
Oracle® Communications Order and
Service Management
Modeling Guide

Release 7.4.1
F30315-03
May 2021

Oracle Communications Order and Service Management Modeling Guide, Release 7.4.1

F30315-03

Copyright © 2015, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xvii

Documentation Accessibility xvii

Part I Modeling OSM Solutions Overview

1 OSM Solution Modeling Overview

About the OSM Solution Modeling Process 1-1

About Determining the OSM Functionality to Implement 1-5

Solution Modeling Considerations 1-6

General Solution Data Modeling Principles 1-6

Performance Considerations 1-7

Planning OSM COM Solution Requirements 1-7

Modeling COM Order and Order Recognition Requirements 1-8

COM Data Modeling Considerations 1-9

Modeling COM Orchestration Order Items and Binding Conceptual Model
Parameters 1-9

Modeling COM Orchestration Order Item Decomposition 1-10

Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes 1-12

Modeling COM Order Transformation Manager 1-15

Modeling COM Orchestration Dependencies 1-18

Modeling COM Processes and Tasks 1-19

Modeling COM Fallout Scenarios 1-20

Modeling COM Fulfillment States 1-21

Modeling COM Processing States 1-23

Modeling Change Order Management for COM 1-24

Cartridge Management Considerations for COM 1-24

Planning OSM SOM Solution Requirements 1-25

Modeling SOM Order and Order Recognition Requirements 1-25

SOM Data Modeling Considerations 1-26

Modeling SOM Orchestration Order Items and Bindings Conceptual Model
Parameters 1-26

iii

Modeling SOM Orchestration Order Item Decomposition 1-27

Modeling SOM Orchestration Fulfillment Patterns and Fulfillment Modes 1-28

Modeling SOM Orchestration Dependencies 1-28

Modeling SOM Processes and Tasks 1-29

Modeling SOM Fallout Scenarios 1-30

Modeling SOM Fulfillment States 1-30

Modeling SOM Processing States 1-30

Modeling Change Order Management for SOM 1-31

Cartridge Management Considerations for SOM 1-31

Planning OSM TOM Solution Requirements 1-31

Modeling TOM Order and Order Recognition Requirements 1-32

TOM Data Modeling Considerations 1-33

Modeling TOM Orchestration Order Items and Bindings Conceptual Model
Parameters 1-33

Modeling TOM Orchestration Order Item Decomposition 1-34

Modeling TOM Orchestration Fulfillment Patterns and Fulfillment Modes 1-35

Modeling TOM Orchestration Dependencies 1-36

Modeling TOM Processes and Tasks 1-37

Modeling TOM Fallout Scenarios 1-37

Modeling TOM Fulfillment States 1-38

Modeling TOM Processing States 1-38

Modeling Change Order Management for TOM 1-38

Cartridge Management Considerations for TOM 1-39

About the OSM SDK 1-39

Part II Implementing an OSM Solution

2 Modeling Orders and Permissions

Modeling OSM Orders 2-1

About OSM Orders Without Orchestration 2-3

About OSM Orders With Orchestration 2-3

Modeling Roles and Setting Permissions 2-4

About Order Types 2-7

About Order Updates 2-8

Using a Job Control Order to Manage Multiple Orders 2-10

About Job Control Order Operations 2-12

About Job Control Order Permissions 2-13

About Job Control Order System Configuration Files 2-14

Viewing Orders in OSM Web Clients 2-15

Specifying Which Data to Display in the OSM Web Clients 2-15

iv

Modeling Query Tasks for OSM Clients 2-15

3 Modeling Order Life-Cycle Policies

Modeling Order Life-Cycle Policy States and Transitions 3-1

About Modeling Transition Conditions 3-2

About Modeling Transition Grace Periods 3-2

About Modeling Transition Permissions 3-3

OSM Order States and Transactions 3-3

About Order State Categories 3-9

Common Order State Transitions 3-9

Optional, Mandatory, and Prohibited Transactions 3-11

About the Aborted Order State 3-13

About the Amending Order State 3-14

About the Cancelled Order State 3-16

About the Cancelling Order State 3-18

About the Completed Order State 3-19

About the Failed Order State 3-20

About the In Progress Order State 3-22

About the Not Started Order State 3-24

About the Suspended Order State 3-26

About the Waiting Order State 3-27

About the Waiting for Revision Order State 3-29

About Deleting Orders 3-30

4 Modeling Order Recognition

About Sending Orders to OSM and Order Recognition 4-1

Modeling Order Recognition Rules 4-2

Validating Incoming Order Data 4-3

Transforming Order Data 4-3

Modeling the Order Data Rule to Populate the Creation Task 4-3

Modeling Order Priority 4-4

Configuring JMS Message Priority on JMS Queue 4-5

Creating a JMS Destination Key (Traditional OSM Only) 4-5

Configuring Destination Key for a JMS resource (Traditional OSM Only) 4-5

Creating and Configuring JMS Destination Key in OSM Cloud Native 4-6

Modeling the Order Reference Number 4-6

Modeling a Catch-All Recognition Rule 4-6

Common Order Recognition Errors 4-6

v

5 Modeling Orchestration Plans

Orchestration Plan Overview 5-1

Modeling an Orchestration Plan 5-3

About Component Names and Component IDs 5-6

About Order Items 5-7

About Creating Order Items from Customer Order Line Item Node-Sets 5-11

About Associated Order Items 5-12

Modeling Order Item Hierarchies 5-14

About Using a Distributed Order Template 5-15

About Mapping Order Items to Fulfillment Patterns 5-16

About Modeling Product Specifications 5-17

Modeling Fulfillment Modes 5-18

About the Decomposition of Order Items to Function Order Components 5-19

About Assigning Order Items to Fulfillment Pattern Function Components 5-19

About the Function Components Stage 5-21

About Order Component Control Data 5-21

About Fulfillment Pattern Conditions for Including Order Items 5-21

Summary of Order Item to Function Components Decomposition 5-21

About the Decomposition of Function to Target System Components 5-22

About Decomposition Rules from Function Components to Target Systems 5-22

About Decomposition Rule Conditions for Choosing a Target System 5-23

About the Target Systems Stage 5-24

Summary of Configuring Target System Components Decomposition 5-24

About the Decomposition of Target System to Granularity Components 5-24

About Decomposition Rules from Target System to Granularity Components 5-24

About Customized Component IDs for Separating Bundled Components 5-25

About the Granularity Components Stage 5-25

Summary of Configuring Granularity Components Decomposition 5-25

About Dependencies 5-26

About Intra-Order Dependencies 5-27

Modeling an Order Item Dependency 5-28

About Order Item Dependency Wait Conditions 5-29

About Order Item Dependency Wait Conditions Based on Data Changes 5-29

Modeling a Fulfillment Pattern Dependency 5-30

Modeling an Order Item Property Correlation Dependency 5-32

About Inferred Dependencies 5-32

About Modeling Orchestration Dependencies 5-33

About Processing Order Items Sequentially 5-33

About Inter-Order Dependencies 5-34

About Modeling Orchestration Dependencies 5-35

vi

Using Task States to Manage Orchestration Dependencies 5-36

6 Modeling the Order Transformation Manager

Understanding the Order Transformation Manager 6-1

Order Transformation Manager in Runtime 6-1

The Order Transformation Manager and the Conceptual Model 6-2

OSM Entities Used in the Order Transformation Manager 6-3

Calling the Order Transformation Manager 6-4

Using the Distributed Order Template with the Order Transformation Manager 6-5

Modeling OTM With Calculate Service Order 6-6

Calculate Service Order Design Patterns 6-6

About the Calculate Service Order Provider Function 6-6

About Calculate Service Order Relationship Types 6-7

About the Calculate Service Order Transformation Sequence 6-7

User-Created Entities for Calculate Service Order 6-8

Modeling OTM Without Calculate Service Order 6-8

7 Modeling Processes and Tasks

Overview of Processes and Tasks 7-1

Modeling Processes 7-1

About Process Flows 7-1

Adding Process Activities 7-3

Configuring Subprocesses 7-4

Understanding Parallel Process Flows 7-5

About Amendments and Multi-Instance Subprocesses 7-5

About Order Rules in Processes and Notifications 7-6

Modeling Order Rules in Notifications 7-6

Using the System Date in Delays 7-8

Process and Task Design and Data Considerations for Compensation 7-8

Order Perspectives and Data Elements in Compensation 7-8

Effects of Process Loops on Compensation 7-9

Modeling Tasks Entities Common to All Task Types 7-10

Modeling Task States 7-10

Modeling Task Permissions and Execution Modes 7-11

About Normal and Fallout Execution Modes and Task States 7-11

Modeling Task Status Transitions 7-15

Specifying the Expected Task Duration 7-15

Specifying the Task Priority 7-16

About Extending Tasks 7-16

vii

About Task Types 7-16

Modeling Automated Tasks 7-16

About Automation Plug-in and Automated Tasks 7-17

Completing an Automation Task That Handles Concurrent Status Updates 7-17

Modeling Manual Tasks 7-18

Deploying a Custom Task Algorithm using the OSM Cartridge Management
Tool 7-19

Using a Custom Task Algorithm in OSM Cloud Native 7-22

Modeling Transformation Tasks 7-23

Modeling Activation Tasks 7-23

About Service Action Request Mapping 7-24

About Service Action Response Mapping 7-24

About Activation Tasks and Amendment Processing 7-24

About State and Status Transition Mapping for Activation Tasks 7-24

About Automation Plug-ins 7-25

Specifying Which Data to Provide to Automation Plug-ins 7-26

Modeling Query Tasks for Order Automation Plug-ins 7-26

About Automation Message Correlation 7-28

Example: Modeling a Basic Automator Plug-in for an Automated Task 7-29

8 Modeling OSM Data

Data Modeling Overview 8-1

Modeling Order Data 8-2

About the Data Dictionary 8-2

About the Order Template 8-3

Identifying Data Requirements for Order Payload 8-4

Adding the Input Message to an Order Recognition Rule 8-5

Adding the Input Message to the Order Template 8-5

Modeling Valid Data Keys 8-7

Modeling Data for Tasks 8-8

Determine Task Data for Manual and Automated Tasks 8-9

Determine Task Data for Data Returned from Fulfillment Applications 8-10

Generating Multiple Task Instances from a Multi-Instance Field 8-10

Modeling Data for Orchestration 8-11

About Order Item Control Data 8-12

About Order Template Data 8-13

About Order Item Specification Data 8-14

About ControlData for Order Component Data 8-14

Modeling Data for Fulfillment States 8-15

About ControlData for External Fulfillment States 8-16

About ControlData for Order Fulfillment State 8-16

viii

About ControlData for Order Item Fulfillment State 8-16

Fulfillment States and Point of No Return 8-17

Fulfillment State and Point of No Return Initial Values 8-17

Sample XQuery for Changing Default Data Locations 8-17

Modeling Data for Processing States 8-19

About ControlData for Order Component Order Item Processing States 8-19

About ControlData for Order Item Processing States 8-20

Modeling Orders With Data Fields Above 1000 Characters 8-20

Using XML Types for Data Fields Above 1000 Characters 8-20

Using Order Remarks for Data Fields Above 1000 Characters 8-21

Using Attachments for Data Fields Above 1000 Characters 8-21

Using Data Providers to Retrieve Data 8-22

About Data Providers and Adapters 8-22

Data Provider Interface Tab 8-23

Accessing Data through Data Providers 8-24

Augmenting or Overriding Data 8-24

Objectel 8-25

Order 8-26

Adding a New Order Data Provider 8-26

Property File 8-27

SOAP 8-27

XML Attachment 8-31

XML File 8-31

XML Validation 8-31

JDBC 8-32

Web Service 8-32

Adding a New Web Service Data Provider 8-33

Sample soap.request XQuery 8-33

Accessing Data 8-34

Custom Data Providers 8-35

Handling Parameters 8-35

9 Modeling Behaviors

Modeling Behaviors Overview 9-1

About Behavior Evaluation 9-3

Evaluating Behavior Levels 9-4

Evaluating Design Studio Final and Override Options 9-4

Evaluating Behavior Type Precedence and Sequence 9-5

About Setting Conditions in Behaviors 9-9

Using the Calculation Behavior 9-10

ix

Calculation Behavior XPath Examples 9-11

Calculation Behavior Overview 9-11

Using the Constraint Behavior to Validate Data 9-11

Displaying Constraint Behavior Error Messages 9-12

Evaluating Constraint Behaviors 9-12

Using Task Statuses to Control Process Transitions 9-13

Task Statuses and Constraint Behavior Violation Severity Levels 9-14

Constraint Behavior Overview 9-14

Using the Data Instance Behavior to Retrieve and Store Data 9-15

Evaluating Data Instance Behaviors 9-15

Data Instance Behavior XML, XPath, and XQuery Examples 9-16

Data Instance Behavior Overview 9-16

Using the Event Behavior to Re-evaluate Data 9-17

Event Behavior Overview 9-17

Using the Information Behavior to Display Data and Online Help 9-18

Information Behavior XPath Examples 9-18

Information Behavior Overview 9-19

Using the Lookup Behavior to Display Data Selection Lists 9-19

Lookup Behavior XPath Example 9-20

Lookup Behavior Overview 9-20

Using the Read-Only Behavior 9-20

Read-Only Behavior Overview 9-21

Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web
Client 9-21

Relevant Behavior Overview 9-23

Using the Style Behavior to Specify How to Display Data in the Task Web Client 9-23

About Style Behavior Layouts 9-25

About Style Behavior Password Fields 9-29

Style Behavior Overview 9-30

Part III Modeling Run-time Order Management

10

Modeling Changes to Orders

About Amendment Processing and Compensation 10-1

About Revising or Canceling Orders by Using the Task Web Client 10-8

About Order Keys 10-8

About Submitting Multiple Revisions of an Order 10-9

About Compensation States 10-9

About Revising In-flight Revision Orders 10-10

About Insignificant Revision 10-11

x

About Terminating Compensation 10-12

Disabling Processing of Revisions on In-flight Revision Orders 10-12

Example: Revising an In-flight Revision Order 10-12

About Controlling When Amendment Processing Starts 10-14

About Compensation 10-15

About Order-Level and Task-Level Compensation Analysis 10-15

About Order Data Position and Order Data Keys 10-19

About Data Significance 10-20

About Task Execution Modes 10-23

Modeling Compensation for Tasks 10-25

Determining Task Compensation Strategy 10-26

About Compensating In Progress Tasks 10-29

About Task Compensation Strategy XQuery Expressions 10-30

About Managing Compensation in the Task Web Client 10-32

Modeling Compensation for Rules in Processes 10-32

Modeling Compensation for Task Automation Plug-Ins 10-32

Compensation Examples 10-33

Example 1: Compensation During Provisioning 10-33

Example 2: Compensation During Billing 10-34

Example 3: Amend Do Compensation 10-35

Examples of Changes to Orchestration Plans 10-36

Modeling a Point of No Return 10-39

Fulfillment Pattern Point of No Return 10-39

Life-Cycle Policy Point of No Return 10-40

About Modeling Order Change Management 10-40

Troubleshooting Order Change Management Modeling 10-41

About Order Change Management at the Orchestration Layer 10-41

About Compensation and Orchestration 10-42

About Point of No Return 10-43

11

Modeling Fallout

Overview of Fallout 11-1

Understanding Fallout Across OSM Roles 11-2

Understanding Fallout Sources 11-4

Managing Business Related Fallout Sources 11-4

Managing Fallout from Failures in Network or System Resources 11-5

Managing Fallout During Order Creation 11-6

Managing Fallout in the OSM Web Clients 11-8

Modeling Fallout in Tasks 11-8

About Failed Tasks and Execution Modes 11-8

xi

About Alternate Task Fallout Management Methods 11-9

Modeling Task Notifications for Fallout 11-10

About Modeling Fallout Exceptions 11-10

Managing Fallout Exceptions in the Task Web Client 11-11

Modeling Fallout in Orders 11-13

Modeling the Failed Order State 11-13

Modeling Order Notifications for Fallout 11-14

About Aborting or Terminating an Order 11-15

Managing Fallout in the OSM Order Management Web Client 11-16

12

Modeling Fulfillment States and Processing States

About Fulfillment States, and Processing States 12-1

Modeling Fulfillment States 12-1

Defining Fulfillment States 12-3

Modeling External Fulfillment States 12-4

Modeling Fulfillment State Maps 12-4

Modeling Fulfillment State Composition Rule Sets 12-6

Modeling Processing States 12-9

Order Component Order Item Processing States 12-10

Order Item Processing States 12-11

13

Modeling Jeopardy and Notifications

Best Practices for Using Notifications for Status Updates 13-1

Status Update Strategies 13-1

Strategies for Using Notifications 13-1

Modeling Notifications 13-2

Using Task States and Statuses to Trigger Event Notifications 13-2

About Notification Priority 13-2

About Sending Notifications in Email 13-2

About Configuring Entities to Support Notifications 13-3

About Jeopardy Notifications 13-3

About Modeling Jeopardy Notifications 13-4

About Jeopardy Notification Triggering 13-4

About Jeopardy Notification Conditions 13-5

Specifying Jeopardy Notification Conditions in the Order Jeopardy Editor 13-5

Specifying Jeopardy Notification Conditions in the Order Editor 13-6

Specifying Jeopardy Notification Conditions for a Task 13-6

About Event Notifications 13-7

About Using Task Transitions to Trigger Event Notifications 13-8

xii

About Using Task States and Rules to Trigger Event Notifications 13-8

About Using Task States to Trigger Automated Event Notifications 13-10

About Using Order Milestones to Trigger Event Notifications 13-11

About Using Order Data Changes to Trigger Notifications 13-12

About Enabling Order Life-Cycle Events 13-13

Summary of Notification Functionality 13-13

14

Modeling Order Scheduling

About Order Item Requested Delivery Date and Order Components 14-1

How OSM Decomposes and Processes Order Items in Order Components 14-2

About Grouping Order Items in Order Components by Date Range 14-3

Modeling Order Component Minimum Processing Duration 14-3

About Minimum Processing Duration Inheritance in Fulfillment Patterns 14-6

About Minimum Processing Duration Expressions 14-7

Calculating the Earliest Order Component Start Date (Order Start Date) 14-8

About Calculated Order Component Start Dates 14-9

Modeling Order Component Dependencies and Requested Delivery Dates 14-10

Modeling Order Items Processed by Multiple Dependent Order Components 14-10

Revisions of Future-Dated Orders 14-11

Examples of Calculating the Expected Start Date 14-11

Example 1: Calculating Start Dates for Order Components with No
Dependencies 14-11

Example 2: Calculating Start Dates for Order Components with
Dependencies 14-12

Part IV Managing OSM Projects

15

Managing OSM Solution Cartridges

Solution Management Overview 15-1

About OSM Cartridge Scope 15-2

Scope of OSM Entities Without Namespaces 15-3

Design Studio Entities 15-3

XML Catalogs and Resource Files 15-3

Scope of OSM Entities with Namespaces 15-3

Standalone Cartridge Scope 15-4

XML Catalog Files in Standalone Cartridges 15-5

Avoiding Namespace Collisions for Design Studio Entities 15-5

Avoiding Namespace Collisions for Resource and XML Catalog Files 15-6

Composite Cartridge Scope 15-8

xiii

Special Cases for Scope 15-10

Order Recognition Rules 15-10

Fulfillment Patterns 15-10

Managing Cartridge Versions 15-12

Making Changes to Existing Cartridge Versions 15-13

Handling Multiple Cartridge Versions 15-14

Migrating Orders to a New Version of a Cartridge 15-15

Designation of the Default Cartridge Among Cartridge Versions 15-16

Handling Revision Orders When Multiple Cartridge Versions Are Deployed 15-16

Working with Cartridges in OSM Cloud Native 15-17

Building and Packaging a Cartridge 15-17

About Generating OSM Cartridges and Deployment Options 15-17

About Cartridge Types 15-18

About Design Studio Editors for OSM Cartridges 15-19

Organizing Design Studio and Naming Conventions 15-22

Cartridge Packaging Design 15-23

Modifying the Build 15-24

About XML Catalogs 15-24

Using XML Catalogs in OSM 15-24

Resource Packaging Considerations for Using XML Catalogs 15-26

Defining rewriteURI Entries in XML Catalogs 15-27

Specifying XML Catalogs for OSM 15-29

Enabling and Disabling XML Catalog Support 15-30

Examples of Using XML Catalogs 15-30

Using XML Catalogs to Support Cartridge Versioning 15-31

Using XML Catalogs to Load Resources from a Development File System
(Traditional OSM Only) 15-32

Using XML Catalogs to Insulate Run-Time Environments from Development 15-33

Cartridge Deployment 15-33

Cleaning and Rebuilding Cartridges Prior to Deployment 15-33

Optimizing Cartridge Deployment 15-33

Deploying Multiple Cartridges 15-33

Deploying Cartridges with Dependencies 15-33

Deploying Cartridges to the OSM Database Using XMLIE 15-34

Building and Deploying Composite Cartridges 15-37

Setting Cartridge Dependencies 15-37

Post-Deployment Effect on Numeric Data 15-37

Post-Deployment Changes to Cartridge 15-37

Metadata Errors 15-37

xiv

A Behaviors Quick Reference

OSM Behavior Type Overview A-1

Common Behavior Elements A-3

Annotation Element A-3

Description Element A-3

Instance Element A-3

Adapter Element [externalInstanceType] A-4

Parameter Element [externalInstanceType] A-4

Cache Element A-4

Expression Element A-4

Declaring Behaviors in OSM XML Model A-4

Data Dictionary Level A-4

Master Order Template Level A-4

View Level A-4

Data Provider Overview A-5

Programmatic Behavior Implementation Overview A-5

B XQuery Examples

General XQuery Information B-1

About Creating XQuery Expressions with Design Studio B-1

OSM XQuery Functions B-2

Referencing Items from a Distributed Order Template in XQuery Expressions B-3

Order Recognition Rule XQuery Expressions B-4

About Recognition Rule XQuery Expressions B-4

About Validation Rule XQuery Expressions B-6

About Order Priority XQuery Expressions B-7

About Order Reference XQuery Expressions B-7

About Order Data Rule XQuery Expressions B-8

Decomposition XQuery Expressions B-9

About Orchestration Sequence XQuery Expressions B-10

About Order Sequence Order Item Selector XQuery Expressions B-10

About Order Sequence Fulfillment Mode XQuery Expressions B-10

About Order Item Specification XQuery Expressions B-11

About Order Item Specification Order Item Property XQuery Expressions B-11

About XQuery Expressions for Mapping Product Specifications and
Fulfillment Patterns B-13

About Order Item Specification Order Item Hierarchy XQuery Expressions B-15

About Order Item Specification Condition XQuery Expressions B-17

About Fulfillment Pattern Order Component XQuery Expressions B-18

About Fulfillment Pattern Order Component Condition XQuery Expressions B-18

xv

About Associating Order Items Using Property Correlations XQuery
Expressions B-19

About Decomposition Rule Condition XQuery Expressions B-21

About Component Specification Custom Component ID XQuery Expressions B-22

Custom Order Component IDs Based on Hierarchy B-23

Custom Component IDs Based on Requested Delivery Date and Duration B-27

Custom Component IDs by Duration and Minimum Separation Duration B-28

Combining Order Item Hierarchy with Duration-Based Groupings B-29

About Component Specification Duration XQuery Expressions B-30

About Fulfillment Pattern Duration XQuery Expressions B-30

About Fulfillment Pattern Component Duration XQuery Expressions B-30

Dependency XQuery Expressions B-31

About Order Item Dependency Property Correlation XQuery Expressions B-31

About Wait Delay Duration XQuery Expressions B-32

About Wait Delay Date and Time XQuery Expressions B-34

About Order Data Change Wait Condition XQuery Expressions B-35

About Order Item Inter-Order Dependency XQuery Expressions B-36

Order Transformation Manager XQuery Expressions B-38

About Transformation Sequence XQuery Expressions B-38

About Order Item Context XQuery Expressions B-39

About Related Order Item Selector XQuery Expressions B-39

About Stage Condition XQuery Expressions B-40

About Mapping Rule XQuery Expressions B-40

About Mapping Condition XQuery Expressions B-40

About Action Mapping XQuery Expressions B-41

About Entity-to-Entity Advanced Mapping XQuery Expressions B-41

About Entity-to-Data-Element Advanced Mapping XQuery Expressions B-42

About Data-Element-to-Data-Element Advanced Mapping XQuery
Expressions B-42

About Reverse Mapping XQuery Expressions B-43

About Multi-Instance XQuery Expressions B-43

About Order Item Parameter Binding XQuery Expressions B-44

About Transformed Order Item Fulfillment State XQuery Expressions B-44

xvi

Preface

This guide provides modeling information about Oracle Communications Order and
Service Management (OSM).

Audience
This guide is intended for:

• Business domain experts who make decisions about the order fulfillment process.

• Order management personnel who need to know how OSM works and how orders
are processed.

• Developers who extend OSM to interface with external systems.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

xvii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Modeling OSM Solutions Overview

Part I contains the following chapters providing an overview of modeling Oracle
Communications Order and Service Management (OSM) solutions:

• OSM Solution Modeling Overview

1
OSM Solution Modeling Overview

This chapter provides an overview of an Oracle Communications Order and Service
Management (OSM) solution.

Before reading this chapter, read OSM Concepts to learn about general OSM
concepts.

Note:

In this guide, “traditional OSM” refers to the traditional way of installing and
maintaining an OSM environment and “OSM cloud native” refers to OSM
deployed in a cloud native environment.

About the OSM Solution Modeling Process
An OSM solution is part of a larger operations support system (OSS) and business
support system (BSS) solution. The OSM solution brings together the elements
relating to order processing within an overall OSS and BSS solution. To understand
how the OSM solution fits into this OSS and BSS solution, you must do the following:

1. Scope the solution and perform an initial analysis: This stage is where you decide
the nature of the business change required for the OSS and BSS solution at a
high level. Generally, an OSS and BSS solution falls under the following scope
categories:

• Solutions that involve adding or changing product offerings with no effect
on the underlying service or IT infrastructure. For example, the marketing
department wants to create a new offering category with new discounts and
incentives.

• Solutions that involve adding of or changing both product offerings and the
underlying service and IT infrastructure. For example, a company may expand
their product offerings from broadband Internet and email to include a mobile
offering. This change required adding new product categories, offering and
bundling possibilities, new underlying services, and new IT infrastructure
requirements.

• Solutions that involve adding or changing the network fulfillment infrastructure.
For example, adding new network technology, the upgrade of existing network
technology, the expansion of the company into new geographical locations,
and so on.

• Solutions that involve additions of or changes to the BSS and OSS service
fulfillment IT infrastructure. For example, the addition of new service fulfillment
systems, such as billing, activation, work force management, or partner
gateway systems.

2. Plan, analyze, and design the solution: You plan, analyze, and design a solution
primarily by creating an Oracle Communications Design Studio conceptual model

1-1

(see Design Studio Concepts for more information). You can use conceptual
model entities to capture the impact of the changes specified in the initial solution
scope. Such entities may include:

• Products: Here you capture any changes to simple products, bundles of
products, and offerings, including the data required at this level.

• Customer-facing services (CFSs): A CFS represents the service that the
customers want. Here you capture the impact of any product and resource
changes. You need to determine whether an existing CFS require changes as
a result of product-level change or resource-level change.

• Resource-facing services (RFSs) and resources: An RFS represents the
technology options available to implement a service. Here you capture the
technology options available to fulfill a CFS and the parameters required.
For example, a broadband CFS may have the DOCSIS, GPON, or DSL
RFS options available, each of which specifies one or more resources that
represent specific instances and versions of the RFS technology category.

• Actions: You can model the specific actions available for each CFS and RFS.
The actions represent subsets of CFS and RFS entity data. For example,
an add action may require that all parameters of a CFS be populated, but a
change action may require only a subset of the parameters.

• Location: You can designate which locations support what resources and
services.

• Fulfillment patterns: You indicate which conceptual model fulfillment patterns
are involved in processing products, CFSs, RFSs, and resources. For
example, products relating to broadband Internet may require a different
fulfillment pattern than products relating to mobile service or IP TV.

3. Implement the solution: You model OSM application entities and data in Design
Studio to realize the conceptual model entities you created in the planning,
designing, and analyzing phase. Keep in mind that the OSM solution is closely
interrelated with other OSS and BSS solutions, such as billing, activation, service
resource management (SRM), workforce management (WFM), and partner
gateway (PGW) solutions.

Figure 1-1 represents a conceptual model that defines all offers, products, CFSs,
RFSs, resources, network targets, and actions that a fictional communications service
provider (CSP) requires to fulfill a sample broadband Internet and email service. The
CFS and RFS entities unify the business and marketing concerns represented by the
products and offers with the IT infrastructure concerns represented by the resources
and network targets. The CFS and RFS entities also decouple the changes that
occur in products, offers, from the changes that occur in resources. For example,
for business and marketing, products and offers are changed frequently. Likewise for
IT infrastructure, technology, vendors, and vendor versions are changed frequently.
But the underlying services being offered and the underlying technology types do not
change often.

Figure 1-1 also shows the OSM roles and fulfillment systems involved in fulfilling
orders containing the data defined in the conceptual model for this fictional CSP.

Chapter 1
About the OSM Solution Modeling Process

1-2

Note:

Figure 1-1 shows each application as a separate system, however these
applications can also be co-resident.

Figure 1-1 Sample Conceptual Model

You can use this sample conceptual model as a basis for modeling data and functions
generated by orders. The following shows the OSM roles that run the functions that
fulfill the sample conceptual model entities:

• Central order management (COM) role

OSM in the COM role manages sales orders sent from a customer relationship
management (CRM) system. The sales orders contains offer and product
information. Functions at this level include:

1. Synchronizing customer account information between the CRM system and
the billing system. Customer account information can be name, address,
account details, order number, billing profile, and so on.

2. Updating service subscription details in the billing system so that the billing
system can begin to collect service usage information.

3. Transforming the products and offers into CFSs and sending them to OSM in
the SOM role as a service order.

Chapter 1
About the OSM Solution Modeling Process

1-3

4. Billing for usage by updating service subscription details in the billing system
after the provisioning function has completed, and then notifying the CRM
system that the sales order is complete.

• Service order management (SOM) role

OSM in the SOM role manages service orders sent from the provisioning function
of OSM in the COM role. Functions at this level include:

1. Sending CFS information to an SRM system so that the SRM system can
design a service instance based on the RFS specification, allocate resources
to the service instance, and specify what needs to be configured on the
resources to support the features, qualities, and policies of the service.

2. Requesting resource actions from the SRM system, which are the actions that
need to be performed by OSM in the TOM role and by the fulfillment systems
communicating with the TOM role.

3. Sending the technical order containing the resource actions to OSM in the
TOM role. The technical order outlines the work that must be performed to
enable the service design in the network. Some actions impact the WFM
system, some the activation system, and so on.

4. Completing the service order when OSM in the TOM role completes the
technical order, and updating the OSM instance in the COM role.

• Technical order management (TOM) role

OSM in the TOM role manages technical orders sent from OSM in the SOM role.
OSM in the TOM role decomposes each resource in the technical order into the
appropriate functions and target system process. Functions at this level include:

1. Sending actions to a supply-chain management (SCM) system for selecting,
packing, and shipping physical goods to the destination selected by the
customer.

2. Sending actions to a partner gateway (PGW) used to manage relationships
with third-party suppliers or partners that provide services or infrastructure
involved in fulfilling the order. For example, the last mile of a
telecommunication network involved in service delivery is often owned by a
third-party telecommunications company.

3. Sending actions to an activation system involved in configuring and activating
network resources.

4. Sending actions to a workforce management (WFM) system to dispatch a
technician to perform work in the field.

5. Completing the technical order when the fulfillment systems involved with
OSM TOM complete their tasks and updating the OSM instance in the SOM
role.

You must also analyze data and function requirements for other order processing
scenarios, such as managing order fallout, managing order changes, tracking
fulfillment states and processing states as orders are processed, managing
notifications to upstream systems, and so on.

After you have completed this analysis and design stage, you can model entities in
OSM Design Studio projects. You can then generate cartridges from those projects
that you can deploy to OSM servers for development test environments and finally to
production environments.

Chapter 1
About the OSM Solution Modeling Process

1-4

About Determining the OSM Functionality to Implement
After you have analyzed the information contained in the conceptual model, you
must determine the following functionality to implement in the OSM solution you are
planning:

• What kinds of orders you need to model for OSM roles (COM, SOM, and TOM)
and what kinds of order life-cycle policies the orders need.

See "Modeling Orders and Permissions" and "Modeling Order Life-Cycle Policies"
for more information.

• What kinds of order recognition rules each OSM role requires to capture incoming
customer, service, technical, or revision order types.

See "Modeling Order Recognition" for more information.

• What kinds of order items each OSM role needs to fulfill based on the conceptual
model entities and actions.

See "Modeling Orchestration Plans" for more information.

• What kinds of fulfillment modes, fulfillment patterns, order decomposition and
dependencies you require based on the OSS and BSS solution requirements and
order fulfillment flows.

See "Modeling Orchestration Plans" for more information.

• What kinds of order item and order component scheduling you need when fulfilling
your orders.

See "Modeling Order Scheduling " for more information.

• What kinds of tasks and processes you need to implement for each order
component function, what systems to target, and what order or order item
granularity is required when sending messages to the target systems. For
example, do you configure automated tasks to send all the order items that are
decomposed to the function that triggers the process, or do you generate separate
functions that trigger separate processes for each bundle of order items contained
in the order?

See "Modeling Processes and Tasks" for more information.

• What kinds of manual tasks you need to implement in the OSM Task web client
and what kinds of behaviors the tasks should exhibit. The goal of any OSM
solution is to automate tasks as much as possible; however, sometimes manual
tasks are necessary. For example, when initially creating a solution, you might
want to model all automated tasks as manual tasks first, and then convert them to
automated tasks after you have a better understanding of what the tasks must do.

See "Modeling Processes and Tasks" and "Modeling Behaviors" for more
information.

• What kinds of fulfillment states and processing states you need to configure for the
customer, service, technical orders, and order component order items. In addition,
you must determine what messages from eternal systems trigger fulfillment state
and processing state changes.

See "Modeling Fulfillment States and Processing States" for more information.

• Whether you need to use the conceptual model Calculate Service Order provider
function with the order transformation manager.

Chapter 1
About Determining the OSM Functionality to Implement

1-5

See "Modeling the Order Transformation Manager" for more information.

• What kinds of change order management scenarios you expect for COM, SOM,
and TOM orders.

See "Modeling Changes to Orders " for more information.

• What kinds of notifications you need to set up that would be specific to the order
component functions and process tasks of each OSM role.

See "Modeling Jeopardy and Notifications" for more information.

• What kinds of fallout scenarios to anticipate and how to recover from them.

See "Modeling Fallout" for more information.

The following sections provide details about the different ways you can implement
these OSM functions in general and in COM, SOM, and TOM contexts that are part of
an overall BSS and OSS solution:

• Solution Modeling Considerations

• Planning OSM COM Solution Requirements

• Planning OSM SOM Solution Requirements

• Planning OSM TOM Solution Requirements

You implement these functions differently in each OSM role.

Solution Modeling Considerations
It is important to plan your solution implementation before modeling your solution. The
following sections provide some general guidelines for solution modeling.

General Solution Data Modeling Principles
Modeling an OSM solution involves creating orders that contain the data involved in
fulfilling actions such as add, change, delete, modify, move, and so on, on a product,
service, or resource. In general, when you begin to model an OSM solution, you must
understand the following data modeling principles:

• You must identify where the data you define comes from. For example, most data
is defined in the CRM system in response to a request from a customer, but other
data may be generated by downstream fulfillment systems that OSM interacts
with.

• You must identify which system is the primary owner of each data structure or
element. This principle is especially important in change order management and
fallout management scenarios, where OSM must update data to modify or correct
the fulfillment of an order.

For example, if the SRM system that interacts with OSM SOM provides faulty
network resource data that generates an error in the activation system that OSM
TOM interacts with, then the SRM system must correct the faulty network resource
data. Although it may be possible to correct the problem directly in the OSM TOM
task that communicates with the activation system, this does not resolve the root
problem, which originated in the SRM system. Allowing OSM TOM to correct the
problem also causes the network resource data to be inconsistent between OSM
TOM and the activation system, and between OSM SOM and the SRM system.

Chapter 1
About Determining the OSM Functionality to Implement

1-6

• You must understand how the data is propagated throughout OSM systems and
service fulfillment systems. Although OSM should not add, change, or modify data
owned by a fulfillment system, OSM does sort, route, format, and send the data so
that other fulfillment systems can consume the data in the format they require.

The solution that the OSM solution is a part of may contain an integration layer
that determines a canonical format for data and provides standard interfaces
to which OSM must conform. For example, Oracle Application Integration
Architecture (Oracle AIA) integrates Oracle applications, such as OSM, Siebel
Customer Relationship Management (Siebel CRM), and Oracle Communications
Billing and Revenue Management (BRM), and also provides a standard format for
message exchanges.

When an OSM solution is not part of a solution with an integration layer OSM
must conform to the data requirements and interfaces of each external fulfillment
system.

Use these principles to clearly understand how order data is kept in OSM systems,
and how data is communicated at the interactions between OSM systems and other
fulfillment systems for every fulfillment action performed by the OSM solution.

See "Modeling OSM Data " for more information about modeling data in OSM
solutions.

Performance Considerations
When modeling a solution, you should always keep solution performance in mind. The
following factors have an impact on performance:

• Number of tasks in a process.

• Number of concurrently executing automation plug-in instances.

• Number, size, and depth of data elements in the order.

• Order view (query task) size and complexity.

• Number of order line items and complexity in an incoming order.

• Degree of XSLT and XQuery transformation.

• Complexity of the generated orchestration plan.

• Average number of revision orders per base order.

If you have not taken these factors into consideration when modeling your solution,
and the results of system performance testing are unsatisfactory, you may have
to change the solution modeling. For information about other system performance
considerations, see OSM System Administrator's Guide and OSM Installation Guide.

Planning OSM COM Solution Requirements
This section describes OSM modeling entities and functions involved in the OSM COM
role. It includes examples intended to guide you in understanding how you can use
these entities and functions in your OSM COM solution. This information can help
you plan your implementation efforts by exemplifying at a high level the full scope of
work involved in modeling a typical COM solution. Follow the links in each section for
specific details about the functions described.

You typically model COM solution changes based on adding and changing new
products, bundles, and offers that reflect purely business and marketing concerns or

Chapter 1
About Determining the OSM Functionality to Implement

1-7

that also reflect changes to the SOM and TOM solution, such as when a company
introduces a new technology domain.

Modeling COM Order and Order Recognition Requirements
You need to determine what kinds of orders to model in OSM, what order life-cycle
states and state transitions the orders have, what user roles (workgroups) have
permissions to perform tasks in fulfilling the orders, and what data should be visible to
each user role (workgroup).

For example, you model customer orders for new orders, whether an in-progress
order can be revised, and fallout orders that are triggered when customer orders or
revision orders fail. You enable various order life-cycle states for each order, such as
Not Started, In Progress, Canceling, Amending, and so on, and what transitions are
possible from state to state. You must determine what personnel or systems have
permissions to perform order state transitions and other functions and tasks involved
in fulfilling orders.

You must also specify whether you want the order to use an orchestration or not.
Oracle recommends using orchestration for most solutions. Use non-orchestration
processes only when the order management requirements are simple, well
understood, and relatively static.

You can model a single target order type that can process any type of incoming sales
order, or you can model multiple order types based on product domain groupings. For
example, you can create one order type for broadband, another for mobile, a third
for cable, and so on. Using multiple order types, however, makes it difficult to bundle
services and is also costly to maintain. Oracle recommends using one standard order
type that accepts all incoming orders, and using other order types for only very specific
uses, such as a fallout management order type that can extract information about
failed orders.

If you create multiple order types, you also need to create corresponding order
recognition rules that match incoming orders to the target order. Consider the following
approaches when modeling order recognition rules:

• If you have different order source systems, each having its own order format, you
can create multiple order recognition rules that point to the same target order. The
order recognition rules transform the incoming order data into the target order data
format.

• If you have multiple target orders based on domain groupings, you must create a
separate order recognition rule for each target order type.

• If you have one OSM instance operating in more than one role (for example, if
the same system is operating in both the SOM and the TOM role) you need to
configure an order recognition rule that points to a corresponding target order for
each role.

• If you have one order source system and one OSM instance operating in only one
role, then you need only one order recognition rule that points to one target order.

You must determine what corresponding order recognition rules you need to model in
OSM to recognize, validate, prioritize, and transform order data from sales orders into
a matching OSM target order. You must map incoming order data to the data defined
in the creation task of the target order.

See the following sections for more information:

Chapter 1
About Determining the OSM Functionality to Implement

1-8

• Modeling Orders and Permissions

• Modeling Order Life-Cycle Policies

• Modeling Order Recognition

COM Data Modeling Considerations
Answer the following questions to determine what corresponding order data you need
to model on the sales order and the target order in OSM COM:

• What data is required to complete an order?

• What data do the tasks require? For example, if service provisioning requires the
customer's location, then the order needs to include the customer's location.

• What data does the customer account require?

• What data is not required on the customer order, but is required by the service
order that is derived from the customer order?

• What data do the tasks require when the order is created?

• Does the incoming order include all of the data needed for the order? If not, you
can use data providers in your tasks to get the data from some other source.

• Which data on the order contain order item information that represents the offers,
bundles, and products on the order?

• What order item parameters represent the name of the order item?

• If the order items are hierarchical, what data elements specify the parent and child
relationship between each order item?

• If the order items must be delivered at different times and dates, what data
element contains the requested delivery date?

• What data element specifies the action that must be performed on the order item
during the fulfillment process (such as add, change, and so on)?

• What data element specifies the overall action of the order, such as deliver, cancel
or technical service qualification (TSQ)?

• What data is required on the sales order for the billing system?

See the following sections for more information:

• Modeling Order Data

• Modeling Orders and Permissions

• Modeling Behaviors

Modeling COM Orchestration Order Items and Binding Conceptual Model
Parameters

You must determine what order data to model as order items (see "COM Data
Modeling Considerations") and what product specification the order items belong. You
typically map order items to product specification by defining an order item property
that OSM then uses to map the order item to specific fulfillment patterns, and so on.

You can also use Design Studio order item parameter bindings to map conceptual
model entities their parameters to OSM order item specifications. This enables you

Chapter 1
About Determining the OSM Functionality to Implement

1-9

to have strongly typed parameters that you do not need to model within order item
specifications. You map conceptual model entities and their parameters to OSM order
item specifications mainly to validate incoming order items and their parameters and/or
transform the order items and their data from one type to another (for example, from
products to CFSs).

In the OSM COM context, you map conceptual model products and data parameters
to the COM order item specification for the incoming sales order and accompanying
products, bundles, and offers. For example, Figure 1-1 defines the broadband service
offer and several child product offerings such as broadband, bandwidth, firewall,
email, and so on. OSM validates all order items against the corresponding conceptual
model entities and their parameters. If you have configured the order transformation
manager, OSM also transforms the products into CFSs (see "Modeling COM Order
Transformation Manager" for more information).

If you do not need order item parameter bindings for validation or transformation, you
must model parameters in the order item specification. You can designate an order
item property to contain these parameters (typically name-value pairs) and designate
the structure as XML Type in the Order editor Order Template tab, Properties tab,
Order Data subtab for the selected data element. For example, order items at the
COM level relating to billing information, such as promotional offers or recurrent
charging information, may not need validation because the sales catalog is separately
synchronized between the CRM and billing systems. In this scenario, OSM is only
required send the order items on the sales order directly to the billing system.
However, all other order items that must go to OSM in the SOM role would typically
require both validation and transformation using the conceptual model.

Validating data against the conceptual model is important because this ensures the
data is consistent across the entire OSS and BSS solution (OSM in COM, SOM, and
TOM roles, the activation system, the SRM system, and so on).

See "Modeling Orchestration Plans" for more information.

Modeling COM Orchestration Order Item Decomposition
You need to decide what orchestration stages OSM should evaluate when
decomposing order items into order components. These order components typically
designate functions, systems, and granularity options.

Based on the previous sections, you should already have some knowledge of what
the order you are creating contains. Use that knowledge to answer the following
questions:

• What systems does OSM communicate with?

• What order items does each system require?

• What are the business functions that each system must perform on the order
items?

• How should OSM deliver data for the functions to process? Does the function
operate on the whole order, or does the function require a separate interaction per
order item bundle or per order item?

Based on the answers you provide to these questions, you can begin to model order
item decomposition stages.

Figure 1-2 shows a sample order capture and orchestration process. The process
captures orders with an order recognition rule that maps the order and order data to a

Chapter 1
About Determining the OSM Functionality to Implement

1-10

target order and creation task data elements. This order then begins an orchestration
process that triggers an orchestration sequence. The sequence specifies which order
node contains the order items, which order parameter defines the fulfillment mode for
the order, and the stages in which the order items can be evaluated. The orchestration
process determines which order components the order items should decompose to. In
Figure 1-2, OSM sequentially evaluates:

• A stage that decomposes order items into order components that define functions.

• A stage that decomposes order items into order components that define systems.

• A stage that decomposes order items into order components that define
granularity.

Figure 1-2 Sample Order Capture and Orchestration Process

You must determine what high-level tasks are involved in fulfilling customer orders at
the OSM COM level. You can define orchestration order components that correspond
to the functions performed by these tasks that you can then add to the function stage
(see Figure 1-2). See "About the OSM Solution Modeling Process" for a sample list of
OSM COM related tasks that can be modeled as function order components.

You must determine what kinds of BSS fulfillment systems you have at the OSM
COM level. You can define orchestration order components that correspond to these
systems. You can add these system order components to the system stage. As
illustrated in Figure 1-1, the systems that normally interact with OSM COM include

• One or more billing systems: The billing systems manage the initial and recurring
charges applied to the order.

Chapter 1
About Determining the OSM Functionality to Implement

1-11

• One or more OSM SOM systems: The OSM SOM system at the OSS level
interacts with inventory systems. The inventory system designs and assigns
services with their corresponding network resources.

OSM COM may need to communicate with different systems based on the location
where the service is requested for.

You must also determine what kind of order granularity you need when fulfilling each
function order components. Does the orchestration plan need to generate a separate
function for each bundle destined for a particular system? Or, can the whole order be
sent as one function to one system? You can define orchestration order components
that correspond to the different levels of granularity you want to define. You can then
add the order component to the granularity stage (see Figure 1-2).

For example, a customer might request an offer that includes the following order items:

BroadBand Service (Offer)
 BroadBand (Bundle)
 Promotion (Product)
 Bandwidth (Product)
 Router (Product)
 Firewall (Product)
 Email (Product)

The broadband service offer is parent to the broadband bundle order item and
an email product order item. The broadband bundle is itself parent to promotion,
bandwidth, router, and firewall product order items. It may be that you want the billing
related functions to run separately for each child order item of the broadband service
offer (the broadband bundle order item with all its children order items and the email
product order item). Or you may want each billing function to run separately for each
product order item in the order (email, promotion, router, bandwidth, and firewall).
Finally, you could also send the entire offer with all bundles and products contained
within it.

For each of these options, you need to create an order component that OSM can
use to decompose the order items to. The order components can represent whole
order granularity, bundle granularity, or product order item granularity, and so on.
At this point, you are only defining the order components that OSM can use to
decompose order items to. You configure the actual decomposition behaviors and
conditions with other Design Studio orchestration entities such as fulfillment patterns
and orchestration decomposition rules.

See "Modeling Orchestration Plans" for more information.

Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes
You must determine what fulfillment patterns each order item should decompose to
and what action you want to specify on the overall order. You model the actions
(such as deliver, technical service qualification, or cancel) as fulfillment modes.
Each fulfillment pattern can have more than one fulfillment mode. When an order
item decomposes to a fulfillment pattern, the fulfillment pattern generates a different
orchestration plan based on the action defined on the order. The action corresponds to
the fulfillment mode associated to the fulfillment pattern.

OSM fulfillment patterns define (among other things) the first stage of order item
decomposition. In fulfillment patterns, you can specify order item decomposition
conditions for whether a specific order item decomposes to an order component.
Typically fulfillment patterns contain all order components that specify functions.

Chapter 1
About Determining the OSM Functionality to Implement

1-12

In a conceptual model project, you map conceptual model product specifications which
define offers, bundles, and products to conceptual model fulfillment patterns. OSM
fulfillment patterns realize these conceptual model fulfillment patterns. When you build
an OSM cartridge, OSM generates a sample XML file. The sample XML file contains
the product-to-fulfillment pattern mappings. You can reference those mappings using
an order item property from the OSM order item specification. The order item property
defines XQuery logic that determines how each order item decomposes to a fulfillment
pattern.

For example, an order might contain the following order items:

• Five decompose to a broaband fulfillment pattern.

• Four decompose to a VoIP fulfillment pattern.

• One decomposes to an Email fulfillment pattern.

At run-time, OSM evaluates the function decomposition stage first which contains
the function order component. This evaluation determines whether order items
decompose to each function order component based on the conditions (if any exist)
specified in the fulfillment pattern.

OSM next evaluates how order items decompose to the system and granularity
order components in the system and granularity stages using on orchestration
decomposition rules. These decomposition rules define how order items decompose
from function order components to system order component, and from function order
components to granularity order components. All order decomposition rules relating
to system order components in the system decomposition stage are evaluated. Then
those order decomposition rules relating to the granularity order components in the
granularity stage are evaluated.

After OSM evaluates each stage for each order item in the fulfillment patterns they
are associated with, OSM generates run-time order components. These run time order
components are the sum of the order components that each order item decomposes
to. For example, order item A can decomposed to functionA-systemA-granularityA.
This sequence of order components constitutes a single run-time order component.

However, consider a scenario where the order items in an order decompose to more
than one fulfillment pattern. If fulfillment pattern A generates the same run-time order
component as fulfillment pattern B, then OSM generates only one run-time order
component. This run-time order component processes the order items from both
fulfillment pattern A and B.

some decomposition sequences of the three different fulfillment patterns end up being
identical, then only one run-time order component is created that runs a process for all
order items.

Figure 1-3 shows an order item decomposition run-time sequence with the BroadBand
order item bundle.

The first stage of order item decomposition uses the broadband fulfillment pattern
which defines decomposition rules for each function order component. The second
stage uses decomposition rules from each function to each system order component.
The third stage uses decomposition rules from each system to each granularity
order component. OSM generates the resulting run-time order components based on
this sequence. Each unique decomposition flow generates a new executable order
component.

Chapter 1
About Determining the OSM Functionality to Implement

1-13

Figure 1-3 Sample Run-Time Order Item Decomposition Sequence

Those generated in Figure 1-3 are:

• SyncCustomer/BillingSystemResidential/OrderGranularity

• InitiateBilling/BillingSystemResidential/OrderGranularity

• Provisioning/OSMSOMSystem/OrderGranularity

• FulfillBilling/BillingSystemResidential/BundleGranularity

In this scenario, the decomposition rules to the billing system business component
and offer granularity component rejects all order items. The rejection is based on

Chapter 1
About Determining the OSM Functionality to Implement

1-14

a condition that specifies that only order items from business customers can be
included. All order billing related components are directed to the billing system
residential as opposed to the billing system business order component.

In addition, the VoIP bundle order items and all its child order items decompose
to another fulfillment pattern not represented in Figure 1-3. It is important to note
that an orchestration plan that contains multiple fulfillment patterns may generate
identical run-time order components if some of the functions, systems, and granularity
component decomposition flows are the same. For example, the broadband internet
and VoIP fulfillment patterns may each specify the same SyncCustomer and
InitiateBilling functions with the same systems and granularity components. In such
a case, OSM generates only one run-time component to which the order items from
each fulfillment pattern decomposes to. However, it may be that separate provisioning
and billing components are required for each fulfillment pattern. For example, you
may want a separate provisioning component for the broadband order items. When
the provisioning component completes, the billing component runs. The billing system
then begins charging for broadband service immediately. The VoIP related order items
might decompose to separate provisioning and billing order components that only
start when the provisioning component for broadband completes. This decomposition
pattern may be appropriate based on the fact that the VoIP related order items
functionally depend on the broadband order items and also take much longer to fulfill
than the broadband order items. In this scenario, the CSP does not need to wait for
the VoIP order items to fulfill before beginning to charge for the broadband service.

Similar decomposition scenarios may be important when considering the date when
the customer wants a particular service fulfilled. For example, a customer may request
an IPTV and VoIP bundle that are normally fulfilled within the same provisioning and
billing functions. But because the customer requests a start date for the IPTV service
that is much later than the one specified for the VoIP service, then these two order
item bundles must decompose to separate provisioning and billing order components.

See the following sections for more information:

• Modeling Orchestration Plans

• Modeling Order Scheduling

Modeling COM Order Transformation Manager
You should determine whether you want to use the order transformation manager
(OTM) with the calculate service order (CSO) conceptual model provider function.
OTM with CSO transforms products, bundles, and offer order items and actions into
CFS order items and actions. The run-time order component creates and sends a
service order to OSM SOM or some other provisioning system. The OTM functionality
provides a way to decouple the commercial layer from the service layer.

Figure 1-4 shows a sample run-time order transformation with the design-time
conceptual model entity associations. This example has the following run-time flow
that incorporates design time data from conceptual model entities:

1. OTM triggers either when the orchestration process begins to design an
orchestration plan or from within the process associated with the provision function
in a transformation task. OTM can process data elements for product entities in
the conceptual model. OTM can process data elements only if order parameter
bindings are created. The order parameter bindings are between product data in
the conceptual model and an order item property in the order item specification.

Chapter 1
About Determining the OSM Functionality to Implement

1-15

The order item property must be designated as a dynamic parameter that defines
a data structure.

OTM can only process conceptual model product entity data elements on the
order if order parameter bindings (conceptual model association A) have been
created between conceptual model product data and an order item specification
order item property designated as a data structure definition dynamic parameter.

2. OSM sends the input product order items to OTM. In order for OSM to do this,
the conceptual model CSO provider function must be associated with the provision
function order component at design-time (conceptual model association B).

3. OTM sends the order data to a transformation sequence. In order for OTM to
map to the appropriate transformation sequence, OTM must also be associated
with the conceptual model CSO provider function and a conceptual model domain
(conceptual model association C). The domain is a repository of all the
conceptual model products possible for the order item. In this case, the domain
is the BB Email Domain for broadband and Email products. Other domains could
be VoIP, mobile, cable and so on.

4. The transformation sequence goes through a series of stages. The stages use
mapping rules to map the input order item data to output order item data. The
stages also define whether the data is primary (which creates a new order item) or
auxiliary (which augments the data on a new order item). The mapping rules must
also be associated with the same CSO provider function and domain as OTM
(conceptual model association C). For example:

• Primary Stage: Transforms product order items and actions into transformed
order items and actions. At the primary stage, product order items create
new transformed customer service-facing order items. In this example, the
primary product specification is BB_PS which maps to the BB Internet Access
customer-facing service specification.

• Child Stage: Transforms all child order items and actions and any of their
child order items and actions, and so on, into data that augments the order
items created in the primary stage. In this example, the child order items of
BB_PS are BB_Bandwidth, Firewall, and Router.

• Sibling Stage: Transforms all sibling order items and actions into data that
augments the order items created in the primary stage. In this example, a
sibling order item of BB_PS is Email.

• Ancestor Stage: Transforms all ancestor order items and actions and any of
their ancestor order items and actions, and so on, into data that augments the
order items created in the primary stage. In this example, the ancestor order
item of BB_PS is BB_Email_PS.

Chapter 1
About Determining the OSM Functionality to Implement

1-16

Figure 1-4 Sample Run-Time Order Transformation with Conceptual Model Associations

5. The transformation sequence includes the resulting order items into the provision
function order component. The provisioning function order component runs a
process that creates and sends a service order to OSM SOM. The service order
includes the transformed service order items. The product order items are not
required in the service order because all necessary data contained in the product
order items are now consolidated into the service order item.

When the input sales order lines are transformed to CFS:

• If the input sales order lines are not mapped to CFS as defined in modeling,
CFS pay load will not be generated.

• If the input sales order line is missing any of the required parameters for
mapping, the missing mandatory parameter will be reported as error and no
CFS pay load will be generated.

In both the cases, the provisioning function process fails and SOM order is not
created. A revision order should be submitted to correct the sales order line data,
so that OTM maps properly, and then CFS payload is generated and the SOM
order is created.

See the following sections for more information:

• Modeling the Order Transformation Manager

• Modeling OTM With Calculate Service Order

Chapter 1
About Determining the OSM Functionality to Implement

1-17

• Modeling OTM Without Calculate Service Order

Modeling COM Orchestration Dependencies
You need to determine what dependencies exist between executable order
components. These dependencies are called orchestration dependencies. You
typically define all orchestration dependencies using fulfillment patterns for function
order components. However, you can also specify dependencies between other order
components using orchestration dependency rules. In addition, you can specify when
order components can start based on dates provided by customers for when they want
a service to begin.

For example, the tasks specified in "About the OSM Solution Modeling Process" for
OSM COM may need to be fulfilled in the following order (see Figure 1-5):

1. The Sync Customer and Initiate Billing function that are shared between both
fulfillment patterns occur sequentially. Order items from both broadband and VoIP
fulfillment patterns decomposed into identical order components. All order items in
the Sync Customer function must complete before the Initiate Billing Function can
continue.

2. The Initiate Billing function must complete before the Provision Function can start
processing the broadband order items and the second Provision Function can
start processing the VoIP order items. In addition, the second provision function
must wait until the first provision function completes because VoIP is functionally
dependent on broadband and because the VoIP service takes longer to fulfill than
the broadband service.

3. The Fulfill Billing function for the broadband order items starts after the Provision
function for the broadband order items completes.

4. The Fulfill Billing function for the VoIP order items starts after the Provision
function for the VoIP order items completes.

Figure 1-5 Example Dependency Between Fulfillment Pattern Order Items

Chapter 1
About Determining the OSM Functionality to Implement

1-18

Having separate Provision functions means that OSM COM sends multiple service
orders to OSM SOM. Other factors can also impact order component creation and
dependencies such as the requested delivery date for each service.

See the following sections for more information:

• Modeling Orchestration Plans

• Modeling Order Scheduling

Modeling COM Processes and Tasks
What process flow of sequential or parallel manual and automated tasks are required
when interacting with target systems for each functional component.

For example, each function may have a few automated tasks that perform different
functions, such as sending messages to an external system, receiving back and
processing a response from external systems, or manipulating data received from
previously completed tasks. There may also be manual tasks where an operator is
required to input data directly into the Order Management Task web client. The manual
tasks may also make use of behaviors that effect how the data is organized, displayed,
or retrieved in the OSM Task web client and in the Order Management web client.

Figure 1-6 shows an OSM process that includes a subprocess with an automated task
and automation plug-in sender. An order level notification updates the status of order
items then notifies the CRM of the status change. The automated task then transitions
to another task that sends a service order to the OSM SOM system. The server order
includes all the order items required to design and assign the products and services
that the customer has requested.

Chapter 1
About Determining the OSM Functionality to Implement

1-19

Figure 1-6 Example Task Processing

See the following sections for more information:

• Modeling Processes and Tasks

• Modeling Behaviors

• Modeling Data for Tasks

Modeling COM Fallout Scenarios
You must determine:

• What fallout management scenarios can be anticipated.

• How fallout scenarios can be detected.

Chapter 1
About Determining the OSM Functionality to Implement

1-20

• How relevant parties or systems can be notified of problems.

• What recovery processes can be implemented.

For example, you should anticipate fallout around network connectivity from time to
time. External systems may fail to return responses or fail to accept messages. In such
cases you can configure automated tasks to transition to fallout an execution mode.
Failed messages generated by automation plug-ins can revert to an error queue. You
can also configure jeopardy notifications when messages are taking too long to return.
The jeopardy notification can generate warning messages to fallout personnel so they
can manual investigate the problem on the external fulfillment system or in OSM.

See the following sections for more information:

• Modeling Fallout

• Modeling Behaviors

• Modeling Processes and Tasks

• Modeling Jeopardy and Notifications

Modeling COM Fulfillment States
You must determine what kind of order and order item fulfillment states you need to
configure. Fulfillment states track the overall status of an order and each order item
based on status messages received from external systems. You also need to consider
what notification messages you want to send to interested parties or systems as the
order progresses.

For example, Figure 1-7 shows external fulfillment state change messages from the
billing system and the OSM SOM system returning to the OSM COM system.

The hierarchical structure of the order defined in the order item specification is as
follows:

BroadBandOrder (target order)
 BroadBand Service (Bundle)
 Promotion (Product)
 BroadBand (Product)
 Bandwidth (Product)
 Firewall (Product)
 Email (Product)

1. The billing function is a generic order component, but could represent any of the
billing functions listed in "About the OSM Solution Modeling Process" for OSM
COM. After the billing function sends a message to the billing system, the billing
system sends three status messages back to OSM COM as the billing system
processes the Promotion, Broadband, and Email order item. Two of the external
fulfillment state messages, billing begin and billing in progress, map to the
OSM COM in progress billing fulfillment state. The billing system sends these
messages to confirm that it has received the message from OSM with the order
items and then to confirm that it has begun to process the messages. When the
billing system finished processing all order items, it sends the billing end external
fulfillment state that maps to the complete billing fulfillment state.

2. The provision function has a similar exchange of messages with the OSM SOM
system for the broadband, bandwidth, firewall, and email order items.

Chapter 1
About Determining the OSM Functionality to Implement

1-21

Figure 1-7 Example Fulfillment States

3. When the order items first begin processing in the billing function component, Rule
1 evaluates to true when the billing system sends the billing begin and billing
in progress external fulfillment state messages that map to the In Progress
Billing fulfillment state for the billing order component. This causes the order
items included in the billing function component to have a composite fulfillment
state of in progress.

Chapter 1
About Determining the OSM Functionality to Implement

1-22

4. When the billing system completes and sends the billing end message which
maps to the Complete Billing fulfillment state for the function component, the
Broadband and Email order items continue processing in the provision function
order component while the Promotion order component does not. Promotion did
not decompose to the provision function and is therefore fully complete. Rule 1
still evaluates to true for BroadBand and Email, but Rule 1 evaluates to false
for Promotion. Rule 2 evaluates to true for Promotion, causing its order item
composite fulfillment state to move to Complete.

5. When Rule 1 and Rule 2 make any change to the state in an order item, they also
evaluate the parent order item, which is the BroadBand Service bundle order
item. Although Promotion is now complete, the BroadBand Service remains in
the In Progress state until the other child order items complete.

6. When the remaining order items complete in the provision function, Rule 1
evaluates to false and Rule 2 evaluates to true for the order component. Rule
2 then changes the composite order item fulfillment states for all remaining order
items to complete. Because of this change, the parent BroadBand Service order
item also changes to complete because all its child order items are now complete.

7. Because of this change in BroadBand Service, which is a root level order item,
the order fulfillment state Rule 3 evaluates to false because there are no longer
any in progress order items at the root level. Rule 4 evaluates to true because all
order items at the root level are now complete.

8. An order data change notification triggers whenever an order or order item
composite fulfillment state changes that sends messages to the CRM to report
the changes.

Figure 1-7 shows only in progress and complete billing states at both the order item
and the order level. Many other external order fulfillment states, order item fulfillment
states, and order states are possible, such as failure states, cancelation states, and
so on. Each of these would also have a corresponding order item fulfillment state
composition rule and order fulfillment state composition rule.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling COM Processing States
Processing states are similar to fulfillment states in that you can configure automated
tasks to trigger order component order item processing states based on messages
received from external fulfillment systems. The main difference is that the order
component order item processing states come from a predefined list that OSM
provides. OSM automatically aggregates order component order item processing
states across all order components processing the order item into a single order
item processing state that is visible in the Order Management web client. OSM
also propagates child order item processing states to parent order items. The only
work necessary to model processing states is to map incoming status message from
external fulfillment systems to order component order item processing states. You can
even map the same message to both order component order item processing states
and to external fulfillment states.

For example, the following shows how the Email product is successfully processed
in two order components, but the third order components returns a failure order
component order item processing state, causing the Email product to display the

Chapter 1
About Determining the OSM Functionality to Implement

1-23

Partially Failed order item processing state, which in turn caused the parent and
grandparent order items (Brilliant Broadband and Broadband Service) to also display
the Partially Failed order item processing state.

Brilliant Broadband (Offer) ----- Partially Failed
 BroadBand Service (Bundle) -- Partially Failed
 Promotion (Product) ----- Completed
 BroadBand (Product)------ Completed
 Bandwidth (Product)------ Completed
 Firewall (Product) ------ Completed
 Email (Product) --------- Partially Failed ---- OCOI1 - Completed
 ---- OCOI2 - Completed
 ---- OCOI3 - Failed

The Order Management web client tracks Normal, Warning, and Failure counts of
order item processing states.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling Change Order Management for COM
You need to determine if you want to enable change order management, and if you do,
what change order management scenarios you want to support.

Do you need a point of no return where the order cannot be changed? For example,
you can configure a point of no return that is tied to the provisioning function that
generates a service order to be enforced whenever that order component receives
a fulfillment state update of Complete (assuming you have configured the order
component with such a fulfillment state update). You can also tie a point of no return
directly to the any order life-cycle policy transition to the Amending state, such as the
Submit Amendment transition from the In Progress state to the Amending state.

If a revision order arrives, what behavior do you want each tasks to exhibit? Do you
want the task to undo, redo, or undo then redo? For example, do you want to configure
the automated task responsible for sending the service order to OSM in the SOM role
to trigger an automation plug-in that sends a revision order to OSM SOM that undoes
the previously sent service order whether it is complete or still in progress? Or do you
want the task to redo the previously sent service order as a revision order and allow
SOM to perform change order management functions?

See the following sections for more information:

• Modeling Changes to Orders

• Modeling Processes and Tasks

Cartridge Management Considerations for COM
What kinds of cartridge management scenarios you want to plan for in advance, such
as the impact of upgrading cartridge functionality, how such upgrades impact run-time
orders, how best to structure cartridges to minimize the impact of such changes, and
so on.

See "Managing OSM Solution Cartridges" for more information.

Chapter 1
About Determining the OSM Functionality to Implement

1-24

Planning OSM SOM Solution Requirements
This section describes OSM modeling entities and functions involved in the OSM SOM
role. It includes examples intended to guide you in understanding how you can use
these entities and functions in your OSM SOM solution. This information can help
you plan your implementation efforts by exemplifying at a high level the full scope of
work involved in modeling a typical COM solution. Follow the links in each section for
specific details about the functions described.

OSM in the SOM role receives CFSs from OSM in the COM role within a service
order. OSM SOM then sends this CFS information to an SRM system that designs
the service then assigns it to resources. The SRM system uses the RFS and resource
information defined in the conceptual model to perform this design and assign task.
The SRM also calculates the actions required to fulfill the services. OSM SOM
requests these actions from the SRM system then sends the actions to OSM in the
TOM role.

Modeling SOM Order and Order Recognition Requirements
You must determine what kind of orders you need to model in OSM SOM, what order
life-cycle states and state transitions the orders have, and who has permissions to do
various tasks in fulfilling the order.

At this point, it is important to understand that the SOM order is a child of the COM
parent order and must report back to the COM order component that generated the
service order. In the example provided in "Modeling COM Orchestration Fulfillment
Patterns and Fulfillment Modes", the order component that generated the service
order to SOM is a task that is part of a process triggered by the Provisioning/
OSMSOMSystem/OrderGranularity run-time order component. Any notification from
OSM SOM relating to the service order would return back to this task.

Depending on how you have modeled your COM solution, OSM SOM may receive
more than one service order. For example, you may want to configure OSM COM to
send a separate service order to fulfill the broadband internet CFS. When that service
order completes, OSM COM may send a second service order with a VoIP CFS.

You may want to create separate target orders for each CFS or one generic target
order that receives all service orders. In the SOM context, OSM does not generally
need separate target orders because most of the work is accomplished within the
SRM system that OSM SOM communicates with and any dependencies between
CFSs are enforced in OSM COM.

Likewise, if you have only one target order at the SOM level, then you need only one
order recognition rule that maps incoming service orders to this target order.

See the following sections for more information:

• Modeling Orders and Permissions

• Modeling Order Life-Cycle Policies

• Modeling Order Recognition

Chapter 1
About Determining the OSM Functionality to Implement

1-25

SOM Data Modeling Considerations
Answer the following questions to determine what corresponding order data you need
to model on the OSM order to capture the incoming order data:

• What data is required to complete an order?

• What data do the tasks require? For example, what data is required on each
interaction with the SRM system? What format to OSM TOM require for the
technical order that OSM SOM sends?

• What data is not required on the service order, but is required by the technical
order that is derived from the customer order?

• Does the incoming order include all of the data needed for the order? If not, you
can use data providers in your tasks to get the data from some other source.
Typically SOM is only responsible for passing on CFSs created in COM to the
SRM system. However, it is possible that other data may be required that does not
come from the SRM system.

• Which nodes on the service order contain order item information that represents
the CFSs on the order?

• What order item parameters represent the name of the CFS order item?

• If the order items are hierarchical and what data elements specify the parent child
relationship between each order item? Typically service orders do not require a
hierarchy.

• If the order items must be delivered at different times and dates, what data
element contains the requested delivery date?

• What data element specifies the action that must be performed on the CFS order
item during the fulfillment process? For example, add, change, delete, move, and
so on.

• What data element specifies the overall purpose of the order, such as deliver,
cancel or technical service qualification (TSQ)?

See the following sections for more information:

• Modeling Order Data

• Modeling Orders and Permissions

• Modeling Behaviors

Modeling SOM Orchestration Order Items and Bindings Conceptual Model
Parameters

You must determine what nodes in the incoming order you want to designate as order
items containing CFSs. What data in the order items you want to use for specific
orchestration functions, such as the actions you want OSM to perform on those order
items, the requested delivery date when the order item actions need to occur, what
CFS the order item represents that OSM then uses to map the order item to specific
fulfillment patterns, and so on.

You can also use order item parameter bindings to bind conceptual model CFSs
and the parameters defined for them to a OSM SOM order item specifications. This
allows you to have strongly typed parameters that you don't need to model within

Chapter 1
About Determining the OSM Functionality to Implement

1-26

order item specifications. For example, Figure 1-1 defines the Broadband Internet
Access CFS and the Email CFS. You can use order item parameter bindings to map
these conceptual model product entities to order item specifications by configuring an
order item for the order item recognition and an order item parameter as a dynamic
parameter where the parameters are stored.

Order item parameter bindings in OSM SOM are important for validating the incoming
CFSs generated from OSM COM, however OTM is not required in the OSM SOM role
because the SRM system is typically responsible for transforming CFSs into RFSs,
resources, and actions. OSM SOM sends the CFSs to the SRM system and receives
back the actions on the resources. OSM SOM does not need order item parameter
bindings on these actions because OSM TOM is responsible for validating these
actions.

See "Modeling Orchestration Plans" for more information.

Modeling SOM Orchestration Order Item Decomposition
You need to decide what orchestration stages you want OSM to evaluate when
decomposing CFS order items into order components. These order components
typically designate functions, systems, and granularity.

Based on the previous sections, you should already have some knowledge of what
the service order you are creating contains. Using this knowledge, you can provide
answers to the following questions:

• What are the systems that OSM must communicate with? For example, OSM
SOM typically communicates with an SRM system and OSM in the TOM role.

• What order items do each system require? For example, the SRM system requires
CFS information and OSM in the TOM role requires technical actions.

• What are the business functions that each system must perform on these order
items? For example, sending the CFSs to the SRM system, requesting the actions
from the SRM system, and building the technical order that contains the actions for
the OSM TOM system.

• How should OSM deliver this data for the functions to process? Does the function
operate on the whole order, or does the function require a separate interaction per
order item bundle on the order, or per order item?

Based on the answers you provide to these questions, can you begin to model order
item decomposition stages.

Figure 1-1 defines the Broadband Internet Access CFS and the Email CFS. You can
decompose these order items into function, system, and granularity order components
in the same way you do in the COM (see "Modeling COM Orchestration Order Item
Decomposition").

You must determine what high level tasks are involved in fulfilling customer orders at
the OSM SOM level. You can define orchestration order components that correspond
to the functions performed by these tasks that you can then add to the function stage
(see Figure 1-2). See "About the OSM Solution Modeling Process" for a sample list of
OSM SOM related tasks that can be modeled as function order components.

You must determine what kinds of OSS fulfillment systems you have at the OSM
SOM level. You can define orchestration order components that correspond to these
systems that you can then add to the system stage. As illustrated in Figure 1-1, the
systems that normally interact with OSM SOM include one or more SRM systems that

Chapter 1
About Determining the OSM Functionality to Implement

1-27

interact with inventory systems to design and assign services with their corresponding
network resources.

You must also determine what kind of order granularity you need when fulfilling each
function order components. At the SOM level, OSM typically passes on every CFS
order items to the SRM system because CFSs are typically not hierarchically ordered.
However, this all depends on how you model the overall solution.

For each of these options, you need to create an order component that OSM can
use to decompose the order items to, such as whole order granularity, bundle
granularity, or product order item granularity, and so on. At this point, you are only
defining the order components that OSM can use to decompose order items to
during order decomposition. You configure the actual decomposition behaviors and
conditions with other Design Studio orchestration entities such as fulfillment patterns
and orchestration decomposition rules.

See "Modeling Orchestration Plans" for more information.

Modeling SOM Orchestration Fulfillment Patterns and Fulfillment Modes
You must determine what fulfillment patterns each order item should decompose to
and what action you want to specify on the overall order that you can model as
fulfillment modes for the order, such as deliver, technical service qualification, or
cancel.

In a conceptual model project, you map conceptual model CFSs to conceptual model
fulfillment patterns. These conceptual model fulfillment patterns are realized by OSM
SOM fulfillment patterns. When you build an OSM cartridge, OSM generates a sample
XML file that contains all these CFS to fulfillment pattern mappings that you can
reference using an OSM SOM order item specification order item property that defines
XQuery logic that determines how each order item decomposes to what fulfillment
pattern during run-time.

For example, OSM SOM may have a Broadband Internet Access CFS order item and
the Email CFS order item that maps to a conceptual model fulfillment patter that is
realized by an OSM SOM fulfillment pattern that specifies a function to send these
CFSs to the SRM system so that the SRM system can perform the design and assign
functionality. You can also create another function that requests the actions that must
be included in a technical order, and a third function that creates, sends the technical
order to OSM TOM, and a fourth function that completes the service order.

At run-time, OSM evaluates the function, system, and granularity stages in a similar
way to OSM in the COM role (see "Modeling COM Orchestration Fulfillment Patterns
and Fulfillment Modes"). The function, systems, and granularity stages might generate
the following run-time order components:

• DesigningServiceFunction/SRMsystem/OrderGranularity

• PlanDeliveryFunction/SRMsystem/OrderGranularity

• CreateTechnicalOrderFunction/OSMTOMsystem/OrderGranularity

• CompleteFunction/SRMsystem/OrderGranularity

Modeling SOM Orchestration Dependencies
You must determine what dependencies exist between executable order components.
These dependencies are called orchestration dependencies. You typically define all

Chapter 1
About Determining the OSM Functionality to Implement

1-28

orchestration dependencies using fulfillment patterns for function order components,
but you can also specify dependencies between system order components using
orchestration dependency rules. In addition, you can specify when order components
can start based on dates provided by customers for when they want a service to begin.

For example, the tasks specified in "About the OSM Solution Modeling Process"
for OSM SOM may require that each function operate in the sequence specified in
Figure 1-8.

Figure 1-8 Example Dependency Between Fulfillment Pattern Order Items

Because there is typically only one fulfillment pattern at in OSM SOM for fulfilling
service orders, each component can run one after the other.

See the following sections for more information:

• Modeling Orchestration Plans

• Modeling Order Scheduling

Modeling SOM Processes and Tasks
You must determine what process flow of sequential or parallel manual and automated
tasks are required when interacting with target systems for each functional component.

Tasks in OSM SOM typically involve sending the CFS order items required by the
SRM system and receiving back the action from the SRM system. For example,
the design service function would start a process that triggers an automated tasks
with an automation plug-in sender instance that send builds and sends a message
containing the CFS information to the SRM system in the format required by the SRM
system API. When the SRM system completes, it sends a response back to OSM
SOM that OSM SOM correlates back to the automated task to an automation plug-in
automator that is waiting for a response message. The automation plug-in automator
reviews the response message and determines that the SRM system completed its
tasks successfully and then transitions the automated task to the completed state
which also completes the DesigningServiceFunction/SRMsystem/OrderGranularity
order component.

Each run-time order components with associated processes and tasks would perform
similar exchanges.

See the following sections for more information:

• Modeling Processes and Tasks

• Modeling Behaviors

• Modeling Data for Tasks

Chapter 1
About Determining the OSM Functionality to Implement

1-29

Modeling SOM Fallout Scenarios
What fallout management scenarios can be anticipated, determine how they can be
detected, how relevant parties or systems can be notified of the problem, and what
recovery processes can be implemented.

For example, in addition to possible communication issues, you may anticipate the
possibility that fallout may occur because OSM COM sends faulty or incomplete CFS
information to OSM SOM, or the SRM system has somehow provided incorrect data
to OSM SOM that may cause a fallout to occur in OSM TOM. You must carefully
analyze when such issues can occur and develop fallout strategies to recover from
such fallouts scenarios. In some cases, manual intervention may be required while in
other cases, you may be able to model automatic fallout recovery capabilities.

See the following sections for more information:

• Modeling Fallout

• Modeling Behaviors

• Modeling Processes and Tasks

• Modeling Jeopardy and Notifications

Modeling SOM Fulfillment States
What kind of order and order item fulfillment states you need to configure to track the
overall status of an order and each order item based on status messages received
from external systems. You also need to consider what notification messages you want
to send to interested parties or systems as the order progresses.

For example, you can map messages from the SRM system and the OSM TOM
system returning as these systems process messages sent by various order
components to external fulfillment state in the OSM SOM system. These external
fulfillment states can represent the result of various interactions between OSM SOM
and these systems on each CFS order item that OSM SOM then aggregates into order
item and order-level fulfillment states based on order and order item fulfillment sate
composition rule sets.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling SOM Processing States
You can track the state of order items by mapping responses from the SRM system
and OSM TOM to order item processing states. You must decide what messages
correspond to which predefine order component order item processing state that OSM
provides. OSM then aggregates these order component order item processing states
for each order item into an overall order item processing state. You may decide to use
warning and failure order item processing states to trigger jeopardy notifications from
OSM SOM to OSM COM or from OSM SOM to a fallout personnel. In many cases, you
can also use the same messages from external systems to trigger external fulfillment
state changes.

See the following sections for more information:

Chapter 1
About Determining the OSM Functionality to Implement

1-30

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling Change Order Management for SOM
You need to determine if you want to enable change order management, and if you do,
what change order management scenarios you want OSM SOM to support.

You must consider change order management based on end-to-end scenarios that
span OSM COM, SOM, and TOM. For example, if you enable OSM COM to send a
revision order through to OSM SOM from the OSM COM provision function then you
must decide what compensation OSM SOM must undertake to implement the changes
in the revision order. For example, you might consider some of the following question:

• Is there a point of no return where you do not want OSM SOM to accept any
new revision orders from the OSM COM provision function? For example, you
may want to configure a point of no return that is associated with when the SRM
system completes its design and assign functions based on an external fulfillment
state change. This would effectively mean that OSM TOM should not receive
revision orders from OSM SOM stemming from changes coming from OSM COM
service orders. Or you may decide that there should not be any point of no return
configured in OSM SOM.

• It may be that the SRM system that you are communicating with does not have the
capability of accepting revisions to CFSs sent by the original interaction between
OSM SOM and the SRM system, but can only accept cancelation requests. In
which case OSM SOM must configure the automation task to completely undo the
original request then redo it with using the new CFS information.

• It may be that you want to configure OSM TOM to accept revision orders, in which
case, you can configure OSM SOM to redo the task that sends the technical order
to OSM TOM such that is sends a versioned revision order.

See the following sections for more information:

• Modeling Changes to Orders

• Modeling Processes and Tasks

Cartridge Management Considerations for SOM
What kinds of cartridge management scenarios you want to plan for in advance, such
as the impact of upgrading cartridge functionality, how such upgrades impact run-time
orders, how best to structure cartridges to minimize the impact of such changes, and
so on.

See "Managing OSM Solution Cartridges" for more information.

Planning OSM TOM Solution Requirements
This section describes OSM modeling entities and functions involved in the OSM
TOM role. It includes examples intended to guide you in understanding how they can
use these entities and functions in your OSM TOM solution. This information can
help you plan your implementation efforts by understanding the full scope of a typical
TOM solution. Follow the links in each section for specific details about the functions
described.

Chapter 1
About Determining the OSM Functionality to Implement

1-31

The bottom up approach is where you begin to analyze a conceptual model from the
perspective of the network resources and infrastructure in place to fulfill orders.

Modeling TOM Order and Order Recognition Requirements
You must determine what kind of orders you need to model in OSM TOM, what order
life-cycle states and state transitions the orders have, and who has permissions to do
various tasks in fulfilling the order.

At this point, it is important to understand that the TOM order is a child of the SOM
parent order and must report back to the SOM order component that generated
the technical order. In the example provided in "Modeling COM Orchestration
Fulfillment Patterns and Fulfillment Modes", the order component that generated
the service order to TOM is a task that is part of a process triggered by
the CreateTechnicalOrderFunction/OSMTOMsystem/OrderGranularity run-time order
component. Any notification from OSM TOM relating to the service order would return
back to this task.

Depending on how you have modeled your SOM solution, OSM TOM may receive
more than one technical order. For example, you may want to configure OSM COM
to send a separate service orders to fulfill the broadband internet CFS and another
that fulfills a VoIP CFS. OSM SOM would process these orders separately. OSM SOM
sends the service order to the SRM system to generate technical actions that OSM
SOM sends to OSM TOM as a technical order. Therefore, OSM TOM would receive
two separate technical orders to fulfill resource actions on the original sales order sent
to OSM COM.

Like OSM COM, you may want to create separate target orders for each technical
order based on the different domains they interact with (broadband, VoIP, Mobile, and
so on), or one generic target order that receives all technical orders.

If you create individual order types, you also need to create corresponding order
recognition rules that match incoming orders to the target order. You can consider the
following approaches when modeling order recognition rules for OSM TOM:

• You would typically not have multiple OSM SOM instance interacting with the
same OSM TOM instance using different message format, but usually each OSM
SOM instance would have its own OSM TOM instance. This means it is unlikely
that you would need multiple order recognition rules pointing to the same OSM
TOM instance target order.

• If you have multiple order target orders based on domain groupings, you must
create a separate order recognition rule for each target order type.

• If you have one OSM instance operating in more than one role, for example, if
the same system is operating in both the SOM and the TOM role, you need to
configure an order recognition rule that points to a corresponding target order for
each role.

• If you have one OSM SOM instance and one OSM TOM instance, then you
typically need only one order recognition rule that points to one target order.

You need to determine what corresponding order recognition rules you need to model
in OSM to recognize, validate, prioritize, and transform order data from sales orders
into a matching OSM target order. You must map incoming order data to the data
defined in the creation task of the target order.

See the following sections for more information:

Chapter 1
About Determining the OSM Functionality to Implement

1-32

• Modeling Orders and Permissions

• Modeling Order Life-Cycle Policies

• Modeling Order Recognition

TOM Data Modeling Considerations
Answer the following questions to determine what corresponding order data you need
to model on the OSM order to capture the incoming order data:

• What data is required to complete an order?

• What data do the tasks require? For example, what data is required on each
interaction with the Activation, the PWG, the WFM, and the SCM systems? What
message format do these interactions require?

• Which data is not required on the technical order, but is required by the different
fulfillment systems that OSM TOM interacts with?

• Does the incoming order include all of the data needed for the order? If not, you
can use data providers in your tasks to get the data from some other source.

• Which nodes on the service order contain order item information that represents
the actions on the order?

• What order item parameters represent the name of the action order item?

• If the order items are hierarchical what data elements specify the parent child
relationship between each order item? For example, you may want to specify a
hierarchy between an overall parent action with related child order items, such
as CreateDSL_CPE with children order items that decompose to a shipping
component, another to a workforce management component, and a third for the
activation component.

• If the order items must be delivered at different times and dates, what data
element contains the requested delivery date?

• What data element specifies the action that must be performed on the order item
during the fulfillment process? For example, add, change, delete, move, and so
on.

• What data element specifies the overall purpose of the order, such as deliver,
cancel or technical service qualification (TSQ)?

See the following sections for more information:

• Modeling Order Data

• Modeling Orders and Permissions

• Modeling Behaviors

Modeling TOM Orchestration Order Items and Bindings Conceptual Model
Parameters

You must determine what nodes in the incoming order you want to designate as order
items containing actions on resources and RFSs. What data in the order items you
want to use for specific orchestration functions, such as the actions you want OSM to
perform on those order items, the requested delivery date when the order item actions
need to occur, what CFS the order item represents that OSM then uses to map the
order item to specific fulfillment patterns, and so on.

Chapter 1
About Determining the OSM Functionality to Implement

1-33

You can also use order item parameter bindings to bind conceptual model resources
and RFSs with their corresponding conceptual model actions and the parameters
to a OSM TOM order item specifications. This allows you to have strongly typed
parameters that you don't need to model within order item specifications. For example,
Figure 1-1 defines the DSL resource-facing service that can optionally be fulfilled using
the ADSL or VDSL interface, that also requires a DSL customer premise equipment
(CPE). You can use order item parameter bindings to map these conceptual model
resources, RFS entities, the actions associated with them and their data to order item
specifications by configuring an order item property for the order item recognition and
an order item property as a dynamic parameter where the parameters are stored.

Order item parameter bindings in OSM TOM are important for validating the incoming
resource and RFS data generated from the SRM system and sent to OSM TOM
from OSM SOM. Transformation is not typically required in OSM TOM because the
SRM system that produced the technical actions should have already used the correct
format.

See "Modeling Orchestration Plans" for more information.

Modeling TOM Orchestration Order Item Decomposition
You need to decide what orchestration stages you want OSM to evaluate when
decomposing resources and RFS order items into order components. These order
components typically designate functions, systems, and granularity.

Based on the previous sections, you should already have some knowledge of what
the service order you are creating contains. Using this knowledge, you can provide
answers to the following questions:

• What are the systems that OSM must communicate with? For example, OSM TOM
typically communicates with shipping, activation, WFM, and SCM systems.

• What order items do each system require? For example, the activation system
may require the DSL RFS, the DSL CPE resource, and the Email account
resource, the PGW may require the local loop resource, and the WFM and SCM
systems may require the DSL CPE.

• What are the business functions that each system must perform on these order
items? For example, the SCM must ship the DSL CPE, the WFM system must
dispatch personnel to install the CPE, the PGW must configure the local loop, and
the activation system must activate the DSL access node, the DSL CPE, and the
Email account.

• How should OSM deliver this data for the functions to process? Does the function
operate on the whole order, or does the function require a separate interaction per
order item parent child order item combination on the order, or per order item?

Based on the answers you provide to these questions, can you begin to model order
item decomposition stages.

Figure 1-1 defines the multiple resources and RFS entities. You can decompose these
order items into function, system, and granularity order components in the same
way you do in the COM and SOM (see "Modeling COM Orchestration Order Item
Decomposition").

You must determine what high-level tasks are involved in fulfilling customer orders at
the OSM TOM level. You can define orchestration order components that correspond
to the functions performed by these tasks that you can then add to the function stage

Chapter 1
About Determining the OSM Functionality to Implement

1-34

(see Figure 1-2). See "About the OSM Solution Modeling Process" for a sample list of
OSM TOM related tasks that can be modeled as function order components.

You must determine what kinds of OSS fulfillment systems you have at the OSM
TOM level. You can define orchestration order components that correspond to these
systems that you can then add to the system stage. As illustrated in Figure 1-1,
the systems that normally interact with OSM SOM include activation, PGW, shipping,
WFM, and SCM systems.

You must also determine what kind of order granularity you need when fulfilling each
function order components. For example, at the TOM level, you might configure OSM
to pass the whole order to the activation and completion function but requires order
item specific granularity for the shipping, WFM, and SCM related functions.

For each of these options, you need to create an order component that OSM can use
to decompose the order items to, such as whole order granularity or product order
item granularity, and so on. At this point, you are only defining the order components
that OSM can use to decompose order items to during order decomposition. You
configure the actual decomposition behaviors and conditions with other Design Studio
orchestration entities such as fulfillment patterns and orchestration decomposition
rules.

See "Modeling Orchestration Plans" for more information.

Modeling TOM Orchestration Fulfillment Patterns and Fulfillment Modes
You must determine what fulfillment patterns each order item should decompose to
and what action you want to specify on the overall order that you can model as
fulfillment modes for the order, such as deliver, technical service qualification, or
cancel.

In a conceptual model project, you map conceptual model resource and RFSs to
conceptual model fulfillment patterns. These resources also specify the conceptual
model actions that fulfill them. For example, the AAA_Account may be associated with
the ActivateAAA_Account, AlterAAA_Acount, and DeactivateAAA_Account actions.
In the conceptual model, you must also specify what realizes these actions. In
this case these actions would be realized by an activation system, such as Oracle
Communications ASAP, and more specifically, by ASAP service actions. Other
resources would be realized by other systems and action types in a similar way.
However, the information important to OSM in term of order item decomposition, are
the resources and RFSs that contain these actions.

When you build an OSM cartridge, OSM generates a sample XML file that contains all
these resource and RFS to fulfillment pattern mappings that you can reference using
an OSM TOM order item specification order item property that defines XQuery logic
that determines how each order item decomposes to what fulfillment pattern during
run-time.

For example, a technical order to OSM TOM may have an Email_Account resource
order item that maps to a conceptual model fulfillment patter that is realized by
an OSM TOM fulfillment pattern. The OSM TOM fulfillment pattern would in turn
decompose the Email_Account order item into the Activation functions because there
is a condition on the activation order component within the fulfillment pattern that only
allows order items to decompose to that order component that contain an order item
property with a value of Activation. All other functions order components would also
have conditions such that only order items destined for the systems the function order
components are associated with can decompose to them.

