
Oracle® Communications Solution Test
Automation Platform
User Operations Guide

Release 1.25.2.0.0
G39572-01
October 2025

Oracle Communications Solution Test Automation Platform User Operations Guide, Release 1.25.2.0.0

G39572-01

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

Part I Learning About STAP

1 About Solution Test Automation Platform

Introduction to STAP 1

Features of STAP 1

Benefits of STAP 3

Microservice Architecture 3

2 Introduction to STAP Behavior-Driven Development Language

Understanding STAP BDD Language 1

BDD Use Case 2

JSON Data Processing (Release 1.25.1.1.0 or later) 3

3 About BDD Operators

String Operators 1

Numeric Operators 2

Array Operators 5

4 Using Variables

Overview 1

Using Array Variables 2

Using Dynamic Array Variable 4

Using Array Variable Values 4

5 BDD Functions

Overview of BDD Functions 1

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of v

String Functions 3

Numeric Functions 6

Numeric Function: Evaluate to Process Arithmetic Expressions 7

JSON and Response Functions 8

Data Type Functions 10

Date Type Functions 10

Format Number Functions 12

6 Using Control Structures in Steps

Overview 1

Scenario Execution Flow 1

Action Execution 2

Using Conditional Cases 14

Using Reference Cases 15

7 STAP Action Plug-ins

Introduction to STAP Action Plug-ins 1

REST Plug-in 2

SOAP Plug-in 14

XML API: Support for Sending Body in x-www-form-urlencoded 17

SSH SFTP Plug-in 20

Process Plug-in 27

Seagull 31

JMX 36

Kafka 44

UI Automation Plug-in 50

URL Access Validation 56

Custom Actions 58

Mock Custom Action 59

8 Synthetic Data

STAP Synthetic Data Generation 1

Plug-in with Internal Generators 2

Text Generation 11

Unique ID Generation 21

Fake Data Generation 29

Part II Getting Started with STAP UI

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page ii of v

9 About STAP UI

Icons in the STAP UI 1

Using Keyboard Shortcuts 1

10

STAP UI Login Methods

Guidelines for Using STAP UI 1

About Authorization Modes 1

Logging In to STAP 1

Resetting Your Password 2

About STAP Dashboard 2

11

STAP System Administration

About the User Profile Page 1

About Viewing and Editing Profiles 1

Changing Passwords 2

Viewing OAuth Environment Profiles 2

Administering Users 2

Creating a New User 3

Role-based Access 3

12

STAP UI Environment Management

About the Environment Page 1

Creating a New Environment 1

Updating an Existing Environment 2

Deleting an Existing Environment 2

13

STAP Jobs Management

About the Jobs Page 1

Creating a New Job 1

Updating an Existing Job 2

Running a Job 2

Deleting a Job 2

Viewing Job History 2

Viewing the Scenarios for a Job 3

Viewing the Results of Each Scenario 3

Viewing the Detailed Report of Scenarios 4

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page iii of v

14

Viewing Scenarios

15

Viewing Actions

Viewing Action Details 1

Part III Setting Up The STAP Environment

16

Low Code Automation

Overview 1

Automating Using the STAP Design Experience 2

17

Setting Up The STAP Environment

Setting Up STAP Configuration 1

Using the configuration.properties File 1

Setting Up Environments 3

Setting Up Execution 3

Setting Up Scenarios 5

Scenarios Folder 6

Setting Up Simulation 6

Setting Up Actions 6

Setting Up Context 7

Setting Up Reports 8

18

Creating Scenarios

Case 1

Step 2

Using Tags to Filter Components 3

19

Utility Reference

20

Publishing Data

Publishing Data Using the Command-Line Interface 1

Generating Automation Reports 2

Publishing PDF Reports 2

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page iv of v

Setting Up The PDF Adapter In Your Workspace 3

Viewing PDF Reports 5

Publishing Reports Using Third-Party Web Servers 8

Configuring Tomcat to View Automation Reports 9

Viewing Automation Reports Using NGINX 9

Viewing Automation Reports Using Apache HTTP Server 10

Viewing HTML Reports 11

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page v of v

About This Content

This document describes how to implement and use Oracle Communications Solution Testing
Automation Platform.

Audience

This document is intended for anyone who installs, configures, administers, or customizes
Solution Testing Automation Platform.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Learning About STAP

Learn about concepts and terms used in Oracle Communications Solution Test Automation
Platform (STAP).

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 1

1
About Solution Test Automation Platform

Learn about Oracle Communications Solution Test Automation Platform (STAP), its key
features, benefits, and architecture.

Topics in this chapter:

• Introduction to Solution Test Automation Platform

• Features of STAP

• Benefits of STAP

• Microservice Architecture

Introduction to STAP
STAP is a powerful automation platform that allows users to automate their end-to-end
business use cases without writing a single line of code. By providing a low-code automation
solution, STAP enables users to automate their workflows easily with a built-in Behavior-Driven
Development (BDD) language, without much technical expertise. This makes it an ideal
automation platform for improving efficiency and productivity.

STAP's key feature is Virtual Tenant functionality. Virtual Tenant functionality enables you to
simulate customer-like traffic to measure potential issues with a software application under a
significant real-time volume of load for an extended period of time. This helps test customer
workflows before deploying them in a live environment.

STAP is a highly extensible platform, and comes with several built-in plug-ins that allows you to
interact with different types of application interfaces, such as REST and SOAP.

Note

STAP can be used for testing in a lab environment and is licensed to be used only on
test or lab platforms and environments.

Features of STAP
STAP offers a robust suite of features designed specifically for automating testing processes.

Table 1-1 describes the various features of STAP.

