
Oracle® Communications Order and
Service Management
Developer's Guide

Release 8.0
G38010-01
October 2025

Oracle Communications Order and Service Management Developer's Guide, Release 8.0

G38010-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

1 Introduction

Planning and Designing 1

Customizing OSM 1

External Interfaces 1

OSM Web Services 1

OSM Automation 1

OSM Security Callback 2

The OSM XML API 2

User Interfaces 2

Behaviors 2

Custom Menu Items and Actions 2

Localizing OSM 2

Logging with ODL (Traditional OSM Only) 3

Tools for Customizing OSM 3

Oracle Communications Service Catalog and Design - Design Studio 3

Apache Ant 3

The XML Import/Export Application 3

About XPath and XQuery 3

About the OSM SDK 4

2 Using OSM Order Management Web Services

About Web Services 1

Generate Java Code from OSM WSDL 1

About Order Management Web Services 1

Request Validations 2

Determining Request and Response Queues To Use 2

Queues in a WebLogic Server Cluster 2

Queues in a Single-Server WebLogic Server Environment (Traditional OSM Only) 3

Sending OSM Web Service Requests to a WebLogic Server Cluster (Traditional OSM
Only) 3

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of xii

Accessing the WSDL Files 3

Using the SOAP Standard Message Format 4

Message Header 4

Message Body 4

White Space in Message Text 5

Testing OSM Web Services 5

Order States and Transitions 6

Web Services Sample 6

About Order Management Web Service Operations 6

Parameters 6

Fault Types and OSM Web Service Client Error Processing 7

Request and Response Examples 7

Web Service Operations Used for Order Management 7

CreateOrderBySpecification 7

CreateOrder 8

FindOrder 9

GetOrder 9

UpdateOrder 11

SuspendOrder 13

ResumeOrder 14

CancelOrder 14

AbortOrder 15

FailOrder 15

ResolveFailure 16

RetryOrder 16

Web Service Operations Used for Problem Order Diagnosis 17

GetOrderProcessHistory 17

GetOrderCompensations 18

GetCompensationPlan 18

Navigating WSDL and XSD Files 19

Order Management WSDL File 19

Order Management XSD File 19

Order Management Request and Response Examples 24

CreateOrderBySpecification Examples 25

GetOrder Examples 28

UpdateOrder Examples 35

SuspendOrder Examples 39

ResumeOrder Examples 40

CancelOrder Examples 40

RetryOrder and ResolveFailure Examples 41

GetOrderProcessHistory Examples 43

GetOrderCompensations Examples 52

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ii of xii

GetCompensationPlan Examples 52

3 Using the OSM XML API

About Using the XML API 1

Audience 2

About Using the OrderID, View, and OrderHistID 2

About Accessing the XML API 2

Logging In and Logging Out 3

Message Formats 3

Input XML Message Format 3

Output XML Message Format 3

Date/Time Formats 4

White Space in Message Text 5

Authentication 5

Reserved Mnemonics 5

XML API Functionality 6

AddOrderThread 6

Acknowledgments 8

AcknowledgeNotification 9

AssignOrder 10

CancelOrder 11

CompleteOrder 13

CopyOrder 14

CreateOrder 15

FalloutTask 17

FailOrder 18

GetNextOrderAtTask 20

GetOrder 22

GetOrderAtTask 31

GetOrderDataHistory 35

GetOrderProcessHistory 37

GetOrderStateHistory 39

GetTaskStatuses 41

GetUserInfo 42

ListExceptions 43

ListStatesNStatuses 44

ListViews 45

ModifyRemark 47

Notifications 48

OrderTypesNSources 51

OrderViewTemplate 53

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iii of xii

Query 57

ReceiveOrder 61

ResolveFailure 62

ResumeOrder 63

RetryTask 64

SetException 65

SuspendOrder 66

TaskDescription 67

UpdateOrder 68

Worklist 73

Warning and Error Code Descriptions 76

Document Type Definitions (DTD) 78

AddOrderThread 78

AssignOrder 79

CompleteOrder 79

CopyOrder 79

CreateOrder 80

Error 81

GetOrder 81

GetNextOrderAtTask 82

GetOrderDataHistory 82

GetOrderProcessHistory 83

GetOrderStateHistory 84

GetUserInfo 84

ListExceptions 84

ListStatesNStatuses 85

ListViews 85

ModifyRemark 86

OrderTypeNSource 86

OrderViewTemplate 87

Query 88

ResumeOrder 89

SetException 89

SuspendOrder 89

TaskDescription 90

UpdateOrder 90

Warning 91

Worklist 91

4 Using TMF REST APIs (Cloud Native Only)

About TMF Ordering in OSM 1

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iv of xii

Supported Endpoints 1

Authentication and Authorization 2

Constructing the Endpoint 3

Registering for Events 3

About the Payload 5

5 Fallout Exception Management Rest APIs V2.0 (Cloud Native Only)

Fallout Exception Management Rest API Versions 1

Fallout Exception Lifecycle 2

Support for Filtering, Grouping and Ordering of Fallout Exception Objects 2

Filtering and Attribute Selection Rules 3

Grouping 3

Ordering 3

Additional Query Fields 4

Supported Fallout Actions 5

API Operations 5

Authentication and Authorization 5

Constructing the Endpoint 6

GET Endpoints 6

POST Endpoints 14

6 Using OSM Security Callback

About Security Callback 1

About the Security Callback Interface 1

Exceptions 2

Security Callback Sample 3

Configuring Security Callbacks 5

7 Using Custom Menu Items and Actions

About Custom Menu Items and Actions 1

About the File Name and Location 1

About the Model Definition 1

Action Definition 1

OrderContext and Orders 2

Calling the XML API 2

Sample Action Implementations 3

Menu Item Definition 3

Sample Menu Item Definition 4

Setting Up the Environment 4

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page v of xii

Setting Up the oms-config.xml File (Traditional OSM Only) 5

Working with oms-config Parameters in OSM Cloud Native 6

File System Path Environment Configuration Method 6

XML Catalog (Static Relative Location) Environment Configuration Method 6

XML Catalog (rewriteURI) Environment Configuration Method 7

Verifying the Changes 8

8 Using Automation

About Automations and the Automation Framework 1

About Sender and Automator Automation Types 3

About Automations in the Order and Task Contexts 3

About Internal and External Events that Trigger Automations 5

About Accessing the XML API in Automations 6

About Queues, Correlation, and Property Selectors 6

OSM Request and Response Message Queues 7

Correlating Requests from OSM to Responses from External Systems 7

Intercommunication Between Orders in the Same Domain 8

About Message Property Selectors 9

About Automation Plug-in Communication Options 9

No External Communication: Data Processing Only 9

Fire-and-Forget Communication: Message Sent to External Systems 10

Synchronous Communication: Single Request and Response 11

Synchronous Communication: Multiple Requests and Responses 12

Asynchronous Communication: Single or Multiple Requests and Responses 13

Storing Response Message as XML Type Parameters 16

About Custom Automation Plug-ins 16

Defining the Custom Automation Plug-in 17

About the XML Template 17

About Creating Custom Automation Plug-ins 18

inputXML Argument 19

AutomationContext Argument and Casting the Context Argument 19

outboundMessage Argument 19

Accessing JDBC from Within an Automation Plug-in 19

Compiling the Custom Automation Plug-in 20

About Predefined Automation Plug-ins 21

XSLT Sender 21

Defining the Automation 22

Writing the XSLT 23

Steps to Follow When Using XSLT Sender 24

XSLT Automator 24

Defining the Automation 24

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vi of xii

Writing the XSLT 26

Steps to Follow When Using XSLT Automator 26

XQuery Sender 26

Defining the Automation 27

Writing the XQuery 28

Steps to Follow When Using XQuery Sender 28

XQuery Automator 28

Defining the Automation 29

Writing the XQuery 29

Steps to Follow When Using XQuery Automator 30

DatabasePlugin 30

Defining the Custom Automation Plug-in 31

Creating the JDBC Data Source 35

About Large Orders and Automation Plug-ins 36

Limiting Automation Concurrency in Large Orders 36

Using GetOrder and UpdateOrder API Functions in Large Orders 39

About Compensation for Automations 39

About Execution Modes for Automations 39

About Automations that Update Order Data and Compensation Analysis 40

About Using GetOrder Responses to View Compensation Perspectives 41

About Creating Automations in Design Studio 41

About Building and Deploying Automation Plug-ins 41

About Automation Maps 43

About Editing the Automation Map 43

About Mnemonic Values for Design Studio Entities in Automation Maps 43

About Managing Automations 44

Building and Deploying Automation Plug-ins 44

Automating the Build and Deploy 44

Troubleshooting Automations 44

Upgrading Automation Plug-ins 45

Using Automation with a System Interaction (Cloud Native Only) 45

Pre-Requisites 46

Task Transport Type 46

Automation Plugins 46

Typical REST Interaction 46

InternalEventReceiver (Senders) 47

ExternalEventReceiver 49

System Interaction As a Receiver Only 50

9 Using Order Metrics Manager

About Order Metrics Manager ADML Files 1

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vii of xii

Viewing Metrics 1

10

Localizing OSM

About Localization 1

Localizing OSM 1

Localizing the XML Import/Export Application 4

Additional Considerations for Localizing OSM 5

Support for Different Locales 5

Character Set Encoding and Fonts 5

Localization of Settings 6

Language Support for OSM User Interfaces 6

About NLS Database Configuration 6

Oracle Database Character Set 6

NLS Environment 7

NLS_LANG Parameter 7

ORA_NLS33 Environment Variable 8

About OSM Database Error Messages 8

About Application Server Strings 11

About Generic Preferences 12

om_generic_mnemonic 13

Localizing the Task Web Client 14

Task Web Client Localization Resource Bundles 15

Localizing the Process History Pages 15

Localizing Date, Time and Currency Formats 16

Localizing Text and Error Messages 18

Localizing Page Titles 18

Localizing Image References 18

Inserting New Images 18

Editing the First Day of the Week 18

Editing the Boolean Data Element Values 19

Editing the Number of Records Displayed in the Worklist 19

Editing and Replacing Task Web Client Icons 19

Localizing the Order Management Web Client 19

Changing the Order Management Web Client Logo Image and Text 21

Localizing the Order Lifecycle Management User Interface 22

Working with the oms.ear File 23

Unpacking the oms.ear File 23

Packing the oms.ear File 24

Rebuilding OSM Container Image in OSM Cloud Native 25

Undeploying and Redeploying the oms.ear File 25

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page viii of xii

11

Using XPath Functions

About XPath Functions 1

Node Set Functions 1

number last() 2

number position() 2

number count(node-set) 2

node-set id(object) 2

string local-name(node-set?) 2

string namespace-uri(node-set?) 2

string name(node-set?) 2

node-set evaluate(string) 3

node-set match(node-set, string) 3

node-set instance(string) 3

String Functions 3

string string(object?) 4

string concat(string, string, string*) 4

string starts-with(string, string) 4

string contains(string, string) 4

string substring-before(string, string) 4

string substring-after(string, string) 4

string substring(string, number, number?) 4

number string-length(string?) 4

string normalize-space(string?) 5

string translate(string, string, string) 5

string lower-case(string?) 5

string upper-case(string?) 5

string ends-with(string, string) 5

Boolean Functions 5

Boolean boolean(object) 5

Boolean not(boolean) 5

Boolean true() 5

Boolean false() 6

Boolean boolean-from-string(string) 6

object if(boolean,object,object) 6

Number Functions 6

number number(object?) 6

number sum(node-set) 6

number floor(number) 6

number ceiling(number) 6

number round(number) 6

number avg(node-set) 7

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ix of xii

number min(node-set) 7

number max(node-set) 7

number count-not-empty(node-set) 7

XPath 1.0 Reference 7

Location Paths [XPath §2] 7

Location Paths [XPath §2.1] 7

Axis Specifiers [XPath §2.2] 7

Node Tests [XPath §2.] 8

Abbreviated Syntax for Location Paths 8

Predicate [XPath §2.4] 8

Variable Reference [XPath §3.7] 8

XPath 8

XPath Operators 8

Node-sets [XPath §3.3] 8

Booleans [XPath §3.4] 8

Numbers [XPath §3.5] 8

Node Types [XPath §5] 9

Object Types [§11.1, XPath §1] 9

XPath Core Function Library 9

Node Set Functions [XPath §4.1] 9

String Functions [XPath §4.2] 9

Boolean Functions [XPath §4.3] 9

Number Functions [XPath §4.4] 10

OSM Behavior XPath Functions 10

Node Set Functions 10

String Functions 10

Boolean Functions 10

Number Functions 10

A Automation and Compensation Examples

Predefined Automation Plug-ins A-1

Message Example A-1

Automation Plug-in XQuery Examples A-4

Internal XQuery Sender A-4

External XQuery Automator A-10

External XQuery Sender A-12

Internal XQuery Automator A-13

Automation Plug-in XSLT Examples A-13

Internal XSLT Sender A-13

External XSLT Automator A-19

External XSLT Sender A-22

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page x of xii

Internal XSLT Automator A-23

Automation Plug-in Examples for Events, Jeopardies, and Notifications A-23

Event Automators A-23

Jeopardy Automators A-24

Order Notification Automation Plug-ins A-26

Custom Java Automation Plug-ins A-27

Internal Custom Java Automator A-28

Internal Custom Java Sender A-29

External Custom Java Automator that Changes the OSM Task Status A-30

External Custom Java Automator that Updates Order Data A-32

Using OrderDataUpdate Elements to Pass Order Modification Data A-35

Examples of Sending Messages to External Systems A-37

Examples of Handling Responses from External Systems A-39

Compensation XQuery Expressions A-41

Task Re-Evaluation and Rollback XQuery Expressions A-41

In Progress Compensation Include XQuery Expressions A-42

In Progress Compensation Complete XQuery Expressions A-43

In Progress Compensation Grace Period XQuery Expressions A-44

Order Jeopardy Automation XQuery Plug-ins A-45

B AutomationMap.xml File

AutomationMap.xml Examples for Automated Tasks B-1

XSLTSender Internal Event Receiver B-1

Notes Common to All Examples B-2

Notes on Example B-2

XSLTSender External Event Receiver B-2

Notes on Example B-3

XSLTAutomator Internal Event Receiver B-3

Notes on Example B-4

XSLTAutomator External Event Receiver B-4

Notes on Example B-5

Custom Automation Internal Event Receiver B-5

Notes on Example B-6

Custom Automation External Event Receiver B-6

Notes on Example B-7

AutomationMap.xml Examples for Automated Notifications B-7

Order Milestone-Based Notification B-7

Task State-Based Notifications B-8

Task Status-Based Notification B-8

Order Data Changed Notification B-9

Order Jeopardy Notification B-9

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page xi of xii

Task Jeopardy Notification B-10

Generated Entity-Specific XML Files B-10

C Automation: Start to Finish

Assumptions C-1

Getting Started C-1

Defining an Automated Task C-3

Writing the Custom Automation Plug-in C-3

Defining the Custom Automation Plug-in C-3

Defining the Automation C-4

Defining the Process C-4

Building the Cartridge C-4

Packaging and Deploying the Cartridge C-4

Triggering the Automation in OSM C-4

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page xii of xii

About This Content

This document provides information about the customizability for Oracle Communications
Order and Service Management (OSM).

This document provides information about the following areas of OSM that can be customized:

• Web services

• Extensible Markup Language (XML) Application Programming Interface (API)

• Automation

• Security Callback

• Behaviors

• Custom menu items and action items

• Localization of OSM

Audience

This document is intended for programmers who have a working knowledge of:

• System interfaces

• XML

• Java development

• Java Messaging Service (JMS)

• Web services

This document assumes that you have read OSM Concepts, and have a conceptual
understanding of:

• Oracle Communications Service Catalog and Design - Design Studio configuration

• Orders

• Order states

• Tasks

• Task states

• Notifications

• Behaviors

• Web services

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

About This Content

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ii of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction

This chapter provides an introduction to customizing Oracle Communications Order and
Service Management (OSM) interfaces.

Planning and Designing
Before customizing OSM, it is important to understand what needs to be done and to design
the solution properly.

This topic is further explored in OSM Modeling Guide.

Customizing OSM
There are two areas of OSM that you can customize:

• External interfaces, which interact with other systems and which you customize to meet
specific business requirements. This includes OSM Web Services, OSM automation and
OSM Security Callback.

• User interfaces, which you customized per installation or per individual user. This includes
using behaviors to manipulate data, adding custom menu actions of the Task web client,
and localizing user interfaces.

External Interfaces
The two primary external interfaces for performing automated fulfillment are OSM Web
Services and OSM automation. Additional external interfaces include OSM Security Callback
and the OSM XML API.

OSM Web Services
OSM Web Services provide the primary interface for inbound order operations such as creating
or canceling an order. Web services are typically initiated from customer relationship
management (CRM) systems and other order sources that need to create and manage orders
in OSM.

This topic is further explored in "Using OSM Order Management Web Services".

OSM Automation
OSM automation provides the primary interface for outbound operations to interact with
external systems to achieve automated order fulfillment. Outbound operations are initiated by
OSM through automated tasks and automated notifications.

Automated tasks and automated notifications are not limited to outbound operations:
Automated tasks can send outbound messages to external systems and also receive inbound
messages back from the external systems. (Automated notifications only send outbound
messages to external systems; they cannot receive inbound messages.) Additionally,

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 4

automated tasks and automated notifications can perform internal business logic or update the
OSM database.

This topic is further explored in OSM Modeling Guide.

OSM Security Callback
OSM Security Callback allows you to generate an audit trail log of users before they gain
access to order data that is considered sensitive. OSM provides a callback interface that is
designed to intercept order access from defined functions.

This topic is further explored in "Using OSM Security Callback".

The OSM XML API
The OSM XML API is deprecated for all uses except the following:

• Customizing the appearance or functioning of a task when customization using behaviors
or OSM Java server pages does not satisfy all of your requirements.

• Using from within an automation plug-in when necessary because the Web Services API
and the OSM automation functionality do not meet your requirements.

For information about the OSM XML API, see "Using the OSM XML API".

User Interfaces
The following sections briefly describe the ways you can customize the OSM user interfaces
(UIs).

Behaviors
Behaviors provide the ability to customize data validation and data presentation in both the
Task web client and the Order Management web client. OSM defines several behavior types,
and you can define instances of behavior types on data elements defined in the data
dictionary, for an order, or for a task.

For information about behaviors, see OSM Concepts.

Custom Menu Items and Actions
The custom menu actions and items feature provides the ability to configure custom menu
items and actions that are called from the Context menu of the Task web client Worklist and
Query Result pages.

This topic is further explored in "Using Custom Menu Items and Actions".

Localizing OSM
Localizing OSM is the process of changing the user interfaces from the original language in
which it was written to another language. You can localize the Order Management web UI and
the Task web UI. This processes involves modifying OSM XML files.

This topic is further explored in "Localizing OSM".

Chapter 1
User Interfaces

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 4

Logging with ODL (Traditional OSM Only)
Oracle recommends that you use Oracle Diagnostic Logging (ODL), which is used by most
Oracle Fusion Middleware applications, to generate and manage the system log messages.
See OSM System Administrator's Guide for more information.

Tools for Customizing OSM
Several tools are available to you when customizing OSM, as described in the following
sections.

Oracle Communications Service Catalog and Design - Design Studio
Oracle Communications Service Catalog and Design - Design Studio is an Eclipse-based
integrated development environment (IDE). Design Studio is a separate software that comes
with your OSM installation, along with Design Studio plug-ins specific to OSM that enable you
to configure and customize OSM. Detailed information on using Design Studio to customize
OSM is presented in OSM Modeling Guide.

Apache Ant
Apache Ant is an open source software application often used for automating application build
processes. See OSM Installation Guide for the required version of Ant.

Ant uses XML to define targets which are executable commands that perform a specific task.
By default, the XML file is named build.xml.

Installing Design Studio OSM-specific plug-ins provide the build.xml file, which can be used to
automate building automation plug-ins. Ant is also used by the XML Import/Export application,
as described in the following section.

See OSM Modeling Guide for information on installing Ant.

The XML Import/Export Application
OSM includes the option to install the XML Import/Export application, a set of customizable Ant
commands that help you manage data when dealing with multiple OSM development and test
environments.

You can also use the XML Import/Export application to manage data when dealing with
multiple OSM production environments. This topic is further explored in OSM System
Administrator's Guide.

About XPath and XQuery
To model OSM orders, you must have a working knowledge of the XPath and XQuery
languages.

You typically use XPath statements to specify the location of data in OSM entities. You use
XQuery statements to find and filter data needed for OSM functionality. You can use XQuery in
situations where a more expressive language or transformation abilities are needed.

An XPath tutorial is available at:

Chapter 1
Tools for Customizing OSM

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 4

https://www.w3schools.com/xml/xpath_intro.asp

An XQuery tutorial is available at:

https://www.w3schools.com/xml/xquery_intro.asp

Note

In OSM, XQuery statements are limited to a maximum of 4000 characters.

About the OSM SDK
A number of directories within the SDK are referenced in procedures throughout this guide.
SDK is available as a separately downloadable .Zip file which is common for both OSM cloud
native and OSM traditional.

Chapter 1
About the OSM SDK

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 4

https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xquery_intro.asp

2
Using OSM Order Management Web Services

This chapter describes Oracle Communications Order and Service Management (OSM) order
management Web Services, which provides the primary interface for inbound order operations
such as creating or canceling an order.

About Web Services
Web services support interoperable machine-to-machine interaction over a network. Web
services are web APIs that can be accessed over a network, such as the Internet, and run on a
remote system hosting the requested services, as is the case with OSM. Web service
interfaces are described by the web service definition language (WSDL).

WSDL is an XML-based language that is used in combination with simple object access
protocol (SOAP) and XML Schema to provide web services over the Internet. A client program
connecting to a web service can read the WSDL to determine what operations are available on
the server. Any special data types used are embedded in the WSDL file in the form of XML
Schema. The client can then use SOAP to actually call one of the operations defined in the
WSDL.

Generate Java Code from OSM WSDL
You can generate the Java code you need from OSM WSDL using the wsimport functionality of
Oracle Java. You need to use the command line interface to generate the java code from OSM
WSDL using the command given here:

wsimport -Xauthfile auth.conf -s src "http://<OSM_HOST_IP/
OSM_HOST_NAME>:<OSM_HOST_PORT>/OrderManagement/wsapi?WSDL" -extension

Here the -Xauthfile auth.conf carries authorization information in the format http://
username:password@osm-hostname:osm-port/OrderManagement/wsapi?WSDL. See wsimport
documentation for more details.

Note

You must add -extension at the end of the command.

About Order Management Web Services
The OSM Web Services provide the primary interface for inbound order operations such as
creating, updating, or canceling an order. OSM Web Services are typically initiated from
Customer Relationship Management (CRM) systems and other order sources that need to
create and manage orders in OSM. OSM Web Services use the SOAP standard.

The OSM Web Service operations are defined in WSDL files. The operations are listed below,
and grouped by WSDL file.

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 53

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/wsimport.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/wsimport.html

OrderManagement.wsdl

• CreateOrderBySpecification

• CreateOrder

• FindOrder

• GetOrder

• UpdateOrder

• SuspendOrder

• ResumeOrder

• CancelOrder

• AbortOrder

• FailOrder

• ResolveFailure

• RetryOrder

OrderManagementDiag.wsdl

• GetOrderProcessHistory

• GetOrderCompensations

• GetCompensationPlan

These services can be accessed using HTTP, HTTPS, or JMS as the transport protocol. JMS
is a reliable, asynchronous messaging transport with guaranteed delivery while HTTP is
synchronous and less reliable.

Request Validations
All OSM Web Service requests are validated by the server based on the rules defined in the
schema files. If a validation error is encountered, the server returns a fault message detailing
the validation error so it can be resolved.

Determining Request and Response Queues To Use
The queues you should use depend on whether your implementation is in a WebLogic Server
cluster or in a single server.

For more information about the specifics of the queues that are created, see the discussion of
OSM installed components in OSM System Administrator's Guide.

Queues in a WebLogic Server Cluster
There are two queues created for requests. In a WebLogic Server cluster, you can use one or
both of the queues. Following are the considerations to use to help you decide:

• The oms_ws_cluster_requests queue is designed with optimization for processing
requests relating to updating or retrieving existing orders in a WebLogic Server cluster.
This queue can also handle requests to create new orders, if desirable to simplify
integration with upstream systems.

• The oms_ws_requests queue can be used for new order creation requests, and this
avoids some overhead of the oms_ws_cluster_requests queue. This queue checks for an

Chapter 2
About Order Management Web Services

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 53

<OrderId> element which will not be present in a new order creation request. If order
updates and new order requests come from two different interfaces, then it is a good idea
to send new order requests to the oms_ws_requests queue.

• If there are a larger number of order updates than new order creation requests, then it
makes sense to process all requests using the oms_ws_cluster_requests queue.

For responses, a WebLogic Server cluster environment uses the
oms_ws_cluster_responses and oms_ws_cluster_correlates queues, which set the
JMSCorrelationID properly and forward the message to the destination specified in the
ReplyTo JMS property of the message.

Queues in a Single-Server WebLogic Server Environment (Traditional OSM Only)
In a single-server environment, like a development environment, you must always direct
requests to the oms_ws_requests queue. Responses are forward the message to the
destination specified in the ReplyTo JMS property of the message without the need for other
queues.

Sending OSM Web Service Requests to a WebLogic Server Cluster
(Traditional OSM Only)

If your web services client connects to OSM using Oracle WebLogic Server, and if your
WebLogic Server instance for OSM is a cluster, the WSDL generated by WebLogic Server
identifies the endpoint using the address of the first managed server and ignores the
addresses of all other managed servers.

To ensure that the addresses of all managed servers are used, include code in your client to
override the endpoint.

Example 2-1 demonstrates how to override the default endpoint and include all of the
endpoints.

Example 2-1 Sample Code to Override the Endpoint Address for a Cluster

Stub stub = (Stub) port;
stub._setProperty(WlsProperties.READ_TIMEOUT, 1000000);
stub._setProperty(WLStub.JMS_TRANSPORT_JNDI_URL, t3://
ip_address1:port1,ip_address2:port2,ipaddressn:portn");

In the example, ip_address1 is the IP address of the first managed server and port1 is the port
of that server, ip_address2 is the IP address of the second managed server and port2 is the
port of that server, and so on for all of your managed servers. As in the example, separate
each IP address from its port by a colon and separate the address information for the servers
by commas.

Accessing the WSDL Files
OSM Web Services are part of the OSM installation. The OSM WSDL files and the supporting
schema files (XSD files) are located in the SDK/WebService/wsdl directory.

Alternatively, you can access the OSM WSDL by entering the following in your web browser
after you have installed, configured, and deployed the OSM server:

http://server:port/OrderManagement/wsapi for web service operations used for order
management.

and

Chapter 2
About Order Management Web Services

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 53

http://server:port/OrderManagement/diagnostic/wsapi for web service operations used for
diagnosing problem orders.

where:

• server is the specific server (traditional OSM deployments) on which the application is
deployed. In OSM cloud native, the base hostname to access this instance is
instance.project.osm.org.

• port is the port on which the application listens. Users who access the WSDL this way
must be configured in the WebLogic console with usernames and passwords and must
belong to the group OMS_ws_api.

The syntax of each OSM Web Service operation is specified using the XML schema, which is
associated with the WSDL for the web service, and is the same for HTTP, HTTPS, and JMS
port types. The JNDI name for the JMS request queue is available in the WSDL file.

Using the SOAP Standard Message Format
OSM Web Services use the SOAP standard message format, which includes a header and a
body.

Message Header
OSM Web Services require that security related information be provided in the message
header. The user name and password for the web service authorized user must be included in
each request using the elements <wsse:UserName> and <wsse:PasswordText>, as shown in
Example 2-2.

Example 2-2 Message Header

<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
 open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.
 oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
</soapenv:Header>

Message Body
The message body contains the data payload. The data payload varies depending on the
specific request, as shown in Example 2-3.

Example 2-3 Message Body

<soapenv:Body>
 <createOrderBySpecification>
 <specification>
 .
 .
 .
 </specification>
 </createOrderBySpecification>
</soapenv:Body>

Chapter 2
About Order Management Web Services

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 53

Response messages include a data payload containing the result of the method call.

White Space in Message Text
OSM trims off the white space to the right of the beginning of a text block and to the left of the
end of a text block. For example, if you send an update with the following field:

<osmc:street index="1414682666685"> 2300 Oracle Way </osmc:street>

the response message returns having removed the white space at the beginning and the end
of the text block:

<osmc:street index="1414682666685">2300 Oracle Way</osmc:street>

Testing OSM Web Services
Test OSM Web Services with software such as SoapUI or HermesJMS. Information on such
open source test software is available on the internet.

Note

With OSM 7.2, the context-root for OSM applications changed to /OrderManagement.
OSM redirects requests specifying the old URIs to the current ones. However, soapUI
2.5.1 does not correctly handle redirects. soapUI3.x or above correctly handles
redirects.

Note

If you are using soapUI for testing in a clustered WebLogic environment, enable
preemptive authentication in soapUI by selecting Preferences, then HTTP Settings,
then Authenticate Preemptively.

Without this, soapUI sends requests without authentication. The request is rejected
and then resent with authentication. Because of OSM's load balancing approach in a
clustered WebLogic environment, the second request is sent to a different managed
server, distorting load balancing. For example, if a cluster has only two managed
servers and you employ round-robin load balancing, all authenticated requests will be
sent to the same managed server.

Regardless of the software used to test OSM Web Services, you must ensure the clocks are
synchronized between the test client and the server hosting the web services. The
synchronization can be done manually, or by using Network Time Protocol (NTP). The
following errors are encountered if the clocks are not synchronized:

• Failing to submit order to server_name server from my local system.

• Security token failed to validate. weblogic.xml.crypto.wss.
SecurityTokenValidateResult@11f081b[status false][msg UNT Error:Message Created time
past the current time even accounting for set clock skew.

Chapter 2
About Order Management Web Services

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 53

Note

Starting with OSM 7.2, order IDs are allocated in blocks. For OSM running on a
standalone database, there is no visible impact. However, if OSM is running on an
Oracle RAC database, Order IDs are assigned from different blocks, one for each
Oracle RAC instance. This means that when orders are submitted, the Order IDs may
not be sequential.

Order States and Transitions
Several of the OSM Web Service operations initiate a transition from one order state to
another. For example, CancelOrder initiates a transition from either an in progress or
suspended order state to the cancelling order state. Any transition that occurs within a web
service operation is described in the Expected Outcome section for that particular operation as
described in "About Order Management Web Service Operations." To learn more about order
states and their transitions, see OSM Concepts.

Web Services Sample
The OSM SDK provides a Web Service sample that demonstrates how OSM Web Services are
called. The sample is available in the SDK/Samples/Web Services directory. The sample
includes both HTTP and JMS clients, and demonstrates the use of the web service operations:

• CreateOrderBySpecification

• GetOrder

• UpdateOrder

The GetOrder and UpdateOrder operations depend on the order ID that is provided in the
CreateOrderBySpecification response. Before you can run the sample, you must configure it to
reflect your environment. See the ReadMe.txt file for detailed instructions on configuring,
building, and running the sample.

About Order Management Web Service Operations
The remaining sections of this chapter describes each OSM Web Service operation, and
includes the following information per operation:

• Preconditions: Describes any conditions that must exist prior to calling the request.

• Expected Outcome: Describes the expected outcome that occurs as a result of the
request.

Parameters
Unless parameters require additional explanation, the parameters that are defined by each
web service are not provided in this documentation. The information is available in the XSD
files provided with your OSM installation. For information on determining the input and output
parameters for any given web service, see "Navigating WSDL and XSD Files."

Chapter 2
About Order Management Web Service Operations

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 53

Fault Types and OSM Web Service Client Error Processing
OSM Web Service operations sent over JMS or HTTPS to OSM may fail for various reasons,
such as a local error or exception on the OSM server, incorrect syntax, invalid permissions,
and so on. The OSM Web Service client, such as a CRM communicating to OSM in the COM
role, must monitor returning response messages from OSM for any fault types that indicate
whether the operation succeeded or failed. If the OSM Web Service operation request fails it is
the responsibility of the OSM Web Service client to track and resubmit the failed request after
troubleshooting the problem.

The possible fault types that each web service may throw is not provided in this documentation
because the information is available in the WSDL files provided with your OSM installation. For
information on determining the fault types that any given web service may throw, see
"Navigating WSDL and XSD Files."

Request and Response Examples
Request and response examples for each web service are not provided in this documentation.
However, several request and response examples are provided, which you can use to help you
create or understand other web service requests and responses. See "Order Management
Request and Response Examples," which also provides information on how to generate XML
examples for any given web service operation.

Web Service Operations Used for Order Management
This section describes web service operations used for order management. This includes
creating, retrieving, updating and cancelling an order. Order management operations are
defined in the OrderManagementWS.wsdl file.

Each operation lists preconditions that must exist for a successful invocation of the web service
operation. However, the following preconditions are common to all operations, so they are
listed here rather than repeated for each operation:

• OSM Web Service calls are authenticated by the server based on the user ID and
password provided in the request header. Only requests that pass authentication are
processed by the server.

• API users must belong to the WebLogic group, OMS_ws_api.

CreateOrderBySpecification
This operation creates a service order.

Preconditions

• The order specification referenced on the request is defined in the metadata and has been
deployed to the target OSM server.

• The content of the order detail that is provided on the request must conform to the order
specification referenced on the request.

• The user performing the transaction is a member of at least one workgroup that has been
granted permission on the creation task for the referenced order specification.

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 53

Expected Outcome

The order is created and processing begins. If the newly created order is matched against an
existing order (based on the key defined on the order's specification), then this new order is an
amendment to an existing order, and information regarding the amended order and status of
the amendment is returned.

If the newly created order is not an amendment, the order is transitioned to the
open.running.in_progress state by specifying StartOrder=true.

Alternate Outcome with Start Order Set to False

The order is created but processing does not begin. The order is in the
open.not_running.not_started state. The order can be further updated and started through the
UpdateOrder operation.

Attachments

OSM database is the placeholder for order attachments.

Note

By default, uploading file attachments is secured. Only xml, json, pdf, txt file
extensions can be uploaded. To override this default behavior, add the property
file_attachment_filter_type to the oms-config.xml file. For more details refer to
the OSM System Administrator's Guide.

Reference Nodes

Reference nodes are pointers to values contained in different data nodes, and they enable you
to create information once and reuse it in multiple locations in your data model. You set up
reference nodes at order creation time.

To set up reference nodes in an order, when creating the order, you must explicitly give the
referred-to field an index, and then refer to it with {#} in the reference. For an example that
demonstrates how to set up reference nodes at order creation time as part of coding the
automation plug-ins that call the CreateOrderBySpecification web service operation, see
"Request Example - Setting Up Reference Nodes."

CreateOrder
This operation creates a new order. If the StartOrder flag is set to true, then the order is
created and started automatically. If the flag is set to false, the order is created and remains in
the Not Started state. Later, the order can be started by specifying the flag in the
UpdateOrder web service.

Preconditions

• The content of the order detail that is provided on the request must conform to a defined
recognition rule.

• The user performing the transaction is a member of at least one workgroup that has been
granted permission on the creation task for the order.

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 53

Expected Outcome

The order is created and is in the Not Started state. The order is transitioned to the
open.running.in_progress state by specifying StartOrder=true.

Request Example

<ord:CreateOrder xmlns:ord="http://xmlns.oracle.com/communications/
ordermanagement">
 <!--Optional:-->
 <ord:StartOrder>true</ord:StartOrder>
 <!--You may enter ANY elements at this point-->
 </ord:CreateOrder>

FindOrder
This operation finds a set of orders that match all the conditions defined in the select clause.
The SelectBy element specifies which orders will be returned.

Note

If you choose to specify the name of the cartridge in the SelectBy element of the
request and you do not specify the cartridge version, only orders from the default
version will be returned. If you wish to retrieve orders from all of the versions of the
specified cartridge, include "*" as the cartridge version.

Results can contain a combination of flexible headers and task data. The calling user must
belong to a role with permissions to view the order. If the user does not have the permission,
no data is returned.

Flexible Headers are user-defined columns which are displayed while viewing order details.
Flexible headers are set by OSM administrators. Generally the path of a flexible header is /
<WebService>/<ElementGroup>/<FlexibleHeader>. Note that /<WebService> is preceded
by a single slash (/). A double slash (//) or no slash will yield different results. See XML API
Functionality for details on how to query and retrieve orders that include available flexible
headers using the XML API.

Preconditions

• The order being retrieved must exist. If the order does not exist, FindOrder returns an
empty set.

Expected Outcome

Order data that meets specified selection criteria is returned in the specified sequence and is
viewed through the specified filter.

GetOrder
This operation retrieves an order. A summary of the order is returned, along with the detailed
order data based on a specified order view (query task) template. See also "GetOrder
Examples."

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 53

Parameters

OrderId
The identification of the order to be retrieved.

View
The name of the view (query task) used to determine the order data that is returned. You must
associate the task data you want to return to a role in the Oracle Communications Service
Catalog and Design - Design Studio Order editor Permissions Query Task sub tab and set a
query task with the data to be returned as the Default query task.

The following parameters are optional:

AmendmentFilter
Retrieves the amendment information associated with this order, if the LevelOfDetail child
element is set to AmendmentSummary. If it is not specified, no amendment summary is
returned.

AttachmentFilter
If RetrieveRemarks is set to true, zero or more filters (FileNameMatch, MinSize, MaxSize,
Format) may control how attachments are returned. Attachment filters are processed in the
order they are provided. If no filters are provided, then no attachments are returned.

OrderDataFilter
Parent element for the Condition child element that specifies which order data to return in the
GetOrder response message specified in the View parameter. This filtering functionality
improves OSM performance, especially when the order with the multi-instance data is a large
order.

• Condition: An XPath 1.0 expression against the order data defined by the View
parameter. OSM returns only the instances of the order data selected by the expression,
not the other instances of the element. All other parent or sibling elements are returned.

For example, in a situation where a customer has multiple <address> instances (where
<address> is a multi-instance element), the following expression ensures that OSM
returns only the <address> element that contains a child street element with the specified
street address. The response includes all child nodes of the instance of the <address>
element (city, postal code, and street). The other instances of the <address> element and
their child elements (city, street, and postal code) are not returned.

<ord:OrderDataFilter>
 <ord:Condition>/subscriber_info/address/[street='190 Drive']</ord:Condition>
</ord:OrderDataFilter>

In the example, any sibling elements of <subscriber_info>, or sibling elements of
<address> (except for the other instances of the <address> element) would be returned.

When you are using an order condition that includes an element that is using a distributed
order template, you should include the namespace of the data element in the condition.
For example:

<OrderDataFilter>
 <Condition>
 /ControlData/OrderItem[@type='{OrderItemNamespace}OrderItemName' and
@LineId='1']

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 53

 </Condition>
</OrderDataFilter>

There can be as many <Condition> child elements as required. When there are more
than one <Condition> elements, each condition is evaluated and applied independently
of the other conditions to the sections of the order data respectively.

RemarkFilter
Controls how remarks and attachments are returned.

RetrieveRemarks
Set to true if remarks and associated attachments should be returned.

Preconditions

• The specified order exists.

• The user performing the transaction is a member of one or more workgroups that has been
assigned the specified view (query task) for the order definition in question.

Expected Outcome

The order summary and detail are returned. If the order contains any remarks or attachments,
they are returned based on the filters set on the request.

UpdateOrder
This operation allows order data to be updated, and allows orders that have been created but
not started (in the open.not_running.not_started state) to be started.

The updateOrder operation defines different ways to update the order:

• UpdatedOrder: Provides the ability to update the order by supplying a complete order. The
existing order is updated (elements added, changed, or deleted) to match the supplied
order.

• UpdatedNodes: Provides the ability to update the order by supplying only the nodes to be
updated (elements added or changed). Deletion is not performed using UpdatedNodes.
The nodes are supplied in the format of the existing order.

• DataChange: Provides the ability to update the order by supplying a series of add, update,
and delete elements that are used to manipulate the order.

Note

If you update an order either to add a node (which includes providing a value to a
node that did not previously have one) or to delete a node (which includes setting the
value of a node to null), the OSM order transformation manager will not propagate the
change in either the forward or reverse direction. For more information about data
propagation, see the discussion of mapping rules in the Design Studio Modeling OSM
Orchestration Help.

You can specify and filter which data to return in response to the UpdateOrder requests:

• ResponseView: An optional parameter that defines the name of the view (query task) that
specifies what parameters are returned in UpdateOrder responses. If the UpdateOrder

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 53

request results in a fulfillment state update, the response auto-filters nodes to only include
the affected OrderItem and OrderComponent instances.

• OrderDataFilter: Parent element for the Condition child element that specifies which
order data to return in the OrderUpdate response message specified in the
ResponseView parameter.

– Condition: An XPath 1.0 expression against the order data defined by the
ResponseView parameter. OSM returns only the instances of the order data selected
by the expression, not the other instances of the element. All other parent or sibling
elements are returned.

For example, in a situation where a customer has multiple <address> instances (where
<address> is a multi-instance element), the following expression ensures that OSM
returns only the <address> element that contains a child street element with the
specified street address. The response includes all child nodes of the instance of the
<address> element (city, postal code, and street). The other instances of the
<address> element and their child elements (city, street, and postal code) are not
returned.

<ord:OrderDataFilter>
 <ord:Condition>/subscriber_info/address/[street='190 Drive']</ord:Condition>
</ord:OrderDataFilter>

For example, any sibling elements of <subscriber_info>, or sibling elements of
<address> (except for the other instances of the <address> element) would be
returned.

When you are using an order condition that includes an element that is using a
distributed order template, you should include the namespace of the data element in
the condition. For example:

<OrderDataFilter>
 <Condition>
 /ControlData/OrderItem[@type='{OrderItemNamespace}OrderItemName' and
@LineId='1']
 </Condition>
</OrderDataFilter>

In addition, you can directly specify order fulfillment using the ExternalFulfillmentStates
element rather than do so with Add or Update statement on an UpdateOrder. This optional
approach improves order processing efficiency, especially in large orders. The
ExternalFulfillmentStates element has the following child elements:

• OrderItemOrderComponentFulfillmentState: The parent element to the children
elements that specify the new external fulfillment state of an order component and order
item.

– ExternalFulfillmentState: The new external fulfillment state.

– OrderComponentIndex: The order component index. Every order component element
must specify a unique index attribute. In most cases, the automation running the XML
API OrderUpdate already knows which order component the update is for.

– OrderItemIndex: The order item index. Every order item element must specify a
unique index attribute. In most cases, the automation running the XML API
OrderUpdate already knows which order component the update is for.

For samples of updateOrder, see SDK/Samples/WebService.

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 53

Preconditions

• The user performing the transaction is a member of at least one workgroup (role) that has
been granted permission on the creation task (view) for the order specification associated
with the order.

• The order is in the open.not_running.not_started state.

Note

These preconditions apply if the order is in the not_started state. You can update the
order data when the order is running, if the order life-cycle policy permissions allow it
for the task you want to update.

You must associate the task data you want to update to a role in the Design Studio
Order editor Permissions Query Task sub tab and set a query task with the required
data as the Default query task. You can associate only one role per task in the Order
editor. The user specified in the UpdateOrder header must be a member of this role.

Expected Outcome

The order's data is updated successfully but remains in the open.not_running.not_started
state. The order can be further updated or started by additional calls to the UpdateOrder
operation.

Attachments

You can add attachments through the updateOrder operation. Attachments are added by
populating the Remark element, which provides a place to define a text remark as well as an
attachment. The attachment is added by populating the Attachment element, which is a child
element of Remark. Within the Attachment element, you can define a sequence of file names
and their corresponding file types. For additional information, see the
OrderManagementWS.xsd file, which defines these elements.

Note

By default, uploading file attachments is secured. Only xml, json, pdf, txt file
extensions can be uploaded. To override this default behavior, add the property
file_attachment_filter_type to the oms-config.xml file. For more details refer to
the OSM System Administrator's Guide.

SuspendOrder
This operation suspends an order thereby preventing work items associated with the order
from being processed. A suspended order must be resumed before its associated work items
can once again be processed.

Preconditions

• The current state of the specified order is open.running.in_progress or
open.not_running.not_started.

• The target state of the order is not set.

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 53

• The order life-cycle policy associated with the order's specification has the Suspend Order
transaction enabled from the open.running.in_progress state or from the not_started state.

• The user performing the transaction is a member of one or more of the workgroups
associated with the Suspend Order transaction referenced in the precondition.

Expected Outcome

The order is successfully transitioned to the open.not_running.suspended state. Users are
restricted from processing work items associated with the suspended order.

Alternate Outcome with Grace Period

The order enters into a grace period that allows all work items that are currently accepted to be
processed. During the grace period, the current order state remains open.running.in_progress
and the target state is set to open.not_running.suspended. The order will complete the
transition to the open.not_running.suspended state when all accepted work items for the order
are completed or the grace period expires, whichever comes first. New work items cannot be
accepted during the grace period.

The grace period may be configured on the order state policy and/or specified on this call.

ResumeOrder
This operation resumes an order that is currently suspended or cancelled so that work items
associated with the order are allowed to be processed.

Preconditions

• The current state of the specified order is either open.not_running.suspended or
open.not_running_cancelled.

• The target state of the order is not set.

• The order life-cycle policy associated with the order's specification has the Resume Order
transaction enabled from the open.not_running.suspended state or
open.not_running.cancelled state.

• The user performing the transaction is a member of one or more of the workgroups
associated with the Resume Order transaction referenced in precondition.

Expected Outcome

The order is successfully transitioned to the open.running.in_progress or
open.not_running.not_started state. Authorized users may process work items associated with
the specified order.

CancelOrder
This operation cancels an order. All outstanding work items associated with the order are
deleted, and all complete work items associated with the order are compensated (undone).

Preconditions

• The current state of the specified order is open.running.in_progress or
open.not_running.suspended.

• The target state of the order is not set.

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 53

• The order life-cycle policy associated with the order's specification has the Cancel Order
transaction enabled from the current order state (open.running.in_progress state or
open.not_running.suspended).

• The user performing the transaction is a member of one or more of the workgroups
associated with the Cancel Order transaction referenced in precondition.

Expected Outcome

The order is successfully transitioned to the open.running.compensating.cancelling state.
Incomplete work items associated with the order are deleted. Completed work items
associated with the specified order are compensated. Once compensation completes, the
order is transitioned to open.not_running.cancelled.

Alternate Outcome with Grace Period

The order enters into a grace period that allows all work items that are currently accepted to be
processed. During the grace period, the current order state remains at its current value
(open.running.in_progress or open.not_running.suspended) and the target order state is set to
open.running.compensating.cancelling. The order will complete the transition to the
open.running.compensating.cancelling state when all accepted work items for the order are
completed or the grace period expires, whichever comes first. New work items cannot be
accepted during the grace period. The grace period may be configured on the order life-cycle
policy and/or specified on this call.

AbortOrder
This operation stops an order, and stops all work items associated with the order. You can
grant permissions for this operation by editing the Abort Order transaction in the order life-cycle
policy associated with the order's specification in Design Studio.

Preconditions

• The user performing the operation must be a member of one or more of the workgroups
associated with the Abort Order transaction.

Expected Outcome

The order is successfully transitioned to the closed.aborted state. Users are restricted from
processing the aborted order.

FailOrder
This operation fails an order. A failure must be resolved before the order can proceed any
further. You can grant permissions for this operation by editing the Fail Order transaction in the
order life-cycle policy associated with the order's specification in Design Studio.

Preconditions

• The user performing the operation must be a member of one or more of the workgroups
associated with the Fail Order transaction.

Expected Outcome

The order is successfully transitioned to the open.not_running.failed state. Users are restricted
from processing work items associated with the failed order.

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 53

Alternate Outcome With Grace Period

The order enters into a grace period that allows all work items that are currently accepted to be
processed. During the grace period, the current order state remains open.running.in_progress
and the target state is set to open.not_running.failed. The order will complete the transition to
the open.not_running.failed state when all accepted work items for the order are completed or
the grace period expires, whichever comes first. New work items cannot be accepted during
the grace period. The grace period may be configured on the order state policy or specified on
this call.

ResolveFailure
This operation resolves all failed tasks within an order or a collection of order components for a
given order. The operation causes all tasks to transition back to the corresponding normal
execution mode such as do, redo and undo from failed-do, failed-redo, or failed undo. The
operation also causes the task to return to the task state it had been in before failing (normally
the accepted or a custom task state).

If you use the failed order state, then this operations also causes an order that is currently
failed to transition back to the order state prior to entering the current failed order state.

You can grant permissions for this operation by editing the Manage Order Fallout transaction
for the failed, amending, canceling, in progress, suspended, or waiting for revision states in the
order life-cycle policy associated with the order's specification in Design Studio.

Preconditions

• The current state of the specified order must be one of the following:

– open.not_running.failed

– open.not_running.suspended

– open.not_running.waitinforrevision

– open.running.in_progress

– open.running.amending

– open.running.canceling

• The user performing the operation must be a member of one or more of the workgroups
associated with the Manage Order Fallout transaction.

Expected Outcome

All tasks on the order or on specific order components of the order that are in a failed
execution mode transition to the corresponding normal execution mode in the state the task
had been in before failing. For example, an order with a task in the failed-undo mode in the
accepted state would transition back to the normal undo mode in the state the task had been in
when it had failed.

If this operation is run when the order is in the failed sate, then the order is successfully
transitioned to its previous state.

RetryOrder
This operation retries all failed tasks within an order or a collection of order components for a
given order. The operation causes all tasks to transition back to the corresponding normal

Chapter 2
Web Service Operations Used for Order Management

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 53

execution modes such as do, redo and undo from failed-do, failed-redo, or failed-undo. The
operation also causes tasks to return to the received state.

You can grant permissions for this operation by editing the Manage Order Fallout transaction
for the failed, amending, canceling, in progress, suspended, or waiting for revision states in the
order life-cycle policy associated with the order's specification in Design Studio.

Preconditions

• The current state of the specified order must be one of the following:

– open.not_running.failed

– open.not_running.suspended

– open.not_running.waitinforrevision

– open.running.in_progress

– open.running.amending

– open.running.canceling

• The user performing the operation must be a member of one or more of the workgroups
associated with the Manage Order Fallout transaction.

Expected Outcome

All tasks on the order or on specific order components of the order that are in a failed
execution mode transition to the corresponding normal execution mode in the received state.
For example, an order with a task in the Failed-Undo mode in the accepted state would
transition to the Undo mode in the received state and another task in the Failed-Do mode in
the assigned state would transition to the Do mode in the received state.

Web Service Operations Used for Problem Order Diagnosis
This section describes web service operations used for diagnosing problem orders. This
includes getting order process history, compensation history and compensation details. Order
diagnoses operations are defined in the OrderManagementDiag.wsdl.wsdl file.

GetOrderProcessHistory
This operation returns process history perspective of an order. The root data comes from the
get_order_history SQL procedure, which sorts the results in the chronological order of entry
time. Note that this is not CompleteDate necessarily. The entry time is when the order
transitioned into that task and not when the order exited that task. For sequential tasks, this
amounts to the same thing as CompleteDate. But, when tasks are in parallel, it is possible for
tasks to start in a particular order but complete in a different order.

The different kinds of process history perspectives are:

• Original: An order that has never been compensated and has only one (the original)
process history perspective. For an order that has been compensated, the original process
history perspective includes all tasks created before the first compensation for the order
has started.

• Latest: Includes all tasks that have never been compensated.

• Identified by compensationID: A new process history perspective is created for the
compensation of each order that has been started. A task must satisfy the following

Chapter 2
Web Service Operations Used for Problem Order Diagnosis

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 53

conditions to be included in the process history perspective that is identified by
compensation:

– To be created before any later compensation has started (if any).

– Not to be compensated in any prior compensation.

When a task is "redo" compensated, the "redo" compensator replaces the task in all
subsequent process history perspectives. When a task is "undone," it is not included into
any subsequent process history perspectives. Tasks that are compensated in the
compensation context that the process history is requested for are included in the
response and their compensation details are provided.

Use the GetOrderCompensations operation to retrieve information about order compensations,
including their IDs. See "GetOrderCompensations."

Preconditions

• The specified order exists.

Expected Outcome

The process history perspective for the order is returned.

GetOrderCompensations
This operation retrieves the history of all compensations for an order. For each compensation,
the data returned includes the type of compensation, submission date, start date (optional),
and completion date (optional).

Preconditions

• The specified order must exist.

• The specified order must be in the open.running.compensating.amending or
open.running.compensating.cancelling state.

Expected Outcome

The order compensation plan information is returned as a set of compensation tasks, along
with the compensation dependencies between them.

GetCompensationPlan
This operation retrieves compensation plan details for an order. For each compensation plan,
the data returned includes the type of compensation, active compensation task information,
pending compensation task information , and the state transition history for compensation
tasks.

Preconditions

• The specified order must exist.

• The specified order must be open.running.compensating.amending or
open.running.compensating.cancelling.

Expected Outcome

The order compensation plan information is returned.

Chapter 2
Web Service Operations Used for Problem Order Diagnosis

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 53

Navigating WSDL and XSD Files
This section describes how to navigate the WSDL and XSD files to determine the input
parameters, responses, and fault types that a given OSM Web Service operation defines. The
information is presented through an example that is applicable to all operations.

Order Management WSDL File
Example 2-4 is an excerpt from the OrderManagementWS.wsdl file that shows how a typical
OSM Web Service operation is defined.

Example 2-4 WSDL Operation Definition

<wsdl:operation name="CreateOrderBySpecification">
 <wsdl:input message="prov:CreateOrderBySpecificationRequest">
 </wsdl:input>
 <wsdl:output message="prov:CreateOrderBySpecificationResponse">
 </wsdl:output>
 <wsdl:fault name="InvalidOrderSpecificationFault"
 message="prov:CreateOrder_faultMsg">
 </wsdl:fault>
 <wsdl:fault name="TransactionNotAllowedFault"
 message="prov:CreateOrder_faultMsg1">
 </wsdl:fault>
 <wsdl:fault name="InvalidOrderDataFault"
 message="prov:CreateOrder_faultMsg3">
 </wsdl:fault>
 </wsdl:operation>

The WSDL file defines each operation in the same manner, which provides the following
information:

• Operation name: The name of the web service operation.

• Input message: The request structure that is defined in the corresponding XSD file.

• Output message: The response structure that is defined in the corresponding XSD file.

• Fault names: The exception structures that are defined in the corresponding XSD file.

The WSDL file tells you what request goes with what response, and what exceptions the
request may throw. Each web service operation defines a request and a response, which are
the input and output parameters. The request and response structures are defined in the
corresponding XSD file. For example, the CreateOrderBySpecification operation is defined in
the OrderManagmentWS.wsdl file, and the corresponding XSD file is
OrderManagementWS.xsd.

Order Management XSD File
This section describes how to navigate the XSD files. The request and response structures
defined in the XSD are used by the OSM Web Service operations as input and output
parameters. This section provides graphics of the XSD in various states of expansion. You can
view the XSD using any XML application, such as XMLSpy.

XMLSpy offers several ways to view XML files. XSD files containing large structures can be
very difficult to read. The examples provided in this section show how to view XSD files using
the Schema/WSDL Design view, which allows you to view the top level structures and then

Chapter 2
Navigating WSDL and XSD Files

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 53

expand and collapse them as needed. Viewing the XML structure in this manner automatically
pulls in any referenced structures, removing the need to scroll around to locate them.

Note

If you are using an application other than XMLSpy to view XML files, your views of the
XSD may differ from the examples used in this section.

Determining Input Parameters (Request)

Figure 2-1 shows a portion of the OrderManagmentWS.xsd file in the Schema/WSDL Design
view, as it appears when first opened. This is the top level of the view, which lists all
simpleType, complexType, and elements that are defined in the file.

Figure 2-1 Schema/WSDL Design View

From the top level, clicking the grey box located to the left of any element or complexType
expands the structure. Continuing with the example, Figure 2-2 shows the result of clicking the
grey box located to the left of CreateOrderBySpecification.

Figure 2-2 Expanded Structure

From this level, you can see that CreateOrderBySpecification defines
CreateOrderBySpecificationRequestType, but you cannot see what
CreateOrderBySpecificationRequestType actually defines. Clicking the "+" located within the
CreateOrderBySpecificationRequestType structure box expands the structure. Figure 2-3 and
Figure 2-4 show the result of this action.

Chapter 2
Navigating WSDL and XSD Files

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 53

Figure 2-3 Further Expanded Structure

Chapter 2
Navigating WSDL and XSD Files

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 53

Figure 2-4 Further Expanded Structure (continued)

From this level, you can see that CreateOrderBySpecificationRequestType defines:

• Specification

• Reference

• Priority

• AutoAddMandatoryData

• StartOrder

• Data

• Remark

However, you cannot see what the Specification, Data, or Remark structures define. As with
the previous level, you can expand any of these structures by clicking the "+" located to the
right of the structure name. Clicking the "+" located within the Data and Remark structure box
expands the structures. Figure 2-5 shows the result of this action.

Chapter 2
Navigating WSDL and XSD Files

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 53

Figure 2-5 Further Expansion of Data and Remark Elements

Expanding the Specification, Data, and Remark structures shows additional defined structures
and fields. In this example, note that the structure defined under the Data structure
(OrderDataType any) is a structure that is defined in Design Studio. For example, you may
define five different order templates, so the structure under the Data structure varies depending
on the order type. The order-specific data in the request is validated by the server through the
creation task view.

Note

To collapse any of the structures at any level, click "-" located near the structure name.
You can also collapse all structures and return to the top level by clicking the collapse
button, located in the upper left corner as shown in Figure 2-3. The collapse button is
only visible in the upper left corner, so you must scroll all the way up and all the way to
the left to see it.

Chapter 2
Navigating WSDL and XSD Files

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 53

Determining Output Parameters (Response)

You can expand the response structure defined for an operation. Figure 2-6 shows the top
level of the OrderManagementWS.xsd file in Schema/WSDL Design view. Continuing with our
example, expand CreateOrderBySpecificationResponse to determine the expected response.

Figure 2-6 Schema/WSDL Design View

Figure 2-7 shows the expected response defined by CreateOrderBySpecificationResponse,
which can be expanded even further.

Figure 2-7 Expanded Structure

Determining Fault Types

You can expand the fault names defined for the operation. Continuing with the
CreateOrderBySpecification example, InvalidOrderSpecificationFault,
TransactionNotAllowedFault, and InvalidOrderDataFault are all defined as top level structures
in the OrderManagementWS.xsd file.

Order Management Request and Response Examples
This section provides sample XML requests and sample XML responses. Sample XML for any
web service operation can be generated from the XSD using any XML application such as
XMLSpy.

To generate a sample XML file using XMLSpy:

1. Open an XSD file in XMLSpy.

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 53

2. From the menu, select DTD/Schema, then select Generate Sample XML File.

The Select a Root Element dialogue box opens, which lists all root elements defined in
the XSD, such as CreateOrder, CreateOrderResponse, FindOrder, FindOrderResponse,
and so on.

3. Select a root element and click OK.

The Generate Sample XML File dialogue box appears, which provides a few selection
options such as generating non-mandatory elements and attributes, the number of
structures to generate for structures that are defined as a sequence, and whether or not to
populate the XML with data.

4. Choose the appropriate options and click OK.

The generated XML displays within a new file, Untitled.xml.

Generating XML in this manner does not generate the SOAP header and body. However, the
SOAP header and body can be manually inserted into the generated XML.

CreateOrderBySpecification Examples
This section provides a request example and a response example for the
CreateOrderBySpecification operation.

Request Example

Example 2-5 CreateOrderBySpecificationRequest

<?xml version = '1.0' encoding = 'UTF-8'?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-
token-profile-1.0#PasswordText">password</wsse:Password>
</wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
 <ws:CreateOrderBySpecification>
 <ws:Specification>
 <ws:Cartridge>
 <ws:Name>view_framework_demo</ws:Name>
 <!--Optional:-->
 <ws:Version>1.0</ws:Version>
 </ws:Cartridge>
 <ws:Type>vf_demo</ws:Type>
 <ws:Source>web</ws:Source>
 </ws:Specification>
 <!--Optional:-->
 <ws:Reference>test message</ws:Reference>
 <!--Optional:-->
 <ws:Priority>5</ws:Priority>
 <!--Optional:-->
 <ws:AutoAddMandatoryData>true</ws:AutoAddMandatoryData>
 <!--Optional:-->
 <ws:StartOrder>true</ws:StartOrder>
 <!--Optional:-->

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 53

 <ws:Data>
<_root>
 <account_information>
 <amount_owing>553</amount_owing>
 </account_information>
 </_root>
 </ws:Data>
<!--Zero or more repetitions:-->
<ws:Remark>
 <!--Optional:-->
 <ws:Text>Test Remark</ws:Text>
 <!--Zero or more repetitions:-->
 <ws:Attachment>
 <!--Optional:-->
 <ws:Name>readme.txt</ws:Name>
 <!--You have a CHOICE of the next 3 items at this level-->
 <ws:swaRefMimeContent>cid:first</ws:swaRefMimeContent>
 <!--ws:base64BinaryContent>?</ws:base64BinaryContent>
 <ws:hexBinaryContent>?</ws:hexBinaryContent-->
 </ws:Attachment>
 </ws:Remark>
<ws:Remark>
 <!--Optional:-->
 <ws:Text>Test Remark</ws:Text>
 <!--Zero or more repetitions:-->
 <ws:Attachment>
 <!--Optional:-->
 <ws:Name>test2.txt</ws:Name>
 <!--You have a CHOICE of the next 3 items at this level-->
 <ws:swaRefMimeContent>cid:second</ws:swaRefMimeContent>
 <!--ws:base64BinaryContent>?</ws:base64BinaryContent>
 <ws:hexBinaryContent>?</ws:hexBinaryContent-->
 </ws:Attachment>
 </ws:Remark>
 </ws:CreateOrderBySpecification>
 </soapenv:Body>
</soapenv:Envelope>

Response Example

Example 2-6 CreateOrderBySpecificationResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<ws:CreateOrderBySpecificationResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
<ws:OrderSummary>
<ws:Id>202</ws:Id>
<ws:Specification>
<ws:Cartridge>
<ws:Name>view_framework_demo</ws:Name>
<ws:Version>1.0</ws:Version>
</ws:Cartridge>
<ws:Type>vf_demo</ws:Type>
<ws:Source>web</ws:Source>
</ws:Specification>
<ws:State>open.not_running.not_started</ws:State>
<ws:Reference>test message</ws:Reference>
<ws:Priority>5</ws:Priority>
</ws:OrderSummary>
</ws:CreateOrderBySpecificationResponse>
</soapenv:Body>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 53

Request Example - Setting Up Reference Nodes

This example demonstrates how to set up reference nodes in the task data of the creation task
when you code the CreateOrderBySpecification call in your XQuery or XSLT or Java
automation plug-ins.

Note

A creation task is selected for an order in the Order Editor Details tab of Design
Studio. In this example, the name of the creation task (for which the
CreateOrderBySpecification call requires the order data) is in the parameter
<ord:View>ReferenceDebugCreationTask</ord:View>.

When creating the order you must explicitly give the referred-to field an index, and then refer to
it with {#} in the reference. You assign the index and code it when you write your automation
plug-in code (XQuery/XSLT/Java code).

In this example, <LineItem index="1"> is the index value you defined to this LineItem
instance in your automation plug-in code. The index value must be unique within this
CreateOrderBySpecification order data; this allows you to refer to this instance later as
<LineItem_refNode>{1}</LineItem_refNode> to point to a single data node location in the
order template at order creation time.

Example 2-7 CreateOrderBySpecificationRequest - Setting Up Reference Nodes

<ord:CreateOrderBySpecification>
 <ord:Specification>
 <ord:Cartridge>
 <ord:Name>ReferenceDebug</ord:Name>
 <ord:Version>1.0.0</ord:Version>
 </ord:Cartridge>
 <ord:Type>ReferenceDebugOrder</ord:Type>
 <ord:Source>ReferenceDebugOrder</ord:Source>
 <ord:View>ReferenceDebugCreationTask</ord:View>
 </ord:Specification>
 <ord:Reference>created from SoapUI</ord:Reference>
 <ord:Priority>5</ord:Priority>
 <ord:AutoAddMandatoryData>false</ord:AutoAddMandatoryData>
 <ord:StartOrder>false</ord:StartOrder>
 <!--Optional:-->
 <ord:Data>
 <_root>
 <Data>
 <LineItem index="1">
 <ID>1</ID>
 </LineItem>
 <LineItem index="2">
 <ID>2</ID>
 </LineItem>
 </Data>
 <References>
 <LineItem_refNode>{1}</LineItem_refNode>
 </References>
 </_root>
 </ord:Data>
 </ord:CreateOrderBySpecification>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 53

GetOrder Examples
This section provides a request example and a response example for the GetOrder operation.

Request and Response Example

Example 2-9 shows a GetOrderRequest.

Example 2-9 shows a GetOrderRequest that specifies that the data defined by the
demo_query query task be returned in the GetOrderResponse from the order with order ID 9.

Example 2-10 shows the GetOrderResponse returned for the GetOrderRequest in
Example 2-9.

Example 2-8 GetOrder Request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header/>
 <soapenv:Body>
 <ord:GetOrder>
 <ord:OrderId>?</ord:OrderId>
 <!--Optional:-->
 <ord:View>?</ord:View>
 <!--Optional:-->
 <ord:OrderDataFilter>
 <!--Zero or more repetitions:-->
 <ord:Condition>?</ord:Condition>
 </ord:OrderDataFilter>
 <!--Optional:-->
 <ord:RemarkFilter>
 <!--Optional:-->
 <ord:RetrieveRemarks>false</ord:RetrieveRemarks>
 <!--Zero or more repetitions:-->
 <ord:AttachmentFilter>
 <!--Optional:-->
 <ord:FileNameMatch>.*</ord:FileNameMatch>
 <!--Optional:-->
 <ord:MinSize>0</ord:MinSize>
 <!--Optional:-->
 <ord:MaxSize>4</ord:MaxSize>
 <!--Optional:-->
 <ord:Format>inlineBase64Binary</ord:Format>
 </ord:AttachmentFilter>
 </ord:RemarkFilter>
 <!--Optional:-->
 <ord:AmendmentFilter>
 <ord:LevelOfDetail>AmendmentSummary</ord:LevelOfDetail>
 </ord:AmendmentFilter>
 <!--Optional:-->
 <ord:LifecycleEventFilter>
 <!--Optional:-->
 <ord:RetrieveLifecycleEvents>false</ord:RetrieveLifecycleEvents>
 </ord:LifecycleEventFilter>
 </ord:GetOrder>
 </soapenv:Body>
</soapenv:Envelope>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 53

Example 2-9 GetOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement" xmlns:ws="http://
xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ord:GetOrder>
 <ord:OrderId>9</ord:OrderId>
 <ord:View>demo_query</ord:View>
 </ord:GetOrder>
 </soapenv:Body>
</soapenv:Envelope>

Example 2-10 GetOrderResponse

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <GetOrderResponse xmlns="http://xmlns.oracle.com/communications/ ordermanagement">
 <OrderSummary>
 <Id>9</Id>
 <Specification>
 <Cartridge>
 <Name>bb_ocm_demo</Name>
 <Version>1.0.0.0.0</Version>
 </Cartridge>
 <Type>add_adsl_siebel</Type>
 <Source>add_adsl_siebel</Source>
 </Specification>
 <State>open.running.in_progress</State>
 <Reference></Reference>
 <CreatedDate>2014-10-30T08:24:15.000-07:00</CreatedDate>
 <ExpectedDuration>P1D</ExpectedDuration>
 <ExpectedOrderCompletionDate>2014-10-31T08:24:26.000-07:00 </
ExpectedOrderCompletionDate>
 <ProcessStatus>n/a</ProcessStatus>
 <Priority>5</Priority>
 </OrderSummary>
 <Data>
 <osmc:_root index="0" xmlns:osmc="urn:oracle:names:
ordermanagement:cartridge:bb_ocm_demo:1.0.0.0.0:view:demo_query">
 <osmc:subscriber_info index="1414682666683">
 <osmc:address index="1414682666684">
 <osmc:city index="1414682666687">TO</osmc:city>
 <osmc:postal_code index="1414682666686">M9W6H8</osmc:postal_code>
 <osmc:street index="1414682666685">2300 Oracle Way</osmc:street>
 </osmc:address>
 <osmc:address index="1414682666692">
 <osmc:city index="1414682666693">TO</osmc:city>
 <osmc:postal_code index="1414682666694">A1B2Z7</osmc:postal_code>
 <osmc:street index="1414682666695">2300 Oracle Way</osmc:street>
 </osmc:address>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 53

 <osmc:address index="1414682666696">
 <osmc:city index="1414682666697">TO</osmc:city>
 <osmc:postal_code index="1414682666698">A1B2Z7</osmc:postal_code>
 <osmc:street index="1414682666699">2300 Oracle Way</osmc:street>
 </osmc:address>
 <osmc:primary_phone_number index="1414682666689">603.555.0100</
osmc:primary_phone_number>
 <osmc:name index="1414682666688">Adams</osmc:name>
 </osmc:subscriber_info>
 <osmc:adsl_service_details index="1414682666690">
 <osmc:bandwidth index="1414682666691">3</osmc:bandwidth>
 </osmc:adsl_service_details>
 </osmc:_root>
 </Data>
 </GetOrderResponse>
 </env:Body>
</env:Envelope>

Request and Response Example with OrderDataFilter

Example 2-11 shows a GetOrderRequest that specifies that the data defined by the
demo_query query task be returned in the GetOrderResponse from the order with order ID 9.
The GetOrderRequest also includes an OrderDataFilter that specifies that only the address
instance with a corresponding street value of "190 Attwell Drive". should return in the
GetOrderResponse.

Example 2-12 shows the GetOrderResponse returned for the GetOrderRequest in
Example 2-11.

