
Oracle® Communications Session
Border Controller
Header Manipulation Rules Guide

Release S-Cz9.2.0 - for Service Provider and Enterprise
F74362-01
March 2023

Oracle Communications Session Border Controller Header Manipulation Rules Guide, Release S-Cz9.2.0 -
for Service Provider and Enterprise

F74362-01

Copyright © 2023, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 About This Guide

My Oracle Support viii

 Revision History

1 Header Manipulation Rules

HMR Fundamentals 1-1

Audience 1-2

When to Use HMR 1-2

Managing HMR Impact on Performance 1-2

Applying HMRs to Traffic 1-2

Outbound HMR 1-3

Inbound HMR 1-3

Order of Header Rule Application 1-4

HMR Store Actions and Boolean Results 1-4

Routing Decisions 1-4

Static and Dynamic HMR 1-4

Static HMR 1-4

Dynamic HMR 1-5

Sample HMR 1-5

HMR Components 1-6

Relationship Between Rulesets and Its Rules 1-6

Ruleset Guidelines 1-6

Ruleset Components 1-6

Guidelines for Header and Element Rules 1-8

Guidelines for Header Rules 1-8

Guidelines for Element Rules 1-8

Duplicate Header Names 1-8

SIP Header Pre-Processing HMR 1-9

Back Reference Syntax 1-9

Dialog Matching 1-10

iii

About Dialog-Matching Header Manipulations 1-10

Built-In HMRs 1-12

Built-In Variables 1-13

Built-In SIP Manipulation Configuration 1-16

Unique Regex Patterns Per Peer and Trunk 1-17

Rejecting SIP Requests 1-18

HMR Information in Logs 1-19

Using Regular Expressions 1-20

Example of HMR with Regex 1-20

Regex Characters 1-20

Literal (Ordinary) 1-21

Special (Metacharacters) 1-21

Regex Tips 1-23

Matching New Lines 1-23

Escaped Characters 1-23

Building Expressions with Parentheses 1-23

Boolean Operators 1-24

Equality Operators 1-24

Normalizing EBNF ExpressionString Grammar 1-25

Storing Regex Patterns 1-25

Performance Considerations 1-25

Additional References 1-26

HMR Configuration 1-26

Testing Pattern Rules 1-26

Creating Header Manipulation Rulesets 1-27

Configuring SIP Header Manipulation Rules 1-30

Configuring SIP Header Manipulation Element Rules 1-32

Status-Line Manipulation and Value Matching 1-33

Set the Header Name 1-34

Set the Element Type 1-34

Set the Match Value 1-35

Configuring SIP HMR Sets 1-36

Configuring a Session Agent 1-37

Configuring a SIP Interface 1-37

Example 1 Stripping All Route Headers 1-38

Example 2 Stripping an Existing Parameter and Adding a New One 1-38

Unique HMR Regex Patterns and Other Changes 1-40

The Default Expression 1-40

Manipulation Pattern Per Remote Entity 1-41

Reject Action 1-42

Reject Action Configuration 1-42

iv

About Counters 1-43

SNMP Support 1-43

Log Action 1-44

Changes to Storing Pattern Rule Values 1-45

Removal of Restrictions 1-45

Name Restrictions for Manipulation Rules 1-45

New Value Restrictions 1-46

MIME Support 1-46

Manipulating MIME Attachments 1-46

About the MIME Value Type 1-47

SIP Message-Body Separator Normalization 1-48

Configuring MIME Support 1-49

HMR for SIP-ISUP 1-49

MIME Rules Overview 1-49

Identifying a MIME Rule 1-50

About MIME Rules 1-50

MIME Rules Configuration 1-51

Working with MIME Rules 1-53

MIME ISUP Manipulation 1-53

Adding an ISUP Body to a SIP Message 1-54

MIME ISUP Manipulation Configuration 1-55

Configuration Example 1-57

Header Manipulation Rules for SDP 1-58

SDP Manipulation 1-59

Regular Expression Interpolation 1-64

Regular Expressions as Boolean Expressions 1-65

Moving Manipulation Rules 1-67

Rule Nesting and Management 1-68

ACLI Configuration Examples 1-68

HMR Import-Export 1-73

Exporting 1-74

Importing 1-74

Using SFTP to Move Files 1-75

Removing Files 1-75

HMR Development 1-75

Development Overview 1-75

Development Tips 1-75

Planning Considerations 1-76

Traffic Direction 1-76

Order of Application Precedence 1-76

Order of HMR Execution 1-76

v

Applying HMR to a Specific Header 1-76

HMR Sets 1-77

Create Pseudocode 1-77

Test HMRs 1-77

test-sip-manipulation 1-77

Development Example 1-78

Writing the Pseudo Code 1-78

Testing the Pattern Rule 1-78

Constructing the HMR 1-79

Loading Test SIP Message 1-80

Configuring Testing 1-80

Executing Testing 1-80

Log File Analysis 1-81

Configuration Examples 1-81

Example 1 Removing Headers 1-81

Example 2 Manipulating the Request URI 1-82

Example 3 Manipulating a Header 1-84

Example 4 Storing and Using URI Parameters 1-85

Example 5 Manipulating Display Names 1-86

Example 6 Manipulating Element Parameters 1-88

Example 7 Accessing Data from Multiple Headers of the Same Type 1-90

Example 8 Using Header Rule Special Characters 1-92

Example 9 Status-Line Manipulation 1-94

Example 10 Use of SIP HMR Sets 1-95

Example 11 Use of Remote and Local Port Information 1-97

Example 12 Response Status Processing 1-98

Example 13 Remove a Line from SDP 1-100

Example 14 Back Reference Syntax 1-101

Example 15 Change and Remove Lines from SDP 1-102

Example 16 Change and Add New Lines to the SDP 1-103

vi

About This Guide

The HMR Resource Guide describes the SIP manipulation language called Header
Manipulation Rules (HMR).

This publication is used with Oracle Communications Session Border Controller and Oracle
Enterprise Session Border Controller.

Documentation Set

The following table describes the documentation set for this release.

Document Name Document Description

Acme Packet 3900 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 3900.

Acme Packet 4600 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 4600.

Acme Packet 4900 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 3950 and Acme Packet
4900.

Acme Packet 6100 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 6100.

Acme Packet 6300 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 6300.

Acme Packet 6350 Hardware Installation
Guide

Contains information about the components and
installation of the Acme Packet 6350.

Release Notes Contains information about the current documentation set
release, including new features and management
changes.

Known Issues & Caveats Contains known issues and caveats

Configuration Guide Contains information about the administration and
software configuration of the Service Provider Session
Border Controller (SBC).

ACLI Reference Guide Contains explanations of how to use the ACLI, as an
alphabetical listings and descriptions of all ACLI
commands and configuration parameters.

Maintenance and Troubleshooting Guide Contains information about SBC logs, performance
announcements, system management, inventory
management, upgrades, working with configurations, and
managing backups and archives.

MIB Guide Contains information about Management Information
Base (MIBs), Oracle Communication's enterprise MIBs,
general trap information, including specific details about
standard traps and enterprise traps, Simple Network
Management Protocol (SNMP) GET query information
(including standard and enterprise SNMP GET query
names, object identifier names and numbers, and
descriptions), examples of scalar and table objects.

vii

Document Name Document Description

Accounting Guide Contains information about the SBC’s accounting
support, including details about RADIUS and Diameter
accounting.

HDR Guide Contains information about the SBC’s Historical Data
Recording (HDR) feature. This guide includes HDR
configuration and system-wide statistical information.

Admin Security Guide Contains information about the SBC’s support for its
Administrative Security license.

Security Guide Contains information about security considerations and
best practices from a network and application security
perspective for the SBC family of products.

Platform Preparation and Installation Guide Contains information about upgrading system images and
any pre-boot system provisioning.

Call Traffic Monitoring Guide Contains information about traffic monitoring and packet
traces as collected on the system. This guide also
includes WebGUI configuration used for the SIP Monitor
and Trace application.

HMR Guide Contains information about configuring and using Header
Manipulation Rules to manage service traffic.

REST API Contains information about the supported REST APIs
and how to use the REST API interface.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

My Oracle Support
My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support
(CAS) can assist you with My Oracle Support registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle
Support hotline for your local country from the list at http://www.oracle.com/us/support/
contact/index.html. When calling, make the selections in the sequence shown below
on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking, and Solaris Operating System Support.

3. Select one of the following options:

• For technical issues such as creating a new Service Request (SR), select 1.

• For non-technical issues such as registration or assistance with My Oracle
Support, select 2.

You are connected to a live agent who can assist you with My Oracle Support
registration and opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

About This Guide

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

Emergency Response

In the event of a critical service situation, emergency response is offered by the Customer
Access Support (CAS) main number at 1-800-223-1711 (toll-free in the US), or call the Oracle
Support hotline for your local country from the list at http://www.oracle.com/us/support/
contact/index.html. The emergency response provides immediate coverage, automatic
escalation, and other features to ensure that the critical situation is resolved as rapidly as
possible.

A critical situation is defined as a problem with the installed equipment that severely affects
service, traffic, or maintenance capabilities, and requires immediate corrective action. Critical
situations affect service and/or system operation resulting in one or several of these
situations:

• A total system failure that results in loss of all transaction processing capability

• Significant reduction in system capacity or traffic handling capability

• Loss of the system's ability to perform automatic system reconfiguration

• Inability to restart a processor or the system

• Corruption of system databases that requires service affecting corrective actions

• Loss of access for maintenance or recovery operations

• Loss of the system ability to provide any required critical or major trouble notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance
capabilities may be defined as critical by prior discussion and agreement with Oracle.

Locate Product Documentation on the Oracle Help Center Site

Oracle Communications customer documentation is available on the web at the Oracle Help
Center (OHC) site, http://docs.oracle.com. You do not have to register to access these
documents. Viewing these files requires Adobe Acrobat Reader, which can be downloaded at
http://www.adobe.com.

1. Access the Oracle Help Center site at http://docs.oracle.com.

2. Click Industries.

3. Under the Oracle Communications sub-header, click the Oracle Communications
documentation link.
The Communications Documentation page appears. Most products covered by these
documentation sets appear under the headings "Network Session Delivery and Control
Infrastructure" or "Platforms."

4. Click on your Product and then Release Number.
A list of the entire documentation set for the selected product and release appears.

5. To download a file to your location, right-click the PDF link, select Save target as (or
similar command based on your browser), and save to a local folder.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

About This Guide

ix

http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://docs.oracle.com
http://www.adobe.com
http://docs.oracle.com
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Revision History

This section provides a revision history for this document.

Date Description

March 2023 • Initial release.

Revision History

x

1
Header Manipulation Rules

Variances among SIP networks, like incompatible vendor deployments or disparate SIP
services, can degrade SIP services or disrupt SIP operations. To resolve these variances,
Oracle deploys Header Manipulation Rules (HMR), giving network administrators the ability to
control SIP traffic by manipulating SIP messages.

HMRs permit the network administrator to:

• Insert, delete, or modify SIP headers or parameters

• Copy or move header or parameter values

• Rename parameter names

• Modify MIME bodies including SDP, XML and ISUP

• Change SIP-I/SIP-T ISUP messages, parameters, and fields

• Change message information when, for example, normalization is required

• Categorize and label specific message flows for special processing

• Capture information from a message and insert it into another message

The SBC can perform these actions based on the following:

• The type of SIP message (Request or Response)

• The type of Request (INVITE, REGISTER, etc.)

• The success or failure of a regular expression to match a header or parameter

HMR Fundamentals
HMR is a tool language based on rulesets, header rules, and element rules.

• Rulesets contain one or more header rules, as well as optional element rules that operate
on specified header elements. They are applied to inbound or outbound traffic for a
session agent, realm, or SIP interface.

• Header rules operate on specific headers. They can contain element rules, each of which
specify the actions to perform for a given element of this header.

• Element rules perform operations on the elements of a header. Header elements include
all subparts of a header, excluding the header name; for example, header value, header
parameter, and URI parameter.

The SBC cannot dynamically perform validation as you enter rules. Use the ACLI verify-
config command to confirm that the HMR configuration does not contain invalid or circular
references.

• An invalid reference is a reference that points to a non-existing rule.

• A circular reference is a reference that creates an endless loop of manipulation actions.

1-1

Audience
This document is intended for those users who already understand the Oracle
Communications Session Border Controller and the SIP protocol. In addition, Oracle
recommends you become as HMR-savvy as possible by attending Oracle training
courses prior to launching any HMR in production. You should be aware of all issues
that might result from misinformed or misapplied HMRs.

When to Use HMR
HMR is a flexible, powerful tool. As such, Oracle recommend using it with utmost care.
HMR should only be implemented in production networks once the HMRs and their
applications have been rigorously tested in a lab environment. You want to ensure
your HMRs work as you intend them before using them for your production network.

Oracle's Customer Support Team can assist you in developing HMRs for your network.
Our customer support team can ensure that your HMR are constructed, configured,
and applied properly, thereby guaranteeing your HMR achieves the result you want.

Managing HMR Impact on Performance
The following suggestions help manage HMR effect on performance.

• Use the pre-constructed manipulations and variable tags. They consume less
processing and decrease the effect on performance.

• Include constructs and constrain the HMR to specific methods and messages. For
example, you can limit effected methods or the length of a string match.

• Construct the HMR to only work on the traffic that matches your criteria, letting the
remaining traffic pass untouched. (Unless you want to manipulate all traffic.)

• Take advantage of the test tools available on SBC to evaluate your HMRs.

• Administer the HMRs by using HMR export and import and reorder tools also
available.

• Use logfiles to resolve issues.

Applying HMRs to Traffic
You can apply HMR rules to inbound or outbound traffic for session agents, realms,
and SIP interfaces. The order of precedence is:

1. session agent

2. realm

3. SIP interface

A SIP manipulation applied to a session agent overrides the other two, and a SIP
manipulation for a realm overrides one for a SIP interface.

Chapter 1
HMR Fundamentals

1-2

Note:

SBC sends content-length header in OPTIONS message to Session Agent that has
HMR configured.

Outbound HMR
Outbound HMR rules are applied just before the SIP message is sent out by the SBC, after
SIP-NAT processing. Any changes made by the HMR affects the message. Those changes
are not overridden by the SBC, which means the SBC does not prevent the rules from
breaking the protocol.

The rules are performed in a stateless manner. They do not store values across messages
and they do not remember what they did in previous messages.

Note:

You can work around the stateless behavior by having an inbound HMR copy the
information needed to a private header, which then goes through the SBC. The
outbound rule can then look for the header and act upon the information.

Inbound HMR
Inbound HMR rules are applied before most processing done by the SBC, but after some SIP
parser processing is performed. The message's source is determined to decide which
session agent, realm, or SIP interface it belongs to.

By default, the header rules are applied after the message is parsed; this verifies the
message is well-formed and follows the specifications. This is necessary to securely perform
any subsequent message processing, including HMR. An exception to this rule can be
created by setting the inmanip-before-validate option. See "SIP Header Pre-Processing
HMR" for more details.

Because inbound rules are applied before the message is completely processed by the SBC,
you can use them to make the SBC perform specific actions outside of ordinary processing.
For example, you can change the request-URI, add a Route header, or add a trunk group
URI to make the SBC route the request on a different path.

Inbound rules are stateless. However, if the SBC is in B2BUA mode (its most common mode)
it stores and remembers certain header values for later use in the dialog. If HMR changes
them on inbound, the SBC later believes them to be the actual received values. There are a
few exceptions to this with the following headers:

• To and From can be changed by HMR and are used when the message gets forwarded
out another interface.
But if they were for a new request message, the SBC remembers the original ones when
it sends back 1xx-6xx responses. The previous hop that sent the new request inspects
the responses and needs them to be identical based on SIP protocol rules. However,
requests sent by the SBC back to the originator for the call, from the called to the caller,
will not be automatically undone by the SBC as the responses were.

• Call-ID values are stored before HMR is applied and cannot be changed by HMR on
inbound.

Chapter 1
HMR Fundamentals

1-3

If a SIP INVITE is received for a new call, inbound HMR can change the To or From
headers so that the next hop device gets the changed headers and the SBC stores
them. But the 100 Trying, 180 Ringing, and 200 OK responses, for example, will use
the original To and From values and not the HMR modified ones. If the called party
later sends a Bye or re-Invite, back to the caller, the SBC will then use the HMR
modified values it stored, which may or may not be correct.

Order of Header Rule Application
The SBC applies SIP header rules in the order you have entered them. This guards
against the SBC removing data that might be used in the other header rules.

This ordering also provides you with ways to strategically use manipulations. For
example, you might want to use two rules if you want to store the values of a regular
expression. The first rule would store the value of a matched regular expression, and
the second could delete the matched value.

In addition to taking note of the order in which header rules are configured, you must
also configure a given header rule prior to referencing it. For example, you must create
Rule1 with the action store for the Contact header before you can create Rule2 which
uses the stored value from the Contact header.

HMR Store Actions and Boolean Results
Although HMR rulesets are stateless (they do not store values across messages nor
remember what they did in previous messages), they can store strings for use within
the same ruleset. Some header rules and element rules can store values that later
header rules or element rules can use. Once the set of header rules and element rules
in a SIP manipulation are performed, and the SIP manipulation is complete for the
message, the stored values are forgotten.

Routing Decisions
Before routing the message, the SBC parses the ingress SIP message, ensuring the
validity of the message's structure. After this parsing, the SBC applies the inbound
header manipulation. You can use the inbound HMRs to modify the SBC's routing
behavior if you want to increase the flexibility of the routing options.

An outbound HMR is the last processing the SBC performs on traffic before passing it
back to the interface hardware. Knowing where this processing fits in helps you to
know what state the traffic will be in before being processed by the outbound HMR.
Outbound traffic is not subject to the screening functions performed by the hardware
on inbound traffic.

Static and Dynamic HMR
You can manipulate the headers in SIP messages both statically and dynamically. You
can edit response headers or the Request-URI in a request, and change the status
code or reason phrase in SIP responses.

Static HMR
Static HMR lets you set up rules that remove and/or replace designated portions of
specified SIP headers. The SBC can:

Chapter 1
HMR Fundamentals

1-4

• Search headers for dynamic content or patterns with the header value. It can search, for
example, for all User parts of a URI that begin with 617 and end with 5555 (e.g.,
617...5555).

• Manipulate any part of a patterns match with any part of a SIP header. For example, 617
123 5555 can become 617 231 5555 or 508 123 0000, or any combination of those.

Dynamic HMR
SIP HMR lets you set up dynamic header manipulation rules that give the SBC complete
control over alterations to the header value. Using regular expressions provides a high
degree of flexibility for header manipulation. For example, you can search a specific URI
when you do not know the value of the parameter, but want to use the matched parameter
value as the header value. It also lets you preserve matched sections of a pattern, and
change what you want to change.

Sample HMR
The following shows a complete HMR that manipulates To and From headers, changes the
URI-host element, and hides IP topology. It is applied as outgoing for a realm. The HMR
includes a built-in HMR variable $REMOTE_IP.

sip-manipulation
 name NAT_IP
 description
 split-headers
 join-headers
 header-rule
 name To
 header-name To
 action manipulate
 comparison-type case-sensitive
 msg-type request
 methods
 match-value
 new-value
 element-rule
 name To
 parameter-name
 type uri-host
 action none
 match-val-type ip
 comparison-type case-sensitive
 match-value
 new-value $REMOTE_IP
 header-rule
 name From
 header-name From
 action manipulate
 comparison-type case-sensitive
 msg-type request
 methods
 match-value
 new-value
 element-rule

Chapter 1
HMR Fundamentals

1-5

 name From
 parameter-name
 type uri-host
 action none
 match-val-type ip
 comparison-type case-sensitive
 match-value
 new-value $LOCAL_IP

HMR Components
Each SIP manipulation ruleset contains one or more header rules and element rules
for use as an inbound or outbound HMR ruleset. Generally, you set a header rule that
will store what you want to match, and then you create subsequent rules that operate
on this stored value.

Because header rules and element rules are applied sequentially, a given rule
performs its operations on the results of all the rules previously entered. For example,
if you want to delete a portion of a SIP header, you would create Rule 1 that stores the
value for the purpose of matching, and then create Rule 2 that would delete the portion
of the header you want removed. This prevents removing data that might be used in
the other header rules.

Relationship Between Rulesets and Its Rules
The relationship between manipulation rules and manipulation rulesets is created once
you load your configuration. The order in which you enter rulesets does not matter. It
also means that the SBC cannot dynamically perform validation as you enter rules, so
you should use the verify-config command to confirm your manipulation rules contain
neither invalid nor circular references. Invalid references are those that point to SIP
manipulation rules that do not exist, and circular references are those that create
endless loops of manipulation rules being carried out over and over.

Ruleset Guidelines
Keep the following guidelines in mind when creating rulesets:

• One ruleset per inbound message

• One ruleset per outbound message

• Header or element rules can call another HMR

• An HMR can have multiple header rules

• A header rule can have multiple header rules

Ruleset Components
The following table lists ruleset components.

Chapter 1
HMR Components

1-6

Component Description

header-rule Header rules form the basis of rulesets. Used to operate on one or
more SIP headers within the SIP message; operations performed
at this level work on the entire header value, excluding the label.
Within a ruleset, each HR is performed in order. Typically one
performs regular expression "store" action HRs before manipulation
ones, although there are exceptions depending on the needs.
There is no hard limit to the number of HR elements included in a
ruleset, although in practical terms one would probably not
configure thousands of them.

match-value Used to perform a matching comparison to decide whether to store
values, add a header, or delete a header. The type of matching
comparison performed is based on the comparison-type field.
If the match-value is left blank, the action is performed regardless.
Therefore, if the header rule action is "delete", "add", or
"manipulate", and the match value is left blank, the action will be
performed on the header.