Chapter 1
About Determining the OSM Functionality to Implement

1-35

At run-time, OSM evaluates the function, system, and granularity stages in a similar
way to OSM in the COM role (see "Modeling COM Orchestration Fulfillment Patterns
and Fulfillment Modes"). The function, systems, and granularity stages might generate
the following run-time order components with associated resource and RFS order
items and the actions they contain:

• ShipFunction/SCMsystem/OrderItemGranularity

• InstallFunction/WFMsystem/OrderItemGranularity

• ConfigureLocalLoopFunction/PGWsystem/OrderItemGranularity

• ActivationFunction/Activationsystem/OrderGranularity

• CompleteTechnicalFunction/SRMsystem/OrderGranularity

Modeling TOM Orchestration Dependencies
You must determine what dependencies exist between executable order components.
These dependencies are called orchestration dependencies. You typically define all
orchestration dependencies using fulfillment patterns for function order components,
but you can also specify dependencies between system order components using
orchestration dependency rules. In addition, you can specify when order components
can start based on dates provided by customers for when they want a service to begin.

For example, the tasks specified in "About the OSM Solution Modeling Process"
for OSM TOM may require that each function operate in the sequence specified
in Figure 1-9. The ship function and the install function must complete before the
activation function can start. In addition, the activation function is dependent on the
configure local loop function that communicates with the PGW. The complete function
has dependencies to the install and activation function and does not start until those
functions have completed.

Figure 1-9 Example OSM TOM Dependencies

These dependencies make sense when you understand what each function is doing.
For example, the activation function cannot activate the service until the DSL CPE has
been shipped to the customer and the CPE has been configured properly. In addition,
the activation function requires that the third-party company that owns the local loop
configure this resource for the CSP's customer. It is only after these dependencies

Chapter 1
About Determining the OSM Functionality to Implement

1-36

have been meet that the activation function can configure the network resources that
deliver the service to the customer.

See the following sections for more information:

• Modeling Orchestration Plans

• Modeling Order Scheduling

Modeling TOM Processes and Tasks
You must determine what process flow of sequential or parallel manual and automated
tasks are required when interacting with target systems for each functional component.

Tasks in OSM TOM typically involve sending resource and RFS order item actions
to the SCM, WFM, PGW, and activation systems and receiving back the responses
from these systems. You must careful analyze the API requirements for the interfaces
to each system and model the data on the tasks to meet these requirements for
each interaction with these systems. You also model automated tasks with automation
plug-in senders that build and send messages to these systems containing the actions
each external system is to fulfill. When the systems complete their work, they send
responses back to OSM TOM that OSM TOM correlates back to the automated task
to an automation plug-in automator that is waiting for a response message. You must
develop to so that the automation plug-in automator can review the response message
and determines that the system completed its tasks successfully (or whether some
problem occurred) and then transitions the automated task to the completed state
(or a fallout execution mode) which also completes the order component to the task
belonged to.

OSM also provides a specialized automated task for communicating service requests
to Oracle Communications ASAP product or the Oracle Communications IP Service
Activator product. You can use this task to define the relationship between OSM task
data and ASAP and IP Service Activator service actions.

See the following sections for more information:

• Modeling Processes and Tasks

• Modeling Behaviors

• Modeling Data for Tasks

Modeling TOM Fallout Scenarios
What fallout management scenarios can be anticipated, determine how they can be
detected, how relevant parties or systems can be notified of the problem, and what
recovery processes can be implemented.

For example, fallout scenarios may occur within the external fulfillment systems the
OSM TOM communicates for a variety of reasons. For example, there may be an
outage in one of the network elements that the activation system is working with, or a
package sent from the SCM containing the router may have been lost or broken during
delivery. Typically, many of these problems can be resolved directly in the external
system, however, you may want the tasks communicate with these external systems
to trigger jeopardy notifications informing upstream systems of the delay so that the
upstream systems can communicate the delay back to the customer who requested
the service. You must carefully analyze as many of these fallout scenarios as you can
and develop fallout strategies to recover from such scenarios. In some cases, manual

Chapter 1
About Determining the OSM Functionality to Implement

1-37

intervention may be required while in other cases, you may be able to model automatic
fallout recovery capabilities.

See the following sections for more information:

• Modeling Fallout

• Modeling Behaviors

• Modeling Processes and Tasks

• Modeling Jeopardy and Notifications

Modeling TOM Fulfillment States
What kind of order and order item fulfillment states you need to configure to track the
overall status of an order and each order item based on status messages received
from external systems. You also need to consider what notification messages you want
to send to interested parties or systems as the order progresses.

For example, you can map messages from the SCM, WFM, PGW, and activation
systems returning as these systems process messages sent by various order
components to external fulfillment state in the OSM TOM system. These external
fulfillment states can represent the result of various interactions between OSM TOM
and these systems on the actions contained on each resource and RFS order item
that OSM TOM then aggregates into order item and order-level fulfillment states based
on order and order item fulfillment sate composition rule sets.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling TOM Processing States
You can track the state of order items by mapping responses from the SCM, WFM,
PGW, and activation systems to resource and RFS order item processing states.
You must decide what messages correspond to which predefine order component
order item processing state that OSM provides. OSM then aggregates these order
component order item processing states for each order item into an overall order item
processing state. You may decide to use warning and failure order item processing
states to trigger jeopardy notifications from OSM TOM to OSM SOM or from OSM
TOM to fallout personnel. In many cases, you can also use the same messages from
external systems to trigger external fulfillment state changes.

See the following sections for more information:

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

Modeling Change Order Management for TOM
You need to determine if you want to enable change order management, and if you do,
what change order management scenarios you want OSM TOM to support.

You must consider change order management based on end-to-end scenarios that
span OSM COM, SOM, and TOM. For example, if you enable OSM SOM to send

Chapter 1
About Determining the OSM Functionality to Implement

1-38

a revision order through to OSM TOM from the OSM SOM Create Technical Order
function then you must decide what compensation OSM TOM must undertake to
implement the changes in the revision order. For example, you might consider some of
the following question:

• Is there a point of no return where you do not want OSM TOM to accept any
new revision orders from the OSM SOM Create Technical Order function? For
example, you may want to configure a point of no return that is associated
with when the activation system completed the activation functions based on
an external fulfillment state change. This would mean that OSM TOM does not
accept revision orders from OSM SOM stemming from changes coming from OSM
COM service orders. Or you may decide that OSM TOM should never accept
revision orders, in which case you could disable this functionality on the target
order specification.

• For each automated task that communicates with a different external fulfillment
system, you must determine how the task should behave based on the changes
on the technical order.

See the following sections for more information:

• Modeling Changes to Orders

• Modeling Processes and Tasks

Cartridge Management Considerations for TOM
What kinds of cartridge management scenarios you want to plan for in advance, such
as the impact of upgrading cartridge functionality, how such upgrades impact run-time
orders, how best to structure cartridges to minimize the impact of such changes, and
so on.

See "Managing OSM Solution Cartridges" for more information.

About the OSM SDK
A number of directories within the SDK are referenced in procedures throughout this
guide. For traditional OSM, if you selected Custom installation, then you can choose
both the SDK and the Samples to be installed optionally. You can find the SDK inside
the OSM_Home directory, where OSM is installed.

Note:

You can install only the SDK on a Windows, UNIX, or Oracle Linux machine
by running the OSM Installer again and choosing Custom.

For OSM cloud native, the SDK is a separate artifact that is available in the download
pack.

Chapter 1
About the OSM SDK

1-39

Part II
Implementing an OSM Solution

Part II contains the following chapters providing information about implementing an
Oracle Communications Order and Service Management (OSM) solution:

• Modeling Orders and Permissions

• Modeling Order Life-Cycle Policies

• Modeling Order Recognition

• Modeling Orchestration Plans

• Modeling the Order Transformation Manager

• Modeling Processes and Tasks

• Modeling OSM Data

• Modeling Behaviors

2
Modeling Orders and Permissions

This chapter describes how to model orders and permissions in an Oracle
Communications Order and Service Management (OSM) solution.

Modeling OSM Orders
The order specification is the cornerstone model entity in Oracle Communications
Design Studio; most other specifications among cartridges are tied, directly or
indirectly, to the order specification to control order execution. Figure 2-1 shows the
entities that relate to an order specification and the content you can configure in order
specifications.

Figure 2-1 Order Specification Configuration and Related Entities

In the order specifications you can define:

• The order template, which specifies the elements and structures of the order data
that OSM receives from incoming orders and from other fulfillment systems.

2-1

• Order priority in conjunction with the priority defined on an order as detected by
the order recognition rule. See "Modeling Order Recognition" for more information
about order priority.

• Various order-level notifications. See "Modeling Jeopardy and Notifications" for
more information about notifications you can configure in the order specification.

• Whether the order is amendable. See "Modeling Changes to Orders " for more
information.

• Fallout data and fallout groups that define data and groupings of data that
can potentially trigger a fallout exception on tasks that are associated with the
fallout data or data groups. Fallout exceptions trigger amendment processing. See
"About Modeling Fallout Exceptions" for more information.

• Permissions that associating roles to query tasks. Query tasks define what data
can be displayed to a user associated with a specific role (whether a human
user or a user account associated to automated tasks). See "Modeling Roles and
Setting Permissions" for more information.

• Rules that to determine when notifications should run, when various process flow
decisions or actions should occur, within decomposition rule to determine when
order items should decompose to an order component, and so on. You can use
rules in various OSM entities.

In the order specification, you must do the following:

• You must designate creation task data that defines the internal OSM order data,
elements and structures that OSM generates as part of order processing (such as
control data that OSM uses to generate orchestration plans), and any elements
and structures generated by external fulfillment systems in response to messages
from OSM. A creation task is a manual task that is not part of a process flow
where you define data elements and structures in the Task Data tab.

• You must designate an order life-cycle policy that the order uses to determine valid
states and state transitions for the order. Order states define sequential states
through which an order passes and the transactions it undergoes from the time it
is received in OSM until the time it is completed. For example, an order can be
in progress, not started, suspended, and so on. You can enable multiple states in
the order life-cycle policy and define what transitions can occur between states.
For example, you can configure an order to be able to transition from in progress
to cancelled. For more information about order life-cycle policies, see "Modeling
Order Life-Cycle Policies".

• You must define whether OSM triggers an orchestration process or a standard
process. An orchestration process causes OSM to generate an orchestration plan.
An orchestration plan orchestrates order items into order components that trigger
a series of standard processes. Most OSM orders require orchestration.

You can use the following OSM Web Service operations to submit orders:

• CreateOrderBySpec In this operation, you must specify the cartridge and order
type so that OSM understands which Order entity to use to process the order.
Also, the incoming order payload has to be in XML format as defined in the
cartridge.

• CreateOrder This operation accepts arbitrary payload in XML for the incoming
order. You specify an order recognition rule to recognize the payload, and
transform it to the format as defined in the cartridge. There is no need to specify
the cartridge or order type in the operation.

Chapter 2
Modeling OSM Orders

2-2

The target order specification runs if the CreateOrder request includes the
StartOrder=true parameter and value in the order header.

See OSM Developer's Guide for more information about CreateOrderBySpec and
CreateOrder.

With either operation, when the order is created in OSM, it is tied to the order type
in the cartridge. OSM relies on that cartridge and any the dependent cartridges to
determine how to display and execute the order. This means, as long as the order
resides in the OSM server and is not purged, the cartridges must remain in the
run-time OSM environment.

You can use Java Message Service (JMS) or HTTP or HTTPS to send orders to OSM.
Use JMS on production systems, because it provides quality-of-service guarantees
not available from HTTP or HTTPS. Use HTTP or HTTPS on development and test
systems (see OSM Installation Guide for more information).

About OSM Orders Without Orchestration
For orders that do not require an orchestration plan for fulfillment (called process-
based orders), the OSM runs a single process and any subprocesses defined within
the process, which includes tasks such as Activate_DSLAM. When a process-based
order is submitted to OSM, the following occurs:

1. OSM starts the process.

2. The process can start subprocesses that run sequentially or in parallel.

3. After the last task has completed, the order transitions to the Completed state.

Figure 2-2 shows the process flow for a process-based order.

Figure 2-2 Process-Based Order

About OSM Orders With Orchestration
For orders that require an orchestration plan for fulfillment, (called orchestration-
based orders), OSM runs an Orchestration process. When a orchestration-based
order is submitted to OSM for processing, the following occurs:

1. OSM starts the orchestration process.

2. OSM generates the orchestration plan which includes run time order components
that run processes with tasks.

3. After the last task has within each order component completes, the order
component completes.

4. After the last order component completes, the order transitions to the Completed
state.

Figure 2-3 shows the process flow for an orchestration-based order.

Chapter 2
Modeling OSM Orders

2-3

Figure 2-3 Orchestration-Based Order

Modeling Roles and Setting Permissions
You use roles to control what operations can be performed and what data can be
viewed by OSM user that you associated with the roles. You create roles then apply
the roles to OSM entities in Design Studio. For example, roles are used in the
following OSM entities:

• Order specifications: You define what order data users with specific roles can view
in the OSM web clients by defining this data in query tasks and assigning the
query tasks to roles within orders specifications. The OSM web client uses the
query tasks to determine what data to display to users. The role applied to a query
task determines the data that users associated to the role can retrieve. For more
information about query tasks, see "Modeling Query Tasks for OSM Clients". You
also define filters that specify whether orders with specific values can be displayed
to users with the defined roles, and flexible header that define custom searchable
data fields.

Figure 2-4 shows roles defined in an order specification in Design Studio. In this
example, members of BillingUpdateRole are allowed to view orders for customers
in the 408 and 510 area codes.

Figure 2-4 Roles Defined in an Order Specification

• Order life-cycle policy: You define what transactions can be performed by users
associated with the roles assigned to each transition. For example, you may
want to a standard role to handle normal order processing from the Not Started
state through to Completed state. You may also want to assign a role for fallout
management operations or amendment processing work. For more information,
see "About Modeling Transition Permissions".

• Tasks: You define what tasks can be performed by users associated with the roles
assigned to each task. For example, you may want a role that can run normal
processing tasks, another for tasks during amendment processing, and another for
tasks during fallout management. You define what data is available for each role
associated to these tasks functions using query tasks. For more information about
query tasks, see "Modeling Query Tasks for OSM Clients".

Chapter 2
Modeling OSM Orders

2-4

• Order, task, and process notification: You define what notifications are sent to
which group of users by assigning roles to specific notification instances in the
Order editor, a Task editor, or a process activity or flow.

• Order components: You define what data users with specific roles can view by
applying those roles to query tasks and assigning the query tasks to components.
OSM web clients uses the query tasks to specify which what data to display
to users. The role applied to a query task determines the data that task will
retrieve. For example, you may define a ProvisioningRole for a provisioning order
component that allows OSM client users to view certain data.

Figure 2-5 shows roles used in an order component. In this example, members
of ProvisioningRole can perform queries based on ProvisioningFunctionTask and
view the data in both the summary and detail views in the Order Management web
client.

Figure 2-5 Roles Used in an Order Component Specification

• Order item specification: You can associate roles with corresponding query tasks
from the Order Item Specification Permissions tab. The method of applying roles in
an order item specification is identical to the method of applying roles in an order
component specification. For more information about query tasks, see "Modeling
Query Tasks for OSM Clients".

In addition to associating roles with OSM entities, you can also configure permissions
for various actions on the roles. Figure 2-6 shows a role defined in Design Studio.
In this example, users assigned to this role can generate online reports, search for
orders, and access the Task web client Worklist display.

Chapter 2
Modeling OSM Orders

2-5

Figure 2-6 Role Defined in Design Studio

Table 2-1 shows the actions that can be assigned to roles in Design Studio.

Table 2-1 Functions Assigned to Roles

Function Description

Create Versioned
Orders

Enables users to create orders for different versions of cartridges. If not
granted this permission, users can create orders only for the default version
of the cartridge.

Exception Processing Enables users to alter the flow of a process by applying exception statuses at
any time throughout the process.

Online Reports Enables users to view summarized reports on all orders and tasks on the
system.

Order Priority
Modification

Enables users to modify the priority of a task in an order.

Reference Number
Modification

Enables users to modify the reference number of an order.

Search View Enables users to access the order Query function. See "Specifying Which Data to
Display in the OSM Web Clients" for more information.

Task Assignment Enables users to assign tasks to others.

Worklist Viewer Enables users to display the worklist in the Task web client.

Because roles are defined globally in OSM, roles specified in one cartridge can be
applied to any other cartridge, and roles used in one order can also be used in any
other order. If you want to further restrict certain operations in an order, you must do so
in the Design Studio entities that the roles are associated with, such as the life-cycle
policy transaction or the task execution modes.

Chapter 2
Modeling OSM Orders

2-6

You associate roles with OSM user accounts using the OSM Order Management web
client. Roles are called workgroups in the OSM Order Management web client. Each
user account can belong to as many workgroups as are available on the OSM server.
For more information, see OSM Order Management Web Client User's Guide.

About Order Types
Figure 2-7 shows OSM orders in different order processing scenarios and how OSM
receives them. These scenarios include:

• Customer orders, service orders, and technical orders that are sent to
OSM systems running in the central order management (COM), service order
management (SOM), and technical order management (TOM) roles. For more
information, see "About Determining the OSM Functionality to Implement".

• Revision orders sent to change an in-progress order. For more information, see
"Modeling Changes to Orders ".

• Order update performed either manually through the Task web client or through
an automation task automator plug-in that sends an UpdateOrder request. For
more information, see "About Order Updates".

• Job orders performed either manually through the Order Management web client
or through the OSM CreateOrder Web Service operation. For more information,
see "Using a Job Control Order to Manage Multiple Orders".

See "Modeling OSM Data " for more information about how orders and order items are
structured.

Chapter 2
About Order Types

2-7

Figure 2-7 Order Types and Order Processing

About Order Updates
You can update order data within customer, service, and technical orders that have
already been created in OSM. OSM defines the following contexts where you can
update order data:

• Order context: This context defines an overall view of OSM data. Although you can
update order data in this context, doing so may compromise the integrity of order
data, especially if the data you update may be subject to amendment processing.

Chapter 2
About Order Types

2-8

If you know that the data you want to update in the order context should never
trigger amendment processing, you can mark the data as not significant (see
"About Data Significance" for more information).

• Task context: This context defines a task specific view of OSM data. You typically
use tasks to communicate with external fulfillment systems or manual task users
that make changes to the data define in the task. Updating order data within
the task context ensures the data integrity, especially when the data you update
may be subject to amendment processing. See "About Order-Level and Task-
Level Compensation Analysis" for more information about how tasks ensure data
integrity during amendment processing.

You can update order data on orders and tasks in following ways:

• XML API UpdateOrder

After receiving a JMS response message from an external system at an
automation task automator plug-in, you can use the XML API UpdateOrder to
update data or add any new data to the order. For example, you can use
UpdateOrder to update any status notification data returned from an external
system or another instance of OSM (see Figure 2-7). Oracle recommends that you
run the XML API only from within the task context.

• OSM Java API methods

After receiving a JMS message from an external system at an automation task
automator plug-in, you can use various OSM Java API methods to update data or
add any new data to the order. Oracle recommends that you run these Java API
methods from within the task context.

• Web Service UpdateOrder

You can use the OSM Web Service UpdateOrder operation to update order data
outside of the Task web client and the automation framework. However, OSM Web
Service operations can only access the overall order data context and do not have
direct access to the task context. Use caution because doing so can compromise
order integrity.

• Task web client

Personnel can update task data manually, by opening and editing an order using
the Task web client order query. Changes to task data in the Task web client are
within the task context.

See OSM Developer's Guide for more information about updating order data using
the XML API UpdateOrder, the OSM Web Service UpdateOrder operation, and the
OSM Java API methods. See OSM Task Web Client User's Guide for more information
about using the Task web client to update order data.

Update orders can:

• Update a complete order. The existing order is updated (elements are added,
changed, or deleted) to match the supplied order. Order-level order updates are
typically sent in the context of order-level notifications, jeopardy notifications, or
event automation automators. See "Modeling Jeopardy and Notifications" for more
information about update order transactions used in the context of jeopardies,
notifications, and events.

• Update nodes in an order. Elements can be added or changed. Deleting nodes are
not performed using the update node functionality. The nodes are supplied in the
format of the existing order and are typically sent as part of task-level automation
automators.

Chapter 2
About Order Types

2-9

• Add, delete, or change element data values that are typically sent as part of
task-level automation automators.

Using a Job Control Order to Manage Multiple Orders
Job control orders enable you to efficiently apply changes to many orders at the same
time. You can use job control orders to apply the same set of OSM Web Service
operations or OSM Order Management web client actions to multiple orders. For
example, you could model a job control order using a CreateOrder OSM Web Service
operation that selects multiple orders, suspends each of them, updates order data on
all the orders, and then resumes each orders.

You can specify how many OSM Web Service operations or Order Management web
client actions OSM can process at the same time. You can specify a failure threshold
for job control order operations that, if crossed, causes the entire job control order to
enter the suspended state. In addition, job control orders support a variety of counters
that track job order progress.

To use job control orders:

1. Ensure that the JobControl_Solution portal archive (PAR) file has been deployed
on the OSM server. This PAR file can be deployed either when OSM is first
installed or manually. For manual deployment instructions follow the instructions
in the readme file that is in the OSM_home/ProductCartridges/install directory.
more information about deploying the job control order cartridge, see OSM
Installation Guide. The PAR file packages the following OSM projects that you
can see in the Design Studio Cartridge Management editor when you query an
OSM server for cartridge information:

• BatchJobCommonResources: Contains the job control order system
configuration file that defines default job control order settings.

• JobControl: contains the OSM Design Studio cartridge that enables the job
control order functionality.

• JobControl_Solution: contains the solution cartridge that packages the
BatchJobCommonResources and JobControl cartridges.

Note:

You can only view these cartridges when you query OSM for cartridge
information. Oracle does not provide access to the actual Design Studio
projects.

2. In the OSM WebLogic server, create a new user account or use an existing user
account and associate it with the OMS_ws_api group.

Note:

You can also associate the user account to the OMS_client group to give
the user access to Order Management web client and Task web client.

Chapter 2
About Order Types

2-10

3. In the Order Management web client, associate the user account with the
JCO_UserRole or the job control order functionality in the JCO_SuperUserRole
workgroups (roles). For more information, see "About Job Control Order
Permissions".

4. Ensure that all orders to be managed by job control orders have roles associated
with the default oms-automation OSM user account.

5. Model job control orders using the CreateOrder OSM web service operation and
the following syntax:

<?xml version="1.0" encoding="UTF-8"?>
<ord:CreateOrder xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <CreateJob xmlns="http://oracle.communications.ordermanagement.cartridge/job">
 <FailureThreshold>threshold</FailureThreshold>
 <ConcurrentOperationsAmongOrdersInJob>degree</ConcurrentOperationsAmongOrdersInJob>
 <Priority>priority</Priority>
 <RequestedDeliveryDate>requestedDeliveryDate</RequestedDeliveryDate>
 <Selection>
 byOrderCriteria
 or
 bySelectionCriteria
 </Selection>
 <Operations>
 operations
 </Operations>
 </CreateJob>
</ord:CreateOrder>

where:

• threshold: (Optional) The number of operations that must fail before the job
control order automatically transitions to the Suspended state. Valid values are
percentages from 1% to 99%, absolute values, such as 10, 15, and so on, or 0
which specifies no threshold. If specified, this value overrides the default value
specified in the batch_job_cfg.properties file (see "About Job Control Order
System Configuration Files").

• degree: (Optional) The number of executable components created for each
operation in the job. If specified, this value overrides the default value
specified in the batch_job_cfg.properties file (see "About Job Control Order
System Configuration Files").

• priority: (Optional) The priority of the job control order (see "Modeling Order
Priority").

• requestedDeliveryDate: The date and time when the job control order is
to begin (for example, 2014-08-01T03:10:00Z). For more information about
requested delivery dates, see "Modeling Order Scheduling ".

• byOrderCriteria: The orders to which the job control order operations apply.
For example:

 <Orders>
 <OrderId>1</OrderId>
 <OrderId>2</OrderId>
 etc...
 </Orders>

• bySelectionCriteria: The selection criteria that OSM uses to match
corresponding orders to. For example:

Chapter 2
About Order Types

2-11

 <ord:SelectBy>
 <ord:OrderState>lifecyclestate</ord:OrderState>
 <ord:Cartridge>
 <ord:Name>cartridgename</ord:Name>
 <ord:Version>1.0.0.0.0</ord:Version>
 </ord:Cartridge>
 </ord:SelectBy>

The job control order selection criteria is identical to the SelectBy option of
the FindOrder OSM Web Service operation. See OSM Developer's Guide for
more information. The number of orders returned using the selection criteria
is limited by the FindOrderMaxOrderThreshold oms-config.xml parameter.
The default value is 1000. For information about modifying the default
FindOrderMaxOrderThreshold parameter, see OSM System Administrator's
Guide.

• operations: One or more OSM Web Service operations listed in "About Job
Control Order Operations" according to the permissions listed in "About Job
Control Order Permissions". For example:

 <ord:SuspendOrder>
 <ord:Reason>Job Test</ord:Reason>
 </ord:SuspendOrder>
 <ord:UpdateOrder>
 <ord:View>CreationView</ord:View>
 <ord:DataChange>
 <ord:Update Path="/account_information/amount_owing">444</
ord:Update>
 </ord:DataChange>
 </ord:UpdateOrder>

About Job Control Order Operations
You can run combinations of the following web service operations as a part of a job
control order:

• SuspendOrder: Causes OSM to stop all processing on the orders specified in a
job control order. The orders transition from the In Progress or Not Started state to
the Suspended State.

• ResumeOrder: Causes OSM to resume processing all orders specified in a job
control order that are in the Suspended state. The orders transition from the
Suspended state to In Progress state.

• CancelOrder: Causes OSM to cancel all orders specified in the job control order.
All applicable order components and tasks are undone. The orders transition to
the Cancelling state while order components and tasks are running in the undo
mode. After all order components and tasks complete, the order transitions from
the Cancelling state to the Cancelled state.

• AbortOrder: Causes OSM to abort all orders specified in the job control order.
The orders transition to the Aborted state.

• FailOrder: Causes OSM to fail all orders specified in the job control order. The
orders transition to the Failed state.

• ResolveFailure: Causes OSM to revert all orders specified in the job control order
to the previous order state before the orders failed.

• RetryOrder: Causes OSM to retry an order or a collection of order components
for a given order. All failed tasks in the order or within the order components

Chapter 2
About Order Types

2-12

are retried and transitioned from the failed execution mode back to the normal
execution modes such as do, redo and undo.

• UpdateOrder: Causes OSM to update order data on all orders specified in the job
control order.

Operations run in the sequence they appear in the job control order. You must ensure
that the sequence is logical. For example, you can suspend, update, and then resume
an order, but you cannot resume, suspend, and update an order. You must also ensure
that order life-cycle policies of the orders that the job control order interacts with
supports the use of the operations you want to be available to a job control order.

For more information about the transitions associated with job control order and the
roles that can run these transitions, see "About Job Control Order Permissions". For
more information about OSM Web Service operation syntax, see OSM Developer's
Guide.

About Job Control Order Permissions
The job control order solution cartridge contains the JCO_UserRole and the
JCO_SuperUserRole workgroups (roles) with different permissions configured for
each. You associate user accounts with workgroups using the Order Management
web client. For more information about associating user accounts with workgroups,
see OSM Order Management Web client User's Guide.

Table 2-2 shows the permissions available to each role.

Table 2-2 Permissions for JCO_SuperUserRole and JCO_UserRole

Permission JCO_Supe
rUserRole

JCO_Use
rRole

Description

Version Orders Yes No Allows users to create orders for
different versions of cartridges. If not
granted this permission, users can create
orders only for the default version of the
cartridge.

Exception Processing Yes No Allows users to alter the flow of a
process by applying exception statuses at
any time throughout the process.

Order Priority Modification Yes Yes Allows users to modify the priority of a
task in an order.

Reference Number Modification Yes Yes Allows users to modify the reference
number of an order.

Task Assignment Yes Yes Allows users to assign tasks to others.

Modifications to configuration
parameters in order data

Yes Yes Allows users to modify default
configuration parameters for job control
orders.

Modifications to other order data Yes No Allows users to modify order data in
operations.

Chapter 2
About Order Types

2-13

Table 2-2 (Cont.) Permissions for JCO_SuperUserRole and JCO_UserRole

Permission JCO_Supe
rUserRole

JCO_Use
rRole

Description

Suspend State Transaction Yes Yes Allows users to suspend or update a job
control order in the In Progress state.
Job control orders automatically
enter the Suspended state when
the job control order passes the
jobFailedOperationsThreshold threshold.
Users can also manually suspend
a job control order by sending a
SuspendOrder web service operation.

Resume State Transaction Yes Yes Allows users to resume a suspended
order. When a Suspended order is
resumed, it returns to the state it was
in prior to the Suspended state (for
example, In Progress or Not Started).

Abort State Transaction Yes No Allows users to Abort an order. All
transitions to the aborted state occur
after the grace period expires.

Cancel State Transaction Yes No Allows users to Cancel a job control
order. Canceling a job control order
stops all further processing of the job
control order. The cancel order does not
reverse job operations that have already
run.

Create Job Control Order Yes Yes Allows users to create a job control
order.

Transition to Complete State Yes Yes The job control order enters the
Completed state when all operations
on all orders have completed, whether
successfully or unsuccessfully.

Transition to Failed State Yes Yes The job control order may transition to
the Failed state. However, job control
orders do count all failed operations.

About Job Control Order System Configuration Files
Table 2-3 shows the job control order configuration file parameters that manage all job
control orders. Parameter values specified directly in a job control order override the
job control order configuration file parameters.

Table 2-3 Parameters for the batch_job_cfg.properties File

Parameters Description Default

Concurrent Operations
among Orders in Job

The number of executable components created for each
operation in the job.

1

Chapter 2
About Order Types

2-14

Table 2-3 (Cont.) Parameters for the batch_job_cfg.properties File

Parameters Description Default

Failure Threshold The number of operations that must fail before the job control
order automatically transitions to the Suspended state. Valid
values are percentages from 1% to 99%, absolute values, such
as 10, 15, and so on, or 0, which specifies no threshold.

0

Viewing Orders in OSM Web Clients
You can view orders in the following ways:

• You can display the orchestration plan, and the order components and order items
included in it, in the Order Management web client. For more information, see
OSM Order Management Web Client User's Guide.

• You can display current and historical information about tasks in the Task web
client. For more information, see OSM Task Web Client User's Guide.

Specifying Which Data to Display in the OSM Web Clients
You can choose the data to display in the OSM web clients using the following
methods:

• Use task data to specify which data to display in the Task web client for manual
tasks.

• Use behaviors to specify how OSM displays the task data within a manual task;
for example, to hide or show task data or to make data read only. See "Modeling
Behaviors" for more information.

• Use query tasks to specify which data to display in the Order Management web
client Summary tab and Data tab. Query tasks are manual tasks that specify
which data to display in the Order Management web client when opening an order.
A query task is associated with a role that gives permission to view the order data
that the particular role is allowed to view. For example, some users may only need
to view billing related order data, while others may only need to view provisioning
data. Some users may need to view the entire order. See "Modeling Query Tasks
for OSM Clients" for more information.

Modeling Query Tasks for OSM Clients
Order management personnel can display orders in the Task web client and in the
Order Management web client. You can specify which data is displayed by assigning
query tasks to an order. The data that is specified in the query task is the data that is
displayed.

You can select any task as the query task. You can also create special tasks whose
only function is to specify which data to display.

Figure 2-8 shows the Permissions tab in the Design Studio Order editor. The upper
screenshot shows the permissions for the provisioning role, with the provisioning
function task as the query task. The lower screenshot shows the permissions for the
billing role, with the billing function task as the query task.

Chapter 2
Viewing Orders in OSM Web Clients

2-15

Figure 2-8 Roles Assigned to Query Tasks

The Order Management web client uses the following types of views to display orders;
a summary view in the Summary tab and a detailed view in the Data tab. When you
model a query task, you can specify which of those views (either or both) to display the
query task data in.

You can use multiple tasks as query tasks for an order. When you do so:

• For the summary view, all the data is displayed in the Order Management web
client Summary tab.

• For the detailed view, the data from the query tasks appears as options in the
Order Management web client Data tab View field; each option presents the OSM
user with a different view, each containing a specific set of data.

You can use multiple query tasks in the Order Management web client when using
an orchestration cartridge. For process-based cartridges, only the default query task is
available in the Order Management web client. To display the query task in the Task
web client, select the Default check box, as shown in Figure 2-8.

In addition to defining the data that can be displayed, you can specify who can see
it by using roles. Each role that is associated with an order can be assigned different
query tasks. For example, if your order management personnel includes a role for
billing specialists, you can create query tasks that show data specific to their activities.

Chapter 2
Viewing Orders in OSM Web Clients

2-16

3
Modeling Order Life-Cycle Policies

This chapter describes how to model order life-cycle policies in an Oracle
Communications Order and Service Management (OSM) solution.

Modeling Order Life-Cycle Policy States and Transitions
Every order has an order state, which indicates the current condition of the order; for
example, In Progress, Amending, or Completed. These OSM order states control the
progress of the order. For example, an OSM user cannot work on tasks while the order
is in the Suspended state, and an order in the Aborted state cannot be restarted.

Note:

The order state represents the technical processing state of the order in the
OSM system, not the state of the order as defined in a CRM system, or the
fulfillment state defined in a fulfillment system. OSM order states are typically
not equivalent to the states of the order in the CRM system or other order-
source system, which might have different states for the customer order, as
well as states for order line items on the order.

A typical order uses the following states:

1. An order is created in the Not Started state.

2. When processing begins on the order, the state transitions to the In Progress
state.

3. When the order is complete, it transitions to the Completed state.

Changes from one order state to another order state are called transitions. Each
order state has a set of allowable transitions. For example, when an order is
completed, it transitions from the In Progress state to the Completed state.

Transitions are controlled by transactions. A transaction is an action taken by the
OSM system. For example, the Suspend Order transaction performs the following
actions:

• Stops all processing on the order

• Transitions the order to the Suspended state

Most transactions perform transitions that change the state of the order. However,
some transactions do not perform a transition to another state. For example, the
Update Order transaction can make changes to an order without changing the order's
state.

3-1

About Modeling Transition Conditions
Transition conditions are Boolean expressions that specify if a transition from one state
to another is allowed. For example, for the Submit Amendment state, you can prevent
the Process Amendment transition from occurring until a condition is true.

Figure 3-1 shows the life-cycle policy for the Process Amendment transition. In this
case, it returns true, so it is always allowed to transition.

Figure 3-1 Order Life-Cycle Policy for the Process Amendment Transition

A common scenario for configuring permissions is when you set the PONR for
amendment processing. See OSM Concepts for more information.

When specifying conditions, the minimum set of required order states is Not Started,
In Progress, and Completed. The life cycle must allow an order to transition to those
states.

OSM uses more transactions than those shown in Oracle Communications Design
Studio. Design Studio shows only the transactions that you can assign permissions on
and set conditions for. For example, the Complete Task transaction can transition an
order to the Completed state, but that transaction cannot be customized.

About Modeling Transition Grace Periods
The transition grace period specifies the amount of time that OSM should wait before
transitioning the order. For example, if a Suspend Order transaction is run on an In
Progress order, a grace period can allow the order processing to reach a definitive
state for all currently executing tasks before transitioning to the Suspended state.
In this case, OSM waits until all active tasks are in the Received, Completed, or
user-defined Suspended task state. (An active task is a task that is in the Accepted
state.) If the grace period expires before all tasks move out of the Accepted task state,
OSM transitions the order state.

During the grace period, the target order state header in the Task web client displays
the order state the order is transitioning to. The target order state is populated only
when an order is in grace period.

You can specify a grace period for certain transactions, such as Suspend Order,
Process Amendment, Cancel Order, and Fail Order. For other transactions, a grace

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-2

period is unnecessary or not permitted, such as for Submit Amendment, Update Order,
and Abort Order.

You can define the following grace period parameters:

• The length of time to wait (minimum and maximum, or indefinite)

• How often to generate a jeopardy event during the grace period

Figure 3-2 shows how you can customize the order life cycle in Design Studio. In this
figure, the Cancel Order exit transaction for the In Progress order state is selected. A
grace period for transitioning to an order cancellation is set for a minimum of one day,
and a maximum of five days. A jeopardy event is triggered every hour.

Figure 3-2 Order Life Cycle in Design Studio

About Modeling Transition Permissions
You can specify the roles that are allowed to perform a transaction. For example, while
an order is in the In Progress state, your customer service role might need to perform
the Update Order and Cancel Order transactions, whereas your fallout specialist role
might perform only the Raise Exception transaction.

OSM Order States and Transactions
OSM includes a standard set of order states and transactions. You cannot add states
or transactions, but you can control how the order transitions between states.

Table 3-1 shows the OSM order states.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-3

Table 3-1 Order States

Order State Description

Aborted The order has been permanently stopped. This is a final state. An order
in the aborted state cannot transition to another order state.
See "About the Aborted Order State" for more information.

Amending The order is being amended. OSM identifies which tasks are affected by
the amended data and compensates the order as necessary.
See "About the Amending Order State" for more information.

Cancelled The order has been canceled. All tasks have been undone back to the
creation task.
If an order includes an orchestration plan, the Cancelled state is the
final state. The order cannot be resumed.
If the order does not have an orchestration plan, the canceled order
is returned to the creation task for the order. The order can be re-
submitted to be run again.
See "About the Cancelled Order State" for more information.

Cancelling The order is being canceled. At least one task is running to perform
amendment processing for the cancellation. While the order is in the
Cancelling state, OSM undoes all completed tasks to return the order
to the creation task. When OSM is finished, the order transitions to the
Cancelled state
See "About the Cancelling Order State" for more information.

Completed The order has been fulfilled. There are no tasks running and processing
is complete. A completed order can be canceled, updated, or deleted.
See "About the Completed Order State" for more information.

Failed The order has failed during processing. The Failed state is not a final
state; the order can be resumed when the problem is fixed.
See "About the Failed Order State" for more information.

In Progress The order is actively running. Future-dated orders have an In Progress
state while they wait for dependencies to be resolved.
See "About the In Progress Order State" for more information.

Not Started The order has been created but has not started. There are no tasks
running.
See "About the Not Started Order State" for more information.

Suspended The order has been suspended and all processing on the order in OSM
has been halted. No task can be updated or transitioned while the order
is in this state.
See "About the Suspended Order State" for more information.

Waiting The order is not ready to start because it is future-dated or blocked by
another order.
See "About the Waiting Order State" for more information.

Waiting for Revision The order is waiting for a revision. This state is common following
compensation to an order for fallout, when the order is awaiting a
revision from the order-source system to correct something that caused
a failure in the originally submitted order.
See "About the Waiting for Revision Order State" for more information.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-4

Table 3-2 shows transactions that are included in the order life-cycle policy and the
operations they perform.

Table 3-2 Order State Transactions

Transaction Description

Abort Order Immediately and permanently stops order processing. Transitions the order
state to Aborted.
In the Order Management web client and the Task web client, Abort Order
transactions are identified as "Terminate Order".

Cancel Order Transitions the order to the Cancelling state. After OSM performs the necessary
tasks to cancel the order, the order transitions to the Cancelled state.
In Design Studio, you can specify a grace period to wait for all accepted tasks to
complete before transitioning the order.

Complete Task Completes a task and allows the transition to the next task. Completing the last
active task implicitly transitions the order to a Completed state.
This transaction is not configurable in the life-cycle policy.

Copy Order Copies an order; for example, when you create an order in the Task web client
by copying an order. This transaction does not change the order state. It is not
configurable.

Create Order Creates an instance of an order.
The transaction starts the order in either the Not Started state or the In Progress
state.
This transaction is not a configurable transaction in the OSM life-cycle policy.
Permissions for creating an order are not set in the life-cycle policy. Instead
you assign an order creation permission to roles and assign permissions on the
orders.

Delete Order Removes an order from the system.
To delete orders, use the orderPurge command. See OSM System Administrator's
Guide for more information. If the order does not have an orchestration plan,
you can delete an order using the Task web client when the order is at the
creation task.

Fail Order Transitions the order to the Failed state. Processing on the order is stopped.
In Design Studio, you can specify a grace period to wait for all accepted tasks to
complete before transitioning the order.

Fallout Order Compensates an existing order based on error data identified during
provisioning.
This transaction is not configurable in the life-cycle policy.

Manage Order Fallout Transitions the order to the state it had before it failed. Processing on the order
resumes.
This transaction enables Task web client users to locate orders with errors that
require manual intervention, analyze the order to determine the cause of the
errors, and take the corrective action to correct errors allowing the order to
continue to process normally.

Process Amendment Transitions the order to the Amending state. This transaction is always preceded
by the Submit Amendment transaction. See "About the Amending Order State" for
more information.
In Design Studio, you can specify a grace period to wait for all accepted tasks to
complete before transitioning the order.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-5

Table 3-2 (Cont.) Order State Transactions

Transaction Description

Raise Exception Raises an exception. The system can be configured to initiate fallout
compensation with this transaction. In this situation the order transitions to
the Amending state while it compensates tasks. From the Amending state, it can
transition to the Failed, In Progress, or Waiting for Revision states.
For backward compatibility this transaction can also trigger a preconfigured
exception process. Exception processes are incompatible with OSM's built-in
compensation. An order for which an exception process is triggered cannot have
compensation applied for revisions, cancellations, or fallout. In this case, the
order remains in the In Progress state.
In Design Studio, you can specify a grace period to wait for all accepted tasks to
complete before transitioning the order.

Resume Order Transitions the order to the In Progress state, typically from the Suspended state.

Submit Amendment Submits an amendment but does not change the order state. This transaction is
followed by the Process Amendment transaction, which changes the order state
to Amending.
See "About the Amending Order State" for more information.

Suspend Order Transitions the order to the Suspended order state. Processing on the order
halts.
In Design Studio, you can specify a grace period to wait for all accepted tasks to
complete before transitioning the order.

Update Order Allows changes to order data, remarks, and attachments outside the context
of a task. The Update Orders can add new data elements, delete existing data
elements, or change existing data element. Update Orders can be sent from
locations such as:
• The Task web client.
• Automation plug-in XSLT or XQuery automators.
• Web Services or XML API requests.
In most situations, Update Order does not allow the state of the task to change;
for example, when updating an order that is in the Aborted state. When an order
is in the Not Started state or the Cancelled state, the Update Order transaction
can start or resume the order by running the creation task.
To use Update Order to start or resume an order, you need to use the startOrder
flag in the Update Order transaction, in an automation plug-in, a web service
operation, or through the Task web client. You cannot specify to start or resume
an order by configuring the order life-cycle policy in Design Studio.

Figure 3-3 shows OSM order states and transactions.

• The transactions shown are those that perform transitions between order states.
Some transactions, such as Update Order, do not always perform a transition.

• In this figure, a Resume Order transaction is shown from the Cancelled state to
the In Progress state. This transaction is only possible for orders that do not have
an orchestration plan. If the order has an orchestration plan, the Cancelled state is
a final state and cannot be resumed.

• Some order state transitions are performed internally by OSM, not by running a
transaction.

• The transition from Not Started to Completed occurs when an order is submitted
for a revision to an in-flight order. In this case, all that the revision order must

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-6

do is submit an amendment. When the revision order is processed, the Submit
Amendment transaction places the revision order in the amendment queue.
After doing so, the revision order itself requires no further processing because
compensation happens to the base order, so the revision order is transitioned
directly to the Completed state automatically by OSM, without going to the In
Progress state.

Note:

Because the transaction from Not Started to Completed for revision
orders is required by OSM and is performed by the system, you cannot
define permissions or conditions for it. Therefore, it is not shown as a
transaction from the Not Started state in Design Studio.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-7

Figure 3-3 OSM Order States and Transactions

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-8

About Order State Categories
Order states can be categorized by the overall condition of the order that they apply to;
for example, if the order is open, closed, or running:

• Open - Not Running

– Not Started

– Suspended

– Waiting

– Waiting for Revision

– Canceled

– Failed

• Open - Running

– In Progress

• Open - Running - Compensating

– Amending

– Cancelling

• Closed

– Completed

– Aborted

Common Order State Transitions
A typical order processing scenario uses the following order states:

1. The order is submitted to the Not Started state and transitions to the In Progress
state. The order remains in the In Progress state while processing occurs.

2. When the last task has completed, the order transitions to the Completed state.

Figure 3-4 shows the states, state categories, and transactions for a basic order
processing flow.

Figure 3-4 Simple Order Processing Flow

The process for revising an order uses the following order states:

1. The base order is submitted and transitions to the In Progress state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-9

2. The revision order is submitted and transitions to the In Progress state.

3. The base order transitions to the Amending state.

4. The revision order, after it has amended the base order, transitions to the
Completed state.

5. After processing the amendment, the base order returns to the In Progress state.

6. When the last task has completed, the base order transitions to the Completed
state.

Figure 3-5 shows the order states used for a revision order.

Figure 3-5 Order States Used When Processing a Revision Order

A follow-on order uses the following order states:

1. The base order is submitted and transitions to the In Progress state.

2. The follow-on order is submitted and transitions to the In Progress state, but
it must wait until an order item in the base order completes before it can be
processed.

3. The order item in the base order completes. The base order can continue
processing, or it can complete and transition to the Completed state.

4. Since the order item in the base order has completed, the dependency has been
met and the follow-on order begins processing.

5. When the last task in the follow-on order has completed, it transitions to the
Completed state.

A future-dated order uses the following order states:

1. The order is submitted, but OSM determines that there is a future start date. The
order transitions to the Not Started state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-10

2. When the order start date is reached, the order transitions to the In Progress order
state.

3. When the last task has completed, the order transitions to the Completed order
state.

Optional, Mandatory, and Prohibited Transactions
Transactions for each order state can be optional, mandatory, or prohibited. Optional
transactions can either be allowed or prohibited based on conditions and permissions
defined in the order life-cycle policy.

Table 3-3 shows the order states and their transactions.

Table 3-3 OSM Order Transactions

Order State Mandatory Transactions Prohibited Transactions Optional Transactions

Aborted None • Abort Order
• Cancel Order
• Complete Task
• Fail Order
• Manage Order

Fallout
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment
• Suspend Order

• Delete Order
• Update Order

Amending None • Cancel Order
• Complete Task
• Delete Order
• Fail Order
• Raise Exception
• Resume Order
• Update Order

• Abort Order
• Manage Order

Fallout
• Submit Amendment
• Suspend Order
• Process Amendment

Canceled None • Complete Task
• Fail Order
• Manage Order

Fallout
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment
• Suspend Order

• Abort Order
• Delete Order
• Update Order
• Cancel Order

Canceling None • Cancel Order
• Complete Task
• Delete Order
• Fail Order
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment
• Update Order

• Abort Order
• Suspend Order
• Manage Order

Fallout

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-11

Table 3-3 (Cont.) OSM Order Transactions

Order State Mandatory Transactions Prohibited Transactions Optional Transactions

Completed None • Abort Order
• Complete Task
• Fail Order
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment
• Suspend Order

• Delete Order
• Update Order
• Cancel Order

Failed None • Complete Task
• Delete Order
• Fail Order
• Process Amendment
• Raise Exception
• Resume Order
• Suspend Order

• Abort Order
• Cancel Order
• Manage Order

Fallout
• Submit Amendment
• Update Order

In Progress Complete Task • Delete Order
• Resume Order

• Abort Order
• Cancel Order
• Fail Order
• Manage Order

Fallout
• Process Amendment
• Raise Exception
• Submit Amendment
• Suspend Order
• Update Order

Not Started Complete Task • Cancel Order
• Manage Order

Fallout
• Process Amendment
• Raise Exception
• Resume Order
• Submit Amendment

• Abort Order
• Delete Order
• Fail Order
• Suspend Order
• Update Order

Suspended None • Complete Task
• Delete Order
• Process Amendment
• Raise Exception
• Suspend Order

• Abort Order
• Cancel Order
• Fail Order
• Manage Order

Fallout
• Resume Order
• Submit Amendment
• Update Order

Waiting None • Complete Task
• Delete Order
• Process Amendment
• Raise Exception

• Abort Order
• Cancel Order
• Fail Order
• Submit Amendment
• Suspend Order
• Update Order

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-12

Table 3-3 (Cont.) OSM Order Transactions

Order State Mandatory Transactions Prohibited Transactions Optional Transactions

Waiting for Revision None • Complete Task
• Delete Order
• Process Amendment
• Raise Exception
• Suspend Order

• Abort Order
• Cancel Order
• Fail Order
• Manage Order

Fallout
• Resume Order
• Submit Amendment
• Update Order

About the Aborted Order State
An order can be transitioned to the Aborted order state when an unrecoverable error
or condition has stopped the processing for the order and the order cannot return to a
valid processing state through a revision or fallout management activity within OSM. It
can be considered a last resort to prevent any further execution of an order.

An order can be terminated manually from the Order Management web client or from
the Task web client. (In the web clients, the command Terminate Order moves the
order to the Aborted order state.) You can also transition to the Aborted order state
programmatically by using the OSM Web Service API or by using an automated task.

The Aborted order state is a final state; the order has been permanently stopped. An
order in the Aborted state cannot transition to another state.

Terminated orders may require manual intervention in an OSM web client to
compensate for tasks that have completed or that were in the process of completing.
For example, you may be required to release port assignments, delete accounts in
billing systems, and so forth.

The entrance transaction to the Aborted order state is Abort Order. This transaction
can be run from all order states except the Completed order state.

The exit transaction from the Aborted state is Delete Order, which removes the order
from the OSM system.

The Update Order transaction is used when the order is updated manually, outside of
the order processing.

Figure 3-6 shows the order states that can transition to or from the Aborted order
state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-13

Figure 3-6 Order States that Can Transition to or from the Aborted Order State

About the Amending Order State
An order in the Amending state is undergoing compensation.

The transactions that cause an order to move to the Amending state are the Submit
Amendment transaction (as a result of a revision order) and the Raise Exception
transaction (as a result of fallout for which compensation is needed). The order can be
amended from the following order states:

• In Progress

• Failed

• Suspended

• Waiting for Revision

To transition an order to the Amending state, OSM uses two transactions: Submit
Amendment and Process Amendment. These transactions work together to make sure
that the order is in a condition that can be amended and that the amendment is
allowed.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-14

Each revision to an order uses the Submit Amendment transaction to place the
amendment in a queue. The Submit Amendment transaction does not change the
order state. Instead, it makes sure that the order is ready to be amended and
that there are no life-cycle rules that prevent the order from being amended until a
condition is met. For example, although an order in the Suspended state can receive
amendments from the Submit Amendment transaction, the order must be resumed
before it can process the amendments.

When the order is able to process the amendment, the Process Amendment
transaction is run on the latest amendment in the queue, and the transition is made to
the Amending state. Not every order in the queue is processed:

• A revision for the same order might have been received while the order is queued.
In that case, the later revision is used instead.

• Restrictions in the life-cycle policy might prevent an amendment from being
processed by the Process Amendment transaction.

Unless multiple revisions are common and frequent, the order state transition to
Amending will happen almost immediately after the Submit Amendment transaction.

The configurable exit transactions for the Amending state are:

• Submit Amendment: An order can process a Submit Amendment transaction while
the order is in the Amending state. This can occur because additional revision
orders can be submitted while the order is in the Amending state. In this case, the
Submit Amendment transaction adds the amendment to the amendment queue.

• Suspend Order: Transitions to the Suspended state.

• Abort Order: Transitions to the Aborted state.

An order can transition from the Amending state to the In Progress state, but there is
no transaction involved. This transition is handled internally by OSM.

An order can transition from the Amending state to the Waiting for Revision state.
However, there is no transaction required to transition from the Amending state to the
Waiting for Revision state. This transition happens when fallout occurs, and OSM has
found that the fallout is caused by the submitted order. In that case, OSM cannot use
further compensation (redo/undo) to fix the problem. Instead, OSM waits for a revision
to be submitted from the upstream order-source system to fix the problem.

You can also enable the Manage Order Fallout transaction for this state that controls
the following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and
OSM Task Web Client User's Guide for more information.

Figure 3-7 shows the order states that can transition to or from the Amending order
state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-15

Figure 3-7 Order States that Can Transition to or from the Amending Order
State

About the Cancelled Order State
When an order is in the Cancelled state, all tasks have been undone back to the
creation task.

The actions allowed when an order is in the Cancelled state are different depending on
if the order has an orchestration plan:

• If an order has an orchestration plan, the Cancelled state is the final state. The
order cannot be resumed.

• If the order does not have an orchestration plan, the order can be resumed at the
In Progress state, either by manually opening the order at the creation task and
submitting it or by programmatically transitioning the order state using the OSM
APIs.

The transaction that causes the Cancelled state is the same Cancel Order transaction
that was used for canceling the order.

If the order includes an orchestration plan, the configurable exit transactions are:

• Update Order: Allows the order data to be changed but does not transition the
order to another order state.

• Abort Order: Transitions to the Aborted state.

• Delete Order: Removes the order from the OSM system.

If the order does not have an orchestration plan, the configurable exit transactions are:

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-16

• Resume Order: Transitions to the In Progress state.

• Update Order: Allows the order data to be changed. This transaction can also
transition the order to the In Progress state if the startOrder option is used. See
the discussion of the Update Order transaction in Table 3-2 for more information.

• Abort Order: Transitions to the Aborted state.

• Delete Order: Removes the order from the OSM system.

Note:

When resumed after being canceled, the order begins again at the beginning
of the execution; it is not resumed at the point in the execution it was in when
canceled.

Figure 3-8 shows the order states that can transition to or from the Cancelled order
state if the order has an orchestration plan.

Figure 3-8 Order States that Can Transition to or from the Cancelled Order
State if the Order Has an Orchestration Plan

Figure 3-9 shows the order states that can transition to or from the Cancelled order
state if the order does not have an orchestration plan.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-17

Figure 3-9 Order States That Can Transition To Or From the Aborted Order
State if the Order Does Not Have an Orchestration Plan

About the Cancelling Order State
When an order is in the Cancelling state, at least one live task is running in a
cancellation compensation mode. OSM undoes all completed tasks to return the order
to the creation task. When OSM has finished, the order transitions to the Cancelled
state

The entrance transaction for the Cancelling order state is the Cancel Order
transaction. An order can be canceled from the following order states:

• In Progress

• Completed

• Suspended

• Waiting

• Waiting for Revision

• Failed

The configurable exit transactions for the Cancelling order state are:

• Suspend Order: Transitions to the Suspended state.

• Abort Order: Transitions to the Aborted state.

You can also enable the Manage Order Fallout transaction for this state that controls
the following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-18

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and
OSM Task Web Client User's Guide for more information.

Figure 3-10 shows the order states that can transition to or from the Cancelling order
state.

Figure 3-10 Order States That Can Transition To Or From the Cancelling Order
State

About the Completed Order State
The order has been fulfilled. There are no live tasks and processing is complete.

The entrance transaction for the Completed state is the Complete Task transaction. It
transitions from the In Progress state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-19

The Complete Task transaction is used internally whenever the last task is completed
in the order, which is determined automatically by OSM. Therefore the Complete Task
transaction is not shown as part of the life-cycle policy in Design Studio.

The transition from the Not Started state to the Completed state is specific to revision
orders. When a revision order that has been submitted and accepted transitions to the
Completed state directly, because the compensation for the revision happens on the
base order being revised.

The configurable exit transactions for the Completed order state are:

• Delete Order: Removes the order from the OSM system.

• Update Order: Allows the order data to be added, changed, or deleted but does
not transition the order to another order state.

• Cancel Order: Allows the order to be canceled.

Figure 3-11 shows the order states that can transition to or from the Completed order
state.

Figure 3-11 Order States that Can Transition to or from the Completed Order
State

About the Failed Order State
If an order is the Failed state, the order failed during fulfillment, after the order was
submitted by the order-source system or during order recognition when validating the
incoming order data.

The entrance transaction for the Failed order state is the Fail Order transaction. An
order can transition to the Failed state from the following states:

• Not Started

• In Progress

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-20

• Suspended

• Waiting for Revision

The configurable exit transactions for the Failed order state are:

• Manage Order Fallout: Transitions back to the state that the order was in when the
Fail Order transaction occurred. For example, if the order was in the Not Started
state and then failed, the Manage Order Fallout transaction returns the order to the
Not Started state. It can exit to the following states:

– Not Started

– In Progress

– Waiting for Revision

• Suspend Order: Transitions to the Suspended state.

• Update Order: Allows the order data to be added, changed, or deleted but does
not transition the order to a different order state.

• Submit Amendment/Process Amendment: Submits an amendment and is followed
by the Process Amendment transaction and transitions the order to the Amending
state.

• Cancel Order: Transitions to the Cancelling state.

• Abort Order: Transitions to the Aborted state.

You can also enable the Manage Order Fallout transaction for this state that controls
the following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and
OSM Task Web Client User's Guide for more information.

Figure 3-12 shows the order states that can transition to or from the Failed order state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-21

Figure 3-12 Order States that Can Transition to or from the Failed Order State

About the In Progress Order State
An order in the In Progress state is actively running. Future-dated orchestration orders
have an In Progress state while they wait for dependencies to be resolved.

The entrance transactions for the In Progress state are:

• Update Order: Transitions from the Not Started state or Cancelled state when the
startOrder option is used. Programmatic creation of an order typically begins the
execution of the order, transitioning it to the In Progress order state when the
startOrder option is set to true on the CreateOrder or CreateOrderBySpecification
OSM Web Service operation. See the discussion of the Update Order transaction
in Table 3-2 for more information.

• Resume Order: Transitions from the following states:

– Suspended

– Waiting for Revision

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-22

– Canceled

Tip:

The Cancelled state returns the order to the creation task, so the
Resume Order transaction does not resume from the state it was in
when canceled. Instead, it resumes at the beginning of the process.

• Manage Order Fallout: Transitions from the Failed state.

An order can transition from the Amending state to the In Progress state, but there is
no transaction involved. This transition is handled internally by OSM.

The exit transactions for the In Progress order state are:

• Update Order: Allows the order data to be added, changed, or deleted.

• Submit Amendment/Process Amendment: Submits an amendment (typically from
an external CRM system) and is followed by the Process Amendment transition.
Transitions to the Amending state.

• Suspend Order: Transitions to the Suspended state.

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

• Raise Exception: The Raise Exception transaction is a special type of
transaction from the In Progress state. For order fallout scenarios, the Raise
Exception transaction can transition the order to the Amending state to perform
compensation for the error. However, for backward compatibility with orders that
use process exceptions, the Raise Exception transactions starts an exception
handling process, but the order remains in the In Progress state. See the
discussion of the Raise Exception transaction in Table 3-2 for more information.

• Complete Task: Transitions from the In Progress state, but only when the last task
in the order is completed. This transaction is also used internally whenever a task
is completed in the order. It is not shown in the life cycle display in Design Studio.

You can also enable the Manage Order Fallout transaction for this state that controls
the following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and
OSM Task Web Client User's Guide for more information.

Figure 3-13 shows the order states that can transition to or from the In Progress order
state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-23

Figure 3-13 Order States That Can Transition To Or From the In Progress Order
State

About the Not Started Order State
When an order is in the Not Started state, the order has been created but has not
started. There are no live tasks other than the creation task.

The entrance transactions for the Not Started state are:

• Resume Order: Transitions from the Suspended state if the order was in the Not
Started state when it was Suspended.

• Manage Order Fallout: Transitions from the Failed state if the order was in the Not
Started state when the Fail Order transaction occurred.

The exit transactions for the Not Started state are:

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-24

• Update Order: Allows the order data to be added, changed, or deleted. Can also
transition the order to the In Progress state if the startOrder option is used. See
the discussion of the Update Order transaction in Table 3-2 for more information.

• Suspend Order: Transitions to the Suspended state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

• Submit/Process Amendment: Transitions to the Completed state. This transition is
specific to revision orders. When a revision order is submitted, if it is accepted it
transitions to the Completed order state directly, because the compensation for the
revision happens on the base order being revised.

• Delete Order: Removes the order from the OSM system.

Figure 3-14 shows the order states that can transition to or from the Not Started order
state.

Figure 3-14 Order States that Can Transition to or from the Not Started Order
State

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-25

About the Suspended Order State
In the Suspended state, all processing on the order has been halted. No task can be
updated or transitioned.

The only entrance transaction for the Suspended state is the Suspend Order
transaction. Orders can be suspended from the following order states:

• Not Started

• Failed

• Canceling

• In Progress

• Amending

The exit transactions for the Suspended order state are:

• Resume Order: Transitions the order to the state that it was in when it was
suspended.

• Submit Amendment: Submits an amendment (typically from an external CRM
system) to the amendment queue. Typically, the Submit Amendment transaction
is followed by the Process Amendment transaction, which transitions the order to
the Amending state. However, an order in the Suspended state must be resumed
with the Resume Order transaction before amendments can be processed. After
the order is resumed, the Process Amendment transaction is run on the latest
amendment in the queue and the order transitions to the Amending state.

• Update Order: Allows the order data to be added, changed, or deleted.

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

You can also enable the Manage Order Fallout transaction for this state that controls
the following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and
OSM Task Web Client User's Guide for more information.

Figure 3-15 shows the order states that can transition to or from the Suspended order
state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-26

Figure 3-15 Order States That Can Transition To Or From the Suspended Order
State

About the Waiting Order State
This state indicates orders that have been created but are not ready to start. The
reasons orders can enter this state are:

• The order is future-dated

• The order is a follow-on order whose predecessor has not completed

• The order is subject to inter-order dependencies that have not completed

The Waiting order state is usually entered from the Not Started state and transitions to
the In Progress state when the blocking condition listed above has been resolved, for
example the start date for a future-dated order has been reached.

An order can transition from the Amending state to the In Progress state, but there is
no transaction involved. This transition is handled internally by OSM.

The exit transactions for the In Progress order state are:

• Update Order: Allows the order data to be added, changed, or deleted.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-27

• Submit Amendment/Process Amendment: Submits an amendment (typically from
an external CRM system) and is followed by the Process Amendment transition.
Transitions to the Amending state.

• Suspend Order: Transitions to the Suspended state.

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

• Raise Exception: The Raise Exception transaction is a special type of
transaction from the In Progress state. For order fallout scenarios, the Raise
Exception transaction can transition the order to the Amending state to perform
compensation for the error. However, for backward compatibility with orders that
use process exceptions, the Raise Exception transactions starts an exception
handling process, but the order remains in the In Progress state. See the
discussion of the Raise Exception transaction in Table 3-2 for more information.

• Complete Task: Transitions from the In Progress state, but only when the last task
in the order is completed. This transaction is also used internally whenever a task
is completed in the order. It is not shown in the life cycle display in Design Studio.

The entrance transactions for the Waiting order state are:

• Resume Order: Transitions from the Suspended state.

• Resolve Failure: Transitions from the Failed state.

An order can transition from the Not Started state to the Waiting state when the order
is ready for processing, but is either future-dated or blocked by another order as
described earlier in this section.

The exit transactions for the Waiting order state are:

• Suspend Order: Transitions to the Suspended state.

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

An order can transition from the Waiting state to the In Progress state when the future
date is reached or the blocking by another order is resolved.

Figure 3-16 shows the order states that can transition to or from the Waiting order
state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-28

Figure 3-16 Order States that Can Transition to or from the Waiting Order State

About the Waiting for Revision Order State
This state is common following compensation to an order for fallout, when the order is
awaiting a revision from the order-source system to correct something that caused a
failure in the originally submitted order.

The entrance transaction for the Waiting for Revision order state is the Manage Order
Fallout transaction, which runs from the Failed state.

An order can transition from the Amending state to the Waiting for Revision state.
However, there is no transaction required to transition from the Amending order state
to the Waiting for Revision order state. This internal transition is triggered by the Raise
Exception transaction and it happens when fallout occurs and OSM has found that
the fallout is generated by the submitted order instead of by a task in the process.
Therefore, OSM cannot use compensation (redo/undo) to fix the problem. Instead,
OSM waits for a revision to be submitted from upstream to fix the problem.

The exit transactions for the Waiting for Revision order state are:

• Submit Amendment/Process Amendment: Submits an amendment (typically from
an external CRM system) and is followed by the Process Amendment transition.
Transitions to the Amending state.

• Update Order: Allows the order data to be added, changed, or deleted.

• Resume Order: Transitions to the In Progress State

• Cancel Order: Transitions to the Cancelling state.

• Fail Order: Transitions to the Failed state.

• Abort Order: Transitions to the Aborted state.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-29

You can also enable the Manage Order Fallout transaction for this state that controls
the following for managing tasks in the failed state:

• RetryOrder and ResolveFailure OSM Web Service operations

• Retry Order and Resolve Order Failure Order Management web client actions

See OSM Developer's Guide, OSM Order Management Web Client User's Guide, and
OSM Task Web Client User's Guide for more information.

Figure 3-17 shows the order states that can transition to or from the Waiting for
Revision order state.

Figure 3-17 Order States that Can Transition to or from the Waiting for
Revision Order State

About Deleting Orders
You cannot use either of the OSM web clients or any web service operation to delete
orders from the OSM system. Instead, use the orderPurge command. See OSM
System Administrator's Guide for more information.

Chapter 3
Modeling Order Life-Cycle Policy States and Transitions

3-30

4
Modeling Order Recognition

This chapter describes how to model order recognition rules to receive incoming
orders from external systems in an Oracle Communications Order and Service
Management (OSM) solution.

About Sending Orders to OSM and Order Recognition
This section describes the order capture and submission process and how OSM
recognizes and resolves various incoming orders from CRM systems to specific order
types.

The following process flow is for a new order:

1. The order data is captured in a CRM system; for example, as a Siebel order.
There are several order types that OSM can process (see "About Order Types" for
more information). Before submitting the order to OSM, the CRM system usually
performs validations, such as validating customer information from its customer
database. For some orders, the order may require technical qualification, such as
validating that the network has enough capacity to offer the purchased products.

2. The CRM system sends the customer order to OSM by using the OSM
CreateOrder Web Service operation. The CreateOrder operation contains order
data that is in the XML format of the order-source system, which is different from
the OSM order format (see "Modeling OSM Data ").

The OSM Web Service API is the primary API for external clients that you can use
to communicate with OSM (see OSM Developer's Guide for more information).

Note:

A single OSM instance can receive orders from multiple order-source
systems.

3. The OSM order request processor receives the customer order and evaluates the
order against order recognition rules until the order request processor finds an
order recognition rule that matches the incoming customer order. Then the order
request processor uses the order recognition rules to transform the requests to the
OSM internal order format before creating the order.

4. After OSM has recognized and validated the incoming customer order, internally,
the OSM recognition rule calls the CreateOrderBySpecification web service
operation. This operation does the following:

• Creates the order in OSM

• Sets the order priority

• Populates the data in the creation task

4-1

Note:

You can also send a CreateOrderBySpecification operation directly
from external client systems in the OSM native XML format that
would bypass the order recognition and transformation functionality. The
CreateOrderBySpecification operation references an order specification
that you define in Oracle Communications Design Studio, and the order
details must conform to that order specification.

5. If OSM is unable to create the order by using the CreateOrderBySpecification
operation, the in-bound order is handled in one of two ways:

• If the order type is not valid, a failed order is created with the in-bound order
attached.

• If the order type and source are valid, the in-bound order is put on the JMS
redelivery queue. OSM attempts to receive the order again, up to the receive
limit configured for the queue. When that limit is reached, the failed message
is moved to an error queue.

To receive and create orders, you need to do the following:

• Configure your order-source system to output orders in XML format (see
"Modeling OSM Data ").

• Do the following in Design Studio:

– Populate the Data Dictionary with the data elements that the order needs. See
"Modeling OSM Data " for more information.

– Create recognition rules to recognize, validate, and transform the data.

– Create order specifications for the types of orders you need to create in OSM.
See "Modeling Orders and Permissions" for more information.

Incoming orders can use the process layer or the orchestration layer. See "Modeling
Orders and Permissions" for more information.

Note:

An order can be created without recognition rules and without an
orchestration plan. This is common when the order has a limited set of tasks
that do not have dependencies; for example, an order that only manages
service activation.

Modeling Order Recognition Rules
You model order recognition rules to accept, evaluate, and transform OSM Web
Service API CreateOrder requests. The content of every CreateOrder request must
match a specific order recognition rule that associates the incoming order with a
target OSM order specification. If you have more than one version of the target order
specification, you can target a specific version of the order specification.

During order recognition, OSM reviews a prioritized list of recognition rules to
determine which rule applies to the in-bound order. Each recognition rule is associated

Chapter 4
Modeling Order Recognition Rules

4-2

with an order specification. OSM evaluates each order based on how high the
relevancy of a particular order recognition rule is. For example, a recognition rule with
a relevancy of 12 evaluates first, then the rule with the relevancy of 11, then 10, and
so on. An order recognition rules with a 0 relevancy should be modeled as a catch-all
recognition rule. See "Modeling a Catch-All Recognition Rule" for more information.

Validating Incoming Order Data
You can model a validation rule to valid any number of things in the order data. For
example, you can ensure that:

• All mandatory fields are populated on the incoming order.

• Valid characters (numeric or alphanumeric) are used for fields.

• The order has a valid status code, such as Open.

Transforming Order Data
OSM provides the following transformation rules in an order recognition rule:

• order priority rules: define the priority of the order in relation to others.

• order reference rules: define the order reference number.

• order data rules: add to or modify incoming customer order data.

At run time, the OSM server always runs all transformation rules, regardless of the
failure of any transformation rule. Running all transformation rules ensures that the
order is populated with all available data.

If a transformation rule fails, the order is populated with whatever data is available,
and the order is placed in a Failed state with reasons corresponding to the type of
transformation rule that failed:

• Could not set order priority.

• Could not set order header reference.

• Could not create order data.

• Could not store incoming message. Message stored as attachment.

Modeling the Order Data Rule to Populate the Creation Task
An internal transformation rule always stores the raw XML input message in an XML
data field as part of the order data (see "Adding the Input Message to an Order
Recognition Rule" and "Adding the Input Message to the Order Template"). However,
that data does not populate the fields in the creation task.

You can use an order data rule to modify data in the order. For example, you can
concatenate the area code and phone number into a single data element.

You can retrieve data from external systems if it does not exist on the incoming
customer order using a data instance behavior associated with the order data rule (see
"Evaluating Data Instance Behaviors"). For example, the incoming customer order
might have a customer address, but you need to add the geographic region to the
order, which is not in the input data. You can use a web service operation, or an SQL

Chapter 4
Validating Incoming Order Data

4-3

call to an external system, to look up the region, based on the customer's address. You
can then add the region code to the order.

When modeling a creation task, create a manual task, even if the order is intended to
be processed automatically. Using manual tasks as creation tasks ensures that task
behaviors are supported at run time if you manually create an order. This can be
useful for testing purposes.

Modeling Order Priority
The order priority range specifies the acceptable range of numeric priority (between
0 and 9) that orders of a single type may use. For example, this could allow you to
configure a fixed-line order type with a lower range (0 to 4) and a mobile order type
with a higher priority range (5 to 9), ensuring that mobile orders are prioritized higher
than fixed-line orders.

You create an order priority range by specifying a minimum and maximum priority for
the order. OSM rounds priority values up or down to ensure they conform to the order
priority range. For example, if you specify a priority range of 5 to 7 and an order is
created with a priority of less than 5, the system assumes the intent is to provide the
lowest priority allowed for the order, and the priority value of the order is set to 5.
Similarly, if a priority higher than 7 is provided for another order of the same type, the
system assumes the intent is to provide the highest priority allowed for the order, and
the priority value of the order is set to 7.

Table 4-1 shows examples of how the order priority is set by using the order priority
from the recognition rule, and the order priority range from the order specification.

Table 4-1 Order Priority Examples

Order Priority Range Recognition Rule
Order Priority 1

Recognition Rule
Order Priority 5

Recognition Rule
Order Priority 9

Order Priority Range 1 - 3 Priority = 1 Priority = 3 Priority = 3

Order Priority Range 3 - 5 Priority = 3 Priority = 5 Priority = 5

Order Priority Range 5 - 9 Priority = 5 Priority = 5 Priority = 9

You can set the order priority range in the Design Studio Order editor Details tab.

The order priority value is also considered when an order's tasks are run, so that
automated tasks are run according to order priority. This requires that Java Messaging
Service (JMS) message priority settings are configured for the JMS queues. For
information about configuring JMS message priority on JMS queue, see "Configuring
JMS Message Priority on JMS Queue".

You can change the order priority of an in-flight order by using the Order Management
web client. You can specify permissions for which roles can change the priority. See
the discussion of changing order priority in OSM Order Management Web Client
User's Guide.

The automation plug-ins are executed using JMS. For internal plug-ins, OSM relays
Order Priority into JMSPriority and thus ensures Order Priority to take effect during the
execution of plug-ins.

Chapter 4
Transforming Order Data

4-4

For external plug-ins, for Order-Priority to take effect during the execution, the external
system needs to update JMSPriority in the JMS message response with the one
received in the JMS message request.

Note:

This is an optional activity and is relevant only when the execution of external
plug-ins needs to acknowledge Order-Priority.

Configuring JMS Message Priority on JMS Queue
As messages arrive on a specific destination, by default, they are sorted in FIFO
(first-in, first-out) order, which sorts the messages in the ascending order based on
each message's unique JMSMessageID. However, you can use a destination key
to configure a different sorting scheme based on other message properties such as
JMSPriority and JMSCorrelationID for a destination. In traditional OSM, the OSM
installer creates the osmDescendingPriorityDestinationKey destination key with
JMSPriority as the Property and Descending as the Sort order. OSM cloud native
comes configured with osmDescendingPriorityDestionationKey.

To configure JMS Message priority on JMS queue, do the following:

• Create a JMS Destination Key. See "Creating a JMS Destination Key (Traditional
OSM Only)"

• Configure a destination key for a JMS resource. See "Configuring Destination Key
for a JMS resource (Traditional OSM Only) ".

Creating a JMS Destination Key (Traditional OSM Only)
To create a JMS Destination Key:

1. In the WebLogic Administration Console, expand Services > Messaging > JMS
Modules.

2. In the JMS Modules table, click the JMS module that contains the configured
resource.

3. In the Summary of resources table, click the New button to create a destination
key.

4. Select Destination Sort Key and then click Next.

5. Enter a meaningful name for the key and click OK.

6. In the Summary of resources table, select the newly created JMS destination key.

7. Select the Sort key field and specify a message property name or the name of a
message header field on which to sort messages.

8. Save the changes.

Configuring Destination Key for a JMS resource (Traditional OSM Only)
To configure destination key for a JMS resource:

Chapter 4
Transforming Order Data

4-5

1. In the WebLogic Administration Console, expand Services > Messaging > JMS
Modules.

2. In the JMS Modules table, click the JMS module that contains the configured
resource.

3. In the Summary of Resources table for the selected JMS module, select the JMS
resource that you want to edit.

4. Move the selected destination key from the Available list to the Chosen list. The
keys are ordered from most significant to least significant. If more than one key is
specified, a key based on the JMSMessageID can only be the last key in the list. If
JMSMessageID is not defined in the key, it is implicitly assumed to be the last key
and is set as "Ascending" (FIFO) for the sort order).

5. Save the changes and restart the WebLogic server.

Creating and Configuring JMS Destination Key in OSM Cloud Native
You will need to provide the WDT for your OSM instance to provide the appropriate
configuration for a new JMS Destination Key. See "Extending the WebLogic Server
Deploy Tooling (WDT) Model" in OSM Cloud Native Deployment Guide for further
details.

Modeling the Order Reference Number
The order reference number is an alphanumeric value supplied by the order-source
system. It is usually unique, but it does not have to be unique. When OSM creates the
order, OSM gives the order an OSM order ID. The original order reference number is
stored as well, so the order reference number is associated with the OSM order ID.

Modeling a Catch-All Recognition Rule
An order that fails to be recognized by any recognition rule is rejected by OSM, and
an error is returned by the web service operation to the order-source system. To make
sure that all orders are entered into OSM, create a catch-all recognition rule that
accepts all incoming customer orders.

To configure this recognition rule:

• Set the relevancy to 0, and set the relevancy for all other recognition rules higher
than 0, so they are processed first.

• Include the following recognition rule XQuery:

fn:true()

• Select the Fail Order check box, and enter a reason. For example:

No valid recognition rule found.

Using this lowest-level recognition rule, an invalid order is recognized and then fails
during validation. It then transitions to the Failed state and is kept by OSM.

Common Order Recognition Errors
There are two possible errors during order recognition:

Chapter 4
Modeling a Catch-All Recognition Rule

4-6

• A recognition rule fails to run; for example, because of bad syntax. Evaluation of
other rules continues.

• The in-bound order is not recognized. If all recognition rules run and fail to find a
match, then no OSM order can be created. This failure generates fallout, which
you can view and manage as an order failure in the Order Management web
client.

To avoid this kind of failure, you can create a lowest-relevancy catch-all rule that
recognizes any in-bound order and maps it to a default order specification. See
"Modeling a Catch-All Recognition Rule" for more information.

Chapter 4
Common Order Recognition Errors

4-7

5
Modeling Orchestration Plans

This chapter describes how to model orchestration plans in an Oracle
Communications Order and Service Management (OSM) solution.

Orchestration Plan Overview
An orchestration plan includes the order items, order components, and dependencies.
An order-specific orchestration plan is generated for each order that requires
orchestration.

The orchestration plan for an order specifies the following:

• How order items are grouped into order components for processing

• The dependencies between the order components

In the OSM Order Management web client, you can view graphical representations of
an order's orchestration plan and dependencies. You can use this information as you
model orders to validate that order decomposition and orchestration plan generation is
functioning as intended. The graphical representation shows exactly how an order is
fulfilled.

The Order Management web client provides a graphical representation of the
orchestration plan in two views:

• Orchestration plan decomposition

• Orchestration plan order item dependencies

Figure 5-1 shows three orchestration stages, represented in three columns:

• Determine the fulfillment function

• Determine the fulfillment system

• Determine the processing granularity

Note:

You can model any number of orchestration stages.

At each orchestration stage, the graph shows the order components created by that
stage. The final column on the right shows the order components that are run as part
of the orchestration plan. Each component includes a name, which is based on the
orchestration stages. Components also list their included order items.

The inset in Figure 5-1 shows details for three executable order components, as
displayed in the orchestration plan decomposition.

5-1

Figure 5-1 Decomposition Tree

Figure 5-2 shows the orchestration plan displayed in the Order Management web
client dependency graph. The dependency graph shows the executable order
components which are the components shown in the final stage of the decomposition
display. In this case, executable components are based on three orchestration
stages corresponding to fulfillment function, fulfillment system, and processing
granularity. The different colors represent fulfillment functions, such as InitiateBilling
or FulfillBilling. The inset shows a detailed view of two order components. Even though
the two fulfillment functions are targeted to the same system (BRM-VOIP), processing
granularity rules defined for this order require that they take place as two separate
actions.

Chapter 5
Orchestration Plan Overview

5-2

Figure 5-2 Dependency Graph

Both of these representations are useful at design time and when debugging
orchestration plans. For example, you can use the dependency graph to confirm that
an order goes to all of the correct systems in the correct order. Use the decomposition
tree to verify that decomposition happens as expected at a particular stage and that
the order was decomposed into the correct components, each containing the correct
order items.

Modeling an Orchestration Plan
To model how orchestration plans are generated, you model several OSM entities in
Oracle Communications Design Studio.

• Orchestration processes. An orchestration process specifies which orchestration
sequence to use for the order.

• Orchestration sequences. The orchestration sequence specifies the fulfillment
mode (for example, Deliver or Qualify), the orchestration stages, and selects the
customer order line item node-sets that OSM uses in orchestration.

• Order item specification. The order item specification includes the order item
properties that are used for decomposition, including how to retrieve order
items from order line items. Order item properties define data that is used for
decomposition; for example, the fulfillment pattern.

• Order components. Order components specify how to organize order items in the
decomposition process.

• Orchestration stages. Orchestration stages specify the order components to
assign order items to.

Chapter 5
Modeling an Orchestration Plan

5-3

Figure 5-3 shows a generalized process flow for orchestration.

Figure 5-3 Orchestration Process

The following process flow shows how OSM uses the orchestration entities to create
orchestration plans.

1. After receiving and validating an incoming customer order, OSM creates the order
according to the order specification chosen by the recognition rule. At this point,
the following has been accomplished:

• The order has been populated with the creation task data.

• OSM has used the order item specification to identify order items from the
order line items in the incoming customer order.

2. The order specification includes a default process. For an orchestration order, the
order specifies an orchestration process. (If no orchestration is required, you
should define a non-orchestration OSM process. See "Modeling Processes and
Tasks" for more information.)

3. The orchestration process specifies an orchestration sequence.

4. The orchestration sequence specifies the following:

• The order item specification to use for the order. The order item specification
defines the order item properties that are used for decomposition and for
displaying the order item in the Order Management web client. See OSM
Concepts for more information.

• The order item selector that identifies the customer order line item node-sets
to use as order items.

Chapter 5
Modeling an Orchestration Plan

5-4

• The fulfillment mode that the order requires; for example, Deliver or Cancel.

• The orchestration stages that produce the order components. For example,
the orchestration stages might be:

– Produce function order components. This stage organizes order items
into order components based on the fulfillment functions required for each
order item. Fulfillment functions are the activities that must be performed
to process the item, such as billing, shipping, provisioning, and so on.

– Produce target system order components. This stage organizes order
items into order components based on the target fulfillment systems
required to perform the fulfillment functions. For example, this step might
determine that certain items need to be fulfilled by a billing system called
BRM_Residential and others by a BRM_Wholesale system.

– Produce granularity order components. This stage organizes order
items that need to be processed together into order components. For
example, you might need to fulfill billing requirements for mobile and fixed
services. You can use different order components to process the billing
requirements for those services separately.

5. Each orchestration stage produces a set of order components.

6. Based on the default orchestration process, and the orchestration sequence and
stages that are defined, OSM can start the process of assigning order items to
order components. The first step is to find the fulfillment pattern used by each
order item.

Each order item belongs to a product specification. A product specification is a
group of related products that share common attributes. For example, the products
Broadband Light, Broadband Medium, and Broadband Ultimate would all belong to
the ServiceBroadBand product specification. OSM maps the product specification
to a fulfillment pattern.

The fulfillment pattern manages the first stage of orchestration. It assigns order
items to function order components in the first stage of orchestration. It also
specifies the dependencies between the function order components. For example,
the fulfillment pattern might specify to process function order components in this
order:

a. ProvisioningFunction

b. BillingFunction

c. CollectionsFunction

The fulfillment pattern also specifies the fulfillment mode that the order items can
be used for. See "About Mapping Order Items to Fulfillment Patterns" for more
information.

Provisioning must occur before billing, which must occur before marketing,
customer updates (SyncCustomer), and collections.

Chapter 5
Modeling an Orchestration Plan

5-5

Figure 5-4 Dependency Relationships for Order Item Dependency

7. After assigning order items to function components, OSM further decomposes the
order into target system order components and granularity order components,
following the specifications defined in the orchestration stages. See "About
the Decomposition of Function to Target System Components " and "About
the Decomposition of Target System to Granularity Components " for more
information.

8. While decomposing the order, OSM finds dependencies between order
components and generates an orchestration plan. Dependencies determine the
order in which order components can be processed.

9. After generating the orchestration plan, OSM runs it. Each executable order
component runs a process. Each process includes the tasks that fulfill the order
requirements.

Order components are usually modeled by extending order component specifications
in Design Studio. For example, you can create a base order component for all function
types and extend it for individual function types such as billing or collections.

About Component Names and Component IDs
Each order component has an order component name and an order component
ID. (This component ID is stored in the order template in ControlData/Functions/
OrderComponentName/componentKey). The component name is specified at design
time. The component ID is generated for each instance of the order component at run
time.

The component name is the name of the order component specification; for example,
BillingFunction or BillingSystem. By default, the component ID is a concatenation
of the names of the order components in the orchestration stages. For example, if the
component names are modeled as:

• BillingFunction

• BillingSystem

• Bundle

The component IDs generated at run time are:

• BillingFunction

• BillingFunction.BillingSystem

Chapter 5
Modeling an Orchestration Plan

5-6

• BillingFunction.BillingSystem.Bundle

You can use customized order component IDs when assigning order items to
order components. See "About the Decomposition of Target System to Granularity
Components " for more information. For more information about creating valid data
keys, see, "Modeling Valid Data Keys."

About Order Items
Prior to generating an orchestration plan, OSM processes each customer order line
item in the incoming customer order and turns it into an order item. The order item
properties define the data that is included from these order items using XQuery
expressions.

Order items are individual products, services, and offers that need to be fulfilled as
part of an order. Each item includes the action required to implement it: Add, Suspend,
Delete, and so on. For example, a new order might add a wireless router; the order
item created in OSM is Add Wireless Router.

When you model order items, you do not model every possible order item. Instead,
you create an order item specification, which defines:

• The data that each order item can include

• The structure of the data; for example, the hierarchy between order items

• Data needed for orchestration

There must be one order item specification for each type of order received from the
order-source system. When you model an order item specification, you can configure
the following:

• Order item properties. Order item properties represent the data that is included
in order items. See OSM Concepts for more information.

• Orchestration conditions. Use orchestration conditions to customize how order
items are added to order components. For example, you can use the region order
item property to assign order items to different target system order components.
See "About the Decomposition of Function to Target System Components " for an
example of how orchestration components are used.

• Order item hierarchies. You use order item hierarchies to model how parent and
child items are identified. For example, you can use line IDs and parent line IDs.
See "Modeling Order Item Hierarchies" for more information.

• Order template. This data is the order item control data, which is used by OSM
when generating an orchestration plan. You can also assign behaviors to order
items. See OSM Concepts for more information.

• Order item dependencies. Use order item dependencies to create inter-order
dependences. See "About Inter-Order Dependencies" for more information.

• Permissions. Use permissions to allow specific roles access to order item search
queries in the Order Management web client and to specify if the query returns
summary data or detailed data. See "Modeling Roles and Setting Permissions" for
more information.

Most order items properties must be created in Design Studio and associated with
corresponding customer order element values using XQuery expressions (see "About
Order Item Specification Order Item Property XQuery Expressions"). However, in
some cases the order item property is not provided in the customer order. In this

Chapter 5
About Order Items

5-7

case, you must use an XQuery expression to derive the missing property value from
the existing customer order element values.

Example 5-1 shows an order line item. This order line item adds a Commercial
Fixed Service order item. In the following example, notice that the items in bold
correspond to the order item properties. However, there are order item properties,
such as productSpec and region, that are not in the order line item. Instead, you
specify to create those order item properties by using XQuery expressions in the order
item specification.

Example 5-1 Order Line Item in an Incoming Customer Order

<im:salesOrderLine>
 <im:lineId>4</im:lineId>
 <im:parentLineReference>
 <im:parentLineId>3</im:parentLineId>
 <im:hierarchyName>default</im:hierarchyName>
 </im:parentLineReference>
 <im:rootParentLineId>2</im:rootParentLineId>
 <im:promotionalSalesOrderLineReference>1
</im:promotionalSalesOrderLineReference>
 <im:serviceId>552131313131</im:serviceId>
 <im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:serviceAddress>
 <im:locationType>Street</im:locationType>
 <im:nameLocation>OLoughlin</im:nameLocation>
 <im:number>48</im:number>
 <im:city>Toronto</im:city>
 </im:serviceAddress>
 <im:itemReference>
 <im:name>Commercial Fixed Service</im:name>
 <im:typeCode>PRODUCT</im:typeCode>
 <im:primaryClassificationCode>Fixed Service Plan Class</im:primaryClassificationCode>
 </im:itemReference>
</im:salesOrderLine>

Figure 5-5 shows all of the order items derived from an order, including the order item
shown in Example 5-1.

Chapter 5
About Order Items

5-8

Figure 5-5 All Order Items in an Order

In Figure 5-5, notice that order items are hierarchical. For example, the Fixed Service
order item shown in Example 5-1 is part of the Fixed Bundle order item. In addition,
the Fixed Service order item includes three more order items: Commercial Fixed
Service, Fixed Caller ID, and Fixed Call Waiting. When you model orchestration, you
ensure that the hierarchy in the incoming customer order is duplicated in the OSM
order items. See "Modeling Order Item Hierarchies" for more information.

The order item specification defines the order item properties that are required for
generating the orchestration plan and the data to display in the Order Management
web client. This typically includes the display name, product specification, line ID,
requested delivery date, and so on. By contrast, the order item usually would not
include supplementary account and customer details such as the street address or
mailbox size. That type of data is defined in the task data for each task in the
fulfillment data, and in the creation task data when the order is created.

Caution:

Order item properties do not represent all of the data in an order. For
example, they do not define creation task data. That data is captured by
transformation rules. Order item properties are a subset of the data and are
used for orchestration.

Figure 5-6 shows part of an order input file and how the city field is mapped to the
region order item property in Design Studio. In this example, the <city> element in the
XML file is used in the order item property expression.

Chapter 5
About Order Items

5-9

See "About the Decomposition of Function to Target System Components " for an
example of how the region order item property is used in orchestration.

Figure 5-6 Order Line and Definition in Order Item Specification

A single order item specification is used for generating all of the order items that can
be created for an order. This ensures a consistent order item structure. Therefore:

• Order item properties should not be product or service specific. The only product
information you need to include is the product specification, which is a generic
value used for identifying the fulfillment pattern. By not applying order items to a
specific product, you can use the order item specifications for multiple products,
and you can support new products and services and multiple order entry systems.

• Order item properties should not be specific to any order entry system.

Caution:

When defining order item properties, include only the data required by OSM
for orchestration. Performance is impacted by the number and size of order
item properties.

Chapter 5
About Order Items

5-10

The properties you define for your order items will be different from those pictured
in Figure 5-6. However, this selection provides a good example of the type of order
properties that are commonly configured:

• productSpec: This property retrieves the product specification from the incoming
customer order. OSM maps each order item to a fulfillment pattern based on the
item's product specification (defined in the order-source system). The fulfillment
pattern specifies the order components in the first level of decomposition.

