworkDiscoveryPlugin

e DisAssimilationPlugin

e DisDiscrepancyResolutionPlugin

e DisDiscrepancyDetectionPlugin

Delete

Each delete operation removes an entity from the system. For example, the
deleteDisBlackoutSchedule operation removes a particular blackout schedule from the system.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 12 of 30

ORACLE

Chapter 11
Network Integrity Web Service Operations

If successful, the result of a delete operation is immediately viewable in the Network Integrity
Ul

The request for each delete operation is named delete<EntityType>Request. The request
contains a single entityld of the entity to be deleted. Only one entityld can be specified in the
request, multiples are ignored.

If the entityld provided is not found in the system, or if the entity cannot be deleted, a fault is
returned.

@® Note

The deleteDisConfig operation has an additional optional parameter you can enter in
the delete request to force a scan to be deleted, even if it has associated
discrepancies in the Running or Submitted state. See Table 11-1 for more information.

The response from each delete operation is named delete<EntityType>Response and
contains the entityld of the entity deleted, which matches the id in the request.

If a delete operation fails, the response contains a fault with a faultCode, faultString, and extra
CrudFault details.

Example 11-9 Delete Request

<v1: del et eDi sTagRequest >
<v1: di sTagRef >
<vll:entityld>9579</v1l:entityld>
</v1: di sTagRef >
</v1: del et eDi sTagRequest >

Example 11-10 Delete Response

<ns118: del et eDi sTagResponse>
<ns118: di sTagRef >
<ns2:entityl d>9579</ns2: entityl d>
</ ns118: di sTagRef >
</ ns118: del et eDi sTagResponse>

Example 11-11 Delete Failure (entity id was not found)

<ns2: Faul t >
<faul t code>ns2: Server </ faul t code>
<faultstring>Cannot find Tag with Entity 1d9579</faul tstring>
<detail >
<ns158: crudFaul t >
<ns151:root StackTrace/ >
</ ns158: crudFaul t >
</detail >
</ ns2: Faul t >

Entity Type Support

Developer's Guide

G34175-01

Each delete operation supports the following entity types:

DisBlackoutSchedule

DisTag

DisConfig

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 13 of 30

ORACLE

Update

Developer's Guide

G34175-01

Chapter 11
Network Integrity Web Service Operations

 DisScanRun

Each update operation modifies an existing entity in the system. For example, the
updateDisBlackoutSchedule operation updates a blackout schedule currently in the system.

If successful, the update is immediately available in the system and can be viewed in the
Network Integrity UL.

The request for each update operation is named update<EntityType>Request. The request
must contain the full details of the new entity to be created, not just the fields that have
changed. Multiple entities cannot be updated in a single request, only a single entity is
supported. Unlike the create operation, the entityld must be supplied in the update operation
to uniquely identity which entity to modify.

The entity version passed in the request must match the version that is held on the server. The
entity version is incremented by the system every time the entity is modified. The entity version
ensures that the entity has not been changed by some other user between when the entity was
last retrieved and when updated. If the entity has been changed by some other user a fault is
returned as follows: Entity Version Mismatch: Input Version=1::Latest Version=2

Because the full details of the entity are required in the update request, the recommended
steps are to do a get, get all, or find operation to get the details of the entity, and then copy
these details into the update request, and modify the desired fields.

The following fields should not be supplied in the update request as they are populated
automatically by the system or are not currently used.

* lastModifiedDate
* lastModifiedUser
e createdDate
* createdUser

Each response from the update operation is named update<EntityType>Response and
contains the entityld of the updated entity if the operation was successful.

If the update operation fails, the response contains a fault with a faultCode, faultString, and
extra CrudFault details.

Example 11-12 Update Request

<v1l: updat eDi sTagRequest >
<v1:di sTag>
<vll:entityl d>9586</v1l:entityld>
<v1l:entityVersion>1</vll:entityVersion>
<v12: par ent Ref >
<v2:entityl d>9584</v2: entityld>
</v12: par ent Ref >
<v11: name>Sanpl e Child Tag</v1ll:name>
<v1l: description>Mdified through Ws</v1l: description>
</v1:di sTag>
</v1: updat eDi sTagRequest >

Example 11-13 Update Response

<ns118: updat eDi sTagResponse>
<ns118: di sTagRef >
<ns2:entityld>9586</ns2:entityld>

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 14 of 30

ORACLE

Chapter 11
Network Integrity Web Service Operations

</ ns118: di sTagRef >
</ ns118: updat eDi sTagResponse>

Example 11-14 Update Failure (wrong entity version supplied)

<ns2: Faul t >
<faul t code>ns2: Server</faul t code>
<faultstring>Entity Version Msmatch: Input Version=2::Latest Version=3</faultstring>
<detail >
<ns158: crudFaul t >
<ns151: root St ackTrace/ >
</ ns158: crudFaul t >
</detail >
</ ns2: Faul t >

Entity Type Support

Find

Each update operation supports the following entity types:

e DisBlackoutSchedule
* DisTag
* DisConfig

* DisDiscrepancy

Each find operation retrieves a list of entities that match filter search criteria. For example, the
findDisConfig operation retrieves a list DisConfig entities currently in the system that match a
given set of search criteria.

Each find operation is equivalent in capability to the Search screens in the Network Integrity
ul.

The request for each find operation is named find<EntityType>Request. The find request can
contain:

e From and To Ranges

e Sorting Fields (Ascending and Descending)
* Attribute Criteria

* Extended Attribute Criteria

e Criteria Operator (Equals, Contains, etc.)

e Conjunction Criteria (AND/OR)

Entity Type Support

Developer's Guide

G34175-01

Each find operation supports the following entity types:

DisConfig

DisScanRun

DisDiscrepancy

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 15 of 30

ORACLE

Chapter 11
Network Integrity Web Service Operations

From and To Range

The fromRange and toRange are used to limit the number of rows returned to a client. These
fields support paging in Uls through the Web service. It is also useful to improve performance
and memory usage by retrieving many rows in smaller, more manageable chunks.

If the fromRange is not provided the default value is 0 which means the find returns the first
row on. If the toRange is not provided in the request then the find operation is unbounded and
returns all rows to the end.

<v1:findD sConfi gRequest >
<v1:disConfigSearchCriteria>
<f romRange>0</ f r onRange>
<t oRange>20</ t oRange>
<descendi ng>nane</ descendi ng>
<di sConfi gConjunctionCriterialten>
<naneAttributeCriteria>
<val ue>Ci sco</ val ue>
<operat or > EQUALS</ oper at or >
</nanmeAttributeCriteria>
<conj uncti on>AND</ conj unct i on>
</ di sConfi gConj unctionCriterialten
</v1:di sConfigSearchCriteria>
</v1: findDi sConfi gRequest >

Ascending and Descending

The ascending and descending fields control how the entity results are sorted in the response.
The ascending and descending fields hold the name of the attribute to be sorted on. Multiple
ascending and descending fields can be specified to add more than one level of sorting. If both
an ascending and descending sort field are not provided in the request then the order of the
entities returned is not sorted, and returned in the order they are persisted.

<v1:findD sConfi gRequest >
<v1:disConfigSearchCriteria>
<f ronRange>0</ f r onRange>
<t oRange>20</ t oRange>
<descendi ng>name</ descendi ng>
<di sConfi gConjunctionCriterialtenm>
<naneAttributeCriteria>
<val ue>Ci sco</ val ue>
<oper at or >EQUALS</ oper at or >
</nanmeAttributeCriteria>
<conj unct i on>AND</ conj uncti on>
</ di sConfi gConj unctionCriterialtenp
</v1:di sConfigSearchCriteria>
</v1:findDi sConfi gRequest >

Attribute Criteria

Developer's Guide
G34175-01

The attribute criteria specifies the field and value to match when performing the find operation.
In addition, an operator needs to be specified in the attribute criteria to determine how the
match is done (for example, EQUALS, NOT_EQUALS, etc.).

Zero or more attribute criteria are contained within an entity's ConjunctionCriterialtem.

The <EntityType>ConjunctionCriterialtem element defines a list of valid
<attributeName>AttributeCriteria child elements. For example, the

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 16 of 30

ORACLE Chapter 11
Network Integrity Web Service Operations

disConfigConjunctionCriterialtem has an attributeCriteria for every attribute that is searchable,
namely the nameAttributeCriteria, descriptionAttributeCriteria, enabledAttributeCriteria, etc.

For each attribute criteria the value to match and the operator to use to perform the match. The
operators that are valid depend on the attribute type. For a list of valid operators, see the
operator section below.

You can use wildcards in the value field for attributes that are text types. The supported
wildcard characters are “*", “%", and “_". “*" and “%" both represent a match of zero or more
characters. “_"represents a match of any single character. Wildcard characters can be escaped
with a backslash “\". To insert a backslash in the query, insert two backslashes “\\".

<v1:findD sConfi gRequest >
<v1:disConfigSearchCriteria>
<f ronRange>0</ f r onRange>
<t oRange>20</ t oRange>
<descendi ng>name</ descendi ng>
<di sConfi gConjunctionCriterialtenm>
<naneAttributeCriteria>
<val ue>Ci sco</ val ue>
<oper at or >EQUALS</ oper at or >
</naneAttributeCriteria>
<conj unct i on>AND</ conj uncti on>
</ di sConfi gConjunctionCriterialtenp
</v1:di sConfigSearchCriteria>
</v1:findDi sConfi gRequest >

Multiple Attribute Criteria

Multiple criteria for the same attribute can be passed in a single find operation. In the example
below the find request is looking for scans that start with the name Cisco or Juniper. It is
necessary to specify the ‘OR' conjunction in this scenario or no rows is returned.

<v1:findDi sConfi gRequest >
<v1:disConfigSearchCriteria>
<f romRange>0</ f r onRange>
<t oRange>20</ t oRange>
<descendi ng>nane</ descendi ng>
<di sConfi gConjunctionCriterialtenm>
<nameAttributeCriteria>
<val ue>Ci sco*</ val ue>
<oper at or >EQUALS</ oper at or >
</nanmeAttributeCriteria>
<nameAttributeCriteria>
<val ue>Juni per *</ val ue>
<operat or> EQUALS </ oper at or >
</nanmeAttributeCriteria>
<conj unct i on>0R</ conj unct i on>
</ di sConfi gConj unctionCriterialtenp
</v1:disConfigSearchCriteria>
</v1:findDi sConfi gRequest >

Extended Attribute Criteria

Extended Attribute Criteria allow the client application to find entities based on the attribute
values on related entities. For example, to find all scans with a certain Scope Address would
not be possible without extended criteria because the scope address is not defined on the
DisConfig entity. Multiple criteria for the same attribute can be passed in a single find
operation.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 17 of 30

ORACLE Chapter 11
Network Integrity Web Service Operations

In the example below, the scope relationship on the DisConfig entity is followed, and then the
addresses relationship if followed on the DisScope, to specify the addresses to match against.
This search finds DisConfig entities that have either the address 10.156.68.136 or
10.156.68.140 in the scope. The schemas for the Web service define all the relationships and
attributes that can be specified in the find operation.

<v1:findDi sConfi gRequest >
<v1:disConfigSearchCriteria>
<f romRange>0</ f r onRange>
<t oRange>20</ t oRange>
<di sConfi gConjunctionCriterialtenm>
<di sConf i gExt endedCri terial tenp
<scope>
<di sScopeConj unctionCriterialtenp
<di sScopeExt endedCriterialtenp
<addr esses>
<di sAddr essConj unctionCriterialtenp
<addressAttributeCriteria>
<val ue>10. 156. 68. 136</ val ue>
<oper at or >EQUALS</ oper at or >
</ addressAttributeCriteria>
<addressAttributeCriteria>
<val ue>10. 156. 68. 140</ val ue>
<oper at or >EQUALS</ oper at or >
</ addressAttributeCriteria>
<conj uncti on>0R</ conj uncti on>
</ di sAddressConj unctionCriterialtens
</ addr esses>
</ di sScopeExt endedCri terial tenm
</ di sScopeConj unctionCriterialten>
</ scope>
</ di sConfi gExt endedCriterialtenp
<conj unct i on>0R</ conj unct i on>
</ di sConfi gConj unctionCriterialtenp
</v1:di sConfigSearchCriteria>
</v1:findDi sConfi gRequest >

Criteria Operators

The following are the allowed search operators for each entity and attribute. If the Web service
clients sends the wrong operator for a search criteria the Web service search request fails and
the client gets a message, which shows the allowed operators for that search criteria.

DisConfig

Table 11-10 shows the allowed search operators for DisConfig attributes.

Table 11-10 Allowed Search Operators for DisConfig Attributes

Attribute Name EQUALS NOT_EQUAL STARTS_WITH FALSE TRUE
Tag Y Y Y N/A N/A
Name Y Y N/A N/A N/A
ScanAction Y Y N/A N/A N/A
ScanType Y Y N/A N/A N/A
Description Y Y N/A N/A N/A
Source Y Y N/A N/A N/A

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 18 of 30

ORACLE’

Chapter 11

Network Integrity Web Service Operations

Table 11-10 (Cont.) Allowed Search Operators for DisConfig Attributes

Attribute Name EQUALS NOT_EQUAL STARTS_WITH FALSE TRUE
NetworkAddress Y N/A N/A N/A N/A
Enabled N/A N/A N/A Y Y

Run Reconciliation N/A N/A N/A Y Y

DisScanRun

Table 11-11, Table 11-12, and Table 11-13 show the allowed search operators for DisScanRun.

Table 11-11 Allowed Search Operators for DisScanRun Attributes

Attribute Name EQUALS NOT_EQUAL STARTS_WITH
Tag Y Y Y

Name Y Y N/A

Status Y Y N/A

ScanType Y Y N/A

Source Y Y N/A

ScanAction Y Y N/A

Table 11-12 Allowed Search Operators for DisScanRun Attributes

Attribute Name BEFORE AFTER |ON_OR_AFTER |ON_OR_BEFORE |BETWEEN |NOT_BETWEE
ScanStartTime Y Y Y
ScanEndTime Y Y Y Y Y Y
DiscrepancyDetectionSta | Y Y Y Y Y Y

rtTime

DiscrepancyDetectionEn |Y Y Y Y Y Y

dTime

Table 11-13 Allowed Search Operators for DisScanRun Attributes

Attribute Name EQUALS |NOT_EQUA | GREATER_THAN | LESS_THAN |BETWEEN |NOT_BETWEEN
L

MinorDiscrepancies Y Y Y Y Y Y

MajorDiscrepancies Y Y Y Y Y Y

CriticalDiscrepancies Y Y Y Y Y Y

WarningDiscrepancies Y Y Y Y Y Y

DisDiscrepancy

Table 11-14 and Table 11-15 show the allowed search operators for DisDiscrepancy.

Developer's Guide
G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 30

ORACLE Chapter 11
Network Integrity Web Service Operations

Table 11-14 Allowed Search Operators for DisDiscrepancy Attributes

Attribute Name EQUALS NOT_EQU | STARTS_W [IS_BLANK [IS_NOT_BLA
AL ITH NK
Tag Y Y Y N/A N/A
Severity Y Y N/A N/A N/A
Status Y Y N/A N/A N/A
ResolutionAction Y Y N/A Y Y
Owner Y Y N/A Y Y
Priority Y Y N/A Y Y
EntityName Y Y N/A N/A N/A
ScanResultDetailName Y Y N/A N/A N/A
ScanType Y Y N/A N/A N/A
EntityName Y Y N/A N/A N/A
ScanResultDetailName Y Y N/A N/A N/A
ScanName Y Y N/A N/A N/A
EntityType Y Y N/A N/A N/A
CorrectedBy Y Y N/A N/A N/A
SubmittedBy Y Y N/A N/A N/A
ParentEntityNamw Y Y N/A N/A N/A
ParentEntityType Y Y N/A N/A N/A
Discovery/ImportValue Y Y N/A N/A N/A
Discovery/ImportSource Y Y N/A N/A N/A
ScanResultDetailCategory Y Y N/A N/A N/A
Type Y Y N/A N/A N/A
ScanType Y Y N/A N/A N/A

Table 11-15 Allowed Search Operators for DisDiscrepancy Attributes
e

Attribute Name BEFORE AFTER |ON_OR_AFTER |ON_OR BEFORE |BETWEEN |NOT _BETWEE
N

ScanStartTime Y Y Y Y Y Y

ScanEndTime Y Y Y Y Y Y

DiscrepancyDetectionSta | Y Y Y Y Y Y

rtTime

DiscrepancyDetectionEn |Y Y Y Y Y Y

dTime

SubmittedTime Y Y Y Y Y Y

LastStatusChangeTime |Y Y Y Y Y Y

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 20 of 30

ORACLE Chapter 11
Network Integrity Web Service Operations

Between/Not Between Operator

When specifying the BETWEEN and NO_BETWEEN operators, two attribute criteria must be
supplied or a fault is returned. The error message returned is Incorrect number of values or
incorrect format specified for attribute criteria: numberWarning.

The following example searches for scan results that found between 10 and 100 discrepancy
warnings.

<vl:findD sScanRunRequest >
<v1:di sScanRunSearchCriteria>
<v11: fronRange>0</v1l: fronRange>
<v11:toRange>20</v1l: t oRange>
<v11: di sScanRunConj unctionCriterialtenp
<v12: di sScanRunExt endedCri terial tenp
<v14: count s>
<v119: di sDi screpancyCount sConj unctionCriterialtenp
<v120: warni ngAttributeCriteria>
<v121:val ue>10</v121: val ue>
<v121:val ue>100</v121: val ue>
<v121: oper at or >BETWEEN</ v121: oper at or >
</v120: warni ngAttributeCriteria>
</v119: di sDi screpancyCount sConj unctionCriterialtenp
</v14: count s>
</v12: di sScanRunExt endedCriterial tenr
<v12: conj unct i on>AND</ v12: conj uncti on>
</v11: di sScanRunConj unctionCriterial tenr
</v1l:di sScanRunSearchCriteria>
</v1:findD sScanRunRequest >

Data Criteria

Date fields must be in the format mm/dd/yyyy mm:dd:ss AM/PM. The server time is always
used for dates in Network Integrity. The following example searches for scan runs that started
after the August 11th, 2010 10:00 am. Because the AFTER operator is used, scans that match
this start time exactly are not included in the response. If operator ON_OR_AFTER was used
then exact match start time scans are included in the response.

<v1:findD sScanRunRequest >
<v1:di sScanRunSearchCriteria>
<v11: fronRange>0</v1l: fromRange>
<v11:toRange>20</v1l: t oRange>
<v11: di sScanRunConj unctionCriterialtenp
<v12: di scoveryBegi nTi meAttributeCriteria>
<v13:val ue>08/11/2010 10: 00: 00 AMk/v13:val ue>
<v13: oper at or >AFTER</ v13: oper at or >
</v12: di scoveryBegi nTi neAttributeCriteria>
<v12: conj uncti on>AND</ v12: conj uncti on>
</v11l: di sScanRunConj unctionCriterialtem
</v1:di sScanRunSearchCriteria>
</v1:findD sScanRunRequest >

Conjunction Criteria

The conjunction must be either AND or OR. Only the top level conjunction is used,
conjunctions on lower level elements are ignored.

