
Oracle® Communications Offline
Mediation Controller
Cartridge Development Kit Developer's Guide

Release 12.0
E91420-02
April 2021

Oracle Communications Offline Mediation Controller Cartridge Development Kit Developer's Guide, Release
12.0

E91420-02

Copyright © 2017, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

1 CDK Design and Concepts

Overview 1-1

Life cycle of a node 1-1

Data flow diagram 1-1

DCNode class hierarchy 1-2

DCNode class diagram 1-4

DCNode class hierarchy 1-6

DataProvider and DataReceiver 1-6

DataProvider 1-6

DataReceiver 1-6

Relationship between DataProvider and DataReceiver 1-7

DataProvider Push 1-7

DataReceiver Pull 1-8

Transport 1-8

EITransport 1-9

OITransport 1-9

DCRecordFactoryIfc 1-9

Transport class hierarchy 1-10

FieldProcessor 1-11

FieldProcessor class hierarchy 1-11

DCFieldContainer 1-13

EIRecord 1-13

OIRecord 1-13

EIRecord and OIRecord Storage 1-13

NAR 1-13

DCFieldContainer class hierarchy 1-14

DCField 1-14

DCField class hierarchy 1-15

iii

DCStreamHandler 1-16

DCStreamHandler class hierarchy 1-17

DCStreamHandler class hierarchy (continued) 1-17

2 Node Attributes

Collection Cartridges (CCs) 2-1

Processor Cartridges 2-1

NPLProcessorNode 2-2

FileEnhancerNode 2-2

Lookup file 2-2

NPL File 2-2

NodeConfigGUI Fields 2-3

FtpFileEnhancerNode 2-3

LDAPEnhancerNode 2-3

Multithreaded Programmable Aggregation Processor Node 2-3

Configuring the Aggregator NPL Rule File 2-4

Traffic Volume Configurations 2-5

Java Hooks 2-5

Usage 2-9

Distribution Cartridges (DCs) 2-11

ASCII DC Node 2-12

IPDR DC Node 2-12

XML DC Node 2-12

JDBC DC Node 2-12

3 Customizing the Administration Client GUI

DCNodeConfigGUI and Related Classes 3-1

DCNodeConfigGUI Class Hierarchy 3-5

DCNodeConfigData 3-6

Node Template Definitions and Groups 3-6

The nodeTemplateDef.xml File 3-6

The nodeGroupDef.xml File 3-7

Creating a node and rule file 3-8

SNMP trap generation 3-9

4 Cartridge Creation Example

Creating Airline Flight Node Chain 4-1

Existing Node Types 4-1

Collection Cartridg (CC) Nodes: 4-1

iv

Enhancement Processor (EP) Nodes 4-2

Aggregation Processors (AP) Nodes 4-2

Distribution Cartridges (DC) Nodes 4-2

Create AirlineEINode (CC Node) 4-3

Create Node Chain 4-9

Starting FlightInfoSender Simulator 4-12

5 Transferring Custom Node Chains

Scenario 1 5-1

Updating the node chain 5-2

Scenario 2 5-3

Updating the node chain 5-4

6 Debugging Tools and Tips

Running Nodes from the Command Line 6-1

NAR Viewer 6-2

NAR Generator 6-2

v

Preface

This document describes the components and steps needed to develop a cartridge in
the Offline Mediation Controller framework using the Cartridge Development Kit (CDK)
for Offline Mediation Controller 12.0.

Audience
This document is intended for developers responsible for developing cartridges and
nodes that will be used within the Offline Mediation Controller product. Before reading
this book, read Offline Mediation Controller User's Guide.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
CDK Design and Concepts

This chapter provides background information required for creating custom Oracle
Communications Offline Mediation Controller nodes.

Overview
It is recommended that nodes perform tasks that are relatively small in scope to aid in
faster processing. Two custom nodes (such as a CC node and an EP node) chained
together may yield better throughput, flexibility, and validity, rather than writing a single
node to achieve the same results. The most commonly customized nodes are CC and
DC nodes.

The “generic" nodes that can be modified using the Cartridge Development Kit (CDK)
are in the Offline Mediation Controller GUI in the “Cartridge Kit" market segment.

Life cycle of a node
Once the Offline Mediation Controller system is running, all nodes run within the Node
Manager's VM. For debugging purposes, nodes can be run from the command line,
provided that a main() method is implemented.

The Offline Mediation Controller system provides a mechanism for adding a node
to the Node Manager and configuring and starting the node to process data via a
Graphical User Interface (GUI). This process is described in more detail later in this
document.

A node (object) is officially created when the user adds it to a Node Manager's node
list and starts it. All necessary configuration information is captured and stored in the
configuration file when the user creates the node. However, the node's constructor is
not invoked until the user clicks the “Start" button in the Administration Client GUI.

Data flow diagram
Figure 1-1 shows the flow of data through any given node chain.

1-1

Figure 1-1 Data Flow Diagram

DCNode class hierarchy
Figure 1-2 and Figure 1-3 illustrates the class hierarchy of the base DCNode classes.
Details of individual node components are included in later sections of this document.
Methods that should be overridden are in italics.

Note:

All derivations of DCNode should provide a default (i.e. no-argument)
constructor, which initializes the information necessary to implement
DCNodeTypeIfc.

Chapter 1
DCNode class hierarchy

1-2

Figure 1-2 DCNode Class Hierarchy

Note:

The StateManagement and NodeStateManagement interfaces are currently
not supported.

Figure 1-3 DCNode Class Hierarchy

Chapter 1
DCNode class hierarchy

1-3

DCNode class diagram
Figure 1-4 illustrates the DCNode classes.

Chapter 1
DCNode class diagram

1-4

Figure 1-4 DCNode Class Diagram

Chapter 1
DCNode class diagram

1-5

DCNode class hierarchy

Figure 1-5 DCNode Class Hierarchy

DataProvider and DataReceiver
The object level representation of the flow of data through a node can be expressed in
terms of being a Data Provider and/or a Data Receiver.

DataProvider
A Data Provider is just that, a component that provides data to another component
within the node. This component is defined by the DataProviderIfc interface which
provides methods that allow data to flow to another component within the node.

DataReceiver
A Data Receiver accepts data from another component within the node. A Data
Receiver is defined by the DataReceiverIfc interface which provides methods that
allow data to be obtained from another component within the node.

Chapter 1
DCNode class hierarchy

1-6

Relationship between DataProvider and DataReceiver
Data may flow through a node using either a “push" or “pull" algorithm. It is up
to the individual node developer to determine which algorithm is used within the
node. If data comes in very slowly, the developer may want to “push" the data
from the DataProvider to the DataReceiver, as it becomes available. Conversely,
a DataReceiver may “pull" data from its DataProvider by periodically asking the
DataProvider if data is available and retrieving it for processing. Both of these
situations are illustrated below.

DataProvider Push
First, the DataProvider's DataReceiver must be set. In this case, transport (an
EITransport) is the DataProvider and fp (NPLFieldProcessor) is the DataReceiver.

·// Set up the DataReceiver/DataProvider mappings
·transport.setDataReceiver(fp);

Then, the DataProvider calls the DataReceiver's processData() method directly.

· MyEIRecord eiRecord = new MyEIRecord(data);
·
· try
· {
· // Give this record to the data provider for
· // further processing.
· getDataReceiver().processData(eiRecord);
· }
· catch(Exception e)
· {
· System.out.println("Processing error: " + e.getMessage());
· getLogger().logError("Error processing record: " + e, false);
· }

Another option would be for the DataProvider to call the DataReceiver's
dataIsAvailable() method, and then the DataReceiver would make a call back to the
DataProvider's getData() method to retrieve the data. Again, the setDataReceiver()
method would need to be called first.

Example 1-1 Push using getData()

· public void dataIsAvailable()
· {
· dataAvailable = true;
·
· DataProviderIfc provider = getDataProvider();
·
· if(provider != null)
· {
· DCFieldContainer data = getDataProvider().getData();
·
· while(data != null)
· {
· try
· {
· processData(data);
· }
· catch(NodeProcessingException npe)

Chapter 1
DataProvider and DataReceiver

1-7

· {
· // Do something…
· }
· data = provider.getData();
· }
· }
·
· dataAvailable = false;
· }

DataReceiver Pull
In a “pull" scenario, it is likely that the data is coming in quickly and that the
DataProvider will utilize some sort of queue in order to store the data temporarily
until the DataReceiver is ready for it. This setup is particularly useful for CCs which
are using real-time (or near real-time) transports, such as UDP or TCP, and need to be
able to collect the data as it comes in “off the line".

The DataProvider must first be set using the setDataProvider() method, similar to the
above call to setDataReceiver() in the “push" scenario.

The DataReceiver would probably be running in a thread, and do the following as part
of the run() method:

Example 1-2 Implementing DataReceiver Pull

· while(running)
· {
· while(getDataProvider().isDataAvailable())
· {
· DCFieldContainer data = getDataProvider().getData();
· try
· {
· processData(data);
· }
· catch(NodeProcessingException npe)
· {
· System.out.println("NodeProcessingException caught while " +
· "processing record.\n " + npe.getMessage());
· }
· }
· if(running)
· {
· try
· {
· Thread.currentThread().sleep(2000);
· }
· catch(InterruptedException ie) { }
· }
· }

Transport
A Transport is responsible for moving data into and out of the Offline Mediation
Controller system. Transports are only associated with CC or DC nodes.

Chapter 1
Transport

1-8

EITransport
An EITransport is a DataProvider that accepts data from outside of the Offline
Mediation Controller system and creates the appropriate EIRecord objects for that
data. Therefore, the EITransport needs to know the record delimiter, as well as
the EIRecord object to be populated from each raw data record. An EITransport
may contain a factory (described later), which would be responsible for creating the
appropriate EIRecord objects when needed, or receive this class type information as
a parameter. In cases where data may be coming in rapidly (for example, via UDP
packets in a CC node), the EITransport could utilize a revolving queue to store the
incoming records until the DataReceiver is ready for them.

OITransport
An OITransport is a DataReceiver that receives OIRecord objects specific to the
destination of the data and is responsible for transmitting that data to the desired
destination. The OITransport will extract the formatted data from the OIRecord and
send the data out of the Offline Mediation Controller system via the appropriate
medium. The OITransport will typically receive its data from a “push". It is bound by the
frequency of the incoming data and the speed of its DataProvider.

DCRecordFactoryIfc
The DCRecordFactoryIfc is a generic interface that can be used which will accept data
and generate the appropriate EIRecord or OIRecord objects. This allows a Transport
or FieldProcessor to behave in a generic way without having to explicitly know what
type of EIRecord or OIRecord object that needs to be created based on the incoming
or outgoing data.

