
Oracle® Communications Service
Catalog and Design
Design Studio Modeling Service Request
Translations

Release 8.1
F96247-01
July 2024

Oracle Communications Service Catalog and Design Design Studio Modeling Service Request Translations, Release
8.1

F96247-01

Copyright © 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

1 Getting Started with Design Studio for ASAP SRT

About ASAP SRT Users and Tasks 1-1

Modeling Activation SRT Cartridges 1-2

2 Creating ASAP SRT Cartridge Projects

Creating Activation SRT Cartridges 2-1

Importing Activation SRT Cartridges from SAR Files 2-2

Activation SRT Project Editor 2-3

Activation SRT Project Editor Locations 2-4

Activation SRT Project Editor Blueprint Tab 2-4

3 Modeling Translations

About Translations 3-1

Configuring Translations 3-2

Translation Editor 3-3

Translation Editor Editor Tab 3-3

Translation Editor Blueprint Tab 3-4

4 Modeling Service Bundles

About Service Bundles 4-1

About Service Action Spawning Conditions 4-2

About Upstream Interface Parameters 4-4

About Lookups 4-5

Creating Service Bundles 4-5

Associating Service Actions with the Service Bundle 4-6

iii

Defining Service Action Spawning Logic 4-7

Working with Upstream Interface Parameters 4-7

Defining Upstream Interface Parameters Manually 4-8

Importing Upstream Parameters 4-8

Mapping Upstream Interface Parameters to Service Action Parameters 4-9

Synchronizing SRT Cartridge Parameters 4-10

Configuring Lookups 4-11

Example: Configuring Lookups 4-12

Selecting Lookup Class for JAR Format 4-12

Service Bundle Editor 4-13

Service Bundle Editor Editor Tab 4-13

Service Bundle Editor Service Actions Tab 4-14

Service Bundle Editor Upstream Interface Tab 4-14

Service Bundle Editor SA Parameter Map Tab 4-16

Service Bundle Editor Blueprint Tab 4-17

Lookup Editor 4-17

Lookup Editor Editor Tab 4-17

Lookup Editor Blueprint Tab 4-19

iv

Preface

This Help provides information about modeling service request translations for Oracle
Communications ASAP.

Audience
This guide is intended for business analysts, architects, development managers, developers,
and designers who are responsible for system integration or solution development involving
the Oracle Communications operational support systems applications.

Ideally, you should be knowledgeable about your company's business processes, the
resources you need to model, and any products or services your company offers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Getting Started with Design Studio for ASAP
SRT

As part of a customer solution, solution designers and systems integrators can create
Activation Service Request Translation (SRT) cartridges to translate service request data sent
to Oracle Communications ASAP from customer relationship management (CRM), provisioning
control, or other upstream systems.

The Activation SRT cartridge contains translation information that enables the SRT to map the
contents of orders sent from upstream systems to a format that is recognizable and usable by
ASAP.

Activation SRT cartridges (which you can use only with the SRT component of ASAP) are most
commonly used when operation support systems (OSS) require a much higher level of data
abstraction at the interface point into ASAP, or have significant data customization
requirements at the interface point, such as data messaging or lookup requirements.

For example, consider that a telephony company is marketing a new service that includes a
VoIP phone and a mobile phone. When a request to activate this service is sent to ASAP, the
XML order is received by the SRT component. The SRT component translates the XML order
into a format that enables the SRT to analyze the order contents. Next, the data in the order is
mapped to the service actions and parameters that are required to activate the service bundle.
This may involve running lookups to derive additional data required for activation. The order is
then sent to downstream components of ASAP for activation. While processing the order,
events are generated and passed upstream to the SRT component. The SRT component
translates these events to a form recognized by upstream systems and forwards them to the
upstream systems.

See the following topics:

• About ASAP SRT Users and Tasks

• Modeling Activation SRT Cartridges

About ASAP SRT Users and Tasks
The following table lists the roles and the tasks each role typically performs in Oracle
Communications Service Catalog and Design - Design Studio for ASAP SRT.

Role Task Reference

Solution Designer Load (import) cartridges • Importing Activation Cartridge Projects
• Importing Projects

Solution Designer Setting up Activation SRT
cartridges

Creating Activation SRT Cartridges

1-1

Role Task Reference

Solution Designer Modeling service bundles • Creating Service Bundles
• Associating Service Actions with the Service

Bundle
• About Service Action Spawning Conditions
• Working with Upstream Interface Parameters
• Mapping Upstream Interface Parameters to

Service Action Parameters
• About Lookups

Solution Designer Build, deploy and undeploy
to/from development
environments

Packaging Projects

Developer Integration with the CRM
(upstream) system

Modeling Translations

Developer Configuring Lookups Configuring Lookups

Modeling Activation SRT Cartridges
To model Activation SRT cartridges:

1. Import Activation Service cartridge projects to obtain service actions that you can use for
the SRT cartridge.

See "Importing Projects" for more information.

2. Create a customer-specific, common service model.

See "About Common Service Models" for more information.

3. Create an Activation SRT cartridge project and set up the Activation SRT cartridge.

a. Use the Activation Cartridge Project wizard to create an Activation SRT cartridge
project and display it in the Studio Projects view of the Design perspective.

See "Creating Activation SRT Cartridges" for more information.

b. Configure the cartridge details in the Activation SRT Project editor to define the
content.

See "Activation SRT Project Editor" for more information.

4. Create one or more translations.

You configure translations to enable the SRT to accept and recognize messages from
upstream systems at runtime. See "Modeling Translations" for more information.

5. Model service bundles to enable the SRT to run actions (service actions and atomic
actions) based on the content of translated messages from upstream systems.

a. Create service bundles to map information from the incoming (translated) messages
from upstream to the appropriate service actions that need to be run downstream
(against the network elements).

See "Creating Service Bundles" for more information.

b. Associate service actions with the service bundle.

Select the service actions from the customer specific service model that need to run
for the service bundle. See "Associating Service Actions with the Service Bundle" for
more information.

Chapter 1
Modeling Activation SRT Cartridges

1-2

c. Define service action spawning conditions (if required) that enable service actions to
be conditionally spawned.

See "About Service Action Spawning Conditions" for more information.

d. Add upstream interface parameters that describe the parameters that are expected
from the upstream system for this service bundle.

See "Defining Upstream Interface Parameters Manually" for more information.

e. Map upstream interface parameters to service action parameters that enable the SRT
to map the incoming data from the translated order to the service actions selected to
run for the service bundle.

See "Mapping Upstream Interface Parameters to Service Action Parameters" for more
information.

f. Use lookups (if any were configured).

See "Configuring Lookups" for more information.

Note:

Data required by the service bundle that is not provided on the order from the
upstream system is obtained by configuring lookups. Lookups can also be
used to format parameters (for example, to split parameters apart into
constituent parameters, or to join parameters together into a single
parameter).