Table 1-1 Features of STAP

Feature Description

Extensible plug-ins Provides a comprehensive set of plug-ins and frameworks for
automating the end-to-end validation of software applications. It
supports various types of plug-ins, including web, mobile, and API
testing.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 4

Table 1-1 (Cont.) Features of STAP

Feature Description

Customer Environment
Simulation or Virtual Tenant

Enables the simulation of customer profiles to test software
applications under real-world conditions. The Virtual Tenant
represents a typical tenant, covering how they run their business and
the various subscriptions and services offered.

Monitoring Monitors application interfaces such as Web or REST endpoints in
real-time and provides insights into the performance and behavior of
the application, allowing users to identify potential issues and
optimize performance.

Low-code Automation Allows users to automate tests without code. This feature makes it
easy for all teams to use, including those with no or limited coding
knowledge.

End-to-end Scenario Automation Supports end-to-end scenario automation, which enables users to
test complete workflows. This feature helps ensure that software is
tested in a real-world scenario, providing accurate results.

Customer Environment
Simulation

Allows users to simulate customer environments, making it easier to
test software in different environments. This feature helps to identify
any potential issues that may arise in different environments.

Integration with Other Testing
Tools

Works seamlessly with other testing tools, enabling users to integrate
it into their existing workflows. This feature makes it easier for teams
to adopt STAP without disrupting their current processes.

Virtual Tenant Simulates customer traffic to measure potential problems. This
functionality is not available at the moment but may be supported in
future releases.

Reduce Dependency with Stubs Helps in designing end-to-end tests without access to a service,
prototyping and creating a mock service for runtime.

Data-driven Testing Supports data-driven testing. Data sets are mapped to the tests to
run repeatedly against multiple data sets.

Seed Data Loaders Loads seed data into target systems with configuration and without
any code or scripts.

Swift Issue Detection Helps detect failures swiftly. The screenshot and test execution video
gives a visual replay of the test execution and help in identifying the
error.

Error Handling and Logging Robust error handling and detailed error logging.

Performance and Metrics Logs performance information which can be used to generate metrics
and comparisons with previous runs (builds or releases).

Reports Generates standard reports and supports plug-ins to generate
reports.

Core Functionality as Library Integrates the core engine with any application Integrated
Development Environment (IDE), and enables you to store data in the
file system and include the execution in build systems.

Continuous Integration and
Continuous Delivery or
Deployment. (CI/CD)

The lightweight STAP core engine library enables you to run the
scenarios in CI/CD with ease.

STAP Microservices Robust automation platform which has a web interface and stores the
data in a database.

STAP User Experience Runtime web application enables the users to configure, run, monitor
execution in real-time, and view the results in modern dashboards.

STAP Container A valuable STAP tool for teams looking to streamline their testing
processes and improve the quality and reliability of their software
applications. It provides a flexible and scalable testing environment,
enabling teams to achieve faster and more efficient testing results.

Chapter 1
Features of STAP

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 4

Benefits of STAP
The key benefits of STAP include:

• Improved software quality: STAP helps to improve software quality by automating the
tests and identifying potential issues. It provides accurate results that help to ensure that
software is functioning as expected.

• Time-saving: STAP automates testing, saving time and effort for testing teams. It enables
teams to focus on other critical tasks, such as improving software functionality.

• Scalability: STAP is designed to handle high traffic and growing demands, making it an
ideal automation solution for diverse testing requirements. It supports horizontal scaling,
allowing you to add more servers to distribute the load efficiently.

Microservice Architecture
In addition to its extensive automation capabilities, STAP is designed with a microservice
architecture. Microservices allows the platform to be broken down into smaller, more
manageable components that can work together to deliver the full functionality of the platform.

There are four sub-microservices that make up STAP: the Engine microservice, the execution
microservice, the data microservice, and web application (user experience) microservice.

Figure 1-1 shows the STAP architecture.

Figure 1-1 Microservice Architecture

Chapter 1
Benefits of STAP

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 4

This figure has the following components:

STAP Engine

The STAP Engine microservice is the core of STAP and is responsible for the actual execution
of tests and simulation functionality. It enables you to author and run the test cases which
interact with the system being tested. It is a standalone library that can be used either
independently or as a dependency which enables users to integrate STAP functionality into
their existing testing frameworks.

The Engine microservice provides an automation engine that supports end-to-end scenario
automation, allowing you to test software applications across multiple systems and
components. It helps testing processes achieve faster and more reliable testing results. It is
highly extensible, with a plug-in architecture that enables users to customize the engine to
support specific testing requirements.

The Engine microservice also includes advanced simulation functionality, enabling you to
simulate real-world conditions and test applications under a variety of different scenarios. This
includes the ability to simulate network latency, data throttling, and other performance factors.

Execution Service

The Execution Service microservice is responsible for running test cases in STAP. It manages
the execution of test cases and ensures that all necessary resources are available for testing.
The Execution Service can run test cases in parallel, allowing for faster testing and more
efficient use of resources.

Data Service

The Data Service microservice is responsible for managing the data used in STAP. It stores
test case data, test results, and other important information related to testing. The Data Service
is designed to be highly scalable, allowing it to handle large amounts of data without impacting
STAP performance.

STAP UI Service

The UI microservice provides a web-based interface allowing you to interact with the STAP
application. It offers a user-friendly interface for creating environment details for applications
being tested and running test jobs. The service features a dashboard that gives real-time
insights into test execution. The history of executions can be tracked using the History
dashboard, which provides detailed reports of each test scenario and case.

Chapter 1
Microservice Architecture

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 4

2
Introduction to STAP Behavior-Driven
Development Language

Learn about the Oracle Communications Solution Test Automation Platform (STAP) Behavior-
Driven Development (BDD) language and its keywords.