The only time a user of the CDK would need to write their own DCRecordFactoryIfc
would be if they intended to use an existing transport with a custom EIRecord.

Figure 1-6 shows the DCRecordFactoryIfc interface.

Figure 1-6 DCRecordFactoryIfc

Chapter 1
Transport

1-9

Transport class hierarchy
Figure 1-7 shows the hierarchy of the Transport class.

Figure 1-7 Transport Class Hierarchy

Chapter 1
Transport

1-10

FieldProcessor
There is an NPLFieldProcessor provided, which should be used by all nodes.
This class uses information contained in an ASCII text file, which contains NPL
commands. (See the NPL Reference Guide for more information). The FieldProcessor
utilizes the information in the NPL file to transform, translate, enhance, and/or
route information from the incoming DCFieldContainer object into the appropriate
outgoing DCFieldContainer object. A FieldProcessor is both a DataProvider and a
DataReceiver.

FieldProcessor class hierarchy
Figure 1-8 shows the FieldProcessor class hierarchy.

Chapter 1
FieldProcessor

1-11

Figure 1-8 FieldProcessor Class Hierarchy

Chapter 1
FieldProcessor

1-12

DCFieldContainer
The DCFieldContainer is a generic interface that is used for passing the data
within and between nodes. A DCFieldContainer represents a single record of data.
It is responsible for converting data from its raw format (for example from UDP
packets, ASCII or binary files) and extracting specific pieces as fields for use by the
DataReceiver.

The DCFieldContainer is where most of the work is done for a particular node. This
class is responsible for knowing the format and order of the incoming (or outgoing)
data, and how to extract (or assemble) that data on a per field basis.

Adapter classes are provided (DCEIRecordAdapter and DCOIRecordAdapter), which
“no-op" those methods that are not needed based on the type of DCFieldContainer.
That is, a DCFieldContainer in a CC node would most likely use only the
get… methods from DCFieldContainer for extracting data fields. Conversely, a
DCFieldContainer in a DC node would most likely use only the set… methods.

EIRecord
EIRecord is derived from DCEIRecordAdapter and is the class that developers should
derive from when developing a DCFieldContainer object for use in a CC node.

OIRecord
OIRecord is derived from DCOIRecordAdapter and is the class that developers should
derive from when developing a DCFieldContainer object for use in a DC node. Note
that derivations of OIRecord should include a default (i.e. no-argument) constructor in
order to be utilized properly by the NPLFieldProcessor.

EIRecord and OIRecord Storage
Both the EIRecord and OIRecord classes are responsible for storing attributes. The
various field functions will pass attribute IDs to distinguish between the attributes.
These IDs originate from the NPL, and may be either the attribute values or names,
depending on which is used in the NPL. The EIRecord and OIRecord should refrain
from hard coding the possible values, as the NPL can be independently changed.
Instead, more generic means, such as hash tables, should be used for storage and
retrieval of these values.

NAR
As mentioned previously, the NAR is the DCFieldContainer object that is used
internally within the Offline Mediation Controller system. The FieldProcessor of a CC
node generates a NAR, which then may be passed through one or more processor
nodes for further modification and is received by the FieldProcessor in an DC node.

A Data Dictionary provides definitions for the type of data in the fields (potentially)
within a NAR. This information is currently available in a text file, located at
OMC_Home/datadict/Data_Dictionary, where OMC_Home is the directory in which you
installed Offline Mediation Controller.

Chapter 1
DCFieldContainer

1-13

DCFieldContainer class hierarchy
Figure 1-9 shows the DCFieldContainer class hierarchy.

Figure 1-9 DCFieldContainer Class Hierarchy

DCField
A DCField is an object that represents the attributes (fields) of a particular
record. DCField objects are stored in a DCFieldContainer. Most data types can be
represented with the DCField classes that are provided.

Figure 1-10 shows the DCField object and attributes.

Chapter 1
DCFieldContainer

1-14

Figure 1-10 DCField

DCField class hierarchy
Figure 1-11 shows DCField class hierarchy.

Chapter 1
DCFieldContainer

1-15

Figure 1-11 DCField Class Hierarchy

DCStreamHandler
The DCStreamHandler provides functionality to move data records from one node
to the next in the node chain. The current implementation of the Offline Mediation
Controller system utilizes a NARFileManager. The base node classes provide this

Chapter 1
DCStreamHandler

1-16

object, and the moving of the data is transparent to the user and developer. In other
words, a node developer (in general) does not need to be concerned about getting
data from one node to another, this is all handled by the system. Developers only need
to be concerned with moving data inside the node.

DCStreamHandler class hierarchy
Figure 1-12 shows the DCStreamHandler class hierarchy.

Figure 1-12 DCStreamHandler Class Hierarchy

DCStreamHandler class hierarchy (continued)
Figure 1-13 shows the NARStreamHandler class.

Chapter 1
DCStreamHandler

1-17

Figure 1-13 NARStream Handler

Chapter 1
DCStreamHandler

1-18

2
Node Attributes

This chapter describes attributes of the Oracle Communications Offline Mediation
Controller nodes.

Collection Cartridges (CCs)
CC nodes should contain the following:

• EITransport

• NPLFieldProcessor

• knowledge of (or Factory for) the appropriate DCFieldContainer object to generate
for the incoming data

The EITransport class reads the data in from outside the system and creates the
appropriate DCFieldContainer objects. The NPLFieldProcessor would then map the
data from the DCFieldContainer into a NAR, based on the commands in the NPL file.
The DataProvider and DataReceiver relationships are:

Table 2-1 DataProviders and DataReceivers for Collection Cartridges

DataProvider DataReceiver

 EITransport NPLFieldProcessor

 NPLFieldProcessor NARFileManager

Processor Cartridges
There is a base ProcessorNode class. However, most developers should not have
to derive new Processor Node classes. Instead, one of the provided Processor
Nodes (see list below), or a generic NPLProcessorNode (which contains an
NPLFieldProcessor) should be used and the desired functionality should be performed
using NPL commands.

In a ProcessorNode, the node's DCStreamHandler (i.e. NARFileManager) is both the
DataProvider and DataReceiver for the FieldProcessor.:

Table 2-2 DataProviders and DataReceivers for Processor Cartridges

DataProvider DataReceiver

 NARFileManager NPLFieldProcessor

 NPLFieldProcessor NARFileManager

Several generic Processor Nodes are provided as part of the Offline Mediation
Controller system and are described below.

2-1

NPLProcessorNode
This is a generic Processor that can be used for adding or removing fields from a NAR
or filtering records based on a particular condition or calculation.

FileEnhancerNode
This node uses a lookup file that can be used to add additional data to a NAR. For
example, a file containing a listing of port numbers and their associated applications
can be used to add an application description field to a NAR, based on the port
number contained in one of the other fields in the NAR.

Lookup file
To use this node you will need to provide a lookup file that complies to the following
format:

key_value_separator = 'seperator1'
pair_separator = 'seperator2'
keyPart=valuePart1
keyPart2=valuePart2
...
keyPartN=valuePartN

where the 1st and 2nd lines are optional. When either of the two lines is omitted, the
following defaults will be used:

key_value_separator = "="
pair_separator = "/n"

key_value_separator and pair_separator values should be wrapped in single quotes,
the only special characters that will be recognized as such will be '\n', '\t' and '\r'. All
other characters included between the single quotes will be interpreted as independent
characters.

pair_separator='\n###NEW PAIR###\n'

This would be interpreted as a new line followed by ###NEW PAIR### followed by a

new line.

key_value_separator='\t\f'

This would be interpreted as a tab followed by \f (NOT form feed).

NPL File
Following is an example of NPL that you could use with the FileEnhancerNode to do
“application" enhancement.

• Input field in.1 is a port number

• Variable tablename is a cross-reference from port number to application name
(example: 80=http). This specifically is generated from the contents of your lookup
file.

• Output field out.2 is the attribute which will receive the application name.

Chapter 2
Processor Cartridges

2-2

• The import statement imports the interface corresponding with the Method Handler
implementation that will be used by the NPL for the Java hook (the lookup call).

Example 2-1 FileEnhancer NPL

·// NPL file to do simple app enhancement on a 1 attribute nar.
·
·import com.nt.udc.processor.FileEnhancer.FileEnhMethodHandlerIfc;
·
·String tablename = "apps";
·
·InputRec {
· String 1; // port number
·} in;
·
·OutputRec {
· String 1; // port number
· String 2; // application name
·}
·
·out.1 = in.1;
·out.2 = Java.lookup(tablename,in.1);
·
·write(out);

NodeConfigGUI Fields
Currently there are only two fields in the node specific portion of the GUI. These are
Lookup File and Lookup Table Name. Lookup file is the absolute path to the file you
want to use to generate the lookup table. Lookup table name is the tag you will use
from NPL to access this table. This attribute is included because in the future we will
provide support for lookup from multiple tables in one FileEnhancer. In the near future
there will be added support in the Node Config GUI for the concept of configuring
loaders. Loaders are objects that populate a lookup file for you from some source (e.g.
an LDAP directory).

FtpFileEnhancerNode
Similar to the FileEnhancerNode except this provides functionality to obtain the lookup
file from a remote location via FTP.

LDAPEnhancerNode
Directory information is gathered from an LDAP directory and stored in a file, which
can then be used to add or remove fields in the NAR.

Multithreaded Programmable Aggregation Processor Node
You can customize the Aggregation Processor node by its NPL file, which contains
functions that perform the common aggregation tasks, including record storage and
retrieval and attribute aggregation.

Chapter 2
Processor Cartridges

2-3

Note:

All aggregator NPL rule files must start with the following statement:

import com.metasolv.nm.processor.MXAggregator.MXJavahookHandler

Configuring the Aggregator NPL Rule File
The following configuration variables are available in the Aggregator NPL rule file:

ModulusAttribute

This multithreaded aggregator distributes input records to its processor threads by
using a modulus routing algorithm. The algorithm is almost identical to the one used
for routing NARs between cartridges.

The only difference is that the multithreaded aggregator allows two additional types of
NAR fields to be used as selector values for modulus routing. Normal modulus routing
allows only IntFields and LongFields to be used as selector values. The multithreaded
aggregator allows BytesFields and StringFields in addition to IntFields and LongFields.

FlushOnStartup

This variable indicates if any valid records in the stored file hash table(s) should be
flushed to the output on startup. If records were stored in this table when the node
was stopped, they will be restored on the next startup. This method provides a simple
means of ensuring any old items in the table are immediately flushed. The valid values
for this item are “true" and “false". The default is false.