6. Package the cartridge.

Use the SRT Project editor to specify which elements to include in the cartridge SAR file.

a. Create the JAR with Ant.

b. Include JARs in the SAR.

c. Put external JARs in the NEP classpath on the ASAP server.

See "Packaging Projects" for more information.

7. Deploy the cartridge.

a. Create a Studio Environment project and a Studio Environment in the Studio Projects
view (use corresponding wizards for both the tasks).

b. On the Connection Information tab of the Studio Environment editor, specify how to
connect to the activation environment.

c. In the Cartridge Management view, add cartridges for deployment, deploy them to the
run-time environment, undeploy them from the run-time environment, and remove
them from the list of cartridges that were added for deployment.

d. Use the NEP Map editor to deploy and manage network elements.

See "Deploying Cartridge Projects" for more information.

Chapter 1
Modeling Activation SRT Cartridges

1-3

2
Creating ASAP SRT Cartridge Projects

You can create Activation Service Request Translation (SRT) cartridges to enable the SRT to
map the contents of orders sent from upstream systems to a format that is recognizable and
usable by Oracle Communications ASAP.

When creating Activation SRT cartridges, you assemble service actions from an Activation
Service cartridge (or, in less common scenarios, service actions from an Activation Network
cartridge) into a meaningful group using service bundles. Service bundle are collections of
service actions required to implement marketed products.

See the following topics:

• Creating Activation SRT Cartridges

• Importing Activation SRT Cartridges from SAR Files

• Activation SRT Project Editor

Creating Activation SRT Cartridges
You use the Activation SRT Cartridge Project wizard to set up an Activation SRT cartridge
project. After you create a new project, you configure additional cartridge details in the
Activation SRT Project editor.

To create an Activation SRT Cartridge project:

1. Select Studio, then select Show Design Perspective.

2. In the Studio Design perspective, right-click in the Studio Projects view and select New,
select Project, then select Activation SRT Project.

Alternatively, select Studio, select New, select Project, then select Activation SRT
Project.The New Studio Activation SRT Cartridge Project wizard appears displaying the
Activation SRT Cartridge Info dialog box.

3. Enter a name for the project.

4. Accept the default location or browse for another location.

5. Select the appropriate target version.

6. (Optional) Click Next to change the Java configuration in the Java Settings dialog box. For
example, you can add libraries in the Libraries tab (the configuration can also be changed
later).

7. Click Finish to complete the cartridge project.

In the Studio Projects view, a new Activation SRT Cartridge project appears. The project
contains one entity, which represents the service cartridge.

8. Configure the SRT Cartridge specifications and parameters in the tabs of the Project
editor.

In the Studio Projects view, double-click an Project entity icon to display the Project editor.

2-1

Related Topics

Activation SRT Project Editor

Importing Activation SRT Cartridges from SAR Files
To import Activation SRT cartridges into Design Studio, you need to import the SRT cartridge
and the Activation Network or Activation Service cartridge upon which the SRT cartridge
depends (for service actions). When you locate the SRT cartridge and appropriate Activation
cartridge that you need to import, they may be combined in a single SAR file or packaged
individually as separate SAR files. In both cases, importing is a two-stage process:

1. Import the Activation Network or Service cartridge.

2. Import the Activation SRT cartridge (it is recommended that you import in this order,
although the reverse order is possible).

Note:

When importing an SRT cartridge, error messages may appear indicating that some
service bundles are not synchronous with the service actions that they reference.
This occurs when some service action parameters have not been mapped in the
service bundle. If this occurs, you can synchronize the parameters from the service
bundle editor. See "Mapping Upstream Interface Parameters to Service Action
Parameters" for more information.

The following procedure describes how to import SRT cartridges from a SAR file, using two
example SAR files:

• both.sar: In this example, this SAR file contains both an Activation SRT cartridge and an
Activation Network or Service cartridge required for the SRT cartridge. The two-stage
import sequence is illustrated by importing cartridges from this file.

• nosrt.sar: In this example, this SAR file contains only an Activation Network or Service
cartridge required for an SRT cartridge. An explanation is provided on how the two-stage
import sequence would progress by importing the cartridge from this file.

To import an Activation SRT cartridge from a SAR file:

1. In the Studio Design perspective, right-click in the Studio Projects view and click Import
Activation Archive.

Alternatively, select File, select Import to display the Import-Select dialog box, then select
Studio Wizard, select Activation Archive (SAR) and click Next. The Activation Archive
Import Wizard appears.

2. In the Activation Archive Import Wizard, click Browse.

3. Search for the SAR file that contains both the desired Activation SRT cartridge and
Activation Network or Service cartridge.

In this example, you would search for both.sar file.

Alternatively, when applicable, search for the SAR file that contains only the Activation
Network or Service cartridge that is required for an SRT cartridge in a separate SAR file. In
this example, you would search for the nosrt.sar file.

4. Click Open.

Chapter 2
Importing Activation SRT Cartridges from SAR Files

2-2

The wizard now provides a list to select either the Activation Cartridge project (Network or
Service cartridge) or the Activation SRT cartridge project contained in the SAR file. Select
the Activation Cartridge project for the first import of the two-stage process.

5. Click Next.

On the Cartridge Details tab, select or enter the appropriate vendor, technology, and
software load.

6. Click Finish.

In the Studio Projects view, the Activation Cartridge project appears with its Project entity.

7. For the second stage of the process, repeat steps 1 through 3.

This time, when you click Open, select the Activation SRT Cartridge project from the list.

Note:

Note that -SRT will be appended to the project name in the To project field.

8. Click Finish.

In the Studio Projects view, the Activation SRT Cartridge project appears with its Project
entity. The previously imported Activation Cartridge and the Activation SRT Cartridge are
now displayed as sealed cartridges.

Note:

Starting at step 2, the same two-stage import procedure could be repeated with
cartridges packaged as separate SAR files. First, you would import the Activation
cartridge from the nosrt.sar file, and then import the Activation SRT cartridge from
both.sar file (assuming it were dependent on the Activation cartridge of the nosrt.sar
file. Otherwise, a dependent Activation SRT cartridge could be imported from an
appropriate SAR file.

See "Importing Projects" for more information about sealed and unsealed status, read only
status, and previous releases.

Related Topics

Creating Activation SRT Cartridges

Activation SRT Project Editor

Activation SRT Project Editor
Use the Activation SRT Project editor to configure the Activation SRT cartridge. In the Studio
Projects view, double-click the Project entity to open the Activation SRT Project editor.

Chapter 2
Activation SRT Project Editor

2-3

Note:

• Network elements and environments for activation are not defined inside an SRT
cartridge project. Only items that get bundled for delivery are defined.

• An Activation SRT cartridge project is also a Java project (builds on functionality
of Java project). A separate Java project for development is not required.

• Eclipse online documentation for a Java project and its configurations, properties,
and settings also applies to the Java configuration of a service cartridge project.