Example 2-11 GetOrderRequest with OrderDataFilter

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement" xmlns:ws="http://
xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ord:GetOrder>
 <ord:OrderId>9</ord:OrderId>
 <ord:View>demo_query</ord:View>
 <ord:OrderDataFilter>
 <ord:Condition>/subscriber_info/address[street='2300 Oracle Way']</
ord:Condition>
 </ord:OrderDataFilter>
 </ord:GetOrder>
 </soapenv:Body>
</soapenv:Envelope>

Example 2-12 GetOrderResponse with OrderDataFilter

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 53

 <GetOrderResponse xmlns="http://xmlns.oracle.com/communications/ ordermanagement">
 <OrderSummary>
 <Id>9</Id>
 <Specification>
 <Cartridge>
 <Name>bb_ocm_demo</Name>
 <Version>1.0.0.0.0</Version>
 </Cartridge>
 <Type>add_adsl_siebel</Type>
 <Source>add_adsl_siebel</Source>
 </Specification>
 <State>open.running.in_progress</State>
 <Reference></Reference>
 <CreatedDate>2014-10-30T08:24:15.000-07:00</CreatedDate>
 <ExpectedDuration>P1D</ExpectedDuration>
 <ExpectedOrderCompletionDate>2014-10-31T08:24:26.000-07:00
 </ExpectedOrderCompletionDate>
 <ProcessStatus>n/a</ProcessStatus>
 <Priority>5</Priority>
 </OrderSummary>
 <Data>
 <osmc:_root index="0" xmlns:osmc="urn:oracle:names:
ordermanagement:cartridge:bb_ocm_demo:1.0.0.0.0:view:demo_query">
 <osmc:subscriber_info index="1414682666683">
 <osmc:address index="1414682666684">
 <osmc:city index="1414682666687">TO</osmc:city>
 <osmc:postal_code index="1414682666686">M9W6H8</osmc:postal_code>
 <osmc:street index="1414682666685">2300 Oracle Way</osmc:street>
 </osmc:address>
 <osmc:primary_phone_number index="1414682666689">603.555.0100</
osmc:primary_phone_number>
 <osmc:name index="1414682666688">Adams</osmc:name>
 </osmc:subscriber_info>
 <osmc:adsl_service_details index="1414682666690">
 <osmc:bandwidth index="1414682666691">3</osmc:bandwidth>
 </osmc:adsl_service_details>
 </osmc:_root>
 </Data>
 </GetOrderResponse>
 </env:Body>
</env:Envelope>

Response Example - Order with Distributed Order Template Elements and Transformed
Order Items

Example 2-13 Partial GetOrderResponse containing Distributed Order Template Data

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <GetOrderResponse xmlns="http://xmlns.oracle.com/communications/ordermanagement">
 <OrderSummary>
 <Id>20</Id>
 <Specification>
 <Cartridge>
 <Name>OsmCentralOMExample-Solution</Name>
 <Version>4.0.0.0.0</Version>
 </Cartridge>
 <Type>OsmCentralOMExampleOrder</Type>
 <Source>OsmCentralOMExampleOrder</Source>
 </Specification>
 <State>open.running.in_progress</State>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 53

 <Reference>Order1397235767310</Reference>
 <CreatedDate>2014-04-11T10:03:28.000-07:00</CreatedDate>
 <RequestedDeliveryDate>2014-03-31T07:05:00.000-07:00
 </RequestedDeliveryDate>
 <ExpectedStartDate>2014-04-11T10:03:32.495-07:00</ExpectedStartDate>
 <ExpectedDuration>PT0S</ExpectedDuration>
 <ExpectedOrderCompletionDate>2014-04-11T10:03:32.495-07:00
 </ExpectedOrderCompletionDate>
 <Priority>5</Priority>
 </OrderSummary>
 <Data>
 <osmc:_root index="0"
xmlns:osmc="urn:oracle:names:ordermanagement:cartridge:OsmCentralOMExample-
Solution:4.0.0.0.0:view:OsmCentralOMExampleQueryTask">
 <osmc:OrderHeader index="1">
 <osmc:numSalesOrder index="2">Order_number</osmc:numSalesOrder>
 <osmc:typeOrder index="3">Add</osmc:typeOrder>
 </osmc:OrderHeader>
 <osmc:CustomerDetails index="11">
 <osmc:nameLocation index="13">location1</osmc:nameLocation>
 <osmc:typeAddress index="23">2300 Oracle Way</osmc:typeAddress>
 </osmc:CustomerDetails>
 <osmc:AccountDetails index="24">
 <osmc:numAccount index="25">TEL1234</osmc:numAccount>
 <osmc:status index="26">Existing</osmc:status>
 <osmc:corporate index="27">PoC</osmc:corporate>
 <osmc:inscrState index="30">232,232,232,232</osmc:inscrState>
 <osmc:clientSince index="31">1986-12-31-08:00</osmc:clientSince>
 <osmc:category index="32">Corporate</osmc:category>
 </osmc:AccountDetails>
 <osmc:ControlData index="1397235812801">
 <osmc:Functions index="1397235812888">
 <osmc:ProvisioningFunction index="1397235811141">
 <osmc:transformedOrderItem index="1397235812898">
 <osmc:orderItemRef xsi:type="ct160:TransformedOrderLineType"
type="{http://www.oracle.com/otm/cso}TransformedOrderLineType" index="1397235812899"
referencedIndex="1397235811129" xmlns:ct160="http://www.oracle.com/otm/cso"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ct135:LineId index="1397235812853" xmlns:ct135="http://
xmlns.oracle.com/communications/studio/ordermanagement/transformation">CSO_2</
ct135:LineId>
 <ct160:dynamicParams
xsi:type="ct264:SA_Provision_BroadbandInternetType"
type="{OracleComms_Model_BroadbandInternet/4.0.0.0.0}SA_Provision_BroadbandInternetType"
index="1397235812848" xmlns:ct264="OracleComms_Model_BroadbandInternet/4.0.0.0.0">
 <ct264:DownloadSpeed index="1397235812851">50</ct264:DownloadSpeed>
 <ct264:QoS index="1397235812852">Data</ct264:QoS>
 <ct264:UploadSpeed index="1397235812850">3.072</ct264:UploadSpeed>
 </ct160:dynamicParams>
 <ct160:Recognition
index="1397235812846">{OracleComms_Model_BroadbandInternet/
4.0.0.0.0}SA_Provision_BroadbandInternetSpec</ct160:Recognition>
 <ct160:LineName
index="1397235812847">SA_Provision_BroadbandInternetSpec [Add]</ct160:LineName>
 <ct160:FulfillmentPattern index="1397235812855">{http://
oracle.communications.ordermanagement.unsupported.centralom}Service.Broadband</
ct160:FulfillmentPattern>
 <ct160:Action index="1397235812854">Add</ct160:Action>
 </osmc:orderItemRef>
 </osmc:transformedOrderItem>
 <osmc:componentKey
index="1397235812889">ProvisioningFunction.DSLProvisioningSystem_Region2.WholeOrder</

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 53

osmc:componentKey>
 <osmc:orderItem index="1397235812892">
 <osmc:orderItemRef xsi:type="ct211:CustomerOrderItemSpecificationType"
type="{http://
oracle.communications.ordermanagement.unsupported.centralom}CustomerOrderItemSpecificatio
nType" index="1397235812893" referencedIndex="1397235811126" xmlns:ct211="http://
oracle.communications.ordermanagement.unsupported.centralom" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <ct211:productSpec index="1397235812811">Broadband Service Feature
Class</ct211:productSpec>
 <ct211:fulfPatt index="1397235812802">Service.Broadband</
ct211:fulfPatt>
 <ct211:lineId index="1397235812809">1</ct211:lineId>
 <ct211:lineItemName index="1397235812808">Brilliant Broadband [Add]</
ct211:lineItemName>
 <ct211:requestedDeliveryDate
index="1397235812806">2014-03-31T07:05:00-07:00</ct211:requestedDeliveryDate>
 <ct211:region index="1397235812803">Rio de Janeiro</ct211:region>
 <ct211:typeCode index="1397235812813">BUNDLE</ct211:typeCode>
 <ct211:lineItemPayload index="1397235812805">
 <im:salesOrderLine xmlns:im="http://xmlns.oracle.com/InputMessage">
 <im:lineId>1</im:lineId>
 <im:promotionalSalesOrderLineReference>1
 </im:promotionalSalesOrderLineReference>
 <im:serviceId/>
 <im:requestedDeliveryDate>2014-03-31T07:05:00
 </im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:serviceInstance>N</im:serviceInstance>
 <im:serviceAddress>
 <im:nameLocation>Location1</im:nameLocation>
 <im:typeAddress>Building</im:typeAddress>
 </im:serviceAddress>
 <im:itemReference>
 <im:name>Brilliant Broadband</im:name>
 <im:typeCode>BUNDLE</im:typeCode>
 <im:primaryClassificationCode>Broadband Service Feature Class</
im:primaryClassificationCode>
 <im:specificationGroup/>
 </im:itemReference>
 </im:salesOrderLine>
 </ct211:lineItemPayload>
 <ct211:Recognition index="1397235812810">Broadband Service Feature
Class</ct211:Recognition>
 <ct211:Action index="1397235812812">Add</ct211:Action>
 <ct211:ServiceInstance index="1397235812807">N</
ct211:ServiceInstance>
 </osmc:orderItemRef>
 </osmc:orderItem>
 [...]
 <osmc:calculatedStartDate
index="1397235812890">2014-03-31T07:05:00-07:00</osmc:calculatedStartDate>
 <osmc:duration index="1397235812891">PT0S</osmc:duration>
 </osmc:ProvisioningFunction>
 </osmc:Functions>
 <osmc:OrderItem xsi:type="ct211:CustomerOrderItemSpecificationType"
type="{http://
oracle.communications.ordermanagement.unsupported.centralom}CustomerOrderItemSpecificatio
nType" index="1397235811126" xmlns:ct211="http://
oracle.communications.ordermanagement.unsupported.centralom" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <ct211:productSpec index="1397235812811">Broadband Service Feature Class</

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 53

ct211:productSpec>
 <ct211:fulfPatt index="1397235812802">Service.Broadband</ct211:fulfPatt>
 <ct211:lineId index="1397235812809">1</ct211:lineId>
 <ct211:lineItemName index="1397235812808">Brilliant Broadband [Add]</
ct211:lineItemName>
 <ct211:requestedDeliveryDate
index="1397235812806">2014-03-31T07:05:00-07:00</ct211:requestedDeliveryDate>
 <ct211:region index="1397235812803">Rio de Janeiro</ct211:region>
 <ct211:typeCode index="1397235812813">BUNDLE</ct211:typeCode>
 <ct211:lineItemPayload index="1397235812805">
 <im:salesOrderLine xmlns:im="http://xmlns.oracle.com/InputMessage">
 <im:lineId>1</im:lineId>
 <im:promotionalSalesOrderLineReference>1
 </im:promotionalSalesOrderLineReference>
 <im:serviceId/>
 <im:requestedDeliveryDate>2014-03-31T07:05:00
 </im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:serviceInstance>N</im:serviceInstance>
 <im:serviceAddress>
 <im:nameLocation>Location1</im:nameLocation>
 <im:typeAddress>Building</im:typeAddress>
 </im:serviceAddress>
 <im:itemReference>
 <im:name>Brilliant Broadband</im:name>
 <im:typeCode>BUNDLE</im:typeCode>
 <im:primaryClassificationCode>Broadband Service Feature Class</
im:primaryClassificationCode>
 <im:specificationGroup/>
 </im:itemReference>
 </im:salesOrderLine>
 </ct211:lineItemPayload>
 <ct211:Recognition index="1397235812810">Broadband Service Feature Class</
ct211:Recognition>
 <ct211:Action index="1397235812812">Add</ct211:Action>
 <ct211:ServiceInstance index="1397235812807">N</ct211:ServiceInstance>
 </osmc:OrderItem>
 [...]
 <osmc:TransformedOrderItem xsi:type="ct160:TransformedOrderLineType"
type="{http://www.oracle.com/otm/cso}TransformedOrderLineType" index="1397235811129"
xmlns:ct160="http://www.oracle.com/otm/cso" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <ct135:LineId index="1397235812853" xmlns:ct135="http://xmlns.oracle.com/
communications/studio/ordermanagement/transformation">CSO_2</ct135:LineId>
 <ct160:dynamicParams xsi:type="ct264:SA_Provision_BroadbandInternetType"
type="{OracleComms_Model_BroadbandInternet/4.0.0.0.0}SA_Provision_BroadbandInternetType"
index="1397235812848" xmlns:ct264="OracleComms_Model_BroadbandInternet/4.0.0.0.0">
 <ct264:DownloadSpeed index="1397235812851">50</ct264:DownloadSpeed>
 <ct264:QoS index="1397235812852">Data</ct264:QoS>
 <ct264:UploadSpeed index="1397235812850">3.072</ct264:UploadSpeed>
 </ct160:dynamicParams>
 <ct160:Recognition
index="1397235812846">{OracleComms_Model_BroadbandInternet/
4.0.0.0.0}SA_Provision_BroadbandInternetSpec</ct160:Recognition>
 <ct160:LineName index="1397235812847">SA_Provision_BroadbandInternetSpec
[Add]</ct160:LineName>
 <ct160:FulfillmentPattern index="1397235812855">{http://
oracle.communications.ordermanagement.unsupported.centralom}Service.Broadband</
ct160:FulfillmentPattern>
 <ct160:Action index="1397235812854">Add</ct160:Action>
 </osmc:TransformedOrderItem>
 <osmc:MappingContext index="1397235812856">

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 53

 <osmc:ProviderFunction index="1397235812857">
 <osmc:namespace index="1397235812858">OracleComms_Model_Base/4.0.0.0.0</
osmc:namespace>
 <osmc:name index="1397235812859">CalculateServiceOrder</osmc:name>
 <osmc:TargetMapping index="1397235812860">
 <osmc:target index="1397235812861">CSO_2</osmc:target>
 <osmc:SourceMapping index="1397235812862">
 <osmc:source index="1397235812863">2</osmc:source>
 <osmc:InstantiatingMappingRule index="1397235812864">
 <osmc:namespace index="1397235812865">http://www.oracle.com/otm/
cso</osmc:namespace>
 <osmc:name
index="1397235812866">BroadbandMappingRule_Broadband_PS_SA_Provision_BroadbandInternet_Pr
imary_---g--+U--+R---QI0kDkw</osmc:name>
 </osmc:InstantiatingMappingRule>
 </osmc:SourceMapping>
 [...]
 </osmc:TargetMapping>
 </osmc:ProviderFunction>
 </osmc:MappingContext>
 </osmc:ControlData>
 <osmc:BillingProfile index="4">
 <osmc:mediaType index="5">1</osmc:mediaType>
 <osmc:typeInvoice index="6">Summary</osmc:typeInvoice>
 <osmc:billingCycle index="7">Q11</osmc:billingCycle>
 <osmc:exemptionICMS index="8">Yes</osmc:exemptionICMS>
 <osmc:empresaFaturamento index="9">Oi Fixed</osmc:empresaFaturamento>
 <osmc:paymentMethod index="10">1</osmc:paymentMethod>
 </osmc:BillingProfile>
 </osmc:_root>
 </Data>
 </GetOrderResponse>
 </env:Body>
</env:Envelope>

UpdateOrder Examples
This section provides request examples and a response example for the UpdateOrder
operation.

Request Examples

Example 2-14 UpdateOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ws:UpdateOrder>
 <ws:OrderId>4</ws:OrderId>
 <ws:View>enter_payment_details</ws:View>
 <ws:UpdatedOrder>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 53

 <_root>
 <account_information>
 <amount_owing>222</amount_owing>
 </account_information>
 </_root>
 </ws:UpdatedOrder>
 </soapenv:Body>
</soapenv:Envelope>

Example 2-15 UpdateOrderRequest: Update nodes

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ws:UpdateOrder>
 <ws:OrderId>4</ws:OrderId>
 <ws:View>enter_payment_details</ws:View>
 <WS:UpdatedNodes>
 <_root>
 <ControlData>
 <Functions>
 <FulfillBillingFunction>
 <orderItem>
 <ExternalFulfillmentState>COMPLETED</ExternalFulfillmentState>
 <orderItemRef>
 <serviceName>C_GSM_ADD_SUB</serviceName>
 <LineId>987654</LineId>
 </orderItemRef>
 </orderItem>
 </FulfillBillingFunction>
 </Functions>
 </ControlData>
 </_root>
 </ws:UpdatedNodes>
 <ws:ExternalFulfillmentStates>
 <ws:OrderItemOrderComponentFulfillmentState>
 <ws:ExternalFulfillmentState>COMPLETED</ws:ExternalFulfillmentState>
 <ws:OrderComponentIndex>1234</ws:OrderComponentIndex>
 <ws:OrderItemIndex>456789</ws:OrderItemIndex>
 </ws:OrderItemOrderComponentFulfillmentState>
 </ws:ExternalFulfillmentStates>
 </ws:UpdateOrder>
 </soapenv:Body>
</soapenv:Envelope>

Example 2-16 UpdateOrderRequest: Data change

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 53

 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
<ws:UpdateOrder>
<ws:OrderId>41</ws:OrderId>
<ws:DataChange>
<ws:Update Path="/account_information/amount_owing">
444
</ws:Update>
</ws:DataChange>
<ws:StartOrder>false</ws:StartOrder>
<ws:View>enter_payment_details</ws:View>
</ws:UpdateOrder>
</soapenv:Body>
</soapenv:Envelope>

Example 2-17 UpdateOrderRequest: Data change with Distributed Order Template

<ord:UpdateOrder>
 <ord:OrderId>123</ord:OrderId>
 <ord:View>OsmCentralOMExampleQueryTask</ord:View>
 <ord:DataChange>
 <ord:Update Path="/ControlData/OrderItem[@index='111222333'][@type='{http://
oracle.communications.ordermanagement.unsupported.centralom}CustomerOrderItemSpecificatio
nType']/dynamicParams[@index='222333444'][@type='{OracleComms_Model_BroadbandInternet/
4.0.0.0.0}Broadband_Bandwidth_PSType']/UploadSpeed">
 10000
 </ord:Update>
 </ord:DataChange>
</ord:UpdateOrder>

Request and Response Example with ResponseView and OrderDataFiltering

Example 2-18 shows the standard response message returned from an UpdateOrderRequest.

Example 2-19 shows an UpdateOrderRequest that adds a new customer address instance to
the order that includes a ResponseView query task that defines the data to be returned in the
UpdateOrderResponse message. The UpdateOrderRequest also includes an OrderDataFilter
that specifies that only the new address instance with street value of "112 Update Drive" must
be returned.

Example 2-20 shows the UpdateOrderResponse to the UpdateOrderRequest in Example 2-19.

Example 2-18 UpdateOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
<ws:UpdateOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
<ws:OrderId>2180</ws:OrderId>
<ws:State>open.running.in_progress</ws:State>
</ws:UpdateOrderResponse>
</soapenv:Body>
</soapenv:Envelope>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 53

Example 2-19 UpdateOrderRequest with ResponseView and OrderDataFilter

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ord:UpdateOrder>
 <ord:OrderId>10</ord:OrderId>
 <ord:View>demo_query</ord:View>
 <ord:ResponseView>demo_query</ord:ResponseView>
 <ord:OrderDataFilter>
 <ord:Condition>/subscriber_info/address[street='112 Update Drive']</ord:Condition>
 </ord:OrderDataFilter>
 <ord:UpdatedNodes>
 <_root>
 <subscriber_info>
 <address>
 <city>TO</city>
 <postal_code>A1A1A1</postal_code>
 <street>112 Update Drive</street>
 </address>
 </subscriber_info>
 </_root>
 </ord:UpdatedNodes>
 </ord:UpdateOrder>
 </soapenv:Body>
</soapenv:Envelope>

Example 2-20 UpdateOrderResponse with ResponseView and OrderDataFilter Applied

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <UpdateOrderResponse xmlns="http://xmlns.oracle.com/communications/ordermanagement">
 <OrderId>10</OrderId>
 <State>open.running.in_progress</State>
 <Data>
 <osmc:_root index="0"
xmlns:osmc="urn:oracle:names:ordermanagement:cartridge:bb_ocm_demo:1.0.0.0.0:view:demo_qu
ery">
 <osmc:subscriber_info index="1414771747926">
 <osmc:address index="1414771747949">
 <osmc:city index="1414771747950">TO</osmc:city>
 <osmc:postal_code index="1414771747951">A1A1A1</osmc:postal_code>
 <osmc:street index="1414771747952">112 Update Drive</osmc:street>
 </osmc:address>
 <osmc:primary_phone_number index="1414771747932">6035550100</
osmc:primary_phone_number>
 <osmc:name index="1414771747931">Adams</osmc:name>
 </osmc:subscriber_info>
 <osmc:adsl_service_details index="1414771747933">
 <osmc:bandwidth index="1414771747934">3</osmc:bandwidth>
 </osmc:adsl_service_details>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 53

 </osmc:_root>
 </UpdateOrderResponse>
 </Data>
 </env:Body>
</env:Envelope>

SuspendOrder Examples
This section provides a request example and a response example for the SuspendOrder
operation.

Request Example

Example 2-21 SuspendOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
 <ws:SuspendOrder>
 <ws:OrderId>145</ws:OrderId>
 <!--Optional:-->
 <ws:Reason>test</ws:Reason>
<!--You have a CHOICE of the next 2 items at this level-->
 <!--Optional:-->
 <ws:GracePeriodExpiryDate>?</ws:GracePeriodExpiryDate>
 <!--Optional:-->
 <ws:GracePeriodExpiry>?</ws:GracePeriodExpiry>
 <!--Optional:-->
 <ws:EventInterval>?</ws:EventInterval>
</ws:SuspendOrder>
</soapenv:Body>
</soapenv:Envelope>

Response Example

Example 2-22 SuspendOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
 <ws:SuspendOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
 <ws:OrderId>145</ws:OrderId>
 </ws:SuspendOrderResponse>
 </soapenv:Body>
</soapenv:Envelope>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 53

ResumeOrder Examples
This section provides a request example and a response example for the ResumeOrder
operation.

Request Example

Example 2-23 ResumeOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
 <ws:ResumeOrder>
 <ws:OrderId>1176</ws:OrderId>
 </ws:ResumeOrder>
 </soapenv:Body>
</soapenv:Envelope>

Response Example

Example 2-24 ResumeOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
 <ws:ResumeOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
 <ws:OrderId>1176</ws:OrderId>
 </ws:ResumeOrderResponse>
 </soapenv:Body>
</soapenv:Envelope>

CancelOrder Examples
This section provides a request example and a response example for the CancelOrder
operation.

Request Example

Example 2-25 CancelOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 40 of 53

 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
 <ws:CancelOrder>
 <ws:OrderId>1316</ws:OrderId>
 <!--Optional:-->
 </ws:CancelOrder>
 </soapenv:Body>
</soapenv:Envelope>

Response Example

Example 2-26 CancelOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
 <ws:CancelOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
 <ws:OrderId>1316</ws:OrderId>
 </ws:CancelOrderResponse>
 </soapenv:Body>
</soapenv:Envelope>

RetryOrder and ResolveFailure Examples
This section provides a request example and a response example for the RetryOrder and
ResolveFailure operation.

Note

The structure of the RetryOrder and ResolveFailure operations are identical apart from
the operation name itself.

Request Example Whole Order

Example 2-27 RetryOrderRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
 <ws:RetryOrder>
 <ws:OrderId>18</ws:OrderId>
 <ws:Reason>1307</ord:Reason>
 </ws:RetryOrder>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 41 of 53

 </soapenv:Body>
</soapenv:Envelope>

Response Example Whole Order

Example 2-28 RetryOrderResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
 <ws:RetryOrderResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
 <ws:OrderId>18</ws:OrderId>
 </ws:RetryOrderResponse>
 </soapenv:Body>
</soapenv:Envelope>

Request Example Order Component

Example 2-29 ResolveFailureRequest

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
 <ws:ResolveFailure>
 <ws:OrderId>18</ws:OrderId>
 <ws:Reason>1307</ord:Reason>
 <ws:OrderComponent>
 <ws:OrderComponentId>
 ADD_SUB_OPT.OrderProcessingSystemA.OrderProcessingDemoGranularity.1
 </ws:OrderComponentId>
 </ws:OrderComponent>
 </ws:ResolveFailure>
 </soapenv:Body>
</soapenv:Envelope>

Response Example Order Component

Example 2-30 ResolveFailureResponse

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header/>
 <soapenv:Body>
 <ws:ResolveFailureResponse xmlns:ws="http://xmlns.oracle.com/communications/
ordermanagement">
 <ws:OrderId>18</ws:OrderId>
 </ws:ResolveFailureResponse>
 </soapenv:Body>
</soapenv:Envelope>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 42 of 53

GetOrderProcessHistory Examples
This section provides a request example and a response example for the
GetOrderProcessHistory operation.

GetOrderProcessHistory Requests

Example 2-31 GetOrderProcessHistory Requests by CompensationID

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header/>
 <soapenv:Body>
 <ord:GetOrderProcessHistory>
 <OrderId>6</OrderId>
 <CompensationId>1</CompensationId>
 </ord:GetOrderProcessHistory>
 </soapenv:Body>
</soapenv:Envelope>

Example 2-32 GetOrderProcessHistory Requests by Perspective (Original)

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header/>
 <soapenv:Body>
 <ord:GetOrderProcessHistory>
 <OrderId>6</OrderId>
 <Perspective>original</Perspective>
 </ord:GetOrderProcessHistory>
 </soapenv:Body>
</soapenv:Envelope>

Example 2-33 GetOrderProcessHistory Requests by Perspective (Latest)

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header/>
 <soapenv:Body>
 <ord:GetOrderProcessHistory>
 <OrderId>6</OrderId>
 <Perspective>latest</Perspective>
 </ord:GetOrderProcessHistory>
 </soapenv:Body>
</soapenv:Envelope>

GetOrderProcessHistory Responses

Example 2-34 GetOrderProcessHistory Response by CompensationID

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <env:Header/>
 <env:Body>
 <ord:GetOrderProcessHistoryResponse xmlns:ord="http://xmlns.oracle.com/
communications/ordermanagement">
 <OrderId>6</OrderId>
 <Cartridge>
 <ord:Name>OsmCentralOMExample-Solution</ord:Name>
 <ord:Version>4.0.0.0.0</ord:Version>
 </Cartridge>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 43 of 53

 <Compensation xsi:type="ord:AmendmentCompensationInfoType">
 <CompensationId>1</CompensationId>
 <CompensationType>amend</CompensationType>
 <Submitted>2015-06-02T08:24:29.975-07:00</Submitted>
 <Started>2015-06-02T08:24:31.000-07:00</Started>
 <AmendmentOrderId>7</AmendmentOrderId>
 </Compensation>
 <ProcessHistory>
 <Item xsi:type="ord:WorkItemType">
 <Id>2</Id>
 <TaskName>OsmCentralOMExampleOrder_OsmCentralOMExampleOrder</TaskName>
 <TaskType>creation</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT0.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>102</Id>
 <TaskName>SyncCustomerFunction_CustomerSystemSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT6.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>1205</Id>
 <TaskName>configureCustomerSystemTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT3.000S</ActualDuration>
 </Item>
 <Links/>
 </Scope>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>202</Id>
 <TaskName>MarketingFunction_MarketingSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT3.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>1105</Id>
 <TaskName>configureMarketingTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:48.000-07:00</EndDate>
 <CompensateeRole>
 <ExecutionMode>undo</ExecutionMode>
 <CompensatorId>1810</CompensatorId>
 <CompensatorState>completed</CompensatorState>
 </CompensateeRole>
 <User>omsadmin</User>
 <ActualDuration>PT2.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:WorkItemType">

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 44 of 53

 <Id>1409</Id>
 <TaskName>MarketingBaseTask</TaskName>
 <TaskType>manual</TaskType>
 <StartDate>2015-06-02T08:23:48.000-07:00</StartDate>
 <EndDate>2015-07-23T13:40:03.849-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>P51DT5H16M15.849S</ActualDuration>
 </Item>
 <Links>
 <Link>
 <Source>1105</Source>
 <Target>1409</Target>
 </Link>
 </Links>
 </Scope>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>302</Id>
 <TaskName>BillingFunction_BillingSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT3.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>904</Id>
 <TaskName>configureBillingTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:45.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
 <CompensateeRole>
 <ExecutionMode>redo</ExecutionMode>
 <CompensatorId>2117</CompensatorId>
 <CompensatorState>accepted</CompensatorState>
 </CompensateeRole>
 <User>omsadmin</User>
 <ActualDuration>PT1.000S</ActualDuration>
 </Item>
 <Links/>
 </Scope>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>402</Id>
 <TaskName>CollectionsFunction_CollectionsSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT21.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>1305</Id>
 <TaskName>configureCollectionsTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
 <EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT18.000S</ActualDuration>
 </Item>
 <Links/>
 </Scope>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 45 of 53

 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>502</Id>
 <TaskName>ProvisioningFunction_ProvisioningSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:45.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT2.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>602</Id>
 <TaskName>routeToProvisioningTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
 <CompensateeRole>
 <ExecutionMode>redo</ExecutionMode>
 <CompensatorId>1912</CompensatorId>
 <CompensatorState>completed</CompensatorState>
 </CompensateeRole>
 <User>omsadmin</User>
 <ActualDuration>PT0.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:WorkItemType">
 <Id>704</Id>
 <TaskName>activationOrderAdslRegion2Task</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:45.000-07:00</EndDate>
 <CompensateeRole>
 <ExecutionMode>redo</ExecutionMode>
 <CompensatorId>2014</CompensatorId>
 <CompensatorState>completed</CompensatorState>
 </CompensateeRole>
 <User>omsadmin</User>
 <ActualDuration>PT2.000S</ActualDuration>
 </Item>
 <Links>
 <Link>
 <Source>602</Source>
 <Target>704</Target>
 </Link>
 </Links>
 </Scope>
 </Item>
 <Links>
 <Link>
 <Source>2</Source>
 <Target>102</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>202</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>302</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>402</Target>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 46 of 53

 </Link>
 <Link>
 <Source>2</Source>
 <Target>502</Target>
 </Link>
 </Links>
 </ProcessHistory>
 </ord:GetOrderProcessHistoryResponse>
 </env:Body>
</env:Envelope>

Example 2-35 GetOrderProcessHistory Response by Perspective (Original)

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <env:Header/>
 <env:Body>
 <ord:GetOrderProcessHistoryResponse xmlns:ord="http://xmlns.oracle.com/
communications/ordermanagement">
 <OrderId>6</OrderId>
 <Cartridge>
 <ord:Name>OsmCentralOMExample-Solution</ord:Name>
 <ord:Version>4.0.0.0.0</ord:Version>
 </Cartridge>
 <ProcessHistory>
 <Item xsi:type="ord:WorkItemType">
 <Id>2</Id>
 <TaskName>OsmCentralOMExampleOrder_OsmCentralOMExampleOrder</TaskName>
 <TaskType>creation</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT0.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>102</Id>
 <TaskName>SyncCustomerFunction_CustomerSystemSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT6.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>202</Id>
 <TaskName>MarketingFunction_MarketingSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT3.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>302</Id>
 <TaskName>BillingFunction_BillingSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT3.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:ContainerItemType">

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 47 of 53

 <Id>402</Id>
 <TaskName>CollectionsFunction_CollectionsSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT21.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>502</Id>
 <TaskName>ProvisioningFunction_ProvisioningSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:45.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT2.000S</ActualDuration>
 </Item>
 <Links>
 <Link>
 <Source>2</Source>
 <Target>102</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>202</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>302</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>402</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>502</Target>
 </Link>
 </Links>
 </ProcessHistory>
 </ord:GetOrderProcessHistoryResponse>
 </env:Body>
</env:Envelope>

Example 2-36 GetOrderProcessHistory Response by Perspective (Latest)

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <env:Header/>
 <env:Body>
 <ord:GetOrderProcessHistoryResponse xmlns:ord="http://xmlns.oracle.com/
communications/ordermanagement">
 <OrderId>6</OrderId>
 <Cartridge>
 <ord:Name>OsmCentralOMExample-Solution</ord:Name>
 <ord:Version>4.0.0.0.0</ord:Version>
 </Cartridge>
 <ProcessHistory>
 <Item xsi:type="ord:WorkItemType">
 <Id>2</Id>
 <TaskName>OsmCentralOMExampleOrder_OsmCentralOMExampleOrder</TaskName>
 <TaskType>creation</TaskType>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 48 of 53

 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT0.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>102</Id>
 <TaskName>SyncCustomerFunction_CustomerSystemSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT6.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>1205</Id>
 <TaskName>configureCustomerSystemTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:49.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT3.000S</ActualDuration>
 </Item>
 <Links/>
 </Scope>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>202</Id>
 <TaskName>MarketingFunction_MarketingSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT3.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>1105</Id>
 <TaskName>configureMarketingTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:48.000-07:00</EndDate>
 <CompensateeRole>
 <ExecutionMode>undo</ExecutionMode>
 <CompensatorId>1810</CompensatorId>
 <CompensatorState>completed</CompensatorState>
 </CompensateeRole>
 <User>omsadmin</User>
 <ActualDuration>PT2.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:WorkItemType">
 <Id>1409</Id>
 <TaskName>MarketingBaseTask</TaskName>
 <TaskType>manual</TaskType>
 <StartDate>2015-06-02T08:23:48.000-07:00</StartDate>
 <EndDate>2015-07-24T08:19:07.207-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>P51DT23H55M19.207S</ActualDuration>
 </Item>
 <Links>
 <Link>
 <Source>1105</Source>
 <Target>1409</Target>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 49 of 53

 </Link>
 </Links>
 </Scope>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>302</Id>
 <TaskName>BillingFunction_BillingSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT3.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>904</Id>
 <TaskName>configureBillingTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:45.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:46.000-07:00</EndDate>
 <CompensateeRole>
 <ExecutionMode>redo</ExecutionMode>
 <CompensatorId>2117</CompensatorId>
 <CompensatorState>accepted</CompensatorState>
 </CompensateeRole>
 <User>omsadmin</User>
 <ActualDuration>PT1.000S</ActualDuration>
 </Item>
 <Links/>
 </Scope>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>402</Id>
 <TaskName>CollectionsFunction_CollectionsSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT21.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>1305</Id>
 <TaskName>configureCollectionsTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:46.000-07:00</StartDate>
 <EndDate>2015-06-02T08:24:04.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT18.000S</ActualDuration>
 </Item>
 <Links/>
 </Scope>
 </Item>
 <Item xsi:type="ord:ContainerItemType">
 <Id>502</Id>
 <TaskName>ProvisioningFunction_ProvisioningSI</TaskName>
 <TaskType>subprocess</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:45.000-07:00</EndDate>
 <User>omsadmin</User>
 <ActualDuration>PT2.000S</ActualDuration>
 <Scope>
 <Item xsi:type="ord:WorkItemType">
 <Id>602</Id>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 50 of 53

 <TaskName>routeToProvisioningTask</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:43.000-07:00</EndDate>
 <CompensateeRole>
 <ExecutionMode>redo</ExecutionMode>
 <CompensatorId>1912</CompensatorId>
 <CompensatorState>completed</CompensatorState>
 </CompensateeRole>
 <User>omsadmin</User>
 <ActualDuration>PT0.000S</ActualDuration>
 </Item>
 <Item xsi:type="ord:WorkItemType">
 <Id>704</Id>
 <TaskName>activationOrderAdslRegion2Task</TaskName>
 <TaskType>automated</TaskType>
 <StartDate>2015-06-02T08:23:43.000-07:00</StartDate>
 <EndDate>2015-06-02T08:23:45.000-07:00</EndDate>
 <CompensateeRole>
 <ExecutionMode>redo</ExecutionMode>
 <CompensatorId>2014</CompensatorId>
 <CompensatorState>completed</CompensatorState>
 </CompensateeRole>
 <User>omsadmin</User>
 <ActualDuration>PT2.000S</ActualDuration>
 </Item>
 <Links>
 <Link>
 <Source>602</Source>
 <Target>704</Target>
 </Link>
 </Links>
 </Scope>
 </Item>
 <Links>
 <Link>
 <Source>2</Source>
 <Target>102</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>202</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>302</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>402</Target>
 </Link>
 <Link>
 <Source>2</Source>
 <Target>502</Target>
 </Link>
 </Links>
 </ProcessHistory>
 </ord:GetOrderProcessHistoryResponse>
 </env:Body>
</env:Envelope>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 51 of 53

GetOrderCompensations Examples
This section provides a request example and a response example for the
GetOrderCompensations operation.

Example 2-37 GetOrderCompensations

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header/>
 <soapenv:Body>
 <ord:GetOrderCompensations>
 <OrderId>6</OrderId>
 </ord:GetOrderCompensations>
 </soapenv:Body>
</soapenv:Envelope>

Example 2-38 GetOrderCompensationsResponse

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <env:Header/>
 <env:Body>
 <ord:GetOrderCompensationsResponse xmlns:ord="http://xmlns.oracle.com/
communications/ordermanagement">
 <OrderId>6</OrderId>
 <Compensation xsi:type="ord:AmendmentCompensationInfoType">
 <CompensationId>1</CompensationId>
 <CompensationType>amend</CompensationType>
 <Submitted>2015-06-02T08:24:29.975-07:00</Submitted>
 <Started>2015-06-02T08:24:31.000-07:00</Started>
 <AmendmentOrderId>7</AmendmentOrderId>
 </Compensation>
 </ord:GetOrderCompensationsResponse>
 </env:Body>
</env:Envelope>

GetCompensationPlan Examples
This section provides a request example and a response example for the
GetOrderCompensations operation.

Example 2-39 GetOrderCompensationPlan

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header/>
 <soapenv:Body>
 <ord:GetCompensationPlan>
 <OrderId>6</OrderId>
 </ord:GetCompensationPlan>
 </soapenv:Body>
</soapenv:Envelope>

Example 2-40 GetOrderCompensationPlanResponse

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <ord:GetCompensationPlanResponse xmlns:ord="http://xmlns.oracle.com/communications/

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 52 of 53

ordermanagement">
 <OrderId>6</OrderId>
 <CompensationId>1</CompensationId>
 <CompensationType>amend</CompensationType>
 <ActiveItem>
 <TaskName>SyncCustomerFunction_CustomerSystemSI</TaskName>
 <ExecutionMode>redo</ExecutionMode>
 <CompenationWorkItem>self</CompenationWorkItem>
 <FlowItemId>102</FlowItemId>
 </ActiveItem>
 <ActiveItem>
 <TaskName>CollectionsFunction_CollectionsSI</TaskName>
 <ExecutionMode>redo</ExecutionMode>
 <CompenationWorkItem>self</CompenationWorkItem>
 <FlowItemId>402</FlowItemId>
 </ActiveItem>
 <ActiveItem>
 <TaskName>configureBillingTask</TaskName>
 <ExecutionMode>redo</ExecutionMode>
 <CompenationWorkItem>self</CompenationWorkItem>
 <FlowItemId>1005</FlowItemId>
 </ActiveItem>
 <PendingItem>
 <TaskName>cdiTask</TaskName>
 <ExecutionMode>redo</ExecutionMode>
 <CompenationWorkItem>self</CompenationWorkItem>
 <FlowItemId>1508</FlowItemId>
 <WaitsFor>
 <TaskName>SyncCustomerFunction_CustomerSystemSI</TaskName>
 <ExecutionMode>redo</ExecutionMode>
 <PositionedInFlow>before</PositionedInFlow>
 <CompenationWorkItem>self</CompenationWorkItem>
 <FlowItemId>1509</FlowItemId>
 </WaitsFor>
 </PendingItem>
 <PendingItem>
 <TaskName>Configure Collections Task</TaskName>
 <ExecutionMode>redo</ExecutionMode>
 <CompenationWorkItem>self</CompenationWorkItem>
 <FlowItemId>1608</FlowItemId>
 <WaitsFor>
 <TaskName>CollectionsFunction_CollectionsSI</TaskName>
 <ExecutionMode>redo</ExecutionMode>
 <PositionedInFlow>before</PositionedInFlow>
 <CompenationWorkItem>self</CompenationWorkItem>
 <FlowItemId>1609</FlowItemId>
 </WaitsFor>
 </PendingItem>
 </ord:GetCompensationPlanResponse>
 </env:Body>
</env:Envelope>

Chapter 2
Order Management Request and Response Examples

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 53 of 53

3
Using the OSM XML API

This chapter provides overview information about the Oracle Communications Order and
Service Management (OSM) Extensible Markup Language (XML) Application Programming
Interface (API). It is assumed that the programmer has user-level knowledge of Windows and
UNIX operating systems.

About Using the XML API
The OSM XML API enables you to:

• Create, retrieve, and update orders.

• Transition orders: Move an order through the various states and tasks of a process. This
includes moving an order to a new process through exception processing.

• Search for the next order at task: Search for the next available order at a given task.

• Copy orders: Copy the data of an existing order to produce a new order.

• Suspending and resuming orders: Temporarily halt all provisioning activity on an order
and then release the suspended order back into the system for provisioning.

• Add attachments and remarks: Add remarks along with optional attachments to orders.
After you add the remark, it is stamped with the time, task, and state of the order at that
time.

• Query: Retrieve a list of orders through two query functions: a predefined query that lists
orders of interest to an external agent, and a generalized query that provides external
agents a means to define their own query criteria.

• Retrieve the order data and process history: Retrieve the history of an order as it
moves through the process.

• Retrieve user information: Retrieve the user's name and description, as well as the name
and description of each workgroup to which they belong.

You can use the XML API for the following purposes:

• Customizing the appearance or functioning of a task when customization using behaviors
or OSM Java server pages does not satisfy all of your requirements.

• Using from within an automation plug-in when necessary because the Web Services API
and the OSM automation functionality do not meet your requirements.

You can use the XML API functions from the Automation Framework when running
automation plug-ins by using the OSM Java OrderContext class processXMLRequest
method. Parts of XML API (mainly GetOrder.Response) appear in various places as a
context document throughout the OSM model. For example, when an automated task
transitions into the received state, the automation framework starts an automation plug-in
associated with it and passes the plug-in the TaskContext object. You can access the data
associated to that TaskContext object using the GetOrder.Response XML API function call.

The XML API is deprecated for the following uses:

• External automation (for example, polling). Use the event-driven Automation Framework
for this purpose.

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 92

• Integration with an upstream system. Use the Web Service API for this purpose.

• Task automation when the equivalent functionality exists in the Automation Framework.
See "Localizing OSM" and the OSM Javadocs for more information about automation plug-
ins.

• Processing manual tasks and order submission when the equivalent functionality exists
within the OSM Task web client and the OSM Web Services. See OSM Task Web Client
User's Guide and "Using OSM Order Management Web Services" for more information.

The following operations are deprecated for all uses, and are provided for backward
compatibility only, since they are not in accord with current OSM direction:

• SetException.Request

• ListException.Request

• GetNextOrderAtTask.Request

• AddOrderThread.Request

Audience
This chapter is designed for developers familiar with XML 1.0 DOM level-1 and the HTTP
transport mechanism for delivery of XML messages. You must ensure that an XML parser and
DOM implementation is available on your platform.

About Using the OrderID, View, and OrderHistID
OSM assigns all internally processing orders an order ID (OrderID). You can use the OrderID
to indicate which order you want to run the function against. You specify the data available to
many of the XML API function calls with the View and OrderHistID parameters.

You configure the data available to a View when you create an order specification in Design
Studio. In the order specification editor Permissions tab, Query Task subtab, you can select a
default Query Task, which is a manual task that is not part of a process flow. All data that you
define in the manual task editor Task Data tab represents the data available to XML API
functions that use the View field.

OSM generates a OrderHistID every time an OSM task transitions from one state to another
of performs a status transition from one task to another. You configure the data available to an
OrderHistID when you create a manual or automated task in Design Studio. All data that you
define in the manual or automated task editor Task Data tab represents the data available to
the XML API functions that use the OrderHistID field.

Oracle recommends that you only use the XML API functions that reference View or
OrderHistID in the limited way described in "About Using the XML API."

About Accessing the XML API
The OSM XML API is a programmatic interface for sending HTTP POST requests and
receiving HTTP responses.

See the SDK/XMLSchema/oms-xmlapi.xsd schema for additional information about the OSM
XML API.

The OSM XML API provides a single access point for API requests.

The SDK contains a sample HTML file (SDK/Samples/xmlapi/testxmlapi.html) that you can
modify and use to send XML API requests via a web browser. This file is intended to be used

Chapter 3
About Accessing the XML API

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 92

only for quick testing and similar exploratory usage. It does not represent a proper integration
with an external component and is not suitable for production environments. See the SDK/
Samples/xmlapi/README.txt file for details about using the sample HTML file.

Making the HTTP connection for Traditional OSM Deployments

See the SDK/Samples/xmlapi/README.txt file for details about making the HTTP
connection. See OSM Installation Guide for more information about HTTP and HTTPS
hardware and software load balancing options for OSM WebLogic clusters.

Making the HTTP connection for OSM Cloud Native Deployments

See the SDK/Samples/xmlapi/README.txt file for details about making the HTTP
connection. See "Chapter 2 Planning and Validating Your Cloud Environment" in OSM Cloud
Native Deployment Guide for details about hostname resolution.

Logging In and Logging Out
Before using any API messages, you must login by supplying a valid user ID and password. If
the login is successful, the following message is displayed:

Login for admin successful.
Oracle Order and Service Management - Version 7.4.x.y.z

For details about logging in and logging out of the OSM XML API, see the SDK/Samples/
xmlapi/README.txt file.

Message Formats
OSM messages follow a simple format that allows for arbitrary data and metadata to be
passed across a network.

Input XML Message Format
Each operation that can be requested of the XML API defines its own root element for an XML
document with the format command_name.Request. Any required parameters are child elements
of the operation request.

Example 3-1 Input XML Message Format

<command_name.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <parameter1 />
 <parameter2 />
 ... additional parameters ...
</command_name.Request>

Output XML Message Format
For each request operation, there is a corresponding response document with a root element
in the form command_name.Response. Any returned data is a child element of the operation
response.

If non-critical errors occur during processing of an operation request, they are children of a
Warnings element, as shown in Example 3-2.

Chapter 3
About Accessing the XML API

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 92

Example 3-2 Output XML Message Format With Warnings

<command_name.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <result1 />
 <result2 />
 ... additional result elements ...
 <Warnings>
 <Warning code="1052" desc="SQL Warning">message</Warning>
 </Warnings>
</command_name.Response>

If errors occur that prevent a request from being processed, the XML API returns an error
document with a root element of command_name.Error. The error(s) that occurred are children
of the error document.

You must monitor returning response messages from OSM for any errors that indicate whether
the request operation succeeded or failed. If the operation request fails it is the responsibility of
the sender to track and resubmit the failed request after troubleshooting the problem.

Example 3-3 Output XML Message Format With Errors

<command_name.Error xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Error code="300" desc="Request parameter error">message</Error>
</command_name.Error>

If an invalid document is received, the server returns the HTTP code 403: Forbidden.

When you create XML, element values must not contain the characters &, <, or >. The XML
standard defines the following replacement text:

• & - &

• < - <

• > - >

• ' - '

• " - "

Date/Time Formats
The date/time format is the same for input and output messages. For any parameter with a
date/time value, the format is:

yyyy-MM-ddTHH:mm:ss timezone

where

• yyyy is the four-digit year

• MM is the two-digit month

• dd is the two digit day of the month

• HH is the two digit hours in 24-hour format

• mm is the two-digit minutes

• ss is the two-digit seconds

• timezone is a three-letter designation of the time zone

For example:

2013-08-05T14:06:05 EDT

Chapter 3
About Accessing the XML API

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 92

White Space in Message Text
OSM keeps the white space to the right of the beginning of a text block and to the left of the
end of a text block. For example, if you create or update an order with the following field:

<street> 190 Attwell Drive <street>

OSM retains the white space.

Authentication
All requests are processed in the context of the privileges assigned to a user ID. Prior to using
the messages of the XML API, a user ID must be authorized. An authorization servlet, based
on a user ID and password, authenticates a user ID and provides a session ID HTTP cookie to
be used by subsequent requests. If further security is required, the XML API can be deployed
in an environment that supports HTTPS for secure transport.

The OSM XML API does not provide access to the administrative facilities of OSM. Before
using this API, you must use the OSM Administrator to configure a user ID that establishes the
security privileges for the external software. This determines the range of data that can be
retrieved from OSM.

Reserved Mnemonics
The mnemonics in Table 3-1 are reserved and used to reference special systems values. If an
order data element is created with the same mnemonic as a reserved mnemonic, the system
functions correctly. The Worklist and Query response lists two elements with the same element
name - one for the system value and one for the data element value.

Table 3-1 Reserved Mnemonics

Header Mnemonic

Order Sequence ID _order_seq_id

Order History Sequence ID _order_hist_seq_id

State _order_state

Execution Mode _execution_mode

Task Mnemonic _task_id

Order Source Mnemonic _order_source

Order Type Mnemonic _order_type

Order State _current_order_state

Target Order State _target_order_state

Reference Number _reference_number

Priority _priority

User _user

Process Description _process_description

Order Status _process_status

Date Created _date_pos_created

Date Started _date_pos_started

Chapter 3
About Accessing the XML API

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 92

Table 3-1 (Cont.) Reserved Mnemonics

Header Mnemonic

Root node _root

Number of Remarks _num_remarks

Expected Order Completion Date _compl_date_expected

NotificationID _notif_id

Notification Description _notif_desc

Notification Type _notif_type

Notification Priority _notif_priority

Notification Timestamp _notif_time

Namespace Namespace_namespace

Version Version_version

XML API Functionality
The following list contains all currently available requests and their responses.

AddOrderThread
AddOrderThread lets you add sub process threads to a pending order. The order must reside
in one of the sub processes.

Note

AddOrderThread has been deprecated and is supported only for backward
compatibility. Use amendment processing functionality instead.

Operation

AddOrderThread

Parameters

OrderID: The Order ID.

Process: The process mnemonic to indicate where the sub process task resides.

ProcessPosition: The process position mnemonic of the sub process task.

Add: A list of nodes to be added. The format of this should follow UpdateOrder. Request
format. You may add multiple instances of the pivot nodes, multiple threads are created as a
result.

Request Example with One Pivot Node Value

<AddOrderThread.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Process>process_mnemonic</Process>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 92

 <ProcessPosition>process_position_mnemonic</ProcessPosition>
 <Add path="/client_info">
 <address>
 <street1>55 James St.</street1>
 <city>Washington</city>
 <state>DC</state>
 <country>USA</country>
 <zip>20002</zip>
 </address>
 </Add>
</AddOrderThread.Request>

In this case, client_info is the pivot node.

Response

<AddOrderThread.Response xmlns="urn:com:metasolv:oms:xmlapi:1"/>

Request Example with Multiple Pivot Nodes

<AddOrderThread.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Process>process_mnemonic</Process>
 <ProcessPosition>process_position_mnemonic</ProcessPosition >
 <Add path="/error">
 <code>1000</code>
 <code>2000</code>
 </Add>
</AddOrderThread.Request>

In this case, /error/code is the pivot node.

Response

<AddOrderThread.Response xmlns="urn:com:metasolv:oms:xmlapi:1"/>

Error Codes

200: Order data invalid

232: Order update failed

270: Transaction not allowed

302: Request parameter error

350: Pivot node data is not provided

351: Process position supplied is not a sub process task

352: No sub process task is currently pending

354: Process position not found

355: Pivot node not found

356: Cannot spawn threads for sub-process tasks that support sequential sub-processing

400: Not authorized

500: Internal error

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 92

Note

See Table 3-3 for more information if you receive an error code that is not listed here.

Acknowledgments
A list of retrievable acknowledgments for a given notification.

Operation

Acknowledgments

Parameters

The request requires one of two possible parameters:

Notification: If the notification is supplied, all acknowledgments for that notification are
returned.

Order ID: If the order ID is supplied, all acknowledgments for all notifications for that order ID
are returned.

Namespace: The namespace mnemonic of order type/source.

Version: The version of the order type or source. If you do not indicate a version, OSM uses
the default version.

The Notification and NotificationDescription elements are identical for all acknowledgments. If
the request was for a Notification, the information is duplicated to keep consistency of the
Acknowledgement element's content.

Request Example

<Acknowledgements.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Notification>send_order_creation</Notification>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</Acknowledgements.Request>

The response includes the NotificationID or OrderID supplied and zero or more
Acknowledgement elements. Each Acknowledgement element includes the following:

Notification ID: The notification ID associated with this acknowledgment.

NotificationDescription: The description of the notification. If no description, it is left blank.

OrderHistID: The order history ID associated with the acknowledgment. If this is not a
transition based notification, then OrderHistID is empty.

Time: The time the acknowledgment was created.

Author: The user ID who created the acknowledgment.

Comment: The comment included with the acknowledgment. If no comment is supplied, it is
empty.

Action: A string with a value of one of:

• Activate: the acknowledgment was created when the notification was activated.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 92

• Update: the acknowledgment was added to the notification.

• Deactivate: the acknowledgment deactivated the notification.

Response Example

<Acknowledgements.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <NotificationID>3244</NotificationID>
 <Acknowledgement>
 <NotificationID>3244</NotificationID>
 <NotificationDescription>Poll every hour</NotificationDescription>
 <OrderHistID/>
 <Time>2000-10-30T14:44:33 EST</Time>
 <Author>OMS_160</Author>
 <Comment/>
 <Action>activate</Action>
 </Acknowledgement>
 <Acknowledgement>
 <NotificationID>3244</NotificationID>
 <NotificationDescription>Poll every hour</NotificationDescription>
 <OrderHistID/>
 <Time>2000-10-30T15:01:22 EST</Time>
 <Author>jdoe</Author>
 <Comment>Activated switch</Comment>
 <Action>deactivate</Action>
 </Acknowledgement>
</Acknowledgements.Response>

Error Codes

• 110: Order not found

• 190: Notification not found

• 302: Request parameter error

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

AcknowledgeNotification
Adds an acknowledgment to a notification. A notification can be acknowledged any number of
times until is deactivated. Once an acknowledgment with a request to deactivate the
notification is received, the notification is no longer included in the list of notifications.

Operation

AcknowledgeNotification

Parameters

NotificationID: The unique identification number of the notification.

OrderID: The order ID associated with the notification. Omitted for system-based notifications.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 92

OrderHistID: The order history ID associated with the notification. Omitted or polled
notifications.

Comment: A string description to include with the acknowledgment.

Deactivate: A "true" or "false" value to deactivate the notification.

Request Example

<AcknowledgeNotification.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <NotificationID>3444</NotificationID>
 <OrderID>123</OrderID>
 <OrderHistID>5665</OrderHistID>
 <Comment>This is a string comment</Comment>
 <Deactivate>true</Deactivate>
</AcknowledgeNotification.Request>

Response Example

<AcknowledgeNotification.Response
xmlns="urn:com:metasolv:oms:xmlapi:1" />

Error Codes

• 190: Notification not found

• 302: Request Parameter Error

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

AssignOrder
Assigns an order to a given user.

Operation

AssignOrder

Parameters

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

User: The user ID to assign to the order.

Request Example

<AssignOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>22334</OrderHistID>
 <User>jsmith</User>
</AssignOrder.Request>

The AssignOrder response includes the new Order History ID for the order.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 92

Response Example

<AssignOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>33247</OrderHistID>
</AssignOrder.Response>

Error Codes

• 110: Order not found

• 251: Transition invalid

• 253: User not found

• 270: Transaction not allowed

• 302: Request parameter error

• 400: Not authorized

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

CancelOrder
Cancels an order as described below depending on the parameters supplied in the request:

• Cancels the pending tasks for an order and sets an exception status regardless of where it
currently is in the process flow. All pending tasks are removed and the order goes to the
location defined by the exception status - either a particular task, or stopped.

Or

• Cancels an order by undoing all completed tasks and returning the order to the creation
task.

Parameters

To cancel and set an exception:

OrderID: The ID of the order to cancel

Status: The exception status mnemonic to set

To cancel and undo completed tasks:

OrderID: The ID of the order to cancel

And one of the following:

Immediate: Force immediate cancellation of all completed tasks in the order.

GracePeriodExpiryDate: A period of time to allow tasks in the Accepted state time to
complete.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 92

Infinite: Wait indefinitely until all tasks in the Accepted state complete.

Optional parameters

EventInterval: If the cancellation is not immediate, you can set an interval for sending a
jeopardy notification.

Reason: The reason for canceling the order.

Request Example 1: Cancel and Set Exception

<CancelOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Status>status_memonic</Status>
</CancelOrder.Request>

Request Example 2: Cancel and Undo

<CancelOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Immediate/>
 <Reason>Customer relocating services</Reason>
</CancelOrder.Request>

or

<CancelOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <GracePeriodExpiryDate>2006-10-10T11:10:10 EST</GracePeriodExpiryDate>
 <EventInterval>PT10S</EventInterval>
 <Reason>Customer relocating services</Reason>
</CancelOrder.Request>

or

<CancelOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Infinite/>
 <Reason>Customer relocating services</Reason>
</CancelOrder.Request>

Response Example 1: Cancel and Set Exception

If the status mnemonic resulted in the order moving to a task, the OrderHistID has a value. If
the order is stopped, then OrderHistID is empty.

<CancelOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID/>
</CancelOrder.Response>

Example 2: Cancel and Undo

<CancelOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
</CancelOrder.Response>

Error Codes

• 110: Order Not Found

• 255: Invalid Status Mnemonic

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 92

• 270: Transaction not allowed

• 302: Request Parameter Error

• 400: Not Authorized

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

CompleteOrder
Completes an order and supplies a status mnemonic for the order.

Operation

CompleteOrder

Parameters

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

Status: The status mnemonic.

Request Example

<CompleteOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>33251</OrderHistID>
 <Status>submit</Status>
</CompleteOrder.Request>

Response Example

<CompleteOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID/>
</CompleteOrder.Response>

Response Example for Amendment

<CompleteOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>7</OrderID>
 <OrderHistID/>
 <Amendment xmlns="um:com:metasolv:oms:xmlapi:1">
 <matchedOrderID>6</matchedOrderID>
 <Status>accepted</Status>
 </Amendment>
</CompleteOrder.Response>

Error Codes

• 110: Order not found

• 251: Transition invalid

• 255: Status mnemonic invalid

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 92

• 270: Transaction not allowed

• 302: Request parameter error

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

CopyOrder
You can create a new order populated with the data from an existing order. The old order is
retrieved using the order creation template associated with the type and source of the new
order. The existing order data that is visible in the new order creation template is inserted into
the new order. Any data from the old order that does not map to the new order's creation
template is not inserted into the new order.

Operation

CopyOrder

Parameters

OriginalOrderID: The order ID of the existing order to copy.

OrderType: The order type mnemonic for the new order.

OrderSource: The order source mnemonic for the new order.

Reference: The reference number for the new order.

Priority: An integer of 0-9 indicating the priority level of the order. 5 is the default priority.

Request Example

<CopyOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OriginalOrderID>1235</OriginalOrderID>
 <OrderSource>source1</OrderSource>
 <OrderType>phone_transfer</OrderType>
 <Reference>AA-NEW-345</Reference>
 <Priority>5</Priority>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</CopyOrder.Request>

The content of the response is the same as CreateOrder, except that CopyOrder.Response is
the top level element.

Response Example

<CopyOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1236</OrderID>
 <OrderHistID>23334</OrderHistID>
 <OrderSource>source1</OrderSource>
 <OrderType>phone_transfer</OrderType>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 92

 <OrderState>open.not_running.not_started</OrderState>
 <State>received</State>
 <Reference>AA-NEW-345</Reference>
 <Priority>5</Priority>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
 <CopyRemarks>false</CopyRemarks>
</CopyOrder.Response>

Error Codes

• 150: Namespace/version not found.

• 152: Invalid namespace mnemonic.

• 153: No legacy data found. Namespace and Version need to be supplied.

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Namespace: The namespace mnemonic of order type/source.

Version: The version of the order type or source.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

CreateOrder
To create an order you must provide an order type and order source with a CreateOrder
operation. The initial data for the order is provided based on the same structure as the order
template. The root element of the order has the XML name of _root.

Operation

CreateOrder

Parameters

ParentOrderID: The parent order.

OrderType: The order type mnemonic.

OrderSource: The order source mnemonic.

View: The view (query task) assigned to the order.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 92

Reference: A reference ID string.

Priority: An integer of 0-9 indicating the priority level of the order. 5 is the default priority.

Namespace: The namespace mnemonic of order type/source.

Version: The version of the order type or source.

_root: The root element of the order document.

Optional Parameters

AddMandatory - If true:

• If you delete a mandatory node, AddMandatory replaces the node and populates it with the
default value.

• If the request is missing a mandatory node, AddMandatory adds the missing node and
populates it with the default value.

Note

If you add a mandatory field, but do not include a value, AddMandatory will not
add a default value and the request will generate an error-error code 200.

• Order header element.

• If not explicitly set, defaults to 5.

• If the priority specified is above the maximum or below the minimum priority value for the
order type/source, it is automatically rounded up or down accordingly.

Note

If the priority is set outside the range of allowable priority values for the system
(0-9) or is set to a non-numeric value, an error is thrown.

• CreateOrder response always returns the priority regardless of whether it is set or not.

Request Example

<CreateOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderSource>source1</OrderSource>
 <OrderType>phone_transfer</OrderType>
 <Reference>3ab34</Reference>
 <Priority>5</Priority>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
 <_root>
 <client_info>
 <name>John Doe</name>
 <address>
 <street1>1211 Lakeview Dr.</street1>
 <city>New York</city>
 <state>NY</state>
 <country>USA</country>
 <zip>12345</zip>
 </address>
 <client_info>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 92

 ... more data ...
 </_root>
 <AddMandatory>true</AddMandatory>
</CreateOrder.Request>

Response Example

The response includes the new order ID number, the initial state, the order source and type,
and the reference provided with the request. The response always returns a priority value
whether it is set or not (defaults to 5).

<CreateOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>678</OrderHistID>
 <OrderSource>phone_transfer</OrderSource>
 <OrderType>source1</OrderType>
 <OrderState>open.not_running.not_started</OrderState>
 <State>accepted</State>
 <Reference>3ab34</Reference>
 <Priority>5</Priority>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</CreateOrder.Response>

Error Codes

150: Namespace/version not found.

152: Invalid namespace mnemonic.

153: No legacy data found. Namespace and Version need to be supplied.

200: Order data invalid

Note

See Table 3-3 for more information if you receive an error code that is not listed here.

FalloutTask
Initiates fallout from a particular task. This request requires an Order ID, Order History ID, and
Fallout mnemonic.

Operation

FalloutTask

Parameters

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

Fallout: The fallout mnemonic as defined in the metadata.

Reason: The reason for the fallout. This parameter is optional.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 92

Request Example

<FalloutTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>501</OrderID>
 <OrderHistID>3010</OrderHistID>
 <Fallout>fallout_switch</Fallout>
 <Reason>Bad switch</Reason>
</FalloutTask.Request>

Response Example

The system returns the response with an accepted status to indicate the fallout has been
accepted for processing.

<FalloutTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>501</OrderID>
 <Status>accepted</Status>
</FalloutTask.Response>

Error Codes

• 110: Order not found

• 270: Transaction not allowed

• 302: Request parameter error

• 400: Not authorized

• 401: Database connection failed

• 419: The process exception is restricted?

• 439: Invalid fallout mnemonic

• 500: Internal ErrorSuspendOrder

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

FailOrder
The request either fails the order, or fails the current task. OSM fails the task when OrderHistID
is provided in the request otherwise OSM fails the order. One request cannot be used to fail
both task and order at the same time.

Operation

FailOrder

Parameters

OrderID: The ID of the order to fail.

OrderHistID: The order history ID.

Reason: The reason for the failure. This parameter is optional.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 92

And one of the following:

Immediate: Force immediate failure of order or task.

Infinite: Wait indefinitely until all tasks on the order complete or become available.

Optional parameters

EventInterval: An event will be generated periodically while the order remains in grace period.
This event acts as a warning to external systems than an order is in grace period and awaiting
completion of accepted work items. This value controls the frequency that the event will be
generated.

GracePeriodExpiry: A point in time, after which the grace period for completing accepted
work items expires. After this time, the order will be transitioned regardless of whether or not
there are outstanding work items. The grace period expiry date specified here must be within
the limits imposed by the grace period expiry range specified in the order state policy.

Request Example

<FailOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>501</OrderID>
 <OrderHistID>3010</OrderHistID>
 <Reason>BadData</Reason>
</FailOrder.Request>

Response Example

The system returns the response with an accepted status to indicate the fallout has been
accepted for processing.

<FailOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>501</OrderID>
 <OrderHistID>3010</OrderHistID>
</FailOrder.Response>

Error Codes

• 110: Order not found

• 270: Transaction not allowed

• 302: Request parameter error

• 400: Not authorized

• 401: Database connection failed

• 419: The process exception is restricted?

• 439: Invalid fallout mnemonic

• 500: Internal ErrorSuspendOrder

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 92

GetNextOrderAtTask
Allows agents to retrieve an order at a given task and at a specific state. The order returned by
GetNextOrderAtTask is the first order found in the OSM database that matches the request
criteria. At least one state should be present in GetNextOrderAtTask.Request. Until an order is
moved to a task or a state that does not match the request criteria, it remains to be returned by
subsequent calls to GetNextOrderAtTask.

Operation

GetNextOrderAtTask

Parameters

OrderID: If specified, retrieves the next instance of a task on the specific order. This is an
optional parameter.

Task: The mnemonic for the task.

ExecutionMode: If specified, value may be one of "do", "redo", or "undo". Retrieves the next
instance of a task with the given execution mode. This is an optional parameter.

Accept: A value of "true" or "false" indicating if the XML API should accept the order for the
user's ID.

State: A state for the task. This element can have multiple instances and the values indicate
which states a task must be in for the order to be returned. Acceptable values are:

• Assigned: The task is in the Assigned state and is assigned to the current user's ID.

• Received: The task is in the Received state.

• Accepted: The task is in the Accepted state for the current user's ID.

• Suspended: The task is in the Suspended state.

Namespace: The namespace mnemonic of the order type/source.

Version: The version of the order type or source.

Request Example

<GetNextOrderAtTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Task>provision_switch</Task>
 <ExecutionMode>redo</ExecutionMode>
 <Accept>false</Accept>
 <State>received</State>
 <State>assigned</State>
 <State>accepted</State>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</GetNextOrderAtTask.Request>

If an order matching the request criteria is found, the response has the same content as
GetOrder.Response, except the top-level element is GetNextOrderAtTask.Response. If no
matching order is found, the response consists of the top level GetNextOrderAtTask.Response
with no child elements.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 92

Request Example

<GetNextOrderAtTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Task>provision_switch</Task>
 <ExecutionMode>redo</ExecutionMode>
 <Accept>false</Accept>
 <State>received</State>
 <State>assigned</State>
 <State>accepted</State>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</GetNextOrderAtTask.Request>

If an order matching the request criteria is found, the response has the same content as
GetOrder.Response, except the top-level element is GetNextOrderAtTask.Response. If no
matching order is found, the response consists of the top level GetNextOrderAtTask.Response
with no child elements.

Response Example

<GetNextOrderAtTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>2333</OrderHistID>
 <Task>provision_switch</Task>
 <OrderSource>source1</OrderSource>
 <OrderType>phone_transfer</OrderType>
 <Workgroups>
 <Workgroup>workgroup1</Workgroup>
 <Workgroup>workgroup2</Workgroup>
 </Workgroups>
 <OrderState>open.running.in_progress</OrderState>
 <State>received</State>
 <ExecutionMode>do</ExecutionMode>
 <Reference>3ab34</Reference>
 <Priority>5</Priority>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
 <_root index="0">
 <client_info index="76578">
 <name index="76579">John Doe</name>
 <address index="76580">
 <street1 index="76581">1211 Lakeview Dr.</Street1>
 <city index="76582">New York</city>
 <state index="76583">NY</state>
 <country index="76584">USA</country>
 <zip index="76585">12345</zip>
 </address>
 <address index="80132">
 <street1 index="80133">20 Biz drv.</street1>
 <city index="80134">New York</city>
 <state index="80135">NY</state>
 <country index="80136">USA</country>
 <zip index="80137">12345</zip>
 </address>
 </client_info>
 ... more order data ...
 </_root>
 <HistoricalPerspective>
 <OrderHistID>52</OrderHistID>
 <_root index="0">

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 92

 <customer_ref index="1146675411084">Cust01</customer_ref>
 <shape index="1146675411085">circle</shape>
 <color index="1146675411086">blue</color>
 <pattern index="1146675411087">checkerboard</pattern>
 </_root>
 <Changes>
 <Update path="/color[@index='1146675411086']"
 oldValue="blue">green</Update>
 </Changes>
 </HistoricalPerspective>
</GetNextOrderAtTask.Response>

Error Codes

• 150: Namespace/version not found.

• 152: Invalid namespace mnemonic.

• 153: No legacy data found. Namespace and Version need to be supplied.

• 270: Transaction not allowed.

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

GetOrder
To retrieve the order data, you must provide the relevant IDs obtained from the worklist or
another external source. If successful, the response includes the order data values.

To retrieve an order, you must provide the order ID and an Accept parameter indicating
whether the order is updated. You may also provide an order history ID or view (query task) ID.

Operation

GetOrder

Parameters

OrderID: The ID of the order.

Accept: Determines whether an attempt was made to move the order to an Accepted state.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 92

And one of the following:

OrderHistID: The history ID of the order.

Note

You should only use contemporary, current, or historical data that you retrieve using
the OrderHistID from a currently received or accepted task. Contemporary, current, or
historical data retrieved using OrderHIstID for a task that is already complete may no
longer be valid.

ViewID: The particular view (query task) associated with the order. You can obtain a list of valid
ViewIDs for an order with the ListViews.Request.

OrderChangeId: Determines from which revision the historical and current OCM (Order
Change Management) perspectives are to be constructed.

TaskExecutionHistory: Determines the processing history of a revision on a task. It contains
details of the execution mode in which the task was run in the revision, the OrderHistoryID of
the task during the revision, and the OrderChangeID of the corresponding revision.

OrderDataFilter: Parent element for the Condition child element that specifies which order
data to return in the GetOrder.Response.

• Condition: An XPath 1.0 expression against the order data defined by the view (query
task). OSM returns only the instances of the order data selected by the expression, not the
other instances of the element. All other parent or sibling elements are returned.

For example, in a situation where a customer has multiple <address> instances (where
<address> is a multi-instance element), the following expression ensures that OSM returns
only the <address> element that contains a child street element with the specified street
address. The response includes all child nodes of the instance of the <address> element
(city, postal code, and street). The other instances of the <address> element and their child
elements (city, street, and postal code) are not returned.

<OrderDataFilter>
 <Condition>/subscriber_info/address/[street='190 Drive']</Condition>
</OrderDataFilter>

For example, any sibling elements of <subscriber_info>, or sibling elements of <address>
(except for the other instances of the <address> element) would be returned.

There can be as many <Condition> child elements as required. When there are more than
one <Condition> elements, each condition is evaluated and applied independently of the
other conditions to the sections of the order data respectively.

Request Example

<GetOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Accept>true</Accept>
 <OrderHistID>34433</OrderHistID>
</GetOrder.Request>

When you are using an order condition that includes an element that is using a distributed
order template, you should include the namespace of the data element in the condition. For
example:

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 92

<OrderDataFilter>
 <Condition>
 /ControlData/OrderItem[@type='{OrderItemNamespace}OrderItemName' and @LineId='1']
 </Condition>
</OrderDataFilter>

The order response includes the order source and type, the reference number, and its current
state. If an order history ID is supplied in the request, the response returns the related task
mnemonic. The order data is supplied under the _root element. The _root element and all
_root child elements include index attributes to uniquely identify each element in any
subsequent order updates.

The order response also shows the workgroup associated to the user who has accepted a
task, suspended a task, or to whom a task has been assigned. When the task is in the
received state, the response displays all workgroups that can possibly work on the task. When
the task is in the accepted state, the response displays the user who accepted the task.

If there are remarks associated with the order, there is a Remarks element in the <Remarks>
element. A Remark element has the following content:

RemarkID: A unique identifier for the remark.

Time: The time the remark was added.

Author: The user ID of the person who added the remark.

Text: The text of the remark.

TaskID: The task mnemonic of the order when the remark was added.

TaskType: The type of task. For example, creation, manual, automated, rule or delay.

OrderHistID: The order history ID for the order when the remark was created. If the remark
was added without using an OrderHistID, the field is empty.

State: The state of the order when the remark was added.

ReadOnly: A "true" or "false" value indicating if the remark can still be modified. To modify, the
current user must be the author of the remark and the remark cannot be older than a time
specified by your administrator.

ProcessStatus: The process status of the order. Possible ProcessStatus values are taken
from the reporting statuses defined in the Studio Process Editor, on the General subtab in the
Properties window.

Attachments: A parent for the attachment information having zero or more Attachment
elements.

Each attachment element contains:

AttachmentID: A unique identifier for the attachment.

FileName: The name of the file.

Response Example

<GetOrder.Response xmlns="urn:metasolv:oms:xmlapi_1">
 <OrderID>1234</OrderID>
 <OrderHistID>34433</OrderHistID>
 <Task>SampleTask1</OrderHistID>
 <OrderSource>source1</OrderSource>
 <OrderType>phone_transfer</OrderType>
 <Workgroups>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 92

 <Workgroup>workgroup1</Workgroup>
 <Workgroup>workgroup2</Workgroup>
 </Workgroups>
 <OrderState>open.running.in_progress</OrderState>
 <State>received</State>
 <ExecutionMode>do</ExecutionMode>
 <Reference>3ab34</Reference>
 <ExpectedOrderCompletionDate>2009-03-10T00:00:00Z</ExpectedOrderCompletionDate>
 <Priority>5</Priority>
 <ProcessStatus>n/a</ProcessStatus>
 <_rootindex="0">
 <client_info index="76577">
 <name index="76578">John Doe</name>
 <address index="76579">
 <street1 index="76580">1211 Lakeview Dr.</Street1>
 <city index="76581">New York</city>
 <state index="76582">NY</state>
 <country index="76583">USA</country>
 <zip index="76584">12345</zip>
 </address>
 <address index="80132">
 <street1 index="80133">20 Biz drv.</street1>
 <city index="80134">New York</city>
 <state index="80135">NY</state>
 <country index="80136">USA</country>
 <zip index="80137">12345</zip>
 </address>
 </client_info>
 ... more order data ...
 </_root>
 <Remarks>
 <Remark>
 <RemarkID>13444</RemarkID>
 <Date>2000-10-30T14:44:33 EST</Date>
 <Author>jdoe</Author>
 <TaskID>provision_switch</TaskID>
 <TaskType>manual</TaskType>
 <OrderHistID>34401</OrderHistID>
 <State>accepted</State>
 <Text>OSM completed</Text>
 <ReadOnly>true</ReadOnly>
 <Attachments>
 <Attachment>
 <AttachmentID>111324</AttachmentID>
 <FileName>provisioninfo.txt</FileName>
 </Attachment>
 </Attachments>
 </Remark>
 <Remark>
 <RemarkID>14322</RemarkID>
 <Date>2000-10-30T15:01:22 EST</Date>
 <Author>jdoe</Author>
 <TaskID>provision_switch</TaskID>
 <TaskType>manual</TaskType>
 <OrderHistID>34401</OrderHistID>
 <State>accepted</State>
 <Text>Switch activated</Text>
 <ReadOnly>false</ReadOnly>
 <Attachments/>
 </Remark>
 </Remarks>
</GetOrder.Response>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 92

Request Example with OrderChangeId

This is an example of a GetOrder.Request in which the OrderChangeId is set to 123. This
function sends a request to OSM to retrieve an order with OrderChangeId 123.

<GetOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>34433</OrderHistID>
 <OrderChangeId>123</OrderChangeId>
</GetOrder.Request>

Response Example with OrderChangeId and TaskExecution History

This is an example of a GetOrder.Response in which the TaskExecutionHistory element
contains details of order data revisions with corresponding OrderChangeIDs. The base order
has an OrderChangeID of 0 and the revised OrderChangeId is indicated by 561.

<GetOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>2845</OrderID><OrderHistID>61926</OrderHistID>
 <Task>stask_a</Task>
 <State>received</State>
 <OrderChangeID>565</OrderChangeID>
 <OrderSource>OCMPerspectivesTestOrder</OrderSource>
 <Workgroups>
 <Workgroup>workgroup1</Workgroup>
 <Workgroup>workgroup2</Workgroup>
 </Workgroups>
 <OrderType>OCMPerspectivesTestOrder</OrderType>
 <OrderState>open.running.compensating.amending</OrderState>
 <ExecutionMode>redo</ExecutionMode> <Reference/><Priority>5</Priority>
 <Namespace>OCMPerspectivesTest</Namespace><Version>1.0.0</Version>
 <_rootindex="0">
 <data index="1271706877188">rev2</data>
 </_root>
 <HistoricalPerspective>
 <OrderHistID>61917</OrderHistID>
 <_root index="0">
 <data index="1271706877188">rev1</data>
 </_root>
 <Changes>
 <Update significant="true" path="/data[@index='1271706877188']
 "oldValue="rev1">rev2</Update>
 </Changes>
 </HistoricalPerspective>
 <CurrentPerspective>
 <_root index="0">
 <data index="1271706877188">rev2</data>
 </_root>
 </CurrentPerspective>
 <TaskExecutionHis tory>
 <Task>
 <OrderHistID>61917</OrderHistID>
 <ExecutionMode>redo</ExecutionMode>
 <OrderChangeID>561</OrderChangeID>
 </Task>
 <Task>
 <OrderHistID>61904</OrderHistID>
 <ExecutionMode>do</ExecutionMode>
 <OrderChangeID>0</OrderChangeID>
 </Task>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 92

 </TaskExecutionHistory>
</GetOrder.Response>

Response Example with Distributed Order Template

This is a partial example of the response for an order in which the order items and their
dynamic parameters properties are using the distributed order template.

<GetOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>15</OrderID>
 <OrderHistID>236809</OrderHistID>
 <Task>configureCustomerSystemTask</Task>
 <OrderSource>OsmCentralOMExampleOrder</OrderSource>
 <OrderType>OsmCentralOMExampleOrder</OrderType>
 <Workgroups>
 <Workgroup>workgroup1</Workgroup>
 <Workgroup>workgroup2</Workgroup>
 </Workgroups>
 <OrderState>open.running.in_progress</OrderState>
 <State>accepted</State>
 <ExecutionMode>do</ExecutionMode>
 <Reference>Order1397065147300</Reference>
 <RequestedDeliveryDate>2014-03-31T07:05:00 PDT</RequestedDeliveryDate>
 <ExpectedStartDate>2014-04-09T10:39:58 PDT</ExpectedStartDate>
 <ExpectedDuration>PT0S</ExpectedDuration>
 <ExpectedOrderCompletionDate>2014-04-09T10:39:58 PDT</ExpectedOrderCompletionDate>
 <Priority>5</Priority>
 <Namespace>OsmCentralOMExample-Solution</Namespace>
 <Version>4.0.0.0.0</Version>
 <ProcessStatus>n/a</ProcessStatus>
 <_root index="0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <CustomerDetails index="11">
 <nameLocation index="13">Jangadeiros</nameLocation>
 <typeAddress index="23">Building</typeAddress>
 </CustomerDetails>
 <OrderHeader index="1">
 <numSalesOrder index="2">Order1397065147300</numSalesOrder>
 <typeOrder index="3">Add</typeOrder>
 </OrderHeader>
 <AccountDetails index="24">
 <numAccount index="25">TEL1234</numAccount>
 <status index="26">Existing</status>
 <corporate index="27">PoC</corporate>
 <category index="32">Corporate</category>
 </AccountDetails>
 <ControlData index="1397065199251">
 <Functions index="1397065199537">
 <SyncCustomerFunction index="1397065194936" instanceLocked="true">
 <componentKey index="1397065199567">
 SyncCustomerFunction.CustomerSystem.WholeOrder</componentKey>
 <orderItem index="1397065199570">
 <orderItemRef index="1397065199571" referencedIndex="1397065194907"
xmlns:ct234="http://oracle.osm.centralom"
xsi:type="ct234:CustomerOrderItemSpecificationType" type="{http://
oracle.osm.centralom}CustomerOrderItemSpecificationType">
 <ct234:productSpec index="1397065199259" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:productSpec>
 <ct234:filfillPatt index="1397065199260" xmlns:ct234="http://
oracle.osm.centralom">Service.Broadband</ct234:fulfillPatt>
 <ct234:lineId index="1397065199254" xmlns:ct234="http://
oracle.osm.centralom">1</ct234:lineId>
 <ct234:lineItemName index="1397065199263" xmlns:ct234="http://

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 92

oracle.osm.centralom">Brilliant Broadband [Add]</ct234:lineItemName>
 <ct234:requestedDeliveryDate index="1397065199257"
xmlns:ct234="http://oracle.osm.centralom">2014-03-31T07:05:00 PDT</
ct234:requestedDeliveryDate>
 <ct234:lineItemPayload index="1397065199255" xmlns:ct234="http://
oracle.osm.centralom">
 <im:salesOrderLine xmlns:im="http://xmlns.oracle.com/
InputMessage" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <im:lineId>1</im:lineId>
 <im:promotionalSalesOrderLineReference>1 </
im:promotionalSalesOrderLineReference>
 <im:serviceId/>
 <im:requestedDeliveryDate>
 2014-03-31T07:05:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:serviceInstance>N</im:serviceInstance>
 <im:serviceAddress>
 <im:locationType>Street</im:locationType>
 <im:typeAddress>Building</im:typeAddress>
 </im:serviceAddress>
 <im:itemReference>
 <im:name>Brilliant Broadband</im:name>
 <im:primaryClassificationCode>Broadband Service Feature
Class</im:primaryClassificationCode>
 <im:specificationGroup/>
 </im:itemReference>
 </im:salesOrderLine>
 </ct234:lineItemPayload>
 <ct234:Recognition index="1397065199252" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:Recognition>
 <ct234:dynamicParams index="1397065199689" xmlns:ct234="http://
oracle.osm.centralom" xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0"
xsi:type="ct264:SA_MobileMessagingCFSType" type="{OracleComms_Model_Mobile/
4.0.0.0.0}SA_MobileMessagingCFSType" xmlns:ct135="http://xmlns.oracle.com/communications/
studio/ordermanagement/transformation">
 <ct264:MMSIncoming index="1397065199692"
xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0">Yes</ct264:MMSIncoming>
 <ct264:MMSOutgoing index="1397065199690"
xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0">Yes</ct264:MMSOutgoing>
 </ct234:dynamicParams>
 <ct234:Action index="1397065199256" xmlns:ct234="http://
oracle.osm.centralom">Add</ct234:Action>
 <ct234:ServiceInstance index="1397065199253" xmlns:ct234="http://
oracle.osm.centralom">N</ct234:ServiceInstance>
 </orderItemRef>
 </orderItem>

[...]
 </SyncCustomerFunction>
 </Functions>
 <OrderItem index="1397065194907" xmlns:ct234="http://oracle.osm.centralom"
xsi:type="ct234:CustomerOrderItemSpecificationType" type="{http://
oracle.osm.centralom}CustomerOrderItemSpecificationType">
 <ct234:productClass index="1397065199259" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:productClass>
 <ct234:productSpec index="1397065199260" xmlns:ct234="http://
oracle.osm.centralom">Service.Broadband</ct234:productSpec>
 <ct234:lineId index="1397065199254" xmlns:ct234="http://
oracle.osm.centralom">1</ct234:lineId>
 <ct234:lineItemName index="1397065199263" xmlns:ct234="http://
oracle.osm.centralom">Brilliant Broadband [Add]</ct234:lineItemName>
 <ct234:requestedDeliveryDate index="1397065199257" xmlns:ct234="http://

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 92

oracle.osm.centralom">2014-03-31T07:05:00 PDT</ct234:requestedDeliveryDate>
 <ct234:lineItemPayload index="1397065199255" xmlns:ct234="http://
oracle.osm.centralom">
 <im:salesOrderLine xmlns:im="http://xmlns.oracle.com/InputMessage"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <im:lineId>1</im:lineId>
 <im:promotionalSalesOrderLineReference>1 </
im:promotionalSalesOrderLineReference>
 <im:serviceId/>
 <im:requestedDeliveryDate>
 2014-03-31T07:05:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:serviceInstance>N</im:serviceInstance>
 <im:serviceAddress>
 <im:locationType>Street</im:locationType>
 <im:typeAddress>Building</im:typeAddress>
 </im:serviceAddress>
 <im:itemReference>
 <im:name>Brilliant Broadband</im:name>
 <im:primaryClassificationCode>Broadband Service Feature Class</
im:primaryClassificationCode>
 <im:specificationGroup/>
 </im:itemReference>
 </im:salesOrderLine>
 </ct234:lineItemPayload>
 <ct234:Recognition index="1397065199252" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:Recognition>
 <ct234:dynamicParams index="1397065199689" xmlns:ct234="http://
oracle.osm.centralom" xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0"
xsi:type="ct264:SA_MobileMessagingCFSType" type="{OracleComms_Model_Mobile/
4.0.0.0.0}SA_MobileMessagingCFSType" xmlns:ct135="http://xmlns.oracle.com/communications/
studio/ordermanagement/transformation">
 <ct264:MMSIncoming index="1397065199692"
xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0">Yes</ct264:MMSIncoming>
 <ct264:MMSOutgoing index="1397065199690"
xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0">Yes</ct264:MMSOutgoing>
 </ct234:dynamicParams>
 <ct234:Action index="1397065199256" xmlns:ct234="http://
oracle.osm.centralom">Add</ct234:Action>
 <ct234:ServiceInstance index="1397065199253" xmlns:ct234="http://
oracle.osm.centralom">N</ct234:ServiceInstance>
 </OrderItem>
[...]
 </ControlData>
 </_root>
</GetOrder.Response>

Request and Response Example with OrderDataFilter

The following GetOrder.Request specifies the demo_query query task that specifies the data to
return in the GetOrder.Response from an order with an order ID of 2.

<GetOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>2</OrderID>
 <View>demo_query</View>
</GetOrder.Request>

The following response returned all the data specified by the demo_query query task including
all address multi-instance nodes.

<GetOrder.Response>
 <OrderID>2</OrderID>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 92

 <View>demo_query</View>
 <OrderSource>add_adsl_siebel</OrderSource>
 <OrderType>add_adsl_siebel</OrderType>
 <OrderState>open.running.in_progress</OrderState>
 <Reference>1112223333</Reference>
 <Priority>5</Priority>
 <Namespace>bb_ocm_demo</Namespace>
 <Version>1.0.0.0.0</Version>
 <ProcessStatus>n/a</ProcessStatus>
 <_root index="0">
 <subscriber_info index="1414783208019">
 <address index="1414783208020">
 <city index="1414783208023">MO</city>
 <postal_code index="1414783208022">A1A1A1</postal_code>
 <street index="1414783208021">Montreal Street</street>
 </address>
 <address index="1414783208024">
 <city index="1414783208027">OT</city>
 <postal_code index="1414783208026">B1B1B1</postal_code>
 <street index="1414783208025">Ottawa Street</street>
 </address>
 <address index="1414783208028">
 <city index="1414783208031">TO</city>
 <postal_code index="1414783208030">M9W6H8</postal_code>
 <street index="1414783208029">190 Drive</street>
 </address>
 <primary_phone_number index="1414783208033">1112223333
 </primary_phone_number>
 <name index="1414783208032">John Doe</name>
 </subscriber_info>
 <adsl_service_details index="1414783208034">
 <bandwidth index="1414783208035">3</bandwidth>
 </adsl_service_details>
 </_root>
</GetOrder.Response>

The following request uses the OrderDataFilter to filter out all sibling instances of the address
multi-instance node. This functionality is particularly important in large orchestration orders
when requesting order item information where an unfiltered GetOrder.Response message
containing all the order data would negatively impact performance.

<GetOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>2</OrderID>
 <View>demo_query</View>
 <OrderDataFilter>
 <Condition>/_root/subscriber_info/address[street='190 Drive']</Condition>
 </OrderDataFilter>
</GetOrder.Request>

The following response has filtered out two other instances of the address multi-instance node.

<GetOrder.Response>
 <OrderID>2</OrderID>
 <View>demo_query</View>
 <_root index="0">
 <subscriber_info index="1414682666683">
 <address index="1414682666696">
 <city index="1414682666697">TO</city>
 <postal_code index="1414682666698">A1B2Z7</postal_code>
 <street index="1414682666699">190 Drive</street>
 </address>
 <phone_number index="1414682666689">1111111111</phone_number>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 92

 <name index="1414682666688">John Doe</name>
 </subscriber_info>
 <adsl_service_details index="1414682666690">
 <bandwidth index="1414682666691">3</bandwidth>
 </adsl_service_details>
 </_root>
</GetOrder.Response>

Error Codes

• 110: Order not found

• 232: Order update failed

• 270: Transaction not allowed

• 302: Request parameter error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

GetOrderAtTask
To retrieve the order data as it exists at a specified task, you must provide the relevant IDs
obtained from the worklist or another external source. If successful, the response includes the
order data values as they exist at the specified task.

Parameters

OrderID: The order's ID number

Task: A descriptive mnemonic for the task

Request Example

<GetOrderAtTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Task>SampleTaskl</Task>
</GetOrderAtTask.Request>

Response Example

<GetOrderAtTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>204</OrderID>
 <OrderHistID>443</OrderHistID>
 <Task>SampleTaskl</Task>
 <OrderSource>xmlapi</OrderSource>
 <OrderType>xmlapi</OrderType>
 <OrderState>open.running.in_progress</OrderState>
 <State>received</State>
 <ExecutionMode>do</ExecutionMode>
 <Reference>get_order</Reference>
 <ExpectedOrderCompletionDate>2009-03-10T00:00:00Z</ExpectedOrderCompletionDate>
 <Priority>5</Priority>
 <Namespace>vadim</Namespace>
 <Version>1.0</Version>
 <_root index="0">
 <ProcessStatus index="1">n/a</ProcessStatus>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 92

 <order_origination index="2">
 <currency index="3">150.55</currency>
 <boolean index="4">Yes</boolean>
 <m_multiple_lines_text index="5">text1</m_multiple_lines_text>
 <m_multiple_lines_text index="6">text2</m_multiple_lines_text>
 <options index="7">#1</options>
 <phone index="8">1234567890</phone>
 <date index="9">2010-10-10T15:10:10 EDT</date>
 <numeric index="10">155.0</numeric>
 <nested_group index="11">
 <currency index="12">200.0</currency>
 </nested_group>
 </order_origination>
 </_root>
</GetOrderAtTask.Response>

Response Example with Distributed Order Template

This is a partial example of the response for an order in which the order items and their
dynamic parameters properties are using the distributed order template.

<GetOrderAtTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>15</OrderID>
 <OrderHistID>236809</OrderHistID>
 <Task>configureCustomerSystemTask</Task>
 <OrderSource>OsmCentralOMExampleOrder</OrderSource>
 <OrderType>OsmCentralOMExampleOrder</OrderType>
 <OrderState>open.running.in_progress</OrderState>
 <State>accepted</State>
 <ExecutionMode>do</ExecutionMode>
 <Reference>Order1397065147300</Reference>
 <ExpectedOrderCompletionDate>2014-04-09T10:39:58 PDT</ExpectedOrderCompletionDate>
 <Priority>5</Priority>
 <Namespace>OsmCentralOMExample-Solution</Namespace>
 <Version>4.0.0.0.0</Version>
 <ProcessStatus>n/a</ProcessStatus>
 <_root index="0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <CustomerDetails index="11">
 <locationType index="12">Street</locationType>
 <typeAddress index="23">Building</typeAddress>
 </CustomerDetails>
 <OrderHeader index="1">
 <numSalesOrder index="2">Order1397065147300</numSalesOrder>
 <typeOrder index="3">Add</typeOrder>
 </OrderHeader>
 <AccountDetails index="24">
 <numAccount index="25">TEL1234</numAccount>
 <status index="26">Existing</status>
 <corporate index="27">PoC</corporate>
 <category index="32">Corporate</category>
 </AccountDetails>
 <ControlData index="1397065199251">
 <Functions index="1397065199537">
 <SyncCustomerFunction index="1397065194936" instanceLocked="true">
 <componentKey index="1397065199567">
 SyncCustomerFunction.CustomerSystem.WholeOrder</componentKey>
 <orderItem index="1397065199570">
 <orderItemRef index="1397065199571" referencedIndex="1397065194907"
xmlns:ct234="http://oracle.osm.centralom"
xsi:type="ct234:CustomerOrderItemSpecificationType" type="{http://
oracle.osm.centralom}CustomerOrderItemSpecificationType">
 <ct234:productClass index="1397065199259" xmlns:ct234="http://

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 92

oracle.osm.centralom">Broadband Service Feature Class</ct234:productClass>
 <ct234:productSpec index="1397065199260" xmlns:ct234="http://
oracle.osm.centralom">Service.Broadband</ct234:productSpec>
 <ct234:lineId index="1397065199254" xmlns:ct234="http://
oracle.osm.centralom">1</ct234:lineId>
 <ct234:lineItemName index="1397065199263" xmlns:ct234="http://
oracle.osm.centralom">Brilliant Broadband [Add]</ct234:lineItemName>
 <ct234:requestedDeliveryDate index="1397065199257"
xmlns:ct234="http://oracle.osm.centralom">2014-03-31T07:05:00 PDT</
ct234:requestedDeliveryDate>
 <ct234:lineItemPayload index="1397065199255" xmlns:ct234="http://
oracle.osm.centralom">
 <im:salesOrderLine xmlns:im="http://xmlns.oracle.com/
InputMessage" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <im:lineId>1</im:lineId>
 <im:promotionalSalesOrderLineReference>1 </
im:promotionalSalesOrderLineReference>
 <im:serviceId/>
 <im:requestedDeliveryDate>
 2014-03-31T07:05:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:serviceInstance>N</im:serviceInstance>
 <im:serviceAddress>
 <im:locationType>Street</im:locationType>
 <im:typeAddress>Building</im:typeAddress>
 </im:serviceAddress>
 <im:itemReference>
 <im:name>Brilliant Broadband</im:name>
 <im:primaryClassificationCode>Broadband Service Feature
Class</im:primaryClassificationCode>
 <im:specificationGroup/>
 </im:itemReference>
 </im:salesOrderLine>
 </ct234:lineItemPayload>
 <ct234:Recognition index="1397065199252" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:Recognition>
 <ct234:dynamicParams index="1397065199689" xmlns:ct234="http://
oracle.osm.centralom" xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0"
xsi:type="ct264:SA_MobileMessagingCFSType" type="{OracleComms_Model_Mobile/
4.0.0.0.0}SA_MobileMessagingCFSType" xmlns:ct135="http://xmlns.oracle.com/communications/
studio/ordermanagement/transformation">
 <ct264:MMSIncoming index="1397065199692"
xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0">Yes</ct264:MMSIncoming>
 <ct264:MMSOutgoing index="1397065199690"
xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0">Yes</ct264:MMSOutgoing>
 </ct234:dynamicParams>
 <ct234:Action index="1397065199256" xmlns:ct234="http://
oracle.osm.centralom">Add</ct234:Action>
 <ct234:ServiceInstance index="1397065199253" xmlns:ct234="http://
oracle.osm.centralom">N</ct234:ServiceInstance>
 </orderItemRef>
 </orderItem>
[...]
 </SyncCustomerFunction>
 </Functions>
 <OrderItem index="1397065194907" xmlns:ct234="http://oracle.osm.centralom"
xsi:type="ct234:CustomerOrderItemSpecificationType" type="{http://
oracle.osm.centralom}CustomerOrderItemSpecificationType">
 <ct234:productClass index="1397065199259" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:productClass>
 <ct234:productSpec index="1397065199260" xmlns:ct234="http://
oracle.osm.centralom">Service.Broadband</ct234:productSpec>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 92

 <ct234:lineId index="1397065199254" xmlns:ct234="http://
oracle.osm.centralom">1</ct234:lineId>
 <ct234:lineItemName index="1397065199263" xmlns:ct234="http://
oracle.osm.centralom">Brilliant Broadband [Add]</ct234:lineItemName>
 <ct234:requestedDeliveryDate index="1397065199257" xmlns:ct234="http://
oracle.osm.centralom">2014-03-31T07:05:00 PDT</ct234:requestedDeliveryDate>
 <ct234:lineItemPayload index="1397065199255" xmlns:ct234="http://
oracle.osm.centralom">
 <im:salesOrderLine xmlns:im="http://xmlns.oracle.com/InputMessage"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <im:lineId>1</im:lineId>
 <im:promotionalSalesOrderLineReference>1 </
im:promotionalSalesOrderLineReference>
 <im:serviceId/>
 <im:requestedDeliveryDate>
 2014-03-31T07:05:00</im:requestedDeliveryDate>
 <im:serviceActionCode>Add</im:serviceActionCode>
 <im:serviceInstance>N</im:serviceInstance>
 <im:serviceAddress>
 <im:locationType>Street</im:locationType>
 <im:typeAddress>Building</im:typeAddress>
 </im:serviceAddress>
 <im:itemReference>
 <im:name>Brilliant Broadband</im:name>
 <im:primaryClassificationCode>Broadband Service Feature Class</
im:primaryClassificationCode>
 <im:specificationGroup/>
 </im:itemReference>
 </im:salesOrderLine>
 </ct234:lineItemPayload>
 <ct234:Recognition index="1397065199252" xmlns:ct234="http://
oracle.osm.centralom">Broadband Service Feature Class</ct234:Recognition>
 <ct234:dynamicParams index="1397065199689" xmlns:ct234="http://
oracle.osm.centralom" xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0"
xsi:type="ct264:SA_MobileMessagingCFSType" type="{OracleComms_Model_Mobile/
4.0.0.0.0}SA_MobileMessagingCFSType" xmlns:ct135="http://xmlns.oracle.com/communications/
studio/ordermanagement/transformation">
 <ct264:MMSIncoming index="1397065199692"
xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0">Yes</ct264:MMSIncoming>
 <ct264:MMSOutgoing index="1397065199690"
xmlns:ct264="OracleComms_Model_Mobile/4.0.0.0.0">Yes</ct264:MMSOutgoing>
 </ct234:dynamicParams>
 <ct234:Action index="1397065199256" xmlns:ct234="http://
oracle.osm.centralom">Add</ct234:Action>
 <ct234:ServiceInstance index="1397065199253" xmlns:ct234="http://
oracle.osm.centralom">N</ct234:ServiceInstance>
 </OrderItem>
[...]
 </ControlData>
 </_root>
</GetOrderAtTask.Response>

Error Codes

• 110: order not found

• 257: Invalid task mnemonic

• 302: request parameter error

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 92

GetOrderDataHistory
Provides a list of the creation, update, and deletion of data in an order. Only those data
elements that are visible in the order's assigned view (query task) is described in the
OrderDataHistory response.

Operation

GetOrderDataHistory

Parameters

OrderID - The order sequence ID.

And one of the following:

OrderHistID: The order history ID.

View: A view (query task) assigned to the order.

With the given parameters, OrderDataHistory returns the order data history for all data
elements of the order. To request the data history of specific elements, any number of Field
elements can be provided to restrict the returned data history to the specific elements. The
Field element contains an attribute and path, which resolves to a mnemonic path (using '/' as
separators) for the data element whose data history is requested. Index values can be used in
the path to narrow the scope of elements returned. Some examples are:

<Field path="/group_node/value_node" />

Returns data history for the root node, and all instances of /group_node and all instances of /
group_node/value_node.

<Field path="/group_node[@index='12234']/value_node" />

Returns data history for the root node, the group_node with index 12234, and all instances of /
group_node/value_node having group_node with index 12234 as a parent.

<Field path="/group_node[@index='12234']/value_node[@index='23111']" />

Returns data history for the root node, the group_node with index 12234, and all instances of /
group_node/value_node having the index 23111 and group_node with index 12234 as a
parent.

<Field path="/group_node/value_node" namespace="DSL_Highspeedline " version ="1.1" />

Returns data history for the root node, and all instances of /group_node and all instances of /
group_node/value_node for the cartridge namespace DSL_Highspeedline version 1.1.

Request Example

<GetOrderDataHistory.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <ViewID>32222</ViewID>
</GetOrderDataHistory.Request>

or

<GetOrderDataHistory.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <View>Order_Creation_view</View>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 92

 <Field path="/group_node/value_node" namespace="DSL_Highspeedline"
 version ="1.1"/>
</GetOrderDataHistory.Request>

The response returns the OrderID and OrderHistID/ViewID provided in the request, in addition
to order data history in Field elements.

Each Field element has the following attributes:

path: The mnemonic path for the data element with '/' separating mnemonics.

namespace: The namespace mnemonic of order type/source.

version: The version of the order type or source. If you do not indicate a version, OSM uses
the default version.

Index: The index number for the data element.

ParentIndex: The index number of the data element's parent. If the data element is the root
node, it has an empty parentIndex (parentIndex="").

Multiple instance data elements have the same path but different indexes.

Each Field element has a Change element for each modification made to a data element. Each
Change element has the following attributes:

Action: The action, either create, update, or delete.

User: The user ID that performed the change.

Time: The time of the change.

If the Change element is for a value node and has an action of "create" or "update", the value
supplied to the data appears as the text value of the Change element.

Response Example

<GetOrderDataHistory.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>32222</OrderHistID>
 <Field path="/" namespace="DSL_Highspeedline " version ="1.1" index="1221"
 parentIndex="">
 <Change action="create" user="oms" time="2000-01-28T14:33:22 EST"/>
 </Field>
 <Field path="/client_info" namespace="DSL_Highspeedline " version ="1.1"
 index="1222" parentIndex="1221">
 <Change action="create" user="oms" time="2000-01-28T14:33:22 EST"/>
 </Field>
 <Field path="/client_info/phone" namespace="DSL_Highspeedline" version ="1.1"
 index="1223" parentIndex="1221">
 <Change action="create" user="oms" time="2000-01-28T14:33:22 EST">4169999999
 </Change>
 <Change action="update" user="jdoe" time="2000-01-28T14:35:23 EST">
 4168888888
 </Change>
 </Field>
 <Field path="/client_info/address" namespace="DSL_Highspeedline" version ="1.1"
 index="12552" parentIndex="1222">
 <Change action="create" user="oms" time="2000-01-28T14:33:22 EST"/>
 </Field>
 <Field path="/client_info/address/street" namespace="DSL_Highspeedline"
 version ="1.1" index="12553" parentIndex="12552">
 <Change action="create" user="oms" time="2000-01-28T14:33:22 EST">
 20 West St.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 92

 </Change>
 <Change action="delete" user="oms" time="2000-01-28T15:21:45 EST" />
 </Field>
</GetOrderDataHistory.Response>

Error Codes

• 110: Order not found

• 302: Request parameter error

• 400: Not authorized

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

GetOrderProcessHistory
Provides a list of each task transition of an order and a summary of the total time an order has
been in a process. The root data comes from the get_order_history SQL procedure, which
sorts the results in the chronological order of entry time. Note that this is not CompleteDate
necessarily. The entry time is when the order transitioned into that task and not when the order
exited that task. For sequential tasks, this amounts to the same thing as CompleteDate. But
when tasks are in parallel, it is possible for tasks to start in a particular order but complete in a
different order.

Operation

GetOrderProcessHistory

Parameter

OrderID: The order ID for the order.

Request Example

<GetOrderProcessHistory.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
</GetOrderProcessHistory.Request>

The GetOrderProcessHistory response returns the Order ID provided, and a Summary and
Transitions element.

The children of the Summary element are:

ExpectedCompletionDate: The expected completion date of the entire process.

ActualDuration: The sum of the duration of all transitions of the order in seconds.

StartDate: The date the order was started in the process.

CompleteDate: The date the order was completed.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 92

The children of the Transitions element are zero or more Transition elements. Each Transition
element has the following children:

TaskID: The task mnemonic.

TaskType: The task type; manual, automatic, and creation.

TaskDescription: The description of the task.

ExpectedCompletionDate: The expected completion date of the task in seconds.

ActualDuration: The actual duration of the task and state in seconds.

StartDate: The date/time the task and state was entered.

CompleteDate: The date and time the task and state was completed.

OrderHistID: The order history sequence ID of the order's task and state.

FromOrderHistID: The order history sequence ID of the previous task and state.

State: The state mnemonic of the order.

Status: The status mnemonic of the order.

TransitionType: There are two transition types "normal", indicating transition within the
process or "exception" indicating the transition was to an exception processing transition.

User: The unique identifier of the user who performed the transition.

ParentTaskOrderHistID: If the transition is within a sub-process resulting from an order data
based transition, this value indicates the order history ID of the parent process task. If the
transition is not within a sub-process, this value is empty.

DataNodeIndex: If the transition or a previous transition resulted from order data, this is a
correlation index for the transitions that followed from the order data based transition.

DataNodeMnemonic: If the transition is a sub-process and the result of an order data based
task (creates sub-processes), this value contains the mnemonic path (with '/' separators) of the
node on which the sub-processes tasks were created.

DataNodeValue: If the transition is based on order data and is a value node, this element
provides the value of the order data.

Response Example

<GetOrderProcessHistory.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Summary>
 <ExpectedCompletionDate>2000-03-25T14:33:22 EST</ExpectedCompletionDate>
 <ActualDuration>101000</ActualDuration>
 <StartDate>2000-01-28T14:33:22 EST</StartDate>
 <CompleteDate/>
 </Summary>
 <Transitions>
 <Transition>
 <TaskID>order_entry</TaskID>
 <TaskType>manual</TaskType>
 <TaskDescription>Order Entry Task</TaskDescription>
 <ExpectedCompletionDate>2000-02-15T14:33:22 EST</ExpectedCompletionDate>
 <ActualDuration>65</ActualDuration>
 <StartDate>2000-01-28T14:33:22 EST</StartDate>
 <CompleteDate>2000-01-28T14:34:27 EST </CompleteDate>
 <OrderHistID>12432</OrderHistID>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 92

 <FromOrderHistID>12431</FromOrderHistID>
 <State>received</State>
 <Status/>
 <TransitionType>normal</TransitionType>
 <User>oms</User>
 <ParentTaskOrderHistID/>
 <DataNodeIndex/>
 <DataNodeMnemonic/>
 <DataNodeValue/>
 </Transition>
 ... more Transition elements ...
 </Transitions>
</GetOrderProcessHistory.Response>

Error Codes

• 110: Order not found

• 302: Request parameter error

• 400: Not authorized

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

GetOrderStateHistory
Provides a list of each order state transition and its duration. The root data comes from the
get_order_state_history SQL procedure, which sorts the results in the order of order state.
Note that this is not CompleteDate necessarily.

Each order state has a number value:

0: No state
1: Not started
2: Suspended
3: Cancelled
4: In Progress
5: Amending
6: Cancelling
7: Completed
8: Wait For Revision
9: Aborted
10: Failed

For an order that moves from start to finish, this will be in a chronological order. For an order
that is suspended and resumed, revised, or cancelled, it will not be in a chronological order.

Operation

GetOrderStateHistory

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 92

Parameter

OrderID: The order ID for the order.

Namespace

Version

Request Example

<GetOrderStateHistory.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
</GetOrderStateHistory.Request>

The GetOrderStateHistory response returns the Order ID provided, and the following Transition
elements:

OrderState: The state mnemonic of the order.

TransitionStartDate: The date/time the order state was entered.

TransitionCompletedDate: The date/time the order state was completed.

ActualDuration: The actual duration of the order state in seconds.

User: The unique identifier of the user who performed the transition.

Reason: The reason for the order state transition. Supplied by the system when an order is
created (create order) or submitted (submit order). Optionally supplied by the user when an
order is suspended or resumed.

Response Example

<GetOrderStateHistory.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>161</OrderID>
 <Namespace>orderamendment</Namespace>
 <Version>1.0</Version>
 <OrderStates>
 <OrderState>
 <OrderState>open.not_running.not_started</OrderState>
 <TransitionStartDate>2006-04-03T14:08:59 EDT</TransitionStartDate>
 <TransitionCompletedDate>2006-04-03T14:19:21 EDT
 </TransitionCompletedDate>
 <ActualDuration>PT10M22.000S</ActualDuration>
 <User>oms</User>
 <Reason>create order</Reason>
 </OrderState>
 <OrderState>
 <OrderState>open.running.in_progress</OrderState>
 <TransitionStartDate>2006-04-03T14:19:32 EDT</TransitionStartDate>
 <TransitionCompletedDate>2006-04-03T14:19:36 EDT
 </TransitionCompletedDate>
 <ActualDuration>PT4.000S</ActualDuration>
 <User>oms</User>
 <Reason>submit order</Reason>
 </OrderState>
 <OrderState>
 <OrderState>open.not_running.suspended</OrderState>
 <TransitionStartDate>2006-04-03T14:19:36 EDT</TransitionStartDate>
 <TransitionCompletedDate>2006-04-03T14:19:36 EDT
 </TransitionCompletedDate>
 <ActualDuration>PT0.000S</ActualDuration>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 40 of 92

 <User>oms</User>
 <Reason>customer requested hold on order</Reason>
 </OrderState>
 </OrderStates>
</GetOrderStateHistory.Response>

Error Codes

• 110: Order not found

• 302: Request parameter error

• 400: Not authorized

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

GetTaskStatuses
Provides a list of all statuses for a given task.

Operation

GetTaskStatuses

Parameter

Task - A task mnemonic.

Namespace

Version

Request Example

<GetTaskStatuses.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Task>new_test_task</Task>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</GetTaskStatuses.Request>

Response Example

<GetTaskStatuses.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Task>new_test_task</Task>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
 <Status>delete</Status>
 <Status>dickson1</Status>
 <Status>dickson2</Status>
 <Status>end</Status>
 <Status>false</Status>
 <Status>redirect</Status>
 <Status>submit</Status>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 41 of 92

 <Status>true</Status>
 <Status>undo</Status>
</GetTaskStatuses.Response>

Error Codes

• 150: Namespace/version not found.

• 152: Invalid namespace mnemonic.

• 153: No legacy data found. Namespace and Version need to be supplied.

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

GetUserInfo
Provides information regarding the current user's ID, the mnemonic and description of all
assigned workgroups, and all user-defined columns (flexible headers).

Parameters

None

Request Example

<GetUserInfo.Request xmlns="urn:com:metasolv:oms:xmlapi:1" />

The response includes the following elements:

User: ID of the user currently logged in.

Workgroup: The workgroup mnemonic to which the user is assigned.

The Workgroup element has the following attribute:

Desc: Description of the workgroup.

FlexibleHeaders: A list of all flexible headers available to the user.

The FlexibleHeaders element has the following attribute:

namespace: The namespace mnemonic of order type/source.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 42 of 92

version: The version of the order type or source. If you do not indicate a version, OSM uses
the default version.

Desc: Description of the flexible header.

Response Example

<GetUserInfo.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <User>jdoe</User>
 <Workgroup desc="Provisioning">provisioning</Workgroup>
 <Workgroup desc="Customer Service">customer_service</Workgroup>
 <FlexibleHeaders>
 <FlexibleHeader namespace="DSL_Highspeedline" version="1.1"
 desc="Name">customer.name</FlexibleHeader>
 <FlexibleHeader namespace="DSL_Highspeedline" version="1.1" desc=
 "Phone Number">customer.phone_number</FlexibleHeader>
 </FlexibleHeaders>
<GetUserInfo.Response>

Error Codes

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

ListExceptions
Provides a list of available exception statuses for a given order. The request message includes
an Order ID and Order History ID.

Operation

ListExceptions

Parameters

OrderID: The ID of the order.

OrderHistID: The order history ID.

Request Example

<ListExceptions.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>3422</OrderID>
 <OrderHistID>4333</OrderHistID>
</ListExceptions.Request>

The response includes the Exceptions element with zero or more status elements. The value
of a status element is the status mnemonic.

Response Example

<ListExceptions.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>3422</OrderID>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 43 of 92

 <OrderHistID>4333</OrderHistID>
 <Exceptions>
 <Status desc="Complete">complete</Status>
 <Status desc="Delete">delete</Status>
 </Exceptions>
</ListExceptions.Response>

Error Codes

• 110: Order not found

• 302: Request parameter error

• 400: Not authorized

• 401: Database Connection Failed

• 500: Internal Error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

ListStatesNStatuses
Returns a list of states and statuses used to transition a given task.

The task status/state request consists of a ListStatesNStatuses operation with parameters
indicating the order ID and order history ID.

Operation

ListStatesNStatuses

Parameters

OrderID: The ID of the order.

OrderHistID: The order history ID.

Request Example

<ListStatesNStatuses.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>12345</OrderID>
 <OrderHistID>67890</OrderHistID>
</ListStatesNStatuses.Request>

The response has parameters with the requested order ID, the order history ID, and the current
state of the task. The list of possible states and statuses are listed under the
TaskStatesNStatuses element. There are five possible children:

• Received: The task may be set to the Received state.

• Accepted: The task may be accepted by the current user. Tasks are automatically moved
to the Accepted state when retrieved using GetOrder.Request with an Accept parameter of
"true".

• Assigned: The task can be assigned to any user ID listed in the User children elements.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 44 of 92

• Suspended: The task can be suspended by providing any of the state mnemonics listed
as children.

• Completed: The task can be completed by providing any of the status mnemonics listed
as children.

Response Example

<ListStatesNStatuses.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>12345</OrderID>
 <OrderHistID>67890</OrderHistoryID>
 <State>Received</State>
 <TaskStatesNStatuses>
 <Accepted/>
 <Assigned>
 <User>jdoe</User>
 <User>rsmith</User>
 </Assigned>
 <Suspend>
 <waiting_on_provisioning/>
 <customer_info_incomplete/>
 </Suspend>
 <Completed>
 <submit/>
 <delete/>
 </Completed>
 </TaskStatesNStatuses>
</ListStatesNStatuses.Response>

Error Codes

• 110: Order not found

• 302: Request parameter error

• 400: Not authorized

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

ListViews
Lists the views (query tasks) associated to a user workgroup for a given order source and type.
If there is no view associated with a user workgroup, a view will not be returned. You can
associate views with workgroups by bringing up the query task in Design Studio and selecting
the Default view. See the discussion of query tasks in the Design Studio online help. (Note also
that workgroups are called roles in Design Studio.)

Operation

ListViews

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 45 of 92

Parameters

OrderType: The type of the order.

OrderSource: The source of the order.

Namespace

Version

Request Example

<ListViews.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderSource>source1</OrderSource>
 <OrderType>provisioning</OrderType>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</ListViews.Request>

Response Example

<ListViews.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderSource>source1</OrderSource>
 <OrderType>provisioning</OrderType>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
 <View desc="Create order" mnemonic="create_order_view">1223</View>
 <View desc="Provision number" mnemonic="create_order_view">3424</View>
</ListViews.Response>

Error Codes

• 150: Namespace/version not found.

• 152: Invalid namespace mnemonic.

• 153: No legacy data found. Namespace and Version need to be supplied.

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This condition generates an
error (152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 46 of 92

ModifyRemark
A remark can be modified after it is created, either to change the text of the remark or to add or
remove attachments. Only the user who created the initial remark has authorization to change
it, and only within an administrator defined time interval. The time interval after creating a
remark is specified in the oms-config.xml file of the OSM Task web client with the property
name remark_change_timeout_hours.

Operation

ModifyRemark

Parameters

OrderID: The order ID associated with the remark.

OrderHistID: The order history ID associated with the remark. If the remark has no
OrderHistID, this field can be omitted or empty.

RemarkID: The unique identifier for the remark.

Text: The replacement text for the remark.

AddAttachments: A list of FileName elements that specify file names for new attachments.

DeleteAttachments: A list of AttachmentID elements that specify attachments to remove from
the repository. Invalid AttachmentID values are not reported as errors. When attachments are
deleted, the associated file is deleted from the file repository.

Request Example

<ModifyRemark.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>12333</OrderHistID>
 <RemarkID>1333</RemarkID>
 <Text>This is the new text for the remark</Text>
 <AddAttachments>
 <FileName>newfile.txt</FileName>
 <FileName>moreInformation.doc</FileName>
 </AddAttachments>
 <DeleteAttachments>
 <AttachmentID>10222</AttachmentID>
 </DeleteAttachments>
</ModifyRemark.Request>

The response follows the same format as that of UpdateOrder when there is a new
attachment. The AttachmentID elements must be used to construct the file name for storing the
attachment.

The response has a Remark element with the following child elements:

• RemarkID: The unique ID for the remark, assigned by OSM.

• Attachment: Zero or more Attachment elements for each attachment. An Attachment
element has the following child elements:

– AttachmentID: The unique ID for the attachment, assigned by OSM. When adding the
attachment with the WebLogic file (T3) service, use the file name AttachmentID.srv,
where AttachmentID is the value of the AttachmentID element on the response.

– FileName: The name of the file specified for the attachment.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 47 of 92

Response Example

<ModifyRemark.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Remark>
 <RemarkID>1333</RemarkID>
 <Attachment>
 <AttachmentID>12222</AttachmentID>
 <FileName>newfile.txt</FileName>
 </Attachment>
 <Attachment>
 <AttachmentID>12223</AttachmentID>
 <FileName>moreInformation.doc</FileName>
 </Attachment>
 </Remark>
</ModifyRemark>

Error Codes

• 160: Remark not found

• 260: Remark cannot be modified

• 270: Transaction not allowed

• 302: Request parameter error

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Notifications
A list of current retrievable notifications.

Operation

Notifications

Parameters

None

The returned information includes the following information for each notification:

_notif_id: An integer unique identification number for the notification.

_notif_desc: A string description of the notification.

_notif_type: Either the string 'poll' for a polled notification or 'process' for a transitional
notification.

_notif_priority: An integer indicating the priority level of the notification.

_notif_time: An XML API datetime representing the time the notification was generated.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 48 of 92

_order_seq_id: An integer unique identification number of the order for which the notification
was generated. If order ID does not exist, an empty value appears.

_order_hist_seq_id: An integer ID number of the order history ID for which the notification
was generated.

_order_type: The mnemonic of the order's type. If there is no order, then an empty value
appears.

_order_source: The mnemonic of the order's source. If there is no order, then an empty value
appears.

_date_pos_created: An XML API datetime representation of the time the order was created. If
there is no order, then an empty value appears.

_reference_number: The order's reference string. If there is no order, then an empty value
appears.

_priority: An integer indicating the priority level of the order.

_requested_delivery_date: The date when the order is requested to be delivered. If an order
contains multiple requested dates, for example because multiple order components have
individual requested dates, then the requested date is interpreted to be the one selected for
calculation of "expected start date."

_user: The surname currently associated with the order. If there is no order, then an empty
value appears.

_ProcessStatus: The process status of the order.

_expected_completion_date: The date that OSM expects order processing to complete.

_expected_duration: The amount of time OSM determines it will take to complete the order.
OSM calculates this value from durations given in the OSM model. OSM selects the durations
based on the details of a specific order.

_expected_start_date: The date that OSM determines that the order should begin running the
order to meet its requested delivery date. This date is calculated by considering the expected
duration. OSM only returns this parameter for orders that use orchestration plans. If an order
does not use an orchestration plan, it is not returned.

_namespace: The namespace of the order type/source

_version: The version of the order type/source

In addition, for each flexible header assigned to the user, an instance of the following
parameter is returned:

_header: This element has an attribute named mnemonic_path which contains the path of
the flexible header. The value of the _header element is the value of the flexible header
converted into a string. Table 3-2 lists the formats for data types that require formatting to be
converted into a string:

Table 3-2 Formatting for Text Representation of Data Types

Primitive Type Format

dateTime yyyy-MM-ddThh:mm:ss time zone

(for example 2013-10-30T14:33:22 EST)

date yyyy-MM-dd

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 49 of 92

Table 3-2 (Cont.) Formatting for Text Representation of Data Types

Primitive Type Format

Boolean Yes or No

The notifications retrieved for a given user ID consist of those assigned to the user or any of
the user's workgroups still in an active state. The maximum number of notifications returned in
one request is defined by the max_notification_rows property in the oms-config.xml.

Request Example

<Notifications.Request xmlns="urn:com:metasolv:oms:xmlapi:1" />

If there are no notifications for a user ID, the response contains only the Header element.

Response Example

<Notifications.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Header>
 <_notif_id desc="Notification ID"/>
 <_notif_desc desc="Notification Description/>
 <_notif_type desc="Notification Type"/>
 <_notif_priority desc="Priority" />
 <_notif_time desc="Notification Timestamp"/>
 <_order_seq_id desc="Order ID"/>
 <_order_hist_seq_id desc="Order History ID"/>
 <_order_source desc="Source"/>
 <_order_type desc="Type"/>
 <_reference_number desc="Ref. #"/>
 <_priority desc="Priority" />
 <_date_pos_created desc="Order Creation Date"/>
 <_requested_delivery_date desc="Requested Order Delivery Date"/>
 <_expected_start_date desc="Expected Order Start Date"/>
 <_expected_duration desc="Expected Order Duration"/>
 <_compl_date_expected desc="Expected Order Completion Date"/>
 <_user desc="User" />
 <_process_status desc="Status"/>
 <_namespace desc="Namespace" />
 <_version desc="Version" />
 <customer.name desc="Customer Name"/>
 <customer.phone desc="Customer Phone"/>
 </Header>
 <Notification>
 <_notif_id>4567</_notif_id>
 <_notif_desc>Order transitioned</_notif_desc>
 <_notif_type>process</_notif_type>
 <_notif_priority>1</_notif_priority>
 <_notif_time>2000-10-30T14:33:22 EST</_notif_time>
 <_order_seq_id>2345</_order_seq_id>
 <_order_hist_seq_id>2333</_order_hist_seq_id>
 <_order_source>order_entry</_order_source>
 <_order_type>pots</_order_type>
 <_reference>AA-B3653F</_reference>
 <_priority>5</_priority>
 <_date_pos_created>2000-10-30T14:30:00 EST</_date_pos_created>
 <_requested_delivery_date>2000-10-30T14:30:00 EST</_requested_delivery_date>
 <_expected_start_date>2000-10-20T14:30:00 EST</_expected_start_date>
 <_expected_duration>P10D</_expected_duration>
 <_compl_date_expected>2000-10-30T14:30:00 EST</_compl_date_expected>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 50 of 92

 <_user>oms</_user>
 <_status/>
 <_namespace>DSL_Highspeedline</_namespace>
 <_version>1.1</_version>
 <customer.name>John Doe</customer.name>
 <customer.phone>4165555555</customer.phone>
 </Notification>
 <Notification>
 <_notif_id>4568</_notif_id>
 <_notif_desc>Pots Order Overdue</_notif_desc>
 <_notif_type>poll</_notif_type>
 <_notif_priority>1</_notif_priority>
 <_notif_time>2000-10-30T18:33:22 EST</_notif_time>
 <_order_seq_id>2346</_order_seq_id>
 <_order_hist_seq_id>2333</_order_hist_seq_id>
 <_order_source>order_entry</_order_source>
 <_order_type>pots</_order_type>
 <_reference>AA-B3653F</_reference>
 <_priority>5</_priority>
 <_date_pos_created>2000-10-30T14:30:00 EST</_date_pos_created>
 <_requested_delivery_date>2000-10-30T14:30:00 EST</_requested_delivery_date>
 <_expected_start_date>2000-10-20T14:30:00 EST</_expected_start_date>
 <_expected_duration>P10D</_expected_duration>
 <_compl_date_expected>2000-10-30T14:30:00 EST</_compl_date_expected>
 <_user>oms</_user>
 <_status/>
 <_namespace>DSL_Highspeedline</_namespace>
 <_version>1.1</_version>
 <customer.name>John Doe</customer.name>
 <customer.phone>4165555555</customer.phone>
 </Notification>
 ... more notifications ...
</Notifications.Response>

Error Codes

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

OrderTypesNSources
Orders have an associated source and type that is required prior to creating new orders. The
available order type/source combinations are retrieved by requesting OrderTypesNSources.
The mnemonics for the type/source pairs can be used to retrieve an order template and create
a new order.

Operation

OrderTypesNSources

Parameters

Namespace

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 51 of 92

Version

Request Example

<OrderTypesNSources.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</OrderTypesNSources.Request>

Response Example

<OrderTypesNSources.Response mlns="urn:com:metasolv:oms:xmlapi:1">
 <TypeNSource namespace="DSL_Highspeedline" version="1.1">
 <Type mnemonic="phone_activation" category="Customer Service"
 desc="Phone Activation Order"/>
 <Source mnemonic="source1" desc="from front-end system"/>
 </TypeNSource>
 <TypeNSource namespace="DSL_Highspeedline" version="1.1" >
 <Type mnemonic="phone_transfer category="Customer Service"
 desc="Phone Number Transfer"/>
 <Source mnemonic="source1" desc="from front-end system"/>
 </TypeNSource>
</OrderTypesNSources.Response>

Error Codes

• 150: Namespace/version not found.

• 152: Invalid namespace mnemonic.

• 153: No legacy data found. Namespace and Version need to be supplied.

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request without a version. This forces the system to
use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, this cartridge is used. If this legacy cartridge does not exist, then an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist an error (150)
message is shown.

Scenario 5: If both namespace and version attributes are set to "*", the list of available order
types and sources across all namespaces and versions is returned.

Scenario 6: If a namespace is supplied with version "*", the list of available order types and
sources corresponding to the namespace across all of its existing versions is returned.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 52 of 92

OrderViewTemplate
The OrderViewTemplate request provides the data type descriptions, such as minimum and
maximum instances of lists, data types, and business names for data elements.

The OrderViewTemplate describes the structure of a particular order type. The types of order
templates can be grouped into the following categories:

• Order view creation template: You must provide the mnemonics for a valid order type/
source pair.

• Order view template for a particular task in a process: You must provide the order ID
(_order_seq_id in the worklist) and the order history ID (_order_hist_seq_id in the worklist).

• Order view templates for orders not in a process: You must provide the order view
(query task) template "view ID". You can obtain the list of valid view IDs for an order with a
ListViews Request.

• Order view templates for a task: You must provide the order type/source and task
mnemonic.

Operation

OrderViewTemplate

Parameters

For a creation template:

OrderSource: The order source mnemonic.

OrderType: The order type mnemonic.

For an in-process order:

OrderID: The sequence ID of an order (Orderdata/_order_seq_id from worklist).

OrderHistID: The history sequence ID of an order (Orderdata/_order_hist_seq_id from the
worklist).

Namespace: The namespace mnemonic of order type/source.

Version: The version mnemonic of order type/source.

For an order not in a process:

OrderSource: The order source mnemonic.

OrderType: The order type mnemonic.

View: A view (query task) valid for a particular order type and source.

Namespace: The namespace mnemonic of order type/source.

Version: The version mnemonic of order type/source.

For a task order view template:

OrderSource: The order source mnemonic.

OrderType: The order type mnemonic.

Task: The task mnemonic.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 53 of 92

Namespace: The namespace mnemonic of order type/source.

Version: The version mnemonic of order type/source.

Request Example

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderSource>source1</OrderSource>
 <OrderType>phone_transfer</OrderType>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</OrderViewTemplate.Request>

Response Example

<OrderViewTemplate.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
<OrderType>phone_transfer</OrderType>
 <OrderSource>source1</OrderSource>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
 <_root>
 <client_info
 readOnly="false"
 desc="Client Information"
 minInstance="1"
 maxInstance="1">
 <name
 readOnly="false"
 desc="Name"
 minInstance="1"
 maxInstance="1"
 type="TX"
 len="30"/>
 <address
 readOnly="false"
 desc="Address"
 minInstance="1"
 maxInstance="2">
 <street1
 readOnly="false"
 desc="Street 1"
 minInstance="1"
 maxInstance="1"
 type="TX"
 length="50" />
 <street2
 readOnly="false"
 desc="Street 2"
 minInstance="0"
 maxInstance="1"
 type="TX"
 length="50" />
 <city
 readOnly="false"
 desc="City"
 minInstance="0"
 maxInstance="1"
 type="TX"
 length="25" />
 <state
 readOnly="false"
 desc="State"
 minInstance="1"

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 54 of 92

 maxInstance="1"
 type="LK" />
 </address>
 </client_info>
 </_root>
 <LookupTables>
 <state>
 <option desc="New York">NY</option>
 <option desc="California">CA</option>
 <option desc="New Jersey">NJ</option>
 ... etc ...
 </state>
 </LookupTables>
</OrderViewTemplate.Response>

The response includes the OrderViewTemplate beginning with a _root element. Each child is
named with the mnemonic of that data element, along with the following attributes:

Desc: The business name of the element.

MinInstance: The minimum number of instances allowed (0-n). A field with minInstance > 0 is
a mandatory field if the parent is defined in the order.

MaxInstance: The maximum number of instances allowed (1-n).

Mask: The mask associated with an element of type NM or TX.

ReadOnly: A true/false attribute indicating that the field cannot be modified.

Type: The data type of the element. The data type values are:

• NM: Numeric type

• TX: Text type

• D: Date type in the form: yyyy-mm-dd (for example, 2000-03-10)

• DT: Date/time type in the form: yyyy-mm-ddThh:mm:ss time zone (for example,
2000-03-10T14:43:00 EST)

• PH: Phone number type

• YN: Boolean type (Yes/No)

• CY: Currency type

• LK: Lookup type

Length: The maximum length of the element if the type is NM or TX.

The values for the lookup elements in the view template are rooted at the LookupTables
element. The name of a lookup element matches the data elements of type LK in the order
template.

Error Codes

• 150: Namespace/version not found.

• 152: Invalid namespace mnemonic.

• 153: No legacy data found. Namespace and Version need to be supplied.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 55 of 92

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This forces the system to
use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, this cartridge is used. If this legacy cartridge does not exist, then an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, then an error (150)
message is shown.

For an In-Process Order

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>12333</OrderHistID>
</OrderViewTemplate.Request>

For an Order Not In a Process

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderSource>source1</OrderSource>
 <OrderType>phone_transfer</OrderType>
 <ViewID>1123</ViewID>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</OrderViewTemplate.Request>

or

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderSource>source1</OrderSource>
 <OrderType>phone_transfer</OrderType>
 <View>phone_transfer</View>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</OrderViewTemplate.Request>

For a Task Order View Template

<OrderViewTemplate.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderSource>source1</OrderSource>
 <OrderType>phone_transfer</OrderType>
 <Task>phone_transfer</Task>
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</OrderViewTemplate.Request>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 56 of 92

Query
Queries the order header information and data elements of orders for inclusion in the
Query.Response.

Operation

Query

Parameters

OrderID: An integer value with wildcards for the order sequence ID.

Reference: A string with wildcards for the reference number.

OrderType: An order type mnemonic.

OrderSource: An order source mnemonic.

Task: The task mnemonic.

CreatedDate: The date the order was created. Two attributes, "from" and "to", indicate the
beginning and ending date or date/time for the query.

RequestedDeliveryDate: The date requested by the client for the order to be completed.

ExpectedStartDate: The date that OSM will begin processing an order.

ExpectedDuration: The amount of time the order is expected to take to complete processing.

ExpectedCompletionDate: The date that OSM expects the order to complete.

CompletedDate: The date the order was completed.

User: A user ID.

State: A task state mnemonic. The valid mnemonics are:

• Received

• Assigned

• Accepted

• Completed

• Any user-defined state mnemonics

Status: A task status mnemonic. The valid status mnemonics are those statuses defined in the
OSM Administrator.

Priority: An integer indicating the priority level of the order.

OrderState: An order state mnemonic. The valid mnemonics are:

• open.not_running.not_started

• open.not_running.suspended

• open.not_running.waiting_for_revision

• open.not_running.cancelled

• open.running.in_progress

• open.running.compensating.amending

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 57 of 92

• open.running.compensating.cancelling

• closed.completed

• closed.aborted

• open.not_running.failed

TargetOrderState: Same mnemonics as OrderState.

ExecutionMode: An execution mode mnemonic. The valid mnemonics are:

• Do

• Redo

• Undo

FlexibleHeaders: A list of flexible headers available to the user. Can contain zero or more
FlexibleHeader elements with the mnemonic paths of flexible headers to include in the output.
If FlexibleHeaders is omitted, no flexible headers are returned.

SingleRow: This element forces OSM to display only a single row if a query returns more than
one match per order.

OrderBy: The OrderBy element contains a list of fields on which to order the results. The order
of the Field elements is significant: the results are ordered based on the first element, then the
second element, and so on.

The order attribute must be either descending or ascending, otherwise an error results. The
path attribute must belong to the element name of one of the fixed headers or one of the
request's selected flexible headers. If the mnemonic path does not resolve to a valid field to
sort by, error code 170: Header for mnemonic path not found is returned.

When sorting on fixed header elements, the sorted value for elements that are represented by
an ID (that is, state) will be sorted based on the internal ID's value, not that of the final output.

For querying order data values, a 'Field' element is provided with the following format. If
querying for equality:

<Field path="/client_info/address/city" namespace="DSL_Highspeedline"
version="1.1">Toronto</Field>

If querying for a range of values:

<Field path="/client_info/address/city" namespace="DSL_Highspeedline"
 version="1.1">
 <From>A*</From>
 <To>D*</To>
</Field>

The "path" attribute of the field is a sequence of data element mnemonics, separated by a
slash, "/", indicating the mnemonic path of the data field to be matched against. Only the data
elements that are assigned as flexible headers for the user ID can be queried in a Field
element.

All of the elements have the following attributes:

namespace: The namespace mnemonic of order type/source. If you do not specify a
namespace or specify *, all available namespaces are picked up.

version: The version of the order type or source. If you do not specify a version or specify *, all
available versions are picked up.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 58 of 92

You can use wildcard characters with the Order ID, Reference and Field elements whose path
attribute resolves to a OSM text field (TX data type). Valid wildcard characters are:

• "*" indicates any number of characters

• "?" indicates a single character

If an additional element, SingleRow, is "true", an order is listed only once. If SingleRow is
"false", the order is listed once for each data element it matches in the query request.

The Query request performs a logical "AND" of all provided parameters.

Request Example

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>123*</OrderID>
 <FlexibleHeaders>
 <FlexibleHeader namespace="DSL_Highspeedline" version="1.1"
 path="customer/name"/>
 <FlexibleHeader namespace="DSL_Highspeedline" version="1.1"
 path="customer/phone"/>
 <FlexibleHeader>customer/address</FlexibleHeader>
 <FlexibleHeader>customer/name</FlexibleHeader>
 </FlexibleHeaders>
</Query.Request>

or

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <FlexibleHeaders>
 <FlexibleHeader namespace="view_framework_demo" version="1.0.0.0.0"path="/
account_information/amount_owing"/>
 </FlexibleHeaders>
 <Field namespace="view_framework_demo" version="1.0.0.0.0" path="/account_information/
amount_owing">444</Field>
</Query.Request>

or

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>123*</OrderID>
 <Field path="/client_info/address/city" namespace="DSL_Highspeedline"
 version="1.1">Toronto</Field>
</Query.Request>

or

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>123*</OrderID>
 <OrderBy>
 <Field order="descending" namespace="DSL_Highspeedline" version="1.1">
 customer/phone </Field>
 </OrderBy>
</Query.Request>

or

<Query.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderState>open.not_running.not_started</OrderState>
</Query.Request>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 59 of 92

Response Example

<Query.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Header>
 <_order_seq_id desc="Order ID"/>
 <_order_hist_seq_id desc="Order History ID"/>
 <_order_state desc="Task State"/>
 <_execution_mode desc="Execution Mode"/>
 <_task_id desc="Task Name"/>
 <_order_source desc="Source"/>
 <_order_type desc="Order Type"/>
 <_current_order_state desc="Order State"/>
 <_target_order_state desc="Target Order State"/>
 <_reference_number desc="Ref. #"/>
 <_priority desc="Priority"/>
 <_date_pos_created desc="Order Creation Date"/>
 <_requested_delivery_date desc="Requested Delivery Date"/>
 <_expected_start_date desc="Expected Start Date"/>
 <_expected_duration desc="Expected Duration"/>
 <_user desc="User"/>
 <_process_status desc="Process Status"/>
 <_date_pos_started desc="Started"/>
 <_compl_date_expected desc="Expected Order Completion Date"/>
 <_ord_completion_date desc="Completed Date"/>
 <_grace_period_completion_date desc="Expected Grace Period Completion"/>
 <_num_remarks desc="Number of Remarks"/>
 <_namespace desc="Namespace"/>
 <_version desc="Version"/>
 <_workgroups desc="Workgroups">
 <_workgroup/>
 </_workgroups>
 </Header>
 <Orderdata>
 <_order_seq_id>40</_order_seq_id>
 <_order_hist_seq_id>502</_order_hist_seq_id>
 <_order_state>received</_order_state>
 <_execution_mode>do</_execution_mode>
 <_task_id>CollectionsFunction_CollectionsSI</_task_id>
 <_order_source>OsmCentralOMExampleOrder</_order_source>
 <_order_type>OsmCentralOMExampleOrder</_order_type>
 <_current_order_state>open.not_running.waiting</_current_order_state>
 <_target_order_state/>
 <_reference_number>[do:1]$ref1436191716838</_reference_number>
 <_priority>5</_priority>
 <_date_pos_created>2015-07-06T07:08:36 PDT</_date_pos_created>
 <_requested_delivery_date>2015-08-05T10:08:36 PDT</_requested_delivery_date>
 <_expected_start_date>2015-07-09T10:08:36 PDT</_expected_start_date>
 <_expected_duration>P26D</_expected_duration>
 <_user/>
 <_process_status>n/a</_process_status>
 <_date_pos_started>2015-07-06T07:08:38 PDT</_date_pos_started>
 <_compl_date_expected>2015-08-04T10:08:36 PDT</_compl_date_expected>
 <_ord_completion_date/>
 <_grace_period_completion_date/>
 <_num_remarks>0</_num_remarks>
 <_namespace>OsmCentralOMExample-Solution</_namespace>
 <_version>4.0.0.0.0</_version>
 <_workgroups>
 <_workgroup/>
 </_workgroups>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 60 of 92

 </Orderdata>
</Query.Response>

The query response uses a similar format as the XMLAPI Worklist message. It consists of a
header element that contains descriptive elements for all columns returned. The columns
consist of a number of fixed header elements (prefixed with _), followed by any flexible
headers defined for the user in the OSM Administrator. Zero or more Orderdata elements
follow the Header element with each one corresponding to the data for a particular order
matched by the query criteria. If the request has "SingleRow" set to "false", an order appears
once for each data element that was matched. If set to "true", it appears only once.

To retrieve an order matched in the query, the GetOrder.Request supports a parameter,
"ViewID", which retrieves an order based on a particular view (query task). You can obtain a list
of valid ViewIDs for an order source/type with ListViews.Request.

Error Codes

• 170: Header for mnemonic path not found

• 302: Request parameter error

• 400: Not authorized

• 401: Database connection failed

• 500: Internal Error

• 601: Deprecated parameter

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

ReceiveOrder
Moves an order to the Received state.

Operation

ReceiveOrder

Parameters

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

Request Example

<ReceiveOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>222334</OrderHistID>
</ReceiveOrder.Request>

Response Example

<ReceiveOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 61 of 92

 <OrderHistID>33123</OrderHistID>
</ReceiveOrder.Response>

The ReceiveOrder response includes the new order history ID for the task.

Error Codes

• 110: Order not found

• 251: Transition invalid

• 270: Transaction not allowed

• 302: Request parameter error

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

ResolveFailure
Resolves failures from a particular task causing the task to transition from a failed execution
mode to a corresponding normal execution mode. The task reverts to the state it had been in
before the failure occurred. This request requires an Order ID and Order History ID.

Operation

ResolveFailure

Parameters

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

Reason: The reason for the failure resolution. This parameter is optional.

Request Example

<ResolveFailure.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>18</OrderID>
 <OrderHistID>342</OrderHistID>
</ResolveFailure.Request>

Response Example

<ResolveFailure.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>18</OrderID>
 <OrderHistID>342</OrderHistID>
</ResolveFailure.Response>

Error Codes

• 110: Order not found

• 270: Transaction not allowed

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 62 of 92

• 302: Request parameter error

• 400: Not authorized

• 401: Database connection failed

• 500: Internal ErrorSuspendOrder

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

ResumeOrder
Releases a suspended order back into the system and returns it to the state from which it was
suspended. Can also be used to resubmit a canceled order back into the system.

Operation

ResumeOrder

Parameters

OrderID: The ID of the order to resume.

Reason: The reason why the order is being resumed. Optional.

Request Example

<ResumeOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Reason>Customer requests resumption of order</Reason>
</ResumeOrder.Request>

Response Example

<ResumeOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
</ResumeOrder.Response>

Error Codes

• 110: Order not found

• 251: Transition invalid

• 270: Transaction not allowed

• 302: Request parameter error

• 401: Database Connection Failed

• 500: Internal error

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 63 of 92

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

RetryTask
Retries a failed task causing the task to transition from a failed execution mode to a
corresponding normal execution mode. The task reverts to the received state. This request
requires an Order ID and Order History ID.

Operation

RetryTask

Parameters

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

Reason: The reason retrying the task. This parameter is optional.

Request Example

<RetryTask.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>18</OrderID>
 <OrderHistID>342</OrderHistID>
</RetryTask.Request>

Response Example

<RetryTask.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>18</OrderID>
 <OrderHistID>342</OrderHistID>
</RetryTask.Response>

Error Codes

• 110: Order not found

• 270: Transaction not allowed

• 302: Request parameter error

• 400: Not authorized

• 401: Database connection failed

• 500: Internal ErrorSuspendOrder

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 64 of 92

SetException
Sets the exception status for a given order. This request requires an Order ID, Order History
ID, and Status mnemonic.

Operation

SetException

Parameters

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

Status: The status mnemonic.

Request Example

<SetException.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>3422</OrderID>
 <OrderHistID>4333</OrderHistID>
 <Status>complete</Status>
</SetException.Request>

Response Example

<SetException.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>3422</OrderID>
 <OrderHistID>4334</OrderHistID>
</SetException.Response>

The SetException response includes the new order history ID if the exception goes to a new
task.

Error Codes

• 110: Order not found

• 256: Invalid exception status mnemonic

• 270: Transaction not allowed

• 302: Request parameter error

• 400: Not authorized

• 401: Database Connection Failed

• 419: The process exception is restricted

• 500: Internal ErrorSuspendOrder

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 65 of 92

SuspendOrder
Suspends an order, or a task, depending on the parameters supplied in the request.

Operation

SuspendOrder

Parameters

For an order:

OrderID: The ID of the order to suspend.

And one of the following:

Immediate: Force immediate suspension of all tasks associated with the order.

GracePeriodExpiryDate: A period of time to allow tasks in the Accepted state time to
complete.

Infinite: Wait indefinitely until all tasks in the Accepted state complete.

Optional parameters

EventInterval: If the suspension is not immediate, you can set an interval for sending a
jeopardy notification.

Reason: The reason why the order is being suspended.

For a task:

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

State: The user-defined state mnemonic.

Request Example 1: Order

<SuspendOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Immediate/>
 <Reason>Customer requested hold on order</Reason>
</SuspendOrder.Request>

or

<SuspendOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <GracePeriodExpiryDate>2006-10-10T11:10:10 EST</GracePeriodExpiryDate>
 <EventInterval>PT10S</EventInterval>
 <Reason>Customer requested hold on order</Reason>
</SuspendOrder.Request>

or

<SuspendOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <Infinite/>
 <Reason>Customer requested hold on order</Reason>
</SuspendOrder.Request>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 66 of 92

Request Example 2: Task

<SuspendOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>22334</OrderHistID>
 <State>waiting_on_provisioning</State>
</SuspendOrder.Request>

Response Example 1: Order

<SuspendOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
</SuspendOrder.Response>

Response Example 2: Task

<SuspendOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>1234</OrderID>
 <OrderHistID>33247</OrderHistID>
</SuspendOrder.Response>

The SuspendOrder response includes the new order history ID for the task.

Error Codes

• 110: Order not found

• 251: Transition invalid

• 254: State mnemonic invalid

• 270: Order could not be suspended

• 302: Request parameter error

• 401: Database Connection Failed

• 500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

TaskDescription
The TaskDescription operation retrieves the list of all available tasks.

Operation

TaskDescription

Parameters

Namespace: The namespace mnemonic of the order type/source (optional).

Version: The version of the order type or source (optional).

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 67 of 92

Request Example 1

<TaskDescription.Request xmlns="urn:com:metasolv:oms:xmlapi:1" />

Request Example 2

<TaskDescription.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Namespace>DSL_Highspeedline</Namespace>
 <Version>1.1</Version>
</TaskDescription.Request>

Response Example

<TaskDescription.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Task mnemonic="activate_switch" TaskType="automatic" desc="Activate switch">
 <Task mnemonic="provision_number" TaskType="manual"
 desc="Provision Customer Number">
</TaskDescription.Response>

Error Codes

• 400: Not authorized

• 401: Database Connection Failed

• 500: Internal errorWorklist

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

The worklist data retrieved by the Client user ID is defined by the OSM Administrator. The
Worklist is implicitly defined by the privileges of each workgroup to which the Client ID is
assigned.

The worklist response consists of fixed header elements followed by the flexible headers as
defined in the OSM Administrator.

UpdateOrder
An order update consists of an operation UpdateOrder, with the order ID and order history ID
to identify the order. The request defines different ways to update the order such as
UpdatedOrder, UpdatedNodes, Add, and Delete.

Operation

UpdateOrder

Parameters

This API defines the following parameter:

OrderID: The ID of the order to change.

OrderHistID: The order history ID.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 68 of 92

ViewID: The id of the view (query task) that is used for the order update. This is a workgroup
view that must be associated with one or more workgroups the requesting user is a member of
for the definition of the order.

View: The name of the task (view) that is used for the order update. You must associate the
task you want to update to a role (workgroup) in the Design Studio Order editor Permissions
Query Task sub tab and set the task as the Default query task. You can associate only one role
per task in the Order editor. The user submitting the UpdateOrder must be a member of this
role.

ResponseView: An optional parameter that defines the name of the task (view) that specifies
what parameters are returned in UpdateOrder responses. If the UpdateOrder request results in
a fulfillment state update, the response auto-filters nodes to only include the effected
OrderItems and OrderComponents instances.

OrderDataFilter: Parent element for the Condition child element that specifies which order
data to return in the OrderUpdate.response specified in the ResponseView parameter.

• Condition: An XPath 1.0 expression against the order data defined by the ResponseView.
OSM returns only the instances of the order data selected by the expression, not the other
instances of the element. All other parent or sibling elements are returned.

For example, in a situation where a customer has multiple <address> instances (where
<address> is a multi-instance element), the following expression ensures that OSM returns
only the <address> element that contains a child street element with the specified street
address. The response includes all child nodes of the instance of the <address> element
(city, postal code, and street). The other instances of the <address> element and their child
elements (city, street, and postal code) are not returned.

<OrderDataFilter>
 <Condition>/subscriber_info/address/[street='190 Drive']</Condition>
</OrderDataFilter>

For example, any sibling elements of <subscriber_info>, or sibling elements of <address>
(except for the other instances of the <address> element) would be returned.

When you are using an order condition that includes an element that is using a distributed
order template, you should include the namespace of the data element in the condition.
For example:

<OrderDataFilter>
 <Condition>
 /ControlData/OrderItem[@type='{OrderItemNamespace}OrderItemName' and
@LineId='1']
 </Condition>
</OrderDataFilter>

NewReference: An optional new reference number for the order.

AddMandatory: This parameter is true if the mandatory fields defined in the order view (task)
should be added into the order by this order update, otherwise this parameter should be false.

Priority: The priority that the order is set to by this order update.

A choice of:

• UpdatedOrder: Allows the user to update the order by supplying a complete order. The
existing order is then updated (elements added, changed or deleted as necessary) to
match the supplied order.

• UpdatedNodes: Allows the user to update the order by supplying only the nodes that
should be added or updated. The nodes are supplied in the format of the existing order:
The structure of the nodes (parents and children) must match the view (task) specification

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 69 of 92

for the view being used. No deletes are performed using this approach. You can only use
key definitions to match multi-instance nodes. Index attributes are ignored.

• Add: Allows the user to update the order by adding new data in the form of a node to be
added. The path attribute identifies the parent node under which to add the element.

• Delete: Allows the user to update the order by deleting existing data in the form of a node
to be deleted. The path attribute identifies the node to delete.

• Update: Allows the user to update the order by updating existing data in the form of a node
to be updated. The path attribute identifies the node to update.

AddRemark: A remark can be added to the order using an AddRemark parameter. The
AddRemark element has the following elements:

• Text: The text for the new remark.

• Attachments: The parent element for FileName elements. The Attachments element can
also have one of the following elements:

• FileName: The name of the file for a new attachment. If both the Text and Attachments
elements are empty, a remark is not created.

ExternalFulfillmentStates: Allows you to set external fulfillment states instead of using an
Add or Update statement on an UpdateOrder. This optional approach improves order
processing efficiency, especially in large orders. The ExternalFulfillmentStates element has
the following child elements:

• OrderItemOrderComponentFulfillmentState: The parent element to the children
elements that specify the new external fulfillment state of an order component and order
item.

– ExternalFulfillmentState: The new external fulfillment state.

– OrderComponentIndex: The order component index. Every order component element
must specify a unique index attribute. In most cases, the automation running the XML
API OrderUpdate already knows which order component the update is for.

– OrderItemIndex: The order item index. Every order item element must specify a
unique index attribute. In most cases, the automation running the XML API
OrderUpdate already knows which order component the update is for.

Note

If you update an order either to add a node (which includes providing a value to a
node that did not previously have one) or to delete a node (which includes setting the
value of a node to null), the OSM order transformation manager will not propagate the
change in either the forward or reverse direction. For more information about data
propagation, see the discussion of mapping rules in the Design Studio Modeling OSM
Orchestration Help.

Request Example

<UpdateOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>702</OrderID>
 <View>Update Order View</View>
 <NewReference/>
 <Add path="/client_info">
 <address>
 <street1>55 James St.</street1>
 <city>Washington</city>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 70 of 92

 <state>DC</state>
 <country>USA</country>
 <zip>45432</zip>
 </address>
 </Add>
 <Delete path="/client_info/address[@index='80132']" />
 <AddRemark>
 <Text>This is the text for the remark</Text>
 <Attachments>
 <FileName>provisioninfo.txt</FileName>
 <FileName>diagram.bmp</FileName>
 </Attachments>
 </AddRemark>
 <ExternalFulfillmentStates>
 <OrderItemOrderComponentFulfillmentState>
 <ExternalFulfillmentState>COMPLETED</ExternalFulfillmentState>
 <OrderComponentIndex>123</OrderComponentIndex>
 <OrderItemIndex>456</OrderItemIndex>
 </OrderItemOrderComponentFulfillmentState>
 </ExternalFulfillmentStates>
</UpdateOrder.Request>

If a remark is added to an order, remark information is returned in the UpdateOrder response.
The response has a Remark element with the following child elements:

• RemarkID: The unique ID for the remark, assigned by OSM.

• Attachment: Zero or more Attachment elements for each attachment. An Attachment
element has the following child elements:

– AttachmentID: The unique ID for the attachment, assigned by OSM. When adding the
attachment with the WebLogic file (T3) service, use the file name AttachmentID.srv,
where AttachmentID is the value of the AttachmentID element on the response.

– FileName: The name of the file specified for the attachment.

Response Example

<UpdateOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>702</OrderID>
 <View>Update Order View</View>
 <Remark>
 <RemarkID>3224</RemarkID>
 <Attachment>
 <AttachmentID>10333</AttachmentID>
 <FileName>provisioninfo.txt</FileName>
 </Attachment>
 <Attachment>
 <AttachmentID>10334</AttachmentID>
 <FileName>diagram.bmp</FileName>
 </Attachment>
 </Remark>
</UpdateOrder.Response>

Request Example with ResponseView and OrderDataFilter

<UpdateOrder.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>15778</OrderID>
 <View>OsmCentralOMExampleQueryTask</View>
 <ResponseView>OsmCentralOMExampleQueryTask</ResponseView>
 <OrderDataFilter>
 <Condition>/CustomerDetails/typeCompl[@index='15']</Condition>
 <OrderDataFilter>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 71 of 92

 <UpdatedNodes>
 <_root>
 <CustomerDetails>
 <typeCompl>floor</typeCompl>
 </CustomerDetails>
 </_root>
 </UpdatedNodes>
 <ExternalFulfillmentStates>
 <OrderItemOrderComponentFulfillmentState>
 <ExternalFulfillmentState>ExtFulfState1</ExternalFulfillmentState>
 <ExternalFulfillmentStateDescription>
 </ExternalFulfillmentStateDescription>
 <OrderComponentIndex>132490</OrderComponentIndex>
 <OrderItemIndex>1434565</OrderItemIndex>
 </OrderItemOrderComponentFulfillmentState>
 </ExternalFulfillmentStates>
</UpdateOrder.Request>

Response Example with ResponseView and OrderDataFilter

<UpdateOrder.Response xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderID>15778</OrderID>
 <View>Update Order View</View>
 <Data>
 <_root index="0">
 <CustomerDetails index="11">
 <typeCompl index="15">floor</typeCompl>
 </CustomerDetails>
 </_root>
 </Data>
</UpdateOrder.Response>

Error Codes

110: Order not found

200: Order data invalid

230: Order not accepted by user

232: Order update failed

270: Transaction not allowed

302: Request parameter error

400: Not authorized

401: Database Connection Failed

420: Not authorized to modify order priority

500: Internal error

Note

See Table 3-3 for more information if you receive an error code that is not listed here.

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 72 of 92

Scenarios

Scenario 1: Namespace is supplied in the request, but no version. This condition forces the
system to use the default version for the supplied namespace.

Scenario 2: Version is supplied in the request, but no namespace. This generates an error
(152) message.

Scenario 3: The first cartridge is reserved for the migrated data. If namespace and version are
not supplied, then this cartridge is used. If this legacy cartridge does not exist, an error (153)
message is shown.

Scenario 4: If the combination of namespace and version does not exist, an error (150)
message is shown.

Worklist
Returns order data from the worklist.

Operation

Worklist

Parameters

FlexibleHeaders: A list of flexible headers available to the user. It can contain zero or more
flexibleheader elements with the mnemonic paths of flexible headers to include in the output. If
FlexibleHeaders is omitted, all available flexible headers are returned.

FlexibleHeader: This parameter is a sub-parameter of FlexibleHeaders and has the following
attributes:

• namespace (mandatory if you use the FlexibleHeader element of Worklist.Request)

• version (optional)

OrderBy: The OrderBy element contains a list of fields on which to order the results. The
order of the Field elements is significant: the results are ordered based on the first element,
then the second element, and so on.

The order attribute must be either descending or ascending, otherwise an error results. The
path attribute must belong to the element name of one of the fixed headers or one of the
request's selected flexible headers. If the mnemonic path does not resolve to a valid field to
sort by, error code 170: Header for mnemonic path not found is returned.

When sorting on fixed header elements, the sorted value for elements that are represented by
an ID (that is, state) will be sorted based on the internal ID's value, not that of the final output.

Field: A value on the order, either Fixed or Flexible. This element takes the following
mandatory attribute:

• Order (you must specify either ascending or descending as the argument.)

FilterStates: A list of the states on which the Task web client filters the Worklist. For example,
if FilterStates only contains accepted, then the Worklist displays only those tasks that are in
the Accepted state.

OrderState: A state for the order. This element can have multiple instances and the values
indicate which states an order must be in to be returned. Acceptable values are: "Amending",

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 73 of 92

"Cancelled", "Cancelling", "Completed", "In Progress", "No state", "Not Started", "Suspended",
and any user-defined state states.

State: A state for the task. This element can have multiple instances and the values indicate
which states a task must be in to be returned. Acceptable values are:

• Assigned: The task is in the Assigned state and is assigned to the current user's ID.

• Received: The task is in the Received state.

• Accepted: The task is in the Accepted state for the current user's ID.

• Suspended: The task is in the Suspended state.

Namespace: The namespace mnemonic of order type/source.

Version: The version mnemonic of order type/source.

UsePreferences: The element uses user-preferences from the Task web client to determine
how to filter and sort the Worklist.

Request Example

<Worklist.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <FlexibleHeaders>
 <FlexibleHeader namespace="OrderAmendment" version="1.0"
 path="customer/phone"/>
 <FlexibleHeader namespace="OrderAmendment" version="1.0"
 path="customer/name"/>
 </FlexibleHeaders>
</Worklist.Request>

or

<Worklist.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <OrderBy>
 <Field order="ascending" path="masks_group/m_numeric_999"/>
 </OrderBy>
</Worklist.Request>

or

<Worklist.Request xmlns="urn:com:metasolv:oms:xmlapi:1">
 <Namespace>sp_nead</Namespace>
 <Version>2.1.2</Version>
 <OrderBy>
 <Field order="descending">_order_seq_id</Field>
 </OrderBy>
</Worklist.Request>

Response Example

<Worklist.Response xmlns="urn:metasolv-com:oms:xmlapi_1">
 <Header>
 <_order_seq_id desc="Order ID" />
 <_order_hist_seq_id desc="Order History ID" />
 <_order_state desc="State" />
 <_execution_mode desc="Execution Mode" />
 <_task_id desc="Task" />
 <_order_source desc="Source" />
 <_order_type desc="Type" />
 <_current_order_state desc="Order State" />
 <_target_order_state desc="Target Order State" />
 <_reference_number desc="Ref. #" />

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 74 of 92

 <_priority desc="Priority" />
 <_user desc="User" />
 <_process_status desc="Process Status" />
 <_date_pos_started desc="Started" />
 <_requested_delivery_date desc="Requested Order Delivery Date"/>
 <_expected_start_date desc="Expected Order Start Date"/>
 <_expected_duration desc="Expected Order Duration"/>
 <_compl_date_expected desc="Expected Order Completion Date" />
 <_num_remarks desc="Number of Remarks" />
 <_namespace desc="Namespace" />
 <_version desc="Version" />
 <customer_phone desc="Customer Phone Number" />
 <customer_name desc="Customer Name" />
 </Header>
 <Orderdata>
 <_order_seq_id>390</_order_seq_id>
 <_order_hist_seq_id>7822</_order_hist_seq_id>
 <_order_state>received</_order_state>
 <_execution_mode>do</_execution_mode>
 <_task_id>assign_port</_task_id>
 <_order_source>order_entry</_order_source>
 <_order_type>pots</_order_type>
 <_current_order_state>open.not_running.not_started
 </_current_order_state>
 <_target_order_state />
 <_reference_number>SEP-27-0-1</_reference_number>
 <_priority>5</_priority>
 <_user>oms</_user>
 <_process_status/>
 <_date_pos_started>2001-10-29T10:30:24 EST</_date_pos_started>
 <_requested_delivery_date>2001-10-29T10:30:14 EST</_requested_delivery_date>
 <_expected_start_date>2001-10-19T10:30:14 EST</_expected_start_date>
 <_expected_duration>P10D</_expected_duration>
 <_compl_date_expected>2001-10-29T10:30:16 EST</_compl_date_expected>
 <_num_remarks>0</_num_remarks>
 <_namespace>OrderAmendment</_namespace>
 <_version>1.0</_version>
 <customer_phone>4165551212</customer_phone>
 <customer_name>John Doe</customer_name>
 </Orderdata>
 <Orderdata>
 <_order_seq_id>391</_order_seq_id>
 <_order_hist_seq_id>7718</_order_hist_seq_id>
 <_order_state>accepted</_order_state>
 <_execution_mode>do</_execution_mode>
 <_task_id>assign_port</_task_id>
 <_order_source>order_entry</_order_source>
 <_order_type>pots</_order_type>
 <_current_order_state>open.running.in_progress</_current_order_state>
 <_target_order_state />
 <_reference_number>SEP-27-0-2</_reference_number>
 <_priority>5</_priority>
 <_user>oms</_user>
 <_process_status/>
 <_date_pos_created>2001-10-29T10:31:16 EST</_date_pos_created>
 <_requested_delivery_date>2001-10-29T10:30:14 EST</_requested_delivery_date>
 <_expected_start_date>2001-10-19T10:30:14 EST</_expected_start_date>
 <_expected_duration>P10D</_expected_duration>
 <_compl_date_expected>2001-10-29T10:30:14 EST</_compl_date_expected>
 <_num_remarks>0</_num_remarks>
 <_namespace>OrderAmendment</_namespace>
 <_version>1.0</_version>

Chapter 3
XML API Functionality

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 75 of 92

 <customer_phone>4165552121</customer_phone>
 <customer_name>Frank Smith</customer_name>
 </Orderdata>
</Worklist.Response>

Error Codes

• 170: Header for mnemonic path not found

• 400: Not authorized

• 401: Database connection failed

• 500: Internal error

• 601: Deprecated parameter

Note

See Table 3-3 for more information if you receive an error code that is not listed
here.