Hash Table Definitions

The Aggregation Processor supports multiple tables. Each table is mapped to a file in
the Aggregation Processor's scratch directory. The configuration items and Java hooks
that operate on a specific hash table use an index. The indexes start at 1.

NumberOfHashTables

This variable tells the node how many file hash tables to create.

The following variables are repeated, one for each table. The GUI specifies the timer
value for the tables. This value must be the same for all tables.

HashTableKeysX

Specifies the attribute IDs that are used as keys for a specific file hash table. The X is
the index of the hash table. For example, HashTableKeys3. The node constructs the
key using the attribute IDs specified in the HashTableKeysX variable. The value of this
variable is a string of IDs separated by spaces. For example, "20001 20232 10036".

HashTableFlushX

Specifies the behavior of the flush timer for a table, where X is the table index. The
three possible values for this field and their associated behaviors are:

1. write - the record is output to the next node in the chain

2. delete - the record is dropped from the node chain

Chapter 2
Processor Cartridges

2-4

3. off - the flush timer is not active for the table

Traffic Volume Configurations
The traffic volume container Java hooks require you to set the following configuration
variables:

TVMChangeTime

Specifies the string name for the time change component of a traffic volume container.
For example, “ChangeTime".

TVMUplinkVolume

Specifies the name for the item containing the uplink volume in the traffic volume
container. For example, “DataVolumeGPRSUplink".

TVMDownlinkVolume

Specifies the name for the item containing the downlink volume in the traffic volume
container. For example, “DataVolumeGPRSDownlink".

Convenience Attribute Sets

There are Java hook functions that contain sets of attributes. These sets are specified
in the configuration file, and can use any unused name. The Java hooks perform the
appropriate lookup for the name they receive. This is a more optimized approach than
using in the full string attribute list each time a Java hook is called. In the string list
approach, the string must be parsed and tokenized each time the Java hook is called
but in the optimized approach, each attribute set is loaded the first time it is needed,
and then an internal representation is stored for subsequent uses.

For example, the following line can appear in the configuration:

config {
…
MyAttributeSet "1 5 20001 32075";
}

And then this attribute set could be called from some Java hooks:

…

Java.replaceAttributeSet(in, out, "MyAttributeSet");
…
Java.removeAttributeSet(out, "MyAttributeSet");

Java Hooks
The following are all the Java hooks provided by the Aggregation Processor. When a
parameter type of NAR is used, the node expects to receive an InputRec or OutputRec
type.

void appendLists(NAR source, NAR dest, String attrList)

Searches the attributes in the attrList and for each, appends it from the source NAR to
the corresponding attribute in the destination NAR.

void appendListsWithoutRepeat(NAR source, NAR dest, String attrList)

Chapter 2
Processor Cartridges

2-5

Performs the same function as appendLists with one exception: when appending, a
value will not be repeated in succession. For example, appending the following:

Source: “1", “5", “7", “7", “2"

Dest: “9", “5", “5", “6", “1"

Produces the following: “9", “5", “5", “6", “1", “5", “7", “2"

Integer compareBytes(NAR A, NAR B, Integer attrId)

Performs a byte comparison of the attributes specified in the two NARs.

Returns: “1" if the two are the same or “0" otherwise.

void concatenateStrings(NAR source, NAR dest, String attrList)

Searches the attributes specified in the string and concatenates the corresponding
source attribute onto the destination.

void concatenateStrings(NAR source, NAR dest, String separator, String attrList)

Searches the attributes specified in the string and concatenates the corresponding
source attribute onto the destination similar to the above function. This variation also
inserts the separator between each destination and source when concatenating.

Integer distributeTrafficVolumeSetPerDay(NAR in, String trafficVolumesID, NAR
dest, String uplinkSetName, String downlinkSetName)

Parses the traffic volume containers, indicated by the trafficVolumesID, and distributes
the uplink and downlink volumes into other attributes according to the time.
The destination attributes used for the volume distribution are specified by the
uplinkSetName and downlinkSetName. Each of these must always contain 24
attributes, each corresponding to one hour of the day.

For example, if the in NAR contains two traffic volumes, one for 8am and another for
2pm, the corresponding uplink and downlink values will be put into the 9th and 15th
attribute Ids from the corresponding sets.

This function only distributes the traffic volumes for one day. For example, if there
is a traffic volume container that is for the next day, that traffic volume and any
following it are not processed. If there are any unprocessed traffic volume containers,
the processed ones will be removed from the incoming NAR so only the unprocessed
ones will remain. The incoming NAR is not modified if all the volume containers are
processed.

The traffic volume configuration information must be set for this function to operate.
The function returns “1" if all the volume containers were processed and “0" if some
were not processed and have been indicated in the incoming NAR.

Integer distributeTrafficVolumesPerDay(NAR in, String trafficVolumesID, NAR
dest, String uplinkVolumeAttrs, String downlinkVolumeAttrs)

This method is the same as the one above, with the exception that the uplink and
downlink attribute IDs are listed as a string parameter rather than using a named set.

Bytes generateOpeningTimeFromTrafficVolume(List trafficVolumes)

Returns a byte time representation for the beginning of the day for the first traffic
volume container in the list. More specifically, it is the bytes representation of the same
timestamp, but with the hour, minute and seconds all set to “0".

Chapter 2
Processor Cartridges

2-6

The traffic volume configuration information must be set for this function to operate.

Integer getBytesValueFromListMapIp(List inData, Integer index, nar dest, String
attrId)

This specialized function sets the bytes in the attrId of the destination to the IP of the
first valid IP type in a map, where the map comes from the specified item, as per
index, in the list. For example, in the Wireless market segment, the SGSN IP Address
List field is a list of maps, with an IP specified in these maps. Using this function on
this field sets the bytes in the destination to be the bytes representation of the IP
address of one of the SGSNs in the list, using index to determine which SGSN.

The index is specified starting at 0. This will return 1 if an IP was found and
subsequently set in the destination, otherwise 0 will be returned.

Integer getDayOfYear(Bytes date)

Determines the current day of the year. For example, if the date is March 20, 2003, the
method returns “20".

Integer getNAR(NAR out)

Searches for a NAR in the default hash table, 0. Upon finding the NAR, the method
returns it in the out parameter and removes it from the table. The method also
removes any timers. To search, the method uses the key created by the last call to
setKey for this hash table.

The method returns “1" if it finds a NAR and “0" otherwise.

Integer getNAR(NAR out, Integer index)

Performs the same function as getNAR above, but also supplies an index to indicate
the hash table to use.

Integer getPreviousDayOfYear(Bytes date)

Returns the day of the year for the day previous to the current date. This is the same
as “getDayOfYear(date)-1" except in the case where the current date is the first day of
the year. In this case, the method returns the last day of the previous year.

void keepMaxAttributes(NAR source, NAR dest, String attrList)

Searches the attributes specified in attrList, and puts the greater value of the source or
destination in the dest field. This method supports the following types:

• byte

• short

• int

• long

void keepMinAttributes(NAR source, NAR dest, String attrList)

Searches the attributes specified in attrList, and puts the lesser value of the source or
destination in the dest field. This function supports the following types:

• byte

• short

• int

Chapter 2
Processor Cartridges

2-7

• long

void removeAttributes(NAR in, String attrList)

Removes all attributes specified in attrList from the incoming NAR.

void removeAttributeSet(NAR in, String setName)

This method performs the same function as above, except the attribute list is
contained in the set specified by setName.

Integer removeNAR()

Deletes the record matching the key set for hash table 0 from the table.

The method returns “1" if it finds and removes a matching record or “0" if it does not
find a matching record.

Integer removeNAR(Integer index)

Deletes the record matching the key set for the hash table specified by index.

The method returns “1" if it finds and removes a matching record or “0" if it does not
find a matching record.

void replaceAttributes(NAR source, NAR dest, String attrList)

Takes each attribute specified in attrList from NAR source and puts it in NAR
destination. The method overrides any values previously set in dest.

void replaceAttributeSet(NAR source, NAR dest, String setName)

This method is the same as above, but the attribute list is in the set specified by
setName.

void setKey(NAR in)

Creates a key for the default hash table, 0, from the in NAR. The attributes used to
create the key are specified in the configuration.

void setKey(NAR in, Integer index)

This method is the same as the function above, except the key is created for the hash
table specified by index, where index starts from 0.

void storeNAR(NAR in)

Stores the incoming NAR in the default hash table, 0, with the last key specified
for this hash table. The method does not start a timer for this record even if the
configuration indicates timers are enabled for this table.

void storeNAR(NAR in, Integer index)

This method has the same function as above, except the hash table is specified by
index.

void storeNARWithTimer(NAR in)

This method is the same as the storeNAR(in) function, except it starts a timer for this
record if the option is enabled in the configuration for the default table, 0. If the record
already exists in the table and the timer is already set, the method overrides both
items.

Chapter 2
Processor Cartridges

2-8

void storeNARWithTimer(NAR in, Integer index)

This method the same as the above function, except it is for the hash table specified
by index.

void sumAttributes(NAR source, NAR dest, String attrList)

This method sums the source and dest attributes specified by attrList. The results are
stored in dest.

Integer sumAttributesNoOverflow(NAR source, NAR dest, String attrList)

This method is the same as the above function, except it does not sum the source and
dest attributes if it will result in an overflow condition.

The method returns “1" if it performs the summation and “0" if it detects an overflow
condition and does not perform the summation.

void sumValue(Long sourceValue, NAR dest, String attrList)

Adds the source value to each of the attributes in dest specified by attrList.

Integer sumValueNoOverflow(Long source, NAR dest, String attrList)

This method is the same as the above function, except it does not perform a
summation if it detects the attributes would overflow.

The method returns “1" if it performs the summation and “0" if it detects an overflow
condition and does not perform the summation.

Usage
This section will show some examples of how you can use the Java hooks.

Simple Session Aggregation Example

The following examples demonstrate a simple way to aggregate sessions for various
record types. The examples show you how to aggregate partial records from the
same device but do not demonstrate how to combine record types. The examples use
Wireless attributes but do not include the record declarations for readability.

The following are the major attributes:

20001 - The session identifier. Unique for a specific GGSN and shared by the SGSNs.

20200 - The record type.

20232 - The GGSN IP address

20233 - The SGSN IP address, for S-CDRs only.

Due to the different keys used to uniquely identify sessions on the GGSN and SGSN,
separate tables are used in the example below.