If the header rule action is "store" and the match value is left blank,
the SBC automatically stores everything, as if the match value
were .+ which means match at least one character, as many times
as possible. Note that any whitespace after the first non-whitespace
character is kept as well.

element-rule Used to operate on specific portions of a SIP header, such as
components of a URI value within the header or the parameters of
the header; if the header value contains a URI, then this class
operates only on the specified portion (i.e., URI user or header
parameter); this class does not operate on headers with multiple
header values.

mime-rule Used to operate on any MIME part within a SIP message (SDP,
test, or some other proprietary body type); used as a general
facility to operate on the entire body as a single continuous string.

mime-header-rule Used to operate on the SIP headers within a body part; the body
part contains headers only when the MIME content is contained in
a multi-part message; when used to operate on a MIME body that
is not multi-part, then this class operates as through it were a
header-rule.

mime-isup rule Special type of mime-rule because it expects the MIME content of
the specified body to be part of a valid binary ISDN User Part
(ISUP) format.

isup-param-rule Used to perform operations on the parameters contained in an
ISUP body.

mime-sdp-rule Special kind of mime-rule that is used to operate on the SDP MIME
content of a SIP message; at this level, the rule operates on the
entire SDP as a single contiguous string.

sdp-session-rule Used to operate on only the session portion of the SDP content
consists of all the characters starting from the beginning until the
first media line.

sdp-media-rule Used to operate on only a specific media portion of the SDP
content; consists of all the characters starting from the beginning of
the specified m-line until the next m-line or the end of the SDP.

sdp-line-rule Used to operate on a single descriptor line within either the session
or media portion of the SDP.

Chapter 1
HMR Components

1-7

Guidelines for Header and Element Rules
Header rules and element rules share these guidelines:

• References to groupings that do not exist result in an empty string.

• References to element rule names alone result in a Boolean condition of whether
the expression matched or not.

• A maximum of ten matches are allowed for a regular expression. Match 0
(grouping 0) is always the match of the entire matching string; subsequent
numbers are the results for other groups that match.

• Rule names must start with a letter, and then can contain any number of letters,
numbers, or underscores.

• All uppercase rule names are not allowed because this syntax is reserved for
variables.

• To avoid being interpreted as a minus operator, dashes are not permitted in rule
names.

Guidelines for Header Rules
Header rules guidelines include:

• Header names must be unique in a given HMR.

• Each header rule operates on one header.

• Multiple header rules can operate on the same header.

• Header rules can contain multiple element rules.

Guidelines for Element Rules
Element rule guidelines include:

• Element rule names must be unique within a header rule

• Each element rule operates on one component of the header

• Multiple element rules can operate on the same component

Duplicate Header Names
If more than one header exists for a configured header-name, the SBC stores each
value in an array whose index starts at 0. To reference those values, use the
syntax $<header-name>[<index>].

Add a trailing [<index>] value after the header-name parameter to represent the
specific instance of the header on which to operate. Additional stored header values
are indexed in the order in which they appear within the SIP message, and there is no
limit to the index. The SBC takes no action if the header does not exist.

Use index 0 to reference the first header. In addition to numerical values, possible
index values are:

• * The SBC references all headers.

Chapter 1
HMR Components

1-8

• ^ The SBC references the last stored header in the header rule.

Note that the header instance functionality has no impact on HMR’s add action, and you
cannot use this feature to insert headers into a specific location. Headers are added to the
end of the list, except that Via headers are added to the top.

SIP Header Pre-Processing HMR
By default, the SBC performs in-bound SIP manipulations after it carries out header
validation. Adding the inmanip-before-validate option in the global SIP configuration allows
the SBC to perform HMR on received requests prior to header validation. Because there are
occasional issues with other SIP implementations—causing invalid headers to be used in
messages they send to the SBC—it can be beneficial to use HMR to remove or repair these
faulty headers before the request bearing them is rejected.

When configured to do so, the SBC performs pre-validation header manipulation immediately
after it executes the top via check. Inbound SIP manipulations are performed in order of
increasing precedence: SIP interface, realm, and session agent.

The fact that the top via check happens right before the SBC carries out pre-validation
header manipulations means that you cannot use this capability to repairs the first via header
if it is indeed invalid. If pre-validation header manipulation were to take place at another time
during processing, it would not be possible to use it for SIP session agents. The system
learns of matching session agents after top via checking completes.

For logistical reasons, this capability does not extend to SIP responses. Inbound
manipulation for responses cannot be performed any sooner that it does by default, a time
already preceding any header validation.

To enable SIP header pre-processing:

1. Access the sip-config configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-config
ORACLE(sip-config)#

2. options—Set the inmanip-before-validate parameter.

ORACLE(sip-config)# options +inmanip-before-validate

This value allows the SBC to perform pre-validation header manipulation in order of
increasing precedence: SIP interface, realm, and session agent.

3. Save and activate the configuration.

Back Reference Syntax
You can use back reference syntax in the new-value parameter for header and element rules.
Denoted by the use of $1, $2, $3, etc. (where the number refers to the regular expression's
stored value), you can reference the header and header rule's stored value without having to
use the header rule's name. It instead refers to the stored value of this rule.

For example, when these settings are in place:

Chapter 1
HMR Components

1-9

• header-rule=changeHeader

• action=manipulate

• match-value=(.+)([^;])
you can set the new-value as sip:$2 instead of sip:$changeHeader.$2.

You can use the back reference syntax when:

• The header-rule action parameter is set to manipulate or find-replace-all

• The element-rule action parameter is set to replace or find-replace-all

Using back reference syntax simplifies your development work because you do not
need to create a store rule and then manipulate rule; the manipulate rule itself
performs the store action if the comparison-type parameter is set to pattern-rule.

Dialog Matching
The out-of-dialog setting is useful for To/From NATing rules.

Service providers can use HMR to support legacy RFC 2543 devices and some non-
compliant RFC 3261 devices. The header-rule msg-type setting called out-of-dialog
has been added, which applies the rule (and any of its sub-rules) only to out-of-dialog
requests. If the rule was applied as an outbound sip-manipulation to the first request,
then it will apply the rule against all subsequent requests going in the same direction.
The primary purpose of this new configuration setting is to support changing the To/
From URI's in mid-dialog requests without breaking dialog matching for some over-
strict SIP devices.

About Dialog-Matching Header Manipulations
The goal of this feature is to maintain proper dialog-matching through manipulation of
dialog-specific information using HMR. Two fundamental challenges arise when
looking at the issue of correctly parameters manipulating dialog-matching:

• Inbound HMR

• Outbound HMR

The new setting out-of-dialog (for the msg-type parameter) addresses these
challenges by offering an intelligent more of dialog matching of messages for inbound
and outbound HMR requests. This is a msg-type parameter, meaning that it becomes
matching criteria for operations performed against a message. If you also specify
methods (such as REGISTER) as matching criteria, then the rule is further limited to
the designated method.

For both inbound and outbound manipulations, using the out-of-dialog setting means
the message must be a request without a to-tag in order to perform the manipulation.

Inbound HMR Challenge
Because inbound manipulations take place before the message reaches the core of
Oracle Communications Session Border Controller (SBC) SIP processing, the SIP
proxy takes the manipulated header as directly received from the client. This can
cause problems for requests leaving the SBC for the UAC because the dialog does not
match the initial request sent.

Chapter 1
HMR Components

1-10

The unmodified header must be cached because for any subsequent request (For example, a
BYE originating from the terminator. See the following diagram.) the SBC might need to
restore the original value, enabling the UAC to identify the message correctly as being part of
the same dialog. For out-of-dialog requests (when the To, From, or Call-ID headers are
modified) the original header is stored in the dialog when the msg-type out-of-dialog is
used.

The SBC performs the restoration of original headers outside of SIP manipulations. There are
no manipulation rules to configure for restore the header to their original context. The SBC
recognizes that the headers are modified, and restores them to their original state prior to
sending the message out. Restoration takes place prior to outbound manipulations so that
any outbound manipulation can those headers after they are restored.

Outbound HMR Challenge
When you use the out-of-dialog setting for an outbound manipulation, the Oracle
Communications Session Border Controller executes this specific SIP header rule only if the
same SIP header rule was executed against the initial dialog-creating request.

For example, if the INVITE’s To header was not manipulated, it would not be correct to
manipulate the To header in the BYE request. To do so would render the UAC unable to
properly match the dialog. And this also means that the outbound manipulation should be
carried out against a To, From, or Call-ID header in the BYE request if it was manipulated in
the INVITE.

Chapter 1
HMR Components

1-11

Dialog-matching Header Manipulation Configuration
You using the out-of-dialog setting in the msg-type parameter, part of the SIP header
rules configuration.

To enable dialog-matching header manipulation:

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. msg-type—Set this parameter to out-of-dialog to enable dialog-matching header
manipulation.

3. Type done to save your work.

Built-In HMRs
In the course of HMR use, certain SIP manipulations have become commonly used.
Oracle created a library of built-in SIP manipulations that you use exactly like the
HMRs you create yourself. You apply the built-in HMRs as arguments to the in-
manipulationid and out-manipulationid parameters for session agents, realms, and
SIP interfaces. You can also apply them in HMR sets as a nested manipulation.

Built-in rules start with the prefix ACME_, so Oracle recommends you name your own
rules in a different manner to avoid conflict.

You can view a list of built-in manipulations using the following ACLI command:

show built-in-sip-manipulation

Chapter 1
HMR Components

1-12

ACME_NAT_TO_FROM_IP

When performed outbound, this rule changes:

• The To-URI hostname to the logical $TARGET_IP and port to $TARGET_PORT

• The From-URI to the logical $LOCAL_IP and port to be $LOCAL_PORT

Note:

This built-in HMR only runs when the URI-host is an IP address, not when it's a
domain name.

When applied in an inbound manner, the remote and local ports are reveresed.

Built-In Variables
To improve performance and reduce development complexity, the SBC contains built-in
variables for common components of the SIP message. These reserved variables operate
exactly like customer-defined variables. The recommended syntax is:

$<variable>.$0

For example:

$PAI_USER.$0

When you omit the $0, the resulting value is TRUE or FALSE, which can be useful to
determine if there was no username in the PAI header or that no PAI header exists.

The values for the variables are obtained when they are resolved. For example, when the To-
URI has been changed by a previous rule, the current rule gets the changed value (as would
apply to $ORIGINAL). When the header or value does not exist in the SIP message, either an
empty string is returned or, for Boolean uses, the value FALSE is returned.

The following table lists and describes the built-in variables.

Variable Description

$ORIGINAL Original value of element

$LOCAL_IP IP address of the SIP interface on which the
message was received for inbound manipulation
or sent on for outbound manipulation.

$LOCAL_PORT Port number of the SIP interface on which the
message was received for inbound manipulation
or sent on for outbound manipulation.

$REMOTE_IP IP address the message was received from for
inbound manipulation or sent to for outbound
manipulation.

$REMOTE_PORT Port number the message was received from for
inbound manipulation or sent to for outbound
manipulation.

Chapter 1
HMR Components

1-13

Variable Description

$REMOTE_VIA_HOST Host from the top Via header of the message.

$TRUNK_GROUP Legacy reserved variable that can resolve to
<TRUE/FALSE>.

$TRUNK_GROUP_CONTEXT Legacy reserved variable that can resolve to
<TRUE/FALSE>.

$REPLY_IP IP address where the SIP message came from

$REPLY_PORT Port number where the SIP message came from

$TARGET_IP IP address where the SIP message is sent to

$TARGET_PORT Port number where the SIP message is sent to

$MANIP_STRING The manipulation string

$MANIP_PATTERN Use a regex pattern from the most specific
matching session agent, realm, or SIP interface.
Only this variable can be used in the match-value
field. You cannot combine it with additional
characters. This variable can be used in any rule
you use a pattern-rule match value, including store
action rules.
You can also reference the stored values from
those referenced in later rules. For example, you
can create an allow list based on trunk From
header uri-user parameter. Each session agent
passes a different string on which to perform the
allow list operation.

Because the MANIP_PATTERN is dynamically
decided at run-time every time the HMR executes
for each message, it is possible no manipulation
pattern will be found. In this scenario, it will use
the default \,+. This default works most like .+.

It is also possible a sub-group might be referenced
that was not in the pattern chosen, in this scenario
the variable resolves to empty/FALSE.

$CRLF Search for carriage returns in new lines. Because
you can search for these value and replace them,
you also must be able to add them back in when
necessary. Resolves to \r\n and is commonly
used in MIME manipulation. If you are creating a
new body, there might be a need for many CRLFs
in the new-value parameter.

$TO_USER URI username from To header without any user
parameters.

$TO_PHONE URI user of the To header as a phone number
without any visual separators and with the leading
+ if it is present.

$TO_HOST URI host portion from the To header.

$TO_PORT URI port number from the To header. This is set to
5060 if it is not actually in the message.

$FROM_USER URI username from the From header without any
user parameters

$FROM_PHONE URI user of the From header as a phone number
without any visual separators and with the leading
+ if it is present

$FROM_HOST URI host portion from the From header.

Chapter 1
HMR Components

1-14

Variable Description

$FROM_PORT URI port number from the From header. This is set
to 5060 if it is not actually in the message.

$CONTACT_USER URI username from the first instance of the
Contact header without any user parameters.

$CONTACT_PHONE URI user of the first instance of the Contact
header as a phone number without any visual
separators and with the leading + if it is present.

$CONTACT_HOST URI host portion from the first instance of the
Contact header

$CONTACT_PORT URI port number from the first instance of the
Contact header. This is set to 5060 if it is not
actually in the message.

$RURI_USER URI username from the Request-URI header
without any user parameters.

$RURI_PHONE URI user of the Request-URI header as a phone
number without any visual separators and with the
leading + if it is present.

$RURI_HOST URI host portion from the Request-URI header.

$RURI_PORT URI port number from the Request-URI header.
This is set to 5060 if it is not actually in the
message.

$PAI_USER URI username from the first instance of the P-
Asserted-Identity header without any user
parameters.

$PAI_PHONE URI user of the first instance of the P-Asserted-
Identity header as a phone number without any
visual separators and with the leading + if it is
present.

$PAI_HOST URI host portion from the first instance of the P-
Asserted-Identity header.

$PAI_PORT URI port number from the first instance of the P-
Asserted-Identity header. This is set to 5060 if it is
not actually in the message.

$PPI_USER URI username from the first instance of the P-
Preferred-Identity header without any user
parameters.

$PPI_PHONE URI user of the first instance of the P-Preferred-
Identity header as a phone number without any
visual separators and with the leading + if it is
present.

$PPI_HOST URI host portion from the first instance of the P-
Preferred-Identity header.

$PPI_PORT URI port number from the first instance of the P-
Preferred-Identity header. This is set to 5060 if it is
not actually in the message.

$PCPID_USER URI username from the P-Called-Party-ID header
without any user parameters.

$PCPID_PHONE URI user of theP-Called-Party-ID header as a
phone number without any visual separators and
with the leading + if it is present.

$PCPID_HOST URI host portion from theP-Called-Party-ID
header.

Chapter 1
HMR Components

1-15

Variable Description

$PCPID_PORT URI port number from the P-Called-Party-ID
header. This is set to 5060 if it is not actually in the
message.

$CALL_ID Resolves to the Call-ID of the current SIP
message; is a commonly stored rule.

$TIMESTAMP_UTC Gets the current time from the SBC's system clock
in RFC 3339 format:
YYYY-MM-DDTHH:MM:SS.PPPZ

The PPP is partial seconds and the time is based
on UTC.

For example:

2012-01-01 T22:00:09.123Z

$T_GROUP Trunk group

$T_CONTEXT Trunk group context

$M_STRING A boolean that is true if the manipulation-string
exists, false if not. The variable $M_STRING.$0
contains the manipulation-string.

The $TARGET_IP and $REMOTE_IP Variables

The $TARGET_IP variable is always the next hop IP address for a SIP request. This
variable is set only for requests.

The $REMOTE_IP variable changes depending on the state of the message. For
outbound manipulations, the $REMOTE_IP variable is the destination IP address or
next hop IP address; that is, the $REMOTE_IP and $TARGET_IP are the same for
outbound manipulations. For inbound manipulations of a SIP request,
the $REMOTE_IP variable is the reply IP address; that is, the $REMOTE_IP
and $REPLY_IP are the same. For all other inbound manipulations, the $REMOTE_IP
is set using the From header.

Built-In SIP Manipulation Configuration
When you want to enable this feature for a realm, session agent, or SIP interface, you
configure the in-manipulationid or out-manipulationid parameters with the rule.

The sample here shows this feature being applied to a session agent, but the realm
and SIP interface configurations also have the same parameter you use to set up the
feature.

To use built-in SIP manipulations:

1. Access the session-agent configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# session-agent
ORACLE(session-agent)

2. out-manipulationid—Enter name of the built-in rule you want to use.

Chapter 1
HMR Components

1-16

Note:

All built-in rules start with ACME_.

3. Save your work.

Unique Regex Patterns Per Peer and Trunk
The built-in variable $MANIP_PATTERN reduces the complexity of writing HMRs for multiple
peers and trunks.

Similar to the reserved variable $MANIP_STRING, the variable $MANIP_PATTERN uses a
regex pattern from the most-specific matching session-agent, realm, or sip-interface. Within
these configuration objects, the "manipulation-pattern" attribute allows you to set a unique
regex pattern. Only one regex pattern can be specified in the configuration attribute, and only
the :variable $MANIP_PATTERN can appear in the match-value field (for example; the
"$MANIP_PATTERN" cannot be combined with additional characters in the match-value).

This feature enables service providers to configure one or a few common global HMRs, while
having a unique regex pattern for each SIP trunk or peer. It reduces the number of sip-
manipulation sets that need to be provisioned, reducing provisioning work and system
memory usage.

The $MANIP_PATTERN can be used in any rule you can use a pattern-rule match-value in,
including store action rules. You can also reference the stored values from those referenced
in later rules for example: using the $RuleName for the Boolean TRUE or FALSE,
or $RuleName.$0 for the whole matching string). For example, you can create an allow list
based on the trunk From header uri-user parameter. Each session-agent then passes a
different string on which to perform the allow list operation. The following code block shows a
configuration example:

sip-manipulation
 name sipTrunkallowlist
 ...
 header-rule
 name allowlistOnFrom
 header-name From
 action manipulate
 comparison-type case-sensitive
 msg-type out-of-dialog
 methods INVITE
 match-value
 new-value
 element-rule
 name checkFromUriUser
 parameter-name
 type uri-user
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value $MANIP_PATTERN
 new-value
 element-rule
 name rejectIfNoMatch

Chapter 1
HMR Components

1-17

 parameter-name
 type uri-user
 action reject
 match-val-type any
 comparison-type boolean
 match-value !$allowlistOnFrom.$checkFromUriUser
 new-value 403:Forbidden

session-agent
 hostname 172.16.50.101
 ip-address 172.16.50.101
 port 5060
 realm-id peer1-core
 ...
 manipulation-string
 manipulation-pattern ^78132841([0-4][0-9])$

session-agent
 hostname 172.16.50.102
 ip-address 172.16.50.102
 port 5060
 realm-id peer2-core
 ...
 manipulation-string
 manipulation-pattern ^78132841([5-9][0-9])$

Rejecting SIP Requests
SIP requests can be rejected using HMRs.

To simplify rejecting SIP requests with HMRs, the SBC supports the reject action in
any rule type. This rejects SIP requests if the conditions within the rule (match-value,
msg-type, etc.) are true. When a SIP message is rejected, the SBC increments the
counter called "Rejected Messages," which can be displayed in the ACLI with the show
sip transport command. SIP responses cannot be rejected but the counter is still
incremented.

A new MIB object in the ap-smgmt.mib for SNMP GET is available to obtain the
counter value. The SBC can send an SNMP trap when the counter exceeds a
configured threshold in a configured time window. The threshold is set by new “reject-
message-threshold” and “reject-message-window” config attributes in session-router
config.

When rejecting a matching SIP Request, a response-code and reason-phrase can be
specified. In the rule configured with the "reject" action, enter the syntax status-
code[:reason-phrase] in the new-value field. For example 401:Denied in the new-
value of a reject action rule will cause the SD to reject the SIP Request with a 401
response and "Denied" as the reason-phrase.

sip-manipulation
 name rejectINV
 description
 header-rule
 name from508
 header-name from

Chapter 1
HMR Components

1-18

 action manipulate
 comparison-type case-sensitive
 msg-type any
 methods INVITE
 match-value
 new-value
 element-rule
 name fromUser
 parameter-name
 type uri-phone-number-only
 action reject
 match-val-type any
 comparison-type case-sensitive
 match-value 5085551212
 new-value 401:Denied

Note:

When a SIP request matches a rule with a reject action, the rejection is immediate
and later rules aren't executed.

Note:

The reject action should not respond with a 200 OK. Instead, use a response code
in the 400, 500, or 600 range.

HMR Information in Logs
You can apply an action type called log to all manipulation rules. When you use this action
type and a condition matching the manipulation rule arises, the SBC logs information about
the current message to a separate log file. This log files will be located on the same core in
which the SIP manipulation occurred. On the core where sipt runs, a logfile called
matched.log will appear when this action type is executed.

The matched.log file contains a timestamp, received and sent SBC network interface, sent or
received IP address:port information, and the peer IP address:port information. It also
specifies the rule that triggered the log action in this syntax: rule-type[rule name]. The
request URI, Contact header, To Header, and From header are also present.