• fulfillmentPattern: This property stores the fulfillment pattern that the order item
uses. This value is obtained by mapping the productSpec value in a mapping file.
See "About Mapping Order Items to Fulfillment Patterns" for more information.

• lineId: This is the line ID of the order line item in the incoming customer order.
Each order line item in the incoming customer order has a unique line ID.
This property is used for determining the hierarchy of the order items. You can
determine a hierarchy of order items based on the lineID order item property and
the parentLineId order item property. For example, an order item with lineId 4 also
specifies a parentLineId as 3 which is the lineId of the parent order item. You can
use this function to hierarchically relate various types of order line items, such as
offers, products, and bundles of products, services, and resources. For example,
an order could include a Broadband offer with a High Speed Internet bundle and
an Internet Services service bundle. Both bundles would have the Broadband offer
as parent. You can also use order item hierarchies to aggregate order item status.
See "About the Decomposition of Target System to Granularity Components " for
an example of how this property is used.

• lineItemName: This property is the display name used in OSM web clients.

• requestedDeliveryDate: This property is the requested completion date for the
order item.

• parentLineId: This property defines the parent of the order line item in the
incoming customer order. This property is used for determining the hierarchy of
the order items. See "About the Decomposition of Target System to Granularity
Components " for an example of how this property is used.

• region: This property is an example of data that can be used to
manage decomposition into target system order components. See "About the
Decomposition of Function to Target System Components " for more information.

• serviceId: This property is used to display the service ID in the OSM web clients.

• lineItemPayload: This property stores the entire incoming customer order in OSM
as an XML file. This property is typically used in a development environment as an
aid to modeling.

About Creating Order Items from Customer Order Line Item Node-
Sets

To create order items from customer order line items, OSM needs to know what nodes
in the incoming customer order include the data to use in order items. OSM creates
orchestration control data from these nodes (see OSM Concepts).

Example 5-2 shows the salesOrderLine node-set in an incoming customer order.
You can specify these node-sets as order items by creating an XQuery expression in
the Orchestration Sequence editor that returns every instance of <salesOrderLine>
contained in the customer order (see "About Order Item Specification Order Item

Chapter 5
About Order Items

5-11

Property XQuery Expressions"). These node-sets produce the Broadband Bundle
and the Mobile Bundle order items. The elements in these node-sets can then be
specified as order item properties in the order item specification.

Example 5-2 The <salesOrderLine> Element in an Incoming Customer Order

<im:salesOrderLine>
 <im:lineId>13</im:lineId>
 <im:promotionalSalesOrderLineReference>1
 </im:promotionalSalesOrderLineReference>
 <im:serviceId></im:serviceId>
 <im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:itemReference>
 <im:name>Broadband Bundle</im:name>
 <im:typeCode>BUNDLE</im:typeCode>
 <im:specificationGroup></im:specificationGroup>
 </im:itemReference>
</im:salesOrderLine>
<im:salesOrderLine>
 <im:lineId>14</im:lineId>
 <im:promotionalSalesOrderLineReference>2
 </im:promotionalSalesOrderLineReference>
 <im:serviceId></im:serviceId>
 <im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:itemReference>
 <im:name>Mobile Bundle</im:name>
 <im:typeCode>BUNDLE</im:typeCode>
 <im:specificationGroup></im:specificationGroup>
 </im:itemReference>
</im:salesOrderLine>

About Associated Order Items
Figure 5-7 shows the associated order items, displayed with (assoc) in the
orchestration plan.

Figure 5-7 Associated Order Items Displayed in the Order Management Web
Client

Chapter 5
About Order Items

5-12

Caution:

Associated order items are not considered as part of the decomposition
and dependency calculations when OSM generates an orchestration plan.
Therefore, you cannot reference associated order items in decomposition or
dependency rules.

You model order item associations in fulfillment patterns. Figure 5-8 shows an order
item association modeled for the Bundle order component in the Service.Mobile
fulfillment pattern.

Figure 5-8 Order Item Associations in a Fulfillment Pattern

There are three ways to associate order items:

• Fulfillment pattern: This is the default entry. It associates order items by fulfillment
pattern, which is the normal orchestration method.

• Matching Order Component ID: This associates order items by matching
component ID.

Chapter 5
About Order Items

5-13

• Property correlation: This associates order items by using order item properties.
See "About Associating Order Items Using Property Correlations XQuery
Expressions" for more information.

Modeling Order Item Hierarchies
Order items can be organized hierarchically based on the content of the original
customer order. You can configure OSM with the following types of order item
hierarchies:

• Physical Hierarchy: The hierarchy can include various types of order line items,
such as offers, products, and bundles of products or services. For example, an
order could include a Broadband-VoIP offer with a High Speed Internet bundle,
an Internet Services service bundle, and a Wireless Router product item. OSM
maintains the order line item hierarchy from the customer order in the order item
hierarchy.

• Composition Hierarchy: You can use composition hierarchies with fulfillment
state composition rule sets to determine the parent/child relationship between
order items so that OSM can determine aggregate fulfillment states for parent
order items. See OSM Concepts for more information.

• Dependency Hierarchy: You can specify a dependency hierarchy that OSM uses
to automatically configure dependencies between order items on an order. For
more information, see "About Processing Order Items Sequentially".

Figure 5-9 shows a physical order item hierarchy that reflects the structure of the
original customer order.

Figure 5-9 Physical Item Hierarchy

The hierarchy is defined in the <lineID> and <parentLineId> elements. Figure 5-10
shows the first part of Figure 5-9, as it appears in an incoming customer order.

Chapter 5
About Order Items

5-14

Figure 5-10 Item Hierarchies in an Incoming Customer Order

To define the order item properties that specify the hierarchy, you configure the order
item hierarchy in the order item specification using an XQuery expression. See
"About Order Item Specification Order Item Hierarchy XQuery Expressions" for more
information.

An order item hierarchy is invalid when:

• The hierarchy refers to an non-existent parent or child line ID.

• When the key or parent key XQuery is wrong.

• When the hierarchy specifies a circular relationship. For example, the parent of an
order item is itself, or if order item A is the parent of order item B and order item B
is also the parent of order item A.

OSM does not apply invalid order item hierarchies, but instead runs the order without
any hierarchy.

About Using a Distributed Order Template
The distributed order template is a structure data type that is available only for order
item specifications. It improves performance and also has the following benefits:

• Reduces order node conflicts: Without the distributed order template, data
elements in the data dictionary that have the same name need to have the same
definition (type, description, etc.) regardless of whether they appear in different

Chapter 5
About Order Items

5-15

structures in different places in the data dictionary. With the distributed order
template, this is no longer necessary.

• Allows data changes without having to redeploy the entire solution: Without the
distributed order template, any changes to the data defined for the order (including
order item property updates) requires redeployment of the entire solution. With the
distributed order template, if you change order item properties, you need to deploy
only the cartridge containing the changed order item.

You decide whether to use the distributed order template by selection the appropriate
box in the order item creation wizard or in the Order Item Specification editor in Design
Studio. For more information, see Design Studio Modeling OSM Orchestration Help.

If you use a distributed order template, any references you make to order item data
in XQuery expressions or automation must include a namespace. References to data
in data change notifications and flexible headers do not need to change. For any
order item that is not a transformed order item, the namespace will always be the
namespace of the order item specification. Following is an example of an XQuery
reference to the lineItemID property on the InputOrderItem order item with the
namespace http://ex_input.com:

/ControlData/OrderItem[@type='{http://ex_input.com}InputOrderItem']/lineItemID

If you are using the order transformation manager, see "Using the Distributed
Order Template with the Order Transformation Manager" for information about the
namespace that will be used for transformed order items.

About Mapping Order Items to Fulfillment Patterns
The first orchestration stage assigns order items to function order components, by
using fulfillment patterns. You need to model how to map order items to fulfillment
patterns and implement the model using an XQuery expression (see "About XQuery
Expressions for Mapping Product Specifications and Fulfillment Patterns" for more
information).

Each order item in an order must have an order item property that specifies a value
that represents a product, service, resource, or action. You map the value of the
order item property to a corresponding fulfillment pattern designed to fulfill the order
items mapped to them. Fulfillment patterns organize the functions into which order
items decompose, any conditions that govern when an order item can be included
in a function, and any associated order items that might be included in a function
from different fulfillment patterns. Ideally, there ought to be a many-to-one relationship
between order items and fulfillment patterns.

The way order items decompose to fulfillment patterns and further into functions
depends on what kind of order item it is. For example, at the central order
management (COM) level, you might group bundle order items as children of offer
order items. The bundle order items would in turn be parents to product order items.
Example 5-3 is a possible hierarchy where each product order item maps to either an
Service.VoIP or Service.CPE.VoIP fulfillment pattern:

Example 5-3 Sample COM Order Item Hierarchy

1 On Top of the World Broadband-VoIP (OFFER)
 5 High Speed VoIP Service (Bundle)
 6-VoIP Services (Product) ---> Service.VoIP
 7-VoIP PS (Product) ---> Service.VoIP
 20-Value Added Features PS (Product) ---> Service.VoIP

Chapter 5
About Order Items

5-16

 22-VoIP Adaptor PS (Product) ---> Service.CPE.VoIP
 25-VoIP Phone PS (Product) ---> Service.CPE.VoIP
 26-VoIP Soft Phone PS (Product) ---> Service.CPE.VoIP
 27-VoIP Visual Voicemail PS (Product) ---> Service.VoIP
 28-VoIP Voicemail PS (Product) ---> Service.VoIP

Those order items destined to the Service.VoIP fulfillment pattern would decompose to
the following functions:

• ProvisionOrderFunction

• InitiateBillingFunction

• SyncCustomerFunction

• FulfillBillingFunction

You can configure conditions where an order item might not be included in
a specific function. For example, if a customer decides to move their VoIP
service from one residence to another, you could configure a condition on the
InitiateBillingFunction that would block the VoIP service order items from being
included in the InitiateBillingFunction since the customer is already being billed for
the VoIP services.

Sometimes, you need to assign order items to order functions that would not
be assigned to the current fulfillment pattern by their product specification. This
requirement can occur when an interaction with an external system requires a specific
context for an order item.

For example, a billing system might need to process billing-related order items in the
context of a bundle, to manage the relationships between balances, discounts, and
so on. Billing charges are often order line items, such as an installation service, that
are included in the order outside of the service billing bundle hierarchy. However, they
might need to be associated with the billing bundle to ensure that the charge is made
against the correct service. In that case, you can associate the billing charges with a
bundle order component. By contrast, billing order items might be sent to the billing
system in the context of a whole order. In that case, you do not need to associate the
order items to a bundle, because they are already in context.

About Modeling Product Specifications
New product specifications should be imported (which will create conceptual model
products) or created in the conceptual model. If you have an existing configuration,
however, you can still use product specifications (formerly called product classes) that
were created in OSM.

You can map multiple product specifications to one fulfillment pattern. This enables
you to introduce new products in existing product specifications without needing to
create new fulfillment patterns or fulfillment flows.

The Design Studio conceptual model functionality helps you model data as part of
an end-to-end solution in an application agnostic way. You create conceptual model
projects to:

• Define products.

• Define the services that the products represent.

• Define the resources that implement those services.

Chapter 5
About Order Items

5-17

• Define service domains, such as broadband (ADSL, VDSL, DOCSIS, and Fiber),
VoIP, email, Mobile, and so on.

• Define actions and relationships between products, services, and resources

Conceptual model items are not built into OSM cartridges or deployed to the
OSM server directly. They are included into OSM by something called realization.
Realization refers to converting the abstract entities in the conceptual model into
actual instances in the OSM configuration. You can use this conceptual model
metadata as part of your OSM run-time solution to help define order item to fulfillment
pattern mappings and to give you an representation of what you need to implement in
OSM as part of your overall fulfillment solution.

See Design Studio Concepts for more information about conceptual model projects.
See "About XQuery Expressions for Mapping Product Specifications and Fulfillment
Patterns" for more information about using conceptual model entities to map order
items to fulfillment patterns. See "OSM Solution Modeling Overview" for more
information about how OSM can be modeled in an end-to-end solution.

Modeling Fulfillment Modes
The fulfillment mode is the overall purpose of the order. For example:

• Deliver a service.

• Qualify a service before delivering it. This ensures that a service can be fulfilled
before attempting to fulfill it.

• Cancel an entire order.

Every incoming customer order can specify a fulfillment mode.

OSM can use the fulfillment mode as part of the orchestration process. For example,
if OSM receives two identical incoming customer orders with different fulfillment mode
order item properties, it generates a different orchestration plan for each order. The
two plans include different executable order components with different dependencies
among order items.

Fulfillment modes are configured in the following places:

• Fulfillment mode entities: These entities include no data other than a name.
They provide the means to assign fulfillment modes to other entities, such as
orchestration sequences and fulfillment patterns.

• Orchestration sequences define a single fulfillment mode using an XQuery
expression based on a customer order attribute (see "About Order Sequence
Fulfillment Mode XQuery Expressions").

• Fulfillment patterns list the fulfillment modes that the associated order items can
be used with.

Figure 5-11 shows the fulfillment modes defined in a fulfillment pattern. Any order
item that uses this fulfillment pattern can be processed in either the Cancel or
Deliver fulfillment mode.

Chapter 5
Modeling Fulfillment Modes

5-18

Figure 5-11 Fulfillment Modes Defined in a Fulfillment Pattern

When a fulfillment pattern includes multiple fulfillment modes, you can model a
different set of order components and dependencies for each fulfillment mode.

About the Decomposition of Order Items to Function Order
Components

The following sections describe the decomposition of order items to function order
components.

About Assigning Order Items to Fulfillment Pattern Function
Components

The first step in decomposition is to assign order items to function components. To do
so, OSM uses the product specification to find the fulfillment pattern that the order item
uses. (See "About Mapping Order Items to Fulfillment Patterns" for more information.)
The fulfillment pattern defines the order components to add the order item to.

Figure 5-12 shows the function order components selected in the Service.Broadband
fulfillment pattern. In this case, order items that use this fulfillment pattern need all of
the functions; billing, collections, provisioning, and so on.

Chapter 5
About the Decomposition of Order Items to Function Order Components

5-19

Figure 5-12 Function Order Components Selected for a Service Fulfillment
Pattern

Figure 5-13 shows how to use a base specification to define the same function order
components as described above. In this case, the base fulfillment pattern selects all
of the function order components except provisioning. The service and non-service
fulfillment patterns inherit the selections. The service fulfillment pattern adds the
provisioning function. The non-service fulfillment pattern does not add it.

Figure 5-13 How to Use a Base Specification to Define Function Components

Chapter 5
About the Decomposition of Order Items to Function Order Components

5-20

About the Function Components Stage
In addition to using the fulfillment pattern to assign order items to function
components, you model an orchestration stage, which specifies to create the function
order components to create.

About Order Component Control Data
When OSM creates the order items and order components, it produces a set of control
data. The control data provides information OSM requires to fulfill the order. OSM
uses the control data to track the status of the entire order and to track the status of
the individual order items. During fulfillment, order component transactions update this
control data with system interaction responses.

Design Studio automatically generates control data for function order components
provided that orchestration entities are preconfigured correctly and you use the
OracleComms_OSM_CommonDataDictionary model project. If you do not use the
OracleComms_OSM_CommonDataDictionary model project, you must manually
model order component control data. See "About Modeling Order Component Control
Data" in Modeling OSM Orchestration for information on how order component control
data is automatically generated or how to manually model it.

See "Modeling OSM Data " for more information on adding function order components
to the order control data.

About Fulfillment Pattern Conditions for Including Order Items
You can use conditions to add order items to an order component only when the
XQuery for the condition evaluates to true. For example, you might include an order
item based on an XQuery that checks the action code (Add or None). This is useful
in the case of an update to a service that changes some features while leaving
other features unchanged. See "About Order Item Specification Condition XQuery
Expressions" for more information.

Summary of Order Item to Function Components Decomposition
To summarize this example, to model the decomposition from a order items to a
function component, you model the following:

• The fulfillment pattern order item property so that order items can be mapped to
fulfillment pattern function components.

• Any XQuery expressions that evaluate conditions to include or exclude order
items.

• The Order control data for orchestration.

• The orchestration stage that produces the function components

Chapter 5
About the Decomposition of Order Items to Function Order Components

5-21

About the Decomposition of Function to Target System
Components

The following sections describe the decomposition of order items from functional
components to target systems.

About Decomposition Rules from Function Components to Target
Systems

After the order items have been assigned to function order components, they need
to be further decomposed into target system order components. To do so, you use
decomposition rules.

A decomposition rule specifies a source order component and a target order
component. Figure 5-14 shows a decomposition rule from the billing function
component to the billing target system component.

Figure 5-14 Decomposition Rule

Chapter 5
About the Decomposition of Function to Target System Components

5-22

About Decomposition Rule Conditions for Choosing a Target System
You can use decomposition rules to decompose order items from one function
component to multiple target system components. Figure 5-15 shows the source and
target order components for two decomposition rules:

• Provision to DSL Provisioning System - Region1

• Provision to DSL Provisioning System - Region2

These two decomposition rules decompose the order items in the
ProvisioningFunction order component into two target system order components
based on Region 1 and Region 2.

Figure 5-15 Source and Target Order Components for Two Decomposition Rules

Each of the decomposition rules uses decomposition conditions to specify which target
system to use for a particular order. The target system is selected if the XQuery
expression associated with the condition evaluate to true. In this example, the XQuery
expression uses the value of the region order item property to make this evaluation.
If the value of region is Toronto, then OSM selects the condition and target system

Chapter 5
About the Decomposition of Function to Target System Components

5-23

for Region 1. If the value of region is New York, then OSM selects the condition and
target system for Region 2. See "About Order Item Specification Condition XQuery
Expressions" for more information about creating an XQuery condition expression that
can be used for with a decomposition rule.

About the Target Systems Stage
In addition to creating the decomposition rules that define the source and target
components, you need to create an orchestration stage that produces the target
system order components.

Summary of Configuring Target System Components Decomposition
To summarize, to configure how order items are decomposed from a function order
component to a target system order component, you do the following:

• Define an orchestration stage to produce the target system order components.

• Create dependency rules to specify the source order components and target order
components.

• If a function order component decomposes order items to more than one
target system order component, create decomposition conditions. Decomposition
conditions depend on data specific to the order items, so decomposition rules
typically use XQuery expressions to retrieve the data that is used for evaluating
the condition.

About the Decomposition of Target System to Granularity
Components

The following sections describe the decomposition of order items from target system
components to granularity components.

About Decomposition Rules from Target System to Granularity
Components

After order items have been decomposed into target system order components, the
next step is to decompose them into the granularity order components.

Some examples of the granularity requirements are:

• A billing system might require the entire order in the message to calculate
discounts.

• A billing system might require separate bundles for mobile billing and fixed billing,
to handle different completion times (fixed billing typically has more dependencies
and takes longer).

To decompose target system order components items into bundle granularity
components you configure the following:

• Create a decomposition rule, which decomposes the target system order
component into bundle granularity components.

Chapter 5
About the Decomposition of Target System to Granularity Components

5-24

• Create customized component IDs (stored in the componentKey data element
in the control data) that are used to create separate order components for
each bundle. See "About Customized Component IDs for Separating Bundled
Components" for more information. The componentKey data element is used as
the data key for the order component. (See "About Order Data Position and Order
Data Keys" for information about the use of data keys in OSM.)

About Customized Component IDs for Separating Bundled
Components

You create the customized order component by editing the bundle order component
specification.

You need to configure a decomposition rule and a bundle granularity order component
specification to make sure that order items for a fixed service and a broadband
service are decomposed into separate bundle granularity components, based on
their customized component IDs. The customized component IDs result in separate
instances of bundle order components, with separate component keys. This allows
OSM to process the order components for the fixed service and the broadband
service separately. If you do not create customized component IDs, the order items
are processed together in the same order component.

This customization also ensures that the component ID is the same for order items
within the same granularity (for example, a bundle) but not for order items at a higher
granularity.

In addition, you may want to group order items into custom component IDs based on
order item requested delivery date. For example, you might want an order component
to process all order items with a requested delivery date that falls within the first two
days of when an order start, and another order component for the next two days.
You can further combine these grouping by requested delivery date within order item
hierarchy groupings.

See "About Component Specification Custom Component ID XQuery Expressions"
for more information about configuring custom order component hierarchies using
XQuery.

About the Granularity Components Stage
In addition to creating the decomposition rules that define the source and target
components, you need to create an orchestration stage that produces the granularity
order components.

Summary of Configuring Granularity Components Decomposition
To summarize, to model the decomposition from a target system order component to a
bundle order component, you model the following:

• The decomposition rule, which decomposes the target system order component
into bundle granularity components

• The orchestration stage that produces the bundle order component

• The order item hierarchy that the XQuery ancestors function uses in the order
item specification

Chapter 5
About the Decomposition of Target System to Granularity Components

5-25

• The XQuery for the customized order component in the bundle order component
specification

About Dependencies
An orchestration plan is based on two main factors: decomposition, which derives
the order components, and dependencies, which dictate when the order components
are allowed to run. OSM calculates order item decomposition first before calculating
dependencies.

Dependencies are relationships in which a condition related to one order item must be
satisfied before another item can be processed successfully. For example, a piece of
equipment must be shipped to a location before the action to install it at that location
can be taken.

You typically create dependencies between order items in the same order (intra-order
dependencies). You can model the following types of intra-order dependencies using
fulfillment patterns:

• Order Item dependency: A dependency that requires the completion of one type
of fulfillment function for an order item before starting another type of fulfillment
function for the same order item within a single fulfillment pattern. For example, for
a single order item included in a VoIP.Service fulfillment pattern, you can specify
that the provision function order component must process an order item before the
bill function order component can begin processing the same order item.

• Fulfillment pattern dependency: A dependency that requires the completion
of a fulfillment function for an order item in a fulfillment pattern before starting
a fulfillment function for another order item in a different fulfillment pattern. For
example, for a single order item included in a VoIP.Service fulfillment pattern,
you can specify that the provision function order component can only process an
order item after the provision function order component on the BroadBand.Service
fulfillment pattern has completed.

• Order item property dependency: A dependency that requires the completion of
one order item before starting another order item based on order item properties.

• Order item hierarchy dependency: You can configure an order item hierarchy
that automatically creates dependencies between predecessor and successor
order items based on order item properties so that order items run sequentially.
The successor order item can only begin after the predecessor order item
completes. For example, order item A would have to complete all functions within
its fulfillment pattern before order item B could begin processing its functions
within its own fulfillment pattern. The fulfillment patterns could be identical or
different, but they would have to be run separately for each order item with the
parent child relationship.

For more information, see "About Intra-Order Dependencies".

You can also create dependencies between order items in different orders (Inter-order
dependencies). For example, the order items in a follow-on order for VoIP provisioning
might depend on the execution of the order items in the original order for DSL
provisioning. See "About Inter-Order Dependencies" for more information.

You can model dependencies in two ways in Design Studio:

• As order item dependencies. These dependencies are modeled as part of
fulfillment patterns. Most dependencies are modeled in this manner.

Chapter 5
About Dependencies

5-26

• As orchestration dependencies. These dependencies are modeled outside of
fulfillment patterns. While not as common as those modeled in fulfillment patterns,
orchestration dependencies are useful in specific circumstances; for example, if
you need to define a generic dependency or want to model one without having to
modify a fulfillment pattern.

Figure 5-16 shows order items displayed in the Order Management web client. In this
example, the billing order items for a fixed service can start immediately because they
have no dependencies. The billing order items for high-speed Internet must wait until
the provisioning order items have completed.

Figure 5-16 Dependencies Displayed in the Order Management Web Client

About Intra-Order Dependencies
A dependency requires two order components: the waiting order item and the blocking
order item. The blocking order item is the order item that must complete before the
waiting order item is started.

Dependencies can be based on several different factors, including:

• Completion status. For example, the blocking order item must be complete before
the waiting order item can start or you can specify to start billing only after
provisioning has completed.

• Actual and relative date and time. For example, you may want an order
component that contains order items for an installation to start two days after the
completion of the order component that contains the order items for shipping the
equipment.

• Data change. For example, you can specify that shipping must wait until a
specified order item property in the blocking order item has a specified value.

Order items can have combinations of dependencies. For example, an order item for
an installation can depend on a combination of a completion status dependency (item
successfully shipped) and date dependency (wait two days after shipment to schedule
installation).

Chapter 5
About Dependencies

5-27

Note:

You can manage dependencies during amendment processing; for example,
when you submit a revision order. See "Modeling Changes to Orders " for
more information.

Although dependencies exist logically between order items, they are managed by
order components. In other words, if any item in a component has a dependency,
the component as a whole cannot be started until the dependency is resolved. In
the Order Management web client, order items include dependency IDs to indicate
items whose dependencies are managed together. See OSM Order Management Web
Client User's Guide for more information.

Modeling an Order Item Dependency
The simplest form of dependency is an order item dependency, configured in a
fulfillment pattern. This type of dependency is based on function order components;
for example, the billing order component cannot start until the provisioning function
has completed.

Figure 5-17 shows a dependency relationships. Note the two layers of dependency:
billing is dependent on provisioning, and everything else is dependent on billing.

Figure 5-17 Dependency Relationships for Order Item Dependency

In addition to defining the function order components, you need to define the
conditions that govern the dependency. The default condition is to wait until the final
task associated with the order item has completed. Figure 5-18 shows a wait condition
defined in Design Studio. In this case, the waiting order item must wait until the
blocking order item task has reached the Completed state. See "About Order Item
Dependency Wait Conditions" for more information.

Chapter 5
About Dependencies

5-28

Figure 5-18 Wait Condition in Design Studio

About Order Item Dependency Wait Conditions
Dependency wait conditions specify the condition that the blocking order item must be
in before the waiting order item can start. For example, the default wait condition is to
start the waiting order item when the last task associated with the blocking order item
reaches the Completed state.

You specify wait conditions in fulfillment patterns and orchestration dependencies. You
can set different wait conditions for each dependency. The wait conditions can be:

• The task state of the final task associated with the blocking order item

• A change in the data for a specified field. See "About Order Item Dependency Wait
Conditions Based on Data Changes" for more information.

• A specified duration after the task state or data change condition has been met.
You can specify a value in months, weeks, days, hours, or minutes, or you can
specify an XQuery expression to determine the delay (see "About Wait Delay
Duration XQuery Expressions"). For example, you can specify to start the waiting
order item two days after the blocking order item has completed.

• A specific date and time based on the result of an XQuery expression (see "About
Wait Delay Date and Time XQuery Expressions"). For example, you can specify
to start the To Component order component on a date specified in an order item
property.

The orchestration dependency wait condition options are identical.

About Order Item Dependency Wait Conditions Based on Data Changes
You can base a dependency on a change to data. The data must be included in an
order item property, and it must be in the task data of the task associated with the
blocking order item.

To configure the dependency, you define the following:

Chapter 5
About Dependencies

5-29

• The order item property that is evaluated. Any change to the data in the order item
property triggers an evaluation of the data to determine if it matches the conditions
required for the dependency.

• An XQuery expression that evaluates the data retrieved from the blocking order
item. The expression returns true or false; if true, the dependency has been met.

Figure 5-19 shows a data change dependency in Design Studio.

Figure 5-19 Data Change Dependency in Design Studio

In Figure 5-19:

• The Order Item field specifies the order item specification to use.

• The order item property that the dependency is based on is milestone.

The Relative Path field (not used in this example) is an optional field you can use
to specify a child data element in the order item properties.

• The XQuery expression evaluates the data in the milestone property to determine
if the dependency has been met. See "About Order Data Change Wait Condition
XQuery Expressions" for more information.

Modeling a Fulfillment Pattern Dependency
You can define dependencies across different order items by basing the dependency
on the fulfillment patterns of the order items. For example, you can create a
dependency that specifies to provision fixed services only after broadband services
have been provisioned.

Figure 5-20 shows a dependency based on fulfillment pattern. In this example, the
dependency requires that fixed services be provisioned before broadband services.
To configure this type of dependency, you edit the fulfillment pattern of the waiting
order item. In the fulfillment pattern, you provide a list of waiting and blocking order
components.

Chapter 5
About Dependencies

5-30

Figure 5-20 Dependency Based on Fulfillment Pattern

Figure 5-21 shows the dependency relationships shown in Figure 5-20. Note that fixed
provisioning is the blocker for broadband provisioning and for fixed billing.

Figure 5-21 Dependency Relationships for Fulfillment Pattern Dependency

Chapter 5
About Dependencies

5-31

Modeling an Order Item Property Correlation Dependency
Using properties correlation is the most flexible way to configure dependencies.
You use this method to create a dependency on two different order items that
share the same order item property. As with other dependencies, you specify a
blocking component (the From Component field) and a waiting component (the To
Component field), but you also enter an XQuery expression to select the order item
property that order items in the To Component field must share with order items in
the From Component field (see "About Order Item Dependency Property Correlation
XQuery Expressions" for more information).

About Inferred Dependencies
OSM is able to create dependencies at run time by inferring dependencies. For
example, you might create this series of dependencies:

Provisioning - Billing - Marketing

If the order item has no billing function, there is an inferred dependency between
Provisioning and Marketing, even though you have not modeled that dependency.
Provisioning must complete before Marketing can start.

Inferred dependencies mean that whenever A is dependent on B and B is dependent
on C, A is dependent on C. This avoids the need to model every dependency that
might be possible.

Figure 5-22 shows a sample dependency configuration. Figure 5-23 shows the run-
time view of the same configuration when there is no billing function. In this case, the
Order Management web client shows dependencies from provisioning to marketing,
synchronize customer, and collections.

Figure 5-22 Dependency Relationship

Chapter 5
About Dependencies

5-32

Figure 5-23 Inferred Dependencies at Run Time

Inferred dependencies are supported within a fulfillment pattern, but they are not
supported across fulfillment patterns. For example, OSM does not infer a dependency
from ProvisioningFunction(Service.Fixed) to BillingFunction(Service.Broadband). You
must specifically model that dependency.

About Modeling Orchestration Dependencies
You use orchestration dependencies to create dependencies between order
components that are not based on fulfillment patterns. For example, if you need
to define a generic dependency or want to model one without having to modify a
fulfillment pattern, you can use an orchestration dependency specification.

As with dependencies defined in fulfillment patterns, you can specify wait conditions
and the type of order item dependency (for example, order item, fulfillment pattern,
and property correlation).

About Processing Order Items Sequentially
You can enable order items to process sequentially at run-time by setting an
order item dependency hierarchy in the order item specification editor Order Item
Hierarchies tab. When you model order items to run sequentially, avoid creating
circular dependencies by ensuring that you do not include order items with a
predecessor successor relationship into the same order component.

For example, you can ensure that only one order item processes at a time by
configuring the orchestration granularity for a component to process only one order
item at a time. Or you could also set the granularity for a component to process
only a bundle of order items at a time. For example, between a bundle for VoIP and
another bundle for Broadband. If parameters designating the successor predecessor
relationship always establish a relationship between order items across two different
bundles, then you avoid circular dependencies in this way as well.

Chapter 5
About Dependencies

5-33

Figure 5-24 shows how order items can be configured to process sequentially based
on two order item properties defined in an order item specification order item hierarchy.
You can use any order item property, so long as you can use the properties to
establish the predecessor and successor relationship.

Figure 5-24 Order Item Processing Sequence

See "Modeling Order Item Hierarchies" for more information about modeling order item
hierarchies.

About Inter-Order Dependencies
An inter-order dependency is a dependency between order items in different orders.
You typically configure this type of dependency to manage changes to an order when
that order has passed the PONR and cannot be amended. However, you can also use
inter-order dependencies for other purposes, such as managing fulfillment functions on
different systems, load balancing, and so on.

When using inter-order dependencies, the blocking order is the base order, and the
waiting order is a follow-on order. A typical scenario is:

1. A customer has ordered a broadband service.

2. The next day, while the order is still in-flight but past the PONR, the customer
requests a change to the service bandwidth.

3. Because a revision to the base order cannot be submitted, the customer service
representative creates a follow-on order.

4. The follow-on order is submitted to OSM; however, it does not begin processing
until the base order has completed.

You typically model inter-order dependencies between a base order that has reached
its point of no return (PoNR) (where a revision order is no longer possible) and a
follow-on order (see "Modeling a Point of No Return" for more information). A follow
on order does not trigger amendment processing on the original base order, but does
have a dependency on one or more order items on the base order through the an
inter-order dependency. You configure the inter-order dependency on the follow-on
order so that it can check that the blocking order items on the base order have
completed so that the waiting order items on the follow-on order can start processing.

Here are some important points to know about inter-order dependencies:

Chapter 5
About Dependencies

5-34

• Inter-order dependencies are based on order items. After the base order
completes the blocking order item, the follow-on order can start, even though the
base order is still in-flight.

• Inter-order dependencies are sometimes used to manage technical dependencies
when a specific fulfillment requirement cannot be handled by a revision. However,
they can also be based on business reasons, when it is simpler or more efficient to
use a follow-on order than to model revisions.

• A follow-on order does not perform amendment processing on the base order.
A follow-on order can be used to add, modify, or cancel services, similar to any
order. The key feature is that a follow-on order has a dependency on another
order.

You must model the inter-order dependencies into both the base order and the follow-
on order.

• The follow-on order must be able to find the base order and be able to recognize if
the blocking order item has completed.

• The base order must contain a reference to allow the follow-on order to find it.

To configure an inter-order dependency, you use the Order Item Dependencies tab.
The configuration typically consists of the name of the dependency and its XQuery or
data instance (see "About Order Item Inter-Order Dependency XQuery Expressions"
for more information about inter order item XQuery expressions).

You can create inter-order dependencies that involve order item hierarchies. For
example, you can specify that the blocking order item include all of the order items
in its hierarchy. To do so, you select the child completion dependency when specifying
an order item hierarchy (see Figure 5-25). For more information about order item
hierarchies, see "Modeling Order Item Hierarchies").

Figure 5-25 Use for Child Completion Dependency Selected in Design Studio

About Modeling Orchestration Dependencies
Figure 5-26 shows an orchestration dependency in Design Studio.

Chapter 5
About Dependencies

5-35

Figure 5-26 Orchestration Dependency in Design Studio

Using Task States to Manage Orchestration Dependencies
You can use task states when defining orchestration dependencies. For example,
you can specify to wait until a task has reached a specified state before an order
component can be processed.

Chapter 5
About Dependencies

5-36

6
Modeling the Order Transformation
Manager

This chapter describes how to model the order transformation manager in an Oracle
Communications Order and Service Management (OSM) solution.

Understanding the Order Transformation Manager
The order transformation manager provides users with the ability to transform order
items. For example, you can use the order transformation manager to transform
customer-focused order items (what the customer bought) to service-focused order
items (the services that equate to what the customer bought). It enables you to
set up guidelines for order transformation that do not need to be changed due to
product changes. Instead of writing a lengthy XQuery, users can model the order
transformation in Oracle Communications Design Studio. The order transformation
manager also provides visibility in the Order Management web client into service
processing, making it easier to see how customer services are being transformed into
the services being processed by OSM. In addition, the order transformation manager
enables you to propagate data upstream and assists in status consolidation.

Order Transformation Manager in Runtime
In runtime, when the order transformation manager is triggered, OSM initiates the
following process for each domain that has order items associated with it:

1. The appropriate transformation sequence is accessed to determine the
appropriate transformation stages.

2. The transformation stages are executed in order. For each transformation stage:

a. The stage condition is evaluated to determine whether the stage should be
run. If not, OSM moves to the next stage.

b. The list of source order items is gathered: both context order items (the order
items to be transformed) and related order items (order items that might
contribute data to the transformed order items).

c. The list of mapping rules that apply to the named relationships for the
transformation stage is gathered.

d. The mapping rules are processed, creating transformed order items and
mapping parameters to them.

3. The transformed order items are processed in the same way as original order
items, for example being processed by order components.

6-1

The Order Transformation Manager and the Conceptual
Model

Entities are realized into the OSM cartridges by different means. Following is a
description of how the different entities are realized into OSM or referenced by OSM.

• Provider Functions: Provider functions in the conceptual model are realized into
OSM as transformation managers.

• Named Relationships: These entities are realized into OSM when they are
referenced by OSM entities, such as mapping rules.

• Domains: Domains are referenced in OSM by transformation managers and
mapping rules.

• Products and Customer-Facing Services: These entities are realized into OSM
when they are included in relationships that are used by the order transformation
manager and when their parameters are mapped to OSM order items using order
item parameter bindings.

• Action Code: These are referenced in OSM as action codes.

Figure 6-1 depicts general relationships between conceptual model entities and OSM
entities that are used by the order transformation manager.

Chapter 6
The Order Transformation Manager and the Conceptual Model

6-2

Figure 6-1 Relationships Between Conceptual Model Entities and OSM Entities

OSM Entities Used in the Order Transformation Manager
The order transformation manager uses several entities in Design Studio for OSM.

• Transformation manager: The transformation manager entity enables you to select
the transformation sequences for the service domains within a provider function.
This entity is the entry into the order transformation functionality.

• Transformation sequence: The transformation sequence enables you to define
the transformation stages and the logic to be used at each transformation
stage. Transformation stages define the source and target order items and the
relationship between them for each step of the transformation.

• Order item specifications: You must define an original (source) order item
specification that defines the structure of the incoming order items and a
transformed (target) order item specification that defines the structure of the output
of the order transformation for the order transformation manager. If the same
structure is used for both, the same order item specification can be defined for

Chapter 6
OSM Entities Used in the Order Transformation Manager

6-3

both original and transformed order items. See "About Order Items" for more
information about configuring and using order items.

• Mapping rules: Mapping rules define the way that original order items are
transformed into transformed order items. You use mapping rules to define how
transformed order items are generated and how their parameters and properties
are populated. The data elements you can use as a source for the mappings
are the parameters on the original order item in addition to the parameters on
the actions defined for the order item. There are many different ways to generate
the parameters and properties for the transformed order items. These methods
include:

– You can map parameters from the source order item to the target order item.
You can copy the value from the source to the target, transform the value
of the source parameter or property to a value on the target based on pre-
defined value mappings or on the units of measure for each, and you can write
XQuery expressions to do the value transformation.

– You can map order item instances from the source order item to parameters
or properties on the target order item. You can either set up a specific value
to use on the transformed order item based on the presence of the source
order item, or you can use XQuery to determine the value for the parameter or
property on the transformed order item.

For more information about mapping rule types, see the Design Studio Modeling
OSM Orchestration Help.

Mapping rules also enable you to map actions for the transformed order item
either using the actions defined in the named relationship or defining the actions
specifically for the mapping rule, based on the input, output, and current actions of
the order items.

• Order Item Parameter Bindings: The order item parameter bindings enable you to
bind the parameters from a conceptual model entity to parameters on an order
item. They also enable you to determine the mapping between the parameters on
the conceptual model entity and the properties on an order item. In addition, they
enable you to transform the parameters from the customer order line before they
are added to the conceptual model entity. One use for this would be to transform
name/value-pair-type parameters from the incoming order into more strongly typed
parameters on the conceptual model entity.

• Transformation Tasks: If you want to call the order transformation manager from
a process instead of before the orchestration plan is generated, you do this using
a transformation task. See "Calling the Order Transformation Manager" for more
information. The transformation task is very much like an automated task, except
that by default it has an appropriate automation plug-in defined for it and provides
the ability to define the transformation manager to call.

Calling the Order Transformation Manager
There are two methods for calling the order transformation manager:

• If you want the order transformation manager to run before the orchestration plan
is generated, select Invoke Order Transformation Manager in the Orchestration
Process and select a provider function. This is the recommended practice, as it
causes the order transformation manager to be run in the context of the whole
order and with one call.

Chapter 6
Calling the Order Transformation Manager

6-4

• If you want to call the order transformation manager at a different place in the
order process, you can include a transformation task in an OSM process. The
transformation task calls a specific transformation manager that you define in the
task. This option provides flexibility in the following ways:

– It enables you to call the order transformation manager multiple times in the
process flow for different provider functions. You should not call the order
transformation manager more than once for the same provider function.

– It provides the option not to persist the results of the transformation to the
order template. This is useful if the order transformation manager results are
transient or going to be passed through directly to a southbound system.
Additionally, this gives the user the flexibility to format any results that are
going to be persisted in whichever structure they want.

– It provides the ability to filter the order items passed into the order
transformation manager. This enables a user to ensure that the order
transformation manager only processes relevant order items.

The order transformation manager works the same regardless of the way it is called.

Using the Distributed Order Template with the Order
Transformation Manager

When you are using the order transformation manager, you must use the distributed
order template for the order item specification that contains transformed order items.
For the order item specification that contains original order items, using the distributed
order template is optional. See "About Using a Distributed Order Template" for general
information about the distributed order template.

The distributed order template uses namespaces to determine the data structure that
should be used. For transformed order items, the namespace depends on the source
of the data for the transformed order item. Data that is defined in the order item
specification itself will use the namespace for the order item specification, the same
way that data would be referenced for an input order item. Following is an example of
an XQuery reference to the lineItemID property on the OutputOrderItem order item
with the namespace http://ex_output.com:

/ControlData/OrderItem[@type='{http://ex_output.com}OutputOrderItem']/lineItemID

Data that has been derived from a common model entity, for example an action, will
use a different format. In the following situation:

• Order item namespace: http://ex_output.com

• Order item name: OutputOrderItem

• Name of the parameter assigned as the Dynamic Parameter Property in the order
item specification: dynamicParams

• Conceptual model cartridge name: Model_Broadband

• Conceptual model cartridge version: 1.0.0.0.0

• Conceptual model entity (in this case an Action) name: SA_Add_Internet

• Parameter name on SA_Add_Internet: serviceLevel

The reference would look like this:

Chapter 6
Using the Distributed Order Template with the Order Transformation Manager

6-5

/ControlData/OrderItem[@type='{http://ex_output.com}OutputOrderItem']/
dynamicParams[@type='{Model_Broadband/1.0.0.0.0}SA_Add_InternetType']/
serviceLevel

The parameters from the conceptual model entity are contained in the dynamicParams
element on the transformed order item. The type for the parameters contained in the
conceptual model entity has the string "Type" appended to the name of the entity.
Thus, the type contains SA_Add_InternetType rather than just SA_Add_Internet.

Modeling OTM With Calculate Service Order
Calculate Service Order is a specific provider function that is delivered via design
patterns in Design Studio. The Calculate Service Order provider function is the
functional module that transforms customer orders into service orders.

Using Calculate Service Order has two parts. First, you must run the relevant design
patterns to set up the framework, and then you must configure the other required
entities that are specific to your implementation.

Calculate Service Order Design Patterns
Calculate Service Order includes two design patterns:

• The Design Studio core software contains a design pattern (Common Model Base
Data) that sets up the base data for the conceptual model. The following entities
that are created in the conceptual model support Calculate Service Order:

– A Design Studio project to contain the conceptual model entities (optional, an
existing project can be used)

– The Calculate Service Order provider function (see "About the Calculate
Service Order Provider Function")

– The Primary and Auxiliary relationship types (see "About Calculate Service
Order Relationship Types")

For more general information about these entities, see the information about
designing solutions in Design Studio Concepts.

• Design Studio for OSM contains a design pattern (Calculate Service Order) that
contains OSM entities to support Calculate Service Order:

– A Design Studio project to contain the OSM entities (optional, an existing
project can be used)

– The Calculate Service Order transformation sequence (see "About the
Calculate Service Order Transformation Sequence")

About the Calculate Service Order Provider Function
The Calculate Service Order provider function is a logical entity that groups all
the metadata required to perform the transformation. It also provides the ability to
determine what types of entities and relationships can be used in the transformation
and the method used to realize the provider function into OSM.

The Calculate Service Order provider function defines the following associations:

• The input (Product) and output (Customer Facing Service and Resource)
conceptual model entities

Chapter 6
Modeling OTM With Calculate Service Order

6-6

• The relationship types (Primary and Auxiliary)

About Calculate Service Order Relationship Types
Calculate Service Order also contains the definitions of the following relationship
types:

• Primary: In this relationship type, transformed order items are created from original
order items. Action codes are normally transferred to the target without being
changed, or you can define rules to change the action types.

• Auxiliary: In this relationship type, transformed order items are enriched, but no
new transformed order items are created. Action codes are translated based
on the action type of the source item combined with the current action type of
the target item. If the target action type is None, the source action type will be
transferred to the target without being changed. If the source and target action
types are both defined to something other than None, the action code of the target
is changed to Modify. Otherwise, the target action code is unchanged.

These action types are the default for the relationship type. In a mapping rule, you can
either use the default from the relationship type or you can define specific rules for a
named relationship to be used for the mapping rule.

About the Calculate Service Order Transformation Sequence
The transformation sequence (CalculateServiceOrder) that is created by the OSM
design pattern for Calculate Service Order contains the following transformation
stages. These stages process order items based on an order item hierarchy. See
"Modeling Order Item Hierarchies" for more information about the way order items can
be arranged in hierarchies. You can edit these stages using Design Studio, if you need
the transformation to work differently.

1. ProcessPrimaryRelationships: This stage creates transformed order items from
original order items. Parameters from the original order item are also mapped to
parameters on the transformed order item.

2. ProcessDescendantItems: This stage looks at child order items of the original
order items and uses them to provide auxiliary data on the transformed order
items. This can happen in two ways: the child order item itself may map to a
data element on the transformed order item, or parameters from the child order
item may map to parameters on the transformed order item. The child order items
considered in this stage are not only the immediate children of the original order
item, but also their children, to the bottom of the order item hierarchy.

3. ProcessSiblingItems: This stage is similar to the ProcessDescendantItems
stage, except that the order items that are contributing data to the transformed
order item are the siblings, rather than the descendants, of the original order item.
As in the ProcessDescendantItems stage, the order items can provide auxiliary
data by the sibling order item mapping to a data element on the transformed order
item, or by parameters from the sibling order item mapping to parameters on the
transformed order item.

4. ProcessAncestorItems: This stage is also similar to the
ProcessDescendantItems stage. In this stage, the order items considered
are the parent order items instead of the children. As in the
ProcessDescendantItems stage, the order items can provide auxiliary data by
the parent order item mapping to a data element on the transformed order item,
or by parameters from the parent order item mapping to parameters on the

Chapter 6
Modeling OTM With Calculate Service Order

6-7

transformed order item. The parent order items considered in this stage are not
only the immediate parents of the original order item, but also their parents, to the
top of the order item hierarchy.

User-Created Entities for Calculate Service Order
In addition to the entities created by the design patterns, you must also create entities
with information specific to your implementation. Some of these entities are in the
conceptual model, and some are in OSM.

In the conceptual model, you will need to model at least some of the following:

• Products

• Customer Facing Services

• Resources

• Resource Facing Services

• Actions

• Action Codes

• Data elements

In OSM, you will need to model all of the following:

• Order item specifications for the original (source) and transformed (target) order
items

• Transformation manager

• Mapping rules

• Order item parameter bindings: OSM has a design pattern to facilitate creating
these bindings

Modeling OTM Without Calculate Service Order
If the supplied Calculate Service Order order transformation does not transform the
order items the way you need, to such an extent that you do not think that editing the
supplied entities would work for your situation, you have the option of configuring the
order transformation manager from scratch instead.

To configure the order transformation manager if you are not using Calculate Service
Order:

1. Model conceptual model entities:

a. Create a provider function.

b. Create relationship types.

c. Create one or more functional areas.

d. Create a domain in the conceptual model.

e. Model customer-facing services in the conceptual model.

f. Model products in the conceptual model.

g. Model named relationships in the conceptual model.

Chapter 6
Modeling OTM Without Calculate Service Order

6-8

h. Add the products to the domain in the conceptual model.

i. Model a provider function in the conceptual model.

j. Model data in the conceptual model, including keys for conceptual model
entities.

For more information, see "Working with Conceptual Models" in Modeling Basics.

2. Model the order item specifications for the original and transformed order items:

a. Model the order item recognition. This is usually a parameter on the customer
order line item, such as Fulfillment Item Code.

b. Model order item properties, including a property for order item recognition, a
property to contain dynamic parameters created by the order item parameter
binding, and properties for the order item ID and action.

3. Model order item parameter bindings to create typed and named parameters from
parameters that may have been in name/value pairs in the incoming customer
order line item.

4. Model mapping rules. These rules create order items and order item parameters
on transformed order items based on original order items (that is, the order items
and parameters from the customer order). The following types of mappings are
available:

• Entity-to-entity mapping: This creates a new transformed order item from an
original order item. For example, you can use this to create a transformed
order item representing a line from an original order item representing a major
service.

• Attribute-to-attribute mapping: This type of mapping creates new parameters
on the transformed order item based on parameters on the original order item.

• Entity-to-attribute mapping: This type of mapping creates new parameters on
the transformed order item based on the presence of particular original order
items. For example, an original order item representing a feature might be
mapped to a parameter for that feature on an order item representing a new
line.

5. Model a transformation sequence. This involves modeling a series of
transformation stages. Each transformation stage includes the following steps:

a. Identify context order items for the transformation stage. These nodes are the
original order items that will be available for transformation. You can select
these nodes either by selecting an order item property that the original order
items will have in common or by defining an XQuery expression to select
them.

b. Identify related order items for the transformation stage. These order items will
be able to contribute data to the transformed order items. You can select these
nodes either by their relation to the context order items (parent, sibling, child)
or using an XQuery expression. The relationships between the order items
will be based on the physical order item hierarchy defined in the order item
specification.

c. Select the relationship and relationship type that will be available to the
transformation stage. For example, the transformation stage may be set up
to include a Primary relationship between the Broadband product and the
BroadbandInternetAccess customer-facing service.

Chapter 6
Modeling OTM Without Calculate Service Order

6-9

d. Determine whether the stage should be conditional, and if so, write a condition
for it.

6. Create a transformation manager that links the service domains and
transformation sequences that you have created.

Chapter 6
Modeling OTM Without Calculate Service Order

6-10

7
Modeling Processes and Tasks

This chapter describes how to model process, rules, and tasks in an Oracle
Communications Order and Service Management (OSM) solution.

Overview of Processes and Tasks
The Process editor in Oracle Communications Design Studio is where you define the
flow of tasks for a particular process. Processes have a single entry point and one or
more exit points. When you create the process structure, you must place the tasks in
the order in which the process is to complete them.

In addition to running tasks and subprocesses, you can control how a process runs; for
example, specify to delay processing a task or create multiple possible transitions from
one task to another based on task status.

Order processes can contain automated tasks, manual tasks, and task status
transitions from one task to another task, as well as other process actions such as
task transition delays, joins, redirects, rules, subprocesses, and end process points.

A task is a specific activity that must be carried out to complete the order; for example,
if an order needs to verify that an ADSL service was activated, you might model a task
named Verify ADSL Service. Tasks can be manual or automated. Manual tasks must
be processed by an order manager, using the Task web client. Automated tasks run
automatically with no manual intervention.

OSM also provides specialized automated task types called the activation task for
communicating with Oracle Communications ASAP and the transformation task for
initiating the order transformation manager functionality from within a process flow.

Modeling Processes
The following sections provide information about modeling processes.

About Process Flows
Process flows define the sequence of tasks that the process performs. You can design
flows for specific scenarios, including:

• A flow that ends in a successful process completion (Success) or a process failure
(Failure).

• Flows for various activities, such as Cancel, Next, and Back.

Figure 7-1 shows how flows appear in a process in Design Studio. In this figure, flows
are labeled with the task status; for example, route_to_osm.

7-1

Figure 7-1 Process Flows in Design Studio

You can control flows in the following ways:

• You can use an order rule to apply conditions that must be met before the flow can
continue.

• You can ensure that the system verifies that mandatory fields are present when a
task completes. (This option is not available for tasks with a Rollback status.)

• You can specify a reporting status to display in an OSM web client. This status is
tracked in the web client's OSM history.

Figure 7-2 shows flow properties in Design Studio.

Chapter 7
Modeling Processes

7-2

Figure 7-2 Flow Properties

Adding Process Activities
You use process activities to design how the process runs. Figure 7-3 shows the
Activities options in Design Studio. The example process includes a timer delay
between the two tasks.

Figure 7-3 Process Activities Options in Design Studio

In addition to the tasks and subprocesses that the process runs, you can control the
process by using the following:

• Rules

• Timer delays

• Event delays

• Joins

• Ends

Chapter 7
Modeling Processes

7-3

• Redirects

Rules evaluate a condition and then specify the next step in the process. For example,
a rule task might evaluate the data that describes the geographic region of the order
and branch the process appropriately. Rule tasks perform as follows:

• They typically read and evaluate data to determine what to do.

• They always evaluate to true or false.

• They are always run automatically, with no manual involvement.

Timer delays delay the process until a rule evaluates to true. Timer delays perform as
follows:

• The rule is evaluated at specified timed intervals.

• The data evaluated in the rule must be data that is included in the order.

• The rule always evaluates to true or false.

• The delay is always run automatically, with no manual involvement.

Event delays delay the process until a rule evaluates to true. Event delays perform as
follows:

• The rule is evaluated only when the data specified in the rule changes.

• The data evaluated in the rule must be data that is included in the order.

• The rule always evaluate to true or false.

• The delay is always run by OSM, with no manual involvement.

Joins combine a set of flows into a single flow. (Process flows define the sequence
of tasks that the process performs. See "About Process Flows" for more information.)
The unified flow can join flows based on all transitions completing or any one transition
completing (by selecting All or selecting Any). Selecting Any will create one instance
of the flow for each incoming transition.

Ends stop the process from continuing.

Redirects redirect the process to another task in the same process or to a different
process.

Note:

Timer and event delays are not used during amendment processing.

Configuring Subprocesses
When you model subprocesses, you specify the following properties:

• If you want the associated tasks to appear in the Process History window in the
Task web client.

• The pivot data element on which OSM spawns individual subprocess instances.
For example, if you have subprocess that creates an email address for every
person in a list, you might select the Person data element as the pivot data

Chapter 7
Modeling Processes

7-4

element, so the subprocess spawns an instance for each person. See "Generating
Multiple Task Instances from a Multi-Instance Field" for more information.

• How to display the associated tasks in the Task web client. For example, you can
display them sequentially, sorted, or unsorted.

• The process to run, based on rules. The rules in an order control how various
actions take place; for example, when to trigger a jeopardy notification and how
delays in the order process should be handled.

• How the subprocess handles exceptions. For example, you might have a
process called create_vpn. Within that process, there is a subprocess called
validate_address. The subprocess validate_address can throw an exception
when an address is invalid. Using the exception mapping functionality, you
can instruct the parent process and subprocesses to take specific actions
when the subprocesses throw exceptions. Exception mapping enables you to
indicate whether the parent process create_vpn should terminate all of the
invoked instances, terminate only the offending instance, or ignore the exception
altogether.

Understanding Parallel Process Flows
There are two ways to model parallel processes:

• Subprocesses branching from a task. This allows multiple tasks to run within the
same time frame. Parallel flows can be rejoined at an appropriate point if needed.
Typically, there are no dependencies defined between parallel flows, but whether
these tasks actually run simultaneously depends on the order data, how order
tasks are fulfilled, and other factors.

• Subprocesses running from a pivot data element. Multi-instance subprocesses
are subprocesses that can be instantiated multiple times. When a subprocess
has a pivot data element defined, multiple instances of the subprocess,
running in parallel, are created. For example, if the pivot data element for a
subprocess is defined as interested_party, and an order contains three instances
of interested_party, each containing a different person's name and contact
information, OSM creates three separate instances of the subprocess, one for
each set of data.

When planning your order specifications, give careful consideration to which data you
make available to each parallel process. Excessive and unnecessary data can have
negative impacts on performance, and on usability if manual tasks are involved. Also,
make sure to flag data as non-significant if the data is not needed for revision orders.
By default, OSM assumes that all data is significant.

About Amendments and Multi-Instance Subprocesses
An amendment to an order on which some of the data affecting a multi-instance
subprocess has changed can cause all subprocess instances to be redone, instead
of only directly affected subprocesses to be redone. This can result in unneeded
processing for the subprocesses with no data changes.

In amendment processing with multi-instance subprocesses, it is important to contain
compensation to only the subprocess instances that require compensation. This is
achieved by specifying a key. You specify a key in the Key subtab on the Order
Template Node editor for the data element specified as the pivot data element of the
subprocess in the order template. When a key is specified for a subprocess, OSM

Chapter 7
Modeling Processes

7-5

maps the revised data to the current data using the key field and redoes only the
subprocess that was affected.

About Order Rules in Processes and Notifications
Order rules control how various actions take place; for example, when to trigger a
jeopardy notification and how delays in the order process should be handled. Rules
are used in process flow decisions, conditional transitions, subprocess logic, delay
activities, jeopardies, and events.

OSM evaluates order rules by comparing data to data, or data to a fixed value.
Figure 7-4 shows an order rule in the Design Studio Order editor Rules tab. This rule
identifies residential customers in a specific city. This is an example of a rule that might
be used to send a fallout notification to a regional fallout manager.

Figure 7-4 Example of an Order Rule Defined in Design Studio

Modeling Order Rules in Notifications
All jeopardy notifications and most event notifications use order rules to determine if
the notification should be triggered. (Event notifications that are used only for running
an automation plug-in do not use order rules.)

Figure 7-5 shows an example of a rule defined in Design Studio. This rule finds the city
that the customer lives in and the type of account, (Business or Residential). When the
jeopardy notification uses this rule, the notification is sent only if the order came from a
residential customer in Sao Paulo.

Chapter 7
Modeling Processes

7-6

Figure 7-5 Rule Example

You can use rules such as the one shown in Figure 7-5 to route notifications to specific
roles. For example, you can combine rules and roles as follows:

Table 7-1 Example Rule and Role Combinations

Notification Type Triggered By Rule Specifies Sent to Role

Notification_Residential Expected duration
exceeded

Residential account Residential

Notification_Business Expected duration
exceeded

Business account Business

In this example, two identical notifications are created, both triggered by the order
processing time exceeding the expected duration. If the order is for a residential
account, the notification is triggered and sent to the role that handles residential
accounts.

OSM uses a system-based null_rule. This rule always evaluates to true. Therefore,
if you do not specify a rule for a notification, the null_rule is used; because it is set
to true, the notification is triggered. If you do not specify any conditions to trigger the
notification, and the notification uses the null_rule, the notification is triggered every
time it is polled.

Note:

The polling interval cannot be changed at run time.

See "About Order Rules in Processes and Notifications" for more information about
rules.

Chapter 7
Modeling Processes

7-7

Using the System Date in Delays
You can create a rule that uses the system date as part of a condition. For example,
you can create a rule used in a delay that delays a task transition until the system
date is at least the value of a particular order data element of the dateTime data type.
Figure 7-6 shows a rule that triggers when the system date is at least the value of the
date when a particular poll is run.

Figure 7-6 Using the System Date in a Rule

See "Adding Process Activities" for more information about delays in process flows.

Process and Task Design and Data Considerations for Compensation
There are aspects of compensation that you need to consider when you are designing
data, tasks, and processes.

Order Perspectives and Data Elements in Compensation
There are some aspects of compensation that you should consider when designing
your processes. Compensation takes place using the data in the contemporary order
perspective, but must be reconciled with the data in the real-time order perspective.
(For more information about the different order perspectives, see "About Order-Level
and Task-Level Compensation Analysis.")

The issue relates to data elements that have been added in tasks that are later in the
process than the task currently being compensated. The data that has been added
is not present in the contemporary order perspective, since it was not present when
the task performed its do operation. However, it is present in the real-time order
perspective. If the redo operation checks whether the data element exists, it will be
checking the contemporary perspective and will not find it. This will cause the redo
operation to attempt to add the data element instead of updating it, which will cause
problems when the data is reconciled with the real-time order perspective.

To avoid this situation, you should create any needed data elements before executing
tasks that may be compensated. If the data is order-level data, you should initialize
the data in the creation task for the order. If the data is function-level data, initialize
the data needed by the process in a task that is executed early in the process, before
tasks that may be compensated.

Chapter 7
Modeling Processes

7-8

Effects of Process Loops on Compensation
When you have loops in your OSM processes that cause your tasks to execute
multiple times and the process is compensated, each instance of the task that ran
will be compensated. If entire sub-processes are being looped, this can cause a large
number of tasks to require compensation.

For example, consider the process in Figure 7-7:

Figure 7-7 Simple Loop Process

In this very simplified process, Task1 can run multiple times if it fails. In our current
example, it is executed four times: three times exiting with failure and once with
success, as shown in Figure 7-8.

Figure 7-8 Example of Initial Simple Loop Process Sequence

If the process needs to be compensated, the task will first be run once in redo mode.
If this is successful, it will make the rest of the initial flow obsolete, so the tasks
remaining in that flow would be run in undo mode, as shown in Figure 7-9.

Chapter 7
Modeling Processes

7-9

Figure 7-9 Example of Compensation of Simple Loop Process

Then, in the new branch of the process, Task2 will also be run in amend-do mode.

This example shows that while looping inside a process is supported by OSM,
solution designers must carefully consider the implications of such loops when OSM
compensates them as a result of an amendment. Most solutions include more
complicated loops with more tasks per iteration, so you need to consider the impact
that looped processes will have on the performance of your overall solution.

Modeling Tasks Entities Common to All Task Types
The following sections provide information about modeling task entities common to all
task types.

Modeling Task States
All OSM tasks use states that determine various milestones in the progress of a task.
The default task states are:

• Received: The task has been received in the system and is waiting to be accepted
by a user (normally automatic for automated tasks) or assigned to a user (only in
manual tasks).

• Accepted: The assigned user (system user account or a manual operator's user
account). The task is locked so that it cannot be modified or completed by other
users.

• Completed: The task is finished.

• Assigned: (Manual tasks only) The task has been assigned to a user.

• Create Activation Work order Failed: (Activation Task only) The task attempted to
create a work order in the activation system but work order creation failed.

These tasks are mandatory and cannot be removed, but you can create custom task
states.

Task states are important because they often trigger various functionality. For example,
automation task automation plug-ins only run the task is in the Accepted state. You
can configure task-level events to trigger when a task state is reached.

Chapter 7
Modeling Tasks Entities Common to All Task Types

7-10

Modeling Task Permissions and Execution Modes
When you model tasks, you can specify which roles can perform which task execution
modes (Do, Redo, Undo, Failed-Do, Failed-Redo, and Failed-Undo). For example, you
may want to configure a specific role for normal Do, Redo, and Undo execution modes
with a second role for fallout management that also operates in fallout execution
modes. OSM users that are part of the fallout workgroup can work on failed automated
and manual tasks. For more information about task execution modes and change
order management, see "About Task Execution Modes".

Figure 7-10 shows roles used in a task specification.

Figure 7-10 Task Permissions

About Normal and Fallout Execution Modes and Task States
OSM provides the following execution mode groups:

• Normal: Task execution modes that run in normal mode include the Do, Undo,
Redo, and Amend-Do modes for normal task processing activities.

• Fallout: Task execution modes that run in the fallout mode include Do in
Fallout, Undo in Fallout, Redo in Fallout, and Amend-Do in Fallout modes for
troubleshooting tasks that have failed.

Chapter 7
Modeling Tasks Entities Common to All Task Types

7-11

Note:

If an amendment is received while a task is in a fallout execution mode, the
following will happen:

• If the task is not configured to be compensated if it is in progress, the
execution mode of the task will not change as a result of the amendment
order.

• If the task is configured to be compensated if it is in progress, and the
amendment contains changes to significant data:

– If the task is still needed after the changes to the order from the
amendment are considered, it will transition automatically to (normal)
Redo mode.

– If the task is no longer needed after the changes to the order from
the amendment are considered, it will transition automatically to
(normal) Undo mode.

In both of these cases, your automation code (for either Redo or Undo
execution mode) should contain a check to see if the task has been in a
fallout execution mode, and also whatever code is needed to resolve any
actions that have been taken in the fallout execution mode. For example,
if your automation for Do in Fallout mode opens a trouble ticket, your
Redo automation should check to see whether it needs to close a trouble
ticket.

• If the amendment order contains no changes to significant data, the
execution mode of the task will not change as a result of the amendment
order.

Figure 7-11 shows how OSM transitions tasks to the fallout execution modes and back
to normal execution modes and how these modes relate to task states.

Chapter 7
Modeling Tasks Entities Common to All Task Types

7-12

Figure 7-11 Normal and Fallout Execution Mode and Task States

The following shows how the tasks in Figure 7-11 processes through each state in a
Normal execution mode:

1. When OSM starts a task, it enters into the Received state in a normal execution
mode.

2. In Manual tasks, an operator can optionally assign the task to themselves or
have the task be assigned to them. When the task is assigned, it enters into the
Assigned state. Automation tasks do not use this state.

3. When an operator or the system begins working on the manual or automated task,
the task enters into the Accepted state.

4. While the task is in the Accepted state, the system or the operator can:

• Move the task to a customer defined state like the Suspended state for a
business reason defined for the task. From the Suspended state, the system
or the operator can return the task to the Accepted state or move it to the
Assigned state.

• Move the task to the Completed state by completing the task.

• Fail the task. A failed task automatically moves to the Received state in a
fallout execution mode. You can fail a task in the following ways:

– Task web client for manual tasks

– OSM Java API for automated tasks in automation plug-in code.

Chapter 7
Modeling Tasks Entities Common to All Task Types

7-13

– OSM XML API for manual and automated tasks in automation plug-in
code.

The following shows how the tasks in Figure 7-11 processes through each state in a
fallout execution mode:

1. A task enters a failed execution mode in the Received state from a normal
execution mode in the Accepted state.

2. In Manual tasks, an operator must assign the task to themselves or have the task
be assigned to them. When the task is assigned, it enters into the Assigned state.
Automation tasks do not use this state.

3. When an operator or the system begins working on the manual or automated task,
the task enters into the Accepted state.

4. While the failed task is in the Accepted state, the system or the operator can:

• Move the task to a customer defined state like the Suspended state for a
business reason defined for the task. From the Suspended state, the system
or the operator can return the task to the Accepted state or move it to the
Assigned state.

• Move the task to the normal execution mode Completed state to complete the
task.

• Retry the failed task. Retrying a task moves the task back to the normal
execution mode to the Received state to retry the task from the beginning.
You can retry a failed task in the following ways:

– Task web client for one task or for all tasks on the order

– Order Management web client for all failed tasks on a specific order
component within an order, for all failed tasks on each order, or for all
failed tasks of many orders as a job control order. You cannot retry a
specific task type in bulk across multiple orders using a job control order.

– OSM Java API in automation plug-in code

– OSM XML API in automation plug-in code

– OSM Web Service API operation for all failed tasks on a specific order
component within an order, for all failed tasks on each order, or for all
failed tasks of many orders as a job control order. You cannot retry a
specific task type in bulk across multiple orders using a job control order.

• Resolve the task. Resolving a task moves the task back to the original normal
execution mode and state it had been in before failing. You can resolve a
failed task in the following ways:

– Task web client for one task or for all tasks on the order

– Order Management web client for all failed tasks on a specific order
component within an order, for all failed tasks on each order, or for all
failed tasks of many orders as a job control order. You cannot resolve a
specific task type in bulk across multiple orders using a job control order.

– OSM Java API in automation plug-in code

– OSM XML API in automation plug-in code

– OSM Web Service API operation for all failed tasks on a specific order
component within an order, for all failed tasks on each order, or for all

Chapter 7
Modeling Tasks Entities Common to All Task Types

7-14

failed tasks of many orders as a job control order. You cannot resolve a
specific task type in bulk across multiple orders using a job control order.

Modeling Task Status Transitions
You model task status the define how a task completes and to determine what the next
task is in the process flow. You define the status transitions available to a task in the
task editor Status/Status tab, and then you apply the status transition of process flows
you create between tasks.

You can use the default status transitions defined in manual, automated, activation,
and transformation tasks or you can create new status transitions that may better
describe what is happening during a status transition from one task to another.

The default statuses for a manual task are:

• Back

• Cancel

• Finish

• Next

The default statuses for a automated and transformation task are:

• Failure

• Success

The default statuses for a activation task are:

• Success

• Activation Failed

• Updated OSM Order Failed

You can also select from the set of additional predefined statuses (Delete, False,
Rollback, Submit, Failed, and True), and you can also define your own.

You can also use constraint behaviors with status transitions and manual tasks to
better control when an operator can transition from one task to another task. See
"Using the Constraint Behavior to Validate Data".

Specifying the Expected Task Duration
You can specify the expected length of time to complete a task. This information can
be used to trigger jeopardy notifications and for reporting. See "Modeling Jeopardy
and Notifications" for more information. This information is also used by OSM to
calculate the order component duration.

You can specify the length of time in weeks, days, hours, minutes, and seconds. The
default is one day.

You can also calculate the duration based on your workgroup calendars. If you have
more than one workgroup with different calendars all responsible for the same task,
the calculation is based on the first available workgroup that has access to the task.
This ensures that a the task only exceeds it's duration based on the workgroup
calendar time.

Chapter 7
Modeling Tasks Entities Common to All Task Types

7-15

For example, there might be a task with an expected duration of two hours, and the
workgroup that processes the task only works 9 AM - 5 PM Monday to Friday as
indicated on their workgroup calendar. If such a task is received at 4 PM on Friday,
then the expected duration of the task will expire at 10 AM Monday, as there was
only two hours of the workgroup calendar time that had elapsed (4-5 PM Friday,
then 9-10 AM Monday). This ensures that notifications and jeopardies are triggered
appropriately.

See OSM Task Web Client User's Guide for more information.

Specifying the Task Priority
Task priority is the same as the order priority unless a priority offset is defined. Priority
of orders and their tasks becomes effective when the system is under heavy load,
ensuring that high priority orders and tasks are not starved of resources by lower
priority orders and tasks.

You define the task priority as an offset from the priority of the order itself. This
specifies the priority of the task in relation to other tasks in the order.

For example, if the order is created at priority 6, and this task is assigned a priority
offset of -2, then this task would run at priority 4 while tasks in the order with no offset
would run at priority 6. Similarly, you could assign a task a priority offset of +2, which
would mean that the task would run at a slightly higher priority than other tasks in the
order.

See "Modeling Order Priority" for more information about order priority.

About Extending Tasks
You can create a new task by extending from an existing task. The new task inherits all
of the data, tasks, rules, and behaviors of the base task from which it was extended.
Changing something on the base task is reflected in all tasks extending from it.

For example, if you have multiple tasks that all require the same data subset, you
can create a base task that contains this data, then extend from this task to create
as many new tasks as necessary. You can add new data and behaviors to each of
the new tasks to create unique task and behavior functionality. Extending tasks can
significantly reduce duplication and maintenance.

About Task Types
The following sections provide information about different task types.

Modeling Automated Tasks
You add automated tasks to processes whenever you need a task that can run
automation plug-in instances without user intervention. Automated task automation
plug-ins can do various tasks such as connect to a database to query data, transform
data, or communicate with external fulfillment systems. OSM runs the automation
plug-in instances on an automated task whenever the automated task transitions to
the received state in a normal or fallout execution mode (see "About Normal and
Fallout Execution Modes and Task States").

Chapter 7
About Task Types

7-16

Automation plug-in user task can perform multiple tasks based on the code you write
in the automation plug-ins states. Among the many functions you can implement in
the code, you must also ensure that the automation plug-ins manage task status
transitions to complete a task and move the task to another task on the process (see
"Modeling Task Status Transitions"). You can also specify task execution modes that
determine what roles (workgroups) can perform the task and in what ways (see "About
Normal and Fallout Execution Modes and Task States"). If an automated task does not
have any automation plug-ins that can run in fallout execution modes, and then the
automated task runs as a manual task so long as there are users associated with roles
designated to manage the fallout execution modes (see "Modeling Task Permissions
and Execution Modes").

Automated tasks can also trigger a jeopardy notifications based on the duration of the
task and event notifications based on task state changes (see "Modeling Jeopardy and
Notifications").

About Automation Plug-in and Automated Tasks
When you add an automated task to a process, you must associate at least one
automation plug-in for the task. To associate an automation plug-in for a task, you
open the automated task entity in the Automated Task editor, and add the plug-in
to the task in the Automation tab. When you deploy your cartridge to the run-time
environment, the OSM server detects a task that has an automation plug-in associated
with it, the server triggers the plug-in to perform its processing.

An automated task might have only a single automation plug-in associated with it. For
example, you might associate a built-in Automator plug-in with the task to interrogate
the task data, perform some calculation, update the order data, and transition the task.
In this example, as soon as the Automator plug-in has finished processing, it updates
the task with an exit status, and the OSM server moves to the next task.

An automated task can have multiple associated automation plug-ins. For example,
you might want to associate multiple plug-ins with a task to represent conversations
with external systems. You can associate a built-in Sender plug-in to receive the task
data and send it to an external system for processing. That external system might
send an acknowledgement back to a queue, where a second Automator plug-in--one
that is defined as an external event receiver (it receives data from external system
queues)--consumes the reply and updates the order data with the response. A third
Sender plug-in might send the external system a message to begin processing, and
a fourth Automator plug-in can receive the "processing complete" message from the
external system, update the order, and transition the task.

See "About Automation Plug-ins" for more information.

Completing an Automation Task That Handles Concurrent Status Updates
An automated task can process multiple responses from external systems. For
example, an activation task might receive the status for each service on the activation
request. The activation task needs this information to determine when the activation
has been completed by the external system, at which point the task can transition to
the Completed state.

• The external system can include data that indicates that all of the requests have
been completed. Typically, this is a message indicating that the response is the
last response, and there will be no further messages.

Chapter 7
About Task Types

7-17

• If the external system cannot report that the last request has been processed, the
automation task must ensure that a response has been received for each request
sent to the external system.

When OSM must determine the last response, there are special considerations
for concurrent status updates. If the automated task needs to track the status of
all responses, and multiple responses are processed concurrently, the automation
receiver instances executing concurrently do not have visibility to status updates from
the other receivers. The receiver may never execute with the task data that contains
all status updates and so never encounters a condition where it can complete the task.

This situation can be handled by configuring an automated notification plug-in that
monitors the status fields and creates a notification whenever the data changes.

Figure 7-12 Sequence Diagram for Concurrent Status Update Notification Process

The notification plug-in is triggered every time the status field is updated by the
automation receiver. The notification plug-in executes in a separate transaction
after each receiver update, and can check the status responses to determine if all
responses have been received for each action request. When all responses are
received, the notification plug-in can generate a message to trigger an automation
receiver. This receiver is correlated to the original sender by means of an ID set by
the sender specifically for tracking the status updates. The receiver is then run with the
task data that contains all of the status responses and it can complete the task.

Modeling Manual Tasks
You add manual tasks to processes whenever you need a task that requires direct
user intervention. Users work with manual tasks in the OSM Task web client whenever

Chapter 7
About Task Types

7-18

a manual task transitions from the received state to the assigned state in a normal
or fallout execution mode (see "About Normal and Fallout Execution Modes and Task
States"). You assign manual tasks to OSM users in the following ways:

• Manually: The task appears in the OSM Task web client in the received state and
an operator has the responsibility to assign the task to a user.

• Automatically (pre-defined in Design Studio): You can optionally chose a round
robin task assignment algorithm that distributes tasks evenly between all users
associated with the role (workgroup) that can work on the task, or load balancing
task assignment algorithm that distributes tasks based on user workload.

• Automatically (customized task assignment algorithm): You can develop a
custom task assignment algorithm using OSM's cartridge management tools. See
"Deploying a Custom Task Algorithm using the OSM Cartridge Management Tool".

When an operator is working in a manual task, they must directly update task data in
the OSM Task web client. You can add behaviors to manual task data that perform
various function. For example:

• Performing calculations on numerical task data.

• Adding constraints on task data fields to validate the data that users enter. You
can also use constraints to control whether a user can transition from one task to
another.

• Making a field read-only.

• Making a field visible to some users only.

See "Modeling Behaviors" for more information about all behavior options that OSM
provides.

Manual tasks user task states to managed the progress of the task (see "Modeling
Task States") and task status transitions to move from one task to another task (see
"Modeling Task Status Transitions"). You can also specify task execution modes that
determine what roles (workgroups) can perform the task and in what ways (see "About
Normal and Fallout Execution Modes and Task States").

Manual tasks can also trigger a jeopardy notifications based on the duration of the
task and event notifications based on task state changes (see "Modeling Jeopardy and
Notifications").

Manual tasks are often used when initially developing OSM solutions to better
understand the what needs to happen in various points of an OSM solution. When
solution developers have a better understanding of what a task is doing, they can then
consider transforming the task into an automated task with associated automation
plug-ins. In addition, you can insert manual tasks in a process that function as
breakpoints for debugging. This allows you to control a process when you test it.

Deploying a Custom Task Algorithm using the OSM Cartridge Management
Tool

The OSM Cartridge Management Tool is only applicable for traditional OSM
deployments. To use the custom task algorithm in OSM cloud native, see "Using a
Custom Task Algorithm in OSM Cloud Native".

In addition to the round robin or load balancing algorithms for assigning workgroups
to tasks provided by OSM, you can create a custom task assignment algorithm that

Chapter 7
About Task Types

7-19

assigns tasks based on custom business logic. Before you can use OSM CMT to
deploy a custom task assignment algorithm, ensure that:

• You can access and reference a WebLogic Server and ADF installation home
directory from the OSM CMT build files. See OSM Installation Guide for version
information.

• You must download and install Ant. See OSM Installation Guide for version
information.

• You install the SDK Tools and the SDK Samples components using the OSM
installer. You do not need to install the other options. See OSM Installation Guide
for more information about using the OSM installer.

• You have created a custom task assignment algorithm. See the SDK/Samples/
TaskAssignment/code /CustomizedTaskAssignment.java reference sample for
more information about creating a custom task assignment algorithm.

To deploy a custom task algorithm to an OSM server using OSM CMT:

1. From a Windows command prompt or a UNIX terminal, go to WLS_home/
server/lib (where WLS_home is the location of the base directory for the
WebLogic Server core files).

2. Create a WebLogic client wlfullclient.jar file that OSM CMT uses to communicate
with the OSM WebLogic server:

java -jar wljarbuilder.jar

3. Copy the following files required by OSM CMT to the Ant_home/lib folder (where
Ant_home is the location of the Ant installation base directory).

• WLS_home/server/lib/weblogic.jar

• WLS_home/server/lib/wlfullclient.jar

• MW_home/modules/com.bea.core.descriptor.wl_1.2.0.0.jar (where
MW_home is the location where the Oracle Middleware products were
installed.)

• SDK/deploytool.jar

• SDK/Automation/automationdeploy_bin/automation_plugins.jar

• SDK/Automation/automationdeploy_bin/xmlparserv2.jar

• SDK/Automation/automationdeploy_bin/commons-logging.jar

• SDK/Automation/automationdeploy_bin/log4j-1.2.13.jar

4. Set the following environment variables and add them to the command shell's
path:

• ANT_HOME: The base directory of the Ant installation.

• JAVA_HOME: The base directory of the JDK installation.

For example, for a UNIX or Linux Bash shell:

ANT_HOME=/home/user1/Middleware/modules/org.apache.ant_1.7.1
JAVA_HOME=/usr/bin/local/jdk170_51
PATH= $ANT_HOME/bin:$JAVA_HOME/bin:$PATH
export ANT_HOME JAVA_HOME PATH

For example, for a Windows command prompt:

Chapter 7
About Task Types

7-20

set ANT_HOME=c:\path\to\oracle\home\Middleware\modules\org.apache.ant_1.7.1
set JAVA_HOME=c:\path\to\oracle\home\Middleware\jdk170_51
set PATH=%ANT_HOME%\bin;%JAVA_HOME%\bin;%PATH%

5. Open the SDK/Samples/config/samples.properties file.

6. Set the following variables:

• Set osm.root.dir to the OSM installation base directory.

• Set oracle.home to the Oracle Middleware products base directory.

For example, for a UNIX or Linux Bash shell:

/home/oracle/Oracle

For example, for a Windows command prompt:

C:/Oracle

7. Copy the custom task assignment algorithm file you created to SDK/Samples/
TaskAssignment/code.

8. Open the SDK/Samples/TaskAssignment/code/build.properties file.

9. Set the following variables:

• Set weblogic.url to the WebLogic Administration Server URL. The format is:

t3://ip_address:port

where:

– ip_address is the IP address for the WebLogic Administration Server.

– port is the port number for the WebLogic Administration Server.

• Set weblogic.domain.server to the name of the WebLogic Administration
Server.

• Set weblogic.username to the WebLogic Administration Server user name.

• Set webLogicLib to the path to the WLS_home/server/lib folder.

• Set ejbname to the Enterprise Java Bean (EJB) name for the task assignment
behavior.

• Set ejbclass to the class name for the task assignment behavior.

• Set jndiname to the Java Naming and Directory Interface (JNDI) bind name
for task assignment behavior.

• Set targetfile to the deploy target file name for a target file that does not
contain a suffix like .ear or .jar.

Note:

ejbname, ejbclass, jndiname, and targetfile are
preconfigured to deploy the SDK/Samples/TaskAssignment/code/
CustomizedTaskAssignment.java sample task assignment algorithm.
Replace these default values with those for the custom task assignment
algorithm.

Chapter 7
About Task Types

7-21

10. Create and deploy a Design Studio cartridge that includes a manual task that you
want to associate to the custom task assignment algorithm. You can associate the
custom task assignment algorithm in the Details tab of the manual task using the
Assignment Algorithm and JNDI Name fields. See "Task Editor Details Tab" in
Modeling OSM Processes for more information.

Note:

You can import the sample task assignment cartridge from
SDK/Samples/TaskAssignment/data/ taskassignment.xml. For more
information about importing an OSM model into Design Studio, see
"Working with Existing OSM Models" Modeling OSM Processes.

11. From the SDK/Samples/TaskAssignment/code directory, at the Windows
command prompt or UNIX shell, type:

ant

The Ant script begins to run.

12. When the ant script reaches Input WebLogic Password for user weblogic ...,
enter the WebLogic Administration Server password.

The ant tool compiles, assembles, and deploys the custom task assignment
algorithm to the OSM WebLogic Server.

Note:

You can also individually compile, assemble, deploy, or undeploy using
the following Ant commands:

ant compile
ant assemble
ant deploy
ant undeploy

Using a Custom Task Algorithm in OSM Cloud Native
To use a custom task algorithm in OSM cloud native, ensure that you have followed
these steps:

• You have created a custom task assignment algorithm. See the SDK/Samples/
TaskAssignment/code /CustomizedTaskAssignment.java reference sample
for more information about creating a custom task assignment algorithm.

• Traditional deployment mechanisms do not apply in an OSM cloud native
environment. To deploy an application to WebLogic in OSM cloud native, see the
"Deploying Entities to an OSM WebLogic Domain" section in OSM Cloud Native
Guide.

• Create and deploy a Design Studio cartridge that includes a manual task that you
want to associate to the custom task assignment algorithm. You can associate the
custom task assignment algorithm in the Details tab of the manual task using the

Chapter 7
About Task Types

7-22

Assignment Algorithm and JNDI Name fields. See Design Studio Help for more
information.

Note:

You can import the sample task assignment cartridge from SDK/Samples/
TaskAssignment/data/ taskassignment.xml. For more information about
importing an OSM model into Design Studio, see Design Studio Help.

Modeling Transformation Tasks
You can use a transformation task if you want to call the order transformation manager
from a process instead of before the orchestration plan is generated. See "Calling the
Order Transformation Manager" for more information. The transformation task is very
much like an automated task, except that by default it has an appropriate automation
plug-in defined for it and provides the ability to define the transformation manager to
call.

Modeling Activation Tasks
Before you can model Activation tasks in Design Studio, you must install the Design
Studio for Order and Service Management Integration feature. This feature includes
the Design Studio for Activation feature for integrating with ASAP and IP Service
Activator. To model activation tasks, you must also install the Design Studio for
Activation feature.

1. OSM transforms order data into an operations support system through Java
(OSS/J) message or a web service message and sends it to ASAP or to IP
Service Activator. To model this, you configure service action request mapping, to
map OSM data to ASAP data or to map OSM data to IP Service Activator data.
See "About Service Action Request Mapping" for more information.

2. ASAP or IP Service Activator receives the data, activates the service, and returns
a success or failure status to OSM. To allow OSM to handle the returned data,
you model service action response mapping. See "About Service Action Response
Mapping" for more information.

Other elements specific to activation tasks are:

• You can configure state and status transitions for completion events and
exceptions returned by ASAP or IP Service Activator.

• You can configure how to handle amendment processing with activation tasks.

• If you are sending JMS OSS/J messages, Oracle recommends that you configure
JMS store and forward (SAF) queues to manage the connection to ASAP or to
manage the connection to IP Service Activator.

• If you are sending web service messages, Oracle recommends that you configure
web service SAF queues to manage the connection to ASAP or to manage the
connection to IP Service Activator.

Chapter 7
About Task Types

7-23

About Service Action Request Mapping
You send fulfillment data to ASAP or to IP Service Activator as a service action
request. To model a service action request, you map OSM header data (information
that applies to the customer or to all order line items on the order) and OSM task data
to the following service order activation data:

• Activation order header: Information that applies to the entire work order.

• Service action: Information that is required to activate a service.

• Global parameters: Information that you define once and which applies to multiple
service actions.

About Service Action Response Mapping
After ASAP or IP Service Activator activates a service, it returns information to OSM.
You create data structures in OSM to contain the response information returned from
ASAP or IP Service Activator. For each event and exception returned by ASAP or IP
Service Activator, you select the ASAP or IP Service Activator data that you want to
retain, and then identify the OSM data structure to which that data is added. When
ASAP or IP Service Activator returns an event or exception, OSM updates the order
data with the ASAP or IP Service Activator data that you specified.

Tip:

The amount of response data from ASAP or IP Service Activator can be very
large, though the data that is needed might be small. Parsing large amounts
of ASAP or IP Service Activator response data can affect OSM performance.
If you notice a reduction in OSM performance due to large amounts of ASAP
or IP Service Activator response data, you can specify a condition on specific
parameters to limit the ASAP or IP Service Activator response data.

About Activation Tasks and Amendment Processing
You can configure how to manage an activation task if the associated order undergoes
amendment processing. The options are:

• Intervene manually.

• Do not perform any revision/amendment.

• Have OSM redo the activation task, using the previously defined request mapping.

• Have OSM redo the task, using different request mapping.

About State and Status Transition Mapping for Activation Tasks
You can configure state and status transitions to manage completion events (for
example, activation complete) and errors returned by ASAP or returned by IP
Service Activator. You can define multiple transitions to model different scenarios for
variations in the data received from ASAP or received from IP Service Activator. For
example, if an ASAP parameter or IP Service Activator parameter returns the value

Chapter 7
About Task Types

7-24

DSL, you may want the task to transition to a DSL task; when the same parameter
returns the value VOIP, you want the task to transition to a different task.

You can define state transitions for user-defined states only; you cannot define
transitions for system states, such as Received, Accepted, and Completed. At run
time, OSM evaluates the conditions in the order and stops evaluating when a condition
evaluates to true. Completion events and errors must include a default transition in
case all specified conditions fail.

About Automation Plug-ins
You use automation plug-ins to implement specific business logic automatically. You
can create automation plug-ins to update order data, complete order tasks with
appropriate statuses, set process exceptions, react to system notifications and events,
send requests to external systems, and process responses from external systems.

There are two basic types of delivered automation plug-ins, Sender and Automator.
Each type can be implemented using XSLT or XQuery, and each type can be defined
as an internal event receiver (the JMS message that triggers the call to the plug-in is
generated by OSM), or as an external event receiver (the JMS message that triggers
the call to the plug-in is generated by an external system).

• Automator plug-ins receive information from OSM or an external system, and then
perform some work. Depending on how you configure the plug-in, it can also
update the order data.

• Sender plug-ins receive information from OSM or from an external system. They
perform some business logic, and may or may not update an order, depending on
your configuration. Additionally, they can produce outgoing JMS or XML messages
to an external system. When generating JMS messages, you can define JMS
messages to connect to a topic or queue.

Note:

XQuery automation types cannot be implemented when using releases prior
to OSM 7.0.

OSM assigns automated task plug-in instances to a user account specified in the
plug-in Properties subtab Details subtab Run As field. The user account must belong
to the OSM_automation WebLogic group. When you install OSM, the OSM installer
automatically creates the oms-automation user that belongs to the OSM_automation
group. You can use this user account to run automation plug-in instances or create
new ones. You can also use the DEFAULT_AUTOMATION_USER model variable in
the Run As field that you define at in the Oder and Service Management Project editor
Model Variable tab or in the Environment editor Model Variables tab.

When referring to an automation, the following meanings can apply:

• The automation plug-in code that you create and associate with an automation
task in Design Studio.

• The instance of an automation plug-in that the OSM run-time server creates in
response to an event that triggers an automation. OSM creates and reuses such
instances as required when processing automated tasks. OSM maintains these

Chapter 7
About Automation Plug-ins

7-25

plug-in instances even if the instance is no longer required and only creates
additional plug-in instances when the current pool of instances are insufficient to
handle the number of incoming orders. OSM only destroys automation plug-in
instances in the following scenarios:

– When you shut down the OSM server, OSM destroys all plug-in instances.

– When you undeploy a cartridge, OSM destroys all plug-in instances
associated with the undeployed cartridges.

– When OSM detects an error condition in the instance, OSM destroys the
instances.

See OSM Developer's Guide for detailed information about automated tasks and
automation plug-ins.

Specifying Which Data to Provide to Automation Plug-ins
The data that is available for each automation plug-in should be the minimum subset
of order data necessary for the plug-in to be performed. You can choose the data to
provide to automation plug-ins using the following methods:

• Use the task data contained in an automation task to specify which data to
provide to an automation plug-in.

• Use query tasks to specify which data to provide to an automation plug-in
associated with order notification, events, and jeopardies. A query task is a
manual task that is associated with a role that has permissions to use some or
all order data to run an automation plug-in. See "Modeling Query Tasks for Order
Automation Plug-ins" for more information.

Modeling Query Tasks for Order Automation Plug-ins
In automated tasks, the data that is available to automation plug-ins associated with
automated task is already defined in the Task Data tab. However, automation plug-ins
used with order notifications, events, and jeopardies do not have immediate access to
this task data, and, as a result, must reference a manual task called a query task that
defines the task data and behavior data available to the automation plug-in.