Warning and Error Code Descriptions
Any request can produce warnings as a side effect of accessing the OSM database. The
warning element supplies the code and message of any non-fatal warnings that occurred while
processing a request. Any changes to the data by the request are still committed. For more
information on the cause of the warning codes, consult your Oracle DBA.

Error Codes represent request errors in the XML API that prevent further processing of a
request. If an error is returned by a request, data changes are not sent to the database.

Table 3-3 lists the error codes and their descriptions.

Table 3-3 Error Code Descriptions

Error Code Description

100: Order type/source not
found

The order type/source does not exist, or is not available to the user.

110: Order not found The order does not exist, or is not available to the user.

120: Order template not found The order template does not exist, or is not available to the user.

160: Remark not found The remark could not be found.

150: Namespace/version not
found.

The namespace or version does not exist or is not available to the user.

152: Invalid namespace
mnemonic.

The order cannot be completed with the given namespace mnemonic.

153: No legacy data found.
Namespace and Version need
to be supplied.

Because the legacy data could not be found you must specify a valid
Namespace and Version.

170: Header for mnemonic
path not found

The header for a given mnemonic path does not exist, or is not
available to the user.

190: Notification not found If the notification ID does not exist, is no longer active, or is not
assigned to the user ID or user ID's workgroup.

Chapter 3
Warning and Error Code Descriptions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 76 of 92

Table 3-3 (Cont.) Error Code Descriptions

Error Code Description

200: Order data invalid The format of the order data is not correct. The message details the
error location.

For example, a message detail, such as:
"com.mslv.oms.handler.OrderDataInvalidException: Could not convert
input value: value_for_x for field data_field_x", may indicate that
value_for_x exceeds the field's acceptable length set in OSM
Administrator.

230: Order not accepted by
user

An attempt to update an order was made without first retrieving the
order with an Accept parameter of "true".

232: Order update failed The order could not be updated due to a data format error. The
message details the reason for failure.

250: Mandatory check failed A mandatory field was not given a value when attempting to create,
assign, complete, or suspend an order.

251: Transition invalid The order cannot be transitioned to that state. Use
ListStatesNStatuses.Request to get a list of valid states.

252: Unable to accept order When retrieving an order for update, the order cannot be accepted by
the current user.

253: User not found The order cannot be assigned to the given user ID.

254: Invalid state mnemonic The order cannot be suspended with the given state mnemonic.

Note: Only user-defined states are valid. To complete or assign an
order, you must use the appropriate request.

255: Invalid status mnemonic The order cannot be completed with the given status mnemonic.

256: Invalid exception status
mnemonic

You used an invalid exception status mnemonic when raising the
process exception.

257: Invalid Task Mnemonic The supplied task mnemonic could not be found.

260: Remark cannot be
modified

The time interval in which a created remark can be modified has
elapsed, or the user trying to change the remark is not the user who
created the remark. The remark can no longer be modified.

270: Transaction not allowed The requested transaction is not allowed. This error is returned in
situations where the transaction has been disabled, or the user or
workgroup is not authorized to perform the transaction. It can also be
returned when attempting to suspend/resume an order that is already
suspended/resumed.

300: Request unknown The request type could not be identified from the root element of the
XML document of the message.

302: Request parameter error A parameter for the request is missing or invalid. The message details
the parameter in question.

350: Pivot node data is not
provided

The order cannot proceed because no pivot node is indicated.

351: Process position supplied
is not a sub process task.

The indicated process position is not a sub process task. To add a sub
process thread, the order must reside in one of the sub processes.

352: No sub process task is
currently pending.

There are no sub-process tasks to which you can add a thread.

354: Process position not
found.

The indicated process position does not exist or is inaccessible by the
order.

355: Pivot node not found. The indicated pivot node does not exist or is inaccessible by the order.

Chapter 3
Warning and Error Code Descriptions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 77 of 92

Table 3-3 (Cont.) Error Code Descriptions

Error Code Description

356: Cannot spawn threads for
sub-process tasks that support
sequential sub-processing.

You cannot add a sub-process thread to a sub-process that supports
sequential sub-process.

400: Not authorized The user is not authorized to make the request.

401: Database Connection
Failed.

The XML API cannot connect to OSM.

419: The process exception is
restricted.

A process exception cannot be raised, because it is restricted.

420: Not authorized to modify
order priority.

The user does not have the necessary privilege to modify order priority.

500: Internal error. An internal application error has occurred. The message details further
information.

601: Deprecated parameter The parameter identified in the warning details has been deprecated.
The details specify an applicable replacement parameter.

Document Type Definitions (DTD)
Document Type Definitions are markup declarations that describe the syntax for a class of
documents. The DTD is declared within the document type declaration production of the XML
file. The markup declarations can be in an external subset (a special kind of external entity), in
an internal subset directly within the XML file, or both. The DTD for a document consists of
both subsets taken together. The following is a list of the OSM DTDs.

AddOrderThread
The AddOrderThread XML API is used to implement sub-process creation, (also known as
process forking), is implemented by the AddOrderThread XML API.

Note

AddOrderThread has been deprecated and is supported only for backward
compatibility. Use amendment processing functionality instead.

Request Example

<!-- add_order_thread.dtd -->
<!ELEMENT AddOrderThread.Request(OrderID, Process, ProcessPosition, View, Add)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT Process(#PCDATA)>
<!ELEMENT ProcessPosition(#PCDATA)>
<!ELEMENT View(#PCDATA)>
<!-- The contents of the Add element cannot be described in a dtd
Let children := mnemonic for order elements from the template -->
<!ELEMENT Add(children+)>
<!ATTLIST Add path CDATA #REQUIRED>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 78 of 92

Response Example

<!-- add_order_thread.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT AddOrderThread.Response(warnings?)>

AssignOrder
The AssignOrder XML API is used to assign an order.

Request Example

<!-- assign_order_request.dtd -->
<!ELEMENT AssignOrder.Request(OrderID, OrderHistID, User)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT User(#PCDATA)>

Response Example

<!-- assign_order_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT AssignOrder.Response(OrderID, OrderHistID, Warnings?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>

CompleteOrder
The CompleteOrder XML API is used to complete an order.

Request Example

<!-- complete_order_request.dtd -->
<!ELEMENT CompleteOrder.Request(OrderID, OrderHistID, Status)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT Status(#PCDATA)>

Response Example

<!-- complete_order_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT CompleteOrder.Response(OrderID, OrderHistID, Warnings?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistIDEMPTY>

CopyOrder
The CopyOrder XML API is used to copy an order.

Request Example

<!-copy_order_request.dtd -->
<!ELEMENT CopyOrder.Request(OriginalOrderID, OrderType,
OrderSource, Reference, Namespace?, version?)>
<!ELEMENT OriginalOrderID(#PCDATA)>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 79 of 92

<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT Reference(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Response Example

<!-- copy_order_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT CopyOrder.Response(OrderID, OrderHistID, OrderSource,
OrderType, OrderState, State, Reference, Priority, Warnings?, Namespace, Version)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT OrderState(#PCDATA)>
<!ELEMENT State(#PCDATA)>
<!ELEMENT Reference(#PCDATA)>
<!ELEMENT Priority(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

CreateOrder
The CreateOrder XML API is used to create an order.

Request Example

<!-- create_order_request.dtd -->
<!ELEMENT CreateOrder.Request(OrderSource, OrderType,
 Reference, _root, Namespace?, Version?)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT Reference(#PCDATA)>
<!ELEMENT Priority(#PCDATA)>
<!-- The contents of the _root element cannot be described in a dtd
 Let children := the mnemonics for order elements from the template -->
<!ELEMENT _root(children*)>
<!ELEMENT children(#PCDATA | children*)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Response Example

<!-- create_order_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT CreateOrder.Response(OrderID, OrderHistID,
OrderSource, OrderType, OrderState, State, Reference, Priority, Warnings?, Namespace?,
Version?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT OrderState(#PCDATA)>
<!ELEMENT State(#PCDATA)>
<!ELEMENT Reference(#PCDATA)>
<!ELEMENT Priority(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 80 of 92

Error
If an error occurs during processing for each of the following request DTDs, the following
information is returned.

<!-- error.dtd -->
<!-- let command_name := the command name of the request
 that originated the error -->
<!ELEMENT command_name.Error(Error+)>
<!ELEMENT Error(#PCDATA)>
<!ATTLIST Error codeCDATA #REQUIRED>
<!ATTLIST Error descCDATA #REQUIRED>

GetOrder
The GetOrder XML API is used to retrieve an order from OSM.

Request Example

<!-- get_order_request.dtd -->
<!ELEMENT GetOrder.Request(OrderID, (OrderHistID | ViewID))>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT ViewID(#PCDATA)>
<!ELEMENT Accept(#PCDATA)>

Response Example

<!-- get_order_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT GetOrder.Response(OrderID, (OrderHistID | ViewID,
OrderSource, OrderType, OrderState, State, ExecutionMode,
Reference, Priority, _root, Remarks, Warnings?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT ViewID(#PCDATA)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT Workgroups(#PCDATA)>
<!ELEMENT Workgroup(#PCDATA)>
<!ELEMENT OrderState(#PCDATA)>
<!ELEMENT State(#PCDATA)>
<!ELEMENT ExecutionMode(#PCDATA)>
<!ELEMENT Reference(#PCDATA)>
<!ELEMENT Priority(#PCDATA)>
<!-- The contents of the _root element cannot be described in a dtd
 Let children := the mnemonics for order elements from the template -->
<!ELEMENT _root(children*)>
<!ELEMENT children(#PCDATA | children*)>
<!ELEMENT Remarks(Remark*)>
<!ELEMENT Remark(RemarkID, Date, Author, TaskID,
TaskType, OrderHistID, State, Text,
ReadOnly, Attachments)>
<!ELEMENT RemarkID(#PCDATA)>
<!ELEMENT Date(#PCDATA)>
<!ELEMENT Author(#PCDATA)>
<!ELEMENT TaskID(#PCDATA)>
<!ELEMENT TaskType(#PCDATA)>
<!ELEMENT State(#PCDATA)>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 81 of 92

<!ELEMENT Text(#PCDATA)>
<!ELEMENT ReadOnly(#PCDATA)>
<!ELEMENT Attachments(Attachment*)>
<!ELEMENT Attachment(AttachmentID, FileName)>
<!ELEMENT AttachmentID(#PCDATA)>
<!ELEMENT FileName(#PCDATA)>

GetNextOrderAtTask
The GetNextOrderAtTask XML API is used to retrieve the next order.

Request Example

<!-get_next_order_at_task_request.dtd -->
<!ELEMENT GetNextOrderAtTask.Request(TaskID, Accept, State+, Namespace?, Version?)>
<!ELEMENT TaskID(#PCDATA)>
<!ELEMENT Accept(#PCDATA)>
<!ELEMENT State(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Response Example

<!-get_next_order_at_task_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT GetNextOrderAtTask.Response((OrderID, OrderHistID, OrderSource,
OrderType, OrderState, State, ExecutionMode, Reference, Priority, _root, Warnings?,
Namespace?, Version?) | EMPTY)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT Workgroups(#PCDATA)>
<!ELEMENT Workgroup(#PCDATA)>
<!ELEMENT OrderState(#PCDATA)>
<!ELEMENT State(#PCDATA)>
<!ELEMENT ExecutionMode(#PCDATA)>
<!ELEMENT Reference(#PCDATA)>
<!ELEMENT Priority(#PCDATA)>
<!-- The contents of the _root element cannot be described in a dtd
 Let children := the mnemonics for order elements from the template -->
<!ELEMENT _root(children*)>
<!ELEMENT children(#PCDATA | children*)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

GetOrderDataHistory
The GetOrderDataHistory XML API is used to retrieve order data history for an order.

Request Example

<!-order_data_history_resquest.dtd -->
<!ELEMENT GetOrderDataHistory.Request(OrderID, (OrderHistID |
ViewID), Field*)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT ViewID(#PCDATA)>
<!ELEMENT FieldEMPTY>
<!ATTLIST Field pathCDATA #REQUIRED>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 82 of 92

Response Example

<!-order_data_history_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT GetOrderDataHistory.Response(OrderID, (OrderHistID |
ViewID), Field*)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT ViewID(#PCDATA)>
<!ELEMENT Field(Change+)>
<!ATTLIST Field pathCDATA #REQUIRED>
<!ATTLIST Field indexCDATA #REQUIRED>
<!ATTLIST Field parentIndexCDATA #REQUIRED>
<!ELEMENT Change(#PCDATA | EMPTY)>
<!ATTLIST Change action(create | update | delete) #REQUIRED>
<!ATTLIST Change userCDATA #REQUIRED>
<!ATTLIST Change timeCDATA #REQUIRED>

GetOrderProcessHistory
The GetOrderProcessHistory XML API is used to retrieve the process history for an order.

Request Example

<!-order_process_history_request.dtd -->
<!ELEMENT GetOrderProcessHistory.Request(OrderID)>
<!ELEMENT OrderID(#PCDATA)>

Response Example

<!-order_process_history_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT GetOrderProcessHistory.Response(OrderID, Summary,
Transitions)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT Summary(ExpectedDuration,
ActualDuration,
StartDate,
CompleteDate)>
<!ELEMENT ExpectedDuration(#PCDATA)>
<!ELEMENT ActualDuration(#PCDATA)>
<!ELEMENT StartDate(#PCDATA)>
<!ELEMENT CompleteDate(#PCDATA)>
<!ELEMENT Transitions(Transition*)>
<!ELEMENT Transition(TaskID, TaskType,
TaskDescription,
ExpectedDuration,
ActualDuration,
StartDate,
CompleteDate,
OrderHistID,
FromOrderHistID, State,
Status, TransitionType, user, ParentTaskOrderHistID, DataNodeIndex, DataNodeMnemonic,
DataNodeValue)>
<!ELEMENT TaskID(#PCDATA)>
<!ELEMENT TaskType(#PCDATA)>
<!ELEMENT TaskDescription(#PCDATA)>
<!ELEMENT ExpectedDuration(#PCDATA)>
<!ELEMENT ActualDuration(#PCDATA)>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 83 of 92

<!ELEMENT StartDate(#PCDATA)>
<!ELEMENT CompleteDate(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT FromOrderHistID(#PCDATA)>
<!ELEMENT State(#PCDATA)>
<!ELEMENT Status(#PCDATA)>
<!ELEMENT TransitionType(#PCDATA)>
<!ELEMENT User(#PCDATA)>
<!ELEMENT SubProcessParentTaskOrderHistID(#PCDATA)>
<!ELEMENT DataNodeIndex(#PCDATA)>
<!ELEMENT DataNodeMnemonic(#PCDATA)>
<!ELEMENT DataNodeValue(#PCDATA)>

GetOrderStateHistory
The GetOrderStateHistory XML API is used to retrieve the order state history for an order.

Request Example

<!-- get_order_state_history.dtd -->
<!ELEMENT GetOrderStateHistory.Request(OrderID)>
<!ELEMENT OrderID(#PCDATA)>

Response Example

<!-- get_order_state_history.dtd -->
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderState(#PCDATA)>
<!ELEMENT TransitionStartDate(#PCDATA)>
<!ELEMENT TransitionCompletedDate(#PCDATA)>
<!ELEMENT ActualDuration(#PCDATA)>
<!ELEMENT User(#PCDATA)>
<!ELEMENT Reason(#PCDATA)>

GetUserInfo
The GetUserInfo XML API is used to retrieve user information.

Request Example

<!-user_info_request.dtd -->
<!ELEMENT GetUserInfo.RequestEMPTY>

Response Example

<!-user_info_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT GetUserInfo.Response(User, Workgroup*FlexibleHeaders)>
<!ELEMENT User(#PCDATA)>
<!ATTLIST User descCDATA #IMPLIED>
<!ELEMENT Workgroup(#PCDATA)>
<!ATTLIST Workgroup desc CDATA #IMPLIED>
<!ELEMENT FlexibleHeaders((FlexibleHeader*)>
<!ELEMENT FlexibleHeader(#PCDATA)>
<!ATTLIST FlexibleHeader descCDATA #REQUIRED>

ListExceptions
The ListExceptions XML API is used to retrieve exceptions.

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 84 of 92

Request Example

<!-- list_exceptions_request.dtd -->
<!ELEMENT ListExceptions.Request(OrderID, OrderHistID)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>

Response Example

<!-- list_exceptions_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning
<!ELEMENT ListExceptions.Response(OrderID, OrderHistID,
 Exceptions, Warnings?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT Exceptions(Status*)>
<!ELEMENT Status(#PCDATA)>
<!ATTLIST Status descCDATA #REQUIRED>

ListStatesNStatuses
The ListStatesNStatuses XML API is used to retrieve the states and statuses.

Request Example

<!-- task_state_status_request.dtd -->
<!ELEMENT ListStatesNStatuses.Request(OrderID, OrderHistID)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>

Response Example

<!-task_state_status_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT ListStatesNStatuses.Response(OrderID, OrderHistID,
TaskStatesNStatuses,
Warnings?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT TaskStatesNStatuses(Accepted?, Assigned?, Suspend?, Completed?)>
<!ELEMENT AcceptedEMPTY>
<!ELEMENT Assigned(User+)>
<!ELEMENT User(#PCDATA)>
<!-- The content of the Suspend element cannot be described in a dtd
 Let userstates := mnemonics for user defined states -->
<!ELEMENT Suspend(userstates+)>
<!-- The content of the Completed element cannot be described in a dtd
 Let userstatuses := mnemonics for user defined statuses -->
<!ELEMENT Completed(userstatuses+)>

ListViews
The ListViews XML API is used to retrieve views.

Request Example

<!-- views_request.dtd -->
<!ELEMENT ListViews.Request(OrderSource, OrderType, Namespace?, Version?)>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 85 of 92

<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Response Example

<!-- views_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT ListViews.Response(OrderSource, OrderType, View*, Warnings?, Namespace?,
Version?)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT View(#PCDATA)>
<!ATTLIST View desc CDATA #REQUIRED>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

ModifyRemark
The ModifyRemark XML API is used to modify remarks for an order.

Request Example

<!-modify_remark_request.dtd -->
<!ELEMENT ModifyRemark.Request(OrderID, OrderHistID, RemarkID, Text?, Attachments?,
DeleteAttachments?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT RemarkID(#PCDATA)>
<!ELEMENT Text(#PCDATA)>
<!ELEMENT Attachments(FileName*)>
<!ELEMENT FileName(#PCDATA)>
<!ELEMENT DeleteAttachments(AttachmentID*)>
<!ELEMENT AttachmentID(#PCDATA)>

Response Example

<!-modify_remark_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT ModifyRemark.Response(Remark?, Warnings?)>
<!ELEMENT Remark(RemarkID, Attachment*)>
<!ELEMENT RemarkID(#PCDATA)>
<!ELEMENT Attachment(AttachmentID, FileName)>
<!ELEMENT AttachmentID(#PCDATA)>
<!ELEMENT FileName(#PCDATA)>

OrderTypeNSource
The OrderTypeNSource XML API is used for the order type and source.

Request Example

<!-- order_source_type_request.dtd -->
<!ELEMENT OrderTypesNSources.RequestEMPTY, Namespace?, Version?>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 86 of 92

Response Example

<!-- order_source_type_request.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT OrderTypesNSources.Response(TypeNSource*, Warnings?, Namespace?, Version?)>
<!ELEMENT TypeNSource(Source, Type)>
<!ELEMENT SourceEMPTY>
<!ATTLIST Source mnemonicCDATA #REQUIRED>
<!ATTLIST Source descCDATA #IMPLIED>
<!ELEMENT TypeEMPTY>
<!ATTLIST Type mnemonicCDATA #REQUIRED>
<!ATTLIST Type categoryCDATA #IMPLIED>
<!ATTLIST Type descCDATA #IMPLIED>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

OrderViewTemplate
The OrderViewTemplate XML API is used for the order view template.

Request Example

<!-- order_template_request.dtd -->
<!ELEMENT OrderViewTemplate.Request((OrderSource, OrderType) | (OrderID, OrderHistID) |
(OrderSource, OrderType, ViewID), Namespace?, Version?)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT ViewID(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Response Example

<!--order_template_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT OrderViewTemplate.Response(((OrderSource, OrderType) |
(OrderID, OrderHistID) | (OrderSource, OrderType, ViewID)),
 _root, LookupTables?, Warnings?, Namespace?, Version?)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT ViewID(#PCDATA)>
<!-- The children of _root cannot be described in a dtd.
 Let children := the mnemonic of each node in the order template -->
<!ELEMENT _root(children*)>
<!ELEMENT childrenEMPTY>
<!ATTLIST children descCDATA #REQUIRED>
<!ATTLIST children minInstanceCDATA "0">
<!ATTLIST children maxInstanceCDATA "1">
<!ATTLIST children typeCDATA (NM | TX | DT | D | PH | YN | CY | LK) "TX">
<!ATTLIST children readOnly(true | false) "false">
<!-- the mask attribute is only applicable if type = NM or TX and there is a mask
defined -->
<!ATTLIST children maskCDATA #IMPLIED>
<!-- the len attribute is only applicable if type = NM or TX and a mask is not defined --
>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 87 of 92

<!ATTLIST children lenCDATA #IMPLIED>
<!-- The children of LookupTables cannot be described in a dtd.
 Let lkchildren := the element name of children[type="LK"]
<!ELEMENT LookupTables(lkchildren+)>
<!ELEMENT lkchildren(option+)>
<!ELEMENT option(#PCDATA)>
<!ATTLIST option descCDATA #REQUIRED>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Query
The Query XML API is used to query an order.

Request Example

<!-- query_request.dtd -->
<!ELEMENT Query.Request(OrderID?, Reference?, Priority? OrderType?,
 OrderSource?, SingleRow?, TaskID?, CreatedDate?, CompletedDate?, Field*)*,
FlexibleHeaders?, Namespace?, Version?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT Reference(#PCDATA)>
<!ELEMENT Priority(#PCDATA)>
<!ELEMENT OrderType(#PCDATA)>
<!ELEMENT OrderSource(#PCDATA)>
<!ELEMENT SingleRow(#PCDATA)>
<!ELEMENT TaskID(#PCDATA)>
<!ELEMENT OrderState(#PCDATA)>
<!ELEMENT TargetState(#PCDATA)>
<!ELEMENT ExecutionMode(#PCDATA)>
<!ELEMENT CreatedDateEMPTY>
<!ATTLIST CreatedDate fromCDATA #IMPLIED>
<!ATTLIST CreatedDate toCDATA #IMPLIED>
<!ELEMENT CompletedDateEMPTY>
<!ELEMENT CompletedDate fromCDATA #IMPLIED>
<!ELEMENT CompletedDate toCDATA #IMPLIED>
<!ELEMENT Field(#PCDATA | From, To)>
<!ATTLIST Field pathCDATA #REQUIRED>
<!ELEMENT From(#PCDATA)>
<!ELEMENT To(#PCDATA)>
<!ELEMENT FlexibleHeaders(FlexibleHeader*)>
<!ELEMENT FlexibleHeader(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Response Example

<!-- query_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning
<!ELEMENT Query.Response(Header, Orderdata*, Warnings?, Namespace?, Version?)>
<!-- The contents of Header cannot be described in a dtd.
 Let children := the mnemonic path of all flexible headers for the user -->
<!ELEMENT Header(_order_seq_id, _order_hist_seq_id,
_date_pos_created, _date_pos_started, _task_id,
_order_type,_order_source, _order_state,
_process_description, _reporting_status,
_reference_number, _priority, _user, _num_remarks, children*)>
<!-- Let headerchild := each of the children of Header -->
<!ELEMENT headerchildEMPTY>
<!ATTLIST headerchild descCDATA #IMPLIED>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 88 of 92

<!-- The contents of Orderdata cannot be described in a dtd.
 Let orderdatachildren := the mnemonic path of all flexible headers for the user --
>
<!ELEMENT Orderdata(_order_seq_id, _order_hist_seq_id,
_date_pos_created, _date_pos_started,
_task_id, _order_type, _order_source,
_order_state, _process_description,
_reporting_status, _reference_number, _user,
_num_remarks,orderdatachildren*)>
<!-- Let ordedatachild := each of the children of Orderdata -->
<!ELEMENT orderdatachild(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

ResumeOrder
The ResumeOrder XML API is used to resume an order.

Request Example

<!-- resume_order_request.dtd -->
<!ELEMENT ResumeOrder.Request(OrderID, Reason)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT Reason(#PCDATA)>

Response Example

<!-- resume_order_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT ResumeOrder.Response(OrderID, Reason, Warnings?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT Reason(#PCDATA)>

SetException
The SetException XML API is used to set an exception.

Request Example

<!-- set_exception_request.dtd -->
<!ELEMENT SetException.Request(OrderID, OrderHistID, Status)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT Status(#PCDATA)>

Response Example

<!-- set_exception_response.dtd -->
<!ELEMENT SetException.Response(OrderID, OrderHistID, Warnings?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>

SuspendOrder
The SuspendOrder XML API is used to suspend an order.

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 89 of 92

Request Example

<!-- suspend_order_request.dtd -->
<!ELEMENT SuspendOrder.Request(OrderID, Reason, OrderHistID, State)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT Reason(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT State(#PCDATA)>

Response Example

<!-- suspend_order_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT SuspendOrder.Response(OrderID, OrderHistID, Warnings?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>

TaskDescription
The TaskDescription XML API is used for the task description.

Request Example

<!-- task_description_request.dtd -->
<!ELEMENT TaskDescription.RequestEMPTY, Namespace?, Version?>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Response Example

<!-- task_description_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT TaskDescription.Response(Task, Warnings?, Namespace?, Version?)>
<!ELEMENT TaskEMPTY>
<!ATTLIST Task mnemonicCDATA #REQUIRED>
<!ATTLIST Task taskTypeCDATA (automatic | manual | creation | rule | delay)
#REQUIRED>
<!ATTLIST Task descCDATA #REQUIRED>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

UpdateOrder
The UpdateOrder XML API is used to update an order.

Request Example

<!-- update_order_request.dtd -->
<!ELEMENT UpdateOrder.Request(OrderID, ViewID, NewReference?, NewPriority? Add*,
Delete*, Update*, AddRemark?)>
<!ELEMENT OrderID(#PCDATA)>
<!ELEMENT OrderHistID(#PCDATA)>
<!ELEMENT NewReference(#PCDATA)>
<!ELEMENT NewPriority(#PCDATA)>
<!-- The contents of the Add element cannot be described in a dtd
 Let children := mnemonic for order elements from the template -->
<!ELEMENT Add(children*)>
<!ATTLIST Add pathCDATA #REQUIRED>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 90 of 92

<!ELEMENT DeleteEMPTY>
<!ATTLIST Delete pathCDATA #REQUIRED>
<!-- The contents of the Updateelement cannot be described in a dtd
 Let children := mnemonic for order elements from the template -->
<!ELEMENT Update(children* | #PCDATA)>
<!ATTLIST Update pathCDATA #REQUIRED>
<!ELEMENT AddRemark(Text, Attachments?)>
<!ELEMENT Text(#PCDATA)>
<!ELEMENT Attachments(FileName*)>
<!ELEMENT FileName(#PCDATA)>

Response Example

<!-- update_order_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT UpdateOrder.Response(Remark?, Warnings?)>
<!ELEMENT Remark(RemarkID, Attachment*)>
<!ELEMENT RemarkID(#PCDATA)>
<!ELEMENT Attachment(AttachmentID, FileName)>
<!ELEMENT AttachmentID(#PCDATA)>
<!ELEMENT FileName(#PCDATA)>

Warning
The warning DTD is included by all response documents.

<!-- warning.dtd -->
<!ELEMENT Warnings(Warning+)>
<!ELEMENT Warning(#PCDATA)>
<!ATTLIST Warning codeCDATA #REQUIRED>
<!ATTLIST Warning descCDATA #REQUIRED>

Worklist
The Worklist XML API is used for worklists.

Request Example

<!-- worklist_request.dtd -->
<!ELEMENT Worklist.Request(FlexibleHeaders?, Namespace?, Version?)>
<!ELEMENT FlexibleHeaders(FlexibleHeader*)>
<!ELEMENT FlexibleHeader(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Response Example

<!-- worklist_response.dtd -->
<!ENTITY % warning SYSTEM "warning.dtd">
%warning;
<!ELEMENT Worklist.Response(Header, OrderData*, Warnings?, Namespace?, Version?)>
<!-- The contents of Header cannot be described in a dtd.
 Let children := the mnemonic path of all flexible headers specified in the
request -->
<!ELEMENT Header(_order_seq_id, _order_hist_seq_id, _date_pos_created,
 _date_pos_started, _task_id, _order_type, _order_source, _order_state,
 _execution_mode, _process_description, _current_order_state,
 _target_order_state, _reporting_status, _reference_number, _priority,
 _user, _num_remarks,children*)>
<!-- Let headerchild := each of the children of Header -->

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 91 of 92

<!ELEMENT headerchildEMPTY>
<!ATTLIST headerchild descCDATA #IMPLIED>

<!-- The contents of Orderdata cannot be described in a dtd.
 Let orderdatachildren := the mnemonic path of all flexible headers specified in
the request -->
<!ELEMENT Orderdata(_order_seq_id, _order_hist_seq_id, _date_pos_created,
 _date_pos_started, _task_id, _order_type, _order_source, _order_state,
 _execution_mode, _process_description,_current_order_state, _target_order_state,
 _reporting_status, _reference_number, _priority, _user,_num_remarks,
 orderdatachildren*)>
<!-- Let ordedatachild := each of the children of Orderdata -->
<!ELEMENT orderdatachild(#PCDATA)>
<!ELEMENT Namespace(#PCDATA)>
<!ELEMENT Version(#PCDATA)>

Chapter 3
Document Type Definitions (DTD)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 92 of 92

4
Using TMF REST APIs (Cloud Native Only)

REST (Representational State Transfer) APIs are widely used for communication between
different software components over HTTP and HTTPS. The OpenAPI specification provides a
common language to describe such REST APIs. TMForum has defined specifications that
represent the operations of an order management system for a communications service
provider.

OSM supports the following TMF ordering specifications:

• TMF 622 Product Ordering

• TMF 641 Service Ordering

Note

TMF REST APIs are supported for OSM cloud native deployments only.

Before reading this chapter, read the chapter about TMF Ordering Support in OSM Concepts.

About TMF Ordering in OSM
The design-time journey for TMF ordering support involves importing one of the two supported
TMF specifications into Design Studio. Further, design-time configuration provides the
necessary support that enables OSM to "host" the specification. When this TMF cartridge is
deployed, the OSM Gateway microservice dynamically exposes the REST endpoints that are
defined in the specification. If the hosted order specification is TMF 622, this would result in
endpoints such as /productOrder. Conversely, if a TMF 641 hosted order specification is
deployed, then OSM Gateway would expose endpoints such as /serviceOrder.

Supported Endpoints
This section lists the supported endpoints in the TMF622 and TMF641 specifications. The
support either comes from the canonical TMF specification or from extensions made by OSM.
If an endpoint is not listed, then it is not supported.

Table 4-1 Supported Endpoints

API Endpoint Supported Through

/productOrder

/serviceOrder

Canonical or OSM Extension

/cancelProductOrder

/cancelServiceOrder

Canonical or OSM Extension

/suspendProductOrder

/suspendServiceOrder

OSM Extension

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 17

Table 4-1 (Cont.) Supported Endpoints

API Endpoint Supported Through

/reviseProductOrder

/reviseServiceOrder

OSM Extension

/resumeProductOrder/{id}

/resumeServiceOrder/{id}

OSM Extension

/abortProductOrder/{id}

/abortServiceOrder/{id}

OSM Extension

For further details about each API, refer to the REST API Reference for Oracle
Communications Order and Service Management Cloud Native.

Authentication and Authorization
OSM Gateway is secured with OpenID Connect (OIDC). OIDC permissions for users are
granted for all operations on OSM Gateway. Access to individual operations cannot be
controlled in the same granular fashion as it is for Task Web Client operations via the order
lifecycle policy.

In order to access TMF REST APIs, which are secured, the request must contain an access
token to gain access for that request. Endpoints that are secured are not only those operating
on the hosted object (Product Order or Service Order) and related task resources, but also on
the incoming events from external TMF and other sources. Any user who is successfully
authenticated with the REST API is automatically authorized to execute all operations in the
API across all the orders and task resources defined in the API.

In order to generate an access token from the OIDC server, the following credentials are
required:

• Client ID

• Client Secret

• Access Token URL

• Scope

• Grant Type (= Client Credentials)

Note

These credentials, which are used for token generation, should match with those
specified in the OIDC credential secret. See the section about creating OSM Gateway
secrets in the OSM Cloud Native Deployment Guide for more details.

The generated token is added to the header for the requests. The same token can be used for
future requests until it expires.

Header Key Authorization

Header Value Bearer access-token

Chapter 4
Authentication and Authorization

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 17

Constructing the Endpoint
Construct the HTTP request on the client as follows:

• API Endpoint URL: It is the combination of the base URL and endpoint path. All API
endpoints are relative to the base URL. A complete URL is formed when the base URL is
appended with endpoint paths. If version is prefixed with v in the server URL in the
OpenAPI specification, then the endpoint version must also be prefixed with v. See the
example that follows.

• Request Type: Set the REST Request type as specified for the endpoint.

• Request Headers: Set any required headers as specified by the Open API specification.

• Request Parameters: Include any query parameters and path parameters if required by
the API.

• Request Body: Include the payload if required by the API.

• Authentication: Acquire the credentials that are required to generate an access token.
Once a token is generated, pass the access token in the Authorization header.

Let us consider for an OSM cloud native instance, sr and quick as the project and instance
names respectively and the OSM-Extended TMF622 OpenAPI specification deployed. The
OSM-Extended TMF622 Specification has version as part of the server URL in the OpenAPI
specification file in the OSM SDK. Say this version is v4.0.0.1.0.

For a Create Product Order request, the following table shows the API attributes and example
values:

Table 4-2 API Attributes and Values

API Attribute Value

API Endpoint URL http://hostname:port/orchestration/sr/quick/tmf-api/
productOrderingManagement/v4.0.0.1.0/productOrder
where hostname and port are the access details of the Kubernetes
cluster exposed by your Ingress Controller or Load Balancer.

Request Type POST

Request Header Content-Type:application/json (The key-value added as header.)

Request Body json payload of ProductOrder_Create Schema

Authentication Authorization:Bearer access-token (The key-value added as
header.)

Registering for Events
The TMF specifications define not only the endpoints and operations but northbound event
notifications as well. TMF 622 and TMF 641 events communicate important information about
the resource - lifecycle events such as creation and completion, state changes and certain
types of data updates.

The design-time configuration for hosting a specification includes an "Event Target System"
name. This should be the logical name for the upstream system that brokers event
notifications. The logical system name is decoupled from the actual connection details so that
cartridge deployment is not impacted by a specific environment.

Chapter 4
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 17

At runtime, OSM Gateway would attempt to resolve the logical target system name. To do so,
the logical system must be defined in the CNTK instance specification along with the actual
server details and any related security scheme. See the OSM Cloud Native Deployment Guide
for further details about CNTK configuration.

The following table lists events that are defined in TMF622 and TMF641 specifications:

Table 4-3 List of Supported Events

Events Canonical OSM-Extended Supported?

ProductOrderCreateEvent Available Available Supported

ServiceOrderCreateEvent Available Available Supported

ProductOrderAttributeValueC
hangeEvent

Available Available Supported

ServiceOrderAttributeValueC
hangeEvent

Available Available Supported

ProductOrderDeleteEvent Available Not Available Not Supported

ServiceOrderDeleteEvent Available Not Available Not Supported

ProductOrderStateChangeEv
ent

Available Available Supported

ServiceOrderStateChangeEv
ent

Available Available Supported

ProductOrderInformationReq
uiredEvent

Available Not Available Not Supported

ServiceOrderInformationReq
uiredEvent

Available Not Available Not Supported

ServiceOrderMilestoneEvent Available Not Available Not Supported

ServiceOrderJeopardyEvent Available Not Available Not Supported

CancelProductOrderCreateE
vent

Available Available Supported

CancelServiceOrderCreateE
vent

Available Available Supported

CancelProductOrderStateCh
angeEvent

Available Available Supported

CancelServiceOrderStateCh
angeEvent

Available Available Supported

CancelProductOrderInformati
onRequiredEvent

Available Not Available Not Supported

CancelServiceOrderInformati
onRequiredEvent

Available Not Available Not Supported

SuspendProductOrderCreate
Event

Not Available Available Supported

SuspendServiceOrderCreate
Event

Not Available Available Supported

SuspendProductOrderStateC
hangeEvent

Not Available Available Supported

SuspendServiceOrderStateC
hangeEvent

Not Available Available Supported

ReviseProductOrderCreateE
vent

Not Available Available Supported

ReviseServiceOrderCreateEv
ent

Not Available Available Supported

Chapter 4
Registering for Events

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 17

Table 4-3 (Cont.) List of Supported Events

Events Canonical OSM-Extended Supported?

ReviseProductOrderStateCh
angeEvent

Not Available Available Supported

ReviseServiceOrderStateCha
ngeEvent

Not Available Available Supported

The details about each event are available in REST API Reference for Oracle Communications
Order and Service Management Cloud Native .

These events will be published to the event target system.

For TMF622 related event, the endpoint URL of the event to which it will be published looks as
follows:

target-system_url/productOrderingManagement/<version>/listener/<event-name>

For TMF641 related event, the endpoint URL of the event to which it will be published looks as
follows:

target-system_url/serviceOrdering/<version>/listener/<event-name>

target-system_url is the base context URL of the target system which will be picked from the
CNTK instance.

Let us consider, for an OSM cloud native instance as the target system, sr and slow as the
project and instance names respectively and the OSM-Extended TMF622 OpenAPI
specification deployed. The OSM-Extended TMF622 Specification has version as part of the
server URL in the OpenAPI specification file in the OSM SDK. Say, this version is v4.0.0.1.0.
The Target System URL will be: http://hostname:port/orchestration/sr/slow/tmf-api

If the event is ProductOrderStateChangeEvent, the endpoint looks like: http://
hostname:port/orchestration/sr/slow/tmf-api/productOrderingManagement/v4.0.0.1.0/
listener/ProductOrderStateChangeEvent

This constructed endpoint must be exposed by the Target System in order to receive the
notifications.

About the Payload
OSM Gateway expects payload of JSON type and converts it to XML for OSM.

Sample JSON Payload

{
 "@type": "ProductOrderOSM_Create",
 "description": "sales order Request",
 "category": "salesOrder",
 "externalId": "456789",
 "requestedStartDate": "2022-08-22T17:42:14.668Z",
 "priority": "high",
 "agreement": [
 {

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 17

 "@type": "AgreementRef",
 "id": "1",
 "name": "John",
 "href": "bar"
 }
],
 "billingAccount": {
 "@type": "BillingAccountRef",
 "id": "9SIA-DR5BW",
 "name": "e2e_individual20200428233218579@cheers.com",
 "href": "bar"
 },
 "channel": [
 {
 "@type": "RelatedChannel",
 "id": "1",
 "name": "foo",
 "href": "bar"
 }
],
 "note": [
 {
 "@type": "Note",
 "id": "1",
 "author": "Jean Pontus",
 "date": "2022-07-30T08:13:59.509Z",
 "text": "This is a TMF 622 Sample Solution product order"
 }
],

 "payment": [
 {
 "@type": "PaymentRef",
 "id": "2365",
 "href": "https://host:port/paymentManagement/v4/cashPayment/2365",
 "name": "Cash payment for access fee",
 "@referredType": "Payment"
 }
],
 "productOfferingQualification": [
 {
 "@type": "ProductOfferingQualificationRef",
 "id": "ABC-1Z8QMG",
 "name": "dummyPOQualification"
 }
],
 "quote": [
 {
 "@type": "QuoteRef",
 "id": "ABC-123AGG",
 "name": "dummyQuote"
 }
],
 "relatedParty": [
 {
 "@type": "RelatedParty",

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 17

 "id": "456-dd-df45",
 "href": "https://host:port/partyManagement/v4/individual/456-dd-
df45",
 "name": "Joe Doe",
 "role": "Seller",
 "@referredType": "Individual"
 },
 {
 "@type": "RelatedParty",
 "id": "ff55-hjy4",
 "href": "https://host:port/partyRoleManagement/v4/customer/ff55-
hjy4",
 "name": "Jean Pontus",
 "@referredType": "Customer"
 }
],
 "productOrderItem": [
 {
 "@type": "ProductOrderItem",
 "quantity": 1,
 "id": "0CX-1Z8QSX",
 "action": "add",
 "appointment": {
 "@type": "AppointmentRef",
 "id": "ABC",
 "href": "dummy",
 "description": "dummyAppointment"
 },
 "billingAccount": {
 "@type": "BillingAccountRef",
 "id": "0CX-1XRFRM"
 },
 "itemPrice": [
 {
 "@type": "OrderPrice",
 "billingAccount": {
 "@type": "BillingAccountRef",
 "id": "9SIA-DR5BW",
 "name": "e2e_individual20200428233218579@cheers.com",
 "href": "bar"
 },
 "price": {
 "@type": "Price",
 "percentage": 30.00,
 "taxRate": 0
 },
 "priceAlteration": [
 {
 "@type": "PriceAlteration",
 "applicationDuration": 12,
 "priceType": "recurring",
 "price": {
 "@type": "Price",
 "percentage": 30.00,
 "taxRate": 40.50
 },

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 17

 "productOfferingPrice": {
 "@type": "ProductOfferingPriceRef",
 "id": "123-ABC",
 "name": "dummyPOPriceRef",
 "href": "dummy2"
 }
 }
],
 "productOfferingPrice": {
 "@type": "ProductOfferingPriceRef",
 "id": "123-ABC",
 "name": "dummyPOPriceRef",
 "href": "dummy3"
 }
 }
],
 "itemTerm": [
 {
 "@type": "OrderTerm",
 "description": "Tariff plan 12 Months commitment",
 "name": "12Months"
 }
],
 "itemTotalPrice": [
 {
 "@type": "OrderPrice",
 "billingAccount": {
 "@type": "BillingAccountRef",
 "id": "9SIA-DR5BW",
 "name": "e2e_individual20200428233218579@cheers.com",
 "href": "bar"
 },
 "price": {
 "@type": "Price",
 "percentage": 10.00,
 "taxRate": 20.50
 },
 "priceAlteration": [
 {
 "@type": "PriceAlteration",
 "applicationDuration": 12,
 "priceType": "recurring",
 "price": {
 "@type": "Price",
 "percentage": 10.05,
 "taxRate": 20.5
 },
 "productOfferingPrice": {
 "@type": "ProductOfferingPriceRef",
 "id": "123-ABC",
 "name": "dummyPOPriceRef",
 "href": "dummy4"
 }
 }
],
 "productOfferingPrice": {

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 17

 "@type": "ProductOfferingPriceRef",
 "id": "123-ABC",
 "name": "dummyPOPriceRef",
 "href": "dummy5"
 }
 }
],
 "payment": [
 {
 "@type": "PaymentRef",
 "id": "2365",
 "href": "https://host:port/paymentManagement/v4/
cashPayment/2365",
 "name": "Cash payment for access fee",
 "@referredType": "Payment"
 }
],
 "product": {
 "@type": "ProductRefOrValue",
 "id": "0CX-1Z8QMG",
 "isBundle": false,
 "isCustomerVisible": true,
 "name": "Amazon Prime",
 "agreement": [
 {
 "@type": "AgreementItemRef",
 "id": "1",
 "name": "John",
 "href": "bar"
 }
],
 "billingAccount": {
 "@type": "BillingAccountRef",
 "id": "9SIA-DR5BW",
 "name": "e2e_individual20200428233218579@cheers.com",
 "href": "barProduct"
 },
 "place": [
 {
 "@type": "RelatedPlaceRefOrValue",
 "id": "456-dd-df45",
 "href": "https://host:port/partyManagement/v4/
individual/456-dd-df45",
 "name": "Joe Doe",
 "role": "Seller"
 }
],
 "productCharacteristic": [
 {
 "@type": "Characteristic",
 "name": "Channel",
 "valueType": "string",
 "value": "Amazon Prime"
 },
 {
 "@type": "Characteristic",

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 17

 "name": "QoS",
 "valueType": "string",
 "value": "1080P"
 },
 {
 "@type": "Characteristic",
 "name": "BillingAccount",
 "valueType": "object",
 "value": {
 "@type": "BillingAccountRef",
 "id": "15"
 }
 }
],
 "productOffering": {
 "@type": "ProductOfferingRef",
 "id": "14305",
 "href": "https://host:port/productCatalogManagement/v4/
productOffering/14305",
 "name": "Amazon Prime"
 },
 "productOrderItem": [],
 "productPrice": [
 {
 "@type": "ProductPrice",
 "priceType": "recurring",
 "name": "Amazon Prime",
 "recurringChargePeriod": "month",
 "unitOfMeasure": "GB",
 "billingAccount": {
 "@type": "BillingAccountRef",
 "id": "9SIA-DR5BW",
 "name":
"e2e_individual20200428233218579@cheers.com",
 "href": "barProductPrice"
 },
 "price": {
 "@type": "Price",
 "percentage": 30.00,
 "taxRate": 0
 },
 "productPriceAlteration": [
 {
 "@type": "PriceAlteration",
 "applicationDuration": 12,
 "priceType": "recurring",
 "price": {
 "@type": "Price",
 "percentage": 30.00,
 "taxRate": 40.50
 },
 "productOfferingPrice": {
 "@type": "ProductOfferingPriceRef",
 "id": "456-ABC",
 "name": "dummyPOPriceRef",
 "href": "dummy8"

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 17

 }
 }
],
 "productOfferingPrice": {
 "@type": "ProductOfferingPriceRef",
 "id": "987-ABC",
 "name": "dummyPOPriceRef",
 "href": "dummy9"
 }
 }
],
 "productSpecification": {
 "@type": "ProductSpecificationRef",
 "name": "Digital TV PS",
 "id": "0CX-1YAFD5"
 }
 },
 "productOffering": {
 "@type": "ProductOfferingRef",
 "id": "0CX-1YAFD5",
 "name": "Amazon Prime"
 },
 "productOfferingQualificationItem": {
 "@type": "ProductOfferingQualificationItemRef",
 "id": "0CX-1YAFD5",
 "productOfferingQualificationId": "ABC-123",
 "name": "Amazon Prime Qualification item"
 },
 "productOrderItem": [],
 "productOrderItemRelationship": [
 {
 "@type": "OrderItemRelationship",
 "id": "123",
 "relationshipType": "dummyBundles"
 }
],
 "quoteItem": {
 "@type": "QuoteItemRef",
 "quoteId": "ABC-123AGG",
 "quoteName": "dummyQuote",
 "id": "ABC",
 "name": "dummyQuoteItem"
 }
 }
]
}

Sample XML Payload

<productOrder xmlns="http://oracle.communications.orchestration.com/tmf-api/
productOrderingManagement/4.0.0.1.0/productOrder/inputMessage"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ProductOrderOSM_Create">

 <description>sales order Request</description>

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 17

 <category>salesOrder</category>
 <externalId>456789</externalId>
 <requestedStartDate>2022-08-22T17:42:14.668Z</requestedStartDate>
 <priority>high</priority>
 <agreement xsi:type="AgreementRef">
 <id>1</id>
 <name>John</name>
 <href>bar</href>
 </agreement>
 <billingAccount xsi:type="BillingAccountRef">
 <id>9SIA-DR5BW</id>
 <name>e2e_individual20200428233218579@cheers.com</name>
 <href>bar</href>
 </billingAccount>
 <channel xsi:type="RelatedChannel">
 <id>1</id>
 <name>foo</name>
 <href>bar</href>
 </channel>
 <note xsi:type="Note">
 <id>1</id>
 <author>Jean Pontus</author>
 <date>2022-07-30T08:13:59.509Z</date>
 <text>This is a TMF 622 Sample Solution product order</text>
 </note>
 <payment xsi:type="PaymentRef">
 <id>2365</id>
 <href>https://host:port/paymentManagement/v4/cashPayment/2365</href>
 <name>Cash payment for access fee</name>
 <_referredType>Payment</_referredType>
 </payment>
 <productOfferingQualification xsi:type="ProductOfferingQualificationRef">
 <id>ABC-1Z8QMG</id>
 <name>dummyPOQualification</name>
 </productOfferingQualification>
 <quote xsi:type="QuoteRef">
 <id>ABC-123AGG</id>
 <name>dummyQuote</name>
 </quote>
 <relatedParty xsi:type="RelatedParty">
 <id>456-dd-df45</id>
 <href>https://host:port/partyManagement/v4/individual/456-dd-df45</
href>
 <name>Joe Doe</name>
 <role>Seller</role>
 <_referredType>Individual</_referredType>
 </relatedParty>
 <relatedParty xsi:type="RelatedParty">
 <id>ff55-hjy4</id>
 <href>https://host:port/partyRoleManagement/v4/customer/ff55-hjy4</
href>
 <name>Jean Pontus</name>
 <_referredType>Customer</_referredType>
 </relatedParty>
 <productOrderItem xsi:type="ProductOrderItem">
 <quantity>1</quantity>

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 17

 <id>0CX-1Z8QSX</id>
 <action>add</action>
 <appointment xsi:type="AppointmentRef">
 <id>ABC</id>
 <href>dummy</href>
 <description>dummyAppointment</description>
 </appointment>
 <billingAccount xsi:type="BillingAccountRef">
 <id>0CX-1XRFRM</id>
 </billingAccount>
 <itemPrice xsi:type="OrderPrice">
 <billingAccount xsi:type="BillingAccountRef">
 <id>9SIA-DR5BW</id>
 <name>e2e_individual20200428233218579@cheers.com</name>
 <href>bar</href>
 </billingAccount>
 <price xsi:type="Price">
 <percentage>30.0</percentage>
 <taxRate>0.0</taxRate>
 </price>
 <priceAlteration xsi:type="PriceAlteration">
 <applicationDuration>12</applicationDuration>
 <priceType>recurring</priceType>
 <price xsi:type="Price">
 <percentage>30.0</percentage>
 <taxRate>40.5</taxRate>
 </price>
 <productOfferingPrice xsi:type="ProductOfferingPriceRef">
 <id>123-ABC</id>
 <name>dummyPOPriceRef</name>
 <href>dummy2</href>
 </productOfferingPrice>
 </priceAlteration>
 <productOfferingPrice xsi:type="ProductOfferingPriceRef">
 <id>123-ABC</id>
 <name>dummyPOPriceRef</name>
 <href>dummy3</href>
 </productOfferingPrice>
 </itemPrice>
 <itemTerm xsi:type="OrderTerm">
 <description>Tariff plan 12 Months commitment</description>
 <name>12Months</name>
 </itemTerm>
 <itemTotalPrice xsi:type="OrderPrice">
 <billingAccount xsi:type="BillingAccountRef">
 <id>9SIA-DR5BW</id>
 <name>e2e_individual20200428233218579@cheers.com</name>
 <href>bar</href>
 </billingAccount>
 <price xsi:type="Price">
 <percentage>10.0</percentage>
 <taxRate>20.5</taxRate>
 </price>
 <priceAlteration xsi:type="PriceAlteration">
 <applicationDuration>12</applicationDuration>
 <priceType>recurring</priceType>

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 17

 <price xsi:type="Price">
 <percentage>10.05</percentage>
 <taxRate>20.5</taxRate>
 </price>
 <productOfferingPrice xsi:type="ProductOfferingPriceRef">
 <id>123-ABC</id>
 <name>dummyPOPriceRef</name>
 <href>dummy4</href>
 </productOfferingPrice>
 </priceAlteration>
 <productOfferingPrice xsi:type="ProductOfferingPriceRef">
 <id>123-ABC</id>
 <name>dummyPOPriceRef</name>
 <href>dummy5</href>
 </productOfferingPrice>
 </itemTotalPrice>
 <payment xsi:type="PaymentRef">
 <id>2365</id>
 <href>https://host:port/paymentManagement/v4/cashPayment/2365</
href>
 <name>Cash payment for access fee</name>
 <_referredType>Payment</_referredType>
 </payment>
 <product xsi:type="ProductRefOrValue">
 <id>0CX-1Z8QMG</id>
 <isBundle>No</isBundle>
 <isCustomerVisible>Yes</isCustomerVisible>
 <name>Amazon Prime</name>
 <agreement xsi:type="AgreementItemRef">
 <id>1</id>
 <name>John</name>
 <href>bar</href>
 </agreement>
 <billingAccount xsi:type="BillingAccountRef">
 <id>9SIA-DR5BW</id>
 <name>e2e_individual20200428233218579@cheers.com</name>

 <href>barProduct</href>

 </billingAccount>

 <place xsi:type="RelatedPlaceRefOrValue">

 <id>456-dd-df45</id>

 <href>https://host:port/partyManagement/v4/individual/456-dd-
df45</href>

 <name>Joe Doe</name>

 <role>Seller</role>

 </place>

 <productCharacteristic xsi:type="Characteristic">

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 17

 <name>Channel</name>

 <valueType>string</valueType>

 <value>Amazon Prime</value>

 </productCharacteristic>

 <productCharacteristic xsi:type="Characteristic">

 <name>QoS</name>

 <valueType>string</valueType>

 <value>1080P</value>

 </productCharacteristic>

 <productCharacteristic xsi:type="Characteristic">

 <name>BillingAccount</name>

 <valueType>object</valueType>

 <valueXml>

 <xmlData>

 <object xsi:type="BillingAccountRef">

 <id>15</id>

 </object>

 </xmlData>

 </valueXml>

 </productCharacteristic>

 <productOffering xsi:type="ProductOfferingRef">

 <id>14305</id>

 <href>https://host:port/productCatalogManagement/v4/
productOffering/14305</href>

 <name>Amazon Prime</name>

 </productOffering>

 <productPrice xsi:type="ProductPrice">

 <priceType>recurring</priceType>

 <name>Amazon Prime</name>

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 17

 <recurringChargePeriod>month</recurringChargePeriod>

 <unitOfMeasure>GB</unitOfMeasure>

 <billingAccount xsi:type="BillingAccountRef">

 <id>9SIA-DR5BW</id>

 <name>e2e_individual20200428233218579@cheers.com</name>

 <href>barProductPrice</href>

 </billingAccount>

 <price xsi:type="Price">

 <percentage>30.0</percentage>

 <taxRate>0.0</taxRate>

 </price>

 <productPriceAlteration xsi:type="PriceAlteration">

 <applicationDuration>12</applicationDuration>

 <priceType>recurring</priceType>

 <price xsi:type="Price">

 <percentage>30.0</percentage>

 <taxRate>40.5</taxRate>

 </price>

 <productOfferingPrice xsi:type="ProductOfferingPriceRef">

 <id>456-ABC</id>

 <name>dummyPOPriceRef</name>

 <href>dummy8</href>

 </productOfferingPrice>

 </productPriceAlteration>

 <productOfferingPrice xsi:type="ProductOfferingPriceRef">

 <id>987-ABC</id>

 <name>dummyPOPriceRef</name>

 <href>dummy9</href>

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 17

 </productOfferingPrice>

 </productPrice>

 <productSpecification xsi:type="ProductSpecificationRef">

 <name>Digital TV PS</name>

 <id>0CX-1YAFD5</id>

 </productSpecification>

 </product>

 <productOffering xsi:type="ProductOfferingRef">

 <id>0CX-1YAFD5</id>

 <name>Amazon Prime</name>

 </productOffering>

 <productOfferingQualificationItem
xsi:type="ProductOfferingQualificationItemRef">

 <id>0CX-1YAFD5</id>

 <productOfferingQualificationId>ABC-123</
productOfferingQualificationId>

 <name>Amazon Prime Qualification item</name>

 </productOfferingQualificationItem>
 <productOrderItemRelationship xsi:type="OrderItemRelationship">
 <id>123</id>
 <relationshipType>dummyBundles</relationshipType>
 </productOrderItemRelationship>
 <quoteItem xsi:type="QuoteItemRef">
 <quoteId>ABC-123AGG</quoteId>
 <quoteName>dummyQuote</quoteName>
 <id>ABC</id>
 <name>dummyQuoteItem</name>
 </quoteItem>
 </productOrderItem>
</productOrder>

About Schema Mismatch
It is possible that payloads contain data that is not part of the schema defined in the
specification that is used. You have control to determine whether strict parsing should be used
or whether extra data can simply be silently pruned. The validations property in the project
specification will be used to set incoming and outgoing validations. You can specify STRICT
and PRUNE.

Chapter 4
About the Payload

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 17

5
Fallout Exception Management Rest APIs
V2.0 (Cloud Native Only)

This chapter provides information about the second version (V2) of the Fallout Exception
Management REST APIs for Oracle Communications Order and Service Management (OSM).
Fallout Exception Management Rest APIs are part of the OSM Simplified Fallout Management
framework.

You can retrieve a list of details about the fallout exceptions using the (GET) REST APIs
provided by OSM. These REST APIs come with the following capabilities:

• Filtering

• Grouping

• Ordering

• Selecting fields

Associate a fallout exception with an action and then submit it. OSM provides the REST API
endpoint submitFalloutAction which will accept the submit request (POST) and return no
response.

The successful response from the submitFalloutAction endpoint indicates that the fallout
action is submitted and is in progress. The success or failure of the fallout action is reflected in
the fallout exception state.

For more details on the Simplified Fallout Management Framework and fallout exception
scenarios, refer to About Managing Fallout Exception in OSM Concepts Guide.

Fallout Exception Management Rest API Versions
The Fallout Exception Management APIs are versioned. The endpoint URL builds using the
version information. For example:

https://serverRoot/fallout/v2.0/falloutException

For more information on which version you should use, refer to the "Manage Fallout Exception"
section of the REST API Reference for Oracle Communications Order and Service
Management Cloud Native.

Version History

The following table details the operations in the available versions of the fallout exception
management REST API.

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 16

Table 5-1 Version History

Version Details

V2.0 POST operations on the Fallout Exception
Resource.

Enhanced GET operations with new response
attributes (taskStatuses, lastUpdatedDate and
recentAction)

V1 (Deprecated) GET operations on the Fallout Exception
Resource.

Note

Version V1 of this API remains available but it is deprecated and will be phased out in
the future. Oracle recommends that you transition to version V2.0.

Fallout Exception Lifecycle
The following diagram illustrates the fallout exception state lifecycle changes when actions are
submitted using the Fallout Exception Management REST APIs.

Figure 5-1 Fallout Exception Lifecycle

Support for Filtering, Grouping and Ordering of Fallout Exception
Objects

You can use the GET operation for generating a list of fallout exception objects. These lists
provide the details of the objects in fallout exception using the following capabilities:

• Filtering

• Grouping

• Ordering

Chapter 5
Fallout Exception Lifecycle

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 16

Filtering and Attribute Selection Rules
The GET operation generates a list of the objects in fallout exception using the filtration and
attribute selection capabilities.

This capability filters the fallout exception objects. Wildcard search supports the
customerName and orderType fields only.

Any of the following can be provided using the filterBy parameter:

• contains (field,'searchstring')

• startswith (field,'searchstring')

• endswith (field,'searchstring')

Wildcard search for multiple capabilities is also supported.

For example:

GET /falloutException?filterBy=contains(customerName,'ABC') Example: GET /
falloutException?
filterBy=contains(customerName,'ABC')&filterBy=contains(orderType,'Service')&fiel
ds=customerName,orderId,state,requestedCompletionDate

Grouping
The grouping capability returns the aggregated fallout exception objects with total fallout
exceptions per order and other aggregated details. Fallout exceptions can only be grouped
based on the orderId.

For example:

GET /falloutException?groupBy=orderId

Ordering
The Ordering capability returns the objects in fallout exception in a sorted order.

The following are valid fields for the orderBy parameter when it is used with the groupBy
parameter:

• orderId

• customerName

• orderType

• requestedCompletionDate

• creationDate

• externalId

• totalFalloutExceptionPerOrder

The following are valid fields for the orderBy parameter when it is used without the groupBy
parameter:

• timestamp

• errorId

Chapter 5
Support for Filtering, Grouping and Ordering of Fallout Exception Objects

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 16

• productNames

• taskName

For example:

• GET /falloutException?orderBy=errorId&sort=asc

Note

By default, the objects will be sorted in descending order.

• GET /falloutException?groupBy=orderId&orderBy=creationDate&sort=desc

Additional Query Fields
The following table describes the querying fields you can use for the GET operation to find the
list of the objects in fallout exception.

Table 5-2 Additional Query Fields

Query Field Description Example

customerName Retrieves fallout exceptions for a given
customer name. You can provide
multiple customer names.

GET /falloutException?
customerName=abcd&customerName=
xyz

fromRequestedCompletionDate The start date for the requested
completion date. You must use this with
toRequestedCompletionDate.

GET /falloutException?
fromRequestedCompletionDate=201
6-11-15&toRequestedCompletionDa
te=2016-11-20

fromfalloutCreationDate The start date for the report. You must
use this with tofalloutCreationDate.

GET /falloutException?
fromfalloutCreationDate=2016-11
-15&tofalloutCreationDate=2016-
11-20

orderId Retrieves fallout exceptions for an
orderId. You can also provide multiple
orderIds.

GET /falloutException?
orderId=12345 or GET /
falloutException?
orderId=12345&orderId=3312

orderType Retrieves data based on orderType
(this is shown as Reference Number in
the Fallout Order Operations
Dashboard). You can also provide
multiple states.

GET /falloutException?
orderType=Product or GET /
falloutException?
orderType=Product&orderType=Ser
vice

overdue Retrieves fallout exceptions for orders
that are overdue based on the
requested completion date.

GET /falloutException?
overdue=true

toRequestedCompletionDate The end date for the report. You must
use this with
fromRequestedCompletionDate.

GET /falloutException?
fromRequestedCompletionDate=201
6-11-15&toRequestedCompletionDa
te=2016-11-20

tofalloutCreationDate The end date for the report. You must
use this with fromfalloutCreationDate.

GET /falloutException?
fromfalloutCreationDate=2016-11
-15&tofalloutCreationDate=2016-
11-20

Chapter 5
Support for Filtering, Grouping and Ordering of Fallout Exception Objects

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 16

Supported Fallout Actions
The following actions can be submitted using the Fallout Exception Management REST API
endpoint submitFalloutAction:

• Force Complete Task: The task will be marked as Complete with the task status provided
by you. This resolves the fallout exception. You have to take care of the required data
updates that are needed to perform the force complete prior to submitting the action.

• Retry Task: The task is retried and the fallout exception is cleared. If the Retry is
successful, the task completes. If the Retry runs into problems, the cartridge code can
raise a new fallout exception.

• Cancel Order: This operation cancels an order. All outstanding work items associated with
the order are deleted, and all complete work items associated with the order are
compensated (undone).

• Fail Order: This results in the entire OSM order failing and triggers an update to the final
TMF state in case of TMF orders. The fallout exception is resolved automatically, marked
with the action code Fail.

• FailOrderItems: This operation marks all order items as Failed, when a fallout exception
is raised on them. The fallout exception is resolved automatically. This action is only
applicable for TMF orders.

Note

The FailOrderItems behavior can also be achieved on a task when there is no
fallout exception raised. This can be done with help of the Automation API
FailTmfOrderItems() which is provided by OrderContext.

• Abort Order: This operation tells OSM to stop working on the selected order without
triggering any further work.

API Operations
The table below lists the supported endpoints in the Simplified Fallout Exception Management.
If an endpoint is not listed, then it is not supported.

Table 5-3 Supported Fallout Endpoints

API Endpoint API Operation Description

/falloutException GET List or find fallout exceptions.

/falloutException/{id} GET Retrieve a fallout exception using its ID.

/falloutException/{id}/
submitFalloutAction

POST Submit a given fallout action on the
fallout exception.

/falloutException/
submitFalloutAction

POST Submit a given fallout action on the
fallout order.

Authentication and Authorization
The Fallout Exception Management REST APIs are secured with OpenID connect (OIDC) that
has been configured for the TMF Rest APIs.

Chapter 5
Supported Fallout Actions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 16

For further details about authentication and authorization, refer to the section Using TMF REST
APIs (Cloud Native Only).

For further details about the OIDC, refer to the section About OSM Authentication and
Authorization Methods of the Security Guide.

Constructing the Endpoint
This section provides the details for using the GET and POST endpoints for the Fallout
Exception API.

GET Endpoints
The following table shows the API attributes and example values for listing or finding the OSM
Fallout Exception details:

Table 5-4 API Attributes for Listing or Finding Fallout Exception Details

API Attribute Example Value

API Endpoint URL http://hostname:port/orchestration/sr/quick/falllout/
v2.0/falloutException

where hostname and port are the access details of the Kubernetes
cluster exposed by your Ingress Controller or Load Balancer.

Request Type GET.

Request Header There are no request headers for this operation.

Request Body There's no request body for this operation.

Authentication Authorization:Bearer access-token (The key-value is added as a
header).

Query Parameters Query parameters are used for filtering, selection of fields, grouping and
ordering of the fallout exception list. For further details refer to the REST
API Reference for Oracle Communications Order and Service
Management Cloud Native.

Request

GET /falloutException
There's no request body for this operation.

Response

GET FalloutException list

200

[
 {
 "id": "942057168",
 "href": "self",
 "creationDate": "2025-02-13T13:38:36Z",
 "message": "error",
 "orderType": "Product",
 "customerName": "Team2@osm.com",
 "productNames": [

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 16

 "Digital IDC OSM"
],
 "fullfillmentFunction":
"TmfProvFunctionFunction_TmfProvFunctionProcess",
 "taskName": "ProvisionOrderEntryTask",
 "orderId": 19,
 "externalId": "MultipleFTE0000123889",
 "category": "cat1",
 "orderOverdue": true,
 "affectedLines": "Amazon Prime [add]",
 "requestedCompletionDate": "2025-02-13T13:38:36Z",
 "lastUpdatedDate": "2025-02-13T13:38:37Z",
 "state": "created",
 "attributes": [
 {
 "name": "componentNodeIndex",
 "value": "1739453916707"
 },
 {
 "name": "orderComponentKey",
 "value": "TmfProvFunctionFunction"
 },
 {
 "name": "location",
 "value": "testLocation2"
 },
 {
 "name": "orderHistId",
 "value": "302"
 }
],
 "taskStatuses": [
 "next"
]
 },
 {
 "id": "1397187211",
 "href": "self",
 "creationDate": "2025-02-13T13:38:36Z",
 "message": "error",
 "orderType": "Product",
 "customerName": "Team2@osm.com",
 "productNames": [
 "Digital IDC OSM"
],
 "fullfillmentFunction":
"TmfProvFunctionFunction_TmfProvFunctionProcess",
 "taskName": "ProvisionOrderEntryTask",
 "orderId": 19,
 "externalId": "MultipleFTE0000123889",
 "category": "cat1",
 "orderOverdue": true,
 "affectedLines": "Amazon Prime [add]",
 "requestedCompletionDate": "2025-02-13T13:38:36Z",
 "lastUpdatedDate": "2025-02-13T13:38:37Z",
 "state": "created",

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 16

 "attributes": [
 {
 "name": "componentNodeIndex",
 "value": "1739453916707"
 },
 {
 "name": "orderComponentKey",
 "value": "TmfProvFunctionFunction"
 },
 {
 "name": "location",
 "value": "testLocation1"
 },
 {
 "name": "orderHistId",
 "value": "302"
 }
],
 "taskStatuses": [
 "next"
]
 },
 {
 "id": "88621671",
 "href": "self",
 "creationDate": "2025-02-13T13:38:34Z",
 "message": "error",
 "orderType": "Product",
 "customerName": "Team2@osm.com",
 "productNames": [
 "Digital IDC OSM"
],
 "fullfillmentFunction":
"TmfProvFunctionFunction_TmfProvFunctionProcess",
 "taskName": "ProvisionOrderEntryTask",
 "orderId": 18,
 "externalId": "MultipleFTE0000123889",
 "category": "cat1",
 "orderOverdue": true,
 "affectedLines": "Amazon Prime [add]",
 "requestedCompletionDate": "2025-02-13T13:38:33Z",
 "lastUpdatedDate": "2025-02-13T13:38:34Z",
 "state": "created",
 "attributes": [
 {
 "name": "componentNodeIndex",
 "value": "1739453913919"
 },
 {
 "name": "orderComponentKey",
 "value": "TmfProvFunctionFunction"
 },
 {
 "name": "location",
 "value": "testLocation2"
 },

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 16

 {
 "name": "orderHistId",
 "value": "302"
 }
],
 "taskStatuses": [
 "next"
]
 },
 {
 "id": "1935585748",
 "href": "self",
 "creationDate": "2025-02-13T13:38:34Z",
 "message": "error",
 "orderType": "Product",
 "customerName": "Team2@osm.com",
 "productNames": [
 "Digital IDC OSM"
],
 "fullfillmentFunction":
"TmfProvFunctionFunction_TmfProvFunctionProcess",
 "taskName": "ProvisionOrderEntryTask",
 "orderId": 18,
 "externalId": "MultipleFTE0000123889",
 "category": "cat1",
 "orderOverdue": true,
 "affectedLines": "Amazon Prime [add]",
 "requestedCompletionDate": "2025-02-13T13:38:33Z",
 "lastUpdatedDate": "2025-02-13T13:38:34Z",
 "state": "created",
 "attributes": [
 {
 "name": "componentNodeIndex",
 "value": "1739453913919"
 },
 {
 "name": "orderComponentKey",
 "value": "TmfProvFunctionFunction"
 },
 {
 "name": "location",
 "value": "testLocation1"
 },
 {
 "name": "orderHistId",
 "value": "302"
 }
],
 "taskStatuses": [
 "next"
]
 },
 {
 "id": "359453722",
 "href": "self",
 "creationDate": "2025-02-04T12:01:43Z",

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 16

 "message": "500",
 "orderType": "Product",
 "customerName": "e2e_individual20200428233218579@cheers.com",
 "productNames": [
 "Promotional Offering PS"
],
 "fullfillmentFunction":
"ProductProvisionOrderFunction_ProductProvisionOrderSubProcess",
 "taskName": "ProductProvisionSITask",
 "orderId": 2,
 "externalId": "456855",
 "category": "category",
 "orderOverdue": true,
 "affectedLines": "Amazon Prime [add]",
 "requestedCompletionDate": "2025-02-04T12:01:40Z",
 "lastUpdatedDate": "2025-02-04T12:03:49Z",
 "recentAction": "cancel",
 "state": "completed",
 "attributes": [
 {
 "name": "componentNodeIndex",
 "value": "1738670500916"
 },
 {
 "name": "orderComponentKey",
 "value":
"ProductProvisionOrderFunction.AmazonPrime.WholeGranularity"
 },
 {
 "name": "actionId",
 "value": "1381339654"
 },
 {
 "name": "location",
 "value": "ProductProvisioningComponent"
 },
 {
 "name": "orderHistId",
 "value": "1116"
 }
],
 "taskStatuses": [
 "success"
]
 },
 {
 "id": "1354901350",
 "href": "self",
 "creationDate": "2025-02-04T12:01:43Z",
 "message": "403: Forbidden",
 "orderType": "Product",
 "customerName": "e2e_individual20200428233218579@cheers.com",
 "productNames": [
 "Promotional Offering PS"
],
 "fullfillmentFunction": "Emulated_SOM_Emulator_ProvisionOrder",

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 16

 "taskName": "ProvisionOrderEmulatorTask",
 "orderId": 2,
 "externalId": "456855",
 "category": "UnexpectedDownstreamError",
 "orderOverdue": true,
 "affectedLines": "La League VR [add], Text Roaming [add], Data
Roaming [add], Wireless Voice Service [add], Voice Roaming [add], SIM Card
[add], Wireless Data Service [add], Wireless Text Service [add]",
 "requestedCompletionDate": "2025-02-04T12:01:40Z",
 "lastUpdatedDate": "2025-02-04T12:03:49Z",
 "recentAction": "cancel",
 "state": "completed",
 "attributes": [
 {
 "name": "componentNodeIndex",
 "value": "1738670500914"
 },
 {
 "name": "orderComponentKey",
 "value":
"ProvisionOrderFunction.Emulated_SOM.WholeGranularity"
 },
 {
 "name": "actionId",
 "value": "447045169"
 },
 {
 "name": "location",
 "value": "ProvisioningComponent"
 },
 {
 "name": "orderHistId",
 "value": "1114"
 }
],
 "taskStatuses": [
 "success"
]
 },
 {
 "id": "1778200595",
 "href": "self",
 "creationDate": "2025-02-04T12:01:42Z",
 "message": "500",
 "orderType": "Product",
 "customerName": "e2e_individual20200428233218579@cheers.com",
 "productNames": [
 "Promotional Offering PS"
],
 "fullfillmentFunction":
"ProductProvisionOrderFunction_ProductProvisionOrderSubProcess",
 "taskName": "ProductProvisionSITask",
 "orderId": 2,
 "externalId": "456855",
 "category": "category",
 "orderOverdue": true,

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 16

 "affectedLines": "Disney+ [add]",
 "requestedCompletionDate": "2025-02-04T12:01:40Z",
 "lastUpdatedDate": "2025-02-04T12:04:01Z",
 "recentAction": "cancel",
 "state": "completed",
 "attributes": [
 {
 "name": "componentNodeIndex",
 "value": "1738670500917"
 },
 {
 "name": "orderComponentKey",
 "value":
"ProductProvisionOrderFunction.Disney.WholeGranularity"
 },
 {
 "name": "actionId",
 "value": "458412405"
 },
 {
 "name": "location",
 "value": "ProductProvisioningComponent"
 },
 {
 "name": "orderHistId",
 "value": "1117"
 }
],
 "taskStatuses": [
 "success"
]
 }
]

The following table shows the API attributes and example values for retrieving the Fallout
Exception details by ID:

Table 5-5 API Attributes for Retrieving Fallout Exception Details by ID

API Attribute Value

API Endpoint URL http://hostname:port/orchestration/sr/
quick/falllout/v2.0/falloutException/
{falloutExceptionId}

where hostname and port are the access details
of the Kubernetes cluster exposed by your Ingress
Controller or Load Balancer.

Request Type GET.

Request Header There are no request headers for this operation.

Request Body There's no request body for this operation.

Authentication Authorization:Bearer access-token (The
key-value added as header).

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 16

Table 5-5 (Cont.) API Attributes for Retrieving Fallout Exception Details by ID

API Attribute Value

Query Parameters Query parameters are used for selecting fields in
the response. For further details refer to the REST
API Reference for Oracle Communications Order
and Service Management Cloud Native.

Path Parameter falloutExceptionId: Identifier of the Fallout
Exception.

Request

GET /falloutException/1791523756
There's no request body for this operation.

