
Oracle® Communications Order and
Service Management
Concepts

Release 8.0
G38002-01
October 2025

Oracle Communications Order and Service Management Concepts, Release 8.0

G38002-01

Copyright © 2009, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

1 Order and Service Management Overview

Overview of OSM 1

About Order Fulfillment Business Processes 4

About the OSM System Architecture 4

About Creating an Order Fulfillment Process 5

2 How OSM Processes Orders

About Order Processing 1

About Customer Orders, Service Orders, and Technical Orders 4

About COM, SOM, and TOM 8

3 How OSM Creates Orders

How OSM Receives and Creates Orders 1

About the Data in an Incoming Order 3

About the Data in an OSM Order 5

Data Used for Processing an Order 6

About the Order Lifecycle Policy 6

4 About Orchestration

How OSM Generates and Runs an Orchestration Plan 1

About Decomposition 3

About Dependencies 7

Dependencies and Order Revision 8

About Order Items and Order Components 9

Orchestration and COM, SOM, and TOM 11

About Order Item Transformation 12

About the Design Studio Conceptual Model 13

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of iii

5 About Tasks and Processes

About Tasks and Processes 1

About Manual Tasks 3

About Automated Tasks 3

About Task States 4

6 About Order Management Business Processes

About OSM and Order Management Business Processes 1

About Making Changes to In-flight Orders 1

About Submitting Multiple Revisions of an Order 2

About Point of No Return 3

About Follow-on Orders 3

About Determining Order Completion Dates 4

About Order Status 5

About Notifications 6

About Managing Fallout Exception 7

Fallout Exception Scenarios 8

Fallout Exception Lifecycle 9

About Managing Order and Task Fallout 13

Managing Changes in Your Business 14

7 About REST APIs and System Interaction (Cloud Native Only)

Overview of REST API Support via System Interaction 1

Terminology 1

System Interaction Specifications 2

Expectations 2

Target System 4

About Modeling Fulfilment Using System Interaction Specifications 5

8 About TMF Orders (Cloud Native Only)

Introduction 1

About Standards 1

Terminology 2

Overview of TMF in OSM 2

About TMF Specifications 3

About OSM Extensions 6

About the Specification Version 6

About the OSM Endpoints 7

About OSM Event Notifications 8

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ii of iii

About the OSM Schema 9

About Customer Extensions to TMF Specifications 11

About the Hosted Order Specification 11

About Hosting Expectations 11

About TMF Cartridges 12

About Event Target System 13

Order Processing Sequence Diagrams 14

TMF Product Order State Diagram 19

9 About Dynamic Cartridge Assembly (Cloud Native Only)

About the Design Journeys 1

About the Dynamic Design Journey 2

About the Capabilities Cartridge 3

Phase 1: Capabilities Cartridge Development in Design Studio 3

Phase 2: Business Modeling in Solution Designer 4

About Dynamic Cartridge Assembly 4

10

About Runtime Order Management

About Managing Orders 1

Assigning Tasks to OSM Users 1

About Workflow and Workstream Processes 2

About the Order Lifecycle Management UI 2

About Managing OSM Users 2

About Using Behaviors to Customize the Task Web Client 3

11

OSM Functional Overview

OSM Functional Diagram 1

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iii of iii

About This Content

This guide provides an overview of Oracle Communications Order and Service Management
(OSM).

Audience

This guide is intended for:

• Business domain experts who make decisions about the order fulfillment process.

• Order management personnel who need to know how OSM works and how orders are
processed.

• Developers who extend OSM to interface with external systems.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Order and Service Management Overview

This chapter provides an overview of Oracle Communications Order and Service Management
(OSM).

Overview of OSM
OSM is an order processing system that takes as input an order from a customer relationship
management (CRM) system, and manages the fulfillment functions that need to be carried out
to complete the order. Fulfillment functions include operations such as assigning a phone
number, activating a service on the network, shipping a phone, and running billing.

Communications service providers typically register customers and manage their services by
capturing orders in a CRM system or on a website. The order received from a customer
defines what the customer wants to purchase, such as a phone service. OSM initiates and
coordinates the order fulfillment functions required to complete the order. For example, if the
customer orders a phone service, OSM can:

• Send billing and customer management requests to a billing system.

• Query a service and resource management (SRM) application to find the network
resources required to activate a service and to determine the actions required on each
resource; for example, to find out if there is enough circuit capacity for the service and to
determine what actions must be performed on the network to allocate the circuit to the
customer.

• Send activation commands to Oracle Communications ASAP to activate the service on the
network.

• Send a shipping request to a shipping system; for example, to send a phone to the
customer.

Figure 1-1 shows how OSM receives orders from a CRM system and then works with multiple
external fulfillment systems to handle the order fulfillment requirements. A fulfillment system
is a system that carries out the actions necessary to complete the order; for example, activate
services on the network, or run billing. In this example, OSM coordinates with fulfillment
systems that run other Oracle Communications applications; Billing and Revenue Management
(BRM), Unified Inventory Management (UIM), and ASAP.

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 6

Figure 1-1 OSM and External Fulfillment Systems

While processing an order, OSM can interact with multiple external systems simultaneously, or
in a sequence of processes. For example, OSM can interact with a billing system at the same
time as working with UIM to assign the resources and determine the actions required to fulfill
the service on those resources. After determining the resources and actions in UIM, OSM can
send those resources and actions as activation commands to ASAP to activate the service on
the network. OSM maintains the status of all of the interactions with external systems, and can
return the status of each interaction to the order source system.

Because OSM can support order processing for any type of service or product, OSM does not
have a predefined order fulfillment process. Instead, you define the OSM order fulfillment
process for each type of order that you process. For example, some orders might require
shipping or installation actions, and some might not.

The high-level order fulfillment process is:

1. An order is placed in a CRM system or on a self-service portal such as a page. OSM is not
part of the order capture process.

CRM systems typically create and maintain their own order that tracks the status of the
customer's purchase. They use this order to communicate the order status to the
customer.

2. The CRM system sends the order to OSM.

3. OSM receives the sales order. OSM validates the order and transforms it into an OSM
order in the OSM order format. If you have defined multiple types of orders, for example,
for different services, OSM creates the type of order that is required to fulfill the customer's
order.

Chapter 1
Overview of OSM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 6

An order in OSM can include:

• The fulfillment functions that need to be completed, such as add or cancel a service

• The requested completion date

• Customer data that is relevant to the order process; for example, the customer's
address

• Information about the services being requested; for example, telephone number,
bandwidth, or DSLAM port

• Status information; for example, if the order is in progress or completed

4. OSM fulfills the order by running tasks. Some tasks are manual; for example, you might
want an order processor to manually validate that an equipment installation has been
completed. Most tasks are automated; for example, a task that sends an activation
command to the network.

5. As tasks are completed, OSM monitors the overall status of the order. You can use the
OSM Task web client and the OSM Order Management web client to track the order's
progress and manage any problems that occur.

6. When all of the tasks are complete, OSM informs the order source system that the order
has been fulfilled, and the services are available to the customer.

Figure 1-2 shows the order fulfillment process.

Figure 1-2 OSM Order Fulfillment Process

For a detailed description of the OSM order process, see "How OSM Processes Orders."

Chapter 1
Overview of OSM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 6

About Order Fulfillment Business Processes
OSM supports the following business processes:

• If an order is in progress and a customer needs to change it, you can resubmit the order to
OSM. OSM can roll back and change fulfillment tasks as needed. For example, an order
might be in progress that specifies a 5Mbps bandwidth. If the customer decides to change
the order to 13Mbps bandwidth, the same order with the new requirement is submitted.
The original order is called the base order, and the second order is called the revision
order.

• You can calculate the length of time that an order might take to process and provide
customers with an expected delivery date. In some cases, a customer might need a
service activated at a date in the future; for example, at the end of the next month. OSM
can calculate when to start the order to enable the service at the required date.

• You can configure various ways to report order status, including the status of the entire
order and the status of individual fulfillment tasks. You can use fulfillment states to
combine the various statuses received from multiple external systems into an aggregated
status.

• You can create processes to manage errors in order processing. An error in order
processing is called fallout.

• You can create workgroups to manage manual order processing tasks and order fallout.
You can use workgroups to assign tasks to specific types of order operators; for example,
order operators who interact with customers, or order operators who manage failed orders.

For more information, see "About Order Management Business Processes."

About the OSM System Architecture
The OSM system includes system server components, web-based GUI applications, utilities,
and interfaces for communicating with external systems. Figure 1-3 illustrates the OSM system
components.

Figure 1-3 OSM System Architecture

Chapter 1
About Order Fulfillment Business Processes

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 6

An OSM system includes the following client components:

• Use the Task web client to monitor and manage the tasks in an order. This application is
typically used by order processing personnel to ensure that all the tasks are completed. It
is also used by order fallout managers. You can also perform some order management
tasks, such as suspending, resuming, and canceling orders.

• Use the Order Management web client to display detailed information about the progress
of the order. Displaying the order process is useful for developers who are modeling orders
and need to see relationships between the specifications they create in Design Studio. You
can also perform some order management tasks, such as suspending and resuming
orders, canceling orders, and managing fallout. You can open the Order Management web
client from within the Task web client.

• Use Design Studio to model types of orders, tasks, and other OSM entities that run the
order fulfillment process. When you design your order fulfillment process, you also use
Design Studio to design entities for other Oracle products; for example, to configure
services for UIM, and to design activation processes for ASAP.

To implement the order fulfillment process that you design, you create cartridges in
Design Studio and deploy them on OSM server systems. You can deploy multiple
cartridges to manage different functional areas; for example, cartridges that deploy OSM
fallout management functions, and cartridges that deploy UIM functions.

OSM includes the following server components:

• The OSM server manages OSM runtime functionality, including inbound order operations
and outbound communications with external systems. The OSM server is deployed on
Oracle WebLogic Server.

You typically configure multiple instances of the OSM server. For example, you might
configure one OSM server instance to receive and process incoming sales orders, and one
or more OSM server instances to process orders that require interaction with provisioning
and activation systems.

To communicate with external systems, the OSM server uses mostly Java Message
Service (JMS) queues. JMS is part of the standard Java platform. In traditional OSM, a
JMS queue is a staging area that you configure when you install OSM. In OSM cloud
native, JMS queues are added to the project specification for an instance. Systems
communicate via JMS queues by publishing messages to them and receiving messages
from them.

• Oracle WebLogic Server hosts the OSM server. Oracle WebLogic Server, part of Oracle
Fusion Middleware, provides Java JEE services for the hosted components and includes
availability, scalability, manageability, clustering, and performance features.

• OSM uses Oracle Database to store orders being processed and orders that have been
processed. The OSM database also stores the OSM metadata that you create when
modeling the order fulfillment process. For example, the order specification that you define
in Design Studio is stored as metadata. OSM uses that metadata as a template to create
instances of orders at runtime. OSM metadata defines the order model and behavior of the
OSM Server, including order templates and tasks.

OSM uses Java Database Connectivity (JDBC) to carry out communication between
server components and the OSM database.

For information about administering an OSM system, see OSM System Administrator's Guide.

About Creating an Order Fulfillment Process
Using OSM includes two different types of activities:

Chapter 1
About Creating an Order Fulfillment Process

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 6

• Design-time activities. To implement OSM, you define the content of each type of order,
and the process that fulfills the order. To do so, you use Design Studio to model types of
orders, tasks, and other OSM entities that run the order fulfillment process. As the
products, offers, and bundles in your product catalog change, you use Design Studio to
make changes to the order fulfillment process. OSM includes sample Design Studio
cartridges to use as a starting point, but you must model your own order fulfillment
process.

• Runtime activities. To manage orders, you can use the Task web client to run manual
tasks, and you use the Task web client and the Order Management web client to track the
progress of the orders and manage any problems that occur. For example, if an external
system reports an error, you can use the Order Management web client to troubleshoot the
order. For more information, see "About Runtime Order Management."

OSM fulfills orders to support your specific product offerings. For example, if you sell a DSL
service, you model your order process to include the data necessary to activate the DSL
service on the network, and to carry out provisioning and activation tasks. If you sell a fixed line
telephone service, your order process needs to carry out a different set of fulfillment functions.

To design and implement your order fulfillment process, you do the following:

1. Define your business requirements; for example, the products, bundles, and offers you
sell.

2. Plan how to implement the fulfillment requirements for those products and services. For
example:

• Which systems (activation, inventory, billing) does OSM need to communicate with?

• What data is needed to activate a service?

• Which tasks need to be performed manually, and which can be performed
automatically?

• How are changes to an order handled?

3. Model the orders and the fulfillment processes in Design Studio and test the order
execution.

4. Implement the order fulfillment process in your production system.

5. As your business changes, create new types of orders and implement changes to how
orders are fulfilled. For more information, see "Managing Changes in Your Business."

For more information about designing and modeling OSM, see OSM Modeling Guide and
Design Studio Concepts.

Chapter 1
About Creating an Order Fulfillment Process

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 6

2
How OSM Processes Orders

This chapter provides an overview of how Oracle Communications Order and Service
Management (OSM) processes orders. Before reading this chapter, read "Order and Service
Management Overview ."

About Order Processing
To fulfill an order, OSM initiates actions in external fulfillment systems. For example, if an order
needs to implement a service, OSM initiates network activation on an activation system. The
fulfillment functions required to fulfill an order are carried out by running tasks. A task is an
OSM function that initiates work that needs to be done to complete an order.

For example, if an order needs to implement an email service, you could model a task such as
Create Email Account. This task would send a message to the network to activate the service,
and to receive a notification back from the activation system.

Tasks are run by running a process. A process is one or more tasks, run in sequence. You
create tasks and processes when you model the order fulfillment process.

To interact with multiple external systems, you can create multiple processes. Some processes
need to be completed before other processes, whereas other processes can be run
independently. To manage multiple and related processes, you use orchestration.
Orchestration identifies dependencies between processes and runs them in the required
sequence.

OSM uses three basic steps to process an order:

1. Create the order. OSM receives the sales order and creates an order in OSM.

2. Generate the orchestration plan. The orchestration plan manages how the processes
that fulfill the order run.

3. Run processes and tasks. The tasks interact with external systems to complete the
order. The processes control how the tasks run.

The following procedure describes how OSM processes an order:

1. OSM receives the order from the CRM system. The order specifies the data and fulfillment
actions required to fulfill the order. For example, the order might specify that the customer
needs a telephone and a telephone number. These requirements are specified in order
line items in the sales order; for example:

• Add mobile service

• Add handset

2. After OSM receives the order, it creates an order in the OSM format. Because you can
have multiple types of orders, OSM uses recognition rules to determine what type of
order to create; for example, for a specific type of service or product offering. You can also
use recognition rules to receive orders from order source systems that use different order
formats. In that case, you can create multiple order recognition rules that point to the same
target order. The order recognition rules would transform the incoming order data into the
target order data format.

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 11

See "How OSM Creates Orders" for more information.

3. The order includes a default orchestration process. The orchestration process starts
generating an orchestration plan. Each order has a unique orchestration plan.

Note

Some orders can be run without orchestration when the order management
requirements are simple and relatively static, but most orders require
orchestration.

4. An orchestration plan specifies how to fulfill an order; for example, the order in which
fulfillment actions should be carried out, and which external systems need to be involved.
To determine what the fulfillment requirements are, OSM transforms the order line items in
the order into order items. Order items are individual products, services, and offers that
need to be fulfilled as part of an order; for example:

• Gold Access Internet Bundle: A set of products and features

• BroadBand Internet Access: A service that defines how the customer will access the
Internet; for example, DSL or cable.

• ADSL Service: The network resources provisioned to deliver the service.

Order items have properties, including the action that needs to be taken on the order item;
such as Add or Delete. For example, order items displayed in the Order Management web
client look like this:

• BroadBand Internet Access [Add]

• Gold Access Internet Bundle [Add]

• ADSL Service [Add]

The orchestration plan considers each order item and defines:

• Which functions need to be performed on each order item. For example, provision a
service, bill a bundle, activate a DSL resource, and so on.

• Which external system needs to fulfill the order item. For example, a product or bundle
order item needs to be fulfilled by the billing system.

• Dependencies between order items. For example, an activation order item cannot be
started until a shipping order item is completed.

To manage different functions, systems, and dependencies, order items are organized into
order components. Order components organize order items to enable OSM to process
them efficiently.

For example, to manage billing for a BroadBand Bandwidth Bundle, the BroadBand
Bandwidth Bundle order item would be included in order components for:

• The billing function

• The billing system that handles the BroadBand Bandwidth Bundle

• The billing system interaction required for a bundle

Similarly order items that represent resources, such as DSL are included in order
components for the activation function, a specific activation system, and an activation
interaction.

This process of organizing order items into order components is called decomposition.
The final step in decomposition is to create a set of executable order components that

Chapter 2
About Order Processing

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 11

OSM can run. The executable order components include the order items that have been
decomposed into them. Every executable order component runs a process, which in turn
can run subprocesses and tasks. See "About Orchestration" for more information.

5. OSM implements the orchestration plan by running the executable order components,
which run processes, which in turn runs tasks.

Tasks can be automated or manual. Automated tasks run with no intervention, but manual
tasks must be run by an order manager by using the Task web client. The Task web client
displays a list of tasks that need to be processed. Figure 2-1 shows a list of tasks in the
Task web client. In this figure, tasks are displayed for three different orders, as shown by
the order IDs (385, 386, and 388).

Figure 2-1 Tasks Displayed in the Task Web Client

6. As the order is processed, it is assigned order states. Figure 2-1 shows entries for two
orders in the In Progress state, and one order in the Not Started state. You use order
states to track the progress of the order. Every order has a set of possible states, called a
lifecycle policy.

Tasks are also assigned states. When all tasks in an order reach the Completed state, the
order is assigned the Completed state. See "About Tasks and Processes" for more
information.

7. As the order progresses, OSM communicates with the originating CRM or order-source
system to provide information about the status of the order. You can track the status of
tasks, order items, order components, and the order itself. OSM can use fulfillment states
to aggregate notifications of task completion events to present a real-time, unified view of
the order completion process to the originating system and to the OSM web clients.

You can also use predefined order item processing states to aggregate notifications of
task events to issue warnings and identify failures.

8. When all order items for the order are complete, OSM closes the order and informs the
originating system that all of the fulfillment tasks are complete.

Figure 2-2 shows a high-level view of the order fulfillment process when using orchestration.

Chapter 2
About Order Processing

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 11

Figure 2-2 Order Fulfillment Process by Using Orchestration

About Customer Orders, Service Orders, and Technical Orders
To process an order, OSM typically performs these general types of functions:

• Receive an order from a CRM, and initiate fulfillment actions on external systems.

• Interact with a billing system to handle charging and billing actions on the products,
bundles, and offers.

• Interact with a service and resource management system to design the services that need
to be implemented, and assign the resources needed.

• Interact with activation, shipping, and work order management systems to implement the
services on the network and install equipment at the customer site.

To manage these general functions, you can create an order process that uses three orders.
For example:

1. An instance of OSM creates an order, called a customer order. The customer order
interacts directly with the CRM system and runs tasks that interact with external systems
such as a billing system. To provision services, OSM sends an order to another instance of
OSM.

2. The second instance of OSM creates an order to communicate with a service and resource
management system. This order is called a service order. The service order finds the

Chapter 2
About Customer Orders, Service Orders, and Technical Orders

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 11

resources needed for the service, and sends an order to another instance of OSM to
process activation and shipping tasks.

3. The third instance of OSM creates an order to design the service, assigns the resources,
and determine the actions required to fulfill the service using those resources. This order is
called a technical order.

4. When the technical order is complete, the service order can be completed, and, in turn, the
original customer order can be completed.

To manage this type of scenario, these three types of orders are processed by OSM running in
three different roles:

• Central order management (COM) runs customer orders.

• Service order management (SOM) runs service orders.

• Technical order management (TOM) runs technical orders.

Figure 2-3 shows how COM, SOM, and TOM work together:

Figure 2-3 Correlation Between COM, SOM, and TOM

A sample order fulfillment process that uses COM, SOM, and TOM runs as follows:

1. OSM in the COM role receives an order from the CRM system and creates a customer
order. As described in "About Order Processing," OSM generates an orchestration plan.

2. When the orchestration plan is run, OSM decomposes order items into:

• An order component that interacts with a billing system to run billing

• An order component that sends a service order to an instance of OSM in the SOM role
to provision the service

3. OSM in the SOM role processes the service order. In this case, OSM uses orchestration
again, and OSM decomposes order items into:

• An order component that interacts with a service and resource management (SRM)
system to design the service and assign resources. For example, the service might
need a local loop, telephone number, and so on. An SRM system is also known as an
inventory system.

• An order component that sends a technical order to OSM in the TOM role to manage
service activation and shipping.

Chapter 2
About Customer Orders, Service Orders, and Technical Orders

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 11

In the SOM role, orchestration is used to ensure that the service design occurs first. The
inventory system needs to send data about the network resources and the actions required
on those resources back to OSM, so OSM can include that data when processing
activation, shipping, and interactions with a partner gateway.

4. OSM in the TOM role processes the technical order and decomposes order items into:

• An order component that sends activation requests to the network.

• An order component that sends requests to a shipping system.

• An order component that sends requests to a partner gateway to create a local loop.

5. When the activation and shipping tasks are complete, OSM in the TOM role sets the status
of the technical order to Completed and informs OSM in the SOM role that the activation
order is complete. This is done by using order item processing states, order lifecycle policy
states, and, potentially, fulfillment states.

6. OSM in the SOM role sets the status of the service order to Completed and sends a
message to the originating OSM instance in the COM role.

7. While the service order and technical order were running, the customer order processes
the billing and shipping functions. Upon being informed that the provisioning and activation
orders have been completed, OSM completes the original order.