Here is the sample NPL with comments:

// Declare the AP java hooks
import com.metasolv.nm.processor.MXAggregator.MXJavahookHandler;

// Configure the file hash tables we're going to need

Config {

Chapter 2
Processor Cartridges

2-9

// Distribute records to threads based on session ID.
ModulusAttribute "20001";

 // Don't arbitrarily flush all existing records on startup.
 FlushOnStartup "false";

 // Indicate that there will be configuration information
 // for two different tables.
 HashTables "2";

 // Set the attributes used for the key for table 0
 HashTableKeys0 "20001 20200 20232";
 // Indicate that we want flushed records to be written
 // to the output for this table.
 HashTableFlush0 "write";

 // Add the SGSN IP to the key for the second table
 HashTableKeys1 "20001 20200 20232 20233";
 // We also want flushed records for this table to be
 // written to the output.
 HashTableFlush1 "write";

 // Declare a set of attribute Ids to use later on.
ReplaceSet "20001 20002 20005 20121 20200 20201 20202 20203 20204 20205 20206
20207 20210 20211 20212 20214 20216 20217 20218 20219 20220 20221 20222 20223
20224 20225 20226 20227 20228 20229 20232 20233 20234 20235 20300 20301 20302
20303 20304 20305 20306 20310";
}

Integer returnCode = 0;
Integer tableIndex = 0;

// The input and output record declarations would be here.
// The SMS CDR types are not aggregated, so just write them out.
if ((in.20200 == 21) || (in.20200 == 22)) {
 out = in;
 write(in);
}
else {
 // Get the index to the appropriate table. Use table 0 for G-CDRs,
 // and table 1 for M and S-CDRs, as they require a key with the
 // SGSN IP address also.
 if (in.20200 == 19) {
 tableIndex = 0;
 }
 else {
 tableIndex = 1;
 }

 // Now set the key for the table we will be using. This will be
 // in place for all further operations on this table.
 Java.setKey(in, tableIndex);

 // Try to find an already existing record in the table
 // which matches our key. The returnCode variable will
 // indicate if the lookup was successful.
 returnCode = Java.getNAR(out, tableIndex);

 if (returnCode == 1) {
 // Found one. We now need to do the aggregation between the
 // found record (out) and the input record.

Chapter 2
Processor Cartridges

2-10

 // First, try to sum the duration if the variable will not
 // overflow.
 returnCode = Java.sumAttributesNoOverflow(in, out, "20004");
 if (returnCode == 0) {
 // Overflow condition. Just flush out the old record and
 // start over with the new one.
 write(clone(out));
 out = in;
 }
 else {
 // The sum worked, so continue with all the rest.
 // These two items are lists which are aggregated by
 // appending the incoming onto the end of the stored
 // attribute.
 Java.appendLists(in, out, "20209 20213");

 // This is a convenient way to perform bulk assignment
 // of attributes from in to out. This could be done as
// separate assignments (e.g. out.20001 = in.20001;), but
 // it would be less efficient than this call and would
 // also be less readable.
 // This function also makes use of the named set
 // "ReplaceSet", which identifies a set of attributes
 // declared in the configuration block at the top.
 Java.replaceAttributeSet(in, out, "ReplaceSet");
 }
 }
 else {
 // There is no matching record already in the table, so this
 // is the first. Rather than doing separate assignments for
 // all the needed attributes, this is just doing a bulk copy
 // of all of them.
 out = in;
 }

 // Now check to see if the record should be written to the output
 // or stored back in the table. We'll only ever get here for the
 // G-CDR, S-CDR and M-CDRs, so just check the cause for record
 // closing value to see if the session is closed.
 if ((out.20202 == 0) || (out.20202 == 4)) {
 write(out);
 }
 else {
 Java.storeNARWithTimer(in, tableIndex);
 }
}

Distribution Cartridges (DCs)
DC nodes should contain the following:

• NPLFieldProcessor

• OITransport

• Knowledge of (or Factory for) the appropriate DCFieldContainer object to
generate.

The NPLFieldProcessor maps the data from the NAR into the appropriate
DCFieldContainer object based on the commands in the NPL file. The OITransport

Chapter 2
Distribution Cartridges (DCs)

2-11

class then takes the data and transmits it via the appropriate medium outside the
system. The DataProvider and DataReceiver relationships are shown in Table 2-3.

Table 2-3 DataProviders and DataReceivers for Distribution Cartridges

DataProvider DataReceiver

 NARFileManager NPLFieldProcessor

 NPLFieldProcessor OITransport

Several DC nodes are provided as part of the Offline Mediation Controller system and
are outlined below.

ASCII DC Node
Flat file based DC node which will produce output in ASCII format. Also has the
capability to put the completed files on a remote machine via FTP.

IPDR DC Node
Produces file-based output in IPDR format.

XML DC Node
Produces file-based output in XML.

JDBC DC Node
The JDBC DC node is a generic node that inserts data into a relational database. This
DC node can be found in the Offline Mediation Controller Cartridge Kit market segment
and is part of the Database Storage and Reporting solution. The DC node outputs
DMS-MSC data (GCDR and GHOT records) into an Oracle 9i database, but can also
be configured to work with other types of data and databases, providing the proper
NPL rules files are written. The JDBC DC node can connect to any type of relational
database without modification of the existing Java code. This DC node uses a Java
JDBC interface to insert data into a database, therefore any database that supports
JDBC works with this DC node.

The basic node chain that uses the JDBC DC node to insert data into a database
contains a DMS-MSC CC node and a JDBC DC node.

This DC node obtains the necessary database information from the NPL file it is
configured to use. The NPL file must have a configuration clause containing a
configuration key of DBTables and an associated configuration value representing
a list of one or more database table names. This comma-separated list of names
corresponds to the database tables where the incoming NAR attributes are inserted.
For each table in the list, there must also be a corresponding Expose clause, which
will associate attributes of the output records to the appropriate column within the
specified database table. The data type of the output attribute must be compatible with
the data type for the database column. The DC node issues a processing exception if
the data types are incompatible. Refer to the sample NPL code listed in the end of this
section for more details.

Chapter 2
Distribution Cartridges (DCs)

2-12

The NPL file must have a configuration clause containing two configuration keys:
“JDBCDriver" and “JDBCUrl". The two configuration keys must have a configuration
value associated with them.

The configuration key, “JDBCDriver", is the class name of the JDBC driver provided
by the specific database. In the case of the Oracle database, the class name is
“oracle.jdbc.driver.OracleDriver".

The configuration key, “JDBCUrl", provides a way of identifying a data source so the
appropriate driver recognizes and establishes a connection with it. Different JDBC
drivers require different JDBC URLs. You must provide the appropriate JDBC URL
information as the configuration value for the “JDBCUrl" clause in the NPL rules file.
The values of the database host, the port that the database server is listening to, and
the database SID appear in the node configuration window in the Offline Mediation
Controller GUI. If the JDBC URL requires any of these three fields, you must replace
these fields with “%DBHOST%", “%DBPORT%", and “%DBSID%" in the “JDBCUrl"
configuration value.

For the Oracle database, the “JDBCUrl" configuration value is:
“jdbc:oracle:thin:@%DBHOST%:%DBPORT%:%DBSID%".

For example, if the database host is “MyHost", the port number is “1521", and the SID
is “ORCL", the JDBC DC node uses “jdbc:oracle:thin:@MyHost:1521:ORCL" as the
JDBC URL to connect to the database.

The configuration values “DBCatalog" and “DBSchemaPattern" are the additional
criteria used to validate the database table. You only need to specify these two
values in the NPL rules file when there are two tables with the same table name
(in different schema patterns). In Offline Mediation Controller, the “DBSchemaPattern"
is “NMUSER1" and the “DBCatalog" is “SYS.ALL_TABLES".

The following is a sample NPL rules file for the JDBC DC node working with an Oracle
database. There are two tables: “tableName1" and “tableName2". Each table has 5
columns: “column1", “column2", “column3", “column4", and “column5". Columns 1 to 4
are all INTEGER types. Column 5 is a VARCHAR type.

Config {
 DBTables "tableName1,tableName2";
 JDBCDriver "oracle.jdbc.driver.OracleDriver";
 JDBCUrl "jdbc:oracle:thin:@%DBHOST%:%DBPORT%:%DBSID%";
 DBCatalog "SYS.ALL_TABLES";
 DBSchemaPattern "NMUSER1";
}

InputRec {
// input record fields
 Integer 1000;
 Integer 1001;
Integer 1002;
Integer 1003;
String 1004;
} in;

OutputRec {
// output record fields
Integer attribute1;
Integer attribute2;
Integer attribute3;
Integer attribute4;
String attribute5;

Chapter 2
Distribution Cartridges (DCs)

2-13

} out;
Expose for tableName1 {
 out.attribute1 "column1";
 out.attribute2 "column2";
 out.attribute3 "column3";
 out.attribute4 "column4";
 out.attribute5 "column5";
}

Expose for tableName2 {
 out.attribute1 "column1";
 out.attribute2 "column2";
 out.attribute3 "column3";
 out.attribute4 "column4";
 out.attribute5 "column5";
}
out.**** = in.****;
…

write(out);

Table 2-4 displays the required configurable parameters for the JDBC DC node:

Table 2-4 Configurable Parameters for JDBC DC Node

NPL Description

DBTables List of table names separated by quotes: “ "

JDBCDriver Class name of JDBC driver

JDBCUrl String of JDBC URL

DBCatalog Database catalog (optional)

DBSchemaPattern Database schema pattern (optional)

Table 2-5 Node Config GUI Fields

Node Config GUI Description

UserId Database user ID

Passwd Database user password

Batch Size Number of rows in one batch insertion

DB Host Host name or IP address of the database host

DB Port Port that the database is listening to

DB SID Database SID

The JDBC DC node uses batch insertion to insert a certain number of records at one
time into the database. The batch size is configurable through the node configuration
window in the Offline Mediation Controller GUI. However, a driver is not required to
implement the batch execution. For those drivers that do not support batch execution,
the JDBC DC node singularly inserts the records into the database. The DC node
can call the DatabaseMetaData method and supportsBatchUpdates value to find out
whether the driver supports batch updates.

Chapter 2
Distribution Cartridges (DCs)

2-14

3
Customizing the Administration Client GUI

This chapter provides an overview of customizing the Oracle Communications Offline
Mediation Controller Administration Client GUI.

DCNodeConfigGUI and Related Classes
The Administration Client GUI displays configuration panels for all nodes available
in the system. Node developers must provide a class that displays configuration
information specific to their node.

The base DCNodeConfigGUI classes provide the basic configuration tab panel, and
the components on the General tab that are applicable for a particular node type.
For CC and Processor nodes, a Destinations tab is provided which allows the user to
select the nodes that will receive data from the node being configured.