You can select any manual task as the query task. You can also create special tasks
that are only used as query tasks. Their only function is to specify which data to
provide to an automation plug-in.

Figure 7-13 shows the Permissions tab in the Design Studio order editor. The upper
screen shows the permissions for the provisioning role, with the provisioning function
task as the query task. For the billing role, the billing function task is assigned as the
query task.

Chapter 7
About Automation Plug-ins

7-26

Figure 7-13 Roles Assigned to Query Tasks

To associate a query task with an automation plug-in, use the Default check box, as
shown in Figure 7-13.

Figure 7-14 shows an event notification with an automation plug-in that uses the
ProvisioningFunctionTask query task that is defined as the default query task for the
provisioning role. This role must be associated with the Run as OSM user that runs
the automation plug-in as shown in the Properties Details tab. For more information
about associating roles to OSM users, see the OSM Order Management Web Client
User's Guide.

Chapter 7
About Automation Plug-ins

7-27

Figure 7-14 Order Event Notification Automation Query Task

About Automation Message Correlation
Automation plug-ins defined as external event receivers are designed to process
JMS messages from external systems. JMS messages are asynchronous, therefore
external event receivers provide a method of correlating responses to requests
previously delivered to enable you to map OSM orders to external system orders.

To correlate responses, the plug-in sets a property on the outbound JMS message,
with name of the value set for correlation property in the automationmap.xml file, and
a value decided by your business logic. For example, business logic might dictate that
you correlate on a reference number. The external system copies the properties that
you defined for the correlation on the request and includes that data in the response.

You can use the Message Property Selector field to filter messages placed on the
queue and determine which automation to run. You define the Message Property
Selector value as a boolean expression that is a String with a syntax similar to the
where clause of an SQL select statement. For example, the syntax may be:

"salary>64000 and dept in ('eng','qa')"

When the condition evaluates to true, the message is picked up and processed by the
automation that defined that condition.

In a second example, consider that an external system defines five order types and
OSM defines a different automation to process each order type. Each automation

Chapter 7
About Automation Plug-ins

7-28

defines a different Message Property Selector, such as orderType=1, orderType=2,
and so forth. When a message is sent to the queue by the external system, and the
message includes the orderType upon which the condition is based, the automation
framework evaluates each condition until one evaluates to true. If more than one
automation defines the same condition, the first one that evaluates to true is picked up
and processed.

Note:

When you define only one automation plug-in external event receiver for
each automation task, you are not required to enter a selector in the
Message Property Selector field. In this case, automation tasks can share
the same JMS queue without a message property selector being set. You
must set a message property selector when you do either of the following:

• Define multiple automation plug-in external event receivers for the same
automation task.

• Use the Legacy build-and-deploy mode to build and deploy cartridges
with automation plug-ins.

• Use the Both (Allow server preference to decide) build-and-deploy mode
to build and deploy cartridges with automation plug-ins and configure the
OSM server dispatch mode for the Internal mode.

For information on build-and-deploy modes, see "About Automation
Message Correlation " in Modeling OSM Processes.

Example: Modeling a Basic Automator Plug-in for an Automated Task
This example demonstrates how to configure an Automator type plug-in that receives
data from an internal OSM JMS queue and updates order data using an XSLT style
sheet. In the example, assume that the XSLT style sheet includes conditional logic to
apply a level 1 priority to the order if the order is from a specific customer.

This example demonstrates how to:

1. Create an automated task and add the relevant task data.

2. Add an automation plug-in to the automated task.

3. Configure the automation plug-in properties.

Chapter 7
About Automation Plug-ins

7-29

Note:

An automated plug-in exists within the context of a Design Studio cartridge
project, order, process, and automated task. For purposes of demonstration,
this example assumes the existence of multiple Design Studio entities.
For example, it assumes the existence of a cartridge project called
DSLCartridge, an order called DSLOrder, a process called DSLProcess,
and an XSLT style sheet called check_customer.xslt that populates default
values in the order data. It assumes that the Data Dictionary includes the
two data nodes, customer_name and order_priority. It also assumes that the
new automated task will be added to the DSLProcess entity. The naming
conventions used in this example are for illustrative purposes only.

Step 1: Creating the automated task

1. Select Studio, then New, then Order and Service Management, then Order
Management, and then Automated Task.

The Automated Task wizard appears.

2. In the Automated Task wizard, enter or select the following values:

• In the Project field, enter DSLCartridge.

• In the Order list, select DSLOrder.

• In the Name field, enter Check_Customer.

3. Click Finish.

The new automated task appears in the Automated Task editor.

4. Click the Task Data tab.

In this example, you will update the order_priority field with a default value of 1 if
the order is from a specific customer.

Note:

Normally, the task data includes all of the data that the task requires
to complete. To simplify the example, this task includes only the two
pertinent fields: customer_name and order_priority. See "Modeling Data
for Tasks " for more information.

5. Right-click in the Task Data area.

The context menu appears.

6. Select Select from Data Schema.

The Select Data Elements dialog box appears.

7. Select the data nodes customer_name and order_priority.

8. Click OK.

The two data nodes appear in the Task Data area.

9. Click the Permissions tab.

Chapter 7
About Automation Plug-ins

7-30

On the Permissions tab, you can ensure that only the automation role has
permissions for automated tasks. See the note in "Modeling Roles and Setting
Permissions" for more information.

You are now ready to add a plug-in to the automated task.

Step 2: Adding the automation plug-in to the automated task

1. In the Automated Task editor, click the Automation tab.

2. Click Add.

The Add Automation dialog box opens.

3. In the Name field, enter Check_Customer.

4. In the Automation Type field, select XSLT Automator.

5. Click OK.

The Check_Customer plug-in appears in the Automation list.

6. In the Automation list, select the Check_Customer plug-in.

7. Click Properties.

The Automation Plug-in Properties tabs appear.

You are now ready to define the automation plug-in properties.

Step 3: Defining automation plug-in properties

1. In the Automated Task editor Properties View Details tab, accept the default
value in the EJB Name field.

2. Ensure that the model variable that defaults to the Run As field points to a user
name set up in the Oracle WebLogic console. When you deploy the cartridge, the
user in the Run As field is added automatically to the OSM_automation group.

For more information about users and groups, see the discussion of setting up
security in OSM System Administrator's Guide. For more information about model
variables, see the Design Studio Help.

3. Click the XSLT tab.

On the XSLT tab, you define where the XSLT style sheet is located and the status
to set if the automation fails. In this example, you'll define a location on your local
machine where the XSLT file is stored.

4. Select Absolute Path.

5. In the XSLT field, enter the location of the XSLT file.

For this example, enter
C:\oracle\user_projects\domains\osmdomain\xslt\DSLCartridge\1.0.0\check_
customer.xslt.

6. Do one of the following:

• In the Exit Status on Exception field, select Failure.

This field represents the exit status that the plug-in should use if it throws an
exception. The options available in this field include any status values you
assigned to the task. You use this option if you want to transition the task to a
fallout task.

• Click the Details tab and select the Fail Task on Automation Exception
check box.

Chapter 7
About Automation Plug-ins

7-31

This check-box transitions the task to a fallout execution mode if an exception
occurs when running the automation plug-in. Using the option allows you
troubleshoot task failures within the task that generated the failure.

7. Select Update Order.

This option ensures that the default values obtained from the XSLT style sheet will
be saved to the order data.

8. Click Save.

You have completed the basic configuration for an Automator-type plug-in defined
as an internal event receiver.

Note:

Successful automation requires a complete automation build file in the
cartridge. If no automation build file exists, Quick Fix will generate one.

Chapter 7
About Automation Plug-ins

7-32

8
Modeling OSM Data

This chapter describes how to model OSM data in an Oracle Communications Order
and Service Management (OSM) solution.

Data Modeling Overview
The entity that provides a unified view of all order data relating to various order
activities is the order specification order template. All other entities relating to order
processing contain a subset of the order data you define in the order template.

You can either model data directly in the order template or you can model data
in various OSM entities in Oracle Communications Design Studio. When you add
data to these other entities, Design Studio automatically adds the data into the order
specification order template.

In general, there are four groups of data that you must model in any OSM solution.
These general groups of data are:

• Incoming order data: You must understand the data structure and contents
and decide what pieces are important to supporting the orchestration process.
While there can be a large amount of data, orchestration is only concerned with
modeling and extracting out information needed to support decomposition and
dependency processing. For example, the orchestration functionality is primarily
driven by the elements and structures within the ControlData structure.

• External fulfillment system data: You must determine what data you need to
model in OSM for tasks that communicate with external systems or communicate
order or task notifications to northbound systems or external users.

• OSM web client user data: You must determine what data you want users to
access when using the OSM Order Management web client to manage orders or
when using the OSM Task web client when managing orders or processing tasks.

In addition to identifying and modeling these order data groups, you must also
understand how the data flows from each point during order processing. In addition,
you must understand whether the data you receive from system A must be
transformed or modified before sending it to system B. For example, system A that
sends an order with a requested delivery date and time for broadband server may use
a different date and time format than system B.

Common areas where data transformation occurs are:

• Order recognition rule order data rules: You must use an XQuery to map order
data to the data specified in the creation task of the order. The data defined on the
order may be identical to what is on the creation task, and so the XQuery must
map the data into the corresponding parameters, or the data on the order may be
different requiring you to manipulate the data so that it conforms with the data you
have define in the creation task. See "Modeling the Order Data Rule to Populate
the Creation Task" for more information.

8-1

• Within Orchestration using the order transformation manager (OTM): OTM
provides OSM the ability to transform order items within the orchestration plan.
For more information, see "Modeling the Order Transformation Manager".

• Within orchestration when OSM identifies order items from order data and
maps the data to order item properties. For more information, see "Modeling
Orchestration Plans".

• Between tasks: Automated tasks are the primary means that OSM employs for
communicating with external systems. In some cases, the data required by the
external system that Task A communicates with may require different parameters
or formats than those generated by the creation task and those of other tasks
communicating with other systems.

The task of dealing with different message types and formats can be
simplified if you use an integration application such as Oracle Application
Integration Architecture (Oracle AIA) which defines a canonical order structure
for communication between OSM and external fulfillment systems. However, OSM
can also directly integrate with external fulfillment systems and transform data
immediately at the task within the automated task automation plug-in code.

You also use the data you create in OSM for a variety of other purposes. For example:

• You can model OSM to add the input message (the entire order) to the order. The
order recognition rule that receives the message adds the message to an element
designated as XML Type which contains the entire order data. See "Adding the
Input Message to the Order Template" for more information.

• You can use data in the order template to manage orders; for example, you can
create order keys used by amendment processing. See "About Order Keys" for
more information.

• You can specify which data in the order template should be considered for
amendment processing (data significance). See "About Data Significance" for
more information.

• You can assign behaviors to data in the order template. See "Modeling Behaviors
Overview" for more information.

Modeling Order Data
Consider the following data modeling approaches:

• Data-centric: First model data for a cartridge project and then model the cartridge
project entities using specific data, as needed.

• Entity-centric: First model business processes and entities, and then model the
data specifically required by the entities used by the business process.

About the Data Dictionary
Before OSM can receive an order from an order-source system, you need to create
the OSM Data Dictionary.

The Data Dictionary is the repository of data elements used in Design Studio. The
Data Dictionary defines data types and structures that can be used within OSM orders.
For example, you can define a simple type that represents an IP address or a phone
number, or more complex types representing addresses, product attributes and so on.

Chapter 8
Modeling Order Data

8-2

Data elements in a Data Dictionary are used as building blocks of an OSM order. The
data elements within a Data Dictionary project can be referenced by other projects in a
work space.

Design Studio automatically creates a Data Dictionary when you create an OSM
cartridge project. You can use this default Data Dictionary or create multiple data
schemas to add data elements or structure within the same project.

Each data schema includes a set of data relevant to the how that data is used. For
example, a data schema for mobile services could include mobile-related data such as
IMSI and MSISDN.

About the Order Template
When you create a new order model in Oracle Communications Design Studio, you
can base the order on an existing order. When you extend an order specification,
the extended specification inherits all of the data, tasks, rules, and behaviors of
the base specification. You can add new data and behaviors to define unique order
specifications and functionality. When you modify a base order specification, the order
specifications extended from it are also modified. This means that you can make
changes in one place, in the base specification, and those changes apply to the orders
that are extended from the base specification.

For example, you might have three order specifications that share a common set of
data. You can create a base order that includes configurations common to all three
orders. You can then add configurations to each of the three order specifications for
the data that is unique to each order specification.

When defining an order specification that is inherited from a base order specification,
you cannot edit the inherited order data. For example, you cannot remove or rename
data elements inherited from the base order specification. To implement changes to
the inherited data, you must edit the data in the base order specification. Design
Studio automatically implements those changes among all of the extended order
specifications.

The data elements that you can use in an order are defined in the Design Studio Data
Dictionary. When you define order data, you can use data elements that already exist
in the Data Dictionary data schemas, or you can create new data elements and add
them to the Data Dictionary. See "About the Data Dictionary" for more information.

In the data dictionary, you can model the same data element in one or more locations,
and assign different type definitions for the elements, such as string or integer, and so
on. For example, you might have a data dictionary that contains two instances of a
data element called EmployeeID: one defined as a string (defined by the employee's
name and a two-digit number), the other defined as an integer (defined by a 6-digit
number). Although you can do this in the data dictionary, you cannot have the same
data instance with different type definitions in the order template.

To avoid such data element conflicts, you can rename the first instance of the
parameter after you import it into an order template using the refactoring function
which allows you to rename an imported parameter at the order template level without
changing the data dictionary instance from which it is derived. This creates an alias for
the imported data element and you can then import the second instance of the data
element without any data conflict errors. See Design Studio Modeling OSM Processes
Help for more information about renaming data elements in the order template.

Chapter 8
Modeling Order Data

8-3

Identifying Data Requirements for Order Payload
The incoming order data contains important information about the hierarchy of sales
item lines, which can consist of offers, bundles, products, and so on. This data
structure information can be used to manage the data when it is passed between
different fulfillment systems.

You must model incoming order data in a Design Studio data dictionary. You can either
manually build the data dictionary for the incoming order data or you can import an
XSD file defined in some other application into Design Studio.

To import the Data Dictionary for the data received in orders, you import the XSD file
for that incoming customer order into OSM. The elements in the XSD file are loaded
into the Data Dictionary as OSM data elements. Example 8-1 shows part of an XSD
file that could be used for importing customer data.

Example 8-1 Elements in Input Message XSD File

<element name="order" type="im:OrderType"/>
<element maxOccurs="1" minOccurs="1" name="numSalesOrder" type="string">
</element>
<element maxOccurs="1" minOccurs="1" name="typeOrder">
</element>

For each data element, you specify attributes about the data element; for example,
the data type and display name. Figure 8-1 shows the configuration for a
requestedDeliveryDate data element.

Figure 8-1 Data Element Defined in Design Studio

Child XML elements are imported as child data elements. The Path field
shows the parent data elements. In this example, the parent data element of
requestedDeliveryDate is SalesOrderLine.

Chapter 8
Modeling Order Data

8-4

Adding the Input Message to an Order Recognition Rule
You must add the order data structure of an incoming order to the Input Message area
on the Details tab in an order recognition rule.

Figure 8-2 shows an input message specified in a recognition rule.

Figure 8-2 Input Message Specified in a Recognition Rule

The order recognition rule Order Data Rule XQuery transforms order data into the
OSM order format. However, you can also add the input order data to an order by
adding the order data to the order template. For more information, see "Adding the
Input Message to the Order Template".

Adding the Input Message to the Order Template
You can model an order template with the incoming order data so that OSM
automatically add the incoming order data to the OSM order in addition to the data
generated by an order recognition rule Order Data Rule Xquery. You should not use
the incoming order data for order processing, but the order data information can be
useful for debugging, order tracking. or reference purposes.

To add the incoming order data to an order you must add the incoming order data to
the target order specification Order Template tab Order Template area.

You must designate the root incoming order data element as an XML Type so OSM
can store the data more efficiently. In addition, you must also add the incoming order
data structure to the creation task so that OSM can add the incoming order data to the
OSM order.

Figure 8-3 shows the input order element order with XML Type selected in the
Properties tab Order Data sub-tab.

Chapter 8
Modeling Order Data

8-5

Figure 8-3 Input Order Data as XML Type

For debugging, order tracking, or reference purposes, you can add the incoming order
data to a query task so that operators can view data from the Task web client or the
Order Management web client.

Figure 8-4 shows the input order data in the Order Management web client Data tab
with the OsmCentralOMExampleQueryTask selected in the View field.

Chapter 8
Modeling Order Data

8-6

Figure 8-4 Order Management Web Client Input Order Data XML Structure

Modeling Valid Data Keys
Data keys are elements that identify specific instances of multi-instance nodes. For
more information about the use of data keys, see "About Order Data Position and
Order Data Keys."

When modeling a data key, you must follow the following guidelines.

• Data key expressions must always return a value. For example, if you could use
the following expression to return a key value:

./login/username/text()

However, if either login or username are optional parameters, then this expression
might not return a value. Ensure that you model your data and write your key
expressions so that data in a valid order will always cause the key expression to
return a value.

Chapter 8
Modeling Order Data

8-7

• Ensure that parallel key expressions always evaluate to unique values. That is, all
of the instances of one multi-instance data element must have unique keys.

If a multi-instance data element is inside another multi-instance data element, the
child elements' keys must be unique within each parent element. For example,
in the following data structure, you could use ./host/text() as the expression to
generate the key for the location element. This would work because it is unique
within each of the email-service parent elements, even though it is not unique
across the whole order.

<email-service>
 <address>john.doe@example.com</address>
 <name>John Doe</name>
 <quota>5Gb</quota>
 <location>
 <host>host_a</host>
 <operating-system>Linux</operating-system>
 </location>
 <location>
 <host>host_b</host>
 <operating-system>Solaris</operating-system>
 </location>
</email-service>
<email-service>
 <address>jane.doe@example.com</address>
 <name>Jane Doe</name>
 <quota>2Gb</quota>
 <location>
 <host>host_a</host>
 <operating-system>Linux</operating-system>
 </location>
 <location>
 <host>host_c</host>
 <operating-system>MacOS</operating-system>
 </location>
</email-service>

• Data key expressions must not use children of reference data elements.

Design Studio allows order template elements to be references to elements
elsewhere in the order. For example, this allows more than one order component
to refer to the same order item. In this way, the different order components can
see the latest version of the order item data, while allowing the data to exist (and
be updated) in only one place. Data key expressions that refer to descendants of
references are not valid.

• When using descendant data elements in your key expression, consider restricting
data key expressions to refer only to direct child elements.

While it is valid for data key expressions to refer to descendants beyond direct
child elements, it is easier to ensure compliance with the other criteria when only
direct child elements are used.

Modeling Data for Tasks
The following sections describe modeling data requirements for tasks.

Chapter 8
Modeling Data for Tasks

8-8

Determine Task Data for Manual and Automated Tasks
Each task includes a set of data, which you specify when modeling the task.

The data included in a task is data relevant to the function of the task. Table 8-1 shows
some example tasks and the task data they include.

Table 8-1 Examples of Tasks and Task Data

Task Task Data

Add capacity Bandwidth

Send customer survey Name, phone number, address

Query task (to display data in
the Task web client)

Name, phone number, bandwidth, port ID

When you model a task, you assign it to an order. The available task data is limited
to the data that the order requires. At run time, task data can be entered by an OSM
user, provided on an incoming order, or provided from a previous task in the order.

Figure 8-5 shows task data defined in a task in Design Studio and how the data is
displayed in an order in the Task web client.

Figure 8-5 Task Data in a Task Specification and in an Order

Chapter 8
Modeling Data for Tasks

8-9

Tip:

To improve performance, usability, and security, include only the data that is
necessary to perform the task. Unnecessary data is not exposed to the user
performing the task, even though the order may contain much more data.

When modeling orders, it is common to include the entire XML representation of
the order in the order data as an XML data type. If you include the XML data,
consider defining smaller XML elements for storing sections of a sales order rather
than including a single XML data type that contains the entire sales order. This allows
you to map only the parts of the order that are needed for each task. Including
the XML representation is typically done only in the modeling process as an aid to
development.

In addition to defining the data included in each task, you can use behaviors in
manual tasks to manipulate many aspects of how the data is displayed, formatted, and
validated. For example, you can specify if data is read-only, or you can modify the
value of the data in a task. See "Modeling Behaviors Overview" for more information.

Determine Task Data for Data Returned from Fulfillment Applications
You can configure the order template to hold status data returned from external
systems. Figure 8-6 shows an order template structure that holds status data.

Figure 8-6 Status Data in the Order Template

Generating Multiple Task Instances from a Multi-Instance Field
Some tasks require multiple task instances to complete. For example, you might need
to create three task instances to retrieve three different address fields. To accomplish
this, you designate a field as a pivot data element for the task. When OSM runs the
task at run time, the system generates a separate task instance for each separate
instance of the pivot data element in the order. The system creates as many instances

Chapter 8
Modeling Data for Tasks

8-10

of the task as there are instances of the data field or data structure, up to the
maximum number defined for the field. This feature works for a structure of data also.
For example, if the address is a structure called Address, with nested elements of
Street, City, and Postal Code, the system generates an instance of a task for each
instance of the structure. The data that is visible to the task instance will be restricted
to data structure that it is for, and that task will not have visibility to the other instances
of the data.

Note:

OSM compensation processing does not support task pivot data elements.

Modeling Data for Orchestration
Define the orchestration data on the entity that best reflects its structure, rather than
defining all of the data on the order specification. Design Studio generates the order
level order template by aggregating the order template definitions for the order item
specifications and order components with any data defined at the order level.

You should define data at the level where it is needed:

• Order Item specification: Define ControlData/OrderItem and all of the order item
properties on the order item specification.

The OracleComms_OSM_CommonDataDictionary model project contains
predefined base data elements for control data. It is recommended that you use
the data schema of this model project to add the ControlData/OrderItem base
data element to the order item specification Order Template tab.

• Order component: Define ControlData/Functions/OrderComponentName and
any other data needed by the tasks in the process that execute this component in
the appropriate order component template.

If you use the OracleComms_OSM_CommonDataDictionary model project
(recommended) and your orchestration entities are preconfigured correctly, Design
Studio automatically generates this structure on the order template of the order
component and the order template of the order.

Using this method supports:

• Encapsulation

• Re-factoring: Modify order template data at the entity level to which it is associated
because this highlights the connection between an entity and its order template
data.

• Maintenance: Modifications to order item specification and order component
templates help the designer understand the impact of changes, including possible
breaks in compatibility.

• Traceability: Using this method provides direct traceability from order template
data to the modeling entity to which it is attached.

Chapter 8
Modeling Data for Orchestration

8-11

About Order Item Control Data
In addition to defining order item properties in the order item specification, you need
to provide a storage area for the order item properties. You do so by adding control
data to the order item specification Order Template tab. This definition is automatically
added to the order's order template. This makes it easier to track which entity is the
master of the data and enables easier refactoring and maintenance of the overall order
specification. Figure 8-7 shows the order item properties in the control data in an order
template.

Figure 8-7 Order Item Properties Included in the Order Template

When you define the control data, note the following:

• The name used in the control data must exactly match the spelling and case of the
order item property name.

• Make sure that the Data Dictionary properties are correct for the type of data; for
example, string or number.

• Configure each data element as a multi-instance data element.

– Minimum = 0

– Maximum = Unbounded

Note:

To define data properties, you edit the entry in the data schema, not in
the order item specification.

Chapter 8
Modeling Data for Orchestration

8-12

An instance of ControlData/OrderItem is created for each data element returned
by the order item selector from the orchestration sequence (see "About Creating
Order Items from Customer Order Line Item Node-Sets").

The OracleComms_OSM_CommonDataDictionary model project contains
predefined base data elements for control data. Oracle recommends that you use
the data schema of this model project to add the ControlData/OrderItem structure to
the order item specification Order Template tab.

About Order Template Data
The order template includes control data. Control data is used by OSM to generate
the orchestration plan. Control data is used only for orchestration.

There are typically two areas of the order control data:

• ControlData/OrderItem provides the data and structure of order items received in
the incoming customer order.

• ControlData/Functions stores the structure of the function order components
generated by the first level of decomposition. Figure 8-8 shows function
components represented in the order template. The types of functions
(BillingFunction, MarketingFunction, and so on) represent the function-level order
components.

Figure 8-8 Functions Data in the Order Template

You manually model the order control data of order items in Design Studio. Control
data for function order components is automatically generated by Design Studio. See
"About Modeling Control Data" in Modeling OSM Processes for information on how
control data is modeled and generated.

Orchestration plan generation requires a specific order template structure which you
must model at design time.

ControlData
 OrderItem
 Functions
 OrderComponentName
 componentKey
 calculatedStartDate
 duration
 OrderItem
 orderItemRef

Chapter 8
Modeling Data for Orchestration

8-13

About Order Item Specification Data
This is a multi-instance node that OSM populates with a set of order items generated
off the in-bound message. The children of this structure must exactly match the set of
order item properties defined on the Order Item specification editor in Design Studio.

The OracleComms_OSM_CommonDataDictionary model project contains
predefined base data elements for control data. It is recommended that you use the
data schema of this model project to add the ControlData/OrderItem data element to
the order item specification Order Template tab.

See "About Modeling Control Data" in Modeling OSM Processes for instructions on
modeling the ControlData/OrderItem structure.

About ControlData for Order Component Data
Order component information is stored in the template in ControlData/Functions/
OrderComponentName. This is a multi-instance node that OSM populates with the
set of order components generated by executing the decomposition rules through
an orchestration sequence. OrderComponentName must be defined for each order
component included in a fulfillment pattern's orchestration plan. This section of the
ControlData represents all of the order components in the orchestration plan. If you
use the OracleComms_OSM_CommonDataDictionary model project, Design Studio
automatically generates data (OrderComponentName) and adds it to the ControlData/
Functions structure for each order component that is associated with the fulfillment
pattern that is part of the orchestration plan.

Each order component is assigned a unique key, called the order component ID, which
is stored in the componentKey element. For information about how the component ID
is determined, see "About Component Names and Component IDs."

OSM populates the calculatedStartDate (dateTime type) and duration (string type)
nodes for each ControlData/Function. With calculatedStartDate and duration per
Function, both central order management and service order management solutions
can use these values as the requested delivery date for the order line in a downstream
system. based on the modeling done in the Order Component Specification entity, the
date does affect the runtime behavior of the order component. If there is a Duration
Value associated with a dependency, it is used in the order component start date
calculation since this value is relative value to the orchestration dependency.

OSM populates the multi-instance orderItem node with the set of order items that
have been decomposed into this order component. The order items are accessed
through orderItemRef, which is a reference node to ControlData/OrderItem. A
reference node is used to point to the actual storage location of the order item so
that updates to the order item data are reflected in all order components the order item
is referenced from.

You can also store status data in the order item data and in the function data.
Figure 8-9 shows a structure for storing status data. In this example:

• The LineID data element provides a reference to the order line item in the
incoming customer order.

• The SystemInteraction data element stores data about status events; for
example, a status code, description, and timestamp.

Chapter 8
Modeling Data for Orchestration

8-14

Figure 8-9 Status Data in Order Item

Figure 8-10 shows a structure for storing status data for functions. In this example:

• The componentKey data element provides a reference to the order component
instance.

• The Response data element stores the message from the external system, as
well as the timestamp, description, and status code.

Figure 8-10 Status Data in Functions

Modeling Data for Fulfillment States
Fulfillment state processing requires specific structures and data elements inside
the order template. The specific locations of the data can be changed using XML
catalog: the default locations are presented here. See "About XML Catalogs" for
more information about using XML catalogs in OSM. See "Sample XQuery for

Chapter 8
Modeling Data for Fulfillment States

8-15

Changing Default Data Locations" for more information about changing the default
data locations.

About ControlData for External Fulfillment States
External fulfillment state information is populated for order components.

The default location for external fulfillment state information is ControlData/
Functions/OrderComponentName/orderItem/ExternalFulfillmentState.

Write the automation code so that it populates the information in the correct place.
For example, the following automation code updates the ExternalFulfillmentState value
whenever a response containing a fail value returns or passes on any other value in
the response:

</UpdatedNodes>
 {(
 for $orderItem in $component/oms:orderItem
 let $lineId := $orderItem/oms:orderItemRef/centralom:lineId/text()
 return
 (
 if ($responseRoot/res:lineResponses/res:response[@id=$lineId]/text() = 'fail') then
 (
 <Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderItem[@index='{$orderItem/@index}']">
 <ExternalFulfillmentState>{$responseRoot/res:status/text()}</ExternalFulfillmentState>
 </Update>
)
 else
 (
 <Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderItem[@index='{$orderItem/@index}']">
 <ExternalFulfillmentState>{$responseRoot/res:status/text()}</ExternalFulfillmentState>
 </Update>
)
)
)}
</OrderDataUpdate>

About ControlData for Order Fulfillment State
OSM populates the order fulfillment state based on the configuration in the order
fulfillment state composition rule set.

The default location for OSM to populate the order fulfillment state is
ControlData/OrderFulfillmentState. The Data Dictionary contains a root-level
OrderFulfillmentState element. For cartridges created in a pre-7.2 version of OSM,
drag the root-level OrderFulfillmentState element into the ControlData node on
the order. For new cartridges, the element will get added automatically to the order
template as a child of ControlData.

About ControlData for Order Item Fulfillment State
OSM populates the order item fulfillment state based on the configuration in the order
item fulfillment state composition rule set.

The default location for OSM to populate the order item fulfillment state is
ControlData/OrderItem/OrderItemFulfillmentState. The Data Dictionary contains a

Chapter 8
Modeling Data for Fulfillment States

8-16

root-level OrderItemFulfillmentState element. For order items in cartridges created
in a pre-7.2 version of OSM, drag the root-level OrderItemFulfillmentState element
into the ControlData/OrderItem node on the order. For new cartridges and order
items, the element will get added automatically to the order template as a child of
ControlData/OrderItem.

Fulfillment States and Point of No Return
If points of no return have been configured using fulfillment states, OSM populates the
point of no return when processing the order item fulfillment state composition rules.
For more information about points of no return, see OSM Concepts.

The default location for OSM to populate the point of no return value is ControlData/
OrderItem/PointOfNoReturn.

Fulfillment State and Point of No Return Initial Values
You can set initial values for order item fulfillment states and points of no return, so
that these values will appear on the order before any processing takes place. See
"Sample XQuery for Changing Default Data Locations" for more information about
setting these values.

Sample XQuery for Changing Default Data Locations
To change the default locations and set initial values for point of no return and order
item fulfillment state, include an XQuery file in the XML catalog. To use the defaults, do
not provide a file.

To include your custom XQuery file in the cartridge, include a line similar to the
following in the XML catalog file for your cartridge:

<rewriteURI uriStartString="cp:oracle/communications/ordermanagement/execution"
rewritePrefix="osmmodel:///CartridgeName/CartridgeVersion/resources/Directory"/>

For more information about using XML catalogs, see "About XML Catalogs".

If you choose to configure a custom file, you should include all of the functions,
even those for defaults you are not changing. This will clarify the configuration
and assist in maintenance activities. The purpose of each function is indicated in
comments in the file. For all values that specify order template locations (for example /
OrderLifeCycleManagement), begin the value with a forward slash, as shown below.

xquery version "1.0";
module namespace fulfillmentstatemodule = "http://xmlns.oracle.com/
communications/ordermanagement/fulfillmentstatemodule";

declare namespace saxon="http://saxon.sf.net/";
declare namespace xsl="http://www.w3.org/1999/XSL/Transform"
declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

(: Returns the composite fulfillment state path for an order. :)
declare function fulfillmentstatemodule:getOrderCompositeFulfillmentStatePath
($orderMnemonic as xs:string) as xs:string {
 "/ControlData/OrderFulfillmentState" };

(: Returns the composite fulfillment state path for an order item. :)
declare function

Chapter 8
Modeling Data for Fulfillment States

8-17

fulfillmentstatemodule:getOrderItemCompositeFulfillmentStatePath ($orderMnemonic
as xs:string) as xs:string {
 "/ControlData/OrderItem/OrderItemFulfillmentState" };

(: Returns the default order item external fulfillment state path. :)
declare function fulfillmentstatemodule:getOrderItemExternalFulfillmentStatePath
($orderMnemonic as xs:string) as xs:string {
 "ExternalFulfillmentState" };

(: Returns the default type of the order item external fulfillment state path.
 Valid values are RELATIVE_PATH and ABSOLUTE_PATH. :)
declare function
fulfillmentstatemodule:getOrderItemExternalFulfillmentStatePathType
($orderMnemonic as xs:string) as xs:string {
 "RELATIVE_PATH" };

(: Returns the point of no return path for an order item. :)
declare function fulfillmentstatemodule:getOrderItemPoNRPath ($orderMnemonic as
xs:string) as xs:string {
 "/ControlData/OrderItem/PointOfNoReturn" };

(: Returns the name of the initial fulfillment state. :)
declare function fulfillmentstatemodule:getOrderInitialFulfillmentStateName
($orderMnemonic as xs:string) as xs:string {
 "" };

(: Returns the namespace of the initial fulfillment state. :)
declare function fulfillmentstatemodule:getOrderInitialFulfillmentStateNamespace
($orderMnemonic as xs:string) as xs:string {
 "" };

(: Returns the initial point of no return value of an fulfillment state. :)
declare function fulfillmentstatemodule:getOrderItemInitialPoNR($orderMnemonic
as xs:string) as xs:string {
 "" };

declare function fulfillmentstatemodule:getExternalFulfillmentStates(
 $orderData as element()) as element()?
{
 let $orderMnemonic :=
 if (fn:exists($orderData/OrderType))
 then $orderData/OrderType/text()
 else ""
 let $orderItems := $orderData/_root/ControlData/OrderItem
 where (fn:exists($orderItems))
 return
 <oms:ExternalFulfillmentStates>
 {
 for $orderItem in $orderItems
 let $orderItemIndex := $orderItem/@index
 let $components := $orderData/_root/ControlData/Functions/
*[orderItem/orderItemRef/@referencedIndex=$orderItemIndex]
 let $externalFulfillmentStatePath :=
fulfillmentstatemodule:getOrderItemExternalFulfillmentStatePath($orderMnemonic)
 let $externalFulfillmentStatePathExistsCheck :=
fn:concat($externalFulfillmentStatePath, "[text()!='']")
 let $externalFulfillmentStateExists :=
fn:exists($components/orderItem[orderItemRef/@referencedIndex=$orderItemIndex]/
saxon:evaluate($externalFulfillmentStatePathExistsCheck))
 where (fn:exists($components) and
$externalFulfillmentStateExists=fn:true())

Chapter 8
Modeling Data for Fulfillment States

8-18

 return
 <oms:OrderItemExternalFulfillmentState index="{$orderItemIndex}">
 {
 for $component in $components
 let $componentKey := fn:normalize-space($component/
componentKey/text())
 let $componentId := $component/@index
 let $externalFulfillmentStateValuePath :=
fn:concat($externalFulfillmentStatePath, "[last()]/text()")
 let $externalFulfillmentState := fn:normalize-
space($component/orderItem[orderItemRef/@referencedIndex=$orderItemIndex]/
saxon:evaluate($externalFulfillmentStateValuePath))
 where (fn:exists($externalFulfillmentState) and
$externalFulfillmentState != "")
 return
 <oms:OrderItemComponentState
componentId="{$componentId}">
 <oms:ComponentKey>{$componentKey}</oms:ComponentKey>

<oms:ExternalFulfillmentState>{$externalFulfillmentState}</
oms:ExternalFulfillmentState>
 </oms:OrderItemComponentState>
 }
 </oms:OrderItemExternalFulfillmentState>
 }
 </oms:ExternalFulfillmentStates>
};

Modeling Data for Processing States
Processing states requires specific structures and data elements inside the order
template.

About ControlData for Order Component Order Item Processing
States

Order component order item processing state information is populated for order
components.

The default location for order component order item fulfillment
state information is ControlData/Functions/OrderComponentName/orderItem/
FunctionProcessingState.

Write the automation code so that it populates the information in the correct place.
For example, the following automation code updates the FunctionProcessingState to
the UndoFailed value whenever a response containing a fail value returns or to the
Completed value whenever any other response returns:

</UpdatedNodes>
 {(
 for $orderItem in $component/oms:orderItem
 let $lineId := $orderItem/oms:orderItemRef/centralom:lineId/text()
 return
 (
 if ($responseRoot/res:lineResponses/res:response[@id=$lineId]/text() = 'fail') then
 (
 <Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderItem[@index='{$orderItem/@index}']">

Chapter 8
Modeling Data for Processing States

8-19

 <oms:FunctionProcessingState>UndoFailed</oms:FunctionProcessingState>
 </Update>
)
 else
 (
 <Update path="/oms:ControlData/oms:Functions/oms:BillingFunction/
oms:orderItem[@index='{$orderItem/@index}']">
 <oms:FunctionProcessingState>Completed</oms:FunctionProcessingState>
 </Update>
)
)
)}
</OrderDataUpdate>

About ControlData for Order Item Processing States
OSM populates the order item processing state based on the order component order
item processing state.

The default location for OSM to populate the order item processing state is
ControlData/OrderItem/OrderItemProcessingState.

Modeling Orders With Data Fields Above 1000 Characters
Standard OSM Design Studio data elements and structures can support a maximum
of 1000 characters. However, in some cases it may be necessary to model data
that exceed this limit. Before you model order data fields than can contain more
than 1000 characters, you must carefully decide whether these fields are necessary.
Unnecessary data within an order can reduce the order processing performance of
OSM.

The following sections describe ways to achieve data length for OSM data above 1000
characters.

Using XML Types for Data Fields Above 1000 Characters
In Design Studio, you can model data dictionary structures as XML types from the
Order specification, Order Template, Properties sub-tab, Order Data sub-tab. The
structure must be empty and contain no children elements or structures for it to be
designated as XML type. Structures defined as XML types in the data dictionary can
contain XML documents. You can also use XML schema files to validate the XML
structures in the XML types.

Oracle recommends this option when the data is not human editable or readable in
the OSM user interfaces because the data is represented as XML. For example, the
XML data can be captured as follows, where <largetext> is the name of the structure
designated as XML type:

<largetext>
Text to be inserted here
</largetext>

When you have defined the XML type structures in the Order specification Order
Template, then included them as a part of Manual or Automated Task Data, you can
access the XML data using:

Chapter 8
Modeling Orders With Data Fields Above 1000 Characters

8-20

• The OSM Task web client Order Editor screen (see OSM Task Web Client User's
Guide for more information).

• XML API GetOrder and UpdateOrder transactions (see OSM Developer's Guide
for more information).

• OSM Web Service GetOrder and UpdateOrder OSM operations (see OSM
Developer's Guide for more information).

• Order access and updates performed using Automated Task automation plug-ins
(see "About Automation Plug-ins" for more information).

This approach has the following limitations:

• You cannot specify XML type data as significant for amendment processing.
Changes to this data does not trigger compensation.

• XML types are not visible in the OSM reporting interface.

To enable XML schema validation:

1. Create schema files for the required XML data type.

2. Use the Java perspective Package Explorer view to copy the schema files into the
cartridge project data dictionary folder where the XML data type has been defined.

Using Order Remarks for Data Fields Above 1000 Characters
You can add Remarks that contain text to orders during order processing. Remarks
can be retrieved and updated using:

• The OSM Task web client Remarks and Attachments screens (see OSM Task
Web Client User's Guide for more information).

• XML API Getorder and UpdateOrder transactions (see OSM Developer's Guide for
more information).

• OSM Web Service GetOrder and UpdateOrder operations (see OSM Developer's
Guide for more information).

• Order access and updates performed using Automated Task automation plug-ins
(see "About Automation Plug-ins" for more information).

This approach has the following limitations:

• Remarks can store up to 4000 bytes of data. Depending upon the character set
configured in your database, the number of characters will vary.

• Remarks associated with orders are only editable for a certain time after you add
them. This time limit is defined by the remark_change_timeout_hours parameter
contained in the oms-config.xml file. You can edit the value associated with this
parameter to change the number of hours that remarks are editable. The default
value is 24 hours. See OSM System Administrator's Guide for more information
about working with the oms-config.xml file.

Using Attachments for Data Fields Above 1000 Characters
You can also add file attachments to remarks. File attachments can contain large
amounts of data and you can store them in different formats. You can access
attachments with:

Chapter 8
Modeling Orders With Data Fields Above 1000 Characters

8-21

• The OSM Task web client using the Remarks and Attachments screens (see OSM
Task Web Client User's Guide for more information).

• XML API Getorder and UpdateOrder transactions (see OSM Developer's Guide for
more information).

• OSM Web Service GetOrder and UpdateOrder operations (see OSM Developer's
Guide for more information).

Attachments are governed by the max_attachment_size parameter in the oms-
config.xml file. You can edit the value associated with this parameter to change
the maximum attachment size. The default value is 10MB. See OSM System
Administrator's Guide for more information about working with oms-config.xml.

Note:

When the remark change threshold is exceeded
(remark_change_timeout_hours), you can no longer add or delete
attachments to the remark.

Using Data Providers to Retrieve Data
This section describes how to use data providers to retrieve data when modeling
orders in OSM.

About Data Providers and Adapters
An Oracle Communications Design Studio data provider is an instantiation of adapter
(which is a Java class) that can retrieve data in an XML format from external systems.
Data Providers are used when defining Data Instance behaviors (see "Using the
Data Instance Behavior to Retrieve and Store Data" for more information). Design
Studio provides several built-in Data Providers to retrieve external XML instances
from specific sources such as an Objectel server extension or a SOAP web service.
Additionally, you can create your own custom Data Provider (see "Custom Data
Providers" for more information).

In Design Studio, the Data Provider editor Settings tab (Figure 8-11) allows you to set
the Data Provider type using Provider Type. Types of Data Providers include:

• Objectel

• Order

• Property File

• SOAP

• XML Attachment

• XML File

• XML Validation

• JDBC

• Web Service

• Custom Data Providers

Chapter 8
Using Data Providers to Retrieve Data

8-22

When you select any of the above choices other than a custom data provider,
the Provider Class field becomes disabled and is populated with the OSM
implementation of the adapter. When you select Custom, the Provider Class field
is enabled because you must supply the class name of the custom adapter that you
write. See "Custom Data Providers" for detailed information.

Figure 8-11 Data Provider Settings Tab

Data Provider Interface Tab
Data providers, both built-in and custom, can take parameters as input, as shown in
the Interface tab (Figure 8-12). Parameter names are free-form text, but are dictated
by the data provider's expected input. An asterisk (*) appears next to mandatory
parameters, and each parameter's corresponding value can be specified as either
XPath 1.0 or XQuery 1.0. In addition to the functions provided by the XPath 1.0
or XQuery 1.0 standards, OSM provides a custom function, instance(string) that
allows the output of one data provider to be used as the input of another. The
parameters required by each of the built-in data providers is documented in the
sections that follow.

Chapter 8
Using Data Providers to Retrieve Data

8-23

Figure 8-12 Data Provider Interface Tab

For instructions on how to define these data providers in Design Studio, including
field-level detail, see "Data Provider Editor" in Modeling OSM Processes.

Accessing Data through Data Providers
To use a Data Provider, you include a data element in the order template, define a
behavior for it and use an XPath expression to access the Data Provider and extract
the data that you wish to display in the data element.

For example, the following XPath illustrates how to call a web service provider
instance named "DataInstance" and return the value of the "my_element" view data
element.

instance('DataInstance')/Data/_root/my_element

For XQuery, you would use vf:instance().

Augmenting or Overriding Data
In most cases, a data provider references order data from an external source, another
behavior, or as static values defined within the data provider. In addition to these
options, you can also add explicit parameter values from within an XQuery or XPath
that augment or override the parameters defined in the OSM data dictionary.

For example, the following variable can be declared with parameters that have not
been defined within the OSM data dictionary from within an XQuery:

declare variable $dataInstanceParams :=
 <params>
 <oms:url>file://users/bdueck/catalog.xml</oms:url>

Chapter 8
Using Data Providers to Retrieve Data

8-24

 <fooParam>barValue</fooParam>
 </params>;

You can call a data instance function using a sequence of parameters declared in the
variable above. For example:

log:info($log,local-name(vf:instance($order/oms:GetOrder.Response/oms:_root/
oms:data[1],'DataInstance',$dataInstanceParams/*)/*[]))

You can call a data instance function using parameters passed as parameters on the
function one by one. For example:

log:info($log,local-name(vf:instance($order/oms:GetOrder.Response/oms:_root/
oms:data[1],'DataInstance',<oms:url>file://us/catalog.xml</oms:url>)/*[1])),

You can call a data instance function using parameters passed as parameters on the
function one by one and include two parameters. For example:

log:info($log, local-name(vf:instance($order/oms:GetOrder.Response/oms:_root/
oms:data[1],'DataInstance',<oms:url>file://us/catalog.xml</oms:url>,<foo>bar</
foo>)/*[1]))

Objectel
This adapter provides a reliable transport call into Objectel. Although JMS is an
asynchronous protocol, the Objectel adapter itself is not. While JMS simplifies
transaction management, recovery, offline capabilities, and security, these benefits
are not relevant when considered within the context of a behavior. The JMS adapter
utilizes additional resources in the application server in the form of temporary JMS
destinations to which Objectel sends the response. These can be expensive if an
order has many adapters being called concurrently. It is not recommended to use this
adapter in this scenario.

Parameters

• objectel:extensionName

Description: the name of the Objectel server extension to call.

Mandatory/Optional: Mandatory

• objectel:jmsFactory

Description: the name of the JMS factory to be used to access Objectel's JMS
queue.

Mandatory/Optional: Optional

Default value - com.oracle.objectel.XMLJMS.QueueConnectionFactory

• objectel:queue

Description: The name of the Objectel receive queue.

Mandatory/Optional: Optional

Default value: - com.oracle.objectel.XMLJMS.QueueConnectionFactory

• objectel:allowErrorResponse

Description: an optional Boolean parameter name that if specified controls what
happens if Objectel returns an error response. If this parameter is set to false
(default), an error response from Objectel triggers an exception to be thrown

Chapter 8
Using Data Providers to Retrieve Data

8-25

which is in turn displayed as a constraint violation. If this parameter is set to true,
the error response is returned by the ObjectelAdapter as a valid instance. This
allows another Constraint behavior to apply to that same instance and display an
error message accordingly. The benefit of using the default (false) is that you do
not have to write an additional behavior to display a default error message. The
constraint violation message looks like an exception with a stack trace, but shows
the error description returned by Objectel at the top of the message. The benefit of
setting this parameter to true is that you have greater control over when the error
is shown, at what severity, and what message is displayed.

– false: If this parameter is set to false (the default), an error response from
Objectel throws an exception, which is then displayed as a constraint violation.
By using false you can avoid writing an additional behavior to display only
a default error message. With this method, the constraint violation message
looks like an exception with a stack trace, but shows the error description
returned by Objectel at the top of the message.

– true: If this parameter is set to true, the error response is returned by the
ObjectelAdapter as a valid instance. This allows another Constraint behavior
to apply to that same instance and display an error message accordingly. By
setting the parameter to true, you have greater control over:

* When the error should be shown

* The severity level displayed

* The exact error message to display.

– All other parameters are passed directly as name/value pairs to the server
extension.

Order
This adapter lets you use order data from any OSM order as an external instance. This
is useful for using related order data from other orders within OSM.

Parameters

• oms:OrderID

Description: The order ID of the order to be retrieved.

Mandatory/Optional: Mandatory

• oms:View

Description: The view (query task) to use when retrieving order data.

Mandatory/Optional: This is required if the oms:OrderHistID is not supplied.

• oms:OrderHistID

Description: The order history ID to use when retrieving order data.

Mandatory/Optional: This is required if oms:View is not supplied.

Adding a New Order Data Provider
To add a new Data Provider which uses the Order adapter:

1. In Design Studio, add a new Data Provider. From the Studio menu, select New,
then select Order and Service Management, and then select Data Provider.

Chapter 8
Using Data Providers to Retrieve Data

8-26

2. In the Data Provider Wizard, enter a name and folder for the Data Provider and set
Provider Type to Order.

The new Order Data Provider is added to the Design Studio project.

3. Edit the Data Provider.

4. In the Data Provider editor, on the Input Parameters section of the Interfaces tab,
specify values for either the oms:View or oms:OrderHistID parameters.

5. Set the Default Value to either XQuery or XPath and enter your request code in
the Default Value edit box.

6. Optionally specify the XML structure of the data in the Results Document edit
box.

The definition of GetOrderResponse is located in the order management web
service schema at SDK\XMLSchema\GetOrder.xsd.

For more information, see "About Modeling Control Data" in Modeling OSM
Processes. Also, see "Accessing Data through Data Providers".

Property File
This adapter retrieves an external Java property file with a given name from the
classpath. The format of the XML instance returned by this adapter is specified as:

http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html

Parameters

• oms:url

Description: Specifies the file name of the Java property file. The file must be on
the classpath and must be in the format of a Java property file.

Mandatory/Optional: Mandatory

SOAP
This adapter lets you access web services from OSM or an external web service
server, using the HTTP protocol. You can call SOAP web services from OSM or an
external web service server and use the responses within behaviors.

Note:

If you need to configure a proxy server to access the internet, add the
following parameters to the OSM WebLogic server startup script:

JAVA_OPTIONS="${JAVA_OPTIONS} -Dhttp.proxyHost=ip_address -
Dhttp.proxyPort=port

where ip_address and port are the IP address and port of the proxy server.

For web service calls specific to OSM, use the Web Service adapter. See "Web
Service".

For general web services calls, use the SOAP adapter.

Chapter 8
Using Data Providers to Retrieve Data

8-27

http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html

Parameters

• soap.endpoint

Description: Specifies the URL to which the SOAP request will be sent.

Mandatory/Optional: Mandatory

• soap.action

Description: Contains the URI that identifies the intent of the message.

Mandatory/Optional: Optional

• soap.envelope

Description: Specifies the root element of a SOAP message.

Mandatory/Optional: Mandatory, if the soap.body parameter is not defined.

• soap.body

Description: Contains the SOAP message intended for the endpoint. If the SOAP
body node is not included in the soap.body content, it will be added by the SOAP
Adapter.

Mandatory/Optional: Mandatory, if the soap.envelope parameter is not defined.

• soap.header

Description: Contains XML data that affects the way the application-specific
content is processed by the message provider. If the SOAP header node is not
included in the soap.header content, it will be added by the SOAP Adapter.

Mandatory/Optional: Optional

• oms:credentials.username

Description: Specifies an authentication user name.

Mandatory/Optional: Optional

• oms:credentials.password: An optional authentication parameter

Description: Specifies an authentication password.

Mandatory/Optional: Optional

• oms:credentials.scope.host: An optional authentication parameter

Description: Specifies an authentication host parameter.

Mandatory/Optional: Optional

• soap.allowErrorResponse:

Description: When set to true, the adapter returns SOAP fault messages to the
calling behavior; otherwise, the adapter throws an exception when a SOAP fault
response is returned.

Mandatory/Optional: Mandatory

Example of soap.body Parameter

The following is an example of a SOAP body, which would be populated in the
soap.body parameter.

Chapter 8
Using Data Providers to Retrieve Data

8-28

<instance name="us-addr" xsi:type="externalInstanceType">
<adapter>com.mslv.oms.view.rule.adapter.SOAPAdapter</adapter>
<parameter name="soap.endpoint">'http://ws2.serviceobjects.net/av/
AddressValidate.asmx'</parameter>
<parameter name="soap.body" xsi:type="xqueryType">
<soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
<sa:ValidateAddress xmlns:sa="http://www.serviceobjects.com/">
<sa:Address xsi:type="soapenc:string">{ ../street/text() }</sa:Address>
<sa:City xsi:type="soapenc:string">{ ../city/text() }</sa:City>
<sa:State xsi:type="soapenc:string">{ ../state/text() }</sa:State>
<sa:PostalCode xsi:type="soapenc:string"/>
<sa:LicenseKey xsi:type="soapenc:string">{ ../soap_license_key/text() }</
sa:LicenseKey>
</sa:ValidateAddress>
</soap:Body>
</parameter>
</parameter name="soap.action">'http://www.serviceobjects.com/ValidateAddress'</
parameter>
<cache>
<scope>NODE</scope>
</cache>
</instance>

Example of soap.envelope Parameter

The following is an example of a SOAP envelope, which would be populated in the
soap.envelope parameter.

<?xml version="1.0" encoding="UTF-8"?>
<com:modelEntity xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adapt="http://xmlns.oracle.com/communications/sce/osm/model/adapter"
 xmlns="http://xmlns.oracle.com/communications/sce/osm/model/adapter"
 xmlns:com="http://www.mslv.com/studio/core/model/common"
 xmlns:prov="http://xmlns.oracle.com/communications/sce/osm/model/provisioning"
 xsi:type="adapt:adapterType" name="Send_Order">
 <com:displayName>Send_Order</com:displayName>
 <com:saveVersion>49</com:saveVersion>
 <com:interface>
 <com:inputParameter xsi:type="adapt:xpathInputParameterType"
name="soap.endpoint">
<adapt:contentType>XPATH</adapt:contentType>
<adapt:defaultValue>'http://localhost:7001/osm/wsapi'</adapt:defaultValue>
</com:inputParameter>
<com:inputParameter xsi:type="adapt:xpathInputParameterType"
name="soap.envelope">
 <adapt:contentType>XQUERY</adapt:contentType>
 <adapt:defaultValue>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">

Chapter 8
Using Data Providers to Retrieve Data

8-29

 <wsse:UsernameToken wsu:Id="UsernameToken-10570647">
 <wsse:Username>osm</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">administrator</
wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <osm:CreateOrderBySpecification xmlns:osm="http://xmlns.oracle.com/
communications/ordermanagement" xmlns:soapenc="http://schemas.xmlsoap.org/
soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <osm:Specification>
 <osm:Cartridge>
 <osm:Name>LGT_PSTN_Corp</osm:Name>
 <osm:Version>1.0.0</osm:Version>
 </osm:Cartridge>
 <osm:Type>LGT_PSTN_CorpOrder</osm:Type>
 <osm:Source>LGT_PSTN_CorpOrder</osm:Source>
 </osm:Specification>
 <osm:Reference>Create by WebService</osm:Reference>
 <osm:Priority>5</osm:Priority>
 <osm:AutoAddMandatoryData>true</osm:AutoAddMandatoryData>
 <osm:StartOrder>true</osm:StartOrder>
 <osm:Data>
 <_root>
 <Customer_info>
 <Customer_name>Sample_cust</Customer_name>
 <Customer_Address>Anytown</Customer_Address>
 <Customer_region>1</Customer_region>
 <Customer_contact>391-322-1323</Customer_contact>
 </Customer_info>
 <Order_info>
 <Order_Id> 1000006</Order_Id>
 <Order_version>1 </Order_version>
 </Order_info>
 <Service_info>
 <Service_Type>1</Service_Type>
 <Corp_TelephoneNumber>900893322 </Corp_TelephoneNumber>
 </Service_info>
 </_root>
 </osm:Data>
 </osm:CreateOrderBySpecification>
 </soapenv:Body>
 </soapenv:Envelope></adapt:defaultValue>
</com:inputParameter>
 <com:inputParameter xsi:type="adapt:xpathInputParameterType"
name="oms:credentials.username">
 <adapt:contentType>XPATH</adapt:contentType>
 <adapt:defaultValue>'osm'</adapt:defaultValue></com:inputParameter>
 <com:inputParameter xsi:type="adapt:xpathInputParameterType"
name="oms:credentials.password">
 <adapt:contentType>XPATH</adapt:contentType>
 <adapt:defaultValue>'administrator'</adapt:defaultValue>
 </com:inputParameter>
 </com:interface>
 <com:implementation xsi:type="adapt:adapterImplementationType">
 <adapt:builtInType>SOAP</adapt:builtInType>
 </com:implementation>
 <adapt:cache enabled="true">

Chapter 8
Using Data Providers to Retrieve Data

8-30

 <adapt:scope>SYSTEM</adapt:scope>
 <adapt:timeout>15000</adapt:timeout>
 <adapt:maxsize>50</adapt:maxsize>
 </adapt:cache>
</com:modelEntity>

XML Attachment
This adapter lets you use an attachment from any OSM order as an external instance.
It is useful for using related-order-data from other orders within OSM.

Parameters

• oms:OrderID

Description: The order ID of the order to be retrieved.

Mandatory/Optional: Mandatory

• oms:FileName

Description: The name of the attachment to use when retrieving the order data.

Mandatory/Optional: Mandatory

XML File
This adapter lets you use an XML file accessible from any URL as an external
instance. It is useful for integrating external XML data located in a file system, FTP
site, from HTTP, or in a Java JAR file.

Parameters

• oms:url

Description: The URL of the file to retrieve.

Mandatory/Optional: Mandatory

XML Validation
This adapter validates a provided XML instance document according to a user-defined
schema. The document may be provided either as a URL or as an element. The
schema may also be provided as a URL or as an element. The returned document
conforms to the element specified by http://xmlns.oracle.com/communications/
ordermanagement#ValidationResult.

Parameters

• document

Description: The file name of the XML document to validate.

Mandatory/Optional: Mandatory

• schema

Description: The file name of the XSD used to perform the XML validation.

Mandatory/Optional: Mandatory

Chapter 8
Using Data Providers to Retrieve Data

8-31

JDBC
This adapter lets OSM query any JDBC database, then use the results within a
behavior. This adapter is particularly useful for acquiring information stored in an
external database.

Parameters

• oms:dataSource

Description: The JNDI name of the data source providing the database connection
information. For example <code>'mslv/oms/oms1/internal/jdbc/DataSource'.
The data source must be defined through the WebLogic server console.

Mandatory/Optional: Mandatory

• oms:sql

Description: The SQL that is sent to the database. To run a SQL stored procedure,
this parameter must comply with the format specified by:

http://docs.oracle.com/javase/8/docs/api/java/sql/
CallableStatement.html

Mandatory/Optional: Mandatory

• in:1 . . . in:n

Description: 1 to n additional optional input parameters may be supplied that are
bound to parameters defined in the oms:sql value.

Mandatory/Optional: Optional

• out:1 . . . out:n

Description: 1 to n additional optional output parameters that are used when
calling SQL stored procedures that have output parameters defined. The
parameter value specifies the SQL type name of the parameter, and must be
defined at:

http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

Mandatory/Optional: Optional

Web Service
This external instance adapter lets you invoke the GetOrder and FindOrder OSM Web
Service operations. The adapter acts as a wrapper around OSM's Web Service API for
these two web service operations, allowing them to be called from external instances.

For other web service calls, use the SOAP adapter. See "SOAP" for more information.

Parameters

• soap.request

Description: Set this parameter to one of the following:

– The contents of what would normally be in the Body element of the web
service request. For example, ord:GetOrder or ord:FindOrder.

– A soap:Envelope element, that is, the entire soap request.

Chapter 8
Using Data Providers to Retrieve Data

8-32

http://docs.oracle.com/javase/8/docs/api/java/sql/CallableStatement.html
http://docs.oracle.com/javase/8/docs/api/java/sql/CallableStatement.html
http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

– A soap:Body element, that is, the body element of the soap request.

Mandatory/Optional: Mandatory

See OSM Developer's Guide for more information about GetOrder and FindOrder web
service transactions.

Adding a New Web Service Data Provider
To add a new Data Provider which uses the Web Service adapter:

1. In Design Studio, add a new Data Provider. From the Studio menu, select New,
then select Order and Service Management, and then select Data Provider.

2. In the Data Provider Wizard, enter a name and folder for the Data Provider and set
Provider Type to Web Service.

The new Web Service Data Provider is added to the Design Studio project.

3. Edit the Data Provider.

4. In the Data Provider editor, on the Input Parameters section of the Interfaces tab,
select the soap.request* parameter.

5. Set the Default Value to XQuery and enter the request XQuery code in the
Default Value edit box. See "Sample soap.request XQuery" for an example.

You can optionally specify the request as an XPath instance instead by setting the
Default Value to XPath and entering the request XPath code in the Default Value
edit box.

6. Optionally specify the XML structure of the data in the Results Document edit
box.

Definitions of FindOrderResponse and GetOrderResponse declarations
are located in the order management web service schema at
SDK\WebService\wsdl\OrderManagementWS.xsd.

For more information, see "About Modeling Control Data" in Modeling OSM
Processes.

Sample soap.request XQuery
The following is a soap.request XQuery example for a web services Data Provider.
You can also specify the input as a SOAP envelope or a SOAP Body.

<ord:GetOrder xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <ord:OrderId>1</ord:OrderId>
 <ord:View>review_details_view</ord:View>
 <ord:AmendmentFilter>
 <ord:LevelOfDetail>AmendmentsSummary</ord:LevelOfDetail>
 </ord:AmendmentFilter>
 <ord:LifecycleEventFilter>
 <ord:RetrieveLifecycleEvents>true</ord:RetrieveLifecycleEvents>
 </ord:LifecycleEventFilter>
</ord:GetOrder>

Chapter 8
Using Data Providers to Retrieve Data

8-33

Accessing Data
To use the Data Provider, include a data element in the order template, define a
behavior for it, and use an XPath expression to access the Data Provider and extract
the data to display in the data element. See "Accessing Data through Data Providers".

Whenever the Web Service adapter is called through a Data Provider,
GetOrderRequest is executed and a response returned. If logging is set to debug for
the OrderAdapter, a message similar to the one below is displayed on the WebLogic
Administration console:

<09-Feb-2012 2:57:57,884 IST PM> <DEBUG> <adapter.OsmWebServiceAdapter>
<ExecuteThread: '10' for queue: 'oms.web'> <<GetOrderResponse xmlns="http://
xmlns.oracle.com/communications/ordermanagement">
 <OrderSummary>
 <Id>16</Id>
 <Specification>
 <Cartridge>
 <Name>view_framework_demo</Name>
 <Version>1.0.0.0.0</Version>
 </Cartridge>
 <Type>vf_demo_web</Type>
 <Source>vf_demo_web</Source>
 </Specification>
 <State>open.running.in_progress</State>
 <Reference>N1</Reference>
 <CreatedDate>2012-02-08T17:55:31.000+05:30</CreatedDate>
 <ExpectedDuration>P1D</ExpectedDuration>
<ExpectedOrderCompletionDate>2012-02-09T17:55:37.000+05:30</
ExpectedOrderCompletionDate>
 <ProcessStatus>n/a</ProcessStatus>
 <Priority>5</Priority>
 </OrderSummary>
 <Data>
 <osmc:_root

xmlns:osmc="urn:oracle:names:ordermanagement:cartridge:view_framework_demo:1.0.0.
0.0:view:enter_account_information" index="0">
 <osmc:account_information index="1328703937231">
 <osmc:first_name index="1328703937242">name</osmc:first_name>
 <osmc:last_name index="1328703937243">lastname</osmc:last_name>
 <osmc:country index="1328703937244">US</osmc:country>
 <osmc:address_information index="1328703937233">
 <osmc:address_details_us index="1328703937236">
 <osmc:validate_address_via_soap
index="1328703937238">No</osmc:validate_address_via_soap>
 <osmc:street index="1328703937239">street</osmc:street>
 <osmc:city index="1328703937241">city</osmc:city>
 <osmc:state index="1328703937240">MI</osmc:state>
 <osmc:zip_code index="1328703937237">12323</
osmc:zip_code>
 </osmc:address_details_us>
 <osmc:address_details_ca index="1328703937234">
 <osmc:validate_address_via_soap
index="1328703937235">No</osmc:validate_address_via_soap>
 </osmc:address_details_ca>
 </osmc:address_information>
 </osmc:account_information>
 <osmc:info_roopa index="1328703937245">nikhil</osmc:info_roopa>

Chapter 8
Using Data Providers to Retrieve Data

8-34

 </osmc:_root>
 </Data>
</GetOrderResponse

Custom Data Providers
In addition to the built-in data providers described in previous sections, Design Studio
supports custom data providers. You can develop a custom data provider class in a
project in Design Studio as part of a solution. This provider class must implement
the com.mslv.oms.view.rule.ExternalInstanceAdapter interface. This interface is
documented in the Javadocs distribution found in the OSM SDK.

The implementation class can be made available to the OSM run time system in two
ways:

• Package the class into an Java archive (jar file) with an arbitrary name and place
the jar file in the resources directory of the Studio project(s) that define Behaviors
referencing the data provider. The class will be available as soon as the project is
deployed

• Add the compiled adapter class to the customization.jar file in the oms.ear
file. The class will be available as soon as the OSM application is redeployed.
See OSM Developer's Guide for information about unpacking, packing, and
redeploying the oms.ear file.

The ExternalInstanceAdapter.retrieveInstance(ViewRuleContext, Map) method
provides a Map of name/value pairs of arguments defined in the data provider's
Design Studio definition and their corresponding values for an invocation of an
instance of this class. The com.mslv.oms.view.rule.adapter.AbstractAdapter class
provides a number of methods to assist in extracting properly type cast parameter
values from that Map. AbstractAdapter is included in the automation_plugins.jar
archive found in the osmLib directory of a Design Studio OSM project, as well as in
the automation/automationdeploy_bin subdirectory of an OSM SDK installation.

Handling Parameters
Custom data providers, like built-in providers, support input parameters. The following
examples illustrate how to access those parameters.

Example 1 (incorrect usage)

String stringParamValue = (String) parameters.get(MY_STRING_PARAM); The
value returned by parameters.get(...) may not be a String, resulting in a
ClassCastException.

Example 2 (incorrect usage)

String stringParamValue = parameters.get(MY_STRING_PARAM).toString(); The
parameters.get() call may return a null value resulting in a null pointer exception.
Also, the value returned may be an XML DOM fragment, requiring a more
sophisticated mechanism for value extraction than simply calling toString().

Example 3 (correct usage)

String stringParamValue = = getStringParam(parameters, MY_STRING_PARAM);
The getStringParam(Map, String) call automatically performs the appropriate
conversion to coerce a parameter value into a String. This method is intended

Chapter 8
Using Data Providers to Retrieve Data

8-35

for extracting a required parameter value. If a value for MY_STRING_PARAM was not
provided, or if the value cannot be coerced into a String, a BadParameterException
is thrown. To retrieve optional parameter values, use getStringParam(Map, String,
String) instead; see Example 4.

Example 4 (correct usage)

String stringParamValue = getStringParam(parameters, MY_STRING_PARAM, "a
default value"); The MY_STRING_PARAM parameter is retrieved as an optional
parameter. If a value for MY_STRING_PARAM is provided, it is returned, otherwise, "a
default value" is returned.The AbstractAdapter class also provides similar methods to
extract boolean, numeric, and XML DOM Node parameter values:

• boolean booleanParamValue = getBooleanParam(parameters,
MY_BOOLEAN_PARAM);

• int intParamValue = getIntParam(parameters, MY_NUMBER_PARAM);

• Node nodeParamValue = getNodeParam(parameters, MY_NODE_PARAM);

The following code snippet illustrates a simple custom data provider class:

/*
 * Copyright © 1998, 2012, Oracle and/or its affiliates. All rights reserved.
*/
package oracle.communications.ordermanagement.example;

import java.util.Map;

import oracle.communications.ordermanagement.util.xml.XMLHelper;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import com.mslv.oms.view.rule.ExternalInstanceAdapter;
import com.mslv.oms.view.rule.ViewRuleContext;
import com.mslv.oms.view.rule.adapter.AbstractAdapter;

/**
 * <p>
 * This class exemplifies a custom Data Provider. In particular, it demonstrates
a provider that returns the familiar "Hello World!"
 * example. The data returned by this provider can in turn be used as input to
any Behavior type.
 * </p>
 * <p>
 * Like all data providers, this class implements the {@link
ExternalInstanceAdapter} interface. This interface defines a single method,
 * {@link ExternalInstanceAdapter#retrieveInstance(ViewRuleContext, Map)
retrieveInstance(ViewRuleContext, Map)}. The
 * {@link ViewRuleContext} argument provides various context hooks to this Data
Provider implementation instance. The <code>Map</code>
 * argument contains the name/value pairs of arguments defined in the Data
Provider's Studio definition and their corresponding values for
 * the current invocation of this Data Provider implementation instance. It
additionally extends the {@link AbstractAdapter} class.
 * <code>AbstractAdapter</code> provides a number of utility methods for
retrieving properly type-cast parameters from the parameter
 * <code>Map</code>.
 * </p>
 *

Chapter 8
Using Data Providers to Retrieve Data

8-36

 * @author Copyright © 1998, 2012, Oracle and/or its affiliates. All rights
reserved.
 *
 */
public final class ExampleProvider extends AbstractAdapter implements
ExternalInstanceAdapter {

 /**
 * The name of a parameter that specifies the salutation to return from
{@link #retrieveInstance(ViewRuleContext, Map)}. For example, if
 * a value of <code>Goodbye</code> is specified, the message <code>Goodbye
World!</code> will be returned. This example does not require
 * this parameter to exist. If it does not, the message <code>Hello World!</
code> will be returned.
 */
 public static final String SALUTATION_PARAM_NAME = "salutation";

 private static final String DEFAULT_SALUTATION = "Hello";

 /**
 * <p>
 * This implementation simply returns the root {@link Element} of a {@link
Document} containing the <code>String "Hello World!"</code>
 * in the contents, i.e., the root of the XML:
 *
 * <pre>
 * <response>
 * <message>Hello World!</message>
 * </response>
 * </pre>
 *
 * </p>
 * <p>
 * The <code>instance('<var>name</var>')</code> Behavior function resolves
to the document root element returned by this method.
 * Therefore, the syntax for locating this provider's message (assuming the
Data Provider associated with this class is named
 * <code>ExampleProvider</code>) is <code>instance('ExampleProvider')/
message</code>.
 * </p>
 *
 * @param ctx
 * provides various context-specific hooks for use by this
instance
 * @param params
 * <code>Map</code> of name/value pairs, where the key is the
parameter name defined in the Data Provider definition that is
 * associated with this class, and the value is the resolved
value of that parameter for a specific invocation of this
 * method. This example does not expect or require any parameters.
 * @return the root <code>Document Element</code>
 */
 @Override
 public Element retrieveInstance(final ViewRuleContext ctx, final Map<String,
Object> params) throws Exception {
 /*
 * This demonstrates how to use the utility methods inherited from
AbstractAdapter to return a parameter value, though here the
 * "salutation" parameter is not expected to exist.
 */
 final String salutation = getStringParam(params, SALUTATION_PARAM_NAME,

Chapter 8
Using Data Providers to Retrieve Data

8-37

DEFAULT_SALUTATION);

 /*
 * Create the response. An actual provider implementation would likely
calculate or retrieve the response from an external system.
 */
 final String response = "<response><message>" + salutation + " World!</
message></response>";

 /*
 * The code invoking this method expects a org.w3c.dom.Document root
org.w3c.dom.Element. The XMLHelper utility class provides a
 * number of DOM manipulation methods, including various String parsers.
 */
 final Document responseDoc = XMLHelper.parseText(response, false);
 return responseDoc.getDocumentElement();
 }
}

Chapter 8
Using Data Providers to Retrieve Data

8-38

9
Modeling Behaviors

This chapter describes how to model behaviors in an Oracle Communications Order
and Service Management (OSM) solution.

Modeling Behaviors Overview
You can use behaviors to specify how OSM manages data. For example:

• You can specify the maximum allowed number of characters for text string data.

• You can add the values of multiple fields and display the sum in another field.

• You can specify the minimum and maximum times that a data element can
be used in an order. For example, an order might require that exactly two IP
addresses are added.

You can model behaviors in tasks and in orders. Figure 9-1 shows how behaviors are
modeled in a task that enters payment information. In this figure, the field that shows
the payment total uses two behaviors:

• A Calculation behavior that adds values in multiple other fields to create the total
payment value.

• A Read Only behavior that makes the field read-only in the Task web client.

Note:

The examples are for illustrative purposes only; OSM is not typically used for
payment handling.

9-1

Figure 9-1 Behaviors Used in a Task

Figure 9-2 shows a behavior modeled in an order. This behavior is used by an order to
display a tool tip for the payment information field.

Figure 9-2 Information Behavior Modeled in Oracle Communications Design
Studio

Table 9-1 lists the OSM behaviors.

Chapter 9
Modeling Behaviors Overview

9-2

Table 9-1 OSM Behaviors

Behavior Name Descriptions

Calculation Computes the value of a field value based on a formula that references order
data.
See "Using the Calculation Behavior" for more information.

Constraint Specifies a condition that must be met for the data to be considered valid.
See "Using the Constraint Behavior to Validate Data" for more information.

Data Instance Declares an instance that can be used by other behaviors.
See "Using the Data Instance Behavior to Retrieve and Store Data" for more
information.

Event Specifies an action that is performed when data is modified.
See "Using the Event Behavior to Re-evaluate Data" for more information.

Information Specifies the label, hint, and help information for the data element instance.
See "Using the Information Behavior to Display Data and Online Help" for more
information.

Lookup Specifies a set of dynamically generated choices from which you can select.
See "Using the Lookup Behavior to Display Data Selection Lists" for more
information.

Read Only Specifies whether a value can be modified or not.
See "Using the Read-Only Behavior" for more information.

Relevant Specifies whether data is visible or hidden.
See "Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web
Client" for more information.

Style Specifies the visual appearance of fields.
See "Using the Style Behavior to Specify How to Display Data in the Task Web Client"
for more information.

About Behavior Evaluation
It is possible that multiple behaviors can be applied to the same data. At run-time,
OSM determines which behavior should be applied by evaluating the conditions
defined for behaviors using a combination of server rules and behavior attributes that
you model by using Design Studio configuration options. The following configuration
options affect the manner in which OSM evaluates behaviors at run-time:

• The level at which you define the behavior. See "Evaluating Behavior Levels" for
more information.

• The manner in which you define the Design Studio Override and Final
configuration options. See "Evaluating Design Studio Final and Override Options"
for more information.

• The type of behavior defined for the element. See "Evaluating Behavior Type
Precedence and Sequence" for more information.

• Whether multiple behaviors of the same type are defined for an element at the
same level.

Chapter 9
Modeling Behaviors Overview

9-3

Note:

The style behavior is the only behavior applied to Redo, Undo, and Do
Nothing compensation strategies and the historical order perspective
displayed in the Task web client. See "Modeling Compensation for Tasks"
for more information about compensation strategies and the historical order
perspective.

Evaluating Behavior Levels
In Design Studio, you can create behaviors for data nodes at three levels:

• Data element level (most general)

• Order level (more specific)

• Task level (most specific)

OSM evaluates behaviors from the general level to the specific level. For example,
OSM evaluates behavior conditions defined at the data element level first, and
evaluates behaviors defined for data nodes at the task level last. At run-time, OSM
determines which level to use for a behavior type and data node combination and
evaluates rules from that level only.

For example, consider that you create a Calculation behavior at the data element
level, and for the same data node you create a Calculation behavior at the order level.
In this scenario, OSM would never evaluate the conditions defined for the Calculate
behavior at the order level (unless you force evaluation using the Override or Final
options), even if all of the conditions defined for the behavior at the data element level
evaluate to false.

OSM does, however, evaluate different types of behaviors defined for a data node
at different levels. For example, if for the same data node you define a Calculation
behavior at the data element level and a Constraint behavior at the order level, OSM
evaluates the conditions for both behaviors at run-time.

Note:

The Constraint behavior is an exception to the way in which behaviors are
evaluated. When the run-time environment evaluates Constraint behaviors, it
evaluates all of them, regardless of the level at which they are declared.

Evaluating Design Studio Final and Override Options
You can force local, specific exceptions to the way behaviors are evaluated for a given
node by selecting the Override and Final check boxes on the appropriate Properties
view Behaviors tab Details subtab in Design Studio. You can select the Override
attribute to allow the behavior to take precedence over any other behavior:

• Of the same type

• For the same node

Chapter 9
Modeling Behaviors Overview

9-4

• Declared at the same or more general level

For example, consider that you have a data element called customer that you
declare twice: at the data element level and at the task level. For each occurrence
of customer, you create a behavior called styleBehaviorType. At the specific task
level, you select the behavior's Override check box. At run-time, OSM evaluates
the behavior conditions defined at the task level, as the task-level version of
styleBehaviorType overrides the data element-level version of the same behavior type.

Note:

Override does not function if the behavior that you are trying to override has
the Final check box selected.

When selected, the Final check box prevents another behavior of the same type,
for the same node, declared at the same or more specific level, from overriding that
behavior.

For example, you define the element customer at the data dictionary level (highest),
and add it at the task level (lowest). For each occurrence of customer, you define a
Style behavior. On the data dictionary level (most general) of the behavior definition,
you select the Final check box. On the task level (lowest) of the behavior definition,
you select the Override check box. When OSM evaluates the behaviors, the selection
of the Final check box at the data dictionary level prevents the task level (lowest)
definition of the Style behavior from overriding the data dictionary level (highest)
definition of the behavior.

Evaluating Behavior Type Precedence and Sequence
OSM automatically evaluates behaviors whenever you retrieve, save, or transition an
order. OSM evaluates the behaviors in a specific nested sequence, as outlined below:

1. The system evaluates all behaviors for a given node before moving to the next
node in the order.

The next node in the order is based on a depth first, left-to-right traversal.

Figure 9-3 shows the element selection order.

Chapter 9
Modeling Behaviors Overview

9-5

Figure 9-3 Element Selection

2. Behaviors within a given node are evaluated based on the following precedence of
type:

• 1st: Calculate

• 2nd: Style

• 3rd: Information

• 4th: Relevant

• 5th: Lookup

• 6th: Constraint

• 7th: Read-only

• 8th: Event

Chapter 9
Modeling Behaviors Overview

9-6

Note:

Relevant rules can prevent other rules from being evaluated. For
example, if the Relevant rule of a data node evaluates to false, then rule
types with a precedence lower than the Relevant rule are not evaluated
(the Lookup, Constraint, Read-only, and Event rules). Additionally, if a
data node's Relevant rule evaluates to false, no rule evaluation is done
for any descendants of that node.

3. Within an order, within an element, within a specific behavior type, all behaviors
defined at a specific data level are evaluated before moving to the next data level.

The evaluation process prioritizes data levels, which are evaluated in the following
order:

• Data dictionary level

• Order level

• Task level

Behaviors defined on a task can override behaviors defined on an order if you
have enabled the behavior's Override option at the task level and if you have
disabled the behavior's Final option at the order level.

Note:

The Constraint behavior is an exception to the way behaviors are evaluated:
When OSM evaluates Constraint behaviors, it evaluates all of them,
regardless of the level at which they are defined.

Evaluation Process
Within an order, within an element, within a behavior type, within a data level, the
evaluation proceeds as follows:

1. Is the behavior enabled?

• If the behavior is enabled, the final and override options are evaluated
simultaneously.

• If the behavior is not enabled, the behavior is not applied.

2. Is the behavior finalized or overridden?

• If the behavior is not finalized and not overridden at a lower level, the condition
defined for the behavior is evaluated.

• If the behavior is finalized and not overridden at a lower level, the behavior is
final and the condition defined for the behavior is evaluated.

• If the behavior is finalized and overridden at a lower level, the override has
no affect; the behavior is final and the condition defined for the behavior is
evaluated.

• If the behavior is not finalized and is overridden at a lower level, the condition
defined for the overridden behavior is evaluated (not the condition defined

Chapter 9
Modeling Behaviors Overview

9-7

for the behavior that is currently being evaluated). If the condition is met, the
overridden behavior is applied.

• If the behavior is not finalized and is overridden by more than one lower level,
the condition defined for the lowest level overridden behavior is evaluated (not
the condition defined for the behavior that is currently being evaluated). If the
condition is met, the overridden behavior is applied.

3. Is the condition defined for the behavior met?

• If the condition is met, the behavior is applied.

• If the condition is not met, the behavior is not applied.

Note:

If you define two or more behaviors for an element at the same level,
to avoid unpredictable behavior you should define mutually exclusive
conditions. OSM does not guarantee the order of evaluation for the
same behavior types defined at the same level.

4. The evaluation process continues.

• If a condition is met, and a behavior is applied, the evaluation process no
longer checks lower levels; it moves to the next occurrence of the behavior.

• If a condition is not met, the evaluation process continues with the next
occurrence of this behavior type defined at this data level. If there are no more
at this level, the evaluation process moves to the next lower level. If there are
no lower levels, the evaluation process continues with the next occurrence of
this behavior type defined at the highest level, and so on. When there are no
more occurrences of the behavior type, the evaluation process moves to the
next behavior type, and so on. When there are no more behavior types, the
evaluation process moves to the next element.

When the evaluation process determines that a behavior is to be applied at a particular
level, some behavior types stop evaluating behaviors of the same type, while others
continue evaluating behaviors of the same type at that level for the same element.

For example, you define three behaviors of the same type on the same data element
at the same level, and all go through the evaluation process ending with the condition
being met (the behavior is applied). For behaviors that stop evaluating, only the first
behavior is applied. For behaviors that continue evaluating, multiple behaviors of the
same type may be applied, and their effect on the UI is cumulative.

The following behaviors stop evaluating behaviors of the same type after a condition is
met and a behavior of the type is applied:

• Calculation

• Lookup

The following behaviors continue evaluating behaviors of the same type after a
condition is met and a behavior of the type is applied:

• Constraint

• Event

• Information

Chapter 9
Modeling Behaviors Overview

9-8

• Read Only

• Relevant

• Style

Note:

The behaviors in both lists above are presented in alphabetical order, not in
behavior type evaluation order.

For example, if three Constraint behaviors are defined, and all go through the
evaluation process ending with the behavior being applied, all three Constraint
violation messages display in OSM. In another example, if three Read Only behaviors
are defined, if any of them get applied, the field is set to read-only (even if prior and/or
subsequent Read Only behaviors evaluate to false). Style and Information behaviors
are a bit more complicated in that they have multiple facets. The end result is the
cumulative effect of these facets. For example, you can define hints and labels with
an Information behavior. If one behavior has a hint and another behavior has a label,
the end result is that both are applied. If two behaviors define hints, then the second
behavior's hint is applied.

Evaluating Multiple Behaviors of Similar Type and Level
When modeling behaviors of the same type, at the same level, for the same data
node, ensure that the conditions you define for each behavior are mutually exclusive.
When evaluating behaviors of the same type and defined on the same data node
and level, the OSM run-time server has no ability to guarantee a predicable order of
evaluation. When modeling behaviors for a data node, when it's necessary to define
behaviors of the same type at the same level, ensure that you configure conditions
that do not rely on a specific order of evaluation.

Additionally, the OSM server evaluates the conditions of each behavior until the
conditions of one behavior evaluate to true. Subsequently, OSM does not continue
to evaluate any conditions defined for behaviors of the same type and for the same
data node.

About Setting Conditions in Behaviors
Conditions enable you to specify when a behavior should function. You set a condition
by defining an XPath expression. If the XPath expression evaluates to false at run
time, the condition is not met and the behavior is not applied. If the XPath expression
evaluates to true at run time, the condition is met and the behavior may or may not be
applied, depending on the outcome of evaluation of the behavior at run time.

If no conditions are defined, OSM considers the condition to be met. If multiple
conditions are defined, all conditions must evaluate to true for the condition to be
met.

Chapter 9
Modeling Behaviors Overview

9-9

Note:

The Constraint behavior is the only exception to the way conditions are
handled.

Constraint behaviors specify a condition that must be met for the data to be
considered valid.

XPath Examples

This section provides XPath examples that are applicable to setting a condition on any
behavior type.

• This example shows a condition that evaluates to true when the value of
myNumericField is less than 100, and evaluates to false when the value of
myNumericField is 100 or greater:

../myNumericField<100

• This example shows a condition that evaluates to true when the value of
myTextField is populated, and evaluates to false when the value of myTextField
is an empty String:

../myTextField!=""

• This example shows a condition that evaluates to true when the value of all three
fields are zero, and evaluates to false if any one of three fields are greater than or
less than 0:

../myNumericField1=0 and myNumericField2=0 and myNumericField3=0

Using the Calculation Behavior
You use the Calculation behavior to calculate a field's value based on a formula
that references other field values. You can perform numeric operations and string
concatenations.

OSM supports the Calculation behavior in the Task web client and in the Order
Management web client Data tab.

For example, you can use the following expression in a Calculation behavior to
calculate the current balance for a customer:

../amount_owing - sum(../../payment_information/payment_amount)

In this example, the current balance displays the value from the amount_owing field
after subtracting the value from the payment_amount field; the balance = (amount
owed) - (amount paid).

Figure 9-4 shows an XPath expression that combines the first_name field and the
last_name field. The Calculation behavior is applied to a field that contains the card-
holder name field, where the first and last names are combined into a single field
value.

Chapter 9
Modeling Behaviors Overview

9-10

Figure 9-4 Calculate Behavior Formula for Combining String Values

Calculation Behavior XPath Examples
The following examples show how to use XPath statements in the Calculation
behavior.

• This example shows how to set a constant value of 100 for a numeric field
(whatever number you specify is the number that displays for the field):

100

• This example shows how to prefix a constant value to a text field (whatever text
you define is the text that displays along with the text value of the field):

append("any text here",../fieldName)

• This example shows how to display a numeric field as a result of adding three
other numeric fields:

../fieldName1 + ../fieldName2 + ../fieldName3

• This example shows how to see the user name of the user who accepted a task:

/GetOrder.Response/AcceptedUserName

Calculation Behavior Overview
Table 9-2 shows Calculation behavior attributes.

Table 9-2 Calculation Behavior Attributes

Attributes Value

Order of evaluation 1st

Default value None

Applies to All elements

Parent/child inheritance Does not inherit
(This applies to element relationships within a structure,
which is different than the inheritance of behaviors
between the data dictionary, order, and task levels.)

Using the Constraint Behavior to Validate Data
You can use the Constraint behavior to validate data that is entered in an order. For
example:

Chapter 9
Modeling Behaviors Overview

9-11

• Validate the format of a field. For example, 10 digits for a telephone number, 5
digits for a ZIP code, or an IP address format.

• Validate the range of a field. For example, ensure that a numeric value is between
0 and 100.

• Validate the field value is within a valid list.

In addition to specifying how data is validated, you can:

• Configure messages that indicate the results of the validation; for example, a
warning or error message.

• Specify how the order should be processed if the validation fails; for example, stop
processing or continue processing.

For example, you might want to ensure that value in a Payment Amount field is less
than the amount owed and greater than 0. The Constraint behavior would include this
condition:

. <= ../../account_information/amount_owing and . >= 0

The same Constraint behavior would include the following message to display if the
behavior was not met:

concat('Invalid payment amount[',.,']. Payment must be greater than 0 and less
than amount owing of [',../../account_information/amount_owing,']')

OSM supports constraint rules in the Task web client.

Displaying Constraint Behavior Error Messages
OSM only displays a Constraint behavior error message if there is a constraint
violation caused by the failure of a Constraint behavior condition or by an exception
that occurred during the behavior evaluation while you are attempting to either:

• Save an order with invalid field content

• Transition an order with invalid or null values

Otherwise, OSM cues you that a field requires some value by placing a red dot to the
left of the field label.

Note:

The red dot behavior does not apply to read-only fields. If an error occurs in
a read-only field (for example, a failed lookup prevents the display of data)
OSM always displays an error message.

The red dot is the same UI element that OSM uses to alert you that a field
is mandatory, as defined in the order template. If the field fails the constraint
condition and is defined as mandatory, only one red dot appears.

Evaluating Constraint Behaviors
OSM always evaluates Constraint behaviors except when the element or parent
element is not relevant, as defined through the Relevant behavior. OSM does not
evaluate the Constraint behavior when the task to which the Constraint behavior is

Chapter 9
Modeling Behaviors Overview

9-12

associated is at the rollback status. In cases when data is rolled back, it is understood
that the Constraint behavior was already evaluated.

Constraint behavior evaluation is different from that of other behaviors. Constraint
behaviors are evaluated only when one or more specified conditions evaluate to false.
All other behaviors are either:

• Always evaluated

• Evaluated only when one or more specified conditions evaluate to true.

In addition, when OSM does evaluate Constraint behaviors, it always evaluates all of
the Constraint behaviors, regardless of where they are defined. This is different from
other types of behaviors, where only the first instance of each behavior is selected
and applied. However, the Override and Final check boxes give you control over
inheritance. See "Evaluating Design Studio Final and Override Options" for more
information.

Using Task Statuses to Control Process Transitions
You can use task status Constraint values to determine how Constraint behavior
violation severity return values affect whether or not a process can make a transition to
the next task or activity. Task status Constraint values include:

• Critical

• Error

• Warning

• None

• Valid

The task status Constraint value represents the highest allowable Constraint behavior
violation value with which the task transition will be allowed to occur. When Update
is clicked, in the Task web client Order editor, the transition action taken depends on
the task status Constraint severity value in conjunction with the Constraint behavior
violation severity level, if any.

For example, if the task status Constraint value is set to Error, then Error is the highest
allowable Constraint behavior violation value with which the task can be transitioned.
The task is not allowed to transition if a Constraint behavior violation of Critical occurs,
but is allowed if an Error, a Warning, or a Valid Constraint violation occurs.

The following table explains whether task transition is allowed for all combinations of
Constraint behavior violation severities and task status Constraint values.

Table 9-3 Constraint Behavior Actions

Task status
Constraint
value (highest
allowable
constraint
violation):

Task transition
allowed for
Critical
constraint
violation?

Task transition
allowed for
Error constraint
violation?

Task transition
allowed for
Warning
constraint
violation?

Task transition
allowed for
Valid constraint
violation?

Critical Yes Yes Yes Yes

Error No Yes Yes Yes

Chapter 9
Modeling Behaviors Overview

9-13

Table 9-3 (Cont.) Constraint Behavior Actions

Task status
Constraint
value (highest
allowable
constraint
violation):

Task transition
allowed for
Critical
constraint
violation?

Task transition
allowed for
Error constraint
violation?

Task transition
allowed for
Warning
constraint
violation?

Task transition
allowed for
Valid constraint
violation?