Figure 2-4 shows how an order is fulfilled by using three orders, sent to three OSM instances
in the COM, SOM, and TOM roles.

Chapter 2
About Customer Orders, Service Orders, and Technical Orders

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 11

Figure 2-4 Order Fulfillment Using COM, SOM, and TOM

Chapter 2
About Customer Orders, Service Orders, and Technical Orders

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 11

About COM, SOM, and TOM
As described in "About Customer Orders, Service Orders, and Technical Orders," OSM can run
in three roles, COM, SOM, and TOM, to process customer orders, service orders, and
technical orders.

OSM in the COM role typically interacts with a billing system to perform such tasks as
synchronizing customer accounts between the order source system and the billing system, and
initiating billing activities in billing systems. OSM in the COM role also typically identifies the
services that are associated with the products, bundles, and offers, and sends that data to
OSM in the SOM role in a service order.

Note

OSM in the COM role can also interact with workforce management (WFM) and
supply chain management (SCM) systems to ship products to customers. However,
shipping tasks may require knowledge of the services and resources being activated
and shipped; for example, the service design process might determine which type of
modem to ship. Therefore such shipping tasks should typically be delegated to OSM
instances running in the SOM or TOM role.

OSM in the SOM role works with service and resource management (SRM) systems to design
services, assign the resources required to fulfill the services, and define how those resources
need to be configured to fulfill the services. This process is called design and assign.

To design and assign services, OSM in the SOM role uses the data received in the service
order. OSM in the SOM role sends that data to an SRM system to design the service and
assign resources. As part of the service fulfillment design in Design Studio, you model
predefined service configurations in your SRM system, such as UIM.

The design and assign process works as follows:

1. OSM sends the SRM system a request to design a service and assign resources. The
request specifies the type of service, for example, broadband Internet, the requested
service attributes, such as upload and download speed, and relevant data, such as the
location of the customer.

2. Given the customer requirements, the SRM system determines which predefined service
configuration is appropriate, and based on that, finds the network resources that are
available. For example, if Broadband Internet Service maps to DSL service, the SRM
system knows that the DSL service design requires a port and a local loop. The SRM
system finds an available local loop at the customer's location and assigns it to the
customer's service.

3. The SRM system returns the resources, resource-facing services, and their associated
actions to OSM. The SRM system also changes the status of the resources in the
inventory.

By using the design and assign process in a service order, the incoming sales order does not
need to include any information about the existing installed network resources, such as local
loops, ports, and so on. The incoming order needs to describe only the type of service, the
desired attributes such as bandwidth, and any information that affects the choice of resources,
such as the customer's location.

Chapter 2
About COM, SOM, and TOM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 11

The design and assign process completes the transformation from a customer-facing service
(CFS) to a resource-facing service (RFS). A CFS is a representation of the service that the
customer purchased. An RFS is how the service is implemented on the network.

For example, a customer might purchase a product offering named Gold Broadband Service.
The CFS is Broadband Internet Service. How that service is implemented on the network is the
RFS, in this case DSL Service. Therefore, the CFS Broadband Internet Service is resolved to
RFS DSL Service. However, the customer's requirements might be such that DSL is not
possible, but a cable broadband access is possible. In that case, the CFS Broadband Internet
Service is resolved to the RFS Cable Internet Service.

Because the resource-facing services are pre-configured in the SRM, the SRM can design the
resource-facing service and assign resources based only on the requirements of the customer-
facing service.

After receiving the required data from the SRM system, the OSM SOM instance sends a
technical order to OSM in the TOM role. In the TOM role, OSM processes the technical order
and orchestrates the activation, shipping, and installation tasks. The systems typically involved
in these activities are WFM, SCM, and activation systems. Partner gateway (PGW) systems for
third party service providers or trading partners can also be involved at the TOM level.

After completing the tasks in the technical order, OSM in the TOM role communicates the order
status to OSM in the SOM role, which in turn communicates its order status to OSM in the
COM role. OSM in the COM role can then complete the original customer order.

Note

OSM can also send the status of individual order items to the order source system
while the order is being processed.

By using COM, SOM, and TOM, OSM is able to take as input the products, bundles, and offers
that the customer purchases, and resolve those into customer-facing services and, ultimately,
the resource-facing services that need to be implemented on the network.

Figure 2-5 shows a fulfillment topology that uses COM, SOM, and TOM. A fulfillment
topology consists of all of the fulfillment systems required to fulfill orders, and the relationships
between the fulfillment systems.

Chapter 2
About COM, SOM, and TOM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 11

Figure 2-5 Fulfillment Topology Using COM, SOM, and TOM

A typical OSM fulfillment topology includes business support systems (BSS) fulfillment systems
and operations support systems (OSS) fulfillment systems. Figure 2-6 shows how OSM in the
COM, SOM, and TOM roles function with BSS and OSS systems.

Chapter 2
About COM, SOM, and TOM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 11

Figure 2-6 Roles of SOM, COM, and TOM in BSS and OSS Fulfillment Systems

Chapter 2
About COM, SOM, and TOM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 11

3
How OSM Creates Orders

This chapter provides an overview of how Oracle Communications Order and Service
Management (OSM) receives and creates orders. Before reading this chapter, read "Order and
Service Management Overview " and "How OSM Processes Orders."

How OSM Receives and Creates Orders
To enable order processing, you need to configure your order-source systems to send orders
to OSM. For example, if you use Siebel as a customer relationship management (CRM)
system, you configure Siebel to send a sales order to OSM. A single OSM instance can
receive orders from multiple order-source systems.

OSM receives and creates orders as follows:

1. The order is captured in a CRM system; for example, as a Siebel sales order.

2. The CRM system sends the sales order to OSM by using the OSM CreateOrder web
service operation. The OSM Web Service API is the primary API for external clients that
you can use to communicate with OSM (see OSM Developer's Guide for more
information).

3. OSM receives the incoming sales order as an XML message in a Java Message Service
(JMS) queue managed by Oracle WebLogic Server. Incoming orders are processed
directly by the OSM server from the queue.

4. Because a single instance of OSM can process multiple types of orders, OSM needs to
determine which type of order to create. For example, if you have created different order
specifications for different services, OSM needs to find out which service needs to be
fulfilled to know which order specification to use when creating the order.

To identify the order specification, OSM uses recognition rules. Recognition rules read
the data in the incoming order; for example, the type of service, the fulfillment mode (the
action to carry out, such as add a service or cancel a service), or the type of customer can
all be used to identify the correct order specification. See "About the Data in an OSM
Order."

In most cases, you use one generic order type to create all orders. You can use
orchestration to define the order fulfillment process for different service domains and other
processing requirements. Oracle recommends having one standard order type that
accepts all incoming orders with other order types for only very specific uses, such as a
fallout management order type that can extract information about a failed order.

You typically model a different order specification when the structure or order data is
different from any existing order type, or when there are specific and different fulfillment
requirements.

5. After the order specification has been identified, OSM uses validation rules to perform
order validation. For example, you can use validations rules to:

• Ensure that all mandatory fields are populated.

• Ensure that valid characters (numeric or alphanumeric) are used as needed.

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 7

6. Following order validation, OSM uses transformation rules to perform order transformation.
Order transformation does the following:

• Normalizes data; for example, ensure that telephone number formats are correct. If
there are multiple different CRM systems sending orders with different data structures,
you can transform each order into the target order format.

• Adds data needed for order processing. This data is part of the creation task. The
creation task is used by OSM in the order process; for example, when an order is
canceled, the order is returned to the creation task. The creation task is required in all
orders.

• Sets the order priority. The order priority defines the processing priority of the order in
relation to other orders in the system.

• Sets the order reference number. The order reference number is used as an
identifier to external systems; for example, between the COM order that generated a
child SOM order, or between two sibling SOM orders within an OSM SOM instance.

7. OSM creates the order and runs the default orchestration process to generate the
orchestration plan. Every order includes a default process that is run when the order is
created.

Note

If an order does not require orchestration, it can run a process directly, not an
orchestration process. Most orders require orchestration.

8. OSM runs the orchestration plan to process the order. See "About Orchestration."

Figure 3-1 shows how OSM receives and creates orders. To identify the order specification,
you create multiple recognition rules. Each rule is assigned a relevancy. OSM uses the highest
relevancy first, until an order specification is found. You can create a catch-all recognition rule
(relevancy = 0) to allow OSM to accept any order, even if it cannot process it. This allows you
to troubleshoot how orders are received.

Figure 3-1 Receiving and Creating an Order

Chapter 3
How OSM Receives and Creates Orders

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 7

About the Data in an Incoming Order
Incoming sales orders typically include the following data:

• The order header information, which contains information that is applicable to the entire
order; for example, the sales order number, the order action (Add, Cancel, Delete, and so
forth), and customer account information.

• The order line items, which contain information about the products and services on the
order.

Figure 3-2 shows part of a sales order, received from a CRM system.

Figure 3-2 Example of a Sales Order

Orders that are submitted to OSM typically have a specific purpose that is defined as an order
action. This information is usually included in the order header to indicate if the order adds or
cancels products and services for a customer. For example, the following line from an incoming
sales order specifies that the order adds services:

<im:typeOrder>Add</im:typeOrder>

The order action is used in an orchestration plan as the fulfillment mode. Fulfillment modes
enable OSM to generate an orchestration plan based on whether a service needs to be added,
changed, canceled, or qualified, such as validating that the network has enough capacity to
offer the purchased products.

Whereas the order header typically contains data that pertains to the entire order, the order line
items describe the individual fulfillment actions that need to be carried out. Figure 3-3 shows

Chapter 3
About the Data in an Incoming Order

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 7

one of the order line items in its expanded form. Included in this order line item are the
requested delivery date and the action to take (Add).

Figure 3-3 Example Order Line Item in a Sales Order

Order line items include details about the services that the order must fulfill. They can include:

• The offers, bundles, and products being ordered by the customer, the services these
products ultimately resolve to, and the resources that deliver them.

• Information about the services; for example, speed, storage size, and requested service
date

Each order line item in an incoming sales order that OSM receives specifies an action to
perform. Order line item actions are typically one of the following:

• Add a product, service, or resource.

• Change an existing product, service, or resource

• Delete a product, service, or resource

• Update attributes of a product, service, or resource

• Cancel an existing product, service, or resource

• Move a product, service, or resource

• Suspend or resume a product, service, or resource

An order can contain a mix of actions for different products or services. For example, an
existing customer might request to add some new products, change some existing products,
and remove other products. These can all be included on the same order.

Incoming order item lines also include data that is used later in the service fulfillment process,
but not needed by the initial customer order that OSM creates. For example, a customer's
street address might not be needed until a technical order is processed to assign a local loop.

Chapter 3
About the Data in an Incoming Order

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 7

About the Data in an OSM Order
When a sales order is captured in an order-source system, it includes data such as the
customer's name and contact information, customer billing information, the products that the
customer is ordering, and the requested date of delivery. A subset of that information is
included in the sales order that is sent to OSM; for example, the customer information and the
order line items that specify the offers, bundles, and products, and the actions that must be
performed on them.

When you model the data in an order specification, you specify the mandatory and optional
data that OSM uses to fulfill the service. For example, in an order for a telephone service, the
order must include a telephone number. The data an order can contain is called order data,
and is defined in the order template. You can define data in data dictionaries and then import
these elements into order templates. Modeling data in data dictionaries enables you to reuse
the same data definitions across a solution.

The metadata that you model in the order template defines the data that the order can include
at runtime. For example, a runtime order can include the following data:

• Information about the order. For example:

– The type of order, such as a request for a new service or a change to an existing
service.

– Order creation date.

– Expected completion date.

• Information about the customer; for example, name and address.

• Information about the services being requested; for example, upload speed, download
speed, and quality of service.

• The order components, order items, processes, tasks, and dependencies that are required
to fulfill the order.

• Status information. For example:

– If the order is still in flight, or if it has completed.

– State of the tasks that need to be performed.

• Tracking information; for example, remarks, notifications, and order history.

The data in customer orders, service orders, and technical orders is typically different for each
type of order:

• Customer orders include information about the customer, such as their location, the
product offerings that the customer purchased, and the product requirements, such as
download speed.

• Service orders include information about the customer-facing services that need to be
provisioned, including the technical requirements such as bandwidth and quality of service,
and the customer's location.

• Technical orders include information about the resources and resource-facing services that
need to be activated, and the equipment that needs to the shipped or installed. Resources
and resource facing services are identified by the SRM system from customer-facing
services that OSM SOM sends to the SRM system.

Chapter 3
About the Data in an OSM Order

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 7

Data Used for Processing an Order
In addition to data such as the customer's address and phone number, an OSM order includes
information that defines how the order is run. This includes:

• Control data. Control data provides information about order items, order components, and
dependencies required to generate the orchestration plan. This includes status and
requested delivery dates for its order items and components. You can also track order and
order item fulfillment states and order item processing states in control data.

• Behaviors. You can use behaviors to manipulate data and to control how data is displayed
in the Task web client. For example, you can specify the minimum and maximum times that
a data element can be used in an order. See "About Using Behaviors to Customize the
Task Web Client."

• Notifications. You can use notifications to alert users and external systems to events that
occur in the order as it processes or to tell users that an action must be carried out. See
"About Notifications."

• Lifecycle policy. The lifecycle policy defines the states that an order can have; for
example, In Progress and Suspended, and the rules governing transitions between states.
See "About the Order Lifecycle Policy."

About the Order Lifecycle Policy
Every order specification you create must be associated with an order lifecycle policy. The
lifecycle policy defines the states that an order can be in, (such as In Progress or Canceled),
the rules governing the transitions between those states, and who is authorized to initiate those
transitions. For example, you can specify that an order can be transitioned to the Suspended
state only when it is in the In Progress state, and only by OSM users of a designated role.

OSM allows any number of order lifecycle policies to be configured. You can create a custom
policy for each order type or one general policy that is applied to many order types. The default
order life cycle contains the minimum set of order state and transaction combinations assigned
to all roles defined in the system.

Customizing an order lifecycle policy enables you to control the following:

• You can specify conditions that need to be met before an order can transition from one
state to another. A common example is specifying the point of no return for revision
orders, which controls the transition from the In Progress state to the Submit Amendment
and Process Amendment states, effectively causing OSM to reject any further revision
orders for the base order.

• You can specify a grace period that allows the order to complete processing tasks before
performing a transition to another order state.

• You can specify the roles that are allowed to perform a transaction. Transactions typically
transition an OSM order from one order lifecycle state to another. For example, the
suspend order transaction causes an OSM order to transition from the In Progress state to
the Suspended state.

• You can specify the error message and severity to use when a transition condition is not
met.

In addition, you can configure an order to publish common events at specified order lifecycle
milestones, such as when an order is first created in OSM, when the order state has changed,

Chapter 3
Data Used for Processing an Order

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 7

or when the order begins amending. These events can be used to trigger notifications. See
"About Notifications."

Chapter 3
About the Order Lifecycle Policy

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 7

4
About Orchestration

This chapter provides an overview of how Oracle Communications Order and Service
Management (OSM) uses orchestration to manage the order fulfillment process. Before
reading this chapter, read "Order and Service Management Overview " and "How OSM
Processes Orders."

How OSM Generates and Runs an Orchestration Plan
A single order can fulfill multiple products and services. To process an order, OSM needs to
run processes and tasks for a variety of functional areas while interacting with multiple
systems. To manage all of the orchestration entities and processes, OSM generates an
orchestration plan. The orchestration plan decomposes order items into order components,
and establishes dependencies between order components and between order items.

Each order has a unique orchestration plan, based on the customer's requirements and the
tasks required to complete the order. OSM implements the orchestration plan by running the
order's default orchestration process. The orchestration process begins the process of
selecting the order components to run. As order components run their processes and tasks,
the orchestration plan manages their dependencies.

Figure 4-1 shows a high-level view of the process flow for generating and running an
orchestration plan:

Figure 4-1 Generating and Running an Orchestration Plan

The following process flow describes how OSM typically processes an order.

1. OSM receives the order from the CRM system and uses recognition rules to find the order
specification to use when creating the order. Each order specification that you create
identifies a default process to run.

2. OSM starts generating an orchestration plan by running the order's default orchestration
process.

The orchestration plan specifies an orchestration sequence. The orchestration sequence
specifies the orchestration stages that need to be followed. The stages define the order
components that order items need to be organized into; for example, function order
components, target system order components, and granularity order components.

3. OSM converts order line items in the incoming order into OSM order items and their order
item properties. For example, the order line item shown below becomes the Firewall order
item with the Add order line action property.

<im:serviceActionCode>Add</im:serviceActionCode>
<im:name>Firewall</im:name>

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 14

This order items displays as Firewall [Add] in the Order Management web client.

4. In addition to creating the order items required for the order, OSM uses the incoming order
data to determine:

• The fulfillment mode (Deliver, Cancel, and so on). Fulfillment modes enable you to
design different order fulfillment flows depending on whether the order adds a service,
qualifies a service, or deletes a service.

• The product, customer-facing service, resource-facing service, or resource
specification. A product specification is a group of related products that share
common attributes, such as the same service domain. For example, the products
Broadband Light, Broadband Medium, and Broadband Ultimate would all belong to the
ServiceBroadBand product specification. When processing an order, you can process
order items that belong to the ServiceBroadBand product specification differently from
order items that belong to the ServiceMobile product specification.

• The product, customer-facing service, resource-facing service, or resource
specification order item action. You might have an order with a fulfillment mode of
Add that designates products that the customer wants to perform actions on such as
add, alter, or move.

5. Based on the fulfillment mode and the order item's product, customer-facing service,
resource-facing service, or resource specification, OSM assigns each order item to a
fulfillment pattern.

In general, order items for a given product specification and a given fulfillment mode need
similar fulfillment actions. You create fulfillment patterns that organize order items by the
combination of fulfillment mode and product, customer-facing service, resource-facing
service, or resource specification. For example, you can define a fulfillment pattern that
includes order items for orders that deliver a broadband service. In this case, the fulfillment
mode is Deliver, and the product specification is ServiceBroadBand.

6. The fulfillment pattern initiates the first level of decomposition, by decomposing order items
into the function order components identified in the fulfillment pattern. For example,
order items are organized into Billing, Shipping, and Provisioning order components.

7. After decomposing order items into function order components, OSM decomposes the
order items in each function component into target system order components. For
example, the order items that were decomposed into billing function order components
might be further decomposed into order components for a wholesale billing system and a
retail billing system.

8. After decomposing order items into target system order components, OSM decomposes
the order items in each target system order component into granularity order
components. This is typically the final stage of decomposition, although additional stages
can be defined.

Granularity order components are usually needed when a single fulfillment system must
process commands in a specific way. For example, you might need to fulfill billing
requirements for mobile and fixed services. You can use different order components to
process the billing requirements for those services separately.

See "About Decomposition" for more information.

9. After order items have been decomposed as much as required, OSM runs executable
order components. Executable order components run processes that in turn run the
tasks to complete the order. The tasks that the executable order component runs are the
tasks that complete the order items that the order component contains. For example, an
order component that includes activation order items runs a process that runs activation
tasks. An order component that includes the following order items can run a single
provisioning process (and its subprocesses) to complete all of the order items:

Chapter 4
How OSM Generates and Runs an Orchestration Plan

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 14

• Fixed Line Service [Add]

• Fixed Call Waiting [Add]

• Fixed Caller ID [Add]

OSM uses the dependencies defined in the orchestration plan to process order
components in the correct order. A dependency requires a waiting order item and a
blocking order item. The blocking order item is the order item that must be completed
before the waiting order item is started. See "About Dependencies."

10. As the order progresses, OSM can communicate with the originating order-source system
to provide information about the status of the order. In addition, OSM tracks the status of
each order item and order component. You can configure how the order status is reported
by modeling fulfillment states and processing states. See "About Order Status" for more
information.

11. When the last task in the order completes, the order transitions to the Completed state.

About Decomposition
To process order items that are fulfilled for different functions, and by different target fulfillment
systems, OSM organizes order items into order components, a process known as
decomposition.

Decomposition occurs in stages. Order items are organized into types of order components
from general to specific:

• Function order components organize order items by functions; such as billing,
provisioning, and activation.

• Target system order components organize order items by fulfillment systems; for
example, an activation system for DSL and an activation system for VoIP.

• Granularity order components separate order components that are fulfilled on the same
fulfillment system.

The following examples show how decomposition works.

Before decomposing order items into order components, OSM creates order items from order
line items in the incoming order. Figure 4-2 shows how order line items for two fixed services
and handsets are derived from the order. In addition to separate order items for adding
services and shipping handsets, there are different regions defined for each service and
handset (Ontario and Quebec).

Chapter 4
About Decomposition

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 14

Figure 4-2 Order Line Items and Order Items

The first decomposition stage (Determine Functions) organizes order items according to
function. Figure 4-3 shows how the order items derived in Figure 4-2 are organized into three
function order components: Provisioning, Shipping, and Billing. The fixed-line services require
provisioning, the handsets require shipping, and all order items require billing, so all order
items are included in the Billing order component.

Chapter 4
About Decomposition

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 14

Figure 4-3 Function Order Components

After decomposing order items into function order components, OSM decomposes the order
items in each function component into target system order components, and then into
granularity order components. These stages are called Determine Target System and
Determine Granularity.

Figure 4-4 shows how the order component for the billing function is composed further into two
levels of decomposition:

• Order items for the Ontario and Quebec regions are decomposed into target system order
components. This sends the billing fulfillment process to the correct region, Ontario or
Quebec.

• For each region, the fixed-line service must be billed separately from the handset.
Therefore, order components for each target system are further decomposed into
granularity components.

Chapter 4
About Decomposition

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 14

Figure 4-4 Function Order Component Decomposed into Target and Granularity Order Components

As shown in Figure 4-4, you configure decomposition by modeling decomposition rules.

Figure 4-5 shows how order items are organized across all three orchestration stages.