The images below show the contents of the General tab for a Wireless CC, EP and
DC node.

Offline Mediation Controller provides the basic panel layout, which includes the Node
identification fields at the top and the configuration tab in the lower half of the screen.

3-1

Figure 3-1 CC Node Configuration GUI.

Chapter 3
DCNodeConfigGUI and Related Classes

3-2

Figure 3-2 EP Node Configuration GUI

Chapter 3
DCNodeConfigGUI and Related Classes

3-3

Figure 3-3 DC Node Configuration GUI

New configuration GUI classes should be derived from the appropriate
DCNodeConfigGUI class, and at least the following three methods should be
overridden:

• setDefaults() - provides appropriate default values for the configuration items
being introduced. The defaultValue() method is used to set these individual values.

• extendConfigGUI() - this is where any new tab panels are defined.

• getNodeSpecificConfigData() - this method is responsible for getting the
values from the text fields (or other components) and setting them in the
DCNodeConfigData (nodeData) object, which will contain all of the valid
configuration information for the node.

The allFieldsValid() method is called when the user selects the “Save" button. The
default implementation always returns true. If any input verification is desired, that
checking should be performed here.

Chapter 3
DCNodeConfigGUI and Related Classes

3-4

The DCNodeConfigGUI base class provides some methods for creating basic
components and panels:

• makeTextField() and makeNumericTextField() create JTextField objects with the
supplied parameters.

• makeNumericTextField() provides simple input verification to ensure that the user
has entered a numeric value. A minimum and maximum value can also be
specified. If a minimum and maximum value are specified, these values will be
enforced. If the user enters a value below the minimum, the minimum value will
be displayed, conversely, if the user enters a value above the maximum, the
maximum value will be displayed.

• makePanel() accepts a Vector of labels and a Vector of components, and creates
a JPanel that contains those items in the order in which they appear in the Vector.
The addPanel() method then adds the panel to the tabbed pane in the GUI.

DCNodeConfigGUI Class Hierarchy
Figure 3-4 shows the DCNodeConfigGUI class hierarchy.

Figure 3-4 DCNodeConfigGUI Class Hierarchy

Chapter 3
DCNodeConfigGUI and Related Classes

3-5

DCNodeConfigData
This object is used to store configuration information for the node. Currently, only
String data is supported for configuration information. Node developers should not
have to derive any classes from DCNodeConfigData.

Node Template Definitions and Groups
Rules files are the NPL files that will be used by the node (more specifically by
the NPLFieldProcessor). These files are stored in the Offline Mediation Controller
installation area in the “rules" sub-directory in a directory structure based on the node's
major and minor type.

Node template files are used by the system to determine what nodes are available and
how to display those nodes in the GUI tree view and Node Creation Wizard. These
files are stored in the “config/template" directory.

There are two files the system uses to describe what a node is. The first, the
nodeTemplateDef.xml file, defines the name of the node and other properties, such
as the NPL files and the node class. The second file, nodeGroupDef.xml, defines
the hierarchy of the nodes in the GUI. The system files cannot be modified but can
be extended by creating a customized version in the OMC_Home/customization
directory.

The nodeTemplateDef.xml File
The nodeTemplateDef.xml file defines node template elements. Each node template
defines a single node in the system. For example, the following defines an
Aggregation Processor node called Sample Node 001 with one NPL file.

<nodetemplate id="Access#AP#Testing001">
 <name>Sample Node 001</name>
 <property name="Solution">access</property>
 <rule id="aggr_csg_radius_correlation.npl">
 <name>Sample node correlation</name>
 <nplfile>sample_node_correlation.npl</nplfile>
 </rule>
 <nodeclass>com.nt.udc.aggregator.AggregatorNode</nodeclass>
</nodetemplate>

There are a large number of nodes already defined by the
system nodeTemplateDef.xml file. This can be found in OMC_Home/config/
nodeTemplateDefs. These definitions should never be changed, but they can be
extended by adding new NPL files in the customized nodeTemplateDef.xml file.
For example, if Sample Node 001 was defined in the system node templates and
it was to be extended with a second NPL file called “sample_node_test.npl", the
nodeTemplateDef.xml file in the customization directory would appear as follows:

<?xml version="1.0"?>
<nodetemplateset version="1.0">
 <nodetemplate id="Access#AP#Testing001">
 <rule id="sample_node_test.npl">
<name>Sample Node Test</name>
 <nplfile>sample_node_test.npl</nplfile>
 </rule>

Chapter 3
Node Template Definitions and Groups

3-6

 </nodetemplate>
</nodetemplateset>

Ensure you place the customized nodeTemplateDef.xml in OMC_Home/
customization/nodeTemplateDefs. It can contain any number of node templates,
that either add NPL files to existing system templates or define new nodes. Each rule
element defines a single NPL file for the node. The id attribute of the rule should be a
unique identifier for that NPL file. In general, the filename is used, although this does
not have to be the case. Notice that the NPL files do not have any path specified. The
system searches for the NPL files in the following manner:

1. Construct the abstract location of the NPL file as follows:

<MarketSegment>/<BasicNodeType>/<NodeSpec>/<Filename>

2. Search in OMC_Home/customization.

3. If you do not find the file, search in OMC_Home/rules.

The <MarketSegment> is defined by the first token of the nodeTemplate ID attribute
(tokens are separated by a #).

In the example given above, the market segment is “Access". If the node ID was
“Wireless#EP#FileEnhancer", the market segment would be “Wireless".

The <BasicNodeType> and <NodeSpec> can be determined by editing a node of
that type in the GUI. The “type" field will give the both the <BasicNodeType> and
<NodeSpec> separated by a colon.

In the previous example, the type field would display “Processor : Aggregator". So the
location of the system defined NPL file for this node would be:

OMC_Home/rules/Access/Processor/Aggregator/sample_node_test.npl

If it were customized in sample_node_customized.npl, the location would be:

OMC_Home/customization/Access/Processor/Aggregator/sample_node_test.npl

Node templates have two other properties defined in the XML, a Solution property
and a node class. The node class is the actual Java type that is instantiated by
the system when creating a node of this type. The Solution property is the market
segment used in licensing. Each node must have a valid Solution. If you are creating
a new node template, the Solution should be set to CartridgeKit.

Only rule files listed in the node template definition will be shown in the GUI. Therefore
to add a new NPL file, you must copy it into the appropriate directory and add it to the
node template definition.

The nodeGroupDef.xml File
The nodeGroupDef.xml file defines the hierarchy of nodes for the GUI to use
in its tree view and the Node Creation Wizard. This file has two elements in it,
the nodetemplategroup and the nodetemplate. The nodetemplategroup elements
define the groupings and the nodetemplate elements define the leaf nodes. Each
nodetemplategroup contains a name and either a list nodetemplategroups or a
list of nodetemplates. Each nodetemplate is an empty element and has an ID
that references an existing nodetemplate in the nodeTemplateDef.xml file. The
nodeGroupDef.xml file can be extended by adding various nodetemplategroups
and nodetemplates to a nodeGroupDef.xml file in the customization directory.

Chapter 3
Node Template Definitions and Groups

3-7

For example, if the following was the system nodeGroupDef.xml file:

<?xml version="1.0" standalone="yes"?>
<nodetemplategroup>
 <name>root</name>
 <nodetemplategroup>
 <name>Wireless</name>
 <nodetemplategroup>
 <name>Collection Cartridge (CC)</name>
 <nodetemplate id="Access#AP#SessionCorrelation"/>
 <nodetemplate id="Access#AP#CsgRadiusCorrelation"/>
 </nodetemplategroup>
 </nodetemplategroup>
</nodetemplategroup>

This could be extended by creating the following nodeGroupDef.xml file in the
customization directory.

<?xml version="1.0" standalone="yes"?>

<nodetemplategroup>
 <name>root</name>
 <nodetemplategroup>
 <name>Wireless</name>
 <nodetemplategroup>
 <name>Collection Cartridge (CC)</name>
 <nodetemplate id="Access#AP#Test001"/>
 </nodetemplategroup>
 </nodetemplategroup>
</nodetemplategroup>

Creating a node and rule file
To create a customized node, you must access the node type you want to use as
a template and create a new rule file. To access the node type templates, go to the
Cartridge Kit market segment in the Offline Mediation Controller Administration GUI.

Use the following procedure to create a customized node with a new NPL rule file.

Select the node type template to build on

1. In the Administration GUI, go to the Nodes on Mediation Host section and click
the New button.

2. Select the Cartridge Kit market segment and click Next.

3. Select the Node Type and click Next.

4. Select a node and click Finish.

The node configuration window appears.

Create and save the new NPL rule file

1. In the node configuration window, ensure “New" is selected in the Rule File drop-
down list and then click the Edit button.

2. Use the template that appears in the NPL Editor window to create your new NPL
rule file.

3. Select File and Save to open the Save As... dialog box. Type in the name of the
Display Name. Type in the Rule File Name and ensure the file name ends with
“.npl".

Chapter 3
Node Template Definitions and Groups

3-8

Click Save.

4. Exit the NPL Editor by selecting File>Exit.

5. Ensure the new rule file is in the list.

6. Configure the information required in the various window tabs.

7. Click Save.

SNMP trap generation
There is an SNMPTrapGenerator associated with all nodes. By default, this generates
SNMP traps for all of the node's logged error conditions (i.e. red alarms). The SNMP
Trap Hosts are configured via the SNMP Trap Hosts panel in the Administration Client
GUI.

Chapter 3
SNMP trap generation

3-9

4
Cartridge Creation Example

This chapter describes the creation of Cartridges with the Oracle Communications
Offline Mediation Controller CDK.

Creating Airline Flight Node Chain
Follow these guidelines:

1. All nodes should be derived from EINode, ProcessorNode, or OINode.

• Processor nodes should utilize the NPLProcessorNode or be extensions of it.

• We have EINodeTmpl.java as a template for CC nodes.

• We have OINodeTmpl.java as a template for DC nodes.

2. All “inter-node" communication should be handled by the DCStreamHandler.

The DCStreamHandler at this time is the NARFileManager, which is responsible
for writing NAR files to disk.

3. All nodes should have NPL rules file, which maps ALL fields available in the case
of a CC node, and only the fields necessary for enhancement in the case of a
Processor node. Obviously, a DC node will only include the fields that meet that
specific output requirement.

4. All nodes should have the necessary NodeConfigGUI class, rules/NPL file, and
should be defined in the appropriate properties file.