Response

Get Fallout Exception By ID Response

200

[
 {
 "id": "1791523756",
 "href": "self",
 "creationDate": "2025-02-13T13:38:48Z",
 "message": "error",
 "orderType": "Product",
 "customerName": "Team2@osm.com",
 "productNames": [
 "Digital IDC OSM"
],
 "fullfillmentFunction":
"TmfProvFunctionFunction_TmfProvFunctionProcess",
 "taskName": "ProvisionOrderEntryTask",
 "orderId": 22,
 "externalId": "0000123889",
 "category": "cat1",
 "orderOverdue": true,
 "affectedLines": "Amazon Prime [add]",
 "requestedCompletionDate": "2025-02-13T13:38:47Z",
 "lastUpdatedDate": "2025-02-13T13:38:48Z",
 "state": "created",
 "attributes": [
 {
 "name": "componentNodeIndex",
 "value": "1739453927876"
 },
 {
 "name": "orderComponentKey",
 "value": "TmfProvFunctionFunction"
 },
 {
 "name": "location",

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 16

 "value": "testLocation"
 },
 {
 "name": "orderHistId",
 "value": "302"
 }
],
 "taskStatuses": [
 "next"
]
 }
]

POST Endpoints
The following table shows the API attributes and sample values for a task level
submitFalloutAction request (retry and force complete task):

Table 5-6 API Attributes for a Task Level submitFalloutAction Request

API Attribute Value

API Endpoint URL http://hostname:port/orchestration/sr/quick/falllout/v2.0/
falloutException/{falloutExceptionId}/submitFalloutAction

where hostname and port are the access details of the Kubernetes cluster
exposed by your Ingress Controller or Load Balancer.

Request Type POST.

Request Header Content-Type:application/json (The key-value is added as a header).

Request Body JSON payload of action schema.

Authentication Authorization:Bearer access-token (The key-value is added as a
header).

Path Parameter falloutExceptionId: Identifier of the fallout exception.

Request

POST /falloutException/{falloutExceptionId}/submitFalloutException
Content-Type: application/json

Force Complete Task

The request JSON payload needed to provide the taskStatus for marking the task complete.
The task status information is made available by the GET falloutException API response
body attribute taskStatuses. The task status is optional when the number of the taskStatuses
is 1.

action_forceCompleteAction Schema Sample

{
 "falloutAction": "forceComplete",
 "taskStatus": "next",
 "author": "fallout user"
}

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 16

Retry Task

action_otherFalloutAction Schema Sample

{
 "falloutAction": "retry",
 "author": "fallout user"
}

FailOrderItems

action_OtherFalloutAction Schema Sample

{
 "falloutAction": "failOrderItems",
 "author": "fallout user"
}

Response

202

The following table shows the API attributes and sample values for an order level
submitFalloutAction request (failOrder, cancelOrder, abortOrder).

Table 5-7 API Attributes and Sample Values for an Order Level submitFalloutAction
Request

API Attribute Value

API Endpoint URL http://hostname:port/orchestration/sr/quick/falllout/
v2.0/falloutException/submitFalloutAction

where hostname and port are the access details of the Kubernetes
cluster exposed by your Ingress Controller or Load Balancer.

Request Type POST.

Request Header Content-Type:application/json (The key-value is added as a
header).

Request Body JSON payload of actionOnOrder SchemaOrderId for which the fallout
action is submitted is part of the request body. For further details refer to
the REST API Reference for Oracle Communications Order and Service
Management Cloud Native.

Authentication Authorization:Bearer access-token (The key-value is added as a
header.)

For details about the Constructing the HTTP request for client, refer to Using TMF REST APIs
(Cloud Native Only).

Request

POST /falloutException/submitFalloutException
Content-Type: application/json

Cancel Order

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 16

actionOnOrder Schema Sample

{
 "falloutAction": "cancel",
 "id": 11,
 "author": "fallout user"
}

Abort Order

actionOnOrder Schema Sample

{
 "falloutAction": "abort",
 "id": 11,
 "author": "fallout user"
}

Fail Order

actionOnOrder Schema Sample

{
 "falloutAction": "failOrder",
 "id": 11,
 "author": "fallout user"
}

Response

202

Chapter 5
Constructing the Endpoint

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 16

6
Using OSM Security Callback

This chapter describes the Oracle Communications Order and Service Management (OSM)
Security Callback feature, which allows you to generate an audit trail log of users before they
gain access to order data that is deemed to be sensitive.

About Security Callback
OSM provides a callback interface that is designed to intercept order access from the following
functions:

• GetOrder

• Web Service GetOrder

• Order Automation Context getOrder()

• XML API GetOrder.Request, GetNextOrderAtTask.Request, GetOrderAtTask.Request

• Opening the order from the Task web client Worklist and Query pages

• Worklist

• XML API WorkList.Request

• Query

• XML API Query.Request

• OrderDataHistory

• Task web client Order Data History page (clicking on view or node URLs in Order Editor)

• XML API GetOrderDataHistory.Request

The callback is called before sensitive order data is about to be retrieved or displayed to a
user. The normal security authorization for the call being made remains in place and runs
before this callback interface.

About the Security Callback Interface
The Security Callback interface (contained in the com.mslv.osm.security Java package) is
implemented by a registered custom class which calls the defined method (single order or
result set) and passes information about the order which has been exposed to the user. In the
single order or result set method, the custom class can be passed either a single order or a
result, depending on which interface it is invoked. For example, if you select multiple orders in
a worklist, the security callback would be passed a result set of orders.

For more information about the Security Callback interface, see the Javadocs located in the
OSM SDK at /SDK/osm7.w.x.y.z-javadocs.zip (where w.x.y.z represents the specific version
numbers for OSM). See OSM Installation Guide for more information about installing the OSM
SDK for traditional OSM.

package com.mslv.oms.security;

import java.util.Collection;

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 6

/**
 * The interface provides the callback to user defined custom code in which
 * the external call accesses the order.
 *
 */
public interface OrderViewAccessProvider extends Callback {
/**
 * Called before the details of an order are retrieved for a user. This occurs
 when an order is displayed in the order editor, or retrieved via APIs e.g.
 GetOrder, GetWorklist, GetQuery, GetOrderDataHistory, GetOrderAtTask,
 GetNextOrderTask (xmlapi only).
 * @param userId The user that accessing the order.
 * @param orderId OSM order ID.
 * @param cartridgeName The cartridge name that order belongs to.
 * @param cartridgeVersion The cartridge version that order belongs to.
 * @param orderType The order type.
 * @param orderSource The order source.
 * @param view The view mnemonic.
 * @throws OrderViewAccessNotAllowedException This embeds any custom code
 application exceptions. The exception to differentiate unexpected exception
 that may be occurring in custom code.
 * Any exceptions other than OrderViewAccessException suppressed and logged by
 OSM core.
 * @see OrderViewAccessNotAllowedException
*/
public void checkOrderAccess(String userId, String orderId, String cartridgeName,
 String cartridgeVersion, String orderType,
 String orderSource, String view)
 throws OrderViewAccessNotAllowedException;

 /**
 * Invoked before a summary of an order is displayed for a user. This occurs before
an order is returned on a worklist or query. Note that multiple order summaries may be
passed through the supplied array. This allows the core to optimize invocations of this
method to pass multiple orders at the same time.
 * @param userSummaryInfo
 * The collection of Workgroups of the user who is accessing the order.
 * @param orderSummaryInfo
 * The collection of order summaries accessed by the function.
 * @return order IDs
 The collection of order IDs that need be filterd from the order list. If
returns null or empty collection, Order and Service Management returns the whole list.
 * @throws OrderViewAccessNotAllowedException
 * This may embed any custom code application exceptions. Order and Service
Management core would deny the access to all orders if the exception is thrown. Other
exceptions suppressed and logged by Order and Service Management core.
 * @see OrderViewAccessNotAllowedException
 */
Public Collection<String> checkOrderSummaryAccess
 (UserSummaryInfo userInfo,
 Collection<OrderSummaryInfo> ordersInfo
) throws OrderViewAccessNotAllowedException;
}

Exceptions
OSM blocks order access if it catches an OrderViewAccessNotAllowedException from the
callback call, regardless of the method called. Other types of exceptions are simply logged and
users are not blocked from order access or retrieval.

Chapter 6
About the Security Callback Interface

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 6

Security Callback Sample
You can find the following sample in the SDK in the SDK/Samples/SecurityCallback directory.

import java.util.Collection;
import java.util.Map;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.mslv.oms.security.OrderSummaryInfo;
import com.mslv.oms.security.OrderViewAccessNotAllowedException;
import com.mslv.oms.security.OrderViewAccessProvider;
import com.mslv.oms.security.UserSummaryInfo;

/**
 * The sample provides an example of security callback.
 *
 */

public class MyViewAccessCallback implements OrderViewAccessProvider {

 private static final Log LOG = LogFactory.getLog(MyViewAccessCallback.class);

 /**
 * Invoked before the details of an order are retrieved for a user. This occurs when
an order is displayed in the order editor, or
 * retrieved via APIs (e.g. GetOrder, GetWorklist, GetQuery, GetOrderDataHistory,
GetOrderAtTask and GetNextOrderAtTask).
 *
 * @param userId
 * The user that acessing the order.
 * @param orderId
 * Order and Service Management order ID.
 * @param cartridgeName
 * The cartridge name that order belongs to.
 * @param cartridgeVersion
 * The cartridge version that order belongs to.
 * @param orderType
 * The order type.
 * @param orderSource
 * The order source.
 * @param view
 * The view mnemonic.
 * @throws OrderViewAccessNotAllowedException
 * This embeds any custom code application exceptions. The exception to
differentiate unexpected exception that may be
 * occurring in custom code.
 *
 * @see
com.mslv.oms.security.OrderViewAccessProvider#checkOrderViewDetail(java.lang.String,
java.lang.String, java.lang.String,
 * java.lang.String, java.lang.String, java.lang.String, java.lang.String)
 */
 public void checkOrderAccess(final String userId, final String orderId, final String
cartridgeName, final String cartridgeVersion,
 final String orderType, final String orderSource, final String view) throws
OrderViewAccessNotAllowedException {

 if (LOG.isInfoEnabled()) {

Chapter 6
Security Callback Sample

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 6

 LOG.info("MyViewAccessCallback called on checkOrderViewDetail:" + "by:" +
userId + " orderID:" + orderId + " cartridgeName:"
 + cartridgeName + " cartridgeVersion:" + cartridgeVersion + "
orderType:" + orderType + " orderSource:" + orderSource
 + " view:" + view);

 }

 }

 /**
 * Invoked before a summary of an order is displayed for a user. This occurs before
an order is returned on a worklist or query. Note that multiple order summaries may be
passed through the supplied array. This allows the core to optimize invocations of this
method to pass multiple orders at the same time.
 * @param userSummaryInfo
 * The collection of Workgroups of the user who is accessing the order.
 * @param orderSummaryInfo
 * The collection of order summaries accessed by the function.
 * @return order IDs
 The collection of order IDs that need be filterd from the order list. If
returns null or empty collection, Order and Service Management returns the whole list.
 * @throws OrderViewAccessNotAllowedException
 * This may embed any custom code application exceptions. Order and Service
Management core would deny the access to all orders if the exception is thrown. Other
exceptions suppressed and logged by Order and Service Management core.
 * @see OrderViewAccessNotAllowedException
 */
 public Collection<String> checkOrderSummaryAccess(final UserSummaryInfo
userSummaryInfo,
 final Collection<OrderSummaryInfo> orderSummaryInfo) throws
OrderViewAccessNotAllowedException {

 if (LOG.isInfoEnabled()) {
 LOG.info("MyViewAccessCallback called on checkOrderViewSummary");
 }

 for (final OrderSummaryInfo order : orderSummaryInfo) {

 if (LOG.isInfoEnabled()) {
 LOG.info("MyViewAccessCallback called on checkOrderViewSummary" + " by:"
+ userSummaryInfo.getUserId() + " orderID:"
 + order.getOrderId() + " orderHistID:" +
order.getTaskInfo().getOrderHistId() + " cartridgeName:"
 + order.getCartridgeName() + " cartridgeVersion:" +
order.getCartridgeVersion() + " orderType:"
 + order.getOrderType() + " orderSource:" +
order.getOrderSource() + " orderState:" + order.getOrderState()
 + " targetOrderState:" + order.getTargetOrderState() + "
reference:" + order.getReference() + " priority:"
 + order.getPriority() + " processStatus:" +
order.getProcessStatus() + " orderCreationDate:"
 + order.getOrderCreationDate() + " orderCompletedDate:" +
order.getOrderCompletedDate()
 + " expectedOrderCompletionDate:" +
order.getExpectedOrderCompletionDate() + " expectedGracePeriodCompletionDate:"
 + order.getExpectedGracePeriodCompletionDate() + "
taskMnemonic:" + order.getTaskInfo().getTaskMnemonic()
 + " taskState:" + order.getTaskInfo().getTaskState() + "
taskStartDate:" + order.getTaskInfo().getTaskStartDate()
 + " executionMode:" + order.getTaskInfo().getExecutionMode() + "
expectedTaskCompletionDate:"

Chapter 6
Security Callback Sample

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 6

 + order.getTaskInfo().getExpectedTaskCompletionDate());

 }
 final Map<String, String> flexHeadersWithValues = order.getFlexibleHeaders();
 if (LOG.isInfoEnabled()) {
 LOG.info("FlexibleHeaders in the form {(MnemonicPath=Value)} " +
flexHeadersWithValues);
 }

 }

 return null;
 }

}

Configuring Security Callbacks
Complete the following steps to configure your callback implementation.

1. Implement the interface OrderViewAccessProvider.

OSM provides the osmcommon.jar file, which includes the callback interface and
exception OrderViewAccessException. The JAR file can be obtained by unpacking the
oms.ear file. See "Unpacking the oms.ear File" for more information about unpacking the
oms.ear file.

2. Register the callback:

• For traditional OSM, register through the oms-config.xml file.

<oms-parameter>
<oms-parameter-name>com.mslv.oms.security.OrderViewAccessProvider</oms-parameter-
name>
<oms-parameter-value>callbackexamples.MyViewAccessCallback</oms-parameter-value>
</oms-parameter>

See the chapter on configuring OSM with oms-config.xml in OSM System
Administrator's Guide for detailed instructions on accessing and modifying the oms-
config.xml file.

• For OSM cloud native, specify the following:

omsConfig:
 com.mslv.oms.security.OrderViewAccessProvider:
callbackexamples.MyViewAccessCallback

See the "Configuring Parameters" section in "Chapter 6 Creating Your Own OSM
Cloud Native Instance" of OSM Cloud Native Deployment Guide for further details on
modifying oms-config parameters.

3. Compile and package the callback implementation in the customization.jar file.

4. Modify the security.jar manifest to include any required JAR for the custom code to run.

5. Repack oms.ear with customization.jar and any custom code dependent libraries using
the scripts provided. See "Packing the oms.ear File" for more information about packing
the oms.ear file.

6. Do one of the following:

Chapter 6
Security Callback Sample

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 6

• For traditional OSM, redeploy the oms.ear.

• For OSM cloud native, rebuild the OSM container image. See the "Deploying Entities
to an OSM WebLogic Domain" section in "Chapter 7 Extending the WebLogic Server
Deploy Tooling (WDT) Model" in OSM Cloud Native Deployment Guide.

Chapter 6
Security Callback Sample

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 6

7
Using Custom Menu Items and Actions

This chapter describes the Oracle Communications Order and Service Management (OSM)
Custom Menu and Action feature, which allows you to configure custom menu items and
actions that are called from the context menu of the Task web client Worklist and Query
Result pages.

About Custom Menu Items and Actions
A custom menu action calls customer-specific business logic, for example, enabling a print job
of tasks in the Worklist. The custom business logic can easily interact with the OSM server
through the XML API.

You define custom menu items and actions using a model in an XML file. Actions are defined
globally across all cartridges, and may be called for any task or group of tasks. The action is
available to all users. Actions that call the XML API are done within the web client session, so
access privileges to the API are based on the web client user's workgroup privileges.

Additionally, API users must belong to a WebLogic group that provides privilege to access the
APIs. For custom menu and action items, that WebLogic group is OMS_xml_api. So, to access
the APIs through custom menu items and actions, the API user must belong to the WebLogic
group OMS_xml_api.

About the File Name and Location
The metadata definition for custom menu action is supported through a standalone
configuration file that is loaded and run at runtime. Refresh the server cache in the
Administration area of the OSM Order Management web client (or an Ant task in the Cartridge
Development Kit) to trigger a reload of the configuration file.

The name and location of the custom menu action file are configurable parameters. For
traditional OSM, these are available in the oms-config.xml file. In OSM cloud native, these
can be set in the specification files. See the "Configuring Parameters" section in "Chapter 6
Creating Your Own OSM Cloud Native" Instance of OSM Cloud Native Deployment Guide for
details on working with osm-config parameters in cloud native.

A working model, which includes a sample configuration file, Javascript file, and ReadMe, is
available in the SDK/Samples/CustomMenuAndAction directory.

About the Model Definition
The definition of the model must follow the XML schema menuAction.xsd located in the SDK/
XMLImportExport/models directory. The action and menuItem elements are described below.

Action Definition
Table 7-1 lists the action elements.

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 8

Table 7-1 Action Elements

Element Description

name The name of the action referenced by the menu item.

xsi:type There are three types of actions:

javascriptActionType - Defines a Javascript function as part of the
<implementation> element. The function may be embedded directly in the
element, in which case it should not be wrapped in a function name () {}
construction, or it may be located in an external file which can be called from the
<implementation> element.

orderContextActionType - Similar to javascriptActionType, can make use of
Javascripts in the same way. In addition, has an object named orderContext
which is accessible from within the Javascript. Refer to this object as part of the
function. If the function is defined in an external file and the <implementation>
contains a call to that function, pass orderContext as a parameter to the function.

uriActionType - Forwards you to the supplied URI, which opens in a new window
in the browser. The URI is supplied as part of the <implementation> element.

description The description of the action that appears on the context menu when no menu
item description is supplied.

hint The tool tip associated with the action.

icon The icon associated with the action. Icons must be packed as part of the
oms.ear file (oms.ear/oms.war/images).

implementation The implementation of the action, e.g. Javascript function, orderContext, URI.
May also contain a href, which is a URI pointing to a Javascript file.

uri The path to a local directory, web page address, or any point of content.

OrderContext and Orders
An orderContextActionType action is supplied with an object named orderContext. This
object contains an array of orders which, in turn, contains information about the orders for
which the action was called. Table 7-2 shows the method calls that can be made on the
orderContext and order objects.

Table 7-2 orderContext and Orders

Object Methods Description

orderContext getOrders() Call this method to get the selected orders.

order getOrderId() Call this method to get the order ID for the order.

order getOrderHistId() Call this method to get the order history ID for the order.

order getOrderTypeId() Call this method to get the order type ID for the order.

order getOrderSourceId() Call this method to get the order source ID for the order.

order getState() Call this method to get the state of the order.

Calling the XML API
The function, callXmlApi(), makes it easier for action implementations to call the XML API.
The function takes the XML API request document as an argument and returns the response
XML document.

Chapter 7
About the Model Definition

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 8

Sample Action Implementations
This section provides some samples of the different types of actions that you can configure in
your custom action and menu XML file.

<action name="get_worklist_through_xml_api" xsi:type="javascriptActionType">
 <description>Get worklist though XML API</description>
 <hint>An XML API call</hint>
 <icon>/oms/images/delete_node.gif</icon>
 <implementation>
 var callString=prompt("Please enter the XML API statement", "<Worklist.Request
xmlns='urn:com:oracle:oms:xmlapi:1'> </Worklist.Request>"); var
returnDoc=callXmlApi(callString); alert("Returned document: " + returnDoc.xml);
 </implementation>
</action>

<action name="test_order_context" xsi:type="orderContextActionType">
 <description>Test Order Context</description>
 <implementation>
 var orders=orderContext.getOrders();var callString="<GetOrder.Request
xmlns='urn:com:oracle:oms:xmlapi:1'>";callString = callString + "<OrderID>" +
orders[0].getOrderId() + "</OrderID>";callString = callString + "<Accept>false</
Accept>";callString = callString + "<OrderHistID>" + orders[0].getOrderHistId() + "</
OrderHistID>";callString = callString + "</GetOrder.Request>";returnDoc =
callXmlApi(callString);alert('result: ' + returnDoc.xml);
 </implementation>
</action>

<action name="test_js_file" xsi:type="orderContextActionType">
 <description>Test Order Context</description>
 <implementation href="file:///$bea_home/user_projects/domains/provisioning/foo.js">
 test_js_file(orderContext);
 </implementation>
</action>

<action name="go_to_about" xsi:type="uriActionType">
 <description>Show OSM About</description>
 <icon>/oms/images/mslv_logo1.jpg</icon>
 <uri>/oms/about</uri>
</action>

Menu Item Definition
Table 7-3 shows the elements of the menu item definition.

Table 7-3 Menu Item Elements

Attribute Description

name The name of the menu item (internal reference only).

description The description of the menu item that appears on the context menu.

enabled Set to true(), true, yes, or y (case-insensitive) to enable the menu item, or
set to anything else to disable it.

visible Set to true(), true, yes, or y (case-insensitive) to make the menu item
visible, or set to anything else to make the menu item invisible.

Chapter 7
About the Model Definition

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 8

Table 7-3 (Cont.) Menu Item Elements

Attribute Description

displayStyle The display style of the menu item on the context menu, either ICON, or
TEXT, or both (ICON TEXT). References the action icon and/or
description.

action Reference to the action being called.

Sample Menu Item Definition
<menuItem name="get_worklist">
 <description>Get worklist through XML API</description>
 <enabled>true()</enabled>
 <visible>true()</visible>
 <displayStyle>ICON TEXT</displayStyle>
 <action>
 <name>get_worklist_through_xml_api</name>
 </action>
</menuItem>

Setting Up the Environment
Once you have defined the elements in your configuration file, you must set up the
environment before running the file. There are three methods for doing this:

• File system path method: This is the simplest configuration method for a single
environment. It does not require any cartridges for its implementation. However, it does
require you to unpack, repack, and redeploy the oms.ear file for each environment with a
different file location and every time the file location changes.

• XML Catalog (Static Relative Location) method: This method uses the XML Catalog
function in Oracle Communications Service Catalog and Design - Design Studio. It allows
you to deploy the resources with a cartridge, and configure a static location for the source
files based on their location in the Design Studio files hierarchy. This means that the files
can be deployed from Studio to environments in different locations, and having different file
structures, without needing any further manual intervention.

• XML Catalog (rewriteURI) method: This method uses the XML Catalog function in Design
Studio. It provides a mechanism for you to define the location of the files dynamically,
either to an absolute file location or to a location relative to the current Design Studio
environment. You can then change the location for the files without having to edit the oms-
config.xml file. This could be especially useful while you are developing or unit testing the
configuration, as you could define a local directory for the files and change them without
having to redeploy the cartridge after each change.

To configure your environment, you must perform the steps in "Setting Up the oms-config.xml
File (Traditional OSM Only)" and only one of the following sections:

• File System Path Environment Configuration Method

• XML Catalog (Static Relative Location) Environment Configuration Method

• XML Catalog (rewriteURI) Environment Configuration Method

Chapter 7
Setting Up the Environment

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 8

Setting Up the oms-config.xml File (Traditional OSM Only)
All three methods of environment configuration require that you set up the oms-config.xml
file.

For the file system path method, you must edit the oms-config.xml file for each environment
where the absolute path to the file is different. For the XML Catalog methods you should only
need to perform this procedure once.

See OSM System Administrator's Guide for more information about editing the oms-
config.xml file.

1. Locate the following section of the oms-config.xml file:

<oms-parameter>
 <oms-parameter-name>custommenuaction_model_location</oms-parameter-name>
 <oms-parameter-value/>
</oms-parameter>

2. Update the <oms-parameter-value> tag. The value you use here depends on the
environment configuration method you are using.

• If you are using the file system path method, update the value with the exact path to
the configuration file for the current environment. You must perform this procedure for
each environment that has a different file path.

<oms-parameter>
 <oms-parameter-name>custommenuaction_model_location</oms-parameter-name>
 <oms-parameter-value>
 /opt/OSM/CustomMenu/custom_menu_action_model.xml
 </oms-parameter-value>
</oms-parameter>

• If you are using the XML Catalog (Static Relative Location) method, you use a relative
location based on osmmodel and referring to a directory in the Studio workspace.

<oms-parameter>
 <oms-parameter-name>custommenuaction_model_location</oms-parameter-name>
 <oms-parameter-value>
 osmmodel://cartridge_name/cartridge_version/resources/filename.xml
 </oms-parameter-value>
</oms-parameter>

where cartridge_name and cartridge_version represent the name and version of the
cartridge where you are planning to include the custom files, and filename.xml is the
file with your XML model (for example, custom_menu_action_model.xml).

• If you are using the XML Catalog (rewriteURI) method, you use a URI that you have
determined for this task. It does not have to be a valid URL or any location where the
file is located. It will be overwritten with a valid value automatically at runtime.

<oms-parameter>
 <oms-parameter-name>custommenuaction_model_location</oms-parameter-name>
 <oms-parameter-value>
 http://example.org/somewhere/filename.xml
 </oms-parameter-value>
</oms-parameter>

where example.org/somewhere represents a namespace you are using as a
convention to refer to this file and filename.xml is the file with your XML model (for
example, custom_menu_action_model.xml).

Chapter 7
Setting Up the Environment

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 8

Working with oms-config Parameters in OSM Cloud Native
In OSM cloud native, all oms-config parameters can be updated in the specification files. The
parameter name and value can be set in either the shape, instance, or project specification
files. For more details, see OSM Cloud Native Deployment Guide.

File System Path Environment Configuration Method
You must perform the procedure below for each server environment.

1. Edit your custom menu and action configuration XML file to ensure that it contains the
correct location of any external files referenced in it. To find the references, look for the
string implementation href in the file. Then change the value to the correct location for
the current environment.

2. Save the changes and close the file.

3. Ensure that your custom configuration XML file is located in the directory you specified in
step 2 of "Setting Up the oms-config.xml File (Traditional OSM Only)."

4. Do one of the following:

• For traditional OSM, deploy the oms.ear file that contains your oms-config.xml
changes to the environment.

• For OSM cloud native, create or update your OSM instance with the new oms config
parameters. See the "Configuring Parameters" section in "Chapter 6 Creating Your
Own OSM Cloud Native Instance" of OSM Cloud Native Deployment Guide.

XML Catalog (Static Relative Location) Environment Configuration Method
You must perform the procedure below for each Design Studio environment.

1. Edit your custom menu and action configuration XML file to ensure that it contains the
correct location of any external files referenced in it. To find the references, look for the
string implementation href in the file. Then change the value to the correct location for
the current environment.

2. Create or open a cartridge in Design Studio with the name and version that you configured
in step 2 of "Setting Up the oms-config.xml File (Traditional OSM Only)."

3. Ensure that XML_CATALOG_SUPPORT is not set to disable for the cartridge. To check
this, open the cartridge definition file, and click on the Cartridge Management Variables
tab. By default, XML_CATALOG_SUPPORT is enabled, so if there is no entry in the
Cartridge Management Variables table for that parameter, no change is needed. If there is
an entry and it is set to disable, remove the entry and save the cartridge definition file.

4. Copy your custom configuration XML file and any files that it references to the location you
configured in step 2 of "Setting Up the oms-config.xml File (Traditional OSM Only)." In the
example, you would copy the files to the resources directory for your cartridge.

5. Build and deploy the cartridge.

6. Do one of the following:

• For traditional OSM, deploy the oms.ear file that contains your oms-config.xml
changes to the environment.

Chapter 7
Setting Up the Environment

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 8

• For OSM cloud native, create or update your OSM instance with the new oms config
parameters. See the "Configuring Parameters" section in "Chapter 6 Creating Your
Own OSM Cloud Native Instance" of OSM Cloud Native Deployment Guide.

XML Catalog (rewriteURI) Environment Configuration Method
You must perform the procedure below for each Design Studio environment. You must perform
steps 4-7 whenever you change the location of the files.

1. Edit your custom menu and action configuration XML file to ensure that it contains the
correct location of any external files referenced in it. To find the references, look for the
string implementation href in the file. Then change the value to the correct location for
the current environment.

2. Create or open a cartridge in Design Studio.

3. Ensure that XML_CATALOG_SUPPORT is not set to disable for the cartridge. To check
this, open the cartridge definition file, and click on the Cartridge Management Variables
tab. By default, XML_CATALOG_SUPPORT is enabled, so if there is no entry in the
Cartridge Management Variables table for that parameter, no change is needed. If there is
an entry and it is set to disable, remove the entry and save the cartridge definition file.

4. Copy your custom configuration XML file and any files that it references to a location of
your choice, either inside or outside of the cartridge directory structure.

5. Create a copy of the xmlCatalogCoreTemplate.xml file. It is located in the
xmlCatalogs\core directory for your cartridge. You can name the copy anything you like
as long as it is a different name from the original and it ends with .xml.

6. In your new XML file, replace the commented text with a line indicating how you want to
translate the URI into a file location. The new line should look something like this:

<rewriteURI uriStartString=specified_namespace_string rewritePrefix="file-
_location"/>

where specified_namespace_string refers to the string you specified in step 2 of "Setting
Up the oms-config.xml File (Traditional OSM Only)" and file_location refers to the location
where you copied your custom configuration files.

For example, if you have copied the files to a location inside your cartridge directory
structure, you would add a line similar to this:

<rewriteURI uriStartString=http://example.org/somewhere rewritePrefix="osmmodel:///
TestCartridge/1.0.0/resources"/>

If you have copied the files to some location outside the Design Studio file structure, you
would add a line similar to this:

<rewriteURI uriStartString=http://example.org/somewhere rewritePrefix="file:///C:/
LocalResourcesFolder/resources"/>

Note

File re-write is not supported in OSM cloud native.

7. Build and deploy the cartridge.

8. Do one of the following:

• For traditional OSM, deploy the oms.ear file that contains your oms-config.xml
changes to the environment.

Chapter 7
Setting Up the Environment

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 8

• For OSM cloud native, create or update your OSM instance with the new oms config
parameters. See the "Configuring Parameters" section in "Chapter 6 Creating Your
Own OSM Cloud Native Instance" of OSM Cloud Native Deployment Guide.

Verifying the Changes
1. If OSM was running when you made the changes to set up the environment, refresh the

server cache in the Administration area of the OSM Order Management web client to
refresh the metadata. This loads the latest configuration for the custom menu and actions.

2. Log in to the Task web client.

3. In the Worklist or Query Results page, select any order and right-click.

The context menu displays the new menu items, positioned at the bottom of the menu.

Chapter 7
Setting Up the Environment

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 8

8
Using Automation

This chapter describes the Oracle Communications Order and Service Management (OSM)
automation framework, which enables you to configure and automatically run automated tasks
and notifications.

About Automations and the Automation Framework
The OSM automation framework provides the primary interface for outbound and inbound
operations that interact with external systems for automated order fulfillment. The automation
framework also provides internal data processing for automated tasks within a process
workflow. You can create notifications for individual tasks or at the order level that trigger
automations. See OSM Concepts for information about automated tasks and notifications.

To run automated tasks, notifications at the task level, or notifications at the order level, you
write automation plug-ins. The automation framework runs instances of automation plug-ins
within the context of these tasks and notifications which defines what order data is available to
the automation.

An automation plug-in can be a:

• Custom automation plug-in, which is an automation plug-in that you write, consisting of
custom business logic in the form of Java code.

• Predefined automation plug-in, which is an automation plug-in that is provided with the
OSM installation that you can augment with your business logic requirements.

OSM provides the following predefined automation plug-ins:

• XSLT Plug-in. A plug-in that uses XSLT to generate outbound messages and process
inbound messages.

• XQuery Plug-in. A plug-in that uses XQuery to generate outbound messages and process
inbound messages.

• JDBC Plug-in. A plug-in that uses JDBC to retrieve or update data in the database.

• Email Plug-in. A plug-in available for notifications that send email messages to external
systems.

The automation framework simplifies the process of sending messages to external systems.
The automation framework does the following:

• Uses the JMS communication protocol.

• Establishes and maintains the various JMS connections.

• Constructs the JMS messages, setting the required message properties.

• Correlates requests from OSM with responses from external systems.

• Guarantees delivery of the message and handles any errors or exceptions. It retries
messages until the message delivers.

• Handles poison messages. For example, if the message is undeliverable for some reason.

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 51

When OSM sends a message to an external system using an automation plug-in, the following
processing flow generally occurs:

1. OSM runs an automated task instance that triggers an automation called a sender plug-in.

2. The automation framework adds properties to the outbound message to correlate external
system responses to requests. For example, for a predefined XQuery or XSLT sender
plug-in:

a. The sender plug-in sets a property on the outbound JMS message as the correlation
property.

b. The automation framework saves the message properties set for each message with
the event information.

c. The automation framework sets the replyTo JMS property on the JMS request based
on properties configured for the sender plug-in.

3. The automation framework sends the JMS message to the JMS queue and destination
type that the external system must subscribe to in order to consume based on properties
configured for the sender plug-in.

Note

Custom automations are not restricted to JMS but can use any communication
protocol, such as HTTP or FTP. See "About Custom Automation Plug-ins" for
more information.

When OSM receives a message in response to the request, the following process flow
generally occurs.

1. After processing the request, the external system copies the properties from the incoming
request to the outgoing response.

2. The external system sends the response message to the reply to queue based on the
replyTo JMS property in the request.

3. The automation framework routes the response from the queue to the plug-in. The plug-in
that receives the response is called an automator.

4. The automation framework uses the message properties of the response, plus the
correlation information, to reload a Context for the response message, which is in this
scenario the task that sent the original request.

5. The automator performs business logic, such as updating order data and completing the
task.

You can create custom or predefined plug-ins using Design Studio Help.

Figure 8-1 shows the flow of an automated task with a notification that call their corresponding
automation plug-in. Design Studio provides the ability to map a specific automated task (Task
A) to a specific automation plug-in (Automation Plug-in A), or a specific automated notification
(Notification B) to a specific automation plug-in (Automation Plug-in B). This is called
automation mapping. The mappings are saved to a cartridge, which is then deployed to the
OSM server. OSM processes the automated tasks which trigger the mapped automation plug-
ins when specific events occur. See "About Creating Automations in Design Studio " and
"About Internal and External Events that Trigger Automations" for more information.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 51

Figure 8-1 Automation Flow

About Sender and Automator Automation Types
When you create an automation plug-in for a task, task notification, or order notification in
Design Studio, you bring up the Add Automation dialog box to create a plug-in for the task or
notification, give it a name, and select the Automation Type (for example, one of the
predefined automations or a custom automation). There are two basic types of automation
plug-ins: Sender and Automator. Use the Automator type if you want the plug-in to receive
data and perform work on the data. Use the Sender type if you want the plug-in to receive
data, perform work, then send the data to external systems.

About Automations in the Order and Task Contexts
You can configure automations in various contexts, such as automated tasks, notifications
configured for automated tasks, notifications configured for manual tasks, notifications
configured in process flows, and notifications configured at the order level. The data available
to these automations depends on which of these contexts the automation is triggered. The two
main contexts from which depend all the other contexts are the order context and the task
context.

The data available to an automation plug-in in the task context is restricted to the data defined
in the automated task's Task Data tab. The data available to an automation plug-in in the order
context is restricted to the data defined in the order specification, Permission tab, Query Task
subtab. This subtab links to a manual task designated as a query task that defines the data
available to order level notifications but is not part of any process flow.

When you create custom automations, you can access these contexts from the OSM Java API
com.mslv.automation.oms.AutomationContext class which is the parent class of
OrderContext which is in turn the parent of the TaskContext. These are either parent or
sibling classes for all the other contexts. You never need to import the AutomationContext
because it is inherited by all the other contexts. You can also declare these contexts in
predefined automation plug-ins.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 51

Each context class provides methods (or inherits them from parent classes) that you can use in
automation plug-ins to perform various functions such as:

• Updating order data

• Transitioning the task to a new state

• Suspending the task

• Completing the task

• Getting order task data for use in business logic

• Transition the order into a failed state

Figure 8-2 shows the class hierarchy stemming from the AutomationContext.

Figure 8-2 Context Object Class Hierarchy

Some of the methods that the task context inherits from the order context behave differently
when run from the task context. For example, the update order method run from the task
context can generate historical and contemporary order perspectives that can be used in order
amendment analysis, while the update order method run from the order context does not. See
"About Compensation for Automations" for more information.

Table 8-1 shows the Design Studio entity where you can configure automations, the types of
events that trigger the automations, and the context that gets passed into the plug-in.

Table 8-1 Context Objects Passed To Plug-in

Automation Plug-in
Trigger

Design Studio
Definition Location

OSM Event OSM Event Type Context Object
Passed To Plug-in

Automated task Task editor, Automation
tab

Task state transitions to
Received

Task Event TaskContext

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 51

Table 8-1 (Cont.) Context Objects Passed To Plug-in

Automation Plug-in
Trigger

Design Studio
Definition Location

OSM Event OSM Event Type Context Object
Passed To Plug-in

Order milestone-based
event notification

Order editor, Events tab Order reaches specified
milestone

Order Notification Event OrderNotificationCo
ntext

Task state-based event
notification

Task editor, Events tab Task reaches specified
state

Task Notification Event TaskNotificationCon
text

Task state-based event
notification

Process editor, Events
tab on Properties view
of a task in the process

Task reaches specified
state, then data
condition specified by
rule evaluates to true.

Task Notification Event TaskNotificationCon
text

Task status-based event
notification

Process editor, Events
tab on Properties view
of a status in the
process

Task reaches specified
status, then data
condition specified by
rule evaluates to true.

Task Notification Event TaskNotificationCon
text

Order data changed
event notification

Order editor,
Notifications tab

Specified order data
changes.

Order Notification Event OrderDataChangeN
otificationContext

Order jeopardy
notification

Order Jeopardy editor The timer conditions for
the jeopardy have been
reached.

System Notification
Event

OrderJeopardyNotifi
cationContext

Order jeopardy
notification

Order editor, Jeopardy
tab

At polling, data
condition defined by
rule evaluates to true.

System Notification
Event

OrderNotificationCo
ntext

Task jeopardy
notification

Task editor, Jeopardy
tab

At polling, data
condition defined by
rule evaluates to true.

System Notification
Event

If the task-level
jeopardy condition
Multiple events
per Task instance
is set, then
TaskNotificationCon
text is passed.
Otherwise
OrderNotificationCo
ntext is passed.

All context objects are located in the SDK/automation/automationdeploy_bin/
automation_plugins.jar file. All context objects are defined in the same package:
com.mslv.automation.oms.

About Internal and External Events that Trigger Automations
You must also define where you expect the sender or automator plug-in to receive its data
when you set the plug-in Event Type, which specifies whether the plug-in instance receives
data events internally from OSM or from external systems. The choices are as follows:

• Internal Event Receiver (default choice): Internal receiver indicates that the source of
event for plug-ins is internal to OSM. OSM makes order data available to these type of
plug-ins in their respective contexts (see "About Automations in the Order and Task
Contexts" for more information). For internal event receivers, the following happens:

– An event occurs within OSM.

– OSM creates a message and sends it to the oms_events message queue that the
OSM installer creates during the installation process. OSM maps order priority to the
JMS priority to prioritize internal events.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 51

– The automation framework subscribes to the internal message queue as part of the
OSM installation.

– The message is picked up by the automation framework and processed.

• External Event Receiver: The data made available to the automation plug-in comes from
a message sent from an external system. For external event receivers, the following
happens:

– An event occurs within an external system, such as an OSM automation plug-in sends
a message that arrives at the external system.

– The external system creates a response message and sends it to an external
message queue. You must explicitly create the external message queues or you can
use the oms_events queue that OSM uses for internal message processing.

– The automation framework subscribes to the external message queue through the
information you define on the External Event Receiver tab of the automation
definition.

– The message is picked up by the automation framework and processed.

Automated notifications are always defined as internal event receivers because, as the name
implies, notifications are used to notify OSM users or other areas of the OSM system of some
event occurring within OSM. That is why notifications do not receive messages from external
systems; the information with which to notify always originates within OSM.

The new plug-in appears in the Automation list. Once you add a plug-in to your automated
task, you define the plug-in properties. See the Design Studio Help for further information.

About Accessing the XML API in Automations
You can use the XMP API from within automations. To access the XML APIs from within a
custom automation plug-in, API users must belong to a WebLogic group that provides privilege
to access the APIs. For accessing the XML APIs from within a custom automation plug-in, that
WebLogic group is OSM_automation. So, to access the APIs from within a custom automation
plug-in, the API user must belong to the WebLogic group OSM_automation.

See the Design Studio Help for further information regarding the Run As field, which defines
the user of the automation.

About Queues, Correlation, and Property Selectors
Automation automator or sender plug-ins that are external event receivers (process responses
from external systems) listen for responses (JMS messages) from external systems on an
external message queue (JMS queue). These are responses to previously sent messages that
are correlated back to a task based on correlation ID. In some cases you must specify filter
criteria, defined in Design Studio as a message property selector, which OSM uses to filter
messages on the JMS queue. A task only receives messages from queues that match the
message property. If a message is selected, then message correlation occurs as normal and
the automated task receives the message. The external system must echo back the filter
criteria information by extracting and reinserting it into its response.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 51

Note

For JMS messages, Oracle recommends that you do not use the JMS prefix for
custom headers. Reserve the JMS prefix for predefined JMS headers, for example,
JMSCorrelationID, JMSMessageID, JMSPriority, and so on. Using the JMS prefix in
custom headers can cause problems.

OSM Request and Response Message Queues
When configuring OSM automation plug-in requests, you must create request queues that
external systems consume OSM request messages from. You can configure the JMS settings
for these queues based on the order processing requirements of the solution. For example,
request queues often require different retry, pause, and resume settings when external
systems are down. As such, it is important to have specific request queues configured to
support the various JMS message consumption scenarios for each external systems.

For returning responses messages, you can create response queues. The benefits of creating
new response queues is that you can configure the JMS settings as the solution requires.
Optionally, you can also use the predefined oms_events queue (using the mslv/oms/
server_name/internal/jms/events JNDI) that OSM uses for internal message processing. The
benefits of using oms_events exclusively for all response messages include:

• Design Studio requires less time to build cartridges because the oms_events queue is
internal to the oms.ear file. Design Studio does not need to generate a message-driven-
bean and external automation ear file to listen on the external queue.

• You can more efficiently deploy and undeploy cartridges where there is no external
automation ear file for the response queue.

• The OSM server consumes less memory when there is no external automation ear file for
the response queue.

• OSM is better able to prioritize messages from different systems when there is only one
queue. OSM can observe message priority uniformly across all messages within the
queue.

However, if you use oms_events, you cannot configure the JMS settings, such as the pause,
retry, or resume settings because these settings are already optimized to process internal OSM
messages. Being able to configure these JMS settings can be important in production systems
when configuring error queues or when stopping the JMS message flow to certain queues
during upgrade or maintenance windows. You must weigh the advantages and disadvantages
of using oms_events.

Correlating Requests from OSM to Responses from External Systems
Correlation is a property that associates an incoming external system message with an
outbound OSM message previously sent to initiate communication with the external system. In
some situations you may need additional message filtering using message property selectors.

You can set the JMS ID Correlation parameter in messages sent from OSM to external
systems to correlate response messages from the external system with the original request. If
you expect the correlated response to return to the task that originally sent the message, then
you do not need to programmatically set the correlation ID for the task because this is done for
the task when the original sender sent the message. If you expect the correlated response to
return to a different task (a receiver task) than the one that sent the message, then you must
programmatically set the correlation ID for the outgoing JMS message in the sending task, and

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 51

configure the receiver task to use the matching correlation ID. For more information about this
second scenario, see "Asynchronous Communication: Single or Multiple Requests and
Responses." In both scenarios, OSM compares the JMSCorrelationID with the correlation ID
set for the task and associates the two messages if the respective values match.

Note

No correlation configuration is required at the external system that sends the response
message.

Correlation is of two types: Message Property and XML Body correlation.

In Message Property correlation, you specify a message header as the correlation ID in the
outbound OSM message. For example:

outboundMessage:setJMSCorrelationID($outboundMessage, $corrID)

You can also specify additional message header properties in the outbound message. For
example:

outboundMessage:setStringProperty($outboundMessage, $HEADER1, $corrID)

By default, Message Property correlation uses JMSCorrelationID as the correlation ID. The
XML Body correlation uses an XPath expression to retrieve the correlation ID from the body of
the XML message.

See "Internal XQuery Sender" and "Internal XSLT Sender " for examples of predefined XQuery
and XSLT sender that set correlation ID for the outgoing messages. See "Internal Custom Java
Sender" for an example of a custom Java sender that sets the correlation ID for the outgoing
message.

Intercommunication Between Orders in the Same Domain
There is a special consideration when managing intercommunication between orders, and by
extension cartridges that are deployed in the same domain. This situation can occur whenever
there are two or more cartridges deployed in the same OSM server that need to communicate
with each other.

The automation sender in the child cartridge needs to use the correlation ID specified by the
parent order's task. By default, OSM uses the JMSCorrelationID property in the message
header as the correlation ID. However, if both parent and child task senders use the same
JMSCorrelationID property as the correlation ID, there is a potential situation where duplicate
entries will exist in the OSM database with the same correlation ID, resulting in an error when
the parent receiver tries to look up an automation context.

The design guideline to handle this is as follows:

• For the parent automation sender, set the JMSCorrelationID header either
programmatically, or allow the system to auto-generate this value.

• For the child automation sender, set the JMSCorrelationID header to a different correlation
ID than what the parent task sent, for example by using a different algorithm than the one
used in the automator for the parent, or allowing the system to auto-generate a value.
Define a separate custom field in the JMS header to contain the correlation ID expected by
the parent task.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 51

• For the parent automation receiver, use the message property correlation configuration to
retrieve the correlation ID from the custom defined JMS header field. This will prevent
multiple entries with the same correlation ID in the database and will allow the parent task
to correlate the automation context properly.

About Message Property Selectors
An automation task may have one or more external event receivers listening on the JMS
queue.

If the automation task has only one external event receiver, you do not need to specify a
message property selector. The automation tasks can use the JMS queue without the need for
filter criteria.

You must specify a unique message property selector for the event receiver if any of the
following situations apply:

• If the automation task has more than one external event receiver listening on the same
JMS queue. For example, if you defined multiple automation plug-in external event
receivers for the same automation task.

• If applications other than OSM share the same queue that an external event receiver is
listening on.

• If you use the Legacy build-and-deploy mode to build and deploy cartridges.

• If you use the Both (Allow server preference to decide) build-and-deploy mode to build and
deploy cartridges and configure the Internal dispatch mode for the OSM server.

Note

Internally, the activation task uses the OSS_API_CLIENT_ID property in the message
property selector when listening for response message from Oracle Communications
ASAP. Do not use this property in a non-activation task external automator (even if the
activation task is not used in the solution) because this causes OSM to route the
response message incorrectly.

For information on how OSM processes plug-ins according to the build-and-deploy mode you
set, see "About Building and Deploying Automation Plug-ins." For information on message
property selector filter criteria, see the Design Studio Help.

About Automation Plug-in Communication Options
Automated tasks and the automation plug-ins they trigger can handle asynchronous or
synchronous communication. Automated notifications and the automation plug-ins they trigger
can handle asynchronous communication only because an automated notification can not be
defined as external event receiver, so it can not process a response.

No External Communication: Data Processing Only
You can define automation as an internal event receiver that extends AbstractAutomator. In
this scenario, the input data is coming from OSM and not being sent anywhere, so there is no
communication with an external system. The automation plug-in may perform some internal
calculation, or just complete the task. Use this scenario for order-level or task-level notifications

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 51

because notifications do not require responses. You can also use this scenario with automated
task plug-ins.

Figure 8-3 illustrates this scenario. In the figure, Automation Plug-ins A and B are internal
event receivers/automators.

Figure 8-3 Automation Flow

Fire-and-Forget Communication: Message Sent to External Systems
You can define an automation as an internal event receiver that extends
AbstractSendAutomator. In this scenario, the input data is coming from OSM and being sent to
an external system. The automation plug-in sends an asynchronous "fire-and-forget" message.
That is, it completes the task and sends a message to an external system, but does not expect
a response back from the external system.

Figure 8-4 illustrates this scenario, which builds on Figure 8-1. In the figure, Automation Plug-in
A is an internal event receiver/sender.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 51

Figure 8-4 Automation Flow: Fire-and-Forget

Synchronous Communication: Single Request and Response
You can define an automated task that defines two automation plug-ins:

• You can define the first automation as an internal event receiver that extends
AbstractSendAutomator. In this scenario, the input data is coming from OSM and being
sent to an external system. The automation plug-in sends a synchronous message which
expects a response back from the external system.

• You can define the second automation as an external event receiver that extends
AbstractAutomator. In this scenario, the input data is coming from the external system (it is
the response from the message sent by the first automation) and not being sent anywhere.
The automation plug-in processes the response and completes the task.

Figure 8-5 illustrates this scenario, which builds upon Figure 8-4. In the figure, Automation
Plug-in A-1 is an internal event receiver/sender, and Automation Plug-in A-2 is an external
event receiver/automator.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 51

Figure 8-5 Automation Flow: Simple Synchronous

Synchronous Communication: Multiple Requests and Responses
You can define an automated task that defines multiple automation plug-ins:

• You can define the first automation as an internal event receiver that extends
AbstractSendAutomator. In this scenario, the input data is coming from OSM and being
sent to an external system. The automation plug-in sends a synchronous message which
expects a response back from the external system.

• You can define the second automation as an external event receiver that extends
AbstractSendAutomator. In this scenario, the input data is coming from the external system
(it is the response from the message sent by the first automation) and being sent back to
the external system. The automation plug-in processes the response and replies back by
sending another message.

• You can define the third automation as an external event receiver that extends
AbstractAutomator. In this scenario, the input data is coming from the external system (it is
the response from the second message sent by the second automation) and not being
sent anywhere. The automation plug-in processes the response and completes the task.

Figure 8-6 illustrates this scenario, which builds upon Figure 8-5. In the figure, Automation
Plug-in A-1 an internal event receiver/sender, Automation Plug-in A-2 is an external event
receiver/sender, and Automation Plug-in A-3 is an external event receiver/automator.

There can be multiple exchanges in such a scenario; this is just an example. After some
number of messages back and forth, the final automation must be an external event receiver
that extends AbstractAutomator, to complete the task. This example shows communication
with two different external systems; however, steps 8-13 could continue communications with
External System X, rather than with External System Y.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 51

Figure 8-6 Automation Flow: Complex Synchronous

Asynchronous Communication: Single or Multiple Requests and Responses
In the synchronous communication scenario one task sends a single message and expects a
response in return (see "Synchronous Communication: Single Request and Response"). While
the task is waiting for the response to return, the order data associated to that task is not
available for amendment processing, effectively blocking any revision order changes or
cancelation request involving that task. This scenario is normally not a problem when the
response returns quickly but for more asynchronous communication where the message can
take a longer time to return, the scenario described in this section is more appropriate so as to
avoid unnecessarily long delays in order amendments or cancelation requests.

You can define an automated task that defines a single automation as an internal event
receiver that extends AbstractSendAutomator. In this scenario, the input data is coming from
OSM and being sent to an external system. The automation plug-in sets a correlation ID and

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 51

sends a message. In this case, however, OSM expects a response back from the external
system but to a different task.

In this scenario, you must programmatically set the correlation ID for the outgoing message in
the sending task. You cannot use the OSM auto-generated correlation ID functionality. For
more information, see "Correlating Requests from OSM to Responses from External Systems."

You can define the second automated task with two automation plug-ins:

• The first plug-in is an internal event receiver that extends AbstractAutomator. In this
scenario, the input data is coming from the previous task that sent the initial message and
correlation ID to the external system. The automation plug-in configures the correlation ID
to correspond to the correlation ID configured on the previous task so that the message.is
routed to the right location. In addition, this automator uses the taskContext
suspendTask method to transition the task to a new customer defined task state (for
example, a state called waitingforresponse) and also has the ability to suspend the task.
When a task is in the suspended state, it can be amended.

• The second plug-in is an external event receiver that extends AbstractAutomator. In this
scenario, the input data is coming from the response to the message sent by the previous
task. When the response arrives, the event automatically transitions the task to a new state
(for example, a state called waitForProvisioningCompleted) that moves the task out of the
suspended state and completes that task.

Figure 8-7 illustrates this scenario, which is a variant of Figure 8-5. In the figure, Automation
Plug-in A-1 is an internal event receiver/sender. Automation plug-in B-1 sets the correlation ID
and suspends the task, and Automation Plug-in B-2 is an external event receiver/automator.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 51

Figure 8-7 Automation Flow: Simple Asynchronous

You can also apply this asynchronous communication to the synchronous communication
scenario where one task sends and receives multiple messages (see "Synchronous
Communication: Multiple Requests and Responses"). In Figure 8-6, replace plug-in A-3 with a
new task that includes two automation plug-ins that set the expect correlation ID, suspend the
task so that the task data can be amended or canceled while it is waiting for the response, and
then completes the task when the response returns.

Chapter 8
About Automations and the Automation Framework

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 51

Storing Response Message as XML Type Parameters
When you receive response message from external fulfillment systems, you may want to store
response message data on the OSM order. To do this, you can use a parameter that you
designate as XML Type in the Design Studio Order editor Order Template tab.

However, you must strip the envelope, header, and body from the response message before
storing data in this way. Having XML type data that includes the envelop, header, or body
prevents OSM from sending any subsequent Web Service request messages because Web
Service message envelops, headers, or body cannot be nested.

For example, you could receive response data and assign it to a variable, such
as $wsResponseDataXmlData. This variable contains the entire response including the Web
Service envelope, header, and body. You could use the following code to strip the envelope,
header, and body:

Example 8-1 Stripping the Envelope, Header, and Body

let $wsResponseContentXmlData := $wsResponseDataXmlData/env:Envelope/env:Body/*

The new $wsResponseContentXmlData variable now contains only the content of the body.

About Custom Automation Plug-ins
All custom automation plug-in Java source files must reside in the cartridgeName/src directory.
You can create subdirectories within the src directory as needed. When you compile the
source file, the resultant Java class file is placed in the cartridgeName/out directory. Any
subdirectories you created within the src directory are reflected in the out directory.

All custom automation plug-ins must extend one of the following automation classes, located in
the SDK/automation/automationdeploy_bin/automation_plugins.jar file:

• AbstractAutomator

• AbstractSendAutomator

The custom automation plug-in can directly or indirectly extend AbstractAutomator or
AbstractSendAutomator: If needed, there can be one or more layers of inheritance between
AbstractAutomator or AbstractSendAutomator, and the automation plug-in.

These classes are hierarchically related. AbstractAutomator is the parent of
AbstractSendAutomator as shown in Figure 8-8. Both classes reside in the
com.mslv.automation.plugin package.

Chapter 8
About Custom Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 51

Figure 8-8 Class Hierarchy

The AbstractAutomator can receive information, either from OSM or from an external system.
The AbstractSendAutomator inherits this ability, so it can also receive information from OSM or
from an external system; however, it can also send information. If the purpose of the custom
automation plug-in you are writing is to send a message, it should extend the
AbstractSendAutomator class; otherwise, it should extend the AbstractAutomator class.

Defining the Custom Automation Plug-in
For every custom automation plug-in you write, you must define a corresponding Custom
Automation Plug-in entity in Design Studio. The Custom Automation Plug-in editor associates a
Java class representing the custom automation plug-in to the Custom Automation Plug-in
Design Studio entity. For example, if you create MyCustomPlugin.java and compile it, the
result is MyCustomPlugin.class. You then create a new Custom Automation Plug-in entity,
and populate the fields defined on the editor.

There is a difference between the terms custom automation plug-in and Custom Automation
Plug-in: The former is a custom Java class, the latter is a Design Studio entity.

About the XML Template
The Custom Automation Plug-in editor also defines the XML Template field.

You must provide XML that defines the implementation for your custom automation plug-in.
This is done through the <implement> element, as shown in Example 8-2. The <implement>
element is defined in the cartridgeName/customAutomation/automationMap.xsd file, which
is available with the creation of an OSM cartridge. See OSM Modeling Guide for more
information.

Example 8-2 XML Template

<implement xsi:type="hw:customImplementation"
xmlns:hw="http://www.example.org/hello/world"
 xsi:schemaLocation="http://www.example.org/hello/world helloWorld.xsd">
 <hw:completionStatus>success</hw:completionStatus></implement>

You must also provide the corresponding schema file that defines the rules for the XML that
you entered in the XML Template field. The schema file name in this example is
helloWorld.xsd, shown on the third line of Example 8-2. The content of helloWorld.xsd is
shown in Example 8-3.

Chapter 8
About Custom Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 51

Example 8-3 Schema for XML Template

<?xml version="1.0" encoding="UTF-8"?><schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.org/hello/world" xmlns:tns="http://
www.example.org/hello/world"
 elementFormDefault="qualified"
xmlns:Q1="http://www.oracle.com/OMS/AutomationMap/2001/11/23">
<import schemaLocation="automationMap.xsd"
 namespace="http://www.oracle.com/OMS/AutomationMap/2001/11/23">
</import>
<complexType name="customImplementation">
 <complexContent>
 <extension base="Q1:Implementation">
 <sequence>
 <element name="completionStatus" type="string"></element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
</schema>

The schema files you create must reside in the cartridgeName/customAutomation directory
and the cartridgeName/resources/automation directory.

Note

The generated automationMap.xml file includes the <implement> element for
predefined automation plug-ins, but not for custom automation plug-ins. For additional
examples of the implement element, see "AutomationMap.xml File".

When looking at the examples, note that the sub-elements defined for the implement
element differ for senders versus automators.

About Creating Custom Automation Plug-ins
AbstractAutomator and AbstractSendAutomator each define abstract methods which require
child classes to define those methods. The custom automation plug-in must define a specific
method, depending on which Java class the custom automation plug-in extends:

• A custom automation plug-in that extends AbstractAutomator must define the method:

public void run(String inputXML, AutomationContext automationContext)

• A custom automation plug-in that extends AbstractSendAutomator must define the
method:

public void makeRequest(String inputXML, AutomationConext automationContext,
TextMessage outboundMessage)

By defining one of these methods in a custom automation plug-in, when an automated task or
automated notification is triggered, OSM can process the automation mapping and call the
method, knowing it is defined for the class name provided in the automation mapping.

The following sections describe the arguments used in the run and makeRequest methods.
See "Custom Java Automation Plug-ins" for sample custom automation senders and receivers
that illustrate how you can use these arguments.

Chapter 8
About Custom Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 51

inputXML Argument
The inputXML argument is a java.lang.String object. The custom automation plug-in does not
need to include an import statement for this object because it is included in the hierarchy from
which the custom automation is extending.

The inputXML argument is the input data in XML document form that can be parsed to access
the individual pieces of data. If the automation is defined as an internal event receiver, the XML
document defines OSM order data. If the automation is defined as an external event receiver,
the XML document defines data from an external source. In either case, you need to know the
expected XML definition in order to write the code to parse the data.

Data is not stored at the element for a given XML tag; it is stored at its child, so the approach
for retrieving order data is not obvious. A command to retrieve order data looks like this:

Element clli_a = root.getElementsByTagName("clli_a").item(0);
String text = clli_a.getFirstChild().getNodeValue();

AutomationContext Argument and Casting the Context Argument
Within the custom plug-in, you must determine which context object to expect as an argument,
and then cast the AutomationContext object to the appropriate child context object (for
example, TaskContext or OrderNotificationContext).

For example, in the code below, the expected context object is TaskContext and
automationContext is the name of the AutomationContext object argument.

if (automationContext instanceof TaskContext) {
 TaskContext taskContext = (TaskContext)automationContext; }
else { //log an error }

After the AutomationContext object is cast to the appropriate context object, all methods on the
context object are available to the custom plug-in. See "About Automations in the Order and
Task Contexts" for more information.

outboundMessage Argument
The outboundMessage argument is a javax.jms.TextMessage object. The custom automation
plug-in does not need to include an import statement for this object because it is included in
the hierarchy from which the custom automation is extending.

The outboundMessage argument is defined only for the makeRequest method; it is not defined
for the run method. The makeRequest method is defined for classes that extend
AbstractSendAutomator, which automatically sends a message to an external system. You can
write custom code that populates outboundMessage, which is sent to the external message
queue defined by the automation definition. You do not have to write custom code to connect to
the external system or send the message; OSM automation handles the connection and the
message upon completion of the makeRequest method.

Accessing JDBC from Within an Automation Plug-in
Because custom automation plug-ins run inside a J2EE container, JDBC services are readily
available.

To use JDBC from a plug-in, you must create a data source through the WebLogic console.
The data source contains all the connection information for your proprietary database, such as
host names, user names, passwords, number of connections, and so on.

Chapter 8
About Custom Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 51

For information on setting up data sources in WebLogic, see the overview of WebLogic Server
applications development in the Oracle WebLogic documentation.

The following code illustrates how to connect to a proprietary database from OSM and perform
a "SELECT *".

javax.naming.InitialContext initialContext = new InitialContext();
javax.sql.DataSource datasource = (javax.sql.DataSource) initialContext.lookup
("java:comp/env/jdbc/DataSource");

javax.sql.connection connection = datasource.getConnection();
javax.sql.Statement statement = connection.createStatement();

javax.sql.ResultSet resultSet = statement.executeQuery("SELECT * FROM my_custom_table");

Line two, the lookup, uses the JNDI name of the data source as a parameter.

Compiling the Custom Automation Plug-in
You must include the following JAR files in your project library list for the custom automation
plug-in to compile:

• WLS_home/wlserver_10.3/server/lib/weblogic.jar

• SDK/automation/automationdeploy_bin/automation_plugins.jar

Note

The version of the automation_plugins.jar that you reference to compile the custom
automation plug-in must be the same version that resides in the cartridge osmlib
directory. To verify this, check the date and size of each file. If they are different, use
the version that came with the OSM installation. To do so, copy the
automation_plugins.jar file from the SDK/automation/automationdeploy_bin
directory to the osmlib directory of your cartridge. After the file is copied to the
cartridge, clean and rebuild the cartridge.

Depending on the content of the custom automation plug-in, you may also need to include
additional JAR files.

To include a JAR file in the project library list:

1. From the Design Studio menu bar, select Project, then select Properties.

The Properties for CartridgeName window opens.

2. In the left navigation pane, click Java Build Path.

3. Click the Libraries tab.

4. Click Add External JARs.

The Jar Selection window opens.

5. Navigate to the location of the JAR file and double-click the JAR file to add it to the library
list.

Chapter 8
About Custom Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 51

About Predefined Automation Plug-ins
The OSM installation provides several predefined automation plug-ins, as described in the
following sections. The sections are presented in the order that the predefined automation
plug-ins display within Design Studio, on the Add Automation window Automation Type list
field.

All of the predefined automation plug-ins are part of the automation class hierarchy; they
extend, either directly or indirectly, the AbstractAutomator class that you use to create custom
automations, as shown in Figure 8-9.

Figure 8-9 Predefined Automation Plug-in Class Hierarchy

Note

The XSLT and XQuery Automator predefined automation plug-in Java class are
XSLTReceiver and XQueryReceiver. The presentation in Design Studio was changed
to remove confusion. The names receiver and sender imply that one receives and one
sends, which is not true: Both receive. The sender just has the added ability to send a
message.

XSLT Sender
The XSLT Sender predefined automation plug-in provides a way to transform data and send it
to an external system using JMS, with you supplying the extensible stylesheet language
transformation (XSLT).

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 51

Defining the Automation
When defining the automation on the Add Automation window, select XSLT Sender from the
Automation Type list field.

For an automation defined as an internal event receiver, the XSLT must transform the OSM
input data to SystemY data, where SystemY is the external system that the automation is
sending the transformed data to.

For an automation defined as an external event receiver, the XSLT must transform SystemX
data to SystemY data, where SystemX is the external system that the automation is receiving
input data from, and SystemY is the external system that the automation is sending the
transformed data to.

See "Internal XSLT Sender " and "External XSLT Sender" for sample code.

XSLT Tab

Selecting XSLT Sender from the Automation Type list field results in XSLT tab being present
on the Properties view for the automation. The XSLT tab is where you specify your XSLT file
so the predefined automation plug-in can access it. You can specify your XSLT file in one of
three ways by choosing the appropriate radio button:

• When you choose Bundle in, you can select your XSLT file from a list that displays all
XSLT files defined in the cartridge resources directory, which populates the XSLT field for
you.

• When you choose Absolute path, you must enter the path and name of your XSLT file in
the XSLT field.

• When you choose URL, you must enter the unified resource locator (URL) to your XSLT
file in the XSLT field.

Note

Oracle recommends that you choose Bundle in for production mode because it pulls
the XSLT files into the PAR file. As a result, you can deploy the EAR file (which
contains the PAR file) to any server and, at run time, the application can locate the
XSLT files. If you choose Absolute Path or URL for production mode, you can deploy
the EAR file to any server but are responsible for ensuring the XSLT files reside in the
specified location on the server.

Conversely, Absolute Path or URL are optimal for testing mode because they do not
require a rebuild and redeploy to pick up changes to the XSLT.

The XSLTSender class can cache the associated XSLT file, incurring minimal overhead on
each invocation. When the automation is defined to cache the XSLT, the implementation
detects at runtime whether the XSLT source has changed by checking the URL modification
time and the XSLT is automatically reloaded if required. You can configure caching through the
Maximum Number in Cache and Cache Timeout fields.

You can set exceptions for the XSLT processing by setting the Exception field. For
automations defined on a task, the Exception list field provides the values of success and
failure, which are task statuses. If you define additional task statuses, they also appear in the
list. (The Exception field is not applicable for automations defined on an order.)

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 51

Oracle uses Saxon as the transformer factory to process XSLT. You can specify use of a
different transformer factory by specifying a value for the Transformer Factory field.

Note

Oracle recommends that you use the default Saxon transformer factory.

Routing Tab

The Routing tab consists of two sub-tabs: To and Reply To. Both sub-tabs define the same
set of fields. The To sub-tab defines where the outbound message is being routed to, and the
Reply To sub-tab defines where the inbound message (replying to the outbound message) is
being routed to. You must set the ReplyTo queue on the sender even if you are processing the
return message on a different automation plug-in.

Writing the XSLT
When the XSLT transformer is called, it is passed references to the following named
parameters that may be used from within the XSLT:

• Automator: The class instance (for example, the instance of XSLTSender that is calling
the XSLT).

• Log: The automator's instance of org.apache.commons.logging.Log.

• Context: The context object input parameter to the makeRequest method.

• OutboundMessage: The outbound JMS TextMessage.

XSLTSender does not automatically complete the associated task after successful processing.
If the task needs to be completed, the XSLT must include a call to

TaskContext.completeTaskOnExit(java.lang.String s)

as shown in Example 8-4:

Example 8-4 XSLT Java Call

<xsl:stylesheet version="1.0"
 xmlns="http://java.sun.com/products/oss/xml/ServiceActivation"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="http://xml.apache.org/xslt/java"
 xmlns:xalan="http://xml.apache.org/xslt"
 xmlns:sa="http://java.sun.com/products/oss/xml/ServiceActivation"
 xmlns:mslv-sa="http://www.oracle.com/oss/ServiceActivation/2003"
 xmlns:co="http://java.sun.com/products/oss/xml/Common"
 exclude-result-prefixes="xsl java xalan sa mslv-sa">
 <!-- * -->
 <xsl:param name="automator"/>
 <xsl:param name="log"/>
 <xsl:param name="context"/>
 <!-- * -->
 <xsl:output method="xml" indent="yes" omit-xml-declaration="no"
 xalan:indent-amount="5"/>
 <!-- * -->
 <xsl:template match="/">
 <xsl:variable name="void1" select="java:info($log,'completing task
 with status success')"/>
 <xsl:variable name="void" select="java:completeTaskOnExit
 ($context,'success')"/>

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 51

 </xsl:template>
 <!-- * -->
 <xsl:template match="* | @* | text()">
 <!-- do nothing -->
 <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

As the XSLT author, you must ensure that the context parameter provided to the automation
plug-in, and so to your XSLT, is an instance of TaskContext or TaskNotificationContext. This
implementation attempts to complete the associated task, if applicable, on processing failure,
using the exception status defined in the AutomationMap.xml file.

Steps to Follow When Using XSLT Sender
The following steps describe how to set up the XSLT Sender predefined automation plug-in:

1. Determine the from and to data that your XSLT is to translate.

2. Write the XSLT.

3. Define automated task or automated notification that will trigger the automation plug-in.

4. Define the automation for automated task or automated notification:

a. Select XSLT Sender from the Automation Type list field.

b. For an automated task, define the automation as internal or external event receiver.

c. Populate all applicable automation Properties tabs, including the tabs specific to this
type of automation: the XSLT tab and the Routing tab.

5. Build the cartridge.

6. Deploy the cartridge to the OSM server.

7. From within OSM, perform the event that triggers the automation.

8. XSLTSender uses your XSLT to transform the data and send it to the external system
specified by the automation definition.

XSLT Automator
The XSLT Automator predefined automation plug-in provides a way to transform data or
update OSM with the transformed data, with you supplying the extensible stylesheet language
transformation (XSLT).

Defining the Automation
When defining the automation on the Add Automation window, select XSLT Automator from
the Automation Type list field.

For an automation defined as an internal event receiver, the scenario is not very plausible
because your corresponding XSLT would not need to transform OSM data to OSM data.
However, you can write XSLT that runs Java rather than transforms data, so it is possible to
define an XSLT Automator as an internal event receiver, but you can accomplish the same
thing by writing a custom automation plug-in. The decision on which to use is based on the
complexity of the Java code: If it is fairly short and simple, it may be quicker to use the
predefined automation plug-in and just write the XSLT, as opposed to writing the custom
automation plug-in.

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 51

For an automation defined as an external event receiver, your corresponding XSLT must
transform SystemX data to OSM data, where SystemX is the external system that the
automation is receiving input data from. You can also specify to update OSM with the
transformed data.

See "External XSLT Automator" and "Internal XSLT Automator" for sample code.

XSLT Tab

Selecting XSLT Automator from the Automation Type list field results in XSLT tab being
present on the Properties view for the automation. The XSLT tab is where you specify your
XSLT so the predefined automation plug-in can access it. You can specify your XSLT in one of
three ways by choosing the appropriate radio button:

• When you choose Bundle in, you can select your XSLT file from a list that displays all
XSLT files defined in the cartridge resources directory, which populates the XSLT field for
you.

• When you choose Absolute path, you must enter the path and name of your XSLT file in
the XSLT field.

• When you choose URL, you must enter the unified resource locator (URL) that locates
your XSLT file in the XSLT field.

Note

Oracle recommends that you choose Bundle in for production mode and Absolute
Path or URL for testing mode.

The XSLTReceiver class can cache the associated XSLT file, incurring minimal overhead on
each invocation. When the automation is defined to cache the XSLT, the implementation
detects at runtime whether the XSLT source has changed by checking the URL modification
time; the XSLT is automatically reloaded if required. You can configure caching through the
Maximum Number in Cache and Cache Timeout fields.

You can set exceptions for the XSLT processing by setting the Exception field. For
automations defined on a task, the Exception list field provides the values of success and
failure, which are task statuses. If you define additional task statuses, they also appear in the
list. (The Exception field is not applicable for automations defined on an order.)

Oracle uses Saxon as the transformer factory to process XSLTs. You can specify to use a
different transformer factory by specifying a value for the Transformer Factory field.

Note

Oracle recommends that you use the default Saxon transformer factory.

When XSLT Automator is selected from the Automation Type list, the XSLT tab also includes
the Update Order check box, which is not present when XSLT Sender is selected from the
Automation Type list. If the check box is selected, XSLTReceiver updates OSM with the
transformed order data. If the check box is deselected, XSLTReceiver just transforms the data;
it does not update OSM with the transformed data.

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 51

Writing the XSLT
When the XSLT transformer is called, it is passed references to the following named
parameters that may be used from within the XSLT:

• Automator: The class instance (for example, the instance of XSLTReceiver that is calling
the XSLT).

• Log: The automator's instance of org.apache.commons.logging.Log.

• Context: The context object input parameter to the makeRequest method.

XSLTReceiver does not automatically complete the associated task after successful
processing. If the task needs to be completed, the XSLT must include a call to

TaskContext.completeTaskOnExit(java.lang.String s)

as shown in Example 8-4.

As the XSLT author, you must ensure that the context parameter provided to the automation
plug-in, and so to your XSLT, is an instance of TaskContext or TaskNotificationContext. This
implementation attempts to complete the associated task, if applicable, on processing failure,
using the exception status defined in the AutomationMap.xml file.

Steps to Follow When Using XSLT Automator
The following high-level steps describe how to set up the XSLT Automator predefined
automation plug-in:

1. Determine the from and to data that your XSLT is to translate.

2. Write the XSLT.

3. Define automated task or automated notification that will trigger the automation plug-in.

4. Define the automation for automated task or automated notification:

a. Select XSLT Automator from the Automation Type list field.

b. For an automated task, define the automation as internal or external event receiver.

c. Populate all applicable automation Properties tabs, including the tab specific to this
type of automation; that is, the XSLT tab.

5. Build the cartridge.

6. Deploy the cartridge to the OSM server.

7. From within OSM, perform the event that triggers the automation.

8. XSLTAutomator uses your XSLT to transform the data or updates OSM with the
transformed data.

XQuery Sender
The XQuery Sender predefined automation plug-in provides a way to extract and manipulate
XML data and send it to an external system using JMS, with you supplying the XML query
(XQuery).

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 51

Defining the Automation
When defining the automation on the Add Automation window, select XQuery Sender from
the Automation Type list field.

For an automation defined as an internal event receiver, your corresponding XQuery can
manipulate OSM data and send it to SystemY, where SystemY is the external system that the
automation is sending the manipulated data to.

For an automation defined as an external event receiver, your corresponding XQuery can
manipulate SystemX data and send it to SystemY, where SystemX is the external system that
the automation is receiving input data from, and SystemY is the external system that the
automation is sending the manipulated data to.

See "Internal XQuery Sender" and "External XQuery Sender" for sample code.

XQuery Tab

Selecting XQuery Sender from the Automation Type list field results in XQuery tab being
present on the Properties view for the automation. The XQuery tab is where you specify your
XQuery file so the predefined automation plug-in can access it. You can specify your XQuery
file in one of three ways by choosing the appropriate radio button:

• When you choose Bundle in, you can select your XQuery file from a list that displays all
XQuery files defined in the cartridge resources directory, which populates the XQuery
field for you.

• When you choose Absolute path, you must enter the path and name of your XQuery file
in the XQuery field.

• When you choose URL, you must enter the unified resource locator (URL) to your XQuery
file in the XQuery field.

Note

Oracle recommends that you choose Bundle in for production mode and Absolute
Path or URL for testing mode.

The XQuerySender class can cache the associated XQuery file, incurring minimal overhead on
each invocation. When the automation is defined to cache the XQuery, the implementation
detects at runtime whether the XQuery source has changed by checking the URL modification
time; the XQuery is automatically reloaded if required. You can configure caching through the
Maximum Number in Cache and Cache Timeout fields.

You can set exceptions for the XSLT processing by setting the Exception field. For
automations defined on a task, the Exception list field provides the values of success and
failure, which are task statuses. If you define additional task statuses, they also appear in the
list. (The Exception field is not applicable for automations defined on an order.)

Routing Tab

The Routing tab consists of two sub-tabs: To and Reply To. Both sub-tabs define the same
set of fields. The To sub-tab defines where the outbound message is being routed to, and the
ReplyTo sub-tab defines where the inbound message (replying to the outbound message) is
being routed to. You must set the ReplyTo queue on the sender even if you are processing the
return message on a different automation plug-in.

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 51

Writing the XQuery
When the XQuery processor is called, it is passed references to the following named
parameters that may be used from within the XQuery:

• Automator: The class instance (for example, the instance of XQuerySender that is calling
the XSLT).

• Log: The automator's instance of org.apache.commons.logging.Log.

• Context: The context object input parameter to the makeRequest method.

• OutboundMessage: The outbound JMS TextMessage.

XQuerySender does not automatically complete the associated task after successful
processing. If the task needs to be completed, the XQuery must include a call to

TaskContext.completeTaskOnExit(java.lang.String s)

as shown in Example 8-4.

As the XQuery author, you must ensure that the context parameter provided to the automation
plug-in, and so to your XQuery, is an instance of TaskContext or TaskNotificationContext. This
implementation attempts to complete the associated task, if applicable, on processing failure,
using the exception status defined in the AutomationMap.xml file.