Chapter 4
About Decomposition

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 14

Figure 4-5 Order Items Decomposed into Order Components

About Dependencies
An orchestration plan is based on two main factors: decomposition, which organizes order
items into order components, and dependencies, which dictate when the executable order
components are allowed to run.

Some services might require that some fulfillment tasks are completed before others. For
example, you need to complete provisioning order items before you can process activation
order items. Dependencies are relationships in which a condition related to one order item
must be satisfied before another item can be processed successfully. For example, a piece of
equipment must be shipped to a location before the action to install it at that location can be
taken.

Dependencies can be between order components in the same order (intra-order
dependencies) or between order components in different orders (inter-order dependencies).
Inter-order dependencies are particularly common in situations that involve amendments or
follow-on orders. For example, the order items in a follow-on order for VoIP provisioning might
depend on the processing of the order items in the original order for DSL provisioning. See
"About Follow-on Orders."

Dependencies are configured in Design Studio and determined for an order when OSM
generates its orchestration plan.

Chapter 4
About Dependencies

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 14

You can model the following types of dependencies. In each of the dependencies below, you
can also model a delay after the condition is met. For example, you may want the installation
order items to start two days after the shipping order items have completed.

• A Completion dependency means that the dependent order item requires that another
order item complete before it can begin. For example, the Provisioning order component
for the VoIP Service order item cannot begin until the Provisioning order component for the
High Speed Internet Service order item is complete.

• A Data Change dependency indicates that an order item has a dependency on data in
another order item. For example, the status of the Provisioning order component for the
VoIP Service order item must be set to Designed before the Ship Order order component
for the same order item can begin.

• An Order Item dependency indicates that an order item is dependent on the completion of
another order item in another order. Because orders can contain many order items, an
order component of an order can contain many Order Item dependencies. Order Item
dependencies support follow-on orders. Follow-on orders always have at least one order
item that has a dependency on an order item in a base order. The line item in the base
order must be completed before the line item in the follow-on order can begin processing.

Orders can have combinations of these types of dependencies. For example, an Installation
order component may have a Data dependency on the status of a Ship Order order component
as well as Order Item dependencies among its order items and order items in other orders.

Although dependencies exist logically between order items, they are managed by order
components. In other words, if any item in a component has a dependency, the component as
a whole cannot be started until the dependency is resolved. In the Order Management web
client, order items include dependency IDs to indicate items whose dependencies are
managed together. See Order Management Web Client User's Guide for more information.

Dependencies and Order Revision
You can manage dependencies during amendment processing. For example, when you submit
a revision order, OSM fulfills the order components based on the order of dependencies in the
revised orchestration plan. OSM handles the dependency during the revision as follows:

Completion Dependency

For completion dependencies between the order components, if the completion dependency
between predecessor and successor components is not removed in the revised order's
orchestration plan, then the redoing of the successor component will wait until the
compensation of the predecessor component is complete. The undoing of the predecessor
component will also wait until the compensation of the successor component is complete.

The following image shows the completion dependency between component A and component
B. For example, component B is dependent on component A. The redoing of TaskB1 in
component B must wait until the redoing of TaskA1, TaskA2 and TaskA3 in component A is
complete.

Figure 4-6 Completion Dependency Between Component A and Component B

Chapter 4
About Dependencies

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 14

Data Change Dependency

For data change dependencies between the components, the redoing of the order components
is run in the sequence of the dependencies of the revised orchestration plan. The undoing of
the predecessor component will wait until the compensation of the successor component is
complete. If a cartridge is built with its target OSM version set to 7.5.0 or newer, additional logic
comes into play. The base order resolved data change dependencies are reevaluated during
the amendment compensation processing.

When the data change dependency is met on reevaluation during compensation processing,
that is, in the redo mode, the redoing of the successor component will start without waiting for
the compensation of predecessor component completion. For cartridges built with an older
version of OSM, the redoing of a successor component will wait until the redoing of the
predecessor component is complete.

The following figure shows the data change dependency between component A and
component B. If a cartridge is built with its target OSM version set to 7.5.0 or newer, the data
change dependency is reevaluated during the redoing of the TaskA1, TaskA2 and TaskA3 in
the component A until it is met. Once it is met, the redoing of TaskB1 in component B will start
without waiting for compensation of the component A to be completed. If a cartridge is built
with its target OSM version set to older than 7.5.0, the redoing of TaskB1 in component B must
wait until the redoing of TaskA1, TaskA2 and TaskA3 in component A is completed.

Figure 4-7 Data Change Dependency Between Component A and Component B

Order Item Dependency
For order item dependency between orders, given that the scope of compensation is always a
single order, compensation of the succeeding order's components and tasks will happen
independently from the predecessor order. On cancelling an order, OSM rejects cancellation of
a predecessor, when there is an in-progress successor order.

The following figure shows the order item dependency between Order A and Order B. The
component B1 of Order B is dependent on component A1 of Order A.

Figure 4-8 Order Item Dependency Between Order A and Order B

About Order Items and Order Components
As described in "How OSM Generates and Runs an Orchestration Plan," orchestration is the
process of decomposing order items into order components, which then run based on their
dependencies.

Chapter 4
About Order Items and Order Components

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 14

Because order items are hierarchical, a single parent order item can include child order items
that can be decomposed into multiple function order components. Figure 4-9 shows the order
items that can be decomposed into Provisioning, Shipping, and Billing order items.

Figure 4-9 Hierarchical Order Items

The offers, bundles, and products would first be decomposed into function order components
for Provisioning, Shipping, and Billing. Therefore, even though all the child order items share a
parent order item, they do not necessarily share function order components.

The provisioning order items might be further decomposed into system order components with
the following order component IDs:

• Provisioning.Voip

• Provisioning.Email

• Provisioning.Media

The provisioning order items for VoIP might be decomposed into granularity order components
with the following order component IDs:

• Provisioning.Voip.WholeOrder

• Provisioning.Voip.Bundle

• Provisioning.Voip.Offer

Chapter 4
About Order Items and Order Components

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 14

At runtime, OSM creates an order component ID based on the sum of all order components
used in the decomposition. For example, the order component
Billing.BillingSystem.FixedBundle represents:

• A Billing function order component

• A BillingSystem target system component

• A FixedBundle granularity component

The Billing.BillingSystem.MobileBundle order component represents:

• A Billing function order component

• A BillingSystem target system component

• A MobileBundle granularity component

Orchestration and COM, SOM, and TOM
As described in "About Customer Orders, Service Orders, and Technical Orders," you can use
OSM in the COM, SOM, and TOM roles to run customer orders, service orders, and technical
orders in a single service fulfillment process. Each type of order uses orchestration, but each
type of order uses different order items.

In the COM role, OSM receives a sales order from the order-source system and creates a
customer order. The order items in a customer order typically describe the products, bundles,
and offers that customers have purchased; for example, Add Gold Broadband Bundle or Add
Triple-Play Plus Offer. Services are generally identified generically, such as Add Email Service
or Add Video Service.

Because a customer order works with order items that describe the products and bundles that
customers purchase, OSM in the COM role typically runs executable order components that
work directly with billing systems. (A customer who purchases a product needs to be billed for
it.)

To manage provisioning order items, such as Email Service [Add] or Video Service [Add], a
customer order runs provisioning order components that send data to OSM in the SOM role.

In the SOM role, the order items in the sales order describe customer-facing services; for
example Broadband Internet Service [Add] or Video Service [Cancel]. The data in the order
contains the provisioning data required to transform the customer-facing services into
resource-facing services. For example, the provisioning data might include the customer's
location, the bandwidth requirements, and so on.

The executable order components in a service order interact with a service and resource
management (SRM) system such as Oracle Communications Unified Inventory Management
(UIM). These order components send the provisioning data that describes the service
requirements to the SRM. The SRM system returns the data required to activate the services.
The executable order components in the service order then send the data to OSM in the TOM
role to create a technical order to activate services and ship equipment.

OSM in the TOM role processes a technical order to activate the resource-facing services and
interact directly with shipping and workforce management systems. The order items describe
resources and resource-facing services such as DSL Service [Add] or Firewall [Add].

The executable order components in a technical order interact with the activation and shipping
systems. They send the service requirements, and receive confirmation that the services were
activated and equipment shipped.

Figure 4-10 shows examples of the order items that are processed in COM, SOM, and TOM.

Chapter 4
Orchestration and COM, SOM, and TOM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 14

Figure 4-10 Order Items in COM, SOM, and TOM

About Order Item Transformation
As described in "Orchestration and COM, SOM, and TOM," OSM in the COM role processes a
customer order to transform order items for products into order items for customer-facing

Chapter 4
Orchestration and COM, SOM, and TOM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 14

services. You can use order item transformation to enable OSM to automatically identify the
order items for customer-facing services. To configure order item transformation, you configure
the following:

• The order items to transform from.

• The order items to transform to.

• The rules that govern which customer-facing service needs to be implemented.

Figure 4-11 shows how OSM in the COM role runs a customer order to calculate a service
order. In this example, OSM can transform the Broadband product order items into the Internet
service order items.

Figure 4-11 Order Items Transformed by OSM SOM

About the Design Studio Conceptual Model
The Design Studio conceptual model functionality helps you model an order fulfillment process
by using the known aspects of your business requirements. Instead of using Design Studio to
manually create entities for Oracle Communications ASAP, UIM, and OSM, you provide Design
Studio with information about your products, services, and resources, and Design Studio
creates entities required for the service fulfillment process.

The conceptual model takes as input such entities as:

• Customer-facing services

• Resource-facing services

Chapter 4
Orchestration and COM, SOM, and TOM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 14

• The actions required to fulfill services

• Resources on your network

• Products in your product catalog

• Customer locations

Conceptual model entities represent abstractions of services that are converted into application
model entities. This conversion process is called realization. The conversion starts with an
abstract conceptual model entity and creates a real application model entity. You include the
realized application model entities in application projects, and then deploy the application
projects that contain the realized entities to runtime environments.

The application entities that are realized are such entities as:

• UIM service configurations. These are the service configurations that OSM needs to
design a service.

• UIM inventory resources. These are used by OSM to assign resources to services.

You can use the output from a conceptual model as a starting point to model your OSM
runtime solution.

See Design Studio Concepts for more information about conceptual model projects. See OSM
Modeling Guide for more information about using conceptual model entities to map order items
to fulfillment patterns.

Chapter 4
Orchestration and COM, SOM, and TOM

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 14

5
About Tasks and Processes

This chapter provides an overview of Oracle Communications Order and Service Management
(OSM) tasks and processes. Before reading this chapter, read "Order and Service
Management Overview " and "How OSM Processes Orders."

About Tasks and Processes
A task is an activity that must be carried out to complete an order; for example, if an order
needs to verify that an ADSL service was activated, you could model a task named Verify
ADSL Service. Tasks can be manual or automated.

• Manual tasks must be processed by order management personnel, by using the Task web
client. Manual tasks typically include tasks that cannot be automated, or tasks that require
decision-making, when there are multiple choices for how to proceed with order
processing.

• Automated tasks run automatically with no manual intervention. Automated tasks typically
communicate with external systems by using the external system's API. For example, you
could define an automated task called Verify Address. An automation plug-in can be
configured to send order data to a third-party address verification system whenever an
order reaches the Verify Address task. The third party returns an address confirmation to
OSM, completing the task.

A process is a sequence of tasks and subprocesses that run consecutively or concurrently to
fulfill all or part of an order. Processes enable you to break down the work required to run and
fulfill an order into functional tasks, which can be distributed to various systems and order
managers to be completed in a controlled manner.

In processes, you can control how the tasks are run. For example, you could create a rule that
evaluates data and branches the process appropriately. Any number of processes can be
defined in an order process, consisting of any number or combination of manual and
automated tasks. You can also run subprocesses from a process. Subprocesses are
processes that are launched from another process, as opposed to being launched from an
order.

Figure 5-1 shows a process and its tasks, as shown in Design Studio:

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 4

Figure 5-1 Example of an OSM Process

This process manages the fulfillment of a request for an ADSL service:

1. The first task, Verify ADSL Service, is an automated task that verifies that the ADSL
service exists. For example, the task might run a web service operation that reads a
database to determine if the service is available at the specified address.

2. After verifying that the service is available, the process branches to two tasks that are
independent and can run in parallel:

a. The Ship Modem Self-Install Pkg task sends a shipping order to the hardware provider.

b. The Assign Port task looks up a port in the inventory system and assigns it.

If the port is available, the next task is Activate DSLAM. However, if the port is not
available, the process transitions to the Add Capacity task, and then back to the
Assign Port task.

3. After the Assign Port task is finished, the Activate DSLAM task can run. This task contains
an OSM integration with a third-party activation system to activate the DSLAM.

The Assign Port task is dependent on the completion of both the Ship Modem Self-Install
Pkg task and the Activate DSLAM task. Therefore, even if the Ship Modem Self-Install Pkg
task completes, the Activate DSLAM task cannot start until the Assign Port task is finished.

4. When the activation is complete, the next two tasks send the customer survey and require
that an OSM user verifies the order to make sure it is complete. After these two tasks are
completed, the order is complete.

Any of the tasks in this process can be configured as automated tasks. For example, the
Assign Port task can be an automated task if there is an integration with the inventory system,

Chapter 5
About Tasks and Processes

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 4

and the inventory system is able to respond to an automation plug-in sender requesting a port
number with a response that assigns the port number for the service.

When you create tasks in Design Studio, you define the data required by the task. A task
typically contains a subset of the order data received on an incoming order. For example, the
task for shipping a modem might require a customer name, phone number, and address but
not the required internet bandwidth.

About Manual Tasks
Manual tasks are assigned to personnel who complete the work for these tasks in the OSM
Task web client. Personnel can manage tasks by adding comments to the order, attaching
documents, displaying the history of the order, and manually entering and saving order data
required to complete the task.

To run manual tasks by using the OSM Task web client, an order manager works from a list of
manual tasks called a worklist. To complete a task, an order manager typically enters data or
reviews the data, and then indicates that the task is complete.

Figure 5-2 shows tasks displayed in the Task web client worklist. In this example, Assign Port
and Ship Modem are manual tasks.

Figure 5-2 Tasks Displayed in the Task Web Client

Task states track the progress of a task. For example, when a task begins, it is in the Received
state until such time as an operator accepts the task. The task remains in the Accepted state
until the operator complete the task.

When you model manual tasks in Design Studio and define the data required for the task, you
can do the following:

• Assign Roles: You can assign roles to tasks which, when associated with OSM WebLogic
user accounts as workgroups, limit who can receive, accept, and work on new tasks in the
Task web client.

• Define Notifications: You can configure a task to trigger notification messages that
appear in the Task web client to inform order managers of the progress of the order.
Notifications can also trigger automation plug-ins that send status updates or jeopardy
warnings to external systems or users.

• Configure Behaviors: You can use behaviors to manipulate data and to control how data
is displayed in the Task web client. For example:

– You can specify the maximum allowed number of characters for text string data.

– You can specify the contents of a list displayed in the Task web client.

About Automated Tasks
Automated tasks require no manual intervention. Automated tasks handle internal interactions
with external fulfillment system, such as billing systems, shipping systems, activation systems,

Chapter 5
About Manual Tasks

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 4

and other fulfillment systems. OSM processes typically include more automated tasks than
manual tasks.

To create an automated task, you do the following:

• Model a task entity in Design Studio. An automated task entity includes many of the same
elements as a manual task; for example, data required for the task, notifications to send,
and task states.

• Create one or more automation plug-ins. Automation plug-ins can perform custom logic,
send a message to an external system, or update OSM with data received from an
external system. For example, you could define a task called Verify Address. An
automation plug-in can be configured to send order data to a third-party address
verification system whenever an order reaches the Verify Address task. Another plug-in
can be used to receive the address verification. Most plug-ins use XQuery to find, filter,
and transform data.

OSM uses the automation framework to run and manage plug-ins. The automation framework
provides the primary interface for outbound and inbound operations that interact with external
systems for automated order fulfillment. The automation framework also provides internal data
processing for automated tasks within a process workflow. A plug-in can access task data and
perform OSM functions such as completing a task.

An activation task is a type of automated task, designed specifically to interact with the Oracle
Communications ASAP product and the Oracle Communications IP Service Activator product
to activate services on your network.

Activation tasks include many of the same properties as other automated tasks; for example,
you can assign permissions, define the task data, and configure notifications that trigger
automation plug-ins. However, you also configure activation-specific data elements, such as
how to map data sent to and received from ASAP or IP Service Activator.

About Task States
A task state determines the condition of a task in a process. Every task in OSM has a set of
possible states that reflect the life cycle of the task. The required tasks are:

• Received: The task has been received by a workgroup and is waiting to be accepted.

• Assigned: The task has been assigned to a specific OSM user. Tasks that are in the
assigned state cannot be worked on by other users.

• Accepted: An order manager has accepted the task and is working on it. Tasks that are in
the Accepted state cannot be worked on by other users unless the state is returned to the
Received state.

• Completed: The task has been completed by a user or an automation plug-in. A task that
has been completed no longer appears in a user's worklist.

Chapter 5
About Task States

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 4

6
About Order Management Business
Processes

This chapter provides an overview of how Oracle Communications Order and Service
Management (OSM) works with business processes such as managing changes to orders and
managing order delivery dates. Before reading this chapter, read "Order and Service
Management Overview " and "How OSM Processes Orders."

About OSM and Order Management Business Processes
When you design your order fulfillment process, you can configure various entities in different
ways to support your business processes. For example:

• You can configure orders and tasks to support changes to in-flight orders. See "About
Making Changes to In-flight Orders."

• You can create dependencies between orders in case an in-flight order cannot be
changed. See "About Follow-on Orders."

• You can configure OSM to be able to calculate when an order will be completed, and if
necessary, when it should be started. See "About Determining Order Completion Dates."

• You can track the status of orders, tasks, and order items. See "About Order Status."

• You can configure notifications to alert order management personnel about orders that
need attention. See "About Notifications."

• You can configure ways to deal with order and task failures. See "About Managing Order
and Task Fallout."

• You can configure OSM in the COM, SOM, and TOM roles to minimize changes to the
order fulfillment process when changes occur in your product offerings and network
resources. See "Managing Changes in Your Business."

About Making Changes to In-flight Orders
If an order is in flight and a customer needs to change it, you can resubmit the order to OSM.
OSM can roll back and change fulfillment actions as needed.

OSM manages changes to orders as follows:

1. An order is submitted to OSM. OSM begins processing the order.

2. The order is resubmitted to OSM with some of the data requirements changed. For
example, the bandwidth requirement might change from 5Mbps to 13Mbps. You can also
resubmit an order to correct a failed order.

3. OSM checks to see if the order is amendable. You specify whether an order is amendable
when you model the order specification.

4. If the order is amendable, OSM looks for the original order by checking in-flight orders for a
matching value in an order key. You configure the order key when you model the order
specification. For example, you can specify to use the sales order number as the order

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 16

key. In that case, when OSM processes an order, it looks for an existing order that has the
same sales order number and amends that order.

If an existing order is found, OSM needs to manage both the original order, called the base
order, and the new version of the order, called the revision order.

5. OSM performs further checks on the base order to determine if the order is allowed to be
amended. OSM does the following:

• OSM checks to see if the base order is in a state that can be amended. Orders in the
Not Started, Completed, or Aborted state cannot be amended. You can customize the
allowed transitions to the amending order state by configuring the order lifecycle policy.

• OSM checks to see if the base order has not passed the point of no return. The point
of no return is the point in the processing of an order item after which order
amendments are either impossible or too expensive to allow. See "About Point of No
Return."

6. After determining if the base order requires changes, OSM begins the process of
compensation. Compensation compares the requirements in a revision order to the
requirements in the base order and determines the changes that need to be made. OSM
creates a compensation plan to define the actions that need to be carried out to amend
the base order.

When you define data in OSM, you can flag data that might need to be changed as
significant. OSM uses the significance of the data to determine if compensation is
needed. Data significance allows you to optimize amendment processing in a way that
compensation is considered only for changes to data that is marked as significant.

7. OSM handles the base order and the revision order as follows:

• For the base order, OSM generates a new orchestration plan that includes the order
components and their dependencies.

• For the revision order, OSM transitions it to the Completed state because its only
purpose was to revise the base order.

8. OSM processes the changes according to the compensation plan it calculated and
recalculates the compensation plan needed after every change. The revised orchestration
plan changes how order components are processed:

• Order components with data that has changed as a result of the revision are redone.

• Order components that have been processed but are no longer required in the revision
are undone.

• Order components that are inserted as new requirements are fulfilled.

As order components are run, OSM runs tasks as needed. As with order components,
tasks can be undone, redone, and so on.

9. All processing not related to compensation is suspended for an orchestration plan until
compensation is complete. After compensation is complete, the order is restored from the
Amending state to an In Progress state and normal processing continues.

About Submitting Multiple Revisions of an Order
In some cases, multiple revisions to a single order are submitted. Each revision is expected to
be a new revision of the in-flight order, not a cumulative comparison of previous revisions. The
latest amendment is assumed to be the most complete revision containing all of the changes
from earlier revisions.

Chapter 6
About Making Changes to In-flight Orders

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 16

You can use versioning in revision orders to recognize the order of the revisions as OSM
receives them. For example:

• If revisions are received out of sequence, OSM ensures that the latest revision is used. If a
later revision is received while the current revision is being compensated, OSM completes
the compensation for the current revision before processing the latest version. If a version
is received that is earlier than the current revision being processed, the earlier version is
ignored.

• If several revisions are received, OSM discards interim revisions and applies the latest
revision because it represents the latest customer instructions for the order and is a
complete copy of the base order.

About Point of No Return
In some cases, there may be a point in the order process after which it becomes impossible or
undesirable to make changes to an order. This is called a point of no return.

There are two types of point of no return in OSM.