--
Apr 17 14:17:54.526 On [0:0]192.168.1.84:5060 sent to 192.168.1.60:5060
element-rule[checkRURIPort]
INVITE sip:service@192.168.1.84:5060 SIP/2.0
From: sipp <sip:+2125551212@192.168.1.60:5060>;tag=3035SIPpTag001
To: sut <sip:service@192.168.1.84>
Contact: sip:sipp@192.168.1.60:5060

Chapter 1
HMR Components

1-19

Using Regular Expressions
Regular expressions (regex) are patterns that describe character combinations in text.
Regex provides a concise and flexible means to match strings of text, such as
particular characters, words, or patterns of characters. SIP messages are treated as
sets of substrings on which regex patterns rules are executed. With regex you can
create strings to match other string values and use groupings in order to create stored
values on which to operate.

Note:

An understanding of regex is required for successful HMRs. Refer to
Mastering Regular Expressions from O'Reily Media for more information.

Oracle's SBC supports the standardized regular expression format called Portable
Operating System Interface (POSIX) Extended Regular Expressions. The SBC regex
engine is a traditional regex-directed (NFA) type.

Example of HMR with Regex
The following HMR removes a P-Associated-URI from an response to a REGISTER
request. The regex expression ^<tel: lets you specify the removal only if it is a tel-
URI.

sip-manipulation
 name rem_telPAU
 description
 header-rule
 name modPAU
 header-name P-Associated-URI
 action delete
 comparison-type pattern-rule
 match-value ^<tel:
 msg-type reply
 new-value
 methods REGISTER

Regex Characters
Regular expressions are used to search for patterns of text using one or more of the
following devices:

Character Type Example Description

Literal text foobar With the exception of a small
number of characters that
have a special meaning in a
regex, text matches itself.

Chapter 1
Using Regular Expressions

1-20

Character Type Example Description

Special wildcard characters \d Known as metacharacters or
metasequences, these match
or exclude specific types of
text, such as any number.

Character classes [1-5] When a suitable
metacharacter or
metasequence doesn't exist,
you can create your own
definition to match or exclude
specified characters.

Quantifiers + or ? These specify how many times
you want the preceding
expression to match or
whether it's optional.

Capturing groups and
backreferences

(foobar) or \1 These specify parts of the
regex that you want
remembered, either to find a
similar match later on, or to
preserve the value in a find
and replace operation.

Boundaries and anchors ^ or $ These specify where the
match should be made, for
example at the beginning of a
line or word.

Alternation | This specifies alternatives.

By default, regular expressions are case-sensitive, so A and a are treated as different
characters. As long as what you're looking for fits a regular pattern, a regex can be created to
find it.

Literal (Ordinary)
Many of the characters you can type on your keyboard are literal, ordinary characters; they
present their actual value in the pattern. For example, the regex pattern sip, is a pattern of all
literal characters, that will be matched from left to right, at each position in the input string,
until a match is found. Given an input string of <sip:me@here.com>, the regex pattern sip will
successfully match the sip, starting at the position of the s and ending at the position of the p.
But the same regex will also match sip in <sips:me@here.com> and
tel:12345;isip=192.168.0.3 because an s followed by an i followed by a p exists in both of
those as well.

Special (Metacharacters)
Some characters have special meaning. They instruct the regex function (or engine which
interprets the expressions) to treat the characters in designated ways. The following table
outlines these special characters or metacharacters.

Chapter 1
Using Regular Expressions

1-21

Character Name Description

. dot Matches any one character, including a space; it will match
one character, but there must be one character to match.
Matches a literal dot when bracketed or placed next to a
backslash: [.] or \..

* star/asterisk Matches one or more preceding character (0, 1, or any
number), bracketed carrier class, or group in parentheses.
Used for quantification.
Typically used with a dot in the format .* to indicate that a
match for any character, 0 or more times.

Matches a iteral asterisk when bracketed: [*].

+ plus Matches one or more of the preceding character, bracketed
carrier class, or group in parentheses. Used for
quantification.
Matches a literal plus sign when bracketed: [+].

| bar/vertical bar/
pipe

Matches anything to the left or to the right; the bar
separates the alternatives. Both sides are not always tried;
if the left does not match, only then is the right attempted.
Used for alternation.

{ left brace Begins an interval range, ended with } (right brace) to
match; identifies how many times the previous single
character or group in parentheses must repeat.
Interval ranges are entered as minimum and maximums
{minimum,maximum} where the character or group must
appear a minimum number of times up to the maximum.
You can also use interval ranges to set magnitude, or
exactly the number of times a character must appear; you
can set this, for example, as the minimum value without the
maximum {minimum,}.

? question mark Signifies that the preceding character or group in
parentheses is optional; the character or group can appear
not at all or one time.

^ caret Acts as an anchor to represent the beginning of a string.

$ dollar sign Acts as an anchor to represent the end of a string.

[left bracket Acts as the start of a bracketed character class, ended with
the] (right bracket). A character class is a list of character
options; one and only one of the characters in the
bracketed class must appear for a match. A - (hyphen) in
between two characters enclosed by brackets designates a
range; for example [a-z] is the character range of the
lower case twenty-six letters of the alphabet.
Note that the] (right bracket) ends a bracketed character
class unless it sits directly next to the [(left bracket) or the
^ (caret); in those two cases, it is the literal character.

(left parenthesis Creates a grouping when used with the) (right
parenthesis). Groupings have two functions:
Separate pattern strings so that a whole string can have
special characters within it as if it were a single character.

They allow the designated pattern to be stored and
referenced later (so that other operations can be performed
on it).

Chapter 1
Using Regular Expressions

1-22

Regex Tips
• Limit use of wildcards asterisk * and plus sign +.

• A character class enclosed by brackets [] is not a choice of one or more characters but
rather a choice of one and only one character in the set.

• The range 0-1000 is not the same as the range 0000-1000.

• Spaces are legal characters and will be interpreted like any other character.

Matching New Lines
In the regular expression library, the dot . character does not match new lines or carriage
returns. Conversely, the not-dot does match new lines and carriage returns. This provides a
safety mechanism preventing egregious backtracking of the entire SIP message body when
there are no matches. The SBC reduces backtracking to a single line within the body.

Escaped Characters
SIP HMR's support for escaped characters allows for searches for values you would be
unable to enter yourself. Because they are necessary to MIME manipulation, support for
escaped characters includes:

Syntax Description

\s Whitespace

\S Non-whitespace

\d Digits

\D Non-digits

\R Any \r, \n, or \r\n
\w Word

\W Non-word

\A Beginning of buffer

\Z End of buffer

\f Form feed

\n New line

\r Carriage return

\t Tab

\v Vertical tab

Building Expressions with Parentheses
You can use parentheses () when you use HMR to support order of operations and to
simplify header manipulation rules that might otherwise prove complex. This means that
expressions such as (sip + urp) - (u + rp) can now be evaluated to sip. Previously, the
same expression would have evaluated to sipurprp. In addition, you previously would have
been required to create several different manipulation rules to perform the same expression.

Chapter 1
Using Regular Expressions

1-23

Boolean Operators
The following Boolean operators are supported:

• &, meaning AND.

• |, meaning OR.

• !, meaning NOT.

You can only use Boolean operators when the comparison type is pattern-rule and
you are evaluating stored matches. The SBC evaluates these Boolean expressions
from left to right, and does not support any grouping mechanisms that might change
the order of evaluation. For example, the SBC evaluates the expression A & B | C
(where A=true, B=false, and C=true) as follows: A & B = false; false | true = true.

Equality Operators
You can use equality operators in conjunction with string operators. You can also use
equality operators with:

• Boolean operators, as in this example: ($rule1.$0 == $rule2.$1) & $rule3.

• The !, &, and | operators.

• Variables and constant strings.

You can group them in parentheses for precedence.

Equality operators always evaluate to either true or false.

Equality Operator
Symbol

Short Description Detailed Information

== String case sensitive
equality operator

Performs a character-by-character, case-sensitive
string comparison on both the left side and the right
side of the operator.

~= String case
insensitive equality
operator

Performs a character-by-character, case-insensitive
string comparison on both the left side and the right
side of the operator.

!= String case sensitive
inequality operator

Performs a character-by-character, case-sensitive
string comparison on both the left side and the right
side of the operator, returning true if the left side is
not equal to the right side.

<= Less than or equal to
operator

Performs a string-to-integer conversion. If the string-
to-integer comparison fails, the value is treated as
0. After the conversion, the operator will compare
the two values and return true only if the left side is
less than or equal to the right side of the operator.

>= Greater than or
equal to operator

Performs a string-to-integer conversion. If the string-
to-integer comparison fails, the value is treated as
0. After the conversion, the operator will compare
the two values and return true only if the left side is
greater than or equal to the right side of the
operator.

Chapter 1
Using Regular Expressions

1-24

Equality Operator
Symbol

Short Description Detailed Information

< Less than operator Performs a string-to-integer conversion. If the string-
to-integer conversion fails, the value is treated as 0.
After the conversion, the operator will compare the
two values and return true only if the left side is less
than the right side of the operator.

> Greater than
operator

Performs a string-to-integer conversion. If the string-
to-integer conversion fails, the value is treated as 0.
After the conversion, the operator will compare the
two values and return true only if the left side is
greater than the right side of the operator.

Normalizing EBNF ExpressionString Grammar
The expression parser grammar implies that any expression string can have boolean and
string manipulation operators in the same expression. While technically this is possible, the
expression parser prevents it.

Because all boolean expressions evaluate to the string value TRUE or FALSE and since all
manipulation are string manipulations, the result of a boolean expression returns the value
TRUE or FALSE. The ExpressionString class interprets this as an actual TRUE or FALSE
value. For this reason, boolean operators are not mixed with string manipulation operators
(which is true with most programming languages).

The expression string grammar also indicates that it is possible to nest self-references and
rule names indefinitely. For HMR, this is not allowed. A self-reference can only exist by itself,
and a terminal index can only come at the end of a rule reference.

Storing Regex Patterns
Any HMR with a pattern-rule comparison type can store a regex pattern's matches for later
use. In many cases you don't have to create store rules before manipulation rules. Data is
only stored for items that later rules actually reference.

For example, if a later rule never references a header rule's stored value, but only its element
rules, then the header rule itself doesn't store anything. Alternatively, you could delete a
header or field, but still use its stored value later without having to create a separate store
rule for it. In general, fewer rules improve SBC performance.

Performance Considerations
The regex engine consumes as much of the input string as it can before it backtracks or gives
up trying, which is called greediness. Greediness can introduce errors in regex patterns and
has an effect on performance. There is usually a trade-off of efficiency versus exactness -
you should choose how exacting you need to be. Keep the following in mind in order to
lessen the effect:

• Poorly constructed regex patterns can effect the performance of regex matching for long
strings

• Search on the smallest input string possible, perform a regex search in element rules for
the specific header component type you want to match for

Chapter 1
Using Regular Expressions

1-25

• Test the regex pattern against long strings which do not match to evaluate the
effect on performance.

• Test a regex with a wildcard in between characters against an input string with
those characters repeated in different spots to evaluate performance

• If the input string format is fairly fixed and well-known, be explicit in the regex
rather than using wildcards

• If the regex pattern is trying to capture everything before a specific character, use
the negation of the character for the wildcard character. Note that this is true most
times, except when there is an anchor at the end.

• Use beginning-line and ending-line anchors whenever possible if you want to only
match if the pattern begins or ends as such.

• A dot . means any character, including whitespace. A wild-carded dot, such as .*
or .+, will capture/match everything until the end of line, and then it will backtrack if
there are more characters after the wildcard that need to be matched. If you don't
need to capture the things before the characters after the wildcard, don't use the
wildcard.

Additional References
To learn more about regex, you can visit the following Web site, which has information
and tutorials that can help to get you started:http://www.regular-expressions.info/.

HMR Configuration
To configure SIP header and parameter manipulation, first create a SIP header
manipulation ruleset. Then create the header manipulation rules and optional header
element rules for that ruleset to contain. Then configure a session agent or a SIP
interface to use the SIP header and parameter manipulation ruleset in the inbound and
outbound directions.

Testing Pattern Rules
Use test-pattern-rule to test the effect of your regex patterns.

1. Access the test-pattern-rule configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# test-pattern-rule
ORACLE(test-pattern-rule)#

2. expression—Enter the regular expression to test.

3. string—Enter the string against which you want to compare the regular
expression.

4. show—View the test pattern, the string, and the matches.

ORACLE(test-pattern-rule)# expression ".*(;tgid=(.+)).*"
expression made 0 matches against string
ORACLE(test-pattern-rule)# string "sip:+17024260002@KCMGGWC;user=phone
SIP/2.0;tgid=Trunk1"

Chapter 1
HMR Configuration

1-26

http://www.regular-expressions.info/

expression made 3 matches against string
ORACLE(test-pattern-rule)# show
Pattern Rule:
 Expression : .*(;tgid=(.+)).*
 String : sip:+17024260002@KCMGGWC;user=phone SIP/2.0;tgid=Trunk1
 Matched : TRUE
 Matches:
$0 sip:+17024260002@KCMGGWC;user=phone SIP/2.0;tgid=Trunk1
$1 ;tgid=Trunk1
$2 Trunk1

ORACLE(test-pattern-rule)#

Creating Header Manipulation Rulesets
First create a header rule and then create element rules within that header rule.

1. Access the sip-manipulation configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)#

2. name—Enter the name you want to use for this ruleset.

3. split-headers—Enter a comma-separated list of headers to be split and treated as
separate headers. The splitting of headers occurs prior to the execution of any
manipulation rules.

ORACLE(sip-manipulation)# split-headers Diversion,Route,Via

4. join-headers—Enter a comma-separated list of headers to be joined into a single
comma-separated header. The joining of headers occurs after execution of any
manipulation rules.

ORACLE(sip-manipulation)# join-headers Diversion,Route,Via

5. Access the header-rules configuration element.

ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

6. name—Enter a unique name for this rule.

7. header-name—Enter the name of the header to which this rule applies.

The name entered here is a case-insensitive string that must match a header name.
Create a rule using the long form of the header name and a rule using the compact form
of the header name.

Chapter 1
HMR Configuration

1-27

Note:

The Request-URI header is identified as request-uri.

8. action—Enter the action you want applied to the header specified in the name
parameter.

The default value is none. Valid options are:

• add—Add a new header, if that header does not already exist.

• delete—Delete the header, if it exists.

• manipulate—Elements of this header will be manipulated according to the
element rules configured.

• store—Store the header.

• none—No action to be taken.

9. match-value—Enter the value to be matched (only an exact match is supported)
with a header value.

The action specified is only performed if the header value matches.

10. msg-type—Enter the message type to which this header rule applies.

The default value is any. Valid options are:

• any—Both Requests and Reply messages

• request—Request messages only

• reply—Reply messages only

11. methods—Enter the SIP method names to which you want to apply this header
rule. If entering multiple method names, separate them with commas. For
example:

INVITE,ACK,BYE

Leaving the method field empty applies the header-rule to all methods.

12. Access the element-rules configuration element.

The element-rules configuration element defines the element rules, which are
executed on those elements of the header specified by the header rule.

ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

a. name—Enter the name of the element to which this rule applies.

Chapter 1
HMR Configuration

1-28

Note:

The name parameter usage depends on the element type you enter in step
6. For uri-param, uri-user-param, and header-param it is the parameter
name to be added, replaced, or deleted. For all other types, it serves to
identify the element rule and any name can be used.

b. type—Enter the type of element on which to perform the action.

The default value is none. Valid options are:

• header-value—Enter value of the header.

• header-param-name—Header parameter name.

• header-param—Parameter portion of the header.

• uri-display—Display of the SIP URI.

• uri-user—User portion of the SIP URI.

• uri-host—Host portion of the SIP URI.

• uri-port—Port number portion of the SIP URI.

• uri-param-name—Name of the SIP URI param.

• uri-param—Parameter included in the SIP URI.

• uri-header-name—SIP URI header name

• uri-header—Header included in a request constructed from the URI.

• uri-user-param—User parameter of the SIP URI.

c. action—Enter the action you want applied to the element specified in the name
parameter, if there is a match value.

The default value is none. Valid options are:

• none—No action is taken.

• add—Add a new element, if it does not already exist.

• store—Store the elements.

• replace—Replace the elements

• delete-element—Delete the specified element if it exists.

• delete-header—Delete the specified header, if it exists.

d. match-val-type—Enter the type of value that needs to be matched to the match-field
entry for the action to be performed.

The default value is ANY. Valid options are:

• IP—Element value in the SIP message must be a valid IP address to be
compared to the match-value field entry. If the match-value field is empty, any
valid IP address is considered a match. If the element value is not a valid IP
address, it is not considered a match.

• FQDN—Element value in the SIP message must be a valid FQDN to be
compared to the match-value field entry. If the match-value field is empty, any
valid FQDN is considered a match. If the element value is not a valid FQDN, it is
not considered a match.

Chapter 1
HMR Configuration

1-29

• ANY—Element value in the SIP message is compared with the match-
value field entry. If the match-value field is empty, all values are
considered a match.

e. match-value—Enter the value you want to match against the element value
for an action to be performed.

f. new-value—Enter the value for a new element or to replace a value for an
existing element. You can enter an expression that includes a combination of
absolute values, pre-defined parameters, and operators

Note:

Absolute values, with which you can use double quotes for clarity.
You must escape all double quotes and back slashes that are part of
an absolute value, and enclose the absolute value in double quotes.

Examples of entries for the new-value field.

sip:"+$TRUNK_GROUP+".$TRUNK_GROUP_CONTEXT
$ORIGINAL+acme
$ORIGINAL+"my name is john"
$ORIGINAL+"my name is \"john\""
$ORIGINAL-^781+^617

g. Type done and exit to save the rule and return to the header-rules
configuration element.

13. Type done and exit to save the rule and return to the sip-manipulation
configuration element.

Configuring SIP Header Manipulation Rules
To configure dynamic SIP header manipulation rules:

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. name—Enter the unique identifier for this SIP HMR.

This configuration element has no default value.

3. header-name—Enter the name of the header on which to operate.

This configuration element has no default value.
Set this parameter to @status-line to prevent undesired matches with header
having the name status-code.

4. msg-type—Specify the type of message to which this SIP HMR will be applied.

The default value is any. Valid values are:

Chapter 1
HMR Configuration

1-30

• any

• request

• reply

5. methods—Enter the method type on which to operate.

When you do not set the method, the SBC applies the rule across all SIP methods. Valid
values are:

• INVITE

• ACK

• CANCEL

6. comparison-type—Enter the way in which the SBC will process match rules against SIP
headers.

The default is refer-case-sensitive. The valid values are:

• boolean

• refer-case-sensitive

• pattern-rule

• case-sensitive

• case-insensitive

7. action—Enter the action to perform on the SIP header.

The default value is none. The valid values are:

• add

• delete

• manipulate

• store

• none

Note:

Remember that you should enter rules with the action type store before you
enter rules with other types of actions.

If the action type is set to store, the SBC treats the match value as a regular expression.
As a default, the regular expression used for the match value is .+ (which indicates a
match value of at least one character), unless you set a more specific regular expression
match value.

8. match-value—Enter the value to match against the header value.

The SBC matches these against the entire SIP header value. This is where you can enter
values to match using regular expressions. Your entries can contain Boolean operators.
When you configure HMR (using SIP manipulation rules, elements rules, etc.), you can
use escape characters to support escaping Boolean and string manipulation operators.

9. new-value—When the action parameter is set to add or to manipulate, enter the new
value that you want to substitute for the entire header value.

Chapter 1
HMR Configuration

1-31

This is where you can set stored regular expression values for the SBC to use
when it adds or manipulates SIP headers.

Configuring SIP Header Manipulation Element Rules
Element rules are a subset of the SIP header manipulation rules and are applied at the
element type level rather than at the entire header value.

To configure dynamic SIP header manipulation rules:

1. Access the element-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

2. name—Enter the unique identifier for this element rule.

There is no default value.

3. parameter-name—Enter the SIP header parameter or element on which to
operate.

There is no default value.

4. type—Specify the type of parameter to which this element rule will be applied.

The default value is none. The valid values are:

• header-value

• header-param-name

• header-param

• uri-display

• uri-user

• uri-user-param

• uri-host

• uri-port

• uri-param-name

• uri-param

• uri-header-name

• uri-header

To configure HMR so that only the status-line is affected, set comparison-type to
one of the following:

• status-code—Designates the status code of the response line; accepts any
string, but during the manipulation process only recognizes the range from 1 to
699.

• reason-phrase—Designates the reason of the response line; accepts any
string.

Chapter 1
HMR Configuration

1-32

5. match-val-type—Enter the value type that you want to match when this rule is applied.

The default value is ANY. Valid values are:

• IP

• FQDN

• ANY

6. comparison-type—Enter the way that you want SIP headers to be compared from one
of the available.

This choice dictates how the SBC processes the match rules against the SIP header
parameter/element. The default is refer-case-sensitive.

• boolean

• refer-case-sensitive

• refer-case-insensitive

• pattern-rule

7. action—Enter the action that you want this rule to perform on the SIP header parameter/
element.

The default is none. The valid rules are:

• add

• replace

• delete-element

• delete-header

• store

• none

Remember that you should enter rules with the action type store before you enter rules
with other types of actions.

When you set the action type to store, the SBC always treats the match value you enter
as a regular expression. As a default, the regular expression is uses for the match value
is .+ (which indicates a match value of at least one character), unless you set a more
specific regular expression match value.

8. match-value—Enter the value to match against the header value in SIP packets.