<v1:findDi sConfi gRequest >
<v1:disConfigSearchCriteria>

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 30

ORACLE Chapter 11
Network Integrity Web Service Operations

<f ronRange>0</ f r onRange>
<t oRange>20</ t oRange>
<descendi ng>nanme</ descendi ng>
<di sConfi gConjunctionCriterialtenm>
<naneAttributeCriteria>
<val ue>Ci sco*</ val ue>
<oper at or >EQUALS</ oper at or >
</naneAttributeCriteria>
<naneAttributeCriteria>
<val ue>Juni per *</ val ue>
<oper at or >EQUALS</ oper at or >
</naneAttributeCriteria>
<conj uncti on>0R</ conj uncti on>
</ di sConfi gConjunctionCriterialtenp
</v1:di sConfigSearchCriteria>
</v1:findDi sConfi gRequest >

The conjunction appears at many levels in the find hierarchy. The conjunction at lower levels
controls how the criteria at lower levels are evaluated logically.

In the following example the inner conjunction is OR because this request is designed to find
any ScanRun that has discrepancy, regardless of severity. Notice the outer conjunction that
has the value AND, this has no effect on the extended attribute criteria.

To change this find so it only finds scans that have a discrepancy of every severity, the inner
conjunction on the disDiscrepancyCountsConjunctionCriterialtem element would be changed
to AND.

<v1:findD sScanRunRequest >
<v1:di sScanRunSear chCriteria>
<v11: di sScanRunConj unctionCriterialtenp
<v12: di sScanRunExt endedCri terial tenp
<v14: count s>
<v119: di sDi screpancyCount sConj unctionCriterialtemr
<v120:critical AttributeCriteria>
<v121:val ue>0</v121: val ue>
<v121: oper at or >GREATER THAN</v121: oper at or >
</v120:critical AttributeCriteria>
<v120: majorAttributeCriteria>
<v121:val ue>0</v121: val ue>
<v121: oper at or >GREATER THAN</v121: oper at or >
</v120: mgjorAttributeCriteria>
<v120: minorAttributeCriteria>
<v121:val ue>0</v121: val ue>
<v121: oper at or >GREATER THAN</v121: oper at or >
</v120: mnorAttributeCriteria>
<v120:warni ngAttributeCriteria>
<v121:val ue>0</v121: val ue>
<v121: oper at or >GREATER THAN</v121: oper at or >
</v120: warni ngAttributeCriteria>
<v120: conj uncti on>0R</ v120: conj uncti on>
</v119: di sDi screpancyCount sConj unctionCriterialtenp
</v14: count s>
</v12: di sScanRunExt endedCriterial ten»
<v12: conj uncti on>AND</ v12: conj uncti on>
</v11l: di sScanRunConj unctionCriterialtem
</v1l:di sScanRunSearchCriteria>

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 22 of 30

ORACLE’

Chapter 11
Network Integrity Web Service Special Function Operations

Find Response

Each find response contains all the details of the entities that matched the attribute criteria.
The response only contains the number of entities defined by the from an to range.
Subsequent find operations may be called to get all the entities depending on the number of
rows matching the search criteria and the from and to range specified.

<ns118: fi ndDi sConfi gResponse>
<ns118: di sConfi gs>
<ns2:entityl d>9612</ns2:entityl d>
<ns2:entityVersion>1</ns2:entityVersion>
<ns4: t agsRef >
<ns2:entityl d>9584</ns2: entityld>
</ ns4:tagsRef >
<ns4: t agsRef >
<ns2:entityl d>9586</ns2: entityld>
</ ns4:tagsRef >
<ns7: par amet er G oups>
<ns2:entityl d>9606</ns2: entityld>

<ns7: enabl ed>YES</ ns7: enabl ed>
<ns7: dat aSour ce>TRUE</ ns7: dat aSour ce>
<ns7:start ScanReady>t r ue</ ns7: st art ScanReady>
</ ns118: di sConfi gs>
</ ns118: fi ndDi sConfi gResponse>

Network Integrity Web Service Special Function Operations

Start Scan

Developer's Guide
G34175-01

There are a few Network Integrity Web service operations that do not follow the standard
pattern and are designed for a special purpose.

The Network Integrity Web service special function operations are:
* Start Scan

¢ Stop Scan
e Get Latest Scan Status

e Submit Discrepancies For Resolution Processing

The startScan operation starts a scan for a given DisConfig entityld. This operation is identical
to the start scan operation in the Network Integrity Ul. The request expects a DisConfig entityld
and the response contains the entityld of the DisScanRun that was created for the scan.

Example 11-15 Request:

<v1:start ScanRequest >
<v1: di sConf i gRef >
<vll:entityld>9612</v1l:entityld>
</v1: di sConfi gRef >
</v1:start ScanRequest >

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 23 of 30

ORACLE

Stop Scan

Chapter 11
Network Integrity Web Service Special Function Operations

Example 11-16 Response:

<ns118: start ScanResponse>
<ns118: di sScanRunRef >
<ns2:entityl d>14721</ns2: entityl d>
</ ns118: di sScanRunRef >
</ ns118: start ScanResponse>

The stopScan operation stops a scan for a given DisConfig entityld. This operation is identical
to the stop scan operation in the Network Integrity Ul. The request expects a DisConfig entityld
and the response contains the entityld of the DisScanRun that was created for the scan.

Example 11-17 Request:

<v1: st opScanRequest >
<v1: di sConfi gRef >
<vll:entityld>9612</vi1l:entityld>
</v1:di sConfi gRef >
</v1: st opScanRequest >

Example 11-18 Response:

<ns118: st opScanResponse>
<ns118: di sScanRunRef >
<ns2:entityl d>13846</ns2:entityld>
</ ns118: di sScanRunRef >
</ ns118: st opScanResponse>

Get Latest Scan Status

Developer's Guide
G34175-01

The getLatestScanStatus returns the status of the latest run of a scan. The operation is
equivalent to the information displayed in the Status section of the Manage Scans page of the
Network Integrity Ul. In addition to the status of the scan the operation returns information
about the number of addresses being discovered, the number of discrepancies found, and the
start time and duration of the scan.

This method is more efficient to call to monitor the running of a scan rather than call
findDisScanRun many times.

Example 11-19 Request:

<v1: get Lat est ScanSt at usRequest >
<v1: di sConfi gRef >
<vll:entityld>9612</vll:entityld>
</v1:di sConfi gRef >
</v1: get Lat est ScanSt at usRequest

Example 11-20 Response (Running Scan)

<ns118: get Lat est ScanSt at usResponse>
<ns118: scanSt at us>

<ns120: di screpancySeverityCount s>
<ns2:entityld>0</ns2:entityld>
<ns2:entityVersion>0</ns2:entityVersion>
<ns56: numher Wr ni ng>0</ ns56: nunber War ni ng>
<ns56: number M nor >0</ ns56: nunber M nor >
<ns56: numher Mpj or >0</ ns56: nunber Maj or >
<ns56: nunber Cri ti cal >0</ ns56: nunber Criti cal >

</ ns120: di screpancySeverityCount s>

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 24 of 30

ORACLE Chapter 11
Network Integrity Web Service Special Function Operations

<ns120: di scover yWor kCount s>
<ns121:t ot al NoOf Wor ki t ens>2</ ns121: t ot al NoOf Wor ki t ens>
<ns121: noCf Conpl et edWor ki t ens>0</ ns121: noCf Conpl et edWor ki t ens>
<ns121: noCf Fai | edWor kIt ens>0</ ns121: noXf Fai | edWr ki t ens>
<ns121: noCf I nProgressWor kil t ems>2</ ns121: noOf | nPr ogr ess\Wor kil t ens>
<ns121:startTi ne>07/ 16/ 2010 11:17:05</ns121:start Ti me>
<ns121:duration/>

</ ns120: di scover yWr kCount s>

<ns120: di scr epancyWr kCount s>
<ns121:t ot al NoOf Wor ki t ens>0</ ns121: t ot al NoOf Wor ki t ens>
<ns121: noCf Conpl et edWor ki t ens>0</ ns121: noCf Conpl et edWor ki t ens>
<ns121: noCf Fai | edWor kit ens>0</ ns121: noXf Fai | edWr ki t ens>
<ns121: noCf I nProgressWor kil t ems>0</ ns121: noOf | nPr ogr ess\Wor ki t ens>
<ns121:duration/>

</ ns120: di scr epancyWr kCount s>

<ns120:j obSt at eSt ri ng>Runni ng</ ns120: j obSt at eSt ri ng>

<ns120: di scr epancyDet ect i onEnabl ed>t r ue</ ns120: di scr epancyDet ect i onEnabl ed>

</ ns118: scanSt at us>
</ ns118: get Lat est ScanSt at usResponse>

Example 11-21 Response (Completed Scan)

<ns118: get Lat est ScanSt at usResponse>
<ns118: scanSt at us>

<ns120: di screpancySeverityCount s>
<ns2:entityl d>15456</ns2: entityl d>
<ns2:entityVersion>1</ns2:entityVersion>
<ns55: nunber War ni ng>1</ ns55: nunber War ni ng>
<ns55: nunber M nor >0</ ns55: nurber M nor >
<ns55: nunber Mpj or >0</ ns55: nunber Maj or >
<ns55:; nunber Cri ti cal >0</ ns55: nunber Critical >

</ ns120: di screpancySeverityCount s>

<ns120: di scover yWr kCount s>
<ns121: t ot al NoOf Wor ki t enms>2</ ns121: t ot al NoOf Wor ki t ens>
<ns121: noCf Conpl et edWor ki t ems>2</ ns121: noCf Conpl et edWor ki t ens>
<ns121: noCf Fai | edWor kil t ems>0</ ns121: noXf Fai | edWor ki t ens>
<ns121: noCf I nProgr essWor ki t ens>0</ ns121: noCf | nProgr essWr ki t ens>
<ns121:startTi ne>07/ 16/ 2010 11:59: 26</ns121: start Ti me>
<ns121: endTi me>07/ 16/ 2010 11:59: 52</ ns121: endTi ne>
<ns121: duration>26s</ns121: duration>

</ ns120: di scover yWr kCount s>

<ns120: di scr epancyWr kCount s>
<ns121:t ot al NoOf Wor ki t ens>2</ ns121: t ot al NoOf Wor ki t ens>
<ns121: noCf Conpl et edWor ki t ems>2</ ns121: noCf Conpl et edWor ki t ens>
<ns121: noCf Fai | edWor kil t ems>0</ ns121: noCXf Fai | edWor ki t ens>
<ns121: noCf I nProgressWor ki t ens>0</ ns121: noCf | nProgr essWr ki t ens>
<ns121:startTi ne>07/ 16/ 2010 11:59:52</ns121:start Ti me>
<ns121: endTi me>07/ 16/ 2010 11:59: 55</ ns121: endTi ne>
<ns121: dur ati on>3s</ns121: duration>

</ ns120: di screpancyWr kCount s>

<ns120: j obSt at eSt ri ng>Conpl et ed</ ns120: j obSt at eSt ri ng>

<ns120: di screpancyDet ect i onEnabl ed>t r ue</ ns120: di scr epancyDet ect i onEnabl ed>

</ ns118: scanSt at us>
</ ns118: get Lat est ScanSt at usResponse>

Submit Discrepancies For Resolution Processing

The submitDisDiscrepancyResolutionProcessing operation takes a list of discrepancy
entitylds and submits these discrepancies to be processed by a resolution action. This is the
same as the Submit discrepancies operation in the Network Integrity Ul.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 25 of 30

ORACLE

Chapter 11
Network Integrity Web Service Scenarios

The discrepancies submitted must have a discrepancy status of IDENTIFIED and have an
Operation populated or else a fault is returned. The status and operation of the discrepancy
can be updated using the updateDisDiscrepancy operation.

This operation is a two step operation in the Network Integrity Ul to first add discrepancies to
the queue, and then submit them. In the Web service this is a single operation.

If the operation is successful, the entitylds of the discrepancies submitted is returned in the
response.

After submitting the discrepancies the status of the discrepancies is set to SUBMITTED.
Example 11-22 Request

<v1: submit Di sDi screpancyResol uti onQper at i onsRequest >
<l--1 or nore discrepancies: -->
<v1: di sDi screpancyRef >
<vll:entityl d>15448</v1l:entityld>
</v1: di sDi screpancyRef >
</v1:subnit Di sDi screpancyResol uti onOper ati onsRequest >

Example 11-23 Response

<ns118: subni t Di sDi screpancyResol uti onOper ati onsResponse>
<ns118: di sDi screpancyRef >
<ns2:entityl d>15448</ns2: entityl d>
</ ns118: di sDi screpancyRef >
</ ns118: subm t Di sDi screpancyResol uti onCper at i onsResponse>

Example 11-24 Failure (one or more discrepancies not in IDENTIFIED status)

<ns2: Faul t >
<faul t code>ns2: Server </ faul t code>
<faul t string>Dl SCREPANCY_RESCLUTI ON_| NVALI D_STATUS</ f aul t st ri ng>
<det ai | >
<ns127: crudFaul t >
<ns119: root St ackTrace/ >
</ ns127: crudFaul t >
</detail >
</ ns2: Faul t >

Network Integrity Web Service Scenarios

The following sections describe how to use the Web service in an end-to-end fashion.

Creating a Scan

Developer's Guide
G34175-01

A scan is created using the createDisConfig operation, but there may be data and entities to be
created or retrieved before calling the createDisConfig operation.

Prerequisites:

e A plugin entity id is required to create a scan. The list of discovery, import, and assimilation
plugins that are deployed in the system can be determined by calling
getAllDisInventorylmportPlugin, getAlIDisNetworkDiscoveryPlugin, and
getAllIDisAssimilationPlugin.

e The plug-in entity may define one or more plug-in parameters (for example,
SnmpParameters) that it expects to be passed. If it does then the plug-in returned in the
previous step has one or more specificationsRef elements in the response. The expected
plug-in parameters can be determined by calling getSpecification to determine the

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 26 of 30

ORACLE Chapter 11
Network Integrity Web Service Scenarios

available plug-in parameters. Some plug-in parameters are optional and some are
mandatory.

For more information about the parameters returned by getSpecification, see your plug-in
or cartridge documentation.

« Ifthe scan is to be tagged on creation then the tag entity ids must be retrieved using one of
getAllRootDisTags, getDisTag, createDisTag.

« If the scan is to have blackout schedules on creation then the blackout entity ids must be
retrieved using one of getAllDisBlackoutSchedule, getDisBlackoutSchedule,
createDisBlackoutSchedule.

The response from the createDisConfig operation, if successful, is an entity id for the scan.
The entity id is used for deleting, retrieving, starting, and stopping the scan.

Starting, Stopping, and Monitoring a Scan

The scan can be started using startScan operation and the DisConfig entity id that was
returned when it was created. (It is also possible to do a findDisConfig operation to get the
entity id).

The start scan operation returns the scan run entity id from that you can use to monitor the
status and results of the scan.

It is also possible to monitor the scan progress using the DisConfig entity id and the
getLatestScanStatus. This operation is more efficient and reports the current status of the scan
along with other details.

An in-progress scan can be stopped using the stopScan operation and the DisConfig entity id.
When the operation returns the scan is transitioned to STOPPING state, and asynchronously
transitions to STOPPED when all scan processes have ended.

Retrieving Scan Results

The starting point for retrieving scan results is the DisScanRun entity. The entity id of the
DisScanRun is returned when the scan was started, or can be determined by performing the
findDisScanRun operation.

If the scan successfully discovers data the DisScanRun has one or more resultGroups that
contain one or more rootEntityRefsRef. These ids are used in the getRootEntity call to retrieve
the root of the discovered data. The getRootEntity operation, unlike other get calls, accepts
multiple entity ids for retrieving all root entities in a single call.

The getRootEntity operation does not retrieve the complete tree of results for performance
reasons and to limit scope of entity traversal. The response from getRootEntity often contains
references to other entities. These entities can be retrieved using the generic getResultEntity
operation, or by type-specific get operations (getLogicalDevice, getEquipment,
getPhysicalDevice, getLogicalDevice, getEquipmentHolder, and so on).

Most result data entities have specifications. To get details about the specification the entity is
using, the getSpecification operation can be called using the specificationRef on the entity.

Working with Discrepancies

The starting point for working with discrepancies is the DisScanRun entity. The entity id of the
DisScanRun is returned when the scan was started, or can be determined by performing the
findDisScanRun operation.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 27 of 30

ORACLE’

Chapter 11
Network Integrity Web Service Samples

The list of discrepancies created in discrepancy detection is in the DisScanRun entity as
discrepanciesRef ids. The DisDiscrepancy entity can be retrieved using the getDisDiscrepancy
operation passing the discrepanciesRef from the DisScanRun entity. The discrepancies can
also be found using the findDisDiscrepancy operation with search criteria.

Several fields on the discrepancy, including the status, operation (resolution action), owner,
priority, reasonForFailure, and notes can be updated using the updateDisDiscrepancy

operation.

Discrepancies can be submitted for resolution by calling the
submitDisDiscrepancyResolutionOperations operation. The operation takes a list of
discrepancies to be submitted in the request. Discrepancies must be in the status of
IDENTIFIED and have an operation populated to be submitted.

Network Integrity Web Service Samples

Network Integrity includes example requests and responses of calling the Web service. Find
these examples in the Network Integrity Web Service Samples ZIP file.

Contents of the Network Integrity Web Service Samples ZIP File

Table 11-16 describes the directories, files, and file contents for the Network Integrity Web

Service Samples ZIP file.

Table 11-16 Network Integrity Web Service Samples ZIP File Contents

DirectorylFile

Description

build.xml

An example ANT build script that shows how to run the client with an
SSL keystore as a VM argument.

WSDL-Documentation.html

Generated WSDL documentation that shows all the available
operations. A short description of each operation is provided. Full
WSDL source is included for reference.

IntegrityWebserviceSoapUIProject.xml

SoapUl Project File

integrity-schema\wsdl\
NetworkIntegrityControlService.wsdl

Web Service Definition (WSDL)

integrity-schemalreferenceSchema

Supporting XML Schema files

integrity-schema\schema

Supporting XML Schema files

integrity-ws-client.jar

Jar file containing Java Client type generated from the WSDL

jaxb-bindings.xml

JAXB Binding file to adjust generated package names when
generating client classes from WSDL. These bindings are required if
not using the provided integrity-ws-client.jar and generating client
class files using a Web service client generation tool.

src\oracle\integrity\ws\client\NetworkIntegrityControl
Service.java

This is a client side proxy class to get port types. This is the class
where policy files and other authentication details are set.

src\oracle\integrity\ws\test\SampleNIClient.java

An example client java class that makes a Web service call.

Sample Java Client

Included in the Web Service Samples ZIP file is a sample java client. The sample java code is
included in the src directory and contains:

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 28 of 30

ORACLE

Chapter 11
Network Integrity Web Service Samples

* asample client side proxy for getting a port type and setting the required policies and
authentication.

* aclient class that calls the getAllDisNetworkDiscoveryPlugin operation and prints the result
to standard out.

To compile the sample JAVA code, the following JAR files are necessary:

« weblogic.jar: available in WL_Homelserverllib/
« wseeclient.jar: available in WL_Homelserverllibl
e jrf.jar: available in MW_Home/oracle_common/modules/oracle.jrf_11.1.1/

< integrity-ws-client.jar: included the Network Integrity Web Service Samples ZIP file.

@® Note

The required Web service policy, Wsspl1.2-2007-Https-UsernameToken-Plain.xml is
included in the wseeclient.jar.