When working with the Activation SRT Project editor, see the following topics:

• Project Editor Properties Tab

• Project Editor Copyright Tab

• Project Editor Dependency Tab

• Project Editor Tag Tab

• Project Editor Packaging Tab

• Activation SRT Project Editor Locations

• Activation SRT Project Editor Blueprint Tab

Activation SRT Project Editor Locations
Use the Locations tab to display where items get stored. This tab is not configurable.

Note:

The Default Implementation Package name is used as a prefix for the generated
code. You should accept default values and follow recommended naming
conventions for anything you create.

Related Topics

Activation SRT Project Editor

Activation SRT Project Editor Blueprint Tab
Use the Blueprint tab to view the generated documentation of the project, including cartridge
properties and SRT model configuration. This tab is read only.

Related Topics

Activation SRT Project Editor

Chapter 2
Activation SRT Project Editor

2-4

3
Modeling Translations

Translations enable the SRT to place orders received from upstream systems into a
recognizable format on which subsequent processing can occur, and enable the SRT to place
responses from Oracle Communications ASAP back into a format recognizable by the
upstream system.

You configure translations prior to (or in parallel with) modeling service bundles and before
deploying Activation SRT cartridges to the ASAP environment.

Note:

Translations are usually implemented by a developer.

See the following topics:

• About Translations

• Configuring Translations

• Translation Editor

About Translations
To enable SRT to place orders received from upstream systems into a recognizable format,
you must write an XSL translation (XSLT) that accepts an XML document from an upstream
system and outputs an XML document, consisting of name value pairs, that is used by the
second layer of translation.

These XSLT scripts enable an XML document to be transformed into another XML document
of a different structure. For example, an XML document arriving at the SRT from an upstream
system must be transformed into an XML document that conforms to the SRT service
activation schema.

Alternatively, an XML document arriving at the SRT from ASAP (for example a work order
failure notification) must be transformed into an XML document format that is expected by an
upstream system.

Save the XSLT in a Design Studio library where it can be deployed by Design Studio to an
ASAP environment (and possibly source controlled).

Note:

Developers may need to create and configure lookups to obtain any additional data
that is required to activate the service but that is unavailable from upstream systems.
Developers may also use lookups to convert specific data elements into a format that
is expected by the configuration further downstream.

3-1

Using the Translation editor, you can identify one or more XSLT scripts to be used by the SRT
component of ASAP at run time.

Translations can be implemented to:

• Translate incoming requests from an upstream system.

• Translate ASAP responses to ASAP events (such as FAILURE, COMPLETE) for return to
the upstream system.

• Translate outgoing ASAP events (such as FAILURE, COMPLETE) to the upstream system.

Translations can be contained in a single file. For organizational purposes, however, you can
create additional files for different upstream systems.

Related Topics

Configuring Translations

Translation Editor

Configuring Translations
To configure translations:

1. From the Studio menu, select Show Design Perspective.

2. From the Studio menu, select New, and then select Translation.

The Studio Model Entity wizard appears.

3. Select the correct Activation SRT cartridge project for this element and enter a name for
the entity.

4. Click Browse to open a Select Location dialog box and select a location from a list.

This populates the Location field and specifies the folder under the cartridge project where
the new translation will be located. If no folder exists, type in the location name, which
creates a new folder with that name.

Note:

Specifying a location is optional, but is recommended to organize your elements
and to avoid locating elements directly below the root folder.

5. Click Finish.

In the Studio Projects view, the new translation appears under your project folder, and the
Translation editor appears.

6. In the Translation Details area, click Add to add a new translation.

7. Select the new translation that appears in the Translation Details area.

8. Define values for the fields in the Translation Map Details area.

See "Translation Editor" for information about the Translation editor fields.

9. Save your configuration.

Related Topics

Modeling Translations

Chapter 3
Configuring Translations

3-2

Translation Editor

Translation Editor
Use the Translation editor to configure translations. In the Studio Projects view, double-click a
translation entity to open the Translation editor. You can create the editor using the Translation
Wizard.

When working with the Translation editor, see the following topics:

• Translation Editor Editor Tab

• Translation Editor Blueprint Tab

Translation Editor Editor Tab
Use the Editor tab for defining values for translations.

Translation Details

Field Use

Add Click to add a row with default values for a translation.

Remove Click to remove the row with values for a translation.

Details

Field Use

Name Specify a unique name for the translation.

Type Select any one of the following:

• XSLT to indicate that an XSLT translation occurs. The XSLT file is
identified in the XSLT Script field.

• Do not forward to indicate that it is not necessary to notify the upstream
system of the event (such as a work order completion event).

Direction Type Select any one of the following:

• Incoming to indicate that the XSLT is to be used by the SRT to translate
an XML document from an upstream system (for example, Siebel) for
ASAP.

• Event to indicate that the XSLT is to be used by the SRT to translate an
XML document received from ASAP (for example, event information).

• Outgoing to indicate that the XSLT is to be used by SRT to translate an
XML document of an event into a format accepted by the upstream
system (for example Siebel).

Select Click to select the XSLT file that implements the translation. The file is located
in the WorkspaceName/SRTCartridgeProjectName/Translations folder.

Dispatch Condition
Type

Select the condition under which the translation is applied to the upstream
XML document. Select any one of the following conditions, that can based
either on a JMSHeader or an XPath in the upstream document:

• JMSHeader to initiate the translation based on the data contained in the
message properties in the JMS message.

• XPath to initiate the translation based on the data contained in the
upstream XML.

Property Name Displays the JMSHeader property or XPath condition (depending on the
condition type) that must be met for this translation to be applied.

Chapter 3
Translation Editor

3-3

Field Use

Property Value Displays the JMS header property value or XPath value (depending on the
condition type) that must be matched for this translation to be applied.

Query

Field Use

Query Type Select any one of the following conditions on which the query can be invoked:

• Order Request to query a work order.
• Audit Value to retrieve all audit trails associated with a particular work

order.
• Service History to retrieve the history of a service action.
• Atomic Action History to retrieve the history of an atomic action.

Dispatch Condition
Type

Select a condition type based on which a query can be invoked.

Condition Label Specify the JMSHeader condition name or XPath condition (depending on the
condition type) that must be met to invoke the query for this translation.

Condition Value Specify the JMS header condition value or XPath value (depending on the
condition type) that must be matched to invoke the query for this translation.

XPath Map

Field Use

Parameter Name
XPath

Specify the name of the XPath parameter.

Parameter Value
XPath

Specify the XPath value. The SRT runs the configured XPath value and the
returned name and value pairs are added to the JMS header properties.

Add Click to add default XPath parameter name and value.

Related Topics

Translation Editor

Configuring Translations

Translation Editor Blueprint Tab
Use the Blueprint tab to view the generated documentation for the translation entity. This tab
is read only.

Related Topics

Translation Editor

Configuring Translations

Chapter 3
Translation Editor

3-4

4
Modeling Service Bundles

A service bundle is a grouping of one or more service actions. You use service bundles only if
you are using the Oracle Communications ASAP SRT component.