The SBC matches these against the value of the parameter/element. This is where you
can enter values to match using regular expression values, or stored pattern matches.
Your entries can contain Boolean operators.

9. new-value—When the action parameter is set to add or to manipulate, enter the new
value that you want to substitute for the entire header value.

This is where you can set stored regular expression values for the SBC to use when it
adds or manipulates parameters/elements.

Status-Line Manipulation and Value Matching
The Oracle Communications Session Border Controller’s HMR feature has been enhanced to
support the ability to change the status code or reason phrase in SIP responses. This

Chapter 1
HMR Configuration

1-33

addition—the ability to edit status-lines in responses—builds on HMR’s existing ability
to edit response headers or the Request-URI in a request.

This section shows you how to configure SIP HMR when you want the Oracle
Communications Session Border Controller to drop a 183 Session Progress response
when it does not have SDP, though flexibility is built into this feature so that you can
use it to achieve other ends. In addition, you can now set the SIP manipulation’s
match-value parameter with Boolean parameters (AND or OR).

Set the Header Name
Set the header-name to @status-line to modify the status code or reason phrase in
SIP responses.

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. header-name—Enter @status-line.

ORACLE(sip-header-rules)# header-name @status-line
ORACLE(sip-header-rules)#

Set the Element Type
In the element-rules configuration element, set the type parameter to either status-
code or reason-phrase.

• status-code—Designates the status code of the response line. Accepts any
string, but during the manipulation process only recognizes the range from 1 to
699.

• reason-phrase—Designates the reason of the response line. Accepts any string.

Note:

Like other rule types, the Oracle Communications Session Border Controller
matches against the value for these using case-sensitive, case-insensitive,
or pattern-rule matching (set in the comparison-type parameter for the
element rule).

1. Access the element-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

Chapter 1
HMR Configuration

1-34

2. type—Enter either status-code or reason-phrase.

ORACLE(sip-element-rules)# type status-code

The SBC uses the value of comparison-type to determine matching.

Set the Match Value
Set the match value in either the header-rules configuration element or the element-rules
configuration element

Set the Header Rules Match Value
Set a match value in the header-rules configuration element.

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. match-value—Enter the value to match against the header value.

The Oracle Communications Session Border Controller matches these against the entire
SIP header value. This is where you can enter values to match using regular expression
values; your entries can contain Boolean operators.

Set the Element Rules Match Value
Set a match value in the element-rules configuration element.

1. Access the element-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

2. match-value—Enter the value to match against the header value.

The Oracle Communications Session Border Controller matches these against the entire
SIP header value. This is where you can enter values to match using regular expression
values; your entries can contain Boolean operators.

Chapter 1
HMR Configuration

1-35

Set the Response Code Block
Enable SIP response blocking to keep the Oracle Communications Session Border
Controller from sending the designated response.

Note:

This example sets the dropResponse option to 699, where 699 is an arbitrary
code used to later match the HMR.

1. Access the sip-interface configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-interface
ORACLE(sip-interface)#

2. Select the sip-interface object to edit.

ORACLE(sip-interface)# select
<RealmID>:
1: realm01 172.172.30.31:5060

selection: 1
ORACLE(sip-interface)#

3. options—Enter options +dropResponse=<response code> where <response
code> is the code(s) or range(s) to block. Separate multiple entries with a colon.

ORACLE(sip-interface)# options +dropResponse=699

WARNING:

Typing the option without the plus sign will overwrite previously
configured options. To append the options to this configuration’s options
list, prepend the option with a plus sign.

4. Save and activate your configuration.

Configuring SIP HMR Sets
To enable HMR sets, set the action configuration element to sip-manip.

1. Access the element-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules

Chapter 1
HMR Configuration

1-36

ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

2. action—Enter sip-manip value to enable use this rule for a SIP HMR set. This value then
invoke the rule identified in the new-value parameter.

3. new-value—Enter the name of the manipulation rule you want invoked for the set.

4. Type done to save your configuration.

5. Run verify-config to detect invalid or circular references.

6. Save and activate your configuration.

Configuring a Session Agent
Configure a session agent to use a SIP header manipulation ruleset.

1. Access the session-agent configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# session-agent
ORACLE(session-agent)

2. in-manipulationid—Enter the name of the SIP header manipulation ruleset you want to
apply to inbound SIP packets.

ORACLE(session-agent)# in-manipulationid route-stripper

3. out-manipulationid—Enter the name of the SIP header manipulation ruleset you want to
apply to outbound SIP packets.

ORACLE(session-agent)# out-manipulationid route-stripper

4. Type done to save your configuration.

Configuring a SIP Interface
Configure a interface to use a SIP header manipulation ruleset.

1. Access the sip-interface configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-interface
ORACLE(sip-interface)#

2. in-manipulationid—Enter the name of the SIP header manipulation ruleset to apply to
SIP packets in the ingress direction.

ORACLE(sip-interface)# in-manipulationid topology-hiding

Chapter 1
HMR Configuration

1-37

3. out-manipulationid—Enter the name of the SIP header manipulation ruleset to
apply to SIP packets in the egress direction.

ORACLE(sip-interface)# out-manipulationid topology-hiding

4. Type done to save your configuration.

Example 1 Stripping All Route Headers
This example explains how to strip all route headers from a SIP packet. First, you
create a header manipulation ruleset, in the example it is called route-stripper. Then
you configure the list of header manipulation rules you need to strip route headers. In
this case, you only need one rule named Route (to match the Route header name)
with the action set to Delete.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# name route-stripper
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# name Route
ORACLE(sip-header-rules)# action Delete
ORACLE(sip-header-rules)# done
header-rule
 name Route
 action delete
 match-value
 msg-type any
ORACLE(sip-header-rules)# ex
ORACLE(sip-manipulation)# done
sip-manipulation
 name route-stripper
 header-rule
 name Route
 action delete
 match-value
 msg-type any

Example 2 Stripping an Existing Parameter and Adding a New One
This example explains how to strip the user parameter from the Contact header URI
and add the acme parameter with value as LOCAL IP, only for requests. First you
create a header manipulation ruleset, in the example it is called param-stripper1. You
then configure a list of header rules you need. In this case, you only need one rule
named Contact (to match the Contact header name), with action set to manipulate
(indicating the elements of this header would be manipulated). Next, you configure a
list of element rules for the Contact header rule.

Chapter 1
HMR Configuration

1-38

In this case you configure two element rules; one to strip the uri parameter user (the rule
name user matches the param name user) and the other to add the uri parameter acme (the
rule name acme matches the param name acme).

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# name param-stripper1
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)# name Contact
ORACLE(sip-header-rules)# action manipulate
ORACLE(sip-header-rules)# msg-type request
ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)# name user
ORACLE(sip-element-rules)# type uri-param
ORACLE(sip-element-rules)# action delete-element
ORACLE(sip-element-rules)# done
element-rule
 name user
 type uri-param
 action delete-element
 match-val-type any
 match-value
 new-value
ORACLE(sip-element-rules)# name acme
ORACLE(sip-element-rules)# action add
ORACLE(sip-element-rules)# type uri-param
ORACLE(sip-element-rules)# new-value "$LOCAL_IP"
ORACLE(sip-element-rules)# done
element-rule
 name acme
 type uri-param
 action add
 match-val-type any
 match-value
 new-value "$LOCAL_IP"
ORACLE(sip-element-rules)# ex
ORACLE(sip-header-rules)# done
header-rule
 name Contact
 action manipulate
 match-value
 msg-type request
 element-rule
 name user
 type uri-param
 action delete-element
 match-val-type any
 match-value
 new-value
 element-rule
 name acme
 type uri-param
 action add
 match-val-type any

Chapter 1
HMR Configuration

1-39

 match-value
 new-value "$LOCAL_IP"
ORACLE(sip-header-rules)# ex
ORACLE(sip-manipulation)# done
sip-manipulation
 name param-stripper1
 header-rule
 name Contact
 action manipulate
 match-value
 msg-type request
 element-rule
 name user
 type uri-param
 action delete-element
 match-val-type any
 match-value
 new-value
element-rule
 name acme
 type uri-param
 action add
 match-val-type any
 match-value
 new-value "$LOCAL_IP"

For example, if the IP address of the SIP interface ($LOCAL_IP) is 10.1.2.3 and the
Oracle Communications Session Border Controller receives the following Contact
header:

Contact: <sip:1234@10.4.5.6;user=phone>

The header rule is applied to strip the user parameter from the Contact header URI
and add the acme parameter with the value 10.1.2.3:

Contact: <sip:1234@10.4.5.6;acme=10.1.2.3>

Unique HMR Regex Patterns and Other Changes
In addition to the HMR support it offers, the Oracle Communications Session Border
Controller can now be provisioned with unique regex patterns for each logical remote
entity. This supplement to pre-existing HMR functionality saves you provisioning time
and saves Oracle Communications Session Border Controller resources in instances
when it was previously necessary to define a unique SIP manipulation per PBX for a
small number of customer-specific rules.

The Default Expression
The SBC supports the non-standard regex \,+ called the default expression. The
default expression matches one or more characters, including NUL characters. The
default expression cannot be used with other modifiers, like the star.

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-40

Note:

In previous releases, the PCRE (Perl Compatible Regular Expression) engine used
\, to match any character, including a NUL character. The PCRE engine was
updated in 8.1 and no longer supports \,.

Manipulation Pattern Per Remote Entity
On the Oracle Communications Session Border Controller, you can configure logical remote
entities (session agents, realms, and SIP interfaces) with a manipulation pattern string that
the system uses as a regular expression. Then the SIP manipulation references this regular
expression using the reserved word $MANIP_PATTERN. At runtime, the Oracle
Communications Session Border Controller looks for the logical entity configured with a
manipulation pattern string in this order of preference: session agent, realm, and finally SIP
interface.

On finding the logical entity configured with the manipulation string, the Oracle
Communications Session Border Controller dynamically determines the expression. When
there is an invalid reference to a manipulation pattern, the pattern-rule expression that results
will turn out to be the default expression (which is \,+).

When the $MANIP_PATTERN is used in a manipulation rule’s new-value parameter, it
resolves to an empty string, equivalent of no value. Even though this process ends with no
value, it still consumes system resources. And so Oraclerecommends you do not
use $MANIP_PATTERN as a new-value value.

In the following example, the SIP manipulation references the regular expression from a
realm configuration:

realm-config
 identifier net200
 description
 addr-prefix 0.0.0.0
 network-interfaces public:0
 ...
 manipulation-pattern Lorem(.+)
sip-manipulation
 name manip
 description
 header-rules
 name headerRule
 header-name Subject
 action manipulate
 match-value $MANIP_PATTERN
 msg-type request
 comparison-type pattern-rule
 new-value Math
 methods INVITE

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-41

Reject Action
When you use this action type and a condition matching the manipulation rule arises,
the Oracle Communications Session Border Controller rejects the request (though
does not drop responses) and increments a counter.

• If the msg-type parameter is set to any and the message is a response, the
Oracle Communications Session Border Controller increments a counter to show
the intention to reject the message—but the message will continue to be
processed.

• If the msg-type parameter is set to any and the message is a request, the Oracle
Communications Session Border Controller performs the rejection and increments
the counter.

The new-value parameter is designed to supply the status code and reason phrase
corresponding to the reject. You can use the following syntax to supply this
information: status-code[:reason-phrase]. You do not have to supply the status code
and reason phrase information; by default, the system uses 400:Bad Request.

If you do supply this information, then the status code must be a positive integer
between 300 and 699. The Oracle Communications Session Border Controller then
provides the reason phrase corresponding to the status code. And if there is no reason
phrase, the system uses the one for the applicable reason class.

You can also customize a reason phrase. To do so, you enter the status code followed
by a colon (:), being sure to enclose the entire entry in quotation marks () if your
reason code includes spaces.

When the Oracle Communications Session Border Controller performs the reject
action, the current SIP manipulation stops processing and does not act on any of the
rules following the reject rule. This course of action is true for nested SIP
manipulations that might have been constructed using the sip-manip action type.

Reject Action Configuration
To support the reject action, set two parameters in the session-router-config
configuration element.

1. Access the session-router-config configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# session-router
ORACLE(session-router-config)#

2. reject-message-threshold—Enter the minimum number of message rejections
allowed in the reject-message-window time on the SBC before generating an
SNMP trap.

The default is 0, meaning this feature is disabled and no trap will be sent.

3. reject-message-window—Enter the time in seconds that defines the window for
maximum message rejections allowed before generating an SNMP trap.

4. Type done to save your configuration.

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-42

About Counters
The Oracle Communications Session Border Controller tracks messages that have been
flagged for rejection using the reject action type. In the show sipd display, refer to the
Rejected Messages category; there is no distinction between requests and responses.

ORACLE# show sipd
13:59:07-102
SIP Status -- Period -- -------- Lifetime --------
 Active High Total Total PerMax High
Sessions 0 0 0 0 0 0
Subscriptions 0 0 0 0 0 0
Dialogs 0 0 0 0 0 0
CallID Map 0 0 0 0 0 0
Rejections - - 0 0 0
ReINVITEs - - 0 0 0
Media Sessions 0 0 0 0 0 0
Media Pending 0 0 0 0 0 0
Client Trans 0 0 0 0 0 0
Server Trans 0 0 0 0 0 0
Resp Contexts 0 0 0 0 0 0
Saved Contexts 0 0 0 0 0 0
Sockets 0 0 0 0 0 0
Req Dropped - - 0 0 0
DNS Trans 0 0 0 0 0 0
DNS Sockets 0 0 0 0 0 0
DNS Results 0 0 0 0 0 0
Rejected Msgs 0 0 0 0 0 0
Session Rate = 0.0
Load Rate = 0.0
Remaining Connections = 20000 (max 20000)

SNMP Support
The Oracle Communications Session Border Controller provides SNMP support for the
Rejected Messages data, so you can access this information externally. The new MIB objects
are:

apSysRejectedMessages OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Number of messages rejected by the SD due to matching
criteria."
 ::= { apSysMgmtMIBGeneralObjects 18 }
apSysMgmtRejectedMesagesThresholdExeededTrap NOTIFICATION-TYPE
 OBJECTS { apSysRejectedMessages }
 STATUS current
 DESCRIPTION
 " The trap will be generated when the number of rejected messages
exceed the configured threshold within the configured window."
 ::= { apSystemManagementMonitors 57 }

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-43

apSysMgmtRejectedMessagesGroup OBJECT-GROUP
 OBJECTS {
 apSysRejectedMessages
 }
 STATUS current
 DESCRIPTION
 "Objects to track the number of messages rejected by
the SD."
 ::= { apSystemManagementGroups 18 }
apSysMgmtRejectedMessagesNotificationsGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
 apSysMgmtRejectedMesagesThresholdExeededTrap
 }
 STATUS current
 DESCRIPTION
 "Traps used for notification of rejected messages"
 ::= { apSystemManagementNotificationsGroups 26 }
apSmgmtRejectedMessagesCap
 AGENT-CAPABILITIES
 PRODUCT-RELEASE "Acme Packet SD"
 STATUS current
 DESCRIPTION "Acme Packet Agent Capability for
enterprise
 system management MIB."
 SUPPORTS APSYSMGMT-MIB
 INCLUDES {
 apSysMgmtRejectedMessagesGroup,

apSysMgmtRejectedMessagesNotificationsGroup
 }
 ::= { apSmgmtMibCapabilities 37 }

Log Action
When you use this action type and a condition matching the manipulation rule arises,
the Oracle Communications Session Border Controller logs information about the
current message to a separate log file. This log files will be located on the same core
in which the SIP manipulation occurred. On the core where sipt runs, a logfile called
matched.log will appear when this action type is executed.

The matched.log file contains a timestamp, received and sent Oracle Communications
Session Border Controller network interface, sent or received IP address:port
information, and the peer IP address:port information. It also specifies the rule that
triggered the log action in this syntax: rule-type[rule:name]. The request URI, Contact
header, To Header, and From header are also present.

--
Apr 17 14:17:54.526 On [0:0]192.168.1.84:5060 sent to 192.168.1.60:5060
element-rule[checkRURIPort]
INVITE sip:service@192.168.1.84:5060 SIP/2.0
From: sipp <sip:+2125551212@192.168.1.60:5060>;tag=3035SIPpTag001
To: sut <sip:service@192.168.1.84>
Contact: sip:sipp@192.168.1.60:5060

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-44

Changes to Storing Pattern Rule Values
Release S-C6.2.0 introduces changes to the framework for storing regular expression results
within manipulation rules, altering the way the store action works. These changes are
beneficial to performance.

In previous releases, when the store action is used, the Oracle Communications Session
Border Controller stores all values matching the regular expression defined in the match-
value parameter for all headers. At runtime, the system evaluates all stored values to find the
correct index.

Now, you no longer need to specify the store action. The simple fact of referencing another
rule tells the system it must store a value. When SIP manipulation is used, the system first
checks to see if any values require storing. The add action is an exception to this process;
storing happens after a header is added.

When referring to a rule, that rule still needs to have a regular expression defined in the
match-vale and the comparison type set to pattern-rule; else the default expression will be
used.

Removal of Restrictions
The following restrictions related to HMR have been removed in Release S-C6.2.0:

• The action find-replace-all now executes all element rules. Previously, no child rules
were executed.

• The action sip-manip now executes existing all element rules. Previously, no child rules
were executed.

• The action store now executes existing all element rules. Previously, only child rules with
the store action were executed.

• The action add now executes existing all element rules. Previously, only child rules with
the add action were executed.

Name Restrictions for Manipulation Rules
Historically, you have been allowed to configure any value for the name parameter within a
manipulation rule. This method of naming caused confusion when referencing rules, so now
manipulation rules name must follow a specific syntax. They must match the expression
^[[alpha:]][[:alnum:]_]+$ and contain at least one lower case letter.

In other words, the name must:

• Start with a letter, and then it can contain any number of letters, numbers, or underscores

• Contain at least one lower case letter

All pre-existing configurations will continue to function normally. If you want to change a
manipulation rule, however, you are required to change its name if it does not follow the new
format.

The ACLI verify-config command warns you if the system has loaded a configuration
containing illegal naming syntax.

Please note that the software allows you to make changes to HMRs, including configuring
new functionality to existing rules, as long as you do not change the rule name. This results in

Chapter 1
Unique HMR Regex Patterns and Other Changes

1-45

an important consideration surrounding HMRs with hyphens in previously configured
rule names.

• You can reference stored values in new value names. (Recall that stored values
may be rule names.)

• You can perform subtraction in new value names.

If you use a rule names with hyphens within the REGEX of new value names, the
system cannot determine whether the hyphen is part of the rule name or is intended to
invoke subtraction within the REGEX. For this reason, you need to use great care with
legacy HMR naming that includes hyphens.

As a general rule, create new rule names that follow the new rule naming guidelines if
you intend to use new functionality in those rules.

New Value Restrictions
To simplify configuration and remove possible ambiguity, the use of boolean and
equality operators (==, <=, <, etc.) for new-value parameter values has been banned.
Since there was no specific functionality tied to their use, their ceasing to be use will
have no impact to normal SIP manipulation operations.

MIME Support
You can manipulate MIME types in SIP message bodies. You can manipulate the body
of SIP messages or a specific content type and you can change the MIME attachment
of a specific type within the body by using regular expressions. You search for a
particular string and the replacement of all matches for that type using a find-replace-
all action.

Note:

The find-replace-all action can consume more system resources than other
HMR types of action. Use this powerful action type only when another action
cannot perform the type of manipulation you require.

Manipulating MIME Attachments
Set the action type to find-replace-all to modify MIME attachments.

To manipulate a particular portion of the MIME attachment, for example when
removing a certain attribute within the Content-Type of application/sdp, the SBC
needs to search the content multiple times because:

• SDP can have more than one media line

• The SIP message body can contain more than one application/sdp.

When the action type is find-replace-all, the SBC treats the match-value as a regular
expression and binds the comparison-type to pattern-rule, even if comparison-type is
set to some other value. This type of action is both a comparison and action: for each
regular expression match within the supplied string, the SBC substitutes the new value
for that match.

Chapter 1
MIME Support

1-46

Use subgroups to replace portions of the regular expression rather than the entire matched
expression. The subgroup replacement syntax is formed by adding the string [[:n:]] to the
end of the regular expression—where n is a number between 0 and 9. For example, setting
the following parameters

 action find-replace-all
 match-value sip:(user)@host[[:1:]]
 new-value bob

creates a new rule to replace only the user portion of the URI that searches for the regular
expression and replaces all instances of the user subgroup with the value bob.

Setting the following parameters

 action find-replace-all
 match-value 0
 new-value 1

creates a new rule to recursively replace all the 0 digits in a telephone number with 1. With
this rule the user portion of a URI—or for any other string—with a value 1-781-308-4400
would be replaced as 1-781-318-4411.

If you leave the new-value parameter blank for find-replace-all, the SBC replaces the
matched sub-group with an empty string—an equivalent of deleting the sub-group match. You
can also replace empty sub-groups, which is like inserting a value within the second sub-
group match. For example, user()@example.com[[:1:]] with a configured new-value _bob
yields user_bob@host.com.

Setting find-replace-all disables the following parameter-type values: uri-param-name, uri-
header-name, and header-param-name. These values are unusable because the SBC only
uses case-sensitive matches for the match-value to find the parameter name within the URI.
Since it can only be found by exact match, the SBC does not support finding and replacing
that parameter.

About the MIME Value Type
To modify the MIME attachment, the SBC supports a mime value for the type parameter in the
element rules. You can only use the mime type value against a specific header, which in this
case is Content (abbreviated as c).