• A hard point of no return indicates that amendments to the order are either impossible or
undesirable. In the case of a hard point of no return, a revision order is not possible.
Instead, you can create a follow-on order.

Note

A follow-on order is not a change to an in-flight order but is an alternative when
revising the in-flight order is not possible. Follow-on orders are used to make
changes to items on an order that have not yet been completed but are past the
point of no return. OSM manages follow-on orders to ensure they do not run until
the order items upon which they depend are completed. See "About Follow-on
Orders."

• A soft point of no return indicates that order amendment processing is still possible, but
there are consequences for the customer. For example, you can specify to bill a customer
for an extra charge if the order is revised after the soft point of no return has been reached.

You can define multiple point-of-no-return milestones in an order's fulfillment flow. For example:

• For a fixed-line service, a point of no return after provisioning.

• For a broadband service, a point of no return after billing.

All soft and hard points of no return depend on the order lifecycle policy conditions that control
whether orders can transition from the In Progress state to the Amending state.

About Follow-on Orders
A follow-on order is an order that can be started only after the completion of an order item in
another order. You can configure follow-on orders for various reasons:

• If an order has passed its point of no return where a revision order is no longer possible,
you can configure a follow-on order to modify an order after the order completes.

• In some cases, your order management process might be more efficient or faster if you
use follow-on orders to manage fulfillment functions on different systems, implement load
balancing, and so on. Using follow-on orders provides another method of controlling when
an order runs.

Chapter 6
About Follow-on Orders

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 16

To configure a follow-on order, you create inter-order dependencies. When using inter-order
dependencies, the blocking order item is in the base order, and the waiting order item is in the
follow-on order. A typical scenario is:

1. A customer has ordered a broadband service.

2. The next day, while the order is still in-flight but past the point of no return, the customer
requests a change to the service bandwidth.

3. Because a revision to the base order cannot be submitted, the customer service
representative creates a follow-on order.

4. The follow-on order is submitted to OSM; however, it does not begin processing until the
blocking order item in the base order has completed.

About Determining Order Completion Dates
An order received by OSM includes a requested delivery date. This is the date that the
customer wants the order to be completed. OSM can calculate the expected completion date
based on the time OSM expects to take to complete all of the tasks in the order.

If the requested delivery date is the same as or earlier than the expected completion date,
OSM can start processing the order immediately. However, in some cases, the start date of an
order should be delayed. For example, a customer might request that a new VoIP service be
added at the beginning of the next month, when the customer's current service expires. In
cases where the requested delivery date is later than the expected completion date, you can
specify to start the order in the future.

In addition, there might be groups of order items within an order that need to be fulfilled at
different times. For example, an order might contain three services, such as internet, IPTV, and
VoIP. The internet and IPTV services might have an immediate requested delivery date, but the
VoIP service might only be required at the end of the month, after the customer's current phone
service plan has expired. In this case, you can enable OSM to calculate an order start time that
would allow the service to be activated at the requested delivery date at the end of the month.

To calculate when an order should start so that it can meet a requested delivery date, OSM
calculates the expected duration of the order. To enable OSM to calculate the expected
duration, you assign processing duration values, for example:

• You can assign processing duration values to order components.

• You can assign processing duration values to tasks. These values can be used for
calculating the processing duration for order components.

• You can assign requested start dates to order items.

To calculate the expected duration for the order, OSM uses the expected duration of the order
components and tasks in the order. Dependencies between order components are included in
the calculation.

After the expected duration for the order has been calculated, OSM assigns an expected
completion date to the order, based on the current date and the expected duration. For
example, if the current date is May 1, and the expected duration is 5 days, the expected
completion date is May 6.

If the expected completion date is later than the requested delivery date, OSM can set the
order start date to a date in the future. For example, if the current date is May 1, the expected
duration is 5 days, and the requested delivery date is May 11, OSM sets the order start date to
May 6. Figure 6-1 shows how a start date is determined for a future order.

Chapter 6
About Determining Order Completion Dates

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 16

Figure 6-1 Future Order Start Date

To track order completion dates, you can see the following fields in the Order Management
web client:

• Order Creation Date: The date when the order is created in OSM.

• Expected Order Start Date: The date when the order is expected to start being
processed.

• Expected Order Completion Date: The date when the order is expected to be completed.

• Requested Order Delivery Date: The date by which the customer requests the order to
be delivered.

• Expected Order Duration: The amount of time the order is expected to take to complete
processing.

About Order Status
Order management personnel can use the Order Management web client and the Task web
client to track the status of an order, order components, order items, and individual tasks.

The customer service representative (CSR) who runs the customer relationship manager also
needs to keep the customer informed about the order status. You can use fulfillment states or
processing states to maintain a complete and detailed view of order item status and (with
fulfillment states) order status. For example, a CSR might need to know if shipping has been
completed for an order, but activation has not been completed.

OSM can send requests to many different systems for the same order item or order. Each
request may have many responses that provide statuses.

Processing states are a predefined set of states that an order item can enter. OSM aggregates
the values returned from external systems in each order component for the order item to
determine the overall processing state of the affected order item. You can apply processing
states based on values in response messages from external systems that OSM receives in
automated task automation plug-ins or based on direct operator input in manual tasks. In
addition, because order items can be arranged hierarchically, when a child order item
processing state changes, OSM also evaluates whether the parent order item should change,
all the way up the hierarchy.

Fulfillment states allow you to send meaningful status values to an upstream system, which
would not be able to parse all of the individual statuses returned by the external systems. You
can use fulfillment states to manage system complexity in the following ways:

• Normalize status names. For example, to indicate success, one system might return OK,
while another returns Complete. You can map both of these responses to the same value,
for example Successful.

Chapter 6
About Order Status

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 16

• Create statuses based on multiple statuses. For example, if one system returns the status
Complete, and another system returns the status In Progress, you can create a status
named Partially Complete.

• Define composite status values for order items, order components, and the order itself. For
order items, you can change the status of a parent order item when the status of a child
order item changes.

In addition to using fulfillment states to provide order item and order processing state
information to upstream systems, you can also use them to restrict processing of order
amendments from the upstream system. This functionality is provided by point-of-no-return
processing, which uses fulfillment states. See "About Point of No Return" for more information.

Figure 6-2 depicts a fulfillment state scenario.

Figure 6-2 Fulfillment State in an Order

About Notifications
You can use notifications to alert users and external systems to events that occur in the order
as it processes or to tell users that an action must be carried out.

There are two types of notifications:

• Use jeopardy notifications when you want to alert users that an order or a task might
have a problem. To trigger jeopardy notifications, OSM checks order and task conditions at
specified intervals. If an action has not occurred as expected, OSM sends a notification.
Jeopardy notifications are displayed in the Task web client Notifications page.

• Use event notifications to alert users of changes to an order based on its progress. Event
notifications can be triggered by:

– A change in task state

– A change in order status

– A change to order data

Chapter 6
About Notifications

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 16

You typically configure notifications by using automation plug-ins, which send notification data
to end users or systems.

Figure 6-3 shows notifications displayed in the Task web client. You can specify which
workgroups can see the notifications.

Figure 6-3 Notifications Displayed in the Task Web Client

About Managing Fallout Exception
During the order processing journey, an individual order interacts with many external systems,
and often the exchange involves more than a single request and response. Order fulfillment is
a complex process and failures are not uncommon. When order processing becomes disrupted
from its regular path, then a fallout exception management framework can provide a
coordinated set of capabilities from the identification of fallout through to its resolution.

OSM's simplified fallout exception management framework changes the internal state of the
order in case of fallout, thus eliminating the dependency on external systems. This approach
acts as a net to stop further automation tasks on that particular order that is in fallout. This
streamlined approach also ensures a smoother order management experience, minimizing
disruptions.

Simplified fallout exception management framework includes:

• Automation plugin APIs that allow automation code to mark an order as having
experienced fallout.

• For TMF cartridges using an OSM extended specification, custom states indicating fallout.

• The Fallout Dashboard UI provides a user-friendly interface for easily identifying orders
affected by fallout. It also enables you to perform order-level and task-level resolution
actions, with clear on-screen messages indicating whether each action succeeds or fails.

• Specialized fallout resolution actions are accessible to the Fallout Specialist through the
Fallout Dashboard UI.

Note

The Fallout Specialist must be assigned the OSM_fallout role.

• Fallout Management REST APIs for retrieving fallout exception details and submitting
remedial actions.

The simplified fallout exception management is available for both Freeform cartridges as well
as TMF cartridges.

Chapter 6
About Managing Fallout Exception

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 16

Note

Simplified fallout exception management is supported for OSM cloud native
deployments only.

Fallout Exception Scenarios
Fallout exception scenarios can be described as situations in which failures may either be
temporary or require human intervention to determine whether to proceed or declare a failure.
Temporary errors can often be resolved over time. Ideally, these scenarios should not disrupt
the order processing flow, and work can resume once the necessary remedial action is taken
by the user.

Typical fallout exception scenarios include:

• Failure in a network or system resource such as a network connectivity or a database
failure.

• Complex exceptions returned from downstream systems such as inadequate inventory.

• Simple errors from downstream systems such as bad data.

• Other internal processing errors.

Example: A Fallout Exception Scenario

This section describes an example of a fallout exception scenario for better understanding.

In the inventory management system, the available stock of product X is inaccurately recorded.
Consequently, more pre-orders are accepted than the actual available stock. As the fulfillment
process begins, the system detects this discrepancy between the pre-orders and the available
inventory.

The desired behavior of the overall solution is:

• Accurate Inventory Management: The overall solution should ensure precise recording
and management of available stock for product X. This entails real-time tracking and
updates to prevent overcommitting to pre-orders beyond the actual available stock.

• Order Discrepancy Detection: The system should be capable of detecting any
discrepancies between pre-orders and the available inventory as soon as the fulfillment
process commences, promptly identifying potential issues.

• Fallout Exception Generation: In cases of inventory shortfalls, the solution should
automatically generate a fallout exception for each affected order, clearly marking them for
attention and resolution.

• Prevention of Overselling: The system should halt further processing of affected orders
to prevent the sale of products that are not in stock, thereby avoiding customer
dissatisfaction and order-related problems.

• Visibility and User Interface: Users should have a user-friendly interface where they can
view all orders in the fallout status, allowing for efficient monitoring and management.

The OSM fallout exception mechanism plays a crucial role within the overall scenario. It serves
as the safety net for exceptional situations that cannot be addressed through standard
automated processes. Here is how it contributes:

• Alerting the System: Automation would receive details of the inventory shortfall from the
inventory system. In response, the automated code would raise a fallout exception with
details about the issue.

Chapter 6
About Managing Fallout Exception

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 16

• Error Resolution: OSM fallout serves as a critical component in addressing issues arising
from inaccurate inventory recording. It takes on the role of resolving the fallout exceptions
by identifying them as inventory shortfalls as designed by a cartridge developer.

• Preventing Further Processing: OSM provides a dashboard for fallout orders which can
be monitored by the fallout specialist to identify all fallouts that have occurred.

• Retry Operation: After the product X is restocked, the OSM Task Web Client offers the
fallout resolution actions. In this example, the Retry operation would retry the task and as
the product is available now, it will continue to process the remaining steps of order
fulfillment process.

• Order History Tracking: Detailed order history records are maintained to show that a retry
operation was performed, providing transparency in the process.

• Persistent Exception Records: Resolved fallout exception objects remain in the system,
offering an ongoing reference point for tracking and audit purposes.

By generating a fallout exception in response to the inventory issue, OSM fallout exception
management plays a pivotal role in preventing customer disappointment. The intervention of a
Fallout Specialist ensures that each affected customer receives a fair and satisfactory
resolution, maintaining the service provider's reputation for delivering excellent customer
service even when faced with unexpected challenges. This approach highlights the
significance of effective order management and the responsiveness of the system to maintain
customer satisfaction.

Fallout Exception Lifecycle
The lifecycle of a fallout exception includes the following stages:

• A fallout exception is raised.

• Task processing is halted.

• The Fallout Orders dashboard displays the fallout exception.

• The fallout exception is remediated through the actions available in the Fallout Orders
dashboard or via the Fallout Exception Management REST API.

• Remediation actions can be performed on both the order and task levels:

– Order-level actions: Abort, Cancel, and Fail Order.

– Task-level actions: Retry, Force Complete, and Fail Order Items.

• Once the remediation actions are completed, the exception is cleared.

• Normal task processing continues.

Fallout Reporting
OSM provides a fallout reporting feature within the Automation API in conjunction with the
OSM fallout feature. This is intended to allow plug-ins to report the occurrence of fallout at the
discretion of the OSM Automation user (plug-in).

• There is a Fallout Context interface for automation plugins to report fallout exceptions.
Cartridge developers need to be aware of this interface at the time of cartridge
development. Fallout should be reported by a plugin when the cartridge developer cannot
handle the error any further. See the sections about fallout management in OSM Modeling
Guide and OSM Developer's Guide.

• Automation triggers a fallout exception when it encounters an error that it cannot handle.

• In case of TMF orders, TMF order state transitions to OrderState.fallout, where
OrderState can be one of the following:

Chapter 6
About Managing Fallout Exception

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 16

– amending

– cancelling

– pendingCancellation

– amendingCancellation

• Simplified fallout exception is visible in the Fallout Orders dashboard and the Task Web
Client UI shows fallout order details.

Fallout Orders Dashboard
The Order Operations and Fallout Management user interface provides users with multiple
capabilities and is equipped with robust filtering mechanisms that provide detailed error
insights and track overdue orders. You can access a comprehensive graphical overview page
to get a holistic view of existing fallouts. You can also dive deep into error details to gain more
insight into a specific case. Filtering based on OrderId and customer name makes it easy to
filter and gain insights.

The Fallout Orders dashboard provides Fallout Specialists with a unified interface to
investigate and remediate fallout exceptions. Actions can be performed at both the order level
and the task level, depending on the scope of the issue:

• Order level actions allow Fallout Specialists to remediate issues affecting the entire order.

• Task level actions provide granular control for resolving issues specific to individual tasks
and their order items within an order.

Order Level Fallout Actions
Orders affected by fallout are displayed with key details such as Order ID, Order Type,
Customer Name, External ID, Requested Completion Date, Earliest Error, Total Errors, and
State.

From the

Action Menu, Fallout Specialists can perform the following Investigative and Remedial
actions:

• Investigative Actions

– View Process History: This action displays the execution history of the order,
including task progression. Selecting this option leads you to the Task Web Client.

– View Order Data: This action provides detailed order information, including payload
and attributes. Selecting this option leads you to the Task Web Client.

• Remedial Actions

– Abort Order: This action tells OSM to stop working on the selected order without
triggering any further work.

– Cancel Order: This action cancels an order. All outstanding work items associated
with the order are deleted, and all complete work items associated with the order are
compensated (undone based on your cartridge configuration).

– Fail Order: This action results in the entire OSM order failing. In addition, this action
triggers an update to the final TMF state in case of TMF orders. The fallout exception
is resolved automatically, marked with the action code Fail.

Task-Level Fallout Actions

Chapter 6
About Managing Fallout Exception

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 16

If a particular order is selected in the Fallout Orders dashboard, the Fallout Details page is
displayed. Here, fallout exceptions are listed at the task level. Fallout errors are listed with
details such as Error ID, Product, Error Category, Created Date, Last Updated Date, Related
Task, and State.

From the

Action Menu, Fallout Specialists can perform the following actions on the selected fallout
exception:

• Investigative Options

– View Process History: This action displays the running history for the task, including
previous states and error points. Selecting this option leads you to the Task Web
Client.

– Edit Task Data: This action allows modification of the task related data to correct
invalid or incomplete data. Selecting this option leads you to the Task Web Client.

– View Task Data: This action provides a read only view of the task payload and
attributes for troubleshooting. Selecting this option leads you to the Task Web Client.

• Remedial Actions

– Retry Task: This action tells OSM to retry the task, after which the fallout exception is
cleared. If the Retry is successful, the task completes. If the Retry runs into problems,
the cartridge code can raise a new fallout exception.

– Force Complete: This action tells OSM to mark the task as Complete with the specific
task status provided by you. This resolves the fallout exception. You have to make the
required data updates by using the Edit Task Dataaction, which are needed to perform
the force complete prior to submitting the action.

– Fail Order Items: This action tells OSM to mark all the order items as Failed if a
fallout exception is raised on them. The fallout exception is then cleared automatically.
This action is only applicable for TMF orders.

Remedial Actions For Fallout Exceptions Using the Fallout Exception Management
REST APIs
The following remedial actions can be submitted using the Fallout Exception Management
REST APIs.

• Force Complete Task: The task will be marked as Complete with the task status provided
by you. This resolves the fallout exception. You have to take care of the required data
updates that are needed to perform the force complete prior to submitting the action.

• Retry Task: The task is retried and the fallout exception is cleared. If the Retry is
successful, the task completes. If the Retry runs into problems, the cartridge code can
raise a new fallout exception.

• Cancel Order: This operation cancels an order. All outstanding work items associated with
the order are deleted, and all complete work items associated with the order are
compensated (undone).

• Fail Order: This results in the entire OSM order failing and triggers an update to the final
TMF state in case of TMF orders. The fallout exception is resolved automatically, marked
with the action code Fail.

Chapter 6
About Managing Fallout Exception

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 16

• failOrderItems: This operation marks all order items as Failed, when a fallout exception is
raised on them. The fallout exception is resolved automatically. This action is only
applicable for TMF orders.

– The task that has detected the Order Item state as Failed will remain in the accepted
state. However, it will be marked with the action code Stopped and will not process
any messages that arrive. This also stops the current tasks of the order component
and prevents the order component from completing. All other order components that
depend on this failed order component will not start.

– Other order components that do not have failed order items associated with them will
continue processing as normal. However, if any TMF order item within these
components later fails, then attempting to force accept or force complete this
component will move all of its containing TMF order items to the Failed state. The task
will stay in its current state, such as, Accepted.

– Amendment (revision or cancellation) to the Order is allowed only before the OSM
order state is marked Failed. Therefore, the usual order lifecycle policy applies,
wherein if the amended TMF order item is in the TMF Failed state, any revisions will
be rejected. If there is a revision request that has changes related to the order items
which have failed as part of the failOrderItems fallout action, the request is rejected.

Note

The failOrderItems behavior can also be achieved on a task when there is no
fallout exception raised. This can be done with help of the Automation API
FailTmfOrderItems() which is provided by OrderContext.

• Abort Order: This operation tells OSM to stop working on the selected order without
triggering any further work.

The remedial actions submitted using the Fallout Exception Management REST APIs updates
the fallout exception state from Created to In Progress.

Note

The fallout actions submitted using the REST APIs are processed using the internal
OSM automation user (oms-automation). The user oms-automation should have
visibility for tasks and orders to perform the fallout action.

The below diagram illustrates the fallout exception state lifecycle changes when remedial
actions are submitted using the Fallout Exception Management REST APIs.

Chapter 6
About Managing Fallout Exception

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 16

Figure 6-4 Fallout Exception Lifecycle

For more detailed information on using the Fallout Exception Management Rest APIs, refer to
the OSM Developers Guide

About Managing Order and Task Fallout
Order fallout occurs when an order fails during processing and cannot continue processing.
Task fallout occurs when a task fails during process and can only continue processing in a
fallout execution mode. Fallout management is the ability to resolve fallout and enable an
order or task to continue processing normally. You can model automated fallout management,
which corrects errors by compensation or by running automation plug-ins in a fallout execution
mode, or you can model manual fallout management, which supports manual intervention to
correct errors.

For any order specification, you can define order fallout definitions. Fallout definitions enable
you to identify specific order data that can cause a fallout scenario. For example, it might be
common for a task that activates a port to return an error that the port is already in use. The
fallout definition can identify the port ID as the data that needs correcting. This allows OSM to
undo the resource assignment task in the inventory system, so the task can be redone and the
port ID corrected. The order can then resume processing with the corrected data.

OSM can manage fallout that occurs both internally during OSM processing, such as errors in
internal data, and as the result of an error returned by an external fulfillment system. The most
common fallout scenarios are:

• Failure in a downstream system; for example, a failure in an activation system.

Scenarios include:

– The data was received, but was missing or incorrect and could not be processed.
When a downstream system detects missing or incorrect data received from OSM, it
returns an error, which in turn fails the order.

– An internal error unrelated to the data occurred.

• Failure in a network or system resource; for example, a network connectivity failure or a
database failure.

• Failure when an order is created in OSM; for example, recognition or validation errors. If
OSM receives a corrupted order from an external system, it accepts the order but
immediately places it in Failed state.

Chapter 6
About Managing Fallout Exception

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 16

• Failure in runtime OSM processing; for example, an unresolved dependency that prevents
an order from being processed.

You can track the progress of order items including fallout scenarios that impact order items in
the Order Management web client by enabling tasks to associate status values included in
response message from external fulfillment systems to OSM order item processing states. You
can classify these response messages into order item processing states that fall into the
normal, warning, or failure categories that you can track in the Order Management web client.

When a task receives a failure message from an external system, you can configure the task to
run in a fallout execution mode such as Do in Fallout in contrast to a normal execution mode
such as Do. For example, you may configure an automated task to run special automation
plug-ins that only run when the task transitions to a fallout execution mode.

You can retry or resolve a failed task in the Task web client, or you can retry or resolve all failed
tasks on an order or within an order component in the Order Management web client. Retrying
a task returns the task to a normal execution mode in the received state. Resolving a task
returns the task to a normal execution mode in the state it had been in when the failure
occurred.

Managing Changes in Your Business
As a service provider, you need to manage changes in your service fulfillment implementation,
for example, changes to product offerings, service configurations, and network resources.

By running OSM in the COM, SOM, and TOM roles, you can decouple your product offerings
from your network resources, and minimize the changes required in order processing. For
example:

• Changes to product offerings do not change how resource-facing services are configured,
and do not change how technical orders are processed. A change in how a product is
packaged has no effect on how OSM manages the activation of the services in the offer.