To run the sample JAVA code, you must run it with a full installation of WebLogic Server and
ADF, because the JAR files referenced during compile require other JAR files. Set your
classpath to point to the above JAR files in their installed location on your system. This can be
done by installing WebLogic and ADF on your development system or run the client on your
Network Integrity server.

If you plan on running a Web service client to communicate with a Network Integrity server that
does not have a valid SSL certificate, you must download your server certificate and save it to
a file to be used by your client. Then use the following VM argument when running your client.
In this example, a file called jssecacerts has the SSL key that was downloaded.

-Dj avax. net. ssl . trust Store=j ssecacerts

Sample Soap Ul Project

Developer's Guide
G34175-01

A SoapUl project is provided in the Cartridge Developer package to give examples of all the
Web service calls and examples of the responses. The SoapUl project tests various Web
service call scenarios.

To install the Soap Ul, use the following procedure:

1. Download and Install SoapUl 3.5.1 (newer versions of SoapUl may work with the bundled
project file, but it has not been tested)

2. Start the SoapUl application.
3. From the File menu, select Import Project.
4. Select the IntegrityWebserviceSoapUIProject.xml file and click Open.

Also in the project is a NetworkIntegrityControlIMockService that simulates the real Web
service. For each operation there is one or more example responses provided in the mock
service. The number of example requests in the binding does not always match the number of
responses because the responses would be the same structure with a different id returned (for
example, create blackout response).

You can use the provided example requests or create new requests right-clicking the operation
and selecting “New Request". This creates a new request with all fields populated with a

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 29 of 30

ORACLE

Chapter 11
Network Integrity Web Service Samples

guestion mark. Many of the example requests in the project require modification to run
successfully because the entitylds in the example does not match other systems.

The NetworkIntegrityControlMockService views examples of Web service responses for
different scenarios. The mock service can also be started to respond to Web service calls with
mock responses. See the SoapUIl documentation for more information.

Submitting Request to the Server

To submit a request to the server you must do the following:

1.
2.

Ensure the request is valid and all mandatory attributes are set.

Ensure the username and password are set in the request. See the next section on how to
add the username and password to the request for how this is done.

Add a new endpoint by clicking on the drop down at the top of the request and select add
new endpoint.

Add a new endpoint with the following format:

https:// Managed_Server: Port/ Net wor kI nt egrit yApp- Net wor ki nt egri t yCont r ol WebSer vi ce-
cont ext -root/ Net workl nt egrityControl Servi cePort Type

Click Play to submit the request.

Specifying User Name and Password in Request

To add the user name and password to a request.

1.
2.
3.
4,

Developer's Guide
G34175-01

Click Aut tab at the bottom of the request.

Enter the user name and password that has access to login to the Network Integrity Ul.
Right click the request and select Add WSS Username Token.

Accept the default PasswordText and select OK.

The following structure is added to the request.

<wsse: Security soapenv: nust Understand="1" xnl ns:wsse="http://docs. oasi s- open. or g/ wss/
2004/ 01/ oasi s- 200401- wss-wssecurity-secext-1.0. xsd">
<wsse: User naneToken wsu: | d="User nameToken- 4" xm ns: wsu="http://docs. oasi s-
open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-
utility-1.0.xsd">
<wsse: User name>ni user </
wsse: User nane>

<wsse: Password Type="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-
user nane-t oken- profil e-1. 0#Passwor dText " >ni user 123</ wsse: Passwor d>

<wsse: Nonce Encodi ngType="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401-
WsS- soap- nessage- security-1. 0#Base64Bi nary" >ZS2K4y CoqQoQy6KLIDet Bw==</ wsse: Nonce>

<wsu: Creat ed>2010- 09- 13T01: 21: 17. 578Z</
wsu: Creat ed>

</
wsse: User nanmeToken>

</wsse: Security>

Delete the Nonce and Created elements in the above example (highlighted in bold) to
reduce errors on future calls.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 30 of 30

Working with Scan Run Complete Notifications

This chapter describes an Oracle Communications Network Integrity event notification, Scan
Complete Natification, which allows external components to receive asynchronous event
notification messages about the completion of scans.

You can develop a client to monitor event natifications, to and trigger follow-on actions.

About Clients for Monitoring Scan Run Complete Notification
Messages

You can develop a message-driven bean (MDB) or Java messaging system (JMS) client that
listens to the Network Integrity event notification JMS topic (oracle/lcommunications/
integrity/EventNotificationTopic) for scan-complete notification messages. For example, you
can write post-processing logic that listens for messages that trigger other scans or send
emails or SMS messages using the MDB/JMS client.

Develop the MDB/JMS client to listen to the Network Integrity application server for the IMS
topic. The client must belong to the NetworkintegrityRole group to access the JMS topic. See
Network Integrity System Administrator's Guide for more information on the
NetworkIntegrityRole group.

Table 12-1 lists the properties used by EventNotificationTopic for client filtering.

Table 12-1 EventNotificationTopic Properties for Client Filtering
|

Property Description
Status Indicates the final scan run state:
e COMPLETED
e STOPPED
« FAILED
Scan Action Name Indicates the name of the scan action.
Scan Action Type Indicates the type of the scan action:

* NETWORK_DISCOVERY
* INVENTORY_IMPORT
* ASSIMILATION

Discrepancy Detection A Boolean that indicates whether discrepancy detection was enabled on the
scan action:

e 1:discrepancy detection enabled.
e 0:discrepancy detection not disabled.

Notification messages also contain other properties which may be useful to you. For example,
the ScanRunld can be obtained from the message body, which retrieves additional information
about the scan run.

The following example is a sample MDB/JMS client implementation model:

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE Chapter 12
Implementing Custom Code to Stop a Scan

package nodel ;

i mport javax.annotati on. Resource;
i mport javax.annotation.security. RunAs;

i mport javax.ejb.ActivationConfigProperty;
i mport javax.ejb. MessageDriven;

i mport javax.jms. JMSExcepti on;
i mport javax.jms. MessagelLi stener;
i mport javax.jms. Text Message;

i mport webl ogi c. j avaee. MessageDest i nati onConfi gurati on;

@ekssageDriven(activationConfig =
{ @\ctivationConfigProperty(propertyNane = "connectionFactoryJndi Name",
propertyVal ue = "oracl e/ cormuni cations/integrity/ N XATCF"),
@Acti vati onConfi gProperty(propertyName = "destinati onNane", propertyValue =
"oracl e/ communi cations/integrity/EventNotificationTopic"),
@\cti vati onConfi gProperty(propertyName = "destinati onType", propertyValue =
"javax.jms. Topic")
} , mappedNanme = "oracl e/ comuni cations/integrity/EventNotificationTopic")

@essageDestinati onConfi gurati on(connecti onFactoryJNDI Name = "oracl e/ communi cati ons/
integrity/ Nl XATCF")
@RunAs(" Net workl ntegrityRol e")
public class M/EjbTestBean inpl ements Messageli stener {
@esour ce
j avax. ej b. MessageDri venCont ext context;
public void onMessage(j avax. j ns. Message nessage) {
Text Message text = (Text Message) nessage;
try {
Il wite post-processing logic here
Il like trigger other scans, or send e-mails or SM5 nessages
Systemout.printin("entered mdb.... ");
Systemout.println("received the foll owing nessage: ");
Systemout.println("Status : "+text.getStringProperty("Status"));
Systemout. println("Scan_Action_Nane :
"+t ext.get StringProperty("Scan_Action_Name"));
Systemout. println("Scan_Action_Type :
"+t ext.get StringProperty("Scan_Action_Type"));
Systemout. println("Di screpancy_Detection :
"+t ext . get Bool eanProperty("Di screpancy_Detection"));
Systemout.println("scan txt : "+text.getText());

} catch (JMBException e) {
/1 Add | og statements here
}

Implementing Custom Code to Stop a Scan

A Network Integrity discovery cartridge typically comprises actions that include processors,
which run sequentially in an iterative manner based on conditions (True or False).

The action controller sets the running sequence of the processors based on the order in which
the processors are configured. Usually a processor is invoked only once and after its
completion, the controller invokes the next processor, until all processors in an action are
invoked. However, one or more processors may be run repeatedly in an iterative manner.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE

Chapter 12
Implementing Custom Code to Reflect Scan Progress for Individual Resources

For example, when importing an inventory system, it is typical to first get a list of devices from
the inventory system, then go through the list of devices, and then import each device
individually into Network Integrity. In this example, the processor importing a single device is
repeatedly run for all the devices in the returned device list.

A running scan does not stop immediately when you click Stop Scan. If a processor in a scan
had already started before you clicked Stop Scan, the processor continues to run until its
completion; the next processor in the sequence looks for the value of the condition and the
custom code in its invoke method to stop the processor; if the condition is True, the scan is
stopped before the next processor starts and all the results of the scan are deleted.

You can add the custom code to any processor depending on its functionality and your
requirements. The amount of time that a scan will take to stop depends on how you configure
the processors and how you implement the custom code to stop the processors.

To stop a scan when you click Stop Scan, Oracle recommends that you add the following
custom code to the beginning of the processor's invoke method and ensure that this code
resides outside the try/catch block:

i f(((BaseDi scoveryController)context).isScanStopped()){

| ogger.info("Scan is stopped, interrupting data collection");

/1 Add custom code here to close any open resources, such as connections, sockets,
/1 sessions, and so on.

t hrow new Processor Exception("Scan is interrupted");

}

Implementing Custom Code to Reflect Scan Progress for
Individual Resources

Developer's Guide

G34175-01

A Network Integrity discovery cartridge comprises of actions that include processors, which are
run sequentially in an iterative manner. Some processors may be run repeatedly based on
conditions (True or False).

When the scan target of a discovery scan is a single scope IP like NMS/EMS URL but multiple
devices are being fetched in response, the scan progress for each device can be displayed
while modeling the devices. Similarly, for an import scan when the inventory system has
exposed SOAP web-services to fetch data and there is a single Inventory URL in the Manage
Import System, multiple devices can fetched in response. The scan progress for each device
can be displayed while modeling the devices.

This is possible by adding a custom code to the require processor, depending on its
functionality and requirements. The scan progress bar behavior depends on the configuration
of the processors and the implementation of the custom code to update scan progress
parameter from the processors.

It is recommended to add the following custom code to the processors:

e Invoke updateTotalCount(count) from the processor after the root elements are identified.

e Invoke updateSucessfulCount(count) from the processor after the root elements are
processed without any error.

e Invoke updateFailedCount(count) from the processor after the root elements are
processed with error.

The updateTotalCount method needs to be called before updateSucessfulCount or
updateFailedCount method from the cartridge. By doing so, the runtime progress of the scan

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 12
Implementing Custom Code to Reflect Scan Progress for Individual Resources

will be visible on scan progress bar. This functionality is not applicable if the scan has failed,
with any runtime exception of the result.

private void updateTotal Count (Di scoveryProcessor Context context, l[ong count) {
cont ext . get ScanRunPr ogr essDet ai | sManager () . updat eTot al Count (count) ;
}

private void updateSuccessful Count (Di scoveryProcessor Context context, |ong
count) {
cont ext . get ScanRunPr ogr essDet ai | sManager () . updat eSuccessf ul Count (count);

}
private void updat eFai | edCount (Di scoveryProcessor Context context, |ong count)
{
cont ext . get ScanRunPr ogr essDet ai | sManager () . updat eFai | edCount (count) ;
}

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 4

Working with JCA Resource Adapters

This chapter provides overview information about the J2EE Connector Architecture (JCA)
simple network management protocol (SNMP) resource adapter included with Oracle
Communications Network Integrity and other third party or customized JCA resource adapters
that may be used with Network Integrity.

This chapter contains the following sections:

About Resource Adapters

e About Productized SNMP JCA Resource Adapter

e About Third Party or Customized JCA Resource Adapters

About Resource Adapters

Developer's Guide
G34175-01

A JCA resource adapter is a system-level software driver used by a Java application to
connect to an Enterprise Information System (EIS). The resource adapter can be configured to
use any protocol required by the EIS for connectivity. The resource adapter plugs into an
application server (for example Oracle Fusion Middleware) and provides connectivity between
an EIS (for example, a database system), the application server, and the enterprise application

(see Figure 13-1).

JCA defined a standard architecture for connecting a J2EE platform to heterogeneous EISs.
Examples of EISs include Enterprise Resource Planning (ERP) and mainframe transaction
processing (TP). The connector architecture defines a Common Client Interface (CCI) for EIS
access. The CCI defines a client API for interacting with heterogeneous EISs and enables an
EIS vendor to provide a standard resource adapter for its EIS.

An application server that support JCA, like Fusion Middleware, can ensure seamless
connectivity to multiple EISs. In the same way, any EIS with a JCA resource adapter can plug
into an application server that supports JCA.

For details about the JCA 1.5 specification and additional JCA documentation, see:

http://java.sun.com | 2ee/ connect or/ downl oad. ht m

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 7

http://java.sun.com/j2ee/connector/download.html

ORACLE Chapter 13
About Resource Adapters

Figure 13-1 JCA Functional Blocks

Container-Component
Contract

Application Component

Client API

System Contracis

Resource Adapter
Application Server

EIS specific interface

Enterprise Information
System

Understanding JCA Resource Adapter Connectivity Options

A resource adapter provides the following types of connectivity between an application and an
EIS.

* Outbound communication: The resource adapter allows an application to connect to an
EIS system and perform work. The application initiates all communication. The resource
adapter serves as a passive library for connecting to an EIS, and runs in the context of the
application threads.

* Inbound communication: The resource adapter allows an EIS to call application
components and perform work. The EIS initiates all communication. The resource adapter
can request threads from the application server or create its own threads.

* Bi-directional communication: The resource adapter supports both outbound and
inbound communication.

Understanding JCA Resource Adapters with Network Integrity

This chapter describes productized SNMP JCA resource adapter and 3rd party or customized
JCA resource adapters, and their use within Network Integrity.

Network Integrity administrators can configure the productized SNMP JCA resource adapter

included with the Network Integrity software. Network Integrity system integrators can extend
this SNMP JCA resource adapter with additional MIB files at run time to poll additional SNMP
object identifiers (OIDs).

In addition to the productized JCA resource adapter for use with SNMP, Network Integrity
system integrators can also use any standard J2EE JCA resource adapters (3rd party or
customized) in their customized Network Integrity cartridge. They can deploy these resource

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE Chapter 13
About Productized SNMP JCA Resource Adapter

adapters wherever the Network Integrity application is deployed. These adapters can be
standalone, or clustered within a Weblogic server.

Network Integrity cartridges can:

e use a deployed resource adapter

e communicate with various network devices

* send commands

* collect data through various protocols (for example, SNMP, TLI, or CORBA)

See SCD Developer's Guide for details on creating a Network Integrity cartridge project. See
Network Integrity Installation Guide for details on deploying an SNMP JCA resource adapter.

About Productized SNMP JCA Resource Adapter

The SNMP discovery processor uses the SNMP JCA resource adapter, contained in the
Network Integrity software to poll the SNMP enabled network devices.

The SNMP JCA resource adapter implements the connector architecture to provide SNMP
functions for Network Integrity. Oracle Fusion Middleware (the application server) is the
container for the SNMP JCA resource adapter and provides connection pool management.
The SNMP JCA resource adapter provides outbound communication only to Enterprise
Information Systems (network devices) and transaction management is not required.

The SNMP JCA resource adapter supports all SNMP-enabled network devices provided a
proper set of MIB files are installed.

SNMP JCA resource adapter has record and playback functions for user who want to collect
and view raw SNMP data and later reuse the data for testing purposes. For details on how to
configure the SNMP resource adapter to run in record and playback mode, see "Record and

Playback Mode".

Installing the SNMP JCA Resource Adapter

The SNMP resource adapter installs as part of the Network Integrity Installer. See Network
Integrity Installation Guide for more details.

Extending the SNMP JCA Resource Adapter

The SNMP resource adapter is installed with the following pre-bundled MIB files:

- ATM-MIB
- IANAIifType-MIB
- IF-MIB

* RFC1155-SMI

« RFC1213-MIB

* SNMP-FRAMEWORK-MIB
* SNMPv2-MIB

* SNMPv2-SMI

* SNMPv2-TC

« ENTITY-MIB

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE

Chapter 13
About Productized SNMP JCA Resource Adapter

e ATM-TC-MIB
 INET-ADDRESS-MIB
« IP-MIB

« RFC-1212

e SNMPv2-CONF

* enterprise-numbers.txt

If a device is not supported by the MIB files included with the SNMP JCA resource adapter,
then the user must install additional MIB file(s) that support such a device. These additional
MIB files provide the corresponding MIB OIDs and definitions for the device that the user wants
to poll. Ensure that the same MIB file(s) are available in Design Studio for the corresponding
cartridge development. The MIB file(s) on both Design Studio and the SNMP JCA resource
adapter must match. Manually copy these MIB files to the SNMP JCA resource adapter.

To copy new MIB files to the SNMP JCA resource adapter, use the following steps:

1. Log in to the server where Network Integrity is installed.

2. Go to directory NI_ HOME/integrity/snmpAdapter/mibs, where NI_HOME is the location
chosen using the NI installer during the Network Integrity installation.

3. Copy the new MIB files to this directory.

@ Tip

There is no need to restart the server. The SNMP JCA resource adapter
automatically loads the new MIB files when needed.

4. Perform an update operation of ‘'snmpadapter' application in Admin console.

Record and Playback Mode

Developer's Guide
G34175-01

SNMP JCA resource adapter supports record and playback mode.

When the SNMP JCA resource adapter is configured to run in record mode, the resource
adapter polls a network device, and the device returns the polled data to the resource adapter.
The SNMP JCA adapter then returns the SNMP data to the discovery cartridge and also writes
the SNMP data to a file that it stores on a local hard drive.

When the SNMP JCA resource adapter is configured to run in playback mode, the resource
adapter does not require a connection to the network device. Instead the resource adapter
reads the SNMP data file (created in Record mode and stored on the local hard drive) and
sends the SNMP data back to discovery cartridge.

To switch the mode of SNMP resource adapter, use the following steps to create a
configuration file.:

Log in to the server where Network Integrity is installed.
Go to directory NI_DOMAIN_HOME/config.
Create a directory called snmpAdapterConfig.

Within the new directory, create a file called snmpAdapter.properties.

g w dh PR

Add the following content to the file:

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE’

Chapter 13
About Third Party or Customized JCA Resource Adapters

#MODE=nor nal
MODE=r ecor d
#MODE=p| ayback

@ Tip

Enable a mode by removing the comment symbol (#) from the beginning of the
line. In the above example, record mode is enabled.

The SNMP JCA resource adapter creates the record files in NI_DomainlsnmpData. The exact
directory and filename depends on the IP address. For example, device 10.156.66.191 is
stored at NI_DomainlsnmpData/10/156/66/191/10.156.66.191_XXXXX.rec, where XXXX is
the name of the request set by the scan element.

Playback mode loads recorded SNMP results and send them back to the Network Integrity
cartridge without actually polling the network devices.

There is no need to restart the Weblogic server after changing the SNMP resource adapter
properties file. SNMP JCA resource adapter dynamically switches the mode based on the
current configuration in the properties file.

For clustered environment, the user manually creates and modifies the properties file for every
SNMP JCA resource adapter installed on every node.

Invoking the SNMP JCA Resource Adapter in a Network Integrity Cartridge

Design Studio creates (code-generates) the complete implementation of the SNMP processor
for discovery action. This SNMP processor can perform SNMP discoveries of SNMP enabled
network devices.