When you set the element rule type to mime, you must also set a value for the parameter-
name. This step is a requirement because it sets the content-type the SBC manipulates in a
specific part of the MIME attachment. You cannot leave this parameter blank; the SBC does
not let you save the configuration if you do. When you use the store action on a multi-part
MIME attachment that has different attachment types, the SBC stores the final instance of the
content-type because it does not support storing multiple instances of element rule stored
values.

If you do not know the specific content type, which means the SBC will find the match value,
you can use the asterisk * as a wildcard with the parameter-name. (You cannot, however, set
partial content types, for example, application/*.) The SBC then loops through the MIME
attachment's content types.

Chapter 1
MIME Support

1-47

MIME manipulation does not support manipulating headers in the individual MIME
attachments. For example, the SBC cannot modify the Content-Type given a portion of
a message body like this one:

--boundary-1
Content-Type: application/sdp
v=0
o=use1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=audio 10000 RTP/AVP 8
a=rtpmap:8 PCMA/8000/1
a=sendrecv
a=ptime:20
a=maxptime:200

SIP Message-Body Separator Normalization
The stripPreambleCrlf option normalizes CLRF message-body separators.

The SBC supports MIME attachments — up to a maximum payload size of 64KB —
and has the ability to allow more than the required two CRLFs between the SIP
message headers and the multipart body’s first boundary. The first two CRLFs that
appear in all SIP messages signify the end of the SIP header and the separation of the
header and body of the message, respectively. Sometimes additional extraneous
CRLFs can appear within the preamble before any text.

The SBC works by forwarding received SIP messages regardless of whether they
contain two or more CRLFs. Although three or more CRLFs are legal, some SIP
devices do not accept more than two.

To ensure all SIP devices accept messages from the SBC, strip all CRLFs located at
the beginning of the preamble before the appearance of any text, ensuring that there
are no more than two CRLFs between the end of the last header and the beginning of
the body within a SIP message. Enable this feature by adding the new
stripPreambleCrlf option to the global SIP configuration.

To enable the stripping of CRLFs in the preamble:

1. Access the sip-config configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-config
ORACLE(sip-config)#

2. options—Set the options parameter by typing options, a Space, the option name
stripPreambleCrlf with a plus sign.

ORACLE(sip-config)# options +stripPreambleCrlf

In order to append the new options to the global SIP configuration’s options list,
you must prepend the new option with a plus sign. If you type the option without
the plus sign, you will overwrite any previously configured options.

Chapter 1
MIME Support

1-48

3. Save and activate your configuration.

Configuring MIME Support
To enable MIME support, set the action configuration element to find-replace-all at both the
header-rules level and element-rules level. Set the type configuration element to mime at the
element-rules level.

1. Access the header-rules configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)# header-rules
ORACLE(sip-header-rules)#

2. action—Enter find-replace-all.

ORACLE(sip-header-rules)# action find-replace-all

3. Navigate to the element-rules configuration element.

ORACLE(sip-header-rules)# element-rules
ORACLE(sip-element-rules)#

4. action—Enter find-replace-all.

ORACLE(sip-element-rules)# action find-replace-all

5. type—Enter mime.

ORACLE(sip-element-rules)# type mime

6. Save and activate your configuration.

HMR for SIP-ISUP
You can apply HMRs on ISDN user party (ISUP) binary bodies. Using the same logic and
mechanisms applied to SIP header elements, HMR for SIP-ISUP manipulates ISUP
parameter fields and ISUP message parts. You create MIME rules that manipulate targeted
body parts of a SIP message.

MIME Rules Overview
MIME rules operate much the same way that SIP header rules do. You can set parameters in
the MIME rules that the SBC uses to match against specific SIP methods and message
types. The system compares the search criteria against the body or body parts using the type
of comparison you choose. You can pick the kind of manipulation that suits your needs; the
SBC then takes action with matching and new values to change the SIP message.

Chapter 1
MIME Support

1-49

Note:

Using the delete action on a multi-part MIME string reduces a number of
bodies down to one and the SIP message remains a multi-part MIME
message with only one body part (and thereby avoids the header conflicting
with the message itself).

Identifying a MIME Rule
You identify the MIME rule by using a content type that refers to the specific body part
on which to operate. For example, given a SIP Content-Type header with the value
multipart/mixed;boundary=unique-boundary-1, you would enter a content type
value of application/sdp to specifically manipulate the SDP portion of the SIP
message. The SBC knows automatically if it is operating on SIP messages with single
or multiple body parts, and the content type applies to both kinds. When making its
comparison, the SBC matches the content type of the body without regard to case
(case insensitive), ignoring any header parameters.

Both for making comparisons against the body part and for new/replacement values,
the SBC treats the match and new values you set for a MIME rule as ASCII strings. A
MIME rule operating on a binary body part yields an improper conversion of a new
value with respect to the binary body part.

About MIME Rules
MIME rules (set up in the ACLI mime-rules configuration) operate much the same
way that SIP header rules do. You can set parameters in the MIME rules that the
Oracle Communications Session Border Controller uses to match against specific SIP
methods and message types. The system compares the search criteria against the
body or body parts using the type of comparison you choose. Offering a variety of
selection, you can pick kind of manipulation that suits your needs; the Oracle
Communications Session Border Controller then takes action with matching and new
values to change the SIP message.

Note:

when you use the delete action on a multi-part MIME string that reduces a
number of bodies down to one, the SIP message remains a multi-part MIME
message with only one body part (and thereby avoids the header conflicting
with the message itself).

You identify the MIMe rule by configuring a content type that refers to the specific body
part on which to operate. For example, given a SIP Content-Type header with the
value multipart/mixed;boundary=unique-boundary-1, you would enter a content-type
value of application/sdp to manipulate specifically on the SDP portion of the SIP
message. The Oracle Communications Session Border Controller knows automatically
if it is operating on SIP messages with single or multiple body parts, and the content-
type setting applies to both kinds. And when making its comparison, the Oracle
Communications Session Border Controller matches the content-type of the body with
regard to case (case insensitive), ignoring any header parameters.

Chapter 1
MIME Support

1-50

Both for making comparisons against the body part and for new/replacement values, the
Oracle Communications Session Border Controller treats the match and new values you set
for a MIME rule as ASCII strings. Therefor, a mime rule operating on a binary body part will
yield an improper conversion of a new value with respect to the binary body part.

Within MIME rules, you configure MIME headers, which operate on the specific headers in
the match body part of the SIP message. The Oracle Communications Session Border
Controller uses the MIME header name to run a string comparison to match the specific
header in the message’s body part.

Using these rules, you can also manipulate the preamble—or the SIP message text that
follows the headers but precedes the body separator. To do so, enter the keyword
@preamble for the content type parameter in the MIME rule. Likewise you can manipulate
the epilogue—or the text that follows the last body part after the last separator—using the
keyword @epilogue.

Note that the ACLI limits character entries to 255 characters before the return character must
be entered, but MIME parts can easily exceed this 255-character size. So you might need to
enter a value larger that 255 characters. To do so, you start your entry (in the match-value or
new-value parameters) with a plus sign (+). The plus sign instructs the system to add the
string after it to the pre-existing match or new value. For the new-value parameter, the Oracle
Communications Session Border Controller checks the value immediately for validity. Be sure
that when you are appending values to a new-value that the entire expression is valid at each
point where strings are appended.

MIME Rules Configuration
This section shows you how to configure MIME rules and MIME headers.

To configure MIME rules:

1. Access the sip-manipulation configuration element.

ORACLE# configure terminal
ORACLE(configure)# session-router
ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)#

2. If you are adding this feature to an existing configuration, remember you must select the
configuration you want to edit.

ORACLE(sip-manipulation)# select
<name>:
1: name= addRemoteIP desc=
2: name= addTargetIP desc=

selection: 2
ORACLE(sip-manipulation)#

3. Access the mime-rules configuration element.

ORACLE(sip-manipulation)# mime-rules
ORACLE(sip-mime-rules)#

4. name—Enter a name for this MIME rule. This parameter is required and has no default.

Chapter 1
MIME Support

1-51

5. content-type—Enter the content type for this MIME rule. This value refers to the
specific body part in the SIP message body that is to be manipulated. For
example, given a SIP Content-Type header with the value multipart/
mixed;boundary=unique-boundary-1, you would enter a content-type value of
application/sdp to manipulate specifically on the SDP portion of the SIP
message.

To manipulate the SIP preamble or epilogue, enter the keyword @preamble or
keyword @epilogue.

6. action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, find-replace-all, reject, log and monitor. These
are the same actions you can select when configuring SIP header manipulation.
The default is none.

7. comparison-type—Enter the way that you want body part of the SIP message to
be compared. This choice dictates how the Oracle Communications Session
Border Controller processes the match rules against the SIP header. the default is
case-sensitive. The valid values are: case-sensitive, case-insensitive,
boolean, refer-case-sensitive, refer-case-insensitive, and pattern-rule.

8. msg-type—Enter the SIP message type on which you want the MIME rules to be
performed. Valid values are any, request, reply and out-of-dialog. The default
value is any.

9. methods—Enter the list of SIP methods to which the MIME rules applies. There is
no default for this parameter.

10. match-value—Enter the value to match against the body part in the SIP message.
This is where you can enter values to match using regular expression values. Your
entries can contain Boolean operators.

11. new-value—When the action parameter is set to add or to manipulate, enter the
new value that you want to substitute.

To configure MIME headers for performing HMR operations on specific headers in
the matched body part of the SIP message:

12. Follows Steps 1 through 4 above.

13. Type mime-header-rules and press Enter.

ORACLE(sip-mime-rules)# mime-header-rules
ORACLE(sip-mime-header-rules)#

14. name—Enter a name for this MIME header rule. This parameter is required and
has no default.

15. mime-header—Enter the value to be used for comparison with the specific header
in the body part of the SIP message. There is no default for this parameter.

16. action—Choose the type of action you want to be performed: none, add, store,
sip-manip, replace, find-replace-all, delete,log,monitor and reject. The default
is none.

17. comparison-type—Enter the way that you want the header in the body part of the
SIP message to be compared. This choice dictates how the Oracle
Communications Session Border Controller processes the match rules against the
SIP header. the default is case-sensitive. The valid values are: case-sensitive,
case-insensitive, boolean, refer-case-sensitive, refer-case-insensitive, and
pattern-rule.

Chapter 1
MIME Support

1-52

18. match-value—Enter the value to match against the header in the body part of the SIP
message. This is where you can enter values to match using regular expression values.
Your entries can contain Boolean operators.

19. new-value—When the action parameter is set to add or to manipulate, enter the new
value that you want to substitute.

20. Save your work.

Working with MIME Rules
Within MIME rules, you configure MIME headers that operate on the specific headers in the
match body part of the SIP message. The SBC uses the MIME header name to run a string
comparison to match the specific header in the message's body part.

Using these rules, you can also manipulate the preamble or the SIP message text that
follows the headers but precedes the body separator. To do so, enter the keyword @preamble
for the content type parameter in the MIME rule. Likewise you can manipulate the epilogue or
the text that follows the last body part after the last separator using the keyword @epilogue.

The ACLI limits character entries to 255 characters before the return character must be
entered. MIME parts can easily exceed this 255-character size, so you might need to enter a
value larger that 255 characters. To do so, you start your entry with a plus sign +. The plus
sign instructs the system to add the string after it to the pre-existing match or new value. For
the new-value parameter, the SBC checks the value immediately for validity. Be sure that
when you are appending values to a new-value that the entire expression is valid at each
point where strings are appended.

MIME ISUP Manipulation
ISUP message can be carried in SIP messages through either a standard body or through a
multipart MIME encoded body. While ANSI and ITU are the two major groups, each contains
many specific variants. To facilitate instances where two sides of a call use different versions,
the SBC supports interworking between the following SIP ISUP formats: ANSI, ITU, ETSI-356
(an ITU variant), and GR-317 (an ANSI variant). To do so, the SBC can move, delete, and
add parameters to various sections of the message.

The ISUP message version is determined by either the content type of the SIP message or
the MIME content-type. Messages that contain an unknown ISUP format pass through the
SBC untouched. You can perform HMR operations on SIP ISUP binary bodies (MIME ISUP).

Note:

Custom formats are not supported.

Within mime-isup-rule, isup-param-rule, the format field instructs the SBC how to encode
and decode the current string. The field options are hexascii, binary-ascii, ascii-string, bcd,
and number-param.

• hex-ascii—the SBC will decode the ISUP param string from its binary value in the SIP
message into a string of hexadecimal ASCII (as seen in Wireshark) before applying the
match-value. It will convert the resolved new-value from hex-ascii into binary into the
message. For example, if the received ISUP param was the binary of 0x010a, it will
convert it into the string 010a, and then apply the match-value. If the regex pattern is ^01
then it would match, as would 0a$ and ^010a$. If the new-value is 010b, then it will

Chapter 1
MIME Support

1-53

encode it into the binary 0x010b. Since this is done after resolving the new-value.
The new-value can reference a previously stored value as long as it is hex-ascii
format.

• binary-ascii— the SBC will decode the ISUP param string from its binary value
in the SIP message into a string of ones and zeros representing the individual bits.
It will convert the new-value as long as it's ones and zeros within the param. For
example, if the received ISUP param was the binary 0x010a, it will convert it into
the string 0000000100001010, and then apply the match-value. If the regex pattern
is ^.......(.) or ^.{7}(.) then in both cases it will store the 8th bit value in $1.
In this manner, the user can check, get, or set individual bits in parameters. The
new-value can be a string, reference a stored value, or be a concatenation of them
as long as it is ones and zeros after being resolved.

• ascii-string—the SBC will decode the ISUP param string from its binary value in
the SIP message into an ASCII string based on the ASCII specification and
convert the new-value back. For example, if the received ISUP param was the
binary 0x4849, it will convert it into the string HI, and then apply the match-value.

• bcd—the SBC will decode the ISUP param string from its binary value in the SIP
message into digits using the BCD variant of ISUP. For example, if the received
ISUP param was the binary 0x0123, it will convert it to the string 0123 and then
apply the match-value.

• number-param—the SBC will decode the ISUP param string from its binary value in
the SIP message into a string representation of an E.164 phone number. The
ISUP param must be in a number formatted parameter like Calling Party Number
or Called Party Number. The SBC treats the ISUP parameter as one of the
common number parameter formats: the SBC will automatically decode the correct
number of digits based on the odd/even bit in the parameter, and add a leading +
based on the Nature of Address (NoA) field being E.164 international. Similarly,
when the SBC converts the new-value back into the ISUP parameter, it will set the
odd/even bit correctly, and set the NoA field based on the existence of the leading
+ character. The string applied to match-value thus looks the same as an element-
rule of type phone-number (i.e. +12125551212). Since this format is specific to
ISUP parameters, it can only be used in isup-param-rule.

Adding an ISUP Body to a SIP Message
Unlike the MIME manipulation you can use by setting the SIP header rules
accordingly, you can add MIME parts to SIP messages using the MIME rules
configuration.

You can configure a SIP header manipulation to add an ISUP body to a SIP message.
and the Oracle Communications Session Border Controller adds them after any SDP
parts if they are present. You can add an ISUP body to a SIP message in two ways:

• You can create a mime-isup-rule with the action type set to add, and enter the
entire body in string hexadecimal form in the new-value parameter.

• You can leave the new-value parameter empty at the mime-isup-rule level and
create an add rule for an isup-param-rule.
In this case, the Oracle Communications Session Border Controller creates the
corresponding ISUP message based on the isup-msg-type value and supply all
of the parameters with their default values. Since the isup-msg-type takes a list of
values as a valid entry, for this case it only uses the first one. However, the Oracle
Communications Session Border Controller ignores the isup-msg-type value if

Chapter 1
MIME Support

1-54

you set the new-value parameter. And the isup-param-rule, if configured, overwrite the
default value or add a new parameter based on the defined parameter type.

It is also possible that you might supply a new-value both at the mime-isup-rule level
and at the isup-param-rule level. If you do, the new-value entry from the mime-isup-
rule is parsed into an ISUP object and the isup-param-rule operates on that object.

MIME ISUP Manipulation Configuration
This section shows you how to configure MIME ISUP manipulation.

1. In Superuser mode, type configure terminal and press Enter.

ORACLE# configure terminal
ORACLE(configure)#

2. Type session-router and press Enter.

ORACLE(configure)# session-router
ORACLE(session-router)#

3. Type sip-manipulation and press Enter. If you are adding this feature to an existing
configuration, then remember you must select the configuration you want to edit.

ORACLE(session-router)# sip-manipulation
ORACLE(sip-manipulation)#

4. Type mime-isup-rules and press Enter.

ORACLE(sip-manipulation)# mime-isup-rules
ORACLE(sip-mime-isup-rules)#

5. name—Enter a name for this MIME ISUP rule. This parameter is required and has no
default.

6. content-type—Enter the content type for this MIME rule. This value refers to the specific
body part in the SIP message body that is to be manipulated. For example, given a SIP
Content-Type header with the value multipart/mixed;boundary=unique-boundary-1, you
would enter a content-type value of application/sdp to manipulate specifically on the
SDP portion of the SIP message.

To manipulate the SIP preamble or epilogue, enter the keyword @preamble or keyword
@epilogue.

7. action—Choose the type of action you want to be performed: none, add, delete,
manipulate, store, sip-manip, find-replace-all, reject,log and monitor. These are the
same actions you can select when configuring SIP header manipulation. The default is
none.

8. comparison-type—Enter the way that you want body part of the SIP message to be
compared. This choice dictates how the Oracle Communications Session Border
Controller processes the match rules against the SIP header. the default is case-
sensitive. The valid values are: case-sensitive, case-insensitive, boolean, refer-case-
sensitive, refer-case-insensitive, and pattern-rule.

Chapter 1
MIME Support

1-55

9. msg-type—Enter the SIP message type on which you want the MIME rules to be
performed. Valid values are any, request, reply and out-of-dialog. The default
value is any.

10. methods—Enter the list of SIP methods to which the MIME rules applies. There is
no default for this parameter.

11. match-value—Enter the value to match against the body part in the SIP message.
This is where you can enter values to match using regular expression values. Your
entries can contain Boolean operators.

12. new-value—When the action parameter is set to add or to manipulate, enter the
new value that you want to substitute.

13. isup-spec—Specify how the Oracle Communications Session Border Controller is
to parse the binary body; valid values are the enumerated type. The values for this
parameter are these SIP ISUP formats:

• ANSI-2000 (default)—Corresponding to ANSI T1.113-2000

• ITU-99—Corresponding to ITU Q.763

14. isup-msg-type—Identify the specific ISUP message types (such as IAM and
ACM) on which to operate. The Oracle Communications Session Border Controller
uses with the msg-type parameter (which identifies the SIP message) in the
matching process. You enter values in this parameters as a list of numbers rather
than as an enumerated value because of the large number of ISUP message type,
and the range is between 0 and 255. There is no default for this parameter.

15. mime-header—Enter the value to be used for comparison with the specific header
in the body part of the SIP message. There is no default for this parameter.

To configure ISUP parameters rules:

16. Follows Steps 1 through 4 above.

17. Type isup-parameter-rules and press Enter.

ORACLE(sip-mime-isup-rules)# isup-param-rules
ORACLE(sip-isup-param-rules)#

18. name—Enter a name for this ISUP parameter rule. This parameter is required and
has no default.

19. mime-header—Enter the value to be used for comparison with the specific header
in the body part of the SIP message. There is no default for this parameter.

20. action—Choose the type of action you want to be performed: none, add, delete,
store, sip-manip, replace, find-replace-all, log, monitor and reject. The default
is none.

21. comparison-type—Enter the way that you want the header in the body part of the
SIP message to be compared. This choice dictates how the Oracle
Communications Session Border Controller processes the match rules against the
SIP header. the default is case-sensitive. The valid values are: case-sensitive,
case-insensitive, boolean, refer-case-sensitive, refer-case-insensitive, and
pattern-rule.

22. match-value—Enter the value to match against the header in the body part of the
SIP message. This is where you can enter values to match using regular
expression values. Your entries can contain Boolean operators.

Chapter 1
MIME Support

1-56

23. new-value—When the action parameter is set to add or to manipulate, enter the new
value that you want to substitute.

24. parameter-type—Using ISUP parameter mapping, enter which of the ISUP parameters
on which your want to perform manipulation. This parameter takes values between 0 and
255, and you must know the correct ISUP mapping value for your entry. The Oracle
Communications Session Border Controller calculates the offset and location of this
parameter in the body. Note that the value returned from the body does not the type or
length, only the parameter value. For example, a parameter-type value of 4 acts on the
Called Party Number parameter value.

25. parameter-format—Enter how you want to convert specific parameter to a string
representation of that value. Valid values for parameter-format are: number-param,
hex-ascii (default), binary-ascii, ascii-string, and bcd. Both match and new values are
encoded and decoded by the designated parameter-format type. In this regard, the
match-value decodes the parameters and the new-value encodes the ASCII string into
the respective binary format.