Warning No No Yes Yes

Valid No No No Yes

None No No No No

Task Statuses and Constraint Behavior Violation Severity Levels
You can use task statuses in combination with Constraint behaviors to specify the
conditions under which a process can make a transition to the next task or activity in
the process.

You use Constraint behaviors to validate order data. For example, you can validate
that a telephone number has 10 digits or ensure that a numeric value is between 0 and
100.

Constraint behaviors include a Display as violation severity level and a message to
be displayed in the Task web client when a constraint behavior violation occurs. When
Save is clicked in the Task web client Order editor, the save action taken depends on
the constraint behavior violation severity level.

Table 9-4 Constraint Behavior Actions

Constraint behavior
violation severity
levels, from highest
severity to lowest

Message display: When Save is clicked:

Critical OSM displays the message in
bold red text, with the label
"ERROR".

The data is not saved.

Error OSM displays the message in red
text, with the label "ERROR".

The data is saved.

Warning OSM displays the message in
yellow text, with the label
"WARNING".

The data is saved.

Valid OSM displays the message in
green text, with the label "INFO".

The data is saved.

Constraint Behavior Overview
Table 9-5 shows Constraint behavior attributes.

Chapter 9
Modeling Behaviors Overview

9-14

Table 9-5 Constraint Behavior Attributes

Attributes Value

Order of evaluation 6th

Default value True

Applies to All elements and structures

Parent/child inheritance Does not inherit
(This applies to element relationships within a structure,
which is different than the inheritance of behaviors between
the data dictionary, order, and task levels.)

Using the Data Instance Behavior to Retrieve and Store Data
You can use the Data Instance behavior to get data from external sources. For
example, an order processor using the Task web client can retrieve a set of available
ports in real time from an ADSL inventory system.

This behavior differs from all other behaviors in that it has no affect on the UI display
of the element for which the behavior is defined. You can think of the Data Instance
behavior as a “supporting" behavior because it provides functionality that can be used
with other behaviors.

You can use the Data Instance behavior to:

• Store data from an external system and make it accessible to other behaviors.

• Store data that is defined in-line in an XML or XQuery and make it accessible to
other behaviors.

• Store data from OSM that is housed in multiple fields but commonly referenced
collectively as a single field and make it accessible to other behaviors. For
example, the fields first_name and last_name can be combined in a new data
instance customer_name.

When you use the Data Instance behavior, you need to specify the data provider that
you get data from (see "Using Data Providers to Retrieve Data" for more information).
OSM supports several data providers; for example, Oracle Communications Unified
Inventory Management (UIM), XML files, and data in the incoming customer order. You
can also configure your own data provider.

See "About Mapping Order Items to Fulfillment Patterns" for an example of how to use
a Data Instance behavior.

Evaluating Data Instance Behaviors
When a Data Instance behavior is defined for an element, regardless of the data level,
the container is available to the element on all data levels. Because of this:

• The Override and Final check boxes have no effect on the Data Instance
behavior.

• The Data Instance behavior is not part of the evaluation process in terms of
prioritization of behavior type, or in terms of prioritization of data level.

Chapter 9
Modeling Behaviors Overview

9-15

Data Instance Behavior XML, XPath, and XQuery Examples
This section provides XML, XPath, and XQuery examples that are applicable to
defining a Data Instance behavior.

• This example shows an in-line XML that defines constant values (this could be
used to define the values that appear in a dropdown field):

<bookStore>
 <books>
 <titles>
 <AlgebraForDummies> <price>30</price> </AlgebraForDummies>
 <GeometryForDummies> <price>35</price> </GeometryForDummies>
 <TrigonometryForDummies> <price>40</price> </TrigonometryForDummies>
 </titles>
 </books>
</bookStore>

• This example shows an XPath expression that selects data from an XML file that
defines elements (nodes) of bookstore, book, price, and title. This example returns
a list of titles with a price greater than $30:

xmlDoc=new ActiveXObject("Microsoft.XMLDOM");
xmlDoc.async=false;
xmlDoc.load("books.xml");
xmlDoc.selectNodes(/bookstore/book[price>35]/title);

• This example shows an XQuery expression that selects data from an XML file that
defines elements (nodes) of bookstore, book, price, and title. This example returns
a list of ordered titles with a price greater than $30. The list is returned in variable
x:

for $x in doc("books.xml")/bookstore/book
where $x/price>30
order by $x/title
return $x/title

Data Instance Behavior Overview
Table 9-6 shows Data Instance behavior attributes.

Table 9-6 Data Instance Behavior Attributes

Attributes Value

Order of evaluation Not applicable. The data instance type is unique in that it
doesn't perform any action. It's just a container for data
provider instances.

Default value None

Applies to All elements and structures

Parent/child inheritance Children inherit instances declared on parent
(This applies to element relationships within a structure,
which is different than the inheritance of behaviors between
the data dictionary, order, and task levels.)

Chapter 9
Modeling Behaviors Overview

9-16

Using the Event Behavior to Re-evaluate Data
You can use the Event behavior to save or refresh data when the data changes. This
is useful when a change in a field can cause a behavior to automatically occur in the
same field or in another field. For example, you might include an Event behavior in the
account_information/country field, that causes the data to refresh. That refreshed
data might in turn be used by a Relevant behavior assigned to the address details
fields that display address information based on the country.

Refreshing causes OSM to re-evaluate all the behaviors associated with the task but
does not save the order. Saving re-evaluates the behaviors and automatically saves
the contents of the order.

Figure 9-5 shows an Event behavior defined in Design Studio. In this figure, the Event
behavior refreshes the data in the account_information/country field.

Figure 9-5 Event Behavior Defined in Design Studio

See "Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web
Client" for more information on the Relevant behavior, and this scenario in particular.

OSM supports the Event behavior in the Task web client.

Event Behavior Overview
Table 9-7 shows Event behavior attributes.

Chapter 9
Modeling Behaviors Overview

9-17

Table 9-7 Event Behavior Attributes

Attributes Value

Order of evaluation 8th

Default value None

Applies to All elements

Parent/child inheritance Does not inherit
(This applies to element relationships within a structure,
which is different than the inheritance of behaviors
between the data dictionary, order, and task levels.)

Using the Information Behavior to Display Data and Online Help
You can use the Information behavior to specify how data is displayed in the OSM
Task web client. You can do the following:

• Set an alternative label for the field. For example, instead of the standard label
State, the field can be changed to State or Province when processing the type of
order that uses this behavior setting.

• Localize the field label to one or more different languages.

• Set a tool tip on a field.

• Provide an online help topic for the field.

In the Order Management web client, any information rule on the first instance of a
group node that uses a table layout style is used to determine the text of the table
panel header. The first instance of each of this group instance's child field nodes are
used to determine the column header text for that field node. Hint text for the group
instance row and child field instance cells are displayed as tooltip text. Help defined
for the group can be executed with either a menu item in the table's Actions menu or
a row-level context menu and displays help in a modal window in the page containing
the table. The implementation of this help behavior differs from the Task web client
implementation, which uses an icon in each table cell to load the help in a separate
browser window.

OSM triggers information rules when the data element or structure contains data, (for
example, from the incoming order or derived from other data sources). If the data
element or structure is empty, OSM does not display any label, hint, or help topic
information behaviors associated with the empty element or structure. For example,
if you defined a label for an element, the label does not appear when the element
does not contain a value. Instead, the OSM uses the Display Name of the element as
defined in the data dictionary.

Information Behavior XPath Examples
This section provides XPath examples that are applicable to defining an Information
behavior.

• This example shows an Information behavior label that could be used in
conjunction with a Calculation behavior that calculates the current balance based
on other fields such as endingBalance + currentCharges + fees - payments:

Chapter 9
Modeling Behaviors Overview

9-18

"Current Balance"

• This example shows an Information behavior label that displays in place of the
existing label assigned to the element. For example, the existing label “State" can
be changed to display as:

"State or Province"

• This example shows an Information behavior hint that displays when you hover
over the Current Balance data field:

"The current balance reflects the customer's ending balance, plus any
current charges and fees, minus any applied payments."

• This example shows an Information behavior hint that displays when you hover
over the Billing Address data field:

"The billing address is the address of the party responsible for payment
of account. The billing address may differ from the service address. For
example, the service address may be a college student's address, and the
billing address may be the student's parents address."

Information Behavior Overview
Table 9-8 shows Information behavior attributes.

Table 9-8 Information Behavior Attributes

Attributes Value

Order of evaluation 3rd

Default value None

Applies to All elements and structures

Parent/child inheritance Does not inherit
(This applies to element relationships within a structure,
which is different than the inheritance of behaviors
between the data dictionary, order, and task levels.)

Using the Lookup Behavior to Display Data Selection Lists
You can use the Lookup behavior to display data in a GUI field that users can select
from. You can specify the order of the labels in the list, such as alphabetically.

You can look up data from the following sources:

• Data that is in the incoming customer order.

• Data from an internal source, such as an XML file.

• Data from an external data provider.

Data can be retrieved dynamically based on input. For example, you can look up and
populate a list of phones that cost less than $100, where $100 is a value obtained from
another field in the order.

Chapter 9
Modeling Behaviors Overview

9-19

Note:

The Task web client supports two types of lookups: simple lookups with
single label value entries, and table lookups, where a single lookup value has
multiple associated labels. This latter lookup type is displayed as a text field
with an associated icon that launches a secondary window which displays a
table of label/value relationships.

In the Order Management web client, simple lookups are fully supported,
but complex lookups are rendered as if they were simple: the first-defined
label is shown as the display label. In both cases, the field is displayed as a
read-only list of values.

Lookup Behavior XPath Example
This section provides an XPath examples that is applicable to defining a Lookup
behavior.

This example shows an XPath expression that selects data from an XML file that
defines elements (nodes) of bookstore, book, price, and title. This example returns a
list of titles with a price greater than $35:

xmlDoc=new ActiveXObject("Microsoft.XMLDOM");
xmlDoc.async=false;
xmlDoc.load("books.xml");
xmlDoc.selectNodes(/bookstore/book[price>35]/title);

Lookup Behavior Overview
Table 9-9 shows Constraint behavior attributes.

Table 9-9 Lookup Behavior Attributes

Attributes Value

Order of evaluation 5th

Default value The static lookup values (if any) that are specified in the data
dictionary.

Applies to Elements of data type:
• Lookup
• Number
• Text

Parent/child inheritance Does not inherit
(This applies to element relationships within a structure,
which is different than the inheritance of behaviors between
the data dictionary, order, and task levels.)

Using the Read-Only Behavior
You can use the Read Only behavior to specify that data displayed in the Task web
client is read only. You can specify that data can be read only based on conditions; for
example, data can be read only depending on other data in the order.

Chapter 9
Modeling Behaviors Overview

9-20

You typically create read-only fields for fields where the value is derived from other
fields. For example, in your order display, you might have two windows: an account
window and a payment window. Both windows might have an Amount Owed field,
which displays the same data. However, you could make the Amount Owed field in
the payment window the field where the data is collected, and the Amount Owed field
in the account window read only. In that case, the field in the account window uses two
behaviors:

• A Calculate behavior, to get the data from the payment window.

• A Read Only behavior.

Read-Only Behavior Overview
Table 9-10 shows Read-Only behavior attributes.

Table 9-10 Read-Only Behavior Attributes

Attributes Value

Order of evaluation 7th

Default value The default specified by the static read-only value.

Applies to All elements and structures

Parent/child inheritance If any ancestor evaluates to true, this value is treated as
true. Otherwise, the local value is used.
(This applies to element relationships within a structure,
which is different than the inheritance of behaviors
between the data dictionary, order, and task levels.)

Using the Relevant Behavior to Specify if Data Should Be Displayed in
the Web Client

You can use the Relevant behavior to specify if data should be displayed in the Task
web client or in the Order Management web Client Data tab, based on specified
conditions.

For example, you can use the Relevant behavior to display address-input fields
appropriate to the country that the order applies to. In this example, the Relevant
behavior can be used as follows:

• The data for the customer's country is included in the order's
account_information/country field. This data is displayed in the Task web client
in the Country/Region field.

• Based on the data in the account_information/country field, the customer
address fields (address_information) can include different values, depending on
the country.

Chapter 9
Modeling Behaviors Overview

9-21

Note:

The account_information/country field includes an Event behavior,
which refreshes the data in the field, making it available to the Relevant
behavior.

Figure 9-6 shows the address fields for the United States (address_details_us) and
Canada (address_details_ca). The Relevant behavior applies to the selected data,
address_details_ca.

Figure 9-6 Address Fields in Design Studio

Figure 9-7 shows the XPath expression that specifies the condition (country = Canada)
under which the Relevant18 behavior is enabled.

Figure 9-7 Relevant Behavior Properties

Chapter 9
Modeling Behaviors Overview

9-22

In the Order Management web client, if a group instance displayed with a table style
behavior is not relevant, then the entire associated table row is omitted. If a particular
field is not relevant, the associated table cell is rendered empty.

Relevant Behavior Overview
Table 9-11 shows Relevant behavior attributes.

Table 9-11 Relevant Behavior Attributes

Attributes Value

Order of evaluation 4th

Default value True

Applies to All elements and structures

Parent/child inheritance If any ancestor evaluates to false, this value is treated as
false. Otherwise, the local value is used.
(This applies to element relationships within a structure,
which is different than the inheritance of behaviors
between the data dictionary, order, and task levels.)

Using the Style Behavior to Specify How to Display Data in the Task
Web Client

You can use the Style behavior to specify where and how to display data in the Task
web client. You can do the following:

• Control the placement of an element on a specific page.

• Specify to display data on tabbed pages. You can display data in columns and
tables.

• Hide or mask sensitive data; for example, passwords or credit-card information.
You can specify who can read passwords, and you can display a history of
password changes. Masked data appears similar to *******.

• Control the layout of a multi-valued field, such as a list of buttons to choose from.

• Apply cascading style sheets (CSS style sheets) to specify how to display data.
For example, you could make the current account balance display in red when the
data value is greater than zero.

Chapter 9
Modeling Behaviors Overview

9-23

Note:

If you define a behavior that contains an apostrophe (') character, OSM
will throw an exception error when loading the data. To prevent this from
happening, you must include the escape character before and after the
apostrophe.

Example:

'L'Information De Carte de credit'

should be

"'"L"'"Information De Carte de credit"'"

Figure 9-8 shows how the Style behavior changes the appearance of the Current
Account Balance field in the Task web client.

Figure 9-8 Style Behavior Used in the Current Account Balance Field

Figure 9-9 shows the condition that determines if the Style behavior should be applied.
In this case, the Style behavior is applied if the account balance is the same as the
amount owed.

Figure 9-9 Condition Defined in a Style Behavior

Figure 9-10 shows the style definitions to apply to a field.

Chapter 9
Modeling Behaviors Overview

9-24

Figure 9-10 Field Display Colors Defined in a Style Behavior

Figure 9-11 shows how three different conditions can change how the field is
displayed. If the balance is zero, the field is green. If the balance is the same as
the amount that the customer owes, the field is orange. If the balance is less than
zero, or greater than the customer owes, the field is red.

Figure 9-11 How Style Behavior Conditions Are Used for Determining the
Display Colors

About Style Behavior Layouts
This section provides additional information on table layouts, which you can choose to
set as None, Page Layout, or Table Layout.

Chapter 9
Modeling Behaviors Overview

9-25

The Page Layout option gives you the ability to organize structures elements onto
separate pages that you can access directly, through the use of tabs. This is
particularly useful for improving access where there are numerous large structures
by eliminating the need to scroll through a single page to find the required structure.

The Table Layout option displays multi-instance structures in a grid format. By default,
Table Layout displays all of the child elements in the structures. However, you can
prevent a given child element from being used as a column by setting its hidden
attribute to true.

Child elements within the structure are represented by columns, and instances of the
structure are represented by rows. Table Layout displays the columns from left to right
in the same order that they appear from top to bottom when displayed without a table
layout. If you need to change the order in which the columns appear, you do so by
changing their order in the Design Studio order template. The table uses the same
child element label to form the column header that it does when displayed without a
table layout.

Note:

If you use an Information behavior to dynamically change the child element
labels, Table Layout uses the label associated with the first data instance it
encounters.

If you need to hide the value of an individual cell in the resulting table, you can do so
by declaring a Relevant behavior for the corresponding child element. See "Using the
Relevant Behavior to Specify if Data Should Be Displayed in the Web Client."

Note:

Table Layout does not support nested structures in the Task web client but
does support nested structures in the Order Management web client data
tab.

In the Order Management web client data tab, multi-instance child values
can be displayed within the corresponding parent value table cell and
stacked vertically. You cannot access data history or behavior help from
within the cell, but the information about the child multi-instance values can
be accessed from the data history for the row. You can access the data
history for a row by right clicking on the row and selecting data history or by
selecting data history from the table drop down menu.

OSM uses the first instance of the table group node to determine the CSS
style and class of the header text in the Order Management web client.
All other style rule attributes of the group instances are ignored. CSS style
and class rules, appearance rules, and secret rules are applied to child field
(table cell) instances. No other style rules will be applied.

The following figures illustrate the different types of available layouts for the Task web
client. Each figure shows the same structure with a different layout type:

Chapter 9
Modeling Behaviors Overview

9-26

• Figure 9-12 shows the structure with no layout applied. With this option, the
elements in the structure display within a group box on the original page.

• Figure 9-13 shows the structure with the Page Layout option applied. With this
option, the elements in the structure display within a group box on a new page that
is accessed through a tab on the original page.

• Figure 9-14 shows the structure with the Table Layout option applied. With this
option, the elements in the structure display within a grid on a new page that is
accessed through a tab on the original page.

Figure 9-12 Task with No Layout in the Task Web Client

Figure 9-13 Page Layout in the Task Web Client

Chapter 9
Modeling Behaviors Overview

9-27

Figure 9-14 Table Layout in the Task Web Client

The following figures illustrate the different types of available layouts for the Order
Management web client. Each figure shows the same structure with a different layout
type:

• Figure 9-15 shows the structure with no layout applied.

• Figure 9-16 shows the structure with the Table Layout option applied.

Figure 9-15 No Layout in the Order Management Web Client

Chapter 9
Modeling Behaviors Overview

9-28

Figure 9-16 Table Layout in the Order Management Web Client

About Style Behavior Password Fields
Behaviors that define password fields can ensure unauthorized users cannot view
the contents of elements containing sensitive information. For example, by using this
feature you can define a password field in such a way that users in an activation work
group can not see the information, but users in the system administrator's work group
can.

How Password Fields Display

If you define a password behavior on a writable field, OSM displays the contents of
the field as specified by the browser, such as a line of asterisks (*) within a text box. If
you define this feature on a read only field, OSM displays the data as specified by the
browser, such as line of eight asterisks next to the field label, but not within a text box.

If you open the data history, OSM displays when and by whom the data was modified.
When this feature is applied to a field, OSM displays the password field values as
specified by the browser, such as a line of eight asterisks.

While you can define a Style behavior on all types of elements, this feature of the Style
behavior has no effect on structures.

Do Not Use Password Field Feature with Boolean and Lookup Fields

Because this feature is designed for use with free form entry fields, as opposed to
fields that force you to select from a limited number of choices, Oracle recommends
that you do not use this feature with Boolean and lookup fields. If you do, you
risk exposing confidential information to unauthorized users. This is because OSM
displays the value that was previously set in a Boolean or lookup field, even if the field
defines this feature through a Style behavior.

Chapter 9
Modeling Behaviors Overview

9-29

Displaying the Data History of Password Fields

OSM only evaluates behaviors at the web UI level, so any password field that you
save (that is, create, update, or delete) through the XML API/Automator is not treated
as a password field, even if it is defined as such. This can introduce some complexity
into how OSM displays the data history for password fields. Use the following general
guidelines and examples to understand how OSM displays password field data history.

General Guidelines

1. OSM displays a line of eight asterisks in the data history for any field that it
evaluates as a password field (providing the field actually contains data; if the field
is empty, OSM displays nothing).

2. If OSM does not evaluate a field as password field, the data history values are
shown in plain text.

3. If OSM evaluates a data field as a password field at the time of saving, and the
field is later deleted, OSM displays a line of eight asterisks in the data history
(providing the field actually contains data; if the field is empty, OSM displays
nothing).

4. If OSM evaluates a data field as a non-password field at the time of saving, and
the field is later deleted and evaluated as a non-password field at the time of
deletion, the data history is displayed as plain text.

Examples

1. If you save the value of a password field through OSM, and OSM is still evaluating
the field as a password field when you display the data history, OSM displays the
value of the password field as eight asterisks.

2. If you save the value of a password field through the XML API/Automator, and it
is still present in the order editor (that is, it has not been deleted by the XML API/
Automator) when you display the data history, OSM displays the value as eight
asterisks.

3. If you create and delete the password field values through the XML API/
Automator, OSM displays the data history values as plain text.

4. If you enter data in a non-password field through OSM and a user subsequently
deletes the value through OSM or the XML API/Automator (and OSM evaluates
the field as a non-password field at the time of deletion), the history values of this
field are displayed as plain text.

Style Behavior Overview
Table 9-12 shows Style behavior attributes.

Table 9-12 Style Behavior Attributes

Attributes Value

Order of evaluation 2nd

Default value Data type specific:
• For Boolean type fields: Compact
• For Lookup type fields: Minimal

Chapter 9
Modeling Behaviors Overview

9-30

Table 9-12 (Cont.) Style Behavior Attributes

Attributes Value

Applies to Elements of data type:
• Boolean
• Lookup
Elements with Lookup behaviors that display only one
column.

Parent/child inheritance Does not inherit
(This applies to element relationships within a structure,
which is different than the inheritance of behaviors between
the data dictionary, order, and task levels.)

Chapter 9
Modeling Behaviors Overview

9-31

Part III
Modeling Run-time Order Management

Part III contains the following chapters about modeling run-time functionality in an
Oracle Communications Order and Service Management (OSM) solution:

• Modeling Changes to Orders

• Modeling Fallout

• Modeling Fulfillment States and Processing States

• Modeling Jeopardy and Notifications

• Modeling Order Scheduling

10
Modeling Changes to Orders

This chapter describes how to model change order management in an Oracle
Communications Order and Service Management (OSM) solution.

About Amendment Processing and Compensation
To revise or cancel in-flight orders, OSM performs amendment processing.
Amendment processing analyzes the requested changes, determines how to make
the changes, and processes them. Amendment processing functions as follows:

1. A base order is submitted and is currently processing; it is not in the Not Started,
Completed, or Aborted state. The upstream system submits a revision or a cancel
order. The new version of the order includes all of the data relevant to the
order, not just changed data. The upstream system does not need to identify
the changes to OSM or explicitly provide the discrepancies; OSM determines the
discrepancies during amendment processing by comparing the new version with
the version of the order currently being processed.

To submit the revision order, the upstream system can use either the CreateOrder
web service operation or the CreateOrderBySpecification web service operation.

The new version of the order can:

• Change existing data

• Remove existing data

• Add new data

Note:

You can create revision orders by using the Task web client. This is
typically used only for testing or for low-volume order processing.

2. OSM receives the revision order. OSM checks to see if the base order is
amendable. You enable amendment processing on the order specification. If the
base order is not amendable, the order is not a revision order.

Note:

When you model orders, make sure that orders that are expected to be
amended are configured to be amendable. If not, an order that is sent
as a revision order is instead processed as a new order. This can cause
errors during fulfillment because there are two orders fulfilling the same
services for the same customer.

10-1

3. OSM checks in-flight orders for a matching value to an order key. For example,
you can specify to use the sales order number as the order key. In that case, when
OSM processes an order, it looks for an in-flight order that has the same sales
order number. If OSM finds an in-flight order with a matching sales order number,
OSM treats the new incoming customer order as a revision on the existing order.
See "About Order Keys" for more information.

OSM now has two orders to work with: the revision order and the base order.

Note:

Many types of orders do not require an orchestration plan; for example,
some service orders are created specifically for a simple service
provisioning task and therefore require no dependencies.

4. OSM performs further checks on the base order to determine if the order is
allowed to be amended. OSM does the following:

• OSM checks to see if the base order is in a state that can be amended. Orders
in the Not Started, Completed, or Aborted state cannot be amended. You can
customize the allowed transitions to the amending order state by configuring
the order life-cycle policy. See "Modeling Order Life-Cycle Policy States and
Transitions" for more information.

• OSM ensures that the base order has not passed the point of no return
(PONR). The PONR is the point in the processing of an order item after which
order amendments are either impossible or incur some penalty. In this case,
a revision order might not be possible. See "Fulfillment Pattern Point of No
Return" for information.

• OSM checks to see if the incoming customer order has a version identifier. If
OSM has a version identifier, OSM compares the value of the version to the
version of the in-flight order. If the version of the in-flight order is greater than
the version of the incoming customer order, the incoming revision is ignored.

If a revision cannot be processed, or if the order life-cycle has not allowed the
revision, the revision order is set to the Failed state, and the base order continues
to be processed.

5. OSM determines whether amendment processing is needed by analyzing order
data at the following levels:

• OSM compares the revision order data and the base order data (or the
revision order data and the last submitted revision order data) to see if a
compensation is needed. (Compensation defines the actions that need to
be taken to perform amendment processing; for example, undo and redo.)
See "About Order-Level and Task-Level Compensation Analysis" for more
information.

• During compensation, OSM compares task data for each task in the order
process to further validate the compensation requirements. See "About Order-
Level and Task-Level Compensation Analysis" for more information.

• OSM uses the significance of the data to determine if compensation is
needed at both stages. Data significance enables you to optimize amendment
processing in a way that compensation is considered only for changes to data
that is marked as significant. Data that is not marked significant is updated but

Chapter 10
About Amendment Processing and Compensation

10-2

does not get included in the compensation plan if its value is changed. See
"About Data Significance" for more information.

Note:

If an amendment is received while a task is in a fallout execution
mode, OSM does the following:

– If the task is not configured to be compensated if it is in
progress, the execution mode of the task does not change as
a result of the amendment order.

– If the task is configured to be compensated if it is in progress,
and the amendment contains changes to significant data:

* If the task is still needed after the changes to the order from
the amendment are considered, it transitions automatically
to (normal) Redo mode.

* If the task is no longer needed after the changes to the
order from the amendment are considered, it transitions
automatically to (normal) Undo mode.

In both of these cases, ensure that your automation code (for the
Redo or Undo execution mode) contains a check to see if the
task has been in a fallout execution mode, and also whatever
code is needed to resolve any actions that have been taken in
the fallout execution mode. For example, if your automation for
Do in Fallout mode opens a trouble ticket, your Redo automation
should check to see whether it needs to close a trouble ticket.

– If the amendment order contains no changes to significant data,
the execution mode of the task does not change as a result of
the amendment order.

6. After determining that amendment processing is needed, OSM transitions the
order to the Amending state.

Note:

OSM queues orders that need amending. Therefore it is possible for
multiple revisions of the same order to exist in the queue. If amending
the order is allowed, OSM chooses the latest version of the amendments
in the queue by comparing the optional version identifiers (if configured)
or, if there is no configured version identifier, by comparing the dates and
times that the amendments were received.

In the Process Amendment state, OSM determines the compensation required.
For example, OSM might redo a task with different values for one or more data
elements on the task data that were used for input into the task.

For process-based orders, the tasks are analyzed to find the impact of the
changes. That impact determines the compensation plan. For example, OSM
might need to redo a task with different data values or undo a task if it is no

Chapter 10
About Amendment Processing and Compensation

10-3

longer required. The data comparison is based on the data in the creation task of
the base order and the revision order. See OSM Concepts for information.

For orchestration orders, the order components of the orchestration plan are
analyzed to determine which order components need to be redone, undone, or
done for the first time (amend do). The tasks of the sub-processes run for each of
those order components to be compensated are also analyzed.

7. OSM handles the base order and the revision order as follows:

• For the base order, OSM creates a new orchestration plan that includes the
order components and their dependencies. Any order components with data
that has changed as a result of the revision are redone. Any order components
that have been processed but are no longer required in the revision are
undone in reverse dependency sequence. Any order components that are
inserted as new requirements are fulfilled. The order state is set to Amending.

• For the revision order, OSM transitions it to the Completed state because its
only purpose was to revise the base order.

8. OSM processes the changes according to the compensation plan it calculated and
re-calculates the compensation plan needed after every change. OSM performs
the necessary undo, redo, and amend do operations on order components (for
orchestration orders) and on tasks (for both orchestration orders and process-
based orders).

Figure 10-1 shows a simplified amendment processing flow.

Chapter 10
About Amendment Processing and Compensation

10-4

Figure 10-1 Amendment Processing

Note:

Messages from external systems can be returned to a task for which the
receiver is temporarily unable to receive a response. This can happen, for
example, if an order is being amended or is suspended. When this happens,
OSM saves the returned message to the database, to wait until the order is
ready for the task. This message will be removed when the message is
resent to the receiver or when it becomes irrelevant (for example, because
the order has been purged). This functionality is on by default, but you can
turn it off, for example if your solution already handles messages of this type
in a different way. To turn this feature off, use the
oracle.communications.ordermanagement.AutomationResponseMessa
geParkingEnabled parameter in the oms-config.xml file. See OSM System
Administrator's Guide for more information about this parameter and about
the oms-config.xml file.

Chapter 10
About Amendment Processing and Compensation

10-5

A simple example of a revision order is as follows:

1. A customer orders a DSL service at 3 MBps. An order is created and sent to OSM.

Figure 10-2 shows the start of the process. In this example, the process begins
with the Verify_ADSL_Service task and then transitions to the Assign_Port task.

Figure 10-2 Amendment Order Example

2. OSM verifies that the 3 MBps service is available and transitions to the next task,
Assign_Port.

3. While the order is waiting for port assignment, the customer calls back and asks a
customer service representative (CSR) to change the order to 5 MBps. The CSR
creates a revision order in the CRM system with the revised bandwidth value of 5
MBps and submits the order to OSM.

4. OSM receives the incoming customer order, and detects that it is a revision to an
in-flight order.

5. OSM accepts the revision order, calculates the compensation plan, and begins to
run it. OSM knows that compensation is necessary because the data (bandwidth)
that was on the order as input data when this task ran previously has now
changed. The revision order requests that the Verify_ADSL_Service_Availability
task must be redone to ensure that the 5 MBps service is available.

6. The value set by the Verify_ADSL_Service_Availability task is changed.

Figure 10-3 shows the order displayed in the Task web client. In this figure,
the Verify_ADSL_Service_Availability task has an execution mode of Redo.
Because the port has not been assigned yet, the Assign Port task has an
execution mode of Do, but it cannot be worked on until the order completes
compensation for the revision.

The task execution mode can be Undo, Redo, Do, Amend Do, Undo in Fallout,
Redo in Fallout, Do in Fallout, and Amend Do in Fallout. (See "About Task
Execution Modes" for more information.)

Figure 10-3 Amendment Displayed in the Task Web Client

Chapter 10
About Amendment Processing and Compensation

10-6

7. The revision order transitions directly to the Completed state. This is because the
revision order is used only for updating the base order. For revision tracking, OSM
maintains a record of the revision order as part of the order history.

8. After verifying that the revised bandwidth is available, the base order continues
processing.

You can monitor revisions in the web clients. Figure 10-4 shows a revision order
(Order 7) and Figure 10-5 shows the base order that it revised (Order 6).

Figure 10-4 Revision Order in the Order Management Web Client

Figure 10-5 Amended Order in the Order Management Web Client

Chapter 10
About Amendment Processing and Compensation

10-7

About Revising or Canceling Orders by Using the Task Web
Client

In most cases, revision orders are submitted from an order-source system. You can
also revise and cancel orders by using the OSM Task web client; for example, by
using the Amend Order menu command. This is useful for testing revisions and
cancellations within OSM, however, this method is not appropriate for production
systems.

You should use the Task web client to submit amendments only when the order was
submitted from the Task web client originally or when the upstream system cannot
submit an amendment. If the upstream system submits an amendment after you
manually submit an amendment, data synchronization errors can occur.

When you use the Task web client to amend an order:

1. OSM creates another order, with a new order ID number, for the revision. The new
order includes all of the creation task data from the in-flight order.

2. The Task web client displays the revision order.

3. You can then change the data required for the revision and submit the revision
order.

Caution:

If you use revision versioning, increment the revision version.

About Order Keys
When receiving an order flagged as amendable, OSM checks in-flight orders for a
matching value in an order key. (You configure the order key when you model the
order specification.) For example, you can specify to use the sales order number as
the order key. In that case, when OSM processes an order, it looks for an existing
order that has the same sales order number and amends that order.

Tip:

Because OSM must check the order key for all in-flight amendable orders,
you should make orders amendable only if they might need to be amended.
That way, OSM does not need to check for an order key for orders that would
not be amended.

You define the order key in the order specification as one or more XPath expressions
that reference one or more data elements in the incoming customer order. If you use
multiple data elements, the values are concatenated in the order key.

OSM generates an order key when the order is created. To assign an order key:

Chapter 10
About Revising or Canceling Orders by Using the Task Web Client

10-8

• The order key data elements must be part of the creation task data.

• The order key must be identical between the base order and the revision orders
and must not change.

• The order must be flagged as amendable.

Order key values should not be modified after an order is submitted. For more
information about creating valid order keys, see, "Modeling Valid Data Keys."

About Submitting Multiple Revisions of an Order
In some cases, multiple revisions to a single order are submitted. Each revision is
expected to be a new revision of the in-flight order, not a cumulative comparison
of previous revisions. The latest amendment is assumed to be the most complete
revision containing all of the changes from earlier revisions. Intermediate revisions are
not processed by OSM.

You can use versioning in the revision orders to recognize the order of the revisions as
OSM receives them. For example:

• If revisions are received out of sequence, OSM ensures that the latest revision is
used. If a revision is received while a current revision on the same order is being
compensated, and if processing of revising in-flight revision orders is enabled
(see "About Revising In-flight Revision Orders" for more details), OSM initiates
the termination of the current revision and changes the compensation state of the
current revision to Terminating and queues the latest revision. After the current
revision reaches a safe point, OSM terminates the current revision and starts
processing the latest revision. If processing of revising in-flight revision orders is
not enabled, OSM completes the compensation for the current revision before
processing the latest version. If a version is received that is earlier than the current
revision being processed, the earlier version is ignored.

• If several revisions are received, OSM discards interim revisions and applies the
latest revision because it represents the latest customer instructions for the order
and is a complete copy of the base order.

To configure revision versioning, you specify a data element on the incoming customer
order that OSM checks when processing revisions for the order. You specify the
data element as an XPath expression in the order specification Amendable tab. For
example, if the data element is <version>, the XPath expression is:

_root/version

About Compensation States
The following diagram shows compensation state transitions and the life-cycle of a
revision order.

Chapter 10
About Submitting Multiple Revisions of an Order

10-9

Figure 10-6 Compensation State Transitions

• Accepted: This state indicates that the revision order is accepted by OSM.
OSM evaluates order life cycle policy when the revision order is received before
accepting it. This state is a transitional state until the revision processing on the
base order starts.

• In progress: This state indicates that the revision processing has started on the
order.

• Completed: This state indicates that the revision processing is complete.

• Queued: This state indicates that the revision order is queued.

– OSM queues the revision on a base order that is in the In-progress state if the
Process Amendment transaction in the order state policy is not enabled. If the
Process Amendment transaction is enabled, OSM re-evaluates the condition
on order data changes and dequeues the revision. See "Disabling Processing
of Revisions on In-flight Revision Orders" for more details.

– OSM queues the revision order when the base order is in the Amending state.
Revision order remains queued until either the current revision processing is
terminated (default configuration) or revision processing is completed.

• Skipped: This state indicates that the revision order is skipped. This happens on a
queued revision, when it is replaced by a new revision.

• Terminating: This state indicates a transition period before OSM starts processing
the latest revision on the order. During this period, OSM provides support to clean
up all Started compensation tasks by ensuring they reach a known state.

• Terminated: This state indicates that the compensation is terminated safely.

About Revising In-flight Revision Orders
OSM can process a revision order while it is still processing a revision on the same
order that it received earlier, without having to wait for the ongoing revision order to
complete. When a revision on an in-flight revision order is received, OSM initiates the
termination of the current revision and changes the compensation state of the current
revision to Terminating and queues the latest revision. After the current revision
reaches a safe point, OSM terminates the current revision and then starts processing
the latest revision.The compensation processing of the current revision transitions to a

Chapter 10
About Revising In-flight Revision Orders

10-10

new revision safely, at the earliest, instead of waiting for the completion of the current
revision processing. With this functionality, OSM can process order changes quickly,
while reducing the operational expenses by optimizing the work needed to be done for
subsequent order changes, and carries forward pending tasks that were not executed
in the previous revisions to the latest revision.

Note:

By default, processing of revisions on in-flight revision orders is enabled
for cartridges with target version 7.4.0.0.0. For information on enabling and
disabling processing of revisions on in-flight revision orders, see "Disabling
Processing of Revisions on In-flight Revision Orders".

OSM processes a revision on an ongoing revision order as follows:

• While amendment processing is still in progress for the revision order, OSM
receives another revision on the order.

OSM initiates the termination of the current revision and changes the
compensation state of the current revision to Terminating and the latest revision
is queued. Once the current revision reaches a safe point, the current revision
is terminated. See "About Terminating Compensation" for details about what
happens in the Terminating state and when OSM terminates in-flight revision
processing.

• OSM merges the compensation plan of the new revision order with that of the
previous revision that was terminated.

OSM does the following when it merges the compensation plans:

– OSM carries forward all the Not Started Redo compensation tasks from the
terminated revision.

Note:

OSM compensates these tasks only if there are significant data
changes compared to their prior execution.

– If there are pivot- sub-processes that have not started prior to the arrival
of the new revision, OSM carries them forward into the latest order revision
processing and executes them in a proper sequence.

About Insignificant Revision
When OSM receives a revision that has only insignificant data changes, the changes
are applied immediately, while the processing of the ongoing revision is still in
progress. Thus, a revision with insignificant data is not delayed. Also, it does not
interrupt or impact the current revision processing.

Chapter 10
About Revising In-flight Revision Orders

10-11

About Terminating Compensation
When OSM receives a revision order while it is still processing a revision on the
same order that it received earlier, OSM terminates the compensation for the ongoing
revision order before processing the new revision. The Terminating state provides a
transitional stage to ensure that the current compensation plan is executed further
until it reaches a safe point before starting and processing the latest revision that is
queued. To avoid unnecessary processing, OSM does not create successors on the
redo tasks upon its completion during the Terminating state.

The revision processing of an ongoing revision remains in the Terminating state until
the following conditions are met:

• The compensation remains in the Terminating state until all Undo tasks are
executed and completed.

• If there is a new component/pivot- sub-process in the current revision and it
has started prior to the arrival of the new revision, the compensation of the
current revision remains in the Terminating state until the execution of the new
component/pivot sub-process is completed through the execution of tasks in the
Amend-Do execution mode.

• If there is a change in flow during compensation (for example, if a Redo task is
completed at a status that is different from the status that it was executed earlier).
The compensation of the current revision remains in the Terminating state until the
dead path is rolled back, which is done by undoing all tasks in the dead path, and
the new path is executed and completed by executing the tasks in the Amend-Do
mode.

OSM terminates the compensation when it considers the current state of the
compensation has reached a safe point (when the aforementioned conditions are met)
and starts processing the queued revision. OSM merges the terminated compensation
plan with the new compensation plan to ensure that the compensation tasks which
were skipped are now executed as part of the processing of the new revision order.

Disabling Processing of Revisions on In-flight Revision Orders
By default, processing of revisions on in-flight revision orders is enabled for cartridges
with target version 7.4.0.0.0.

To disable this functionality, you configure the Process Amendment transaction for
the Amending order state. You configure the Process Amendment transaction for
the Amending order state by removing the permission to the Amending - Process
Amendment transaction for a selected role. For details on removing and granting
permissions to transactions, see the topic about Configuring Order Lifecycle Policies in
Design Studio Modeling OSM Processes Online Help.

Example: Revising an In-flight Revision Order
A simple example of how OSM processes revision on an in-flight revision order is as
follows:

1. A customer orders a DSL service with 3 MBps bandwidth. An order is created and
sent to OSM.

Chapter 10
About Revising In-flight Revision Orders

10-12

Figure 10-7 shows the start of the process. In this example, the process begins
with the Verify_ADSL_Service task and then transitions to the Assign_Port task.

Figure 10-7 Amendment Order Example

2. OSM verifies that the service with 3 MBps is available and transitions to the next
task, Assign_Port.

3. On availability of a port, it transition to the Activate DSLAM task.

4. While the Activate DSLAM task is being completed, the customer calls back and
requests to change the bandwidth to 5 MBps.

The CSR creates a revision order in the CRM system with the revised bandwidth
value of 5 MBps and submits the order to OSM.

5. OSM receives the incoming customer order and detects that it is a revision to an
in-flight order.

6. OSM accepts the revision order, calculates the compensation plan, and begins
to run it. OSM recognizes that compensation is necessary because the data
(bandwidth) that was on the order as input data when this task ran previously
has now changed.

7. The revision order requests that the Verify_ADSL_Service_Availability task be
redone to ensure that the 5 MBps service is available.

The value set by the Verify_ADSL_Service_Availability task is changed. The
Verify_ADSL_Service_Availability task has an execution mode of Redo.

8. While the order is running the Verifying_ADSL_Service_Availability task, the
customer calls back and requests to change the bandwidth to 10 MBps.

The CSR creates another revision order in the CRM system with the revised
bandwidth value of 10 MBps and submits the order to OSM.

9. OSM receives the incoming customer order, and detects that it is a revision to an
in-flight revision order.

10. OSM accepts the revision and initiates the termination of the current revision and
queues the latest revision. You can monitor the amendment in the Amendments
tab in the Order Management Web Client.

11. On completion of the Verify_ASDL_service_availability compensation task, the
current revision gets Terminated and the Assign_Port compensation task is not
started. This task is carried forward to the latest revision.

Chapter 10
About Revising In-flight Revision Orders

10-13

12. OSM carries forward the Not Started Assign_Port compensation task from the
terminated revision.

Note:

OSM compensates these tasks only if there are significant data changes
compared to their prior execution.

About Controlling When Amendment Processing Starts
You can delay amendment processing for an order. For example, the order might
be in the middle of running an automated task that is executing system interactions
with fulfillment systems, so you want to postpone the processing of the revision until
after the tasks complete. After the system interaction is complete, OSM can begin
processing the revision.

During amendment processing, the order is in the Amending state, which prevents
normal processing such as task updates. This allows compensation to deal with one
set of data changes without also needing to carry out normal processing activities
at the same time. To manage the transition to the Amending state, OSM does the
following:

1. Checks permissions to allow or postpone the processing of the revision.

2. Checks if a grace period is set to allow all order activity to settle. If so, it waits for
the grace period to end.

3. Transitions the order to the Amending state.

To control when amendment processing starts, you use the order life-cycle policy
to control OSM transactions. A transaction is an action taken by the OSM system.
For example, for the In Progress state, you can prevent the Process Amendment
transaction from occurring until a condition is true.

See "Modeling Order Life-Cycle Policy States and Transitions" for more information
about transactions.

To manage amendment processing, OSM uses two order state transactions, in the
following order:

1. Submit amendment. This transaction occurs when the revision order is
submitted. You can specify conditions that determine if the order can be amended
or not. Because the evaluation of the condition is triggered when the revision order
is submitted, the condition does not need to be based on data, but it can include
data as part of the condition.

2. Process amendment. If the revision order is accepted, OSM evaluates this
transaction to determine if the amendment can be processed now, or if it needs
to wait for a specified amount of time, or if it needs to wait until all accepted
tasks are completed. This condition is evaluated based on data in the order. If the
condition returns false, the amendment is queued. The condition is re-evaluated
whenever the data changes. When the condition evaluates to true, the transition to
the Amending state can occur.

A grace period specifies a period of time to wait for all accepted tasks to complete
before an order can transition to a different state. For example, if an automated task

Chapter 10
About Controlling When Amendment Processing Starts

10-14

has sent a request to an external system, but the external system has not responded,
OSM does not know if the task has been completed and therefore does not know if
the task needs to be compensated. A grace period set on the Process Amendment
order state transaction can allow the order the opportunity to reach a known state for
all current tasks before transitioning to the Amending state.

Grace periods are defaulted to be indefinite, so OSM waits until all currently accepted
tasks are completed before transitioning to the target state. You can limit the grace
period:

• You can set the grace period to zero, which specifies that OSM not wait for any
accepted tasks to complete before transitioning to the target state

• You can provide a time limit; for example, one hour (to give all accepted tasks a
limited time to complete before transitioning to the target state).

If an automation response is received for a task after the order has transitioned to the
Amending state, an automation exception is thrown, because the automation plug-in
cannot process the response when the order is in the Amending state. The automation
exception is sent to the JMS response queue and is retried. When the retry limit
is reached, the message is forwarded to an error destination, if one is configured.
To manage exceptions that occur during amendment processing, you can review the
errors to determine if the messages can be resubmitted or handled by fallout.

If there are multiple queued revisions waiting for the grace period to end, OSM selects
the latest version among the queued amendments to process. The other versions are
assumed to be out of date and are ignored. See "About Submitting Multiple Revisions
of an Order" and "Modeling Order Life-Cycle Policy States and Transitions" for more
information.

About Compensation
The following sections describe how compensation occurs.

About Order-Level and Task-Level Compensation Analysis
When the revision order is received, OSM analyzes the differences between the
revision order data and the base order data (or between this revision order data and
the last submitted revision order data) to see if a compensation is indicated. Changes
and updates to order data can occur in the context of task data views or order data
views.

OSM then begins analyzing impacted tasks. OSM provides the following data
perspectives for each individual task which are snapshots of data that OSM uses to
calculate whether a task needs to be compensated. These data perspectives are:

• Historical order perspective (HOP): Specifies the data used when the task last
ran in Do mode and changed to the Completed state (or Redo mode if the task last
ran as part of compensation for a previously submitted revision order).

• Contemporary order perspective (COP): Specifies the unchanged task data
from the last time the task completed in Do or Redo mode (for example, from the
tasks run for the base order or for a previous revision order). COP also shows
any new or changed data from the current revision order and from the tasks
triggered from that revision order that compensated prior in the process flow to the
compensation task currently being analyzed.

Chapter 10
About Compensation

10-15

• Real-time order perspective (ROP): Specifies the last change to a parameter
value by any task or at the order level (for example through order-level updates).
This perspective may be different from the COP because the COP only provides
a view of task data for previously run compensation tasks and revision order data
and may not represent the last change to a parameter value. For example, the
COP may include unchanged data from when the parameter that was originally
processed by the Task, but that same data parameter could have been updated
in a later task and so the current data would have a different value than the one
displayed in the COP.

Figure 10-8 describes a process-based order, where a subscriber requests ADSL
service with 3MBps speed. The order is submitted to OSM and service fulfillment
begins. The subscriber calls back while the base order is in-flight and has just
completed the Activate DSLAM task and requests the order be changed from 3MBps
to 5MBps speed. In this scenario, the existing port does not support 5MBps. The
compensation process proceeds as follows:

Chapter 10
About Compensation

10-16

Figure 10-8 Changing a Service Request

Chapter 10
About Compensation

10-17

1. When OSM receives the revision order, OSM compares the creation task data of
the revision order with the creation task data of the base order to determine if any
data changes have occurred to significant data.

2. Because the bandwidth changed from 3 MBps to 5 MBps and the bandwidth
parameter is designated as significant, OSM begins task-level analysis for the first
task in the process. OSM compares the Verify ADSL Service Availability HOP
and COP and determines that the task must be redone because of the bandwidth
change and because the compensation strategy for that task is redo.

OSM updates the results of the task and any data changes because of redoing the
task to the ROP. The Verify ADSL Service Availability ROP becomes the COP
for the Ship Modem task and the Assign Port task.

3. The compensation mode for Ship Modem is Do Nothing, so no compensation
analysis occurs for that task. The compensation mode for Assign Port is Redo,
so compensation analysis begins for that task. OSM compares the HOP and COP
for the Assign Port task and determines that the task must be redone because
of the bandwidth change. OSM adds the result of redoing the task to the ROP
which includes the bandwidth change and a new port ID because the original port
ID could not handle the increased bandwidth requirement. The ROP becomes the
COP for the Activate DSLAM task.

4. The compensation mode for Activate DSLAM is Undo then Do, so compensation
analysis begins for that task. OSM compares the HOP and the COP for the
Activate DSLAM task and determines that the task must be undone then redone
because of the new port ID and the bandwidth changes. OSM adds the results to
the ROP. Processing continues normally after this task.

Note:

In this scenario, Activate DSLAM is the last task; however, if there
had been additional tasks that had completed after Activate DSLAM,
OSM would have had to undo them all prior to undoing Activate
DSLAM regardless of the compensation strategy associated with those
subsequent tasks. This scenario only applies to tasks running in Undo
then Do mode.

You can use update order transactions to make changes to order data using
automation plug-ins from the task context (this includes automated task, task event,
and task jeopardy notification automations) and also from the order context (this
includes order-level notification, event, and jeopardy automations). OSM captures
any data update made from a task context in the HOP and COP and are therefore
guaranteed to be reflected in any compensation analysis for that task initiated by
new revision orders. Order updates can also be applied to the order-level data by
referencing the view for that order data defined in the query task that you can
associate to an order in the Order Specification editor Permissions tab, Query
Task sub tab (see "Modeling Query Tasks for Order Automation Plug-ins" for more
information about query tasks for order-level data). Updates at the order data level
should be done with care because these updates are not included as part of
compensation analysis and do not generate a HOP or COP. OSM attempts to apply
any order-level change to the closest task that has been created or completed, but
these updates are not guaranteed deterministically like the task-level updates are. For
more information about how update orders can be used in automation plug-ins, see
OSM Developer's Guide.

Chapter 10
About Compensation

10-18

OSM does the following when discrepancies occur between the contemporary order
perspective and the historical order perspective:

• Adds revision order nodes if they do not match nodes of the last submitted order
data or the nodes in the historical task perspective.

• Changes revision order node values if the nodes do match the values found in the
last submitted order data or the nodes in the historical task perspective.

• Deletes nodes if the nodes are in the last submitted order data or in the historical
task perspective but not in the revision order.

In Oracle Communications Design Studio, you can model compensation strategies
for manual and automated tasks statically from a predefined list or dynamically from
revision order data. If you model the compensation task dynamically, you can create
an XQuery that has access to order data provided in the contemporary and historical
perspectives as well as a comparison between the two. You can use the results of
this comparison to dynamically select an appropriate task-level compensation strategy.
For more information about compensation strategies, see "Modeling Compensation for
Tasks".

About Order Data Position and Order Data Keys
OSM compares order data in the following ways:

• By comparing the position of the XML nodes of the base order (or last submitted
revision order), with the position of the XML nodes in the current revision order.
This is not the recommended method, since the result of the comparison can be
unexpected and cause compensation to behave in a way you do not want.

• By comparing order data keys in the order specification order template tab for
specific data elements. This is the recommended method. When OSM receives
a revision order, it compares the order data keys from the revision order with the
order data keys in the base order (or last submitted revision order). When OSM
finds a matching order data key, it compares the values in each element.

Note:

OSM uses order data keys to determine order data changes during
compensation and to identify pivot nodes that generate multiple task
instances based on multi-instance data nodes (see "Generating Multiple
Task Instances from a Multi-Instance Field") and should be distinguished
from order keys used to match base orders with revision orders (see
"About Order Keys").

To set an order key for a data element value, you must specify the data element as an
XPath expression in the Key subtab on the Order Template Node editor.

Oracle recommends using order data keys for multi-instance data nodes to
differentiate between instances of the same data node, because the results are
predictable. For example, the data structure in Figure 10-9 can be used multiple times
to identify different product specifications. You can associate an order data key to
the children nodes of specification to uniquely identify each instance of a product
specification contained in a customer order.

Chapter 10
About Compensation

10-19

Figure 10-9 Order Data Key Defined in Design Studio

For example, you could set a key on specification that points to the name child node.
For expression for this key would be:

./name

For more information about creating valid order keys, see, "Modeling Valid Data Keys."

About Data Significance
During amendment processing, OSM identifies all tasks in the order that are affected
by the changed order data. It then determines whether the data being changed
is flagged as significant. (When you define orders or tasks, you can mark data
as Significant or Not Significant. By default, all data is flagged significant.) OSM
compensates only those tasks that process significant data.

If any of the data changes are significant, OSM transitions the order to the Amending
state and builds a compensation plan based on all affected tasks, creating redo or
undo compensation tasks as necessary.

Chapter 10
About Compensation

10-20

Changes to non-significant data are updated on the in-flight order. For example, if
the customer's preferred contact method (email or text message) is marked as non-
significant, a revision order that changes only that data does not trigger amendment
processing. Instead, the base order is changed, and the revision order is completed
without starting amendment processing. The next task that uses the changed data
uses the updated values.

You can configure data significance at the following levels:

• Data Dictionary

• Order template data

• Task data

Each level can inherit or override the significance flag of its parent level. The Data
Dictionary is at the top parent level. You can also configure significance for data
structure definitions, but they do not participate in inheritance.

In addition to the data significance levels mentioned above, you can access the data
in the order template from the Order Template tabs in the Order Item editor and the
Order Component editor. If you change the significance of data in these tabs, you are
actually altering the data in the order template.

The order template can inherit or override the data significance specified in the Data
Dictionary. This allows one order type to consider the data significant while another
order type does not.

The task data can inherit the data significance set in the order template only to
override it as non-significant data. This allows data to be significant in one task and
not significant in another. In that case, a revision with that one data element changed
would cause the task that considers the data element significant to be compensated:
the task that does not consider it significant will not be compensated. The exception
to this is that you cannot override the significance of the following types of data at the
task level:

• data elements defined in data structure definitions

• the ControlData/OrderItem element and its children, if you have selected Support
Distributed Order Template in the Order Item Specification editor Property
References tab

It is not possible to specify a data element as not significant at the order level and
significant at the task level.

Figure 10-10 shows how data significance can be inherited and overridden.

Chapter 10
About Compensation

10-21

Figure 10-10 Data Significance Inheritance

Figure 10-11 shows data significance specified in the Data Dictionary. Because this is
the top level, there is nothing to inherit the significance from, so there is no inheritance
option.

Figure 10-11 Data Significance Specified in the Data Dictionary

Figure 10-12 shows data significance specified in the order template. In this example,
the significance is inherited from the Data Dictionary.

Chapter 10
About Compensation

10-22

Figure 10-12 Data Significance Specified in the Order Template

Figure 10-13 shows significance specified in the task data. Note that the significance
is either inherited, or it is not significant. There is no option for significant: instead, that
value is inherited from the order template.

Figure 10-13 Data Significance Specified in the Task Data

About Task Execution Modes
Tasks run in the following modes:

• Do. This is the normal execution mode of a task when the order is in the In
Progress state.

• Undo. This execution mode is used when the task must undo work that has
already been done; for example, to un-assign a port when an order is canceled.

Undoing tasks is performed in reverse order to how they were run. For example, if
task B was completed after task A, then task B is undone before task A is undone.

Undo is used when the order component in the base order has completed,
and the revision order has no corresponding order component. A cancellation
order, therefore, can include no order components. This causes all of the order

Chapter 10
About Compensation

10-23

components in the base order to be undone. The Orchestration Plan tab in the
Order Management web client displays nothing when this is the case, indicating
that the order may have been canceled.

• Redo. This execution mode is used when the task must redo work that has
already been done; for example, a port assignment task that needs to be
performed again because the input value of bandwidth is different as a result of
the revision order. Redoing tasks is performed as an optimization of the Undo and
Do operations for a task in a single operation.

The Redo execution mode is used when an order component has completed in the
base order, and the revision order has the same order component, but specifies
different order items or data values.

• Amend Do. This execution mode is used when a new task must be performed
while the order is in the Amending state. For example, the revision order might
specify to add a service that was not in the base order. Because normal
processing is not allowed during amendment processing, the Do mode cannot
be used; Amend Do is used instead.

The Amend Do execution mode functions like the Do execution mode. When a
task runs in the Amend Do mode, all of the permissions and automation plug-in
logic for the Do mode of that task apply.

See "Example 3: Amend Do Compensation" for an example of how the Amend Do
execution mode is used.

Note:

You can specify which tasks can by amended by the Redo and
Undo compensation modes, but Amend Do is not configurable. This is
because OSM determines when Amend Do is required, and the logic
followed is that of the Do mode.

• Do in Fallout. This is the mode for a task that executes when the task fails while
running in Do mode.

• Undo in Fallout. This is the mode for a task that executes when the task fails
while running in Undo mode.

• Redo in Fallout. This is the mode for a task that executes when the task fails
while running in Redo mode.

• Amend Do in Fallout. This is the mode for a task that executes when the task
fails while running in Amend-Do mode.

The Amend Do in Fallout execution mode functions like the Do in Fallout execution
mode. When a task runs in the Amend Do in Fallout mode, all of the permissions
and automation plug-in logic for the Do in Fallout mode of that task apply.

See "Example 3: Amend Do Compensation" for an example of how the Amend Do
execution mode is used.

Chapter 10
About Compensation

10-24

Note:

You can specify which tasks can by amended by the Redo in Fallout
and Undo in Fallout compensation modes, but Amend Do in Fallout is
not configurable. This is because OSM determines when Amend Do in
Fallout is required, and the logic followed is that of the Do in Fallout
mode.

Table 10-1 summarizes the possible combinations and the required compensation for
a revision order.

Table 10-1 Compensation Types

Base Order Component Revision Order Component Compensation Type

Exists Does not exist Undo or Undo in Fallout

Does not exist Exists Do or do in Fallout
(run after compensation is
complete) or Amend Do
or Amend Do in Fallout
(while the order is in the
Amending state.

Exists Exists, no changes found No compensation required

Exists Exists, changes found Redo or Redo in Fallout

Exists Exists, changes found
that also causes process
flow changes during
compensation

Redo or Redo in Fallout for
the impacted tasks that do
not require a new process
flow.
Undo or Undo in Fallout for
tasks in a process flow that
are undone.
Amend Do or Amend Do in
Fallout for completely new
process flows.

Modeling Compensation for Tasks
To perform compensation, OSM must identify the tasks that need to be compensated
and then do, undo, or redo them in the appropriate sequence. OSM applies these
compensation execution modes regardless of whether the task is running in normal
mode or in failed mode.

A task needs to be compensated if it was completed and a change to at least one
significant data element in the task's data has been made. Tasks in the Received,
Accepted, Assigned, or a user-defined state can also be compensated.

Note:

When a task is compensated, all its successors must be compensated,
whether or not they have significant changes.

Chapter 10
About Compensation

10-25

Determining Task Compensation Strategy
In the Design Studio Task Editor Compensation tab (see Figure 10-14), you can
model:

• Static amendment processing compensation strategies for manual and automated
tasks using a predefined list. Static compensation strategies are appropriate when
the compensation requirements for a task are invariable.

• Dynamic amendment processing compensation strategies for manual and
automated tasks based on revision order data using an XQuery expression.
Dynamic compensation strategies are appropriate when more than one
compensation strategy is required for a task. For example, you could model
the XQuery expression to select an Undo then do compensation strategy if
the revision order bandwidth parameter is greater than 50 MB, and only a redo
compensation strategy if the bandwidth parameter is less than 50 MB. For more
information about dynamically modeling amendment processing compensation
strategies, see "About Task Compensation Strategy XQuery Expressions".

Figure 10-14 Task Compensation Options

As shown in Figure 10-14, there are two scenarios that need to be compensated:

• The task needs to be re-evaluated. This means that the task includes significant
data and needs to be compensated.

The static amendment processing compensation options are:

– Redo in one operation. This option is recommended because it performs the
fewest number of Undo and Do operations necessary for compensation.

In the case of a manual task, the task will appear in the worklist in Redo mode,
and the user can display the historical perspective and the contemporary
perspective of the task data (from the last time the task was run) in two
separate tabs. The user updates the data on the Contemporary Perspective
tab and completes the task.

– Undo and Redo in two operations. Use this option when you need to roll back
all order changes and perform the task again from the beginning. This option

Chapter 10
About Compensation

10-26

is useful when interacting with an external system that has no redo action
but can process equivalent do and undo actions (for example, in the external
system, implement and cancel).

Note:

When this option is used, it forces all completed tasks subsequent
to this task to be undone in reverse sequence prior to executing the
undo and then do of this task. To redo the task, you need to roll back
all subsequent tasks first, then undo the task and redo it.

– Do nothing. Use this option if redoing the task is not necessary. For example,
a task that sends a customer survey email would not need to be redone, even
if it includes significant data.

In addition, you can select the Compensation Expression check box and enter
an XQuery that dynamically selects an amendment processing compensation
option at run time based on order data. The dynamic compensation takes
precedence over the static compensation unless there is an error in the XQuery
itself. If there is an XQuery error, then OSM reverts to the compensation selected
with the static radio buttons.

• The task is no longer required. This occurs when an order is canceled or when a
branch of completed tasks in a process becomes obsolete due to a revision.

Figure 10-15 shows a process that has two potential paths. In this example,
the base order followed the path from Task_1 to Task_2_1. The revision caused
the path to change to follow Task_1 to Task_2_2. This means that Task_2_1,
Task_3_1, and Task_4_1 do not need any compensation, because they are no
longer on the path required to fulfill the order.

Chapter 10
About Compensation

10-27

Figure 10-15 Process with Two Paths

The static amendment processing compensation options are:

– Undo. This option rolls back the task by executing the task in Undo mode to
perform the roll-back operation. In the case of a manual task, this requires
that the rollback be acknowledged manually in the Task web client. You cannot
update the task data for an undo of a manual task in the Task web client,
because the system will automatically put the data back to what it was prior to
the task executing.

– Do nothing. This option rolls back the task automatically, without creating an
undo task.

In addition, you can select the Compensation Expression check box and enter
an XQuery that dynamically selects an amendment processing compensation
option at run time based on order data. The dynamic compensation takes
precedence over the static compensation unless there is an error in the XQuery
itself. If there is an XQuery error, then OSM reverts to the compensation selected
with the static radio buttons.

Chapter 10
About Compensation

10-28

About Compensating In Progress Tasks
You can configure whether a task is included in compensation when it is completed
or in progress, or you can use an XQuery expression that evaluates whether an in
progress task can be included in compensation based on order data. Compensating in
progress tasks is important for long running tasks where a response to a request takes
hours or even days to return but the task still needs to be compensated. If you specify
that a task can be compensated while it is in progress, you can also specify whether
a grace period should be observed before performing the compensation. In addition,
you must use an XQuery expression to evaluate any changes to the compensating
task data to identify when the compensation has completed and the task can enter into
normal do mode again.

For example, some automated plug-ins communicating with workforce management
systems may involve the dispatching of personnel to perform work over several days.
In such cases the automation plug-in sends the dispatch request to the workforce
management system, and remains in progress until such time as the work completes.
If a revision order were to arrive that changes some aspects of the work, then the
in progress automation plug-in responsible for sending the original request should be
included in the compensation plan. You can specify an XQuery that evaluates data
on the in progress task communicating to the work force management system that
determines if the task needs to be compensated. In addition, you can specify whether
a wait period should be observed before starting compensation. You must also
write an XQuery that determines when compensation has completed, for example,
when the task receives the response from the new request indicating the workforce
management system has received the new work details and has begun to processing
the request.

Figure 10-16 shows the configuration options for determining when compensation
should occur on an in progress task, whether a grace period should be observed
before starting task compensation, and when compensation should complete.

Figure 10-16 In Progress Task Compensation Options

In the When an amendment occurs this task will be compensated if it is: area,
you can select:

• Completed: OSM only considered the task in compensation if it is in the
completed state.

Chapter 10
About Compensation

10-29

• Completed or In Progress: OSM considers the task in compensation if it is in
the completed state and also if it is in progress (for example, in the received,
assigned, accepted, or a custom states.)

• In Progress Compensation Include Expression: You can specify an XQuery
that uses task data to determine whether the in progress task should be
compensated. This XQuery expression overrides the Completed and Completed
or In Progress options except when the XQuery is invalid.

• In Progress Compensation Complete Expression: You can specify an XQuery
expression that uses task data to determine whether the in progress task should
be compensated.

In the When an amendment occurs if this task is in progress it will: area, you can
specify what grace period should be observed before beginning task compensation on
the in progress task:

• Wait for the grace period: OSM observes the grace period specified on the
order-life cycle for the Process Amendment transition.

• Be excluded from the grace period: OSM does not observe a grace period.

• Wait for specified duration: OSM observes the grace period statically configured
for the task in seconds, minutes, hours, or days.

• Dynamic Expression: OSM uses an XQuery expression that dynamically
specifies the wait duration based on revision order data. This XQuery expression
overrides the other options except when the XQuery is invalid. For more
information about compensation strategy XQuery expressions, see "Compensation
XQuery Expression".

About Task Compensation Strategy XQuery Expressions
You can dynamically assign compensation strategies to tasks by creating XQuery
expressions in the Design Studio Task Editor Compensation tab for re-evaluation
compensation strategies or compensation strategies for when a task is no longer
required.

Note:

If the XQuery expression is invalid OSM logs the error but does not rollback
the transaction. Instead, OSM uses the static compensation strategy as the
default.

This section refers to the Design Studio OSM Automated Task or Manual Task
editor, Compensation tab Compensation Expression XQuery field for re-evaluation
compensation strategies:

• Context: The context for this XQuery is the current order data. You can get the
current order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response
function in the XQuery body to extract the order information. You
must declare the java:oracle:communications.ordermanagement.compensation.
ReevaluationContext OSM Java package that provides methods that access the
contemporary and historical order perspectives and compares the two. You can

Chapter 10
About Compensation

10-30

use the results of this comparison to determine what compensation strategy is
required for a task based on revision order data.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle:communications.ordermanagement.compensation.ReevaluationContext"
;
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

For more information about the classes in the OSM packages, install the OSM
SDK and extract the OSM Javadocs from the SDK/osm7.w.x.y.z-javadocs.zip
file (where w.x.y.z represents the specific version numbers for OSM). See OSM
Installation Guide for more information about installing the OSM SDK.

• Body: The body must return a valid compensation option.

For example, the following XQuery expression creates variables for the
ReevaluationContext methods. The expression then checks that a specific value
exists in the $value variable and that the value in the $significantValue variable
both exists and is significant. If the value exists and is significant, then the
expression sets the compensation strategy for the task to Undo then Do
(undoThenDo in the ReevaluationContext Java class). If not, then the expression
sets the compensation strategy to Redo (redo in the ReevaluationContext Java
class).

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)
let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//
orderItemRef/specificationGroup//specification[value='100']
let $significantValue := $diffDoc/Changes/Add[@significant='true']/
specification[value='100']
let $currentValue := $ropDoc/ GetOrder.Response/_root/service[name='BB']//
orderItemRef/specificationGroup//specification[value='100']

return if (fn:exists($value) and fn:exists($significantValue))
then
 context:undoThenDo($context)
else
 context:redo($context)

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab Compensation Expression XQuery field for when a task is no
longer required. The context, prolog, and body are similar to the XQuery expression
for the re-evaluation strategy, except that the XQuery expression implements
the java:oracle:communications.ordermanagement.compensation.RollbackContext
package.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle:communications.ordermanagement.compensation.RollbackContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;

Chapter 10
About Compensation

10-31

declare variable $context external;

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)

let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//orderItemRef/
specificationGroup//specification[value='100']
return if (fn:exists($value))
then
 context:undo($context)
else
 context:doNothing($context)

About Managing Compensation in the Task Web Client
When an automated task is redone, it is redone automatically. When a manual task is
redone, the Task web client displays the task with an execution mode of Redo. The
manual task must be processed in the Task web client.

To manage compensation in the Task web client, you can do the following:

• Perform manual undo and redo operations.

• Display the execution mode under which the tasks is running (Do, Redo, or Undo).

• Display the order state; for example, Amending.

• Display the historical data (the data as it was when the task last run) in the
historical order perspective when editing a task.

Note:

You can assign roles in Design Studio to specify who can redo and undo
tasks in the Task web client. OSM also supports the ability to assign
the different execution modes of a task to different roles. This is useful
because OSM can compensate using both manual and automated tasks. For
example, the regular processing of a task in Do mode could be automated,
and the Undo and Redo modes for the same task could be set to a special
role to be done manually.

See OSM Task Web Client User's Guide for more information.

Modeling Compensation for Rules in Processes
You can specify to redo a rule in a process, or to do nothing. Because rules only
evaluate data, and therefore do not modify data or interact with other systems, there is
no undo necessary for a rule.

Modeling Compensation for Task Automation Plug-Ins
An automated task can include multiple automation plug-ins; for example, senders
and receivers. Each automation plug-in can be associated with one or more execution
modes. For example, if you create an automated task to activate a service, you can

Chapter 10
About Compensation

10-32

use the same logic to handle the initial activation request and the redo compensation
for the activation request.

Each automated task can have separate plug-ins for each of the three modes; Do,
Redo, and Undo. When an automated task runs in Redo or Undo mode, OSM
provides information about the task data that was present when the task was last
ran. For redo tasks, the Automation framework provides the historical data, the
contemporary data, and the delta to the automation plug-in for use in the plug-in logic
you write. See OSM Developer's Guide for more information.

Compensation Examples
The following examples show different compensation scenarios.

Example 1: Compensation During Provisioning
Figure 10-17 shows a compensation scenario for an orchestration order. In this
example, OSM is running in the central order management role, fulfilling multiple
functions.

1. The base order requires provisioning, billing, and customer account order
components (sync customer).

2. A revision order is submitted while the order is carrying out provisioning tasks. The
revision order replaces a medium-capacity service (3 MBps) with a high-capacity
service (8 MBps). In this case, the content of the order components has changed
in the revision order's orchestration plan, but the order components it contains and
their dependencies remain the same.

3. Because the revision order was received during the base order provisioning, the
compensation specifies that the provisioning order component must be redone,
after which the order returns to the In Progress state, and the billing and sync
customer components are then run with no compensation required.

Chapter 10
About Compensation

10-33

Figure 10-17 Example of Compensation that Occurs During Provisioning

Example 2: Compensation During Billing
Figure 10-18 shows a compensation scenario for billing:

1. The base order includes provisioning order components for a fixed-line service
and a cable broadband service.

2. A revision order is received after the provisioning order components are complete
but while the billing order components are being processed. The revision order
cancels the fixed-line service.

3. The compensation plan specifies to undo the fixed-line service and to redo the
billing order components. The cable broadband service requires no compensation.
Following the redo of the billing order components, the order resumes normal
processing.

Chapter 10
About Compensation

10-34

Figure 10-18 Compensation for Removing a Service

Example 3: Amend Do Compensation
Figure 10-19 shows a scenario for Amend Do compensation:

1. The base order includes provisioning order components for a broadband service.

2. A revision order is submitted while billing order components are being processed.
The revision order adds a fixed-line service.

3. The compensation plan creates a new dependency between the fixed-line service
and the broadband service. Therefore, OSM must use Amend Do to first perform
the new task and then process the broadband service order components. The
billing order components are redone, and processing continues normally.

Chapter 10
About Compensation

10-35

Figure 10-19 Compensation for Adding a Service

Examples of Changes to Orchestration Plans
You can use the OSM Order Management web client to see how compensation affects
an order's orchestration plan.

Figure 10-20 shows how an orchestration plan changes when a single service attribute
changes. In this example, the connection speed changes from 8 MBps to 16 MBps.
The order components remain the same, but the value of the connection speed
changes in the provisioning component and in the billing component.

Chapter 10
About Compensation

10-36

Figure 10-20 Orchestration Change Due to Revision: Change Service Attribute

Figure 10-21 shows how an orchestration plan changes when a revision order
removes a service from the base order. In the example, the Fixed service was ordered
in the base order, but it was removed in the revision order. The provisioning and
billing components are removed, and the DSL provisioning component no longer has a
dependency on the Fixed order component.

Chapter 10
About Compensation

10-37

Figure 10-21 Orchestration Change Due to Revision: Remove Service From Order

Figure 10-22 shows how an orchestration plan changes when a service is added by
a revision order. In this example, the Fixed service is added. This creates a new
dependency for the DSL provisioning component.

Chapter 10
About Compensation

10-38

Figure 10-22 Orchestration Change Due to Revision: Add Service to Order

Modeling a Point of No Return
The following sections describe how to model a point of no return on an order where a
revision order is no longer possible.

Fulfillment Pattern Point of No Return
There are two ways to set a point of no return. The first, only available for
orchestration orders, is to set it on the fulfillment pattern using fulfillment states. The
second is to write an expression in the order life-cycle policy.

When you use the fulfillment pattern to set a point of no return, the point of no
return rules set a point of no return value for that order component. Order life-cycle
policy conditions can then leverage this point of no return value for restricting order
amendments. See "Life-Cycle Policy Point of No Return" for more information.

When you create a point of no return, model the following in Design Studio:

• Define fulfillment states. These are required before configuring a point of no return
on the fulfillment pattern. See "Modeling Fulfillment States and Processing States"
for more information.

• Define a point of no return value list in the fulfillment pattern. Create a name for
your point of no return and indicate whether it is a hard point of no return or not.
Alternatively, you can create a point of no return value on the fulfillment pattern
extended by your fulfillment pattern and allow the point of no return values to be
inherited.

• Define point of no return rules for the point of no return values you created.
Point of no return rules are specified at the order component level. Point
of no return rules involve selecting one or more fulfillment states to map to
the specified point of no return value. Additionally, because order component

Chapter 10
Modeling a Point of No Return

10-39

definitions are hierarchical, a sub-component of the order component associated
with the orchestration plan inherits the point of no return rules defined on the
orchestration plan order component. This sub-component may also specify its own
additional point of no return rules.

Life-Cycle Policy Point of No Return
When you use life-cycle policies to set a point of no return, you define the point of
no return as an expression in the order life-cycle policy, by setting conditions on the
Submit Amendment transaction.

The following example shows a simple point of no return expression:

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";

let $taskData := fn:root(.)/GetOrder.Response
let $rootData := $taskData/_root

return
 if (($rootData/PoNR/text() = "HARD"))
 then (
 true()
) else (
 false()
)

When a revision order is received, OSM checks the life-cycle policy to see if there
are any point of no return conditions preventing the transition to the Amending order
status. If OSM finds any point of no return conditions that are met, the order is not
allowed to be amended. In the example above, if the broadband service is billed
before the fixed-line service is provisioned, the order has passed the point of no return,
even though the fixed-line service has not passed its point of no return.

If the life-cycle policy determines that the revision is not allowed, an
OrderTransactionNotAllowedFault message is returned to the order-source that
submitted the revision order.

About Modeling Order Change Management
When you model order change management, you configure the following OSM
entities:

• Data dictionary. When you create data elements, you can assign them
significance. If data is significant, it is considered for amending. See "About Data
Significance" for more information.

• Order specification. When you create an order specification, you configure the
following:

– Data significance at the order level. You can inherit significance from the
Data Dictionary, or you can define order-specific significance. See "About Data
Significance" for more information.

– If the order is amendable or not.

– The order key. See "About Order Keys" for more information.

Chapter 10
About Modeling Order Change Management

10-40

– The data element that defines the order version. See "About Submitting
Multiple Revisions of an Order" for more information.

– Whether or not to publish order events about amendment processing. You
can choose to publish events when an amendment is started, completed,
queued, being terminated, terminated or abandoned. An amendment can be
abandoned when it is queued for processing and a subsequent amendment
supersedes it. See "Modeling Order Life-Cycle Policy States and Transitions"
for more information.

• Tasks. You can configure the following:

– Data significance at the task level. See "About Data Significance" for more
information.

– How the tasks should be compensated. See "Modeling Compensation for
Tasks" for more information.

– The roles that can redo and undo tasks.

– If automated, the automation plug-ins for redo and undo modes of tasks.

• Rules in processes. You can configure if the rule should be redone or not. See
"Modeling Compensation for Rules in Processes" for more information.

• Order life-cycle policy. You configure the conditions that allow an order to be
amended. See "About Controlling When Amendment Processing Starts" and "Life-
Cycle Policy Point of No Return" for more information. See "Modeling Order Life-
Cycle Policy States and Transitions" for information about order states.

Troubleshooting Order Change Management Modeling
You can use the following methods to troubleshoot your order change management
modeling:

• You can use the following OrderManagementDiag.wsdl web service operations:

– GetOrderCompensations: Returns a list of compensations against a given
order.

– GetOrderProcessHistory: Returns multiple process history perspectives.

– GetCompensationPlan: Returns a set of compensation tasks and the
dependencies between them.

• See the PONR_OrderID.xml file. This file is generated when a Submit
Amendment transaction is called.

About Order Change Management at the Orchestration
Layer

To manage changes to an orchestration order, OSM uses order compensation. OSM
analyzes the required order changes and their impact on everything that has already
been completed by the in-flight order including manual updates from Task web client
users and order updates from automated tasks. OSM then creates a compensation
plan to define the actions that need to be carried out to amend the in-flight order. After
compensation has ended, the in-flight order will have incorporated the required order
changes and continues executing normally. You can recognize when compensation is

Chapter 10
About Order Change Management at the Orchestration Layer

10-41

happening to an orchestration order when the order is in the Amending state or the
Cancelling state.

Note:

If you submit a revision order that uses a different cartridge version from the
one that the original base order was created with, OSM uses the original
base order cartridge version to execute any required compensation tasks
and not the cartridge version used to create the revision order.

Triggering amendment processing using revision orders is the most efficient way to
manage changes made to in-flight orders. OSM automatically detects the revisions
that must be made and changes the orchestration plan as necessary. No manual work
is required to find changes that need to be made.

A revision order is sometimes called a supplemental order. This order contains
all the relevant data for the order, including the updated requirements. During the
amendment processing phase, OSM compares the data in the revision order with
the data in the base order and makes the changes as required (a single revision
order can make multiple changes to an order). This allows the base order to continue
processing with, and compensating for, the customer's new order requirements
provided in the revision order. The customer does not have to wait for the base order
to be completed or canceled before changing it. A revision order can also be used to
correct a failed order.

When you model orders and tasks, you can control the amendment processing that is
allowed for the order. For example:

• If the order is allowed to be amended

• At which point in the order processing the order is no longer allowed to be
amended (the PONR)

• Who can manage revision orders in the Task web client

• Which data needs to be compensated, and which does not

For more information about amendment processing and compensation, see "About
Compensation and Orchestration".

About Compensation and Orchestration
OSM performs compensation on both process-based orders and orchestration orders.
When compensating an order that has an orchestration plan, the compensation can
change the orchestration plan.

Each orchestration order has its own unique orchestration plan, generated specifically
for that order. Therefore, to manage a revision order for the base order, OSM must
generate a new orchestration plan for the revision order. The orchestration plan for
the revision order can be different from the orchestration plan for the base order; for
example, it might include different order components, with different dependencies and
different order items.

By contrast, a process-based order has a predefined process; the process is not
generated when the order is created. The tasks that make up that process and the
flow of those tasks in the process do not change. The data values for those tasks

Chapter 10
About Order Change Management at the Orchestration Layer

10-42

change as a result of a revision, and the path through the predefined process may
change as a result of compensation, but the overall process remains the same.

To manage compensation for an orchestration plan, OSM needs to recognize and
account for dependencies between the order components in the order that is being
amended. The compensation required depends on whether components exist in one
or both orders' (revision order and base) orchestration plans and on whether changes
to the contents of those order components (such as different order items) exist.

Redoing an order component in an orchestration plan is performed by redoing the
tasks run by the order component. In redoing order components, OSM follows the
sequence of dependencies in the orchestration plan. OSM takes into account the
dependencies from the revised orchestration plan, unless a successor component
has previously started in the original base order, in which case the dependency is
considered resolved.

OSM analyzes the order component compensation type and component dependencies
to determine the sequence of component compensation. OSM performs order
component compensations in the following stages:

• Reverse compensation: In this stage, OSM performs only undo compensation
tasks for order components. OSM performs undo tasks for order components in
the reverse order of dependencies that existed between the components in the
original.

For example, OSM performs undo tasks for order component B before performing
any undo task for order component A if B was dependent upon A in the base
order.

• Forward compensation: In this stage, OSM fulfills order components that
have changed (redo) or been introduced (amend do) based on the order of
dependencies, which is derived after taking into account dependencies from the
revised orchestration plan.

The revised orchestration plan may include new components to be completed
using Amend Do and Redo compensation types.

Note:

When switching from reverse to forward compensation, OSM identifies
the new order components that need to be completed using
the Amend Do compensation type. These components participate
in the compensation plan as compensation items. This facilitates
appropriate compensation sequencing for compensation tasks of existing
downstream order components or other components that require amend
do compensation.

All processing not related to compensation is suspended for an orchestration plan until
compensation is complete. After compensation is complete, the order is restored from
the Amending state to an In Progress state and normal processing continues.

About Point of No Return
In some cases, there may be a point in the order process after which it becomes
impossible or undesirable to make changes to an order. This is called a point of no
return.

Chapter 10
About Order Change Management at the Orchestration Layer

10-43

There are two types of points of no return in OSM.

• A hard point of no return indicates that amendments to the relevant part of the
order are either impossible or undesirable. In the case of a hard point of no return,
a revision order is not possible. Instead, you can create a follow-on order. See
"About Inter-Order Dependencies" for more information about follow-on orders.

Note:

A follow-on order is not a change to an in-flight order but is an alternative
when revising the in-flight order is not possible. Follow-on orders are
used to make changes to items on an order that have not yet been
completed but are past the point of no return. OSM manages follow-on
orders to ensure they do not run until the order items upon which they
depend are completed.

• A soft point of no return indicates that order amendment processing is still
possible, but there are consequences for the customer. For example, you can
specify to bill a customer for an extra charge if the order is revised after the soft
point of no return has been reached.

You can define multiple point of no return milestones in an order's fulfillment flow. For
example:

• For a fixed-line service, a point of no return after provisioning.

• For a broadband service, a point of no return after billing.

All soft or hard points of no return depend on the order life cycle policy conditions
which control whether orders can transition from the In Progress state to the Amending
state. See "Modeling Order Life-Cycle Policies" for more information. A point of no
return value that the order life cycle policy evaluates is typically set at the order item
level. This allows order components with varying processing durations to run, instead
of stopping the entire order at the first order item with a point of no return. You can
also set the point of no return to a fulfillment state which provides aggregated states
for a group of order items and for the overall order. See "Modeling Fulfillment States"
for more information.

Figure 10-23 shows two different point of no return scenarios.

Chapter 10
About Order Change Management at the Orchestration Layer

10-44

Figure 10-23 Point of No Return for Different Services

Chapter 10
About Order Change Management at the Orchestration Layer

10-45

11
Modeling Fallout

This chapter describes order fallout modeling best practices in an Oracle
Communications Order and Service Management (OSM) solution.

Overview of Fallout
Modeling fallout involves considerations in the following areas:

• Prevention: Identify possible sources of errors in the solution and model entities
to prevent the error from occurring.

• Detection: Identify ways in which you can configure OSM modeling entities to
detect failures on orders or tasks within orders. For example:

– OSM receives an error message from a downstream system at an automation
plug-in that transitions the task to a fallout execution mode.

– An OSM operator working on a manual task uses the Task web client to
transition a task to a fallout execution mode when progress on the manual task
is no longer possible.

– OSM detects a failure at order creation. For example, an order recognition rule
recognizes an order but the order fails because of a validation error.

• Inform/Investigate: Identify ways in which you can configure OSM modeling
entities to provide information to fallout specialists so they can investigate the
problem. For example:

– When a automated task transitions to a fallout execution mode because
of an error message returned from a downstream system, you can also
configure the task to update the order item processing state that the task was
processing that also changes the order item processing states of parent order
items, and so on up the order item hierarchy. Fallout specialists can search for
and view orders, order items, and tasks based on order item processing states
or based on task execution mode.

– Depending on the error or order processing state change, you might need to
notify other systems or fallout specialists that a problem occurred and why.

For example, the customer relationship management (CRM) system must
know if an order has failed because of incorrect data. You can configure
OSM to send email notifications to fallout managers or to notify an external
trouble-ticketing application. Or if a task on an order or the order itself is taking
too long to complete, you can configure a jeopardy notification.

– Order management personnel can monitor the progress of orders and tasks in
the Task web client or in the Order Management web client. You can configure
OSM to send failed tasks and orders to specific personnel associated with
fallout workgroups. You can search for orders with failure and warning
indicators on them.

11-1

• Resolution: You can model OSM to automatically fix problems and then resume
or restart the order or tasks within the order or you can model OSM to notify fallout
specialists so they can manually investigate and resolve problems.

You can recover from order and task failures in various ways. For example:

– A revision order can be submitted with corrected data. A revision order may be
required between CRM systems and OSM in the central order management
(COM) role, for example, if the original order contained faulty data.

– Order management personnel can edit faulty order data in the Task web client
and resume processing of the order by retrying and resolving the order or
tasks.

– Order management personnel can use a job control order to perform several
functions in sequence such as updating faulty data on multiple orders and
tasks and then retrying or resolving failed tasks in each order.

– The order can be terminated and a new order submitted.

• Escalation: If a particular instance of OSM is unable to resolve an issue and must
escalate the problem to the upstream order and system, such as between OSM
technical order management (TOM) and service order management (SOM), OSM
SOM and COM, or between COM and the originating CRM system. For example,
OSM TOM receives a technical order with incorrect inventory data from OSM
SOM. When OSM TOM tries to use the data in activation, OSM TOM receives an
error and must escalate the problem back to OSM SOM.

Understanding Fallout Across OSM Roles
Figure 11-1 shows how OSM in the COM, SOM, and TOM roles processes a single
sales order from a CRM system. The sales order generates the following hierarchically
related orders:

• One customer order in the OSM COM role. The customer order contains three
order items that decompose into two fulfillment patterns. The customer order is the
parent order of all other orders sent to OSM in the SOM role.

• Two service orders in the OSM SOM role. The two fulfillment patterns from the
COM role generate the two service orders that OSM in the SOM role processes.
These two orders are sibling orders, typically related to each other through
reference number. The service orders are the parent orders of all other orders
sent to OSM in the TOM role.

• Two technical orders in the OSM TOM role. SOM sends two separate technical
orders to OSM in the TOM role also related to one another by reference number.

Chapter 11
Understanding Fallout Across OSM Roles

11-2

Figure 11-1 Order Processing Across OSM Roles

The total number of orders generated from the one CRM sales order are five. Ancestor
orders complete when descendant orders complete. Customer orders are always the
first orders created and the last orders to complete.

Chapter 11
Understanding Fallout Across OSM Roles

11-3

Order fallout can occur in any one of these COM, SOM, and TOM orders and in any
one order item being processed by an order component instance for an order. Failures
can occur in system communication between OSM and the following systems:

• The billing system

• The service resource management (SRM) system

• The workforce management (WFM) system

• The supply chain management (SCM) system

• The activation system

• The partner gateway (PGW) system

You can use order item processing states to help keep track of the processing state
of each order item within each COM, SOM, and TOM order that the OSM solution
produces. You can configure automation plug-ins and manual tasks to update order
processing states when error messages return from external fulfillment systems or
when an error condition occurs when personnel are processing manual tasks. See
"Modeling Processing States" for more information.

You can use various notification mechanisms, such as order data change notifications,
to send fulfillment state changes about child orders up to parent orders. For example,
between TOM and SOM orders, between SOM and COM orders, and all the way
up to the CRM system as a trouble ticket if there is a fallout situation that requires
changes to the original sales order. See "Modeling Jeopardy and Notifications" for
more information.

If at all possible, it is important to try and resolve errors within the same order and
order item hierarchy where the error occurred. However, there are cases where errors
can originate from data introduced in other instances of OSM. In such scenarios, it
is important to correct faulty data that caused the error at the source. For example,
inaccurate inventory data may have been introduced at the SOM level from the SRM
system that created a failure at the TOM level on the order component and automation
task communicating with the activation system. Although the error can be manually
corrected directly on the task communicating with the activation system, allowing
the order to continue making progress, this would cause a data inconsistency issue
between OSM SOM and the SRM system and OSM TOM and the activation system.
In such a case, it is important to define which instance of OSM and related fulfillment
systems own the faulty data that causes the fallout in the other OSM instances.

Understanding Fallout Sources
The following sections define typical areas where OSM can experience fallout
scenarios.

Managing Business Related Fallout Sources
Business errors in can cause problems with downstream systems in the following
ways:

• A business error in data generated by OSM such as insufficient or incorrect data
can lead to OSM sending an invalid message request to an external system. For
example the SRM system generates network information that does not represent
the resources in the actual network such as assigning a port that is already in use.

Chapter 11
Understanding Fallout Sources

11-4

• A business error in the downstream system may occur. For example, an account
might be incorrect in the billing system that OSM is communicating with.

The following actions are possible when business errors occur in downstream
systems:

– The personnel responsible for the external fulfillment system must notify OSM
personnel that the configuration error has been corrected so that the OSM
personnel can resolve or retry the task.

– The personnel responsible for the external fulfillment system can resolved
the configuration error and can also complete the work that OSM wanted
accomplished. In this scenario, the OSM personnel, after having been notified
that the work has been completed on the external fulfillment system, can then
transition the task to the complete state.

In both these scenarios, OSM personnel are responsible for manually updating
any required OSM task data from the fulfillment system if any.

To inform fallout management personnel about a failure in a downstream system, set
the failed task to a fallout execution mode. See "About Failed Tasks and Execution
Modes" for more information.

Managing Fallout from Failures in Network or System Resources
OSM typically detects network or system resource problems when automated task
automated plug-ins send messages to external fulfillment systems and receive
responses back. Network and system resource problems have to do with software
or hardware infrastructure issues unrelated to business configuration or data errors.
For example, a power outage may render certain system resources unavailable or the
network on which OSM transmits message may experience a failure.

Figure 11-2 shows a normal synchronous message exchange between OSM and an
external system. The following lists typical locations where fallout can occur in this
exchange:

• The message generated by automation plug-in A-1 may fail to reach the external
message queue. This can occur because of a network failure or a middleware
failure. In this scenario, OSM performs a rollback of Task A and the failure
message returns to the oms_events queue. Oms_events retries Task A up
to a predefined limit. When oms_events exceeds the retry limit, oms_events
forwards the failure message to the omsErrorQueue. You can configure OSM to
automatically transitions the task to a fallout execution mode when an automation
plug-in receives a failure exception by selecting the Fail Task on Automation
Exception check box in the automation plug-in Details tab. See "About Failed
Tasks and Execution Modes" for more information.