Steps to Follow When Using XQuery Sender
The following high-level steps describe how to set up the XQuery Sender predefined
automation plug-in:

1. Determine the from and to data that your XQuery is to manipulate.

2. Write the XQuery.

3. Define automated task or automated notification that will trigger the automation plug-in.

4. Define the automation for automated task or automated notification:

a. Select XQuery Sender from the Automation Type list field.

b. For an automated task, define the automation as internal or external event receiver.

c. Populate all applicable automation Properties tabs, including the tabs specific to this
type of automation: the XQuery tab and the Routing tab.

5. Build the cartridge.

6. Deploy the cartridge to the OSM server.

7. From within OSM, trigger the automation.

8. XQuerySender uses your XQuery to manipulate the data and send it to the external
system specified by the automation definition.

XQuery Automator
The XQuery Automator predefined automation plug-in provides a way to manipulate data or
update OSM with the manipulated data, with you supplying the XML Query (XQuery).

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 51

Defining the Automation
When defining the automation on the Add Automation window, select XQuery Automator from
the Automation Type list field.

For an automation defined as an internal event receiver, your corresponding XQuery can
manipulate the OSM input data or specify to update OSM with the manipulated data.

For an automation defined as an external event receiver, your corresponding XQuery can
manipulate the SystemX input data, where SystemX is the external system that the automation
is receiving input data from. You can also specify to update OSM with the manipulated data.

See "External XQuery Automator" and "Internal XQuery Automator" for sample code.

XQuery Tab

Selecting XQuery Automator from the Automation Type list field results in XQuery tab being
present on the Properties view for the automation. The XQuery tab is where you specify your
XQuery so the predefined automation plug-in can access it. You can specify your XQuery in
one of three ways by choosing the appropriate radio button:

• When you choose Bundle in, you can select your XQuery file from a list that displays all
XQuery files defined in the cartridge resources directory, which populates the XQuery
field for you.

• When you choose Absolute path, you must enter the path and name of your XQuery file
in the XQuery field.

• When you choose URL, you must enter the unified resource locator (URL) that locates
your XQuery file in the XQuery field.

The XQueryReceiver class can cache the associated XQuery file, incurring minimal overhead
on each invocation. When the automation is defined to cache the XQuery, the implementation
detects at runtime whether the XQuery source has changed by checking the URL modification
time; the XQuery is automatically reloaded if required. You can configure caching through the
Maximum Number in Cache and Cache Timeout fields.

You can set exceptions for the XSLT processing by setting the Exception field. For
automations defined on a task, the Exception list field provides the values of success and
failure, which are task statuses. If you define additional task statuses, they also appear in the
list. (The Exception field is not applicable for automations defined on an order.)

When XQuery Automator is selected from the Automation Type list, the XQuery tab also
includes the Update Order check box, which is not present when XQuery Sender is selected
from the Automation Type list. If the check box is selected, XQueryReceiver updates OSM
with the manipulated data. If the check box is deselected, XQueryReceiver just manipulates
the data; it does not update OSM with the manipulated data.

Writing the XQuery
When the XQuery transformer is called, it is passed references to the following named
parameters that may be used from within the XQuery:

• Automator: The class instance (for example, the instance of XQueryReceiver that is
calling the XSLT).

• Log: The automator's instance of org.apache.commons.logging.Log.

• Context: The context object input parameter to the makeRequest method.

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 51

XQueryReceiver does not automatically complete the associated task after successful
processing. If the task needs to be completed, the XQuery must include a call to

TaskContext.completeTaskOnExit(java.lang.String s)

as shown in Example 8-4.

As the XQuery author, you must ensure that the context parameter provided to the automation
plug-in, and so to your XQuery, is an instance of TaskContext or TaskNotificationContext. This
implementation attempts to complete the associated task, if applicable, on processing failure,
using the exception status defined in the AutomationMap.xml file.

Steps to Follow When Using XQuery Automator
The following high-level steps describe how to set up the XQuery Automator predefined
automation plug-in:

1. Determine the from and to data that your XQuery is to manipulate.

2. Write the XQuery.

3. Define automated task or automated notification that will trigger the automation plug-in.

4. Define the automation for automated task or automated notification:

a. Select XQuery Automator from the Automation Type list field.

b. For an automated task, define the automation as internal or external event receiver.

c. Populate all applicable automation Properties tabs, including the tab specific to this
type of automation; that is, the XQuery tab.

5. Build the cartridge.

6. Deploy the cartridge to the OSM server.

7. From within OSM, trigger the automation.

8. XQueryReceiver uses your XQuery to manipulate the data or update OSM with the
manipulated data.

DatabasePlugin
The DatabasePlugin class is a predefined automation plug-in that provides a way to interact
with external databases, with you supplying the SQL and stored procedures to query and
update a database. The automation plug-in can also be configured to update OSM with data
returned from an external database.

DatabasePlugin is slightly different from the previously described predefined automation plug-
ins, in that the input is not accessed through a file. Rather, the input is accessed through the
XML Template field on the Custom Automation Plug-in editor. Because this predefined
automation plug-in requires the use of the XML Template field, it must be defined as a Custom
Automation Plug-in. As a result, DatabasePlugin does not appear in the Automation Type list
field on the Add Automation window like the other predefined automation plug-ins do.

Note

The OSM installation provides samples of the DatabasePlugin predefined automation
plug-in, located in the SDK/Samples/DatabasePlugin directory.

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 51

Defining the Custom Automation Plug-in
To define the Custom Automation Plug-in for the DatabasePlugin predefined automation plug-
in, set the Class field by selecting DatabasePlugin. The DatabasePlugin.class is located in the
SDK/automation/automationdeploy_bin/automation_plugins.jar file, which comes with
your OSM installation.

XML Template

The XML Template field consists of one or more statements defined under the root
<implementation> element. A statement may update the database, or update OSM order data,
or both. All statements share the following characteristics:

• May contain SQL or stored procedure calls.

• May have one or more parameters.

• May return one or more result sets, either as a result of a database query or through a
stored procedure OUT parameter.

• May contain one or more bind paths.

• May be configured to handle database exceptions in an implementation appropriate
manner.

• May run as a single transaction or in a group.

SQL statements are specified by the <sql> element and stored procedure statements are
specified by the <call> element. The format of the call element is expected to be of the form
{? = call <procedure-name>[<arg1>, <arg2>, ...]} or {call <procedure-
name>[<arg1>,<arg2>, ...]}. Parameters are declared with the? character.

Example 8-5 and Example 8-6 show the SQL statement and the stored procedure call.

Example 8-5 SQL Statement

<implementationxmlns="http://www.oracle.com/Provisioning/database/DatabasePlugin/
2006/02/28" ...>
 ...
 <query>
 <sql>SELECT 'dummy' FROM dual</sql>
 ...
 </query>
</implementation>

Example 8-6 Stored Procedure Call

<implementationxmlns="http://www.oracle.com/Provisioning/database/ DatabasePlugin/
2006/02/28" ...>
 ...
 <update>
 <call>{call a_stored_procedure(?)}</call>
 ...
 </update>
</implementation>

Transaction Element

The <transaction> element allows statements to be grouped. All statements contained in a
<transaction> element will be run as part of a single database transaction. If a statement is
defined outside of the <transaction> element, it is auto-committed immediately after the
statement completes. The available configuration parameters are:

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 51

• dataSource: Mandatory. Specifies the JNDI name of the SQL data source used to create
the database connection for the transaction. This data source must be defined in your
WebLogic domain before the plug-in is called.

Note

Do not configure the data source to support global transactions. The plug-in
instance is called under an enclosing transaction, making this option illegal.

• isolationLevel: Optional. Specifies the transaction isolation level. Valid values are
READ_COMMITTED, READ_UNCOMMITTED, REPEATABLE_READ, and SERIALIZABLE.
READ_UNCOMMITTED and REPEATABLE_READ are not supported by Oracle.

• scrollType: Optional. Specifies the type of result sets to be created as part of the
transaction. Valid values are FORWARD_ONLY, SCROLL_SENSITIVE, and
SCROLL_INSENSITIVE. The SCROLL values apply only when more than one ResultSet
definition is defined for the same result set.

• update: A statement that updates the database, but does not return results.

• query: A statement that queries the database for information. The returned results are
used to update the order data.

Example 8-7 Transaction Definition

<implementation xmlns="http://www.oracle.com/Provisioning/database/DatabasePlugin/
2006/02/28" ...>
 <transaction isolationLevel="READ_COMMITTED" scrollType="SCROLL_INSENSITIVE">
 <dataSource>test/dblugin/datasource</dataSource>
 <query>
 <sql>SELECT 'dummy' FROM dual</sql>
 <resultSet>
 <column number="1">/path/to/p6/field</column>
 </resultSet>
 </query>
 </transaction>
</implementation>

Bind Path

The <bind path> element provides a way to correlate outbound parameter values and in-
bound result set column values. Instances of this result column will be bound to instances of
the specified parameter at the specified path; after which their paths may diverge. This
attribute is only relevant when a parameter's path includes a multi-instance group element.

Consider the sample OSM order data shown in Example 8-8 and the corresponding plug-in
configuration in Example 8-9.

Example 8-8 OSM Order Data

<employees>
 <employee>
 <name>William</name>
 <job/>
 </employee>
 <employee>
 <name>Mary</name>
 <job/>
 </employee>
</employees>

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 51

Example 8-9 Plug-in Definition Using a Bind Path

<implementation xmlns="http://www.oracle.com/Provisioning/database/DatabasePlugin/
2006/02/28" ... >
 <query>
 <sql>SELECT job FROM employee WHERE name = ?</sql>
 <bindPath id="emp" path="/employee[2]"/>
 <parameter xsi:type="ProvisioningParameterType" bindPathRef="emp"
path="name" type="text"/>
 <resultSet appliesTo="1" appliesToRow="all">
 <column number="1" bindPathRef="emp" path="job"
updateOnMatch="true"/>
 </resultSet>
 </query>
</implementation>

The emp bind path selects the second employee (with name of Mary). This bind path is used as
the basis for the parameter selection and the corresponding result set column value, ensuring
the job field that gets updated is the job corresponding with the employee named Mary.

Parameter

The <parameter> element defines how values are bound to the SQL parameter declarations.
Parameters must be defined in the order of the corresponding declarations.

OSMParameterType

Specifies a parameter, the value of which will be bound to a <sql> or <call> statement.
Parameters are processed in the order they are declared. The available parameter
configuration attributes are:

• bindPathRef

• path

• type

• mode

bindPathRef and/or path provide the value that will be set on the SQL parameter; type
provides the data type of the value; mode specifies whether the parameter is a stored
procedure IN, OUT, or INOUT parameter. Each attribute is described in more detail in the
sections that follow.

bindPathRef: This is the ID value of a bind path defined elsewhere on the statement. Either
bindPathRef, path, or both may be specified. The value bound to the SQL parameter depends
on the result of the evaluation of the bind path's XPath expression, as described in the table.

Table 8-2 Bind Path Evaluation Behavior

XPath Result Behavior

null If path is not specified, the SQL parameter is set to null. If path is specified, the
SQL parameter is set based on the path evaluation as described below.

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 51

Table 8-2 (Cont.) Bind Path Evaluation Behavior

XPath Result Behavior

Node-set If path is not specified, the SQL parameter is set according to the following
algorithm:

The first node encountered in the node-set is selected.

If the node is an XML element, the text contained directly under the element is
selected as a String (if none, the SQL parameter is set to null).

If the node is an XML attribute, the value of the attribute is selected as a String.

Otherwise, the node itself (as a Java Object) is selected.

The parameter value is set using the selected data based on the parameter's
type (see Table 8-4).

Object The parameter value is set using the selected data based on the parameter's
type (see Table 8-4).

path: The XPath selector in the path attribute is evaluated against the plug-in's input data in
order to determine the SQL parameter's value. The context node against which the path
expression is evaluated depends on the format of the input data and whether or not
bindPathRef evaluated to a node-set of XML Elements. If the bindPathRef evaluated to a
node-set of Elements, the first encountered Element is used as the context node for the path
expression. If the input is an OSM GetOrder.Response document, the context node is the
_root element of the document. Otherwise, the context node is the document root element.
The value bound to the SQL parameter depends on the result of the evaluation of the path's
XPath expression, as described in Table 8-3.

Table 8-3 Path Expression Evaluation Behavior

XPath Result Behavior

null The SQL parameter is set to null.

Node-set The SQL parameter is set according to the following algorithm:

The first node encountered in the node-set is selected.

If the node is an XML Element, the text contained directly under the Element is
selected as a String (if none, the SQL parameter is set to null).

If the node is an XML Attribute, the value of the Attribute is selected as a
String.

Otherwise, the node itself (as a java Object) is selected.

The parameter value is set using the selected data based on the parameter's
type (see Table 8-4).

Object The parameter value is set using the selected data based on the parameter's
type (see Table 8-4).

type: Specifies the data type of the parameter, which are OSM specific.Valid values are:
boolean, currency, date, dateTime, numeric, phone, and text.

Table 8-4 shows the SQL data type that will be used to set the SQL parameter based on the
specified type and the Java class of the parameter value.

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 51

Table 8-4 OSM Data Type to SQL Data Type Mapping

type Attribute Value SQL Data Type1 Parameter Evaluation2

Boolean Boolean Evaluated according to
java.lang.Boolean.parseBoolean() using
the String value of the parameter. OSM values Yes
and No are also supported.

currency double Evaluated according to
java.lang.Double.parseDouble() using the
String value of the parameter.

numeric double Evaluated according to
java.lang.Double.parseDouble() using the
String value of the parameter.

date date The String value of the parameter is expected to
match the format yyyy-MM-dd.

dateTime timestamp The String value of the parameter is expected to
match the format yyyy-MM-dd'T'HH:mm:ss z.

phone string Evaluated according to
java.lang.String.valueOf().

text string Evaluated according to
java.lang.String.valueOf().

1 where the parameter is set as java.sql.PreparedStatement.setXXX(#, value)
2 If the class of the parameter is directly assignable to the SQL data type, it is not first evaluated as a String. For

example, if the type attribute value is numeric and the class of the parameter value is java.lang.Number, no
String evaluation is required.

mode: Specifies the mode of the parameter. Valid values are IN, OUT, and INOUT. Applicable
only if the statement is a prepared statement, that is, defined with <call>.

Exception

The exception statement specifies the behavior that the plug-in should exhibit when a
particular Java exception is caught during processing. Exceptions can be ignored or they can
complete the associated task with a particular exit status.

If the exception is an instance of java.sql.SQLException, behavior may be further constrained
to exceptions that have a particular error code or SQL state value. Exception handlers are
evaluated in document order; that is, the first exception handler that matches the thrown
exception will be used. If no exception handler exists for a thrown exception, it will be wrapped
in a com.mslv.oms.automation.plugin.JDBCPluginException and re-thrown.

Creating the JDBC Data Source
The Database Plug-in must be associated with a JDBC data source that:

• Uses a non-XA database drive

• Does not support global transactions (Supports Global Transactions is a check box that
is available when defining the WebLogic data source configuration).

When creating the JDBC data source:

• Create a JDBC Data Source that refers to the schema under which you are running the
scripts.

Chapter 8
About Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 51

• The provided Database Plug-in sample assumes that the JNDI name of this Data Source is
demo/dbplugin/datasource. However, the Data Source can have any JNDI name, but the
configuration XML files in the config directory needs to be updated appropriately.

• For Database Type, select Oracle.

• For Database Driver, select Oracle's Driver @ (Thin) Versions: 9.0.1, 9.2.0, 10.

Deselect the Supports Global Transactions check box. (This check box defaults to being
selected, so you must deselect it.)

Exception

If you create a JDBC data source that uses an XA database drive or that supports global
transactions, the DatabasePlugin implementation throws the exception shown in
Example 8-10.

Example 8-10 Exception

An automation exception has occurred at
AutomationDispatcherImpl.runAutomator:/automation/plugin/internal/task/
database_plugin_demo/1.0/get_employee_names/do.
The reason is:
com.mslv.oms.automation.AutomationException:
com.mslv.oms.automation.AutomationException:
com.mslv.oms.util.jdbc.exception.UncategorizedSQLException:
Unable to commit transaction.
com.mslv.oms.automation.AutomationException:
com.mslv.oms.automation.AutomationException:
com.mslv.oms.util.jdbc.exception.UncategorizedSQLException:
Unable to commit transaction.
at com.mslv.oms.automation.plugin.AutomationEventHandlerImpl.a(Unknown Source)
at com.mslv.oms.automation.plugin.AutomationEventHandlerImpl.processMessage
(Unknown Source)
at com.mslv.oms.automation.AutomationDispatcher.onMessage(Unknown Source)
at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:429)
at weblogic.ejb.container.internal.MDListener.transactionalOnMessage
(MDListener.java:335)
at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:291)
at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4060)
at weblogic.jms.client.JMSSession.execute(JMSSession.java:3953)
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:4467)
at weblogic.work.ExecuteRequestAdapter.execute(ExecuteRequestAdapter.java:21)
at weblogic.kernel.ExecuteThread.execute(ExecuteThread.java:145)
at weblogic.kernel.ExecuteThread.run(ExecuteThread.java:117)

About Large Orders and Automation Plug-ins
The following sections provide information about developing and managing automation for
large orders.

Limiting Automation Concurrency in Large Orders
OSM is designed to provide high levels of order processing concurrency. In most OSM
solutions, this high level of concurrency (when coupled with proper system tuning such as
database connections, WebLogic Server threads, and so on) is effective at maximizing OSM
scalability and performance. However, in some cases, especially when orders are very large or
the associated automation plug-in transactions are complex and lengthy, you may need to limit
the number of automation plug-in instances that can run at one time. You can restrict the

Chapter 8
About Large Orders and Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 51

number of automation plug-ins that run concurrently using order automation concurrency
control (OACC) policy files (automationConcurrencyModel.xml).

To create an OACC policy file:

1. In Design Studio, create a file called automationConcurrencyModel.xml and add the file to
the resource folder of the cartridge you want the OACC policy to apply to.

2. Add the following snippet to the file after replacing the placeholders:

<?xml version="1.0"?>
<automationConcurrencyModel xmlns="http://xmlns.oracle.com/communications/
ordermanagement/model">
 <automationConcurrencyPolicy name="name">
 <targetPlugins>
 <cartridgeNamespace>namespace</cartridgeNamespace>
 <cartridgeVersion>version</cartridgeVersion>
 <pluginSelector>pluginSelector</pluginSelector>
 </targetPlugins>
 <scope>scope</scope>
 <concurrencyLevel>concurrencyLevel</concurrencyLevel>
 </automationConcurrencyPolicy>
</automationConcurrencyModel>

where:

• name: A policy name. Within the automationConcurrencyModel.xml file you can
specify one or more automation concurrency policies. Each policy can be specified
within the automationConcurrencyPolicy element.

• You can use the optional child elements within the targetPlugins element to specify
plug-ins contained in the automationMap.xml files in deployed cartridges or found on
the OSM system class path. OSM must match all specified criteria before applying a
policy. If no criteria are specified, OSM applies the policy to all deployed plug-ins.

– namespace: The value for this field must be a valid cartridge namespace where
the automation plug-ins are located.

– version: The value for this field cartridge version.

– pluginSelector: The value for this field is an XPath 1.0 selector. The context is the
automationMap.xml file, which defines every automation plug-in associated with
a specific cartridge.

For example, the following selector matches all automation plug-ins from a
cartridge with namespace foo and version 1.2 that are also external receivers with
a receive/jmsSource element).

.[cartridgeNamespace="foo"][cartridgeVersion="1.2.3.4.5"][count(receive/
jmsSource)>0]).

See "About Automation Maps" for more information about the
automationMap.xml file.

• scope: A value that specifies the scope of the policy. The values are:

– ORDER_ID: The policy applies to every order on each OSM managed server. This
scope is appropriate if you want to limit the degree of automated transactions that
can run in parallel within a given order, but do not want to restrict how many
separate orders could be running concurrently.

– CARTRIDGE_AND_VERSION: The policy applies to a specific cartridge and
version. The policy limits the maximum number of concurrent automated
transactions that can occur across all orders from the same cartridge namespace

Chapter 8
About Large Orders and Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 51

and version. This scope is appropriate if you want to limit how many orders can
have transactions concurrently processing that were created from within the same
version of the same cartridge.

– CARTRIDGE: The policy applies to a specific cartridge regardless of version. This
scope is appropriate if you want to limit how many orders can have transactions
concurrently processing that were created from a cartridge with the same
namespace regardless of version.

– SERVER: The policy applies to an entire server. The policy limits the maximum
number of concurrent automated transactions that can occur across all orders in
any one server regardless of cartridge namespace or version. This scope is
appropriate if you want to limit how many orders can be processing on any one
managed server regardless of the cartridge namespace and version that they are
created from.

If plug-ins from two cartridge versions were targeted then there would be two group
instances (cartridge X version 1, cartridge X version 2).

• concurrencyLevel: A numerical value specifying the maximum concurrency for each
managed server that is allowed within the defined scope. A value of 1 or higher limits
concurrency to the specified level within the scope. A value of 0 or less means
unlimited concurrency (effectively disabling the policy).

3. Save and close the file.

4. Build the cartridge.

5. Deploy the cartridge.

Note

You can validate that the OACC policy was applied by verifying the WebLogic
server domain_home/servers/servername/logs files (where domain_home is the
directory that contains the configuration for the domain into which OSM is
installed, and servername is the server whose logs you are checking). Details
about deployed OACC policies are listed in the automation plug-in deployment
summary.

For example, the following policy limits each order to run one automation plug-in at a time:

<?xml version="1.0"?>
<automationConcurrencyModel xmlns="http://xmlns.oracle.com/communications/
ordermanagement/model">
 <automationConcurrencyPolicy name="name">
 <targetPlugins>
 <pluginSelector>starts-with(./ejbName,'UpdateOACC')</pluginSelector>
 </targetPlugins>
 <scope>ORDER_ID</scope>
 <concurrencyLevel>1</concurrencyLevel>
 </automationConcurrencyPolicy>
 <automationConcurrencyPolicy name="policymultithread">
 <targetPlugins>
 <pluginSelector>starts-with(./ejbName,'UpdateMultiThread')
 </pluginSelector>
 </targetPlugins>
 <scope>ORDER_ID</scope>
 <concurrencyLevel>3</concurrencyLevel>
 </automationConcurrencyPolicy>
</automationConcurrencyModel>

Chapter 8
About Large Orders and Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 51

Using GetOrder and UpdateOrder API Functions in Large Orders
When you design automation plug-ins or interact with OSM from external applications, you can
implement XML API or OSM Web Service GetOrder operations with the OrderDataFilter
element that explicitly specifies which parts of the order to return data from. This can enhance
performance in cases where orders are very large and complex with hundreds of order items
and where returning the complete order in a response would be costly in terms of CPU and
memory usage. For example, in many cases, an automation plug-in already has advanced
knowledge of an order item line ID which you can use with the OrderDataFilter to specify the
exact line ID you want to return data for.

See "GetOrder" for more information about the OrderDataFilter element in the XML API
GetOrder.Request. See "GetOrder" for more information about the OrderDataFilter in the
GetOrder Web Service.

When you use automation plug-ins or external clients, you can create XML API or Web Service
UpdateOrder requests with a ResponseView that specifies the order data to be returned in an
UpdateOrder response. This ResponseView behaves in the same way as a GetOrder request.
You can use the OrderDataFilter with the ResponseView to further specify the returning data. If
the response includes a fulfillment state update, then OSM automatically filters the response
so that only order items and order components impacted by the fulfillment state update are
included. This auto-filtering of fulfillment state updates in responses avoids expensive XQuery
processing within OSM to determine impacted order item and order component fulfillment
states. The ResponseView does this by automatically applying an OrderDataFilter from within
the OSM Server which can more efficiently perform this filtering action and also avoids having
to serialize and parse large amounts of XML not needed by the requesting client or automation
plug-in logic.

In addition, you can use the ExternalFulfillmentStates nodes within an XML API or Web
Service UpdateOrder to directly update order item fulfillment states. This optional approach
improves order processing efficiency because you no longer need complicated XQuery logic to
determine the impact of the external fulfillment state change on an order component and order
item.

See "UpdateOrder" for more information about the ResponseView, OrderDataFilter, and
ExternalFulfillmentStates elements in the XML API UpdateOrder.Request. See "UpdateOrder"
for more information about the OrderDataFilter in the UpdateOrder Web Service.

About Compensation for Automations
The following sections describe how automations can be configured for compensation.

About Execution Modes for Automations
Internal event receiver sender automations triggered from tasks can be run in different
execution modes in compensation scenarios. When the task is in a particular execution mode,
only those sender automations configured with the corresponding execution mode can run. For
example, a task may have three automations, one of which is a sender configured to send
messages to external systems in both do and redo mode, with a corresponding automator that
receives the responses from those messages. A third sender plug-in could be required for
cancelation scenarios or if the task were no longer required in the process flow. This sender
would send a cancelation request to the external system that would cancel any of the do or
redo operations that had previously occurred on the external system. The response would be
returned to the automator plug-in that contains code that can handle any do, redo, or undo
request and transition the task as appropriate.

Chapter 8
About Compensation for Automations

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 51

At the task level:

• Internal senders and automators configured in the Automation tab can run in do, redo, or
undo in normal or fallout modes.

• Internal senders and automators configured in the Events tab can run in do, redo, or undo
in normal mode.

About Automations that Update Order Data and Compensation Analysis
When a revision order triggers compensation analysis for an order, an automation that updates
order data may potentially be data included in compensations.

Any update order data changes triggered from automations with TaskContext or
TaskNotificationContext objects, regardless of whether the task can be run in different normal
or fallout execution modes, participates in task-level compensation analysis. Figure 8-10
illustrates how an update order run during the base order processing of Task A is included in
the historical order perspective (HOP) of revision 1 Task A.

Figure 8-10 Update Orders in Task Compensation Analysis

Any update order data changes triggered from automations with OrderNotificationContext or
OrderDataChangeNotificationContext objects do not participate in task-level compensation
analysis and OSM does not include them in the contemporary order perspective (COP) or
historical order perspectives (HOP). Nevertheless, OSM includes these data updates into the
real-time order perspective (ROP) and OSM adds the changes to the closest task instances
that are created or completed when the data changes occur.

OSM guarantees the accuracy of these data perspectives for the data update changes done in
the task context according to the definitions of these data perspectives. Because the update
order data changes in the order context are not associated with a specific task, OSM cannot
deterministically guarantee that the compensation perspectives (COP or HOP) will reflect the
data changes in at the order context consistently and deterministically.

For more information about how perspectives work in change order management scenarios,
see OSM Modeling Guide.

Chapter 8
About Compensation for Automations

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 40 of 51

About Using GetOrder Responses to View Compensation Perspectives
During the fulfillment process, an order may fail (also known as fallout) for reasons such as
insufficient data or incorrect data. You may have to revise the order data to fix the fallout. If
there are multiple revisions on the order, you may need access to previous versions of it so
you can provide the information required to roll back the order to the corresponding successful
state rather than rolling it back to the previous successful state.

Using GetOrder's TaskExecutionHistory and OrderChangeID elements, you can obtain the
order data for all the revisions that happened on an order and use the relevant data in the
fulfillment process according to your needs. The GetOrder.Response and GetOrder.Request
XML APIs also include these elements and are included with OSM Automation plug-ins.

For example, consider an order which has been revised three times. You can obtain order data
of all the three revisions and use the required data for the fulfillment.

See "GetOrder" for more information about these elements.

Use the GetOrder function to retrieve the TaskExecutionHistory element which returns an
OrderChangeID associated with each historical perspective.

The following sample code snippet provides the syntax for the GetOrder function:

let $taskData := fn:root(automator:getOrderAsDOM($automator))/oms:GetOrder.Response
let $orderChangeID := $taskData/oms:TaskExecutionHistory/oms:Task[1]/oms:OrderChangeID/
text()
let $prevTaskData := fn:root(automator:getOrderAsDOM($automator, $orderChangeID))/
oms:GetOrder.Response

In the example above, the OrderChangeID specifies the revision to look for and roll back. An
OrderChangeID with a value 0 indicates that it is the original base order with no revisions.

About Creating Automations in Design Studio
The following sections describe Design Studio tasks involved in creating automations.

About Building and Deploying Automation Plug-ins
Starting with OSM 7.3, OSM runs all automation plug-ins inside the oms.ear file. Running all
automation plug-ins in oms.ear improves the performance of processing of automated tasks
and improves the performance of build and deployment of cartridges with automated tasks.

Figure 8-11 illustrates when automation plug-ins are built and deployed using Optimized mode,
which is the only method available in OSM 7.3 and later. Internal event receiver type plug-ins
run within the OSM application and do not require their own J2EE application. The figure also
illustrates that the business logic of external event receiver type plug-ins is also run within the
OSM application and only the automation framework of external event receiver type plug-ins
requires its own J2EE application to listen on the external message queue.

Chapter 8
About Creating Automations in Design Studio

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 41 of 51

Figure 8-11 Dispatch of Automation Plug-ins

External event receiver type automation plug-ins always require their own J2EE application in
order to listen on a JMS destination. All of the business logic for external event receiver type
plug–in J2EE applications is run within the OSM application and they need to be rebuilt only
when the JNDI name of the JMS destination changes.

External event receiver type automation plug-ins are made up of both:

• The automation framework (OSM infrastructure) which receives and prepares the incoming
message so that it can be run according to your business logic. The automation framework
subscribes to the external message queue (JMS destination) and requires its own J2EE
application in order to listen on the external message queue.

• The business logic itself which determines how the incoming message will be processed
(for example, XQuery, XSLT, and custom Java class).

The J2EE application of an external event receiver type automation plug-in contains only the
minimum amount of automation framework infrastructure that allows it to listen on the external
message queue and forward the message to the core OSM application logic. This means the
business logic of the automation plug-in is run within the OSM application. The automation
framework acts primarily to forward the message to OSM. The only time you need to rebuild an
external event receiver type automation plug-in is when you decide to use a different external
message queue (when the JNDI name of the JMS destination changes).

Note

Starting with OSM 7.2.4, automations are validated when they are deployed. Prior to
that, errors like missing queues were only validated at run time. The deployment logs
will provide information about any validation failures. Because the validation can cause
the deployment to fail, once you have corrected the problem, you will need to redeploy
the automation.

Chapter 8
About Creating Automations in Design Studio

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 42 of 51

About Automation Maps
After you have defined the automated task or automated notification, and defined the
automation for it, a successful build of the project automatically generates the
automationMap.xml file:

• This file is governed by the rules defined in the cartridgeName/customAutomation/
automationMap.xsd file, which is only visible when in the Java perspective. The
customAutomation directory and XSD file are present with the creation of an OSM
cartridge.

• This file is placed in the cartridgeName/cartridgeBuild/automation directory, which is only
visible when in the Java perspective.

About Editing the Automation Map
If you are deploying a cartridge outside Design Studio, for example using OSM's cartridge
management tools, the first time you upgrade a cartridge from a pre-OSM 7.0.3 version to a
version of OSM that is 7.0.3 or later, you need to update the automationMap.xml manually.
You need to add two elements to each <taskAutomator> element:

<cartridgeNamespace>Namespace</cartridgeNamespace>
<cartridgeVersion>Version</cartridgeVersion>

These elements are required because of changes to the automationMap.xsd.

If you are upgrading a pre-OSM 7.0.3 cartridge created in Design Studio, to a version that is
7.0.3 or later, no manual change is required.

For examples of generated XML for automations defined for automated tasks and automated
notifications, see "AutomationMap.xml File." The information is not included in this chapter
because Oracle recommends that when defining the automation, you take the defaults and
allow the project build to generate the automationMap.xml file. The information in the
appendix is provided for in-depth understanding of the file should you need to modify it for
some rare, obscure business reason.

About Mnemonic Values for Design Studio Entities in Automation Maps
For automations defined as internal event receivers, the automationMap.xml generates the
<mnemonic> element. This value of this element varies as described in Table 8-5.

The String value of the mnemonic element cannot exceed a length of fifty characters. If the
length is greater than fifty, the following build error is encountered:

Exception caught assembling plug-ins: "Parse/validation of automation map cartridgeName/
cartridgeBuild/automation/automationMap.xml using schema cartridgeName/
customAutomation/automationMap.xsd failed: Invalid text fiftyPlusMnemonicValue in
element: mnemonic."

Table 8-5 Mnemonic Values

Automated Task or
Automated Notification

<mnemonic> value

Automated task taskName

Chapter 8
About Creating Automations in Design Studio

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 43 of 51

Table 8-5 (Cont.) Mnemonic Values

Automated Task or
Automated Notification

<mnemonic> value

Order milestone-based event
notification

The <mnemonic> element is not generated for order milestone-based
event notifications.

Task state-based event
notification (task Events tab)

taskName

Task state-based event
notification (process Events
tab)

processName_eventName

Task status-based event
notification

processName_eventName

Order data changed event
notification

orderName_eventNotificationName

Order jeopardy notification orderName_jeopardyName

Task jeopardy notification taskName_jeopardyName

About Managing Automations
The following sections describe automation management topics.

Building and Deploying Automation Plug-ins
Building and deploying an automation plug-in is a matter of building and deploying the
cartridge that defines the automation plug-in. See OSM Modeling Guide for more information.

Automating the Build and Deploy
You can also automate and build the deploy of an automation plug-in by automating the build
and deploy of the cartridge that defines the automation plug-in. See OSM Modeling Guide.

Troubleshooting Automations
If you encounter a problem when attempting to run an automation, you must verify that you are
not using multiple versions of the automation_plugins.jar file. You do this by checking that the
date and size of the file are the same in the following locations:

• When you create a new cartridge in Design Studio, the automation_plugins.jar file is
placed in the osmlib directory of the cartridge. Verify the date and size of the file by
viewing your Eclipse workspace in Windows Explorer, and navigating to the osmlib
directory of the cartridge you created within your workspace.

• When you install OSM, the automation_plugins.jar file is placed in the SDK/automation/
automationdeploy_bin directory. This is the version of the automation_plugins.jar file
that your project library list references to compile the cartridge project containing the
automation. (See "Compiling the Custom Automation Plug-in" for more information.) Verify
the date and size of the file by viewing your installation directory, and navigating to the
SDK/automation/automationdeploy_bin directory.

If the two versions of the file are not the same, use the version from the OSM installation:

Chapter 8
About Managing Automations

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 44 of 51

1. Copy the automation_plugins.jar file from the SDK/automation/automationdeploy_bin
directory to the osmlib directory of your cartridge within your Eclipse workspace.

2. Clean and rebuild the cartridge.

3. Redeploy the cartridge.

4. Run the automation.

Note

When the versions of the automation_plugins.jar file are not the same, you may also
encounter a marshalling error when deploying the cartridge, prior to attempting to run
the automation. The marshalling error, which states that it cannot find the
getProductBuildVersion() method, displays on the WebLogic console; it does not
display in Design Studio when deploying the cartridge. If you encounter this error, the
resolution is the same. Follow the steps described above.

Upgrading Automation Plug-ins
If you are upgrading from a previous release of OSM, and the previous release included
automation plug-ins (custom or predefined), the same steps that are required to define a new
automation plug-in are required to define the existing automation plug-in in the new release,
with the exception of writing of the actual custom Java code.

For example, if the previous release included the automation plug-in genericPlugin, to upgrade
genericPlugin in the new release you need to:

• Define the trigger in Design Studio

• Define the automation mapping in Design Studio

• Define the Custom Automation Plug-in in Design Studio

• Deploy the cartridge that contains genericPlugin to the OSM server

If genericPlugin is a custom automation plug-in, you can reuse the custom Java code by
placing the Java source file in the cartridge src directory, compiling it, and selecting the class
when defining the Custom Automation Plug-in. If genericPlugin is a predefined automation
plug-in, you can select the predefined class when defining the automation, and reuse your
XSLT or XQuery files by copying them into the cartridge resource directory.

Using Automation with a System Interaction (Cloud Native Only)
This section is applicable to both Freeform cartridge developers and TMF cartridge developers
as the functionality is not restricted to one cartridge type. The REST API contract for an
external system must have already been imported into an OSM cartridge before this content
becomes relevant. For more information, refer to "Modeling External REST Interactions using
System Interaction" in OSM Modeling Guide.

Note

System Interactions are supported for OSM cloud native deployments only.

Chapter 8
Using Automation with a System Interaction (Cloud Native Only)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 45 of 51

Pre-Requisites
• With JMS integrations, automation plugin code is responsible for managing correlation.

With this release, OSM Gateway takes on that responsibility. A condition of any integration
using System Interaction, is that external systems must honor the HTTP header used by
OSM for correlation. Sync responses sent back to OSM must include the X-Correlation-ID
that was sent on the request.

• OSM only supports "application/JSON" for both incoming and outgoing messages in a
REST exchange with an external system.

Task Transport Type
Before automation plugins can be configured to communicate with the REST APIs of an
external system, the automation task must have the task transport type set correctly. This can
be done on the Details tab on the Task Editor in Design Studio. When the transport is set to
System Interaction, Design Studio enables configuration that is specific to System Interaction
while, at the same time, disabling options that apply only to JMS.

Note

You cannot use JMS and System Interaction in the same task.

Automation Plugins
REST operations consist of a request and an immediate, synchronous response back. This
does not mean that the external system can complete the requested action synchronously but
there must be some form of acknowledgement of the request. It is therefore mandatory, for
both a sender and receiver plugin to be configured for the bi-directional communication
involved in REST operations. The sender is responsible for formatting the outgoing request.
The receiver is responsible for parsing the sync response.

OSM provides new automation APIs that are specific to REST interactions. Cartridge
developers should consult the java docs (in the OSM SDK) before developing coding.

Typical REST Interaction
This section provides an illustration of a typical REST interaction.

Chapter 8
Using Automation with a System Interaction (Cloud Native Only)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 46 of 51

Figure 8-12 Typical REST Interaction

InternalEventReceiver (Senders)
This plugin type handles requests destined for an external system as defined in the OpenAPI
Specification of that system.

Design Studio Automation Properties

In Deisgn Studio, you can ignore the Routing tab when configuring an internal event receiver
for a task with System Interaction transport.

On the System Interaction tab, Internal Event Receivers can choose any of the operations in
the dropdown list as these come directly from the specification.

The target system is a read-only identifier of the system that this plugin will be communicating
with. This is the logical system name that matches concrete connection details defined in the
specification files in the toolkit.

Plugin Code

Handling HTTP Headers

The following is an example of an OpenAPI request header:

post:
 parameters:
 - in: header
 name: X-username
 schema:
 type: string

The automation plugin can include this HTTP header using the new java classes supporting
System Interaction.

Chapter 8
Using Automation with a System Interaction (Cloud Native Only)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 47 of 51

The following is an example of setting an HTTP header in XQuery:

declare namespace siContext =
"java:oracle.communications.ordermanagement.automation.plugin.SISenderContextI
nvocation";

declare variable $siContext external;

......

(: Example of how to set HttpHeaders with SISenderContextInvocation :)
declare function local:setHttpHeaders()
{
 siContext:setHttpHeader($siContext,"X-username", "DonaldDuck")
};

Note

You cannot set headers using the automation API that are not defined in the OpenAPI
specification underlying the System Interaction Specification.

Handling Path Parameters

Parameters that can optionally be included in an endpoint URL are identified in the OpenAPI
by in:path as seen in the example below:

parameters:
- name: id
 in: path
 description: Identifier of the resource
 required: true
 schema:
 type: string

The following is an example of setting Path Parameters in XQuery:

declare namespace siContext =
"java:oracle.communications.ordermanagement.automation.plugin.SISenderContextI
nvocation";

declare variable $siContext external;

.......

(: Example of how to set path parameters with SISenderContextInvocation :)
declare function local:setPathParameter()
{
 siContext:setPathParameter($siContext,"id", "98761234")
};

Request Payload

Chapter 8
Using Automation with a System Interaction (Cloud Native Only)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 48 of 51

External systems expect a request payload that is referenced by a schema object in the
OpenAPI document.

The following is an example of OpenAPI request body schema:

requestBody:
 description: The ServiceOrder to be created
 content:
 application/json;charset=utf-8:
 schema:
 $ref: '#/components/schemas/ServiceOrder_Create'
 required: true

If coding to a TMF enabled application, TMF uses the pattern of a _Create payload
(ServiceOrder_Create).

The following is an XQuery example creating a payload:

<ServiceOrder_Create xsi:type="ServiceOrderOSM_Create" xmlns="http://
xmlns.oracle.com/communications/ordermanagement">
 {
 return content here.....
 }
</ServiceOrder_Create>

Note

The XML xsi:type is used to denote the concrete CDT type of the XML content. This
example references an OSM extension to the base TMF schema object.

ExternalEventReceiver
This plugin type is intended to process either a synchronous operation response or an
asynchronous event which is returned or emitted from the external system. The new System
Interaction supporting java classes provide the APIs to get information that is commonly
contained in an event payload.

XQuery sample retrieving event details are as follows:

declare namespace siContext =
"java:oracle.communications.ordermanagement.automation.plugin.SIReceiverContex
tInvocation";

declare variable $siContext external;

..........

declare variable $eventType := fn:string(siContext:getEventType($siContext));
declare variable $eventId := fn:string(siContext:getEventId($siContext));
declare variable $domain := fn:string(siContext:getDomain($siContext));
declare variable $hostHeader := fn:string(siContext:getHttpHeader($siContext,
"Content-Type"));
declare variable $statusCode :=
fn:string(siContext:getStatusCode($siContext));

Chapter 8
Using Automation with a System Interaction (Cloud Native Only)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 49 of 51

declare variable $reasonPhrase :=
fn:string(siContext:getReasonPhrase($siContext));

Refer to the OSM java documentation for a comprehensive API guidance.

System Interaction As a Receiver Only
There can be a situation where order processing waits for an external event to be received
before proceeding. In this case, the order expects an event which is not a response to an
earlier request. This event may be received via JMS or REST. For System Interactions, the
REST mechanism is applied.

You need the following to complete this:

• An OpenAPI specification that describes the event that OSM should expect. This must be
provided as the System Interaction specification to the automation.

• A correlation ID so that there is a way to route the incoming event to this particular waiting
task.

• A receiver automation plugin which receives the event payload and processes it, including
completing the task so that the order proceeds.

Correlation

You need to tell OSM what correlation to expect in the incoming event. To do this, the
automation task must have an internal receiver plugin where the correlation ID is defined and
is known to OSM. This plugin can look like:

 declare namespace correlatorns = "java:com.mslv.oms.automation.Correlator";
 ...
 let $correlator := automator:getCorrelator($automator, $context)
 return correlatorns:add($correlator, "CustomCorrelation123")

You must use a unique correlation ID across all tasks, processes and orders.

The following sequence diagram illustrates the System Interaction receiver only:

Chapter 8
Using Automation with a System Interaction (Cloud Native Only)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 50 of 51

Figure 8-13 System Interaction Receiver Only

Chapter 8
Using Automation with a System Interaction (Cloud Native Only)

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 51 of 51

9
Using Order Metrics Manager

This chapter describes the Oracle Communications Order and Service Management (OSM)
Order Metrics Manager feature, which allows you to extract metric data from your OSM system
and view that data using a variety of tools.

About Order Metrics Manager ADML Files
OSM provides an Order Metrics Manager API that collects metric data about your system. A
set of XML files, called ADML files, contain the metric rules that allows Order Metrics Manager
to aggregate the metric data.

ADML files are automatically loaded to the correct directory when you run the installer. If the
ADML files are not loaded correctly, you can load them manually. For more information, see
the topic about manually loading metric rules files in OSM Installation Guide.

You can access ADML files in order to see the metrics that Order Metrics Manager is
collecting. For OSM and other Oracle products and product suites, ADML files are located in
the following directory:

MW_home/oracle_common/modules/oracle.dms/adml

where MW_home is the location where the Oracle Middleware product is installed.

Note

ADML files are the technical implementation of the API, therefore you cannot
customize these files. You can, however, create your own custom ADML files. For
information about creating ADML files, see Oracle Fusion Middleware documentation.

Viewing Metrics
The Oracle Application Management Pack plug-in that is available with Oracle Enterprise
Manager provides a graphical view of metrics data. For more information about viewing metrics
data using the Application Management Pack interface, see OSM System Administrator's
Guide and Oracle Application Management Pack for Oracle E-Business Suite User's Guide.

There are a number of other tools that you can use to view and retrieve or dump the metric
data that Order Metrics Manager extracts from your OSM system. You can use the following:

• Oracle Dynamic Monitoring Service (DMS) Spy servlet

• WebLogic Scripting Tool (WLST)

• Java Management Extensions (JMX)

• Oracle Fusion Middleware Console

• Oracle Enterprise Manager

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 2

The DMS interface is provided with your OSM installation and displays metric data in sets of
tables. A set of DMS tables displays OSM metric data, and a set of aggregated tables displays
OSM metrics that are defined based on existing metrics.

The DMS interface can also display sets of tables for WebLogic and JMX metrics, and for non-
J2EE metrics, which are about remote processes from the Oracle HTTP server. For more
information about viewing metrics data using the DMS interface, see OSM System
Administrator's Guide.

For more information about DMS and using the other tools that are listed in this section to view
metric data, see Oracle Fusion Middleware Performance and Tuning Guide.

Chapter 9
Viewing Metrics

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 2

10
Localizing OSM

This chapter provides information about localizing the Oracle Communications Order and
Service Management (OSM) web clients. Localization is the process of changing a user
interface (UI) from the original language in which it was written to another language. This
chapter also provides information for customizing regional settings across all OSM
applications. This chapter is intended for service professionals developing a custom installation
for their clients.

About Localization
Localization is the process of customizing the OSM system for use in a specific market and
language. This process includes translating the user interface and documentation, as well as
adapting time, date, number formats, and punctuation conventions. It may also include editing
or creating new icon graphics.

Note

Oracle recommends that you have an experienced localization professional perform
the documentation translation and coding localization.

This chapter describes how to:

• Modify the OSM Order Management web client and Task web client

• Configure regional settings for the Administration area of the OSM Order Management
web client

• Identify information in the OSM database that requires localization

• Convert the OSM web clients into a single foreign language.

Note

After you run any migration script such as upgrading an installation, you must reapply
any customization done to the database.

Localizing OSM
Localizing OSM involves the following high-level steps.

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 26

Note

These steps assume you have followed the directions specified in the OSM Installation
Guide, which include:

• Installing Oracle WebLogic Server

• Making a backup of your WebLogic Server installation

• Installing OSM to create the database schema by selecting Custom Installation
and Database Schema. This generates the osm-db-model-l10n.jar file needed
for localization.

• Making a backup of your OSM installation after performing these localization steps

1. Uncompress the Database/osm-db-installer-core/install/osm-db-model-l10n.jar file.

Set the environment variable PATH to JDK_home/bin, then from a command prompt run
the command:

jar xvf osm-db-model-l10n.jar

The uncompressed files are organized into the directories shown in Figure 10-1.

Figure 10-1 Uncompressed Files

2. Navigate to the directories listed below, and localize the text strings in the XML files
indicated. You must localize this information first so that the database parameters are
defined in the target language. For information on how to localize the content of the XML
files, see the following sections in this chapter:

• About OSM Database Error Messages

• About Application Server Strings

• About Generic Preferences

OMS/main/model/calendar/_table/_data:

• om_region.xml

• om_schedule.xml

OMS/main/model/cartridge/_table/_data:

• om_cartridge.xml

OMS/main/model/notification/_table/_data:

Chapter 10
Localizing OSM

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 26

• om_notification_def.xml

OMS/main/model/ordertemplate/_table/_data:

• om_attribute_type.xml

• om_order_data_dictionary.xml

• om_order_hier.xml

• om_order_remarks_type.xml

• om_order_type_category.xml

• om_view_order_node_label.xml

OMS/main/model/process/_table/_data:

• om_behavior.xml

• om_process.xml

• om_process_point.xml

• om_process_position.xml

• om_process_status.xml

• om_state.xml

• om_state_category.xml

• om_status_category.xml

• om_task.xml

• om_task_state.xml

• om_task_status.xml

OMS/main/model/rule/_table/_data:

• om_rule_def.xml

• om_rule_source.xml

• om_rule_task.xml

OMS/main/model/user/preference/_table/_data:

• om_generic_mnemonic.xml

OMS/main/model/user/privilege/_table/_data:

• om_application_function.xml

• om_responsibility.xml

OMS/main/model/utility/_table/_data:

• om_errors.xml

• om_server_strings.xml

3. Compress osm-db-model-l10n.jar.

After you have localized the XML files, open a command prompt console, navigate to the
directory that contains the JAR file, and run the command:

jar cvf osm-db-model-l10n.jar .

4. Choose option a or option b:

Chapter 10
Localizing OSM

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 26

a. Drop the existing schemas from the database so you can reuse the schema names
when you reinstall (Step 5). This is done by running the commands below. Stop the
WebLogic server prior to running these commands, and start it again upon completion.

• OMS user schema:

drop user oms_schema_name cascade; commit;

• Rule engine schema:

drop user rule_engine_schema cascade; commit;

• The context:

drop context oms_schema_name; commit;

b. When reinstalling (Step 5), create a new schema with a different name.

5. Reinstall OSM, this time selecting all of the components you want to install permanently.
When the Database Schema Localization Information window appears, select the Use
localized Order and Service Management initial data check box and specify the path to
your localized JAR file.

The installer localizes the schema using your JAR file.

6. Localize the OSM web clients as required.

After the database information has been localized and the product has been installed, you
can customize the OSM web clients to suit the needs of the target locale. For more
information, see "Localizing the Task Web Client," "Localizing the Order Management Web
Client," and "Localizing the Order Lifecycle Management User Interface."

Localizing the XML Import/Export Application
If you localized OSM, you must also localize the XML Import/Export application. Localizing the
XML Import/Export application involves the following high-level steps:

1. Uncompress the SDK/XMLImportExport/classes/modelHandler.jar file.

Set the environment variable PATH to JDK_home/bin, then from a command prompt run
the command:

jar xvf modelHandler.jar

2. Localize the sql/default_data.sql file.

To localize the default_data.sql file, you must understand the relationship between the
data that was localized in the XML files from the osm-db-model-l10n.jar file, and the
insert scripts defined in the default_data.sql file. The following example provides that
understanding:

Suppose om_state.xml of osm-db-model-l10n.jar is localized. The localization
corresponds to the INSERT statements of the table OM_STATE defined in
default_data.sql in the om_state.xml file. For example, if the <state_description> of
<state_mnemonic>received</state_mnemonic> is localized as
<state_description>TEMP_received</state_description>, in default_data.sql the
INSERT statement that is inserting received state in the OM_STATE table must be
localized to:

[INSERT INTO OM_STATE (STATE_ID, STATE_MNEMONIC, STATE_CATEGORY_ID,
STATE_DESCRIPTION,STATE_ICON_ID, CARTRIDGE_ID) VALUES (1, 'received', 1,
'TEMP_received', 0, 0);]

Following this example, all fields that are localized in the XML files of osm-db-model-
l10n.jar must also be localized in default_data.sql.

Chapter 10
Localizing OSM

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 26

3. Compress modelHandler.jar.

After you have localized the sql/default_data.sql file, open a command prompt, navigate
to the directory that contains the JAR file, and run the command:

jar cvf modelHandler.jar .

Localizing the Encoding Element

To support localization, the <encoding> element in the config.xml file determines the
appropriate language. For information on the config.xml file, see OSM System Administrator's
Guide.

• Configure the following line in the config.xml file with the appropriate ISO character code,
shown in bold, below:

<encoding>ISO-8859-2</encoding>

• Be sure that your Microsoft Windows operating system is localized for your language. See
Microsoft documentation for instructions.

• Some pattern restrictions for entity names in the XML model schema are provided with the
XML Import/Export application. For non-English environments, you must customize the
schema for entity name patterns.

Additional Considerations for Localizing OSM
The process of localization also involves the support for different locales, character set
encoding, and localization of settings.

Support for Different Locales
Locales are linguistic regions that share spelling conventions. A locale consists of a language
code, followed by an optional country code, followed by an optional variant code. For example,
"en_US" specifies English in the United States, while "en_GB" specifies English in Great
Britain.

Operating systems such as Windows, Linux, Oracle Solaris, and HP-UX support the locale
model and provide facilities to properly read and format locale-specific information. Additionally,
newer programming languages such as Java provide similar facilities to support localization.

However, HTML does not support localization or have solutions for date or time issues. The
localization of HTML requires support from the OSM server and Javascript code sent to the
browser.

Character Set Encoding and Fonts
Characters in an HTML file are stored as numeric values with a range from 0 to 255. When a
web browser displays a character symbol, it uses the numeric value to find the correct symbol
to display. The set of symbols displayed for each number is known as a character set. As 256
numbers are insufficient to describe all possible characters that may need to be displayed in all
languages, you must specify what character set the browser is to use when it displays an
HTML page.

By default, HTML uses the ISO-8859-1 character set, which can display all characters needed
for Western European Languages. When you create HTML pages using other character sets
(such as ISO-8859-2 for Eastern European Languages), you must use the corresponding
encoding.

Chapter 10
Additional Considerations for Localizing OSM

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 26

You must ensure that a font appropriate for the text you intend to use has been installed on the
system.

Localization of Settings
OSM supports localized Windows regional settings: All number, currency, date, and time
formats displayed in the Administration area of the OSM Order Management web client come
from the Windows regional settings.

You can also localize regional settings through the OSM properties file. See "Task Web Client
Localization Resource Bundles" for more information on how to do this.

For more information on Windows regional settings, see the Microsoft Windows
documentation.

Language Support for OSM User Interfaces
You can localize the Order Operations Dashboard and Fallout Dashboard user interfaces with
a language of your choice. If the language is not currently supported in the user interface, you
need to complete the following steps:

1. Find the UI string bundles in the OSM SDK for your release. The landing page bundle is in
the SDK at SDK/LandingPageUILangBundle and the Dashboards bundle is at SDK/
RuntimeUILangBundle. These are to be treated as English language reference information.

2. Update a copy of these bundles, replacing the English text with text in your desired
language. Use the English text as a guide to the intent of each string.

3. Raise a Service Request for OSM requesting the specific language support, and attach the
translated bundle files. In addition to the translated bundle files, the Service Request
should clearly state the following:

• You need support for a language to be made available.

• The OSM cloud native version.

• The OSM SDK version.

Once the Service Request is processed, the translated bundle files will be incorporated into the
product and will be available for your use in a subsequent patch.

About NLS Database Configuration
Oracle's National Language Support (NLS) architecture allows you to store, process, and
retrieve data in native languages. It ensures that database utilities and error messages, sort
order, date, time, monetary, numeric, and calendar conventions automatically adapt to the
native language and locale.

Oracle Database Character Set
OSM stores its text data in CHAR and VARCHAR2 columns in an Oracle database. The
database character set determines what languages can be represented in the database. So,
you must install OSM in an Oracle database with a character set that meets your language
requirements.

You can specify a character set when creating a database using the CHARACTER SET clause
of the CREATE DATABASE statement. A complete list of character sets supported by Oracle is
included in the Oracle documentation.

Chapter 10
About NLS Database Configuration

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 26

You can use the v$nls_parameters view to determine the existing database character set.

OSM does not use the NCHAR, NVARCHAR2, or NCLOB data types and so has no specific
requirements for the alternate character set for the database.

To determine the existing character set:

1. Connect to the Oracle server using SQL*Plus as a user who has access to the
v$nls_parameters view.

2. At the SQL*Plus prompt, enter the following:

SQL> select value from v$nls_parameters where parameter = 'NLS_CHARACTERSET';

Information similar to the following is returned:

VALUE
--
WE8ISO8859P1

You can use the CHARACTER SET clause of the ALTER DATABASE statement to change
the character set for an existing database.

Note

You must have SYSDBA system privileges.

To change the character set:

1. Initiate the database in restricted mode. For example, use the SQL*Plus STARTUP
RESTRICT command.

2. Connect to server Manager (svrmgrl in UNIX or svrmgr30 on Windows XP).

3. At the prompt, enter:

ALTER DATABASE db1 CHARACTER SET WE8ISO8859P1;

Note

The source character set must be a strict subset of the target character set.

NLS Environment
For the OSM Order Management web client Administration area to support localization, the
Oracle NLS parameters must be configured properly in Windows XP.

On UNIX, the Oracle NLS parameters are configured as environment variables. On Windows
XP, the Oracle NLS parameters are configured as registry entries under
HKEY_LOCAL_MACHINE/SOFTWARE/ORACLE.

NLS_LANG Parameter
Use the NLS_LANG parameter to set the language, territory, and character set used for the
database.

Chapter 10
About NLS Database Configuration

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 26

The NLS_LANG parameter has three components: language, territory, and charset, in the
form:

NLS_LANG = language_territory.charset

Each component controls the operation of a subset of the NLS features.

• Language: Specifies conventions such as the language used for Oracle messages, as
well as day and month names. Each supported language has a unique name, such as
French, or German.

• Territory: Specifies conventions such as the default calendar, collation, date, monetary,
and numeric formats. Each supported territory has a unique name, such as America,
France, or Canada.

• Charset: Specifies the character set used by the client application. Each supported
character set has a unique acronym, such as US7ASCII, WE8ISO8859P1, WE8DEC,
WE8EBCDIC500, or JA16EUC.

ORA_NLS33 Environment Variable
Ensure the ORA_NLS33 environment is set to Oracle_home/nls/data.

You can also set other NLS environment variables. For a complete list of NLS environment
variables, see the Oracle documentation.

About OSM Database Error Messages
You can localize OSM database error messages by editing the error message text in the
om_errors.xml file.

This file is located in your OSM_home/ Database/osm-db-installer-core/install/OMS/main/
model/utility/_table/_data directory.

To edit these error messages, open the file using an XML or text editor and replace the
"error_message" text with the target language text. Table 10-1 lists all of the error messages in
the om_errors.xml file.

Note

After you have localized this file, make sure you provide an updated copy to Oracle
Global Support to assist you in any issues that may arise.

Table 10-1 OSM Error Messages

Error Codes Error Message

-20001 Order satisfied no rule. Cannot start process.

-20002 Order status and order state have not been changed.

-20004 Starting position for the process is not defined. Call support.

-20005 There is no creation task. Call support.

-20006 Workflow thread does not exist. The order may have been moved by another user.
Refresh your worklist and try again.

-20007 Order is locked. Try again later.

Chapter 10
About OSM Database Error Messages

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 26

Table 10-1 (Cont.) OSM Error Messages

Error Codes Error Message

-20008 Current history detail record not found for the order. Call support.

-20009 Cannot remove node, which has children.

-20011 Order to be updated is currently locked by another user.

-20012 Order not found.

-20014 Rule to be evaluated is not found. Call support.

-20015 System data is protected.

-20016 Value cannot be null.

-20017 Rule cannot be evaluated.

-20020 Operation affected too many rows.

-20022 Access denied: not enough privileges.

-20023 You cannot accept this order thread.

-20025 There are too many instances for the order node.

-20026 There are too few instances for the order node.

-20027 Parent order node does not exist.

-20028 Rule engine has already been started.

-20029 Rule engine has not been started.

-20030 Invalid process definition.

-20031 Order node cannot be found. Call support.

-20038 Mandatory check failed.

-20040 Order view for task cannot be found.

-20041 Process position cannot be found. Call support.

-20044 Reporting status cannot be found. Call support.

-20049 Status is not valid for task.

-20050 View node cannot be found.

-20051 Notification cannot be found.

-20054 Notification history cannot be found.

-20055 Notification is not active.

-20056 Time interval is not valid.

-20043 Jump record does not exist.

-20059 Error processing notification.

-20060 Node information does not match any node in the database.

-20061 New parent node information is not valid.

-20062 Remark cannot be found.

-20063 The remark cannot be changed.

-20064 Attachment cannot be found.

-20065 No orders are stored in the system.

-20067 No orders satisfy the purge criteria.

Chapter 10
About OSM Database Error Messages

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 26

Table 10-1 (Cont.) OSM Error Messages

Error Codes Error Message

-20068 The wrong task has been supplied for the order.

-20069 Invalid state transition.

-20070 Invalid order type.

-20071 Invalid order source.

-20072 Invalid process status.

-20073 Invalid state.

-20074 State is not valid for task.

-20075 Task not found.

-20076 Stop date/time must be greater than start date/time.

-20077 Shift violates schedule boundary.

-20078 Please change the shift boundaries so as not to overlap any existing shift.

-20079 Exception shift not found.

-20080 Parent region is not found.

-20081 Cannot remove region, which has child regions.

-20082 Cannot remove region, which is attached to workgroup.

-20083 Cannot move to the next task. Cannot calculate expected completion time. Schedule
is too short. Ask OSM administrator to extend the calendar.

-20084 Cannot move to the next task. Cannot calculate expected completion time. Cannot
find the schedule.

-20085 Invalid parameter when you call internal function.

-20086 DST start/stop date is not correctly specified in om_workgroup table.

-20087 Can not find workgroup during the building of DST date.

-20088 Invalid calendar DST start/stop day of the month in the workgroup settings

-20089 Incorrect value in DST week settings in the workgroup definition

-20090 Missing parameter "oms_timezone" in OM_PARAMETER table

-20091 The node is used as a coordinator node for this thread.

-20092 Parameter Stop Date must be greater than Current System Date

-20093 Parameter Completion Date Before should be less than Current System Date

-20094 Calendar can be generated only workgroup by workgroup not for all workgroups at
once

-20095 Parent thread is not found.

-20096 Partition boundary is too low. Increase the value of NEXT RANGE PARTITION
BOUNDARY parameter.

-20097 Specific view is not assigned to a workgroup

-20098 Specific task is not assigned to workgroup.

-20099 JMS message does not exist.

-20103 Event type is not recognized. Call support.

-20104 Increase value of job_queue_processes parameter in the init*.ora file.

-20105 Job type is not valid. Call support.

Chapter 10
About OSM Database Error Messages

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 26

Table 10-1 (Cont.) OSM Error Messages

Error Codes Error Message

-20106 Minimum running jobs should be greater than 0

-20107 It can be only one notification job running at the same.

-20108 Task list is empty.

-20109 Specified pooler id is invalid.

-20110 Invalid type/source combination. Call support.

-20112 Cartridge already exists.

-20113 Cartridge can not be dropped. There are pending orders found.

-20114 Oracle runtime error.

-20121 Cannot modify cartridge - automation component is referring it.

-20122 Order type does not exist.

-20123 Order source does not exist.

-20124 Parent order not found for target node.

-20125 Cannot migrate the order header because it has activities in the source cartridge.

-20126 Character to number conversion error.

-20127 Unable to drop cartridge. There are pending orders referencing current cartridge.

-20128 Unable to drop cartridge. Drop oldest cartridge first.

-20129 Migration of schedule based tasks is not supported.

-20142 Operation is not allowed.

-20143 Summary extend date is invalid for existing summary interval.

About Application Server Strings
Application server strings are used in Java business application code in the OSM UI. These
strings can be found in the om_server_strings.xml file in your OSM_home/Database/osm-
db-installer-core/install/OMS/main/model/utility/_table/_data directory.

To edit these strings, open an XML or text editor and replace the "description" text with the
target language text.

Note

After you localize this file, make sure you provide an updated copy to Oracle Global
Support, so that they can assist you with any future issues that may arise.

The strings shown in Table 10-2 are representative of the types of information displayed in the
Worklist, Query, and Notifications views. For a full listing, see the om_server_strings.xml file.

Chapter 10
About Application Server Strings

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 26

Table 10-2 Server Strings

Class Key Description

order_history NODEINST Order Instance

order_history FITEREDNODE Filtered Node

fixed_header]date_pos_started "Started"

fixed_header]expected_duration "Expected Duration"

fixed_header]expected_start_date "Expected Start Date"

fixed_header]order_creation_date "Order Creation Date"

fixed_header]ord_compl_date_expected "Expected Order Completion Date"

fixed_header]order_seq_id "Order ID"

fixed_header]order_source "Source"

fixed_header]order_state "State"

fixed_header]order_type "Type"

fixed_header]process_description "Process"

fixed_header]reference_number "Ref. #"

fixed_header]reporting_status "Process Status"

fixed_header]requested_delivery_date "Requested Delivery Date"

fixed_header]task_description "Task"

fixed_header]user "User"

notification_ fixed_header _NOTIFICATION_ DESC "Notification Description"

notification_ fixed_header _NOTIFICATION_ TYPE "Notification Type"

notification_ fixed_header _PRIORITY "Priority"

notification_ fixed_header _TIMESTAMP "Notification Timestamp"

GUIMessage ALT "View Remark(s)"

fixed_header]completion_date_expected_at_
task

"Expected Task Completion Date"

fixed_header]ord_completion_date "Completed Date"

fixed_header]num_remarks "Number of Remarks"

fixed_header]order_hist_seq_id "Order History ID"

About Generic Preferences
This section lists the generic user preferences in the OSM database tables. The file is located
in your OSM_home/Database/osm-db-installer-core/install/OMS/main/model/user/
preference/_table/_data directory.

To edit these tables, open the file using an XML or text editor and replace the description text
with the target language text.

Chapter 10
About Generic Preferences

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 26

Note

You must only localize the description values and not the column names. Column
names are not externally visible, and are necessary for the internal operation of OSM.

After you localize this file, make sure you provide an updated copy to Oracle Global Support,
so they can assist you with any future issues that may arise.

om_generic_mnemonic
Table 10-3 describes the generic mnemonic localization. Localize the text that appears in the
description column.

Table 10-3 om_generic_mnemonic

CLASS Column Description

worklist_filter Possible values are:

• Accepted by current user
• Assigned to current user
• Received
• Suspended
• Completed

colour Possible values are:

• Black
• White
• Gray
• Silver
• Red
• Green
• Blue
• Yellow
• Purple
• Olive
• Navy
• Aqua
• Lime
• Maroon
• Teal
• Fuschia

order_list Possible values are:

• Worklist
• Search List
• Notification List

user_attr Possible values are:

• Email address
• User Local Timezone
• Enable Worklist Filter

Chapter 10
About Generic Preferences

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 26

Table 10-3 (Cont.) om_generic_mnemonic

CLASS Column Description

dynamic_filter Possible values are:

• Worklist filter field mnemonic
• Worklist filter condition
• Worklist filter lower value
• Worklist filter upper value
• Worklist filter display lower value
• Worklist filter display upper value

login_screen Possible values are:

• System Default
• Worklist
• Home
• Query
• About

Localizing the Task Web Client
The Task web client is a web-based application that provides information dynamically and a set
of interactions that the end-user can perform on this information. The information appears as
HTML pages, but server-side technologies produce the HTML output and provide user
interaction.

For information about the Task web client architecture, see OSM Task Web Client User's
Guide.

You can localize the following Task web client elements:

• Text Strings: Every non-database driven text message, including labels for fields and
buttons.

• Page titles

• Hyperlink text

• Images: You can replace standard images with localized versions; you can also localize
the alternate text for each image.

• Dates and Date/Times: You can display all date and date/time values in the locally
preferred format.

• Numerics: You can display all numeric values in the locally preferred format.

• Currency format

• Error messages

• Log messages

The Task web client uses the Java language, which has built-in support for localization of dates
and times, as well as string sorting capabilities. The Task web client uses the locale of the
operating system upon which it runs in order to determine regional date and time settings.

When a user connects to OSM using their web browser, the OSM server attempts to determine
their preferred locale. If no customization can be found for their preferred locale, the default
locale (English) appears.

Chapter 10
Localizing the Task Web Client

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 26

All modern web browsers support an Accept-Language header which indicates locale
preferences. Multiple language preferences can be specified, however OSM uses the top one
listed to locate localization resources.

To localize the Task web client:

1. Unpack the oms.ear file. See "Unpacking the oms.ear File."

2. Localize and customize the files in the oms.ear/resources directory as described in the
following sections:

• Localizing Date, Time and Currency Formats

• Localizing Text and Error Messages

• Localizing Page Titles

• Localizing Image References

• Inserting New Images

• Editing the First Day of the Week

• Editing the Boolean Data Element Values

• Editing the Number of Records Displayed in the Worklist

• Editing and Replacing Task Web Client Icons

3. Pack the oms.ear file and redeploy it to the WebLogic server. See "Working with the
oms.ear File."

Task Web Client Localization Resource Bundles
After you unpack the oms.ear file (see "Unpacking the oms.ear File"), the localizable
resources for the Task web client are contained in the SDK/Customization/resources/
resources directory.

This directory contains the resources.properties file. This file contains all localizable strings
and image references for the Task web client. Several other properties files are included in the
resources directory as samples, including:

• resources_cs.properties (localized for the Czech Republic)

• resources_zh.properties (localized for China)

• resources_en.properties

To create a new localization property file:

1. Copy the resources.properties file and create a new file using the following naming
convention:

resources_locale.properties

where locale is a locale code. For example, resources_ja.properties for Japan.

2. For each parameter in the resources_locale.properties file, provide a replacement value
in the new locale. If you do not provide a replacement value, the Task web client uses the
default value.

Localizing the Process History Pages
The Process History pages in the Task web client user interface use the Oracle JavaScript
Extension Toolkit (JET), which has built-in support for internationalization and localization.

Chapter 10
Localizing the Task Web Client

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 26

When a user connects to this client using a web browser, the OSM server attempts to
determine their preferred locale. If no customization can be found for the preferred locale, the
default locale (English) is used. All modern web browsers support an Accept-Language header
which indicates locale preferences. If you specify multiple language preferences, OSM uses
the top one listed to locate localization resources.

After you unpack the oms.ear file (see "Unpacking the oms.ear File"), the localizable
resources for the Process History pages in the Task web client are contained in the SDK/
Customization/osm-ui-web/js/resources/nls/ directory.

This directory contains the bundle.js property file. This file contains all localizable strings for
the Process History page. The bundle.js file is loaded by the server by default, if no
customization is found. Several other properties files are included in the nls directory as
samples, including:

• zh/bundle.js (localized for China)

• cs/bundle.js (localized for the Czech Republic)

To create a new localization property file:

1. Create a new directory with the name of the language code and copy the bundle.js file to
the directory you created. For example, create a directory with the name fr (localized for
France) and copy the bundle.js file to the fr directory.

2. For each parameter in the fr/bundle.js properties file, provide a replacement value in the
new locale. If you do not provide a replacement value, the Task web client uses the default
value.

3. Add the new locale to the list of locales provided in the default bundle.js file.

For example, if you want to localize the Process History pages for France, add the string
"fr":1 to SDK/Customization/osm-ui-web/js/resources/nls/bundle.js as shown below:

 define({
 root: {
 appName: "Order and Service Management",
 ...

 }
 "cs": 1,
 "zh": 1,
 "fr" : 1
 });

4. Pack the oms.ear file and redeploy it to the WebLogic server.

5. Change the language settings in the browser to the language you want to use.

Localizing Date, Time and Currency Formats
To differentiate between 2:00:00 pm EST and 2:00:00 pm CST, modify the
resource.properties file by changing the format.datetime.input setting to include time zone.

To specify this, you must:

1. Open the resources.properties file.

2. Specify date time input and display format. For example:

format.datetime.input=MM/dd/yy hh:mm:ss a

format.datetime.display=MM/dd/yy hh:mm:ss a

Table 10-4 lists the localization data properties.

Chapter 10
Localizing the Task Web Client

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 26

Table 10-4 Localizing Data Formats

Data Formats Description

format.encoding Character set encoding used in browser communication

format.currency Mask used for currency display and validation

format.date.input Mask used for date display and validation in input fields

format.date.display Mask used for date display in tables

format.datetime.input Mask used for datetime display and validation in input fields

format.datetime.display Mask used for datetime display in tables

format.am String for AM field in web calendar

format.pm String for PM field in web calendar

You must edit the mask.date and mask.time properties together. You cannot edit one property
and leave the other one empty.

Table 10-5 lists the available values for the mask.date and mask.time properties.

Table 10-5 Properties Values

Symbol Description Presentation Examples

y year: Use two or four characters. If a different
number of y characters is used, a four-digit year
will be displayed.

Number 05

2005

M month in year: Use one or two M characters to
display a numeric month value. Use three M
characters to display a three-character text
representation of the month. Use four M
characters to display the full text representation
of the month.

Text & Number 7

07

Jul

July

d day in month Number 10

h hour in am/pm (1~12) Number 12

H hour in day (0~23) Number 0

m minute in hour Number 30

s second in minute Number 55

E day in week Text Tue

D day in year Number 189

w week in year Number 27

a am/pm marker Text PM

' escape for text Delimiter N/A

'' single quote Literal '

Table 10-6 lists the available values for the mask.currency property.

Chapter 10
Localizing the Task Web Client

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 26

Table 10-6 Mask Currency Values

Symbol Meaning Presentation

zeros show as absent Number

0 zeros show as 0 Number

, the locale-specific grouping separator Text

- the locale-specific negative prefix Text

; separates positive number format from optional
negative number

Text

' escape for text Delimiter

other all other symbols appear as entered Text

You must change the on-window text of the HTML pages produced by the OSM UI, and, if
necessary, indicate the character set encoding.

Localizing Text and Error Messages
If text and error messages (that is, messages in the resource file that begin with text or error),
contain parameterized values, for example: {0}, {1}, {2}, and so on, ensure the localized
message uses the same parameterized values.

Localizing Page Titles
Page titles in the resource file begin with page.

Localizing Image References
Image references consist of two parameters:

• image.name.alt: The HTML alternate text to display for the image

• image.name.src: The location of the image file in oms.war (see "Inserting New Images").

Inserting New Images
All images that display in the Task web client are contained in the oms.war file packed in the
oms.ear file. You can insert new images anywhere inside oms.war as long as your reference
the correct location in the locale's resource.properties file. Oracle recommends that you
create a directory for each localization and name the directory images_locale, where locale is
a code for the location.

Editing the First Day of the Week
By default, the Task web client date and time calendar assumes Sunday is the first day of the
week. However, this value is set automatically based on the user's locale.

Chapter 10
Localizing the Task Web Client

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 26

Note

When displaying lists, the Administration area of the Order Management web client
always displays Sunday as the first day of the week.

Editing the Boolean Data Element Values
The Task web client displays boolean data element values in drop-down lists in several views.
You can change the Boolean data element values the Task web client displays by editing the
Boolean display value fields in the resources.properties file.

For example:

Boolean display values
text.boolean.yes=Yes
text.boolean.no=No

Editing the Number of Records Displayed in the Worklist
You can change the number of records displayed in the Worklist view from the default by
editing the oms-config.xml file.

See the chapter on configuring OSM with oms-config.xml in OSM System Administrator's
Guide for detailed instructions on accessing and modifying the oms-config.xml file.

To change the number of records displayed in the Worklist view:

1. Open the oms-config.xml file for editing.

2. Search for max_worklist_rows, and update the <oms-parameter-value> tag with the
new value.

3. Save and close the oms-config.xml file.

Editing and Replacing Task Web Client Icons
You can edit or replace the icon graphics that appear in the Task web client. To do this, replace
the graphical content of the existing icon files with your own, customized graphics.

When creating or editing an icon graphic, ensure you maintain the file name. For example, if
you replace the graphical content of the about.gif file, ensure you name the resulting file
about.gif.

Oracle recommends that you only customize or replace existing icon graphics if the original
graphic introduces ambiguities or errors when you localize the Task web client.

All of the OSM icon files are located in the SDK/Customization/osm-war/images directory.

Localizing the Order Management Web Client
As with the Task web client, all language-specific text exposed by the Order Management web
client is localizable.

To localize the Oder Management web client:

1. Unpack the oms.ear file. See "Unpacking the oms.ear File."

Chapter 10
Localizing the Order Management Web Client

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 26

2. Localize the files located in the SDK/Customization/resources/xliff directory.

The Order Management web client defines one XLIFF file per localizable application page.

3. Register the default and supported locales:

a. Open the following file for editing:

SDK/Customization/osmwebui/WEB-INF/faces-config.xml

b. Search for the <local-config> tag.

c. Specify the default and supported locales as follows:

<locale-config>
 <default-locale>locale1</default-locale>
 <supported-locale>locale2</supported-locale>
</locale-config>

where locale1 is the default locale you want to register and locale2 is a different locale
you want to register. See "Example 10-4".

d. Save and close the file.

4. (Optional) Change the Order Management web client logo. See "Changing the Order
Management Web Client Logo Image and Text."