26. Save your work.

Configuration Example
This section provides an example of a SIP manipulation configuration that shows MIME rules
and MIME ISUP rules.

sip-manipulation
 name manip
 description
 header-rule
 name headerRule1
 header-name Date
 action add
 comparison-type case-sensitive
 msg-type reply
 methods
 match-value
 new-value
 element-rule
 name elemRule1
 parameter-name
 type header-value
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value "August 19, 1967"
mime-rule
 name mimeRule1
 Content-Type application/SDP
 action manipulate
 comparison-type case-sensitive
 msg-type request
 methods
 match-value
 new-value
 mime-header

Chapter 1
MIME Support

1-57

 name mimeHeaderRule1
 mime-header-name Content-
Disposition
 action add
comparison-type case-sensitive
 match-value
 new-value "signal;
handling=required"
 mime-isup-rule
 name mimeRule1
 content-type application/ISUP
 action manipulate
 comparison-type case-sensitive
 msg-type request
 methods INVITE
 match-value
 new-value
 isup-spec {ansi00, itu-92}
 isup-msg-type 0 (0-256 IAM, ACM, etc.)
 mime-header
 name mimeHeaderRule1
 mime-header-name Content-
Disposition
 action add
 comparison-type case-sensitive
 match-value
 new-value "signal;
handling=optional"
 isup-param-rule
 name isupRule1
 parameter-type # {0-256
specific type)
 parameter-format {number-
parameter, hex, binary, ascii, bcd}
 action add
 comparison-type case-sensitive
 match-value
 new-value "signal;
handling=optional"

Header Manipulation Rules for SDP
The Oracle Communications Session Border Controller supports SIP header and
parameter manipulation rules for four types of SIP message contents:

• headers

• elements within headers

• ASCII-encoded Multipurpose Internet Mail Extensions (MIME) bodies

• binary-encoded MIME ISDN User Part (ISUP) bodies

While Session Description Protocol (SDP) offers and answers can be manipulated in a
fashion similar to ASCII-encoded MIME, such manipulation is primitive in that it lacks
the ability to operate at the SDP session- and media-levels.

Chapter 1
MIME Support

1-58

In addition, the system supports a variant of Header Manipulation Rules (HMR) operating on
ASCII-encoded SDP bodies, with specific element types for descriptors at both the session-
level and media-level, and the ability to apply similar logic to SDP message parts as is done
for SIP header elements.

The configuration object, mime-sdp-rules, under sip-manipulation specifically addresses the
manipulation of SDP parts in SIP messages. Just as existing header-rules are used to
manipulate specific headers of a SIP message, mime-sdp-rules will be used to manipulate
the SDP specific mime-attachment of a SIP message.

SDP Manipulation
mime-sdp-rules function in a similar fashion as header-rules. They provide

• parameters used to match against specific SIP methods and/or message types

• parameters used to match and manipulate all or specified parts of an SDP offer or
answer

• a means of comparing search strings or expressions against the entire SDP

• different action types to allow varying forms of manipulation

Since only a single SDP can exist within a SIP message, users need not specify a content-
type parameter as is necessary for a mime-rule. A mime-sdp-rule operates on the single SDP
within the SIP message. If no SDP exists with the message, one can be added. If the
message already contains a mime attachment, adding SDP results in a multipart message.

All manipulations performed against all or parts of the SDP are treated as UTF-8 ASCII
encoded text. At the parent-level (mime-sdp-rule) the match-value and new-value
parameters execute against the entire SDP as a single string.

An add action only succeeds in the absence of SDP because a message is allowed only a
single SDP offer or answer. A delete operation at the mime-sdp-rule level will remove the
SDP entirely.

Note that on an inbound sip-manipulation, SDP manipulations interact with the Oracle
Communications Session Border Controller codec-policy. SDP manipulations also interact
with codec reordering and media setup. It is very possible to make changes to the SDP such
that the call can not be setup due to invalid media parameters, or settings that will affect the
ability to transcode the call. Consequently, user manipulation of the SDP can prove risky, and
should be approached with appropriate caution.

Three configuration-objects, sdp-session-rule, sdp-media-rule, and mime-header-rule, exist
under the mime-sdp-rule. These objects provide finer grained control of manipulating parts of
the SDP.

sdp-session-rule
An sdp-session-rule groups all SDP descriptors, up until the first media line, into a single
entity, thus allowing the user to perform manipulation operations on a session-specific portion
of the SDP.

Like the mime-sdp-rule, all match-value and new-value operations performed at this level are
executed against the entire session group as a complete string. Given the sample SDP

Chapter 1
MIME Support

1-59

below, if an sdp-session-rule is configured, the match-value and new-values operate
only on the designated portion.

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
 e=mjh@isi.edu (Mark Handley)
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 a=recvonly
 m=audio 49170 RTP/AVP 0
 m=video 51372 RTP/AVP 31
 m=application 32416 udp wb
 a=orient:portrait

Nested under the sdp-session-rule configuration object is an sdp-line-rule object, the
object that identifies individual descriptors within the SDP. The types of descriptors
used at the sdp-session-rule level are v, o, s, i, u, e, p, c, b, t, r, z, k, and a, the
descriptors specific to the entire session description.

This level of granularity affords the user a very simple way to making subtle changes
to the session portion of the SDP. For instance, it is very common to have to change
the connection line at the session level.

The add and delete actions perform no operation at the sdp-session-rule level.

sdp-media-rule
An sdp-media-rule groups all of the descriptors that are associated with a specific
media-type into single entity, thus allowing the user to perform manipulation operations
on a media-specific portion of the SDP. For example, a user can construct an sdp-
media-rule to change an attribute of the audio media type.

Like a mime-sdp-rule, all match-value and new-value operations performed at this
level are executed against the entire media-group as a complete string. Given the
sample SDP below, if a media-level-descriptor is configured to operate against the
application group, the match-value and new-values would operate only on designated
portion.

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
 e=mjh@isi.edu (Mark Handley)
 c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
 a=recvonly
 m=audio 49170 RTP/AVP 0
 m=video 51372 RTP/AVP 31
 m=application 32416 udp wb
 a=orient:portrait

Chapter 1
MIME Support

1-60

A configuration parameter media-type is used to specify the media group on which to
operate. It contains all of the descriptors including the m-line up to the next m-line. This
parameter is a string field and must match the media-type exactly as it appears within the
SDP. The special media-type media can be used to refer to all media types. This is
particularly useful when performing an add operation, when the user wants to add a media
section between the first and second medias, but does not know what media type they are.
Otherwise, during an add operation, the media section would be added before the specified
media-type (if no index parameter was provided).

The types of descriptors used at the sdp-media-rule level are m, i, c, b, k, and a, the
descriptors specific to the media description.

This level of granularity affords the user a very simple way to making subtle changes to the
media portion of the SDP. For instance, it is very common to have to change the name of an
audio format (for example G729 converted to g729b), or to add attributes specific to a certain
media-type.

The index operator is supported for the media-type parameter (for example, media-type
audio[1]). Like header rules, if no index is supplied, this means operate on all media-types
that match the given name. For specifying specific media-types, the non-discrete indices are
also supported (for example, ^ - last). Adding a media-type, without any index supplied
indicates that the media should be added at the beginning. The special media-type media
uses the index as an absolute index to all media sections, while a specific media-type will
index relative to that given media type.

For sdp-media-rules set to an action of add where the media-type is set to media, the actual
media type is obtained from the new-value, or more specifically, the string after m= and
before the first space.

Given the following SDP:

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 m=audio 49170 RTP/AVP 0
 m=audio 48324 RTP/AVP 8
 m=video 51372 RTP/AVP 31

With the sdp-media-rule:

sdp-media-rule
 name smr
 media-type audio[1]
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value "m=audio 1234 RTP/AVP 8 16"

This rule operates on the 2nd audio line, changing the port and adding another codec,
resulting in the SDP:

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 c=IN IP4 224.2.17.12/127

Chapter 1
MIME Support

1-61

 t=2873397496 2873404696
 m=audio 49170 RTP/AVP 0
 m=audio 1234 RTP/AVP 8 16
 m=video 51372 RTP/AVP 31

The following rule, however:

sdp-media-rule
 name smr
 media-type media[1]
 action add
 comparison-type case-sensitive
 match-value
 new-value "m=video 1234 RTP/AVP 45"

adds a new video media-type at the 2nd position of all media-lines, resulting in the
SDP:

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 m=audio 49170 RTP/AVP 0
 m=video 1234 RTP/AVP 45
 m=audio 48324 RTP/AVP 8
 m=video 51372 RTP/AVP 31

sdp-line-rule
Unlike header-rules, sdp descriptors are not added in the order in which they are
configured. Instead they are added to the SDP adhering to the grammar defined by
RFC 4566 (as is shown below).

 Session description
 v= (protocol version)
 o= (originator and session identifier)
 s= (session name)
 i=* (session information)
 u=* (URI of description)
 e=* (email address)
 p=* (phone number)
 c=* (connection information -- not required if included in
 all media)
 b=* (zero or more bandwidth information lines)
 One or more time descriptions ("t=" and "r=" lines; see
 below)
 z=* (time zone adjustments)
 k=* (encryption key)
 a=* (zero or more session attribute lines)
 Zero or more media descriptions (see below)

 Time description
 t= (time the session is active)

Chapter 1
MIME Support

1-62

 r=* (zero or more repeat times)

 Media description, if present
 m= (media name and transport address)
 i=* (media title)
 c=* (connection information -- optional if included at
 session level)
 b=* (zero or more bandwidth information lines)
 k=* (encryption key)
 a=* (zero or more media attribute lines)

* after the equal sign denotes an optional descriptor.

This hierarchy is enforced meaning that if you configure a rule which adds a session name
descriptor followed by a rule which adds a version descriptor, the SDP will be created with the
version descriptor first, followed by the session name.

The only validation that will occur is the prevention of adding duplicate values. In much the
same way that header-rules prevents the user from adding multiple To headers, the
descriptor rule will not allow the user to add multiple descriptors; unless multiple descriptors
are allowed, as is in the case of b, t, r and a.

There exists a parameter type under the sdp-line-rule object that allows the user to specify
the specific line on which to perform the operation. For example: v, o, s, i, u, e, p, c, b, t, r, z,
k, a, and m. Details on these types can be found in RFC 4566.

For those descriptors, of which there may exist zero or more (b, t, r, and a) entries, indexing
grammar may be used to reference the specific instance of that attribute. This indexing
grammar is consistent with that of header-rules for referring to multiple headers of the same
type.

Given the example SDP below:

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
 e=mjh@isi.edu (Mark Handley)
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 r=604800 3600 0 90000
 r=7d 1h 0 25h
 a=recvonly
 m=audio 49170 RTP/AVP 0
 m=video 51372 RTP/AVP 31
 m=application 32416 udp wb
 a=orient:portrait

and the following sdp-line-rule:

 sdp-line-rule
 name removeRepeatInterval
 type r[1]
 action delete

Chapter 1
MIME Support

1-63

The rule removeRepeatInterval removes the second repeat interval descriptor within
the SDP.

The behavior of all SDP rules follow the same behavior of all manipulation rules in that
they are executed in the order in which they are configured and that each rule
executes on the resultant of the previous rule.

Each descriptor follows its own grammar and rules depending on the type specified.
The values of the descriptor are evaluated at runtime since the new-values themselves
are evaluated at runtime. At this time no validation of the grammar for each of the
types is performed. The user is responsible for properly formatting each of the
descriptors according to their specifications.

For instance, the version (v) descriptor can be removed from the SDP but leaving all
descriptors for that SDP, causing the SDP to become invalid. This is consistent with
the way header-rules operate, in that there is no validation for the specific headers
once they have been manipulated through HMR.

Regular Expression Interpolation
An interpolated regular expression is a regular expression that is compiled and
evaluated at runtime. Today all regular expressions are compiled at configuration time
in order to improve performance. There are cases where a regular expression is
determined dynamically from data within a SIP message. In these circumstances the
regular expression is unknown until the time of execution.

In order to have a regular expression be interpolated at runtime, it must be contained
within a set of {}. An interpolated expression can have any number of regular
expressions and strings appended together. Any characters to the left or right of the
curly braces will be appended to the value within the curly braces. The curly braces
are effectively two operators treated as one (interpolate the value contained within and
then concatenate the values to the left and right of the curly braces). If the
comparison-type is set to pattern-rule and the match-value contains a value that
matches the grammar below, then it will be treated as an interpolated expression.

([^\\]|^)\{\$[^0-9]+[^}]*\}

The example below demonstrates using a user defined variable within a regular
expression of another rule at runtime.

element-rule

 name someRule
 type header-value
 action replace
 comparison-type pattern-rule
 match-value ^sip:{$rule1.$0}@(.+)$
 new-value sip:bob@example.com

If the value of $rule1.$0 evaluates to alice then it will successfully match against the
string sip:alice@comcast.net. An interpolated expression can be as simple as
“{$rule1.$0}” or as complex as ^sip:{rule1.$0}@{$rule2[1].$2}$. It is not possible to
interpolate a normal regular expression since the grammar will not allow the user to
enter such an expression. Only variables can be contained with the curly braces.

Chapter 1
MIME Support

1-64

The resultant of interpolated expressions can be stored in user defined variables. Given the
same example from above, if the rule someRule was referenced by another rule, the value of
sip:alice@comcast.net would be stored within that rule.

Interpolation only makes a single pass at interpolation, but does so every time the Rule
executes. In other words, if the Rule is applied to the Route header, it will interpolate again for
each Route header instance. What this means is that the value within the curly braces will
only be evaluated once. For instance, if the value {$someRule.$1} evaluates to {$foobar.$2}
the SBC will treat $foobar.$2 as a literal string which it will compile as a regular expression.
The SBC will not recursively attempt to evaluate $foobar.$2, even if it was a valid user
defined variable.

Interpolated regular expressions will evaluate to TRUE if and only if both the regular
expression itself can be compiled and it successfully matches against the compared string.

You cannot use both interpolated expressions and number quantifiers like {3,5} in the same
match-value. When interpolated expressions are evaluated, the brackets around the number
quantifiers will be removed, leaving the literal string 3,5. For example, if $someRule.$1
resolves to a literal string 101, then a match-value of ^[0-9]{3,5} RTP.* {$someRule.$1}
will resolve to ^[0-9]3,5 RTP.* 101, which will not match any number 3 to 5 times.

Regular Expressions as Boolean Expressions
Regular expressions can be used as boolean expressions today if they are the only value
being compared against a string, as is shown in the case below.

mime-rule
 name someMimeRule
 content-type application/text
 action replace
 comparison-type pattern-rule
 match-value ^every good boy .*
 new-value every good girl does fine
However, regular expressions can not be used in conjunction with other
boolean expressions to form more complex boolean expressions, as is shown
below.

mime-rule
 name someMimeRule
 content-type application/text
 action replace
 comparison-type boolean
 match-value $someRule & ^every good boy .*
 new-value every good girl does fine

There are many cases where the user has the need to compare some value as a regular
expression in conjunction with another stored value. It is possible to perform this behavior
today, however it requires an extra step in first storing the value with the regular expression,
followed by another Manipulation Rule which compares the two boolean expressions together
(e.g. $someRule & $someMimeRule).

In order to simplify the configuration of some sip-manipulations and to make them more
efficient this functionality is being added.

Unfortunately, it is not possible to just use the example as is shown above. The problem is
there are many characters that are commonly used in regular expressions that would confuse

Chapter 1
MIME Support

1-65

the HMR expression parser (such as $, and +). Therefore delimiting characters need
to be used to separate the regular expression from the other parts of the expression.

To treat a regular expression as a boolean expression, it needs to be enclosed within
the value $REGEX(<expression>,<compare_string>=$ORIGINAL); where
<expression> is the regular expression to be evaluated. <compare_string> is the string
to compare against the regular expression. This second argument to the function is
defaulted to $ORIGINAL which is the value of the of the specific Manipulation Rule
object. It can be overridden to be any other value the user desires.

The proper configuration for the example above to use regular expressions as boolean
expressions is

mime-rule
 name someMimeRule
 content-type application/text
 action replace
 comparison-type boolean
 match-value $someRule & $REGEX(“^every good boy .*”)
 new-value every good girl does fine

It is also possible to use expressions as arguments to the $REGEX function. These
expressions will in turn be evaluated prior to executing the $REGEX function. A more
complex example is illustrated below.

header-rule
 name checkPAU
 header-name request-uri
 action reject
 comparison-type boolean
 match-value (!$REGEX($rule1[0],$FROM_USER))&
 (!$REGEX($rule2[0],$PAI_USER))
 msg-type request
 new-value 403:Forbidden
 methods INVITE,SUBSCRIBE,MESSAGE,PUBLISH,
 OPTIONS, REFER

It should be noted that when using $REGEX() in a boolean expression, the result of
that expression is not stored in the user variable. The comparison-type must be set to
pattern-rule in order to store the result of a regular expression.

The arguments to the $REGEX() function are interpolated by default. This is the case
since the arguments themselves must be evaluated at runtime. The following example
is also valid.

mime-rule
 name someMimeRule
 content-type application/text
 action replace
 comparison-type boolean
 match-value $someRule & $REGEX(“^every good
 {$rule1[0].$0} .*”)

Chapter 1
MIME Support

1-66

Moving Manipulation Rules
You can move rules within any manipulation-rule container. Any manipulation rule that
contains sub-rules offers the ACLI command move <from index> <to index>. For example,
given the order and list of rules below:

1. rule1

2. rule2

3. rule3

4. rule4

You can move rule3 to position 1 by executing move 3 1. The resulting order is: rule3, rule1,
rule2, rule4. A move operation causes a shift (or insert before) for all other rules. When you
move a rule from the top or middle to the bottom, the system shifts all rules above the bottom
up to the position of the rule that you moved. When you move a rule from the bottom or
middle to the top, the system shifts all rules below down to the position of the rule that you
moved. Positions start from 1.

A valid from-index and to-index are required to be supplied as arguments to the move action.
If you enter a range that is out of bounds for either the from-index or to-index, the ACLI
informs you that the command did not execute and the reason.

If you create an invalid sip-manipulation by incorrectly ordering the manipulation rules, the
Oracle Communications Session Border Controller validates the rules at configuration time
and treats them as invalid prior to runtime. This may or may not affect the outcome of the sip-
manipulation as a configured rule may not perform any operation if it refers to a rule that has
yet to be executed. It is your responsibility to reorder the remaining rules in order to make the
sip-manipulation valid again.

Note that rules of a different type at the same level are all part of the same list. Header-rules,
mime-rules, mime-isup-rules, and mime-sdp-rules all share the same configuration level
under sip-manipulation. When selecting a move from-index and to-index for a header-rule,
you must take into consideration the location of all other rules at the same level because the
move is relative to all rules at that level. The move is not relative to the particular rule you
selected (for example, the header-rule).

Because the list of rules at any one level can be lengthy, you can issue the move command
one argument at a time, providing you with the ability to select indices. For example, typing
move without any arguments displays the list of all the rules at that level. After selecting an
appropriate index, the system prompts you with a to-index location based on the same list
provided.

For Example:

ORACLE(sip-mime-sdp-rules)# move
select a rule to move

1: msr sdp-type=any; action=none; match-value=; msg-type=any

2: addFoo header-name=Foo; action=none; match-value=; msg-type=any

Chapter 1
MIME Support

1-67

3: addBar header-name=Bar; action=none; match-value=; msg-type=any

selection: 2
destination: 1
Rule moved from position 2 to position 1
ACMEPACKET(sip-mime-sdp-rules)#

Rule Nesting and Management
There will be cases where the user wants to take a stored value from the SDP and
place it in a SIP header, and vice-versa. All header-rules, element-rules, mime-rules,
mime-isup-rules, isup-param-rules, mime-header-rules and mime-sdp-rules are
inherited from a Manipulation Rule. A Sip Manipulation is of type Manipulation which
contains a list of Manipulation Rules. Each Manipulation Rule can itself contain a list of
Manipulation Rules. Therefore when configuring manipulation rules, they will be saved
in the order which they have been configured. This is different from the way other
configuration objects are configured. Essentially, the user has the option of configuring
which type of object they want and when they are done, it gets added to the end of the
sip-manipulation, such that order is preserved. This will mean that any Manipulation
Rule at the same level can not share the same name. For example, names of header-
rules can’t be the same as any of the mime-sdp-rule ones or mime-isup-rule. This
allows the user to reference stored values from one rule type in another at the same
level.

ACLI Configuration Examples
The following eight sections provide sample SDP manipulations.