Topics in this chapter:

• Understanding STAP BDD

Understanding STAP BDD Language
STAP BDD is a proprietary language developed by Oracle. It uses a set of special keywords to
structure and give meaning to executable business use-case specifications. This approach
ensures that the use cases are both human-readable and executable by the testing framework.
Each line in a STAP BDD document that is not a blank line has to start with a STAP BDD
keyword. Some keywords are followed by text.

There are two types of keywords in the STAP BDD language.

• Primary keywords are alphabetic words and end with a colon (:).

• Secondary keywords are words and special characters.

Note

Most lines in a STAP BDD document start with one of the primary or secondary
keywords. Any line that is not a blank line must begin with a STAP BDD keyword.

Table 2-1 lists the primary keywords in the STAP BDD language.

Table 2-1 Primary Keywords

Primary Keywords Description

Scenario Indicates the beginning of a specific situation or use case and is
followed by a name for the scenario.

Description Describes the use case.

Tags Defines elements and structure within a use case.

Case Defines a specific use case.

Data Refers to the information.

Validate Indicates the beginning of the validation conditions for the data.

Save Allows you to specify whether to store the entered or modified data.

Table 2-2 lists the secondary keywords in the STAP BDD language.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 6

Table 2-2 Secondary Keywords

Secondary Keywords Description

Given Sets up the initial context or state.

When Describes the action or event that triggers the behavior.

Then Specifies the expected outcome or result.

And Adds additional context or actions within Given, When, or Then
steps.

| Used as a separator.

When placed as the first character in a line, used anywhere in the
file to denote a comment. Block comments are currently not
supported.

' ' Used to indicate the bounds of a string value.

. (dot) , (comma) and ; (semi-
colon) -

Step description separators.

The BDD language treats white space in the following ways::

• Indentation: Spaces can be used for indentation and they do not affect the contents.

• Blank Lines: There are no restrictions on using blank lines to separate contents in a BDD
document.

BDD Use Case
This example details the process for verifying that discounted rates are applied to Friends and
Family accounts through the Diameter Gateway. In the integrated ECE, BRM, and PDC
environment, the objective is to ensure that calls between Friends and Family members are
charged at a special discounted rate, while calls involving non-Friends and Family members
are charged at standard rates.

Pricing Structure

• Calls between non-Friends and Family members: $0.05 per minute

• Calls between Friends and Family members: $0.01 per minute

Products Involved

• BRM (Billing and Revenue Management)

• ECE (Elastic Charging Engine)

• PDC (Pricing Design Center)

Use-Case Steps

1. Load Pricing Configurations: Set up pricing configurations, including discounts for
Friends and Family groups.

2. Create Non-Friends and Family Accounts: Create accounts that are not associated with
the Friends and Family group.

3. Generate Usage and Validate Charges: Generate 20 minutes (1200 seconds) of usage
through the Diameter gateway for the standard accounts.

Chapter 2
Understanding STAP BDD Language

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 6

Note

Ensure that the standard (non-discounted) charge of $0.05 per minute is applied,
resulting in total charges of $1.00.

4. Add Accounts to Friends and Family Group: Add the previously created accounts to the
Friends and Family group.

5. Generate Usage and Validate Discounts: Generate another 20 minutes (1200 seconds)
of usage for these accounts.

Note

Ensure the Friends and Family discounted rate of $0.01 per minute is applied,
resulting in total charges of $0.20.

JSON Data Processing (Release 1.25.1.1.0 or later)
JSON Data Processing refers to manipulating and transforming JSON data using predefined
actions. These functions help automate the creation, modification, extraction, and saving of
JSON objects to streamline data handling.

The different JSON data processing functions are:

1. Creation and Modification

• CREATE_FROM_JSON: Generates a new entity from JSON data.

• findAndReplace: Replaces specific values within a JSON object.

2. Extraction and Transformation

• addFromJsonArray: Extracts data from an array and creates a new JSON object.

• addFromJson: Extracts specified values from JSON and creates a new JSON object.

• appendFromJsonArray: Adds new data to an existing JSON structure.

3. Saving the Result

• newJson: Stores the final processed JSON object for further use.

These functions provide structured ways to interact with JSON data dynamically, ensuring
efficient data processing without manual intervention.

CREATE_FROM_JSON

The CREATE_FROM_JSON function creates a new entity based on the provided JSON data.
It takes a JSON string as input, uses the JSON data to create a new entity, and performs
necessary validation and processing to ensure successful creation. Use the $json action to
pass the actual JSON string.

The following sample depicts the input syntax:

Data:
| $action | CREATE_FROM_JSON |
| $json | {"data":[{"name":"James Brown","id":"1"},{"name":"Rowan
Blake","id":"2"},{"name":"Nora Miller","id":"3"},{"name":"Lily
John","id":"4"}]} |

Chapter 2
Understanding STAP BDD Language

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 6

The following sample depicts the output from the data provided above:

| myjson | $JSON{todoJson} | {"data":[{"name":"James Brown","id":"1"},
{"name":"Rowan Blake","id":"2"},{"name":"Nora Miller","id":"3"},{"name":"Lily
John","id":"4"}]} |

findAndReplace

Replaces a specified value in the JSON data with a new value.

Syntax: | $findAndReplace | find_value | replace_value |

Description: Searches for occurrences of find_value in the JSON data and replaces them with
replace_value

For example,

| $json | {"id":"2","name":"Emily Brown","description":"Residential
customer","status":"TODO", "Due Date":"INITIAL DATE", "str":{ "Due
Date":"INITIAL DATE2", "str2":{ "str3":{ "Due Date":"INITIAL DATE3", "str4":
{ "Due Date":"INITIAL DATE4" } } } } } |
| $findAndReplace | Due Date, New Date Value|

After update:

$json: {"id":"2","name":"Emily Brown","description":"Residential
customer","status":"TODO", "Due Date":"New Date Value", "str":{ "Due
Date":"New Date Value", "str2":{ "str3":{ "Due Date":"New Date Value", "str4":
{ "Due Date":"New Date Value", } } } } }

addFromJsonArray

Adds data from a JSON array to a new JSON object.