See the following topics:

• About Service Bundles

• Creating Service Bundles

• Associating Service Actions with the Service Bundle

• Defining Service Action Spawning Logic

• Working with Upstream Interface Parameters

• Configuring Lookups

• Service Bundle Editor

• Lookup Editor

About Service Bundles
Service bundles provide a level of abstraction over the service action layer that you can use to
represent marketing-level configurations. You can use service bundles when upstream
systems are not capable of breaking down marketing bundles into their constituent services or
providing the exact data that is required for activation.

For example, a wireless service provider may offer a basic marketing package that provides
the following services:

• Voice calls

• Free voice mail

• Free call waiting and call forwarding

These services require the following activations in the network:

• Create a new subscriber (Home Location Register - HLR).

• Enable authentication of the subscriber (Authentication Center - AUC).

• Enable number portability (Flexible Number Router - FNR).

• Create and assign a voice mailbox (Voice mail Server - VMS).

• Activate the call waiting and call forwarding features (Home Location Register - HLR).

The service provider may also offer a more expensive marketing package that builds upon the
basic marketing package by providing a few more advanced services, which would also require
the activation of advanced features (Home Location Register - HLR).

While it is possible to model a single service action to activate each of the network services,
introducing an additional level of abstraction at the service bundle level results in a less
complicated and less customized service model at the service action level. Additionally, more

4-1

generic service actions permit reuse of the service actions across service bundles. The
following service bundle configuration could be created to implement the above examples:

Note:

In the configurations below, the C_ADD_SUBSCRIBER, C_VMS_ADD_SUB, and
C_HLR_ADD_BASIC-FEATURES service actions can be reused in both the basic and
advanced service bundle configurations.

SB_WIRELESS_PREPAID_ADD_SUBSCRIBER_BASIC
 C_HLR_ADD_SUB
 A_HLR_ADD_SUB
 A_AUC_ADD_SUB
 A_FNR_ADD_SUB
 C_VMS_ADD_SUB
 A_VMS_ADD_SUB
 C_HLR_ADD_BASIC-FEATURES
 A_HLR_ADD_CW
 A_HLR_ADD_CF

SB_WIRELESS_PREPAID_ADD_SUBSCRIBER_ADVANCED
 C_HLR_ADD_SUB
 A_HLR_ADD_SUB
 A_AUC_ADD_SUB
 A_FNR_ADD_SUB
 C_VMS_ADD_SUB
 A_VMS_ADD_SUB
 C_HLR_ADD_BASIC-FEATURES
 A_HLR_ADD_CW
 A_HLR_ADD_CF
 C_HLR_ADD_ADVANCED-FEATURES
 A_HLR_ADD_CFB
 A_HLR_ADD_CFNRC
 A_HLR_ADD_CFNRY

Related Topics

Creating Service Bundles

About Service Action Spawning Conditions

Working with Upstream Interface Parameters

About Lookups

About Service Action Spawning Conditions
Service action spawning conditions determine whether a service action runs. When you map
service bundles to service actions, Design Studio assigns to each service action a spawning
condition of Always (no conditions prevent the action from running). The conditions associated
with the service action must evaluate to true for the service action to run.

The labels used in the evaluation of the service action spawning condition are those that are
derived as a result of the upstream parameters to service action parameter mapping. Use the
service action labels in your spawning expression.

Chapter 4
About Service Bundles

4-2

You define the spawning conditions on the Service Bundle editor Service Actions tab. For
example, you can specify that an action always run only if a specified parameter is present.

Also, you can define a logical expression that is used with one of the delivered spawning
conditions, where ASAP runs the service action if both the out-of-the-box expression and your
user-defined expression evaluate to true. The range of options available enables a service
action to be run if the service action parameter value is within a set range of values, or if the
service action parameter is greater than, less than, or equal to, a specified value. You can
combine multiple expressions using an AND or OR operator.

Logical Expression Components

To define your own spawning logic, enable the Include Expression check box on the Service
Bundle editor Service Actions tab and define a logical expression in the associated text box.

The logical expression mechanism works in cooperation with one of the out-of-the-box
spawning expressions. For example, if you have specified a service action condition of Equals
and have created a logical expression, both of these conditions must evaluate to true in order
for the service action to be run. If you want only the logical expression to trigger the service
action, then use the action condition of Always and specify a logical expression.

The following operators can be used to define logical expressions:

Operators Description

AND, OR, NOT Operators used to create compound expressions. For example:

(KEY < 7214) AND (PORT > 4000)
ISDEF, NOTDEF Operators that can be used with single parameters. For example:

• (NOTDEF KEY)
• (ISDEF IMSI) AND (NOTDEF IMSI)
Note: Always use brackets with these operators.

>, <, >=, =<, =, != The parameter values must be able to be converted to integers. For
example:

(KI > 10)
LIKE, !LIKE String operators. The strings being evaluated must be placed inside

quotation marks. It is also possible to use wildcard syntax such as the %
(to specify one or more characters) and ? (acts on a single character). For
example:

• (NE_ID !LIKE "HLR-2727")
• (TECH LIKE "CS?K") AND (SFTWR LIKE "SNO%")
Note: Always use brackets with these operators.

Logical expressions are limited to a length of 255 characters.

Logical Expression Operational Order

To specify the order of operations, use as many parentheses as needed; for example:

((A < 8) OR ((NOTDEF B) AND ((C != 3) OR (NOT (D = 9)))))

Logical Expression Error Conditions

The following error conditions that may arise as a result of the use of logical expressions:

• Using the integer operator when the input parameter cannot be converted to an integer (all
SRT parameters are strings initially)

• The specified parameter label is not present

Chapter 4
About Service Bundles

4-3

The evaluation of an expression fails and a SYS_ERR message is generated in the
diagnostics. These errors do not fail the work order; however, the atomic action is not run.

Note:

The syntax of complex expressions is not currently checked by Design Studio but is
checked by ASAP at run time.

Related Topics

Defining Service Action Spawning Logic

Service Bundle Editor

About Upstream Interface Parameters
You map the parameters contained in the messages sent from upstream systems to the
parameters required by the service actions associated with the service bundle. At run time,
after the initial translation has occurred, SRT uses this service bundle configuration to analyze
the contents of messages sent from upstream systems.

Note:

Some upstream interface parameters may not be used in the provisioning process.
Upstream interface parameters can be mapped to lookups for further processing, for
example to split parameters apart or to concatenate them together.

To map upstream interface parameters to service action parameters, you add the parameters
to the Upstream Interface list using the following methods:

• Automatically, based on service action labels. When you associate service actions with the
service bundle, you can use the service action labels to populate the upstream interface
parameter list. Design Studio places the parameters in the parameter list on the Service
Bundle editor Upstream Interface tab.

• Manually, in the Service Bundle editor. If you know what the upstream labels will be but do
not have a sample XML document that can be imported, the parameters can be added in
manually.