Note:

The default settings for oms_events are 15 retries with a 10 second
delay between attempts. Do not change these queue settings because
OSM relies on this queue for internal order processing. For more
information about the oms_events queue, see OSM Developer's Guide.

• The message generated by automation plug-in A-1 reaches the external system,
but the external system does not respond. This can occur because of a

Chapter 11
Understanding Fallout Sources

11-5

middleware failure, because the external system is unavailable, or because the
external system is too busy to respond. To deal with such scenarios, you can
configure jeopardy notifications on the automated task to trigger after a specific
duration. The jeopardy can run an automation plug-in that can perform a variety
of tasks such as transitioning the task to a fallout execution mode, sending
a notification to a fallout specialist to manually investigate the problem on the
external system, retrying the task, and so on.

• The message generated by automation plug-in A-1 eventually produces a
response from the external system. Although the process may be delayed, such
problems can be ignored unless the problem occurs on a regular basis causing
performance issues. At this point, further investigation is required on the external
system to determine the cause of the delay.

Figure 11-2 Automation Flow: Simple Synchronous

Managing Fallout During Order Creation
The following failure scenarios can occur when using the CreateOrder web service
operation:

Chapter 11
Understanding Fallout Sources

11-6

• Failure to recognize the order. To resolve order recognition failures, model a catch
all order recognition rule for such orders.

An order that fails to be recognized by any recognition rule is rejected by OSM
and lost. No record of it is sent to the order-source system. To make sure
that all orders are captured in OSM, create a recognition rule that accepts all
incoming customer orders. Prioritize it at the lowest level (0) and prioritize all
other recognition rules higher so they are processed first. Using this lowest-level
recognition rule, an invalid order is recognized, and then it fails during validation. It
then transitions to the Failed state and is kept by OSM.

• Recognition rules are global entities. An incoming customer order could be
recognized by a recognition rule deployed in the system that you did not intend
to be matched if you are not careful with the relevancy settings and the recognition
rule.

• The order recognition rule accepts the order but a validation rule error occurs. For
example, a missing field on the order. The order fails, and the original incoming
customer order is attached. You can publish an event based on order failure.

In the case of validation errors, revise the order request and resubmit it.

• The order recognition rule accepts the order but a transformation rule error occurs.
For example, where the data you are transforming does not match the creation
task. In the case of transformation errors, troubleshoot and fix the transformation
logic, and resubmit the order.

• Failure due to incorrect authentication credentials. In such cases, verify that the
credentials are still valid and the account has not been locked out.

• Failure to create the correct control data for the orchestration plan. In such cases,
verify how the cartridge is modeled and the XQuery expressions involved in
generating an orchestration plan.

• Failure when the CreateOrderBySpecification web service operation is used,
usually because the input data is not valid or permissions are not correctly set.
The error response can be:

– InvalidOrderSpecificationFault

– InvalidOrderDataFault

The error response includes error details.

If either of these two faults is returned, revise the order and resubmit it.

• The order is a revision order, and the point of no return based on
order state transition has been reached on the base order. In this case,
TransactionNotAllowedFault is returned. If you have configured a follow-on order
for this scenario, you can submit the follow-on order. Otherwise, you can submit a
new order.

You can specify to display a message in the Task web client and the Order
Management web client if an order fails during order recognition rule validation and
transformation. To do so, specify the fail-order reason when you model the recognition
rule in Oracle Communications Design Studio. In addition, you can configure any
validation rule error (returns a non-true response) in the Order Management web
Client.

OSM sends an exception response to the sender if an order creation failure occurs.

Chapter 11
Understanding Fallout Sources

11-7

Managing Fallout in the OSM Web Clients
You can use both the Order Management web client and the Task web client to
manage order fallout.

• You typically use the Order Management web client to search for orders with
warning and failure order item processing state, failed tasks, or failed orders. You
suspend, resume, cancel, retry, resolve, fail, or terminate an order in the Order
Management web client. You can also run these operations as job control orders
for groups of orders. See "Managing Fallout in the OSM Order Management Web
Client".

• You typically use the Task web client to run fallout management operations within
tasks running in a fallout execution mode. You can fail, resolve, retry, and raise
exceptions on manual tasks in the Task web client. You can also suspend, resume
cancel, retry, resolve, fail, or terminate an order in the Task web client.

Both clients can be used for fallout management, but the primary differences are:

• You use the Order Management web client to search for orders, order items, and
tasks that have failed based on order item processing states, fulfillment states, and
failed task execution modes. The View Faults search page is particularly useful
in this regard. You can view the problem that is causing the order to fail, but you
cannot resolve the order failure by changing order data in the Order Management
web client.

• You use the Task web client to manage problems with tasks and processes; for
example, you can manage failed orders by working on tasks running in a fallout
execution mode. You can change order data that may resolve the order failure.
You can manually trigger a fallout exception.

Each client can launch the other client when required. To learn more about navigating
between the clients so you can quickly access the orchestration view and task-level
view of an orchestration order, see the getting-started discussions in each web client's
user guide.

Modeling Fallout in Tasks
The following sections describe how to model order fallout in tasks.

About Failed Tasks and Execution Modes
OSM manual and automated tasks include execution modes for normal forward
processing operations and change order management operations. OSM manual and
automated tasks also include these operations in fallout execution modes that you can
assign to fallout workgroups with responsibilities for troubleshooting failed tasks.

Fallout execution modes allow:

• Separate fallout workgroup (roles) can be associated with a task that has failed.
Fallout users associated with the fallout workgroups can then receive and be
assigned to the failed tasks. This is important, for example, if you have a dedicated
team of fallout specialists who constantly monitor orders and tasks for fallout.
Having a fallout workgroup associated with the task that failed means that these
fallout specialists have direct access to the task that generated the failure.

Chapter 11
Managing Fallout in the OSM Web Clients

11-8

• Visibility of failed tasks in the OSM Order Management web client and the OSM
Task web client.

• Avoid additional modeling. Although you can create separate fallout tasks to
handle fallout scenarios, modeling fallout on the original task using fallout
execution modes helps you avoid additional modeling.

• Run recovery operations in the OSM Clients, such as Retry Order, Resolve Order,
Retry Task, and Resolve Task and corresponding OSM Web Service API and XML
API. You can also run many of these recovery operations as job control orders to
correct failures in bulk.

• Failures that occur in amending states can be detected and managed. For
example, a failure during cancelation can be corrected so that the cancelation
process can continue or a failure during revision can also be corrected so that the
revision process can continue.

• You can specify query tasks and roles to specify the data available to fallout
managers.

• Automation plug-ins to run on tasks that have failed if they are configured to run in
the corresponding fallout execution mode.

You can model automated tasks to transition to a fallout execution mode based on
error messages received from downstream systems by using the OSM Java API
TaskContext.failTask or TaskContext.failTaskOnExit methods in the automation
plug-in code. You can also use the Task web client to fail manual tasks causing the
manual tasks to transition to a fallout execution mode. See OSM Task Web Client
User's Guide for more information.

About Alternate Task Fallout Management Methods
Alternate fallout management methods that OSM supports for backward compatibility
include:

• Set the task to a user-defined failed state. The order remains in the In Progress
state, and other tasks can still be carried out while the recovery is managed. To
correct the problem, you can manually complete the task or reset the state of the
task to Received, which retries the task.

This method requires additional modeling of task states and when the task is in
the failed state, the other states cannot be used at the same time. This means that
plug-ins cannot run against tasks that have failed, users cannot be assigned to
failed tasks, and there cannot be a separate fallout workgroup associated with the
task in the user defined failed state.

• Transition the task to a manual fallout recovery task using a task status transition.
This provides a specific set of data that applies to redoing the task. You can then
use a status transition from the recovery task to the failed task to retry the failed
task. This option can cause data consistency issues because it requires the order
manager to maintain data integrity within OSM instead of allowing OSM to handle
the data changes through compensation.

This method requires additional modeling so that every task that can have a failure
requires a status transition from the failed task to a recovery task. In addition,
when compensation scenarios occur, the recovery tasks may be included in the
compensation plan even though the recover task is no longer required.

Chapter 11
Modeling Fallout in Tasks

11-9

Note:

Oracle recommends using fallout execution modes instead of these
alternative task fallout methods. For more information, see "About Failed
Tasks and Execution Modes".

Modeling Task Notifications for Fallout
Within the Design Studio automated or manual task editors, you can model jeopardy
notifications that send email, display jeopardy notifications in the Task web client,
and trigger automation plug-ins when the order is exceeding a specified duration or
pass rules that evaluate them. For example, you can configure a jeopardy to run
an automation plug-in when there is a problem in the network or system resource
that OSM is communicating with and no response has returned within the specified
time. See "About Jeopardy Notifications" for more information about task jeopardy
notifications.

About Modeling Fallout Exceptions
You can designate parameters that can potentially contain problematic or inconsistent
data as fallout data that you can use to trigger a fallout exceptions in the Task web
client. This functionality causes compensation to occur from the point where the data
was introduced. This functionality should only be used from well-known points where
such problematic data can be generated.

For example, data received from an SRM system can sometimes be faulty and not
reflect what is in the network. In this case, the data received from the SRM system
can be designated as having the potential to trigger a fallout exception. When a task
attempts to use the data to send an activation request to an activation system, the
activation system returns an error message that causes the task to raise the fallout
exception. OSM then calculates what compensation is require up to the point where
the data was introduced at the SRM system. As part of the compensation, the task that
originally communicated with the SRM system runs in the redo execution mode and
the SRM system returns corrected data. All tasks between the task that communicated
with the SRM system and the one that sent the faulty data to the activation system are
compensated accordingly.

A similar scenario may involve OSM in the SOM and TOM roles as illustrated in
Figure 11-1. In this scenario, the faulty data may have been introduced by the SRM
system to OSM in the SOM role, but the data only triggers a fallout exception in
OSM in the TOM role. In this case, OSM TOM traces the fallout exception back to
the creation task of the TOM order. OSM transitions the TOM order to the Waiting for
Revision state. At this point, the problem must be escalated back to the OSM SOM
system and the parent service order that generated the technical order.

In addition to these data-centric examples, you can also use fallout exceptions in well-
defined points during order processing where errors can occur, although the errors are
not tied to specific data and the resolution could involve reverting back to a specific
point in order processing. For example, you could designate a parameter called point
A at task A as fallout data that would allow you to trigger compensation back to task
A from any task after task A that contains the parameter point A. It is not the data on
point A that causes the error, but you can use point A to revert back to task A.

Chapter 11
Modeling Fallout in Tasks

11-10

You can configure fallout entities in Design Studio to specify the data that you want
to display in the Order Management web client. To do so, when modeling an order,
create a fallout entity and include it in the order model. A fallout entity includes one or
more data elements that you want the Order Management web client to display.

Figure 11-3 shows a fallout configured in OSM. In this example, the fallout is named
PortAlreadyAssigned. It is used when a task for activating a service fails because
a port was assigned that is not available. The data element is asdl_service_details/
port_id.

Figure 11-3 Fallout Defined in an Order

After you configure fallouts in the order specification, you can assign those fallouts to
manual tasks that need them. This association enables OSM to identify the task that
generated the error, transition the order to the Amending state, and initiate amendment
processing.

To resolve fallout, OSM follows the same process as when it performs amendment
processing: It builds a compensation plan, and then applies the required changes.

Fallout can be triggered based on a single incorrect field in a single task. Because
fallout can be mapped to one or more data elements, it is possible to have multiple
errors in a single task view.

You can also create fallout groups to simplify assigning fallout data to orders. A fallout
group is a group of fallout specifications, each of which includes a set of data to
display in the Order Management web client. This enables you to review multiple
fallouts together in the Order Management web client when the corresponding types of
fallout occur.

To trigger fallout in an automated task, use the XML API FalloutTask.Request through
com.mslv.oms.automation.OrderContext.processXMLRequest.

Managing Fallout Exceptions in the Task Web Client
You can initiate fallout in the Task web client by raising an exception. An exception
is a mechanism used to interrupt or stop an order or to redirect it to any task in the

Chapter 11
Modeling Fallout in Tasks

11-11

same process or any other process. You can use two types of exceptions: process
exceptions and fallout exceptions.

You can use a fallout exception to initiate fallout to correct an error. A fallout
exception allows you to initiate fallout from a particular task to correct an error caused
by a previous task. When you raise a fallout exception, the system identifies the task
that generated the error, transitions the order to the Amending state, and initiates
amendment processing.

To recover from order fallout, the order might require a revision order to redo some
of the order processing. Figure 11-4 shows how the system manages compensation
tasks due to fallout.

In this scenario, Task B is responsible for the error and Tasks C and D include the
error data. The fallout exception is raised at Task G.

Figure 11-4 Order Fallout Corrected by a Revision Order

In this figure:

1. An order is processed using the above workflow following the path A, B, C, D, G.

2. A fallout exception is raised at Task G.

3. OSM determines that Task B first output the error and initiates amendment
processing as follows:

• Same branch: If, during the redo processing of Task B, the task completes
with the same completion status as it did in normal processing, subsequent
Tasks C and D are also redone and the flow is complete.

• Different branch: If, during the redo processing of Task B, the task completes
with a different completion status causing Task E to be the next task, the
obsolete branch of Tasks C and D must be undone and the new branch of
Tasks E and F must be done while still in the Amending state.

Chapter 11
Modeling Fallout in Tasks

11-12

Note:

If the error data was generated by the creation task, the order transitions to
the Waiting For Revision state. No compensation tasks are created and the
order must be corrected through a revision order.

You can use a process exception to stop or redirect an order. Process exceptions
are typically part of the configured order flow and can be used to manage the order
manually.

Note:

Process exceptions is deprecated. Exception processes are incompatible
with OSM's built-in compensation functionality. An order for which an
exception process is configured cannot accept revisions, cancellations, or
fallout.

Modeling Fallout in Orders
The following sections describe how to model order fallout in orders.

Modeling the Failed Order State
When an order fails and you want no further progress to occur on the order, the Fail
Order transaction transitions the order to the Failed state. You can then resolve the
problem in the downstream system. When the problem is corrected, reset the status of
the order to In Progress by using the ResolveFailure web service operation.

This method should only be used when no further processing is possible on the
order and failing a task to a fallout execution mode is not sufficient to correct the
problem. Solution developers must consider that large orders with many concurrent
order components and tasks completely stop.

You can trigger an order transition to the Failed state from the following states:

• Not Started

• In Progress

• Waiting for Revision

• Suspended

• Waiting

When the problem is fixed, the order can be moved out of the Failed state as follows:

• If the order was failed from the Not Started, In Progress, Waiting, or Waiting for
Revision states, the Manage Order Fallout transaction moves the order back to the
state it was in before being failed.

• If the order was failed from the Suspended state, the order is transitioned back to
the Suspended state.

Chapter 11
Modeling Fallout in Orders

11-13

If the order needs a revision to be fixed, the Submit Amendment transaction places
the order in the amendment queue, after which the Process Amendment transaction
transitions the order to the Amending state. A revision can come from two sources:

• The originating order-source system can enter a revision order.

• A process exception, which includes redo and undo operations, can run.

If the order must be restarted, the Cancel Order transaction transitions the order to the
Cancelling state, and then to the Cancelled state. This operation undoes all changes
and returns the order to the creation task.

If the order has an orchestration plan, it cannot be restarted after being canceled. The
Cancelled state is a final state for orders that have an orchestration plan.

See "Modeling Order Life-Cycle Policy States and Transitions" for more information.

Modeling Order Notifications for Fallout
Within the Design Studio Order editor, you can model jeopardy notifications that send
email, display jeopardy notifications in the Task web client, and trigger automation
plug-ins when the order is exceeding a specified duration or pass rules that evaluate
them. For example, you can configure a jeopardy to run an automation plug-in when
the order is taking too long to complete. See "About Jeopardy Notifications" for more
information about task jeopardy notifications.

You can create automated fallout messages based on the exception order milestone
in the Order editor, Events tab. The exception milestone is triggered when an order
moves from the In Progress state to the Amending state using the Raise Exception
transition. The Raise Exception transition is triggered whenever an operator initiates
a fallout exception from a manual task or whenever an automation plug-in triggers a
fallout exception. See "About Using Order Milestones to Trigger Event Notifications"
for more information.

Figure 11-5 shows an automation plug-in configured to run when the exception order
milestone occurs.

Chapter 11
Modeling Fallout in Orders

11-14

Figure 11-5 Exception Order Milestone that Triggers Fallout Automation Message

In addition, you can use order data change notifications in the Order editor
Notifications tab to generate messages to users that are members of specific
workgroups (roles), displays the messages in the Task web client, and triggers
automation plug-ins whenever a specific data field changes. For example, you can
configure OSM to communicate order fulfillment state or processing sate changes of
each order that is part of the order fulfillment process running in COM, SOM, and TOM
OSM roles including order item failure and warning states. Whenever a TOM order
item fulfillment state or processing state changes, you can use an order data change
notification to communicate the change to the OSM SOM instance that generated the
TOM order. See "About Using Order Data Changes to Trigger Notifications" for more
information.

About Aborting or Terminating an Order
If the order fallout cannot be resolved by any other means, the Abort Order OSM
Web Service operation transitions the order to the Aborted state. In addition, you can
terminate an order from the Order Management web client which also transitions the
order to the Aborted state.

After aborting the order, you can resubmit the order from the order-source system.
Only use this method when all other approaches are impossible.

Chapter 11
Modeling Fallout in Orders

11-15

Managing Fallout in the OSM Order Management Web Client
In the Order Management web client, you can search for faults using the View Faults
search page. You can search for failed orders based on the location of the source of
the fault. Fault source types can be:

• On the Order when an order transitions to the failed state.

• On an order item when the order item transitions to a failed order item processing
state.

• On a task when a task transitions to a fallout execution mode.

From the View Fault search page Results area, you can:

• Select the failed order to view order and order item details in the Order Details
Order, Order Items, and Order Components tabs.

• Select tasks running in a fallout execution mode to view and troubleshoot the task
in the Task web client.

From the Manage Orders search page and results area, you can:

• Find orders based on whether they have a failure at the task or order level,
whether they are running in the failed state, whether order tasks are running in a
fallout execution mode, and so on.

• Run operations such as retry and resolve failed orders to retry or resolve all failed
tasks within the order.

• Run operations on multiple orders as a job control order.

• View details about individual failed order to determine why it failed.

From within the Order Details page, you can also run actions on an individual order
and on the Order Details Order Component tab, you can run retry and resolve actions
on all tasks within individual order components. In addition, in the Order Details page
Order Components tab, Running & Failed Tasks subtab, you can view all failed tasks
and retry or resolve each task individually.

To correct the error that caused the failure, you often must use the OSM Task web
client to work on tasks in fallout execution modes. You might also need to work with
external systems. There is no functionality in the Order Management web client to
manually edit tasks.

Note:

If the order failed because of a recognition rule failure or after reaching its
point of no return, it cannot be resolved. Also, the ability to suspend, cancel,
or terminate an order depends on its life-cycle policy.

If you cannot resolve the order or task failure, you can use the Order Management
web client to cancel or terminate the order:

• Canceling an order immediately stops its processing and sets the order state to
Canceled. Any tasks that have already completed for the order are rolled back.

Chapter 11
Modeling Fallout in Orders

11-16

If the order has an orchestration plan, the order cannot be resumed. If the order
does not have an orchestration plan, it can be resumed.

• Terminating an order immediately stops its processing and sets the order state
to Aborted. The order cannot be resumed. Unlike canceling an order, terminating
an order does not roll back any tasks that have already completed. As a result,
clean-up may be required.

Note:

Consider the impact on other systems of canceling or terminating orders.
Depending on how your solution is configured, upstream systems may not be
aware that an order has been canceled or terminated.

You can also use the Order Management web client to fail an order manually. Failing
an order stops its processing and sets its state to Failed. It is not possible to change
the state of a failed order or to make other changes until you resolve the order
failure. Orders you fail manually are treated the same way as orders that are failed
automatically by the system. They are considered fallout.

Note:

In most environments, fallout-handling rules detect processing problems and
automatically fail orders. Manually failing orders is not normally required.
There may be some situations and environments when it is necessary to
manually fail orders, however.

Make sure you understand how other systems in your order processing
solution handle failed orders. Depending on how your solution is
implemented, upstream systems may not be aware that an order has been
manually failed.

Chapter 11
Modeling Fallout in Orders

11-17

12
Modeling Fulfillment States and Processing
States

This chapter describes how to model fulfillment states and processing states in an
Oracle Communications Order and Service Management (OSM) solution.

About Fulfillment States, and Processing States
You can associate the predefined order component order item (OCOI) processing
states to messages from external fulfillment systems or to events that occur within
OSM to generate an aggregate order item processing state as an order processes.
OSM then uses these OCOI processing states to calculate You can also define
fulfillment states for orders and order items to report on different business scenarios.

Table 12-1 compares processing states with fulfillment states.

Table 12-1 Comparing Processing States with Fulfillment States

Features Processing States Fulfillment States

Auto-configured and predefined Yes No

Manually configured and defined No Yes

Tracked as normal, warnings, or failures counts in the Order
Management web client Order tab, Summary subtab.

Yes No

Tracked as warning or failure counts in the Order
Management web client Order Items tab.

Yes No

Failure states in the Order Management web client can be
traced:
• From the order item
• To the order components processing the order item
• To the tasks processing the order items in each order

component. Identifying when a task generates a failure
state is easier when the task also transitions to a fallout
execution mode.

Yes Yes

Updated for each order item in the Order Management web
client Order Items tab.

Yes Yes

States reflected up the order item hierarchy Yes Yes

States reflected on orders based on order item hierarchy
states

No Yes

Modeling Fulfillment States
Figure 12-1 is a detailed depiction of fulfillment state processing for a small part
of a sample implementation. It shows the way multiple external responses can be
translated into a single fulfillment state for the order.

12-1

Figure 12-1 Fulfillment State Composition

At run time, OSM maps the external fulfillment states to mapped fulfillment states on
an order item. Order item fulfillment states are composed using the immediate children
of the order item, and order fulfillment states are composed using the root-level order
items.

Whenever one of the input fulfillment states for an order item changes, the fulfillment
state of that order item (and all of its parents, including the order) is recalculated. For
example, if the mapped fulfillment state of "leaf" order item A changes, the composite
fulfillment state of order item A is recalculated. If the composite fulfillment state for
order item A changes and it has a parent, order item B, order item B's fulfillment
state is recalculated as well. If the composite fulfillment state of order item A does not
change, the fulfillment state for order item B is not recalculated.

In the figure:

1. The external billing system sends a status of OK, which is used directly as the
external fulfillment state for OrderComponent_Billing.

2. The external fulfillment state of OK is mapped to Complete for both the order items
that are fulfilled by that order component (OrderItem_VoIP and OrderItem_Mobile)
using the fulfillment state mappings.

3. The activation system has sent a complex message indicating the statuses of
different parts of the fulfillment request. That message is translated by the custom
code in the automation to the external fulfillment state of MOBILE_FAIL.

Chapter 12
Modeling Fulfillment States

12-2

4. The fulfillment state mappings are configured to map MOBILE_FAIL for this order
component to mean that OrderItem_Mobile has failed and OrderItem_VoIP has
succeeded.

5. The fulfillment state composition rules for the OrderItem_VoIP order item then look
at the mapped fulfillment states for OrderItem_VoIP for each order component
(OrderComponent_Billing and OrderComponent_Activation) that fulfills that order
item. Because the mapped fulfillment states for both of the order components
are Complete, the composite fulfillment state for the order item is also set to
Completed.

6. The fulfillment state composition rules for the OrderItem_Mobile order item
then look at the mapped fulfillment states for OrderItem_Mobile for each order
component (OrderComponent_Billing and OrderComponent_Activation) that fulfills
that order item. Because the mapped fulfillment states for one of the order items is
Complete and for the other order item is Fail, the composite fulfillment state for the
order item is set to Failed.

7. The fulfillment state composition rules for the order then take the composite
fulfillment state of the highest-level parent order items to determine the fulfillment
state of the order. In many cases, the failure of any part of an order might be
configured as a failure of the order as a whole. However in this example, fulfillment
states have been configured that, because part of the order (VoIP) is ready for
customer use, the composite fulfillment state is set to Part_Success.

Defining Fulfillment States
Fulfillment states are configured in Oracle Communications Design Studio. At a high
level, configuration of fulfillment state management has the following main steps:

1. Define external fulfillment states for order components: Create a list of values
for the order component that matches the statuses returned by the external
systems or automations. An external fulfillment state is available on the order
component where it is defined and on any order component that extends that
order component. See "Modeling External Fulfillment States" for more information.

2. Create and configure fulfillment state maps: Create one or more lists of values for
the common fulfillment states and create mappings to translate external fulfillment
states into mapped fulfillment states. Common fulfillment states are used as
mapped fulfillment states and as composite fulfillment states. Fulfillment state
mappings provide the evaluation and normalization of the external system's states
into mapped fulfillment states. Common fulfillment states and fulfillment state
mappings are available for the entire workspace. See "Modeling Fulfillment State
Maps" for more information.

3. Create and configure order item fulfillment state composition rule sets and
order fulfillment state composition rule sets: Create the composition rule sets to
determine the fulfillment state of an order or order item from the fulfillment state
of its child items. Composition rule sets are based on the order item and order
hierarchy, and compose fulfillment states into composite fulfillment states that
reflect the state of entire order items or orders. See "Modeling Fulfillment State
Composition Rule Sets" for more information.

The external fulfillment states, order item fulfillment states, and order fulfilment are
stored in the ControlData for the order. See "Modeling Data for Fulfillment States " for
more information. Mapped fulfillment states are not stored on the order.

Chapter 12
Modeling Fulfillment States

12-3

Modeling External Fulfillment States
External fulfillment states consist of a list of responses expected by an order
component and any order components that extend the order component. When an
external fulfillment state is defined, it can be used in a fulfillment state mapping.

Modeling Fulfillment State Maps
You use fulfillment state maps to configure common fulfillment states and fulfillment
state mappings. Fulfillment state mappings are the entities that contain the actual
mapping information, and fulfillment state maps are containers for the information.
Functionally, it does not matter whether you have one or many fulfillment state maps.
Each common fulfillment state is available to all of the fulfillment state mappings,
regardless of which fulfillment state map it is configured in. This means that each
common fulfillment state needs to be unique in the workspace. There are optional
default common fulfillment states that can be used. See Design Studio Modeling OSM
Orchestration Help for more information about the default states.

Common fulfillment states have two functions:

• They are used as the result of the fulfillment state mappings. When they are used
this way, they are referred to as mapped fulfillment states.

• They are used as the result of the composition rules. When they are used this
way, they are referred to as composite fulfillment states. If these fulfillment states
are to be sent to an upstream system, you configure these values to match what
the upstream system expects. (For more information about composition rules, see
"Modeling Fulfillment State Composition Rule Sets".)

Common fulfillment states, used as either mapped or composite fulfillment states, are
configured in a single list in the States tab of the Fulfillment State Map editor. You do
not need to assign the common fulfillment state as either a mapped fulfillment state
or a composite fulfillment state when you configure it. The same common fulfillment
state can be used for both purposes at the same time. Figure 12-2 shows the common
fulfillment states configured in a fulfillment state map.

Chapter 12
Modeling Fulfillment States

12-4

Figure 12-2 Detail from Fulfillment State Map Editor States Tab

After the fulfillment states have been created, you create the mappings in the
Mappings tab of the Fulfillment State Map editor.

A fulfillment state mapping maps an external fulfillment state to a common fulfillment
state. When defining a fulfillment state mapping, you must define when that particular
mapping will be used. Each mapping must specify a single fulfillment pattern, order
item, and orchestration sequence, with a single set of orchestration stage and order
component combinations. There may be a large number of mappings because wild
cards cannot be used.

These criteria are defined in Design Studio and should be specified in the order given.
Some of the entries later on the list cannot be set until the earlier ones have been
entered.

1. Fulfillment pattern: The fulfillment pattern value restricts the fulfillment state
mapping to apply only to order components defined on orchestration plans
associated with the specified fulfillment pattern. For example, the fulfillment state
mappings might be very different between mobile and IP services.

2. Order item: The selected value restricts the fulfillment state mapping to apply only
to order components responsible for processing the specified order item.

3. Orchestration sequence: The available orchestration sequences are those
related to the specified order item. The selected value restricts the orchestration
stages to which the mapping can apply.

4. Orchestration stage: One or more orchestration stages must be specified for
the mapping. Any of the orchestration stages in the orchestration sequence can
be specified. Use only one orchestration stage per mapping, if possible. Using
only one orchestration stage facilitates maintenance of the solution because your
decomposition rules may change over time.

5. Order component: One order component must be specified for each specified
orchestration stage.

You can further restrict the application of the mapping by specifying any of the
following:

Chapter 12
Modeling Fulfillment States

12-5

• Fulfillment mode: If specified, the fulfillment mode value, combined with the
fulfillment state mapping's fulfillment pattern value, determines the orchestration
plan to which the fulfillment state mapping applies. The fulfillment state mapping
is evaluated for order components associated only with the identified orchestration
plan. The fulfillment state mapping returned for an item with Cancel fulfillment
mode could be very different than that for an item with Deliver fulfillment mode.

• Properties/property value combinations: After the order item is selected, one
or more order item property value criteria values may be specified. The set of
order item properties available for selection are those properties that are defined
on the fulfillment state mapping's selected order item specification. For example,
you might have a property called LineType and have different mappings based on
whether the value was VoIP Phone or soft phone.

• Current Fulfillment State: If a current fulfillment state is specified, the fulfillment
state mapping is evaluated only for those order components where the current
fulfillment state of the item on the component matches the specified value. This
current fulfillment state is taken from the list of common fulfillment states, meaning
that it is the target fulfillment state of another fulfillment state mapping or the result
of composition rules. You might use this to set a mapped fulfillment state of Failed
if that is the current state; if the current state is In_Progress, the new state might
be Complete.

Modeling Fulfillment State Composition Rule Sets
Orders contain one or more order items. Order items can in turn be fulfilled by one
or more order components and also contain other order items using the order item
hierarchy. See "Modeling Order Item Hierarchies" for more information.

There is a fulfillment state assigned to the order and order item as a whole that takes
into account all of the fulfillment states of its immediate children. This is referred to as
a composite fulfillment state.

Fulfillment state composition rules for the order item are defined in order item
fulfillment state composition rule sets. These rules aggregate the mapped fulfillment
states for any order components that fulfill the order item and also the fulfillment states
of any child order items of the order item.

Fulfillment state composition rules for the order are defined in order composition rule
sets. These rule sets aggregate the composite fulfillment states of the root-level order
items.

Note:

To use fulfillment states, you must configure composition rule sets both for
orders and for order items.

The configuration processes for order fulfillment state composition rule sets and order
item fulfillment state rule sets are similar.

A fulfillment state composition rule set contains rules, which in turn contain conditions,
as shown in Figure 12-3.

Chapter 12
Modeling Fulfillment States

12-6

Figure 12-3 Detail from Order Fulfillment State Composition Rule Set Editor

You use composition rules to specify the fulfillment state for the order or order item
when all of the conditions are met (logical AND). If there are separate situations that
can result in the same fulfillment state (logical OR), create separate rules that evaluate
to the same fulfillment state.

For example, say that you have one condition that specifies that all of the input
fulfillment states must be FAILED, and another condition that specifies that all of the
input fulfillment states must be CANCELLED. Both of these conditions should result
in a fulfillment state of NOT_DONE. You also have another condition that allows a
mixture of FAILED and CANCELLED states that should result in a fulfillment state of
CHECK_STATUS. In this case you would need three separate rules. The last condition
requires its own rule because it results in a different fulfillment state. The other two
conditions each require their own separate rule because it would never be possible for
both of those conditions to be met at the same time.

The fulfillment state condition based on the input fulfillment states is the same for
both order item composition rule sets and order composition rule sets. It allows the
inclusion (or exclusion) of one or more fulfillment states according to whether any,
all, or none of the input fulfillment states are in a selected list of fulfillment states.
Figure 12-4 shows the details for a condition.

Chapter 12
Modeling Fulfillment States

12-7

Figure 12-4 Fulfillment States Section of Condition Details Subtab

The fulfillment states selected in the condition are constrained by a conjunction that
must be true for the condition to evaluate to true. The available conjunctions are:

• Any: The condition requires at least one of the input fulfillment states to match one
of the selected fulfillment states.

• All: The condition requires all of the input fulfillment states to match the selected
fulfillment states.

• None: The condition requires that none of the input fulfillment states match any of
the selected fulfillment states.

The list of fulfillment states that can be assigned as mapped fulfillment states and the
list that can be assigned as composite fulfillment states is the same list. The common
fulfillment states created in the Fulfillment State Map editor States tab apply to both
the mapped and composite fulfillment states. Therefore, when you are generating a
composite fulfillment state, the list of fulfillment states that you can choose in this
condition is the list of common fulfillment states. (See "Modeling Fulfillment State
Maps" for more information about this list.)

Order Item Fulfillment State Composition Rule Sets

In addition to the fulfillment state conditions discussed above, in order item fulfillment
state composition rule sets you can set order item property values that must be
present for the composition rule to evaluate to true. If both Any/All/None and property
values are defined, both must be true for the composition rule to evaluate to true.

Order Fulfillment State Composition Rule Sets

In addition to the common fulfillment state-related criteria discussed above, in order
fulfillment state composition rule sets you can also specify an XQuery expression that
must evaluate to true for the condition as a whole to evaluate to true. For example:

Chapter 12
Modeling Fulfillment States

12-8

/GetOrder.Response/_root/OrderHeader/AccountIdentifier > 0

This XQuery expression provides the same functionality available to XQuery
expressions exposed elsewhere in Design Studio, including access to order data,
access to behavior instances, and external configuration.

Modeling Processing States
Order item processing states are a predefined set of states that an order item can
enter that derive from a predefined sets of OCOI processing states. Because OSM can
process an order item in more than one order component, OSM then aggregates the
OCOI values returned from external systems in each order component to determine
the overall processing state of the effected order item. You can apply OCOI processing
states based on values in response messages from external systems that OSM
receives in automated task automation plug-ins or based on direct operator input in
manual tasks.

In addition, because order items can be arranged hierarchically, when a child order
item processing states changes, OSM also evaluates whether the parent order item
should change, and in the same way, if the parent order item is itself the child of
another parent order item, OSM evaluates the parent order item when its child order
item changes. This process continues up the hierarchy.

The following example shows the Brilliant BroadBand offer and all its descendant order
items including their processing states.

Brilliant BroadBand [Add] InProgressWithFailures
 BroadBand Service [Add] InProgressWithFailures
 Basic Internet Access [Add] In Progress
 Internet Media Service [Add] InProgressWithFailures
 Content on Demand [Add] InProgressWithFailures <--A1=Failed OCOI
 Video on Demand [Add] Not Started
 E-Mail Service [Add] In Progress
 Internet 100% TBO [Add] In Progress
 Firewall [Add] In Progress
 Customer Broadband Model In Progress
 Wireless Router In Progress
 Broadband Installation Fee In Progress
 Broadband Activation Fee In Progress

As this order progresses, one of the order components processing the Content on
Demand order item receives a response message at automation plug-in instance A1.
Based on a value within the response message, the A1 updates the automation task
data with a Failed OCOI processing state. This change automatically causes OSM to
evaluate all other order components involved in processing the Content on Demand
order item and based on this evaluation, assigns the Content on Demand order item
with the InProgressWithFailures order item processing state.

For more information about OCOI processing states and how OSM aggregates OCOI
processing states, see "Order Component Order Item Processing States".

The change in the processing state of the Content on Demand order item causes OSM
to evaluate whether Content on Demand's parent order item, Internet Media Service,
also requires an order item processing state change. OSM determines the processing
state of the Internet Media Service order item based on its children order items:
Content on Demand and Video on Demand. When OSM determines that the Internet
Media Service order item also requires an order item processing state change, this
causes OSM to further evaluate BroadBand Service and its children (Basic Internet

Chapter 12
Modeling Processing States

12-9

Access, Internet Media Service, E-mail Service, and so on). Likewise, a change in the
Broadband Service order item also causes OSM to evaluate Brilliant Broadband based
on the processing states of all of its children.

For more information about order item processing states and how OSM aggregates
order item processing state changes across an order item hierarchy, see "Order Item
Processing States".

Order Component Order Item Processing States
You can apply OCOI processing states from automated or manual tasks that fall
into the normal, warning, or failed categories. These categories impact the overall
processing state of an order item (see "Order Item Processing States" for more
information about these categories).

Table 12-2 shows the OCOI processing states and the categories they are included in.

Table 12-2 OCOI Processing States

OCOI Processing State Category Description

NotStarted Normal Apply the NotStarted OCOI processing state to order items
that have not begun processing in an order component. For
example, you could create an automated task in the first order
component that OSM runs for an order that updates all order
items being processed on an order with the NotStarted OCOI
processing state.

InProgress Normal Apply the InProgress OCOI processing state when the first task
in an order component process begins or when tasks within a
process resume normal processing, for example, after resolving
a failure in a task.

Completed Normal Apply the Completed OCOI processing state to indicate that
the final task has completed successfully within the order
component process. For example, in an automation plug-in, you
can update the Completed OCOI processing state in conjunction
with the completeTaskOnExit method that completes the final
task of the order component process.

Failed Failure Apply the failed OCOI processing state to indicate that a failure
has occurred in order processing and fallout intervention
is required to correct the error. For example, the Failed
OCOI processing state could be used in conjunction with the
failTaskOnExit method that transitions the task state to the
failed-Do execution mode so that an operator can manually
troubleshoot the task. A failed OCOI Processing state causes the
Failure count to increase by one.

FailedContinue Warning Apply the FailedContinue OCOI processing state to indicate a
failure condition that does not require fallout intervention to
correct the error. The FailedContinue OCOI Processing state
causes the Warning count to increase by one.

Undoing Normal Apply the Undoing OCOI processing state the entire OCOI is
being undone as a result of a revision order or as a result of a
fallout exception that triggers order amendment.

UndoCompleted Normal Apply the UndoCompleted OCOI processing state when the
OCOI is undone.

Chapter 12
Modeling Processing States

12-10

Table 12-2 (Cont.) OCOI Processing States

OCOI Processing State Category Description

UndoFailedContinue Warning Apply the UndoFailedContinue OCOI processing state to
indicate a failure condition that does not require fallout
intervention to correct the error. The FailedContinue OCOI
Processing state causes the Warning count to increase by one.

UndoFailed Failure Apply the UndoFailed OCOI processing state to indicate that
a failure has occurred in order processing while undoing
the OCOI and fallout intervention is required to correct the
error. For example, the UndoFailed OCOI processing state
could be used during compensation in conjunction with the
failTaskOnExit method that transitions the task state to the
failed-Redo execution mode so that an operator can manually
troubleshoot the task. An UndoFailed OCOI Processing state
causes the Failure count to increase by one.

DownstreamCorrectionReq
uired

Warning The downstream system returns a message to an OSM
automated task that the downstream system has experienced
a failure and is currently working to resolve the problem. This
OCOI processing state remains until another response message
returns from the downstream system indicating that the
problem has been resolved causing the manual or automated
task to update the OCOI processing state to Completed or
InProgress.

None Normal OSM assigns this state automatically if no OCOI processing state
has been assigned. You cannot directly use this processing state.

You must write automation plug-in code to map status response values to order
component order item processing states. OSM stores order component order item
processing state values in the ControlData element. See "About ControlData for
Order Component Order Item Processing States " for more information.

Order Item Processing States
OSM evaluates order item processing states differently depending on order item
processing directions. If an order item is being fulfilled by OSM, then the order item is
operating in the forward direction. If an order item has been removed, for example, in
a revision order or because the order itself has been canceled, then the order item is
operating in reverse direction.

Chapter 12
Modeling Processing States

12-11

OSM keeps an overall count of the following processing state categories:

• Normal: An order item has a normal category order item processing state when all
OCOI processing states from order components processing the order item belong
to the normal category or when all the descendant order items of a parent order
item belong to a normal category. See Table 12-2 for OCOI processing state
categories. The normal count increments by 1 when an order item is processing
normally.

• Warning: An order item has a warning category order item processing state when
one or more OCOI processing states from order components processing the order
item belong to the warning category or when one or more of the descendant order
items of a parent order item belong to a warning category. See Table 12-2 for
OCOI processing state categories. The warning count increments by 1 when an
order item contains warnings.

• Failure: An order item has a Failure category order item processing state when
one or more OCOI processing states from order components processing the order
item belong to the failure category or when one or more of the descendant order
items of a parent order item belong to a failure category. See Table 12-2 for OCOI
processing state categories. The warning count increments by 1 when an order
item contains failures.

Table 12-3 shows order item processing states, and the direction and categories they
are included in.

Table 12-3 Order Item Processing States

Order Item Processing State Direction Category Description

NotStarted Forward Normal The order item has not begun to process in any
order component.

InProgress Forward Normal The order item has begun processing in one or more
order components.

Chapter 12
Modeling Processing States

12-12

Table 12-3 (Cont.) Order Item Processing States

Order Item Processing State Direction Category Description

InProgressWithWarnings Forward Warning The order item has begun processing within one or
more order components, however, one or more of
the order components or descendant order items
have a processing state from the Warning category.

InProgressWithFailures Forward Failure The order item has begun processing within one or
more order components, however, one or more of
the order components or descendant order items
have a processing state from the Failure category.

Completed Forward Normal The order components processing the order item
have completed all tasks associated with the order
item. All order components processing the order
item or all descendant order items or an order item
have updated their processing states to Completed.

CompletedWithWarnings Forward Warning The order components processing the order
item have completed all tasks associated with
the order item; however, one or more of the
order components processing the order item or
descendant order items have a processing state
from the Warning category.

PartiallyFailed Forward Failure All order components processing the order item or
descendant order items have returned processing
state results, however, one or more have a
processing state from the Failure category.

Undoing Reverse Normal The order item has begun processing in the reverse
direction in one or more order components.

UndoingWithFailures Reverse Failure The order item has begun processing in the reverse
direction within one or more order components,
however, one or more of the order components
have an OCOI processing state from the Failure
category.

UndoingWithWarnings Reverse Warning The order item has begun processing in the reverse
direction within one or more order components,
however, one or more of the order components
have an OCOI processing state from the Warning
category.

UndoFailed Reverse Failure One or more order components processing the
order item in reverse direction has a failed task that
requires fallout intervention to correct.

UndoCompleted Reverse Normal The order components processing the order item
in reverse direction have completed all tasks
associated with the order item.

UndoCompleteWithWarning
s

Reverse Warning The order components processing the order item
in the reverse direction have completed all tasks
associated with the order item; however, one or
more of the order components processing the order
item or descendant order items have a processing
state from the Warning category.

None Reverse Normal OSM assigns this state automatically if no OCOI
processing state has been assigned. You cannot
directly use this processing state.

Chapter 12
Modeling Processing States

12-13

OSM stores order item processing state values in the ControlData element. See
"About ControlData for Order Item Processing States" for more information.

Chapter 12
Modeling Processing States

12-14

13
Modeling Jeopardy and Notifications

This chapter describes how to model jeopardy and notifications in an Oracle
Communications Order and Service Management (OSM) solution.

Best Practices for Using Notifications for Status Updates
Status values for an order item and for the whole order often need to be sent to the
upstream system that submitted the original request. There are a number of ways to
achieve this.

Status Update Strategies
Some common strategies for updating order status are:

• Use an event notification triggered by a change to order data, or when an order
reaches an order milestone; for example, completed. The notification runs an
automation plug-in that sends a status message to the upstream system. The
automation plug-in should have all of the values for status data defined in its view,
in order to calculate an aggregated status value.

Be aware that there can be race conditions if multiple status updates are executed
in parallel. Since each update is taking a snapshot at a particular moment, it is
possible that none of the status updates will have a snapshot that includes all of
the final values. This strategy is better used when there are no multiple concurrent
status updates.

You also can use this strategy in conjunction with fulfillment state or processing
states. However, for these two options, the calculation of the aggregated status
value is handled by OSM before the event notification is triggered. The event
notification can be configured against the order level fulfillment state or order item
processing state. In this case there is no race condition as the event is only
triggered on the top most data element when it is changed.

• Configure an automation plug-in to generate a status message whenever the order
changes state. Because order state changes are generally less frequent than data
changes, this may provide better performance.

• It is possible to configure status update functions as order components and make
them first-class members of the orchestration plan. However, it is not desirable to
do this in most circumstances, because this can quickly lead to a large increase
in the number of tasks in the cartridge. If used, this option will work only if status
updates are sent at a specific point in the orchestration plan, for example as the
last function after provisioning and billing.

Strategies for Using Notifications
Some common uses for notifications are:

13-1

• In general, jeopardy notifications are used for alerting order management
personnel about something that should have happened but did not happen. By
contrast, event notifications are based on events that have happened, and they
are used more for communicating status information and for directing the order
fulfillment process to the next step.

• Communication with external systems is usually handled by automation plug-ins
run by event notifications. For example, the progress of an order is typically
monitored in external systems by tracking which parts of the order have been
completed. To communicate that, you typically configure event notifications based
on a change to order data or a change to task status.

• Notifications intended for an internal audience (OSM users) are typically created
using a notification type that, by default, sends a notification to the Task web
client. The only notification types that do not are event notifications based on order
data change and task state change notifications that run an automation plug-in.
See "About Using Task States and Rules to Trigger Event Notifications" for more
information.

Modeling Notifications
The following sections provides information about modeling notifications.

Using Task States and Statuses to Trigger Event Notifications
You can use task states and task statuses to trigger event notifications. For example,
changing to the Failure status can trigger a notification to a fallout specialist. See
"About Event Notifications" for more information.

About Notification Priority
You can specify a priority for most types of notifications. For example:

• Notifications can be prioritized to control how they are sorted in the Task
web client. You should prioritize jeopardy notifications higher than information
messages.

• Prioritizing notifications sent to external systems helps those systems process the
more important notifications first.

OSM evaluates notifications with the highest priority first (1 is the highest priority). For
notifications that are sent to external systems, the notification priority represents the
JMS queue priority.

About Sending Notifications in Email
You can deliver notifications in email. The email message consists of the same
information that is displayed in the Notifications window in the Task web client. You
cannot customize the message or add information to it. The message template is:

You have a notification for Order ID ID number and notification ID
 notification ID. Use the following URL to connect to the notification details:
url

For most types of notifications, you specify to send email by selecting a check box in
the notification configuration. For event notifications that are used only for running an

Chapter 13
Modeling Notifications

13-2

automation plug-in, you configure the automation plug-in to send the email. See OSM
Developer's Guide for information about automation.

To specify who to send the email to, you do the following:

• When configuring the notification in Oracle Communications Design Studio, or in
your automation plug-in, specify the roles that receive the notification.

• Configure the email recipients for the roles by using the OSM Order Management
web client. (Roles are called workgroups in OSM Administrator.)

About Configuring Entities to Support Notifications
Before you configure notifications, you need to configure the following entities:

• You must create the roles to assign notifications to.

• To trigger notifications based on a change to order data, you must first model
the data. See "About Using Order Data Changes to Trigger Notifications" for
information.

You can model automation plug-ins as you define notifications, but modeling
automation plug-ins before you configure notifications is more efficient.

About Jeopardy Notifications
A jeopardy notification is a message that is sent to OSM users or users on other
systems (for example, to return status to a CRM system). Jeopardy notifications are
not event-driven; they use polling at specified intervals to identify processes or tasks in
jeopardy.

OSM uses three methods to deliver jeopardy notifications:

• By displaying a notification in the Task web client.

• By sending email to users.

• By using an automation plug-in to notify an external system. Each order jeopardy
notification can map to one automation plug-in.

Jeopardy notifications can be defined for an order using the Order Jeopardy editor or
the Order editor, or for a task using the Task editor. Many of the jeopardy properties
are the same for orders and tasks; for example, you can specify the roles to notify and
the rule to trigger the notification. However, defining a jeopardy notification for an order
or a task allows you to use the order or task properties. For example:

• You can trigger a notification based on the state of the order.

• You can trigger a notification if a task has exceeded its expected duration.

You can use two methods to trigger a jeopardy notification:

• Conditions; for example, if the order processing time has exceeded the expected
duration.

• Order rules; for example, you can define an order jeopardy notification based on a
rule that evaluates a data condition where an order milestone is not equal to the
Complete state and has a due date that is greater than the value specified in the
condition. For example:

orderMilestone <>completion and dueDate>SpecifiedDate.

Chapter 13
About Jeopardy Notifications

13-3

This checks to see if there are any orders that are not completed but that are
supposed to be completed by today.

About Modeling Jeopardy Notifications
You can model jeopardy notifications for tasks and for orders. The following list
describes where in Design Studio you can model jeopardy notifications:

• Task editor: The Task editor Jeopardy tab is the only place to model task
jeopardy notifications. For more information, see the topic on working with tasks in
the Design Studio Modeling OSM Processes Help.

• Order Jeopardy editor alone: The Order Jeopardy editor enables you to define
detailed jeopardy conditions based on order states, including multiple states to be
used as start and end states for the order jeopardy notification timer. The Order
Jeopard editor also enables you to define order states during which the timer will
pause. Although these order jeopardy notifications are not defined in the Order
editor, they are still defined for a specific order. For more information, see the topic
on working with jeopardy and event notifications in the Design Studio Modeling
OSM Processes Help.

• Order Jeopardy editor and operational jeopardy file: When you define an order
jeopardy notification in the Order Jeopardy editor, you can choose to make that
order jeopardy notification an operational order jeopardy notification. This means
that you can define the order jeopardy in Design Studio, but the details of the order
jeopardy notification can be changed at run-time without having to redeploy any
cartridges. You can change the details of operational order jeopardy notifications
by editing text files on the OSM system. You specify the names of the text files in
the oms-config.xml file. For more information about the Order Jeopardy editor,
see the topic on working with jeopardy and event notifications in the Design
Studio Modeling OSM Processes Help. For more information about using the text
file to define operational order jeopardy notifications, see the information about
configuring OSM with the oms-config.xml file in OSM System Administrator's
Guide.

• Order editor: The Order editor Jeopardy tab provides simple order jeopardy
modeling capabilities and works in basically the same way as the task jeopardy
notification configuration. For more information, see the topic on working with
orders in the Design Studio Modeling OSM Processes Help.

About Jeopardy Notification Triggering
OSM triggers jeopardy notifications in one of two ways, depending on where you
modeled the order jeopardy notification.

If the order jeopardy notification has been modeled using the Order Jeopardy editor,
either with the configuration defined in Design Studio or with an operational jeopardy
defined in a text file, OSM triggers the notification using the following process:

1. When the timer starts for an order, OSM adds the notification to an internal list,
sorted by the due date of the notification. The system frequently polls this list and
retrieves the items that have come due.

Because this is a server-wide, internal, automatically generated list, you do not
have to configure polling intervals for order jeopardy notifications defined in the
Order Jeopardy editor.

Chapter 13
About Jeopardy Notifications

13-4

2. OSM checks whether there are any rules that might restrict the notification from
being triggered. For example, you might configure two jeopardy notifications, one
that is triggered for orders from only business accounts and one that is triggered
for orders from only residential accounts. Each notification might have a different
email recipient, so the notification is only triggered for the correct recipient. The
rule is checked after the conditions have been met to ensure that the latest version
of the order data is used in the evaluation.

3. If a rule evaluates to true, the notification is triggered.

If the order jeopardy notification has been modeled using the Order editor or using the
Task editor, OSM triggers the notification using the following process:

1. OSM polls in-flight orders and tasks to determine if a condition has been met. For
example, the condition might be that a task has been in progress for longer than
one hour. If the condition is met, OSM begins to process the notification.

You can specify how often OSM should poll to reevaluate the jeopardy condition.
You can specify a polling interval in hours, days, weeks, or months. You can
specify the day of the week (for example, Monday), or the day of the month (for
example, the first day of the month). You can specify a date and time for OSM to
begin polling. The default is the current date.

Tip:

When configuring notifications in the Order editor or the Task editor,
consider the performance impact from polling for jeopardy notifications.
For example, a configuration that polls every minute on one million
orders has a much greater performance impact than polling every hour
on one thousand orders.

2. OSM checks whether there are any rules that might restrict the notification from
being triggered. For example, you might configure two jeopardy notifications, one
that is triggered for orders from only business accounts and one that is triggered
for orders from only residential accounts. Each notification might have a different
email recipient, so the notification is only triggered for the correct recipient. The
rule is checked after the conditions have been met to ensure that the latest version
of the order data is used in the evaluation.

3. If a rule evaluates to true, the notification is triggered.

About Jeopardy Notification Conditions
You can trigger jeopardy notifications based on an order or task condition. For
example, you can specify to send a jeopardy notification if a task has exceeded its
expected duration.

The conditions you can use depend on whether you define the jeopardy notification in
the Order Jeopardy editor, the Order editor, or the Task editor.

Specifying Jeopardy Notification Conditions in the Order Jeopardy Editor
When you define a jeopardy notification for an order using the Order Jeopardy editor,
you can specify to trigger the notification based on the following:

Chapter 13
About Jeopardy Notifications

13-5

• The amount of time that an order has spent in one or more states. You can specify
lists of order states that can do the following:

– start the timer

– stop and reset the timer

– pause the timer

For example, you can trigger a notification because an order entered the In
Progress state 30 days ago, without counting any time the order spent in the
Suspended state, and has not yet entered the Completed or Aborted states.

You can set the expected duration in one of the following ways:

– Setting a specific duration value

– Using the expected duration for the order

– Using an XQuery expression to set the value

– Using the value of a field on the order

• Whether the order has reached a certain date without having reached one of a list
of specified end states.

You can set the expected date in one of the following ways:

– Using an XQuery expression to set the value

– Using the value of a field on the order

Specifying Jeopardy Notification Conditions in the Order Editor
When you define an order, you can specify to trigger a jeopardy notification based on
the following:

• The amount of time that an order has been in the In Progress state. For example,
you can trigger a notification if the order has been in the In Progress state for
longer than 30 days.

• The amount of time that an order has been in the Completed state. For example,
you can trigger a notification if the order has been in the Completed state for
longer than 30 days.

• If the process duration has exceeded the expected duration. The value is based
on elapsed time, regardless of the order states that the order might transition in
and out of.

• If the process duration has exceeded a duration that you define; for example, five
days. This duration value starts at the creation task.

To determine the duration that the order has been in any of these conditions, OSM
polls the system at an interval that you define.

Specifying Jeopardy Notification Conditions for a Task
When you define a task, you can specify to trigger a jeopardy notification based on the
following:

• If the process that the task is associated with has exceeded the expected duration.

• If the process that the task is associated with has exceeded a duration that you
define. This duration is measured starting with the creation task.

Chapter 13
About Jeopardy Notifications

13-6

• If the task has exceeded the expected duration.

• If the task has exceeded a duration that you define.

• If the order has exceeded a specified amount of time past when it was received
(when the order is created in OSM).

To determine the duration that the order has been in any of these conditions, OSM
polls the system at an interval that you define.

When you define a jeopardy notification in a task, and the task can have multiple
instances, you can specify if the notification should be triggered for every task
instance.

About Event Notifications
Event notifications are triggered by events. You do not specify polling intervals for
event notifications. You can configure them to occur in the following cases:

• When a task transitions through a task status. For example, you might trigger an
event notification when a task transitions to the Failed status.

Event notifications triggered by transitions can be sent to a workgroup. See "About
Using Task Transitions to Trigger Event Notifications" for more information.

• When a task reaches a specified state. You can use two methods:

– You can use the task state to trigger an automated event notification. In this
case, only the task state is evaluated (no rules are applied to evaluate a
condition), and the notification runs an automation plug-in that handles the
notification actions. For example, when a task reaches the Assigned state, you
can automate an external lookup before allowing the workflow to continue. You
do not specify roles or email delivery for the notification. See "About Using
Task States to Trigger Automated Event Notifications" for more information.

– You can use the task state in combination with rules to trigger the event
notification. In this case, you can specify a rule to evaluate conditions, the
priority, if the notification can be delivered by using email, and the workgroups
that receive the notification. See "About Using Task States and Rules to
Trigger Event Notifications" for more information.

When you use the task state to trigger an automated event notification, the
notification is run from all processes that include the task. When you configure a
notification based on a task state change in a process, the notification is applicable
only to the task within the process in which it is defined.

• You can trigger an event notification when an order passes an order milestone.
You use this type of notification to trigger an automation plug-in that handles the
notification actions. You do not specify roles or email delivery for the notification.
See "About Using Order Milestones to Trigger Event Notifications" for more
information.

• You can trigger an event notification when a change is made to order data. You
typically use these notifications to update external systems (such as a CRM)
with information about the progress of the order when a specific data element
in the order data is changed. See "About Using Order Data Changes to Trigger
Notifications" for more information.

Chapter 13
About Event Notifications

13-7

• You can trigger an event notification based on order life-cycle changes. OSM posts
the these notifications to a pre-defined JMS queue. See "About Enabling Order
Life-Cycle Events" for more information.

About Using Task Transitions to Trigger Event Notifications
An event notification based on a task transition does not apply to all instances of
the task. It applies to a task only as it is used in a specific process. Therefore, to
configure an event notification based on a task transition, you edit the process that
includes the transition and apply the event notification to the transition. Figure 13-1
shows the configuration for a success transition in Design Studio. In this figure, the
success transition is selected, and the event notification properties are defined below
the process window.

Figure 13-1 Event Notification Based on Task Transition

The event notification for a status change works as follows:

1. When the task status changes to the status that you define for the notification, the
notification runs a rule to evaluate if the conditions are true.

2. If the conditions are true, the event notification is triggered.

When you use a task transition to trigger an event notification, you can specify an
automation plug-in that the notification runs; however, an automation plug-in is not
required.

About Using Task States and Rules to Trigger Event Notifications
An event notification triggered by a task state change and rules works as follows:

Chapter 13
About Event Notifications

13-8

1. When the task state changes to the state that you define for the notification, the
notification runs a rule to evaluate if the conditions are true.

2. If the conditions are true, the event notification is triggered.

For example, you can specify that when the Completed task state is reached, a rule
evaluates if the billing address is in California.

This type of notification does not apply to all instances of the task. It applies to a task
only as it is used in a specific process. Therefore, you create this type of notification
when you create processes in Design Studio. Figure 13-2 shows how to assign an
event notification to a task in a process. In this figure, the EnterAccountInformation
task is selected, and the rule and state are defined in the Properties window Events
tab below.

Figure 13-2 Notification Based on Task State and Rule

You can specify an automation plug-in that the notification runs; however, an
automation plug-in is not required.

Chapter 13
About Event Notifications

13-9

About Using Task States to Trigger Automated Event Notifications
You can use a task state to trigger an automated event notification. In this case, only
the task state is evaluated (no rules are applied to evaluate a condition), and the
notification triggers an automation plug-in which handles the notification actions. This
type of notification runs for every instance of the task, independent of the process that
it is in. Event notifications triggered by task states are not displayed in the Task web
client.

For example, you can define an automated notification that sends a notification when
the task reaches the Assigned state. The event notification works as follows:

1. When the task reaches the Assigned state, a notification is created.

2. When the notification is created, the automation plug-ins run.

Figure 13-3 shows an event notification configured in Design Studio. Any time this task
runs, the event notification is triggered when the task reaches the Completed state.

Figure 13-3 Event Notification Based on Task Status

Chapter 13
About Event Notifications

13-10

About Using Order Milestones to Trigger Event Notifications
You can use an order milestone to trigger an event notifications. Figure 13-4 shows an
event notification based on an order milestone.

Figure 13-4 Event Notification Based on an Order Milestone

Only the order milestone is evaluated (no rules are applied to evaluate a condition),
and the notification triggers an automation plug-in that handles the notification
actions. Each event notification maps to one or more automation plug-ins. For more
information about automation plugins, see "About Automation Plug-ins".

For example, you can define an event notification that specifies the Completion
milestone. The event notification works as follows:

1. After all tasks within a process successfully complete for an order, the order
Completion milestone is reached and a notification is created.

2. When the notification is created, the automation plug-ins run.

Chapter 13
About Event Notifications

13-11

Note:

You cannot define custom order milestones. Order milestones are based on
order states; for example, the Completion milestone occurs when the order
transitions to the Completed state.

When you create event notification that is triggered by an order milestone, you specify
the order milestone that triggers the notification. You can use the following order
milestones:

• Creation: The order was created in the OSM system.

• Completion: The final task in the order has completed, and the order transitioned
to the Completed state.

• Deletion: The order was removed from the OSM system by transitioning to the
Deleted state.

• Exception: A process exception or fallout was initiated.

• State change: The order transitioned to a different state.

About Using Order Data Changes to Trigger Notifications
You define event notifications based on order data changes when you create orders
in Design Studio. For example, you can define an event notification that sends a
notification when a telephone number is entered. Event notifications triggered by data
changes are shown in the Task web client.

When you create an event notification based on order data changes, you can specify
the data field that triggers the notification when the data is changed. Any change to the
field causes the notification to trigger. However, this value is not evaluated for content.
To trigger the notification based on the value of the data, you must configure a rule to
evaluate it.

For example, to trigger a rule when the billing address is changed to California, you
specify the billing address field as the field that triggers the notification and run a rule
that evaluates if the address was changed to California.

You can specify an automation plug-in that the notification runs; however, an
automation plug-in is not required.

Figure 13-5 shows an event notification based on data change in an order. In this
example, when a credit card number changes, the notification is triggered.

Chapter 13
About Event Notifications

13-12

Figure 13-5 Event Notification Based on Data Change in an Order

About Enabling Order Life-Cycle Events
You can configure orders to publish events when any of the following occurs:

• The order is created.

• The order is removed.

• The order state changes.

• Amendment processing starts.

• Amendment processing is queued.

• Amendment processing completes.

• Amendment processing is terminating.

• Amendment processing is terminated.

• Amendment processing is abandoned.

Order life-cycle events are published to the oms_order_events queue as Java
Message Service (JMS) messages containing order identification and state
information. You can configure which life-cycle events you want to be generated for
an order type in Design Studio.

Summary of Notification Functionality
Table 13-1 shows a summary of notification functionality.

Chapter 13
Summary of Notification Functionality

13-13

Table 13-1 Summary of Notification Functionality

Notification
Type

Sends Email Displays in
Task Web
Client

Can Be
Evaluated By
a Rule

Can Be Sent
to Different
Roles

Runs
Automation
Plug-in

Has a
Priority

Jeopardy - Task
editor

Yes Yes Yes Yes Optional Yes

Jeopardy -
Order Jeopardy
editor

Yes Yes Yes Yes Optional Yes

Jeopardy -
Order editor

Yes Yes Yes Yes Optional Yes

Event - Task
status

Yes No Yes Yes Optional No

Event - Task
state,
automation

Sent by
automation
plug-in only

No No Defined by
automation
plug-in only

Mandatory Yes

Event - Task
state, in a
process

Yes No Yes Yes Optional Yes

Event - Order
milestone

Sent by
automation
plug-in only

No No Defined by
automation
plug-in only

Mandatory No

Event - Order
data change

Yes Yes No Yes Optional Yes

Chapter 13
Summary of Notification Functionality

13-14

14
Modeling Order Scheduling

This chapter describes how to model order scheduling entities in an Oracle
Communications Order and Service Management (OSM) solution.

About Order Item Requested Delivery Date and Order
Components

OSM can process orders at different times. In many cases, a customer wants an
order to be completed as soon as possible, in which case OSM can start processing
the order immediately. However, in some cases, the start date of an order should be
delayed until a future date. For example:

• A customer might request that a new VoIP service be added at the beginning of
the next month, when their current service expires.

• A customer might request the disconnect of an existing service at the end of the
current month.

In addition, there may be groups of order items within an order that need to be fulfilled
at different times. For example, an order might contain three services, such as internet,
IPTV, and VoIP. The internet and IPTV services might have an immediate requested
delivery date, but the VoIP service might only be required at the end of the month,
after the customer's current phone service plan has expired. In this case, you can
enable OSM to calculate a time to start fulfilling the VoIP service at a future date that
would allow the service to be activated by the requested delivery date: at the end of
the month.

Different groups of order items may have orchestration dependencies configured that
have an impact on when a service gets fulfilled. For example, the internet service
might be required before you can activate an IPTV or VoIP service. These dependency
scenarios are fixed and take precedence over honoring requested delivery dates. In
other words, OSM will only honor a requested delivery date for a service if there is
enough time to fulfill that service given the time it takes to perform the fulfillment tasks
and any dependencies that might exist between one service and another. In such a
scenario, the order completion date will be later than the delivery date requested by
the customer.

To accurately calculate when an order should start so that it can meet a requested
delivery date, you must determine how long it takes to perform certain tasks contained
in the order and you must know when a customer wants a service.

Note:

Orders must have an orchestration plan to be able to calculate the order
completion date.

14-1

When viewing an entire order in the Order Management web client Summary tab
General area, you see the following fields:

• Order Creation Date: The date when the order is created in OSM.

• Expected Order Start Date: The date when the order is expected to start being
processed.

• Expected Order Completion Date: The date when the order is expected to be
completed.

• Requested Order Delivery Date: The date by which the customer requests the
order be delivered.

• Expected Order Duration: The amount of time the order is expected to take to
complete processing.

These fields are used in, or derived from, an orchestration plan algorithm. This
algorithm, at its highest level, uses the Order Creation Date (for orders that
start immediately) or the Expected Order Start Date (for future dated orders) in
conjunction with the Expected Order Duration to determine whether there is enough
time to achieve the Requested Order Delivery date. If there is enough time, then
the Expected Order Completion Date is the same date as the Requested Order
Delivery Date. If there is not enough time, then the Expected Order Completion
Date is later than the Requested Order Delivery Date.

When viewing a specific order item in the Order Management web client Summary tab
General area, you see the following fields:

• Expected Order Component Start Date: The date when the order component
that processes the order item is expected to start.

• Expected Order Item Start Date: The date when the order item is expected to
start. This is always the same date as the first Order Component Start Date to
start processing the order item.

• Expected Order Item Completion Date: The date when the order item is
expected to be complete. In some scenarios, an order item may require
processing from more than one order component. For example, one order
component may provision the service while another performs the billing function.
And so the order item completion date must take into account the total time it
takes to complete these two order components.

The following sections describe the design-time and run-time elements that you must
model so that the orchestration plan algorithm can generate an order fulfillment
timeline.

How OSM Decomposes and Processes Order Items in Order
Components

You can model the decomposition of order items into order components that typically
share the same function, are destined for the same fulfillment system, and share the
same processing granularity. The entity that ultimately processes order items is an
executable order component that is linked to a process that contains a sequence of
manual and automated tasks that fulfill every order item in the order component.

OSM calculates the order component start dates based on the requested delivery date
for order line items in customer orders. This requested delivery date order line item

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-2

value must be mapped to an order item specification requestedDeliveryDate order
item property in Oracle Communications Design Studio.

For example, a group of six order items might be gathered in an executable
component that is linked to a process that contains an automated task that generates
and sends a service request to an activation system. The service request that the
automated task builds would contain all the information from the six order items that
the activation system requires to activate services that correspond to the order items in
the network.

When OSM has determined the order component start date, all order items in the
order component begin processing immediately (regardless of their requested delivery
date). Although this can mean that some order items might be delivered early, it
ensures that no order items are delivered late.

About Grouping Order Items in Order Components by Date Range
If order items belong to the same function and go to the same fulfillment system
need to be fulfilled on substantially different dates, you can model different order
components in Design Studio that execute at different stages or within the same stage,
but that have different start dates.

In addition, OSM provides Java functions that can be used along with order item
hierarchies to further delineate and group order component IDs based on order item
requested delivery date. For more information about creating custom component IDs
using Java function, see "About Component Specification Custom Component ID
XQuery Expressions".

Modeling Order Component Minimum Processing Duration
When you model orders in Design Studio, you need to provide OSM with enough
information to be able to meet the order item requested delivery dates with as much
accuracy as possible. To do so, you specify a minimum processing duration value that
defines how long it typically takes to fulfill all order item within an executable order
component. You can model this value at the order component level (see Figure 14-1)
or at the fulfillment pattern order component level (see Figure 14-2). OSM always uses
the larger of the two values. This duration should take into account the total duration
of any manual or automated tasks involved in completing the process. For example,
if you know that it takes one week to ship a telephone, you specify one week for
the minimum processing duration for an order component that is used for shipping a
telephone.

You can specify a different minimum processing duration for each fulfillment mode in
the fulfillment pattern. For example, the Deliver fulfillment mode can have a different
duration than the Cancel fulfillment mode.

Figure 14-1 shows the duration defined for an order component.

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-3

Figure 14-1 Processing Duration Defined for an Order Component

Figure 14-2 shows the processing duration assigned to an order component when it
is used in a fulfillment pattern Order Components tab, Selected Order Components
sub-tab.

Note:

The Duration tab displayed beside the Order Components tab and
Dependencies tab in Figure 14-2 is no longer used. This tab still appears in
Design Studio to support OSM cartridges that target pre-OSM 7.2.2 servers.

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-4

Figure 14-2 Processing Duration Defined for an Order Component as Used in a Fulfillment
Pattern

The minimum processing duration of an order may vary greatly depending on a
number of factors:

• The kinds of products or services. Orders for mobile services typically have a very
short processing duration, whereas a complex business-to-business order might
take weeks.

• What must be done to fulfill the actions on the product or service, such as shipping
or installation work.

• Any dependencies within and between the products and services. For example,
PSTN provisioning must complete before ADSL provisioning starts.

Because a single order can have multiple values for the minimum processing duration,
defined in multiple order components and at the order level, OSM compares all of
them (if they are defined) to find the longest processing duration for the order:

1. OSM compares the two possible values of the minimum duration for an order
component:

• The duration specified in the order component itself.

• The duration assigned to the order component in its fulfillment pattern.

OSM uses the larger of the two values as the order component minimum
processing duration.

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-5

2. OSM adds the calculated durations for all of the order components in the order.
OSM takes into consideration dependencies between order components. For
example, if the order component that provisions a service depends on the order
component that processes billing, the minimum processing duration for both
components must be used.

3. OSM calculates the order duration based on the expected order completion date
minus the start date.

About Minimum Processing Duration Inheritance in Fulfillment
Patterns

For the minimum processing duration that is assigned to an order component by
a fulfillment pattern, the minimum processing duration for the order component
is inherited in fulfillment patterns extended from the parent fulfillment pattern. For
example:

1. In the BaseProductSpec fulfillment pattern, the BillingFunction order component is
assigned a duration of 2 days.

2. The Service.Fixed fulfillment pattern is extended from the BaseProductSpec
fulfillment pattern. Therefore, if you do not specify a duration for the BillingFunction
order component in the Service.Fixed fulfillment pattern, it inherits the duration of 2
days from the BaseProductSpec fulfillment pattern.

Figure 14-3 shows how the duration is inherited from a parent fulfillment pattern.

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-6

Figure 14-3 Minimum Processing Duration for an Order Component Inherited in a Fulfillment
Pattern

About Minimum Processing Duration Expressions
In addition to specifying a fixed amount of time as the duration, you can use an
XQuery expression. The following expression returns a duration of three hours:

PT3H0M0S

You typically use a duration expression if you have an external system that keeps
track of processing duration and the load levels of systems. You can write a duration

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-7

expression that uses this information dynamically. For example, the calculation can
take into account peak activity periods.

Calculating the Earliest Order Component Start Date (Order Start
Date)

The first order component to start processing can contain one or more order items.
OSM uses the order item with the earliest requested delivery date to calculate
the order component start date. If there were only one level of order component
decomposition in the orchestration plan and there were no dependencies between
order components, OSM would calculate the order component start date by taking the
earliest order item requested delivery date and subtracting the configured minimum
processing duration for the order component. This calculated start date would also be
the order start date.

In the scenario, the following order component start dates are possible:

• If the component start date (also the order start date) is in the future, OSM does
not start the order component until the future date. In the Order Management web
client, you would see:

– The expected order start date would be later than the order creation date.

– The order component Expected Start Date would be the same as the expected
order start date.

– The expected order item start date for all order items in the order component
would be the same as the order component Expected Start Date.

– The expected order completion date and the requested order delivery date
would be identical.

• If the component start date is in the past, OSM starts the order immediately. In the
Order Management web client, you would see:

– The order component Expected Start Date would be the same as the expected
order start date.

– The expected order item start date for all order items in the order component
would be the same as the order component Expected Start Date.

– The requested order completion date would be before the expected order
delivery date.

• If no minimum processing duration was configured for the order component, then
the order component would start on the same day as the requested delivery date,
assuming that day was a future date. In the Order Management web client, you
would see:

– The expected order start date would be later than the order creation date.

– The order component Expected Start Date would be the same as the expected
order start date.

– The expected order item start date for all order items in the order component
would be the same as the order component Expected Start Date.

– The requested order completion date would be on the same date as the
expected order delivery date.

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-8

• If the order item contained no value for the requested delivery date property, then
OSM starts the order immediately.

About Calculated Order Component Start Dates
The first order component in an order and any initial order component that does not
depend on another order component always uses a calculated start date based on
order item requested delivery date values. If the order items do not have values for the
requested delivery date, then the order begins processing immediately.

Dependent order items start in the following ways:

• Any dependent order components start immediately after the first or initial order
component completes and all dependencies are resolved. This is the default
behavior for order components.

• You can enable calculated start dates for dependent order components by
selecting the Use Calculated Start Date check box in the Order Component
Specification (see Figure 14-4). Dependent order components use the calculated
start date based on the earliest order item requested delivery date in the
order component, minus the order component duration. See "Modeling Order
Component Dependencies and Requested Delivery Dates" for more information
about configuring dependent order component calculated start dates.

Figure 14-4 Enabling Order Component Calculated Start Dates

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-9

For a three stage orchestration cartridge with function, system, and granularity
components, you can enable calculated start dates at the function level if you
wanted all components related to that function to use a calculated start date. Or
you can enable calculated start dates at the system level. In this second scenario,
one function might decompose to more than one system level component and a
calculated start date might only be required for one of them.

Modeling Order Component Dependencies and Requested Delivery
Dates

An OSM orchestration cartridge can have several order components with
dependencies configured between them. OSM always honors any order component
dependency wait condition before starting a new order component. You can configure
dependent order components to start immediately after the blocking order component
is complete and all dependencies have been met, or you can use the calculated start
date. See "About Calculated Order Component Start Dates" for more information.

This scenario assumes that the dependency between the order component order
items are between different order items. For example, order item 1 is only processed
by order component A (the blocking order component) and order item 2, which is
dependent on order item 1, is only processed by order component B (the waiting order
component).

The following dependent calculated order component start date scenarios are
possible:

• If the component start date is in the future, and the blocking order component
is complete with all dependencies met, then OSM does not start the order
component until the calculated start date arrives.

• If the component start date is calculated to a date before the blocking order
component is complete and all blocking order component dependencies are
met, then OSM ignores the calculated start date. The order component begins
immediately after the blocking order component completes and all dependencies
are resolved.

• If the order item contained no value for the requested delivery date parameter,
then OSM starts the order immediately.

Modeling Order Items Processed by Multiple Dependent Order
Components

If OSM processes an order item in more than one executable order component,
and there is a dependency between these executable order components, then
OSM calculates the order component start dates for the first order component by
subtracting the duration from the longest chain of order component durations involved
in processing the order item from the earliest order item requested delivery date. This
ensures that all order components can be delivered by the requested delivery date.
All dependent order components in this scenario would start immediately after the
previous order component was resolved. For example, if order item 1 is processed by
order component A, B, and C, and B and C depend on A, then the order component
start date for A would be the requested delivery date for order item 1 minus the
duration of either order components B or C (whichever was longer) and A. Or, if B
was dependent on A, and C was dependent on B, then OSM would subtract the total

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-10

duration of A, B, and C from the requested order delivery date of order item 1 to
determine the start date for order component A.

Revisions of Future-Dated Orders
You can submit revision orders to future-dated orders. The revision order can have a
different requested delivery date than the base order or the same requested delivery
date. In either case, OSM re-calculates the start date for the revision order based on
its requested delivery date and on the minimum processing durations of the revised
order components.

Note:

Future-dated orders that cancel a future-dated base order are special cases.
In this situation, the base order is canceled immediately, regardless of the
requested delivery dates.

You can submit a future-dated revision order for an order that has already started
processing. Only order components that have not started can have new calculated
start dates applied. The new requested delivery date will trigger a compensation only if
the order item specification requestedDeliveryDate order item property is marked as
significant. Any task compensation required (for example, in previous completed order
components) also happens immediately.

As a result of changing a significant order item requested delivery date, OSM
calculates a new orchestration plan. Order components that have compensation tasks
set with undo, redo, or amend do compensation strategies are executed based on
the dependency graph of the revised base order orchestration plan. The order item
requested delivery date modification may change the calculated start date of the order
component that is processing the order item and, by extension, may also change the
expected order completion date.

Examples of Calculating the Expected Start Date
The following examples show scenarios for calculating the expected start date for an
order and order components.

Example 1: Calculating Start Dates for Order Components with No
Dependencies

In this example:

• A billing function order component has a duration of 2 days and processes order
item 1 with a requested delivery date of January 3rd.

• A provisioning function order component has a duration of 3 days and processes
order item 2 with a requested delivery date of January 5th.

• There are no dependencies between order components.

The start date for each order component is calculated as follows:

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-11

1. The calculated start date for the Billing order component is calculated using the
following logic:

• Order item 1 requested delivery date January 3th

• Minus Billing order component duration 2 days

• The Billing order component start date is January 1st.

Because there are no dependencies between the order components, OSM
calculates the start date for each order component separately.

2. The calculated start date for the Provisioning order component is calculated using
the following logic:

• Order item 1 requested delivery date January 5th

• Minus Provisioning order component duration 3 days

• The Provisioning order component start date is January 2nd.

Example 2: Calculating Start Dates for Order Components with Dependencies
OSM always uses the final set of order components for in an orchestration plan to
determine the start date for the order component. A final order component has no
successor order components. For example, Figure 14-5 shows the order component
processing flow for three order items. Order components C and E are final order
components.

Figure 14-5 Order Component and Order Item Processing Flow

OSM calculates start dates for each order component starting with the requested
delivery date of the final order components minus the order duration and any
dependency condition wait delay duration. In this example:

• Order component C processes order item 1 and 2. Order item 1 has a requested
delivery date of January 8, while order item 2 has a requested delivery date of
January 10. OSM always uses the earliest requested delivery date to calculate
the start date for the order component, which means the January 8 date is used.

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-12

Because order component C is configured with a duration of 2 days, then order
component C starts on January 6th.

• Order component E processes order item 3 that has a requested delivery date of
January 18. Because order component E is configured with a duration of 2 days,
then order component E would start on January 16th.

OSM calculates the start date of order component B by subtracting the configured
duration for order component B (2 days) minus the start date for order component
C (January 6th) resulting in a start date for order component B of January 4th.

OSM uses order component C instead of order component E to calculate the
start date for order component B because order component C is a final order
component with an order item that has the earliest requested delivery date. OSM does
this to ensure that all order items being processed by an order component are not
started late, even though they may start early. In other words, those order items being
processed in order component B complete earlier than order component E needs
them, but those order items destined for order component C complete with sufficient
time for order component C to meet order item 1's requested delivery date of January
8th.

Finally, OSM calculates the start dates for order components A and D. Order
component A has a configured duration of 3 days minus the start date for order
component B (January 4th) resulting in a start date of January 1st. Order component
D has a configured duration of 2 days resulting in a start date of January 2nd.

The order start date is the earliest of all starting order components. In this example,
the earliest order component start date is January 1st for order component A.

Chapter 14
About Order Item Requested Delivery Date and Order Components

14-13

Part IV
Managing OSM Projects

Part IV contains the following chapters about managing OSM projects in an Oracle
Communications Order and Service Management (OSM) solution:

• Managing OSM Solution Cartridges

15
Managing OSM Solution Cartridges

This chapter describes managing cartridges in an Oracle Communications Order and
Service Management (OSM) solution.

Solution Management Overview
Cartridges are an important part of every OSM solution. OSM is a metadata-driven
system that includes model entities necessary for order management functions. OSM
model entities include tasks, processes, data elements, data structures, orchestration
stages and sequences, decomposition rules, roles, order life cycle policies, and so
on. You define how you want to use and extend OSM to meet your business needs
by creating these model entities in Oracle Communications Design Studio. Design
Studio is a client application with editors that allows you to configure the OSM model
and model entities. In addition to the model entities, you can create and include
artifacts such as automation plug-ins, XQuery and XSLT scripts, XML Catalog, and
other resource files in a cartridge. You must package these entities and artifacts and
deploy them to the OSM system as cartridges.

Creating and modeling cartridges in Design Studio is a design-time activity. You do
not use Design Studio to manage a run-time environment. Once you have created
cartridges in Design Studio, you can build the cartridges and then deploy them into a
run-time OSM environment. Deploying is the act of installing a packaged cartridge to
the run-time environment, which is where orders are executed, and where end users
login and use the OSM Order Management web client or Task web client to view and
manage orders and tasks. The run-time environment could be an OSM server that is
installed on the local computer of a developer along with Design Studio, or could be
a dedicated OSM environment setup with some server hardware. You do not require
an OSM run-time environment to use Design Studio to model and build cartridges, but
you do require an OSM run-time environment to deploy and test cartridges with test
orders.

An OSM solution is typically made up of multiple cartridges. Each cartridge is a
building block that specifies an aspect of the OSM solution. For example, some
cartridges may define how OSM interacts with particular fulfillment systems. Other
cartridges may define data dictionaries common across applications, and shared
across other OSS applications such as Oracle Communications Unified Inventory
Management (UIM) or Oracle Communications ASAP. Some cartridges are more
foundational to an OSM implementation, such as those that specify how orders are
represented and how order decomposition and orchestration occur. Together, they
contain the directives of the OSM implementation for a particular deployment such
as OSM running in the central order management (COM), service order management
(SOM), and technical order management (TOM) roles.

Cartridges allow you to decouple solution behavior from the core OSM system that the
cartridges run on. This decoupling allows you to upgrade to a newer versions of OSM
to take advantage of improvements without needing to make extensive changes to the
solution cartridges.

15-1

Cartridges can also help you manage development cycles. You can use cartridges to
divide OSM development work into logical pieces among development team members
contributing to the implementation. For example in Figure 15-1, OSM developer 1,
2, and 3 work in parallel on different component cartridges in the solution. You
can also port cartridges between OSM environments. This is useful for sharing
between developer team members, promoting cartridges from development to test
environments, or from test to production.

Figure 15-1 Cartridge Portability in Development, Test, and Production Systems

About OSM Cartridge Scope
Cartridge scope refers to which entities an OSM order has access to. If a particular
OSM entity is considered in scope for an order, that entity can be used to influence
how that order is processed.

Chapter 15
About OSM Cartridge Scope

15-2

The scoping mechanism of OSM has evolved over the years. For information about
the history of scoping in different releases of OSM, see knowledge article 2077384.1,
Cartridge Management and Versioning, on the Oracle support website:

https://support.oracle.com

Scope of OSM Entities Without Namespaces
Some OSM entities, such as orders, processes, tasks, composite cartridge views, and
resource files, do not have namespaces defined for them.

Design Studio Entities
Design Studio entities that do not have namespaces have visibility only to other
entities contained within the same cartridge. At run time, they cannot be referenced
by an entity that resides in another cartridge or another version of the same cartridge.

However, at design time (in Design Studio), you can reference entities across
cartridges even if those entities do not have namespaces. For example, when
designing a process flow, you can include a task from another cartridge. When you
do this, Design Studio includes the referenced entity in the cartridge when it is built, so
that it will be available at run time.

XML Catalogs and Resource Files
In addition to specific entities in Design studio, an OSM implementation typically
contains other resource files in the cartridges. XQuery and XSLT files are the most
common types of resource files, but there can also be other types of files such as
Java files or other XML configuration files. In addition, there my be XML catalog files.
The scoping of these resource files is the same as with other entities that do not have
namespaces:

• For standalone cartridges, the resource entities belong to a local or global pool,
depending on the configuration of the FullScopeAccess parameter in the oms-
config.xml file. For more information about this setting, see "Standalone Cartridge
Scope."

• For solutions using composite cartridges, the scope of resource files is defined by
the contents of the composite cartridge.

Scope of OSM Entities with Namespaces
For orchestration entities such as order component specifications, order item
specifications, and order recognition rules, there is an explicit namespace attribute
that you can specify in Design Studio.

Entities with namespaces are referenced by their fully qualified names. The fully
qualified name is the combination of:

• Entity type – for example, Order Component Specification

• Entity name – for example, TargetSystem

• Entity namespace – for example, http://oracle.centralom.topology

Figure 15-2 is a simple example of how an entity with a namespace is referenced
by another entity. Referencing by fully qualified name occurs automatically when

Chapter 15
About OSM Cartridge Scope

15-3

https://support.oracle.com

the cartridges are packaged at build time, as long as you provide appropriate entity
namespace values in Design Studio.

Figure 15-2 Referencing an Orchestration Entity by Fully Qualified Name

The cartridge name (OsmCentralOMExample-Topology) is not part of the fully qualified
name. Entities can freely reference entities of other cartridges as long as the fully
qualified name is unique in the run-time environment.

Standalone Cartridge Scope
Scope considerations are different depending on whether your cartridges are
standalone or grouped using composite cartridges. For more information about the
different cartridge types, see "About Cartridge Types."

OSM builds a resource pool for each cartridge that contains an order
when it is loaded. The contents of this pool are determined by the
oracle.communications.ordermanagement.resource.FullScopeAccess parameter
in the oms-config.xml file. By default, this parameter is set to restrict the resource
pool to only the resources in the cartridge. You can also set it to enable either all
cartridges or specific cartridges to access all of the resources in your solution. For
more information about this parameter, see the discussion of oms-config.xml in
OSM System Administrator's Guide, or see knowledge article 1568944.1, Cartridge

Chapter 15
About OSM Cartridge Scope

15-4

Resources Not Picked Up Correctly for Multiple Cartridge Versions, on the Oracle
support website.

For cartridges that have access to all resources, resources in this pool are accessed
according to three levels of priority:

1. Resources in the local cartridge version

2. Resources in other cartridge versions with the same cartridge namespace (with no
determined order between versions)

3. Resources in all other cartridges (again, with no determined order)

The different access priorities in the pool mean that it is more likely that the OSM
server will find the correct copy of an entity with a namespace, but does not completely
eliminate the potential for namespace collisions.

XML Catalog Files in Standalone Cartridges
If you are using standalone cartridges, it is important to locate the XML catalog files
in the same cartridge as the entities that call them, or the wrong file can be picked
up, meaning that the wrong namespace translation will take place, and therefore the
wrong resources will be selected.

Avoiding Namespace Collisions for Design Studio Entities
A namespace collision may occur when multiple entities with namespaces have
the same fully qualified name in a run-time environment. This is not unusual when
multiple versions of the same cartridge are deployed. For example, in Figure 15-3, the
TargetSystem order component has the same fully qualified name in both versions 1.0
and 1.1.

Chapter 15
About OSM Cartridge Scope

15-5

Figure 15-3 Namespace Collision of an Orchestration Entity

In the event of namespace collision, it is not possible to predict which version will
be used. In the example, it is unknown whether version 1.0 or 1.1 of TargetSystem
will be loaded by OSM, but both versions 1.0 and 1.1 of the OsmCentralOMExample-
Orchestration cartridge will use the same version of TargetSystem, which means one
of them is using the wrong version.

To avoid namespace collision across cartridge versions, you can include the cartridge
version in the entity namespace. In the example above, the namespace can be
specified as http://oracle.centralom.topology/1.0.0.0.0. The best way to do this is using
an XML catalog, which you can use to translate the namespaces of entities so that
they include the cartridge version. See "Using XML Catalogs to Support Cartridge
Versioning" for details.

Avoiding Namespace Collisions for Resource and XML Catalog Files
In the same way as for other entities without namespaces, if you are using standalone
cartridges, it is possible for your solution to reference an unintended version of a
resource file when multiple cartridge versions exist. You can avoid this problem for

Chapter 15
About OSM Cartridge Scope

15-6

XQuery files if you locate them using a URI that is mapped to a cartridge-version
specific location using the XML Catalog.

Figure 15-4 contains an example where the OsmCentralOMExample-Orchestration
cartridge references an XQuery file located in a centralized resource cartridge
OsmCentralOsmResources, and that two versions, 1.0 and 1.1, have been deployed:

Figure 15-4 XML Catalog Conflict

If the XQuery file is referenced using a URI like the following:

http://oracle.centralom/base/xquery/updateOrderFS.xqy,

and the XML Catalog for cartridge version 1.0 has a rewriteURI entry like this:

http://oracle.centralom/base -> osmmodel:///OsmCentralOsmResources/1.0.0.0.0/
resources

and the XML Catalog for cartridge version 1.1 has rewriteURI entry like this:

http://oracle.centralom/base -> osmmodel:///OsmCentralOsmResources/1.1.0.0.0/
resources

Chapter 15
About OSM Cartridge Scope

15-7

then there is no ambiguity when locating the XQuery file. Entities in the
OsmCentralOMExample-Orchestration cartridge version 1.0 will find the XQuery
resource in version 1.0 of the OsmCentralOsmResources cartridge, because the URI
of the XQuery file will be resolved to:

osmmodel:///OsmCentralOsmResources/1.0.0.0.0/resources//updateOrderFS.xqy

Composite Cartridge Scope
A composite cartridge is a special type of cartridge that does not directly contain
any OSM entities at design-time. Instead, it contains references to other cartridges
(referred to as component cartridges) that make up an OSM service or solution. The
composite cartridge has its own 5-segment version number that you can manage,
and contains a list of component cartridges that make up the composite cartridge.
For more information about composite cartridges, see Design Studio Modeling OSM
Orchestration Help. Oracle recommends that you use composite cartridges in your
solution, as they help reduce versioning problems and namespace collisions.