• Changes to how you implement your services on the network typically do not change your
product offerings, unless you add resources for a new type of service. For example, you
might make equipment-level changes to your network that require changes to technical
orders. However, those changes do not affect how a customer order is processed.

Figure 6-5 shows how frequent changes occur at both ends of the process; to commercial
offerings and to network resources. Changes occur less frequently in the middle of the
process, where services are designed according to predefined models, and resources are
assigned to the services.

In addition, whereas there are many commercial offerings and many network resources, there
are considerably fewer service designs. A single service design can be used by many different
commercial offerings and resources.

Chapter 6
Managing Changes in Your Business

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 16

Figure 6-5 How Changes Occur in an Order Fulfillment Process

Decoupling commercial offerings from network resources is important because system
changes typically occur at both ends of the order fulfillment process. For example, when
managing product offerings, you might introduce a new pricing for an existing service. When
managing network resources, you might add more circuit capacity. These changes should have
only minimal changes to an isolated part of the order fulfillment process.

The following are some typical scenarios that require changes to the order fulfillment process:

• Change product offerings. Examples include: introduce a new pricing for an existing
service, introduce a new product in an existing product family, introduce a new bundle of
existing services. In this case, changes are usually required only in customer orders. No
changes need to be made in the SOM and TOM processing.

• Upgrade network elements to a new vendor. This requires new activation tasks to be
able to send commands to the new network elements. Because there are no changes to
the services offered, no changes need to be made to the order management process or to
customer-facing services. The COM, SOM, and TOM processes remain the same. No
changes are needed in product offerings or in the product specifications defined in OSM.

• Introduce a variant to an existing technology. For example, you might introduce a
VDSL option when ADSL is already available. In this case, you probably need to make

Chapter 6
Managing Changes in Your Business

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 16

changes to the definitions of resource-facing services, add resources to inventory, change
some service activation tasks carried out by technical order management, and create new
activation tasks. COM and SOM remain the same. No changes are needed in product
offerings or in the product specifications defined in OSM.

Chapter 6
Managing Changes in Your Business

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 16

7
About REST APIs and System Interaction
(Cloud Native Only)

This chapter provides conceptual information about REST API support.

Note

TMF REST APIs and System Interactions are supported for cloud native deployments
only.

Overview of REST API Support via System Interaction
JMS has long been the dominant mechanism for the exchange of messages between OSM
and the external applications involved in order fulfillment. With REST APIs becoming
increasingly common, OSM cloud native now provides capabilities for automation plugins to
easily integrate with systems that use REST. In the TMForum ODA ecosystem for instance,
there are TMF REST APIs describing all interactions traditionally involved in order fulfillment
such as Partner Ordering, Shipping, Billing, Inventory, and Activation. A specific application
instance may expose one of the TMF REST APIs or may offer a custom REST API - both are
equally supported in OSM.

OSM cloud native offers a logical way to manage these interactions by modeling the API
contract as an OpenAPI document, which is the System Interaction.

Terminology
The following table lists out common terminology that you need to be familiar with:

Table 7-1 Terminology

Name Type Description

Target System Object The logical name for an external
system.

System Interaction Object This is an auxiliary resource in
OSM that guides behaviour when
processing an order fulfillment
step that requires interaction with
a Target System.

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 5

Table 7-1 (Cont.) Terminology

Name Type Description

System Interaction API API This is the API presented by the
external target system. The order
fulfillment step for OSM needs to
communicate with this API. The
interaction might be as a client
(to invoke operations) and as a
server (to process asynchronous
event responses). In UML, the
client portion of this is termed a
"Required Interface" and in
TMForum Component, a
"Dependent API".

System Interaction Specification Specification A System Interaction expressed
as an OpenAPI, its API and its
semantics.

System Interaction Specifications
When an OpenAPI document describing the REST APIs of an external system is imported into
OSM, it is referred to as a System Interaction Specification. A System Interaction specification
would generally be created for each functional interaction with an external system. The
specifications are carried in multiple OSM cartridges - either TMF or Freeform. When the
cartridges are deployed, the system interaction specification is persisted to the OSM database
schema. From here, the System Interaction specification is accessed by the OSM Gateway
microservice container. OSM Gateway uses this information for routing incoming and outgoing
messages between OSM and the external system as well as handling JSON-XML payload
transformation according to the schema.

Figure 7-1 System Interaction Specifications

Expectations
This section highlights the expectations for the cartridge developer, administrator, and the OSM
gateway.

Chapter 7
System Interaction Specifications

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 5

External Application

• You must provide an OpenAPI to OSM cartridge developers that captures the semantics of
the REST APIs for the system, Operations, HTTP headers, path parameters, HTTP
response codes, schema, server url and version and so on.

• It ensures that only a single version is referenced inside the OpenAPI document. The
info:version and version contained within the server:url must match.

• A condition of any integration using System Interaction, is that external systems must
honor the HTTP header used by OSM for correlation. External system async responses
must echo back the HTTP header X-Correlation-ID that was sent on the request either as
a HTTP header X-Correlation-ID or in event payload field correlationId.

• Every operation in the OpenAPI document must contain an operationId field with a unique
value to identifying the operation.

• For an external system that emits events and notifications, the OpenAPI document that is
provided to OSM cartridge developers must contain the path that OSM cloud native is
expected to expose via its listener.

Cartridge Developer

• Within each Order Component editor in Design Studio that needs to interact with a given
Target System, import the OpenAPI specification for that Target System and provide a
logical Target System name.

• For each automation task in that Order Component, designates the task supports "System
Interaction" (rather than the default "Direct JMS").

• Writes sender automation plugin(s) to generate the payload (in XML) compliant with the
API schema in the SI specification and identifies the REST operation to invoke for each.

• Writes sender automation plugins(s) to set HTTP headers and path parameters if
necessary.

• Writes receiver automation plugin(s) to process the synchronous responses (HTTP codes
and defined payloads) as XML.

• Optionally, writes receiver automation plugin(s) to process event payloads as XML.

• Provides a list of logical Target System names to the deployer or administrator.

Deployer (Administrator)

• Ensures that all Target System names needed by a cartridge are listed in the project
specification.

• For each Target System logical name, identifies the actual target system for this particular
instance.

• For each Target System logical name, creates or updates the required configuration in the
instance specification. At a minimum, this is the URL of the external system and will very
often include some authentication details linked from a secret.

• Ensures all required secrets are created as referenced in the target system configuration in
the instance specification.

• Creates or upgrades the OSM cloud native instance.

• Ensures all external applications that act as a System Interaction Target System are
properly configured with the OSM cloud native access URL and credentials.

OSM Gateway

Chapter 7
System Interaction Specifications

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 5

• Validates payload generated by sender automation plugin against SI schema, converts to
JSON and uses this as payload to invoke the identified operation on the external system.

• Handles transient communication errors with delays and retries.

• Passes on hard failures and unresolvable transient failures back to the automation plugin.

• Validates synchronous REST response against the SI spec, converts payload to XML and
passes it on to the receiver automation plugin.

• If automation plugins have registered for event notifications then OSM Gateway listens for
incoming events, validates payloads against the SI specification, converts to XML and
passes them on to the external receiver automation plugin.

Target System
The System Interaction Specification must define a Target System. This should be a logical
name for the target system and should describe the function of the target system rather than its
specific location. For example, a logical name of "Wireless-Activation" would be appropriate, as
opposed to "Test-ASAP", as the latter pins it down to a specific system. This is important to
allow flexibility between cartridge design and solution deployment design. The cartridge
developer can freely reference a logical target system, leaving it up to the deployment scripts
and configuration to allocate an actual target for that logical system in the form of a specific
URL, authentication and so on. This target system is done via a two part configuration:

• Design Configuration: In Design Studio, OSM Order Components have a System
Interaction tab which provides for entry of the target system name.

• Deployment Configuration: The logical target system name referenced in a cartridge
must be defined in the actual CNTK deployment scripts. The CNTK holds the logical target
system name in the project specification while the connection details like URL and
authentication are defined in the instance specification. At runtime, OSM Gateway will
resolve the logical target system name for a given System Interaction Specification by
reading deployment artifacts created by the CNTK during instance creation.

Figure 7-2 Deployment Configuration

Chapter 7
System Interaction Specifications

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 5

About Modeling Fulfilment Using System Interaction
Specifications

The System Interaction feature is available for both Freeform and TMF cartridges. Refer to the
"Modeling External REST Interactions using System Interaction" in the OSM Modeling Guide
for further details.

Chapter 7
About Modeling Fulfilment Using System Interaction Specifications

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 5

8
About TMF Orders (Cloud Native Only)

This chapter provides conceptual information about TMF ordering support.

Note

TMF orders are supported for OSM cloud native deployments only.

Introduction
The TM Forum defines and maintains a set of specifications intended to represent key objects
and operations in the OSS and BSS space of a communications provider. The traditional order
management roles that OSM plays are covered by two of these TMF specifications:

• TMF622 Product Ordering Management: This specification defines the Product Order
entity and describes operations that can be performed on it. It is intended to cover the
COM order fulfillment layer. Its input is an order containing ordered products, bundles,
discounts, and so on. Fulfillment of the product order involves handling all operations that
act on the ordered products, like partner ordering and shipping. Fulfillment includes
transforming the product order into one or more service orders (operations on Customer
Facing Services) directed towards a downstream fulfillment system.

• TMF641 Service Ordering Management: This specification defines the Service Order
entity and describes operations that can be performed on it. It is intended to cover the
SOM order fulfillment layer. Its input is an order containing service entities with associated
actions. Fulfillment typically involves interacting with service inventory and network
activation, and may also include workforce management and shipping.

OSM cloud native includes a framework that can transparently provide the capabilities defined
in either TMF specification. At a high level, this includes exposing operational endpoints,
automated TMF state calculation and reporting, along with new design time tooling that
automatically translates the TMF specification schema components into Complex Data Type
(CDT) structures in an OSM cartridge. This new TMF framework helps solution designers
create and maintain a cartridge that provides COM or SOM order fulfillment while letting OSM
transparently provide compliance with the TMF specification.

About Standards
TMForum

• TMForum created the TMF 630 REST API Design Guidelines to help applications extend
the APIs defined by TMF. The OSM extensions align with the documented guidance.

• TMForum provides a means for vendors to "verify the successful implementation of Open
APIs in commercial products and real-world deployments" by way of a TMF compliance
toolkit. Oracle achieved a successful status on the OSM implementation of both the TMF
622 (v4.0.0) and TMF 641 (v4.1.0) specifications.

For more information, go to: http://www.tmforum.org.

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 19

http://www.tmforum.org

OpenAPI Initiative

The OpenAPI Initiative documents patterns that should be used when extending the schema
object. OSM 622 and 641 extensions in this area align with the documented guidance. Parsing
technology is used to validate that the structure and syntax of imported TMF specifications at
design time aligns with OpenAPI Initiative v3.0.1.

For more information, go to: https://www.openapis.org/.

Terminology
The following types of terms are introduced and contextualized:

• Object: This is an object that lives in OSM and is managed by OSM.

• API: This is the interface OSM presents in support of the Object.

• Specification: This is the description of the Object, the API, and its semantics; OSM uses
this to model, operate, and present the Object.

The following table describes the terminology.

Name Type Description

Hosted Order Object This is the main resource of OSM - each
instance represents an order and OSM runs
order fulfillment for it, and presents it to the
outside world.

Hosted Order API API This is how the hosted order is presented to
the outside world. TMForum examples for this
are TMF622 and TMF641. In UML, this is
termed as "Provided Interface" and in TMFC
(TMForum Component), as "Exposed API".

Hosted Order Specification Specification The Hosted Order expressed as an OpenAPI,
its API and its semantics.

TMF cartridge set of OSM cartridges A TMF Cartridge is built around exactly one
Hosted Order Specification, and provides the
fulfillment logic for that order type.

Freeform cartridge set of OSM cartridges Freeform cartridges include all cartridges
prior to 7.5.0 as well as non-TMF cartridges
in 7.5.0.

Hosted Order Specification Specification The Hosted Order expressed as an OpenAPI,
its API and its semantics. Used in a TMF
cartridge.

System Interaction
Specification

Specification The REST API of an external system,
expressed as an OpenAPI. Used in any type
of cartridge - TMF or freeform.

Overview of TMF in OSM
When one of the two supported TMF ordering specifications is incorporated into the OSM TMF
support framework, it is referred to as a Hosted Order Specification. The hosted order
specification is carried in one or more TMF cartridges.

When the cartridges are deployed, the hosted specification is persisted to the OSM DB
schema. From here, the Hosted Order Specification is accessed by the OSM Managed Server
containers and the OSM Gateway microservice containers. The Managed Servers use this
information to enable TMF-related capabilities when an incoming order is processed by this

Chapter 8
Terminology

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 19

https://www.openapis.org/

cartridge. These capabilities include the automatic generation of TMF notifications (events) and
the ongoing calculation of TMF state.

The TMF microservice containers also use the Hosted Order Specification information to
expose the correct REST API to the outside world, and to translate between that API and
OSM's internal components and models.

The following diagram illustrates the deployment of a Hosted Specification.

Figure 8-1 Deployment of Hosted Specification

About TMF Specifications
Configuring an OSM instance with TMF ordering support begins with the TMF specification.
TMF specifications are based on the OpenAPI Specification which "defines a standard,
programming language-agnostic interface description for HTTP APIs, which allows both
humans and computers to discover and understand the capabilities of a service without
requiring access to source code, additional documentation, or inspection of network traffic."
Given the critical role of the specification itself, it is important to look inside and understand
how different aspects are realized in OSM's TMF framework.

Paths Object

The paths object holds a path to individual endpoints as well as the operations permitted on an
endpoint. When OSM cloud native hosts one of the TMF ordering specifications, the endpoints
you see defined inside the TMF OpenAPI would be exposed by the OSM Gateway component.
The delete and patch operations are unsupported by OSM as there are alternative
mechanisms to achieve the same. See the Order Action Comparison table in "About the OSM
Endpoints".

The following image shows the paths object in the specification file for TMF622 Product Order.

Chapter 8
About TMF Specifications

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 19

Figure 8-2 Paths in the specification file

The following diagram shows how the paths object is reflected in OSM.

Figure 8-3 Paths Object in OSM

Events Notifications
TMF specifications define not only the endpoints of an application but the event notifications
that would travel northbound as well. These are identified in the OpenAPI document as
endpoints with the keyword "listener" in the path. Publishing an event is done by posting the
event to the listener address.

Event notifications are the vehicle for vital information about the resource, getting
communicated to the external world. Lifecycle events such as creation, state change events
and certain types of data updates are examples of notifications that OSM Gateway would emit.

The following image shows the listener (Event Notifications) objects in the specification file for
TMF622 Product Order.

Chapter 8
About TMF Specifications

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 19

Figure 8-4 Listeners in the specification file

The following diagram shows how the Event Notifications are reflected in OSM.

Figure 8-5 Event Notifications in OSM

Schema
Each of the relevant TMF specifications includes a data model that defines the entities involved
in support of the domain - product or service. With the TMF framework in OSM, the importing
of a TMF specification results in the automatic creation of CDTs for all of the schemas defined
in the OpenAPI.

The following image shows the schema objects in the specification file for TMF622 Product
Order.

Figure 8-6 Schema objects in TMF 622 Product Order

Chapter 8
About TMF Specifications

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 19

The following diagram shows how the schema is reflected in OSM.

Figure 8-7 Schema in OSM

About OSM Extensions
While the TMF 622 and 641 specifications provide endpoints for basic interactions with an
order management system (post and get), they lack a comprehensive set of endpoints that
align with OSM's advanced capabilities. In response, OSM has followed the guidelines from
TMF 630 and made extensions to TMF's canonical 622 specification.

With the addition of OSM endpoints, upstream components have access to a full range of
capabilities that includes creating new orders, submitting revisions, cancel orders, abort orders,
suspend and resume orders, and fetch and search for orders using the full set of REST API
endpoints described in the OSM extended specification. It is strongly recommended to use the
specifications with OSM extensions for both Product Order and Service Order.

In the TMFSchemas sub-folder in the toolkit, OSM extensions have the suffix -OSM in the
filename.

About the Specification Version
OSM's TMF framework relies on a 5-digit version scheme for hosted specifications.

• The first three digits are reserved for TMForum as TMF specifications are versioned with a
three-number scheme.

• The fourth number is reserved for Oracle OSM to version extensions supported by the
application itself.

• The fifth number is available for solution developers to version their additional extensions.

Chapter 8
About OSM Extensions

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 19

The OSM extended specification reflects this numbering scheme and has set the version
number to 4.0.0.1.0. in the case of the 622 specification and to 4.1.0.1.0 in the case of the 641
specification.

About the OSM Endpoints
The PATCH and DELETE order level actions are not supported and removed from the OSM
Extended specification:

• The ReviseProductOrder or ReviseServiceOrder task resource must be used instead of
PATCH to leverage OSM's comprehensive amendment capabilities.

• OSM's powerful purge capabilities must be used instead of DELETE in order to provide
uniform lifecycle management across orders at scale.

In addition to the CancelProductOrder and CancelServiceOrder task resource, OSM makes
available additional task resources for complex requests that have a non-trivial lifecycle:

• SuspendProductOrder or SuspendServiceOrder: To request the suspension of an order;
this is subject to the logic in the Order Lifecycle Policy as well as the configured grace
period for in-progress tasks.

• ReviseProductOrder or ReviseServiceOrder: To request a revision to a running order; this
is subject to TMF state validation, additional logic in the Order Lifecycle Policy (for solution-
specific PONR) as well as the configured grace period for in-progress tasks.

OSM makes available additional operations on the order resource that are synchronous
requests:

• ResumeProductOrder and ResumeServiceOrder: To resume a previously suspended
order.

• AbortProductOrder and AbortServiceOrder: To halt an in-progress order immediately
regardless of its current position in the fulfillment.

Order Action Comparison

The range of order actions in OSM prior to TMF support, map onto the range of actions
implemented by OSM's new TMF framework.

The following table provides the mapping for TMF622 ProductOrder. The mapping for TMF641
ServiceOrder follows the same pattern.

Order Action Canonical TMF Specification OSM Extended Specification

Create POST /productOrder Same as canonical

Update PATCH /productOrder/<id> Not supported, use "Revise"

Delete DELETE /productOrder/<id> Not supported, use OSM purging
mechanisms

Suspend via PATCH POST /suspendProductOrder

Resume via PATCH POST /resumeProductOrder/<id>

Cancel POST /cancelProductOrder Same as canonical

Abort Not supported POST /abortProductOrder/<id>

Revise via PATCH POST /reviseProductOrder

List GET /productOrder Same as canonical

Find GET /productOrder/{id} Same as canonical

Task Resources

Chapter 8
About OSM Extensions

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 19

A task resource is used to expose operations that are not easily represented as CRUD
operations. TMF uses this pattern for CancelProductOrder and CancelServiceOrder. OSM has
continued to use this pattern to model other operations such as revise, suspend, resume and
abort.

Some task resources are persisted, resulting in an id which is separate and distinct from the
main productOrder id (or serviceOrder id). Clients can use this id to discover the status of the
task resource. (GET /reviseProductOrder/{id})

Abort and resume are simple task resources, not requiring persistence of the request. See the
Order Processing Sequence Diagrams in this chapter to understand the interaction between
the main resource and the task resource.

About OSM Event Notifications
The OSM event notifications work as follows:

• OSM emits additional creation and state-change events for the suspend and revise task
resources. These notifications communicate the state of the task resource and NOT the
main order resource.

• Event subscription mechanisms are not used (POST and DELETE on hub). Instead, an
Event Target System configuration is used to define a single listener for each Hosted Order
Specification. It is expected that this single listener will either consume the events itself, or
serve it to a message broker (for example, Kafka).

• Where an operation is not supported (for example, DELETE), then any corresponding
event notification is also unsupported (for example, ProductOrderDeleteEvent).

• OSM has scoped the AttributeValueChange events to only trigger on changes to order item
state or order item characteristic changes.

Attribute Value Event Payload
The canonical TMF payload for attribute value change events includes a "fieldPath" element,
intended to hold identifying information about the field on an order item that contains the
change. There are two potential problems with this approach.

• This is a single field. If there are multiple changes to be communicated, then a convention
would need to be introduced and communicated to the upstream system so it could
effectively parse the data.

• Alternatively, if each event is restricted to a single change, then there is a risk of flooding
the system with more events than are needed.

OSM has attempted to resolve these shortcomings in a robust, schema driven way. The
fieldPath has been extended to be an array of compound structures that identifies the specific
change including action (add, remove), JSON path to the change and the old value.

Additionally, OSM's framework does the following:

• OSM has restricted the changes that would trigger the AV event. Changes are limited to
the order item state or the order item characteristic fields.

• OSM would include multiple updates in a single event. All updates, whether within a single
line item or across multiple line items, would be included in an event, so long as they are
all made within the same orderUpdate call to OSM core.

An example of FieldPath extension is as follows:

ProductOrderAttributeValueChangeEventOSM payload : {
"eventId":"c6fd423a-777b-4a7e-ae89-d4e12060461a",

Chapter 8
About OSM Extensions

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 19

"eventTime":"2023-10-19T13:26:25.587Z",
"eventType":"ProductOrderAttributeValueChangeEventOSM",

"fieldPath":[{"change":"add","path":"$..productOrderItem[?
(@.id=='0CX-1Z8QSX')].state","oldValue":""}],
"event":{"productOrder":{
"@type":"ProductOrderOSM",
"category":"salesOrder",
"description":"TMF622 OSM Product Order",
"externalId":"456850-osm",
.......