• OMC_Home/customization/nodeTemplateDef.xml

• OMC_Home/customization/nodeGroupDef.xml

Where OMC_Home is the directory in which you installed Offline Mediation
Controller

5. All nodes should have implementations of DataProviders and DataReceivers with
getData() and processData() methods for which the issues of synchronization
have been taken into consideration.

6. All nodes should have a main() method to be used for testing purpose only.

Allows the node to run from the command line before the NodeConfigGUI
component is complete.

Existing Node Types
The following list displays the nodes existing in Offline Mediation Controller CDK when
you install the product. You can use these existing nodes as a base and customize the
NPL file to achieve the desired functionality.

Collection Cartridg (CC) Nodes:
• ASCII CC node

4-1

• IPDR File CC node

• Network Accounting Record CC node

Enhancement Processor (EP) Nodes
• Record Processing EP node

• Record Enhancement (Local File) EP node

• Service Resource EP node

• LDAP Enhancer EP node

• Record Enhancement (LDAP) EP node

Aggregation Processors (AP) Nodes
• Aggregation Processor

• Programmable Aggregation Processor

Distribution Cartridges (DC) Nodes
• ASCII DC node

• IPDR DC node

• XML DC node

• Network Accounting Record DC node

• JDBC DC node

1. Identify your data source or destination (CC node vs. DC node)

• Know the format

• Know how it is transferred

2. Identify your transport

• Does one already exist?

• Do you need to write your own?

• Will your transport know about your DCFieldContainer? -OR-

• Will you need to write a factory?

3. Write a factory (optional) - the mass production of record objects.

• A DCRecordFactory is generally used to take raw data and produce EIRecord
objects.

• A factory would typically be used to take in an OIRecord and produce raw data
for an OITransport.

• The definition of this object is only necessary when dealing with an object
(generally a transport) that needs this to generate record objects for it.

4. Write a DCFieldContainer

• In an EIRecord this means getting raw data into the object, and implementing
the interface methods for getting the data out as individual fields/attributes.
Please refer to EIRecordTmpl.java.

Chapter 4
Creating Airline Flight Node Chain

4-2

• In an OIRecord this means implementing methods to get the data in as fields
and a mechanism to get raw data out. Please refer to OIRecordTmpl.java.

5. Implement the Node - where you really put it all together

• Write the constructor if warm restart capability is not implemented.

– Get all the cnfiguration information of this node.

– Construct your transport with knowledge of your factory or record

– Construct an NPLFieldProcessor with: knowledge of it's output type (NAR
or your Record object) and knowledge of your rules file (which is obtained
from config)

– Set receivers and providers appropriately.

– Decide what is running in a thread.

– Start the appropriate components.

• If implement warm restart capability, construct the node without any
operations, override boolean warmRestartImplemented() to return true, and
implement these two methods

– startup(): instantiate transport and field processor and start all the threads.

– reconfigure(): reconfigure the node without stopping itself.

• Implement remaining abstract methods.

– getMinorType()

– getConfigGUIClass()

• Implement an “orderly" shutdown method.

– Make sure components are shutdown in the proper order.

– Make sure all threads are REALLY stopped.

• Implement a main() method for testing purpose.

• Write your NPL file.

– In a CC node and a DC node this should be primarily mapping to/from
NAR attribute.

• Implement your NodeConfigGUI class.

• Modify/create the appropriate property files.

Create AirlineEINode (CC Node)
Now we will go through step by step as described in the previous section to create an
AirLineEINode for the Airline Flight node chain.

Chapter 4
Creating Airline Flight Node Chain

4-3

Figure 4-1

1. Identify the data source or destination (CC node vs. DC node).

We need to write a CC node for the Airline Flight node chain. This CC node
will collect the Airline passenger data via UDP. We have the Airline Flight Data
Simulator, FlightInfoSender, which will be running on a machine somewhere and
sending the datagram packet through UDP.

FlightInfoSender Data Format: There is one passenger record per datagram
packet. A single flight record is a byte array of 7 integer attributes. These attributes
are (in their respective order):

• Passenger ID

• Flight Number

• Departing Airport ID

• Arriving Airport ID

• Departure Time in Seconds

• Arrival Time in Seconds

• Number of Bags of Luggage for Passenger

2. Identify the transport.

Airline passenger data will be transferred to this CC node via UDP. In CDK,
we already have a transport class for UDP, which is UdpEITransport. Therefore,
we don't need to write our own transport class for this CC node. Here are the
constructors of UdpEITransport:

public UdpEITransport (EINode einode, DCRecordFactoryIfc factory, int prt)

Chapter 4
Creating Airline Flight Node Chain

4-4

throws NodeStartException

public UdpEITransport(EINode einode, DCRecordFactoryIfc factory, String host,
int prt)

throws NodeStartException

public UdpEITransport(EINode einode, DCRecordFactoryIfc factory, int prt, int
pktSize, int qSize) throws NodeStartException

public UdpEITransport(EINode einode, DCRecordFactoryIfc factory, String host,
int prt, int pktSize, int qSize) throws NodeStartException

Obviously, UdpEITransport needs a DCRecordFactory in order to know about the
EIRecord of the Airline passenger data.

3. Write AirlineRecordFactory.

AirlineRecordFactory is implementing DCRecordFactoryIfc. It will produce our
AirlineEIRecord for Airline passenger data, which will be created in the next
step. We have a template class for creating RecordFactory, please refer
to RecordFactoryTmpl.java. This template is written particularly for producing
EIRecord from UDP packet. For other type of raw data, you need to use the proper
type of raw data instead of QueuedUdpPacket in getRecord() and getRecord() two
methods.

4. Write DCFieldContainer: AirlineEIRecord.

Now we will create an EIRecord class, which will be responsible for collecting
the data produced by the FlightInfoSender class and provide “get" methods for
extracting the individual fields. Please refer to EIRecordTmpl.java.

The AirlineEIRecord is derived from DCEIRecord. This DCFieldContainer should
map all fields available in the input data. We know that from FlightInfoSender we
have one passenger record per datagram packet. A single flight record is a byte
array of 7 integer attributes. These attributes are (in their respective order):

• Passenger ID

• Flight Number

• Departing Airport ID

• Arriving Airport ID

• Departure Time in Seconds

• Arrival Time in Seconds

• Number of Bags of Luggage for Passenger

AirlineEIRecord should have the knowledge to extract each of the 7 integer
attributes and map it into a DCField. Therefore, an AirlineEIRecord should contain
totally 7 DCFields. Each DCField should have its ID, type, and value. For
example, the raw data “Passenger ID" will map to an IntField, whose ID will be
“Passenger_ID", type will be Integer; and value will be the integer value of the
raw data. The IDs of these 7 DCFields will be listed as the InputRec in NPL of
AirlineEINode.

• AirlineEIRecord should at least implement the following methods defined in
DCEIRecord:

• DCField getField(String ID) - Giving the ID of a DCField, we should be able to
retrieve the DCField itself.

Chapter 4
Creating Airline Flight Node Chain

4-5

• byte[] getFieldValue(String ID) - Giving the ID of a DCField, we should be able
to retrieve the value of this DCField as a byte array.

• int getType(String ID) - Giving the ID of a DCField, we should be able to
retrieve the type of this DCField.

• String toString() - We should be able to get the string representation of this
EIRecord.

• byte[] toByteArray() - We should be able to get the binary representation of
this EIRecord.

5. Implement the Node.

Now we will implement the AirlineEINode itself. We have a template,
EINodeTmpl.java, which can be used to start creating the AirlineEINode.

Note:

AirlineEINode will implement a warm restart capability, which means that
this node must implement startup() and reconfigure() these two methods.

a. Construct AirlineEINode with warm restart implemented.

b. Construct the node with no operation.

public AirlineEINode(String[] args) throws NodeStartException {
 super(args);
}

c. Override method warmRestartImplemented() to return true.

d. Implement startup() method.

• Get all the config information of this node.

• Construct the UdpEITransport as described in step 2, which will utilize the
record factory created in Step 3 in "Create AirlineEINode (CC Node)".

// Create record factory
 String nid = getNodeId();
 recordFactory = new AirlineRecordFactory(nid, this);

 // Create the Transport
 UdpEITransport eiTransport = new UdpEITransport(this,

recordFactory,

udpListenPort,

maxPacketSize,
 queueSize);
setTransport(eiTransport);

e. Construct an NPLFieldProcessor.

// Set the FieldProcessor
Class NARClass = (new NAR()).getClass();
try {
 setFieldProcessor(new NPLFieldProcessor(NARClass, this,
 scratchDir.getAbsolutePath(),
NPLFile)

Chapter 4
Creating Airline Flight Node Chain

4-6

);
}
catch (NodeProcessingException npex)
{
 throw new NodeStartException(npex.getMessage());
}

f. Set up appropriate receivers and providers relationship.

Note:

UdpEITransport requires a “pull" data transfer model.

getFieldProcessor().setDataProvider(getTransport());
getFieldProcessor().setDataReceiver(getDCStreamHandler());

g. Start the appropriate components.

// Start the threads
setTransportThread(getTransport());
getTransportThread().start();
setFieldProcessorThread(getFieldProcessor());
getFieldProcessorThread().start();

6. Implement reconfigure() method so that node can be reconfigured without
stopping it. Here is the steps that should be performed during reconfiguration:

a. Set the state of transport to begin reconfiguration.

b. Shut down Field Processor and DCStreamHandler.

c. Start reconfiguration:

• Call super.reconfigure().

• Get the new config information.

• Reconfigure the transport.

• Re-instantiate Field Processor.

• Re-establish the receivers and providers relationship.

• Start Field Processor.

d. Finally set the state of transport to end reconfiguration and set the flag of this
node to be not in reconfiguration state.

7. Implement remaining abstract methods:

a. GetMinorType(): return the minor type of this node, which will be “Airline" in
this case.

b. getConfigGUIClass(): return the package name of the config GUI class of this
node. We will implement the config GUI class for this node later.

8. Implement an “orderly" shutdown method.

Shutdown method is very important for a node. When you are writing the
shutdown() method:

• Make sure components are shutdown in the proper order.

• Make sure all threads are really stopped.

Chapter 4
Creating Airline Flight Node Chain

4-7

Usually the shutdown order will be like this:

a. Call super.shutdown().

b. Shut down the transport.

c. Shut down the Field Processor.

d. Shut down the DCStreamHandler.