After the SNMP processor discovers a device, the processor can use the SNMP JCA resource
adapter to perform SNMP polling on the discovered network devices.

There is no coding effort to use the SNMP resource adapter in a Network Integrity cartridge.

About Third Party or Customized JCA Resource Adapters

The following sections provides information on building JCA resource adapters and on invoking
third party or custom Resource adapters.

Building a JCA Resource Adapter in WebLogic

To create a JCA resource adapter for use in a customized Network Integrity cartridge, see:

http://downl oad. oracl e. conf docs/ cd/ E12839 01/ web. 1111/e13732/toc. htm

This Fusion Middleware document provides detailed instructions for creating a resource
adapter in Weblogic.

Invoking a Third Party or Customized JCA Resource Adapter

Developer's Guide
G34175-01

The following workflow describes the steps required to implement third party or customized
JCA resource adapters in Network Integrity.

1. Deploy third party or customized JCA resource adapters into the Network Integrity system.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 7

http://download.oracle.com/docs/cd/E12839_01/web.1111/e13732/toc.htm

ORACLE Chapter 13
About Third Party or Customized JCA Resource Adapters

2. Implement a Design Studio discovery processor to invoke the third party or customized
JCA resource adapter.

a. Locate the following code auto-generated from the discovery processor.

@verride
publ i ¢ Sanpl eProcessor Response i nvoke(Di scoveryProcessor Cont ext cont ext
Sanpl eProcessor Request request) throws ProcessorException {
/] TODO Aut o-generated method stub
return null;

}

b. Use the SampleProcessorRequest generated class to obtain the address scope,
property group, and other attributes.

@ Tip

This class provides important elements used when invoking a resource
adapter. For example, to use a TL1 resource adapter to make a TL1 request,
the TL1 resource adapter needs to know which device it should
communication with. This information is obtained from the
SampleProcessorRequest in the following sources:

e |P address: available from the address scope
e port number: available from the property group

e login information for the TL1 session including username and password:
available from the property group

c. Use the data provided by SampleProcessorRequest to implement the Java code to
invoke the JCA resource adapter.

Depending on the resource adapter, the way to invoke a resource adapter can different.
Typically the invoke process requires several INDI name lookups to get some JCA Connection
Factory and Interaction Specification classes. From the JCA Connection Factory, the user can
create Interaction. Next is to do the execution from Interaction by passing the Interaction
Specification.

If user is using an existing 3rd party resource adapter, it should come with a developer guide
that provides the detailed instruction on how to implement the client code to invoke this
resource adapter. If a user creates a customized resource adapter from scratch, the user
should have all the knowledge on how to invoke this customized JCA resource adapter.

The following code snippet demonstrates how to invoke a JCA resource adapter that
implements Common Client Interface (CCI):

context = new Initial Context();
Sanpl eAdapt er Connect i onSpecl npl cspec =
(Sanpl eAdapt er Connect i onSpecl npl) cont ext . | ookup(JNDI _SAMPLE_CONN_SPEC) ;
cxFactory = (ConnectionFactory) context.|ookup(JNDI _SAMPLE CONN_FACTCRY) ;
connection = cxFactory. get Connection(cspec);
i spec = (Sanpl eAdapt er | nteracti onSpec)context. | ookup(JNDI _SAMPLE | NTER_SPEC) ;
interaction = connection.createlnteraction();
RecordFactory recordFactory = cxFactory. get RecordFactory();
I ndexedRecord input =
recor dFact ory. cr eat el ndexedRecor d(Sanpl eAdapt er | ndexedRecor d. | NPUT) ;
i nput . add(request);
I ndexedRecord out put =
recor dFact ory. creat el ndexedRecor d(Sanpl eAdapt er | ndexedRecor d. QUTPUT) ;

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 13
About Third Party or Customized JCA Resource Adapters

interaction.execute(ispec, input, output);
out =(String)out put. get (Sanpl eAdapt er | ndexedRecor d. MESSAGE_FI ELD) ;

In this example, the “out" contains the collected results as an XML document as String.
However, different resource adapter have different output. To detail all possible kinds of output
is beyond the scope of this document.

The final output should be wrapped inside the SampleProcessorResponse class (code-
generated) and return as the returned value of this invoke method.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 7

Working with Reports Extensibility

This chapter provides overview information about the Oracle Analytics Publisher (OAP) which
comes with Oracle Analytics Server (OAS) and reports extensibility for Oracle Communications
Network Integrity.

This chapter contains the following sections:

About Oracle Analytics Publisher

Downloading Oracle Analytics Server

Installing Oracle Analytics Server

Reports Provided with Network Integrity

Configuring Oracle Analytics Server

About Oracle Analytics Publisher

Oracle Analytics Publisher is available with Oracle Analytics Server and can be deployed as an
integrated product or standalone. Nl is certified with OAP 6.4.0 which is installed along with
OAS.

Downloading Oracle Analytics Server

You can download the latest version of OAS from the Oracle Analytics Server website:

https://www.oracle.com/solutions/business-analytics/analytics-server/analytics-server.html

You can also download OAS from the Oracle software delivery website:

http://edelivery.oracle.com/

To download OAS from the Oracle software delivery website:

1.

® N o g &

Developer's Guide
G34175-01

Log in to e-delivery.

Search for "Oracle Analytics Server".

The search results display the different versions available.

Select the latest version to add it to the cart.

Choose the platform to be downloaded as Linux x86-64.

Optional: If not already installed, you can select FMW 12.2.1.4 to be downloaded.
Click on Download.

Move the downloaded files to the Linux Machine.

Unzip the downloaded files.

The unzipped directory should contain the Oracle Analytics Server executable jar.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 7

https://www.oracle.com/solutions/business-analytics/analytics-server/analytics-server.html
http://edelivery.oracle.com/

ORACLE Chapter 14
Installing Oracle Analytics Server

Installing Oracle Analytics Server

To install OAS:

1. Runthe OAS jar. See "Running OAS jar" for more information on this step.

2. Complete the installation process. See "Completing OAS Installation” for more information
on this step.

3. Setup the RCU. See "RCU Setup" for more information on this step.

4. Create a domain. See "Domain Creation" for more information on this step.

You can verify the installation by logging into the console using the URL given below:

http://<server name>:<port number>/consol e

After you have successfully installed Oracle Analytics Server and can start it from the domain
home, you can access the following components using the URLS listed below:

1. Publish: http://<server name>:<port number>/xmlpserver
2. Analytics: http://<server name>:<port number>/analytics

3. Data Visualization: http://<server name>:<port number>/dv

Running OAS jar

1. Open the terminal in your Linux machine and change the directory to the path of the OAS
jar file.

cd <patch of OAS jar file>

2. Run the following command to launch the OAS installation process:

java -jar Oracle_Analytics_Server_Linux_6.4.0.jar

@ Note

Ensure that JAVA_HOME is defined before running the OAS jar. To verify, run the
echo $JAVA_HOME command in the terminal. The output displays the location of the
jdk. If JAVA_HOME is not defined, export it first.

Completing OAS Installation

Click Next on the Welcome screen.
Select Skip Auto Updates and click Next.
Click on Browse and select Oracle Home (which has FMW 12.2.1.4 installation).

Click on Open and click Next.

a p . Dd P

Once the Prerequisite Checks for verifying the installation environment are complete, click
on Next.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE’

RCU Setup

a & ® M PR

o

Chapter 14
Reports Provided with Network Integrity

Click on Install.

Once the Installation is complete, click on Next and then click on Finish.

Navigate to $ORACLE_HOVE/ or acl e_conmon/ bi n.

Run the ./ rcu command to initiate the repository creation process.
Select Create Repository, then System Load and Product Load.
Add the database details and click on Next.

Add a prefix (OASTEST in this case) and select Oracle Business Intelligence. Then click
on Next.

Click on Next in Map Tablespaces.
Click on Create.

After the repository is created, click on Finish.

Domain Creation

© ® N o g M & d PR

Navigate to the directory $ORACLE_HOVE/ bi / bi n.

Run the following command: ./config.sh.

Click Next on the Welcome screen.

Select Oracle Analytics Server and Oracle Analytics Publisher and click on Next.

After all the Prerequisite Checks are done, click Next.

Add a Unique Domain Name and add Username, Password for login to OAS. Click Next.
Click on Use Existing Schemas.

Add the database details and RCU details that were created in step 6 and click Next.

Add an available port. If the default ports (9500-9999) are not available, click Next.

10. Select Clean Installation (selected by default) and click Next.

11. Click on Save Response file for future reference and click Configure.

12. Once the configuration is successful, click on Next and then click Finish.

Reports Provided with Network Integrity

Network Integrity includes the following reports:

Developer's Guide
G34175-01

Scan History Report

Discovery Scan Summary Report

Device Discrepancy Detection Summary Report

Device Discrepancy Detection Detail Report

Discrepancy Corrective Action Report

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE Chapter 14
Reports Provided with Network Integrity

Scan History Report

The Scan History Report shows the discovery and discrepancy summaries for each scan for
each scan configuration falling within the specified start and end dates. This report is
accompanied by the following graphs:

- Discovery Scan History: A graph showing a history of the run discovery scans.
- Discrepancy Scan History: A graph showing a history of the run discrepancy scans.

- Discrepancy Severity History: A graph showing a history of the discrepancies by
severity.

The following fields are used to generate this report:
» Start Time: the date stamp indicating when a scan started.

* End Time: the date stamp indicating when a scan finished.

Discovery Scan Summary Report

The Discovery Scan Summary Report shows the summary of the latest scan for each scan
configuration, per vendor and per device type. This report generates a pie-chart, illustrating the
summary findings, for each scan configuration.

The following fields are used to generate this report:

* Vendor: The name of the vendor for the discovered device.

- Device Type: The type of device discovered.

Device Discrepancy Detection Summary Report

The Device Discrepancy Detection Summary Report shows the summary of the latest scan for
each scan configuration. This report generates a pie-chart that shows the accuracy of the
latest scans for each scan configuration.

The following fields are used to generate this report:

* Vendor: The name of the vendor for the discovered device.

* Device Type: The type of device discovered.

Device Discrepancy Detection Detail Report

The Device Discrepancy Detection Detail Report lists details of all discrepancies for the latest
scan for each scan configuration.

The following fields are used to generate this report:

* Vendor: The name of the vendor for the discovered device.

* Root device hame: The name of the root device in the scan result tree.

* Root device type: The type of the root device in the scan result tree.

e Owner: The user name of the owner of the discrepancy.

* Parent entity type: The type of the parent entity on which discrepancy occurred.

* Parent entity name: The name of the parent entity on which discrepancy occurred.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE

Chapter 14
Configuring Oracle Analytics Server

Entity type: The type of the entity on which discrepancy occurred.

Inventory value: The value of the field on the inventory side on which discrepancy
occurred.

Network value: The value of the field on the network side on which discrepancy occurred.
Severity: The severity of the discrepancy (for example, major, critical, minor, warning).
Discrepancy type: The type discrepancy (for example, entity+, entity-, attribute).
Description: The description of the discrepancy.

Status: The status of the discrepancy (for example, processed, failed, ignored).

Scan name: The name of the scan in which the discrepancy is found.

Discrepancy Corrective Action Report

The Discrepancy Corrective Action Report shows corrective actions against specified
discrepancies for the latest scan for each scan configuration. Discrepancies against which no
actions are taken are not considered in this report.

The following fields are used to generate this report:

Submitted By: The user who submitted the discrepancy for correction.

Action: The action taken against the discrepancy.

Discrepancy Status: Status of the discrepancy.

Owner: The user name of the owner of the discrepancy.

Priority: The priority of the discrepancy.

Failure Reason: The reason for failure for the corrected discrepancy.
Discrepancy Type: The type discrepancy (for example, entity+, entity-, attribute).
Entity Type: The type of the entity on which discrepancy occurred.

Inventory Value: The value of the field on the inventory side on which discrepancy
occurred.

Network Value: The value of the field on the network side on which discrepancy occurred.

Configuring Oracle Analytics Server

To configure Oracle Analytics Server and generate reports:

1.

Developer's Guide
G34175-01

Set up the Data Source in OAS:
a. Log in to the Publisher using the url http:/<server name>:<port number>/xmipserver
b. Click on the Image Icon at the top-right and click on Administration.
c. Under the Data Sources click on JDBC Connection.
d. Under JDBC tab click on Add Data Source.
e. Inthe Update Data Source screen, enter the following details:
i. For Connection String, enter jdbc:oracle:thin: @[Host_name]:[Port]:[SID].

ii. For the Database Driver Class enter oracle.jdbc.driver.OracleDriver. This is the
default entry.

f. Click on Test Connection.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE

Developer's Guide
G34175-01

Chapter 14
Configuring Oracle Analytics Server

g. After the confirmation that the connection is successfully established, click on Apply to
save the connection details.

Create the folder structure:
a. Click on Catalog in the navigation bar.

b. Under Shared Folders create a folder with the name BIPubReports. Under this folder,
create another folder with the name Data Models.

® Note

You can create a folder by clicking the "+" icon and selecting Folder.

Upload the existing data models and reports.

Network Integrity provides some sample reports and data models bundled along with its
installer. On successful installation of Network Integrity, the reports will be copied in the
path $NI_HOME/integrityreports/integrityReports.zip. Unzip the zip folder and upload the
data models and reports provided. See "Uploading Data Models" and "Uploading Reports
for more information.

Set the data source for reports:
a. Click on the Data Model folder in OAS.
All data models should appear.
b. Click on Edit under any one of the reports.
A new page with data model configurations opens.
c. Click on the Settings icon and click on Edit Data Set.

d. Select the data source. The list of data sources is populated from the JDBC
connection data source added in step 1.

e. Click on OK.
f. Click on each entry in List of Values and change the data source for each one of them.
Validate the change of data source:
a. Click on Data Tab.
b. Optional: Add parameters. This step is used as a filter.
c. Click on View.
d. Click on Table View.
Generate the Scan History Report:
a. Navigate to the Catalog and select the folder BIPubReports.
b. Click on the report for which the data source has been set.
c. Select the parameters and click on Apply.
The report will be generated.

d. Export the report in the required format by clicking on the icon as shown in the figure
below.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 14
Configuring Oracle Analytics Server

Figure 14-1 Exporting a report into required format

Scan_History Report -

wsstmp 1 o 1 o) 2022~ [202- |odon
ant w11 fomae
10230 | 202310

zuc [autc
a u

Pp_dsEndDate p_drStanDate P_drEndDate p_dsStartDate Apply
Sean_History_Report S E=E/lQY &0
Scan_History_Report O
[PorF
Discovery Discrepancy Detection -
=l e | Feoall Bl Pt e o il ol o B HL
“ J m J
B rrF
XML 12:43:2 |12:43:2 [¥] Excel ("xisx)
‘ sutc [suTC
i el [F] PowerPoint (* ppix)
|ort 10-10 10-10 om 4s
\ i
‘

MeSImp. 1 o i [o 2022|202~ |odon
on2 wu |1 [omos

Uploading Data Models

1. Select Data Model folder and click on Upload.

2. Select the files inside Data Models folder ending with .xdmz extension.
3. Click on Upload.
4

Repeat the above steps 1 to 3 for all the xdmz data models.

Uploading Reports

1. Select the BiPubReports folder and click on Upload.
2. Select the files which end with .xdoz extension.

3. Click on Upload.
4

Repeat the above steps 1 to 3 for all xdoz reports.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 7

Working with SOA Extensibility

This chapter provides overview information about Service-Oriented Architecture (SOA)
extensibility for Oracle Communications Network Integrity.

This chapter contains the following sections:

* About SOA Extensibility

* Extensibility Tasks

About SOA Extensibility

SOA extensibility topics covered in this chapter include creating an SOA development
environment, setup, development, and testing of the Network Integrity SOA application.

The Business Process Execution Language (BPEL) provides enterprises with an industry
standard for business-process orchestration and execution. Using BPEL, you design a
business process that integrates a series of discrete services into an end-to-end process flow.

The Oracle BPEL Process Manager is a tool for designing and running business processes.
This product creates, deploys, and manages cross-application business processes with both
automated and human workflow steps in a service-oriented architecture.

The Sample Network Integrity SOA application provides a BPEL process that contains two
parallel sequences. These sequences automate search and update Network Integrity
discrepancies.

The following shows how this automation occurs:

1. Search for Network Integrity discrepancies of type attribute mismatch for
nativeEmsServiceState and update their resolution to Correct in UIM, if those
discrepancies' network value is In service and import value is Out of service.

2. Search for Network Integrity discrepancies of type attribute mismatch for physicalAddress
and update their priority to High and discrepancy owner to given input value.

Purpose of Documentation

The developer should learn to install SOA, setup SOA Development environment, and use it
for Network Integrity SOA application extensibility.

Extensibility Tasks

The tasks involve setting up of developer environment to update and extend the Network
Integrity SOA application for future requirements.

Required software includes:

1. Oracle WebLogic Server

2. Oracle JDeveloper

w

Oracle Application Development Framework

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 11

ORACLE Chapter 15
Extensibility Tasks

Oracle Application Runtime Framework

4
5. Oracle Fusion Middleware Repository Creation Utility
6. SOA suite

7

Oracle Database

Extensibility Tasks

To implement SOA extensibility, use the following tasks:

* |nstalling Oracle Weblogic Server

* |nstalling Oracle JDeveloper

* Installing Oracle Application Runtime

e Installing Oracle SOA Suite

e Creating SOA Metadata Service Schemas

» Updating JDeveloper for Latest SOA Composite Editor

e Creating WebLogic Domain with SOA Products

e Creating and Updating Sample SOA Application Using Network Integrity Web Service

e Starting and Stopping SOA Servers

e Building and Deploying the SOA Application

e Testing Sample SOA application

e Testing Network Integrity SOA Application Using EM

e Testing Network Integrity SOA Application Using soa-infra

» Testing Network Integrity SOA Application Using SOAP Ul Tool

Installing Oracle Weblogic Server

To install Oracle Weblogic Server, use the following procedure:

1. Download Oracle WebLogic Server.
2. Run ./wls1036_linux32.bin

3. Click Next.
4

Enter the WL_Home directory location to create a home directory for Oracle Fusion
Middleware.

Click Next.

o

6. Select the I wish to receive security updates via Oracle Support check box and click
Next. (Optional)

7. Select Custom for the installation type.

8. Click Next.

9. Select the WebLogic Server check box to install all WebLogic Server components.
10. Click Next.

11. Select the Sun JDK check box.

12. Click Next.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 11

ORACLE

13.
14.
15.
16.
17.
18.
19.

Chapter 15
Extensibility Tasks

Review the installation directories.

Click Next.

Review the installation summary of the products and JDKSs to be installed.
Click Next. This step begins the installation.

When the installation is complete, deselect Run Quickstart.

Click Done.

Setup BEA_HOME, JAVA_HOME, WL_HOME environment variables and update PATH
with the Java executable location. For example,

export BEAHOMVE=/ opt / beahone
export W._HOVE=$BEAHOVE/ Wi server _10. 3
export JAVA HOVE=$BEAHOWE/ j dk160_33_R27. 6. 5- 32

export PATH=$JAVA HOWE/ bi n: $PATH

Installing Oracle JDeveloper

To install Oracle JDeveloper, use the following procedure:

1.

o 0 W DN

9.

10.
11.
12.
13.
14.