• By importing the upstream parameters from a sample upstream service request (in XML
format). Using this method, Design Studio runs a transformation against the upstream XML
file and extracts the interface parameters. The XSLT that implements the transformation
must first be created by a technical resource such as a developer. See "Configuring
Translations" for more information.

Related Topics

Working with Upstream Interface Parameters

Service Bundle Editor

Chapter 4
About Service Bundles

4-4

About Lookups
Lookups are required when upstream systems fail to send all of the required information
needed to model service bundles (for example, the data is not fully assigned, has incorrect
labels or values, and so forth). Generally, a developer is required to create the code (Java or
stored procedure) for the lookup. Solution designers, however, can configure attributes of the
lookups using Design Studio.

Lookups are processed by the SRT during the processing of an upstream XML service
request. Lookups can be used to look up additional parameters that are required for activation
of services, to format parameters so that they are compatible with service action parameters,
and so forth. The lookup library contains custom lookups that are used by the SRT only. You
may want to create lookups in the following situations:

• The upstream system is unable to provide a network element identifier. As opposed to
using ASAP's internal support for network element routings (for example, ID routing, user
defined routing, and so forth), you can create a lookup to accept an identifier (such as a
MSISDN or IMSI in the case of mobile services, or DN or LEN in the case of PSTN
services) and return one or more network element identifiers. You can implement this
lookup as a stored procedure or java method to retrieve the data from a database table.

• Several parameters need to be concatenated or one parameter needs to be split apart in
order to match the parameters required by one or more service actions. No database
interaction is required as the algorithm is implemented inside a java method or java script.

After a technical resource creates the lookup (the stored procedure or java code that
implements the lookup logic), you can define the lookup in Design Studio by describing its
attribute, such as its name and input/output parameters. Existing lookups are available for use
and appear in Service Bundle editor SA Parameter Map tab where they can be mapped to
service action parameters. It is also possible to create a series of lookups that feed parameters
to each other as well.

Prior to deploying your Activation SRT cartridge to the environment, you package the required
lookups in addition to service bundles and other element types.

Related Topics

Configuring Lookups

Lookup Editor

Creating Service Bundles
After you set up the Activation SRT cartridge, you create service bundles. To enable usage of
the service bundles for implementation and deployment of the SRT cartridge, ensure that the
upstream system is integrated (the translation is configured by a developer) prior to deploying
the cartridge to the environment.

To create a service bundle:

1. Select Studio, then select Show Design Perspective.

2. From the Studio menu, select New, then select Activation, and then select Service
Bundle.

The Service Bundle Wizard appears.

3. Select the correct Activation SRT cartridge project for this element and enter a name for
the entity.

Chapter 4
Creating Service Bundles

4-5

4. Click Browse to open a Select Location dialog box and select a location from a list.

This populates the Location field and specifies the folder under the cartridge project where
the new service bundle will be located. If no folder exists, type in the location name, which
creates a new folder with that name.

Note:

Specifying a location is optional, but is recommended to organize your elements
and to avoid locating elements directly below the root folder.

5. Click Finish to create the service bundle.

The Service Bundle editor appears.

6. In the Description field, enter a description for the service bundle.

7. In the Service Bundle Properties area, add a product label and product value.

These values map the upstream order (which contains the label and value) to this
particular service bundle. At run time, this mapping enables the SRT to determine the
service bundle to run based on the incoming XML document.

8. (Optional) Enable Include order data in response to pass a more comprehensive
response back upstream (beyond just the simple success/failure response) for this service
bundle.

For example, if this service bundle is selected based on the service bundle properties
criteria and the resulting ASAP order succeeds, then any response information associated
with the ASAP work order will be retrieved automatically and will be available to be passed
upstream.

Related Topics

About Service Bundles

Service Bundle Editor

Associating Service Actions with the Service Bundle
To associate service actions with the service bundle:

1. In the Studio Projects view, double-click a Service Bundle entity.

The Service Bundle editor opens.

2. On the Service Actions tab, click Add.

The Service Action Selection dialog box.

Using the Service Action Selection dialog box, you can either select or create a service
action entity.

3. In the Service Action Selection dialog box, select an existing service action entity or create
a new service action entity.

4. When prompted to create upstream interface parameters based on service action labels,
select Yes to automatically create upstream interface parameters based on the service
action labels of the service actions that you have selected.

The parameters appear in the Upstream Interface tab. A mapping between each
upstream parameter and each service action parameter is created automatically.

Chapter 4
Associating Service Actions with the Service Bundle

4-6

5. (Optional) Select a service action and click the arrow keys to reorder the service actions.

Additionally, you can manually enter interface parameters or import them from a sample
upstream XML document. See "Mapping Upstream Interface Parameters to Service Action
Parameters" and "Importing Upstream Parameters" for more information.

6. Click the SA Parameter Map tab.

This tab displays the service action parameters. You can map the service actions to
service bundles.

This feature is useful if you do not have sufficient information on the upstream parameters
(such as the exact parameter labels that are provided on the incoming XML). This feature
assumes that the parameter labels required by the service action are the same as those on
the upstream order. The selected service actions appear in the Service Bundle Details
area of the Service Bundle editor with their associated attributes (sequence, service action
name, condition, label, value, expression, vendor, technology, software load and action).

7. Click Save.

Related Topics

About Service Bundles

Creating Service Bundles

Service Bundle Editor

Defining Service Action Spawning Logic
To define service action spawning logic:

1. In the Service Bundle editor Service Actions tab, select the service action for which you
want to define spawning logic.

2. Define the conditions that determine whether a service action is processed.

3. (Optional) To define your own logical expressions, select Include Expression and enter
the expression.

Related Topics

About Service Action Spawning Conditions

Service Bundle Editor

Working with Upstream Interface Parameters
You add upstream interface parameters to service bundles to describe the parameters that are
expected from the upstream system.

See the following topics:

• Defining Upstream Interface Parameters Manually

• Importing Upstream Parameters

• Mapping Upstream Interface Parameters to Service Action Parameters

Chapter 4
Defining Service Action Spawning Logic

4-7

Defining Upstream Interface Parameters Manually
To define upstream interface parameters manually:

1. On the Service Bundle editor, click the Upstream Interface tab, and then click Add in the
Service Bundle Details area.

2. In the Upstream Interface Details tab, enter the following information:

• In the Name field, enter the name of the upstream parameter.

• In the Default field, enter the default value of the upstream parameter. If the upstream
parameter does not have a value, the default is supplied to ASAP.

• In the Data Type field, enter the parameter's data type.

• Select Multi Instance if the specified label is the stem of a series of parameters. This
allows for a dynamic number of instances and possible use with ASAP's indexing
capability for spawning multiple atomic actions.

• Enable Required if this upstream parameter is required.

Related Topics

Working with Upstream Interface Parameters

Importing Upstream Parameters

Mapping Upstream Interface Parameters to Service Action Parameters

Importing Upstream Parameters
To import upstream parameters from a sample upstream service request:

1. On the Service Bundle editor, click the Upstream Interface tab, and then click Import in
the Service Bundle Details area.