Syntax: | array | $addFromJsonArray($json,selector, key1,key2,...) |

Description: Extracts data from the specified source_array_path in the JSON data and adds it
to a new JSON object. The extracted data is mapped to the corresponding keys (key1, key2,
and so on.) in the new object.

For example,

This JSON array:

{"data":[{"name":"John","age":25},{"name":"Alice","age":30}]}
| array | $addFromJsonArray($json,[*],name) |

You will have the following result:

{"array":[{"name":"John"},{"name":"Alice"}]}

addFromJson

Adds data from a JSON object to a new JSON object.

Chapter 2
Understanding STAP BDD Language

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 6

Syntax: $addFromJson($json,key1,key2,...)

Description: Extracts data from the specified keys (key1, key2, and so on.) in the JSON data
and adds it to a new JSON object. The extracted data is assigned to the corresponding keys in
the new object.

For example,

JSON Object - {"name":"John","age":30,"occupation":"Developer"}

| data | $addFromJson($json,name,name,value,value) |

data Runtime Value - {"data":{"name":"John","value":"Developer"}}

appendFromJsonArray

Appends data from a JSON array to an existing JSON object.

Syntax: $appendFromJsonArray($json,source_array_path,key1,key2,...)

Description: Extracts data from the specified source_array_path in the JSON data and
appends it to an existing JSON object. The extracted data is mapped to the corresponding
keys (key1, key2, and so on.) in the existing object.

For example,

Step:
| array | $addFromJsonArray($json,[*],name,value) |

Runtime Value:

| JsonArray | $newJson | {"array":[{"description":"Purchase Fees (srvc)
(srvc): Supremo Broadband Installation
Service","remainingAmount.value":19.99}]} |

Step:
| array | $appendFromJsonArray($json,[*],description,remainingAmount.value) |

Runtime Value:

| JsonArray | $newJson | {"array":[{"description":"Purchase Fees (srvc)
(srvc): Supremo Broadband Installation
Service","remainingAmount.value":19.99},{"description":"Cycle Forward Fees
(srvc): Supremo Basic Internet Service","remainingAmount.value":12.34}]} |

newJson

Saves the newly created or updated JSON object.

Syntax: $newJson

Chapter 2
Understanding STAP BDD Language

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 6

Description: Saves the resulting JSON object to a variable named newJson.

Save:
| newJson | $newJson |

Chapter 2
Understanding STAP BDD Language

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 6

3
About BDD Operators

Learn about the different operators in Oracle Communications Solution Test Automation
Platform (STAP).

An Operator is a function that takes arguments and returns the result of operation as Passed
or Failed. Behavior-Driven Development (BDD) operators are used in Validation section of the
Test Step.

Topics in this chapter:

• String operators

• Numeric Operators

• Array Operators

String Operators
BDD String Operators use string text as an argument.

The following are the string operators used in BDD:

• STRING_EQUALS

• STARTS_WITH

• ENDS_WITH

• CONTAINS

• MATCHES

Note

By default (without mentioning operator), BDD uses String Equals as the operator.

BDD Example:

The following example shows how to use a string operator in STAP BDD:

First, set up the variables:

Save:
planType	Premium
emailID	JohnDoe@bills.com
errorLog	Connection Timeout
name	John Doe
connectionStatus	Active
smsContent	Your Bill Number is 1
billEnd	John Doe Your Bill Number is 1

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 6

The following commands get the response, which contains various variables.

Data:
| id | getbill |

The following validation will be successful, given the values set above.

$status	200
planType	Premium
errorLog	%STARTS_WITH(Connection)
name	%ENDS_WITH(Doe)
smsContent	%CONTAINS(Bill Number)
billEnd	%CONCAT(${name}, ${smsContent})
emailID	%MATCHES((.*)@(.*))

Runtime BDD:

The following is the runtime BDD response for the string operator:

Then get mock response, validating bill details
Data:
#| Property | Value | Runtime Value |
 | id | getbill | getbill |
Validate:
#| Property | Value |
Property Value | Runtime Value | Result
|
 | $status | 200 |
200 | SUCCESS | PASSED
|
 | planType | Premium |
Premium | Premium | PASSED
|
 | errorLog | %STARTS_WITH(Connection) |
Connection Timeout | Connection Timeout | PASSED
|
 | name | %ENDS_WITH(Doe) | John
Doe | John Doe | PASSED |
 | smsContent | %CONTAINS(Bill Number) | Your
Bill Number is 1 | Your Bill Number is 1 | PASSED |
 | billEnd | %CONCAT(${name}, ${smsContent}) | John
Doe Your Bill Number is 1 | John Doe Your Bill Number is 1 | PASSED |
 | emailID | %MATCHES((.*)@(.*)) |
JohnDoe@bills.com | JohnDoe@bills.com | PASSED
|

Numeric Operators
Numeric operators use numbers as arguments, such as integer, double, big integer, big
double, or a saved variable representing these numbers.

Instead of spelled out numeric operators, you have the option to use symbol-based operators.

Table 3-1 lists the numeric operators.

Chapter 3
Numeric Operators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 6

Table 3-1 Operator Symbols

Symbol Text BDD Example Numeric Example

== %EQUALS() ==${amount}

==20.50

123==123

12.45==12.4

12 == 12.0

!= %NOT_EQUAL() !=${value}

!=24

123 != 321

12.34 != 12.3456

> %GREATER_THAN() >123

>${value}

123>120

123.0 > 120

123 > 120.0

< %LESS_THAN() <123

< ${value}

120 < 123

120.0 < 123

120 < 123.0

>= %GREATER_THAN_OR
_EQUAL

>=123

>=${value}

123>=120

123.0 >=120

123 >=120.0

<= %LESS_THAN_OR_EQ
UAL

<=123

<=${value}

120 <=123

120 <=123.0

120.0 <=123

BDD Example:

The following example shows how to use a numeric operator in STAP BDD:

First, set up variables:

Save:
billAmount	2000
discount	10
transactionId	5
creditScore	400
subscriptionFee	200

The following commands get the response, which contains various variables.