Download Oracle JDeveloper
(Oracle_JDeveloper_11g_and_Oracle_Application_Development_Framework_11g.zip
) software from the Oracle software delivery website:

https://edelivery.oracle.con

Unzip the installer to any directory.

Open a console.

Change the console directory to the unzipped installer directory.
Run the installer using the following command:

java —jar jdevstudiollll6install.jar

The Installer starts extracting the setup files and Installation wizard opens when it reaches
to 100%.

Click Next.

Select Use the existing Middleware Home to select the Middleware home you created in
"Installing Oracle Weblogic Server".

Select JDeveloper Studio and ADF too install all JDeveloper Studio and ADF
components.

Click Next.

Select the existing Sun SDK.

Click Next.

Confirm JDeveloper and WLS home directories and click Next.

Review the Installation summary and click Next. This step begins the installation.

Click Done when the installation is complete.

Installing Oracle Application Runtime

To install Oracle Application Runtime, use the following procedure:

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 3 of 11

https://edelivery.oracle.com/

ORACLE

g & B Db

9.

10.
11.
12.
13.

Chapter 15

Extensibility Tasks

Download Oracle Application Development Runtime software from the Oracle software

delivery website:

https://edelivery.oracle.con

Unzip the installer to any directory.

Open a console.

Change the console directory to the unzipped installer directory.
Run the installer using the following command:

. Diskl/runinstaller

Enter the JAVA HOME location to launch installation wizard.
Click Next.

Click Next button after Prerequisite Checks are complete.

@ Tip

Install the required system package if a check fails.

Click Browse and navigate to WL_Home.
Click Next.

Click Install.

Click Next after the installation is complete.
Click Finish.

Installing Oracle SOA Suite

To install Oracle SOA Suite, use the following procedure:

1.

Developer's Guide
G34175-01

Download Oracle SOA Suite software from the Oracle software delivery website:

https://edelivery.oracle.con

Unzip the installer to any directory.

Open the console and change to unzipped folder directory.
Run the installer using the following command:

. Diskl/runlinstaller

Enter the JAVA HOME location to launch installation wizard.
Click Next.

Click Next after Prerequisite Checks are complete.

@ Tip

Install the required system package if a check fails.

Click Browse and navigate to WL_Home. Do not modify the Oracle Home Directory

name.

Click Next.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates.

Page 4 of 11

https://edelivery.oracle.com/
https://edelivery.oracle.com/

ORACLE Chapter 15
Extensibility Tasks

10. Click Install.
11. Click Next after the installation is complete.
12. Click Finish.

Creating SOA Metadata Service Schemas

To creates a metadate service (MDS) schema for the Business Activity Monitoring (BAM) and
SOA servers, use the following procedure:

1. Download Oracle Fusion Middleware Repository Creation Utility software from the Oracle
software delivery website:

https://edelivery.oracle.con

2. Unzip the Repository Creation Utility (RCU) to any directory.
3. Open the console and change to unzipped folder directory.
4. Run the installer using the following command:

./ rcuHone/ bin/rcu

5. Click Next.

6. Select Create in the Create Repository screen
7. Click Next.

8. Enter database details as required.

9. Click Next.

10. Click OK.

11. Select Create a hew Prefix in the Select Components screen and enter a prefix in the
text box.

12. Select the following from the Component list:
* Metadata Service
* SOA Infrastructure
* Business Activity Monitoring
e User Messaging Service

These components are required for the SOA and BAM servers.

@ Tip

Remember the Schema Owners for subsequent procedures.

13. Click Next.

14. Enter passwords for all components in the Schema Passwords screen.

@ Tip

Remember the Schema Passwords for subsequent procedures.

15. Click Next.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 11

https://edelivery.oracle.com/

ORACLE

16.

17.
18.
19.
20.

21.

Chapter 15
Extensibility Tasks

Review the Schema Owner, Tablespace Type, and Tablespace Name for each
Component in the Summary screen.

Click Next to accept the settings.
Click OK to create the tablespaces.
Click OK when the prerequisites are complete.

Click Create in the Summary screen to create the tablespaces. This step can take up to
ten minutes.

Click Close after the tablespaces are created.

Updating JDeveloper for Latest SOA Composite Editor

SOA design time in JDeveloper requires a JDeveloper extension called SOA Composite editor.
While this is normally updated over the network when using release-level software, you can
also perform the update manually if you have the extension file. JDeveloper periodically
prompts you to accept an automatic network update. Since this is released software, you have
the option to click OK to update to a newer version.

To update JDeveloper for the latest SOA Composite editor, use the following procedure:

g » W NP

© ®» N 9

11.
12.

13.
14.
15.

Developer's Guide
G34175-01

Start JDeveloper Studio.

Select Default Role.

Deselect Show this dialog every time.
Click OK.

Click No for Migrate from previous release. After starting JDeveloper, wait for the
Integrated Weblogic Domain to be created. This domain is created the first time you run
JDeveloper after installation. It is not used by SOA. Watch for the completion message for
setting up the domain in the JDeveloper Messages log window at the bottom of the
JDeveloper IDE:

[12:37:11 PM Creating Integrated Wbl ogi c domain...

[12:38: 05 PM Extending Integrated Wbl ogi ¢ domain...

[12:38:14 PM Integrated Wbl ogi c domain processing
conpl eted successful ly.

Now you can update the SOA Composite editor extension. These instructions show you
how to update the extension over the network.

Select Help | Check For Updates.
Click Next.
Select Search Update Centers.

Select Oracle Fusion Middleware Products.

. Click Next. The system searches the update center for extensions.

From the list of extensions, select Oracle SOA Composite Editor.

Click Next to begin downloading. When the extension finishes downloading, it is listed with
the version number detail.

Click Finish.
Restart JDeveloper when prompted.

Click No for Migrate from previous release.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 11

ORACLE

16.

17.

Chapter 15
Extensibility Tasks

When JDeveloper is running again, select Help then About.

Select the Version tab and review the version.

Creating WebLogic Domain with SOA Products

To creates an Oracle WebLogic domain with the required products for SOA applications, use
the following procedure:

1.
2.

o

© © N 9

11.
12.
13.
14.
15.
16.
17.

18.
19.

20.

Developer's Guide
G34175-01

Open the console and change to unzipped folder directory.

Run the following command:

. | <BEAHOVE>/ Wl server _10. 3/ common/ bi n/ confi g. sh

When the Welcome screen appears, select Create a new WebLogic domain.
Click Next.

Select Generate a domain, SOA Suite, Enterprise Manager, and Business Activity
Monitoring. Dependent products are selected automatically.

Click Next.
Enter domainl for the domain name.
Click Next.

Enter the user name weblogic and a password.

. Click Next.

Select Sun SDK 1.6_33 and leave Development Mode checked.
Click Next.

Select the check boxes for the components that you want to change.
Enter the password for the Schema Password.

Change the Service, Host Name, and Port values as required.
Click Next.

Review the Schema Owners for the individual component schemas and confirm that the
owners match those selected in the "Creating SOA Metadata Service Schemas"
procedure.

@ Tip
To change the Schema Owner field, use the following steps:
a. Remove the check boxes for all Component Schema items.
b. Select the check box for the Component Schema that you want to change.
c. Change the Schema Owner field.

d. Remove the check box for the component schema item you changed.

Click Next to begin a data source connection test.

Click Next if all connection tests are successful. If the connection tests are not successful,
click Previous and correct any errors.

Click Next.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 11

ORACLE

Chapter 15
Extensibility Tasks

21. Click Create in the Configuration Summary screen.

22. Click Done when the domain has been created.

When a domain is created, the Configuration Wizard creates one admin server and two
managed servers with the following details:

Admin Server

Name: admin_server
Port: 7001

SOA Server

Name: soa_serverl
Port: 8001

BAM Server

Name: bam_serverl

Port: 9001

See the startManagedServer_readme.txt file in the domain folder to start the servers.

Creating and Updating Sample SOA Application Using Network Integrity

Web Service

To update an SOA application using the Network Integrity SOA application, use the following
procedure:

1.

Developer's Guide
G34175-01

Download the Sample Network Integrity SOA application (Networkintegrity-
SOA_Sample_App-version.zip) software from the Oracle software delivery website:

https://edelivery.oracle.con

Unzip the application to any directory.

Start Oracle Jdeveloper.

From the Jdeveloper main menu, choose File then Open then browse to
NISOAApplication folder and select NISOAApplication.jws.

Click Open.

The NISOAApplication.jws contains the NIDiscrepancySetrvice project. The main
components for this project are:

NetworkintegrityControlService.wsdl: This is the Network Integrity Sample Web
Services WSDL file.

xds: This folder contains Network Integrity Sample Web Service schema files.

composite.xml: This file describes the entire composite assembly of services, service
components, references, and wires

In the project, composite.xml file is automatically created when the SOA project was
created. In this application only service components (including Network Integrity
Sample Web Service) are used.

NIBPELDiscrepancyProcess.bhel: This file contains a list of variables and the main
sequences in which he Network Integrity Web Service calls to update the Network
Integrity Discrepancies are defined. There are two parallel sequences named as
Sequence_1 and Sequence_2 to update Attribute mismatch discrepancies for

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 8 of 11

https://edelivery.oracle.com/

ORACLE

10.

11.

Chapter 15
Extensibility Tasks

nativeEMSServiceState (go to step 6) and physicalAddress (go to step 8)
respectively.

It is necessary that both client side artifacts (wsdl and schema) and server side artifacts
are in sync and of same version.

To search for natieEMSServiceState attribute mismatch discrepancies (Sequence_1),
search for the following discrepancies:

* TYPE = ATTRIBUTE_VALUE_MISMATCH

* ATTRIBUTEORRELATIONSHIPNAME = nativeEmsServiceState
* STATUS = DISCREPANCY_OPENED

* COMPARESOURCE = INVENTORY

« REFERENCESOURCE = NETWORK using findDiscrepancy webservice
operation.

Loop over each discrepancy and submit to updateDiscrepancy if COMPAREVALUE =
'IN_SERVICE' and REFERENCEVALUE ='OUT_OF_SERVICE' to update OPERATION
as 'Correct in UIM' and STATUS as 'OPERATION_IDENTIFIED'.

To search for physicalAddress attribute mismatch discrepancies, search for the following
discrepancies:

* TYPE = ATTRIBUTE_VALUE_MISMATCH
* ATTRIBUTEORRELATIONSHIPNAME = physicalAddress

* STATUS = DISCREPANCY_OPENED using findDiscrepancy webservice
operation.

Loop over each discrepancy and submit to updateDiscrepancy by setting PRIORITY to
High and DISCREPANCYOWNER to given value.

Right-click composite.xml and select Configure WS Policies to add appropriate security
client policy to the Network Integrity Web Service component.

Update NetworkintegrityControlService.wsdl's SOAP address location with Network
Integrity Web Service URL. For example:

<soap: address | ocation="https://<host_address>: <ssl _port>/ Net workl ntegrityApp-
Net wor kI nt egri t yCont r ol WebSer vi ce- cont ext - r oot /
Net wor kl ntegri t yControl Servi cePort Type"/>

This should be done before building the SOA application or use deployment plan while
deploying the SOA application to update the SOAP address location with the Network
Integrity Web Service URL. This configuration is required for SOA application to
communicate with Network Integrity Web Services.

Starting and Stopping SOA Servers

To start and stop SOA servers, use the following procedure:

1.
2.

Developer's Guide
G34175-01

To start the Administration Server run to following command: <domain>/startWeblogic.sh

To start the SOA managed server, run the following command (here soa_serverl is name
of SOA managed server): <domain>/bin/startManagedServer.sh soa_serverl

To enter the WebLogic console, use:
http://Host _Address: 7001/ consol e

To enter the Enterprise Manager console, use:

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 9 of 11

ORACLE’

Chapter 15
Extensibility Tasks

http://Host _Address: 7001/ em
To enter SOA Infra, use:
http://Host _Address: 8001/ soa-infra

Press Ctrl + C to stop the servers.

Building and Deploying the SOA Application

To build and deploy the SOA application, use the following procedure:

1.
2.

In Jdeveloper, go to Application Navigator then right-click NIDiscrepancyService project.

Click Make NIDiscrepancyService.jpr in the menu to build the project. The project should
build successfully without any compilation errors or warnings.

Start the Administration and SOA servers that are created as part SOA domain creation
(see "Starting and Stopping SOA Servers" and "Creating WebLogic Domain with SOA
Products").

Create a standalone server connection for the SOA server.
Right-click NIDiscrepancyService and select 'Deploy' to Application server.

The SOA suite provides an ant script to deploy and undeploy the SOA archive (SAR) file
(deployable SOA application jar) in the BEA HOME. Use the following to deploy and
undeploy the SAR file:

e To deploy, use the following:

ant -f <BEAHOVE>/ Oracl e_SQA1/ bi n/ ant - sca- depl oy. xm
-Dserver URL=<ht t p: / / soa_server _host: soa_server_port>
- Dsar Locati on=<SQA archive file path>

For example,

ant -f /home/ beahome/ Oracl e_SQOA1/ bi n/ ant - sca- depl oy. xni

- Dserver URL=htt p: // <l ocal host >: 8001

- Dsar Locat i on=/ home/ exanpl e/ beahone/ mywor k/ Nl SOAAppl i cati on/ NI Di screpancyServi ce/
depl oy/ sca_Ni Di screpancyConposite_revl.0.jar

e To undeploy, use the following:

ant -f <BEAHOVE>/ Oracl e_SQA1/ bi n/ ant - sca- depl oy. xml undepl oy
-Dserver URL= <http://soa_server_host: soa_server_port>

- Dconposi t eName=<SCA conposite nanme>

- Drevi si on=<SOA conposi te version>

For example,

ant -f /honme/ beahome/ Oracl e_SQOA1/ bi n/ ant - sca- depl oy. xml undepl oy
- Dserver URL=htt p: // <l ocal host >: 8001

- Dconposi t eName=NI Di scr epancyConposite

-Drevision=1.0

Testing Sample SOA application

To test a sample SOA application, use the following three tools:

Developer's Guide
G34175-01
Copyright © 2010, 2025

Testing Network Integrity SOA Application Using EM

Testing Network Integrity SOA Application Using soa-infra

Testing Network Integrity SOA Application Using SOAP Ul Tool

October 8, 2025

, Oracle and/or its affiliates. Page 10 of 11

ORACLE Chapter 15
Extensibility Tasks

@® Note

Oracle Enterprise Manager (EM) can also helpful in debugging and auditing of BPEL
sequence exceptions.

Testing Network Integrity SOA Application Using EM

To test a sample SOA application with EM, use the following procedure:

Log on to the Enterprise manager as admin.
Expand the SOA folder to the deployed composite (NIDiscrepancyComposite).

Click Test to test composite.

1.
2.
3
4. Enter any value for the input argument for SOA Web Service.
5. Click Test Webservice. Wait for a response.

6. Click Launch Message Flow Trace to see detailed output.

7. Click NIBPELDiscrepancyProcess to view the Audit Trail, Flow, and so on.
8

Expand the payloads to see detailed input and output of each Web Service invoked.

Testing Network Integrity SOA Application Using soa-infra

To test a sample SOA application with soa-infra, use the following procedure:

1. Log on to soa-infra using the following URL:
http://Host _Address: 8001/ soa-infra
2. Enter any input required for the test.

3. Click Invoke.

Testing Network Integrity SOA Application Using SOAP Ul Tool

To test a sample SOA application with the Simple Object Access Protocol (SOAP) Ul tool, use
the following procedure:

1. Create a SOAP Ul project at the following URL:

http://Host _Address: 8001/ soa-infra/ services/ defaul t/ N Di screpancyConposite/
ni bpel di screpancyprocess_client_ep?WsDL

2. Enter any input required for the test.

3. Create arequest run.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 11 of 11

Localizing Network Integrity

This chapter provides information on localizing the Oracle Communications Network Integrity
Ul and Help. Localization is the process of translating a Ul or Help system from the original
language in which it was written into a different language for use in a specific country or region.
For example, the Network Integrity Ul and Network Integrity Help are written in English. If your
company is based in France and you purchase Network Integrity, you may want to localize
Network Integrity to display the Ul and Help in French.

Localizing Network Integrity involves modifying a specific set of files that Network Integrity uses
to display text in the Ul and in the Help.

This chapter contains the following sections:

e Software Requirements

» Setting the Language Preference in the Browser

* Determining the Locale ID

e Localizing Network Integrity

e Localizing Network Integrity Help

@® Note

The procedures in this chapter use Windows syntax for directory paths and
commands. If you are working on a Unix or Linux platform, adapt the syntax
accordingly.

@® Note

Before localizing your Network Integrity environment, you must identify a strategy for
maintaining future localizations. Oracle does not provide a delta file in which you can
readily see the details of what changed between releases.

Software Requirements

The following software is required to localize Network Integrity:

Design Studio

Localizing the Network Integrity Ul involves working with the Network Integrity localization pack
that you import into Oracle Communications Service Catalog and Design - Design Studio,
modify, and deploy into Network Integrity. Design Studio also provides various editors, such as
an XML editor and an HTML editor, that you can use to translate files for localization.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 1 of 15

ORACLE

Chapter 16
Setting the Language Preference in the Browser

Java

Using Help Indexer requires that you have Java installed. The java command should be in your
path.

Setting the Language Preference in the Browser

For a localized version of Network Integrity to display correctly in the browser, you need to
configure language preferences.

To configure language preferences in Google Chrome and Microsoft Edge:

1.

Open browser settings.
The browser settings open in a new tab.
From the navigation panel on the left, click Languages.

Under Preferred languages ensure that the language you plan to use must display at the
top of the list to have priority.

If the language you plan to use is listed:
a. Select the More actions icon on the language.
b. Click Move to the top to place the language you plan to use at the top of the list.
If the language you plan to use is not listed:
a. Click Add Language.
The Add Languages window appears.
b. Select alanguage
c. Click Add.
The selected language is added in the list under Preferred languages.

Select the More actions icon on the newly added language, and click Move to the top to
move it to the top of the list.

To configure language preferences in Mozilla Firefox:

1.
2.

Developer's Guide
G34175-01

Open browser settings.

Scroll down to locate the Language section within Language and Appearance in the
settings page. You can also search for "Language" in the search bar at the top of the page
to find it.

Within the Language section, click the Choose button to choose language for displaying
pages.

The Webpage Language Settings window opens.

If your preferred language is already listed:

a. Select the language.

b. Click Move Up to move it to the top of the list.

If your preferred language is not listed:

a. Click on the dropdown menu at the bottom of the window to select a language to add.

b. Select your preferred language and click Add.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 2 of 15

ORACLE’

5.

6.

Chapter 16
Determining the Locale ID

Your preferred language is added to the list of languages.

Move your preferred language to the top of the list using the Move Up or Move Down
buttons.

Click OK.

Determining the Locale ID

A locale ID is a standardized ID that represents a language and region in which the language
is spoken. For example, fr_CA is the locale ID for French spoken in Canada, and es_MX is the
locale ID for Spanish spoken in Mexico.

Localizing Network Integrity involves copying and renaming existing files to include a locale ID.
The renamed files that include a locale ID become the translated version of the original files.

To determine the locale ID:

1.

From Internet Explorer, select Tools, then select Internet Options.
The Internet Options window appears.

Click Languages.

The Languages window appears.

Click Add.

The Add Language window appears.