The Import Interface Parameter Wizard appears.

2. In the Sample XML field, identify the XML file that represents a sample upstream service
request.

3. In the Stylesheet field, identify the XML stylesheet (XSLT) that transforms the service
request into SRT format.

4. Click OK.

Design Studio parses the service request and adds the upstream parameters to the
Upstream Interface tab.

Related Topics

Working with Upstream Interface Parameters

Defining Upstream Interface Parameters Manually

Mapping Upstream Interface Parameters to Service Action Parameters

Chapter 4
Working with Upstream Interface Parameters

4-8

Mapping Upstream Interface Parameters to Service Action Parameters
You map upstream interface parameters to service action parameters to enable the SRT to
map the incoming data from the translated order to the service actions selected to run for the
service bundle.

Note:

When importing an SRT cartridge, error messages may appear indicating that some
service bundles are not synchronous with the service actions they reference. This
can happen when some service action parameters have not been mapped in the
service bundle. If this occurs, you can synchronize the parameters in the Service
Bundle editor. See "Synchronizing SRT Cartridge Parameters " for more information.
See "Importing Activation SRT Cartridges from SAR Files" for more information about
importing an SRT cartridge.

To map an upstream interface parameter to a service action parameter (method 1):

1. On the Service Bundle editor, click the SA Parameter Map tab, and increase the size of
the Source Type field by dragging the slider to the right.

You can also double-click the tab to increase the editor area.

2. For each service action parameter listed in the SA Parameter Map tab, select the
parameter and change the value in the Source Type field (in the Service Bundles Details
area) as follows:

• If the source of the service action parameter comes from an upstream system, select
Interface as the source type). Select an upstream parameter and drag it to the
corresponding service action parameter. The upstream parameter label appears in the
Source column.

• If the source of the service action parameter comes from a lookup, select Lookup as
the source type. Select a lookup result and drag it to the corresponding service action
parameter. The lookup output label appears in the Source column.

To map an upstream interface parameter to a service action parameter (method 2):

1. On the Service Bundle editor, click the SA Parameter Map tab, and select from the list a
service action parameter that you want to map to an upstream parameter.

2. In the Parameter Map Detail area, specify one of the following values in the Mapping Type
field:

• Select Override to impose a specific value on the service action parameter. If you
select this option, you must specify a default value in the Default field. The default
value is used if the incoming parameter value is not provided.

• Select Interface to map the service action parameter to an upstream parameter. If you
select this option, you must specify the upstream source parameter and an optional
default value. In the Source field, identify the upstream source parameter that you
want to map to the service action parameter. If required, specify a default value for this
parameter in the Default field. The default value is used if the incoming parameter
value is not provided.

• Select Lookup to map the service action parameter to a lookup. If you select this
option, you must identify the lookup that is to be performed by either selecting the

Chapter 4
Working with Upstream Interface Parameters

4-9

appropriate lookup from the Lookup list, or by clicking Open to define the lookup in
the Lookup editor. See "Configuring Lookups" for instructions on defining lookups. In
the Lookup Output Parameter field, select the output parameter that is provided by
the lookup. If required, specify a default value for this parameter in the Default field.
The default value is used if the lookup does not generate a value for this parameter.

3. Verify that all parameters in the service action parameters list are valid.

A parameter can become invalid if an atomic action parameter has been removed after the
service bundle has referenced the service action to which the atomic action is mapped. A
red circle with an X appear next to invalid parameters.

It is recommended that you investigate whether the invalid parameters were changed or
removed in error. If they are unnecessary for the service bundle, select these parameters
and click Remove Invalid. You can optionally add a service action parameter by clicking
Add, or clear the mappings by clicking Clear.

4. Save your changes.

Related Topics

About Upstream Interface Parameters

Defining Upstream Interface Parameters Manually

Importing Upstream Parameters

Synchronizing SRT Cartridge Parameters
When importing SRT cartridges, error messages may appear indicating that some service
bundles are not synchronous with the service actions they reference. This can happen when
some service action parameters have not been mapped in the service bundle. If this occurs,
you can synchronize the parameters in the Service Bundle editor.

To synchronize parameters after importing an SRT cartridge:

1. In the Activation SRT Project editor, click the Properties tab, and then click Unsealed to
unseal the SRT cartridge project.

2. In the Studio Projects view, right-click the Service Bundle entity icon and select
Properties.

The Properties dialog box appears.

3. In the Properties dialog box, select the Read-write status option and click OK.

4. Open the Service Bundle editor.

A dialog box prompts you to synchronize the Service Bundle parameters.

5. Click OK.

6. Rebuild the project.

Related Topics

Mapping Upstream Interface Parameters to Service Action Parameters

Activation SRT Project Editor

Chapter 4
Working with Upstream Interface Parameters

4-10

Configuring Lookups
Lookups are processed by the SRT during the processing of an upstream XML service
request. Lookups can be used to look up additional parameters that are required for activation
of services, to format parameters so that they are compatible with service action parameters,
and so forth. The Lookup library contains custom lookups that are used by the SRT only.

To create new lookups:

1. Select Studio, then select Show Design Perspective.

2. In the Studio Projects view, right-click and select New, select Activation, then select
Lookup.

Alternatively, select Studio, select New, select Activation, then select Lookup. The
Studio Model Entity wizard appears.

3. Select the applicable project from the list and enter a name for the lookup.

4. Click Browse to open a Select Location dialog box and select a location from a list.

This populates the Location field and specifies the folder under the cartridge project where
the new lookup will be located. If no folder exists, type in the location name, which creates
a new folder with that name.

Note:

Specifying a location is optional, but is recommended to organize your elements
and to avoid locating elements directly below the root folder.

5. Click Finish.

The new lookup appears under your project folder in Studio view.

Use the Lookup editor to configure the lookup.

6. Double-click the lookup entity.

The Lookup editor opens.

7. From the Type list, select a lookup type.

If you select type as JAR, see "Selecting Lookup Class for JAR Format" for more
information.

8. In the Lookup Properties area, define the properties for the lookup.

9. In the Input Parameters tab, click Add.

An input parameter is added.

10. Click the specific row and configure in the Input Parameter Details area.

11. In the Output Parameters tab, click Add.

An output parameter is added.

12. Click the specific row and configure in the Output Parameter Details area.

13. Select File, then select Save.

Chapter 4
Configuring Lookups

4-11

Related Topics

About Lookups

Lookup Editor

Example: Configuring Lookups

Example: Configuring Lookups
If you have selected ASAP version 5.2 and have defined lookups with input parameters that
map to other lookups, an additional source attribute is generated in the lookup model xml.

Precondition: SRT project is created for Activation 5.2.

Precondition: Two lookups are created in the same cartridge (for example LK1, LK2)

1. Create a lookup.

For example, LK3.

2. Add an input parameter (lookup type).

3. Map to another lookup.

For example, map to LK1.