Data:
| id | getbill |

Validate:
$status	200
billAmount	== 2000
discount	%EQUAL(10)
transactionId	!= 1
subscriptionFee	%NOT_EQUAL(0)
creditScore	> 200
billAmount	%GREATER_THAN(1500)
discount	< 12
transactionId	%LESS_THAN(6)
creditScore	%GREATER_THAN_OR_EQUAL(${subscriptionFee})

Chapter 3
Numeric Operators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 6

billAmount	>=2000
discount	%LESS_THAN_OR_EQUAL(10)
subscriptionFee	<= ${creditScore}

The following commands get the response, which validates the bill details:

Then get mock response, validating bill details
Data:
#| Property | Value | Runtime Value |
 | id | getbill | getbill |
Validate:
#| Property | Value |
Property Value | Runtime Value | Result
|
 | $status | 200 |
200 | SUCCESS | PASSED
|
 | billAmount | == 2000 |
2000 | 2000 | PASSED
|
 | discount | %EQUAL(10) |
10 | 10 | PASSED
|
 | transactionId | != 1 |
5 | 5 | PASSED
|
 | subscriptionFee | %NOT_EQUAL(0) |
200 | 200 | PASSED
|
 | creditScore | > 200 |
400 | 400 | PASSED
|
 | billAmount | %GREATER_THAN(1500) |
2000 | 2000 | PASSED
|
 | discount | < 12 |
10 | 10 | PASSED
|
 | transactionId | %LESS_THAN(6) |
5 | 5 | PASSED
|
 | creditScore | %GREATER_THAN_OR_EQUAL(${subscriptionFee}) |
400 | 400 | PASSED
|
 | billAmount | >=2000 |
2000 | 2000 | PASSED
|
 | discount | %LESS_THAN_OR_EQUAL(10) |
10 | 10 | PASSED
|
 | subscriptionFee | <= ${creditScore} |
200 | 200 | PASSED
|

Chapter 3
Numeric Operators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 6

Array Operators
Array operators are used to compare two arrays. The array operators are:

• General Array Operators

• Array Operators for Quoted Strings

General Array Operators

The following operators compare elements in two arrays. To match, the elements must both
either be inside quotation marks or both be without them.

If you set the following data:

Save:
$ARRAY{bills1}	25.213
$ARRAY{bills1}	30.456
$ARRAY{bills1}	"Bill is complete."

And then you get the response (which contains an array variable called bills):

Data:
| id | getdata |

• The ARRAY_COMPARE operator can compare the bills array from the returned JSON
data to the bills1 array created above:
Validate:

| bills | %ARRAY_COMPARE($ARRAY{bills1}) |

Validation will succeed only if the bills array contains the following values in the following
order:

"bills": [25.213, 30.456, "Bill is complete."]

• The ARRAY_COMPARE_IGNORE_ORDER operator can compare the bills array from the
returned JSON data to the bills1 array created above:
Validate:

| bills | %ARRAY_COMPARE_IGNORE_ORDER($ARRAY{bills1}) |

Validation will succeed if the bills array contains the following values in any order. For
example, the following array will pass validation:

"bills": [30.456, 25.213, "Bill is complete."]

• The ARRAY_IN operator can compare the bills array from the returned JSON data to the
bills1 array created above:
Validate:

| bills | %ARRAY_IN($ARRAY{bills1}) |

Validation will succeed if the bills array contains any selection of elements matching those
in the bills1 array, in any order. For example, the following array will pass validation:

"bills": [30.456, 25.213]

Chapter 3
Array Operators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 6

Array Operators for Quoted Strings

If you set the following data:

Save:
$ARRAY{products1}	"5G Lite Data Service"
$ARRAY{products1}	"5G Basic Data Service"
$ARRAY{products1}	"123456"
$ARRAY{products1}	"Wireless Bundle"

And then you get the response (which contains an array variable called products):

Data:
| id | getdata |

• The ARRAY_COMPARE_IGNORE_QUOTES operator can compare the products array
from the returned JSON data to the products1 array created above:

• The ARRAY_COMPARE_IGNORE_ORDER_QUOTES operator can compare the
products array from the returned JSON data to the products1 array created above:
Validate:

| products | %ARRAY_COMPARE_IGNORE_ORDER_QUOTES($ARRAY{products1}) |

Validation will succeed if the products array contains the following values in any order,
even though some of the values are not enclosed in quotes. For example, the following
array will pass validation:

"products": [123456, "5G Basic Data Service", "5G Lite Data Service",
"Wireless Bundle"]

• The ARRAY_IN_IGNORE_QUOTES operator can compare the products array from the
returned JSON data to the products1 array created above:
Validate:

| products | %ARRAY_IN_IGNORE_QUOTES($ARRAY{products1}) |

Validation will succeed if the products array contains any selection of elements matching
those in the products1 array, in any order, even though some of the values are not
enclosed in quotes. For example, the following array will pass validation:

"products": [123456, "5G Lite Data Service"]

• (Release 1.25.1.1.0 or later) The ARRAY_IN_IGNORE_ORDER_QUOTES operator can
compare the products array from the returned JSON data to the products1 array created
above:
Validate:

| products | %ARRAY_IN_IGNORE_ORDER_QUOTES($ARRAY{products1}) |

Validation will succeed if the products array contains any selection of elements matching
those in the products1 array, in any order, even though some of the values are not
enclosed in quotes, and disregarding empty strings. For example, the following array will
pass validation:

"products": [123456, "5G Basic Data Service", ""]

Chapter 3
Array Operators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 6

4
Using Variables

Get an overview of variables and their supported operations in Oracle Communications
Solution Test Automation Platform (STAP) Behavior-Driven Development (BDD) language.