Languages are listed alphabetically. Several languages are spoken in more than just one
country, so the locale ID reflects the language and the country in which the language is
spoken. For example, there multiple locale 1Ds for French:

» fr-BE for French spoken in Belgium

» fr-CA for French spoken in Canada

* fr-FR for French spoken in France

o fr-LU for French spoken in Luxembourg

e fr-MC for French spoken in Monaco

» fr-CH for French spoken in Switzerland

Locate the language to which you are localizing and determine the appropriate locale ID.

Close the Add Language, Languages, and Internet Option windows.

Localizing Network Integrity

The following sections describe localizing Network Integrity:

Developer's Guide
G34175-01
Copyright © 2010, 2025

About the Localization Pack

Creating the Localization Pack

Deploying the Cartridge Containing the Localized Files

Testing the Network Integrity Localization

October 8, 2025

, Oracle and/or its affiliates. Page 3 of 15

ORACLE Chapter 16
Localizing Network Integrity

About the Localization Pack

The Network Integrity Ul makes use of the full depth of i18n support provided by the
Application Development Framework (ADF) stack. The application Ul is fully internationalized
by making use of XML Localization Interchange File Format (XLF) files to keep all display
strings separate from other code artifacts. Various parts of the ADF stack (ADF Faces, ADF
Model, and ADF Data Control) are also built with full i18n support. A localization pack is a
collection of XLF files and other property files, that together localize the Ul to another
language. A localization pack can be built into a cartridge that can be deployed into Network
Integrity.

The expected outcome is that the user can successfully create, build, and deploy a localization
pack.

Creating the Localization Pack

Use the following procedure to create a localization pack:

1. Download localization.iar from the localization pack in the Oracle Communications
Network Integrity 7.3.2 Software Developer Kit (included with the Oracle Communications
Network Integrity 7.3.2 software) on the Oracle software delivery website:

https://edelivery.oracle.com

@® Note

The localization pack also contains a partial sample traditional Chinese
localization, for your reference, where parts of the Scan Configuration Creation
page are translated into traditional Chinese.

2. Extract the META-INF/MANIFEST.MF file to a temporary location.

3. Open MANIFEST.MF and edit the value of Bundle-Name: Localization and Bundle-
Description: Localization as follows:

Bundl e- Nane: Localization : |ocalization_pack_name
Bundl e-Description: Localization : localization pack description

Where localization_pack_name is the name of the localization pack you are creating, and
where localization pack description describes the localization pack you are creating.

4. Save MANIFEST.MF and return it to localization.iar/META-INF.
5. Extract META-INF/cartridge.xml to a temporary location.
6. Open cartridge.xml and edit the values of the name and languageCode tags:

<l ocal i zati ons>
<l ocal i zati on>
<nanme>Local e_Nane</ nane>
<l anguageCode>Local e_| D</ | anguageCode>
</l ocalization>
</localizations>

Where Locale_Name is the locale of the localization pack you are creating; for example,
French, and where Locale_ID is the standardized locale ID that represents a language
and region in which the language is spoken. For example, fr-CA is the locale ID for French
spoken in Canada, and es-MX is the locale ID for Spanish spoken in Mexico. A locale ID

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Page 4 of 15

https://edelivery.oracle.com

ORACLE

Developer's Guide

G34175-01

10.

Chapter 16
Localizing Network Integrity

can also represent a language without specifying the region in which the language is
spoken. For example:

<l ocal i zati ons>
<l ocal i zati on>
<name>Fr ench</ nane>
<l anguageCode>f r </ | anguageCode>
</l ocalization>
</l ocalizations>

Save cartridge.xml and return it to localization.iar/META-INF.

Extract localization.iar/localization.jar to a temporary location.

Extract localization.jar/oracle to a temporary location.

Edit all the XLF files found in localization.jar/oracle or any of its nested folders:

a. Edit the name of each XLF file to add an underscore and the locale ID before the file
extension, as shown in the following example:

DisAddressMsgBundle_ fr.xIf

® Note

Compound locale IDs, such as fr-CA, should be added to the XLF file name
with an underscore in the place of the hyphen, as in the following example:

DisAddressMsgBundle_fr_CA.xIf

b. Open each XLF file and edit the file tag so that the source-language attribute is set to
the locale ID, as in the following example:

<file source-language="fr"
origi nal ="oracl e. communi cations. i nventory. api.entity. Physi cal Port MsgBundl e"
dat at ype="xm ">

@ Note

The source-language attribute for compound locale IDs, such as fr-CA,
should be set to the first two characters only, as in the following example:

<file source-|anguage="fr"
ori gi nal ="oracl e. communi cations. i nventory. api.entity. Physi cal Port MsgBundl
e" datatype="xn">

c. Open each XLF file, locate each trans-unit tag and edit its child source tag with the
translated value for the desired localization.

11. Edit all the PROPERTIES files found in localization.jar/oracle or any of its nested folders:

a. Edit the name of each PROPERTIES file to add an underscore and the locale ID
before the file extension, as shown in the following example:

IntegrityUlBundle_fr.properties

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 5 of 15

ORACLE

12.
13.
14.
15.

16.

Chapter 16
Localizing Network Integrity

@® Note

Compound locale IDs, such as fr-CA, should be added to the XLF file name
with an underscore in the place of the hyphen, as in the following example:

IntegrityUlBundle_fr_CA.properties

b. Open each PROPERTIES file and edit the value for each key with the translated value
for the desired localization. For example, edit the
INTEGRITY_MANAGE_SCAN_CONFIG key, as in the following example:

| NTEGRI TY_MANAGE_SCAN_CONFI G=new_val ue

Where new_value is the translated value for the key for the desired localization.

c. (Optional) To enter extended character values (such as Chinese characters), you must
use Unicode Escapes (only one character is allowed per escape sequence). Save
each PROPERTIES file with UTF-8 encoding, then convert each PROPERTIES file to
Unicode Escapes using the native2ascii tool provided with your JDK by entering the
following command:

native2ascii -encoding UTF-8 input_file_name output_file_nane
Where input_file_name is the name of the PROPERTIES file being converted, and
where output_file_name is the name of the converted file.

See the partial sample Chinese localization included in the localization pack for an
example.

Return all XLF and PROPERTIES files to localization.jar.
Return localization.jar to localization.iar.
Deploy localization.iar using the cartridge deploy tool.

(Optional) To localize link names in the Link panel in the Network Integrity Ul, you must
edit the MBean with the translated values for the desired localization. See "Network
Integrity System Administrator's Guide" for more information about viewing and editing the
MBean.

(Optional) To localize cartridge-specific scan parameters, see Design Studio Modeling
Network Integrity. Cartridge-specific scan parameters can be localized within Design
Studio, where you can set multiple language preferences and then assign a language
preference to a scan parameter group.

Deploying the Cartridge Containing the Localized Files

After the translations are complete, build the localization pack to create a cartridge that can be
deployed into Network Integrity. Every cartridge should be cleaned and rebuilt prior to
deploying.

See Design Studio Modeling Network Integrity and Network Integrity System Administrator's
Guide for more information about deploying cartridges.

Developer's Guide
G34175-01

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 6 of 15

ORACLE

Chapter 16
Localizing Network Integrity

@® Note

When a cartridge containing localizable XLF files is deployed into Network Integrity,
the Networkintegrity.ear file automatically redeploys, resulting in the localization
changes being applied to the Ul.

Testing the Network Integrity Localization

When running the Network Integrity Ul, the user chooses the appropriate language from the
web browser. This is usually done using the Character or Text Encoding menu of the browser,
or from a Language preference setting. The Ul displays the selected language after the
corresponding localization pack is deployed. Otherwise, the Ul displays the default English
language.

There may be parts of the Ul that are supplied by third parties, which are not fully
internationalized. Those parts always display in English.

Customize Display Labels on the Network Integrity Ul

Developer's Guide

G34175-01

You can customize the labels for specifications and their characteristics on the Network
Integrity Ul to add custom text for labels.

To customize labels on the NI Interface:

1. Open the localization.iar file which contains multiple bundles, where each bundle contains
the display names for different labels on the Network Integrity Ul.

2. ldentify the bundle that has the label to be customized.

3. Within the identified bundle, search for the element that matches the label's ID.

@® Note

Before you make your changes, back up the current ear file.

4. Modify the source tag with the desired custom display name for the label.
5. Your localization.iar file is edited with the customized display name for the desired label.

6. Deploy the localization.iar to the Network Integrity application to apply changes to the Ul.
For more information on deploying cartridges, see "Deploying and Undeploying

Cartridges".
7. Log on to the Network Integrity Ul to verify your changes.

The following example demonstrates how to customize the 'Search Results' label name in the
Manage Scans page of the Network Integrity Ul.

1. Locate the corresponding bundle within the localization.iar file for the 'Search Results'
label. In this case, it is configviewbundle.

2. Ensure to backup the existing ear before making any changes. The below code fragment
shows how to modify the 'Search Results' label.

Update the source tag within the trans-unit element id="SEARCH_RESULTS" in the
bundles for the English locale (such as _en or en_US) and the default bundle (with no local
extensions). The customized text used here is 'Scan Search Results'.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 7 of 15

ORACLE

Chapter 16
Localizing Network Integrity Help

<trans-unit id="SEARCH RESULTS">
<source>Scan Search Results</source>
<target/>

</trans-unit>

3. Deploy the updated localization.iar to the NI application.

The 'Search Results' label on the Manage Scans page on the NI GUI will now display the
customized text 'Scan Search Results'.

Localizing Network Integrity Help

The following sections describe localizing Network Integrity Help:

» About Network Integrity Help

e Localizing the Network Integrity Help Files

* Deploying the Localized Help System

» Testing the Network Integrity Help Localization

About Network Integrity Help

Network Integrity Help uses Oracle Help for the Web. Oracle Help is a browser-based Help
system that runs as a web application based on a Java servlet. You do not need specialized
knowledge of Oracle Help to localize Network Integrity Help; you can use the information in this
chapter, supplemented by the Oracle Help documentation. See Oracle Fusion Middleware
Developer's Guide for Oracle Help for more information.

Network Integrity Help consists of a set of files, as described in the following sections.

About the Help Files

Developer's Guide

G34175-01

This section provides information about the Help files, including their location, a brief
description of their purpose, and whether or not they require configuring or translating for
localization. For details about configuring or translating the content of the Help files, see
"Localizing the Network Integrity Help Files".

Oracle Help File

An Oracle Help configuration file is located in the NI_Homel/integrity/ Networkintegrity.ear/
NetworkintegrityApp_NetworkintegrityUl_webappl.war/ helpsets directory. The
ohwconfig.xml configuration file contains references to each Help system deployed into an
application. Upon installation, the ohwconfig.xml file references the default Network Integrity
Help system (English) deployed into Network Integrity. This file requires configuration for
localization.

Network Integrity Help Files

The Network Integrity Help files are located in the NI_Homelintegrity/ Networkintegrity.ear/
NetworkintegrityApp_NetworkintegrityUl_webappl.war/WEB-INF/lib/
Network_Integrity Help.jar file, which contains the following Help files:

- *htm files: Each HTML file is a separate Help topic. The text in all of the HTML files
requires translation.

* Network_Integrity_Help.hs: This file describes the Help system. When Network Integrity
Help is initiated through the Network Integrity Ul, Network_Integrity_Help.hs is the
starting point. This file does not require translation.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 8 of 15

https://docs.oracle.com/cd/E37975_01/dev.111240/e16280/ohg_about_about.htm#OHJWG111
https://docs.oracle.com/cd/E37975_01/dev.111240/e16280/ohg_about_about.htm#OHJWG111

ORACLE

Chapter 16
Localizing Network Integrity Help

toc.xml: This file defines the Table of Contents (TOC) that appears in the left pane of the
Oracle Help window. The text in this file requires translation.

map.xml: This file associates Help IDs with the HTML file names. The TOC uses the IDs
to link entries to Help topics. This file does not require translation.

search.idx: This file is used when you perform a text search of the Help content. The file
defines a search index that searches the Help content in the HTML files. After the HTML
files are translated, the search index must be regenerated using the Java-based Help
Indexer. For more information, see "Software Requirements".

target.db: This file contains cross-reference information used for navigating between Help
topic headings. This file does not require translation.

dcommon/html/cpyr.htm: This file defines the Help copyright page, and requires
translation. (The dcommon directory contains standard Oracle support files, including a
CSS file, several graphics files, and the Help copyright page, but only the Help copyright
page requires translation.)

Localizing the Network Integrity Help Files

To localize Network Integrity Help, perform the work described in the following sections:

Extracting the Help Files

Translating the Help Files

Creating the Localized Help JAR File

Configuring the Oracle Help File

Extracting the Help Files

Use the default Help system installed with Network Integrity as the starting point for your
localization.

To extract the Help files:

1.

Developer's Guide
G34175-01

Copy the NI_Homelintegrity/Networkintegrity.ear/
NetworkintegrityApp_NetworkintegrityUl_webappl.war/WEB-INF/lib/
Network_Integrity_Help.jar file to a local directory, such as tempDir.

Open the tempDir/Network_Integrity Help.jar file.

Select all objects in the Network_Integrity_Help.jar file and extract them into the same
directory in which the Network_Integrity_Help.jar file resides (tempDir).

Click the File column heading in the tempDir directory to sort the objects by file type.
The following objects are present:

¢ dcommmon directory

* img directory

e META-INF directory

* target.db

* Network_Integrity Help.jar

* Network_Integrity_Help.hs

* numerous *.htm files

* search.idx

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 9 of 15

ORACLE Chapter 16
Localizing Network Integrity Help

°* map.xml
e toc.xml

You do not need to do anything with the img or META-INF directories, or with the target.db,
Network_Integrity_Help.hs, or map.xml files.

Translating the Help Files

To translate the Help files, perform the translations described in the following sections:

* Translating the Copyright Page

e Translating the Help Topics

e Translating the Table of Contents

Translating the Copyright Page

The copyright page text is defined in the tempDir/ldcommon/html/cpyr.htm file. Translate the
content of the title, heading, and paragraph elements (<title>, <h1> - <h6>, <p>) to the local
language.

For example, translate the bolded content in Example 16-1:

Example 16-1 Excerpt from cpyr.htm

<title>Oracle Legal Notices</title>

<link rel ="styl esheet"” href="../css/bl afdoc.css" type="text/css" />
</ head>

<body>

<hl>Oracle Legal Notices</hl>

<h2>Copyri ght Notice</h2>
<p>Copyright © 1994-2012, Oracle and/or its affiliates. Al rights reserved. </ p>

Translating the Help Topics

The Help topics text is defined in the numerous tempDir/*.htm files, and each file requires
translating.Translate the content of the title, heading, paragraph, and table data elements
(<title>, <h1> - <h6>, <p>, <td>) to the local language.

For example, translate the bolded content in Example 16-2. Elements that are not text, such as
the HTML tags themselves, should not be changed.

Example 16-2 Excerpt from olh_integ_scans002.htm

<IDOCTYPE htmi PUBLIC "-//WBC//DID XHTM. 1.0 Transitional //EN'
“http://ww. w3. org/ TR/ xht ml 1/ DTDY xht ml 1-transitional . dtd">

<htm xm ns="http://wm. w3. org/1999/xhtm " xm :1ang="en" |ang="en">

<head>

<meta nane="0AC_| GNORE_SKI P_NAV" content="true" />

<meta http-equiv="Content-Type" content="text/htm ; charset=us-ascii" />

<meta http-equiv="Content-Style-Type" content="text/css" />

<meta http-equiv="Content-Script-Type" content="text/javascript" />

<title>Creating a Scan</title>

<meta nanme="generator" content="Oracle DARB XHTM. Converter (Mde = ohj/ohw) - Version

5.1.2 Build 040" />

<neta nanme="date" content="2011-12-20T20: 51: 302" />

<neta name="robots" content="noarchive" />

<meta name="doctitle" content="Creating a Scan" />

<neta name="rel nunf content="Rel ease 7.1" />

<meta name="partnunm' content="E23703-01" />

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 10 of 15

ORACLE

Chapter 16
Localizing Network Integrity Help

<meta nane="topic-id" content="CreateScansMain" />

<link rel="copyright" href="./dcommon/htm /cpyr.htn title="Copyright" type="text/
htm " />

<link rel ="styl esheet" href="./dcomuon/css/bl af doc. css" title="COracl e BLAFDoc"
type="text/css" />

<link rel="contents" href="toc.htn' title="Contents" type="text/htm" />

</ head>

<body>

<p><a i d="CJAJAI Q" nane="CJAJAIl Q" ><a i d="Creat eScansMai n"

nanme="Cr eat eScansMai n" ></ a></ p>

<div class="sect2">

<h1>Creating a Scan</hl>

<p>To create a scan:</p>

<p>Fromthe Tasks panel, click Manage Scans.</p>
<p>The Manage Scans page appears. </ p>

Translating the Table of Contents

The TOC text is defined in the tempDir/toc.xml file. Each item in the TOC is defined by a
<tocltem> element. Translate the content to the local language.

For example, translate the bolded content of the text attribute in Example 16-3. Do not change
the content of the target attribute.

Example 16-3 Excerpt from toc.xml

<tocitemtarget="ol h_integ_main00l. ht msthref3" text="Getting Started with Network
Integrity" />

® Note

Oracle Help automatically translates the Help window menu options, field hames, and
informational, warning, and error messages. The translation is based on the locale
defined in the ohwconfig.xml file.

For example, if the only language preference specified is English, and the
ohwconfig.xml file defines a single locale of French, Oracle Help translates the Help
window menu options, field names, and messages to French.

That said, Oracle recommends that the language preference with the highest priority
be the same language defined as the locale in the ohwconfig.xml file.

Creating the Localized Help JAR File

Developer's Guide

G34175-01

After translating the Help files and regenerating the search index, create a new JAR file
containing the localized Help files.

To create the new JAR file:

1. In Windows Explorer, navigate to the tempDir directory. This is the directory containing the
Network_Integrity Help.jar file, the translated Help files, and the regenerated search
index file.

2. Copy the Network_Integrity_Help.jar file, and paste it in the same directory (tempDir).

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE

Chapter 16
Localizing Network Integrity Help

3. Select the copied version of the Network_Integrity Help.jar file and rename it
Network_Integrity Help.jar_locale.jar, where locale is the standardized ID that
represents a language and region in which the language is spoken. For example, fr-CA is
the locale for French spoken in Canada, and es-MX is the locale for Spanish spoken in
Mexico.

For more information, see "Determining the Locale ID".

4. Open the Network_Integrity_Help_locale.jar file.
5. Select and delete all of the objects in the JAR file.

6. Add the localized Help files to the Network_Integrity Help_/locale.jar file. (This includes
all of the directories and all of the files in tempDir, with the exception of
Network_Integrity_Help.jar and Network_Integrity Help_Jocale.jar.

7. Save and close the Network_Integrity Help_/locale.jar file.

You can verify that you included all of the directories and files by checking the number of
objects in the Network_Integrity_Help.jar file and in the Network_Integrity_Help_J/ocale.jar
file; the two JAR files should contain the same number of objects. To determine the number of
objects in each JAR file, select all of the objects in each JAR file; this provides a count of all
objects selected.

Configuring the Oracle Help File

Developer's Guide

G34175-01

After translating the Help files, regenerating the search index, and creating a localized Help
JAR file, configure the NI_Homelintegrity/Networkintegrity.ear/
NetworkintegrityApp_NetworkintegrityUl_webappl.war/ helpsets/ohwconfig.xml file to
reflect the localized Help JAR file.