Remove SDP

sip-manipulation
 name stripSdp
 description remove SDP from SIP message
 mime-sdp-rule
 name sdpStrip
 msg-type request
 methods INVITE
 action delete
 comparison-type case-sensitive
 match-value
 new-value

Remove Video from SDP

sip-manipulation
 name stripVideo
 description strip video codecs from SIP
 message
 mime-sdp-rule
 name stripVideo
 msg-type request
 methods INVITE

Chapter 1
MIME Support

1-68

 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
 name removeVideo
 media-type video
 action delete
 comparison-type case-sensitive
match-value
 new-value

Add SDP

sip-manipulation
 name addSdp
 description add an entire SDP if one does
 not exist
 mime-sdp-rule
 name addSdp
 msg-type request
 methods INVITE
 action add
 comparison-type case-sensitive
 match-value
 new-value “v=0\r\no=mhandley
2890844526 2890842807 IN IP4 “+$LOCAL_IP+”\r\ns=SDP Seminar\r\ni=A
Seminar on the session description protocol\r\nu=http:
//www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps\r\ne=mjh@isi.edu
(Mark Handley)\r\nc=IN IP4 “+$LOCAL_IP+”\r\nt=2873397496
2873404696\r\na=recvonly\r\nm=audio 49170 RTP/AVP 0\r\n”

Manipulate Contacts
This rule changes the contact in the SDP to the value contained in the Contact header.

sip-manipulation
 name changeSdpContact
 description changes the contact in the SDP to the
value of the contact header
 header-rule
 name storeContact
 header-name Contact
 action store
 comparison-type pattern-rule
 msg-type request
 methods INVITE
 match-value
 new-value
 element-rule
 name storeHost
 parameter-name
 type uri-host

Chapter 1
MIME Support

1-69

 action store
 match-val-type ip
 comparison-type pattern-rule
 match-value
 new-value
 mime-sdp-rule
 name changeConnection
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-session-rule
 name changeCLine
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-line-rule
 name updateConnection
 type c
 action replace
 comparison-type case-sensitive
 match-value $storeContact.$storeHost
 new-
value $storeContact.$storeHost.$0

Remove a Codec
This rule changes the contact in the SDP to the value contained in the Contact header.

sip-manipulation
 name removeCodec
 description remove G711 codec if it exists
 mime-sdp-rule
 name removeCodec
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
 name removeG711
 media-type audio
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-line-rule
 name remove711
 type m
 action replace

Chapter 1
MIME Support

1-70

 comparison-type pattern-rule
 match-value ^(audio [0-9]
 {1,5} RTP.*)([07]
 \b)(.*)$
 new-value $1+$3
 sdp-line-rule
 name stripAttr
 type a
 action delete
 comparison-type pattern-rule
 match-value ^(rtpmap|fmtp):
 [07]\b$
 new-value

Change Codec

sip-manipulation
 name convertCodec
 description changeG711toG729
 mime-sdp-rule
 name changeCodec
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
 name change711to729
 media-type audio
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-line-rule
 name change711
 type m
 action replace
 comparison-type pattern-rule
 match-value ^(audio [0-9]{4,5}
 RTP/AVP.*)(0)(.*)$
new-value $1+” 18”+$3
 sdp-line-rule
 name stripAttr
 type a
 action delete
 comparison-type pattern-rule
 match-value ^rtpmap:0 PCMU/
 .+$
 new-value
 sdp-line-rule
 name addAttr
 type a
 action add

Chapter 1
MIME Support

1-71

 comparison-type boolean
 match-value $change711to729.
 $stripAttr
 new-value rtpmap:18
G729/8000

Remove Last Codec and Change Port

sip-manipulation
 name removeLastCodec
 description remove the last codec
 mime-sdp-rule
 name removeLastCodec
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
 name removeLast
 media-type audio
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-line-rule
 name isLastCodec
 type m
 action store
 comparison-type pattern-rule
 match-value ^(audio)([0-9]
{4,
 5})(RTP/AVP
 [0-9]{1-3})$
new-value
 sdp-line-rule
 name changePort
 type m
 action replace
 comparison-type boolean
 match-
value $removeLastCodec.
$removeLast.$isLastCodec
 new-
value $removeLastCodec.
$removeLast.$isLastCodec.$1+0+$removeLastCodec.$removeLast.
$isLastCodec.$3

Remove Codec with Dynamic Payload

sip-manipulation
 name removeAMR

Chapter 1
MIME Support

1-72

 description remove the AMR and AMR-WB dynamic codecs
 split-headers
 join-headers
 mime-sdp-rule
 name sdpAMR
 msg-type request
 methods INVITE
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-media-rule
 name mediaAMR
 media-type audio
 action manipulate
 comparison-type case-sensitive
 match-value
 new-value
 sdp-line-rule
 name isAMR
 type a
 action delete
 comparison-type pattern-rule
 match-value ^rtpmap:([0-9]{2,3}) AMR\/
 new-value
 sdp-media-rule
 name mediaIsAMR
 media-type audio
 action manipulate
 comparison-type boolean
 match-value $sdpAMR.$mediaAMR.$isAMR[~]
 new-value
 sdp-line-rule
 name delFmtpAMR
 type a
 action delete
 comparison-type pattern-rule
 match-value ^fmtp:
({$sdpAMR.$mediaAMR.$isAMR[~].$1})
 new-value
 sdp-line-rule
 name delAMRcodec
 type m
 action find-replace-all
 comparison-type pattern-rule
 match-value ^(audio [0-9]+ RTP.*)
{$sdpAMR.$mediaAMR.$isAMR[~].$1}(.*)$
 new-value $1+$2

HMR Import-Export
Due to the complexity of SIP manipulations rules and the deep understanding of system
syntax they require, it is often difficult to configure reliable rules. This feature provides support

Chapter 1
HMR Import-Export

1-73

for importing and exporting pieces of SIP manipulation configuration in a reliable way
so that they can be reused.

Exporting
The SIP manipulation configuration contains an export command which sends the
previously selected configuration to the designated file. The syntax is export
[FILENAME]. The system compresses the file with gzip and writes it to the /code/
imports directory.

Note:

SIP manipulation configurations can only be exported one at a time.

Exported data will look like this:

<?xml version='1.0' standalone='yes'?>
<sipManipulation
 name='manip'
 description=''
 lastModifiedBy='admin@console'
 lastModifiedDate='2009-10-16 14:16:29'>
 <headerRule
 headerName='Foo'
 msgType='any'
 name='headerRule'
 action='manipulate'
 cmpType='boolean'
 matchValue='$REGEX("[bB][A-Za-z]{2}")'
 newValue='foo'
 methods='INVITE'>
 </headerRule>
</sipManipulation>

To avoid conflicts when importing, the key and object ID are not included as part of the
exported XML.

Importing
The import command imports data from a previously exported file into the currently-
selected configuration. If no configuration was selected, a new one is created. The
syntax is import [FILENAME]. Include the .gz extension in the filename. After
importing, type done to save the configuration.

Importing a configuration with the same key as one that already exists returns an error.
In this case:

• Delete the object with the same key and re-import.

• Select the object with the same key and perform an import that will overwrite it with
new data.

Chapter 1
HMR Import-Export

1-74

Using SFTP to Move Files
After exporting a configuration, use SFTP to copy the file to other Oracle Communications
Session Border Controllers. Place the file in the /code/imports directory before using the
import command on the second SBC.

Removing Files
Using the delete-import command with the name of the file you want to delete removes it
from the system. Using this command, you can delete files that are no longer useful to you.
Carrying out this command is final and there is no warning before you go ahead with the
deletion. A failed deletion (for instance, because there is no such file) will produce an error
message; a successful deletion simply returns you to the system prompt.

HMR Development
Before you start developing an HMR, ask yourself whether you need an HMR. Check
whether an alternative is available. For example, you can configure the SBC to perform some
of the more common needed message manipulations like stripping telephone events from
SDP or resolving delayed offer issues. If you need more flexibility to address your problem,
then HMR is probably the answer.

Development Overview
Once you have decided you want to use HMR to resolve an issue, Oracle recommends you
follow this development procedure:

1. Understand regex. Your knowledge of regex is fundamental to building an HMR that
yields the desired result.

2. Identify the direction of the traffic in relation to the SBC to which you want to apply an
HMR (inbound or outbound).

3. Identify the SIP message portion on which you want the HMR to operate: header,
parameter, or body.

4. Identify the remote entities involved and know their represented in your SBC
configuration. Are they session agents, realms or SIP interfaces? Take into consideration
the order of precedence among these entities for applying HMRs.

5. Build the HMR and test it using the SBC's Testing SIP Manipulations.

6. Apply the HMR appropriately to your configuration. Oracle recommends that you develop,
test, and apply HMRs in test or laboratory environments only.

7. Analyze the data resulting from your HMR to confirm it is working as you intend.

Development Tips
• Define all storage rules first. Each subsequent header rule processes against the same

SIP message, so each additional header rules works off of the results from the
application of the rule that precedes it.
In general, you want to store values from the original SIP header rather than from the
iteratively changed versions.

Chapter 1
HMR Development

1-75

• Implement rules at the element rule rather than the header rule level. Header rules
should only be a container for element rules.

• Add additional element rules to modify a single header. Do not create multiple
header rules, each with one element rule. Instead, create multiple element rules
within a header rule.

• Think of performance. Reuse as many built in variables as possible

• Avoid lengthy string matches unless absolutely necessary

• Wherever possible, constrain your HMR appropriately by specifying a SIP method
and message type

• Build an HMR library

Planning Considerations
You want to plan your functionality carefully when developing HMRs and you want to
test it thoroughly before deploying it on your production system.

Traffic Direction
You need to determine if you want changes to occur on traffic that is relative to the
SBC inbound or outbound.

Order of Application Precedence
As you decide direction, you must also consider the order in which the SBC applies
HMR for session agents, realms, and SIP interfaces. The order of precedence is:

• session agent

• realm

• SIP interface

A SIP manipulation applied to a session agent overrides the other two, and a SIP
manipulation for a realm overrides one for a SIP interface.

Order of HMR Execution
The SBC applies SIP header rules in the order you have entered them, which guards
against the removal of data that might be used by other header rules. The order starts
with the top-most rule and continues with the execution of the sub-rules one by one.
Each new rule is carried out on the result of the preceding rule.

This ordering also lets you strategically use manipulations. For example, you can use
two rules if you want to store the values of a regular expression. The first rule stores
the value of a matched regular expression and the second deletes the matched value.

Applying HMR to a Specific Header
You can operate on a specific instance of a given header by adding a trailing
[<index>] value after the header name. This [<index>] is a numerical value
representing the specific instance of the header on which to operate. However, the
SBC takes no action if the header does not exist. You can also use the caret ^ to
reference the last header of that type if there are multiple instances.

Chapter 1
HMR Development

1-76

The count for referencing is zero-based, meaning that the first instance of the header counts
as 0.

Note:

You cannot use a trailing [<index>] value after the header name to insert headers
into a specific location. Headers are added to the end of the list, except that Via
headers are added to the top.

HMR Sets
Although the SBC has a set method for how certain manipulation rules take precedence over
others; you can use multiple SIP HMR sets to

• Apply multiple inbound and outbound manipulations rules to a SIP message

• Provision the order in which the SBC applies HMRs

You cause the header rule in one HMR to invoke another HMR. Values from that invoked
HMR for the match value, comparison type, and methods are then supported. The invoked
HMR is performed when those values are true.

Create Pseudocode
You start with a high-level design, refine the design to pseudocode, and then refine the
pseudocode to source code. This successive refinement in small steps allows you to check
your design as you drive it to lower levels of detail. The result is that you catch high level
errors at the highest level, mid-level errors at the middle level, and low-level errors at the
lowest level -- before any of them becomes a problem or contaminates work at more detailed
levels.

Test HMRs
Test methodologies include:

• Wireshark traces to create SIPp scripts

• test-pattern-rule to test pattern matches from the ACLI

• test-sip-manipulation available through the ACLI

• log.sipd messages

test-sip-manipulation
You can use a tool that allows you to test the outcome of your SIP manipulation and header
rules without sending real traffic through the SBC to see if they work.

To use the tool, you enter the ACLI's test-sip-manipulation utility and reference the rule you
want to test using its name. Then you enter a mode where you put in a SIP message entered
in ASCII. You can cut and paste this message from sipmsg.log or from some other location.
Using <Ctrl-D> stops the SIP message collection and parses it.

The test informs you of any parsing errors found in the SIP message. Once the message is
entered, you can execute the SIP manipulation against the message. The output after this

Chapter 1
HMR Development

1-77

step is the modified SIP message after manipulations have been applied. You will also
find a debugging option, which displays SIP manipulation logging to the screen as the
manipulation takes place.

As a starting point for testing, this tool comes loaded with a default SIP message. It
cannot be associated with realms, session agents, or SIP interfaces, and so it also
comes with certain resolves reserved words, such
as: $LOCAL_IP, $TRUNK_GROUP_CONTEXT, and $REMOTE_PORT. In addition, you can use
your settings for testing across terminal sessions; if you choose to save your settings,
everything (including the SIP message) will be saved, with the exception of the
debugging option.

It is not recommended that you use this tool to add an ISUP message body.

Development Example
You want to perform specialized call routing for x11 numbers, such as 211, 311, 411
and so on, based on from where the call originated. You want to concatenate the user
part of the To URI with the seven digits following the +1 in the user part of the From
URI and to swap that value in the user part of the Request URI:

INVITE sip:211;csel=nonind@192.168.65.16:5060;user=phone SIP/2.0
Via:SIP/2.0/UDP 10.1.110.34;branch=z9hG4bK-
BroadWorks.as3.otwaon10-192.168.65.16V5060-0-31288454-509069652-1273520
380170-
From:"JOHN SMITH"<sip:+14167601262@sipt.itech.ca;user=phone>
To:<sip:211;csel=noind@92.168.65.16:5060;user=phone>

Note:

• To user-uri: 211

• From user-uri: +14167601262

• Desired Request-URI: 2114167601

Writing the Pseudo Code
• Header rule getToURI for To header is not needed. The built-in

variable $RURI_USER can be used.

• Header rule getFromURIDigits for From header. Stores specific digits for the uri-
user-only part of the From header.

• Header rule constructRURIUsingToAndFrom to build the Request-URI. Replaces
the uri-user of the Request-URI with a concatenation of the stored digits.

Testing the Pattern Rule

(configure)# session-router test-pattern-rule
(test-pattern-rule)# string +14167601262
expression made 0 matches against string
(test-pattern-rule)# expression ^\+1([0-9]{7}).*$

Chapter 1
HMR Development

1-78

expression made 2 matches again string
(test-pattern-rule)# show
Pattern Rule:
Expression : ^\+1([0-9]{7}).*$
String : +14167601262
Matched : TRUE
Matches:
$0 +14167601262
$1 4167601

Note:

• A $ was used to denote the end of the string. Using a carriage return line feed
\r\n will not result in matches.

• $0 is the entire string being matched against.

• $1 is the string represented in the first set of parentheses. Here, $1 matches the
desired output so the regular expression is correct.

Constructing the HMR

sip-manipulation
name ContructURI
description
header-rule
 name getFromURIDigits
 header-name From
 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name getDigit
 parameter-name
 type uri-user
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value ^\+1([0-9]{7}).*$
 new-value
header-rule
 name constructRURIUsingToAndFrom
 header-name request-uri
 action manipulate
 comparison-type case-insensitive
 match-value
 msg-type request
 new-value
 methods INVITE

Chapter 1
HMR Development

1-79

 element-rule
 name constructRURI
 parameter-name
 type uri-user
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-
value $RURI_USER.$0+$getFromURIDigits.$getDigits.$1

Note:

$RURI_USER.$0+$getFromURIDigits.$getDigits.$1
Concatenate the two and replace the uri-user of the R-URI. The plus sign (+)
serves as the concatenation operator when the comparison-type is pattern-
rule. Only the $1 from the second ruleset is used because it represents just
the subset of the From digits needed.

Loading Test SIP Message

(test-sip-manipulation)# load-sip-message

You might want to edit the Content-Length value default value of 276 or to remove the
header. Retaining that value causes test-sip-manipulation to transmit only the first 276
characters of the loaded SIP message.

Configuring Testing

Test Sip Manipulation:
 sip-manipulation : ConstructRURI
 debugging : enabled
 direction : out
 manipulation-string :
 manipulation-pattern : \,+
 tgrp-context :
 local-ip : 192.168.1.60:5060
 remote-ip : 192.168.1.61:5060
 sip-message : parsed OK

Executing Testing

(test-sip-manipulation)# execute
Header Rule ConstructRURI (headerName=request-uri action=manipulate
cmpType=pattern-rule) does not apply to method INVITE
After Manipulation[ConstructRURI]

Chapter 1
HMR Development

1-80

The following output snippet shows that the HMR worked:

INVITE sip:2114167601@192.168.65.16:5060;user=phone SIP/2.0
Via: SIP/2.0/UDP 10.1.119.152:5060;branch=x9hG4bKj3svpd1030b08nc9t3f1.1
From: JOHN SMITH<sip:
+14167601262@sipt.tech.ca;user=phone;tag=SDekcfd01-966714349-1273696750280-
To: <sip:211;csel=noind@10.1.119.151:5060;user=phone

Log File Analysis
Run log.sipd at debug level on the SBC where you plan to test the HMR to gain the most
information. Then examine log.sipd to review information about the HMR execution.

Configuration Examples
This section shows you several configuration examples for HMR. This section shows the
configuration for the various rules that the Oracle Communications Session Border
Controllerapplied, and sample results of the manipulation. These examples present
configurations as an entire list of fields and settings for each ruleset, nested header rules and
nested element rules. If a field does not have any operation within the set, the field is shown
with the setting at the default or blank.

Example 1 Removing Headers
For this manipulation rule, the Oracle Communications Session Border Controller removes
the Custom header if it matches the pattern rule. It stores the defined pattern rule for the
goodBye header. Finally, it removes the goodBye header if the pattern rule from above is a
match.

This is a sample of the configuration:

sip-manipulation
 name removeHeader
 header-rule
 name removeCustom
 header-name Custom
 action delete
 comparison-type boolean
 match-value ^This is my.*
 msg-type request
 new-value
 methods INVITE
 header-rule
 name goodByeHeader
 header-name Goodbye
 action store
 comparison-type boolean
 match-value ^Remove (.+)
 msg-type request
 new-value
 methods INVITE
 header-rule
 name goodBye

Chapter 1
Configuration Examples

1-81

 action delete
 comparison-type pattern-rule
 match-value $goodByeHeader
 msg-type request
 new-value
 methods INVITE

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP
192.168.200.61:5060;branch=z9hG4bK0g639r10fgc0aakk26s1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDc1rm601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SDc1rm601-d01673bcacfcc112c053d95971330335-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 2 Manipulating the Request URI
For this manipulation rules, the Oracle Communications Session Border Controller
stores the URI parameter tgid in the Request URI. Then if the pattern rule matches, it
adds a new header (x-customer-profile) with the a new header value tgid to the URI
parameter in the request URI.

This is a sample of the configuration:

sip-manipulation
 name CustomerTgid
 header-rule
 name ruriRegex
 header-name request-uri
 action store
 comparison-type pattern-rule
 match-value
 msg-type request
new-value
 methods INVITE
 element-rule
 name tgidParam
 parameter-name tgid
 type uri-param
 action store
 match-val-type any
 comparison-type pattern-rule

Chapter 1
Configuration Examples

1-82

 match-value
 new-value
header-rule
 name addCustomer
 header-name X-Customer-Profile
 action add
 comparison-type pattern-rule
 match-value $ruriRegex.$tgidParam
 msg-type request
 new-value $ruriRegex.$tgidParam.$0
 methods INVITE
header-rule
 name delTgid
 header-name request-uri
 action manipulate
 comparison-type pattern-rule
 match-value $ruriRegex.$tgidParam
 msg-type request
 new-value
 methods INVITE
 element-rule
 name tgidParam
 parameter-name tgid
 type uri-param
 action delete-element
 match-val-type any
 comparison-type case-sensitive
 match-
value $ruriRegex.$tgidParam.$0
 new-value

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060 SIP/2.0
 Message Header
Via: SIP/2.0/UDP 192.168.200.61:5060;branch=z9hG4bK0g6plv3088h03acgh6c1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDc1rg601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SDc1rg601-f125d8b0ec7985c378b04cab9f91cc09-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140
 X-Customer-Profile: 123

Chapter 1
Configuration Examples

1-83

Example 3 Manipulating a Header
For this manipulation rule, the Oracle Communications Session Border
Controllerstores the pattern matches for the Custom header, and replaces the value of
the Custom header with a combination of the stored matches and new content.

This is a sample of the configuration:

sip-manipulation
 name modCustomHdr
 header-rule
 name customSearch
 header-name Custom
 action store
 comparison-type pattern-rule
 match-value (This is my)(.+)
(header)
 msg-type request
 new-value
 methods INVITE
header-rule
 name customMod
 header-name Custom
 action manipulate
 comparison-type pattern-rule
 match-value $customSearch
 msg-type request
 new-value
methods INVITE
 element-rule
 name hdrVal
 parameter-name hdrVal
 type header-value
 action replace
 match-val-type any
 comparison-type case-sensitive
 match-value
new-value $customSearch.$1+edited+$customSearch.$3

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP
192.168.200.61:5060;branch=z9hG4bK20q2s820boghbacgs6o0.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDe1ra601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SDe1ra601-4bb668e7ec9eeb92c783c78fd5b26586-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my edited header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123

Chapter 1
Configuration Examples

1-84

 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 4 Storing and Using URI Parameters
For this manipulation rule, the Oracle Communications Session Border Controller stores the
value of the URI parameter tag from the From header. It also creates a new header FromTag
with the header value from the stored information resulting from the first rule.

This is a sample of the configuration:

sip-manipulation
 name storeElemParam
 header-rule
 name Frohmr
 header-name From
 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name elementRule
 parameter-name tag
 type uri-param
 action store
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value
header-rule
 name newHeader
 header-name FromTag
 action add
 comparison-type pattern-rule
 match-value $FromHR.$elementRule
 msg-type any
 new-value $FromHR.$elementRule.$0
 methods

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP
192.168.200.61:5060;branch=z9hG4bK4oda2e2050ih7acgh6c1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDf1re601-1
 To: sut <sip:service@192.168.1.61:5060>

Chapter 1
Configuration Examples

1-85

 Call-ID: SDf1re601-f85059e74e1b443499587dd2dee504c2-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
Content-Length: 140
 FromTag: 1

Example 5 Manipulating Display Names
For this manipulation rule, the Oracle Communications Session Border Controller
sores the display name from the Display header. It replaces the two middle characters
of the original display name with a new string. Then is also replaces the From header’s
display name with “abc 123” if it matches sipp.