Topics in this chapter:

• Overview

• Using Array Variables

• Using Array Variable Values

• Using Dynamic Array Variable

Overview
Variables refer to pieces of data that are stored and used during the execution of a scenario.
These variables can hold different types of information, such as numbers, text, or other data
types, which are essential for the scenario's logic and flow.

Context refers to the storage of variable values saved during the execution of steps in a
scenario.

• A new context is created (or cleared) at the beginning of each scenario execution.

• If the load context option is enabled in config.properties, the context is loaded for the
scenario.

• The load context feature is only used at design time and not during the execution of
scenarios in a pipeline.

• If global context loading is enabled, variables can be added to the context by updating the
global.ctx file located in globalcontext.home (in the persistent volume).

Variable Lifecycle

• Local variable: Local variables are available only for the duration of a scenario.

• Global variables are prefixed with _ and are available from the time they are created until
the end of the job.

For example, all variables defined using the Save keyword are local variables unless they
begin with an underscore (_).

In the example below, projectId and projectName are the variable values stored in the
context.

Save:
#| Property | Value |
| _projectId | id |
| projectName | name |

projectId which is prefixed with _, is designated as Global variable and the context stores this
variable value from the definition until the job execution completes ie., _projectId can be used
in any scenario/case/step after its definition.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 5

Note

If the same variable name is used in the Save section of multiple steps, its value gets
replaced.

To save and load the context, use config.properties context configuration. For more
information, see "Setting Up Context".

Figure 4-1 shows the variables available during an execution job.

Figure 4-1 Loading Context Configurations

Using Array Variables
An array variable is a type of variable that stores multiple values in a single instance, making it
useful for handling lists of data. When working with JSON path, an array variable helps in
extracting and storing multiple values from a JSON structure.

The supported operations for array variables include:

• Storing multiple values in a single variable.

• Iterating over the array elements.

• Accessing a single value from the array.

The examples below assume that you are starting with the following JSON:

{
 "subscriptions": [
 {
 "id": "1",
 "plan": "Premium",
 "status": "ACTIVE",
 "expiry": "2025-03-15"

Chapter 4
Using Array Variables

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 5

 },
 {
 "id": "2",
 "plan": "Basic",
 "status": "EXPIRED",
 "expiry": "2024-01-01"
 }
]
}

Getting a single value from an array variable

To extract the plan value from the first element of the subscriptions array and append it to the
users.plan array:

Save:
| $ARRAY{users.plan} | subscriptions[0].plan |

In this case, the users.plans array would have one element added to it: Premium.

Getting multiple values from an array variable

The following example shows how to get multiple values from an array variable:

Save:
| $ARRAY{users.plans} | subscriptions[*].plan |

#returns [Premium,Basic]

In this case, the users.plans array would have two elements added to it: Premium and Basic.

Adding a single value to an array variable

The following example shows how to add a single value to an array variable:

When add details, adding new subscription plan
Data:
| plan | Gold |
Validate:
| $status | 200 |
Save:
| $ARRAY{users.plan} | subscriptions[2].plan |

#returns Gold

Adding multiple values to an array

The following example shows how to add multiple values to an array:

Then get mock response, read all values that are created above.
Validate:
| $status | 200 |

Chapter 4
Using Array Variables

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 5

Save:
Store a list of plans from the JSONPath *.plan into the array variable
users.plans
| $ARRAY{users.plans} | subscriptions[*].plan |

In the above example , todos.id is the array created to save ids of all the tasks read.

Note

If the todos.id array is already existing, the *.id array values are replaced. When we
add an array to existing array indicates creating new array.

Using Dynamic Array Variable
Use ${index} to create dynamic array variable names. Only ${index} is allowed as a context
variable or ID in array names.

Dynamic Array Variable Name

To use the index of an array to set the name of a variable:

RepeatTimes:
| $times | 2 |
Data:
| index | ${nextValue} |
| $urlSuffix | /getarray |
Validate:
| $status | 200 |
Save:
| $ARRAY{dynamicVariable_${index}} | subscriptions[?
(@.status=='ACTIVE')].plan |

The following example shows how dynamic values are stored in the test context folder:

dynamicVariable_1=[Premium,Premium,Premium,Premium,Premium,Premium,Premium,Pre
mium,Premium,Premium]
dynamicVariable_0=[Premium,Premium,Premium,Premium,Premium,Premium,Premium,Pre
mium,Premium,Premium]

Using Array Variable Values
Arrays are used in controlled steps. Iteration happens for the number of times equivalent to
length of the array.

To work with the indexes of an array variable,

• Access the array value with index keyword ${index}. Index starts with 0.

• ${nextValue} Gives the next element in the array. ${nextValue} Can be used in Data,
Validate, or Save sections.

Chapter 4
Using Dynamic Array Variable

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 5

The following example shows how to add and read customer bill amounts using array variable
values. First, create the array containing the variables:

Save:
$ARRAY{bills1}	25.213
$ARRAY{bills1}	20.378
$ARRAY{bills1}	21.643
$ARRAY{bills1}	24.211
$ARRAY{bills1}	22.113

Then set the code to iterate over the entire array:

RepeatTimes:
| $times | $ARRAY{bills1} |
Data:
| index | ${nextValue} |
Validate:
| $status | 200 |
| bills1[${index}] | $ARRAY{bills1[${index}]} |

For more information on array variables, see "Controlled actions".

Chapter 4
Using Array Variable Values

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 5

5
BDD Functions

Learn about the different types of Behavior-Driven Development functions in Oracle
Communications Solution Test Automation Platform (STAP).