To configure the ohwconfig.xml file:

1. Open the ohwconfig.xml file.
The file defines the default Help system (English):

<l ocal es>
<I-- English: -->
<l ocal e | anguage="en">
<books>
<hel pSet id="integrity"
jar="../WEB-INF/lib/Network_Integrity Help.jar"
| ocation="Network_Integrity_Help.hs"/>
</ books>
</l ocal e>
</l ocal es>

2. Update the <locale> element to reflect the localized Help system:

<l ocal es>
<I'-- French Canadian: -->
<l ocal e | anguage="fr">
<books>
<hel pSet id="integrity fr_ca"
jar="../WEB-INF/lib/Network_Integrity Help_fr _ca.jar"
| ocation="Network_Integrity_Hel p.hs"/>
</ books>
</l ocal e>
</l ocal es>

You do not need to change the location attribute value, which is the name of the file that
resides in the specified JAR file.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE

Developer's Guide

G34175-01

Chapter 16
Localizing Network Integrity Help

About Multiple Locales

Oracle Help can support multiple locales. For multiple locales, each localized Help system is
configured with a <locale> element in the ohwconfig.xml file. For example, the following
results in both French and Spanish Help systems being available in Network Integrity upon
redeployment:

<l ocal es>
<l-- French: -->
<l ocal e | anguage="fr">
<books>
<hel pSet id="integrity fr_ca"
jar="../WEB-INF/lib/Network_Integrity Help_fr_ca.jar"
| ocation="Network_Integrity_Hel p.hs"/>
</ books>
</l ocal e>
</l ocal es>
<l ocal es>
<l'-- Spanish: -->
<l ocal e | anguage="es" >
<books>
<hel pSet id="integrity_es_nx"
jar="../WEB-INF/lib/Network_Integrity Help_es_nx.jar"
| ocation="Network_Integrity_Hel p.hs"/>
</ books>
</l ocal e>
</l ocal es>
<par anet er s>
<conbi neBooks>f al se</ conbi neBooks>
<uselLabel | nf 0>t r ue</ useLabel | nf 0>
<cacheSi ze>3</ cacheSi ze>
</ par anet er s>

When multiple locales are defined, the language preference for all locales must be set. If not
set, only the first locale defined in the ohwconfig.xml file displays in Network Integrity Help.
See "Setting the Language Preference in the Browser" for more information.

When multiple locales are defined, the <parameters> element configuration values are applied:

 <combineBooks>

To merge Help systems, set <combineBooks> to true. The Help navigational views behave
as a single, integrated Help system.

To use separate Help systems, set <combineBooks> to false. The separate Help
navigational views are accessed based on the language preference with the higher priority.

Regardless of the <combineBooks> value, each locale that is defined in the
ohwconfig.xml file must be specified as a language preference. See "Setting the
Language Preference in the Browser" for more information.

October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE

Chapter 16
Localizing Network Integrity Help

@® Note

Oracle Help automatically translates the Help window menu options, field names,
and informational, warning, and error messages. The translation is based on the
first locale defined in the ohwconfig.xml file.

For example, if the only language preference specified is English, and the
ohwconfig.xml file defines the locales of French and Spanish, Oracle Help
translates the Help window menu options, field names, and messages to French.

However, when multiple locales are defined, the language preference for all
locales must be specified. Otherwise, only the first locale defined in the
ohwconfig.xml file displays in Network Integrity Help. So, when the language
preferences are set, Oracle Help translates the Help window menu options, field
names, and messages to the language preference with the highest priority.

e <uselLabellnfo>

If <useLabellnfo> is set to true, author-defined labels are used for the navigators of
merged Help systems.

If <useLabellnfo> is set to false, default labels such as Contents, Index, and Search are
used for the navigators of merged Help systems.

e <cacheSize>

<cacheSize> indicates the number Help systems kept in memory at one time. The default
value is 3.

See Oracle Fusion Middleware Developer's Guide for Oracle Help for more information.

Deploying the Localized Help System

The original Help system, located in the NI_Homelintegrity/Networkintegrity.ear/
NetworkintegrityApp_NetworkintegrityUl_webappl.war/WEB-INF/lib/
Network_Integrity_Help.jar file, is deployed when you deploy the Networkintegrity.ear file.

To deploy the localized Help system:

1. Repackage the NI_Homelintegrity/Networkintegrity.ear file to include the localized Help
files. To do this:

a.

Developer's Guide
G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

Delete the NI_Homelintegrity/Networkintegrity.ear/
NetworkintegrityApp_NetworkintegrityUl_webappl.war/WEB-INF/lib/
Network_Integrity_Help.jar file.

Copy the tempDir/Network_Integrity_Help.jar_locale.jar file to the NI_Home/
integrity/Networkintegrity.ear/
NetworkintegrityApp_NetworkintegrityUl_webappl.war/WEB-INF/lib directory.

@® Note

If your Network Integrity Help is supporting multiple locales, each JAR file
defined by each <locale> element in the ohwconfig.xml file must be present
in the NI_Homelintegrity/Networkintegrity.ear/
NetworkintegrityApp_NetworkintegrityUl_webappl.war/ WEB-INF/lib
directory.

October 8, 2025
Page 14 of 15

https://docs.oracle.com/cd/E37975_01/dev.111240/e16280/ohg_about_about.htm#OHJWG111

ORACLE Chapter 16
Localizing Network Integrity Help

2. Deploy the repackaged Networkintegrity.ear file.

For instructions on how to deploy the Networkintegrity.ear file, see "Network Integrity
System Administrator's Guide".

Testing the Network Integrity Help Localization

After you deploy the localized Help system, test your Network Integrity environment to verify
that the localized Help system is working correctly.

In Network Integrity, open the Help. Tests should include the following:

* Navigate to several topics from links in the Table of Contents to ensure that the correct
topics appear and display correctly.

» Test several links within Help topics to ensure they are working.
e Search for several terms and verify that you get the expected results.

« If testing multiple locales that function as a single Help system, verify translations for all
locales.

« If testing multiple locales that function as separate Help systems, change the language
preference priority to verify translations for each locale.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Page 15 of 15

Network Integrity Plug-in Validation Error
Messages

This appendix provides information about the Oracle Communications Network Integrity plug-in
validation error messages.

This appendix contains the following sections:

* Error Message Classifications and Conditions

* Design Studio Logging

Error Message Classifications and Conditions

Table A-1 lists the error messages, error classifications, and error conditions for the Network
Integrity plug-in.

@ Note

Text inside {} represents a variable that is replaced based on the current error
condition.

Table A-1 Network Integrity Error Message, Classification, and Error Condition
|

Error Message Classification Error Condition

Action names must start with a letter. Error Occurs when you create an action without a letter
as the first character in the name.

The character {character} is not valid in an Error Occurs when the implementation prefix of an

implementation prefix. action or processor contains characters that
cannot be part of a Java identifier.

Processor {processor name} already has more than | Error Occurs if an attempt is made to associate a

one parent action assigned. processor to a second action. A processor can
have only one parent.

Processor Parameter: {parameter name} not found in | Informational Occurs if an attempt is made to rename an input

Parameter list for Processor {processor name}. or output parameter of a processor, which no
longer exists in the Parameter list.

Processor property group: {property group name} not | Informational Occurs if an attempt is made to rename a

found in property group list for Processor {processor property group of a processor, which no longer

name}. exists in the property group list.

Action condition {condition name} not found in Informational Occurs if an attempt is made to rename a

condition list for action {action name}. condition of an action, which no longer exists in
the condition list.

The generated implementation prefix for this entity Error Occurs when an implementation prefix of an

conflicts with the implementation prefix of entity action or a processor conflicts with an existing

\"{entity name}\". Choose a different name. prefix.

Developer's Guide
G34175-01 October 8, 2025

Copyright © 2010, 2025, Oracle and/or its affiliates. Appendix A-1 of A-9

ORACLE’

Appendix A
Error Message Classifications and Conditions

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message

Classification

Error Condition

cannot be found

Cannot get cartridge from action: {action name}. Error Occurs when Oracle Communications Service
Catalog and Design - Design Studio is unable to
determine the cartridge to which the current
action belongs as part of dependency checks
before building.

SNMP Parameters cannot be added to the discovery | Warning Occurs when an SNMP processor is created and

action because the project does not have a data no data dictionary exists with the project. To

dictionary. correct this, create a Data Dictionary, and then
create the SNMP processor.

SNMP Parameters cannot be added to the discovery | Warning Occurs when a SNMP processor is created and

action because a Data Dictionary Element matching the project's Data Dictionary exists with an

the name SnmpParameters was found but it is not SnmpParameters structure that is not of Type

assigned the Scan Parameter Group Specification scan parameter group. To correct, delete the

type. conflicting SnmpParameters or change its Entity
Type to scan parameter group.

SNMP Processor has not specified any OIDs Error Occurs if an SNMP processor has not specified
any OIDs.

Processor implementation has not been specified Error Occurs if the processor's Implementation Class is
not specified on the processor's Details tab.

Processor implementation is missing Error Occurs if the processors implementation class,
which is specified on the processor's Details tab,
is missing in Design Studio.

Processor implementation package does not match | Error Occurs if the package defined in the processor's

Processor interface package Implementation Class does not match the
package of the processor's generated interface.

MIB Directory has not been specified. See Oracle Error Occurs if the MIB Directory is not specified in the

Design Studio Network Integrity preferences. Oracle Design Studio Network Integrity
Preferences (Window -> Preferences -> Oracle
Design Studio -> Network Integrity).

MIB directory mib directory does not exist. See Error Occurs if the MIB Directory as specified in the

Oracle Design Studio Network Integrity preferences Oracle Design Studio Network Integrity
Preferences (Window -> Preferences -> Oracle
Design Studio -> Network Integrity) does not
exist.

MIB module mib module name does not exist Error Occurs if the MIBs specified as part of the SNMP
processor are not available in the MIB Directory.

Processor is not used in an action Warning Occurs if the processor is not used by an action.

Action has not specified a result category. At least Error Occurs if the action has not defined at least one

one result category must be specified result category.

Action has not specified a result source. At least one | Error Occurs if the Discrepancy detection action does

result source must be specified not contain at least one result source.

Result source action action name cannot be found Error Occurs if the discrepancy detection action's result
source action cannot be found. For example, the
action has been deleted.

Result source action name result source name Error Occurs if the discrepancy detection action's result

source cannot be found. For example, it has been
deleted from the action.

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-2 of A-9

ORACLE’

Appendix A
Error Message Classifications and Conditions

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message

Classification

Error Condition

Action Label.

Scan Parameter Group group_name does not exist | Error Occurs if the Data Dictionary Structure
referenced by an action's scan parameter group
has been deleted.

Data dictionary element for Scan Parameter Group Error Occurs if the Data Dictionary Structure or its

group_name is invalid Elements are invalid. For example, the Entity
Type is not a scan parameter group.

SNMP Processor requires "SnmpParameters” Scan | Error Occurs if the SnmpParameters scan parameter

Parameter Group group is not available in the workspace. To
correct, ensure the MIB_IlI_SNMP_Cartridge is
imported in the workspace. Next, remove and re-
add the SNMP processor to the discovery action.

Address handler implementation has not been Error Occurs if the Implementation Class for an

specified AddressHandler is not specified.

Address handler implementation is missing Error Occurs if the Implementation class itself is not in
Design Studio.

Address handler implementation package does not Error Occurs if the package defined in the

match interface package AddressHandler's Implementation Class does not
match the package of the AddressHandler's
generated interface.

Specification specification name does not exist Error Occurs if the Specification referenced by a
processor's Model Collection does not exist. For
example, it has been deleted.

Data dictionary element for specification specification | Error Occurs if the Data Dictionary Element is invalid.

name is invalid For example, POMS does not support it.

Stale imported Action action name. The imported Error Occurs when imported action's processors have

Action's Processors have changed since they were changed. For example, the ordering of the

imported. processors in the owning action has changed.

Action contains no Processors Warning Occurs when an action exists without any
processors.

Cartridge contains neither Actions nor address Error Occurs when a new Integrity Project contains no

handlers actions or address handlers.

Provider has not been specified Warning Occurs when the cartridge Provider has not be
specified on the Network Integrity cartridge
Properties tab.

Cartridge cannot contain both actions and address Error Occurs when an Integrity project contains both

handlers address handlers and actions, which is invalid.

Condition implementation has not been specified for | Error Occurs when the Implementation Class has not

condition condition name been provided for a condition within an action.

Condition implementation is missing for condition Error Occurs if the Implementation class itself is not in

condition name Design Studio.

Model Collection is not associated with any Actions. | Error Occurs when the Model Collection is not

A model collection must be associated with at least associated to at least one action.

one Action.

Resolution Action has not specified a Resolution Error Occurs when the resolution action does not have

a Resolution Action Label, which is used as the
resolution string in the Ul for resolving
discrepancies.

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-3 of A-9

ORACLE’

Appendix A
Error Message Classifications and Conditions

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message

Classification

Error Condition

not be changed.

Error Retrieving Cartridge Model Error Occurs when a given action's processors do not
have a Provider.

Action action name is not a valid Action and cannot | Error Occurs when selecting an invalid action when

be added. adding processors to an action.

Action action name does not contain any Processors. | Error Occurs when importing an action, which contains

Actions must contain at least one processor to be Nno processors.

eligible for inclusion in another Action.

The are no output parameters on any of the Error Occurs when adding a For Each to an action,

Processors that are of a type that can be iterated which has processors that do not have an output

over. parameter that allows iteration.

The order of Processors from Imported Actions can | Error Occurs when the order of processors from

imported actions is changed.

Processor processor name uses parameter
parameter name and Processor processor name
outputs this parameter, continuing may make the
Action invalid. Do you want to continue?

Confirmation

Occurs when changing the order (Moving Down)
of processors within an action resulting in
invalidating the flow of parameters thus making
the action as a whole invalid.

Processor processor name has a condition that uses
parameter parameter name and Processor processor
name outputs this parameter, continuing may make
the Action invalid. Do you want to continue?

Confirmation

Occurs when changing the order of processors
(Moving Down) within an action resulting in
invalidating one or more conditions.

Processor processor name outputs parameter
parameter name and Processor processor name
uses this parameter, continuing may make the Action
invalid. Do you want to continue?

Confirmation

Occurs when changing the order (Moving Up) of
processors within an action resulting in
invalidating the flow of parameters thus making
the action as a whole invalid.

Processor processor name outputs parameter
parameter name and Processor processor name has
a condition that uses this parameter, continuing may
make the Action invalid. Do you want to continue?

Confirmation

Occurs when changing the order of processors
(Moving Up) within an action resulting in
invalidating one or more conditions.

following action name are read only

Action should not be null Error Occurs when adding or removing elements
(processors, For Each blocks, and so on) from an
action, which is null.

The condition could not be added because the Error Occurs when attempting to add a condition to an

following action name are read only action, which is read only.

The condition could not be removed because the Error Occurs when attempting to remove a condition

from an action, which is read only.

The condition interface condition interface name has
not been generated. It is recommended to save and
build the Action before creating the implementation
so that the interface is generated. Continue creating
the implementation class anyway?

Confirmation

Occurs if the condition interface has not been
generated before the implementation class being
generated.

0 but not exceeding 50 characters

Condition 'condition name} has relations. Are you Warning Occurs when the condition to be deleted has
sure you want to delete it? relationship to a processor.

A condition called condition name already exists on | Error Occurs when attempting to create a condition
this plug-in, specify a different name. with a name that already exists within the action.
The condition name must have a length greater than | Error Occurs when the length of the target condition

name is not within the valid range of 1 — 50
characters.

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-4 of A-9

ORACLE’

Appendix A
Error Message Classifications and Conditions

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message

Classification

Error Condition

found in your project. It is recommended to save and
build before creating the implementation so that the
interface is available. Continue creating the
implementation class anyway?

This output parameter type is used by a for each, Error Occurs when the output parameter type used as

therefore the parameter type must be an iterable an input to a For Each is not iterable.

type.

Processor processor name is not writable, so Error Occurs when trying to modify a processor, which

references to this output parameter is not updated. is read only.

Input parameters are referencing this output Warning Occurs when changing the name of an output

parameter. Changing the name or type may generate parameter, which has referencing input

compile errors. Do you want to continue? parameters on processors whose java classes
are already generated.

Input parameters are referencing this output Warning Occurs when removing an output parameter,

parameter. Removing it generates compile and which has referencing input parameters on

validation errors. Do you want to continue? processors whose java classes are already
generated.

There are no output parameters available from Informational Occurs when selecting a processor's input

preceding Processors to be selected parameters and no preceding processor has an
output Parameters.

No uses of output parameter parameter name were | Informational Occurs when viewing the usage of an output

found. parameter, which is not used as an input
parameter.

The provided name already exists. Enter a different | Error Occurs when adding a condition using a name

name. that already exists.

The name cannot exceed 50 characters Error Occurs when adding a condition with a name that
exceeds 50 characters.

The name must start with a letter. Error Occurs when creating an Element (for example,
processor, address handler) with an invalid name
(i.e. starts with a digit) using the Design Studio
Model Entity Wizard.

Action names must start with a letter. Error Occurs when creating an action with an invalid
name.

A value for implementation prefix is required when Error Occurs when creating an action and no

the use default option is not selected. implementation prefix is specified when the
default option is not selected.

The implementation prefix must begin with a letter. Error Occurs when specifying an action's or
processor's Implementation Prefix starting with a
character other than a letter.

Error trying to lookup interface in project. Error Occurs when Design Studio is attempting to
create a class that implements an interface,
which does not exist in the Project.

An error occurred attempting to create a Java class. | Error Occurs when Design Studio is unable to create a

Details... Java class likely due to a Java Model problem or
permissions.

The generated interface interface name could not be | Warning Occurs when generating the implementation

before the interface is available. For example,
when creating a new processot, it is
recommended to save and build before creating
the implementation class.

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-5 of A-9

ORACLE’

Appendix A
Error Message Classifications and Conditions

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message

Classification

Error Condition

The required interface, interface name, could not be
found. Please clean and build the project.

Error

Occurs when selecting the implementation before
the interface is available. For example, when
creating a new processor, it is recommended to
save and build before selecting the
implementation class.

The package rename cannot be performed because
the following entities are not writable:

Error

Occurs when modified the default package on the
Project editor Properties tab and the underlying
classes are read only.

Project name should not contain spaces.

Error

Occurs when attempting to create a Integrity
Project with a name that contains spaces.

A Default Cartridge Package is required

Error

Occurs if there is no Default Cartridge Package
specified under the Oracle Design Studio ->
Network Integrity section in the Design Studio
Preferences located under Window ->
Preferences.

Spaces are not allowed in the package name

Error

Occurs if the Default Cartridge Package value
contains spaces.

This removes all generated Ul hints artifacts. Do you
wish to continue?

Confirmation

Occurs when clicking the Clean Ul Hints button
located on the Ul Hints tab of the Network
Integrity cartridge element.

The Ul Hints could not be cleaned, please ensure the | Error Occurs when attempting to clean the Ul Hints

mds.mar file is not read only while the mds.mar file is read only. The mds.mar
is located in the cartridge lib directory.

Spaces are not allowed in the package name Error Occurs when attempting to rename the Default
Package property on the Properties tab of the
Network Integrity cartridge element.

Please fix fields with errors. Error Occurs when creating an output parameter with
an invalid Type.