"productOrderItem":[{
"@type":"ProductOrderItem",
"id":"0CX-1Z8QSX",
"action":"add",
"state":"inProgress",
................

About the OSM Schema
This section describes the OSM schema extensions.

Order State Extensions
TMF specifications define a set of order states that have been enhanced in the OSM extended
specification. These states are final and cannot be altered. TMF state changes would be
communicated upstream in the <resource>StateChangeEvent.

The TMF state is reflected inside the TMF object data served through the REST API (GET /
productOrder or GET /serviceOrder). When using any of the OSM UIs (Web Services API,
XML API, Task Web UI, Order Management Web client UI), the order state field shown reflects
the OSM order state, and not the TMF state.

The following table lists the mappings and usage of the TMF order states:

Table 8-1 Mappings and Usage of the TMF Order States

TMF State Usage OSM Order State

acknowledged Not used Not applicable

rejected Not used Rejected requests are handled
through a synchronous HTTP response with
appropriate HTTP response code

Not applicable

pending Initial State. After order is created, but before
any task has started. Initial State for future
dated orders

Created

held Not used Not applicable

inProgress Order is running InProgress

cancelled Order has finished being cancelled Cancelled

completed Order has finished execution with no failures Completed

failed Order has finished execution and all order
lines have failed

Completed

partial Order has finished execution with order lines
having a mix of success and failure

Completed

assessingCancellation Not used InProgress

Chapter 8
About OSM Extensions

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 19

Table 8-1 (Cont.) Mappings and Usage of the TMF Order States

TMF State Usage OSM Order State

pendingCancellation Order is running a cancellation request Amending

The following table lists the mappings and usage of the state extensions by OSM:

Table 8-2 Mappings and Usage of the State Extensions by OSM

TMF State Usage OSM Order State

amending Order is processing a revision request Amending

amending.suspended Order was processing a revision request but
is currently suspended

Amending

amending.fallout Order was processing a revision request but
is now waiting on fallout exception resolution

Amending

amending.fallout.suspended A revision request was waiting on fallout
exception resolution but is now suspended

Amending

pendingCancellation.suspend
ed

Order was running a cancellation request but
is now suspended

Amending

pendingCancellation.fallout Order was running a cancellation request but
is now waiting on fallout exception resolution

Amending

pendingCancellation.fallout.su
spended

A cancellation request was waiting on fallout
exception resolution but is now suspended

Amending

inProgress.fallout Order is running but is waiting on fallout
exception resolution

InProgress

inProgress.suspended Order was running but is currently suspended InProgress

inProgress.fallout.suspended An order waiting on fallout exception
resolution but is now suspended

InProgress

Order Item State Extensions
TMF specifications define a set of order item states that have been enhanced in the OSM
extended specification. These states are final and cannot be altered. Changes to order item
state would be reflected in the <resource>AttributeValueChangeEvent.

The valid order item states include the list above except the following states involving
suspension:

• inProgress.suspended

• inProgress.fallout.suspended

• amending.suspended

• amending.fallout.suspended

• pendingCancellation.suspended

• pendingCancellation.fallout.suspended

About Customer Name
When viewing fallout orders in the Order Operations and Fallout Management user interface,
there is a column heading for Customer Name. This name would be populated from order data
that you control at design-time. The hosted specification entity in Design Studio has a text field
where a JSON path can be provided that points to a specific data field under the productOrder
or serviceOrder.

Chapter 8
About OSM Extensions

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 19

• The import of a 622 specification defaults the value to $.billingAccount.name, but can be
modified by the cartridge developer.

• The import of a canonical 641defaults the value to $.externalReference.name but can be
modified by the cartridge developer.

• The 641 specification has no "natural" location in the schema where a customer name
might be found. OSM has therefore extended the 641 schema to introduce a customer
name field directly under the serviceOrder.

• If an OSM extended 641 specification is imported, then the default value will
be $.customerName.

About Customer Extensions to TMF Specifications
The OSM specifications can be further extended to suit your specific implementation by:

• Adhering to OpenAPI guidelines when making schema extensions

• Adding to the schema of the primary object (ProductOrder or ServiceOrder) in terms of
order data

• Keeping the set of Endpoints (paths) and operations and their contents unchanged

• Keeping the set of Event Notifications (listeners) and their contents unchanged

• Keeping the set of Task Resources and their contents unchanged

• Keeping the set of order state and order item state definitions unchanged (that is, preserve
the set of states as-is)

If the OSM extended specification satisfies your requirements in terms of schema objects, then
it can be used as-is. If however, schema additions need to be made, then you should make
your additions on top of the OSM extensions. See the OSM Modeling Guide for some
considerations when making schema updates.

About the Hosted Order Specification
Once the required schema extensions have been made to the specification (optional), the
specification needs to be imported into Design Studio. Design Studio analyzes this document
and creates multiple cartridge entities automatically. The most visible auto-created cartridge
content is a Complex Data Type conforming to the schema in the Hosted Order Specification.
A TMF order type can be created by the cartridge developer, using a CDT, as the model of the
Product Order or Service Order. Other auto-created cartridge content includes the delivery
fulfillment mode, internal roles for TMF support, and Order Lifecycle Policy.

The cartridge developer can then proceed with the standard cartridge development process,
creating orchestration entities, processes, tasks, automation plugins, and so on. Building the
cartridge results in Design Studio embedding the Hosted Order Specification into the par file
along with all the other cartridge content.

About Hosting Expectations
When OSM cloud native receives an order request (create, get, cancel, suspend, resume,
abort, revise) that gets handled by a TMF cartridge, the following expectations and services
are in place with respect to its internal behaviour:

• A Complex Data Type (CDT) is created to match the structure and typing as per the
schema for the Product Order or Service Order in the Hosted Order Specification. The
cartridge developer must add this exactly once to the order template for a TMF order as a

Chapter 8
About Customer Extensions to TMF Specifications

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 19

root level element with the name ProductOrder or ServiceOrder, as applicable. This is the
primary resource of the Hosted Order Specification.

• A cartridge developer can add more entries to the order template in order to facilitate the
actual fulfillment of the order, outside of the primary resource. The primary resource and its
underlying CDT can only be modified by using a modified Hosted Order Specification.

• While Order Recognition Rule and Order Lifecycle Policy continue to be managed by the
cartridge developer, OSM samples are provided with the data transformation from
incoming order request to the order template and will check cancellation and revision
automatically against orders and order items in a final TMF state (completed, partial, or
failed). These behaviours must be preserved in order to satisfy TMF compliance
requirements.

• OSM manages the TMF state field, both at order level and at order item level. The times
when cartridge developer needs to signal a state, they must use only an automation
framework API to do so (for example, to signal TMF "failed" state for an order item).

• OSM automatically emits order state change events (ProductOrderStateChangeEvent,
ServiceOrderStateChangeEvent) whenever there is a change to the order's TMF state.

• OSM automatically emits attribute value change events
(ProductOrderAttributeValueChangeEvent, ServiceOrderAttributeValueChangeEvent)
whenever specific data (order item state and anything in the order item characteristics) in
the auto-generated order template changes. The most common of these would be to signal
changes to the state of an order item.

• A cartridge developer can update the business content (primarily, order item
characteristics) of the primary resource as part of the order fulfillment. Such updates allow
new data from fulfillment to be reflected via GET calls on the primary resource, and where
applicable, for events to be generated. For more details about updating TMF data, see
OSM Modeling Guide.

About TMF Cartridges
The TMF Cartridge type provides the most support to cartridge developers and system
administrators when OSM operates on TMF orders. A TMF Cartridge is built around exactly
one Hosted Order Specification, and provides the fulfillment logic for that order type (Product
Order or Service Order). The TMF Cartridge is a solution cartridge, and consists of one or
more component cartridges - all deployed as one unit.

The term Freeform Cartridge refers to the non-TMF cartridges. Freeform cartridges include all
cartridges prior to 7.5.0 as well as non-TMF cartridges in 7.5.0. These cartridges are
characterized by a fully open design-time experience, allowing complete flexibility in all of
OSM's capabilities - order structure, order state behaviour, eventing and notifications,
orchestration, automation, and so on.

Note

It is important to note that these two cartridge types cannot be combined. If you have a
Freeform cartridge, you cannot simply change the order type to TMF. You must start
from scratch.

The following diagram illustrates the TMF support framework and the Freeform cartridge
framework.

Chapter 8
About the Hosted Order Specification

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 19

Figure 8-8 TMF Cartridge Framework

The Freeform Cartridge framework encompasses all of OSM's capabilities as exposed to the
cartridge. However, when a TMF Cartridge is created from a Hosted Order Specification, some
OSM capabilities are taken over by the TMF Support Framework.

This framework becomes responsible for:

• Generating the CDT to represent the primary object (order) in the Hosted Order
Specification's schema

• Calculating TMF state and generating state change events

• Monitoring changes to the primary object and generating attribute-value change events

• Propagating data changes from orchestration components back into the primary object

In addition, the framework provides inputs into the Order Lifecycle Policy, as well as order
lifecycle management mechanisms like fulfillment functions and required internal user roles.
The cartridge developer has full access to the remaining portions of the Freeform Cartridge
framework, like defining the order object, the various orchestration objects as well as the
processes the tasks (manual and automated) require for fulfillment.

Both the Freeform Cartridge as well as the TMF Cartridge have access to the functionality to
support REST interactions. Design Studio provides developers with the capability to send and
receive REST requests, responses, and events with external systems (Target Systems) using
a System Interaction Specification. See OSM Concepts for details. Also, refer to the OSM
Modeling Guide for more information on working with TMF cartridges.

About Event Target System
While the Hosted Specification lists a set of notifications, there must also be configuration to
define a listener address for the recipient of the events. This is done via a two-part
configuration.

Design Configuration

Chapter 8
About the Hosted Order Specification

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 19

The Hosted Specification entity in Design Studio includes an "Event Target System" name
which reflects a logical system name. All events coming from orders linked to a given Hosted
Order Specification (including specification version) are sent to this consumer. Because OSM
Gateway emits notifications to a single system only, if the solution design requires events to be
sent to multiple consumers or to be filtered in user-defined ways, this is the responsibility of the
single consumer defined in the Event Target System.

Deployment Configuration

The cloud native toolkit looks in the specification files for a mapping between the logical target
system name (project specification) as well as the URL to the consumer and any
authentication configuration (instance specification). At runtime, OSM Gateway resolves the
logical target system name for a given Hosted Order Specification by reading deployment
artifacts created by the toolkit during instance creation.

The following diagram illustrates the configuration of event target system.

Figure 8-9 Event Target System

Order Processing Sequence Diagrams
This section provides order processing sequence diagrams for the following flows of a TMF
order:

• Basic order flow

• Suspend and Resume

• Cancel order

• Revise order

The following diagram illustrates the Basic Order flow of a TMF order.

Chapter 8
Order Processing Sequence Diagrams

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 19

Figure 8-10 Basic Order Flow

The following diagram illustrates the Suspend and Resume Order flow of a TMF order.

Chapter 8
Order Processing Sequence Diagrams

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 19

Figure 8-11 Suspend and Resume Order Flow

Chapter 8
Order Processing Sequence Diagrams

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 19

The following diagram illustrates the Cancel Order flow of a TMF order.

Figure 8-12 Cancel Order Flow

Chapter 8
Order Processing Sequence Diagrams

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 19

The following diagram illustrates the Revise Order flow of a TMF order.

Figure 8-13 Revise Order Flow

Chapter 8
Order Processing Sequence Diagrams

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 19

TMF Product Order State Diagram
This section provides an illustration of the TMF Product Order State.

Figure 8-14 TMF Product Order State Diagram

Chapter 8
TMF Product Order State Diagram

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 19

9
About Dynamic Cartridge Assembly (Cloud
Native Only)

This chapter provides conceptual information about OSM's dynamic cartridge assembly feature
for TMF cartridges.

Prior to OSM 8.0, Design Studio was the sole application for design-time creation of OSM
cartridges. With the release of OSM 8.0 and Service Catalog and Design (SCD) 8.3, the SCD
Solution Designer web application is now available for OSM, enabling additional flexibility in
the design-time definition of OSM cartridge content.

This enhancement reduces the overall cost of cartridge development by streamlining
processes and accommodating product and service catalog related changes more efficiently. It
also recognizes the diverse personas involved in cartridge development. It provides an
alternative to the technical Design Studio application. This allows users to contribute
meaningfully within Solution Designer, regardless of their level of technical knowledge,
supporting broader collaboration and faster content creation.

When cartridge design activities span both Design Studio and Solution Designer, a mechanism
is required to merge the content produced in the two applications and facilitate deployment to
OSM. This is done by the OSM Cartridge Assembler (OCA) microservice. For more information
about installing OSM Cartridge Assembler (OCA), see Installing OSM Cartridge Assembler
(OCA) for Integration with Solution Designer.

OCA brings the Dynamic Cartridge Assembly capability to the distributed design journey by
integrating inputs and performing a seamless deployment process.

Refer to About Service Catalog and Design for an introduction to Solution Designer. Refer to
the OSM Compatibility Matrix for the version of SCD applications that work with your OSM
release.

About the Design Journeys
There are two kinds of design time journeys that you can use to develop OSM Cartridges.
These are:

• Traditional Design Journey

• Dynamic Design Journey

Traditional Design Journey

The traditional OSM cartridge development design time journey takes place fully in Design
Studio. The OSM cartridge developer defines all the content that is required for processing,
performs a build and then deploys the cartridge to an OSM instance. The deployment can be
done using Design Studio or other mechanisms. This is typically an iterative process.

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 5

Figure 9-1 Traditional Design Journey

Dynamic Design Journey

The dynamic design time journey spans both Design Studio and Solution Designer. This
process produces the signal that triggers OSM Cartridge Assembler (OCA) to perform the
Dynamic Cartridge Assembly.

Figure 9-2 Dynamic Design Journey

About the Dynamic Design Journey
The introduction of Solution Designer expands the OSM cartridge development process into a
dynamic, two-phase design journey. This approach enables both technical and non-technical
users to participate in cartridge creation, tailoring the process to fit a range of skills and project
requirements.

For more information about the two phase cartridge development process, refer to the
following sections:

Chapter 9
About the Dynamic Design Journey

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 5

• Phase 1: Capabilities Cartridge Development in Design Studio

• Phase 2: Business Modeling in Solution Designer

About the Capabilities Cartridge
The dynamic design journey introduces a key artifact called a capabilities cartridge. This
consists of a set of reusable OSM entities such as order template, order item specification,
order components, fulfillment patterns.

Note

Only TMF cartridge content can be packaged as a capabilities cartridge.

Refer to Working with Capabilities Cartridges (Cloud Native Only) for more information about
working with a capabilities cartridge in Design Studio, including the restrictions and limitations.

Refer to About OSM Participant in Service Catalog and Design Solution Designer User's Guide
for more information about generating a capabilities cartridge artifact.

Phase 1: Capabilities Cartridge Development in Design Studio
The first phase is led by the technical cartridge developer, using the Design Studio
environment. The process in this phase is what developers do in the traditional design journey
of iterative development and test cycles to build their cartridges.

Key activities performed in this phase include:

• Defining technical entities, behaviors, and orchestration logic.

• Implementing complex business rules and integrations.

• Defining a set of test data so that the orchestration logic can be validated through runtime
order processing.

• Repeating the building and deployment cycle until testing confirms correct cartridge
processing.

Once the traditional development and testing cycle is complete, you prepare for the dynamic
journey by re-packaging the workspace into a capabilities cartridge.

The process produces two key artifacts:

• A .cpar file which is an archive of reusable OSM content that is exposed in Solution
Designer. This is not a deployable artifact. This needs to be delivered to your OSM cloud
native instance (specifically the OCA microservice) that is connected to Solution Designer.
Refer to "Building Capabilities Cartridge Image" and Installing OSM Cartridge Assembler
(OCA) for Integration with Solution Designer in OSM Cloud Native Deployment Guide for
more information.

• A capabilitiesManifest.json file that describes the reusable components that are made
available in the .cpar file.

Note

Design Studio provides the customizability and flexibility required by technical experts
to architect comprehensive and robust cartridge logic.

Chapter 9
About the Dynamic Design Journey

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 5

Phase 2: Business Modeling in Solution Designer
The second phase empowers the business modeler - a user who does not need cartridge
development expertise - to leverage the reusable content from the capabilities cartridge, to
define an order processing cartridge using Solution Designer. In this web-based tool, business
modelers can:

• Configure product catalog content including products (PS), services (CFS) and PS-CFS
attribute mappings.

• Link the product catalog to the relevant OSM content sourced from the capabilities
cartridge. For example, a PS (defined in Solution Designer) is mapped to a fulfillment
pattern (defined in the Capabilities Cartridge).

This phase provides a user-friendly interface that leverages the business modeler's specific
knowledge and enables faster responses to evolving modeling requirements. Since
dynamically built cartridges are largely reusing tested and delivered content from the capability
cartridge, along with generated configuration, this approach removes the regression risk
associated with repeated cartridge development iterations.

About Dynamic Cartridge Assembly
Dynamic cartridge assembly is a key capability used to streamline and modernize OSM
cartridge management in environments where SCD's Design Studio and Solution Designer are
both used. It allows users from both technical and business domains to effectively collaborate
and contribute to cartridge development while ensuring operational consistency and agility.

The OSM Cartridge Assembler (OCA) microservice acts as the heart of this process, enabling
a coordinated, automated, and reliable path from distributed cartridge design to OSM
deployment.

Figure 9-3 Dynamic Cartridge Assembly

Chapter 9
About Dynamic Cartridge Assembly

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 5

Chapter 9
About Dynamic Cartridge Assembly

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 5

10
About Runtime Order Management

This chapter provides an overview of the Oracle Communications Order and Service
Management (OSM) runtime tasks. Before reading this chapter, read "Order and Service
Management Overview ."

For information about using the OSM web clients, see OSM Order Management Web Client
User's Guide and OSM Task Web Client User's Guide.

About Managing Orders
Order management personnel use the Task web client and the Order Management web client
to manage orders. Order management tasks include:

• Completing manual tasks. Most of the tasks required to complete an order are
automated. Manual tasks are completed in the Task web client. An order manager can add
comments to the order, attach documents, display the history of the order, and receive
notifications about at-risk orders or tasks.

• Managing fallout. You can identify errors that occur during order fulfillment, notify the
appropriate individuals or systems, and take corrective measures.

• Managing the order life cycle. Most changes to the order life cycle occur automatically.
However, an order manager can manually suspend and resume orders, cancel orders,
update orders, and create orders.

• Running reports. You can run reports to get information about the overall order
processing load. You can run the following summary reports:

– Pending Orders

– Order Volume

– Completed Order Statistics

– Completed Tasks Statistics

Assigning Tasks to OSM Users
There are two approaches to assigning tasks to users in OSM:

• A work offer approach, which is by role, where tasks are associated to a role and users
performing that role may select tasks from their worklist to work on them. This is the
standard task assignment approach in OSM.

• A work assign approach, where a task assignment algorithm is used to specifically assign
each task to a user performing the role. This approach requires additional OSM modeling.

For each manual task, you can specify how it is assigned to an OSM user for completion. You
can use the following methods:

• Round robin assignment automatically assigns tasks to users in a workgroup
alphabetically by user name.

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 4

• Load balancing assignment automatically assigns users in a workgroup to balance the
workload across users, based on the number of tasks assigned to each user. The user with
the least number of tasks is assigned the task.

You can also create custom automatic assignment methods. For example, you might specify
that the first task received is the first one assigned or that the last task received is the first one
assigned.

About Workflow and Workstream Processes
When you create processes in Design Studio, you specify if a process is a workflow process or
a workstream process.

With a workflow process, the Task web client displays the worklist after it completes each
task. This is because a workflow process is intended to distribute work among different users in
different workgroups. The next task in the process might be handled by a different user.

With a workstream process, OSM displays the order editor page for the next task
automatically without first returning you to the worklist.

A workstream process can include manual and automated tasks. If an automated task occurs,
OSM processes it and displays a message indicating that processing is taking place. While
automated processing is occurring in the workstream, you can return to the worklist to work on
other tasks. The automated task in the workstream will continue to progress to completion.
This type of process is useful when the automated task in the workstream takes some time.

After the automated task finishes, and the next task becomes available, any user in the
workgroup can pick up the workstream from that point. When the final task in a workstream
completes, OSM returns the user to the worklist. OSM automatically displays the order editor
page for the next manual task in the workstream to the user.

About the Order Lifecycle Management UI
Using the Order Lifecycle Management UI, you can view information about an order, such as
fulfillment dates, the order's progress on a timeline, and order processing errors. The Order
Lifecycle Management UI is available on the Timeline tab of the Order Management web
client. If your system uses the Oracle Configure, Price, and Quote Cloud (Oracle CPQ
Cloud) application as the order capture software, you can view the Order Lifecycle
Management UI within Oracle CPQ Cloud.

The Order Lifecycle Management UI provides online Help. Click the Help icon in the UI for
more detailed information.

About Managing OSM Users
Order managers use the Task web client to manage an order in runtime. To control which users
can process specific types of tasks or perform specific actions in OSM, you define users in
Oracle WebLogic Server. You can assign users to two types of groups:

• Use WebLogic Server groups to define who can access system administration tasks, such
as who can use client tools, read log files, and start and stop OSM server components.

• Use OSM workgroups to define how users can perform order management tasks, for
example:

– You can assign permissions to carry out tasks such as assigning tasks to other users,
running reports, changing order priority, and so on.

Chapter 10
About Managing OSM Users

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 4

– You can specify the data that a user can see in the Task web client.

– You can specify the orders that OSM users can manage, based on data in the order.
For example, you specify that a user can see only orders from a region or for a specific
type of service.

To create OSM workgroups, you do the following:

1. Create roles in Oracle Communications Service Catalog and Design - Design Studio. The
term role in Design Studio means the same as the term workgroup in the Task web client
and the Order Management web client.