5. Pack and redeploy the oms.ear file. See "Working with the oms.ear File."

Visit the following website to learn about the XLIFF standard:

http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

Example 10-1 shows a simple XLIFF example.

Example 10-1 XLIFF

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="i18n.view.i18nTestBundle"
 datatype="xml">
 <body>
 <trans-unit id="MESSAGE">
 <source>Hello world!</source>
 <target/>
 <note>The message to display</note>
 </trans-unit>
 </body>
 </file>
</xliff>

This file specifies a single localizable token (MESSAGE) as well as the text with which to
replace the token (Hello world!) for the specified language (en, which is English). The note
element provides a description of the context in which the token is used. As with the
resources_locale.properties file, an XLIFF file may contain parameters. However, unlike the
numeric parameters in resources_locale.properties, the parameters in the Order
Management web client XLIFF files are named. For example:

 <source>Change Reference for Order {ORDER_ID}</source>

Building on Example 10-1, the XLIFF file might look like Example 10-2.

Example 10-2 XLIFF with <source>

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">

Chapter 10
Localizing the Order Management Web Client

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 26

http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

 <file source-language="en" original="i18n.view.i18nTestBundle" datatype="xml">
 <body>
 <trans-unit id="MESSAGE">
 <source>{SALUTATION} {RECIPIENT}!</source>
 <target/>
 <note>The message to display</note>
 </trans-unit>
 </body>
 </file>
</xliff>

As with the resources_locale.properties file, each XLIFF file is localized by creating a new file
with the language code and (optionally) country code appended. Building on Example 10-2, if
the contents are found in a default bundle file named applicationBundle.xlf, a version
localized to the French language would be named applicationBundle_fr.xlf, as shown in
Example 10-3.

Example 10-3 XLIFF Language set to French

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="fr" original="i18n.view.i18nTestBundle_fr" datatype="xml">
 <body>
 <trans-unit id="MESSAGE">
 <source>Bonjour le monde!</source>
 <target/>
 <note>The message to display</note>
 </trans-unit>
 </body>
 </file>
</xliff>

For more information about the faces.config.xml file, see Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development Framework.

Example 10-4 shows an example faces.config.xml with the language set to French and
English.

Example 10-4 faces.config.xml Language set to French and English

<?xml version="1.0" encoding="windows-1252"?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>
 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>fr</supported-locale>
 </locale-config>
 </application>
</faces-config>

Changing the Order Management Web Client Logo Image and Text
To change the Order Management web client logo image and text:

1. Go to the SDK/Customization/osmwebui/images folder.

2. Change any images with the Oracle logo. Do not change the image names or file types.

For example:

Chapter 10
Localizing the Order Management Web Client

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 26

• splash.jpg: This image is used in the Order Management web client login and about
screens and contains the Oracle logo at the top left corner.

• splash.bmp: This is the Order Management web client background and contains the
Oracle logo at the top left corner.

3. Open SDK/Customization//resources/xliff/oracle/communications/
ordermanagement/ui/order3columnBundle.xlf using a text editor.

4. Change the text associated with the customized Oracle logo images.

For example:

<?xml version="1.0" encoding="windows-1252" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en"
original="oracle.communications.ordermanagement.ui.order3columnBundle"
 datatype="xml">
 <body>
 <trans-unit id="OSM_APP_NAME">
 <source>custom_name</source>
 <target/>
 </trans-unit>
 <trans-unit id="HOME_PAGE_TITLE">
 <source>custom_name2</source>
 <target/>
 </trans-unit>
 <trans-unit id="DENIED_SEARCH_MSG">
 <source>You are not authorized to perform search</source>
 <target/>
 </trans-unit>
 <trans-unit id="ERROR_MSG_SUBJECT">
 <source>Error</source>
 <target/>
 </trans-unit>
 </body>
 </file>
</xliff>

where custom_name is the text associated splash.jpg and custom_name2 is the text
associated with splash.bmp.

5. Save and close the file.

Localizing the Order Lifecycle Management User Interface
You can localize the following elements in the Order Lifecycle Management user interface:

• Text Strings: Every non-database driven text message, including labels for fields and
buttons

• Page titles

• Hyperlink text

• Error and informational messages

The Order Lifecycle Management user interface uses the Oracle JavaScript Extension Toolkit
(JET), which has built-in support for internationalization and localization.

When a user connects to this client using a web browser, the OSM server attempts to
determine their preferred locale. If no customization can be found for the preferred locale, the
default locale (English) is used. All modern web browsers support an Accept-Language header

Chapter 10
Localizing the Order Lifecycle Management User Interface

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 26

which indicates locale preferences. If you specify multiple language preferences, OSM uses
the top one listed to locate localization resources.

To localize the Order Lifecycle Management user interface:

1. Unpack the oms.ear file.

See "Unpacking the oms.ear File."

2. Create a directory in oms.ear/osm-responsive-web/resources/nls with the name of the
language code. For example, oms.ear/osm-responsive-web/resources/nls/es for
Spanish.

3. In the directory you created in the previous step, create a file named bundle.js and include
any strings that need localization in the following format:

define({
'label1': 'Localized message 1',
'label2': 'Localized message 2',
...
'label_n': 'Localized message n'
});

The labels and label hierarchies should match those in the oms.ear/osm-responsive-
web/resources/nls/bundle.js file.

For more information about localizing Oracle JET interfaces, see the discussion of adding
translation bundles to Oracle JET in Oracle JET Developing Applications with Oracle JET.

4. Edit the oms.ear/osm-responsive-web/resources/nls/bundle.js file and add the
translation you have created after the root element, as described in the discussion of
adding translation bundles to Oracle JET in Oracle JET Developing Applications with
Oracle JET, for example:

define({
 "root": {
 ...
 },
 "es": true
});

5. Pack the oms.ear file and redeploy it to the WebLogic server. See "Working with the
oms.ear File."

Working with the oms.ear File
The oms.ear file is an OSM WebLogic application component deployed to the WebLogic
server. It contains OSM configuration directories and files, including localization files.

Unpacking the oms.ear file lets you access and change the OSM configuration files, and
packing and redeploying the oms.ear file implements your changes. The scripts for unpacking
and packing the oms.ear file are located in the SDK/Customization directory.

Undeploying and redeploying oms.ear allows the WebLogic server to pick up any changes you
have made to oms.ear.

Unpacking the oms.ear File
Before you can work with a configuration file that is packed in the oms.ear file, you must
unpack the oms.ear file.

To unpack the oms.ear file:

Chapter 10
Working with the oms.ear File

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 26

1. Copy the oms.ear file to your SDK/Customization directory:

For a traditional OSM installation, you can access the ear from the domain_home/servers/
admin_server_name/upload/oms/app/ directory

where admin_server_name is the name of the WebLogic administration server.

For OSM cloud native, the oms.ear file is available in the download pack.

Note

Oracle recommends that you make a backup copy of your original oms.ear file, in
case you need to restore the default settings.

2. From the SDK/Customization directory, use a text editor to do one of the following:

• On UNIX or Linux, open unpackOMS.sh and set the JAVA_HOME variable to the path
to the JDK on your system.

• On Windows, open unpackOMS.bat and set the JAVA_HOME variable to the path to
the JDK on your system.

Note

If the path in JAVA_HOME contains a space, enclose the path in quotation
marks. For example:

set JAVA_HOME="C:\oracle\middleware test\jdk21"

3. Save and close the file.

4. Do one of the following:

• On UNIX or Linux, run unpackOMS.sh.

• On Windows, run unpackOMS.bat.

The script unpacks the oms.ear file and creates the following new sub-directories in the
Customization directory:

• osm-ear

• osm-ejb

• osm-war

• osmwebui

• resources

Packing the oms.ear File
When you finish editing a configuration file, you must pack the oms.ear file and redeploy it to
the OSM WebLogic server so that your edits take effect.

To pack the oms.ear file:

1. From the SDK/Customization directory, use a text editor to do one of the following:

• On UNIX or Linux, open packOMS.sh and set the JAVA_HOME variable to the path to
the JDK on your system.

Chapter 10
Working with the oms.ear File

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 26

• On Windows, open packOMS.bat and set the JAVA_HOME variable to the path to the
JDK on your system.

Note

If the path in JAVA_HOME contains a space, enclose the path in quotation
marks. For example:

set JAVA_HOME="C:\oracle\middleware test\jdk21"

2. Save and close the file.

3. Do one of the following:

• On UNIX or Linux, run packOMS.sh.

• On Windows, run packOMS.bat.

The script creates a new oms.ear file.

4. For traditional OSM, copy the new oms.ear file to the domain_home/servers/
admin_server_name/upload/oms/app/ directory:

where admin_server_name is the name of the WebLogic administration server.

5. For traditional OSM, follow the steps in Undeploying and Redeploying the oms.ear File.
For OSM cloud native, see Rebuilding OSM Container Image in OSM Cloud Native.

Rebuilding OSM Container Image in OSM Cloud Native
In OSM cloud native, applications are not deployed directly to WebLogic server. They are,
instead, packaged inside the OSM container image used to create an OSM instance. After re-
packing the oms.ear file, you must rebuild your OSM container image using the updated ear
file. See "Chapter 3 Creating OSM Cloud Native Images" in OSM Cloud Native Deployment
Guide for details. You can then specify the updated image in your project specification and
either create a new instance or upgrade an existing one.

Undeploying and Redeploying the oms.ear File
Undeploying and redeploying the oms.ear file makes your changes active on the OSM server.

To undeploy and redeploy the oms.ear file:

1. Log in to the WebLogic Remote console as a user with administrative privileges.

2. Click Monitoring Tree, expand Deployments and click on Application Management.

3. Select the oms enterprise application deployment by clicking the check box for that row.

4. Click the Stop menu in the Deployments table, select either When work completes or
Force stop now.

5. When the server has stopped, navigate to Edit Tree, expand Deployments, and click App
Deployment.

6. Select the oms deployment again and click Delete.

7. Click the shopping cart and Commit Changes.

8. To redeploy, select Create from App Deployment. The Install Application Assistant
window is displayed.

Chapter 10
Working with the oms.ear File

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 26

9. Browse to the location of the new version of the oms.ear file and select oms.ear. Click
Create.

10. Click the shopping cart and select Commit Changes. You are returned to the
Deployments window with the oms deployment added and active.

Chapter 10
Working with the oms.ear File

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 26

11
Using XPath Functions

This chapter describes how to use XPath functions when modeling orders in Oracle
Communications Order and Service Management (OSM).

About XPath Functions
The XPath language provides for a core library of functions that deal with:

• node sets

• strings

• Booleans

• numbers

The following are some examples of XPath functions:

• Determine the number of articles written by Mr. Jones:

count(/journal/article[author/last="Jones"])

• Find all authors whose last name begins with Mc:

/journal/article[starts-with(author/last,"Mc")]

In addition to the core XPath functions defined by the XPath standard, a number of extended
functions are also supported with OSM. These extended functions provide additional
functionality that is useful to create behaviors, but does not conform to the XPath standard.

Note

OSM supports XPath 1.0.

The XPath function library is divided into four groups, each of which is described in more detail,
below:

1. Node set functions - for working with node-sets, either the implicit current node set or one
passed as a parameter.

2. String functions: For working with strings and include type coercions.

3. Boolean functions: For working with Booleans, including type coercions.

4. Number functions: For working with numbers, including type coercions.

Node Set Functions
The following describes the Node Set functions.

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 10

number last()
Returns the index of the last item of the current node set.

Example - /journal/article[last()]

number position()
Returns the index of the current item in the current node set.

Example - /journal/article[position()<3]

number count(node-set)
Returns the number of items in the argument node set.

Example - count(/journal/article)

node-set id(object)
Returns the elements with the ID specified.

Example - id("article.1")/author/last

string local-name(node-set?)
Returns the non-namespace portion of the node name of either a node set passed as a
parameter or the current node in the current node set.

Example - local-name(/wj:journal)

Example - /journal/*[local-name()= "article"]

string namespace-uri(node-set?)
Returns the namespace URI of the node name of either a node set passed as a parameter or
the current node in the current node set.

Example - namespace-uri(/wj:journal)

Example - /journal/*:*[namespace-uri()="http://werken.com/werken-journal/"]

string name(node-set?)
Returns the complete textual node name of either a node set passed as a parameter or the
current node in the current node set.

Example - name(/journal)

Example - [name()="soap:Envelope"]

Chapter 11
Node Set Functions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 10

node-set evaluate(string)
Returns the node set resulting from the Xpath expression defined by the provided argument.
Allows XPath expressions to be dynamically created. The argument is converted to a string as
if by a call to the string function.

Example - evaluate('/GetOrder.Response/*')

node-set match(node-set, string)
Returns the node set that matches a regular expression pattern.

Example - match('GetOrder.Response/*, 'blur[f]+le[0-9]')

node-set instance(string)
Returns the content of the named XML instance.

Note

This function is only available to XPath expressions within behaviors.

The argument is converted to a string as if by a call to the string function. This string, along
with the user's preferred language is matched against instance elements that are within scope
of the containing document. If a match is located this function returns a node-set containing the
content of the root element node (also called the document element node) of the referenced
instance data. In all other cases, an exception is thrown and an error is displayed.

Example: For instance data corresponding to the following XML:

<instance name="order_form" lang="en" xsi:type="inlineInstanceType">
<orderForm>
<shipTo>
<firstName>John</firstName>
</shipTo>
</orderForm>
</instance>

The following expression selects the firstName node (assuming the logged-in the user's
preferred language is English, or that English is the default system language).

Note

The instance function returns an element node, effectively replacing the left most
location step from the path:

instance('order_form')/shipTo/firstName

String Functions
The following describes the String functions.

Chapter 11
String Functions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 10

string string(object?)
Converts an object (possibly the current context node) to its string value.

Example - /journal/article/author[string()='Jones']

string concat(string, string, string*)
Concatenates two or more strings together.

Example - concat(author/salutation, ' ', author/last)

string starts-with(string, string)
Determines if the first argument starts with the second argument string.

Example - /journal/article[starts-with(title, 'Advanced')]

string contains(string, string)
Determines if the first argument contains the second argument string.

Example - /journal/article[contains(title, 'XPath')]

string substring-before(string, string)
Retrieves the substring of the first argument that occurs before the first occurrence of the
second argument string.

Example - substring-before(/journal/article[1]/date, '/')

string substring-after(string, string)
Retrieves the substring of the first argument that occurs after the first occurrence of the second
argument string.

Example - substring-after(/journal/article[1]/date, '/')

string substring(string, number, number?)
Retrieves the substring of the first argument starting at the index of the second number
argument, for the length of the optional third argument.

Example - substring('Jones', 3)

number string-length(string?)
Determines the length of a string, or the current context node coerced to a string.

Example - /journal/article[string-length(author/last) > 9]

Chapter 11
String Functions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 10

string normalize-space(string?)
Retrieves the string argument or context node with all space normalized, trimming white space
from the ends and compressing consecutive white space elements to a single space.

Example - normalize-space(/journal/article[1]/content)

string translate(string, string, string)
Retrieves the first string argument augmented so that characters that occur in the second
string argument are replaced by the character from the third argument in the same position.

Example - translate('bob', 'abc', 'ZXY')='XoX'

string lower-case(string?)
Retrieves the string argument or context node with all characters converted to lower case.

Example - lower-case('Foo')='foo'

string upper-case(string?)
Retrieves the string argument or context node with all characters converted to upper case.

Example - upper-case('Foo')='FOO'

string ends-with(string, string)
Determines if the first argument ends with the second argument string.

Example - /journal/article[ends-with(title, 'Advanced')]

Boolean Functions
The following describes the Boolean functions.

Boolean boolean(object)
Converts the argument to a Boolean value.

Example - boolean(/journal/article/author/last[.='Jones'])

Boolean not(boolean)
Negates the boolean value.

Example - not(/journal/article/author/last[.='Jones'])

Boolean true()
The Boolean value is true.

Chapter 11
Boolean Functions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 10

Boolean false()
The Boolean value is false.

Boolean boolean-from-string(string)
Returns true if the required parameter string is true, 1, or Yes. In all other conditions, false is
returned.

Example - boolean-from-string(../pay_entire_amount)

object if(boolean,object,object)
Evaluates the first parameter as a Boolean, returning the second parameter when true,
otherwise the third parameter.

Example - if(/journal/article/author/last[.='Jones'],'Match found','No match')

Number Functions
The following describes the Number functions.

number number(object?)
Converts the argument or context node to a number value.

Example - /journal[number(year)=2003]

number sum(node-set)
Sums the node set value.

Example - sum(/journal/article/author/age)

number floor(number)
Returns the largest integer that is not greater than the number argument.

Example - floor(100.5)=100

number ceiling(number)
Returns the smallest integer that is not less than the number argument.

Example - ceiling(100.5)=101

number round(number)
Rounds the number argument.

Example - ceiling(100.3)=100

Chapter 11
Number Functions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 10

number avg(node-set)
Returns the arithmetic average of the string-values conversion of each node in the argument
node-set to a number. The sum is computed with sum(), and divided with div() by the value
computed with count(). If the parameter is an empty node-set, the return value is NaN.

Example - avg(/journal/article/author/age)

number min(node-set)
Returns the minimum value that results from converting the string-values of each node in
argument node-set to a number. The minimum is determined with the < operator. If the
parameter is an empty node-set, or if any of the nodes evaluate to NaN, the return value is
NaN.

Example - min(/journal/article/author/age)

number max(node-set)
Returns the maximum value that results from converting the string-values of each node in
argument node-set to a number. The maximum is determined with the < operator. If the
parameter is an empty node-set, or if any of the nodes evaluate to NaN, the return value is
NaN.

Example - max(/journal/article/author/age)

number count-not-empty(node-set)
Returns the number of non-empty nodes in argument node-set. A node is considered non-
empty if it is convertible into a string with a greater-than zero length.

Example - count-not-empty(/journal/article/author/middle)

XPath 1.0 Reference
Complete XPath reference information is available at the World Wide Web Consortium website
(http://www.w3.org/TR/xpath/). The abbreviated XPath highlights below are reproduced with
permission from Mulberry Technologies, Inc. http://www.mulberrytech.com

Location Paths [XPath §2]
Optional '/', zero or more location steps, separated by '/'

Location Paths [XPath §2.1]
Axis specifier, node test, zero or more predicates

Axis Specifiers [XPath §2.2]
ancestor:: ancestor-or-self:: attribute:: child::
descendant:: descendant-or-self:: following:: following-sibling::
namespace:: parent:: preceding:: preceding-sibling::
self::

Chapter 11
XPath 1.0 Reference

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 10

http://www.w3.org/TR/xpath/

Node Tests [XPath §2.]
name node()prefix:name text()* comment()prefix:*
processing-instruction() processing-instruction(literal)

Abbreviated Syntax for Location Paths

Table 11-1 Abbreviated Syntax for Location Paths

Abbreviation Syntax

(nothing) child::

@ attribute::

// /descendant-or-self::node()/

. self::node()

.. parent::node()

/ Node tree root

Predicate [XPath §2.4]
[expr]

Variable Reference [XPath §3.7]
$qname

XPath
http://www.w3.org/TR/xpath

XPath Operators
Parentheses may be used for grouping.

Node-sets [XPath §3.3]
| [expr] / //

Booleans [XPath §3.4]
<=, <, >=, >=, != and or

Numbers [XPath §3.5]
-expr *, div, mod +, -

Chapter 11
XPath 1.0 Reference

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 10

Node Types [XPath §5]
Root Processing Instructions
Element Comment
Attribute Test
Namesspace

Object Types [§11.1, XPath §1]

Table 11-2 Object Types

Type Values

boolean True or False

number Floating-point number

string UCS characters

node-set Set of nodes selected by a path

XPath Core Function Library
XPath core functions:

Node Set Functions [XPath §4.1]
number last()
number position()
number count(node-set)
node-set id(object)
string local-name(node-set?)
string namespace-uri(node-set?)
string name(node-set?)

String Functions [XPath §4.2]
string string(object?)
string concat(string, string, string*)
string starts-with(string, string)
string contains(string, string)
string substring-before(string, string)
string substring-after(string, string)
string substring(string, number, number?)
number string-length(string?)
string normalize-space(string?)
string translate(string, string, string)

Boolean Functions [XPath §4.3]
boolean boolean(object)
boolean not(boolean)
boolean true()
boolean false()

Chapter 11
XPath 1.0 Reference

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 10

Number Functions [XPath §4.4]
number number(object?)
number sum(node-set)
number floor(number)
number ceiling(number)
number round(number)

OSM Behavior XPath Functions
OSM Behavior XPath Functions:

Node Set Functions
string matrix-concat(node-set,node-set,node-set?)
node-set evaluate(string)
node-set instance(string?) [Declarative Rules Only]
node-set match(node-set?, string)

String Functions
string lower-case(string?)
string upper-case(string?)
string ends-with(string, string)

Boolean Functions
boolean boolean-from-string(string)
object if(boolean, object, object)

Number Functions
number avg(node-set)
number min(node-set)
number max(node-set)
number count-not-empty(node-set)

Chapter 11
XPath 1.0 Reference

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 10

A
Automation and Compensation Examples

This appendix provides automation and compensation examples. You need to create
automation plug-ins to use the Oracle Communications Order and Service Management
(OSM) automation task and automated notification functionality. For information about the code
required for the automation plug-ins, refer to the following topics:

• Predefined Automation Plug-ins

• Custom Java Automation Plug-ins

• Compensation XQuery Expressions

• Order Jeopardy Automation XQuery Plug-ins

Predefined Automation Plug-ins
The following topics provide automation plug-in examples for the predefined automation plug-in
implementations that support XQuery and XSLT automations:

• Message Example

• Automation Plug-in XQuery Examples

• Automation Plug-in XSLT Examples

• Automation Plug-in Examples for Events, Jeopardies, and Notifications

Message Example
The predefined automation plug-in examples presuppose the following sample order:

<?xml version="1.0" encoding="UTF-8"?>
<ws:CreateOrder xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
 <ProcessSalesOrderFulfillmentEBM xmlns="http://xmlns.oracle.com/EnterpriseObjects/
Core/EBO/SalesOrder/V2" xmlns:sord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2" xmlns:aia="http://www.oracle.com/XSL/Transform/java/
oracle.apps.aia.core.xpath.AIAFunctions" xmlns:xref="http://www.oracle.com/XSL/Transform/
java/oracle.tip.xref.xpath.XRefXPathFunctions">
 <corecom:EBMHeader xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/
Common/V2">
 <corecom:EBMID>2d323736303332343736363930353735</corecom:EBMID>
 <corecom:EBMName>{http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2} ProcessSalesOrderFulfillmentEBM</corecom:EBMName>
 <corecom:EBOName>{http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2} SalesOrderEBO</corecom:EBOName>
 <corecom:CreationDateTime>2009-03-09T18:46:36-07:00</corecom:CreationDateTime>
 <corecom:VerbCode>process</corecom:VerbCode>
 <corecom:MessageProcessingInstruction>
 <corecom:EnvironmentCode>PRODUCTION</corecom:EnvironmentCode>
 </corecom:MessageProcessingInstruction>
 <corecom:Sender>
 <!-- Information about the sender - for example, a Siebel CRM -->
 </corecom:Sender>
 <corecom:BusinessScope></corecom:BusinessScope>
 <corecom:EBMTracking></corecom:EBMTracking>

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-1 of A-46

 </corecom:EBMHeader>
 <DataArea>
 <corecom:Process xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/
Common/V2"/>
 <ProcessSalesOrderFulfillment>
 <corecom:Identification xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessComponentID schemeID="SALESORDER_ID"
schemeAgencyID="COMMON">34333939373132333239373135353138</corecom:BusinessComponentID>
 <corecom:ID schemeID="SALESORDER_ID"
schemeAgencyID="SEBL_01">ScenarioA2</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="SALESORDER_ID"
schemeAgencyID="SEBL_01">88-2SGSG</corecom:ID>
 </corecom:ApplicationObjectKey>
 <corecom:Revision>
 <corecom:Number>1</corecom:Number>
 </corecom:Revision>
 </corecom:Identification>
 <OrderDateTime>2009-03-09T18:40:21Z</OrderDateTime>
 <RequestedDeliveryDateTime>2009-03-10T00:00:00Z</RequestedDeliveryDateTime>
 <TypeCode>SALES ORDER</TypeCode>
 <FulfillmentPriorityCode>9</FulfillmentPriorityCode>
 <FulfillmentSuccessCode>DEFAULT</FulfillmentSuccessCode>
 <FulfillmentModeCode>DELIVER</FulfillmentModeCode>
 <SalesChannelCode/>
 <ProcessingNumber/>
 <ProcessingTypeCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/
Common/V2">
 <corecom:Code>OPEN</corecom:Code>
 <corecom:Description/>
 </corecom:Status>
 <corecom:BusinessUnitReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessUnitIdentification>
 <corecom:ID schemeID="ORGANIZATION_ID" schemeAgencyID="SEBL_01">0-
R9NH</corecom:ID>
 </corecom:BusinessUnitIdentification>
 </corecom:BusinessUnitReference>
 <corecom:CustomerPartyReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:CustomerPartyAccountIdentification>
 <corecom:BusinessComponentID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="COMMON">2d353537333130353233303536343833</corecom:BusinessComponentID>
 <corecom:ID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="SEBL_01">88-2PB18</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="SEBL_01">88-2PB18</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:CustomerPartyAccountIdentification>
 <corecom:CustomerPartyAccountName>Adam,10000</
corecom:CustomerPartyAccountName>
 <corecom:CustomerPartyAccountContactIdentification>
 <corecom:BusinessComponentID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="COMMON">2d353130393634353031313333353938</corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="SEBL_01">88-2MKA1</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:CustomerPartyAccountContactIdentification>

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-2 of A-46

 <corecom:CustomerPartyAccountContactAddressCommunication>
 <corecom:AddressCommunication>
 <corecom:Address>
 <!-- Enter Address Nodes -->
 </corecom:Address>
 </corecom:AddressCommunication>
 </corecom:CustomerPartyAccountContactAddressCommunication>
 <corecom:CustomerPartyAccountTypeCode>RESIDENTIAL </
corecom:CustomerPartyAccountTypeCode>
 </corecom:CustomerPartyReference>
 <corecom:PriceListReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:PriceListIdentification>
 <corecom:ID>88-2D1YC</corecom:ID>
 </corecom:PriceListIdentification>
 </corecom:PriceListReference>
 <corecom:ShipToPartyReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:LocationReference>
 <corecom:Address>
 <!-- Enter Address Nodes -->
 </corecom:Address>
 </corecom:LocationReference>
 <corecom:CustomerPartyAccountIdentification>
 <corecom:BusinessComponentID schemeID="CUSTOMERPARTY_ACCOUNTID"
schemeAgencyID="COMMON"/>
 </corecom:CustomerPartyAccountIdentification>
 <corecom:CustomerPartyAccountContactIdentification>
 <corecom:BusinessComponentID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="COMMON">2d353130393634353031313333353938</corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="CUSTOMERPARTY_CONTACTID"
schemeAgencyID="SEBL_01">88-2MKA1</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:CustomerPartyAccountContactIdentification>
 </corecom:ShipToPartyReference>
 <corecom:ParentSalesOrderReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:SalesOrderIdentification>
 <corecom:BusinessComponentID schemeID="SALESORDER_ID"
schemeAgencyID="COMMON"/>
 </corecom:SalesOrderIdentification>
 </corecom:ParentSalesOrderReference>
 <corecom:ProjectReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:ProjectIdentfication>
 <corecom:ID schemeID="PROJECT_ID" schemeAgencyID="SEBL_01"/>
 </corecom:ProjectIdentfication>
 </corecom:ProjectReference>
 <corecom:SalespersonPartyReference xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:PartyIdentification>
 <corecom:ID schemeID="SALESPERSON_PARTYID"
schemeAgencyID="SEBL_01">0-1</corecom:ID>
 </corecom:PartyIdentification>
 </corecom:SalespersonPartyReference>
 <!-- Enter order line items here -->
 </ProcessSalesOrderFulfillment>
 </DataArea>
 </ProcessSalesOrderFulfillmentEBM>
</ws:CreateOrder>

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-3 of A-46

Automation Plug-in XQuery Examples
The following topics provide XQuery automation plug-in examples for automation tasks:

• Internal XQuery Sender

• External XQuery Automator

• External XQuery Sender

• Internal XQuery Automator

Internal XQuery Sender
The Automated Task editor internal XQuery automator receives task data from OSM and sends
data to an external system. You can send a message to an external system using whatever
protocol that system requires, such as, Telnet, HTTP, CORBA, SOAP, or web services.

The XQuery has the following characteristics:

• XQuery context in prolog: The input document for any automated task automation plug-in
is the order data defined in the Automation Task editor Task Data tab. You can access this
data by declaring the TaskContext OSM Java class. Always declare this class along with
the $context java binding. For example:

declare namespace context = "java:com.mslv.oms.automation.TaskContext";
...
declare variable $context external;

• Prolog: You must declare ScriptSenderContextInvocation in any internal XQuery automator
which extends ScriptReceiverContextInvocation. Always declare this class along with
the $automator java binding. For example:

declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptSenderContextInvo
cation";
...
declare variable $automator external;

Oracle recommends that you use the standard Apache log class. Always declare this class
along with the $log java binding.

declare namespace log = "java:org.apache.commons.logging.Log";
...
declare variable $log external;

You must use the TextMessage class for sending JMS based messages. Always declare
this class along with the $outboundMessage Java binding. You can use JMS text based
messages to send OSM Web Service messages to other OSM systems, such as a service
order from an OSM COM system to an OSM SOM system.

declare namespace outboundMessage = "java:javax.jms.TextMessage";
...
declare variable $outboundMessage external;

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-4 of A-46

Note

If you need to support any other protocol for sending messages, you can
implement a custom Java automation plug-in for the protocol or import a helper
function implementation that supports the protocol.

• Body: The body for an internal XQuery sender can contain the following elements:

– Use outboundMessage to set up the standard WebLogic JMS message properties for
web services:

outboundMessage:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type',
'text/xml; charset="utf-8"'),

– Use outboundMessage to set up the OSM Web Service URI JMS message property:

outboundMessage:setStringProperty($outboundMessage, 'URI', '/osm/wsapi'),

– You can optionally use outboundMessage with the XML API to populate a JMS
property value from order data. For example this code sets up an
Ora_OSM_COM_OrderId parameter that is populated with the OSM order ID:

outboundMessage:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID),

– You can optionally use outboundMessage to set the JMS Correlation ID for the
automation task before sending the message. This allows OSM to route a return
message with the same corresponding JMS property value to an external XQuery
automator on the same automation task as the original sender automation plug-in. For
example, the following code sets the JMS correlation ID using the original OSM COM
order:

outboundMessage:setJMSCorrelationID($outboundMessage, concat($order/oms:_root/
oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/ebo:DataArea/
ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/text(),'-
COM')),

If this code were applied to "Message Example," the return value would be a
concatenation of ScenarioA2 and -COM: ScenarioA2-COM.

Note

Other correlation scenarios are possible. For example, you may send a
message from an automation task without expecting any response to the
same automation task. In this scenario, another automation task further down
in the process may be dedicated to receiving the response message, in which
case an automation plug-in would be required that would set the correlation ID
expected from the return message for that automated task. See "Using
Automation" for more information about asynchronous communication
scenarios.

– Access to the task level order data (the task view) using the XML API
GetOrder.Response function call. For example, the following code provides access to
all order data passed into the task as a variable that is then used in other variables to
access different parts of the data:

let $order := /oms:GetOrder.Response
let $othervariable := $order/oms:_root/oms:orderid

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-5 of A-46

– Any XQuery logic your plug-in requires, such as if-then or if-then-else statements that
evaluate based on one or more parameters within the response message. For
example, there could be a choice of two or more messages that could be sent
depending on the order data values, or you might log a message.

– A completeTaskOnExit method statement that completes the plug-in and transitions
the task to the next task based on the status selected if the plug-in is intended to end
the task. Typically, an automated task would contain an internal XQuery sender plug-in
for sending a message and an external XQuery receiver plug-in for receiving a
message, but you can also create an automation that only sends an order with another
automation that receives the order. This can be useful if the response message takes
a long time to return. If you are expecting the system to respond that you sent the
message to, you must configure the internal XQuery sender with a reply to queue that
listens for a message acknowledgement, whether the response is returned to an
external automator on the same automation task or on another automation task.

The following example provides the code for an XQuery that sends a message from an OSM
system in the COM role to an OSM system in the SOM role using the OSM Web Service
interface and assumes JMS communication over T3S.

declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptSenderContextInvocati
on";
declare namespace context = "java:com.mslv.oms.automation.TaskContext";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace outboundMessage = "java:javax.jms.TextMessage";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace to="http://TechnicalOrder";
declare namespace provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
ProvisioningOrder/V1";
declare namespace corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2";
declare namespace env="http://schemas.xmlsoap.org/soap/envelope/";
declare namespace cord="http://oracle.communications.c2a.model/internal/order";
declare namespace ebo="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2";

declare variable $automator external;
declare variable $context external;
declare variable $log external;
declare variable $outboundMessage external;

let $order := /oms:GetOrder.Response
let $technicalActions := $order/oms:_root/oms:TechnicalActions
let $ebm := $order/oms:_root/oms:messageXmlData
let $bi := $order/oms:_root/oms:CaptureInteractionResponse

return(
outboundMessage:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type', 'text/
xml; charset="utf-8"'),
outboundMessage:setStringProperty($outboundMessage, 'URI', '/osm/wsapi'),
outboundMessage:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID),
outboundMessage:setJMSCorrelationID($outboundMessage, concat($order/oms:_root/
oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/ebo:DataArea/
ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/text(),'-COM')),
log:info($log,concat('Sending Service Order for COM order: ', $order/oms:OrderID)),
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security xmlns:wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsu = "http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-4799946">

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-6 of A-46

 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ord:CreateOrder>
 <ebo:ProcessProvisioningOrderEBM xmlns:ebo="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
<ebo:DataArea>
 <corecom:Process xmlns="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2" xmlns:aia="http://www.oracle.com/XSL/Transform/java/
oracle.apps.aia.core.xpath.AIAFunctions" xmlns:xref="http://www.oracle.com/XSL/Transform/
java/oracle.tip.xref.xpath.XRefXPathFunctions" xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1"/>
 <provord:ProcessProvisioningOrder xmlns="http://
xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:aia="http://
www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.xpath.AIAFunctions"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions" xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
 <corecom:SalesOrderReference>
 <corecom:SalesOrderIdentification>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:OrderNumber/corecom:Identification/*}
 </corecom:SalesOrderIdentification>
 </corecom:SalesOrderReference>
 <provord:RequestedDeliveryDateTime>2010-07-16T08:24:38Z </
provord:RequestedDeliveryDateTime>
 <provord:TypeCode>SALES ORDER</provord:TypeCode>
 <provord:FulfillmentPriorityCode>5</
provord:FulfillmentPriorityCode>
 <provord:FulfillmentSuccessCode>DEFAULT </
provord:FulfillmentSuccessCode>
 <provord:FulfillmentModeCode>DELIVER</
provord:FulfillmentModeCode>
 <provord:ProcessingNumber/>
 <provord:ProcessingTypeCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:BusinessUnitReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessUnitIdentification>
 <corecom:ID schemeID="ORGANIZATION_ID"
schemeAgencyID="SEBL_01">0-R9NH</corecom:ID>
 </corecom:BusinessUnitIdentification>
 </corecom:BusinessUnitReference>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:CustomerParty/corecom:CustomerPartyReference}
 <corecom:ParentProvisioningOrderReference
xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ProvisioningOrderIdentification>
 <corecom:BusinessComponentID
schemeID="SALESORDER_ID" schemeAgencyID="COMMON"/>
 </corecom:ProvisioningOrderIdentification>
 </corecom:ParentProvisioningOrderReference>
 {
 for $x in $order/oms:_root/oms:ServiceOrder/cord:Order/

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-7 of A-46

cord:ServiceOrderLine
 return
 <provord:ProvisioningOrderLine>
 <corecom:Identification xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessComponentID>{concat($x/@id,'')} </
corecom:BusinessComponentID>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <provord:OrderQuantity>1</provord:OrderQuantity>
 <provord:ServiceActionCode>{$x/cord:Action/text()} </
provord:ServiceActionCode>
 <provord:ServicePointCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:ServiceAddress xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:Identification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON"
schemeID="CUSTOMERPARTY_ADDRESSID">2d323733323231313531313836313331</
corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeAgencyID="SEBL_01"
schemeID="CUSTOMERPARTY_ADDRESSID">88-2KKNH</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <corecom:LineOne>{$x/cord:Address/cord:LineOne/
text()} </corecom:LineOne>
 <corecom:CityName>{$x/cord:Address/cord:CityName/
text()} </corecom:CityName>
 <corecom:StateName>{$x/cord:Address/cord:StateName/
text()} </corecom:StateName>
 <corecom:ProvinceName>{$x/cord:Address/
cord:ProvinceName/ text()}</corecom:ProvinceName>
 <corecom:CountryCode>{$x/cord:Address/
cord:CountryCode /text()}</corecom:CountryCode>
 <corecom:PostalCode>{$x/cord:Address/
cord:PostalCode /text()}</corecom:PostalCode>
 </corecom:ServiceAddress>
 <corecom:ItemReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ItemIdentification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON" schemeID="ITEM_ITEMID"/>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="ITEM_ITEMID"
schemeAgencyID="SEBL_01">{concat($x/cord:InstanceID/text(),'')}</corecom:ID>
 </corecom:ApplicationObjectKey>
 <corecom:AlternateObjectKey>
 <corecom:ContextID/>
 </corecom:AlternateObjectKey>
 <corecom:SupplierItemID/>
 </corecom:ItemIdentification>
 <corecom:Name>{concat($x/@name,'')}</corecom:Name>

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-8 of A-46

 <corecom:ClassificationCode
listID="PermittedTypeCode"></corecom:ClassificationCode>
 <corecom:ClassificationCode
listID="BillingProductTypeCode"/>
 <corecom:ClassificationCode
listID="FulfillmentItemCode">{concat($x/@name,'')}</corecom:ClassificationCode>
 <corecom:ServiceIndicator>false</
corecom:ServiceIndicator>
 <corecom:TypeCode>SERVICE</corecom:TypeCode>
 <corecom:Description/>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 {
 for $y in $x/cord:Attribute
 return
 <corecom:Specification>
 <corecom:ServiceActionCode> </
corecom:ServiceActionCode>
 <corecom:Name>{concat($y/@name,'')} </
corecom:Name>
 <corecom:DataTypeCode>Text</
corecom:DataTypeCode>
 <corecom:Value>{$y/cord:Value/
cord:value/text()} </corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>
 <corecom:PrimaryClassificationCode>{concat($x/
@name,'')} </corecom:PrimaryClassificationCode>
 <corecom:ServiceInstanceIndicator>true </
corecom:ServiceInstanceIndicator>
 </corecom:ItemReference>
 <provord:ProvisioningOrderLineSpecificationGroup>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 <corecom:Specification>
 <corecom:Name>ParentSalesOrderLine</
corecom:Name>
 <corecom:Value>{$x/cord:primaryMapping/
text()} </corecom:Value>
 </corecom:Specification>
 {
 for $z in $x/cord:secondaryMapping
 return
 <corecom:Specification>
 <corecom:Name>ParentSalesOrderLine</
corecom:Name>
 <corecom:Value>{$z/text()}</corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>
 </provord:ProvisioningOrderLineSpecificationGroup>
 </provord:ProvisioningOrderLine>
 }
 </provord:ProcessProvisioningOrder>
 </ebo:DataArea>
 </ebo:ProcessProvisioningOrderEBM>
 </ord:CreateOrder>
 </soapenv:Body>
</soapenv:Envelope>

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-9 of A-46

External XQuery Automator
The Automated Task editor external XQuery automator receives task data from an external
system and optionally updates OSM order data. The XQuery has the following characteristics:

• XQuery context in prolog: The input document for any automated task automation plug-in
is the order data defined in the Automation Task editor Task Data tab. You can access this
data by declaring the TaskContext OSM Java class. Always declare this class along with
the $context java binding. For example:

declare namespace context = "java:com.mslv.oms.automation.TaskContext";
...
declare variable $context external;

• Prolog: You must declare ScriptReceiverContextInvocation in any external XQuery
automator. Typically, you can use the getOrderAsDOM method to receive external
messages and the setUpdateOrder method to update the order data. Always declare this
class along with the $automator java binding. For example:

declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptReceiverContextIn
vocation";
...
declare variable $automator external;

Oracle recommends that you use the standard Apache log class. Always declare this class
along with the $log java binding.

declare namespace log = "java:org.apache.commons.logging.Log";
...
declare variable $log external;

Another necessary declaration includes the xmlapi namespace, that you can use with the
ScriptReceiverContextInvocation getOrderAsDom method to retrieve the order data for the
task as a variable. This task data variable can be used in an OrderDataUpdate to update
the order data with the data values received in the response message, if an update to the
order data is required. For example:

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
let $taskData := fn:root(automator:getOrderAsDOM($automator))/oms:GetOrder.Response

• Body: The body for an external XQuery automator can contain the following elements:

– Any XQuery logic your plug-in requires, such as if-then or if-then-else statements that
evaluate based on one or more parameters within the response message, or you
might log a message.

– A setUpdateOrder method statement that indicates whether there is an order data
update. This method should be identical to what you selected in the Design Studio
automation plug-in Properties View XQuery Tab Update Order check box.

– A completeTaskOnExit method statement that completes the plug-in and transitions
the task to the next task based on the status selected, if the plug-in is intended to end
the task. Since there can be multiple plug-ins within a task, you would only need this
method in the last plug-in listed. For example, the Failed status might transition to a
fallout task, and the Succeed status may transition to the next task in the process.

– An OrderDataUpdate statement that updates the order data based on the information
returned in the response. For more information about structuring order update code,
see "Using OrderDataUpdate Elements to Pass Order Modification Data."

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-10 of A-46

– Indexing: Order data in OSM often includes multiple data instances. For example, an
orchestration order must include the ControlData/OrderItem and ControlData/
Functions multi-instance nodes. Multi-instance nodes in solution cartridges are
possible for any data element where the maximum cardinality of the node is greater
than 1. When updating a multi-instance data node using automations use the node
index to reference the specific node instance you want to update. The node index is
available in the XML API GetOrder.Response. See OSM XML API Developer's Guide
for an example of a GetOrder response message with indexing.

The following example triggers different order data updates based on the status message
returned from an external system. In this case, the external system is another OSM instance
running in the SOM role:

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptReceiverContextInvoca
tion";
declare namespace context = "java:com.mslv.oms.automation.TaskContext";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace su="http://StatusUpdate";
declare namespace so="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2";
declare namespace corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2";

declare variable $automator external;
declare variable $context external;
declare variable $log external;

let $response := fn:root()/su:StatusUpdate (: fn:root(.) :)
let $items := fn:root()/su:StatusUpdate/su:OrderItem

let $taskData := fn:root(automator:getOrderAsDOM($automator))/oms:GetOrder.Response
let $component := if (fn:exists($taskData/oms:_root/oms:ControlData/oms:Functions/*/
oms:componentKey)) then $taskData/oms:_root/oms:ControlData/oms:Functions/
*[fn:position()=1] else ()

return (
if($response/su:status/text()='SOM_Completed') then (
 log:info($log,concat('Received SOM Status Update: SOM_Completed; ', $response/
su:status/text())),
 automator:setUpdateOrder($automator,"true"),
 context:completeTaskOnExit($context,"success"),
 (
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 {
 for $item in $items
 for $parent in $item/su:ParentLineId
 for $orderComponentItem in $component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]
 return (
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}">
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
)

 }
 </OrderDataUpdate>
)
) else if($response/su:status/text()='SOM_Failed') then (

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-11 of A-46

 log:info($log,concat('Received SOM Status Update: SOM_Failed; ', $response/su:status/
text())),
 automator:setUpdateOrder($automator,"true"),
 context:completeTaskOnExit($context,"failure"),
 (
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 {
 for $item in $items
 for $parent in $item/su:ParentLineId
 for $orderComponentItem in $component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]
 return (
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}">
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
)

 }
 </OrderDataUpdate>
)
) else (
 log:info($log,concat('Received SOM Status Update: SOM_InProgress or SOM_Canceled;
', $response/su:status/text())),
 automator:setUpdateOrder($automator,"true"),
 (
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 {
 for $item in $items
 for $parent in $item/su:ParentLineId
 for $orderComponentItem in $component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]
 return (
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}">
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
)

 }
 </OrderDataUpdate>
)
)
)

External XQuery Sender
The Automated Task editor external XQuery sender receives task data from an external
system, then sends the data (after possibly transforming the data) to another external system
or even returns the data back to the original external system. This XQuery combines
characteristics of external XQuery automators and internal XQuery senders. For more
information, see "External XQuery Automator" and "Internal XQuery Sender."

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-12 of A-46

Note

You must declare ScriptSenderContextInvocation in any external XQuery sender
which inherits the ScriptReceiverContextInvocation class and methods used in internal
or external automators.

Internal XQuery Automator
The Automated Task editor internal XQuery automator receives task data from OSM, then
processes the data. For example, such an automation might perform computational actions on
the data or other similar logic. This XQuery combines characteristics of external XQuery
automators and internal XQuery senders. For more information, see "External XQuery
Automator" and "Internal XQuery Sender."

Note

You must declare ScriptReceiverContextInvocation class in an internal XQuery
automator.

Automation Plug-in XSLT Examples
The following topics provide XSLT automation plug-in examples for automation tasks.

• Internal XSLT Sender

• External XSLT Automator

• External XSLT Sender

• Internal XSLT Sender

Internal XSLT Sender
The Automated Task editor internal XSLT automator receives task data from OSM and sends
data to an external system. You can send a message to an external system using whatever
protocol that system requires, such as, Telnet, HTTP, CORBA, SOAP, or web services.

The XSLT has the following characteristics:

• XSLT context: The input document for any automated task automation plug-in is the order
data defined in the Automation Task editor Task Data tab. You can access this data by
declaring the TaskContext OSM Java class. Always declare this class along with the
context java variable. For example:

xmlns:context="java:com.mslv.oms.automation.TaskContext"
...
<xsl:param name="context"/>

• Initial namespace declarations: You must declare ScriptSenderContextInvocation in any
internal XSLT automator which extends ScriptReceiverContextInvocation. Always declare
this class along with the automator java variable. For example:

xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.ScriptS
enderContextInvocation"

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-13 of A-46

...
<xsl:param name="automator"/>

Oracle recommends that you use the standard Apache log class. Always declare this class
along with the log java variable.

xmlns:log="java:org.apache.commons.logging.Log"
...
<xsl:param name="log"/>

You must use the TextMessage class for sending JMS based messages. Always declare
this class along with the outboundMessage Java variable. You can use JMS text based
messages to send OSM Web Service messages to other OSM systems, such as a service
order from an OSM COM system to an OSM SOM system.

xmlns:outboundMessage="java:javax.jms.TextMessage"
...
<xsl:param name="outboundMessage"/>

Note

If you need to support any other protocol for sending messages, you can
implement a custom Java automation plug-in for the protocol or import a helper
function implementation that supports the protocol.

• Body: The body for an internal XSLT sender can contain the following elements:

– Use outboundMessage to set up the standard WebLogic JMS message properties for
web services:

<xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type',
'text/xml; charset="utf-8"')"/>

– Use outboundMessage to set up the OSM Web Service URI JMS message property:

<xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'URI', '/osm/wsapi')"/>

– You can optionally use outboundMessage with the XML API to populate a JMS
property value from order data. For example this code sets up an
Ora_OSM_COM_OrderId parameter that is populated with the OSM order ID:

<xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID)"/>

– You can optionally use outboundMessage to set the JMS Correlation ID for the
automation task before sending the message. This allows OSM to route a return
message with the same corresponding JMS property value to an external XQuery
automator on the same automation task as the original sender automation plug-in. For
example, the following code sets the JMS correlation ID using the original OSM COM
order:

<xsl:variable name="void" select="java:setJMSCorrelationID($outboundMessage,
concat($order/oms:_root/oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/
ebo:DataArea/ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/
text(),'-COM'))"/>

If this code were applied to "Message Example," the return value would be a
concatenation of ScenarioA2 and -COM: ScenarioA2-COM.

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-14 of A-46

Note

Other correlation scenarios are possible. For example, you may send a
message from automation task without expecting any response to the same
automation task. In this scenario, another automation task further down in the
process may be dedicated to receiving the response message, in which case
an automation plug-in would be required that would set the correlation ID
expected from the return message for that automated task. See "Using
Automation" for more information about asynchronous communication
scenarios.

– Access to the task level order data (the task view) using the XML API
GetOrder.Response function call. For example, the following code provides access to
all order data passed into the task as a variable that is then used in other variables to
access different parts of the data:

 <xsl:template match="/">
 <xsl:variable name="order" select="oms:GetOrder.Response"/>
 <xsl:variable name="othervariable" select="$order/oms:_root/
oms:orderid"/>

– Any XSLT logic your plug-in requires, such as if-then or if-then-else statements that
evaluate based on one or more parameters within the response message. For
example, there could be a choice of two or more messages that could be sent
depending on the order data values, or you might log a message.

– A completeTaskOnExit method statement that completes the plug-in and transitions
the task to the next task based on the status selected if the plug-in is intended to end
the task. Typically, an automated task would contain an internal XSLT sender plug-in
for sending a message and an external XSLT receiver plug-in for receiving a message,
but you can also create an automation that only sends an order with another
automation that receives the order. This can be useful if the response message takes
a long time to return. If you are expecting the system to respond that you sent the
message to, you must configure the internal XSLT sender with a reply to queue that
listens for a message acknowledgement, whether the response is returned to an
external automator on the same automation task or on another automation task.

The following example provides the code for an XSLT that sends a message from an OSM
system in the COM role to an OSM system in the SOM role using the OSM Web Service
interface and assumes JMS communication over T3S.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns="http://www.metasolv.com/OMS/OrderDataUpdate"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="http://xml.apache.org/xslt/java"
 xmlns:xalan="http://xml.apache.org/xslt"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.ScriptSende
rContextInvocation"
 xmlns:context="java:com.mslv.oms.automation.TaskContext"
 xmlns:log="java:org.apache.commons.logging.Log"
 xmlns:outboundMessage="java:javax.jms.TextMessage"
 xmlns:to="http://TechnicalOrder"
 xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
ProvisioningOrder/V1"
 xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ebo="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-15 of A-46

 exclude-result-prefixes="xsl java xalan oms com ser soapenv xsi"
 xmlns:fn="http://www.w3.org/2005/02/xpath-functions">

 <!-- * -->
 <xsl:param name="automator"/>
 <xsl:param name="log"/>
 <xsl:param name="context"/>
 <xsl:param name="outboundMessage"/>

 <!-- * -->

 <xsl:output method="xml" indent="yes" omit-xml-declaration="no" xalan:indent-
amount="5"/>
 <xsl:template match="/">
 <xsl:variable name="order" select="oms:GetOrder.Response"/>
 <xsl:variable name="technicalActions" select="$order/oms:_root/
oms:TechnicalActions"/>
 <xsl:variable name="ebm" select="$order/oms:_root/oms:messageXmlData"/>
 <xsl:variable name="bi" select="$order/oms:_root/
oms:CaptureInteractionResponse"/>
 <xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, '_wls_mimehdrContent_Type', 'text/xml;
charset="utf-8"')"/>
 <xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'URI', '/osm/wsapi')"/>
 <xsl:variable name="outboundMessage"
select="java:setStringProperty($outboundMessage, 'Ora_OSM_COM_OrderId', /
oms:GetOrder.Response/oms:OrderID)"/>
 <xsl:variable name="void" select="java:setJMSCorrelationID($outboundMessage,
concat($order/oms:_root/oms:messageXmlData/ebo:ProcessSalesOrderFulfillmentEBM/
ebo:DataArea/ebo:ProcessSalesOrderFulfillment/corecom:Identification/corecom:ID/text(),'-
COM'))"/>
 <xsl:variable name="log" select=java:info($log,concat('Sending Service Order for
COM order: ', $order/oms:OrderID))"/>
 <xsl:call-template name="sendSomOrder"/>
 </xsl:template>
 <!-- ==================================
 Create the SOAP message for the sendSomOrder call
 ==================================== -->
 <xsl:template name="sendSomOrder">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ord="http://xmlns.oracle.com/communications/ordermanagement">
 <soapenv:Header>
 <wsse:Security xmlns:wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsu = "http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-4799946">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ord:CreateOrder>
 <ebo:ProcessProvisioningOrderEBM xmlns:ebo="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
<ebo:DataArea>
 <corecom:Process xmlns="http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2" xmlns:aia="http://www.oracle.com/XSL/Transform/java/

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-16 of A-46

oracle.apps.aia.core.xpath.AIAFunctions" xmlns:xref="http://www.oracle.com/XSL/Transform/
java/oracle.tip.xref.xpath.XRefXPathFunctions" xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1"/>
 <provord:ProcessProvisioningOrder xmlns="http://
xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1" xmlns:aia="http://
www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.xpath.AIAFunctions"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions" xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
xmlns:provord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/ProvisioningOrder/V1">
 <corecom:SalesOrderReference>
 <corecom:SalesOrderIdentification>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:OrderNumber/corecom:Identification/*}
 </corecom:SalesOrderIdentification>
 </corecom:SalesOrderReference>
 <provord:RequestedDeliveryDateTime>2010-07-16T08:24:38Z </
provord:RequestedDeliveryDateTime>
 <provord:TypeCode>SALES ORDER</provord:TypeCode>
 <provord:FulfillmentPriorityCode>5</
provord:FulfillmentPriorityCode>
 <provord:FulfillmentSuccessCode>DEFAULT </
provord:FulfillmentSuccessCode>
 <provord:FulfillmentModeCode>DELIVER</
provord:FulfillmentModeCode>
 <provord:ProcessingNumber/>
 <provord:ProcessingTypeCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:BusinessUnitReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessUnitIdentification>
 <corecom:ID schemeID="ORGANIZATION_ID"
schemeAgencyID="SEBL_01">0-R9NH</corecom:ID>
 </corecom:BusinessUnitIdentification>
 </corecom:BusinessUnitReference>
 {$order/oms:_root/oms:ServiceOrder/cord:Order/
cord:CustomerDetails/cord:CustomerParty/corecom:CustomerPartyReference}
 <corecom:ParentProvisioningOrderReference
xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ProvisioningOrderIdentification>
 <corecom:BusinessComponentID
schemeID="SALESORDER_ID" schemeAgencyID="COMMON"/>
 </corecom:ProvisioningOrderIdentification>
 </corecom:ParentProvisioningOrderReference>
 {
 for $x in $order/oms:_root/oms:ServiceOrder/cord:Order/
cord:ServiceOrderLine
 return
 <provord:ProvisioningOrderLine>
 <corecom:Identification xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:BusinessComponentID>{concat($x/@id,'')} </
corecom:BusinessComponentID>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="SALESORDER_LINEID"
schemeAgencyID="SEBL_01">{concat($x/@id,'')}</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-17 of A-46

 <provord:OrderQuantity>1</provord:OrderQuantity>
 <provord:ServiceActionCode>{$x/cord:Action/text()} </
provord:ServiceActionCode>
 <provord:ServicePointCode/>
 <corecom:Status xmlns:corecom="http://xmlns.oracle.com/
EnterpriseObjects/Core/Common/V2">
 <corecom:Code>IN PROGRESS</corecom:Code>
 </corecom:Status>
 <corecom:ServiceAddress xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:Identification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON"
schemeID="CUSTOMERPARTY_ADDRESSID">2d323733323231313531313836313331</
corecom:BusinessComponentID>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeAgencyID="SEBL_01"
schemeID="CUSTOMERPARTY_ADDRESSID">88-2KKNH</corecom:ID>
 </corecom:ApplicationObjectKey>
 </corecom:Identification>
 <corecom:LineOne>{$x/cord:Address/cord:LineOne/
text()} </corecom:LineOne>
 <corecom:CityName>{$x/cord:Address/cord:CityName/
text()} </corecom:CityName>
 <corecom:StateName>{$x/cord:Address/cord:StateName/
text()} </corecom:StateName>
 <corecom:ProvinceName>{$x/cord:Address/
cord:ProvinceName/ text()}</corecom:ProvinceName>
 <corecom:CountryCode>{$x/cord:Address/
cord:CountryCode /text()}</corecom:CountryCode>
 <corecom:PostalCode>{$x/cord:Address/
cord:PostalCode /text()}</corecom:PostalCode>
 </corecom:ServiceAddress>
 <corecom:ItemReference xmlns:corecom="http://
xmlns.oracle.com/EnterpriseObjects/Core/Common/V2">
 <corecom:ItemIdentification>
 <corecom:BusinessComponentID
schemeAgencyID="COMMON" schemeID="ITEM_ITEMID"/>
 <corecom:ApplicationObjectKey>
 <corecom:ID schemeID="ITEM_ITEMID"
schemeAgencyID="SEBL_01">{concat($x/cord:InstanceID/text(),'')}</corecom:ID>
 </corecom:ApplicationObjectKey>
 <corecom:AlternateObjectKey>
 <corecom:ContextID/>
 </corecom:AlternateObjectKey>
 <corecom:SupplierItemID/>
 </corecom:ItemIdentification>
 <corecom:Name>{concat($x/@name,'')}</corecom:Name>
 <corecom:ClassificationCode
listID="PermittedTypeCode"></corecom:ClassificationCode>
 <corecom:ClassificationCode
listID="BillingProductTypeCode"/>
 <corecom:ClassificationCode
listID="FulfillmentItemCode">{concat($x/@name,'')}</corecom:ClassificationCode>
 <corecom:ServiceIndicator>false</
corecom:ServiceIndicator>
 <corecom:TypeCode>SERVICE</corecom:TypeCode>
 <corecom:Description/>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 {

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-18 of A-46

 for $y in $x/cord:Attribute
 return
 <corecom:Specification>
 <corecom:ServiceActionCode> </
corecom:ServiceActionCode>
 <corecom:Name>{concat($y/@name,'')} </
corecom:Name>
 <corecom:DataTypeCode>Text</
corecom:DataTypeCode>
 <corecom:Value>{$y/cord:Value/
cord:value/text()} </corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>
 <corecom:PrimaryClassificationCode>{concat($x/
@name,'')} </corecom:PrimaryClassificationCode>
 <corecom:ServiceInstanceIndicator>true </
corecom:ServiceInstanceIndicator>
 </corecom:ItemReference>
 <provord:ProvisioningOrderLineSpecificationGroup>
 <corecom:SpecificationGroup>
 <corecom:Name>ExtensibleAttributes</
corecom:Name>
 <corecom:Specification>
 <corecom:Name>ParentSalesOrderLine</
corecom:Name>
 <corecom:Value>{$x/cord:primaryMapping/
text()} </corecom:Value>
 </corecom:Specification>
 {
 for $z in $x/cord:secondaryMapping
 return
 <corecom:Specification>
 <corecom:Name>ParentSalesOrderLine</
corecom:Name>
 <corecom:Value>{$z/text()}</corecom:Value>
 </corecom:Specification>
 }
 </corecom:SpecificationGroup>
 </provord:ProvisioningOrderLineSpecificationGroup>
 </provord:ProvisioningOrderLine>
 }
 </provord:ProcessProvisioningOrder>
 </ebo:DataArea>
 </ebo:ProcessProvisioningOrderEBM>
 </ord:CreateOrder>
 </soapenv:Body>
</soapenv:Envelope>
</xsl:template>
 <!-- * -->
 <xsl:template match="* | @* | text()">
 <!-- do nothing -->
 <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

External XSLT Automator
The Automated Task editor external XSLT automator receives task data from an external
system and optionally updates OSM order data. The XSLT has the following characteristics:

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-19 of A-46

• XSLT context in prolog: The input document for any automated task automation plug-in is
the order data defined in the Automation Task editor Task Data tab. You can access this
data by declaring the TaskContext OSM Java class. Always declare this class along with
the context java binding. For example:

xmlns:context="java:com.mslv.oms.automation.TaskContext"
...
<xsl:param name="context"/>

• Prolog: You must declare ScriptReceiverContextInvocation in any external XQuery
automator. Typically, you can use the getOrderAsDOM method to receive external
messages and the setUpdateOrder method to update the order data. Always declare this
class along with the automator java binding. For example:

xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.ScriptR
eceiverContextInvocation"
...
<xsl:param name="automator"/>

Oracle recommends that you use the standard Apache log class. Always declare this class
along with the $log java binding.

xmlns:log="java:org.apache.commons.logging.Log"
...
<xsl:param name="log"/>

Another necessary declaration includes the xmlapi namespace, that you can use with the
ScriptReceiverContextInvocation getOrderAsDom method to retrieve the order data for the
task as a variable. This task data variable can be used in an OrderDataUpdate to update
the order data with the data values received in the response message, if an update to the
order data is required. For example:

xmlns:oms="urn:com:metasolv:oms:xmlapi:1"
<xsl:variable name="taskData" select="fn:root(java:getOrderAsDOM($automator))/
oms:GetOrder.Response"/>

• Body: The body for an external XSLT automator can contain the following elements:

– Any XSLT logic your plug-in requires, such as if-then or if-then-else statements that
evaluate based on one or more parameters within the response message, or you
might log a message.

– A setUpdateOrder method statement that indicates whether there is an order data
update. This method should be identical to what you selected in the Design Studio
automation plug-in Properties View XSLT Tab Update Order check box.

– A completeTaskOnExit method statement that completes the plug-in and transitions
the task to the next task based on the status selected, if the plug-in is intended to end
the task. Since there can be multiple plug-ins within a task, you would only need this
method in the last plug-in listed. For example, the Failed status might transition to a
fallout task, and the Succeed status may transition to the next task in the process.

– An OrderDataUpdate statement that updates the order data based on the information
returned in the response. For more information about structuring order update code,
see "Using OrderDataUpdate Elements to Pass Order Modification Data."

– Indexing: Order data in OSM often includes multiple data instances. For example, an
orchestration order must include the ControlData/OrderItem and ControlData/
Functions multi-instance nodes. Multi-instance nodes in solution cartridges are
possible for any data element where the maximum cardinality of the node is greater
than 1. When updating a multi-instance data node using automations use the node
index to reference the specific node instance you want to update. The node index is

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-20 of A-46

available in the XML API GetOrder.Response. See OSM XML API Developer's Guide
for an example of a GetOrder response message with indexing.

The following example triggers different order data updates based on the status message
returned from an external system. In this case, the external system is another OSM instance
running in the SOM role:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns="http://www.metasolv.com/OMS/OrderDataUpdate"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="http://xml.apache.org/xslt/java"
 xmlns:xalan="http://xml.apache.org/xslt"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1"

xmlns:automator="java:oracle.communications.ordermanagement.automation.plugin.ScriptRecei
verContextInvocation"
 xmlns:context="java:com.mslv.oms.automation.TaskContext"
 xmlns:log="java:org.apache.commons.logging.Log"
 xmlns:su="http://StatusUpdate"
 xmlns:so="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2"
 xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 exclude-result-prefixes="xsl java xalan oms soapenv xsi">

 <!-- * -->
 <xsl:param name="automator"/>
 <xsl:param name="log"/>
 <xsl:param name="context"/>

 <!-- * -->
 <xsl:output method="xml" indent="yes" omit-xml-declaration="no" xalan:indent-
amount="5"/>

 <xsl:template match="/">
 <xsl:variable name="taskData" select="fn:root(java:getOrderAsDOM($automator))/
oms:GetOrder.Response"/>
 <xsl:variable name="response" select="fn:root()/su:StatusUpdate (: fn:root(.) :)"/>
 <xsl:variable name="items" select="fn:root()/su:StatusUpdate/su:OrderItem"/>
 <xsl:variable name="component" select="if (fn:exists($taskData/oms:_root/
oms:ControlData/oms:Functions/*/oms:componentKey)) then $taskData/oms:_root/
oms:ControlData/oms:Functions/*[fn:position()=1] else ()"/>
 <xsl:apply-templates/>
</xsl:template>

<!-- Match the status SOM_Complete -->
 <xsl:template match="$response[su:status/text()='SOM_Completed']">
 <xsl:variable name="log" select="java:info($log,concat('Received SOM Status Update:
SOM_Completed; ', $response/su:status/text()))"/>
 <xsl:variable name="automator" select="java:setUpdateOrder($automator, true())"/>
 <xsl:variable name="context" select="java:completeTaskOnExit($context, success())"/>
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 <xsl:for-each select="su:ParentLineId">
 <xsl:variable name="parent" select="."/>
 <xsl:for-each select="$component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]">
 <xsl:variable name="index" select="@index"/>
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}>
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-21 of A-46

 </xsl:for-each>
 </xsl:for-each>
 </OrderDataUpdate>
 </xsl:template>

<!-- Match the status SOM_Failed -->
 <xsl:template match="$response[su:status/text()='SOM_Failed']">
 <xsl:variable name="log" select="java:info($log,concat('Received SOM Status Update:
SOM_Failed; ', $response/su:status/text()))"/>
 <xsl:variable name="automator" select="java:setUpdateOrder($automator, true())"/>
 <xsl:variable name="context" select="java:completeTaskOnExit($context, success())"/>
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 <xsl:for-each select="su:ParentLineId">
 <xsl:variable name="parent" select="."/>
 <xsl:for-each select="$component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]">
 <xsl:variable name="index" select="@index"/>
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}>
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
 </xsl:for-each>
 </xsl:for-each>
 /OrderDataUpdate>
 </xsl:template>

 <xsl:template match="$response[su:status/text()='']">
 <xsl:variable name="log" select="java:info($log,concat('Received SOM Status Update:
SOM_InProgress or SOM_Canceled; ', $response/su:status/text()))"/>
 <xsl:variable name="automator" select="java:setUpdateOrder($automator, false())"/>
 <xsl:variable name="context" select="java:completeTaskOnExit($context, success())"/>
 <OrderDataUpdate xmlns="http://www.metasolv.com/OMS/OrderDataUpdate/2002/10/25">
 <xsl:for-each select="su:ParentLineId">
 <xsl:variable name="parent" select="."/>
 <xsl:for-each select="$component/oms:orderItem[oms:orderItemRef/
oms:LineXmlData/so:SalesOrderLine/corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID/text() = $parent/text()]">
 <xsl:variable name="index" select="@index"/>
 <Update path="{fn:concat("/ControlData/Functions/Provision/
orderItem[@index='",fn:data($orderComponentItem/@index),"']")}>
 <ExternalFulfillmentState>{$item/su:Status/text()}</
ExternalFulfillmentState>
 </Update>
 </xsl:for-each>
 </xsl:for-each>
 </OrderDataUpdate>
 </xsl:template>

<!-- * -->
 <xsl:template match="* | @* | text()">
 <!-- do nothing -->
 <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

External XSLT Sender
The Automated Task editor external XSLT sender receives task data from an external system,
then sends the data (after possibly transforming the data) to another external system or even

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-22 of A-46

returns the data back to the original external system. This XSLT combines characteristics of
external XSLT automators and internal XSLT senders. For more information, see "External
XSLT Automator" and "Internal XSLT Sender ."

Note

You must declare ScriptSenderContextInvocation in any external XSLT sender which
inherits the ScriptReceiverContextInvocation class and methods used in internal or
external automators.

Internal XSLT Automator
The Automated Task editor internal XSLT automator receives task data from OSM, then
processes the data. For example, such an automation might perform computational actions on
the data or other similar logic. This XSLT combines characteristics of external XSLT
automators and internal XSLT senders. For more information, see "External XSLT Automator"
and "Internal XSLT Sender ."

Note

You must declare ScriptReceiverContextInvocation class in an internal XSLT
automator.

Automation Plug-in Examples for Events, Jeopardies, and Notifications
The following topics provide XQuery automation plug-in examples for:

• Event Automators

• Jeopardy Automators

• Jeopardy Automators

Event Automators
An event automation plug-in can be triggered when an order or a task transitions into a defined
milestone. The automation can be any internal XQuery, XSLT, or custom automation since the
milestone event, by definition, can only be triggered by milestones happening within an order
or a task. For more information about the characteristics for these automations, see
"Automation Plug-in XQuery Examples," "Automation Plug-in XSLT Examples," and "Custom
Java Automation Plug-ins."

Note

For an event automation plug-in you must declare the OrderNotificationContext
instead of TaskContext. For example:

declare namespace context =
"java:com.mslv.oms.automation.OrderNotificationContext";

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-23 of A-46

The following example is an internal sender automation plug-in that uses methods available to
the OrderNotificationContext class to get milestone data from the order and sends an
notification message to an external system. Because this sender does not expect a response
message (a fire-and-forget message), you must use the OrderNotificationContext class
ackNotificationOnExit method to clear the JMS correlation ID for the notification. Also, events
do not transition tasks, so you must not specify completeTaskOnExit in a notification.

declare namespace saxon="http://saxon.sf.net/";
declare namespace xsl="http://www.w3.org/1999/XSL/Transform";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace outboundMessage = "java:javax.jms.TextMessage";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace context = "java:com.mslv.oms.automation.OrderNotificationContext";

declare variable $context external;
declare variable $log external;
declare variable $outboundMessage external;

let $taskData := fn:root(.)/oms:GetOrder.Response
let $correlationId := $taskData/oms:_root/oms:Id/text()
let $controlDataArea := if (fn:exists($taskData/oms:_root/oms:ControlData))
 then $taskData/oms:_root/oms:ControlData
 else ()

return
(
log:info($log, fn:concat('COMCartridge: Invoking orderCompletionNotification for
order[',$taskData/oms:OrderID/text(),'] with correlation [', $correlationId,']')),
context:ackNotificationOnExit($context),
outboundMessage:setStringProperty($outboundMessage, "COMCorrelationID", $correlationId),
outboundMessage:setStringProperty($outboundMessage, "SUB_FOLDER_NAME", $taskData/
oms:_root/oms:OrderNumber/text()),
outboundMessage:setStringProperty($outboundMessage, "COMMilestone",
"COMOrderCompleteEvent"),
<orderNotification xmlns="http://xmlns.oracle.com/communications/sce/dictionary/
CommonResourcesCartridge/Notifications"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <OSMOrderId>{$taskData/oms:OrderID/text()}</OSMOrderId>
 <Id>{$correlationId}</Id>
 <OrderNumber>{$taskData/oms:_root/oms:OrderNumber/text()}</OrderNumber>
 {
 for $serviceInstance in $controlDataArea/oms:OrderItem
 return
 <Instance>
 <InstanceID>{$serviceInstance/oms:instanceID/text()}</InstanceID>
 <OrderLineId>{$serviceInstance/oms:orderLineId/text()}</OrderLineId>
 <Status>{$serviceInstance/oms:status/text()}</Status>
 </Instance>
 }
</orderNotification>
)

Jeopardy Automators
An order jeopardy automation plug-in can be triggered when a particular condition is met, such
as when a task exceeds the expected duration configured for the task or when the process that
the task is a part of exceeds its excepted process duration. The automation can be any internal
XQuery, XSLT, or custom automation since the jeopardy, by definition, can only be triggered by
events happening within the task or the process. For more information about the

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-24 of A-46

characteristics for these automations, see "Automation Plug-in XQuery Examples,"
"Automation Plug-in XSLT Examples," and "Custom Java Automation Plug-ins."

Note

For an order level jeopardy automation plug-in you must declare the
OrderNotificationContext instead of TaskContext. For example:

declare namespace context =
"java:com.mslv.oms.automation.OrderNotificationContext";

For a task level jeopardy automation plug-in, if the task level jeopardy condition
Multiple events per Task instance is set indicating that the task is a multi-instance
task and the event should be triggered for each instance, then you must declare
TaskNotificationContext so that the task data is passed to each instance of the
event. If the task is not a multi-instance task, then OrderNotificationContext should
be declared.

The following example is an internal automator plug-in that uses methods available to the
OrderNotificationContext class to get notification details from the task in combination with the
XML API Notification.Request that logs the jeopardy notification details. Other jeopardy
examples could also send an email or trigger a pager.

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptReceiverContextInvoca
tion";
declare namespace context = "java:com.mslv.oms.automation.OrderNotificationContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare option saxon:output "method=xml";
declare option saxon:output "saxon:indent-spaces=2";

declare variable $automator external;
declare variable $context external;
declare variable $log external;

declare variable $exitStatus := "success";

let $thisOrderId := context:getOrderId($context)
(: let $taskMnemonic := context:getTaskMnemonic($context) :)
let $notificationName := context:getNotificationName($context)
let $notificationType := context:getNotificationType($context)
let $orderId := fn:root(.)/oms:GetOrder.Response/oms:_root/oms:orderId
let $xmlRequest := '<Notifications.Request xmlns="urn:com:metasolv:oms:xmlapi:1" />'
let $notifications := context:processXMLRequest($context, $xmlRequest)
return (
 log:info($log, fn:concat("XQuery jeopardy: order[", $thisOrderId,
 "], notificationContext [", context:getClass($context),
 "], notificationName[", $notificationName,
 "], notificationType[", $notificationType,
 "], notifications[", $notifications,
 "] entered order ID [", $orderId/text(), "]")),
 <placeholder/>
)

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-25 of A-46

Order Notification Automation Plug-ins
An order notification automation plug-in can be triggered when specified data changes in the
order. For example, you can monitor order status changes using the orchestration data
element ControlData/OrderFulfillmentState or individual order item status changes using
ControlData/OrderItem/OrderItemFulfillmentState so OSM triggers an internal XQuery
sender automation plug-in that sends these status changes to another system, such as from a
SOM OSM system to a COM OSM system, or from a COM OSM system to a CRM.

The automation can be any internal XQuery, XSLT, or custom automation since the notification,
by definition, can only be triggered by a change in the internal order data. For more information
about the characteristics for these automations, see "Automation Plug-in XQuery Examples,"
"Automation Plug-in XSLT Examples," and "Custom Java Automation Plug-ins."

Note

For an order notification automation plug-in you must declare the
OrderDataChangeNotificationContext instead of TaskContext. For example:

declare namespace context =
"java:com.mslv.oms.automation.OrderDataChangeNotificationContext";

The following example is an internal XQuery sender that sends any order and order item
fulfillment state changes to another OSM system. It also provides stubs for transforming the
fulfillment states to external system message formats.

declare namespace osm="urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace to="http://TechnicalOrder";
declare namespace automator =
"java:oracle.communications.ordermanagement.automation.plugin.ScriptSenderContextInvocati
on";
declare namespace su="http://StatusUpdate";
declare namespace context =
"java:com.mslv.oms.automation.OrderDataChangeNotificationContext";
declare namespace outboundMessage = "java:javax.jms.TextMessage";

declare variable $log external;
declare variable $outboundMessage external;

(:
 This function is for indication purposes only.
 OSM Fulfillment State can be mapped according the expectation of Upstream
:)
declare function local:getUpstreamFulfillmentState($fulfillmentState as xs:string) as
xs:string {
 (: fn:concat('Order_Upstream_' , $fulfillmentState) :)
 fn:concat('' , $fulfillmentState)
};

(:
 This function is for indication purposes only.
 OSM Fulfillment State can be mapped according the expectation of Upstream
:)
declare function local:getUpstreamOrderItemFulfillmentState($fulfillmentState as
xs:string) as xs:string {
 (: fn:concat('OrderItem_Upstream_' , $fulfillmentState) :)

Appendix A
Predefined Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-26 of A-46

 fn:concat('' , $fulfillmentState)
};

let $order := ..//osm:GetOrder.Response
let $orderFulfillmentState := $order/osm:_root/osm:ControlData/osm:OrderFulfillmentState
let $mappedUpstreamFulfillmentState := if(exists($orderFulfillmentState)) then
local:getUpstreamFulfillmentState($orderFulfillmentState/text()) else ()

return
(
log:info($log,'Sending Upstream Fulfillment State'),
outboundMessage:setStringProperty($outboundMessage, "SOMTOMCorrelationHeader",
concat($order/osm:_root/osm:messageXmlData/to:TechnicalOrder/to:SOMOrderId/text(),'-
SOM')),
if (fn:count($order/osm:_root/osm:ControlData/osm:OrderItem)=0) then (
<StatusUpdate xmlns="http://StatusUpdate">
<numSalesOrder>{$order/osm:Reference/text()}</numSalesOrder>
<numOrder>{$order/osm:OrderID/text()}</numOrder>
<typeOrder>{$order//osm:OrderHeader/osm:typeOrder/text()}</typeOrder>
<errorCode>0</errorCode>
<status>cancelled</status>
</StatusUpdate>
) else (
<StatusUpdate xmlns="http://StatusUpdate">
<numSalesOrder>{$order/osm:Reference/text()}</numSalesOrder>
<numOrder>{$order/osm:OrderID/text()}</numOrder>
<typeOrder>{$order//osm:OrderHeader/osm:typeOrder/text()}</typeOrder>
<errorCode>0</errorCode>
<status>{$mappedUpstreamFulfillmentState}</status>
{
 for $orderItem in $order/osm:_root/osm:ControlData/osm:OrderItem
 where exists($orderItem/osm:OrderItemFulfillmentState)
 return
 <OrderItem>
 <LineName>{$orderItem/osm:LineName/text()}</LineName>
 <LineId>{$orderItem/osm:LineId/text()}</LineId>
 <ParentLineId>{$orderItem/osm:ParentLineId/text()}</ParentLineId>
 <SpecificationName>{$orderItem/osm:TypeCode/text()}</SpecificationName>
 <Status>{local:getUpstreamOrderItemFulfillmentState($orderItem/
osm:OrderItemFulfillmentState/text())}</Status>
 </OrderItem>
 }
</StatusUpdate>
)
)

Custom Java Automation Plug-ins
This topic provides common usage examples for custom Java automation plug-ins.