The first character in a parameter name should be Warning Occurs when adding output parameters to a

lowercase processor and the parameter name begins with
an invalid character (i.e. uppercase).

A {field name} value must be entered. Error Occurs when adding output parameters, property
groups and properties to a processor and no
name value is specified.

Parameter parameter name could not be added Error Occurs when adding an output or input parameter

because a parameter with the same name already using a name that already exists in the Parameter

exists. Remove the parameter with the same name list. Names must be unique in the parameter list
and retry the operation. since the name generates the getter methods.

The name parameter name already exists as a Error Occurs when adding an output parameter using a

parameter, enter a different name name that already exists.

The name cannot contain spaces Error Occurs when adding an output parameter or
property group to a processor and the name
contains spaces.

The name cannot start with a number Error Occurs when adding an output parameter or

property group to a processor and the name
starts with a number.

Parameter Type parameter type may produce
warnings in generated code. Do you want to
continue?

Confirmation

Occurs if the parameter type of an output or input
parameter may cause compile warnings.

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-6 of A-9

ORACLE’

Appendix A
Error Message Classifications and Conditions

Table A-1 (Cont.) Network Integrity Error Message, Classification, and Error Condition

Error Message

Classification

Error Condition

The parameter type parameter type produces the
following warning in generated code. Do you want to
continue?

Confirmation

Occurs if the generated code contains warnings
based on the parameter type of an output or input
parameter.

table column are supported).

The name must be a valid java identifier that does not| Error Occurs when adding an output parameter or

contain special characters property group to a processor and the name
contains a special character (for example, %).

The name parameter name is a reserved word in Error Occurs when adding an output parameter or

Java, enter a different name property group to a processor and the name is
equivalent to a reserved word in Java and
therefore would cause compiling errors.

Type parameter type could not be found in the project | Error Occurs if the parameter type of an output or input
parameter could not be found in the Integrity
Project.

A property group with the name property group name | Error Occurs when adding a property group using a

already exists on this input name that already exists.

A Property with the name property name and value | Error Occurs when adding or modifying a Property

property value already exists, please choose a using a name and value that already exists.

different name/value combination

One or more errors exist with the fields Error Occurs when creating a property group with an
invalid name.

A property group with the name property group name | Error Occurs when modifying a property group

already exists, please choose a different name changing its name to a hame that already exists.

One or more errors exist with the fields Error Indicates a problem with result groups or result
source.

A field name value must be entered. Error Occurs when creating a result category or
condition with no name.

The result category name must have a length greater | Error Occurs when modifying a result category

than 0 but not exceeding 255 characters changing its name to have a length of O or greater
than 255 characters.

Data dictionary named data dictionary name could Error Occurs when the data dictionary elements of a

not be found. model collection cannot be found.

The MIB File mib filename could not be loaded Error Occurs when a file other than a MIB File is

because of the following error: Details... selected when clicking the Load MIB button
within an SNMP processor.

A valid MIB Module called mib module name could Error Occurs when the target MIB File attempting to be

not be found in MIB File: mib filename loaded by a SNMP processor does not contain
any MIB Modules.

The MIB directory mib directory either does not exist | Error Occurs when the configured MIB Directory as

or is not accessible. Either create this directory or specified in the Network Integrity Preferences

change the configured MIB Directory in the Network Page is not accessible.

Integrity Preferences Page (Preferences then Oracle

Design Studio then Network Integrity)

The following error occurred loading MIB mib Error Occurs when the target MIB File is corrupt.

filename: Detalils...

Selected node: oid, is not readable, only readable Error Occurs when attempting to load an OID, which is

nodes are supported. not readable.

Selected node: oid, is not supported (only scalar and | Error Occurs when attempting to load an OID, which is

not scalar or a table column.

Developer's Guide
G34175-01
Copyright © 2010, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-7 of A-9

ORACLE Appendix A
Design Studio Logging

Design Studio Logging

When developing cartridge projects within Design Studio for Network Integrity it is likely that
the developer requires logging for traceability during normal cartridge operation and for
debugging. This section outlines how to introduce logging into the developer's implementation.
This section addresses logging that is visible inside the WebLogic log files. It does not discuss
introducing Design Studio logging (for example, Design Studio Error Logs).

Network Integrity uses the java.util.logging package for logging messages. For an overview of
the Java logging framework, visit Oracle's site on the subject at

htt p: // downl oad. or acl e. conl | avase/ 6/ docs/ api /i ndex. ht m

To create an instance of the appropriate logger add a static variable to an implementation class
passing in the name of the current class. For example,

private static final Logger |ogger = Logger
. get Logger (Di screpancyDet ectorl npl.cl ass. get Name());

When the above is defined, invoke logging according to the API specification. For example,

| ogger. | og(Level . SEVERE, "Error while detecting discrepancies.”, e)

To redirect the Network Integrity logs produced by the above into a WebLogic log file use the
following procedure:

1. Insert the following 2 XML fragments into the file <DOMAIN_HOME?> Iconfig/fmwconfig/
servers/<TargetServer>llogging.xml.<TargetServer>. <TargetServer> represents the
name of the WebLogic Server where the Network Integrity application is running.

a. The following fragment goes inside the <log_handlers> block and defines the log
handler and log file location. If required, change the log handler; however, this value
must match the value referenced in the fragment in step 1.b. If necessary, change the
location where the log file is generated.

<l og_handl er name='ni - handl er’
cl ass="oracl e. core. oj dl .| oggi ng. OOLHandl er Fact ory' >
<property name='path' val ue="${donmi n. home}/ servers/ ${webl ogi c. Nane}/
| ogs/ ni -webl ogic.log' />
<property nanme=' maxFil eSi ze' val ue=' 10485760' / >
<property nanme=' maxLogSi ze' val ue=' 104857600' / >
</1 og_handl er >

b. This fragment goes inside the <loggers> block (at the end) and defines the logger
name. This name refers to the Java package of a customer's implementation code, the
log level and the handler. The handler must match the value configured in step 1.a (for
example, ni-handler). If necessary, tailor the log level. Consult Table A-2 that maps
the Java log levels to the ODL log levels (for example, TRACE:32) used in the
logging.xml file.

<l ogger name="oracl e. communi cations.integrity" |evel="TRACE: 32">
<handl er nanme="ni - handl er"/>

</1 ogger >

<l ogger name="oracl e. communi cations. activation" |evel ="TRACE: 32">
<handl er nanme="ni - handl er"/>

</1 ogger >

<l ogger name="oracl e. communi cations.inventory" |evel ="TRACE: 32">
<handl er name="ni - handl er"/>

</1 ogger >

2. Save logging.xml.

Developer's Guide
G34175-01 October 8, 2025
Copyright © 2010, 2025, Oracle and/or its affiliates. Appendix A-8 of A-9

http://download.oracle.com/javase/6/docs/api/index.html

ORACLE’

Developer's Guide
G34175-01

Copyright © 2010, 2025, Oracle and/or its affiliates.

Appendix A
Design Studio Logging

When determining what level to set in the logging.xml (step 1) use Table A-2 to map the Java
Log Levels to ODL Log Levels.

Table A-2 Java Log Level to ODL Log Level Mapping

Java Log Level

ODL Message
Type:Log Level

ODL Description

SEVERE.intValue()+100

INTERNAL_ERROR:1

The program has experienced an error for some
internal or unexpected non-recoverable
exception.

SEVERE ERROR:1 A problem requiring attention from the system
administrator has occurred.

WARNING WARNING:1 An action occurred or a condition was
discovered that should be reviewed and may
require action before an error occurs.

INFO NOTIFICATION:1 A report of a normal action or event. This could
be a user operation, such as “login completed"
or an automatic operation such as a log file
rotation.

CONFIG NOTIFICATION:16 A configuration-related message or problem.

FINE TRACE:1 A trace or debug message used for debugging
or performance monitoring. Typically contains
detailed event data.

FINER TRACE:16 A fairly detailed trace or debug message.

FINEST TRACE:32 A highly detailed trace or debug message.

For more information on ODL visit

http://downl oad. oracl e. coni docs/ cd/ B31017 01/ web. 1013/ b28952/ 1 oggi ng. ht m

October 8, 2025
Appendix A-9 of A-9

http://download.oracle.com/docs/cd/B31017_01/web.1013/b28952/logging.htm

	Contents
	About This Content
	1 Using Design Studio to Extend Network Integrity
	Installing Design Studio
	Configuring Design Studio for Network Integrity
	Configuring Network Integrity Preferences
	Network Integrity Project Dependencies
	Configuring Data Dictionary Preference Settings

	About Design Studio Perspectives
	About Design Studio Views
	Studio Design Perspective Views
	Java Perspective Views

	About Projects
	About the Project Architecture

	Working with Projects
	Building and Packaging Projects
	About the Project Build Order
	About Build Artifacts
	Packaging Projects

	Deploying and Undeploying Cartridges
	Creating a Design Studio Environment Project
	Creating a Design Studio Environment For Network Integrity
	Deploying a Cartridge
	Undeploying a Cartridge
	Redeploying a Cartridge

	Debugging and Testing Cartridges
	Starting the WebLogic Server in Test Mode
	Configuring Remote Debugger in Design Studio

	Sealing and Unsealing Projects
	Exporting and Importing Cartridges
	Exporting a Cartridge with Source Code
	Exporting a Cartridge Without Source Code

	About Specifications
	Working with Specifications
	About Model Collections
	About Specification Helpers

	Associating Contiguous Slots to a Card
	About Source Control
	Working with Source Control for Network Integrity
	Tips and Tricks
	About Java Errors in the Generated Controller Class
	Renaming or Deleting Actions and Processors
	Adding External Libraries to a Java Build Path
	About “Missing Required Library" Errors for External Libraries
	Error Marker on Cartridge but not on any Entities

	2 Working with Actions
	About Actions
	About Actions and Processors
	About Action within Actions
	About the Generated Action MDB and Controller
	About Scan Parameter Groups
	Extending the Create Scan Page
	Extending the Scan Details Page

	About Conditions
	About Generated Classes and the Implementation Class
	Adding Dependent Actions with Conditions as Processors
	Creating Condition Examples

	About Model Collections in Actions
	About For Each Processors
	About Result Categories

	About Import Actions
	About Discovery Actions
	About Discovery Action Address Handlers
	About the Address_Handlers Cartridge
	Implementing Address Handlers
	About the AddressHandler Interface
	About Dynamic Address Handlers

	About Discovery Action Result Categories
	About the Discovery Action in the Network Integrity UI
	About Discovery Action Scan Parameter Groups
	About scanMode Parameter
	Customizing Response Timeout for Devices in SNMP Discovery Scan

	Partial Scan Check

	About Assimilation Actions
	About Discrepancy Detection Actions
	About Discrepancy Detection
	Identifying and Resolving Missing Entity Discrepancies at the Root-level
	About Result Sources
	About Result Source and Scan Types
	Generated Action MDB and Controller

	About Discrepancy Resolution Actions
	About the Resolution Action Label
	About Result Sources
	Generated Action and MDB Controller

	3 Working with Processors
	About Processors
	About Context Parameters
	Specifying Context Parameters before Creating Implementation Class

	About Properties and Property Groups
	About Generated Code
	About the Location for Generated Code
	About the Processor Interface
	About the PropertyGroup and Properties Classes

	Implementing a Processor
	About the Processor Finalizer
	About the ProcessorFinalizer Interface

	About Memory Considerations

	Implementing an Import Processor
	Implementing a Discovery Processor
	Implementation Code Example

	Implementing the SNMP Processor
	About the Generated Implementation and XML Beans
	Supporting New MIBs

	Implementing an Assimilation Processor
	Implementing a YANG Processor
	About the Generated Implementation
	About YANG Files

	About Discrepancy Detection Processors
	Discrepancy Detection Processor Patterns
	Reusing the Base Detect Discrepancy Action
	About the Base Detection Project and the Default Comparison Algorithm
	Adding New Filters and Handlers
	About Filters
	About Handlers
	Filters and CimType
	Filter and Handler Examples
	Adding Post-Processors

	About Discrepancy Resolution Processors
	Creating a Discrepancy Resolution Processor
	Implementing a Discrepancy Resolution Processor
	About the Implementation Interface
	About Input Parameters for the Invoke Method
	Return Type of Invoke Method

	About the General Flow of the Discrepancy Resolution Processor
	Fetching Discrepancies
	Grouping Discrepancies
	Handling Discrepancies
	Reporting the Resolution Result
	Handling Discrepancies Asynchronously

	4 Working with Discrepancies
	About Discrepancies
	About the Compare and Reference Sides
	About Discrepancy Types
	Attribute Value Mismatch
	Extra Entity and Missing Entity
	Extra Association and Missing Association
	Ordering Error and Association Ordering Error

	About Discrepancy Status
	About Discrepancy Detail

	5 Working with the POMS SDK
	About POMS
	Working with POMS Entities
	Working with POMS Relationships
	One-to-one Relationships
	One-to-Many or Many-to-Many Relationships
	Ordered and Unordered Relationships
	Bi-directional Relationships
	Relationship Entities

	Working with Specifications and Characteristics
	Working with the POMS Finder
	Find by Entity
	Find by JPQL
	Find with Paged Results
	POMS SDK Interfaces

	About Persist Results

	6 Working with the Extensibility SDK
	About Extensibility Scenarios
	Extending MIB II SNMP Discovery for Updated Vendor and Interface Type
	Extending the MIB II SNMP Discovery to Change Interface Name Value
	Multiple Vendor SNMP Discovery
	Multiple Protocol Discoveries

	7 Working with Automatic Discrepancy Resolution
	About Automatic Discrepancy Resolution
	About the Automatic Discrepancy Resolution Solution
	Action and Processors
	Scan Parameter Groups and the Network Integrity UI
	Reference Implementations

	Implementing Automatic Discrepancy Resolution
	Implementing Automatic Discrepancy Resolution in an Unsealed Cartridge Solution
	Implementing Automatic Discrepancy Resolution in a Sealed Cartridge Solution

	Completing the Automatic Discrepancy Resolution Implementation
	Completing Automatic Discrepancy Resolution Using a Properties File
	Completing Automatic Discrepancy Resolution with a Custom Processor

	8 Working with Incremental TMF814 Discovery
	About Incremental TMF814 Discovery
	About the Incremental TMF814 Discovery Solution
	Action and Processors
	Copying Information From Previous Scan Results
	Scan Parameter Groups and the Network Integrity UI
	Reference Implementations

	Implementing Incremental TMF814 Discovery
	Implementing Incremental TMF814 Discovery in a Sealed Cartridge Solution

	9 Working with CPU Utilization-enabled Discovery
	About CPU Utilization-enabled Discovery
	About CPU Utilization-enabled Discovery Solution
	Action and Processors
	About the Mechanism of Comparing CPU Usage Values
	Scan Parameter Groups and the Network Integrity UI
	Reference Implementations

	Implementing CPU Utilization-enabled Discovery
	Implementing CPU Utilization-enabled Discovery in a Sealed Cartridge Solution

	10 Working with Application Context Work-Managers
	ManagedExecutorService Work-Manager Configuration
	Defining new MES Work-Manager within Network Integrity
	Using MES Work-Manager within Network Integrity
	Accessing MES Work-Manager within Network Integrity

	Persist Results using Multi-Threading
	Discovery Scan using Multi-Threading
	Import Scan using Multi-Threading

	11 Working with the Network Integrity Web Service
	About the Network Integrity Web Service
	Security
	Model Based
	Concurrency with UI and other Web Service Clients
	Listing of Network Integrity Web Service Operations

	Network Integrity Web Service Operations
	Create
	Entity Type Support

	Get
	Entity Type Support

	Get All
	Entity Type Support

	Delete
	Entity Type Support

	Update
	Entity Type Support

	Find
	Entity Type Support
	From and To Range
	Ascending and Descending
	Attribute Criteria
	Multiple Attribute Criteria
	Extended Attribute Criteria
	Criteria Operators
	Between/Not Between Operator
	Data Criteria
	Conjunction Criteria
	Find Response

	Network Integrity Web Service Special Function Operations
	Start Scan
	Stop Scan
	Get Latest Scan Status
	Submit Discrepancies For Resolution Processing

	Network Integrity Web Service Scenarios
	Creating a Scan
	Starting, Stopping, and Monitoring a Scan
	Retrieving Scan Results
	Working with Discrepancies

	Network Integrity Web Service Samples
	Contents of the Network Integrity Web Service Samples ZIP File
	Sample Java Client
	Sample Soap UI Project
	Submitting Request to the Server
	Specifying User Name and Password in Request

	12 Working with Scan Run Complete Notifications
	About Clients for Monitoring Scan Run Complete Notification Messages
	Implementing Custom Code to Stop a Scan
	Implementing Custom Code to Reflect Scan Progress for Individual Resources

	13 Working with JCA Resource Adapters
	About Resource Adapters
	Understanding JCA Resource Adapter Connectivity Options
	Understanding JCA Resource Adapters with Network Integrity

	About Productized SNMP JCA Resource Adapter
	Installing the SNMP JCA Resource Adapter
	Extending the SNMP JCA Resource Adapter
	Record and Playback Mode
	Invoking the SNMP JCA Resource Adapter in a Network Integrity Cartridge

	About Third Party or Customized JCA Resource Adapters
	Building a JCA Resource Adapter in WebLogic
	Invoking a Third Party or Customized JCA Resource Adapter

	14 Working with Reports Extensibility
	About Oracle Analytics Publisher
	Downloading Oracle Analytics Server
	Installing Oracle Analytics Server
	Running OAS jar
	Completing OAS Installation
	RCU Setup
	Domain Creation

	Reports Provided with Network Integrity
	Scan History Report
	Discovery Scan Summary Report
	Device Discrepancy Detection Summary Report
	Device Discrepancy Detection Detail Report
	Discrepancy Corrective Action Report

	Configuring Oracle Analytics Server
	Uploading Data Models
	Uploading Reports

	15 Working with SOA Extensibility
	About SOA Extensibility
	Purpose of Documentation

	Extensibility Tasks
	Extensibility Tasks
	Installing Oracle Weblogic Server
	Installing Oracle JDeveloper
	Installing Oracle Application Runtime
	Installing Oracle SOA Suite
	Creating SOA Metadata Service Schemas
	Updating JDeveloper for Latest SOA Composite Editor
	Creating WebLogic Domain with SOA Products
	Creating and Updating Sample SOA Application Using Network Integrity Web Service
	Starting and Stopping SOA Servers
	Building and Deploying the SOA Application
	Testing Sample SOA application
	Testing Network Integrity SOA Application Using EM
	Testing Network Integrity SOA Application Using soa-infra
	Testing Network Integrity SOA Application Using SOAP UI Tool

	16 Localizing Network Integrity
	Software Requirements
	Setting the Language Preference in the Browser
	Determining the Locale ID
	Localizing Network Integrity
	About the Localization Pack
	Creating the Localization Pack
	Deploying the Cartridge Containing the Localized Files
	Testing the Network Integrity Localization
	Customize Display Labels on the Network Integrity UI

	Localizing Network Integrity Help
	About Network Integrity Help
	About the Help Files

	Localizing the Network Integrity Help Files
	Extracting the Help Files
	Translating the Help Files
	Creating the Localized Help JAR File
	Configuring the Oracle Help File

	Deploying the Localized Help System
	Testing the Network Integrity Help Localization

	A Network Integrity Plug-in Validation Error Messages
	Error Message Classifications and Conditions
	Design Studio Logging