When you create roles, you define permissions; for example, you can specify who can
display reports in the Task web client or who can change the priority of a task during order
processing. You can assign roles when you model OSM entities. For example, you can
specify the roles that can manage an order, or process a task.

2. Assign users to workgroups by using the Order Management web client. This is typically
performed as a one-time configuration task.

For example, you might create roles based on what a user can do in the Task web client. You
can assign the same tasks to multiple workgroups, but users in each workgroup can work with
it differently; for example, you might have a workgroup specifically for fallout management.

Roles are also used by automated tasks. For example, automated tasks use OSM roles to
restrict who can receive a notification.

About Using Behaviors to Customize the Task Web Client
You can use behaviors to specify how OSM manages data. For example:

• You can specify the maximum allowed number of characters for text string data.

• You can add the values of multiple fields and display the sum in another field.

• You can specify the minimum and maximum times that a data element can be used in an
order. For example, an order might require that exactly two IP addresses are added.

Figure 10-1 shows an example of changing the user interface by using behaviors. In this
example, data from two fields is combined into one field.

Chapter 10
About Using Behaviors to Customize the Task Web Client

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 4

Figure 10-1 Combining Two Fields

For more information, see the discussion about modeling behaviors in OSM Modeling Guide.

Chapter 10
About Using Behaviors to Customize the Task Web Client

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 4

11
OSM Functional Overview

This chapter provides a diagram of Oracle Communication Order and Service Management
(OSM) functionality.
Before reading this chapter, read the previous chapters, starting with "Order and Service
Management Overview ."

OSM Functional Diagram
Figure 11-1 shows a functional diagram of OSM.

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 3

Figure 11-1 OSM Functional Diagram

Figure 11-1 shows the three primary stages in order management: create the order, generate
and run an orchestration plan, and run processes and tasks.

Chapter 11
OSM Functional Diagram

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 3

• To create an order, OSM receives an order as a web service operation from an order
source system. When an order request is received, OSM performs order recognition to
determine which type of order to create, based on the order specification. Transformation
rules transform the order data into a format that can be used by OSM. See "How OSM
Receives and Creates Orders."

The order specification also defines the order lifecycle policy, which governs the states that
the order can transition through. For more information, see "About the Order Lifecycle
Policy."

• To generate and run an orchestration plan, OSM derives order items from the order data,
and decomposes the order items into order components, based on fulfillment patterns. See
"How OSM Generates and Runs an Orchestration Plan" and "About Decomposition."

The orchestration plan includes dependencies that determine the order in which processes
can run. See "About Dependencies."

When processing a customer order, OSM can use order item transformation to transform
order items for products, bundles, and offers into order items for customer-facing services.
See "About Order Item Transformation" and "About COM, SOM, and TOM."

• When running processes, OSM runs manual tasks and automated tasks. Manual tasks are
managed by the Task web client. Automated tasks are run as plug-ins by the automation
framework. Plug-ins use EXtensible Stylesheet Language Transformations (XSLT), XQuery
scripts, and Java to communicate with external systems. See "About Tasks and
Processes."

Figure 11-1 shows the areas in OSM that carry out functionality related to business processes
such as changes to in-flight orders:

• Fulfillment states can manage states in orders and in order items.

• Predefined processing states can manage order item states.

Note

Order item processing states do not go to the order level as fulfillment states do.

• Order change management, such as using revision orders and compensation, is
performed when processing tasks. Revising an order can also require a new orchestration
plan.

• Internal order and task events throughout the order management process can create
events that trigger notifications to order management personnel.

Figure 11-1 shows the interfaces used by the OSM functionality:

• CRM systems use JMS queues to send an order to OSM. HTML can be used in test and
demonstration systems.

• You configure orchestration by using XQuery scripts to find, get, and transform data. You
can also use XQuery scripts in processes.

• The Task web client and the Order Management web client communicate with the OSM
server by using HTTP.

• The reporting interface uses SQL to retrieve data from the OSM database.

• OSM uses a variety of interfaces to connect to external systems, such as billing or shipping
systems.

Chapter 11
OSM Functional Diagram

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 3

Glossary

activation
The enabling, disabling or changing of a network resource; for example, creating a local loop
for a DSL service. Activation is preceded by provisioning . Activation is typically initiated in a
technical order run by OSM in the technical order management (TOM) role.

activation task
A type of automated task designed specifically to interact with the Oracle Communications
ASAP product or the Oracle Communications IP Service Activator product.

amendment processing
A generic term that refers to making changes to in-flight orders. Amendments are typically
made when processing a revision order, or managing an order cancellation or order failure.
The amendment usually performs compensation; such as redoing or undoing tasks.

ASAP
An Oracle product used by communication service providers to activate operational support
systems equipment across multiple technology domains. ASAP supports many hardware
vendor's network systems, and is integrated with OSM using activation tasks.

automated task
A task that does not require manual activity. Automated tasks handle interactions with external
systems such as billing systems, shipping systems, and activation systems. They can also
perform custom calculations and other operations. See manual task.

automation framework
An interface that enables the integration of OSM with external applications. It is used to
automate tasks and notifications to other systems. It can also be used to perform business
logic (such as performing complex calculations) without interacting with an external system.
The automation framework is an OSM server component that performs the work required by
automation plug-ins.

automation plug-in
An OSM component that performs the operation specified by an automated task. For example,
you can create automation plug-ins to update order data, complete order tasks with

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-1 of Glossary-23

appropriate statuses, set process exceptions, react to system notifications and events, send
requests to external systems, and process responses from external systems. OSM provides
several predefined plug-ins. You can also develop your own plug-ins.

behaviors
OSM behaviors allow you to control the validation and presentation of data elements in the
OSM Task web client. For example, you can use the Calculate behavior to derive the value of
the data in a field by adding the values in two other fields. You could use the Information
behavior to present a tool tip for a field in the Task web client.

In addition to customizing the Task web client, you can also use the Data Instance behavior to
retrieve data by using data providers. See data provider.

cartridge
A collection of entities and data defined in Design Studio and packaged in an archive file for
deployment to a runtime server. In Design Studio, you build cartridges in cartridge projects.
You can create your own custom cartridges to extend Oracle Communications applications.
Additionally, you can obtain from Oracle customized cartridges that support integration with
other common applications, and cartridge packs that bundle cartridges containing metadata for
particular technology domains; for example, order specifications, recognition rules, processes,
behaviors, and so on.

central order management (COM)
The OSM role that receives orders from one or more order-source systems such as Siebel
CRM, creates an OSM customer order, and manages the fulfillment of the order across other
enterprise systems including billing and OSM in the service order management (SOM) role.
OSM operating in the COM role also receives status information from these systems and
provides visibility of an order's status back to the order-source system.

CFS
See customer-facing service (CFS).

COM
See central order management (COM).

common fulfillment state
A fulfillment state that can be assigned to an order item, order component, or order. Common
fulfillment states are user-defined values that provide consistent state definitions for various
entities. Common fulfillment states are available for the entire workspace. To define a common
fulfillment state, you define its name, and then apply either a mapped fulfillment state or a
composite fulfillment state to it. For example, a common fulfillment state named Failed could
be used for a fulfillment state mapped from Error, or a composite state of Error +
Unsuccessful.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-2 of Glossary-23

See mapped fulfillment state and composite fulfillment state.

compensation
The process of comparing the requirements in a revision order to the requirements in the base
in-flight order, and making the changes. For example, if a customer initially orders Bronze-level
DSL service but upgrades to Gold-level service while the original order is in place, tasks may
need to be done, redone, or undone. OSM automatically calculates the compensation required
to accommodate the changes to orders.

compensation plan
An internal process that OSM defines and runs to process a revision order. The compensation
plan defines which tasks need to be done, redone, or undone.

composite fulfillment state
The fulfillment state that results from combining the fulfillment states from order items into a
single fulfillment state.

control data
Metadata in an orchestration order that is used to manage how the orchestration plan runs.
OSM extracts control data from an order. Control data provides information about order items,
order components, and dependencies required to generate the orchestration plan. This
includes status and timestamps for its order items and components. When an orchestration
plan is run, the order data, including control data, can be updated as transactions are
completed.

Design Studio automatically generates control data for order components. You manually model
control data for order items.

creation task
The task that contains data required for the order. The creation task specifies what information
must be provided to the order before it can start processing. It is used by OSM in the order
process; for example, when an order is canceled, the order is returned to the creation task. A
creation task is defined in the order specification.

CRM
Customer relationship management. A system for managing a company's interactions with
customers, clients and sales prospects; for example, Oracle's Siebel CRM.

customer-facing service (CFS)
A service that implements what the customer ordered, independent from how the order is
implemented on the network. A CFS is typically the service as the customer would recognize it;

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-3 of Glossary-23

for example, Internet service. By contrast, a resource-facing service (RFS) is the service as
implemented on the network; for example ADSL or VDSL.

customer order
An order processed by OSM in the central order management (COM) role. OSM creates a
customer order from the order received from the CRM system. The customer order typically
fulfills billing functions and calculates the requirements for a service order that is sent to OSM
in the service order management (SOM).

Data Dictionary
A logical collection of data elements and data types in a workspace, enabling you to leverage
common definitions across an entire Oracle Communications solution. For example, the Data
Dictionary enables you to create order templates, atomic actions, and service specifications,
and share the data defined for those entities across your OSM, ASAP, and Inventory
applications. Entities in a workspace contribute data types to the Data Dictionary, and data
schemas in a workspace (which are accessible across all projects) contribute data elements to
the Data Dictionary.

The Data Dictionary enables you to integrate and correlate data models for multiple
applications, reduce the size and complexity of a solution model, simplify the application
integration by eliminating data translation among applications, and validate data model
integrity. See also data schema.

data element
A structured or simple type data definition. When modeling data for a project, you create data
elements that you can reuse throughout your model. There are two types of data elements:
simple data elements and structured data elements.

See simple data element, structured data element.

data provider
An adapter that can retrieve order data from external systems in an XML format. Design Studio
provides several built-in data providers to retrieve external XML instances from specific
sources such as a JDBC database or a SOAP web service. Additionally, you can create your
own custom data provider. Data providers are used when defining Data Instance behaviors.

data schema
An XML schema that provides a formal description of a data model, expressed in terms of
constraints and data types governing the content of elements and attributes. All data elements
are created and saved in data schemas, which are accessible across all projects in a
workspace. Design Studio automatically creates a project-specific data schema when you
create a new project. You can use this default schema to contain the data you require to model
the project, you can create multiple schemas in the same project, or you can create schemas

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-4 of Glossary-23

in common projects. You can model your projects using data from any combination of these
data schemas.

decomposition
The process by which order line items in a sales order are transformed into order items, which
are then organized into order components. For example, OSM can use the following algorithm
to achieve decomposition:

• Map order items to functions (fulfillment function order components)

• Map function order items to fulfillment systems (fulfillment system order components)

• Map fulfillment system order items to processing granularity (granular order components)

See also order component, executable order component, orchestration stage.

decomposition rule
Rules that determine the order items in each order component during decomposition. OSM
evaluates every order item in the source order component against the conditions that you
define for the decomposition rule.

Unlike many other OSM modeling entities, decomposition rules are not directly referenced by
other parts of the model. OSM selects decomposition rules by matching the source and target
order components of the decomposition rule to the order components in the orchestration
stages in the orchestration sequence.

See orchestration, order item, order component.

default process
The first process that runs after an order is created. A default process can either be an
orchestration process (which will be backed by a dynamically generated orchestration plan) or
a workflow or workstream process.

delay
A process activity that specifies that a process stops until a condition evaluates as true. In
OSM there are two types of delays, timer delays and event delays. A timer delay retries the
evaluation of the rule at a fixed time interval. An event delay retries the evaluation of the rule
only when order data changes.

dependency
A relationship in which a condition related to one order component or order item must be
satisfied before another order item can be processed. For example, it may be necessary to
perform provisioning before billing can occur for the same order item. Dependencies can have
the following relationships:

• Between different order components for the same order item.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-5 of Glossary-23

• Between different order components for different order items.

• Between order items across orders.

• Time-based dependencies.

See also inter-order dependency, intra-order dependency.

design and assign
The process of determining the resources required to implement a service, and assigning the
resources based on the available inventory. For example, the design for a DSL service might
specify a port and a local loop, which would be assigned based on the inventory. Design and
assign is typically initiated in a service order run by OSM in the service order management
(SOM) role.

Design Studio
An integrated design environment for the development of solutions based on the Oracle
Communications OSS Applications. Design Studio enables solution designers to configure
application-specific and multi-application solutions by leveraging application-specific concepts.
Design Studio is built on an open architecture based on the Eclipse framework, and it uses a
wide variety of innovative technologies.

entity
A functional unit created and edited in Design Studio; for example, tasks, processes, physical
and logical resources, and order specifications. Entities are collected in projects and deployed
to runtime environments to support your business processes.

event delay
See delay.

executable order component
An order component with an associated process. Typically this is a component decomposed to
its final level of granularity. Executable order components are generated during the last
orchestration stage in an order.

See also decomposition.

expected duration
The amount of time an order, or some part of the order, (for example an order component,
fulfillment pattern or task), is expected to take to complete processing. OSM uses the expected
duration to calculate the expected start date and the expected completion date.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-6 of Glossary-23

expected start date
The date on which an order is expected to start being processed. Expected start date is
determined by calculating the expected order duration and factoring this in with the requested
delivery date for order items on the order.

external fulfillment state
The status returned from a fulfillment system to an order component. This may be the exact
status returned by the system, or automation may be used to translate the status before it is
put on the order. It is a key input into a fulfillment state mapping.

See fulfillment state.

fallout
The failure of an order or task during processing. Fallout occurs whenever an order or task
encounters a situation that prevents it from processing normally. Causes for fallout include
missing data or the inability to access a fulfillment system. Fallout management includes
detecting, investigating, resolving, or escalating failed orders and tasks.

fallout exception
A mechanism initiated from the OSM Task Client or from an automated task automation plug-in
to interrupt or stop an order or task, to redirect it to any task in the same process or any other
process, or to transition a task into a fallout execution mode.

fallout management
A process that includes detecting, investigating, resolving, and escalating failed orders and
tasks. Administrators perform fallout management with the Fallout Orders dashboard. The
dashboard allows them to search for orders that are in fallout and perform remedial actions,
and resolve errors and dependencies to allow order processing to proceed. In cases where the
fallout scenarios cannot be resolved, you can cancel or terminate the order.

follow-on order
An order that is submitted to modify a completed order. Follow-on orders are not processed
until their order-item dependencies on the in-flight orders allow them to proceed.

fulfillment
Operations that fulfill a customer's order, such as providing, modifying, resuming, or canceling
a customer's requested products and services.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-7 of Glossary-23

fulfillment function
An operation that must be performed to process an order; for example, initiating billing,
shipping a modem, or activating a service.

fulfillment mode
An entity that represents the intent of an order. For example, the fulfillment mode could indicate
whether the order is intended for qualification, delivery to fulfillment systems, testing and so on.
Every customer order can specify a fulfillment mode.

fulfillment pattern
An entity that includes the fulfillment function order components and dependencies required to
fulfill a product order. Each order item in an order is mapped to a fulfillment pattern. OSM uses
the fulfillment pattern to determine the necessary fulfillment functions, order components, and
dependencies to generate an orchestration plan.

fulfillment state
The state of an order or order item aggregated and translated from status values returned by
external systems. This state can be used to provide status visibility to upstream systems and to
users by using the Order Management web client.See also common fulfillment state,
composite fulfillment state, external fulfillment state, mapped fulfillment state.

fulfillment state map
The Design Studio entity that contains both the definition of common fulfillment states and
fulfillment state mappings. A common fulfillment state defined on one fulfillment state map is
available to all fulfillment state mappings in the workspace.

See common fulfillment state and fulfillment state mapping.

fulfillment state mapping
The Design Studio entity that maps external fulfillment states to values from the common
fulfillment state list. The resulting fulfillment state is referred to as a mapped fulfillment state.

fulfillment system
A system that carries out the actions necessary to complete the order; for example, activate
services on the network, ship equipment, or run billing. To process an order, OSM sends
commands to fulfillment systems to carry out their functions and return the status of the
fulfillment action.

fulfillment topology
The fulfillment systems required to fulfill orders. For example, a fulfillment topology might
include a CRM system, OSM running in the COM role, multiple instances of OSM running in
the SOM and TOM roles, a billing system, a shipping system, and so on. The fulfillment

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-8 of Glossary-23

topology also defines the relationships between the fulfillment systems; for example, the
activation systems and shipping systems that OSM in the TOM role interacts with.

future-dated order
An order that has a requested delivery date that is later than the current date and time. For
example, a customer order to have a new VoIP service added at the beginning of the next
month is a future-dated order. OSM uses the order orchestration plan to calculate the order
start date of future dated orders so the order can be completed by the time the customer wants
it.

See also expected duration and expected start date.

inbound order
See customer order.

in-flight changes
Changes that are made to an order that is being processed.

in-flight order
Any order that is not in a closed state (Closed or Aborted). An in-flight order still has the
potential for further work to be performed on it.

inter-order dependency
A dependency between order items in different orders.

intra-order dependency
A dependency between order items in the same order. An intra-order dependency can refer to
external information, but not to data in other orders.

IP Service Activator
Internet Provider Service Activator. An Oracle product used by communication service
providers to define and fully automate the activation of services on large-scale multi-vendor IP
networks. IP Service Activator delivers end-to-end network control and enables real time
reaction to new service and customer demands.

line item
See order line item.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-9 of Glossary-23

lifecycle policy
An order attribute that defines the states that an order can have; for example, In Progress and
Suspended, and the rules governing transitions between states.

JMS queue
A method used by systems to communicate with each other. To communicate with external
systems, the OSM server uses mostly Java Message Service (JMS) queues. JMS is part of the
standard Java platform. A JMS queue is a staging area that you configure when you install
OSM. Systems communicate via JMS queues by publishing messages to them and receiving
messages from them.

manual task
Tasks performed manually by OSM operations personnel using the Task web client. See also
automated task.

mapped fulfillment state
The fulfillment state that results from a fulfillment state mapping.

metadata
The data that you create when modeling OSM in Design Studio. Metadata is data about data,
that is, metadata defines how data is created and used in the OSM system. OSM uses
metadata to determine how to process order data. For example, OSM uses metadata from the
order specification as a template to create orders at runtime.

mnemonic
A synonym for an entity name. Mnemonic is a legacy term for OSM. The proper name is entity
name.

multi-instance data element
A data element that is permitted to have more than one instance. For example, you configure
the ControlData/OrderItem structure as a multi-instance data element so that OSM can
create an instance of the structure for every order line item extracted off the inbound order.

namespace
A method for uniquely naming elements and attributes in an XML document. Design Studio
supports entity and cartridge namespaces. You pair the entity or cartridge name with a
namespace name to create a fully qualified namespace. For example, you can pair entity
names with a namespace name to enable different groups of Design Studio users to create
different entities without concern for naming conflicts. Services can be implemented
independently by different teams and then deployed into a single runtime environment.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-10 of Glossary-23

Not every OSM entity has a separate namespace (example: tasks and processes). For these
types of entities, a unique name is created by attaching the cartridge name and version
number to the entity name.

notification
Messages sent by OSM to alert users of order problems (jeopardy notifications) or changes to
an order's state, status or data (event notifications). By default, OSM sends most types of
notifications to the Task web client Notifications page. You can also specify that notifications be
sent by e-mail.

Oracle Application Integration Architecture (Oracle AIA)
Integrates business processes across multiple applications. OSM integrates with Oracle AIA
for Communications. Oracle AIA runs on top of Oracle Fusion Middleware.

Oracle Application Integration Architecture (Oracle AIA) Order-to-Activate Cartridges
A set of OSM cartridges that integrate with the Oracle Communications Order to Cash
Integration Pack for Oracle Communications Order and Service Management (Order to Cash
Integration Pack for OSM). The Order-to-Activate cartridges and the integration pack enable
OSM to be part of an order fulfillment solution that covers the entire order-to-activate process
from order creation to service activation.

Oracle Configure, Price, and Quote Cloud (Oracle CPQ Cloud)
Oracle's order capture software that enables companies to select products, assign pricing,
create quotes, and submit orders.

Oracle WebLogic Server
Oracle's application server for building and deploying enterprise Java EE applications. The
Oracle WebLogic Server hosts the OSM server, OSM integration, and related interfaces.

orchestration
The process OSM uses to manage the fulfillment of an order across many fulfillment systems.
Dependencies may require that these interactions be run in a specific order to ensure that
order items are sent to the proper systems, and that the required steps, in the proper sequence
are run.

orchestration order
An order that requires an orchestration plan for fulfillment. Orchestration orders contain control
data for an orchestration plan. The default process for an orchestration order is an
orchestration process. Most orders are orchestration orders. See process-based order.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-11 of Glossary-23

orchestration plan
A dynamically generated plan that is used to manage the fulfillment of an order. Order
fulfillment often requires interaction with many fulfillment systems, and various dependencies
may require that these interactions be run in a specific order. The orchestration plan includes
the order, order component, and the type and the sequence of order component execution. An
orchestration plan is generated for each order based on the metadata defined for the type of
order being processed.

For example, an order is captured by Siebel CRM and is sent to OSM for processing. Using
the recognition rules and other entities provided by the OSM cartridges in the Order to Cash
Integration Pack for OSM, OSM decomposes the order and dynamically generates an
orchestration plan that is used to manage the fulfillment of the customer's order across other
enterprise systems.

orchestration sequence
A set of orchestration stages for an order. Orchestration sequences specify the set of
orchestration stages for an order. Orchestration stages and sequences together define how an
order is decomposed.

See also decomposition, orchestration stage.

orchestration stage
A step in an orchestration sequence used to decompose an order and generate an
orchestration plan.