Topics in this chapter:

• BDD Functions Overview

• String Functions

• Numeric Functions

• Json or Response Functions

• Data Type Functions

• Date Type Functions

• Format Number Functions

Overview of BDD Functions
A BDD function is a pre-defined command set that performs an operation and returns a single
value. These functions are useful while performing mathematical calculations, string
Concatenations (Concat), sub-strings, JSON operations, and so on.

Allowing Commas in Function Data
Separate function arguments with a comma (,). If an argument itself contains a comma, or if a
data variable value includes a comma, use the escape function %{COMMA} to escape it. Only
escape commas within the values provided to the function—commas in context values or
JSON property values are handled automatically and do not require manual escaping.

Other characters, such as backslash (/), single quote ('), and double quote ("), are escaped
internally, so no additional action is needed for them.

For example, if a comma is in the text for a variable value:

Save:
| subscriptions | Need to purchase 'premium%{,}active plan' from catalog on
tuesday and 'basic%{,}active plan on wednesday' |

comma is present in the function arguments
Then get mock response, processing user subscription and notifications
Data:
| firstPlan | %PATTERN_MATCHER(${subscriptions},'(.*?)',0) |

here, the second argument to pattern matcher function contains comma :
basic%{,}(.*?)
| secondPlan | %PATTERN_MATCHER(${subscriptions},'basic%{COMMA}(.*?)',0) |

Validate:

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 15

$status	200
firstPlan	'premium,active plan'
secondPlan	'basic,active plan on wednesday'

Using Response Properties and Variables in the Functions

Using Data from the Response

If you want to use a property from the response, you can access it by name if you are not using
it inside a function. For example, you can assign the name property from the response to the
firstName variable like this:

Save:
| firstName | name |

However, when you are using that response property inside a function, you should use a dollar
sign ($) before the name, like this:

Save:
| firstName | %LOWERCASE($name)|

Using Scenario Variables
To use saved scenario variables as function argument, use ${<variable>}. For example,

Save:
| firstName | %LOWERCASE($name)|
| updatedFirstName | %UPPERCASE(${firstName})|

Using functions in Validate property
You can use functions in validating both properties and values.

For example,

Validate:
| %ARRAY_VALUE(subscriptions[?(@.status=='ACTIVE')].plan) | Premium |
| %SUBSTRING(${notificationText},33) | test@example.com |

Validate:
| plan | %SUBSTRING(${subscriptionPlan},0,7) |
| orderID | %PATTERN_MATCHER(${orderConfirmation},\d+,0) |

The different types of functions available in the STAP BDD language are:

• String Functions

• Numeric Functions

• JSON or Response Functions

• Data Type Functions

• Date Type Functions

• Format Number Functions

Chapter 5
Overview of BDD Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 15

String Functions
String functions are used to manipulate and handle string data.

These functions take a string as an input argument and return a modified string:

• Substring

• Pattern matcher

• Replace

• Replace first

• Concat

• Uppercase and lowercase

SUBSTRING

The SUBSTRING function allows you to retrieve part of a string. You can retrieve either the
part of a string that starts at a specified character number, or only a specified number of
characters starting at a specified character. The format of the function is:

%SUBSTRING(string,beginIndex,noChars)

where:

• string is either a text string or a variable

• beginIndex is the number of the character from which to start reading the string. If noChars
is not present, it will read to the end of the string. Set this to 0 to read from the beginning of
the string.

• noChars is optional and specifies the exact number of characters to read.

For example, after the commands below, the emailId variable contains the string
test@example.com.

Save:
| notificationText | Notification sent at 10:30 AM to test@example.com |

Validate:
| emailID | %SUBSTRING(${notificationText},33) |

After the commands below, the plan variable contains Premium.

Save:
| subscriptionPlan | Premium Subscription Activated Successfully |

Validate:
| plan | %SUBSTRING(${subscriptionPlan},0,7) |

PATTERN_MATCHER

A pattern matcher retrieves a substring using a regular expression. In STAP, the regular
expression used by the pattern matcher contains characters that need to be escaped. If these
characters are not escaped, the publish scenario scripts might fail.

• Character: ,

Chapter 5
String Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 15

• Description: Comma

• Escape: %{COMMA}

The following functions are used to extract specific substrings from a given string:

%PATTERN_MATCHER(<string>,<reg.exp>)
Retrieves a substring which matches the given regular expression pattern.

For example,

When set variable, get the Customer information
Save:
| userMessage | Important Notice : 'Your subscription is expiring soon' |
Validate:
| extractedNotice | %PATTERN_MATCHER(${userMessage},'(.*?)',0) |

extractedNotice returns 'Your subscription is expiring soon'

%PATTERN_MATCHER(<string>,<reg.exp>,index)
Retrieves a sub string at the index from the set of matches for a regular expression pattern.

For example,

When set variable, get the Customer information
Save:
| orderConfirmation | Order #INV-12345 confirmed for your subscriptionPlan |
Validate:
| orderID | %PATTERN_MATCHER(${orderConfirmation},\d+,0) |

 orderID returns 12345

%PATTERN_MATCHER(<string>,<reg.exp>,index,groupIndex)

• index : index of the match

• groupIndex : Group Index of the match

For example,

When set variable, get the Customer information
Save:
| notificationText | Notification sent at 10:30 AM to test@example.com |
Validate:
| emailDomain | %PATTERN_MATCHER(${notificationText},@([\w-]+)\.com,0,1) |

emailDomain returns example

Replace

The following string manipulation function is used to replace text dynamically:

%REPLACE(<search string>,<replace string>)
Replaces all occurrences of the given search string with replace string.