• Internal Custom Java Automator

• Internal Custom Java Sender

• External Custom Java Automator that Changes the OSM Task Status

• External Custom Java Automator that Updates Order Data

• Using OrderDataUpdate Elements to Pass Order Modification Data

• Examples of Sending Messages to External Systems

• Examples of Handling Responses from External Systems

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-27 of A-46

Internal Custom Java Automator
A basic internal custom Java automator has the following characteristics:

• The name of the custom automation package. For example:

package com.mslv.oms.sample.atm_frame;

• Import statements required for this custom automation plug-in. For example:

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

• An arbitrary class name that extends AbstractAutomator. For the automation framework to
call an internal custom Java automator, the plug-in must extend the AbstractAutomator
class. This class resides in the com.mslv.automation.plugin package. For example:

 public class MyPlugin extends AbstractAutomator {

• The required run method, as dictated by the parent class, AbstractAutomator

 protected void run(String inputXML, AutomationContext context)
 throws com.mslv.oms.automation.AutomationException {

• Cast the AutomationContext object to the TaskContext object. This example assumes that
the custom automation plug-in is triggered by an automated task, so the code is expecting
the context input an argument to be an instance of the TaskContext object.

 TaskContext taskContext = (TaskContext)context;

Note

You can use the TaskContext object to do many things, such as complete the task,
suspend it, and so on. For more information about this class, see the OSM
Javadocs.

• Call a method on the TaskContext object to retrieve the task name.

 String taskName = taskContext.getTaskMnemonic();

• Add any require business logic.

 this.performAutomation(taskname);

The following example shows the minimal amount of code required for a custom automation
plug-in to run. This example assumes that it is triggered by an automated task.

package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

 public class MyPlugin extends AbstractAutomator {
 protected void run(String inputXML, AutomationContext context)
 throws com.mslv.oms.automation.AutomationException {
 try {
 TaskContext taskContext = (TaskContext)context;
 String taskName = taskContext.getTaskMnemonic();
 this.performAutomation(taskname);
 catch(RemoteException ex) {

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-28 of A-46

 throw new AutomationException(ex); }
 catch(AutomationException x) {
 throw x; }
 }
 }

Internal Custom Java Sender
A basic internal custom Java sender has the following characteristics:

• The name of the custom automation package. For example:

package com.mslv.oms.sample.atm_frame;

• Import statements required for this custom automation plug-in. For example:

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

• An arbitrary class name that extends AbstractSendAutomator. For the automation
framework to call an internal custom Java sender, the plug-in must extend the
AbstractSendAutomator class. This class resides in the com.mslv.automation.plugin
package. For example:

 public class MyPlugin extends AbstractSendAutomator {

• The required run method, as dictated by the parent class, AbstractSendAutomator

 protected void run(String inputXML, AutomationContext context)
 throws com.mslv.oms.automation.AutomationException {

• Cast the AutomationContext object to the TaskContext object. This example assumes that
the custom automation plug-in is triggered by an automated task, so the code is expecting
the context input an argument to be an instance of the TaskContext object.

 TaskContext taskContext = (TaskContext)context;

Note

You can use the TaskContext object to do many things, such as complete the task,
suspend it, and so on. For more information about this class, see the OSM
Javadocs.

• Call a method on the TaskContext object to retrieve the task name.

 String taskName = taskContext.getTaskMnemonic();

• Sets the text for the outbound message, which is sent to the external message queue
defined by the automation definition. The custom code does not establish a connection to
an external system or send the message; the automation framework handles the
connection and sends the message upon completion of the makeRequest method.

 outboundMessage.setText("Received task event for task = " + taskName);}

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-29 of A-46

Note

OSM provides outboundMessage in the OSM automation framework as a JMS
message with text content. If you require other message formats or protocols, do
not use outboundMessage. You must implement an internal custom java
automator or helper class with the required code.

The following example shows the minimal amount of code required for a custom automation
plug-in that sends data to run. This example assumes that it is triggered by an automated task.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import javax.jms.TextMessage;
 import java.rmi.*;

 public class MyPlugin extends AbstractSendAutomator {
 protected void makeRequest(String inputXML, AutomationContext context,
 TextMessage outboundMessage)
 throws com.mslv.oms.automation.AutomationException {
 try {
 TaskContext taskContext = (TaskContext)context;
 String taskName = taskContext.getTaskMnemonic();

 // optional - You can use this code if you want to define your own correlation
ID rather than an autogenerated correlation ID.
 Correlator correlator = getCorrelator(context);
 correlator.add(createCustomCorrelationId(taskContext));

 outboundMessage.setText("Received task event for task = " + taskName);}
 catch(javax.jms.JMSException ex) {
 throw new AutomationException(ex); }
 catch(RemoteException x) {
 throw new AutomationException(x); }
 }

 private String createCustomCorrelationId(TaskContext taskContext) {
 // Create a custom correlation ID using task name and unique order history ID
 // Actual correlation calculation depends on solution logic
 String corrId = taskContext.getTaskMnemonic()
 + "-"
 + String.valueOf(taskContext.getOrderHistoryId());
 return corrId;
 }

 }

External Custom Java Automator that Changes the OSM Task Status
A basic external custom Java automator that changes the OSM task status has the following
characteristics:

• The name of the custom automation package. For example:

package com.mslv.oms.sample.atm_frame;

• Import statements required for this custom automation plug-in. For example:

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-30 of A-46

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

• An arbitrary class name that extends AbstractAutomator. For the automation framework to
call an external custom Java sender, the plug-in must extend the AbstractAutomator class.
This class resides in the com.mslv.automation.plugin package. The name reflects that this
example is an external event receiver, receiving information from ASAP. For example:

 public class AsapResponseHandler extends AbstractAutomator {

• The required run method, as dictated by the parent class, AbstractAutomator.

 public void run(String inputXML, AutomationContext task)
 throws AutomationException {

• Cast the AutomationContext object to the TaskContext object. This example assumes that
the custom automation plug-in is triggered by an automated task, so the code is expecting
the context input an argument to be an instance of the TaskContext object.

 TaskContext taskContext = (TaskContext)context;

Note

You can use the TaskContext object to do many things, such as complete the task,
suspend it, and so on. For more information about this class, see the OSM
Javadocs.

• Call a method on the TaskContext object to retrieve the task name.

 String taskName = taskContext.getTaskMnemonic();

• Logs the information regarding the response that the plug-in is handling.
AtmFrameCatalogLogger is available to this example plug-in based on the package in
which the plug-in resides. You must replace this with your own solution logic.

 AtmFrameCatalogLogger.logTaskEventResponse
 (taskName,tctx.getOrderId(),tctx.getOrderHistoryId(),inputXML);

Note

The automation framework keeps track of the order ID and the order history ID of
the task that triggered the automation. There are two ways you can get the Order
History ID:

– By parsing the inputXML

– By calling the TaskContext.getOrderHistoryId method as shown in this
example.

In most cases, these return the same order history ID. However, if you use
automation to handle task events, the order history ID obtained from:

– Parsing the inputXML returns the order history ID as it was when the task was
generated

– Calling the TaskContext.getOrderHistoryID method returns the order history ID
as it is now (current)

• Update the task status by calling a method on the TaskContext object.

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-31 of A-46

 tctx.completeTaskOnExit("activation_successful"); }

The following example shows an external custom automator that updates the OSM task status.
This example assumes that the automation definition is an external event receiver that is
receiving a message from ASAP, and that it is triggered by an automated task.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

 public class AsapResponseHandler extends AbstractAutomator {
 public void run(String inputXML, AutomationContext task)
 throws AutomationException {
 try {
 TaskContext tctx = (TaskContext)task;
 String taskName = tctx.getTaskMnemonic();
 AtmFrameCatalogLogger.logTaskEventResponse
 (taskName,tctx.getOrderId(),tctx.getOrderHistoryId(),inputXML);
 tctx.completeTaskOnExit("activation_successful"); }
 catch(RemoteException ex) {
 throw new AutomationException(ex); }
 catch(AutomationException x) {
 throw x; }
 }
 }

External Custom Java Automator that Updates Order Data
If an automated task sends data to an external system and the external system sends a
response back, you may need to update OSM with the data received from the external system.

The following example shows how to update data in OSM. The code is an example of updating
OSM with data received from Oracle Communications Unified Inventory Management (UIM)
when calling the server extension FRDemo.AssignFacilities.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;
 import java.util.*;
 import java.io.*;
 import java.net.*;
 import org.xml.sax.*;
 import org.w3c.dom.*;
 import javax.xml.parsers.*;

 public class UIMResponseHandler extends AbstractAutomator {

 public void run(String inputXML, AutomationContext task)
 throws AutomationException {
 try {
 TaskContext tctx = (TaskContext)task;
 String taskName = tctx.getTaskMnemonic();
 AtmFrameCatalogLogger.logTaskEventResponse
 (taskName,tctx.getOrderId(),tctx.getOrderHistoryId(),inputXML);

 // Using the data returned from UIM, update the OSM order data
 String updateXml = generateOMSUpdateString(inputXML);
 tctx.updateOrderData(updateXml);

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-32 of A-46

 // Complete the OSM task with the correct status
 tctx.completeTaskOnExit("success"); }

 catch(OrderUpdateException ex) {
 throw new AutomationException(ex); }
 catch(RemoteException ex) {
 throw new AutomationException(ex); }
 catch(AutomationException x) {
 throw x; }
 }

 static private String generateOMSUpdateString(String inputXML) {
 StringBuffer osmUpdate = new StringBuffer("");
 try {
 osmUpdate = new StringBuffer
 ("<OrderDataUpdate xmlns=\"http://www.w3.org/2001/XMLSchema\""+
 " xmlns:xs=\"http://www.w3.org/2001/XMLSchema\"" +
 " xmlns:odu=\"http://www.oracle.com/OMS/OrderDataUpdate\"" +
 " targetNameSpace=\"http://www.oracle.com/OMS/OrderDataUpdate\">");

 // Use updates from UIM to update OSM
 osmUpdate.append("<AddMandatory>true</AddMandatory>");
 DocumentBuilderFactory docBuilderFactory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = docBuilderFactory.newDocumentBuilder();
 Document doc = parser.parse(new StringBufferInputStream(inputXML));
 Element root = doc.getDocumentElement();
 root.normalize();
 NodeList a_site_list = root.getElementsByTagName("a_site information");
 NodeList a_site_data = a_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/a_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 NodeList z_site_list = root.getElementsByTagName("z_site_information");
 NodeList z_site_data = z_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/z_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 osmUpdate.append("</OrderDataUpdate>");

 System.out.println(omsUpdate.toString()); }

 catch(Exception e) {
 System.out.println(e.getMessage()); }

 return omsUpdate.toString();

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-33 of A-46

 }
 }

The following code snippets from this example show:

• How to display where OSM data is updated, using XML input to describe which data nodes
to update.

 tctx.updateOrderData(updateXml);

• How to build the OrderDataUpdate XML string to update the data in OSM using data
garnered by parsing the UIM XML. See "Using OrderDataUpdate Elements to Pass Order
Modification Data" for more information. This differs for every order template and every
external system. This code represents the translation step where you convert the data from
the format of an external system to the format that OSM expects.

 static private String generateOMSUpdateString(String inputXML) {
 StringBuffer osmUpdate = new StringBuffer("");
 try {
 osmUpdate = new StringBuffer
 ("<OrderDataUpdate xmlns=\"http://www.w3.org/2001/XMLSchema\""+
 " xmlns:xs=\"http://www.w3.org/2001/XMLSchema\"" +
 " xmlns:odu=\"http://www.oracle.com/OMS/OrderDataUpdate\"" +
 " targetNameSpace=\"http://www.oracle.com/OMS/OrderDataUpdate\">");

 // Use updates from UIM to update OSM
 osmUpdate.append("<AddMandatory>true</AddMandatory>");
 DocumentBuilderFactory docBuilderFactory =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = docBuilderFactory.newDocumentBuilder();
 Document doc = parser.parse(new StringBufferInputStream(inputXML));
 Element root = doc.getDocumentElement();
 root.normalize();
 NodeList a_site_list = root.getElementsByTagName("a_site information");
 NodeList a_site_data = a_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/a_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 NodeList z_site_list = root.getElementsByTagName("z_site_information");
 NodeList z_site_data = z_site_list.item(0).getChildNodes();

 for(int i=0;i<a_site_data.getLength();i++) {
 Element e = (Element)a_site_data.item(i);
 osmUpdate.append("<Add path=\"/z_site_information/");
 osmUpdate.append(e.getTagName());
 osmUpdate.append("\">");
 osmUpdate.append(e.getFirstChild().getNodeValue());
 osmUpdate.append("</Add>");
 }

 osmUpdate.append("</OrderDataUpdate>");

 System.out.println(omsUpdate.toString()); }

 catch(Exception e) {
 System.out.println(e.getMessage()); }

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-34 of A-46

 return omsUpdate.toString();
 }

The structure of the XML document to update OSM data is as follows:

<OrderDataUpdate xmlns=\"http://www.w3.org/2001/XMLSchema\"
xmlns:xs=\"http://www.w3.org/2001/XMLSchema\"
xmlns:odu=\"http://www.oracle.com/OMS/OrderDataUpdate\"
targetNameSpace=\"http://www.oracle.com/OMS/OrderDataUpdate\">
<AddMandatory>true</AddMandatory>
<Add path=\"/service_details/new_number\">98765</Add>
<Update path=\"/customer_details/service_address/street\">55 Updated St</Update>
<Delete path=\"/service_details/current_account_number\"></Delete>
</OrderDataUpdate>

This example illustrates adding a data node (Add path), updating a data node (Update
path), and deleting a data node (Delete path).

• How to specify a mandatory parameter. If set to true, the following rules apply:

 osmUpdate.append("<AddMandatory>true</AddMandatory>");

– If you delete a mandatory node, AddMandatory replaces the node and populates it
with the default value.

– If the update is missing a mandatory node, AddMandatory adds the missing node and
populates it with the default value.

Note

If you add a mandatory field, but do not include a value, AddMandatory will not
add a default value and the request will generate an error-error code 200.

Using OrderDataUpdate Elements to Pass Order Modification Data
You use OrderDataUpdate XML elements to pass data add, modify and delete data nodes in
an order.

OrderDataUpdate elements can be passed as a parameter to updateOrderData(). XSL
translations whose results are passed to setUpdateOrder() must be in OrderDataUpdate
format. See the OSM Javadocs for details on both methods. You can also pass
OrderDataUpdate format elements to the DataChange Web Service (see the SDK schema
OrderManagementWS.xsd) and UpdateOrder.request XML API call (see the SDK schema
oms-xmlapi.xsd).

For update and delete operations on multi-instance nodes, you must specify the order node
index as it exists in the input XML. Specify the order node index as "[@index='index_value']"
where index_value is the order node index.

The following example shows how to specify the addition of an order node with
OrderDataUpdate. The path attribute identifies the parent node under which to add the
element:

<OrderDataUpdate>
 <Add path="/">
 <ProvisioningOrderResponse>
 <OrderInformation>
 <OrderNumber>1238723</OrderNumber>

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-35 of A-46

 </OrderInformation>
 </ProvisioningOrderResponse>
 </Add>
</OrderDataUpdate>

The following example shows a combined update and delete operation on a multi-instance
node using OrderDataUpdate. In Delete attributes, the path attribute identifies the data to
delete. In Update attributes, the path attribute identifies the data to update. Indexes are
required on Update and Delete attributes when modifying multi-instance nodes. Note how the
order node index values are specified in the Update and Delete attributes.

<OrderDataUpdate>
 <Delete path="/client_info/address[@index='80132']/city" />
 <Update path="/client_info/address[@index='76579']/city">Newark</Update>
 <Update path="/customer_details/service_address/street">55 Updated St</Update>"
 <Delete path="/service_details/current_account_number"></Delete>
</OrderDataUpdate>

See "External Custom Java Automator that Updates Order Data" for an example in which
OrderDataUpdate XML data is created dynamically within Java code and passed to
UpdateOrderData().

The schema for OrderDataUpdate is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://
www.metasolv.com/OMS/OrderDataUpdate" xmlns:odu="http://www.metasolv.com/
OMS/OrderDataUpdate" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <element name="OrderDataUpdate">
 <complexType>
 <choice maxOccurs="unbounded">
 <element ref="odu:Add"/>
 <element ref="odu:Delete"/>
 <element ref="odu:Update"/>
 </choice>
 </complexType>
 </element>

 <element name="Add">
 <annotation>
 <documentation>It contains a node to be added. The path attribute identifies the
parent node under which to add the element.</documentation>
 </annotation>
 <complexType>
 <sequence>
 <any/>
 </sequence>
 <attribute name="path" type="string" use="required"/>
 </complexType>
 </element>

 <element name="Delete">
 <annotation>
 <documentation>It contains a node to be deleted. The path attribute identifies the
node to delete.</documentation>
 </annotation>
 <complexType>
 <attribute name="path" type="string" use="required"/>
 </complexType>
 </element>

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-36 of A-46

 <element name="Update">
 <annotation>
 <documentation>It contains a node to update. The path attribute identifies the
node to update.</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="path" type="string" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
</schema>

Examples of Sending Messages to External Systems
Automation simplifies the process of sending messages to external systems. The automation
framework does the following:

• Assumes the protocol is JMS. The products (Siebel, OSM, UIM, ASAP, IP Service
Activator) all have JMS APIs.

• Takes care of establishing and maintaining the various JMS connections.

• Constructs the JMS messages, setting the required message properties.

• Guarantees delivery of the message and handles any errors or exceptions. It retries until
the message is delivered.

• Automatic message correlation.

• Poison message handling.

An OSM event that is sent to an external system follows this process flow:

1. OSM runs an automation that triggers an automation plug-in.

2. Internally, the automation framework maps the plug-in, using the automationMap.xml
configuration, onto custom business logic and calls the makeRequest method on the
custom automator class.

3. The makeRequest method performs some business logic and sets the content of the
outbound message.

4. The automation framework adds properties to the outbound message to aid in correlating
external system responses to requests.

5. The automation framework uses information from the automationMap.xml to send the
JMS message to the JMS queue representing the external system.

The following example shows a custom automation plug-in that sends data to an external
system.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import javax.jms.TextMessage;
 import java.rmi.*;

 public class ObjectelPlugin extends AbstractSendAutomator {

 protected void makeRequest(String inputXML, AutomationContext context, TextMessage

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-37 of A-46

outboundMessage) throws com.mslv.oms.automation.AutomationException {

 try {
 TaskContext taskContext = (TaskContext)context;
 String taskName = taskContext.getTaskMnemonic();
 AtmFrameCatalogLogger.logTaskEvent(taskName, taskContext.getOrderId(),
taskContext.getOrderHistoryId(), inputXML);

 //
 // Set the outgoing message
 //
 String xmlRequest = "<Message
type=\"ni\"><iLibPlus:findFunctionalPortOnLocation.Request xmlns:iLibPlus=\"http://
www.oracle.com/objectel\"><location><DS><AG2ObjectID>189438</
AG2ObjectID><AG2ParentID>189428</AG2ParentID><CLLIX>XML.CO.1</CLLIX><SiteName>XML.CO.1</
SiteName></DS></location><feType>PP</feType><portType>$FEP</
portType><selectionMethod>LOAD_BALANCE</
selectionMethod><portSelectionAttribName><string>AG2ObjectID</
string><string>AG2ParentID</string><string>AG2PortLabel</string></
portSelectionAttribName><portSelectionAttribValue><string>189508</string><string>189478</
string><string>F-31-OC-48</string></portSelectionAttribValue><portUpdateAttribName/
><portUpdateAttribValue/></iLibPlus:findFunctionalPortOnLocation.Request></Message>";
 outboundMessage.setText(xmlRequest);

 } catch(javax.jms.JMSException x) {
 throw new AutomationException(x);
 } catch(RemoteException ex){
 throw new AutomationException(ex);
 }
 }
 }

The following code snippets from this example show:

• how to generate an output XML string. In this example it is hard coded. In a business case
you would use business logic to transform OSM data into what the external system
expects

 String xmlRequest = "<Message
type=\"ni\"><iLibPlus:findFunctionalPortOnLocation.Request xmlns:iLibPlus=\"http://
www.oracle.com/objectel\"><location><DS><AG2ObjectID>189438</
AG2ObjectID><AG2ParentID>189428</AG2ParentID><CLLIX>XML.CO.1</
CLLIX><SiteName>XML.CO.1</SiteName></DS></location><feType>PP</
feType><portType>$FEP</portType><selectionMethod>LOAD_BALANCE</
selectionMethod><portSelectionAttribName><string>AG2ObjectID</
string><string>AG2ParentID</string><string>AG2PortLabel</string></
portSelectionAttribName><portSelectionAttribValue><string>189508</
string><string>189478</string><string>F-31-OC-48</string></
portSelectionAttribValue><portUpdateAttribName/><portUpdateAttribValue/></
iLibPlus:findFunctionalPortOnLocation.Request></Message>";

• how to set the output data:

 outboundMessage.setText(xmlRequest);

• How this code does not establish a connection to an external system or send a message.
After the data is set in the code, the message is automatically sent upon exit of the
makeRequest method.

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-38 of A-46

Examples of Handling Responses from External Systems
In Message Property Correlation, the following steps describe how responses from external
systems are handled.

1. The plug-in populates the message content.

2. The plug-in sets a property on the outbound JMS message, with name of the value set for
correlationproperty in the automationMap.xml file, and a value decided by the business
logic. For example, you could use this to correlate on a reference number.

3. If the value of the correlationproperty in the automationMap.xml file is set to the value
JMSCorrelationID, the plug-in is not required to set the property on the outbound message
(as described in Step 2). The automation framework does this automatically.

4. The automation framework saves the message properties set for each message with the
event information.

5. The automation framework sets the replyTo property on the JMS message.

6. The external system copies the properties on the request message to the response
message.

7. The external system sends the message to the reply queue specified in the
automationMap.xml file.

8. The automation framework uses the configuration in the automationMap.xml file to map
messages from external systems to plug-ins. The plug-ins are automators written by
system integrators. Configuration of an automator for receiving messages from an external
system are defined within Design Studio and saved to the automationMap.xml file.

9. The automation framework uses the message properties of the response, plus the
correlation information saved in step four above, to reload a Context for the response
message.

10. The run method of the external system automator is called and is passed the Context
created in step 9.

11. The automator performs business logic, such as completing the task.

The following example shows a custom automation plug-in that handles and processes
response messages from an external system.

 package com.mslv.oms.sample.atm_frame;

 import com.mslv.oms.automation.plugin.*;
 import com.mslv.oms.automation.*;
 import java.rmi.*;

 public class UIMResponseHandler extends AbstractAutomator {

 public void run(String inputXML, AutomationContext task)
 throws AutomationException {

 try {
 TaskContext tctx = (TaskContext)task;

 tctx.completeTaskOnExit("success");

 } catch(RemoteException ex){
 throw new AutomationException(ex);
 } catch(AutomationException x) {
 throw x;

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-39 of A-46

 }
 }
}

This automation plug-in does not need to send JMS messages to any system, so it extends
AbstractAutomator and is intended to process Task automation responses, so it casts the
Context to a TaskContext then completes the task.

The following example shows what the external system is expected to do for the message
property correlation to work.

 public void sendMessage(Message originalMessage) {
 try {
 //
 // Set up the JMS connections
 //
 QueueConnectionFactory connectionFactory =
(QueueConnectionFactory)jndiCtx.lookup(connectionFactoryName);
 QueueConnection queueConnection = connectionFactory.createQueueConnection();
 QueueSession queueSession = queueConnection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);
 Queue replyQueue = (Queue)originalMessage.getJMSReplyTo();
 QueueSender queueSender = queueSession.createSender(replyQueue);

 //
 // Create the message
 //
 TextMessage textMessage =
queueSession.createTextMessage(((TextMessage)originalMessage).getText());
 textMessage.setStringProperty("MESSAGE_NAME","ActivationResponse");
 textMessage.setJMSCorrelationID(originalMessage.getJMSCorrelationID());

 //
 // Send the message
 //
 queueSender.send(textMessage, javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY, 1800000);

 } catch(javax.jms.JMSException ex){
 ex.printStackTrace();
 } catch(javax.naming.NamingException ex){
 ex.printStackTrace();
 }
 }

The following code snippets from this example show:

• how the external system chooses which JMS destination to send the reply to.

Queue replyQueue = (Queue)originalMessage.getJMSReplyTo();
QueueSender queueSender = queueSession.createSender(replyQueue);

• the external system setting a property that identifies the nature of the JMS message. This
implies that the automation was defined with a message property selector select statement
that matches these parameters.

textMessage.setStringProperty("MESSAGE_NAME","ActivationResponse");

• the external system echoing the correlation information onto the reply message. This
implies that the automation was defined to correlate based on JMSCorrelationID.

textMessage.setJMSCorrelationID(originalMessage.getJMSCorrelationID());

Appendix A
Custom Java Automation Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-40 of A-46

Compensation XQuery Expressions
The following topics provide information about automation and manual task compensation
XQuery expressions.

• Task Re-Evaluation and Rollback XQuery Expressions

• In Progress Compensation Include XQuery Expressions

• In Progress Compensation Complete XQuery Expressions

• In Progress Compensation Grace Period XQuery Expressions

For general OSM XQuery information, see OSM Modeling Guide.

Task Re-Evaluation and Rollback XQuery Expressions
You can dynamically assign compensation strategies to tasks by creating XQuery expressions
in the Design Studio Task Editor Compensation tab for re-evaluation compensation
strategies or compensation strategies for when a task is no longer required.

Note

If the XQuery expression is invalid OSM logs the error but does not rollback the
transaction. Instead, OSM uses the static compensation strategy as the default.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab Compensation Expression XQuery field for re-evaluation compensation
strategies:

• Context: The context for this XQuery is the current order data. You can get the current
order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response function
in the XQuery body to extract the order information. You must declare the
java:oracle:communications.ordermanagement.compensation. ReevaluationContext OSM
Java package that provides methods that access the contemporary and historical order
perspectives and compares the two. You can use the results of this comparison to
determine what compensation strategy is required for a task based on revision order data.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle.communications.ordermanagement.compensation.ReevaluationContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

For more information about the classes in the OSM packages, install the OSM SDK and
extract the OSM Javadocs from the SDK/osm7.w.x.y.z-javadocs.zip file (where w.x.y.z
represents the specific version numbers for OSM). See OSM Installation Guide for more
information about installing the OSM SDK.

• Body: The body must return a valid compensation option.

Appendix A
Compensation XQuery Expressions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-41 of A-46

For example, the following XQuery expression creates variables for the
ReevaluationContext methods. The expression then checks that a specific value exists in
the $value variable and that the value in the $significantValue variable both exists and is
significant. If the value exists and is significant, then the expression sets the compensation
strategy for the task to Undo then Do (undoThenDo in the ReevaluationContext Java
class). If not, then the expression sets the compensation strategy to Redo (redo in the
ReevaluationContext Java class).

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)
let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//orderItemRef/
specificationGroup//specification[value='100']
let $significantValue := $diffDoc/Changes/Add[@significant='true']/
specification[value='100']
let $currentValue := $ropDoc/ GetOrder.Response/_root/service[name='BB']//
orderItemRef/specificationGroup//specification[value='100']

return if (fn:exists($value) and fn:exists($significantValue))
then
 context:undoThenDo($context)
else
 context:redo($context)

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab Compensation Expression XQuery field for when a task is no longer
required. The context, prolog, and body are similar to the XQuery expression for the re-
evaluation strategy, except that the XQuery expression implements the
java:oracle:communications.ordermanagement.compensation.RollbackContext package.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace context =
"java:oracle.communications.ordermanagement.compensation.RollbackContext";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

let $inputDoc := self::node()
let $hopDoc := context:getHistoricalOrderDataAsDOM($context)
let $ropDoc := context:getCurrentOrderDataAsDOM($context)
let $diffDoc := context:getDataChangesAsDOM($context)

let $value := $inputDoc/GetOrder.Response/_root/service[name='BB']//orderItemRef/
specificationGroup//specification[value='100']
return if (fn:exists($value))
then
 context:undo($context)
else
 context:doNothing($context)

In Progress Compensation Include XQuery Expressions
You can determine if an in progress task should be compensated by writing an XQuery
expression in the Design Studio Task Editor Compensation tab.

Appendix A
Compensation XQuery Expressions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-42 of A-46

Note

If the XQuery expression is invalid OSM logs the error and includes the in progress
task in the compensation plan as it defaults the expression to true.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab, In Progress Compensation Include Expression XQuery field for
dynamically defining when in progress tasks should be included in compensation. This XQuery
expression runs when OSM first analyzes the task for compensation:

• Context: The context for this XQuery is the current task order data. You can get the current
task order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response function
in the XQuery body to extract the order information.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

• Body: Based on task context data, the body must return true if the in progress task
requires compensation or false if it does not.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;

let $inputDoc := self::node()
let $value := $inputDoc/GetOrder.Response/_root/data

return (
 if (fn:contains($value, "includeInCompensation")) then
 fn:true()
 else
 fn:false()
)

In Progress Compensation Complete XQuery Expressions
You can determine when the compensation for an in progress task is complete by writing an
XQuery expression in the Design Studio Task Editor Compensation tab.

Note

If the XQuery expression is invalid OSM logs the error and includes the in progress
task in the compensation plan as it defaults the expression to true.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab, In Progress Compensation Complete Expression XQuery field for

Appendix A
Compensation XQuery Expressions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-43 of A-46

dynamically defining when in progress tasks completes compensation activities. This XQuery
expression runs whenever data changes on the compensating task:

• Context: The context for this XQuery is the current task order data. You can get the current
task order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response function
in the XQuery body to extract the order information.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $log external;
declare variable $context external;

• Body: Based on task context data, the body must return true if the in progress task has
completed all compensation activities or false if it has not.

For example:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;
let $inputDoc := self::node()
let $value := $inputDoc/GetOrder.Response/_root/data
return (
 if (fn:contains($value, "compensationDone")) then
 fn:true()
 else
 fn:false()

In Progress Compensation Grace Period XQuery Expressions
You can determine whether a grace period should be observed before starting compensation
for an in progress task by writing an XQuery expression in the Design Studio Task Editor
Compensation tab.

Note

If the XQuery expression is invalid OSM logs the error and includes the in progress
task in the compensation plan as it defaults the expression to true.

This section refers to the Design Studio OSM Automated Task or Manual Task editor,
Compensation tab, When an amendment occurs if this task is in progress it will: tab,
Dynamic Expression XQuery field for dynamically defining the grace period for an in progress
task based on task data. This XQuery expression runs after OSM has determined whether the
in progress task needs to be compensated:

• Context: The context for this XQuery is the current task order data. You can get the current
task order data using the XML API GetOrder.Response function.

• Prolog: You can declare the XML API namespace to use the GetOrder.Response function
in the XQuery body to extract the order information. You can also declare the $gracePeriod
variable in the XQuery prolog which contains the grace period specified on the order life-
cycle policy.

For example:

Appendix A
Compensation XQuery Expressions

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-44 of A-46

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";

declare variable $gracePeriod external;
declare variable $log external;
declare variable $context external;

• Body: The XQuery body returns a duration value based on the XQuery you enter:

PyYmMdDThHmMsS

where

– P begins the expression.

– yY specifies the year.

– mM specifies the month.

– dD specifies the day.

– T separates the parts of the expression indicating the date from the parts of the
expression indicating the time.

– hH specifies the hour.

– mM specifies the minutes.

– sS specifies the seconds.

For example, this XQuery uses order data to define the specific grace period duration for the
task. The last statement calls the $gracePeriod variable which represents the grace period
duration specified on the order life-cycle policy:

declare namespace osm = "urn:com:metasolv:oms:xmlapi:1";
declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;
declare variable $gracePeriod external;

let $inputDoc := self::node()
let $value := $inputDoc/GetOrder.Response/_root/data

return (
 if (fn:contains($value, '-immediate-')) then
 xs:duration('PT0S')
 else if (fn:contains($value, '-override-')) then
 xs:duration('PT20S')
 else if (fn:contains($value, '-negative-')) then
 xs:duration('-PT10S')
 else if (fn:contains($value, '-invalidNumber-')) then
 fn:number(0)
 else if (fn:contains($value, '-invalidString-')) then
 xs:string('UNKNOWN')
 else
 xs:duration(fn:concat('PT', $gracePeriod, 'S'))

Order Jeopardy Automation XQuery Plug-ins
This topic provides information about order jeopardy XQuery expressions. These XQuery
expressions apply to order jeopardies configured in the Order Jeopardy editor, not order
jeopardies configured in the Order editor.

For general OSM XQuery information, see OSM Modeling Guide.

Appendix A
Order Jeopardy Automation XQuery Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-45 of A-46

You can configure automations for order jeopardies in the Order Jeopardy editor, Automation
tab. If you choose to use an XQuery automation type, create an XQuery file and reference it in
the Script subtab Script field.

• Context: The context for this XQuery is the Order Jeopardy Notification context.

• Prolog: You should declare the XML namespace for the Order Jeopardy Notification
context, and if you are using a date (rather than a duration) you can declare a namespace
for the date format as well.

For example:

declare namespace context =
"java:oracle.communications.ordermanagement.orderjeopardy.automation.OrderJeopardyNot
ificationContext";
declare namespace dateFormat = "java:java.text.DateFormat";

You should then declare the $context variable to contain the actual context:

declare variable $context external;

Then if you want to use order data in your XQuery, you can get the order data into a
variable. For example:

let $orderData := fn:root(automator:getOrderAsDOM($automator))/oms:GetOrder.Response

You can then access individual data elements on the order. For example:

let $date := $orderData/oms:_root/oms:ojPostponeDate/text()

• Body: There are several calls you can use in the order jeopardy XQuery file in addition to
the normal calls available for notification plug-ins. Following are brief descriptions of the
available calls:

– postponeTimerOnExit(interval): If this call receives a numeric parameter, it postpones
the due date for the number of milliseconds contained in the parameter.

– postponeTimerOnExit(dateTime): If this call receives a date/time parameter, it
postpones the due date to the indicated date/time.

– logAndParkNotificationOnExit(logMessage): This call acknowledges the notification
with the passed-in message, but does not reset/deactivate the notification. It will still be
available in the Order Management web client.

– ackNotificationOnExit: This call acknowledges and resets/deactivates the notification.

– getNotificationAckStatus: This call returns true if the notification has been
acknowledged, and false if it has not.

The following example postpones the jeopardy to a specified date:

declare namespace context =
"java:oracle.communications.ordermanagement.orderjeopardy.automation.OrderJeopardyNot
ificationContext";
declare namespace dateFormat = "java:java.text.DateFormat";

declare variable $context external;

let $dateFormat := dateFormat:getDateTimeInstance(3, 3)
let $date := dateFormat:parse($dateFormat, "09/30/15 03:30 PM")
return
 context:postponeTimerOnExit($context, $date)

Appendix A
Order Jeopardy Automation XQuery Plug-ins

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-46 of A-46

B
AutomationMap.xml File

This appendix provides examples of the generated automationMap.xml file for Oracle
Communications Order and Service Management (OSM).

Note

This appendix assumes that you have read "Using Automation."

After you have defined the automated task or automated notification, and defined the
automation for it, a successful build of the project automatically generates the
automationMap.xml file. The file is placed in the cartridgeName/cartridgeBuild/automation
directory, which is only visible from the Java perspective.

This file is a direct result of the automation definition, as shown in the following examples. The
field names, and the data defaulted or entered for the field, on the various tabs of the
Properties window directly relate the XML elements and attributes, and their data values,
defined in the automationMap.xml file.

AutomationMap.xml Examples for Automated Tasks
This section provides various examples of generated automationMap.xml files. The examples
include predefined and custom automations defined for automated tasks. In the XML, an
automated task is defined by the <taskAutomator> element.

XSLTSender Internal Event Receiver
This example reflects an automated task with an automation defined as XSLTSender, and as
an internal event receiver. Specifics of the automation definition include:

• Automated Task name: MyTask

• Automation name: MyXSLTSenderIntAutomation

• XSLT file name: C:\myWorkingDirectory\myXslt.xslt

Example B-1 XSLTSender Internal Event Receiver

<taskAutomator>
 <pluginJndiName>MyTask.MyTask.MyXsltSenderIntAutomation</pluginJndiName>
 <ejbName>MyTask.MyTask.MyXsltSenderIntAutomation</ejbName>
 <className>com.mslv.oms.automation.plugin.XSLTSender</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <mnemonic>MyTask</mnemonic>
 <executionModes>do</executionModes>
 </receive>
 <implement xsi:type="am:XsltSender">
 <to>

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-1 of B-11

 <jndiName>MyTask.MyXsltSenderIntAutomation.JNDIName</jndiName>
 <destinationType>javax.jms.Queue</destinationType>
 </to>
 <am:sendNullMessage>true</am:sendNullMessage>
 <am:script>
 <am:file>C:\myWorkingDirectory\myXslt.xslt</am:file>
 <am:cache>
 <am:maxSize>50</am:maxSize>
 <am:timeout>15000</am:timeout>
 </am:cache>
 </am:script>
 </implement>
</taskAutomator>

Notes Common to All Examples
• <pluginJndiName> and <ejbName> are based on the EJB Name field, located on the

Properties view Details tab.

• <className> is based on the Action field selection, located on the Add Automation
window.

• <runAs> is based on the Run As field, located on the Properties view Details tab.

Notes on Example
• <receive> type is based on the External Event Receiver check box, located on the Add

Automation window. Because this example defines an internal event receiver, the elements
are based on information defined on the Properties view Internal Event Receiver tab.
(<mnemonic> is based on the task name.)

• <implement> type is based on the automation plug-in you are implementing. Because this
example implements XSLTSender, the <to> and <sendNullMessage> elements are
generated. These elements are not present when the implementation is for an automator.

– The <to> elements are based on information defined on the Properties view Router
tab, To sub-tab. This tab is present only when the automation is XSLTSender or
XQuerySender.

– The <script> elements are based on information defined on the Properties view XSLT
tab. This tab is present only when the automation is XSLTSender or XSLTAutomator.

XSLTSender External Event Receiver
This example reflects an automated task with an automation defined as XSLTSender, and as
an external event receiver. Specifics of the automation definition include:

• Automated Task name: MyTask

• Automation name: MyXSLTSenderExtAutomation

• XSLT file name: C:\myWorkingDirectory\myXslt.xslt

Example B-2 XSLTSender External Event Receiver

<taskAutomator>
 <pluginJndiName>MyTask.MyTask.MyXsltSenderExtAutomation</pluginJndiName>
 <ejbName>MyTask.MyTask.MyXsltSenderExtAutomation</ejbName>
 <className>com.mslv.oms.automation.plugin.XSLTSender</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>

Appendix B
AutomationMap.xml Examples for Automated Tasks

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-2 of B-11

 <receive xsi:type="am:ExternalReceiver">
 <jmsSource>
 <from>
 <jndiName>MyTask.MyXsltSenderExtAutomation.jndiName</jndiName>
 <destinationType>javax.jms.Queue</destinationType>
 </from>
 </jmsSource>
 <correlation xsi:type="MessagePropertyCorrelation">
 <property>JMSCorrelationID</property>
 </correlation>
 </receive>
 <implement xsi:type="am:XsltSender">
 <to>
 <jndiName>MyTask.MyXsltSenderExtAutomation.JNDIName</jndiName>
 <destinationType>javax.jms.Queue</destinationType>
 </to>
 <am:sendNullMessage>true</am:sendNullMessage>
 <am:script>
 <am:file>C:\myWorkingDirectory\myXslt.xslt</am:file>
 <am:cache>
 <am:maxSize>50</am:maxSize>
 <am:timeout>15000</am:timeout>
 </am:cache>
 </am:script>
 </implement>
</taskAutomator>

Notes on Example
• <receive> type is based on the External Event Receiver check box, located on the Add

Automation window. Because this example defines an external event receiver, the
elements are based on information defined on the Properties view External Event
Receiver tab.

• <implement> type is based on the automation plug-in you are implementing. Because this
example implements XSLTSender, the <to> and <sendNullMessage> elements are
generated. These elements are not present when the implementation is for an automator.

– The <to> elements are based on information defined on the Properties view Router
tab, To sub-tab. This tab is present only when the automation is XSLTSender or
XQuerySender.

– The <script> elements are based on information defined on the Properties view XSLT
tab. This tab is present only when the automation is XSLTSender or XSLTAutomator.

XSLTAutomator Internal Event Receiver
This example reflects an automated task with an automation defined as XSLTAutomator, and
as an internal event receiver. Specifics of the automation definition include:

• Automated Task name: MyTask

• Automation name: MyXSLTAutomatorIntAutomation

• XSLT file name: C:\myWorkingDirectory\myXslt.xslt

Example B-3 XSLTAutomator Internal Event Receiver

<taskAutomator>
 <pluginJndiName>MyTask.MyTask.MyXsltAutomatorIntAutomation</pluginJndiName>
 <ejbName>MyTask.MyTask.MyXsltAutomatorIntAutomation</ejbName>
 <className>com.mslv.oms.automation.plugin.XSLTReceiver</className>

Appendix B
AutomationMap.xml Examples for Automated Tasks

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-3 of B-11

 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <mnemonic>MyTask</mnemonic>
 <executionModes>do</executionModes>
 </receive>
 <implement xsi:type="am:XsltAutomator">
 <am:script>
 <am:file>C:\myWorkingDirectory\myXslt.xslt</am:file>
 <am:cache>
 <am:maxSize>50</am:maxSize>
 <am:timeout>15000</am:timeout>
 </am:cache>
 </am:script>
 <am:updateOrder>true</am:updateOrder>
 </implement>
</taskAutomator>

Notes on Example
• <className> is based on the Action field selection, located on the Add Automation

window. (XSLTReceiver is the name of the class that represents XSLTAutomator. The
name presentation in Oracle Communications Service Catalog and Design - Design Studio
was intentional to avoid confusion: XSLTAutomator and XSLTSender both receive data, but
in addition, XSLTSender can send a message.)

• <receive> type is based on the External Event Receiver check box, located on the Add
Automation window. Because this example defines an internal event receiver, the elements
are based on information defined on the Properties view Internal Event Receiver tab.
(<mnemonic> is based on the task name.)

• <implement> type is based on the automation plug-in you are implementing. Because this
example implements XSLTAutomator, the <to> and <sendNullMessage> elements are not
generated. These elements are present when the implementation is for a sender.

– The <script> elements are based on information defined on the Properties view XSLT
tab. This tab is present only when the automation is XSLTSender or XSLTAutomator.

XSLTAutomator External Event Receiver
This example reflects an automated task with an automation defined as XSLTAutomator, and
as an external event receiver. Specifics of the automation definition include:

• Automated Task name: MyTask

• Automation name: MyXSLTAutomatorExtAutomation

• XSLT file name: C:\myWorkingDirectory\MyXslt.xslt

Example B-4 XSLTAutomator External Event Receiver

<taskAutomator>
 <pluginJndiName>MyTask.MyTask.MyXsltAutomatorExtAutomation</pluginJndiName>
 <ejbName>MyTask.MyTask.MyXsltAutomatorExtAutomation</ejbName>
 <className>com.mslv.oms.automation.plugin.XSLTReceiver</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:ExternalReceiver">
 <jmsSource>
 <from>

Appendix B
AutomationMap.xml Examples for Automated Tasks

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-4 of B-11

 <jndiName>MyTask.MyXsltAutomatorExtAutomation.jndiName</jndiName>
 <destinationType>javax.jms.Queue</
destinationType>
 </from>
 </jmsSource>
 <correlation xsi:type="MessagePropertyCorrelation">
 <property>JMSCorrelationID</property>
 </correlation>
 </receive>
 <implement xsi:type="am:XsltAutomator">
 <am:script>
 <am:file>C:\myWorkingDirectory\myXslt.xslt</am:file>
 <am:cache>
 <am:maxSize>50</am:maxSize>
 <am:timeout>15000</am:timeout>
 </am:cache>
 </am:script>
 <am:updateOrder>true</am:updateOrder>
 </implement>
</taskAutomator>

Notes on Example
• <className> is based on the Action field selection, located on the Add Automation

window. (XSLTReceiver is the name of the class that represents XSLTAutomator. The
name presentation in Design Studio was intentional to avoid confusion: XSLTAutomator
and XSLTSender both receive data, but in addition, XSLTSender can send a message.)

• <receive> type is based on the External Event Receiver check box, located on the Add
Automation window. Because this example defines an external event receiver, the
elements are based on information defined on the Properties view External Event
Receiver tab.

• <implement> type is based on the automation plug-in you are implementing. Because this
example implements XSLTAutomator, the <to> and <sendNullMessage> elements are not
generated. These elements are present when the implementation is for a sender.

– The <script> elements are based on information defined on the Properties view XSLT
tab. This tab is present only when the automation is XSLTSender or XSLTAutomator.

Custom Automation Internal Event Receiver
This example reflects an automated task with an automation defined as a custom automation
plug-in, and as an internal event receiver. Specifics of the automation definition include:

• Automated Task name: InfoRequestAT

• Automation name: MyAutomationOnTheTaskAutomationTab

• Java class name: InfoRequest

Example B-5 Custom Automation Internal Event Receiver

<taskAutomator>
 <pluginJndiName>
 InfoRequestAT.InfoRequestAT.MyAutomationOnTheTaskAutomationTab
 </pluginJndiName>
 <ejbName>
 InfoRequestAT.InfoRequestAT.MyAutomationOnTheTaskAutomationTab
 </ejbName>
 <className>InfoRequest</className>
 <runAs>automation</runAs>

Appendix B
AutomationMap.xml Examples for Automated Tasks

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-5 of B-11

 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <mnemonic>InfoRequestAT</mnemonic>
 <executionModes>do</executionModes>
 </receive>
</taskAutomator>

Notes on Example
• <receive> type is based on the External Event Receiver check box, located on the Add

Automation window. Because this example defines an internal event receiver, the elements
are based on information defined on the Properties view Internal Event Receiver tab.
(<mnemonic> is based on the task name.)

• Because this is a custom automation, the <implement> element is not generated. You are
required to define this element in the XML Template field, located on the Custom
Automation Plugin window.

Custom Automation External Event Receiver
This example reflects an automated task with an automation defined as a custom automation
plug-in, and as an external event receiver. Specifics of the automation definition include:

• Automated Task name: InfoResponseAT

• Automation name: MyAutomationOnTheTaskAutomationTab

• Java class name: InfoResponse

Example B-6 Custom Automation External Event Receiver

<taskAutomator>
 <pluginJndiName>
 InfoResponseAT.InfoResponseAT.MyAutomationOnTheAutomationTab
 </pluginJndiName>
 <ejbName>
 InfoResponseAT.InfoResponseAT.MyAutomationOnTheAutomationTab
 </ejbName>
 <className>InfoResponse</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:ExternalReceiver">
 <jmsSource>
 <from>
 <jndiName>
 InfoResponseAT.MyAutomationOnTheAutomationTab.jndiName
 </jndiName>
 <destinationType>javax.jms.Queue</
destinationType>
 </from>
 </jmsSource>
 <correlation xsi:type="MessagePropertyCorrelation">
 <property>JMSCorrelationID</property>
 </correlation>
 </receive>
</taskAutomator>

Appendix B
AutomationMap.xml Examples for Automated Tasks

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-6 of B-11

Notes on Example
• <receive> type is based on the External Event Receiver check box, located on the Add

Automation window. Because this example defines an external event receiver, the
elements are based on information defined on the Properties view External Event
Receiver tab.

• Because this is a custom automation, the <implement> element is not generated. You are
required to define this element in the XML Template field, located on the Custom
Automation Plugin window.

AutomationMap.xml Examples for Automated Notifications
This section provides various examples of generated automationMap.xml files. The examples
include predefined and custom automations defined for automated notifications. In the XML, an
automated notification is defined by the <notificaitonAutomator> element.

Automated notifications can only be defined as internal event receivers so there are no
examples of external event receivers in this section. The examples are similar: The main
differences are:

• The value of <ejbName> is based on the Design Studio entity for which the notification is
defined. As a result, the value varies because different types of notifications are defined on
different Design Studio entities.

• The value of the <event> type is based on the type of notification. As a result, the value
differs based on the type of notification, which in turn dictates the <event> subelements
that are generated.

Order Milestone-Based Notification
This example reflects an order milestone-based notification with an automation defined as a
custom automation plug-in. Specifics of the automation definition include:

• Order name: OsmCartridgeOrder

• Automation name: MyAutomationOnTheOrderEventsTab

• Java class name: GenericNotif

Example B-7 Order Milestone-Based

<notificationAutomator>
 <ejbName>
 OsmCartridgeOrder.OsmCartridgeOrder.MyAutomationOnTheOrderEventsTab
 </ejbName>
 <className>GenericNotif</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <event xsi:type="OrderNotification">
 <orderSource>OsmCartridgeOrder</orderSource>
 <orderType>OsmCartridgeOrder</orderType>
 <milestone>completion</milestone>
 </event>
 </receive>
</notificationAutomator>

Appendix B
AutomationMap.xml Examples for Automated Notifications

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-7 of B-11

Task State-Based Notifications
This example reflects a task state-based notification with an automation defined as a custom
automation plug-in. Specifics of the automation definition include:

• Automated Task name: InfoRequestAT

• Automation name: MyAutomationOnTheTaskEventsTab

• Java class name: GenericNotif

Example B-8 Task State-Based Notification / Task Event Tab

<notificationAutomator>
 <ejbName>
 InfoRequestAT.InfoRequestAT.MyAutomationOnTheTaskEventsTab
 </ejbName>
 <className>GenericNotif</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <event xsi:type="TaskNotification">
 <mnemonic>InfoRequestAT</mnemonic>
 <state>completed</state>
 </event>
 </receive>
</notificationAutomator>

This example reflects another task state-based notification with an automation defined as a
custom automation plug-in. Specifics of the automation definition include:

• Process name: OsmProcess

• Rule name: MyProcessTaskStateRule

• Automation name: MyAutomationOnTheProcessEventsTabForTaskState

• Java class name: GenericNotif

Example B-9 State-Based Notification / Process Event Tab

<notificationAutomator>
 <ejbName>
 OsmProcess_MyProcessTaskStateRule.OsmProcess.
 MyAutomationOnTheProcessEventsTabForTaskState
 </ejbName>
 <className>GenericNotif</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <event xsi:type="SystemNotification">
 <mnemonic>OsmProcess_MyProcessTaskStateRule</mnemonic>
 </event>
 </receive>
</notificationAutomator>

Task Status-Based Notification
This example reflects an task status-based notification with an automation defined as a custom
automation plug-in. Specifics of the automation definition include:

Appendix B
AutomationMap.xml Examples for Automated Notifications

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-8 of B-11

• Process name: OsmProcess

• Rule name: MyProcessTaskStatusRule

• Automation name: MyAutomationOnTheProcessEventsTabForTaskStatus

• Java class name: GenericNotif

Example B-10 Task Status-Based Notification

<notificationAutomator>
 <ejbName>
 OsmProcess_MyProcessTaskStatusRule.OsmProcess.
 MyAutomationOnTheProcessEventsTabForTaskStatus
 </ejbName>
 <className>GenericNotif</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <event xsi:type="SystemNotification">
 <mnemonic>OsmProcess_MyProcessTaskStatusRule</mnemonic>
 </event>
 </receive>
</notificationAutomator>

Order Data Changed Notification
This example reflects an order data changed notification with an automation defined as a
custom automation plug-in. Specifics of the automation definition include:

• Order name: OsmCartridgeOrder

• Rule name: MyOrderNotificationRule

• Automation name: MyAutomationOnTheOrderNotificationTab

• Java class name: GenericNotif

Example B-11 Order Data Changed Notification

<notificationAutomator>
 <ejbName>
 OsmCartridgeOrder_MyOrderNotificationRule.OsmCartridgeOrder.
 MyAutomationOnTheOrderNotificationTab
 </ejbName>
 <className>GenericNotif</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <event xsi:type="SystemNotification">
 <mnemonic>OsmCartridgeOrder_MyOrderNotificationRule</mnemonic>
 </event>
 </receive>
</notificationAutomator>

Order Jeopardy Notification
This example reflects an order jeopardy notification with an automation defined as a custom
automation plug-in. Specifics of the automation definition include:

• Order name: OsmCartridgeOrder

Appendix B
AutomationMap.xml Examples for Automated Notifications

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-9 of B-11

• Rule name: MyOrderJepRule

• Automation name: MyAutomationOnTheOrderJepTab

• Java class name: GenericNotif

Example B-12 Order Jeopardy Notification

<notificationAutomator>
 <ejbName>
 OsmCartridgeOrder_MyOrderJepRule.OsmCartridgeOrder.MyAutomationOnTheOrderJepTab
 </ejbName>
 <className>GenericNotif</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <event xsi:type="SystemNotification">
 <mnemonic>OsmCartridgeOrder_MyOrderJepRule</mnemonic>
 </event>
 </receive>
</notificationAutomator>

Task Jeopardy Notification
This example reflects a task jeopardy notification with an automation defined as a custom
automation plug-in. Specifics of the automation definition include:

• Automated Task name: InfoRequestAT

• Rule name: MyTaskJepRule

• Automation name: MyAutomationOnTheTaskJepTab

• Java class name: GenericNotif

Example B-13 Task Jeopardy Notification

<notificationAutomator>
 <ejbName>
 InfoRequestAT_MyTaskJepRule.InfoRequestAT.MyAutomationOnTheTaskJepTab
 </ejbName>
 <className>GenericNotif</className>
 <runAs>automation</runAs>
 <cartridgeNamespace>samplecart</cartridgeNamespace>
 <cartridgeVersion>1.0.0</cartridgeVersion>
 <receive xsi:type="am:InternalReceiver">
 <event xsi:type="SystemNotification">
 <mnemonic>InfoRequestAT_MyTaskJepRule</mnemonic>
 </event>
 </receive>
</notificationAutomator>

Generated Entity-Specific XML Files
Design Studio also generates a separate XML file per Design Studio entity that defines an
automation. Entity-specific XML files are also placed in the cartridgeName/cartridgeBuild/
automation directory within the cartridge, which is only visible from the Java perspective; the
directory path and files are not visible from the Studio Design perspective.

The entity-specific XML file names are dependent upon the Design Studio entity name that
defines the automation and upon the type of event, resulting in the file name being
DesignStudioEntityName_EventType.xml. For a task event, EventType is represented as

Appendix B
Generated Entity-Specific XML Files

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-10 of B-11

"automation" in the file name, and for a notification event, EventType is represented as
"notification_automation" in the file name.

For example, a Design Studio entity named MyAutomatedTask that defines a task event
generates a file named MyAutomatedTask_automation.xml. Similarly, a Design Studio entity
named MyOrder that defines an order notification event generates a file named
MyOrder_notification_automation.xml.

If multiple task events are defined per Design Studio entity, one XML file that defines all the
task events defined for the entity is generated. If multiple notification events are defined per
Design Studio entity, one XML file that defines all the notification events defined for the entity is
generated.

The automationMap.xml file is a cumulative collection of the contents of these entity-specific
XML files, which can be helpful if you should need to determine which mapping is which.

Appendix B
Generated Entity-Specific XML Files

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-11 of B-11

C
Automation: Start to Finish

This appendix provides steps to define a basic automation in Oracle Communications Service
Catalog and Design - Design Studio, starting with a new cartridge and finishing with triggering
the automation in Oracle Communications Order and Service Management (OSM) following
deployment of the cartridge to the OSM server. The information is presented in the form of
high-level steps. For specific instructions on how to perform each individual step, see the
Design Studio Platform Help and the Design Studio Modeling OSM Processes Help.

Note

This appendix assumes that you have read "Using Automation."

Assumptions
The steps presented in this appendix assume that you have the following applications installed:

• Eclipse

• OSM Plug-ins

• OSM Administrator

• OSM

Getting Started
This section describes creating a new cartridge in Design Studio and compiling the project,
prior to defining the automation. This section provides information that is used regardless of
the automation example.

The creation of a new cartridge results in the creation of an Order entity of the same name
within the cartridge. For example, if you create a new cartridge cartridgeName, an Order entity
is created within the cartridge named cartridgeNameOrder. On the Order editor Details tab,
three fields must be defined:

• Life-cycle Policy

• Default Process

• Creation Task

Until these fields are defined, the following errors are present for an order:

• Order Model Error: Creation task is not defined for order cartridgeNameOrder.

• Order Model Error: Default process is not defined for order cartridgeNameOrder.

• Order Model Error: No roles have been granted for Creation permissions for this order.

• Order Model Error: Order Life-cycle Policy is not defined in workspace.

• Order Model Error: Order cartridgeNameOrder has empty Order Template.

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-1 of C-5

• Order Model Error: There is no Permission defined for order cartridgeNameOrder.

The following steps walk you through creating a cartridge to resolve these errors:

1. Create a new cartridge.

2. Build the project.

3. Open the Problems view.

You may see the errors listed above.

4. Create a Role.

You must create a role first because every entity you create requires that permissions be
set, which is done by assigning a role.

5. On the Role editor, select the appropriate permissions.

6. Save the role.

7. Create an Order Life-cycle Policy.

8. On the Order Life-cycle Policy editor Permissions tab, set permissions for the order life-
cycle policy by assigning a role.

9. Save the order life-cycle policy.

10. Create a process.

11. On the Process editor Permissions tab, set permissions for the process by assigning a
role.

12. Save the process.

13. Create a manual task.

14. On the Manual Task editor Permissions tab, set permissions for the task by assigning a
role.

15. Save the task.

16. On the Order editor Order Template tab, define an order template.

This can be done by defining elements in the Data Dictionary and adding them to the order
template, or by importing an order template. For purposes of understanding a basic
automation, you may just want to define a few fields, such as name, address, city, state.

17. On the Order editor Details tab, set the following fields:

• Life-cycle Policy

Select the life-cycle policy you created in step 7.

• Default Process

Select the process you created in step 10.

• Creation Task

Select the task you created in step 13.

18. On the Order editor Permissions tab, set permissions for the order by assigning a role.

19. Save the order.

20. Build the project.

Upon successful build, the Problems view shows that all errors are resolved.

Appendix C
Getting Started

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-2 of C-5

Defining an Automated Task
At this point, you have a cartridge that defines an order within a project that compiles.

This example is using an automated task to trigger the automation, so this section describes
the high-level steps for defining an automated task:

Note

An automation can also be triggered by a notification.

1. Define an automated task.

2. On the Automated Task editor Permissions tab, set permissions for the process by
assigning a role.

3. Save the automated task.

Writing the Custom Automation Plug-in
This section describes the high-level steps for writing a basic custom automation plug-in:

1. In the cartridgeName/src directory, create a new Java source file.

2. Write the Java code where the class extends AbstractAutomator.

3. This automation is being triggered by an automated task, so the Java code can expect the
TaskContext object as an input parameter. Code something simple, such as:

• Cast the TaskContext object to a local variable

• Print out a data value that is available through the TaskContext object. (This example
had an order template that defined name, address, city, state, and zip, which would be
available through the TaskContext object.)

• Complete the task by calling the method on the TaskContext object.

4. Compile the source file.

The resultant compiled class file now resides in the cartridgeName/out directory.

Defining the Custom Automation Plug-in
This section describes the high-level steps for creating a Custom Automation Plug-in that is the
Design Studio entity representation of your custom automation plug-in.

1. Create a Custom Automation Plug-in:

a. Provide a name for your Custom Automation Plug-in.

b. Select your custom automation plug-in class name.

c. In the XML Template field, define the implementation of your custom automation plug-
in using the <implement> element. See "AutomationMap.xml File" for examples of
defined <implement> elements.

d. In the cartridgeName/customAutomation directory, create a corresponding schema
file that defines the rules for the XML you defined in the XML Template field.

Appendix C
Defining an Automated Task

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-3 of C-5

2. Save the Custom Automation Plug-in.

Defining the Automation
This section describes the high-level steps for defining the automation, which maps your
automated task to your Custom Automation Plug-in.

1. Open the automated task editor for the automated task you created.

2. On the Automated Task editor Automation tab, define the automation:

a. In the Name field, enter a name for your automation.

b. In the Automation Type list, select your custom automation plug-in.

c. For this example, let the Event Type default to the choice of Internal Event Receiver.

3. Save the Automated Task.

Defining the Process
This section describes the high-level steps for defining the process, which must include your
automated task in order for the task to be initiated and trigger your automation.

1. Open the Process Editor.

2. Add your automated task to the process.

For the project to compile, and for your automation to run, your process must define a Start
node, your automated task, an End node, and statuses between the three.

3. Save the process.

Building the Cartridge
After you have completed these steps, you must build the cartridge project. A successful build
of the project results in the generation of the automationMap.xml file.

Packaging and Deploying the Cartridge
This section describes the high-level steps for deploying the cartridge to the OSM server,
including what must be done prior to deployment. For more information, see the Design Studio
Help topic about packaging and deploying OSM cartridges.

1. Create an Environment Design Studio entity, which defines the connection information for
the server hosting the OSM environment to which you plan to deploy your cartridge.

2. Deploy the cartridge to your OSM environment.

Triggering the Automation in OSM
The final step is to trigger the automation from within OSM; this can only occur after the
cartridge is successfully deployed to the OSM server.

1. Within OSM, create an order based on the order template that you defined in your
cartridge.

2. Save the order.

Appendix C
Defining the Automation

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-4 of C-5

This results in the order starting to process. The order process you defined, which includes
the automated task you defined, starts processing: First, the creation task runs.

3. Complete the creation task.

(This example defined the creation task as a manual task, so you must manually complete
the creation task.)

When the creation task is completed, the next task defined in the process is created, which
is your automated task. The creation of the automated task sets the task state to Received,
which triggers your automation to run.

Appendix C
Triggering the Automation in OSM

Developer's Guide
G38010-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-5 of C-5

	Contents
	About This Content
	1 Introduction
	Planning and Designing
	Customizing OSM
	External Interfaces
	OSM Web Services
	OSM Automation
	OSM Security Callback
	The OSM XML API

	User Interfaces
	Behaviors
	Custom Menu Items and Actions
	Localizing OSM
	Logging with ODL (Traditional OSM Only)

	Tools for Customizing OSM
	Oracle Communications Service Catalog and Design - Design Studio
	Apache Ant
	The XML Import/Export Application

	About XPath and XQuery
	About the OSM SDK

	2 Using OSM Order Management Web Services
	About Web Services
	Generate Java Code from OSM WSDL
	About Order Management Web Services
	Request Validations
	Determining Request and Response Queues To Use
	Queues in a WebLogic Server Cluster
	Queues in a Single-Server WebLogic Server Environment (Traditional OSM Only)

	Sending OSM Web Service Requests to a WebLogic Server Cluster (Traditional OSM Only)
	Accessing the WSDL Files
	Using the SOAP Standard Message Format
	Message Header
	Message Body
	White Space in Message Text

	Testing OSM Web Services
	Order States and Transitions
	Web Services Sample

	About Order Management Web Service Operations
	Parameters
	Fault Types and OSM Web Service Client Error Processing
	Request and Response Examples

	Web Service Operations Used for Order Management
	CreateOrderBySpecification
	CreateOrder
	FindOrder
	GetOrder
	UpdateOrder
	SuspendOrder
	ResumeOrder
	CancelOrder
	AbortOrder
	FailOrder
	ResolveFailure
	RetryOrder

	Web Service Operations Used for Problem Order Diagnosis
	GetOrderProcessHistory
	GetOrderCompensations
	GetCompensationPlan

	Navigating WSDL and XSD Files
	Order Management WSDL File
	Order Management XSD File

	Order Management Request and Response Examples
	CreateOrderBySpecification Examples
	GetOrder Examples
	UpdateOrder Examples
	SuspendOrder Examples
	ResumeOrder Examples
	CancelOrder Examples
	RetryOrder and ResolveFailure Examples
	GetOrderProcessHistory Examples
	GetOrderCompensations Examples
	GetCompensationPlan Examples

	3 Using the OSM XML API
	About Using the XML API
	Audience
	About Using the OrderID, View, and OrderHistID

	About Accessing the XML API
	Logging In and Logging Out
	Message Formats
	Input XML Message Format
	Output XML Message Format
	Date/Time Formats
	White Space in Message Text

	Authentication
	Reserved Mnemonics

	XML API Functionality
	AddOrderThread
	Acknowledgments
	AcknowledgeNotification
	AssignOrder
	CancelOrder
	CompleteOrder
	CopyOrder
	CreateOrder
	FalloutTask
	FailOrder
	GetNextOrderAtTask
	GetOrder
	GetOrderAtTask
	GetOrderDataHistory
	GetOrderProcessHistory
	GetOrderStateHistory
	GetTaskStatuses
	GetUserInfo
	ListExceptions
	ListStatesNStatuses
	ListViews
	ModifyRemark
	Notifications
	OrderTypesNSources
	OrderViewTemplate
	Query
	ReceiveOrder
	ResolveFailure
	ResumeOrder
	RetryTask
	SetException
	SuspendOrder
	TaskDescription
	UpdateOrder
	Worklist

	Warning and Error Code Descriptions
	Document Type Definitions (DTD)
	AddOrderThread
	AssignOrder
	CompleteOrder
	CopyOrder
	CreateOrder
	Error
	GetOrder
	GetNextOrderAtTask
	GetOrderDataHistory
	GetOrderProcessHistory
	GetOrderStateHistory
	GetUserInfo
	ListExceptions
	ListStatesNStatuses
	ListViews
	ModifyRemark
	OrderTypeNSource
	OrderViewTemplate
	Query
	ResumeOrder
	SetException
	SuspendOrder
	TaskDescription
	UpdateOrder
	Warning
	Worklist

	4 Using TMF REST APIs (Cloud Native Only)
	About TMF Ordering in OSM
	Supported Endpoints
	Authentication and Authorization
	Constructing the Endpoint
	Registering for Events
	About the Payload

	5 Fallout Exception Management Rest APIs V2.0 (Cloud Native Only)
	Fallout Exception Management Rest API Versions
	Fallout Exception Lifecycle
	Support for Filtering, Grouping and Ordering of Fallout Exception Objects
	Filtering and Attribute Selection Rules
	Grouping
	Ordering
	Additional Query Fields

	Supported Fallout Actions
	API Operations
	Authentication and Authorization
	Constructing the Endpoint
	GET Endpoints
	POST Endpoints

	6 Using OSM Security Callback
	About Security Callback
	About the Security Callback Interface
	Exceptions

	Security Callback Sample
	Configuring Security Callbacks

	7 Using Custom Menu Items and Actions
	About Custom Menu Items and Actions
	About the File Name and Location
	About the Model Definition
	Action Definition
	OrderContext and Orders
	Calling the XML API
	Sample Action Implementations
	Menu Item Definition
	Sample Menu Item Definition

	Setting Up the Environment
	Setting Up the oms-config.xml File (Traditional OSM Only)
	Working with oms-config Parameters in OSM Cloud Native
	File System Path Environment Configuration Method
	XML Catalog (Static Relative Location) Environment Configuration Method
	XML Catalog (rewriteURI) Environment Configuration Method
	Verifying the Changes

	8 Using Automation
	About Automations and the Automation Framework
	About Sender and Automator Automation Types
	About Automations in the Order and Task Contexts
	About Internal and External Events that Trigger Automations
	About Accessing the XML API in Automations
	About Queues, Correlation, and Property Selectors
	OSM Request and Response Message Queues
	Correlating Requests from OSM to Responses from External Systems
	Intercommunication Between Orders in the Same Domain
	About Message Property Selectors

	About Automation Plug-in Communication Options
	No External Communication: Data Processing Only
	Fire-and-Forget Communication: Message Sent to External Systems
	Synchronous Communication: Single Request and Response
	Synchronous Communication: Multiple Requests and Responses
	Asynchronous Communication: Single or Multiple Requests and Responses

	Storing Response Message as XML Type Parameters

	About Custom Automation Plug-ins
	Defining the Custom Automation Plug-in
	About the XML Template

	About Creating Custom Automation Plug-ins
	inputXML Argument
	AutomationContext Argument and Casting the Context Argument
	outboundMessage Argument

	Accessing JDBC from Within an Automation Plug-in
	Compiling the Custom Automation Plug-in

	About Predefined Automation Plug-ins
	XSLT Sender
	Defining the Automation
	Writing the XSLT
	Steps to Follow When Using XSLT Sender

	XSLT Automator
	Defining the Automation
	Writing the XSLT
	Steps to Follow When Using XSLT Automator

	XQuery Sender
	Defining the Automation
	Writing the XQuery
	Steps to Follow When Using XQuery Sender

	XQuery Automator
	Defining the Automation
	Writing the XQuery
	Steps to Follow When Using XQuery Automator

	DatabasePlugin
	Defining the Custom Automation Plug-in
	Creating the JDBC Data Source

	About Large Orders and Automation Plug-ins
	Limiting Automation Concurrency in Large Orders
	Using GetOrder and UpdateOrder API Functions in Large Orders

	About Compensation for Automations
	About Execution Modes for Automations
	About Automations that Update Order Data and Compensation Analysis
	About Using GetOrder Responses to View Compensation Perspectives

	About Creating Automations in Design Studio
	About Building and Deploying Automation Plug-ins
	About Automation Maps
	About Editing the Automation Map
	About Mnemonic Values for Design Studio Entities in Automation Maps

	About Managing Automations
	Building and Deploying Automation Plug-ins
	Automating the Build and Deploy

	Troubleshooting Automations
	Upgrading Automation Plug-ins

	Using Automation with a System Interaction (Cloud Native Only)
	Pre-Requisites
	Task Transport Type
	Automation Plugins
	Typical REST Interaction
	InternalEventReceiver (Senders)
	ExternalEventReceiver
	System Interaction As a Receiver Only

	9 Using Order Metrics Manager
	About Order Metrics Manager ADML Files
	Viewing Metrics

	10 Localizing OSM
	About Localization
	Localizing OSM
	Localizing the XML Import/Export Application

	Additional Considerations for Localizing OSM
	Support for Different Locales
	Character Set Encoding and Fonts
	Localization of Settings
	Language Support for OSM User Interfaces

	About NLS Database Configuration
	Oracle Database Character Set
	NLS Environment
	NLS_LANG Parameter
	ORA_NLS33 Environment Variable

	About OSM Database Error Messages
	About Application Server Strings
	About Generic Preferences
	om_generic_mnemonic

	Localizing the Task Web Client
	Task Web Client Localization Resource Bundles
	Localizing the Process History Pages
	Localizing Date, Time and Currency Formats
	Localizing Text and Error Messages
	Localizing Page Titles
	Localizing Image References
	Inserting New Images
	Editing the First Day of the Week
	Editing the Boolean Data Element Values
	Editing the Number of Records Displayed in the Worklist
	Editing and Replacing Task Web Client Icons

	Localizing the Order Management Web Client
	Changing the Order Management Web Client Logo Image and Text

	Localizing the Order Lifecycle Management User Interface
	Working with the oms.ear File
	Unpacking the oms.ear File
	Packing the oms.ear File
	Rebuilding OSM Container Image in OSM Cloud Native
	Undeploying and Redeploying the oms.ear File

	11 Using XPath Functions
	About XPath Functions
	Node Set Functions
	number last()
	number position()
	number count(node-set)
	node-set id(object)
	string local-name(node-set?)
	string namespace-uri(node-set?)
	string name(node-set?)
	node-set evaluate(string)
	node-set match(node-set, string)
	node-set instance(string)

	String Functions
	string string(object?)
	string concat(string, string, string*)
	string starts-with(string, string)
	string contains(string, string)
	string substring-before(string, string)
	string substring-after(string, string)
	string substring(string, number, number?)
	number string-length(string?)
	string normalize-space(string?)
	string translate(string, string, string)
	string lower-case(string?)
	string upper-case(string?)
	string ends-with(string, string)

	Boolean Functions
	Boolean boolean(object)
	Boolean not(boolean)
	Boolean true()
	Boolean false()
	Boolean boolean-from-string(string)
	object if(boolean,object,object)

	Number Functions
	number number(object?)
	number sum(node-set)
	number floor(number)
	number ceiling(number)
	number round(number)
	number avg(node-set)
	number min(node-set)
	number max(node-set)
	number count-not-empty(node-set)

	XPath 1.0 Reference
	Location Paths [XPath §2]
	Location Paths [XPath §2.1]
	Axis Specifiers [XPath §2.2]
	Node Tests [XPath §2.]
	Abbreviated Syntax for Location Paths
	Predicate [XPath §2.4]
	Variable Reference [XPath §3.7]
	XPath
	XPath Operators
	Node-sets [XPath §3.3]
	Booleans [XPath §3.4]
	Numbers [XPath §3.5]

	Node Types [XPath §5]
	Object Types [§11.1, XPath §1]
	XPath Core Function Library
	Node Set Functions [XPath §4.1]
	String Functions [XPath §4.2]
	Boolean Functions [XPath §4.3]
	Number Functions [XPath §4.4]

	OSM Behavior XPath Functions
	Node Set Functions
	String Functions
	Boolean Functions
	Number Functions

	A Automation and Compensation Examples
	Predefined Automation Plug-ins
	Message Example
	Automation Plug-in XQuery Examples
	Internal XQuery Sender
	External XQuery Automator
	External XQuery Sender
	Internal XQuery Automator

	Automation Plug-in XSLT Examples
	Internal XSLT Sender
	External XSLT Automator
	External XSLT Sender
	Internal XSLT Automator

	Automation Plug-in Examples for Events, Jeopardies, and Notifications
	Event Automators
	Jeopardy Automators
	Order Notification Automation Plug-ins

	Custom Java Automation Plug-ins
	Internal Custom Java Automator
	Internal Custom Java Sender
	External Custom Java Automator that Changes the OSM Task Status
	External Custom Java Automator that Updates Order Data
	Using OrderDataUpdate Elements to Pass Order Modification Data
	Examples of Sending Messages to External Systems
	Examples of Handling Responses from External Systems

	Compensation XQuery Expressions
	Task Re-Evaluation and Rollback XQuery Expressions
	In Progress Compensation Include XQuery Expressions
	In Progress Compensation Complete XQuery Expressions
	In Progress Compensation Grace Period XQuery Expressions

	Order Jeopardy Automation XQuery Plug-ins

	B AutomationMap.xml File
	AutomationMap.xml Examples for Automated Tasks
	XSLTSender Internal Event Receiver
	Notes Common to All Examples
	Notes on Example

	XSLTSender External Event Receiver
	Notes on Example

	XSLTAutomator Internal Event Receiver
	Notes on Example

	XSLTAutomator External Event Receiver
	Notes on Example

	Custom Automation Internal Event Receiver
	Notes on Example

	Custom Automation External Event Receiver
	Notes on Example

	AutomationMap.xml Examples for Automated Notifications
	Order Milestone-Based Notification
	Task State-Based Notifications
	Task Status-Based Notification
	Order Data Changed Notification
	Order Jeopardy Notification
	Task Jeopardy Notification

	Generated Entity-Specific XML Files

	C Automation: Start to Finish
	Assumptions
	Getting Started
	Defining an Automated Task
	Writing the Custom Automation Plug-in
	Defining the Custom Automation Plug-in
	Defining the Automation
	Defining the Process
	Building the Cartridge
	Packaging and Deploying the Cartridge
	Triggering the Automation in OSM