The composite cartridge provides solution-level scoping boundaries that are
appropriate for running concurrent cartridge versions of an OSM implementation.
When the composite cartridge is built, all of the entities without namespaces from
the component cartridges are aggregated to become one new deployable cartridge.
This run-time cartridge has a namespace that is the name of the composite cartridge.
However, all of the entities with namespaces are built into their respective component
cartridges as usual.

For XML catalog files in composite cartridges, unlike in standalone cartridges, it is only
necessary to ensure that the XML catalog is located somewhere with the scope of the
composite cartridge to ensure that the correct version will be used.

Figure 15-5 is an example of a composite cartridge having two component cartridges
(a base cartridge and a billing cartridge), and how the run-time cartridges will be
generated by the build process:

Chapter 15
About OSM Cartridge Scope

15-8

Figure 15-5 The Use of Composite Cartridges in Design Time and Run Time

In this example, a run-time cartridge named COMExample-Soln is generated to
contain all of the entities without namespaces, such as orders, processes and tasks.
The component cartridges, COMExample-Base and COMExample-Billing, still contain
their entities with namespaces. When the composite cartridge is deployed, all of
the design-time component cartridges and the generated component cartridge are
deployed to the run-time environment. When an incoming order is handled by an order
entity in this composite cartridge version, it is given the namespace of the generated
cartridge, which is the name of the composite cartridge, COMExample-Soln.

Because all of the entities without namespaces are aggregated into a single cartridge,
there is no ambiguity about which entity is referenced. Even if multiple versions of
the cartridge are present in OSM, only one version of the cartridge would be included
in the composite cartridge. In our example, if cartridge COMExample-Billing version
1.0 and 1.1 are deployed, the BillingFunctionTask task from the COMExample-Billing
cartridge version 1.0 will be used by orders that are tied to COMExample-Soln version
1.0, since the order and the task are now confined to a single cartridge and version.

Composite cartridges also address the problem of namespace collision for entities with
namespaces. The composite cartridge establishes a manifest that explicitly specifies
the component cartridge version whenever an entity dependency is established across
cartridges in the solution. Entities and resource files in the component cartridge
version are confined to the OSM solution defined by the composite cartridge. So,

Chapter 15
About OSM Cartridge Scope

15-9

in the example, if the COMExample-Billing version 1.0 and 1.1 cartridges are both
deployed, orders tied to COMExample-Soln 1.0 will use entities from version 1.0 of
COMExample-Billing instead of version 1.1, even when the same fully qualified name
exists in both, because the. This means that, when you use composite cartridges, you
do not need to include the cartridge version in the namespace of entities to avoid
namespace collisions.

Special Cases for Scope
Some entities are special cases with regards to scope. First, there is the order
recognition rule. Since the order recognition rule is evaluated before the order is
selected, its scope cannot be based on the cartridge in which it is located. Also there is
the fulfillment pattern, which works differently because the namespace used is based
on the order item.

Order Recognition Rules
Order recognition rules (ORRs) are a special case for scoping. When the CreateOrder
API is called, OSM does not know the version or namespace of the incoming order.
The purpose of ORRs is to be able to determine the kind of order contained in an
inbound message. Even though an ORR has a namespace field, its scope is system-
wide: all ORRs in the OSM run-time environment are used to recognize the contents
of the CreateOrder message, regardless of which cartridge contains the ORR. This is
true for ORRs regardless of whether they are in standalone cartridges or component
cartridges contained by a composite cartridge. Essentially, ORRs ignore both cartridge
version and namespace.

So if you have two versions of an ORR that are both deployed and will pick up the
same order type, there is a non-namespace way to configure which ORR will pick up
new orders of the relevant type. The Relevancy setting in Design Studio determines
the order in which the ORRs are evaluated. OSM will run ORRs on an inbound
message from highest to lowest relevancy until an ORR recognizes the order. If two
ORRs have the same relevancy, it is not predictable which one will be evaluated first.
Once an ORR is matched, the incoming order is tied to the target order type (and thus
its cartridge namespace) that the ORR designates, and further rules are not evaluated.

Fulfillment Patterns
Fulfillment patterns are responsible for determining the fulfillment of an order item in
the generated orchestration plan. Fulfillment patterns have a namespace. However,
finding the fulfillment pattern of an order item is a unique case in scoping. In Design
Studio, the order item is mapped to a fulfillment pattern using the value in the
Fulfillment Pattern Mapping Property field, which contains a string to map to a
fulfillment pattern name. OSM finds the Fulfillment Pattern by fully qualified name (not
just the string contained in the property field), using the namespace of the order item
to determine what namespace to look for in a fulfillment pattern. Because of this, it is
important to use the same namespace for both order items and their related fulfillment
patterns in your OSM solution. Otherwise, OSM cannot find the fulfillment patterns for
the order items.

Fulfillment Patterns in Standalone Cartridges

In the same way that there can be scoping issues with regular entities in standalone
cartridges, there can be scoping issues for fulfillment patterns as well. The example
depicted in Figure 15-6 shows what happens if the version number is not included

Chapter 15
About OSM Cartridge Scope

15-10

in the namespace of an order item in a standalone cartridges. The COMExample-
FulfillPattern version 1.0 cartridge contains the Service.Broadband, Service.Fixed,
and Service.Mobile fulfillment patterns. The COMExample-FulfillPattern version 2.0
cartridge introduces the new Service.VOIP fulfillment pattern as well as making
changes to existing fulfillment patterns. If the namespaces do not contain cartridge
versions, finding Service.Broadband results in matching whichever of the fulfillment
patterns was in the version of the cartridge that happens to have been deployed most
recently. This results in unpredictable behavior in orchestration plan generation.

Figure 15-6 Fulfillment Patterns in Standalone Cartridges

Fulfillment Patterns with Composite Cartridges

In contrast, with the use of composite cartridges, OSM matches only fulfillment
patterns that are encapsulated in the same composite cartridge. In the example
in Figure 15-7, for orders in cartridge version 1.0, only Service.Broadband in
COMExample-FulfillPattern1.0 is matched.

Chapter 15
About OSM Cartridge Scope

15-11

Figure 15-7 Fulfillment Patterns Encapsulated in Composite Cartridges

Managing Cartridge Versions
To distinguish changes in a cartridge over time, each cartridge has a cartridge
version. As your OSM implementation evolves to keep up with business, you can
either introduce cartridge changes by overwriting the existing cartridge version, or by
deploying as a new cartridge version. The longer the order lifetime is, the greater the
likelihood that you will need multiple cartridge versions deployed at the same time.

Changes can be made to cartridges for different reasons, including fixing
implementation details and enhancing the cartridge to meet new requirements. Often,
the changes that need to be made in a cartridge are not compatible with the way
the cartridge currently works, or may be disruptive to the in-progress orders that are
running in the current version of the cartridge. This is the primary reason to introduce a
new version: deploying a new version of a cartridge allows new orders to use the new
cartridge, while in-flight orders can continue without disruption using the version of the
cartridge that they started with.

One consideration to keep in mind when planning solution maintenance is the order
lifetime. The time needed to fulfill orders for a service provider varies among different
domains of products and services. For example, consumer orders for mobile services
may be seconds or minutes to complete, while consumer orders for fixed line services
may take minutes to days, particularly if those orders require human interactions such
as physical equipment adjustments or shipments. Business services may take days,
weeks, or even months to complete, where an order can encapsulate the services of
multi-site network with lots of equipment, off-net components, cabling, and so on.

In OSM, existing orders that are running in the system will continue to run against the
existing cartridge version that they were using. For example, if order 123 is in progress

Chapter 15
Managing Cartridge Versions

15-12

using cartridge A version 1, and then cartridge A version 2 is deployed to the run-time
system, then order 123 will continue to run to completion using cartridge A version 1.
This is also true for existing future-dated orders for cartridge A version 1even if the
start date has not arrived.

Making Changes to Existing Cartridge Versions
If you have very short-lived orders, it is possible to avoid having different versions of
cartridges at the same time, by deploying changes to the cartridges without changing
the version. To do this without breaking existing orders, a possible strategy is to allow
OSM to complete the fulfillment of all orders, followed by an order purge operation that
removes them from the environment (since, once the new cartridge is deployed, OSM
may not be able to understand the old orders). However, there are several drawbacks
to this strategy:

• It does not allow you to keep completed orders in the system for troubleshooting,
auditing, and reporting purposes.

• It limits your implementation's ability to handle inter-order dependencies, because
you cannot guarantee that the parent orders are still in the system.

• There are also operational complications that can arise, because there will be
some orders that take longer to complete than others, and there may be order
fallout that needs to be handled. This would mean that at least some order fallout
would need to be handled outside of OSM, rather than managing it using the order
fallout capabilities of OSM.

Aside from the scenario mentioned above, where you have only very short-lived
orders, you should always plan to use cartridge versioning in your production
environment.

However, even if you are using cartridge versioning in your solution, you do not need
to introduce a new cartridge version every time you make a change. There are cases
where it is better to make changes to an existing cartridge version and redeploy it,
instead of creating a new cartridge version, such as:

• If you have critical bug fixes that should affect existing orders, and the fixes would
not make the cartridge incompatible with existing orders, it may make sense to
deploy the fix to the same cartridge version that causes the problem.

• If you have changes need to become effective immediately, applying to existing
in-progress orders, you may want to deploy the changes in the existing cartridge
version. For example, if there is an interface change in a downstream system, and
it no longer supports the original version of the interface, that would require OSM
to adapt to the new interface across all cartridge versions.

Generally speaking, the longer that orders take to complete, the more business
pressure there is to make changes that existing orders can use.

When when you need to make changes to existing cartridge versions, it is important
that you ensure that all in-progress orders can continue to be executed against
the cartridge after the changes are made. For technical and best practice guidance
towards safely making changes to existing cartridge versions, see knowledge article
2077384.1, Cartridge Management and Versioning, on the Oracle support website.

Making changes to existing cartridge versions is inherently risky, and so adequate
test coverage is an essential part of the process, to ensure that all in-progress order
scenarios are not impacted (for example, do not stop processing) by the changes to
the cartridges.

Chapter 15
Managing Cartridge Versions

15-13

In general, it is important to minimize the number of cartridge versions that you
introduce for performance reasons. See the discussion of cartridge management
strategy in OSM System Administrator's Guide for more information about removing
old versions of cartridges when they are no longer necessary.

Handling Multiple Cartridge Versions
The Cartridge and Composite Cartridge editors in Design Studio contain several fields
that make up the version number. There are five fields that you set to indicate the
version of a cartridge: Major Version Number, Minor Version Number, Maintenance
Pack, Generic Patch, and Customer Patch. These constitute a 5-digit version
number, for example, 1.0.0.0.0. In addition to the cartridge version, there is a read-only
Build Number field that is automatically incremented by Design Studio each time a
cartridge is built. It is not reset when the cartridge version is changed.

To deploy a new cartridge version, change the value of the version fields and deploy
the cartridge. Multiple cartridge versions can be deployed in an OSM environment at
the same time, with orders running against each version.

Some additional configuration is necessary to deploy multiple versions of a cartridge to
an OSM environment. All of the following considerations should be taken into account
when implementing multiple cartridge versions:

• The DEFAULT_CARTRIDGE cartridge management variable:

Ideally, only one version of a cartridge should be set as the default version of
the cartridge. For example, if you have versions 1.0.0.0.0 and 2.0.0.0.0 of an
OSM cartridge deployed, only one of them should be set as default. For more
information, see "Designation of the Default Cartridge Among Cartridge Versions."

• Composite and component cartridge versions:

When you update a component of a composite cartridge, you do not always need
to update the version of the composite cartridge as well.

For example, if CompositeCartridge version 1.0 references ComponentCartridgeA
version 1.0 and ComponentCartridgeB version 1.0, when you update
ComponentCartridgeA to version 1.2, the composite cartridge and
ComponentCartridgeB can both remain at version 1.0.

• Cartridge versioning using the XML Catalog:

In standalone cartridges, the XML Catalog should be used to allow multiple
cartridge versions to refer to their own set of resources using the cartridge model
variable CARTRIDGE_VERSION.

If a rewriteURI entry in the XML catalog contains a version-specific portion in the
URI such as “1.0.0.0.0" in the following:

<rewriteURI uriStartString="http://example.com/" rewritePrefix="osmmodel:///
MyCartridge-Resources/1.0.0.0.0/resources"/>

the version-specific portion of the rewriteURI entry must be updated to point to the
correct cartridge version.

See "Using XML Catalogs to Support Cartridge Versioning" for more information.

• Automation – External Event Receiver:

When there are multiple versions of automation external event receivers listening
to the same JMS Source, OSM uses the JMSCorrelationID to ensure that the

Chapter 15
Managing Cartridge Versions

15-14

message is consumed by the correct receiver, as long as the external automation
receiver is named using the format taskName.automatorName, and there is only
one external automation receiver associated with the task.

If your receiver does not have the name format taskName.automatorName, or
there is more than one external automation receiver associated with the task, the
message listening filter criteria of your automation plug-in must guarantee not to
pick up a message that should have been picked up by another cartridge version.
This may happen if, for example, your system has asynchronous interaction with
an external system that takes days to fulfill your request and you have modeled
the correlated response to return to a different task than the one that sent the
message, or it might happen if you have an old (pre-OSM 7.0.3.1) cartridge that
you have not updated.

See "Properties View External Event Receiver Tab" in Modeling OSM Processes
for the External Event Receiver sub-tab of the properties view in the automated
task editor Automation tab for more information.

• Order recognition rule:

When there are multiple versions of a cartridge with orchestration entities, order
recognition rules should be modeled to recognize a specific version of the order
instead of the default version. To recognize a specific version of the order, the
Target Order Version of the order recognition rule should be set to the version of
the cartridge where the specific version of the order resides.

When an order recognition rule is used in a composite cartridge and there are
multiple versions of the composite cartridge, the Target Order Version of the
order recognition rule should be set to the version of the composite cartridge that
contains the target order as part of the solution. For example, you might have
version 1.0.0.0.0 of the OsmCentralOMExample-Solution composite cartridge with
the following dependent cartridges:

– OsmCentralOMExample-Orchestration version 1.2.0.0.0 –
OsmCentralOMExampleOrder is defined here

– OsmCentralOMExample-ProductSpec version 2.0.0.0.0

– OsmCentralOMExample-FulfillmentPattern version 2.0.0.0.0

– OsmCentralOMExample-Topology version 1.1.0.0.0

The target order version of the order recognition rule should be set to 1.0.0.0.0,
because that is the version of the composite cartridge.

Migrating Orders to a New Version of a Cartridge
Only orders that are in the Not Started order state can be migrated to another cartridge
or cartridge version. All running orders (in any order state other than Not Started),
including future-dated orders, must continue to run to completion against the version of
the cartridge in which they were created.

It is possible to mimic migrating orders to a new cartridge version by re-submitting
in-flight orders as new orders to the new cartridge version. This requires either the
in-progress fulfillment flow to be manually cleaned up in the various external systems
before the order is resubmitted, or the flow itself to be configured so that past activities
can be repeated without needing to be undone (for example, so that you can resend
a message to a downstream system without having to undo any previous commands).
This is not a recommended option, but can be a possibility, depending on the specifics
of your OSM implementation.

Chapter 15
Managing Cartridge Versions

15-15

Designation of the Default Cartridge Among Cartridge Versions
If there are multiple versions of the same cartridge deployed, you must designate
which version is to be used for to an inbound order. It is possible (but not required)
to specify the cartridge version in the CreateOrderbySpec request. In the CreateOrder
request, the target version cannot be specified as input parameter, but can optionally
be defined by the matched ORR. Alternatively, you can configure the ORR to use the
default version of the cartridge. In any case, there must be a way to determine which
version of the cartridge should handle the order if the cartridge version is not defined
on the order or set by the order recognition rule.

For standalone cartridges, the default designation is configured using the
DEFAULT_CARTRIDGE cartridge management variable. This variable should be set
to true for the version that should handle new orders, typically the latest cartridge
version. For instance, if version 1 of cartridge A is already deployed and has orders
running against it, and version 2 of cartridge A is deployed as the new default version,
then new orders created in the run-time system for cartridge A will run against version
2, and any changes made for version 2 will be effective for those new orders.

For composite cartridges, the default is set in the same way, only it is set on
the composite cartridge. When the DEFAULT_CARTRIDGE cartridge management
variable is set to true, all the composite cartridge's component cartridges are
considered the default versions. The default settings of the component cartridges do
not have an effect, only the setting of the composite cartridge.

For both standalone and composite cartridges, the OSM server always recognizes
exactly one version as the default for each cartridge namespace. When multiple
cartridge versions are deployed that have the default flag set to true, the OSM run-
time environment will make the last deployed of these versions the default cartridge.
Because of this, special attention is required when redeploying an old cartridge
version. When you create a new cartridge or composite cartridge in OSM, by default,
the DEFAULT_CARTRIDGE cartridge management variable is set to true. When you
deploy the versions in numeric order, the latest version will be the default. However,
if you redeploy an earlier version after a later version, you must ensure that you have
set the DEFAULT_CARTRIDGE cartridge management variable to false for that earlier
version. There is no warning in Design Studio or on the run-time server that there is an
older version of a cartridge being deployed as the default, so you must take care to set
the value properly.

Handling Revision Orders When Multiple Cartridge Versions Are
Deployed

OSM always creates revision orders with the same cartridge version as the base
order. This is because otherwise, generating and executing compensation can cause
errors because entities in the new version are not available in the original cartridge
version. The detection of order revision and the choosing of cartridge version are
handled automatically by the OSM server.

For example, order 123 is created against cartridge A version 1.0, and is currently
in an In Progress state. Next, version 1.1 of cartridge A is deployed and is now the
default version of the cartridge, and all new orders for cartridge A will be run against
version 1.1. Then a revision for order 123 is submitted to the system. When OSM
detects that this is a revision of order 123, and that order 123 is running against

Chapter 15
Managing Cartridge Versions

15-16

version 1.0 of cartridge A, it creates the revision order for version 1.0 of cartridge A,
then proceeds with the amendment process.

This means that all subsequent revisions of the order will be created against the
same cartridge version as the original order. There is no way to override this behavior.
Regardless of any information set on the order or by the ORR, revision orders will use
the same cartridge version as the original order.

Working with Cartridges in OSM Cloud Native
For cartridge considerations in an OSM cloud native environment, see "Preparing
Cartridges for OSM Cloud Native" in OSM Cloud Native Deployment Guide.

Building and Packaging a Cartridge
Use Design Studio to package a cartridge by specifying entities to include in
the cartridge. By default, all entities created within the cartridge are included
unless otherwise specified on the Order and Service Management Cartridge editor
Packaging tab.

To build cartridges:

• From the Project menu, select Build.

Oracle recommends that you periodically clean the project prior to a build (see
"Cleaning and Rebuilding Cartridges Prior to Deployment.")

For instructions on how to package and build a cartridge, see "Packaging and
Deploying OSM Cartridges" in Modeling OSM Processes.

About Generating OSM Cartridges and Deployment Options
When you build OSM cartridges, Design Studio generates a portal archive (PAR) file
for each cartridge, which is a ZIP file packaged to contain the metadata interpretable
by the OSM run-time environment. This PAR file has the .par file extension, and is the
artifact sent to the OSM server when deploying a cartridge. The name you choose
for the cartridge becomes the name of the PAR file. Design Studio saves the PAR
file to the cartridgeName/cartridgeBin directory, that you can view from the Java
perspective Package Explorer.

Both the design-time project files in Design Studio and the deployable PAR file stored
on the OSM run-time environment are referred to as cartridges. Often, the context of
the discussion clarifies which artifact is being referred to.

You can deploy OSM cartridges using either of the following tools:

• Design Studio environment perspective: Typically, developers and testers
managing their own run-time environments use Design Studio to deploy
cartridges. Developers may perform build, deploy, and test cycles many times a
day. You can deploy cartridges from Design Studio using the Studio Environment
Perspective. See Design Studio Concepts for more information about deploying
cartridges using the Design Studio environment perspective.

• Design Studio cartridge management tool (CMT) (Traditional OSM Only):
Oracle recommends CMT (packaged with Design Studio) for deploying cartridges
to production, pre-production, or automated testing environments. The cartridge
management tool is a set of ANT scripts for deploying and un-deploying cartridges

Chapter 15
Working with Cartridges in OSM Cloud Native

15-17

to a run-time environment. Script-based deployment is important for run-time
environments that are under strict operational control and require an automated,
repeatable way to build, deploy and un-deploy cartridges. See Design Studio
Developer's Guide for more information about CMT.

• OSM DB Installer: OSM cloud native uses a different mechanism for deploying
cartridges. See "Deploying Cartridges Using the OSM DB Installer" in OSM Cloud
Native Deployment Guide for more details.

Both tools connect to the OSM server using the Cartridge Management Web Service
(CMWS) deployed in WebLogic.

Note:

The XML Import/Export (XMLIE) application is a legacy client that can
manage cartridges. It does not connect over CMWS. Do not use XMLIE
to deploy cartridges unless you are supporting an OSM 6.x implementation.
See OSM System Administrator's Guide for more information about XMLIE.

You can configure how orders are fulfilled by deploying cartridges in different ways.
For example:

• You can deploy different cartridges on different instances of OSM. For example,
you can deploy a specific set of cartridges on an instance of OSM that is dedicated
to central order management.

• You can make changes to a cartridge after the cartridge has been deployed to the
OSM server by making changes to the original cartridge in Design Studio and then
redeploying the cartridge.

• You can fulfill orders differently by using functionality deployed by different
cartridges.

• You can fulfill orders differently based on functionality deployed by different
versions of the same cartridge.

For instructions on how to create a cartridge in Design Studio, see "Packaging and
Deploying OSM Cartridges" in Modeling OSM Processes.

About Cartridge Types
You can create the following OSM cartridge types using Design Studio:

• Component cartridge: Component cartridges contain a part of the OSM model
entities in an overall OSM solution. For example, some component cartridges may
define OSM model entities for interacting with particular fulfillment systems, such
as a shipping system, or a billing and revenue management system, or OSM
system running in a different role. Other component cartridges may define data
dictionaries common across OSS or BSS applications.

• Composite cartridge: Composite cartridges designate an OSM solution by
referencing a collection of component cartridges. The composite cartridge does
not contain any OSM model entities itself but acts as a container that includes
the component cartridges it references. For this reason, composite cartridges are
also called solution cartridges. When you deploy a composite cartridge, all the
included component cartridges are also deployed, effectively deploying the entire

Chapter 15
Building and Packaging a Cartridge

15-18

OSM solution in a single action. Oracle recommends using composite cartridge to
manage the component cartridges of an OSM implementation in the production
environment. Composite cartridge projects may contain any number of component
cartridges, but not other composite cartridges.

• Standalone cartridge: Standalone cartridges are component cartridges that
are not part of a composite cartridge solution. Standalone cartridges can have
dependencies to other standalone cartridges, but cannot be dependent on any
component cartridge within a composite cartridge solution.

About Design Studio Editors for OSM Cartridges
Figure 15-8 shows an example of a cartridge, named myCartridge, as it appears in the
Design perspective Cartridge view (left side). The corresponding Order and Service
Management Cartridge editor is also shown (right side).

Figure 15-8 Cartridge View of a Cartridge

Expand the cartridge in the Cartridge explorer pane (on the left in Figure 15-8) to see
the contents created with each cartridge. For a component cartridge, this includes a
default order based on the name of the cartridge. When you initially create a new OSM
component cartridge, errors are always present because the default order requires you
to define:

• A creation task

• A default process

• A role that grants creation permissions

• An order life-cycle policy

• An order template

• Order permissions

Chapter 15
Building and Packaging a Cartridge

15-19

A composite cartridge does not require these entities, so there are no errors when it
is initially created. For a component cartridge, after these entities are defined for the
order, the errors are resolved, but the graphic will still show the presence of an error
by placing a small red "x" box on the lower left corner of the icons in the Cartridge
explorer pane. This is because the graphic shows what is present when the cartridge
is created. When the errors are resolved, the pane reflects the additional entities of a
process and a life-cycle policy that are not part of cartridge creation.

Switching to the Java perspective Package Explorer view and expanding the cartridge
displays the file types of the contents created with each cartridge.

Figure 15-9 shows an example of a cartridge, named myCartridge, as it appears in
the Java perspective Package Explorer view. The corresponding Order and Service
Management Cartridge editor is also shown.

Figure 15-9 Package Explorer View of a Cartridge

In the example, myCartridge was entered in the Project name field when creating the
cartridge. As a result, the Java perspective Package Explorer view shows:

• myCartridge: The Design Studio Order and Service Management Cartridge
project.

• myCartridge/dataDictionary/myCartridge.xsd: The schema file used internally
by Design Studio.

• myCartridge/model/myCartridgeOrder.order: The Order editor.

• myCartridge/myCartridge.osmCartridge: The Order and Service Management
Cartridge editor shown on the right side of Figure 15-9.

Chapter 15
Building and Packaging a Cartridge

15-20

After creating the cartridge, an immediate build of the project creates additional
directories and files in the cartridge, as shown in Figure 15-10. The directories include,
among others:

• cartridgeBin

This directory contains the myCartridge.par file, which contains the Design Studio
entity files and is deployed to the OSM server.

• customAutomation

This directory is created with the cartridge, but the automationMap.xsd and
databasePlugin.xsd files are pulled into the cartridge with the build.

Figure 15-10 Package Explorer View of a Cartridge After a Build

Chapter 15
Building and Packaging a Cartridge

15-21

Note:

If working with automation plug-ins, the directories and files listed below are
important:

• src directory

• Referenced Libraries/automation_plugins.jar

• cartridgeBin/cartridgeName.par

• customAutomation/automationMap.xsd

• customAutomation/databasePlugin.xsd

• resources directory

For more information, see "About Automation Plug-ins."

Organizing Design Studio and Naming Conventions
Oracle recommends that you determine a set of naming conventions for the Design
Studio entities being created and a directory structure to contain those elements
that is appropriate to your implementation. Following is an example set of naming
conventions for selected configuration elements within Design Studio. However, each
project team should determine what conventions are suitable for a particular project.

Table 15-1 Suggested Design Studio Naming Conventions

Metadata Element Naming Convention Sample

Order recognition rules Use the convention of
OrderTypeORR

SalesOrderORR
ProvisioningOrderORR

Order item specifications Use the convention of
OrderItemTypeItemSpec

CentralOrderItemSpec

Fulfillment patterns Use a name that indicates
the fulfillment flow being
supported.
For example:
PS_FulfillmentType_SpecType

PS_Service_Broadband

Fulfillment modes Use names that clearly
identify the type of action to
be taken

DELIVER
QUALIFY
QUOTE

Order component
specifications: Fulfillment
actions

Use names that indicate the
function of the fulfillment
action; for example, Billing,
or Shipping.

ResidentialBillingFunction
EnterpriseBillingFunction
ProvisioningFunction

Order component
specifications: Fulfillment
target systems

Use names that indicate
the function of the target
system; for example, Billing,
or Shipping.

BillingSystem
CRMSystem
ServiceManagementSystem

Chapter 15
Building and Packaging a Cartridge

15-22

Table 15-1 (Cont.) Suggested Design Studio Naming Conventions

Metadata Element Naming Convention Sample

Order component
specifications: Processing
Granularity

Use names that correspond to
the order structure defined
in the product catalog; for
example, Item, Bundle, and
Order.

ItemBased
BundleBased
OrderBased

Orchestration stages Use names that describe the
stages.

DetermineFulfillmentFunctio
nStage
DetermineFulfillmentSystem
Stage
DetermineProcessingGranula
rityStage

Orchestration sequences Use the convention
CartridgeNameSequence

SalesOrderFulfillmentSequen
ce

Decomposition rules Use the naming convention
DR_FunctionName_To_System
Name for system
decomposition rules
Use the naming convention
DR_DetermineGranularity_Fo
r_FunctionName for
granularity decomposition
rules

DR_BillingFunction_To_ResB
RM
DR_DetermineGranularity_Fo
r_BillingFunction

Cartridge Packaging Design
When you model OSM entities, you can define separate cartridges and combine
them in a single solution. This allows you to create individual cartridges for specific
purposes, and to create a library of cartridges which can be shared across multiple
solutions. This approach can result in lower maintenance, better performance, and
easier collaboration within the implementation team.

While each deployment has its own specific considerations, Oracle recommends that
you consider the following guidelines:

• Build separate cartridges based on function. For example, build separate
cartridges for COM, SOM, and TOM roles.

• Put configuration elements that are more commonly changed into a separate
cartridge for ease of maintenance.

• If a component has distinct notification and status management requirements, use
a separate cartridge and pass the data to this "sub-order" from the main order. For
example, if the process of shipping a piece of equipment involves interactions with
three to four systems and multiple notifications to other systems, consider creating
a "Shipping order management cartridge" to handle this requirement.

• For a given cartridge, limit the total number of sub-processes and the number of
tasks per sub-process for ease of maintenance. Consider limiting both to ten or
fewer, although in some situations more might be required.

Chapter 15
Building and Packaging a Cartridge

15-23

• Consider defining a cartridge which contains only a data dictionary with data
nodes and structures that are specific to a technology or service or space. Other
cartridges can then reference this data.

Modifying the Build
If you need to modify the build performed by Eclipse, you can modify the build files that
are provided with the creation of each cartridge. Common modifications include adding
logic to the build file for the generation of Java code and the creation of JAR files. The
build file for each cartridge is:

• CartridgeName/src/build.xml

The CartridgeName/src/build.xml file can be customized to add files to the lib
directory. For example, you may want to get a JAR file from another project as part of
the build or do some other custom staging activity. Nothing in the lib directory goes on
the classpath automatically. You can do this manually as well.

About XML Catalogs
XML Catalogs are logical structures that act like address books or directories. XML
Catalogs contain entries that indicate a placeholder location and then provide the path
to the location to be used. At run time, when OSM processes a URI you specify as
part of the OSM data model, OSM first attempts to resolve the URI against the XML
Catalogs you specified. Based on the mapping defined in the XML Catalogs, OSM can
update the URI to adapt to different environments by resolving the location of the URI
in your data model with the location it is mapped to in the XML Catalog. For example:

• OSM resolves a URI against a test server in a test environment and resolves that
URI against a different server in a development environment.

• OSM resolves the location of files in a developer's local workspace to the location
of equivalent files available to the OSM server at a generic URI. You might use
XML Catalogs in this way for XQuery module import statements that at design time
need to refer to files in your local workspace but at run time need to refer to files
within the resources directory of a deployed cartridge.

• Your OSM model might reference a resource located on the Internet. If your
server deployment runs behind a firewall with no Internet access, you can load the
resource behind the firewall and use an XML Catalog to redirect the URI of the
Internet location to the location of the resource behind the firewall.

For more information on XML Catalogs and valid XML Catalog entries, see the OASIS
web page:

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

See "Using XML Catalogs in OSM" for information on how you can use XML Catalogs
in your OSM development.

Using XML Catalogs in OSM
In Design Studio, you model behaviors such as business rules and other model
components, which OSM uses at run time to satisfy your business requirements for
order processing. The model components used at run time to manage and fulfill orders
are referred to as OSM resources and are often contained in resource files. Examples
of resource files include XQuery files, XSLT files, custom JAR files, third-party JAR

Chapter 15
Building and Packaging a Cartridge

15-24

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

files, and XML files such as a product class mapping file. There can be a large quantity
of resources and some of those resources must reference each other. Resources in
OSM can be referenced through URI locators in your data model.

A resource must reside on some physical location on a system. Each system has
its own unique directory structure. If you use static values or constants to indicate
the location of a resource when defining the URI locator for that resource in your
data model, the resource will not be accessible if you deploy your cartridge to other
systems where the resource is in a different directory. Thus, using static values to
indicate the location of a resource limits the portability of your cartridge solution
to other systems or run-time environments. XML Catalogs solve this problem by
redirecting the URI defined in your data model to the URI where the resource actually
resides in whichever run-time environment you deploy your cartridge. XML Catalogs
provide a redirection from a URI to another URI. By redirecting the resource URI
locators, XML Catalogs serve to insulate your cartridge solution from environment
configuration.

At run time, when OSM processes a URI you specify as part of the OSM data model,
OSM first attempts to resolve the URI against the XML Catalogs you specified. Based
on the mapping defined in the XML Catalogs, OSM updates the URI to adapt to the
environment by resolving the location of the URI in your data model with the new URI
you mapped for it in the XML Catalogs.

OSM processes XML Catalogs in the order you specify them, as follows:

• Specified in your OSM cartridge projects

XML Catalogs specified in your OSM cartridge projects are packaged as part
of the cartridges and deployed to the OSM server. The XML Catalog manages
only the resource files in the resources folder of your cartridge project. When
you deploy a cartridge with XML Catalog support enabled, the contents of the
resources folder are loaded into a virtual file system. Those resources are
available through URI redirection to any other deployed cartridges. XML Catalogs
can be defined in any cartridge, and those defined in one cartridge can reference
resources in other cartridges. All of the XML Catalogs deployed on the OSM
server are stored in memory and rebuilt each time the metadata refreshes. If there
are conflicting XML Catalog entries, the latest entry loaded overwrites the earlier
entry. See "Defining rewriteURI Entries in XML Catalogs" for information on how to
avoid conflicting entries.

• Specified on the OSM server

XML Catalogs specified on the OSM server are defined in the oms-config.xml file
and are loaded ahead of the XML Catalogs specified in OSM cartridge projects.
XML Catalogs defined on the server are global in scope, applying to all cartridges.
XML Catalogs specified on the OSM server override the URI mapping of XML
Catalogs in cartridge projects. URIs mapped in oms-config.xml are resolved for
each specific environment. For example, a cartridge developer can specify an
XML Catalog in oms-config.xml to point certain URIs defined in the data model
to her own local Design Studio workspace, allowing her to change the contents
of the resources locally and test the changes without having to redeploy the
entire cartridge. Because OSM uses XML Catalogs that are specified on the OSM
server to resolve URIs to be environment specific, XML Catalogs specified in OSM
cartridge projects should not reference URI locations that are environment specific
(such as drive letters).

Following are some examples of data OSM looks up from resource files at run time
that you could use the XML catalog to redefine:

Chapter 15
Building and Packaging a Cartridge

15-25

• Automation logic: You can configure XQuery and XSLT automators with the XML
Catalog to specify the XQuery/XSLT file that drives the automation logic.

• Data from a data provider: A data instance provider can use the XML Catalog to
specify a resource for providing the data loaded by the provider.

• Order item properties (for orchestration orders): Order item properties can be
configured to be loaded through a URI locator. You can configure the XML Catalog
to redirect the URI to specify the XQuery file that implements determining the
property value.

• Decomposition rules (for orchestration orders): Decomposition rules can be
configured to be loaded through a URI locator. You can configure the XML Catalog
to redirect the URI to specify the XQuery file that implements determining the
decomposition condition.

See "Specifying XML Catalogs for OSM" for instructions on how to specify XML
Catalogs.

You can use the XML Catalog as a tool to perform cartridge versioning, to shorten
development cycles, to allow for cartridge extensibility, and to insulate test and
production environments from development-specific environments. See "Examples of
Using XML Catalogs" for examples of these uses of the XML Catalog.

You can specify a common resources cartridge project that contains all of the shared
resources across multiple cartridge projects. Defining the XML Catalog in this common
resources cartridge consolidates the XML Catalog entries in one file which makes it
easy to identify and eliminate conflicting catalog entries. See "Resource Packaging
Considerations for Using XML Catalogs" for information on how you can package your
resources when using XML Catalogs.

You can use any valid XML Catalog entry in your XML Catalog, but the rewriteURI
entry is the most useful for OSM. See "Defining rewriteURI Entries in XML Catalogs"
for information on defining rewriteURI entries for OSM.

Resource Packaging Considerations for Using XML Catalogs
You can specify a common resources cartridge project that contains all of the shared
resources across multiple cartridge projects. Defining the XML Catalog in this common
resources cartridge consolidates the XML Catalog entries in one file which makes it
easy to identify and eliminate conflicting catalog entries. When you specify a common
resources cartridge project in this way, other projects with model entities that reference
the shared resources do not need to have an XML Catalog defined.

When you define resource properties in Design Studio, you can indicate to retrieve the
resource by expression, file, or URI. XML Catalogs apply only to the URI option.

Consider the following when making your decision on which option to choose:

• Select Expression when the XQuery expression is short (only a few lines in
length) and is not shared by other resources.

• Select File, also referred to as Bundle In, when the XQuery configuration is
longer (more than a few lines in length) and is not shared by other resources.
Use this method for resources that are not expected to change. You will not be
able to access the resource except in the physical location specified. In addition, a
resource referenced through File or Bundle In must exist in the same project as
the entity referencing it.

Chapter 15
Building and Packaging a Cartridge

15-26

• Select URI when the XQuery configuration is shared by multiple configurations
and is located in a remote URI location to be accessed through the specified
URI. If the XQuery configuration requires frequent changes, even though it is only
used in one cartridge, you may want to use the URI option and also package
the XQuery in a separate cartridge. That way, you can modify and redeploy the
resource without having to compile and redeploy the possibly larger cartridge that
uses it.

Figure 15-11 shows the Expression, File, and URI options in the XQuery tab of a
Design Studio editor:

Figure 15-11 URI Option for Defining Resource Properties

Oracle recommends you package resources in the following ways:

• Package resources to be used by a single cartridge in the cartridge itself. Select
File or Bundle in when you define the resource properties in Design Studio.

• Package resources to be used by multiple cartridges into a shared or common
resources cartridge and do the following:

– Configure the resources to be retrieved by a URI. Select URI when you define
the resource properties in the XQuery and XSLT tabs of the Design Studio
editor.

– Configure OSM to access the resources inside of the deployed common
resources cartridge through a URI locator.

Another reason to package resources in a common resource cartridge is when you
need to change those resources frequently and they are used by a large cartridge
that has automation and model entities that take a long time to build, package, and
deploy. By packaging resources that change frequently in a common resources
cartridge, you avoid having to rebuild the larger cartridge each time you change
the resources.

Defining rewriteURI Entries in XML Catalogs
This section describes how to define a rewriteURI entry in the XML Catalog for OSM.
See "Using XML Catalogs in OSM" for general information about XML Catalogs and
how they work with OSM.

You can use any valid XML Catalog entry in your XML Catalog, but the rewriteURI
entry is the most commonly used entry for OSM. OSM uses the rewriteURI entry

Chapter 15
Building and Packaging a Cartridge

15-27

to replace the starting string of a URI (such as a URL) with an alternative string.
For example, OSM could replace http://somewhere.org/something at run time with
http://myhost/something.

During data modeling, you can define a URI locator (such as a URL) to access a
resource as part of the OSM data model by using the XQuery and XSLT tabs of
various Design Studio editors. For example, in the Order Recognition Rule editor you
specify a URI to denote that the XQuery configuration for the recognition rule is hosted
in a remote URI location such as http://osm_server/AIARecognitionRule.xqy. You
can use the XML Catalog for any of the URIs you specify in the Design Studio editors.
OSM uses the rewriteURI entry of the XML Catalog to update URIs you defined in your
data model to adapt to different environments.

OSM replaces the starting string of a URI/URL with an alternative string as specified
by the rewriteURI entry in the XML Catalog. For example, for this rewriteURI entry:

<rewriteURI uriStartString="http://example.org/somewhere" rewritePrefix="http://
192.0.2.0/foo"/>

when OSM processes a URI that starts with http://example.org/somewhere, it
replaces that starting string with http://192.0.2.0/foo. A URI you define in Design
Studio as http://example.org/somewhere/myfolder/myfile.txt resolves as http://
192.0.2.0/foo/myfolder/myfile.txt at run time.

Note:

The uriStartString and the rewritePrefix attributes can be any valid URI: they
do not have to be an IP address or host name.

uriStartString is set to the start of the resource URI you defined in Design Studio and
rewritePrefix is set to the string OSM replaces uriStartString with after you deploy the
cartridge.

To reference resources packaged inside of an OSM cartridge, you can use the OSM
model scheme ("osmmodel") rather than the traditional URI schemes (HTTP, FTP, and
so on) to define the URI. For example, for this rewriteURI entry:

<rewriteURI uriStartString="http://example.org/somewhere"
rewritePrefix="osmmodel:///MyCartridge/1.0.0/resources"/>

when OSM processes a URI that starts with http://example.org/somewhere, it
replaces that starting string with osmmodel:///MyCartridge/1.0.0/resources. A URI
you defined in Design Studio as http://example.org/somewhere/myfolder/myfile.txt
is resolved as osmmodel:///MyCartridge/1.0.0/resources/myfolder/myfile.txt.

This allows you to leverage the contents of the resources directory in each OSM
cartridge at run time.

The format of an OSM model schema URI is:

osmmodel:///CartridgeName/CartridgeVersion/resources

where:

• osmmodel indicates a location inside of a deployed OSM cartridge

• CartridgeName is the name of your cartridge

Chapter 15
Building and Packaging a Cartridge

15-28

• CartridgeVersion is the version of the cartridge (specified in the cartridge editor)

The default cartridge version uses the value default.

Note:

See "Using XML Catalogs to Support Cartridge Versioning" for more
information on cartridge versioning.

To enable cartridges to refer to resources contained in other cartridges in a non-
version specific way, you refer to the default cartridge version. To refer to the default
cartridge version, use the OSM model schema URI:

osmmodel:///cartridge_name/default/resources

See "Using XML Catalogs to Support Cartridge Versioning" for information on how the
XML Catalog supports cartridge versioning.

Caution:

To guarantee the correct resource is located, ensure that resources are
always uniquely identifiable to a single catalog entry.

When defining XML Catalog entries, do not define mappings that can be satisfied by
more than one entry. The following example shows two rewriteURI entries that can be
used by OSM at run time to resolve the same URI locator in two different ways:

<rewriteURI uriStartString="http://
oracle.communications.ordermanagement.sample.centralom.resources/com"
rewritePrefix="osmmodel:///CommonResourcesCartridge/1.0.0/resources/com"/>
<rewriteURI uriStartString="http://
oracle.communications.ordermanagement.sample.centralom.resources"
rewritePrefix="osmmodel:///CommonResourcesCartridge/1.0.0/resources/comMapping"/>

Using the preceding rewriteURI entries, OSM can resolve the URI locator http://
oracle.communications.ordermanagement.sample.centralom.resources/com/
foo.xml as:

osmmodel:///CommonResourcesCartridge/1.0.0/resources/com/foo.xml

or

osmmodel:///CommonResourcesCartridge/1.0.0/resources/comMapping /com/
foo.xml.

Specifying XML Catalogs for OSM
You specify XML Catalogs for an OSM cartridge project in the
cartridgeProject\xmlCatalogs\core\ directory (where cartridgeProject is the root of
the project directory). In this directory, you create your XML Catalog file (you
can use any filename such as core.xml or catalog.xml) and define your catalog
entries within it. Design Studio automatically generates a template XML Catalog file
cartridgeProject\xmlCatalogs\core\xmlCatalogCoreTemplate.xml.

Chapter 15
Building and Packaging a Cartridge

15-29

You specify XML Catalogs on the OSM server in the OSM configuration entry
oracle.communications.ordermanagement.util.net.CatalogUriResolver.DefaultX
mlCatalogsUris. By specifying XML Catalog files on the OSM server, you can
operationally modify how OSM resolves URIs without changing the contents of a
cartridge. See "Using XML Catalogs in OSM" for information on how OSM resolves
URIs based on the XML Catalogs you specify on the OSM server.

To specify XML Catalogs on the OSM server:

1. Add or modify a configuration entry for
oracle.communications.ordermanagement.util.net.CatalogUriResolver.Defaul
tXmlCatalogsUris in the oms-config.xml file.

See the chapter on configuring OSM with oms-config.xml in OSM System
Administrator's Guide for detailed instructions on accessing and modifying the
oms-config.xml file.

2. Enter the XML Catalog entries you require.

• Multiple XML Catalogs can be specified separated by a semicolon (;).

• Use any standard XML Catalog entry. The rewriteURI entry is the most
commonly used for OSM. See "Defining rewriteURI Entries in XML Catalogs"
for information on defining rewriteURI entries.

Note:

The XML Catalog entries you specify are applied system wide. Ensure
that resources are uniquely identifiable to a single catalog entry so that
the correct resource can be located.

Note:

This configuration defines the XML Catalog entries inline in the oms-
config.xml configuration file.

3. Save the file.

Enabling and Disabling XML Catalog Support
XML Catalog support is enabled by default for all cartridges and is required to be
enabled.

If your target run-time software version is OSM 7.0.2 or earlier, you can disable XML
Catalog support for a cartridge (or re-enable it) by using the cartridge model variable
XML_CATALOG_SUPPORT. For information on disabling or re-enabling XML Catalog
support for a cartridge, see "Enabling and Disabling XML Catalogs for a Cartridge
Project" in Modeling OSM Processes.

Examples of Using XML Catalogs
This section provides the following examples of how you can use the XML Catalog:

• Using XML Catalogs to Support Cartridge Versioning

Chapter 15
Building and Packaging a Cartridge

15-30

• Using XML Catalogs to Load Resources from a Development File System
(Traditional OSM Only)

• Using XML Catalogs to Insulate Run-Time Environments from Development

Using XML Catalogs to Support Cartridge Versioning
Cartridge versioning requires multiple versions of cartridges to reference their own
versioned set of resources. For example, if you have version 1.0 and version 2.0 of
an OSM cartridge deployed, you might have version-specific XQuery or JAR files that
need to be used depending on which cartridge you are using. XML Catalogs ensure
that the cartridges reference the correct resources.

To use XML Catalogs to support cartridge versioning:

1. In Design Studio, on the Model Variables tab of the cartridge editor, set the
CARTRIDGE_VERSION model variable to the version number of the cartridge.

For more information about model variables, see "Working with Model Variables"
in Modeling Basics.

2. In the parts of your model where you need OSM to substitute the version number,
use %{CARTRIDGE_VERSION}. For example:

 http://example.com/%{CARTRIDGE_VERSION}/xquery/myFile.xqy

3. In the XML Catalog, define the rewriteURI entries as follows:

• If the cartridge is a component of a composite cartridge, use the
CARTRIDGE_VERSION model variable. For example:

<rewriteURI uriStartString="http://example.com/%
{CARTRIDGE_VERSION}" rewritePrefix="osmmodel:///MyCartridge-Resources/%
{CARTRIDGE_VERSION}/resources"/>

• If the cartridge is not a component of a composite cartridge, use the specific
cartridge version number. Do not use a model variable. For example:

<rewriteURI uriStartString="http://example.com/1.0"
rewritePrefix="osmmodel:///MyCartridge-Resources/1.0/resources"/>

When you deploy the cartridge, OSM replaces all instances of %
{CARTRDIGE_VERSION} with the value that you set on the cartridge editor
Model Variables tab.

4. When you create a new version of a cartridge, update the
CARTRIDGE_VERSION model variable with the new version number.

5. In the XML Catalog, update the rewriteURI entries as follows:

• If the cartridge is a component of a composite cartridge, no further updates are
required. Because you used the model variable in the rewriteURI entries, OSM
automatically replaces the model variable with the new version number when
you deploy the cartridge.

• If the cartridge is not a component of a composite cartridge, update the
cartridge version number in each rewriteURI. For example:

<rewriteURI uriStartString="http://example.com/1.5"
rewritePrefix="osmmodel:///MyCartridge-Resources/1.5/resources"/>

Chapter 15
Building and Packaging a Cartridge

15-31

Using XML Catalogs to Load Resources from a Development File System
(Traditional OSM Only)

To shorten development cycle times that involve numerous coding, building,
deployment, and test cycles, you can use the XML Catalog to load resources from a
development file system. By using the XML Catalog in this way, you can test changes
to resources located within the cartridge without needing to rebuild and repackage
the cartridge. Rebuilding and repackaging can be slow and CPU intensive because
Design Studio needs to rebuild the deployment EAR file before any changes can
be tested. By redirecting the URIs to a local resource, you can change XQuery,
XSLT, XML, or Java code and immediately test the changes without having to rebuild,
repackage, and redeploy (Java code would still need to be rebuilt but not repackaged
and redeployed).

For example, use the XML Catalog to instruct OSM to load resources:

• From the development file system during development

• From the cartridge PAR file after testing

Locate resources on the file system instead of from within the cartridge PAR file so that
configuration changes made to a resource are picked up by the run-time environment
without having to rebuild and redeploy the cartridge. After testing is complete, the URI
is redirected to load resources from the cartridge PAR file.

To redirect the URI so that OSM loads resources from the development file system:

1. In the Package Explorer view in Design Studio, navigate to the cartridgeProject/
xmlCatalogs/core/ directory.

2. Create or edit the catalog.xml file. You can create the file by renaming a copy of
xmlCatalogCoreTemplate.xml.

3. Create the XML Catalog entry:

<rewriteURI uriStartString="http://example.org/somewhere"
rewritePrefix="file://localhost/dev/env1/mycartridge/resources"/>

OSM loads all resources that start with http://example.org/somewhere from the
file system located on localhost at /dev/env1/mycartridge/resources.

To redirect the URI so that OSM loads resources from the cartridge PAR file after
testing is complete, change the preceding configuration to:

<rewriteURI uriStartString="http://example.org/somewhere"
rewritePrefix="osmmodel:///MyCartridge/1.0.0/resources"/>

OSM loads all resources that start with http://example.org/somewhere from the
cartridge PAR file.

The XML Catalog supports resource extensibility in a cartridge solution because URIs
can be easily rewritten to change the location from which resources are loaded. The
XML Catalog allows you to redirect the cartridge solution to use customized resources
different from the ones that were originally provided by the cartridge solution.

Chapter 15
Building and Packaging a Cartridge

15-32

Using XML Catalogs to Insulate Run-Time Environments from Development
To insulate test and production environments from development-specific environments,
you can use the XML Catalog. When you develop your code, you can set your XML
Catalog to point to local resources on your file system on your laptop (not applicable
for OSM cloud native). Assume you have an automated test environment that runs
daily tests on certain cartridges that use resources on the testing box. In production,
you would use the XML Catalog to point resources to your production systems. Note
that in this example the resources are not bundled inside of the cartridges.

Cartridge Deployment
Design Studio allows you to deploy cartridges to an OSM environment. For
more information about creating environment entities and deploying cartridges, see
"Deploying Cartridge Projects" in Modeling Basics.

Cleaning and Rebuilding Cartridges Prior to Deployment
Cleaning and rebuilding a cartridge is not included as a deployment step because it
is not required for a successful deployment. However, Oracle recommends that you
periodically clean and rebuild a cartridge prior to deployment because multiple people
can work in the same cartridge; cleaning and rebuilding the cartridge picks up these
changes, ensuring that the cartridge is in its current state.

Optimizing Cartridge Deployment
During the development process, you can save time by redeploying your changes only,
rather than redeploying the entire application. For more information about this option,
see "Managing Changes to Deployed Cartridges" in Modeling OSM Processes.

Deploying Multiple Cartridges
You can simultaneously deploy multiple cartridges when deploying from the
Environment perspective Cartridge Management view. When you select multiple
cartridges for deployment, the system deploys the cartridges individually based on any
existing cartridge dependencies. The system prevents you from deploying cartridges
independently of those cartridges upon which they depend. For more information, see
"Deploying Cartridges with Dependencies."

Deploying Cartridges with Dependencies
A cartridge can be dependent upon information defined in another cartridge. When
dependencies exist between cartridges, the build of the cartridge with the dependency
extracts the dependent information from the built cartridge upon which it depends and
copies the information to the cartridge being built. As a result, the cartridges can be
deployed independently from each other.

For example, CartridgeA is created and defines phoneNumber as a data element in a
data schema. CartridgeB is then created, and phoneNumber is added to a CartridgeB
order template. This causes CartridgeB to be dependent upon CartridgeA. CartridgeA
is built first. When CartridgeB is built, the phoneNumber data element is extracted from

Chapter 15
Cartridge Deployment

15-33

CartridgeA and copied to cartridgeB. As a result, cartridgeB can be deployed even if
CartridgeA is not deployed.

Caution:

Cartridges should not be circularly dependent upon each other (CartridgeA
depends on CartridgeB and CartridgeB is depends on CartridgeA). If you
define cartridges with a circular dependency, the cartridge build will fail,
with an error like, "CartridgeA Cartridge Model Dependency Error – Cyclic
dependency exists: CartridgeA <- CartridgeB." If there is a composite
cartridge that refers to cartridgeX or cartridgeY, the composite cartridge build
will also fail, as a result of the component cartridge builds failing.

Deploying Cartridges to the OSM Database Using XMLIE
You can deploy cartridges to the OSM DB directly using XMLIE. This approach is
strongly recommended for controlled environments such as production, pre-production
or UAT, and for environments managed using a CI/CD pipeline. It is also the preferred
approach for semi-formal environments, such as test systems.

Offline Cartridge Deployment
You can deploy cartridges to the OSM DB directly using XMLIE while OSM is shut
down.

To deploy a cartridge in offline mode using XMLIE:

1. Ensure that all managed servers are stopped. Shutting down the admin server is
optional. See OSM System Administrator's Guide for details on stopping managed
servers.

2. Build the cartridge PAR file using Design Studio.

3. Do the following to deploy the cartridge PAR file with XMLIE:

a. Change the directory to the directory where XMLIE is installed. For example,
cd /opt/osm_sdk/SDK/XMLImportExport.

b. Copy the config_sample.xml file located at $XMLImportExport/config to
the config.xml file and edit it to specify the OSM DB schema connection
information.

c. Run the EncryptPasswords.sh script to encrypt the password of the OSM DB
schema.

./EncryptPasswords.sh config.xml -dbUser

d. Run the import.sh XMLIE script to deploy the cartridge PAR file:

./import.sh $cartridge.par config.xml

4. Deploy all the cartridges using the same approach and then start the servers.

Chapter 15
Cartridge Deployment

15-34

Note:

For a solution cartridge, the solution PAR file already contains all the PAR
files of the components of the cartridges. Deploy only the solution PAR file.
Do not deploy PAR files of the individual components.

Online Cartridge Deployment
You can deploy cartridges to your OSM running instance while orders from a cartridge
that you deployed earlier are still being processed. When you deploy cartridges in
online mode, OSM availability is uninterrupted and ongoing orders continue to react to
new incoming messages. This is achieved by shutting down and restarting the OSM
managed servers sequentially. OSM leverages WebLogic Zero Downtime Patching to
deploy cartridges without any loss of service.

Online cartridge deployment is built on top of WebLogic's Zero Downtime framework.
This framework imposes certain pre-requisites:

• WebLogic Node Manager must be configured and running on all the hosts where
OSM servers exist (configured during domain creation).

• "Machines" must be configured in the WebLogic domain, and hosts must be
assigned to these machines during domain creation.

• The Proxy Server (if used) and Managed Servers must be started with Node
Manager, not via other mechanisms such as scripts. The Admin Server should
also be started via Node Manager.

• Admin Server cannot run on the same host as any Managed Server.

For complete control, ensure that each machine runs exactly one managed server.
While it is possible to assign two or more managed servers to the same machine,
it affects the overall availability of OSM as all managed servers on a given machine
undergo maintenance at the same time.

The OSM cluster must have at least two functioning managed servers for online
cartridge deployment to work.

The following cartridge deployment operations are supported in an online deployment
mode:

• Deployment of the first version of a new cartridge

• Deployment of a new (updated) version of an existing cartridge

Note:

To redeploy an existing version of a cartridge, use the regular deployment
mechanism via Design Studio. You can also use the Cartridge Management
Tool (CMT) to redeploy an existing version of a cartridge.

During the deployment process, the cluster is reduced by one managed server (the
one that is actively restarting), while at least one other managed server (the one that
just finished restart) is still warming up to full capacity. To avoid transient resourcing
issues, it is strongly recommended to perform online cartridge deployment during
a low order volume period. The processing of in-progress orders with undelivered
incoming messages is paused while the operating managed server undergoes a

Chapter 15
Cartridge Deployment

15-35

restart. The processing of the in-progress orders resumes automatically once the
restart of that managed server is complete. The processing of in-progress orders
without undelivered incoming messages is not interrupted.

To deploy cartridges while OSM is still running:

1. Deploy each cartridge PAR file that needs to be added to OSM. Also, fast-
undeploy each cartridge version that needs to be removed.

To deploy a cartridge PAR file:

a. Change the directory to the directory where XMLIE is installed. For example,
cd /opt/osm_sdk/SDK/XMLImportExport.

b. Copy the config_sample.xml file located at $XMLImportExport/config to
the config.xml file and edit it to specify the OSM DB schema connection
information.

c. Run the EncryptPasswords.sh script to encrypt the password of the OSM DB
schema.

./EncryptPasswords.sh config.xml -dbUser

d. Run the import.sh XMLIE script to deploy the cartridge PAR file in online
mode:

./import.sh $cartridge.par config.xml online

Note:

For a solution cartridge, the solution PAR file already contains all the
PAR files of the components of the cartridges. Deploy only the solution
PAR file. Do not deploy PAR files of the individual components.

2. Perform rolling restart of the managed servers using WebLogic Admin Console or
WLST.

About Performing a Rolling Restart of Managed Servers

After running the XMLIE script to deploy the cartridge, you must restart all the
managed servers in the OSM cluster in a sequence. The completion of the restart
of one managed server should trigger the restart commencement of the next. The
WebLogic Zero Downtime Rolling Restart capability (part of the Zero Downtime
Patching functionality) provides this mechanism for online cartridge deployment. This
rolling restart can be triggered and monitored either using the WebLogic Console or
using WLST.

For details on how to configure the rolling restart workflow,
see Oracle Fusion Middleware Administering Zero Downtime Patching
Workflows available at: https://www.oracle.com/pls/topic/lookup?ctx=en/middleware/
fusion-middleware/weblogic-server/12.2.1.4&id=WLZDT108.

While configuring rolling restart in WebLogic Admin Console, specify the value for
Shutdown Timeout to 120. This is the grace period for orderly shutdown. Tune
this timeout value to ensure that your managed servers can shutdown gracefully. In
general, the more activity on the server, the longer it takes to shutdown. Monitor
how long it takes for your managed server to shutdown normally and use that as

Chapter 15
Cartridge Deployment

15-36

https://www.oracle.com/pls/topic/lookup?ctx=en/middleware/fusion-middleware/weblogic-server/12.2.1.4&id=WLZDT108
https://www.oracle.com/pls/topic/lookup?ctx=en/middleware/fusion-middleware/weblogic-server/12.2.1.4&id=WLZDT108

the basis for this setting. For instructions about performing rolling restart, see Oracle
Fusion Middleware Administration Console Online Help for Oracle WebLogic Server
12.2.1.4.0.

Building and Deploying Composite Cartridges
When you build and package a composite cartridge, it is packaged as a single PAR file
which contains:

• All non-orchestration entities aggregated and packaged into the composite
cartridge

• A PAR file for each component cartridge referenced in the composite cartridge

When a composite cartridge is deployed, it includes all of the OSM non-orchestration
entities and all component cartridges referenced in the composite cartridge, if they are
either changed or not currently deployed.

Setting Cartridge Dependencies
Projects have dependencies on other projects when entities in one project reference
entities in a different project. If you configure a cartridge to reference content in other
cartridges without declaring project dependencies, Design Studio creates a warning.
For information about how to set cartridge dependencies, see "Managing Project
Dependencies" in Modeling Basics.

Post-Deployment Effect on Numeric Data
When defining a data element in Design Studio, you have the option of defining
numeric data as type int, double, float, or decimal. OSM does not directly support
these data types. Rather, the OSM Data Dictionary defines the data type numeric.
When a cartridge containing the data types int, double, float, or decimal is deployed
to the OSM server, the data types are converted to the OSM Data Dictionary type
numeric.

Post-Deployment Changes to Cartridge
You can make changes to a cartridge after the cartridge has been deployed to the
OSM server by making changes to the original cartridge in Design Studio and then
redeploying the cartridge. Before doing this, you should back up the original cartridge,
because exporting a deployed Design Studio cartridge back out of OSM into Design
Studio is not supported.

Metadata Errors
Metadata errors can cause order processing failures and can occur in any cartridge
with orchestration model entities. Metadata is the information used to represent OSM
modeled entities such as order templates, order components, order items, tasks,
decomposition rules and so on. If there are no metadata errors, the cartridge models
deployed are valid.

Metadata errors occur when OSM references an entity that is missing or the modeling
for an entity is incorrect (for example, a data type for an entity is incorrectly entered).

OSM detects and logs metadata errors during the following procedures:

Chapter 15
Cartridge Deployment

15-37

• Deploying a cartridge to a server

• Restarting an OSM server

• Refreshing OSM metadata with the OSM Order Management web client or with an
Ant refresh

These actions reload OSM metadata, and errors are detected while running
validation constraints against certain orchestration model entities. Table 15-2 lists the
orchestration entities that are currently validated.

Table 15-2 Orchestration Entities That Are Currently Validated

Entity Type Schema Constraint Description

OrchestrationStageType Verifies that the value for the element dependsOnStage
is a valid stage. dependsOnStage is empty if the stage
is independent. A stage is valid if it is defined in the
orchestrationSequence of orchestrationModel.

OrderComponentSpecRef Verifies that this reference is pointing to a valid
OrderComponentSpec. OrderComponentSpec is valid if it is
defined in orchestrationModel.

OrchestrationConditionRe
f

Verifies that this reference is pointing to a valid
orchestration condition. An orchestration is valid if it is
defined in orderItemSpec of orchestrationModel.

DurationType Verifies that a valid duration value is specified.

ProductSpecRef Verifies that this reference is pointing to a valid
ProductSpec. ProductSpec is valid if it is defined in
orchestrationModel.

OrderItemSpecRef Verifies that this reference is pointing to a valid
OrderItemSpec. OrderItemSpec is valid if it is defined in
orchestrationModel.

After rebuilding or deploying a cartridge, check for metadata errors. Search for the
string Metadata Errors in the Console view of the Cartridge Management editor in
Design Studio. If you are not using Design Studio to deploy cartridges, look in the
Oracle WebLogic Server logs for the same string.

Metadata errors appear together in a numbered list. For example:

Metadata Modeling Errors**************************

1) Metadata error Severity:ERROR Description:Invalid
ProductSpec[name=NonService.Offer,
namespace:CommunicationsSalesOrderFulfillmentPIP]
Cartridge Name:TypicalSalesOrderFulfillment Version:1.0.0
EntityName:NonService.Offer EntityType:ProductSpecRef

where

• Severity can be an ERROR, WARNING or CRITICAL.

• Description describes the failure and provides the entity type, name and name
space.

• Cartridge Name is the name of the Cartridge that is reporting the problem.

• Version is the cartridge version.

Chapter 15
Cartridge Deployment

15-38

• EntityName and EntityType are the name and type of the entity reporting the
metadata error and its name space. In some cases, the modeled entity within the
cartridge is invalid. In other cases, the modeled entity is referring to another entity
which is missing or invalid.

If you find metadata errors, it most likely means that OSM is calling on an entity that is
missing, has the wrong name, or has a value that is incompatible for the entity type.

To fix the problem, clean and rebuild your cartridges, and make sure all related
cartridges are deployed. If you still have metadata errors, it may mean that you have
errors in your data. In this case you will have to use Design Studio to re-validate your
model. See "Cleaning and Rebuilding Cartridges Prior to Deployment."

Chapter 15
Cartridge Deployment

15-39

A
Behaviors Quick Reference

The following pages contain a quick reference for Oracle Communications Order and
Service Management (OSM) behaviors which you can print and keep as a work aid.

For comprehensive information on behaviors, see "Modeling Behaviors."

OSM Behavior Type Overview
Table A-1 provides an overview of the OSM behaviors.

Table A-1 Behavior Type Overview

Behavior
Type
Name

Order Synopsis Default Applies To Parent/Child
Inheritance

Calculate
Behavior

1st Calculates the value of the
data instance node.

None All value nodes. Does not
inherit.

Style
Behavior:
Appearan
ce Facet

2nd Specifies the appearance of
a data instance node:
• DEFAULT: the default

appearance should be
used

• FULL: all choices should
be rendered at all times.

• COMPACT: a fixed
number of choices
should be rendered,
with scrolling facilities
as needed.

• MINIMAL: a minimum
number of choices
should be rendered
with a facility to
temporarily render
additional choices.

Data type
specific.For
Boolean type
fields:
CompactFor
Lookup type
fields:
Minimal

Boolean and Lookup
type value nodes.
Nodes with Lookup
behaviors that have
only one displayed
column.

Does not
inherit.

Style
Behavior:
CSS Style
Facet

2nd Specifies the HTML CSS
style attributes of the data
instance node and label.

None All value and group
nodes.

Does not
inherit.

Style
Behavior:
CSS Class
Facet

2nd Specifies the HTML CSS Class
name of the data instance
node and label.

None All value and group
nodes.

Does not
inherit.

Style
Behavior:
Newline
Facet

2nd Specifies whether a line-
break is inserted before
the node causing it to be
displayed at the start of a
new line.

False All value nodes. Does not
inherit.

A-1

Table A-1 (Cont.) Behavior Type Overview

Behavior
Type
Name

Order Synopsis Default Applies To Parent/Child
Inheritance

Style
Behavior:
Secret
Facet

2nd Ensures unauthorized users
are now allowed to view the
contents of nodes containing
sensitive information.

True All value nodes except
for modifiable (read/
write) lookups and
boolean values.

Does not
inherit.

Style
Behavior:
Layout
Facet

2nd Specifies the organization of
a group's child nodes into
tabbed pages.

None All group nodes. Does not
inherit.

Style
Behavior:
Location
Facet

2nd Specifies the tabbed page
that this group will be
placed in.

None All group nodes. Does not
inherit.

Informati
on
Behavior

3rd Specifies the label, hint, and
help information for the
data instance node.

None All value and group
nodes.

Does not
inherit.

Relevant
Behavior

4th Indicates whether the data
instance node is currently
relevant. Data instance
nodes with this property
evaluating to false are not
displayed in the view. If
this property is False, other
behaviors for this node are
not evaluated.

True All value and group
nodes.

If any ancestor
node evaluates
to false, this
value is treated
as false.
Otherwise, the
local value is
used.

Lookup
Behavior

5th Specifies a set of dynamic
generated choices for the
data instance node.

Static lookup
values (if
any)
specified in
the OSM
Model data
dictionary.

All value nodes that are
of type lookup, number,
or text.

Does not
inherit.

Constraint
Behavior:
Attachme
nt Facet

6th Specifies a condition that
needs to be satisfied for the
associated order attachment
content to be considered
valid.
NOTE: This facet is
only supported through
programmatic behavior
implementations.

True Attachment nodes. Does not
inherit.

Read Only
Behavior

7th Describes whether the value
is restricted from changing.
This behavior overrides
the static read-only value
specified in the OSM Model
View Node.

Default
specified by
the static
read-only
value on the
OSM Model
View Node.

All value and group
nodes.

If any ancestor
node evaluates
to true, this
value is treated
as true.
Otherwise, the
local value is
used.

Appendix A
OSM Behavior Type Overview

A-2

Table A-1 (Cont.) Behavior Type Overview

Behavior
Type
Name

Order Synopsis Default Applies To Parent/Child
Inheritance

Event
Behavior

8th Specifies an action to
perform when a given event
occurs.

None Value nodes. Does not
inherit.

Constraint
Behavior

N/A Specifies a condition that
needs to be satisfied for
the associated data instance
node to be considered valid.
If the condition is not
satisfied (evaluates to false),
then messages are displayed
to the user.

True All value and group
nodes.

Does not
inherit.

Data
Instance
Behavior

N/A Defines a container in which
instances can be declared.
It has no affect on the
user interface display of
the element for which the
behavior is defined.

None All elements and
structures

Children.
(Applies to
element
relationships
within a
structure. This
is different
than the
inheritance of
behaviors
between the
data dictionary,
order, and task
levels.

Common Behavior Elements
This section describes the syntax for declaring common behavior elements.

Annotation Element
<annotation>
 <documentation lang=“NCName">… </documentation>
</annotation>

Description Element
<description>string</description>

Instance Element
<instance name=“NCName" lang=“NCName"
 xsi:type=“inlineInstanceType|externalInstanceType">
 For inlineInstanceType, any valid XML document is allowed up to
 4000 characters in length.
 For externalInstanceType, adapter followed by parameter*, and cache*
</instance>

Appendix A
Common Behavior Elements

A-3

Adapter Element [externalInstanceType]
<adapter>com.mslv.oms.view.rule.adapter.ObjectelAdapter
 |com.mslv.oms.view.rule.adapter.OrderAdapter
 |com.mslv.oms.view.rule.adapter.XMLAttachmentAdapter
 |com.mslv.oms.view.rule.adapter.XMLFileAdapter
 |javaClassNameType<
/adapter>

Parameter Element [externalInstanceType]
<parameter name=“string">string-expr</parameter>

Cache Element
<cache>
 <scope>NONE|NODE|SYSTEM</scope>
 <timeout>positiveInteger</timeout>
 <maxSize>positiveInteger</maxSize>
</cache>

Expression Element
<expression>boolean-expr</expression>

Declaring Behaviors in OSM XML Model
This section describes the syntax for declaring behaviors in OSM XML model.

Data Dictionary Level
<dataDictionary> element+
 <element name=“nameType" xsi:type=“booleanType|currencyType|dateType
 |dateTimeType|phoneType|groupType|textType|numericType|lookupType">
 description, viewRule*, followed by type specific content
 </element>
</dataDictionary>

Master Order Template Level
<masterOrderTemplate>
 dataNode+
 <dataNode element=“NCName">
 viewRule*, followed by dataNode*
 </dataNode>
</masterOrderTemplate>

View Level
<viewNode element=“NCName">
 editable?, minOccurs?, maxOccurs?, viewRule*, viewNode*
 <editable>boolean</editable>
 <minOccurs>unsignedInt</minOccurs>

Appendix A
Declaring Behaviors in OSM XML Model

A-4

 <maxOccurs>unsignedInt</maxOccurs>
</viewNode>

Data Provider Overview
Table A-2 provides an overview of the built-in and custom data providers. See "Using
Data Providers to Retrieve Data" for details.

Table A-2 Data Provider Overview

Data Provider Synopsis Parameter

Custom Uses data provided by a custom-
defined Java class.

Implementation-defined

JDBC Lets OSM query any JDBC database,
then use the results within a behavior.

oms:dataSource, oms:sql, in:1 . . . in:n?,
out:1 . . . out:n?

Objectel Uses results of an Objectel Server
Extension as an instance.

obj:extensionName, obj:jmsFactory?,
obj:queue?, obj:allowErrorResponse?. Other
parameters passed to Objectel

Order Uses data from any OSM order as an
external instance.

oms:OrderID, oms:View | oms:OrderHistID

Property File Retrieves an external Java property file
with a given name from the classpath.

oms:url

SOAP Lets you open up OSM to web services,
using the HTTP protocol.

soap.endpoint, soap.action?,
soap.envelope, soap.body,
soap.header?, oms:credentials.username?,
oms:credentials.password?,
oms:credentials.scope.host?,
soap.allowErrorResponse

XML
Attachment

Uses an XML attachment from any OSM
order as an instance.

oms:OrderID, oms:FileName

XML File Uses an XML file from any URL as an
instance.

oms:url

XML Validation Validates a provided XML instance
document according to a user-defined
schema. The document may be either
a URL or an element. The schema may
also be a URL or an element.

document, schema

Programmatic Behavior Implementation Overview
Table A-3 provides an overview of the programmatic behavior implementation.

Table A-3 Programmatic Behavior Implementation Overview

Rule Type
Name

Java Interface Method Names Parameter Types Return Types

Calculate Rule com.mslv.oms.view
.CalculateRule

calculate_<mnemonic> com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

Any Java primitive
or descendent of
java.lang.Object

Appendix A
Data Provider Overview

A-5

Table A-3 (Cont.) Programmatic Behavior Implementation Overview

Rule Type
Name

Java Interface Method Names Parameter Types Return Types

Style Rule:
Appearance
Facet

com.mslv.oms.view
.StyleRule

appearance_<mnemon
ic>

com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

int
NOTE: Return value
must be one of
FULL_APPEARANCE,
COMPACT_APPEARA
NCE,
MINIMAL_APPEARA
NCE defined on the
StyleRule interface

Style Rule:
CSS Style Facet

com.mslv.oms.view
.StyleRule

style_<mnemonic>
styleForLabel_<mnem
onic>

com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

java.util.Map<String,
String>

Style Rule:
CSS Class Facet

com.mslv.oms.view
.StyleRule

cssClass_<mnemonic>
cssClassForLabel_<mn
emonic>

com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

String

Style Rule:
Newline Facet

com.mslv.oms.view
.StyleRule

newline_<mnemonic> com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

boolean

Style Rule:
Secret Facet

com.mslv.oms.view
.StyleRule

secret_<mnemonic> com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

boolean

Information
Rule

com.mslv.oms.view
.InformationRule

information_<mnemo
nic>

com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

java.util.Map<String,
String>

Relevant Rule com.mslv.oms.view
.RelevantRule

relevant_<mnemonic> com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

boolean

Lookup Rule com.mslv.oms.view
.LookupRule

lookup_<mnemonic> com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

String[]
String[][]
java.util.Map<Object
,Object>
java.util.Collection<
Object>

Constraint Rule com.mslv.oms.view
.ConstraintRule

constraint_<mnemonic
>

com.mslv.oms.view.r
ule.ConstraintContex
t
org.w3c.dom.Node

String[]
com.mslv.oms.view.r
ule.ConstraintResult
com.mslv.oms.view.r
ule.
ConstraintResult[]
java.util.List<com.m
slv.oms.view.rule.
ConstraintResult>

Appendix A
Programmatic Behavior Implementation Overview

A-6

Table A-3 (Cont.) Programmatic Behavior Implementation Overview

Rule Type
Name

Java Interface Method Names Parameter Types Return Types

Constraint Rule
Attachment
Facet

com.mslv.oms.view
.ConstraintRule

constraint_attachment com.mslv.oms.view.r
ule.ConstraintContex
t
org.w3c.dom.Node
java.io.InputStream

String[]
com.mslv.oms.view.r
ule.ConstraintResult
com.mslv.oms.view.r
ule.
ConstraintResult[]
java.util.List<com.m
slv.oms.view.rule.
ConstraintResult>

Read Only Rule com.mslv.oms.view
.ReadOnlyRule

readonly_<mnemonic com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

boolean

Event Rule com.mslv.oms.view
.EventRule

event_<mnemonic> com.mslv.oms.view.r
ule.ViewRuleContext
org.w3c.dom.Node

java.util.Map<String,
String>
NOTE: Map key must
be
EventRule.VALUE_C
HANGED_EVENT.
Map value must be
one of
EventRule.REFRESH
_ACTION or
EventRule.SAVE_ACT
ION

Appendix A
Programmatic Behavior Implementation Overview

A-7

B
XQuery Examples

You use XQuery expressions in various locations to implement key aspects of
the Oracle Communications Order and Service Management (OSM) orchestration
functionality. For information about these XQuery expressions, refer to the following
topics:

• General XQuery Information

• Order Recognition Rule XQuery Expressions

• Decomposition XQuery Expressions

• Dependency XQuery Expressions

• Order Transformation Manager XQuery Expressions

General XQuery Information
This topic contains general or reference information about XQuery that applies the
same in different situations.

When working with XQuery expressions, see the following topics:

• About Creating XQuery Expressions with Design Studio

• OSM XQuery Functions

• Referencing Items from a Distributed Order Template in XQuery Expressions

About Creating XQuery Expressions with Design Studio
In general, the way you enter XQuery information into editors in Oracle
Communications Design Studio is the same, regardless of the editor. The XQuery
control in Oracle Communications Design Studio generally has three tabs: XQuery,
Instances, and Information. Following are general instructions for entering XQuery
information into each of these tabs in Design Studio.

Using the XQuery Tab

The XQuery tab allows you to configure XQuery-based rules or elements, or identify
the source of the XQuery-based rules or elements. Select one of the following options:

• Select None if the XQuery configuration is optional and not configured. When you
select this option, Design Studio disables the remaining options in the subtabs.

• Select Expression and enter the XQuery expression in the corresponding text
box. Click Edit to open the Edit XQuery dialog box, which displays the configured
XQuery expression in a larger and resizable text box. You can edit the expression
in the Edit XQuery dialog box and click OK to save your changes, or click Cancel
to dismiss the dialog box without saving the changes.

B-1

Note:

Design Studio provides XQuery validation on basic syntax and
semantics, and denotes errors with Problem markers.

• Select File to denote that the XQuery configuration is located in a file saved to
the project resources directory. This option enables you to write your XQuery
expressions using any XQuery editing application you have installed in your
Eclipse environment. See the Eclipse online Help topic Associating editors with
file types for more information.

Click Select to open the Select XQuery File dialog box, which displays all XQuery
files contained in the project resources directory. Select the appropriate XQuery
file and click OK.

• Select URI to denote that the XQuery configuration is located in a remote URI
location. For example, you might enter:

http://osm_server/AIARecognitionRule.xqy

Click Properties to open the Properties view, where you can define the following
information for the XQuery:

• Annotation: The optional XML annotation element allows you to provide
information about the XQuery. Enter information (for example, HTML-formatted
information) for external systems into the Annotation <appinfo> field. Enter
information for human users into the Annotation <documentation> field.

• Language: When you work with multiple languages, you can select a different
language for displaying the description and annotation. For more information, see
"Defining Language Preferences" in the Design Studio Modeling OSM Processes
Help.

Using the Instances Tab

You can define a Data Instance behavior to obtain data that is not included in the
order data and make that data available to the rule. Click Add to add a Data Instance
behavior. Select the Data Instance behavior and click Properties to configure the Data
Instance behavior.

For more information, see "Defining Data Instance Behavior Properties" in the Design
Studio Modeling OSM Processes Help.

Using the Information Tab

Use this tab if you want to describe the intended use of the rule. For example, you
might describe the functionality of a complex rule or provide instructions on its use.

OSM XQuery Functions
OSM-specific XQuery functions are available to you when writing XQuery expressions.
These XQuery functions are contained in classes that you can declare in the prolog of
your XQuery expression.

To see specifics about the functions available, install the OSM SDK and extract
the OSM Javadocs from the SDK/osm7.w.x.y.z-javadocs.zip file (where w.x.y.z

Appendix B
General XQuery Information

B-2

represents the specific version numbers for OSM). See OSM Developer's Guide for
more information about installing the OSM SDK.

The specific classes that contain XQuery functions you might use are:

• OrchestrationXQueryFunctions: This class contains XQuery functions that are
used in OSM Orchestration. To declare this class, put the following declaration
in the prolog of your XQuery expression:

declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.Orchestr
ationXQueryFunctions";

• XQueryFunctions: This class contains XQuery functions that are used in the order
transformation manager. To declare this class, put the following declaration in the
prolog of your XQuery expression:

declare namespace otmfn =
"java:oracle.communications.ordermanagement.orchestration.transformation.XQue
ryFunctions.";

Referencing Items from a Distributed Order Template in XQuery
Expressions

The distributed order template is an option you can set on an order item specification
to modify the method used to store order item data. For more general information
about the distributed order template, see OSM Concepts.

When using a distributed order template, any XQuery expressions that reference order
item data must be in a particular format.

For any order item that is not a transformed order item, you must include the
namespace of the order item specification. Following is an example of an XQuery
reference to the lineItemID property on the InputOrderItem order item with the
namespace http://ex_input.com:

/ControlData/OrderItem[@type='{http://ex_input.com}InputOrderItem']/lineItemID

For transformed order items, the format depends on the source of the data for the
transformed order item. Data that is defined in the order item specification itself will
use the namespace for the order item specification, the same way that data would be
referenced for an input order item. Following is an example of an XQuery reference
to the lineItemID property on the OutputOrderItem order item with the namespace
http://ex_output.com:

/ControlData/OrderItem[@type='{http://ex_output.com}OutputOrderItem']/lineItemID

Data that has been derived from a common model entity, for example an action, will
use a different format. In the following situation:

• Order item name: OutputOrderItem

• Order item namespace: http://ex_output.com

• Conceptual model entity (in this case an Action) name: SA_Add_Internet

• Conceptual model cartridge name: Model_Broadband

• Conceptual model cartridge version: 1.0.0.0.0

Appendix B
General XQuery Information

B-3

• Parameter name on SA_Add_Internet: serviceLevel

The reference would look like this:

/ControlData/OrderItem[@type='{http://ex_output.com}OutputOrderItem']/
dynamicParams[@type='{Model_Broadband/1.0.0.0.0}SA_Add_InternetType']/
serviceLevel

Note that the type for the parameters contained in the conceptual model entity
has the string "Type" appended to the name of the entity. Thus, the type contains
SA_Add_InternetType rather than just SA_Add_Internet.

Order Recognition Rule XQuery Expressions
The following topics provide reference information about order recognition rule XQuery
expressions:

• About Recognition Rule XQuery Expressions

• About Validation Rule XQuery Expressions

• About Order Priority XQuery Expressions

• About Order Reference XQuery Expressions

• About Order Data Rule XQuery Expressions

About Recognition Rule XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Recognition
Rule area XQuery tab to write an expression that specifies a customer order
and associates it with an OSM target order type. The XQuery has the following
characteristics:

• Context: The input document for the Recognition Rule XQuery is the customer
order. For more information about typical customer order structures, see OSM
Concepts.

• Prolog: You can declare the namespace for the customer order if you want to
use the contents of the order as part of the recognition rule or you can omit the
declaration if you only want to check the incoming customer order namespace. For
example:

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: You must match the namespace you want to select for order processing
with the namespace of the incoming customer order. For example, the following
expression retrieves the namespace URI from the incoming customer order
(fn:namespace-uri(.)) and compares it with this URI: 'http://xmlns.oracle.com/
InputMessage':

fn:namespace-uri(.) = 'http://xmlns.oracle.com/InputMessage'

If you have declared a namespace in the prolog, you can also check to see if
specific values exist in the order. For example, you can use the fn:exists function
to check that an element exists. Or you can use a comparison expression such as
= (equal to) or != (not equal to) to compare a value in the customer order with a
value in the XQuery.

Appendix B
Order Recognition Rule XQuery Expressions

B-4

Tip:

Recognition rules are global entities within OSM, meaning that they can
apply to any CreateOrder operation. Configure the relevancy settings and
the recognition rule carefully to avoid having an incoming customer order
recognized by a recognition rule that you do not intend. For more information
about relevancy, see OSM Concepts.

For example, in a simple scenario, the XQuery is based on a namespace:

fn:namespace-uri(.) = 'http://xmlns.oracle.com/InputMessage'

The input message XML file includes the following line, which matches the namespace
specified in the recognition rule:

<im:order xmlns:im="http://xmlns.oracle.com/InputMessage"

The XQuery expression returns a Boolean expression, for example, fn:true() or
fn:false()

The following example searches in a specific type of order:

fn:namespace-uri(.) = 'http://xmlns.oracle.com/communications/sce/dictionary/
CentralOMManagedServices-Orchestration/CustomerSalesOrder'

In a more complicated scenario, you might create an XQuery expression that looks
for a specific namespace and also interrogates the data within the incoming customer
order. The following example shows a recognition rule that recognizes an order based
on the following criteria:

• Namespace

• Value of the typeCode data element in the incoming customer order. In this case,
the value must be OSM-BDB. This indicates an OSM business-to-business order.

• The value of the FulfillmentModeCode data element in the incoming customer
order. In this case, the value can be DELIVER, CANCEL, or TSQ.

declare namespace provord=";http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/
V1";;
declare namespace corecom=";http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2";;
fn:namespace-uri(.) = 'http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1'
and
fn:exists(../provord:ProcessProvisioningOrderEBM/provord:DataArea/
provord:ProcessProvisioningOrder/corecom:Identification/corecom:BusinessComponentID)
and
../provord:ProcessProvisioningOrderEBM/provord:DataArea/provord:ProcessProvisioningOrder/
provord:TypeCode/text() = 'OSM-BDB'
and
(
../provord:ProcessProvisioningOrderEBM/provord:DataArea/provord:ProcessProvisioningOrder/
provord:FulfillmentModeCode/text() = 'DELIVER'
or
../provord:ProcessProvisioningOrderEBM/provord:DataArea/provord:ProcessProvisioningOrder/
provord:FulfillmentModeCode/text() = 'CANCEL'
or
../provord:ProcessProvisioningOrderEBM/provord:DataArea/provord:ProcessProvisioningOrder/

Appendix B
Order Recognition Rule XQuery Expressions

B-5

provord:FulfillmentModeCode/text() = 'TSQ'
)

For more information about order recognition rules see OSM Concepts.

About Validation Rule XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Validation Rule area
XQuery tab to write an expression that specifies nodes in the incoming customer order
that must evaluate to true to accept the customer order into the system. The XQuery
has the following characteristics:

• Context: The input document for the Validation Rule XQuery is the customer
order. For more information about typical customer order structures, see OSM
Concepts.

• Prolog: The input document for the Validation Rule XQuery is the customer
order. You can declare the customer order namespace in the XQuery prolog. For
example:

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: The validation rule must specify customer order parameters or parameter
values to evaluate to true for the validation to be successful. If the validation fails,
the expression should return an error message.

In addition, if the Validation Rule fails, OSM automatically creates the order and
sets the order state to Failed. The inbound message and validation failure output
are attached to the order for reference. You can display and manage the order
failure in the Order Management web client.

The following sample XQuery checks for the existence of a sender ID:

if (fn:exists(./header/c:Sender/c:ID) and ./header/c:Sender/c:ID != '')
 then (true())
 else concat("SEVERE", "Message Header should contain Sender ID", header/
Sender/ID")

The following sample XQuery checks for correct values in the typeCode data element
in the incoming customer order:

if (fn:exists($orderLine/im:ItemReference/im:TypeCode)
 and
 $orderLine/im:ItemReference/im:TypeCode != '')
then
 (
 if ($orderLine/im:ItemReference/im:TypeCode = "PRODUCT" or
 $orderLine/im:ItemReference/im:TypeCode = "OFFER" or
 $orderLine/im:ItemReference/im:TypeCode = "BUNDLE") then ()
 else
 local:reportIssue("ERROR", "Product Type should be one of: PRODUCT, OFFER, BUNDLE",
 $lineNum, "ProcessProvisioningOrderEBM/DataArea/ProcessProvisioningOrder/
 ProvisioningOrderLine/ItemReference/TypeCode")
)

Given this XQuery sample, the following part of a customer order would evaluate to
true because the typeCode element value is BUNDLE.

<!-- FIXED BUNDLE - BUNDLE -->
<im:salesOrderLine>
 <im:lineId>2</im:lineId>

Appendix B
Order Recognition Rule XQuery Expressions

B-6

 <im:promotionalSalesOrderLineReference>1</
im:promotionalSalesOrderLineReference>
 <im:serviceId></im:serviceId>
 <im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:itemReference>
 <im:name>Fixed Bundle</im:name>
 <im:typeCode>BUNDLE</im:typeCode>
 <im:specificationGroup />
 </im:itemReference>
</im:salesOrderLine>

For more information about validation rules see OSM Concepts.

About Order Priority XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Order Priority
area XQuery tab to write an expression that specifies an element value in the
incoming customer order that identifies the order priority. The XQuery has the following
characteristics:

• Context: The input document for the Order Priority XQuery is the customer order.
For more information about typical customer order structures, see OSM Concepts.

• Prolog: You can declare the customer order namespace in the XQuery prolog. For
example:

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: The Order Priority body must specify the node that contains the order
priority value.

For more information about creating order priority XQuery expressions in the order
recognition rule and about creating order priority ranges for an order type, see OSM
Concepts.

About Order Reference XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Order Reference
area XQuery tab to write an expression that specifies an element value in the
incoming customer order that identifies the order reference. The XQuery has the
following characteristics:

• Context: The input document for the Order Reference XQuery is the customer
order. For more information about typical customer order structures, see OSM
Concepts.

• Prolog: You can declare the customer order namespace in the XQuery prolog. For
example:

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: The Order Reference body must specify the node that contains the order
reference value.

The following example shows a transformation rule XQuery expression that retrieves
the order reference number (as a string) from the numSalesOrder field in the
incoming customer order:

declare namespace im="http://xmlns.oracle.com/InputMessage";
let $order := ../im:order

Appendix B
Order Recognition Rule XQuery Expressions

B-7

return
$order/im:numSalesOrder/text()

For more information about order reference, see OSM Concepts.

About Order Data Rule XQuery Expressions
This topic describes how to use the Order Recognition Rule editor Order Data
Rule area XQuery tab to write an expression that specifies nodes in the incoming
customer order that must be used in the creation task. The XQuery has the following
characteristics:

• Context: The input document for the Order Data Rule XQuery is the customer
order. For more information about typical customer order structures, see OSM
Concepts.

• Prolog: You can declare the customer order namespace in the XQuery prolog. For
example:

declare namespace im="http://xmlns.oracle.com/InputMessage";

• Body: The Order Data Rule body must map the customer order element values to
the corresponding creation task Task Data values.