4. Save the lookup.

5. From the Package Explorer view, cartridgeBuild/model, examine the lookup.xml.

For example, LK3.xml: A new attribute has been added called sourceDocument=
Consider the following code example, which illustrates the previous stepped procedure:

<inputParameter>
<parameterName>inParm4</parameterName>
<lookupParameterName> outParm1</lookupParameterName>
</inputParameter>

would become

<inputParameter>
<parameterName>inParm1-lk3</parameterName>
<lookupParameterName sourceDocument="LK1">outParm1-lk1</lookupParameterName>
</inputParameter>

Related Topics

Configuring Lookups

About Lookups

Lookup Editor

Selecting Lookup Class for JAR Format
To select lookup class in the jar file that performs the lookup:

1. On the Lookup editor, click Select to open Select Lookup Class dialog box.

2. Do any one of the following:

Chapter 4
Configuring Lookups

4-12

a. In the Select entries field, enter the name of a class which exists in a .jar file
referenced in the classpath.

b. Enter any character or string of characters contained in the class name. Matching
class names appear in the Matching items area of the dialog box.

3. Select a class name in the dialog box and click OK to populate the class name in the
Class field.

Related Topics

Configuring Lookups

About Lookups

Lookup Editor

Service Bundle Editor
Use the Service Bundle editor to associate service actions with the service bundle and
associate upstream parameters with service actions.

You can create the Service Bundle editor using the Service Bundle Wizard. In the Studio
Projects view, double-click a service bundle entity to open the editor.

When working with the Service Bundle editor, see the following topics:

• Service Bundle Editor Editor Tab

• Service Bundle Editor Blueprint Tab

Service Bundle Editor Editor Tab
Use the Editor tab to associate service action entities to the service bundle and to add
additional service action and upstream parameters for the service bundle.

Service Bundle Properties

Field Use

Description Specify a description for the Service Bundle editor.

Product Label and
Product Value

Select a product label and specify a corresponding product value. These
values map the upstream order (that contains the label and value) to this
service bundle. During run time, the mapping enables SRT to determine the
service bundle to run based on the incoming XML document.

Include order data in
response

Select to pass a more comprehensive response back upstream (beyond just
the simple success or failure response) for this service bundle.

When working with the Editor tab, see the following topics:

• Service Bundle Editor Service Actions Tab

• Service Bundle Editor Upstream Interface Tab

• Service Bundle Editor SA Parameter Map Tab

Chapter 4
Service Bundle Editor

4-13

Service Bundle Editor Service Actions Tab
Use the Service Actions tab to associate service action entities with the service bundle and
define conditions to spawn the service actions.

Service Bundle Details

Field Use

Remove Click to remove a service action from this tab.

Add Click to add a service action to this tab.

Service Action Condition

Field Use

Always Select for ASAP to always spawn this service action for this service bundle.
Always is selected by default when you add a service action to the Service
Bundle editor.

Equals Select for ASAP to spawn this service action only if the specified service
action parameter, in the Parameter Label field, is defined on the service
action and has a parameter value as defined in the Parameter Value field.

Defined Select for ASAP to spawn this service action only if the service action
parameter specified in the Parameter Label field is defined on the service
action.

Not Defined Select for ASAP to spawn this service action only if the service action
parameter specified in the Parameter Label field is not defined on the service
action.

Parameter Label Select a label name from the list.

Parameter Value Specify a value in the field. This field is available when you select the Equals
button.

Include Expression Define a logical expression using a number of criteria. The range of options
available allows a service action to be processed if the service action
parameter value is within a set range of values, or if the service action
parameter is greater than, less than, or equal to, a specified value. You can
combine multiple expressions using an AND or OR operator. See "About
Service Action Spawning Conditions" for more information.

Related Topics

Service Bundle Editor

Associating Service Actions with the Service Bundle

Service Bundle Editor Upstream Interface Tab
Use the Upstream Interface tab to modify the upstream parameter values. Apart from the
upstream parameters added automatically, you can further add upstream parameters manually
on this tab.

Chapter 4
Service Bundle Editor

4-14

Service Bundle Details

Field Use

Add Click to manually add upstream interface parameters.

Remove Click to remove upstream interface parameters.

Import Click to import the upstream parameters from a sample upstream service
request (in XML format).

Export Schema Click to export the service bundle interface to an .xsd file and save it to your
machine.

When working with the Upstream Interface tab, see the following topics:

• Details Tab

• Upstream Parameter Map Tab

• Lookup Map Tab

• Advanced Tab

Details Tab

Use the Details tab to view and edit the parameters.

Field Use

Name Modify the name (label) of a parameter to match a parameter that will come
from upstream.

Default Specify an optional default value for an upstream parameter. If the upstream
parameter does not have a value, the default is supplied to ASAP.

Description Modify or provide a description for a parameter.

Data Type Select to modify the data type for a parameter. Valid types include integer,
string, boolean, and so on.

Required Select if this upstream parameter is required.

Multi Instance Select if the specified label is the stem of a series of parameters. This allows
for a dynamic number of instances and possible use with ASAP's indexing
capability for spawning multiple atomic actions.

Related Topics

Working with Upstream Interface Parameters

Upstream Parameter Map Tab

Use the Upstream Parameter Map tab to display the mapping between the selected upstream
interface parameter and service action label (service action parameters) associated with the
service bundle.

Related Topics

Working with Upstream Interface Parameters

Chapter 4
Service Bundle Editor

4-15

Lookup Map Tab

Use the Lookup Map tab to display how the selected upstream interface parameter is used in
different lookups for further data processing. For example in a mobile scenario, for a given
MSISDN value, the SRT may need to perform a database lookup to determine which HLR to
send the work order to or possibly split the MSISDN into country code, operator code, and the
number parameters for use with a particular service action. See "Configuring Lookups" for
information on creating lookups.

Related Topics

Working with Upstream Interface Parameters

Advanced Tab

Use the Advanced tab to specify complex data types for the selected upstream interface
parameter that are different than those available in the Details tab.

In the XML Schema field, enter the complex data type for the selected upstream interface
parameter.

Related Topics

Working with Upstream Interface Parameters

Service Bundle Editor SA Parameter Map Tab
Use the SA Parameter Map tab to associate upstream parameters with service action
parameters. This association enables SRT to map the incoming data from the translated order
to the selected service action to run for the service bundle.

Field Use

Source Type Select a parameter in the Name grid and modify the value to any one of the
following:

• Interface: Select if the source of the service action parameter comes
from an upstream system.

• Lookup: Select if the source of the service action parameter comes from
a lookup.

Name Specify a name for an upstream parameter and click Add.

Mapping Type Select any one of the following:

• Override: Select to impose a specific value on the service action
parameter. If you select this option, you must specify a default value in the
Default field. The default value is used if the incoming parameter value is
not provided.

• Interface: Select to map the service action parameter to an upstream
parameter. In the Source field, identify the upstream source parameter
that you want to map to the service action parameter. If required, specify
a default value for this parameter in the Default field. The default value is
used if the incoming parameter value is not provided.