9. Implement a main() method for testing purpose.

10. Write the NPL file for this node. In a CC node this should be primarily mapping to
NAR attribute. Following is the NPL file, airline.npl, for AirlineEINode:

InputRec {
 Integer Passenger_ID;
 Integer Flight_Number;
 Integer Depart_Airport_ID;
 Integer Arrive_Airport_ID;
 TimeInSecs Depart_TIS;
 TimeInSecs Arrive_TIS;
 Integer Number_Bags;
} in;

OutputRec {
 Integer 0;
 Integer 1;
 Integer 2;
 Integer 3;
 TimeInSecs 4;
 TimeInSecs 5;
 Integer 6;
} out;

out.0 = in.Passenger_ID;
out.1 = in.Flight_Number;
out.2 = in.Depart_Airport_ID;
out.3 = in.Arrive_Airport_ID;
out.4 = in.Depart_TIS;
out.5 = in.Arrive_TIS;
out.6 = in.Number_Bags;

write(out);

11. Implement the NodeConfigGUI class.

We now implement the config GUI class, AirlineEINodeCOnfigGUI, for
AirlineEINode. We have a template config GUI class, EINodeConfigGUITmpl.java,
for reference.

When we write the config GUI class, we need to identify what kind of config
information we need for the node and what kind of node (CC, DC, or Processor).
For CC node, its config GUI class should be derived from EINodeConfigGUI; for
DC node, it should be derived from OINodeConfigGUI; for Processor node, it
should be derived from ProcessorNodeConfigGUI.

Next, we need to identify the necessary config information for this node.
AirlineEINode is collecting the airline passenger data via UDP. We need to know
the UDP port number, as well as the size of the queue used in the transport. So
we need to add two TextFields in the GUI to allow users to specify the UDP port
number and queue size. Now follow the template, we should be able to implement
AirlineEINodeConfigGUI class.

Chapter 4
Creating Airline Flight Node Chain

4-8

Now AirlineEINode is finished. We need to work on EP nodes and DC nodes. When all
the nodes are created, we will modify/create the appropriate property files. So we can
create those nodes with Node Creation Wizard.

Create Node Chain
You have finished creating the AirlineEINode. You still need to create EP node and DC
nodes to set up a node chain to process the airline passenger data.

Figure 4-2 Creating Node Chain

The EP node will read information from a file to add two additional attributes to each
NAR:

• Departure Airport Name

• Arrival Airport Name

These values will be read from a “airports.lookup" file which maps the (integer) Airport
ID to the Airport Name. The EP node will be FileEnhancer node, which is included in
CDK.

airports.lookup file contents:

1000=Logan International Airport

1001=O'Hare International Airport

1002=John F. Kennedy International Airport

1003=Orlando International Airport

1004=Baltimore/Washington International Airport

1005=Bangor International Airport

1006=Portland International Airport

1007=St. Louis Regional Airport

1008=Honolulu International Airport

1009=Austin-Bergstrom International Airport

1010=Dallas/Fort Worth International Airport

1011=LaGuardia International Airport

Chapter 4
Creating Airline Flight Node Chain

4-9

1012=Los Angeles International Airport

1013=San Francisco International Airport

1014=Manchester Airport

1015=Seattle-Tacoma International Airport

1016=Juneau International Airport

The DC node will simply output all the records to an ASCII file. The DC node will be
FFOINode, which is also included in CDK.

In this case, we only need to write NPL rules files for both EP and DC nodes.

1. Write NPL file for the EP node.

• Imports the FileEnhMethodHandlerIfc

• Uses a corresponding “tablename" value as one that will be entered in the
client GUI. - Your choice, just be consistent. (i.e. the “tablename" value that
the method handler used must be the same value as that entered in the GUI)

• Uses the method Java.lookup(StringField tablename, StringField attribute) to
look up the Departure Airport Name and Arrival Airport Name.

Following is the NPL file, AirPortEnh.npl, for the EP node:

import com.nt.udc.processor.FileEnhancer.FileEnhMethodHandlerIfc;

String table_name = "airports";

InputRec {
 Integer 0; // Passenger_ID
 Integer 1; // Flight_Number
 Integer 2; // Depart_Airport_ID
 Integer 3; // Arrive_Airport_ID
 TimeInSecs 4; // Depart_TIS (time in seconds)
 TimeInSecs 5; // Arrive_TIS (time in seconds)
 Integer 6; // Number_bags
} in;
// The output record only needs to have the two new attributes defined.
OutputRec {
 String 7; // Departing Airport Name
 String 8; // Arriving Airport Name
} out;

// Record to record assignment
out = in;

// Use the "javahook" lookup method to fetch the airport names using
their IDs
out.7 = Java.lookup(table_name,int2str(in.2));
out.8 = Java.lookup(table_name,int2str(in.3));

write(out);

2. Write NPL file, ffoi_airline.npl, for the DC node that simply maps all of the NAR
attributes from the input record (total of 9) to the output record.

Now, it is time to modify/create the node template definitions.

Chapter 4
Creating Airline Flight Node Chain

4-10

1. First we will add the new Airline nodes to the nodeTemplateDef.xml file in the
customization directory (OMC_Home/customization/nodeTemplateDef.xml, where
OMC_Home is the directory in which you installed Offline Mediation Controller.)

<nodetemplate id="Airline#EI#AirlineEINode">
 <name>Airline CC</name>
 <property name="Solution">cartridgekit</property>
 <rule id="airline.npl">
<name>Airline Passenger</name>
 <nplfile>airline.npl</nplfile>
 </rule>
 <nodeclass>com.nt.udc.ei.node.airline.AirlineEINode</nodeclass>
</nodetemplate>

<nodetemplate id="Airline#EP#AirlineEPNode">
 <name>Airport Name EP</name>
 <property id="Solution">cartridgekit</property>
 <rule id="AirportEnh.npl">
 <name>Airport Name</name>
 <nplfile>AirportEnh.npl</nplfile>
 </rule>
 <nodeclass>com.nt.udc.processor.FileEnhancer.FileEnhancerNode</nodeclass>
</nodetemplate>

<nodetemplate id="Airline#OI#AirlineOINode">
 <name>ASCII DC</name>
 <property name="Solution">cartridgekit</property>
 <rule id="ffoi_airline.npl">
 <name>Airline</name>
 <nplfile>ffoi_airline.npl</nplfile>
 </rule>
 <nodeclass>com.nt.udc.oi.node.flatfile.FFOINode</nodeclass>
</nodetemplate>

2. Next we will add the node templates to the GUI using the nodeGroupDef.xml file in
the customization directory (OMC_Home/customization/nodeGroupDef.xml, where
OMC_Home is the directory in which you installed Offline Mediation Controller.)

<nodetemplategroup>
 <name>Airline Example</name>
 <nodetemplategroup>
 <name>Collection Cartridge (CC)</name>
 <nodetemplate id="Airline#EI#AirlineEINode"/>
 </nodetemplategroup>
 <nodetemplategroup>
 <name>Enhancement Processor (EP)</name>
 <nodetemplate id="Airline#EP#AirlineEPNode"/>
 </nodetemplategroup>
 <nodetemplategroup>
 <name>Distribution Cartridge (DC)</name>
 <nodetemplate id="Airline#OI#AirlineOINode"/>
 </nodetemplategroup>
</nodetemplategroup>

3. Finally add the NPL rule files

a. Create directory OMC_Home/rules/Airline/EI/Airline and copy airline.npl to this
directory.

b. Create directory OMC_Home/rules/Airline/Processor/FileEnhancer and copy
AirPortEnh.npl to this directory.

Chapter 4
Creating Airline Flight Node Chain

4-11

c. Create directory OMC_Home/rules/Airline/OI/FlatFile and copy ffoi_airline.npl
to this directory.

Where OMC_Home is the directory in which you installed Offline Mediation
Controller

At this point, we have finished creating/modifying the appropriate node template files.
We are able to start the client GUI and use Node Creation Wizard to create our Airline
Flight node chain.

Starting FlightInfoSender Simulator
Before we can start our Airline Flight node chain, we need to start the FlightInfoSender
simulator, which will send the simulated airline passenger data via UDP.

This simulator is intended strictly for generating data for the CDK Course Workshop. It
generates fictional “flight" data.

• The FlightInfoSender program sends data over TCP port number 2112

• This program can be run from the command-line as follows:

Note:

This command should be typed in all on one line.

$JAVA_HOME/bin/java -classpath OMC_Home/web/htdocs FlightInfoSender \

OMC_Home/web/htdocs/DestIps.dat 10

where:

OMC_Home is the directory in which you installed Offline Mediation Controller.

DestIps.dat: File that lists the IP addresses of the machines to send the flight data to
(One (1) IP Address per line). The default version of this file lists only “localhost". If this
does not work for you, or you want to send data to one or more different machines,
simply replace localhost with the IP address(es) of the desired machine(s).

10: Delay in milliseconds between records being sent.

• The simulator runs in an endless loop generating distinct passenger records, up to
a point -

– Each record has a unique passenger ID, which is generated sequentially
starting at 1.

– Flight numbers start at 1, and are incremented every 100 passengers.

– A departing and arriving airport are generated randomly at the time a new
flight number is created. The Airport IDs are pulled from a short list of “valid"
airport IDs. There is a lookup file that maps these airport IDs from integers to
names. This lookup file can be used for the FileEnhancer, however, the IDs
used by the flight sender are hard-coded, and would require a recompile of the
source code to add or change values.

This is the end of the CDK workshop exercise. You can now start the Airline Flight
node chain and start collecting the airline passenger data.

Chapter 4
Creating Airline Flight Node Chain

4-12

5
Transferring Custom Node Chains

This chapter describes how to transfer custom node chains from one Offline Mediation
Controller system to another. You can transfer the configuration of a system that has a
custom node or nodes, to another system that may or may not have custom nodes.

There are two scenarios described in this chapter:

• Scenario 1 describes how to transfer a configuration with custom nodes to a
Offline Mediation Controller system that has an identical base node chain

• Scenario 2 describes how to transfer a configuration with custom nodes and a
secondary custom node chain to a Offline Mediation Controller system that has an
identical base node chain

In both scenarios, the goal is to update System 1 with the System 2 node chain.

Scenario 1
In Scenario 1, System 1 is the original Offline Mediation Controller system that exists
in the customer environment, as shown in Figure 5-1. The core nodes are shown in
blue and a custom node is shown in green.

Figure 5-1 Original Offline Mediation System 1

On System 2 there is a node chain that has been verified in the lab and is ready to
be deployed in the customer environment (System 1). System 2 has the identical base
node chain as System 1, with two new custom nodes, shown in purple in Figure 5-2.

5-1

Figure 5-2 Offline Mediation System 2

Updating the node chain
Use the following procedure to update System 1 with the System 2 node chain.