See also decomposition, order.

order
An order in the OSM format. You model orders by creating order specifications in Design
Studio.

There are many order variants including:

• customer order

• follow-on order

• future-dated order

• inbound order

• in-flight order

• orchestration order

• process-based order

• revision order

• service order

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-12 of Glossary-23

• technical order

order component
A collection of order items that can be processed together because they meet some common
criteria as determined by an orchestration stage. Order components are modeled in Design
Studio, based on factors such as a function that needs to be performed, the systems that need
to perform that function, and what other items can be processed in the same group.

See also decomposition, executable order component.

order component ID
An ID associated with an order component that can be used in decomposition. When
implementing fulfillment systems, for example, you can configure OSM to decompose an order
by using decomposition rules or by using the component IDs.

order data
The data that is used for fulfilling an order; for example, the customer name and address,
required bandwidth, and so on.

order data key
Uniquely identifies a data element or structure in an order by differentiating the data element or
structure based on a data element value. Order data keys are important when identifying order
data changes during compensation and for multi-instance data elements.

order definition
See order specification.

order duration
See expected duration.

order entity
See order specification.

order fallout
See fallout.

order fulfillment state composition rule set
The Design Studio entity used to aggregate and evaluate the fulfillment states of root-level
order items and compose them into a single composite fulfillment state for the entire order.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-13 of Glossary-23

See fulfillment state.

order header
The part of an incoming sales order that contains information applicable to the entire order
such as the sales order number, the order action (Add, Cancel, Delete, and so forth), and the
customer name and address. An order in the OSM format does not have a header; only orders
received from external order source systems.

order item
An order line item transformed so that it can be processed in OSM. Order item properties
include the action required to implement it, such as Add, Suspend, and Delete. Order items are
decomposed into order components during orchestration.

See also order component.

order item fulfillment state composition rule set
The Design Studio entity used to aggregate and evaluate the fulfillment states of order
component order items and child order items and compose them into a single composite
fulfillment state for the entire order item.

See fulfillment state.

order item transformation
The process of using rules to derive one set of order items from another set of order items.

order key
A unique value that enables the system to match incoming revision orders to the
corresponding OSM order. If the order key matches an order that is currently in progress, the
order is considered to be a revision that amends a base order. For example, you can specify to
use the customer reference ID as the order key. In that case, when OSM processes an order, it
looks for previous orders that have the same customer reference ID, and amends it.

The order key can be any data or combination of data associated with the order. It is
configured in Design Studio as an XPath expression to a data element that will uniquely match
an amended order to its corresponding OSM order. For example, you might specify a customer
reference ID as the following Xpath expression: root/Cust_Ref_ID

order life cycle
The sequential states through which an order passes and the transactions it undergoes from
the time it is received in OSM until the time it is resolved. States include Not Started, In
Progress, Suspended, and Completed. Each order state is associated with a set of
transactions that can be performed while the order is in that particular state. Transactions

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-14 of Glossary-23

include Update Order, Cancel Order, Complete Task, and Raise Exception. The life cycle of
an OSM order is governed by the order state model and order life cycle.

Order Lifecycle Management UI
A user interface that enables you to view the progress of an order that is being managed by an
OSM system.

order lifecycle policy
A set of policies that controls the states in which an order can be, and the transactions allowed
in those states. The order lifecycle policy also determines which roles can perform which
transactions. For example, while an order is in the In Progress state, you might want your
Customer Service role to be able to perform the Update Order, Cancel Order, and Suspend
Order transactions, while your Fallout role is able to perform the Raise Exceptions transaction.
Every order type you create must be associated with an order lifecycle policy.

order line item
Specific items such as individual products, services, and offers on an incoming order. OSM
transforms order line items into order items.

Order Management web client
An OSM web application that displays an order's orchestration plan, including dependencies,
order components, and order items. The Order Management web client is used by fallout
administrators responsible for locating orders with errors, determining the causes of failures,
and taking the necessary corrective actions; operations and management personnel who
monitor the progress of orders; and orchestration plan designers who can use this application
to test and validate orchestration-based orders during the modeling and implementation of
OSM solutions. The Order Management web client also has an Administration area used to
manage user workgroups, calendars and schedules, email notifications, and system errors.

order priority
A value that OSM uses to determine which orders should be given more processing resources.
OSM uses order priority to determine the next thing to be done. Orders with higher priority will
be processed before orders with lower priority. In situations where resources are constrained
(for example, the system is using all available CPU, memory, or other resources to process
orders), orders with higher priority will process faster than orders with lower priority.

order recognition
The process of determining the type of an incoming order so it can be mapped to an order
specification in OSM. During order recognition, OSM steps through an ordered list of
recognition rules to determine which rule applies to the customer order. Each rule is associated
with an order specification.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-15 of Glossary-23

See recognition rule.

order reference number
A value associated with an order specified in one of the OSM web clients or OSM APIs. OSM
uses an order reference number as an identifier to external systems. Reference numbers can
be used as keys to correlate orders between systems.

order specification
An order entity defined in Design Studio. The order specification is the central entity in OSM. It
defines the basic information OSM requires for it to be able to process orders. It specifies such
things as what data is allowed in an order, (defined in the order template), what are the range
of order priorities, whether amendments are allowed and how they are processed, how to
handle jeopardy, fallout, permissions and so on.

Other entities such as tasks, processes, and notifications require that you specify an order
specification to which it relates. Order specifications can inherit from other order specifications,
and multiple order specifications can be modeled and can exist simultaneously. Also known as
an order definition and order entity.

order state
The condition of the order. For example:

1. An order is created in the Not Started state.

2. When processing begins on the order, the state changes to the In Progress state.

3. When the order is complete, it transitions to the Completed state.

See order life cycle.

order state transition
Changes from one order state to another order state as a result of a transaction. Each order
state has a set of allowable transitions. For example, when an order is completed, it transitions
from the In Progress state to the Completed state.

order template
A part of an order specification that defines what order data OSM will use to process and fulfill
the order. For example, the order template defines the data required for order items as well as
the data required in an order header. You create or modify order templates by adding data
elements from one or more data dictionaries.

order transformation
The manipulation and enrichment of the structure and contents of an order through a set of
rules. Transformation rules are applied to an incoming sales order in a recognition rule.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-16 of Glossary-23

Three types of transformation rules are available: order priority rules, which define the priority
of the order in relation to others; order reference rules, which define the order reference
number; and order data rules, which add to or modify incoming customer order data.

order validation
A process that validates that an order is syntactically correct. When an inbound order is
recognized, OSM validates it based on validation rules defined in the order recognition rule.

For example, a validation rule can determine that all mandatory fields are populated, that valid
characters (numeric or alphanumeric) are used for fields, and that the order has a valid status
code such as Open.

OSM order management web services API
The primary interface for external systems to OSM. The OSM order management web services
provide for inbound order operations such as creating, managing, retrieving, updating, or
canceling an order. Web services are web APIs that support interoperable machine-to-machine
interaction over a network such as the Internet. Web services run on a remote system hosting
the requested services such as OSM. Web service interfaces are described by the web service
definition language (WSDL).

OSM security callback
A callback interface that allows you to generate an audit trail log of users before they gain
access to order data that is considered sensitive. The security callback interface is designed to
intercept order access from defined functions such as GetOrder, XML API WorkList.Request,
and Task web client Order Data History page.

OSM server
The server that manages OSM runtime functionality, including inbound order operations and
outbound communications with external systems. The OSM server is deployed on Oracle
WebLogic Server.

OSM web clients
The two OSM GUI applications are called the Order Management web client and the Task web
client. The Order Management web client displays an order's orchestration plan, including
dependency, orchestration stages, order components, order items, and processes. The Task
web client is used for monitoring and managing the tasks in an order.

point of no return
The point in the orchestration of an order item after which revisions can no longer be accepted.

process
A sequence of tasks and subprocesses that need to be carried out to fulfill all or part of an
order. For example, an ADSL fulfillment process could include the following tasks that can take

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-17 of Glossary-23

place over a number of days: assign a port, ship modem to customer, activate DSLAM, send
customer survey, and verify order. The process includes definitions of the relationships
between tasks and the sequence in which they are run.

process-based order
An order that does not include an orchestration plan. See orchestration order .

processing granularity
Decomposition groups order items into optimally executable order components. For example, if
monthly fees, VoIP adapter, and VoIP phone are all billed by the same billing system, they can
be grouped into a single executable order component. This is called processing granularity.
See decomposition.

processing state
Processing states are a predefined set of states that an order item can enter. OSM aggregates
the values returned from external systems in each order component for the order item to
determine the overall processing state of the affected order item.

product
A conceptual model entity that represents something that your business sells. Because Design
Studio is primarily used for service fulfillment rather than sales, products are often identifiers
associated with information from other systems.

product catalog
The complete collection of your products, offers, and bundles. A product catalog is typically
stored as a data repository on the CRM or other order-source system; for example, the Siebel
Sales Catalog or Oracle Product Information Management Data Hub.

product specification
Groups of related products that share common attributes. For example, suppose you sell
products for three levels of DSL service. Though there are different values to differentiate the
service levels, the products are structurally identical and provisioned by the same system; they
are variations of the basic DSL service. As a result, a single product-specification to fulfillment-
pattern mapping can be used for all of them.

The use of OSM product specifications has been deprecated, and new OSM product
specifications cannot be created in Design Studio 7.2.4 and later. Conceptual model products,
customer-facing service (CFS), resource-facing service (RFS), resources, and actions should
be used instead.

project
An entity that contains artifacts (entities, data, rules, code, and so forth) that you use to model
and deploy Design Studio cartridges. Your solution uses various types of projects. For

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-18 of Glossary-23

example, you use projects for version management, for single sourcing data, for resource
organization, and to build cartridges that can be deployed to a server. You can create various
types of projects and you can extend cartridges that you purchase with your own projects.
Oracle Communications supports a library of extensible cartridges that are fully compatible
with Design Studio and provide a basis from which to assemble solutions.

provisioning
Identifying the network resources required to enable a service. For example, to provision a
phone service, the service and resource management (SRM) system finds a phone number.
The provisioning data is used during activation to enable the service on the network.

recognition rule
Rules that enable OSM to validate an incoming order and transform it into an OSM order
format.

related order
An order that contains order items that depend on another order.

reporting interface
A tool for generating reports about OSM orders, tasks, and notifications. The Reporting
Interface augments the reports that are available through the OSM web clients. See OSM
Reporting Interface Guide for more information.

requested delivery date
The date on which an order is requested to be delivered.

resource-facing service (RFS)
A service as it is implemented on the network; for example, an ADSL service. By contrast, a
customer-facing service (CFS) is the service that the customer purchased and would
recognize; for example, Internet service.

revision order
An order that modifies a previously submitted order that is still being processed. For example,
a customer may want to switch to a higher level of service before an order is completed.
Revision orders may require compensation. The system can process revision orders until the
original order reaches its point of no return. A revision order is sometimes called a
supplemental order.

See also follow-on order.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-19 of Glossary-23

RFS
See resource-facing service (RFS).

role
A set of permissions to access functions in the Task web client and Order Management web
client that can be assigned to users. Functions include viewing reports, assigning tasks, and
querying orders. In addition to granting OSM web client permissions, you can also grant
permissions at the order and task levels. Roles are created by using Design Studio. The
Administration area of the Order Management web client refers to roles as workgroups,
although they are both the same thing.

rule
Rules are defined as part of an order specification to work on data in the order. Rules are used
in many OSM activities to evaluate conditions and determine next process steps. For example,
you can specify to delay the next task in a process until a specified data element includes a
certain value.

rule engine
An OSM processing component that evaluates rule and timer delays for transition to the next
task. The engine is implemented as one or more Oracle database jobs. The rule engine is
configured as one or multiple jobs to improve performance.

sales order
An order received by OSM to obtain a product or products, typically generated by a CRM
system or other order-source system. OSM converts the sales order to OSM format after which
it is referred to as a customer order or as an order.

A sales order is sometimes called an inbound order.

security callback interface
See OSM security callback.

service order
An order processed by an OSM instance acting in the service order management (SOM) role.
Service orders work with service and resource management (SRM) systems to design services
and assign resources.

service order management (SOM)
The OSM system role that processes the service orders. Service orders work with service and
resource management (SRM) systems to design services and assign resources. OSM in the

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-20 of Glossary-23

SOM role receives orders from OSM in the central order management (COM) role, and sends
orders to OSM in the technical order management (TOM) role.

simple data element
Reusable data types that contain no child dependencies. A simple data element has no
structure, and is associated (directly or indirectly) to a primitive type (int, boolean, char, and so
forth).

SOM
See service order management (SOM).

specification
A blueprint that defines the composition of an entity, including the attributes and relationships
between an entity and other objects. There are different types of specifications for different
types of entities, such as telephone numbers, networks, customer-facing services, and
resources. Specifications are defined in Design Studio and deployed into runtime
environments, where entities can be created based on them.

In OSM, this may refer specifically to an order specification.

structured data element
Reusable data types that include embedded data types and are containers of simple data
elements and other structured data elements.

subprocess
A process started by another process. A subprocess is used to organize any large process into
smaller more re-usable pieces.

task
An individual step that is required for the processing of an order. Tasks are defined by the order
specification in Design Studio, and can be either a manual task (performed by human action)
or automated task (performed by an automation plug-in).

task state
A state describing the milestones of a task in a process. The task state also determines how it
can be worked on. OSM provides the following task states: Received, Assigned, and Accepted.
You can, however, create your own task states. For example, you can define a Suspended task
state to indicate the progress of automated tasks, or you can define a Completed task state to
indicate that user is finished with the task and the order is ready to move to the next task in the
process.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-21 of Glossary-23

task status
A representation of how a task can transition to the next step in a process. The task status
shows how the task transitions in a process; for example, if the task transitioned the process to
the next task, or if it caused the process to fail. Changing the status of the task determines the
next step in the order process. The statuses that you define appear as task transition options in
the OSM web clients.

For example, if you have a task called Assign Port, and the two statuses are Port Available and
Port Unavailable, the status determines whether the process can proceed to the next task.
Task status also controls notifications, so when the status is Port Available, OSM can send a
message saying Successful.

Task web client
An OSM GUI application used for monitoring and managing the tasks in an order. This
application is typically used by order processing personnel to ensure that all the tasks are
completed. You can also suspend and resume orders, cancel orders, and create orders
manually.

technical order
An order processed by OSM in the technical order management (TOM) role. Technical orders
work with external systems to implement activation, shipping, installation, and other fulfillment
actions.

technical order management (TOM)
The OSM role that processes technical orders. Technical orders work with external systems to
implement activation, shipping, installation, and other fulfillment actions. OSM in the TOM role
receives orders from OSM in the service order management (SOM) role.

timer delay
See delay.

TOM
See technical order management (TOM).

transaction
An action taken by the OSM system on an order. For example, the Suspend Order transaction
stops all processing on the order and transitions the order to the Suspended state. Also called
an order state transaction.

Some other transactions are Abort Order, Complete Task, Process Amendment and Raise
Exception. Most transactions perform transitions that change the state of the order to a
different state. However, some transactions do not perform a transition to another state. For

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-22 of Glossary-23

example, the Update Order transaction can make changes to an order without changing the
order's state.

transformation
See order transformation and order item transformation.

trouble ticket (TT)
A request to the trouble ticketing system indicating that an error occurred during the processing
of an order. Different from a fallout task in that trouble tickets come from front-end systems
such as Siebel CRM.

unresolved dependency
A dependency with at least one unmet condition.

validation
See order validation.

WebLogic Server
See Oracle WebLogic Server.

workgroup
A group of users with assigned permissions to access functions in the Task web client and
Order Management web client. Functions include viewing reports, assigning tasks, and
querying orders. In addition to granting OSM web client permissions, you can also grant
permissions at the order and task levels. Workgroups are created with Design Studio and
managed using the Administration area of the Order Management web client. Design Studio
refers to workgroups as roles, although they are the same thing.

worklist
A list of manual tasks assigned to OSM operations personnel who use the Task web client to
manage orders. When an order arrives at a task, it is added to the worklist of all the members
of all the workgroups assigned to work on that task. Users can select a task from their worklist
to view the assigned task in the order process. Worklist also refers to the main page in the
Task web client used for managing orders.

Glossary

Concepts
G38002-01
Copyright © 2009, 2025, Oracle and/or its affiliates.

October 30, 2025
Glossary-23 of Glossary-23

	Contents
	About This Content
	1 Order and Service Management Overview
	Overview of OSM
	About Order Fulfillment Business Processes
	About the OSM System Architecture
	About Creating an Order Fulfillment Process

	2 How OSM Processes Orders
	About Order Processing
	About Customer Orders, Service Orders, and Technical Orders
	About COM, SOM, and TOM

	3 How OSM Creates Orders
	How OSM Receives and Creates Orders
	About the Data in an Incoming Order
	About the Data in an OSM Order
	Data Used for Processing an Order
	About the Order Lifecycle Policy

	4 About Orchestration
	How OSM Generates and Runs an Orchestration Plan
	About Decomposition
	About Dependencies
	Dependencies and Order Revision

	About Order Items and Order Components
	Orchestration and COM, SOM, and TOM
	About Order Item Transformation
	About the Design Studio Conceptual Model

	5 About Tasks and Processes
	About Tasks and Processes
	About Manual Tasks
	About Automated Tasks
	About Task States

	6 About Order Management Business Processes
	About OSM and Order Management Business Processes
	About Making Changes to In-flight Orders
	About Submitting Multiple Revisions of an Order
	About Point of No Return

	About Follow-on Orders
	About Determining Order Completion Dates
	About Order Status
	About Notifications
	About Managing Fallout Exception
	Fallout Exception Scenarios
	Fallout Exception Lifecycle
	About Managing Order and Task Fallout

	Managing Changes in Your Business

	7 About REST APIs and System Interaction (Cloud Native Only)
	Overview of REST API Support via System Interaction
	Terminology
	System Interaction Specifications
	Expectations
	Target System

	About Modeling Fulfilment Using System Interaction Specifications

	8 About TMF Orders (Cloud Native Only)
	Introduction
	About Standards
	Terminology
	Overview of TMF in OSM
	About TMF Specifications
	About OSM Extensions
	About the Specification Version
	About the OSM Endpoints
	About OSM Event Notifications
	About the OSM Schema

	About Customer Extensions to TMF Specifications
	About the Hosted Order Specification
	About Hosting Expectations
	About TMF Cartridges
	About Event Target System

	Order Processing Sequence Diagrams
	TMF Product Order State Diagram

	9 About Dynamic Cartridge Assembly (Cloud Native Only)
	About the Design Journeys
	About the Dynamic Design Journey
	About the Capabilities Cartridge
	Phase 1: Capabilities Cartridge Development in Design Studio
	Phase 2: Business Modeling in Solution Designer

	About Dynamic Cartridge Assembly

	10 About Runtime Order Management
	About Managing Orders
	Assigning Tasks to OSM Users
	About Workflow and Workstream Processes
	About the Order Lifecycle Management UI

	About Managing OSM Users
	About Using Behaviors to Customize the Task Web Client

	11 OSM Functional Overview
	OSM Functional Diagram

	Glossary
	activation
	activation task
	amendment processing
	ASAP
	automated task
	automation framework
	automation plug-in
	behaviors
	cartridge
	central order management (COM)
	CFS
	COM
	common fulfillment state
	compensation
	compensation plan
	composite fulfillment state
	control data
	creation task
	CRM
	customer-facing service (CFS)
	customer order
	Data Dictionary
	data element
	data provider
	data schema
	decomposition
	decomposition rule
	default process
	delay
	dependency
	design and assign
	Design Studio
	entity
	event delay
	executable order component
	expected duration
	expected start date
	external fulfillment state
	fallout
	fallout exception
	fallout management
	follow-on order
	fulfillment
	fulfillment function
	fulfillment mode
	fulfillment pattern
	fulfillment state
	fulfillment state map
	fulfillment state mapping
	fulfillment system
	fulfillment topology
	future-dated order
	inbound order
	in-flight changes
	in-flight order
	inter-order dependency
	intra-order dependency
	IP Service Activator
	line item
	lifecycle policy
	JMS queue
	manual task
	mapped fulfillment state
	metadata
	mnemonic
	multi-instance data element
	namespace
	notification
	Oracle Application Integration Architecture (Oracle AIA)
	Oracle Application Integration Architecture (Oracle AIA) Order-to-Activate Cartridges
	Oracle Configure, Price, and Quote Cloud (Oracle CPQ Cloud)
	Oracle WebLogic Server
	orchestration
	orchestration order
	orchestration plan
	orchestration sequence
	orchestration stage
	order
	order component
	order component ID
	order data
	order data key
	order definition
	order duration
	order entity
	order fallout
	order fulfillment state composition rule set
	order header
	order item
	order item fulfillment state composition rule set
	order item transformation
	order key
	order life cycle
	Order Lifecycle Management UI
	order lifecycle policy
	order line item
	Order Management web client
	order priority
	order recognition
	order reference number
	order specification
	order state
	order state transition
	order template
	order transformation
	order validation
	OSM order management web services API
	OSM security callback
	OSM server
	OSM web clients
	point of no return
	process
	process-based order
	processing granularity
	processing state
	product
	product catalog
	product specification
	project
	provisioning
	recognition rule
	related order
	reporting interface
	requested delivery date
	resource-facing service (RFS)
	revision order
	RFS
	role
	rule
	rule engine
	sales order
	security callback interface
	service order
	service order management (SOM)
	simple data element
	SOM
	specification
	structured data element
	subprocess
	task
	task state
	task status
	Task web client
	technical order
	technical order management (TOM)
	timer delay
	TOM
	transaction
	transformation
	trouble ticket (TT)
	unresolved dependency
	validation
	WebLogic Server
	workgroup
	worklist