• Lookup: Select to map the service action parameter to a lookup. From
the Lookup list, select an appropriate lookup or click Open to define the
lookup in the Lookup editor. See "Configuring Lookups" for more
information. In the Lookup Output Parameter field, select the output
parameter that is provided by the lookup. If required, specify a default
value for this parameter in the Default field. The default value is used if
the lookup does not generate a value for this parameter.

Chapter 4
Service Bundle Editor

4-16

Field Use

Add Click to add a service action parameter to this tab.

Remove Click to remove a user defined parameter from the service action parameter
list.

Remove Invalid Click to remove any unnecessary invalid parameter (a red circle with an X
appears next to an invalid parameter) for the service bundle.

Clear Click to clear the editable contents of the service action parameter such as
Mapping Type, Source and Default.

Related Topics

Mapping Upstream Interface Parameters to Service Action Parameters

Service Bundle Editor Blueprint Tab
Use the Blueprint tab to view the generated documentation for the service bundle entity. This
tab is read only.

Related Topics

Service Bundle Editor

Lookup Editor
Use the Lookup editor to configure lookups. In the Studio Projects view, double-click a lookup
entity to open the Lookup editor.

When working with the Lookup editor, see the following topics:

• Lookup Editor Editor Tab

• Lookup Editor Blueprint Tab

Lookup Editor Editor Tab
Use the Editor tab for defining the input parameters to the lookup and output parameters
produced by the lookup.

Lookup and Lookup Properties

Field Use

Description Specify a description for the Lookup editor.

Chapter 4
Lookup Editor

4-17

Field Use

Type Select one of the following to specify the format of the lookup:

• JAR
This option requires no parameters as the lookup logic is in the lookup
class selected in the Class field.

• SQL
This option requires the parameters jdbc:sqlStatement and
jdbc:dataSource.

• javascript
This option requires the parameters bsf:scriptEngine and bsf:script.

• webservice
This option requires the parameters WebServiceEndPoint,
WebServiceName, TargetNamesapce, NSPrefix,
RequestOperationName, RequestMessage,
ResponseOperationName, and ResponseMessage.

• xpath
This option requires the parameter xpath:function.

Notes:
• The specified file type should have the same file name as the lookup

and its filename extension must be .js or .sql, depending on the type
of file (javascript or SQL).

• The specified file must be packaged in the cartridge.

Class If you selected JAR in the Type field, select the class in the jar file that
performs the lookup. See "Selecting Lookup Class for JAR Format" for
more information.

ASAP will run the main method within the specified class when the lookup
is called.

No Caching Select if the results of the lookup are not to be cached in the memory. Use
this option if the data is variable, and therefore no benefit is derived from
caching in memory and retrieving (but is slower than cached information).

Session Caching Select if the results of the lookup are to be cached in the memory for the
duration of the session (should the results be needed again by another
lookup or service bundle). A session is the time it takes to fulfill the
upstream request. Use this option if multiple clients with different
information want to share a cache.

Global Caching Select if the results of the lookup will remain available until the cache
timeout expires.

Cache Max Size (entry) Specify the maximum number of actual entries in the cache that will be
maintained at any one time. In this field, you can enter a maximum value of
eight numeric characters. This field is available for Session Caching and
Global Caching.

Cache Timeout (ms) Specify the number of milliseconds for which the cache is valid. In this
field, you can enter a maximum value of eight numeric characters. This
field is available for Session Caching and Global Caching.

Lookup Details

Field Use

Add In the Input Parameters tab, click to add input parameters to the lookup.
The parameters you specify here could represent parameters being
passed in from the upstream on the work order, or parameters that have
been generated by another lookup, or both.

Chapter 4
Lookup Editor

4-18

Field Use

Name In the Input Parameters tab, click on a parameter and edit in the Input
Parameter Details area, as required, the name of the parameter.

Mapping Type In the Input Parameters tab, click on a parameter and select any one of
the following from the list:

• Select Environment Setting to enable you to configure an
environment variable as an input to the lookup. You may also specify a
default value to assign to the variable if the environment variable is not
actually defined at runtime.

Note: The Use Environment ID check box is not applicable to ASAP.
• Select Input Parameter to specify that a parameter will be provided to

the lookup, as specified in the Upstream Interface Parameter field,
from the incoming transformed XML document.

• Select Lookup to specify that a parameter will be provided to the
lookup from the output of another lookup that processes prior to this
one. You must select the Lookup name and Lookup Output
Parameter as follows:

- Lookup: Name of another lookup in the same project.

- Lookup Output Parameter: Another lookup's output parameter
which will be an input to this lookup.

Add In the Output Parameters tab, click to specify the new output parameters
produced by the lookup.

Name In the Output Parameters tab, click on a parameter and edit in the Output
Parameter Details area, as required, the name of the parameter.

XPath In the Output Parameters tab, click on a parameter and specify the xpath,
in the Output Parameter Details area, associated with the parameter
created by the lookup (all Design Studio lookups return an XML document.
The xpath is used to specify the location of the desired parameter within
the XML document). An example of a simple XPath would be //MCLII.

Description In the Output Parameters tab, click on a parameter and enter a
description of the parameter in the Output Parameter Details area.

Related Topics

Configuring Lookups

Lookup Editor Blueprint Tab
Use the Blueprint tab to view the generated documentation for the lookup entity. This tab is
read only.

Related Topics

Configuring Lookups

Chapter 4
Lookup Editor

4-19

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Getting Started with Design Studio for ASAP SRT
	About ASAP SRT Users and Tasks
	Modeling Activation SRT Cartridges

	2 Creating ASAP SRT Cartridge Projects
	Creating Activation SRT Cartridges
	Importing Activation SRT Cartridges from SAR Files
	Activation SRT Project Editor
	Activation SRT Project Editor Locations
	Activation SRT Project Editor Blueprint Tab

	3 Modeling Translations
	About Translations
	Configuring Translations
	Translation Editor
	Translation Editor Editor Tab
	Translation Editor Blueprint Tab

	4 Modeling Service Bundles
	About Service Bundles
	About Service Action Spawning Conditions
	About Upstream Interface Parameters
	About Lookups

	Creating Service Bundles
	Associating Service Actions with the Service Bundle
	Defining Service Action Spawning Logic
	Working with Upstream Interface Parameters
	Defining Upstream Interface Parameters Manually
	Importing Upstream Parameters
	Mapping Upstream Interface Parameters to Service Action Parameters
	Synchronizing SRT Cartridge Parameters

	Configuring Lookups
	Example: Configuring Lookups
	Selecting Lookup Class for JAR Format

	Service Bundle Editor
	Service Bundle Editor Editor Tab
	Service Bundle Editor Service Actions Tab
	Service Bundle Editor Upstream Interface Tab
	Service Bundle Editor SA Parameter Map Tab

	Service Bundle Editor Blueprint Tab

	Lookup Editor
	Lookup Editor Editor Tab
	Lookup Editor Blueprint Tab