To update System 1 with the System 2 node chain

On System 2

1. To export the node configuration, tar the following directories:

• OMC_Home_1/customization

• OMC_Home_2/cartridges

On System 1

1. Ensure all data in the node chain has been processed, then delete the node chain.

2. Stop the Node Manager, Administration Server and GUI.

3. On the System 1, untar the OMC_Home_2/cartridges directory into the
OMC_Home_1/cartridges directory.

4. On the System 1, untar the OMC_Home_2/customization directory into the
OMC_Home_1/customization directory.

5. Start the Node Manager, Administration Server, and GUI.

6. Import the configuration from System 2.

System 1 now appears as in the following diagram.

Chapter 5
Scenario 1

5-2

Scenario 2
In Scenario 2, System 1 has a base node chain and a secondary node chain that
contains custom nodes, shown in red in Figure 5-3.

Figure 5-3 Offline Mediation System 1

System 2 has the same base node chain as System 1 but with a secondary node
chain that contains custom code, shown in purple in Figure 5-4.

Chapter 5
Scenario 2

5-3

Figure 5-4 Offline Mediation System 2

Updating the node chain
Use the following procedure to update System 1 with the System 2 node chain while
still preserving the secondary node chain on System 1.

To update System 1 with the System 2 node chain

On System 2

1. Open the following file:

OMC_Home_2/customization/nodeTemplateDefs/nodeTemplateDef.xml

2. Locate and open the same file on System 1.

3. Examine the contents of the two files and ensure the contents of both files are
captured in nodeTemplateDef.xml on System 2. Remove any duplication.

4. Open the following file:

OMC_Home_2/customization/groupTemplateDefs/groupTemplateDef.xml

5. Locate and open the same file on System 1.

6. Examine the contents of the two files and ensure the contents of both files are
captured in groupTemplateDef.xml on System 2. Remove any duplication.

7. To export the configuration, tar the following directories:

• OMC_Home_2/customization

• OMC_Home_2/cartridges

On System 1

Chapter 5
Scenario 2

5-4

1. Ensure all data in the node chain has been processed, then delete the routing link
between the EP node on the base node chain and the AP node on the secondary
node chain.

2. Delete the base node chain.

3. Stop the Node Manager, Administration Server, and GUI.

4. On System 1, untar the following directories into the following locations:

• OMC_Home_2/cartridges into OMC_Home_1/cartridges

• OMC_Home_2/customization into OMC_Home_1/customization

5. Start the Node Manager, Administration Server and GUI.

6. Import the configuration from System 2.

After the update, there is no routing link between the EP node of the base node
chain and the AP node of the secondary node chain. You must manually restore
this link via the Administration GUI.

System 1 now appears as in the following diagram.

Chapter 5
Scenario 2

5-5

6
Debugging Tools and Tips

This chapter describes the utilities and tips that may be used for debugging
purposes when developing new nodes. The source code for NARMaker.java and
NARViewer.java is available under the “Utilities" section of the CDK Development
LiveLink site discussed earlier in this document

Running Nodes from the Command Line
You can run a node from the command line as a Java application, assuming that the
main() method has been implemented. The basic syntax of running node from the
command line is as follows:

• java <fully-qualified class name> <nodeID> OMC_Home <configFile>

parameters are as follows:

nodeID Unique String identifier for this node.
OMC_Home Location of Offline Mediation Controller installation

 (e.g. /ocomc)

configFile Filename/location of this node's configuration file

Where OMC_Home is the directory in which you installed Offline Mediation Controller

Configuration files are generated by the Offline Mediation Controller Administration
Client GUI and are generally located in OMC_Home/config/<nodeID>/general.cfg

Where OMC_Home is the directory in which you installed Offline Mediation Controller

The basic contents of the general.cfg file are as follows:

rulesfile' com.nt.udc.rules.<majorType>.<minorType>.<NPL class name>'

• ·numchannels' 0'

• harbackup' false'

• idleosarwritetime' 60'

• maxlogfilesize' 100000'

• debuglevel' 1'

• checkforosarstimer' 20'

• osarsperfile' 500'

• backup 'false'

• narbackupdays '7'

• asCodeBase' '

6-1

When running the node from the command line, the fully qualified class name should
be specified by the rulesfile parameter. (That is the name of the class that was
generated by the NPLCompiler.)

NAR Viewer
The NARViewer can be used to view the contents of the binary NAR files produced
by a node. NAR files are found in the node's output directory (OMC_Home/output/
node_id/, where OMC_Home is the directory in which you installed Offline Mediation
Controller.) This utility will allow developers to verify the contents of the data that the
node is producing.

The NARViewer is in the com.nt.udc.general package in the nodes.jar file.

USAGE:

java com.nt.udc.general.NARViewer <NAR file> <Output file>

ARGUMENTS:

NAR file File Name of the NAR file to view

Output file Name of file to print contents to (in ASCII)

Note:

The above usage statement assumes that the OMC_Home/web/htdocs/
nodes.jar is included in the CLASSPATH environment variable, where
OMC_Home is the directory in which you installed Offline Mediation
Controller.

NAR Generator
There is a template NAR Generator class available. In order to provide meaningful
data, developers will need to modify the template, or create a new class, according to
their own requirements.

The sample NARMaker class, as described below, will generate the specified number
of NARs in a file called nars.dat. The NARMaker will create NARs which include the
following fields:

Table 6-1 NARs Created by NARMaker

ID Type Value

2 MillisField <timestamp>

3 IntField <Counter starting at 0>

4 StringField "Test field"

The sample NARMaker class is in the com.nt.udc.general package in the nodes.jar
file.

USAGE:

Chapter 6
NAR Viewer

6-2

java com.nt.udc.general.NARMaker <# NARs>

ARGUMENTS:

NARsNumber of NARs to generate

Note:

The above usage statement assumes that the OMC_Home/web/htdocs/
nodes.jar is included in the CLASSPATH environment variable, where
OMC_Home is the directory in which you installed Offline Mediation
Controller.

The source code for the NARMaker class is included here for illustration purposes.

Example 6-1 NARMaker.java

·package com.nt.udc.general;
·
·import java.io.*;
·import java.util.*;
·import com.nt.udc.ndk.node.*;
·import com.nt.udc.nar.*;
·
·/**
· * This is a _very_ basic NAR file generator. It is intended to be
· * used as a template to generate specific NAR's that match the appropriate
· * node's rules. Modify this code as needed.
· *
· * In this example, the generated NAR's will hold the following fields
· * and values:
· *
· * Field 2 - Time interval
· * Field 3- Integer count
· * Field 4- String
· */
·public class NARMaker
·{
· /** Main method which takes 1 argument:
· * args[0] number of NARs to generate */
· public static void main(String [] args)
· {
· int numNars = 0;
·
· if(args.length != 1)
· {
· String usage = "Usage: \n" +
· " java com.nt.udc.nar.NARMaker <num_nars>";
· System.out.println(usage);
· return;
· }
·
· try
· {
· numNars = Integer.parseInt(args[0]);
· }
· catch(Exception e)
· {

Chapter 6
NAR Generator

6-3

· System.out.println("Exception: " + e);
· }
·
· // Create the NAR, and set up the initial attribute values
· NAR nar = new NAR();
·
· // Create 3 DCField objects to put into the NAR.
· DCField[] fields = new DCField[3];
·
· // Create a dummy time field.
· long time = System.currentTimeMillis();
· fields[0] = new MillisField(2, time);
· // Create a integer count
· fields[1] = new IntField(3, 0);
· // Create a sample String field
· fields[2] = new StringField(4, "Test field");
·
· // Put the fields in the NAR
· for(int i = 0; i < fields.length; i++)
· {
· nar.setField(fields[i]);
· }
·
· try
· {
· // Use the file called "nars.dat"
· FileOutputStream fos = new FileOutputStream("nars.dat");
·
· // Loop for "numNars", and create a new NAR.
· for(int i = 0; i < numNars; i++)
· {
· // Update the time field.
· fields[0] = new MillisField(2, time + (i * 100));
·
· // Update the integer count
· fields[1] = new IntField(3, i);
·
· nar.setField(fields[0]);
· nar.setField(fields[1]);
·
· nar.toStream(fos);
· }
· }
· catch(Exception ex)
· {
· System.out.println("Exception caught : " + ex);
· }
· }
·}

Chapter 6
NAR Generator

6-4

	Contents
	Preface
	Audience
	Documentation Accessibility

	1 CDK Design and Concepts
	Overview
	Life cycle of a node
	Data flow diagram
	DCNode class hierarchy
	DCNode class diagram
	DCNode class hierarchy
	DataProvider and DataReceiver
	DataProvider
	DataReceiver
	Relationship between DataProvider and DataReceiver
	DataProvider Push
	DataReceiver Pull

	Transport
	EITransport
	OITransport
	DCRecordFactoryIfc
	Transport class hierarchy

	FieldProcessor
	FieldProcessor class hierarchy

	DCFieldContainer
	EIRecord
	OIRecord
	EIRecord and OIRecord Storage

	NAR
	DCFieldContainer class hierarchy
	DCField
	DCField class hierarchy

	DCStreamHandler
	DCStreamHandler class hierarchy
	DCStreamHandler class hierarchy (continued)

	2 Node Attributes
	Collection Cartridges (CCs)
	Processor Cartridges
	NPLProcessorNode
	FileEnhancerNode
	Lookup file
	NPL File
	NodeConfigGUI Fields

	FtpFileEnhancerNode
	LDAPEnhancerNode
	Multithreaded Programmable Aggregation Processor Node
	Configuring the Aggregator NPL Rule File
	Traffic Volume Configurations
	Java Hooks
	Usage

	Distribution Cartridges (DCs)
	ASCII DC Node
	IPDR DC Node
	XML DC Node
	JDBC DC Node

	3 Customizing the Administration Client GUI
	DCNodeConfigGUI and Related Classes
	DCNodeConfigGUI Class Hierarchy
	DCNodeConfigData

	Node Template Definitions and Groups
	The nodeTemplateDef.xml File
	The nodeGroupDef.xml File
	Creating a node and rule file

	SNMP trap generation

	4 Cartridge Creation Example
	Creating Airline Flight Node Chain
	Existing Node Types
	Collection Cartridg (CC) Nodes:
	Enhancement Processor (EP) Nodes
	Aggregation Processors (AP) Nodes
	Distribution Cartridges (DC) Nodes

	Create AirlineEINode (CC Node)
	Create Node Chain
	Starting FlightInfoSender Simulator

	5 Transferring Custom Node Chains
	Scenario 1
	Updating the node chain

	Scenario 2
	Updating the node chain

	6 Debugging Tools and Tips
	Running Nodes from the Command Line
	NAR Viewer
	NAR Generator