The following example shows the fields in an incoming customer order:

<im:customerAddress>
 <im:locationType>Street</im:locationType>
 <im:nameLocation>Jangadeiros</im:nameLocation>
 <im:number>48</im:number>
 <im:typeCompl>floor</im:typeCompl>
 <im:numCompl>6</im:numCompl>
 <im:district>Ipanema</im:district>
 <im:codeLocation>5000</im:codeLocation>
 <im:city>Rio de Janeiro</im:city>
 <im:state>RJ</im:state>
 <im:referencePoint>Gen. Osorio Square</im:referencePoint>
 <im:areaCode>22420-010</im:areaCode>
 <im:typeAddress>Building</im:typeAddress>
</im:customerAddress>

Following is a sample order data in a creation task. In the example, the following
data is contained in a CustomerDetails element:

– locationType

– nameLocation

– number

– typeCompl

– numCompl

– district

– codeLocation

– city

– state

– referencePoint

– areaCode

Appendix B
Order Recognition Rule XQuery Expressions

B-8

– typeAddress

The following XQuery expression specifies a variable for the location of the
customerAddress node in the customer order that can then be used to map
customerAddress child element values to CustomerDetails task data elements:

let $details := $customer/mes:customerAddress

The following XQuery expression performs this mapping:

return<_root>
<CustomerDetails>
 <locationType>{$details/im:locationType/text()}</locationType>
 <nameLocation>{$details/im:nameLocation/text()}</nameLocation>
 <number>{$details/im:number/text()}</number>
 <typeCompl>{$details/im:typeCompl/text()}</typeCompl>
 <numCompl>{$details/im:numCompl/text()}</numCompl>
 <district>{$details/im:district/text()}</district>
 <codeLocation>{$details/im:codeLocation/text()}</codeLocation>
 <city>{$details/im:city/text()}</city>
 <state>{$details/im:state/text()}</state>
 <referencePoint>{$details/im:referencePoint/text()}</referencePoint>
 <areaCode>{$details/im:areaCode/text()}</areaCode>
 <typeAddress>{$details/im:typeAddress/text()}</typeAddress>
</CustomerDetails>
</_root>

In the following example, the XQuery expression returns the <_root> portion of the
order. The ControlData portion of the order is populated by the system during the
generation of the orchestration plan.

declare namespace cso="http://xmlns.oracle.com/communications/sce/dictionary/
CentralOMManagedServices-Orchestration/CustomerSalesOrder";
let $customer := //cso:CustomerAccount
return
<_root>
<OrderHeader>
<AccountIdentifier>{$customer/cso:AccountID/text()}</AccountIdentifier>
</OrderHeader>
</_root>

For more information about order data rules, see OSM Concepts.

Decomposition XQuery Expressions
This topic includes information about order recognition rule XQuery expressions
related to order decomposition:

• About Orchestration Sequence XQuery Expressions

• About Order Item Specification XQuery Expressions

• About Fulfillment Pattern Order Component XQuery Expressions

• About Decomposition Rule Condition XQuery Expressions

• About Component Specification Custom Component ID XQuery Expressions

• About Component Specification Duration XQuery Expressions

• About Fulfillment Pattern Duration XQuery Expressions (deprecated)

• About Fulfillment Pattern Component Duration XQuery Expressions

Appendix B
Decomposition XQuery Expressions

B-9

About Orchestration Sequence XQuery Expressions
The Orchestration Sequence editor provides the following areas to define XQuery
expressions related to order decomposition:

• About Order Sequence Order Item Selector XQuery Expressions

• About Order Sequence Fulfillment Mode XQuery Expressions

About Order Sequence Order Item Selector XQuery Expressions
This topic describes how to use the Orchestration Sequence editor Order Item
Selector area XQuery tab to write an expression that specifies which node-set to use
from the customer order as order items and has the following characteristics:

• Context: The input document for the Order Item Selector XQuery is the customer
order. For more information about typical customer order structures, see OSM
Concepts.

• Prolog: You can declare the customer order namespace in the XQuery prolog.

• Body: The XQuery body must specify the customer order node-sets that OSM then
uses as order items.

The following example shows an order item selector XQuery where the
<salesOrderLine> node-set is specified. OSM can now use the data in the
<salesOrderLine> node-set in the incoming customer order in the order items. There
can only be one node-set selected per sequence.

declare namespace im="http://xmlns.oracle.com/InputMessage";
.//im:salesOrderLine

About Order Sequence Fulfillment Mode XQuery Expressions
This topic describes how to use the Orchestration Sequence editor Fulfillment Mode
area XQuery tab to write an expression that specifies the fulfillment mode for
the orchestration sequence from a customer order element and has the following
characteristics:

• Context: The input document for the Fulfillment Mode Expression area XQuery is
the customer order. For more information about typical customer order structures,
see OSM Concepts.

• Prolog: The input document for the Fulfillment Mode Expression area XQuery is
the incoming customer order. You must declare the customer order namespace in
the XQuery prolog.

• Body: The XQuery body must specify the fulfillment mode.

Typically, the fulfillment mode is specified in the order header. For example:

<im:FulfillmentModeCode>Deliver</im:FulfillmentModeCode>

In the following example, the XQuery looks in the incoming customer order
(SalesOrder) for the <FulfillmentModeCode> element. It returns the text contained
in that element.

declare namespace
im="http://xmlns.oracle.com/InputMessage";

Appendix B
Decomposition XQuery Expressions

B-10

<osm:fulfillmentMode name="{fn:normalize-space(.//im:SalesOrder/im:DataArea/
im:FulfillmentModeCode/text())}"

This is the XML in the incoming customer order:

<im:FulfillmentModeCode>Deliver</im:FulfillmentModeCode>

In this case, the XQuery returns Deliver.

About Order Item Specification XQuery Expressions
The Order Item Specification editor provides the following areas to define XQuery
expressions related to order decomposition:

• About Order Item Specification Order Item Property XQuery Expressions

• About XQuery Expressions for Mapping Product Specifications and Fulfillment
Patterns

• About Order Item Specification Order Item Hierarchy XQuery Expressions

• About Order Item Specification Condition XQuery Expressions

About Order Item Specification Order Item Property XQuery Expressions
This topic describes how to use the Order Item Specification editor, Order Item
Properties tab, Property Expression area, XQuery tab to write an expression that
specifies order item properties based on the input context. These expressions have
the following characteristics:

• Context: The Property Expression area XQuery input document is a node from
the node-set returned by the order item selector (see "About Order Sequence
Order Item Selector XQuery Expressions"). OSM runs every order item Property
Expression area XQuery against each node (starting with the first and ending with
the last node) in the node-set returned by the order item selector.

• Prolog: You can declare the following variables within the prolog to access
additional context information:

– The $inputDoc variable can be declared in the prolog of an OSM XQuery to
provide access to the original input customer order. This external function can
be useful if you need to generate order item properties based on elements
outside of the order item node-set defined in the order item selector. The
format for declaring this variable in the XQuery prolog is:

declare variable $inputDoc as document-node() external;

You can then access this variable within the XQuery body. For example, the
following XQuery body uses $inputDoc to define the ItemReferenceName
value:

let $inputOrderData:= $inputDoc/GetOrder.Response/_root
fn:normalize-space(cso:ItemReferenceName/text())

For more information about typical customer order structures, see OSM
Concepts.

– The $salesOrderLines variable can be used in an OSM XQuery to provide
access to original order item node-set before it is selected by the orchestration
sequence's order item selector. This can be useful if the order item

Appendix B
Decomposition XQuery Expressions

B-11

selector XQuery changes the selected order item node-set (for example, by
rearranging the order of the elements). The format for declaring this variable in
the XQuery prolog is:

declare variable $salesOrderLines as document-node() external;

You can access this variable within the XQuery body. For more information
about typical customer order structures, see OSM Concepts.

• Body: The XQuery body must specify the order item element that provides the
values for each order item property you define.

After these XQuery expressions have run against an order item, the order item and
the order item properties become internally accessible as an XQuery context for other
OSM entities. For example,

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model" id="1288881040699">
 <osm:name>Commercial Fixed Service [Add]</osm:name>
 <osm:orderItemSpec xmlns="http://xmlns.oracle.com/communications/ordermanagement/model">
 <osm:name>CustomerOrderItemSpecification</osm:name>
 <osm:namespace>
 http://oracle.communications.ordermanagement.unsupported.centralom
 </osm:namespace>
 </osm:orderItemSpec>
 <osm:productSpec xmlns="http://xmlns.oracle.com/communications/ordermanagement/model">
 <osm:name>Service.Fixed</osm:name>
 <osm:namespace>
 http://oracle.communications.ordermanagement.unsupported.centralom
 </osm:namespace>
 </osm:productSpec>
 <osm:properties xmlns:im="http://oracle.communications.ordermanagement.unsupported.
centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productSpec>Fixed Service Plan Class</im:productSpec>
 <im:serviceId>552131313131</im:serviceId>
 <im:fulfillPatt>Service.Fixed</im:fulfillPatt>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

The following examples show some ways to map data in an incoming customer order
to an order item property. The current context is a single node from salesOrderLines,
which is one of the nodes returned by executing the orchestration sequence order item
selector against the input message (see "About Order Sequence Order Item Selector
XQuery Expressions").

• Order management personnel need to know what the requested delivery date is
for order items. Adding the date to the order item allows the order management
personnel to see it in the OSM web clients. In addition, OSM needs the requested
delivery date to calculate the order start date.

To retrieve the requested delivery data for an order item, OSM looks in the
incoming customer order for the <requestedDeliveryDate> element:

Appendix B
Decomposition XQuery Expressions

B-12

<im:requestedDeliveryDate>2001-12-31T12:00:00</im:requestedDeliveryDate>

The definition of the requestedDeliveryDate order item property includes the
following XQuery, which returns the text of the <requestedDeliveryDate>
element:

declare namespace im="http://xmlns.oracle.com/InputMessage";
fn:normalize-space(im:requestedDeliveryDate/text())

• Order management personnel need to identify order items in the OSM web clients.
The lineItemName order item property includes the following XQuery:

declare namespace im="http://xmlns.oracle.com/InputMessage";
fn:normalize-space(fn:concat(im:itemReference/im:name/text(),'
[',im:serviceActionCode/text(),']'))

This XQuery looks for two elements, <name> and <serviceActionCode>:

<im:name>Fixed Caller ID</im:name>
<im:serviceActionCode>Add</im:serviceActionCode>

It then concatenates the text retrieved from the two elements to form the order
item name, in this case Fixed Caller ID [Add].

• Order management personnel need to identify the products or product
specification from the customer order so that order items can be mapped
to fulfillment patterns (see "About XQuery Expressions for Mapping Product
Specifications and Fulfillment Patterns"). The following example shows the product
specification data in the message, contained in the <primaryClassificationCode>
element:

<im:primaryClassificationCode>Mobile Service Feature Class
</im:primaryClassificationCode>

The productClass order item property uses the following XQuery expression to
get the data:

declare namespace im="http://xmlns.oracle.com/InputMessage";
fn:normalize-space(im:itemReference/im:primaryClassificationCode/text())

About XQuery Expressions for Mapping Product Specifications and Fulfillment
Patterns

The order item property specified in the Fulfillment Pattern Mapping Property field
for the order item must map to an existing OSM fulfillment pattern entity. The value
could be contained in a customer order, but more often, it is derived from other
customer order parameter. This property is mandatory.

The construction of the fulfillment pattern mapping order item property follows the
same rules as other order item property XQuery expressions. See "About Order Item
Specification Order Item Property XQuery Expressions" for more information about the
XQuery context, prolog, and body.

The following describes a common scenario for deriving fulfillment patterns from
product or product specification data contained in an order. In other scenarios, the
mapping from product or product specification to fulfillment pattern might be simpler;
or, there might be cases where some order line items have no product specification, in
which case the product specification can be derived from the context of the order item.

Appendix B
Decomposition XQuery Expressions

B-13

You typically create conceptual model products in your OSM system by importing
them. (See OSM Concepts for more information.) When you import products, Design
Studio creates the productClassMapping.xml and productSpecMapping.xml files.
These files contain mappings between conceptual model products and OSM product
specifications and fulfillment patterns. The productClassMapping.xml file is provided
for backward compatibility, so in this topic it is assumed that you are using the
productSpecMapping.xml file. These files are created in one of the following
directories:

• If you have specified a value for the Product Specification Mapping Folder
field of the Orchestration Preferences in Eclipse, it will create the two files in the
directory specified.

• If no value is specified for that field, OSM will create the
productClassMapping.xml file in the resources/productClassMapping
directory and the productSpecMapping.xml file in the resources/
productSpecMapping directory.

You can retrieve this mapping data from one of these files by creating a data instance
provider that can be referenced from an XQuery expression body using a data
instance behavior.

Note:

The element names are not the same between the
productClassMapping.xml and productSpecMapping.xml files. Ensure
that you are using the correct element names for the file you are referencing.
The names in this topic are correct for the productSpecMapping.xml file.

For example, the following XQuery creates the $productSpecMap variable that
references the data instance that points to the productSpecMapping.xml file:

let $productSpecMap := vf:instance('dataInstace1')

The following code creates a variable that references the product specification value
from the customer order. For example:

let $productSpecName := fn:normalize-space(im:itemReference/
im:primaryClassificationCode/text())

You can now create an expression that matches the product specification from
the order with the product specification contained in the productSpecMapping.xml
file and returns the fulfillment pattern associated with it or else defaults to the
Non.Service.Offer fulfillment pattern. For example:

return
if ($productSpecName != '')
then
 fn:normalize-space($productSpecMap/productSpec
 [fn:lower-case(@name)=fn:lower-case($productSpecName)]/productSpec/text())
else
 'Non.Service.Offer'

In the following example, OSM retrieves the product specification Mobile Service
Feature Class from the incoming customer order. OSM uses the order item property

Appendix B
Decomposition XQuery Expressions

B-14

specified in the Fulfillment Pattern Mapping Property field for the order item to map
the product specification to a fulfillment pattern.

The order item property specified in the Fulfillment Pattern Mapping Property field
for the order item includes the following XQuery expression:

declare namespace im="http://xmlns.oracle.com/InputMessage";
(: Use the ProductSpecMap data instance behavior to retrieve the data in the
productSpecMapping.xml file: :)
 let $productSpecMap := vf:instance('ProductSpecMap')
 let $productSpecName :=
 fn:normalize-space(im:itemReference/im:primaryClassificationCode/text())
 return
 if ($productSpecName != '')
 then
 fn:normalize-space($productSpecMap/productSpec
 [fn:lower-case(@name)=fn:lower-case($productSpecName)]/productClass/text())
 else

 'Non.Service.Offer'

The productSpecMapping.xml file includes the <productSpec> element, that maps
the Mobile Service Feature Class product specification to the Service.Mobile fulfillment
pattern:

<productSpec name="Mobile Service Feature Class"
 cartridge="OsmCentralOMExample-ProductSpecs">
 <fulfillmentPattern>Service.Mobile</fulfillmentPattern>
</productSpec>

To summarize, to map an order line item in an incoming customer order to a fulfillment
pattern, you configure the following:

• In the order item specification:

– A property that retrieves the conceptual model product or the OSM product
specification from the incoming customer order.

– The order item property specified in the Fulfillment Pattern Mapping
Property field, that maps the product or product specification to the fulfillment
pattern. To do so, OSM uses the ProductClassMap data instance behavior.

• The ProductSpecMap data instance behavior (and the data provider that supports
it), that retrieves data from the productSpecMapping.xml file.

• The productSpecMapping.xml file used by the ProductClassMap data instance
behavior, that maps products and product specifications to fulfillment patterns.

When you update your product catalog, you might need to add new fulfillment
patterns. In that case, you need to:

• Create new fulfillment patterns and conceptual model products, if necessary.

• Add mappings to the productSpecMapping.xml file.

You do not need to change the order item specification or the data instance behavior.

About Order Item Specification Order Item Hierarchy XQuery Expressions
This topic describes how to use the Order Item Specification editor Order Item
Hierarchies tab, Key Expression and Parent Key Expression areas, XQuery subtabs
to write expressions that specify the relative hierarchy of order items, in the same

Appendix B
Decomposition XQuery Expressions

B-15

order or between different orders, based on an order item value, such as lineId and
parentLineId and has the following characteristics:

• Context: The Key Expression and Parent Key Expression area XQuery input
document is the order item. Specifically order item properties that indicate the
relative hierarchy, such as order item lineId and parentLineID properties. For
example:

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="1288881040699">
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Service Plan Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Prolog: You can declare the order item specification namespace and the OSM
namespace in the XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/
ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

You can declare the OrchestrationXQueryFunctions class in the prolog to use
the ancestors method that returns the current node and all ancestors of the current
node based on the specified hierarchy definition. This method can be useful when
creating dependencies between order items based on hierarchy. For example:

declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.Orchestr
ationXQueryFunctions";

See "OSM XQuery Functions" for more information about the
OrchestrationXQueryFunctions class. See OSM Concepts for an example of
how the ancestors method is used.

• Body: The XQuery body must specify an order item property defined in the order
item specification.

For example, for the Key Expression, you can identify a unique key for each order
item, typically the order item line ID:

fn:normalize-space(osm:properties/im:LineId/text())

For example, for the Parent Key Expression, you can identify a parent order line
item, typically the line ID for the parent order line item:

fn:normalize-space(osm:properties/im:parentLineId/text())

Appendix B
Decomposition XQuery Expressions

B-16

In the following example, the key expression uses the parent order line item's <lineId>
element from the order item property customer order:

declare namespace im="http://oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
fn:normalize-space(osm:properties/im:lineId/text())

The parent key expression uses the child order line item's <parentLineId> element
from the incoming customer order:

declare namespace im="http://oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
fn:normalize-space(osm:properties/im:parentLineId/text())

About Order Item Specification Condition XQuery Expressions
This topic describes how to use the Order Item Specification editor Orchestration
Conditions tab, Condition Expression area, XQuery subtab to write expressions that
specifies an order item property value as a condition that you can then use in an
order decomposition rule or in a fulfillment pattern to determine whether an order item
gets included in an order component. The XQuery for the condition has the following
characteristics:

• Context: The Condition Expression area XQuery input document is the order item
properties you want to use as conditions. For example, the following order item
contains the region and the ServiceActionCode order item properties, that could
be associated with conditions:

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="1288881040699">
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Service Plan Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

See "About Fulfillment Pattern Order Component Condition XQuery Expressions"
for a description of the XQuery condition based on the ServiceActionCode. See
"About Decomposition Rule Condition XQuery Expressions" for a description of
the XQuery condition based on the region.

• Prolog: You can declare the order item specification namespace and the OSM
namespace in the XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/
ordermanagement/model";

Appendix B
Decomposition XQuery Expressions

B-17

declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

• Body: The XQuery body must evaluate an order item property defined in the
order item specification. These order item properties are available from the OSM
namespace using the properties element. For example, the following expression
evaluates to true if the value of region is anything other than Sao Paulo and the
order item gets included in the order component. If the region were set to Sao
Paulo, then the order item would not be included in the order component.

fn:not(fn:normalize-space(osm:properties/im:region/text())='Sao Paulo')

Another condition could be created that would only evaluate to true if the value of
region was set to Sao Paulo. In this case, the order item would only be included
in the order component if the region were set to Sao Paulo.

About Fulfillment Pattern Order Component XQuery Expressions
The Fulfillment Pattern editor provides the following areas to define XQuery
expressions related to order decomposition:

• About Fulfillment Pattern Order Component Condition XQuery Expressions

• About Associating Order Items Using Property Correlations XQuery Expressions

Note:

The XQuery expressions discussed in this chapter also apply to the
Orchestration Dependency editor.

About Fulfillment Pattern Order Component Condition XQuery Expressions
This topic describes how to use the Fulfillment Pattern editor, Orchestration Plan
tab, Order Components subtab, Conditions subtab XQuery subtab to write an
expression that specifies whether to include or exclude an order item from an order
component. You can create a new fulfillment pattern from the Fulfillment Pattern editor
or select from conditions created in the Order Item Specification. See "About Order
Item Specification Condition XQuery Expressions" for more information about the
context, prolog, and body of condition XQuery expressions.

The following example XQuery expression only evaluates to true if the value
of ServiceActionCode is not NONE or UPDATE. For example, if the value of
ServiceActionCode were ADD, then the order item would be included in the order
component.

fn:boolean
(
(osm:properties/im:ServiceActionCode/text()!="NONE" and
osm:properties/im:ServiceActionCode/text()!="UPDATE") or
(

Appendix B
Decomposition XQuery Expressions

B-18

About Associating Order Items Using Property Correlations XQuery
Expressions

This topic describes how to use the Fulfillment Pattern editor, Orchestration Plan tab,
Order Components subtab, Order Item Association subtab, Property Correlation
selection, XQuery subtab to write an expression that associates order items to
order components that are not assigned by their fulfillment pattern. These order item
associations are typically required when external systems need a specific context for
an order item and includes the following characteristics:

• Context: The Order Item Association subtab XQuery input documents
are multiple order items in the order after decomposition contained in the
fromOrderComponent element and the entire set of order items included in the
order contained in the toOrderComponent element. You can make an XQuery
association based on the contents of these order items that create an association
between the unique order item IDs. For example:

<fromOrderComponent xmlns="">
 <osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="1234">
 <osm:name>Speed By Demand [Add]</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00
 </im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Speed by Demand class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <mi:region>Sao Paulo</im:region>
 <osm:properties>
 </osm:orderItem>
 <osm:orderItem [37 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem [57 lines]
 <osm:orderItem [57 lines]
</fromOrderComponent>
<toOrderComponent xmlns="">
 <osm:orderItem [35 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="5678">
 <osm:name>Broadband Bundle [Add]</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">

Appendix B
Decomposition XQuery Expressions

B-19

 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00
 </im:requestedDeliveryDate>
 <im:lineItemName>Broadband Bundle [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>1112223333</im:serviceId>
 <im:productSpec>Broadband.Bundle</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
 </osm:orderItem>
 <osm:orderItem [57 lines]
 <osm:orderItem [57 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [57 lines]
</toOrderComponent>

• Prolog: You can declare the order item namespace and the OSM namespace in
the XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/
ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

• Body: The XQuery body must specify a dependency between the order item and
the associated order item using something similar to the following syntax:

let $fromItem := osm:fromOrderComponent/osm:orderItem[osm:name/text()="Speed
By Demand [Add]"]
let $toItem := osm:toOrderComponent/osm:orderItem[osm:name/text()="Broadband
Bundle [Add]" and osm:properties/im:SiteID/text() = $fromItem/osm:properties/
im:SiteID/text()]
return
<osm:dependency fromOrderItemId='{$fromItem/@id}' toOrderItemId='{$toItem/
@id}'/>

where

– osm:fromOrderComponent: Returns the set of order items included in the
order component after the decomposition phase.

– osm:toOrderComponent: Returns the entire set of order items included in
the order.

– osm:orderItem: These are the order items in the fromOrderComponent or
toOrderComponent categories.

– osm:dependency fromOrderItemId='{$fromItem/@id}: The output of the
XQuery specifying the source order item ID for the association.

– toItem='{$childOrderItem/@id}'/>: The output of the XQuery specifying the
target order item ID for the association.

Given the sample provided in the context bullet, this XQuery would return the
following association:

<osm:dependency fromOrderItemId='1234' toOrderItemId='5678'/>

Appendix B
Decomposition XQuery Expressions

B-20

The following example shows an XQuery that associates all child order
items with their parent items. (See OSM Concepts for more information.)
The output of the XQuery expression returns a node-set of <osm:dependency
fromOrderItemId='{$fromOrderItem/@id}' toOrderItemId=' {$toOrderItem/@id}'/> where
item IDs are the @id attribute of the order item.

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace prop="http://oracle.communications.ordermanagement.unsupported.centralom";
(: $fromOrderItemList contains all order items in the selected order component: :)
for $fromOrderItem in $fromOrderItemList
let $fromOrderItemList := osm:fromOrderComponent/osm:orderItem
(: $childOrderItems contains all children for the current $fromOrderItem: :)
let $childOrderItems := osm:toOrderComponent/osm:orderItem/osm:properties
 [prop:ParentLineID/text() = $fromOrderItem/osm:properties/prop:LineID/text()]
(: Returns the association between all parents and their children: :)
for $childOrderItem in $childOrderItems
return
 <osm:dependency fromOrderItemId='{$fromOrderItem/@id}' toOrderItemId='{$childOrderItem/@id}'/>

About Decomposition Rule Condition XQuery Expressions
This topic describes how to use the Decomposition Rule editor, Conditions tab,
Conditions Details subtab, XQuery subtab to write an expression that associates
a condition with a decomposition rule. You can create the condition in the order
item specification and select them in the decomposition rule, or you can create them
directly in the decomposition rule. See "About Order Item Specification Condition
XQuery Expressions" for more information about the context, prolog, and body of
condition XQuery expressions.

The following is an example of two decomposition rules, each having a condition set
that determines whether an order item is included in the target order component or
not. In this example:

• The decomposition rule that targets the target system order component for region
1 has the following decomposition condition:

isRegion1

• The decomposition rule that targets the a target system order component for
region 2 has the following decomposition condition:

isOtherRegion

The XQuery for the isRegion1 decomposition rule condition is:

declare namespace im="http://oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
fn:normalize-space(osm:properties/im:region/text())='Toronto')

This condition specifies the value of the region order item property. If the value is
Toronto, the decomposition rule condition is true, and the order item is included in the
region 1 target system order component.

The XQuery for the isOtherRegion decomposition rule condition is:

declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";declare
namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model";fn:not(fn:normalize-space(osm:properties/im:region/text())='Toronto')

Appendix B
Decomposition XQuery Expressions

B-21

This condition also specifies the value of the region order item property, but evaluates
to true only if the value is not Toronto. All order items that have any other value are
included in the region 2 target system order component.

The following example includes a variation on the isRegion1 decomposition rule that
specifies that all the order items from the source order component to the target order
component that have at least one order item with a region property of Toronto are
included in the order component. Otherwise, if the condition evaluates to false then
none of the order items in fromOrderComponent are included in the resulting order
component.

declare namespace im="http://oracle.communications.centralom";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model";
fn:exists(osm:fromOrderComponent/osm:orderItem[fn:normalize-space(osm:properties/
im:Region/text())='Toronto'])

For some functions, there is only one target system in the topology. For example, if
you have only one collections system in the topology, you will have one dependency
rule that uses a simple mapping from the source collections function order component
to the collections target system order component, and no decomposition condition is
necessary.

About Component Specification Custom Component ID XQuery
Expressions

This topic describes how to use the Order Component Specification editor,
Component ID tab, Component ID area, XQuery subtab to write an expression that
specifies a custom component ID for an order component. These custom component
IDs are typically required when the default component IDs are not sufficiently specific
(see OSM Concepts for more information about the default component ID). The
Component ID XQuery includes the following characteristics:

• Context: The Component ID tab XQuery input document is the order item and the
order item properties you want to use to create a custom component ID with. For
example, the following order item contains the SiteID and requestedDeliveryDate
order item properties. In a simple scenario, you can use this element to group all
order items that share the same SiteID value and further delineate groups based
on requestedDeliveryDate date range.

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="1288881040699">
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>Bundle</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Service Plan Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]

Appendix B
Decomposition XQuery Expressions

B-22

 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Prolog: You can declare the order item namespace and the OSM namespace
in the XQuery prolog. In more complicated XQuery expressions, you can
also use the OrchestrationXQueryFunctions OSM Java package to specify
component IDs based on order item hierarchies, order item requested delivery
date, order component duration, order component minimum duration separation,
or a combination of some or all of them. For example:

declare namespace osm="http://xmlns.oracle.com/communications/
ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.Orchestr
ationXQueryFunctions";

See "OSM XQuery Functions" for more information about the
OrchestrationXQueryFunctions class.

• Body: The body must return a string. Every order item that ends with the same
string gets included in the order component. For example, if you wanted to group
all order items based on the SiteID value, you could specify the following XQuery:

return osm:properties/im:SiteID/text()

The following topics describe OSM Java package methods.

For more information about how the OrchestrationXQueryFunctions are used in
custom Component ID XQuery expressions and for more complicated custom group
ID generation scenarios that use Orchestration XQueryFunction, see the following
topics:

• Custom Order Component IDs Based on Hierarchy

• Custom Component IDs Based on Requested Delivery Date and Duration

• Custom Component IDs by Duration and Minimum Separation Duration

• Combining Order Item Hierarchy with Duration-Based Groupings

Custom Order Component IDs Based on Hierarchy
A more common scenario where custom order component IDs can be used is when
you need additional groupings of order components at the granularity level. For
example, three levels of decomposition from Function, System, to Bundle, results in
the following component IDs:

• BillingFunction

• BillingFunction.BillingSystem

• BillingFunction.BillingSystem.Bundle

If you had order items in the Bundle order components that were part of different
bundles that go to different the billing system, you would need to separate each
order item bundle into different bundle order component. A component ID for such a
scenario could look like this:

• For billing system 1: BillingFunction.BillingSystem.Bundle.2/BundleGranularity

Appendix B
Decomposition XQuery Expressions

B-23

• For billing system 2: BillingFunction.BillingSystem.Bundle.6/BundleGranularity

To create custom component IDs for this scenario, you could use the following order
item properties:

• typeCode: This property specifies if the order line item is an offer, bundle, or
product. This element also defines the product hierarchy of the order line items.
For example:

OFFER
 BUNDLE
 PRODUCT

• lineId and parentLineId: These properties specify the hierarchical relationship
between the bundle and product order line items. You can create separate
component IDs for every order item bundle and associate all product order items
with their corresponding bundle component ID. To identify all ancestor order items
that may be a bundle, you can use the XQuery ancestors function, as explained
later.

For example, the following four order items include two bundles and two associated
products. These order items have the following characteristics:

• Order Item 1 includes:

– typeCode: BUNDLE

– lineId: 2

– parentLineId: 1 (for example, an order item with an OFFER typeCode. This
order item is not specified in this example).

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="1234">
 <osm:name>FIXED BUNDLE - BUNDLE</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>BUNDLE</im:typeCode>
 <im:parentLineId>1</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</
im:requestedDeliveryDate>
 <im:lineItemName>Fixed Bundle</im:lineItemName>
 <im:lineId>2</im:lineId>
 <im:SiteID>5</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Bundle Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Order Item 2 includes:

– typeCode: PRODUCT

– lineId: 3

– parentLineId: 2 (This matches the lineID of order item 1 indicating that order
item 1 is the parent of order item 2).

Appendix B
Decomposition XQuery Expressions

B-24

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="56789">
 <osm:name>FIXED CALLER ID - PRODUCT</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>2</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</
im:requestedDeliveryDate>
 <im:lineItemName>Commercial Fixed Service [Add]</im:lineItemName>
 <im:lineId>5</im:lineId>
 <im:SiteID>7</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Fixed Bundle Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Fixed</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Order Item 3 includes:

– typeCode: BUNDLE

– lineId: 6

– parentLineId: 1 (This indicates that both order item 1 and order item 3 share
the same parent).

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="10111213">
 <osm:name>BroadBand BUNDLE - BUNDLE</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>BUNDLE</im:typeCode>
 <im:parentLineId>1</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</
im:requestedDeliveryDate>
 <im:lineItemName>Broadband Bundle</im:lineItemName>
 <im:lineId>6</im:lineId>
 <im:SiteID>5</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Broadband</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

• Order Item 4 includes:

– typeCode: PRODUCT

– lineId: 7

Appendix B
Decomposition XQuery Expressions

B-25

– parentLineId: 6 (This matches the lineID of order item 3 indicating that order
item 3 is the parent of order item 4).

<osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 id="14151617">
 <osm:name>BroadBand Service - PRODUCT</osm:name>
.....
 <osm:properties
 xmlns:im="http://oracle.communications.ordermanagement.unsupported.
 centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>6</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</
im:requestedDeliveryDate>
 <im:lineItemName>Fixed Bundle</im:lineItemName>
 <im:lineId>7</im:lineId>
 <im:SiteID>5</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>552131313131</im:serviceId>
 <im:productSpec>Service.Broadband</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
</osm:orderItem>

The customer order includes two bundles with two products. The hierarchy is:

Fixed Bundle - order item 2
 Fixed Caller ID - order item 5
Broadband Bundle - order item 6
 BroadBand Service - order item 7

To create the separate customized component IDs for the bundle order items 1 and 3,
and include all their corresponding children order items you need to:

• Return a separate component ID for each BUNDLE typeCode. This causes
BUNDLE order components to be generated.

• Ensure that the PRODUCT typeCode for that bundle are included in its parent
order item.

To do so, the XQuery uses the ancestors function to find whether the order item has
a BUNDLE typeCode or has a BUNDLE typeCode in one of its parent order items. If
the order item is a bundle, then a OSM creates a component ID for the bundle. If the
order item has a bundle in one of its parent order items, then OSM includes the order
item in its parent order item component ID. The following example shows an XQuery
that does this.

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model";
declare namespace prop="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.Orchestratio
nXQueryFunctions";
(: The following part of the XQuery identifies the order line hierarchy
definition and retrieve all of the predecessor order line items in the
bundle: :)
let $ancestors :=
osmfn:ancestors("CustomerOrderItemSpecification","default","http://

Appendix B
Decomposition XQuery Expressions

B-26

oracle.communications.ordermanagement.unsupported.centralom")

(: The following part of the XQuery finds the BUNDLE order item and generates
an ID based on the bundle order item lineID: :)
 return
 if (fn:exists($ancestors[osm:properties/prop:typeCode='BUNDLE']))
 then (
 concat($ancestors[osm:properties/prop:typeCode=('BUNDLE')]
 [1]/osm:properties/prop:lineId/text(),'/BundleGranularity')
)
 else (
 'ALL_OFFERS_AND_NON_SERVICE_BILLING/BundleGranularity'
)

This XQuery finds the child order line items, finds their parent order line items, and
creates a bundle order component for each of the bundle lines. The component IDs
are:

• BillingFunction.BillingSystem.Bundle.2/BundleGranularity

• BillingFunction.BillingSystem.Bundle.6/BundleGranularity

In another example, there is one offer with two bundles and two products in each
bundle. The following table shows the hierarchy of bundles and products. The
component IDs use the line IDs of the two bundle items.

Line Number Line Name Line typeCode Parent Line ID Value to Use in
Component ID

1 Triple Play OFFER - -

2 Fixed Bundle BUNDLE 1 2

2.1 Fixed Service PRODUCT 2 2

2.2 Call Forwarding PRODUCT 2 2

5 Broadband Bundle BUNDLE 1 5

5.1 Broadband Service PRODUCT 5 5

5.2 High-Speed Internet PRODUCT 5 5

Custom Component IDs Based on Requested Delivery Date and Duration
In some scenarios, you may want to create custom Order Component IDs based on
order item requested delivery date and duration. For example, the following custom
component ID XQuery creates order component grouping based on the order item
requested delivery dates:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model";
declare namespace prop="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.Orchestratio
nXQueryFunctions";
let $groupDuration := "P2D"
return
osmfn: getGroupIdByDateTime ($groupDuration)

The XQuery creates a new order component for an order item based on the order
item's requested delivery date and includes all order items within this group that fall

Appendix B
Decomposition XQuery Expressions

B-27

within two days of the first order item's requested delivery date in the group. The
XQuery does the same thing for all other order items within the order.

The following table shows how five order items would be grouped given a custom
Order Component ID XQuery that creates a new component IDs.

Note:

The group ID names are static with the first order component always called
Group1 and the next Group2, and so on.

Order Item Requested Delivery Date Group ID

A June 9, 2014 Group1

B June 10, 2014 Group1

C June 11, 2014 Group2

D June 12, 2014 Group2

E June 12, 2014 Group3

See "About Component Specification Custom Component ID XQuery Expressions"
for more information about the context, prolog, and body of this XQuery. See "OSM
XQuery Functions" for more information about the OrchestrationXQueryFunctions
class.

Custom Component IDs by Duration and Minimum Separation Duration
You can specify a minimum duration separation value for order items that fall very
close to a custom Order ID grouping based on order item requested delivery date and
duration. For example, the following XQuery adds a minimum separation value of one
day:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model";
declare namespace prop="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.Orchestratio
nXQueryFunctions";
let $groupDuration := "P2D"
let $minSeparationDuration := "P1D"
return
osmfn: getGroupIdByDateTime ($groupDuration, $minSeparationDuration)

All order item requested delivery dates that fall within one day of a two day grouping,
would be included in the two day grouping.

The following table shows how the five order items would be grouped given a one day
minimum separation duration.

Order Item Requested Delivery Date Group ID

A June 9, 2014 Group1

Appendix B
Decomposition XQuery Expressions

B-28

Order Item Requested Delivery Date Group ID

B June 10, 2014 Group1

C June 11, 2014 Group1

D June 12, 2014 Group2

E June 12, 2014 Group2

See "About Component Specification Custom Component ID XQuery Expressions"
for more information about the context, prolog, and body of this XQuery. See "OSM
XQuery Functions" for more information about the OrchestrationXQueryFunctions
class.

Combining Order Item Hierarchy with Duration-Based Groupings
You can combine the function to create custom Component IDs based on order
item requested delivery date, duration, and minimum duration separation, or a
combination of these functions with order component ID generation based on order
item hierarchy. The following example creates separate component IDs for order items
that, although they have the same requested delivery date, are part of different order
item hierarchical groupings:

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model";
declare namespace prop="http://
oracle.communications.ordermanagement.unsupported.centralom";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.Orchestratio
nXQueryFunctions";
let $groupDuration := "P2D"
let $minSeparationDuration := "P1D"
return
osmfn: getGroupIdByDateTime ($groupDuration, $minSeparationDuration)
let $rootAncestorID := osmfn:ancestors("eboLineItem", "default", "http://
xmlns.oracle.com/communications/ordermanagement")[fn:last()]/osm:properties/
prop:BaseLineId/text()
return fn:concat($rootAncestorId, '/', $groupId)

The following table shows how five hierarchically divided order items would be
grouped given a one day minimum separation duration.

Order Item Requested Delivery Date Group ID Component ID

A.1 June 9, 2014 Group1 A/Group1

A.1.1 June 11, 2014 Group1 A/Group1

A1.2 June 19, 2014 Group2 A/Group2

A.1.3 June 20, 2014 Group2 A/Group2

B.1 June 9, 2014 Group1 B/Group1

B.1.1 June 11, 2014 Group1 B/Group1

B.1.2 June 12, 2014 Group1 B/Group2

See "About Component Specification Custom Component ID XQuery Expressions"
for more information about the context, prolog, and body of this XQuery. See "OSM

Appendix B
Decomposition XQuery Expressions

B-29

XQuery Functions" for more information about the OrchestrationXQueryFunctions
class.

About Component Specification Duration XQuery Expressions
This topic applies to the Order Component editor, Duration tab, Duration Expression
area, XQuery subtab.

• Context: There is no input document for this expression.

• Prolog: There is no prolog required for this expression.

• Body: The XQuery body returns a duration value based on the XQuery you enter:

PyYmMdDThHmMsS

where

– P begins the expression.

– yY specifies the year.

– mM specifies the month.

– dD specifies the day.

– T separates the parts of the expression indicating the date from the parts of
the expression indicating the time.

– hH specifies the hour.

– mM specifies the minutes.

– sS specifies the seconds.

The following example is a hard-coded duration expression for seven hours:

PT7H0M0S

For more information about how OSM uses these fields to calculate order component
durations, see OSM Concepts.

About Fulfillment Pattern Duration XQuery Expressions
This topic applies to the Fulfillment Pattern editor, Orchestration Plan tab, Duration
subtab, Duration Expression area, XQuery subtab. The functionality for this tab
has been deprecated and is displayed to provide backward compatibility with older
cartridges.

For the recommended functionality for configuring order component durations, see
"About Fulfillment Pattern Component Duration XQuery Expressions" and "About
Component Specification Duration XQuery Expressions".

About Fulfillment Pattern Component Duration XQuery Expressions
This topic applies to the Fulfillment Pattern editor, Orchestration Plan tab, Order
Components subtab, Duration subtab, Duration Expression area, XQuery subtab.

• Context: There is no input document for this expression.

• Prolog: There is no prolog required for this expression.

Appendix B
Decomposition XQuery Expressions

B-30

• Body: The XQuery body returns a duration value based on the XQuery you enter:

PyYmMdDThHmMsS

where

– P begins the expression.

– yY specifies the year.

– mM specifies the month.

– dD specifies the day.

– T separates the parts of the expression indicating the date from the parts of
the expression indicating the time.

– hH specifies the hour.

– mM specifies the minutes.

– sS specifies the seconds.

The following example is a hard-coded duration expression for three hours:

PT3H0M0S

For more information about how OSM uses these fields to calculate order component
durations, see OSM Concepts.

Dependency XQuery Expressions
This topic includes information about Orchestration XQuery expressions related to
orchestration dependencies:

• About Order Item Dependency Property Correlation XQuery Expressions

• About Wait Delay Duration XQuery Expressions

• About Wait Delay Date and Time XQuery Expressions

• About Order Data Change Wait Condition XQuery Expressions

• About Order Item Inter-Order Dependency XQuery Expressions

About Order Item Dependency Property Correlation XQuery
Expressions

This topic describes how to use one of the following fields:

• Fulfillment Pattern editor, Orchestration Plan tab, Dependencies tab, Order Item
Dependency subtab, XQuery subtab for the Property Correlation selection

• Orchestration Dependency editor, Order Item Dependencies tab, XQuery subtab
for the Property Correlation selection

to write an expression that specifies dependencies between different order items using
order item properties. The Property Correlation XQuery has the same context, prolog,
and body structure as the Fulfillment Pattern editor, Order Components tab, Order
Item Association subtab, XQuery subtab. See "About Associating Order Items Using
Property Correlations XQuery Expressions" for more information.

Appendix B
Dependency XQuery Expressions

B-31

The following example shows a dependency that requires provisioning of an Internet
service before shipping a modem. This involves two order items: provision Internet
service and ship modem. The correlating property is the order item ID.

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://sample.broadband";
let $bbProvision := osm:fromOrderComponent/osm:orderItem[osm:name="Internet Service"]
let $bbModem := osm:toOrderComponent/osm:orderItem[osm:name/text()='Broadband Modem'
 and osm:properties/im:SiteID/text() = $bbProvision/osm:properties/im:SiteID/text()]
return
 <osm:dependency fromOrderItemId='{$bbProvision/@id}' toOrderItemId='{$bbModem/@id}'/>

In this example:

• $bbProvision contains the broadband service order item in the blocking Provision
order component.

• $bbModem is the broadband modem in the waiting Ship order component.

• The XQuery returns a dependency from the Internet Service order item to
its associated Broadband Modem order item, identified by $bbProvision/@id
and $bbModem/@id.

If the order item IDs are:

• $bbProvision/@id = 1301589468772

• $bbModem/@id = 1301589468785

Then the XQuery returns the following:

<osm:dependency fromOrderItemId='1301589468772' toOrderItemId='1301589468785'/>

About Wait Delay Duration XQuery Expressions
This topic describes how to use one of the following fields:

• Fulfillment Pattern editor, Orchestration Plan tab, Dependencies subtab, Wait
Condition subtab, Wait Delay area, Duration Expression area XQuery subtab for
the Duration selection

• Orchestration Dependency editor, Wait for Condition tab, Wait Delay area,
Duration Expression area XQuery subtab for the Duration selection

to write an expression that specifies the duration of delay, based on an order item
property, before starting a waiting order component after all dependencies have been
resolved.

• Context: The Duration XQuery input document is the entire set of order items
included in the order contained in the toOrderComponent element. You can
return the value of requestedDeliveryDate to help determine the wait delay
duration. For example:

<toOrderComponent xmlns="">
 <osm:orderItem [35 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model" id="5678">
 <osm:name>Broadband Bundle [Add]</osm:name>
.....
 <osm:properties xmlns:im="http://oracle.communications.ordermanagement.unsupported.

Appendix B
Dependency XQuery Expressions

B-32

centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Broadband Bundle [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>1112223333</im:serviceId>
 <im:productSpec>Broadband.Bundle</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
 <osm:orderItem [57 lines]
 <osm:orderItem [57 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [57 lines]
</toOrderComponent>

• Prolog: You can declare the order item namespace and the OSM namespace in
the XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/
ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

• Body: The XQuery body returns a duration value based on the
requestedDeliveryDate order item property:

let $mydate :=
osm:toOrderComponent[1]/osm:orderItem[1]/osm:properties[1]/*[namespace-
uri()='http://oracle.communications.ordermanagement.unsupported.centralom'
and local-name()='requestedDeliveryDate'][1]/text()
return
if (fn:current-dateTime()- xs:dateTime($mydate) <
xs:dayTimeDuration('PT10H')) then
 'PT10H'
else
 'PT10M'
return

where

– osm:toOrderComponent: Provides the entire set of order items included in
the order.

– osm:orderItem: These are the order items in the toOrderComponent
category. The remainder of this expression identifies the namespace of the
order item specification and returns the value of the requestedDeliveryDate
element.

– The if statement checks to see if the value of the requestedDeliveryDate is
less than the hard-coded dayTimeDuration value. These values conform to the
XSD duration data type.

– The then statement returns 10 hours if the if statement evaluates to true.

– The else statement return 10 months if the if statement evaluates to false.

The following example shows the sample XQuery to return a duration value.

Appendix B
Dependency XQuery Expressions

B-33

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace im="http://oracle.communications.ordermanagement.unsupported.centralom";

let $mydate := osm:toOrderComponent[1]/osm:orderItem[1]/osm:properties[1]/*[namespace-
uri()='http://oracle.communications.ordermanagement.unsupported.centralom' and local-
name()='requestedDeliveryDate'][1]/text()
return
if (fn:current-dateTime()- xs:dateTime($mydate) < xs:dayTimeDuration('PT10H')) then
 'PT10H'
else
 'PT10M'

About Wait Delay Date and Time XQuery Expressions
This topic describes how to use one of the following fields:

• Fulfillment Pattern editor, Orchestration Plan tab, Dependencies subtab, Wait
Condition subtab, Wait Delay area, Duration Expression area XQuery subtab for
the Date Time Expression selection

• Orchestration Dependency editor, Wait for Condition tab, Wait Delay area,
Duration Expression area XQuery subtab for the Date Time Expression selection

to write an expression that specifies the date and time, based on an order item
property, for starting a waiting order component after all dependencies have been
resolved.

• Context: The Date Time Expression XQuery input document is the entire set of
order items included in the order contained in the toOrderComponent element.
You can use the requestedDeliveryDate order item property to determine the date
and time that the XQuery should start after all blocking items have resolved. For
example:

<toOrderComponent xmlns="">
 <osm:orderItem [35 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model" id="5678">
 <osm:name>Broadband Bundle [Add]</osm:name>
.....
 <osm:properties xmlns:im="http://oracle.communications.ordermanagement.unsupported.
centralom">
 <im:typeCode>PRODUCT</im:typeCode>
 <im:parentLineId>3</im:parentLineId>
 <im:requestedDeliveryDate>2013-06-31T12:00:00</im:requestedDeliveryDate>
 <im:lineItemName>Broadband Bundle [Add]</im:lineItemName>
 <im:lineId>4</im:lineId>
 <im:SiteID>10</im:SiteID>
 <im:ServiceActionCode>UPDATE</im:ServiceActionCode>
 <im:productClass>Broadband Bundle Class</im:productClass>
 <im:serviceId>1112223333</im:serviceId>
 <im:productSpec>Broadband.Bundle</im:productSpec>
 <im:lineItemPayload> [34 lines]
 <im:region>Sao Paulo</im:region>
 <osm:properties>
 <osm:orderItem [57 lines]
 <osm:orderItem [57 lines]
 <osm:orderItem [42 lines]
 <osm:orderItem [37 lines]
 <osm:orderItem [37 lines]

Appendix B
Dependency XQuery Expressions

B-34

 <osm:orderItem [57 lines]
</toOrderComponent>

• Prolog: You can declare the order item namespace and the OSM namespace in
the XQuery prolog. For example:

declare namespace osm="http://xmlns.oracle.com/communications/
ordermanagement/model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

• Body: The XQuery body returns a date and time value based on the
requestedDeliveryDate order item property:

osm:toOrderComponent[1]/osm:orderItem[1]/osm:properties[1]/*[namespace-
uri()='http://oracle.communications.ordermanagement.unsupported.centralom'
and local-name()='requestedDeliveryDate'][1]/text()

osm:toOrderComponent: returns the entire set of order items included in the
order and returns the requested delivery date of all order items for the wait delay
date and time.

The following example shows the sample XQuery to return a date time value.

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/
model";
declare namespace im="http://
oracle.communications.ordermanagement.unsupported.centralom";

osm:toOrderComponent[1]/osm:orderItem[1]/osm:properties[1]/*[namespace-
uri()='http://oracle.communications.ordermanagement.unsupported.centralom' and
local-name()='requestedDeliveryDate'][1]/text()

About Order Data Change Wait Condition XQuery Expressions
This topic describes how to use the Fulfillment Pattern editor, Orchestration Plan
tab, Dependencies subtab, Wait Condition subtab, Wait for Condition area, XQuery
subtab for the Data Change Notification selection,

This topic describes how to use one of the following fields:

• Fulfillment Pattern editor, Orchestration Plan tab, Dependencies subtab, Wait
Condition subtab, Wait for Condition area, XQuery subtab for the Data Change
Notification selection

• Orchestration Dependency editor, Wait for Condition tab, Wait for Condition area,
XQuery subtab for the Data Change Notification selection

to write an expression that specifies a value that must exist in order item property
(typically a blocking order item property) before a waiting order item starts.

• Context: The Data Change Notification XQuery input document is the task view
task data that was changed using an update order transaction.

• Prolog: You can declare the $blockingIndexes variable in the XQuery prolog that
contains an index of data element for all blocking order items. For example:

declare variable $blockingIndexes as xs:integer* external;

• Body: The XQuery body returns a specific value and will wait until all blocking
order items have the corresponding value and the XQuery returns true.

Appendix B
Dependency XQuery Expressions

B-35

The following example shows the XQuery that evaluates the data change. The
dependency is met when all blocking order items have reached a state of PROVISION
STARTED.

(: The $blockingIndexes variable contains data element indexes for all blocking order
items: :)
declare variable $blockingIndexes as xs:integer* external;
(: Specify "PROVISION STARTED" as the data value that must be met: :)
let $expectedMilestoneCode := "PROVISION STARTED"
(: $milestoneValues contains a set of milestones for all blocking order items: :)
let $milestoneValues :=
 /GetOrder.Response/_root/ControlData/Functions/ProvisioningFunction/orderItem/orderItemRef[
 fn:index-of($blockingIndexes, xs:integer(@referencedIndex)) !=
 0]/milestone[text() eq $expectedMilestoneCode]
(: Return true only if all the milestones in ProvisioningFunction/orderItem/orderItemRef are
PROVISION STARTED: :)
return fn:count($milestoneValues) eq fn:count($blockingIndexes)

The following example returns true when at least one blocking item is completed.

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare variable $blockingIndexes as xs:integer* external;
let $component := //ControlData/Functions/NetworkProvisionFunction
let $lineItem := $component/orderItem/orderItemRef[fn:index-of($blockingIndexes,
xs:integer(@referencedIndex)) != 0]
return
 if (fn:exists($lineItem))
 then
 let $statusValue := $lineItem/OrderItemStatus/text() = "completed"
 return
 if (fn:count($statusValue)>0)
 then
 fn:true()
 else
 fn:false()
 else
 fn:false()

About Order Item Inter-Order Dependency XQuery Expressions
This topic describes how to use the Order Item Specification editor, Order Item
Dependency tab, Order Item Selector area, XQuery tab to write an expression that
creates dependencies between the order items on the follow-on order and the order
items on the base order. It is the follow-on order that generates this dependency on
the base order.

• Context: The Order Item Selector XQuery input document is typically an order
item on a follow-on order (the waiting order).

• Prolog: You can declare the OSM namespace, the cartridge namespace for the
target order (the base order), and the namespace of the query task that contains
the order data you want to view. For example:

declare namespace osm="http://xmlns.oracle.com/communications/
ordermanagement/model";
declare namespace im="CommunicationsSalesOrderFulfillmentPIP";
declare namespace osmc="urn:oracle:names:ordermanagement:cartridge:
CommunicationsSalesOrderFulfillmentPIP:1.0.0:view:CommunicationsSalesOrderQue
ryTask";

Appendix B
Dependency XQuery Expressions

B-36

• Body: The CRM that sends the follow-on order must specify the reference number
that uniquely identifies the base order and also the order item line ID of the
blocking order item. You can define a variable (such as $dependingLineId) that
extracts the dependent line ID from the order item context. For example:

let $dependingLineId := fn:normalize-space(osm:properties/
im:DependingSalesOrderBaseLineId)

You can configure a web service data instance provider that runs a FindOrder Web
Service that searches for orders based on the reference value (osm:properties/
prop:Ref/text())) in the follow-on order that generates a FindOrder response that
includes the order ID of the base order. See OSM Developer's Guide for more
information about configuring web service data instance providers. For example:

<ord:FindOrder xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement"
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model"
 xmlns:prop="http://oracle.communications.ordermanagement.unsup.centralom">
 <ord:ViewBy>
 <ord:AmendmentFilter>
 <ord:LevelOfDetail>AmendmentsSummary</ord:LevelOfDetail>
 </ord:AmendmentFilter>
 <ord:LifecycleEventFilter>
 <ord:RetrieveLifecycleEvents>false</ord:RetrieveLifecycleEvents>
 </ord:LifecycleEventFilter>
 </ord:ViewBy>
 <ord:SelectBy>
 <ord:Reference>{fn:normalize-space(osm:properties/prop:Ref/text())} </ord:Reference>
 </ord:SelectBy>
</ord:FindOrder>

This data instance provider returns the order ID of the base order which you
can capture in an XQuery variable (such as $parentOrderID). You can use this
variable in a data instance provider that runs a GetOrder Web Service to obtain
the order item details from the base order. For example, the following XQuery
populates the GetOrder request message using the results from the "findOrder"
data instance provider to provide the value for the order ID of the base order in the
Order ID field:

<ord:GetOrder xmlns:ord="http://xmlns.oracle.com/communications/
ordermanagement"
 xmlns:osm="http://xmlns.oracle.com/communications/ordermanagement/model">
 <ord:OrderId>{vf:instance("findOrder")/ord:Order[last()]/
ord:Amendments/ord:AmendedOrderSummary/ord:Id/text()}</ord:OrderId>
<ord:View>CommunicationsSalesOrderQueryTask</ord:View>
</ord:GetOrder>

This data instance provider returns all order item instances in the base order
that you can then search through to find the blocking order item using
the $dependingLineId variable. You can capture the results in an XQuery variable
(such as $parentOrderItemId). For example:

let $parentOrderItemId :=fn:normalize-space(vf:instance("getOrder") /
ord:Data/osmc:_root/osmc:ControlData/osmc:OrderItem
[osmc:BaseLineId=$dependingLineId]/@index)

The XQuery body returns the order ID of the base order and the order item
property that specifies the blocking order item on the base order:

 <osm:dependency fromOrderId="{$parentOrderId}"
fromOrderItemId="{$parentOrderItemId}"/>

Appendix B
Dependency XQuery Expressions

B-37

where

– <osm:dependency fromOrderId: Returns the base order ID.

– fromOrderItemId: Returns the blocking order item property value that controls
the dependency. OSM internally monitors the blocking order item until it is no
longer being processed by any order component on the base order.

The following example shows an XQuery for an inter-order dependency.

declare namespace ord="http://xmlns.oracle.com/communications/ordermanagement";
declare namespace im="CommunicationsSalesOrderFulfillmentPIP";
declare namespace osmc="urn:oracle:names:ordermanagement:cartridge:
CommunicationsSalesOrderFulfillmentPIP:1.0.0:view:CommunicationsSalesOrderQueryTa
sk";
let $dependingLineId := fn:normalize-space(osm:properties /
im:DependingSalesOrderBaseLineId)
return
 if(fn:not($dependingLineId = ''))
 then
(: Use the data instance behavior "findOrder" to find the base order: :)
 let $parentOrderId := fn:normalize-space(vf:instance("findOrder")/
ord:Order[last()]/ord:Amendments/ord:AmendedOrderSummary/ord:Id/text())
(: Use the data instance behavior "getOrder" to find the associated order item
ID in the base order: :)
 let $parentOrderItemId :=
 fn:normalize-space(vf:instance("getOrder")/ord:Data/
 osmc:_root/osmc:ControlData/
osmc:OrderItem[osmc:BaseLineId=$dependingLineId]/@index)
 return
 if(fn:not($parentOrderId = '') and fn:not($parentOrderItemId = ''))
 then
(: Return the dependency: :)
 <osm:dependency fromOrderId="{$parentOrderId}"
fromOrderItemId="{$parentOrderItemId}"/>
 else()
 else()

Order Transformation Manager XQuery Expressions
The following topics provide reference information about order transformation manager
XQuery expressions.

• About Transformation Sequence XQuery Expressions

• About Mapping Rule XQuery Expressions

• About Order Item Parameter Binding XQuery Expressions

• About Transformed Order Item Fulfillment State XQuery Expressions

About Transformation Sequence XQuery Expressions
When working with Transformation Sequence editor, see the following topics for
information about defining XQuery expressions related to transformation sequences:

• About Order Item Context XQuery Expressions

• About Related Order Item Selector XQuery Expressions

• About Stage Condition XQuery Expressions

Appendix B
Order Transformation Manager XQuery Expressions

B-38

About Order Item Context XQuery Expressions
This topic describes how to use the Transformation Sequence editor, Dependencies
tab, Order Item Context subtab, Expression area, XQuery subtab to write an
expression that defines the context order items for the order transformation. To see
the Order Item Context subtab, you must select a transformation stage in the tree on
the Dependencies tab.

• Context: The input document is the complete set of source order items.

• Prolog: You can declare the order item namespace in the XQuery prolog. For
example:

 declare namespace prop='http://oracle.communications.centralom';

• Body: The XQuery body returns the source order items that should be considered
the context for the transformation stage.

The following example shows an XQuery expression for selecting an order item
context.

 declare namespace prop='http://oracle.communications.centralom';
 osm:orderItem[osm:properties/prop:serviceIntance = 'Y']

About Related Order Item Selector XQuery Expressions
This topic describes how to use the Transformation Sequence editor, Dependencies
tab, Related Order Item Selector subtab, Expression area, XQuery subtab to write
an expression that defines the related order items for a particular context order item.
To see the Related Order Item Selector subtab, you must select a transformation
stage in the tree on the Dependencies tab.

• Context: The input document is a context order item.

• Prolog: You can declare the order item namespace and the namespace for the
order transformation manager functions in the XQuery prolog. For example:

 declare namespace prop='http://oracle.communications.broadband;
declare namespace
otmfn="java:oracle.communications.ordermanagement.orchestration.transformatio
n.XQueryFunctions.";

• Body: The XQuery body returns the source order items related to the context order
items.

The following example shows an XQuery expression that returns sibling order items as
related order items to the order transformation.

 declare namespace prop='http://oracle.communications.broadband;
declare namespace
otmfn="java:oracle.communications.ordermanagement.orchestration.transformation.XQ
ueryFunctions.";
 let $siblings := otmfn:siblings (., ‘{http://
oracle.communications.broadband}default')
 return $siblings[! fn:exists(osm:properties[prop:serviceInstance = 'Y'])]

For more information about the transformation.XQueryFunctions class, install the
OSM SDK and extract the OSM Javadocs from the SDK/osm7.w.x.y.z-javadocs.zip
file (where w.x.y.z represents the specific version numbers for OSM). See OSM
Installation Guide for more information about installing the OSM SDK.

Appendix B
Order Transformation Manager XQuery Expressions

B-39

About Stage Condition XQuery Expressions
This topic describes how to use the Transformation Sequence editor, Dependencies
tab, Stage Condition subtab, Expression area, XQuery subtab to write an expression
that determines whether a particular transformation stage should be run. To see the
Stage Condition subtab, you must select a transformation stage in the tree on the
Dependencies tab.

• Context: The input document is the complete set of target order items.

• Prolog: You can declare the order item property and parameter namespaces in the
XQuery prolog. For example:

 declare namespace prop='http://oracle.communications.broadband';

declare namespace parm='http://oracle.communications.broadband';

• Body: The XQuery body returns a Boolean, with true meaning that the
transformation stage should be run and false meaning that the transformation
stage should not be run.

The following example shows an XQuery expression that returns true if certain
parameters have not been defined, and false if the parameters are already defined.

declare namespace prop='http://oracle.communications.cso';
declare namespace parm='http://oracle.communications.broadband';
not(fn:exists(osm:properties/prop:Parameters[fn:exists(parm:uploadSpeed) and
fn:exists (parm:downloadSpeed)]))

About Mapping Rule XQuery Expressions
When working with Mapping Rule editor, see the following topics for information about
defining XQuery expressions related to order decomposition:

• About Mapping Condition XQuery Expressions

• About Action Mapping XQuery Expressions

• About Entity-to-Entity Advanced Mapping XQuery Expressions

• About Entity-to-Data-Element Advanced Mapping XQuery Expressions

• About Data-Element-to-Data-Element Advanced Mapping XQuery Expressions

• About Reverse Mapping XQuery Expressions

• About Multi-Instance XQuery Expressions

About Mapping Condition XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Condition
subtab, Expressions area, XQuery subtab to write an expression that defines a
condition that must be satisfied to apply this mapping.

• Context: The input document is a target order item.

• Prolog: You can declare the order item namespace in the XQuery prolog. For
example:

 declare namespace prop='http://oracle.communications.broadband';

Appendix B
Order Transformation Manager XQuery Expressions

B-40

• Body: The XQuery body returns a Boolean, with true meaning that the mapping
rule should be run and false meaning that the mapping rule should not be run.

The following example shows an XQuery expression that will execute the rule only if
the target action is None.

declare namespace prop='http://oracle.communications.cso';
osm:properties/prop:Action/text() = 'None'

About Action Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Actions
subtab Action Mappings area, XQuery subtab to write an expression that defines the
mapping for an action code for a particular mapping rule. To access this field, you must
deselect Use Relationship Action Map and select the Advanced option.

• Context: The input document is a source order item.

• Prolog: You can declare the following variables within the prolog to determine the
action code.

– You can declare $sourceValue to access the action code of the source order
item. This is the Order Item Action property value for the source order item.

– You can declare $currentTargetValue to access the action code of the target
order item. This is the Order Item Action property value for the target order
item.

• Body: The XQuery body returns an action code, or returns () to leave the current
value unchanged.

The following example shows an XQuery expression that returns the source action
code if the target action code is not already set and otherwise leaves the target action
code unchanged.

 declare $sourceValue external;
 declare $currentTargetValue external;
 if (! fn:empty($currentTargetValue))
 $sourceValue
 else
 ()

About Entity-to-Entity Advanced Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping
subtab, Mapping Rule Item area, XQuery subtab to write an expression that defines
an advanced mapping between two entities. This field is displayed when you select
the target of an entity-to-entity mapping. This is the only type of mapping available for
entity-to-entity mapping.

• Context: The input document is a source order item.

• Prolog: You can declare any namespaces needed to construct the target property
(or properties) in the XQuery prolog. For example:

declare namespace prop='http://oracle.communications.cso;

• Body: The XQuery body returns a list of order item properties to be set on the
target order item. If the property already exists on the target order item, it will be
overwritten by the value returned from this XQuery expression.

Appendix B
Order Transformation Manager XQuery Expressions

B-41

The following example shows an XQuery expression that returns the structured
Parameters property for the target order item.

declare namespace prop='http://oracle.communications.cso;
<prop:Parameters xmlns:param="http://oracle.communications.broadband">
 <parm:AAAAccount>Account1</parm:AAAAccount>
 <parm:DownloadSpeed>6</parm:DownloadSpeed>
 <parm:UploadSpeed>0.6</parm:UploadSpeed>
 <parm:MAC/>
 <parm:Brand>Siemens</param:Brand>
 <parm:Model>4200</parm:Model>
 <parm:Firewall>Y</parm:Firewall>
</prop:Parameters>

About Entity-to-Data-Element Advanced Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping
subtab Mapping Rule Item area, XQuery subtab to write an expression that defines an
advanced mapping between an entity and a data element. This field is displayed when
you select the target of an entity-to-data-element mapping and select the Advanced
option in the Mapping Rule Item topic.

• Context: The input document is a source order item.

• Prolog: There is no prolog for this XQuery.

• Body: The XQuery body returns a data element value or returns () to leave the
current value unchanged.

The following example shows an XQuery expression that returns "Y" if a particular
parameter exists, and () if it does not exist.

if fn:exists(vf:instance("checkMe")/somevalue)
 "Y"
else
 ()

About Data-Element-to-Data-Element Advanced Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping
subtab Configuration subtab, XQuery subtab to write an expression that defines
an advanced mapping between two data elements. This field is displayed when you
select the target of a data-element-to-data-element mapping and select the Advanced
option in the Mapping Rule Item topic.

• Context: The input document is a source order item during normal transformation.
If invoked during forward data propagation, the input document is empty.

• Prolog: You can declare the order item namespace in the XQuery prolog. For
example:

declare namespace prop='http://oracle.communications.centralom';

You can also declare the following variable within the prolog to determine the
action code.

– You can declare $value to contain the values of the target data elements.

• Body: The XQuery body returns one or more data element values or returns () to
leave the current value unchanged.

Appendix B
Order Transformation Manager XQuery Expressions

B-42

The following example shows an XQuery expression that returns the target value of a
data element based on the value of the source data element.

declare variable $value external;
if (fn:empty($value)) then ('unknown') else (fn:concat('Loc: ', $value))

The following example shows an XQuery expression that returns the target value of a
data element based on characteristics of the source order item.

declare namespace prop='http://oracle.communications.centralom';
if (fn:exists(osm:properties/prop:ServicePoint/text()))
then (fn:concat('Loc: ', fn:normalize-space(osm:properties/prop:ServicePoint/
string())))
else ('unknown')

About Reverse Mapping XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping
subtab, Bi-Directional Mapping subtab, XQuery subtab to write an expression that
defines an advanced mapping between two data elements. This field is displayed
when you select the target of a data element-to-data element mapping and select
the Advanced option in the Mapping Rule Item topic, if Supports Bi-Directional
Mapping is selected in the Details subtab of the Mapping tab for the selected
mapping.

• Context: The input document is empty.

• Prolog: You can declare the following variables within the prolog to determine the
action code.

– You can declare $value to access the updated target value.

• Body: The XQuery body returns the updated source value.

The following example shows an XQuery expression that returns () if the return value
is unknown and otherwise returns the updated value.

declare variable $value external;
if ('unknown' = $value) then() else (fn:substring($value, 5))

About Multi-Instance XQuery Expressions
This topic describes how to use the Mapping Rule editor, Mapping tab, Mapping
subtab, Multi-Instance Expression subtab, XQuery subtab to write an expression
that defines key mapping for a multi-instance structure. This field is displayed when
you select the target of a data element-to-data element mapping and select the
Advanced option in the Mapping Rule Item topic, if the target data element is a
member of a multi-instance structure.

• Context: The input document is a source order item.

• Prolog: You can declare the order item namespace in the XQuery prolog. For
example:

 declare namespace prop='http://oracle.communications.broadband';

• Body: The XQuery body returns a key value that identifies a source order item
instance.

The following example shows an XQuery expression that returns the concatenation of
two source order item properties for the key value.

Appendix B
Order Transformation Manager XQuery Expressions

B-43

fn:concat(prop:areaCode, '-', prop:localNumber)

About Order Item Parameter Binding XQuery Expressions
This topic describes how to use the Order Item Parameter Binding editor, Parameter
Bindings tab, Binding Expression area, XQuery subtab to write an expression that
defines the bindings for one or more parameters on a conceptual model entity from an
order item.

• Context: The input document is an input order item. Each order item element in
this node set is passed into the XQuery as the context.

• Prolog: You can declare the namespace for the incoming order and the
namespace for the conceptual model entity in the XQuery prolog. For example:

declare namespace im="http://xmlns.oracle.com/InputMessage";
declare namespace otm="CommonModelBroadbandCart/1.0.0.0.0";

• Body: The body of the XQuery will return a node set of elements that correspond
to the conceptual model entity data elements. Since you can have as many
separate bindings between the entities as you like, this can return anything from
one data element to all of them.

The following example shows an XQuery expression that returns an UploadSpeed and
a DownloadSpeed parameter from two name-value pairs where the names are Upload
Speed and Download Speed.

declare namespace fulfillord="http://xmlns.oracle.com/InputMessage";
declare namespace otm="OSMCom_3Play/1.0.0.0.0";

<otm:UploadSpeed>{fn:normalize-space(fulfillord:itemReference/
fulfillord:specificationGroup/fulfillord:specification[fulfillord:name='Upload
Speed']/fulfillord:value)}</otm:UploadSpeed>

<otm:DownloadSpeed>{fn:normalize-
space(fulfillord:itemReference/fulfillord:specificationGroup/
fulfillord:specification[fulfillord:name='DownloadSpeed']/fulfillord:value)}</
otm:DownloadSpeed>

About Transformed Order Item Fulfillment State XQuery Expressions
This topic describes how to use the Transformed Order Item Fulfillment State
Composition Rule Set editor, Composition Rules tab, Source Order Item subtab,
XQuery field to write an expression that defines the conceptual model entities that
should be present if the condition is to be evaluated. This field is only available when
you have a condition selected in the tree in the tab, and you have selected the
Advanced option on the subtab.

• Context: The input document is the order.

• Prolog: You can declare $orderItemIndex to access the index of the order item
being considered.

• Body: The body of the XQuery will return a Boolean value indicating whether the
current rule should be used to calculate the fulfillment state.

The following example shows an XQuery expression that returns true if a particular
order item property has a specific value.

Appendix B
Order Transformation Manager XQuery Expressions

B-44

declare variable $orderItemIndex external;

let $orderData := fn:root(.)/GetOrder.Response
let $orderItem := $orderData/_root/ControlData/OrderItem[@index=$orderItemIndex]
return
 if (fn:exists($orderItem) and fn:data($orderItem/AnyProperties) = 'ABC')
 then fn:true()
 else fn:false()

Appendix B
Order Transformation Manager XQuery Expressions

B-45

	Contents
	Preface
	Audience
	Documentation Accessibility

	Part I Modeling OSM Solutions Overview
	1 OSM Solution Modeling Overview
	About the OSM Solution Modeling Process
	About Determining the OSM Functionality to Implement
	Solution Modeling Considerations
	General Solution Data Modeling Principles
	Performance Considerations

	Planning OSM COM Solution Requirements
	Modeling COM Order and Order Recognition Requirements
	COM Data Modeling Considerations
	Modeling COM Orchestration Order Items and Binding Conceptual Model Parameters
	Modeling COM Orchestration Order Item Decomposition
	Modeling COM Orchestration Fulfillment Patterns and Fulfillment Modes
	Modeling COM Order Transformation Manager
	Modeling COM Orchestration Dependencies
	Modeling COM Processes and Tasks
	Modeling COM Fallout Scenarios
	Modeling COM Fulfillment States
	Modeling COM Processing States
	Modeling Change Order Management for COM
	Cartridge Management Considerations for COM

	Planning OSM SOM Solution Requirements
	Modeling SOM Order and Order Recognition Requirements
	SOM Data Modeling Considerations
	Modeling SOM Orchestration Order Items and Bindings Conceptual Model Parameters
	Modeling SOM Orchestration Order Item Decomposition
	Modeling SOM Orchestration Fulfillment Patterns and Fulfillment Modes
	Modeling SOM Orchestration Dependencies
	Modeling SOM Processes and Tasks
	Modeling SOM Fallout Scenarios
	Modeling SOM Fulfillment States
	Modeling SOM Processing States
	Modeling Change Order Management for SOM
	Cartridge Management Considerations for SOM

	Planning OSM TOM Solution Requirements
	Modeling TOM Order and Order Recognition Requirements
	TOM Data Modeling Considerations
	Modeling TOM Orchestration Order Items and Bindings Conceptual Model Parameters
	Modeling TOM Orchestration Order Item Decomposition
	Modeling TOM Orchestration Fulfillment Patterns and Fulfillment Modes
	Modeling TOM Orchestration Dependencies
	Modeling TOM Processes and Tasks
	Modeling TOM Fallout Scenarios
	Modeling TOM Fulfillment States
	Modeling TOM Processing States
	Modeling Change Order Management for TOM
	Cartridge Management Considerations for TOM

	About the OSM SDK

	Part II Implementing an OSM Solution
	2 Modeling Orders and Permissions
	Modeling OSM Orders
	About OSM Orders Without Orchestration
	About OSM Orders With Orchestration
	Modeling Roles and Setting Permissions

	About Order Types
	About Order Updates
	Using a Job Control Order to Manage Multiple Orders
	About Job Control Order Operations
	About Job Control Order Permissions
	About Job Control Order System Configuration Files

	Viewing Orders in OSM Web Clients
	Specifying Which Data to Display in the OSM Web Clients
	Modeling Query Tasks for OSM Clients

	3 Modeling Order Life-Cycle Policies
	Modeling Order Life-Cycle Policy States and Transitions
	About Modeling Transition Conditions
	About Modeling Transition Grace Periods
	About Modeling Transition Permissions
	OSM Order States and Transactions
	About Order State Categories
	Common Order State Transitions
	Optional, Mandatory, and Prohibited Transactions
	About the Aborted Order State
	About the Amending Order State
	About the Cancelled Order State
	About the Cancelling Order State
	About the Completed Order State
	About the Failed Order State
	About the In Progress Order State
	About the Not Started Order State
	About the Suspended Order State
	About the Waiting Order State
	About the Waiting for Revision Order State
	About Deleting Orders

	4 Modeling Order Recognition
	About Sending Orders to OSM and Order Recognition
	Modeling Order Recognition Rules
	Validating Incoming Order Data
	Transforming Order Data
	Modeling the Order Data Rule to Populate the Creation Task
	Modeling Order Priority
	Configuring JMS Message Priority on JMS Queue
	Creating a JMS Destination Key (Traditional OSM Only)
	Configuring Destination Key for a JMS resource (Traditional OSM Only)
	Creating and Configuring JMS Destination Key in OSM Cloud Native

	Modeling the Order Reference Number

	Modeling a Catch-All Recognition Rule
	Common Order Recognition Errors

	5 Modeling Orchestration Plans
	Orchestration Plan Overview
	Modeling an Orchestration Plan
	About Component Names and Component IDs

	About Order Items
	About Creating Order Items from Customer Order Line Item Node-Sets
	About Associated Order Items
	Modeling Order Item Hierarchies
	About Using a Distributed Order Template
	About Mapping Order Items to Fulfillment Patterns
	About Modeling Product Specifications

	Modeling Fulfillment Modes
	About the Decomposition of Order Items to Function Order Components
	About Assigning Order Items to Fulfillment Pattern Function Components
	About the Function Components Stage
	About Order Component Control Data
	About Fulfillment Pattern Conditions for Including Order Items
	Summary of Order Item to Function Components Decomposition

	About the Decomposition of Function to Target System Components
	About Decomposition Rules from Function Components to Target Systems
	About Decomposition Rule Conditions for Choosing a Target System
	About the Target Systems Stage
	Summary of Configuring Target System Components Decomposition

	About the Decomposition of Target System to Granularity Components
	About Decomposition Rules from Target System to Granularity Components
	About Customized Component IDs for Separating Bundled Components
	About the Granularity Components Stage
	Summary of Configuring Granularity Components Decomposition

	About Dependencies
	About Intra-Order Dependencies
	Modeling an Order Item Dependency
	About Order Item Dependency Wait Conditions
	About Order Item Dependency Wait Conditions Based on Data Changes
	Modeling a Fulfillment Pattern Dependency
	Modeling an Order Item Property Correlation Dependency
	About Inferred Dependencies
	About Modeling Orchestration Dependencies
	About Processing Order Items Sequentially

	About Inter-Order Dependencies
	About Modeling Orchestration Dependencies
	Using Task States to Manage Orchestration Dependencies

	6 Modeling the Order Transformation Manager
	Understanding the Order Transformation Manager
	Order Transformation Manager in Runtime
	The Order Transformation Manager and the Conceptual Model
	OSM Entities Used in the Order Transformation Manager
	Calling the Order Transformation Manager
	Using the Distributed Order Template with the Order Transformation Manager
	Modeling OTM With Calculate Service Order
	Calculate Service Order Design Patterns
	About the Calculate Service Order Provider Function
	About Calculate Service Order Relationship Types
	About the Calculate Service Order Transformation Sequence

	User-Created Entities for Calculate Service Order

	Modeling OTM Without Calculate Service Order

	7 Modeling Processes and Tasks
	Overview of Processes and Tasks
	Modeling Processes
	About Process Flows
	Adding Process Activities
	Configuring Subprocesses
	Understanding Parallel Process Flows
	About Amendments and Multi-Instance Subprocesses

	About Order Rules in Processes and Notifications
	Modeling Order Rules in Notifications
	Using the System Date in Delays

	Process and Task Design and Data Considerations for Compensation
	Order Perspectives and Data Elements in Compensation
	Effects of Process Loops on Compensation

	Modeling Tasks Entities Common to All Task Types
	Modeling Task States
	Modeling Task Permissions and Execution Modes
	About Normal and Fallout Execution Modes and Task States
	Modeling Task Status Transitions
	Specifying the Expected Task Duration
	Specifying the Task Priority
	About Extending Tasks

	About Task Types
	Modeling Automated Tasks
	About Automation Plug-in and Automated Tasks
	Completing an Automation Task That Handles Concurrent Status Updates

	Modeling Manual Tasks
	Deploying a Custom Task Algorithm using the OSM Cartridge Management Tool
	Using a Custom Task Algorithm in OSM Cloud Native

	Modeling Transformation Tasks
	Modeling Activation Tasks
	About Service Action Request Mapping
	About Service Action Response Mapping
	About Activation Tasks and Amendment Processing
	About State and Status Transition Mapping for Activation Tasks

	About Automation Plug-ins
	Specifying Which Data to Provide to Automation Plug-ins
	Modeling Query Tasks for Order Automation Plug-ins

	About Automation Message Correlation
	Example: Modeling a Basic Automator Plug-in for an Automated Task

	8 Modeling OSM Data
	Data Modeling Overview
	Modeling Order Data
	About the Data Dictionary
	About the Order Template
	Identifying Data Requirements for Order Payload
	Adding the Input Message to an Order Recognition Rule
	Adding the Input Message to the Order Template

	Modeling Valid Data Keys

	Modeling Data for Tasks
	Determine Task Data for Manual and Automated Tasks
	Determine Task Data for Data Returned from Fulfillment Applications
	Generating Multiple Task Instances from a Multi-Instance Field

	Modeling Data for Orchestration
	About Order Item Control Data
	About Order Template Data
	About Order Item Specification Data
	About ControlData for Order Component Data

	Modeling Data for Fulfillment States
	About ControlData for External Fulfillment States
	About ControlData for Order Fulfillment State
	About ControlData for Order Item Fulfillment State
	Fulfillment States and Point of No Return
	Fulfillment State and Point of No Return Initial Values
	Sample XQuery for Changing Default Data Locations

	Modeling Data for Processing States
	About ControlData for Order Component Order Item Processing States
	About ControlData for Order Item Processing States

	Modeling Orders With Data Fields Above 1000 Characters
	Using XML Types for Data Fields Above 1000 Characters
	Using Order Remarks for Data Fields Above 1000 Characters
	Using Attachments for Data Fields Above 1000 Characters

	Using Data Providers to Retrieve Data
	About Data Providers and Adapters
	Data Provider Interface Tab
	Accessing Data through Data Providers
	Augmenting or Overriding Data
	Objectel
	Order
	Adding a New Order Data Provider

	Property File
	SOAP
	XML Attachment
	XML File
	XML Validation
	JDBC
	Web Service
	Adding a New Web Service Data Provider
	Sample soap.request XQuery
	Accessing Data

	Custom Data Providers
	Handling Parameters

	9 Modeling Behaviors
	Modeling Behaviors Overview
	About Behavior Evaluation
	Evaluating Behavior Levels
	Evaluating Design Studio Final and Override Options
	Evaluating Behavior Type Precedence and Sequence
	Evaluation Process
	Evaluating Multiple Behaviors of Similar Type and Level

	About Setting Conditions in Behaviors
	Using the Calculation Behavior
	Calculation Behavior XPath Examples
	Calculation Behavior Overview

	Using the Constraint Behavior to Validate Data
	Displaying Constraint Behavior Error Messages
	Evaluating Constraint Behaviors
	Using Task Statuses to Control Process Transitions
	Task Statuses and Constraint Behavior Violation Severity Levels
	Constraint Behavior Overview

	Using the Data Instance Behavior to Retrieve and Store Data
	Evaluating Data Instance Behaviors
	Data Instance Behavior XML, XPath, and XQuery Examples
	Data Instance Behavior Overview

	Using the Event Behavior to Re-evaluate Data
	Event Behavior Overview

	Using the Information Behavior to Display Data and Online Help
	Information Behavior XPath Examples
	Information Behavior Overview

	Using the Lookup Behavior to Display Data Selection Lists
	Lookup Behavior XPath Example
	Lookup Behavior Overview

	Using the Read-Only Behavior
	Read-Only Behavior Overview

	Using the Relevant Behavior to Specify if Data Should Be Displayed in the Web Client
	Relevant Behavior Overview

	Using the Style Behavior to Specify How to Display Data in the Task Web Client
	About Style Behavior Layouts
	About Style Behavior Password Fields
	Style Behavior Overview

	Part III Modeling Run-time Order Management
	10 Modeling Changes to Orders
	About Amendment Processing and Compensation
	About Revising or Canceling Orders by Using the Task Web Client
	About Order Keys
	About Submitting Multiple Revisions of an Order
	About Compensation States
	About Revising In-flight Revision Orders
	About Insignificant Revision
	About Terminating Compensation
	Disabling Processing of Revisions on In-flight Revision Orders
	Example: Revising an In-flight Revision Order

	About Controlling When Amendment Processing Starts
	About Compensation
	About Order-Level and Task-Level Compensation Analysis
	About Order Data Position and Order Data Keys
	About Data Significance
	About Task Execution Modes
	Modeling Compensation for Tasks
	Determining Task Compensation Strategy
	About Compensating In Progress Tasks
	About Task Compensation Strategy XQuery Expressions
	About Managing Compensation in the Task Web Client

	Modeling Compensation for Rules in Processes
	Modeling Compensation for Task Automation Plug-Ins
	Compensation Examples
	Example 1: Compensation During Provisioning
	Example 2: Compensation During Billing
	Example 3: Amend Do Compensation
	Examples of Changes to Orchestration Plans

	Modeling a Point of No Return
	Fulfillment Pattern Point of No Return
	Life-Cycle Policy Point of No Return

	About Modeling Order Change Management
	Troubleshooting Order Change Management Modeling

	About Order Change Management at the Orchestration Layer
	About Compensation and Orchestration
	About Point of No Return

	11 Modeling Fallout
	Overview of Fallout
	Understanding Fallout Across OSM Roles
	Understanding Fallout Sources
	Managing Business Related Fallout Sources
	Managing Fallout from Failures in Network or System Resources
	Managing Fallout During Order Creation

	Managing Fallout in the OSM Web Clients
	Modeling Fallout in Tasks
	About Failed Tasks and Execution Modes
	About Alternate Task Fallout Management Methods
	Modeling Task Notifications for Fallout
	About Modeling Fallout Exceptions
	Managing Fallout Exceptions in the Task Web Client

	Modeling Fallout in Orders
	Modeling the Failed Order State
	Modeling Order Notifications for Fallout
	About Aborting or Terminating an Order
	Managing Fallout in the OSM Order Management Web Client

	12 Modeling Fulfillment States and Processing States
	About Fulfillment States, and Processing States
	Modeling Fulfillment States
	Defining Fulfillment States
	Modeling External Fulfillment States
	Modeling Fulfillment State Maps
	Modeling Fulfillment State Composition Rule Sets

	Modeling Processing States
	Order Component Order Item Processing States
	Order Item Processing States

	13 Modeling Jeopardy and Notifications
	Best Practices for Using Notifications for Status Updates
	Status Update Strategies
	Strategies for Using Notifications

	Modeling Notifications
	Using Task States and Statuses to Trigger Event Notifications
	About Notification Priority
	About Sending Notifications in Email
	About Configuring Entities to Support Notifications

	About Jeopardy Notifications
	About Modeling Jeopardy Notifications
	About Jeopardy Notification Triggering
	About Jeopardy Notification Conditions
	Specifying Jeopardy Notification Conditions in the Order Jeopardy Editor
	Specifying Jeopardy Notification Conditions in the Order Editor
	Specifying Jeopardy Notification Conditions for a Task

	About Event Notifications
	About Using Task Transitions to Trigger Event Notifications
	About Using Task States and Rules to Trigger Event Notifications
	About Using Task States to Trigger Automated Event Notifications
	About Using Order Milestones to Trigger Event Notifications
	About Using Order Data Changes to Trigger Notifications
	About Enabling Order Life-Cycle Events

	Summary of Notification Functionality

	14 Modeling Order Scheduling
	About Order Item Requested Delivery Date and Order Components
	How OSM Decomposes and Processes Order Items in Order Components
	About Grouping Order Items in Order Components by Date Range
	Modeling Order Component Minimum Processing Duration
	About Minimum Processing Duration Inheritance in Fulfillment Patterns
	About Minimum Processing Duration Expressions
	Calculating the Earliest Order Component Start Date (Order Start Date)
	About Calculated Order Component Start Dates
	Modeling Order Component Dependencies and Requested Delivery Dates
	Modeling Order Items Processed by Multiple Dependent Order Components
	Revisions of Future-Dated Orders
	Examples of Calculating the Expected Start Date
	Example 1: Calculating Start Dates for Order Components with No Dependencies
	Example 2: Calculating Start Dates for Order Components with Dependencies

	Part IV Managing OSM Projects
	15 Managing OSM Solution Cartridges
	Solution Management Overview
	About OSM Cartridge Scope
	Scope of OSM Entities Without Namespaces
	Design Studio Entities
	XML Catalogs and Resource Files

	Scope of OSM Entities with Namespaces
	Standalone Cartridge Scope
	XML Catalog Files in Standalone Cartridges
	Avoiding Namespace Collisions for Design Studio Entities
	Avoiding Namespace Collisions for Resource and XML Catalog Files

	Composite Cartridge Scope
	Special Cases for Scope
	Order Recognition Rules
	Fulfillment Patterns

	Managing Cartridge Versions
	Making Changes to Existing Cartridge Versions
	Handling Multiple Cartridge Versions
	Migrating Orders to a New Version of a Cartridge
	Designation of the Default Cartridge Among Cartridge Versions
	Handling Revision Orders When Multiple Cartridge Versions Are Deployed

	Working with Cartridges in OSM Cloud Native
	Building and Packaging a Cartridge
	About Generating OSM Cartridges and Deployment Options
	About Cartridge Types
	About Design Studio Editors for OSM Cartridges
	Organizing Design Studio and Naming Conventions
	Cartridge Packaging Design
	Modifying the Build
	About XML Catalogs
	Using XML Catalogs in OSM
	Resource Packaging Considerations for Using XML Catalogs
	Defining rewriteURI Entries in XML Catalogs
	Specifying XML Catalogs for OSM
	Enabling and Disabling XML Catalog Support

	Examples of Using XML Catalogs
	Using XML Catalogs to Support Cartridge Versioning
	Using XML Catalogs to Load Resources from a Development File System (Traditional OSM Only)
	Using XML Catalogs to Insulate Run-Time Environments from Development

	Cartridge Deployment
	Cleaning and Rebuilding Cartridges Prior to Deployment
	Optimizing Cartridge Deployment
	Deploying Multiple Cartridges
	Deploying Cartridges with Dependencies
	Deploying Cartridges to the OSM Database Using XMLIE
	Building and Deploying Composite Cartridges
	Setting Cartridge Dependencies
	Post-Deployment Effect on Numeric Data
	Post-Deployment Changes to Cartridge
	Metadata Errors

	A Behaviors Quick Reference
	OSM Behavior Type Overview
	Common Behavior Elements
	Annotation Element
	Description Element
	Instance Element
	Adapter Element [externalInstanceType]
	Parameter Element [externalInstanceType]
	Cache Element
	Expression Element

	Declaring Behaviors in OSM XML Model
	Data Dictionary Level
	Master Order Template Level
	View Level

	Data Provider Overview
	Programmatic Behavior Implementation Overview

	B XQuery Examples
	General XQuery Information
	About Creating XQuery Expressions with Design Studio
	OSM XQuery Functions
	Referencing Items from a Distributed Order Template in XQuery Expressions

	Order Recognition Rule XQuery Expressions
	About Recognition Rule XQuery Expressions
	About Validation Rule XQuery Expressions
	About Order Priority XQuery Expressions
	About Order Reference XQuery Expressions
	About Order Data Rule XQuery Expressions

	Decomposition XQuery Expressions
	About Orchestration Sequence XQuery Expressions
	About Order Sequence Order Item Selector XQuery Expressions
	About Order Sequence Fulfillment Mode XQuery Expressions

	About Order Item Specification XQuery Expressions
	About Order Item Specification Order Item Property XQuery Expressions
	About XQuery Expressions for Mapping Product Specifications and Fulfillment Patterns
	About Order Item Specification Order Item Hierarchy XQuery Expressions
	About Order Item Specification Condition XQuery Expressions

	About Fulfillment Pattern Order Component XQuery Expressions
	About Fulfillment Pattern Order Component Condition XQuery Expressions
	About Associating Order Items Using Property Correlations XQuery Expressions

	About Decomposition Rule Condition XQuery Expressions
	About Component Specification Custom Component ID XQuery Expressions
	Custom Order Component IDs Based on Hierarchy
	Custom Component IDs Based on Requested Delivery Date and Duration
	Custom Component IDs by Duration and Minimum Separation Duration
	Combining Order Item Hierarchy with Duration-Based Groupings

	About Component Specification Duration XQuery Expressions
	About Fulfillment Pattern Duration XQuery Expressions
	About Fulfillment Pattern Component Duration XQuery Expressions

	Dependency XQuery Expressions
	About Order Item Dependency Property Correlation XQuery Expressions
	About Wait Delay Duration XQuery Expressions
	About Wait Delay Date and Time XQuery Expressions
	About Order Data Change Wait Condition XQuery Expressions
	About Order Item Inter-Order Dependency XQuery Expressions

	Order Transformation Manager XQuery Expressions
	About Transformation Sequence XQuery Expressions
	About Order Item Context XQuery Expressions
	About Related Order Item Selector XQuery Expressions
	About Stage Condition XQuery Expressions

	About Mapping Rule XQuery Expressions
	About Mapping Condition XQuery Expressions
	About Action Mapping XQuery Expressions
	About Entity-to-Entity Advanced Mapping XQuery Expressions
	About Entity-to-Data-Element Advanced Mapping XQuery Expressions
	About Data-Element-to-Data-Element Advanced Mapping XQuery Expressions
	About Reverse Mapping XQuery Expressions
	About Multi-Instance XQuery Expressions

	About Order Item Parameter Binding XQuery Expressions
	About Transformed Order Item Fulfillment State XQuery Expressions