This is a sample of the configuration:

sip-manipulation
 name modDisplayParam
 header-rule
 name storeDisplay
 header-name Display
 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name displayName
 parameter-name display
 type uri-display
 action store
 match-val-type any
comparison-type pattern-rule
 match-value (s)(ip)(p)
 new-value
header-rule
 name modDisplay
 header-name Display
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule

Chapter 1
Configuration Examples

1-86

 name modRule
 parameter-name display
 type uri-display
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-
value $storeDisplay.$displayName
 new-
value $storeDisplay.$displayName.$1+lur+$storeDisplay.$d
isplayName.$3
header-rule
 name modFrom
 header-name From
 action manipulate
 comparison-type pattern-rule
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name fromDisplay
 parameter-name
 type uri-display
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value sipp
 new-value "\"abc 123\" "

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP
192.168.200.61:5060;branch=z9hG4bK681kot109gp04acgs6o0.1
 From: "abc 123" <sip:sipp@192.168.1.60:5060>;tag=SD79ra601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SD79ra601-a487f1259e2370d3dbb558c742d3f8c4-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: slurp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Chapter 1
Configuration Examples

1-87

Example 6 Manipulating Element Parameters
For this more complex manipulation rule, the Oracle Communications Session Border
Controller:

• From the Display header, stores the display name, user name, URI parameter up,
and header parameter hp

• Adds the header parameter display to the Params header, with the stored value of
the display name from the first step

• Add the URI parameter user to the Params header, with the stored value of the
display name from the first step

• If the URI parameter match succeeds in the first step, replaces the URI parameter
up with the Display header with the value def

• If the header parameter match succeeds in the first step, deletes the header
parameter hp from the Display header

This is a sample of the configuration:

sip-manipulation
 name elemParams
 header-rule
 name StoreDisplay
 header-name Display
 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name displayName
 parameter-name
 type uri-display
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
element-rule
 name userName
 parameter-name user
 type uri-user
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
element-rule
 name uriParam
 parameter-name up
 type uri-param
 action store

Chapter 1
Configuration Examples

1-88

 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
element-rule
 name headerParam
 parameter-name hp
 type header-param
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
 header-rule
 name EditParams
 header-name Params
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name addHeaderParam
 parameter-name display
 type header-param
 action add
match-val-type any
 comparison-type case-sensitive
 match-value
 new-
value $StoreDisplay.$displayName.$0
 element-rule
 name addUriParam
 parameter-name user
 type uri-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value
$StoreDisplay.$userName.$0
 header-rule
 name EditDisplay
 header-name Display
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name replaceUriParam
 parameter-name up
 type uri-param

Chapter 1
Configuration Examples

1-89

 action replace
 match-val-type any
 comparison-type pattern-rule
 match-
value $StoreDisplay.$uriParam
 new-value def
 element-rule
 name delHeaderParam
 parameter-name hp
 type header-param
 action delete-element
 match-val-type any
 comparison-type pattern-rule
 match-value $StoreDisplay.$headerParam
 new-value

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP
192.168.200.61:5060;branch=z9hG4bK7okvei0028jgdacgh6c1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SD89rm601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SD89rm601-b5b746cef19d0154cb1f342cb04ec3cb-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=def>
 Params: sipp
<sip:sipp1@192.168.1.60:5060;user=user>;display=sipp
 Params: sipp
<sip:sipp2@192.168.1.60:5060;user=user>;display=sipp
 Edit: disp <sip:user@192.168.1.60:5060>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 7 Accessing Data from Multiple Headers of the Same Type
For this manipulation rule, the Oracle Communications Session Border Controller
stores the user name from the Params header. It then adds the URI parameter c1 with
the value stored from the first Params header. Finally, it adds the URI parameter c2
with the value stored from the second Params header.

This is a sample of the configuration:

sip-manipulation
 name Params
 header-rule
 name storeParams
 header-name Params

Chapter 1
Configuration Examples

1-90

 action store
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name storeUserName
 parameter-name user
 type uri-user
 action store
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value
header-rule
 name modEdit
 header-name Edit
 action manipulate
 comparison-type pattern-rule
 match-value
 msg-type request
 new-value
methods INVITE
 element-rule
 name addParam1
 parameter-name c1
 type uri-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-
value $storeParams[0].$storeUserName.$0
 element-rule
 name addParam2
 parameter-name c2
 type uri-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-
value $storeParams[1].$storeUserName.$0

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP
192.168.200.61:5060;branch=z9hG4bK9g855p30cos08acgs6o0.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SD99ri601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SD99ri601-6f5691f6461356f607b0737e4039caec-06a3gu0

Chapter 1
Configuration Examples

1-91

 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp <sip:user@192.168.1.60:5060;c1=sipp1;c2=sipp2>
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 8 Using Header Rule Special Characters
For this manipulation rule, the Oracle Communications Session Border Controller:

• Stores the header value of the Params header with the given pattern rule, and
stores both the user name of the Params header and the URI parameter abc

• Adds the URI parameter lpu with the value stored from the previous Params
header

• If any of the Params headers match the pattern rule defined in the first step, adds
the URI parameter apu with the value aup

• If all of the Params headers match the pattern rule defined in the first step, adds
the URI parameter apu with the value apu

• If the first Params headers does not match the pattern rule for storing the URI
parameter defined in the first step, adds the URI parameter not with the value 123

• If the first Params headers matches the pattern rule for storing the URI parameter
defined in the first step, adds the URI parameter yes with the value 456

This is a sample of the configuration:

sip-manipulation
 name specialChar
 header-rule
 name searchParams
 header-name Params
 action store
 comparison-type pattern-rule
 match-value .*sip:(.+)@.*
 msg-type request
 new-value
 methods INVITE
 element-rule
 name userName
 parameter-name
 type uri-user
 action store
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value

Chapter 1
Configuration Examples

1-92

element-rule
 name emptyUriParam
 parameter-name abc
 type uri-param
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value
 new-value
header-rule
 name addUserLast
 header-name Edit
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name lastParamUser
 parameter-name lpu
 type uri-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $searchParams[^].$userName.$0
 element-rule
 name anyParamUser
 parameter-name apu
 type uri-param
 action add
 match-val-type any
 comparison-type pattern-rule
 match-value $searchParams[~]
 new-value aup
 element-rule
 name allParamUser
 parameter-name apu
 type header-param
 action add
 match-val-type any
 comparison-type pattern-rule
 match-value $searchParams[*]
 new-value apu
 element-rule
 name notParamYes
 parameter-name not
 type uri-param
 action add
 match-val-type any
 comparison-type pattern-rule
 match-
value !$searchParams.$emptyUriParam
 new-value 123

Chapter 1
Configuration Examples

1-93

 element-rule
 name notParamNo
 parameter-name yes
 type uri-param
 action add
 match-val-type any
 comparison-type pattern-rule
 match-
value $searchParams.$emptyUriParam
 new-value 456

This is a sample of the result:

Request-Line: INVITE sip:service@192.168.200.60:5060;tgid=123 SIP/2.0
 Message Header
 Via: SIP/2.0/UDP
192.168.200.61:5060;branch=z9hG4bK681m9t30e0qh6akgj2s1.1
 From: sipp <sip:sipp@192.168.1.60:5060>;tag=SDchrc601-1
 To: sut <sip:service@192.168.1.61:5060>
 Call-ID: SDchrc601-fcf5660a56e2131fd27f12fcbd169fe8-06a3gu0
 CSeq: 1 INVITE
 Contact: <sip:sipp@192.168.200.61:5060;transport=udp>
 Goodbye: Remove Me
 Custom: This is my custom header
 Display: sipp <sip:user@192.168.1.60:5060;up=abc>;hp=123
 Params: sipp <sip:sipp1@192.168.1.60:5060>
 Params: sipp <sip:sipp2@192.168.1.60:5060>
 Edit: disp
<sip:user@192.168.1.60:5060;lpu=sipp2;apu=aup;not=123>;apu=apu
 Max-Forwards: 69
 Subject: Performance Test
 Content-Type: application/sdp
 Content-Length: 140

Example 9 Status-Line Manipulation
This section shows an HMR configuration set up for status-line manipulation.

Given that the object of this example is to drop the 183 Session Progress response
when it does not have SDP, your SIP manipulation configuration needs to:

1. Search for the 183 Session Progress response

2. Determine if the identified 183 Session Progress responses contain SDP; the
Oracle Communications Session Border Controller searches the 183 Session
Progress responses where the content length is zero

3. If the 183 Session Progress response does not contain SDP, change its status
code to 699

4. Drop all 699 responses

sip-manipulation
 name manip
 description

Chapter 1
Configuration Examples

1-94

 header-rule
 name IsContentLength0
 header-name Content-Length
 action store
 comparison-type pattern-rule
 match-value 0
 msg-type reply
 new-value
 methods
 header-rule
 name is183
 header-name @status-line
 action store
 comparison-type pattern-rule
 match-value
 msg-type reply
 new-value
 methods
 element-rule
name is183Code
 parameter-name
 type status-code
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value 183
 new-value
 header-rule
 name change183
 header-name @status-line
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type reply
 new-value
 methods
 element-rule
 name make199
 parameter-name
 type status-code
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value $IsContentLength0
& $is183.$is183Code
 new-value 199

sip-interface options dropResponse=699

Example 10 Use of SIP HMR Sets
The following example shows the configuration for SIP HMR with one SIP manipulation
configuration loading another SIP manipulation configuration. The goals of this configuration
are to:

Chapter 1
Configuration Examples

1-95

• Add a new header to an INVITE

• Store the user portion of the Request URI

• Remove all Route headers from the message only if the Request URI is from a
specific user

sip-manipulation
 name deleteRoute
 description delete all Route Headers
 header-rule
 name deleteRoute
 header-name Route
 action delete
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
sip-manipulation
 name addAndDelete
 description Add a New header and delete
Route headers
 header-rule
 name addHeader
 header-name New
 action add
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value "Some Value"
 methods INVITE
 header-rule
 name storeRURI
 header-name request-uri
 action store
 comparison-type pattern-rule
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name storeUser
 parameter-name
 type uri-user
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value 305.*
 new-value
 header-rule
 name deleteHeader
 header-name request-uri
 action sip-manip
 comparison-type Boolean
 match-value $storeRURI.$storeUser

Chapter 1
Configuration Examples

1-96

 msg-type request
 new-value deleteRoute
 methods INVITE

Example 11 Use of Remote and Local Port Information
The following example shows the configuration for remote and local port information. The
goals of this configuration are to:

• Add LOCAL_PORT as a header parameter to the From header

• Add REMOTE_PORT as a header parameter to the From header

sip-manipulation
 name addOrigIp
 description
 header-rule
 name addIpParam
 header-name From
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name addIpParam
 parameter-name newParam
 type header-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $LOCAL_IP
 element-rule
 name addLocalPort
 parameter-name lport
 type header-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $LOCAL_PORT
 element-rule
 name addRemotePort
 parameter-name rport
 type header-param
 action add
 match-val-type any
 comparison-type case-sensitive
 match-value
 new-value $REMOTE_PORT

Chapter 1
Configuration Examples

1-97

Example 12 Response Status Processing
Given that the object of this example is to drop the 183 Session Progress response
when it does not have SDP, your SIP manipulation configuration needs to:

1. Search for the 183 Session Progress response

2. Determine if the identified 183 Session Progress responses contain SDP; the
Oracle Communications Session Border Controller searches the 183 Session
Progress responses where the content length is zero

3. If the 183 Session Progress response does not contain SDP, change its status
code to 699

4. Drop all 699 responses

sip-manipulation
 name manip
 description
 header-rule
 name IsContentLength0
 header-name Content-Length
 action store
 comparison-type pattern-rule
 match-value 0
 msg-type reply
 new-value
 methods
 header-rule
 name is183
 header-name @status-line
 action store
 comparison-type pattern-rule
 match-value
 msg-type reply
 new-value
 methods
 element-rule
 name is183Code
 parameter-name
 type status-code
 action store
 match-val-type any
 comparison-type pattern-rule
 match-value 183
 new-value
 header-rule
 name change183
 header-name @status-line
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type reply
 new-value
 methods

Chapter 1
Configuration Examples

1-98

 element-rule
 name make699
 parameter-name
 type status-code
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value $IsContentLength0
& $is183.$is183Code
 new-value 699
sip-interface
 options dropResponse=699

The following four configuration examples are based on the this sample SIP INVITE:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:service@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60
CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=audio 12345 RTP/AVP 18
a=rtpmap:8 G729/8000/1
a=fmtp:18 annexb=no
a=sendrecv
a=ptime:20
a=maxptime:200
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=video 12345 RTP/AVP 34
a=rtpmap:34 H263a/90000
a=ptime:30
--boundary--

Chapter 1
Configuration Examples

1-99

Example 13 Remove a Line from SDP
In this example, the SIP manipulation is configured to remove all p-time attributes from
the SDP.

sip-manipulation
 name removePtimeFromBody
 description removes ptime attribute from all
bodies
 header-rule
 name CTypeManp
 header-name Content-Type
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name remPtime
 parameter-name application/sdp
 type mime
 action find-replace-all
 match-val-type any
 comparison-type case-sensitive
 match-value a=ptime:[0-9]
{1,2}(\n|\r\n)
 new-value

The result of manipulating the original SIP INVITE (shown above) with the configured
SIP manipulation is:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:service@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60
CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=audio 12345 RTP/AVP 18
a=rtpmap:18 G729/8000/1
a=fmtp:18 annexb=no
a=sendrecv

Chapter 1
Configuration Examples

1-100

a=maxptime:200
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=video 12345 RTP/AVP 34
a=rtpmap:34 H263a/90000
--boundary-

Example 14 Back Reference Syntax
In this sample of back-reference syntax use, the goal is to change the To user. The SIP
manipulation would be configured like the following:

sip-manipulation
 name changeToUser
 description change user in the To header
 header-rule
 name ChangeHeader
 header-name To
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type request
 new-value
 methods INVITE
 element-rule
 name replaceValue
 parameter-name
 type header-value
 action replace
 match-val-type any
 comparison-type pattern-rule
 match-value (.+)(service)(.+)
 new-value $1+Bob+$3

The result of manipulating the original SIP INVITE (shown above) with the configured SIP
manipulation is:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:Bob@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60
CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
…

Chapter 1
Configuration Examples

1-101

…
…

Example 15 Change and Remove Lines from SDP
In this sample of changing and removing lines from the SDP, the goal is to convert the
G.729 codec to G.729a. The SIP manipulation would be configured like the following:

sip-manipulation
 name std2prop-codec-name
 description rule to translate standard to
proprietary codec name
 header-rule
 name CTypeManp
 header-name Content-Type
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type any
 new-value
 methods
 element-rule
 name g729-annexb-no-
std2prop
 parameter-name application/sdp
 type mime
 action find-replace-all
 match-val-type any
 comparison-type case-sensitive
 match-value a=rtpmap:[0-9]
{1,3}(G729/8000/1\r\na=fmtp:[0-9]{1,3} annexb=no)[[:1:]]
 new-value G729a/8000/1

The result of manipulating the original SIP INVITE (shown above) with the configured
SIP manipulation is:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:service@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60
CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0

Chapter 1
Configuration Examples

1-102

m=audio 12345 RTP/AVP 8
a=rtpmap:18 G729a/8000/1
a=sendrecv
a=maxptime:200
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=video 12345 RTP/AVP 34
a=rtpmap:34 H263a/90000
--boundary-

Example 16 Change and Add New Lines to the SDP
In this sample of changing and adding lines from the SDP, the goal is to convert non-standard
codec H.263a to H.263. The SIP manipulation would be configured like the following:

sip-manipulation
 name prop2std-codec-name
 description rule to translate proprietary to
standard codec name
 header-rule
 name CodecManp
 header-name Content-Type
 action manipulate
 comparison-type case-sensitive
 match-value
 msg-type any
 new-value
 methods
 element-rule
 name H263a-prop2std
 parameter-name application/sdp
 type mime
 action find-replace-all
 match-val-type any
 comparison-type case-sensitive
 match-value a=rtpmap:([0-9]{1,3})
H263a/.*\r\n
 new-value a=rtpmap:+$1+"
H263/90000"+$CRLF+a=fmtp:+$1+" QCIF=4"+$CRLF

The result of manipulating the original SIP INVITE (shown above) with the configured SIP
manipulation is:

INVITE sip:service@192.168.1.61:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.60:5060;branch=z9hG4bK-1-0
From: sipp <sip:sipp@192.168.1.60:5060>;tag=1
To: sut <sip:service@192.168.1.61:5060>
Call-ID: 1-15554@192.168.1.60

Chapter 1
Configuration Examples

1-103

CSeq: 1 INVITE
Contact: <sip:sipp@192.168.1.60:5060;user=phone>
Max-Forwards: 70
Content-Type: multipart/mixed;boundary=boundary
Content-Length: 466
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=audio 12345 RTP/AVP 8
a=rtpmap:18 G729/8000/1
a=fmtp:18 annexb=no
a=sendrecv
a=maxptime:200
--boundary
Content-Type: application/sdp
v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.60
s=-
c=IN IP4 192.168.1.60
t=0 0
m=video 12345 RTP/AVP 34
a=rtpmap:34 H263/90000
a=fmtp:34 QCIF=4
--boundary-

Chapter 1
Configuration Examples

1-104

	Contents
	About This Guide
	My Oracle Support

	Revision History
	1 Header Manipulation Rules
	HMR Fundamentals
	Audience
	When to Use HMR
	Managing HMR Impact on Performance
	Applying HMRs to Traffic
	Outbound HMR
	Inbound HMR
	Order of Header Rule Application
	HMR Store Actions and Boolean Results
	Routing Decisions

	Static and Dynamic HMR
	Static HMR
	Dynamic HMR

	Sample HMR

	HMR Components
	Relationship Between Rulesets and Its Rules
	Ruleset Guidelines
	Ruleset Components
	Guidelines for Header and Element Rules
	Guidelines for Header Rules
	Guidelines for Element Rules
	Duplicate Header Names
	SIP Header Pre-Processing HMR
	Back Reference Syntax
	Dialog Matching
	About Dialog-Matching Header Manipulations
	Inbound HMR Challenge
	Outbound HMR Challenge
	Dialog-matching Header Manipulation Configuration

	Built-In HMRs
	Built-In Variables
	Built-In SIP Manipulation Configuration

	Unique Regex Patterns Per Peer and Trunk
	Rejecting SIP Requests
	HMR Information in Logs

	Using Regular Expressions
	Example of HMR with Regex
	Regex Characters
	Literal (Ordinary)
	Special (Metacharacters)
	Regex Tips
	Matching New Lines
	Escaped Characters
	Building Expressions with Parentheses
	Boolean Operators
	Equality Operators
	Normalizing EBNF ExpressionString Grammar

	Storing Regex Patterns
	Performance Considerations
	Additional References

	HMR Configuration
	Testing Pattern Rules
	Creating Header Manipulation Rulesets
	Configuring SIP Header Manipulation Rules
	Configuring SIP Header Manipulation Element Rules
	Status-Line Manipulation and Value Matching
	Set the Header Name
	Set the Element Type
	Set the Match Value
	Set the Header Rules Match Value
	Set the Element Rules Match Value
	Set the Response Code Block

	Configuring SIP HMR Sets
	Configuring a Session Agent
	Configuring a SIP Interface
	Example 1 Stripping All Route Headers
	Example 2 Stripping an Existing Parameter and Adding a New One

	Unique HMR Regex Patterns and Other Changes
	The Default Expression
	Manipulation Pattern Per Remote Entity
	Reject Action
	Reject Action Configuration
	About Counters
	SNMP Support

	Log Action
	Changes to Storing Pattern Rule Values
	Removal of Restrictions
	Name Restrictions for Manipulation Rules
	New Value Restrictions

	MIME Support
	Manipulating MIME Attachments
	About the MIME Value Type
	SIP Message-Body Separator Normalization
	Configuring MIME Support

	HMR for SIP-ISUP
	MIME Rules Overview
	Identifying a MIME Rule
	About MIME Rules
	MIME Rules Configuration
	Working with MIME Rules
	MIME ISUP Manipulation
	Adding an ISUP Body to a SIP Message
	MIME ISUP Manipulation Configuration
	Configuration Example

	Header Manipulation Rules for SDP
	SDP Manipulation
	sdp-session-rule
	sdp-media-rule
	sdp-line-rule

	Regular Expression Interpolation
	Regular Expressions as Boolean Expressions
	Moving Manipulation Rules
	Rule Nesting and Management
	ACLI Configuration Examples
	Remove SDP
	Remove Video from SDP
	Add SDP
	Manipulate Contacts
	Remove a Codec
	Change Codec
	Remove Last Codec and Change Port
	Remove Codec with Dynamic Payload

	HMR Import-Export
	Exporting
	Importing
	Using SFTP to Move Files
	Removing Files

	HMR Development
	Development Overview
	Development Tips

	Planning Considerations
	Traffic Direction
	Order of Application Precedence
	Order of HMR Execution
	Applying HMR to a Specific Header
	HMR Sets

	Create Pseudocode
	Test HMRs
	test-sip-manipulation

	Development Example
	Writing the Pseudo Code
	Testing the Pattern Rule
	Constructing the HMR
	Loading Test SIP Message
	Configuring Testing
	Executing Testing
	Log File Analysis

	Configuration Examples
	Example 1 Removing Headers
	Example 2 Manipulating the Request URI
	Example 3 Manipulating a Header
	Example 4 Storing and Using URI Parameters
	Example 5 Manipulating Display Names
	Example 6 Manipulating Element Parameters
	Example 7 Accessing Data from Multiple Headers of the Same Type
	Example 8 Using Header Rule Special Characters
	Example 9 Status-Line Manipulation
	Example 10 Use of SIP HMR Sets
	Example 11 Use of Remote and Local Port Information
	Example 12 Response Status Processing
	Example 13 Remove a Line from SDP
	Example 14 Back Reference Syntax
	Example 15 Change and Remove Lines from SDP
	Example 16 Change and Add New Lines to the SDP