Chapter 5
String Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 15

For example,

When set variable, get the Customer information
Save:
| notificationText | Notification sent at 10:30 AM to test@example.com |

Validate:
| modifiedNotification | %REPLACE($
{notificationText},test@example.com,anonymous@example.com) |

modifiedNotification returns Notification sent at 10:30 AM to
anonymous@example.com

Replace First

The following string manipulation function is used to replace text dynamically:

%REPLACE_FIRST(<search string>,<replace string>)

Replaces the first occurrence of the given search string with replace string.

For example,

When set variable, get the Customer information
Save:
| orderConfirmation | Order #INV-12345 confirmed for your subscriptionPlan |

Validate:
| modifiedOrder | %REPLACE_FIRST(${orderConfirmation},O,BO) |

modifiedOrder returns Border #INV-12345 confirmed for your subscriptionPlan

Concat

The following string concatenation function is used to join multiple string arguments into a
single string. It helps merge different pieces of text dynamically.

%CONCAT(<arg1>,<arg2>[,<arg3>...]) : Concatenate the given string arguments.

For example,

When set variable, getting Customer information
Save:
| subscriptionPlan | Premium Subscription Activated Successfully |
| billingDetails | Your next billing date is 15-03-2025 |

Validate:
| finalMessage | %CONCAT(${subscriptionPlan} ,${billingDetails}) |

finalMessage returns Premium Subscription Activated Successfully Your next
billing date is 15-03-2025

Uppercase and Lowercase

These functions are used to convert the string into Lowercase or Uppercase.

%LOWERCASE(<string>) :

Chapter 5
String Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 15

Converts the given string into lowercase

%UPPERCASE(<string>) :
Converts the given string into uppercase

For example,

When set variable, getting Customer information
Save:
| subscriptionPlan | Premium Subscription Activated Successfully |
| billingDetails | Your next billing date is 15-03-2025 |

Validate:
| planName | %LOWERCASE(${subscriptionPlan}) |
| nextBilling | %UPPERCASE(${billingDetails}) |

planName returns premium subscription activated successfully
nextBilling returns YOUR NEXT BILLING DATE IS 15-03-2025

Numeric Functions
Numeric functions help perform operations on numbers in various sections, including Data,
Save, and Validate. They assist in rounding numbers and generating random values
dynamically. For supported arithmetic expression, see Numeric Function: Evaluate to Process
Arithmetic Expressions.

Rounding Numbers (%ROUND(<arg1>))

This function rounds the given numeric input to the nearest whole number (long numeric
value).

For example, %ROUND(3.6) - Returns 4.

Refer to the following BDD Example:

When set variables,
Save:
| chocolates | 3.6 |

When buy chocolates,
Data:
| number | %ROUND(${chocolates}) |

Generating Random Numbers (%RANDOM())

This function returns a pseudorandom double greater than or equal to 0.0 and less than 1.0

For example, %RANDOM() - Returns 0.753524282283047

Refer to the following BDD Example:

When buy chocolates,
Data:
| number | %RANDOM() |

Chapter 5
Numeric Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 15

Numeric Function: Evaluate to Process Arithmetic Expressions
STAP supports all standard arithmetic operations, such as +,-,*,/. Specify the expression in
reverse polish notation or postfix notation.

STAP requires the postfix operation for its arithmetic operations for the following reasons:

• Postfix notations are easier to parse for compiler

• Rules out the need for left - right association and precedence

• Faster to evaluate (less time for parsing)

• Can be expressed without parenthesis

• No 3rd party library dependency required

Using Arithmetic Operations

You must use the following format to perform arithmetic operations:

%EVAL(<arithmetic_operations_written_in_reverse_polish_notation>)

each operand and operator should be comma separated
to pass in STAP variables use: ${<variable>}

Example:
(2+1)*3
| name | %EVAL(2,1,+,3,*) |
(arg3+arg5)
| name | %EVAL(${arg3},${arg5},+) |

The following example shows how to evaluate expressions using arithmetic operations:

Case: Evaluate Expressions

When set variable, saving various signal datas into variables
Save:
arg1	10
arg2	9
arg3	4
arg4	2
arg5	14
arg6	20

When set variable, evaluating various communication fields
Save:
#| Property |
Value | Runtime
Value |
 | signalQuality |
%EVAL(2,1,+,3,*) |
9 |
 | transmissionRate | %EVAL(${arg3},$
{arg5},+) | 18 |
 | networkLatency | %EVAL(${arg1},${arg2},+,$
{arg3},*) | 76 |

Chapter 5
Numeric Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 15

 | packetDropRate | %EVAL(${arg1},${arg2},${arg3},*,${arg4},${arg5},-,/,$
{arg6},*,+) | -50 |

JSON and Response Functions
JSON functions perform operations on response JSON. These can be used in Validate or
Save blocks. JSON functions include the following:

• Array value

• Array size

• Response header

Array Value:

This function retrieves elements from an array using JSON Path:

• %ARRAY_VALUE(<JSON Path>): Returns the first element in the array resolved by the
JSON Path.

• %ARRAY_VALUE(<JSON Path>, <index>): Returns the index element in the array
resolved by the JSON Path. Index starts from 0.

The following is the response body in JSON format:

{
 "user": "John Doe",
 "email": "john@billing.com",
 "subscriptions": [
 {"plan": "Premium", "status": "ACTIVE", "expiry": "2025-03-15"},
 {"plan": "Basic", "status": "EXPIRED", "expiry": "2024-01-01"}
]
}

The following are some examples of Array Value:

• Get the first email for the matched JSON Path
%ARRAY_VALUE(emails[?(@.status == 'VERIFIED')].email) returns first@email

• Get the email at index 1 for the matched JSON Path
%ARRAY_VALUE(emails[?(@.status == 'VERIFIED')].email,1) returns third@email

• Get the value at index 1 for the matched JSON Path
%ARRAY_VALUE(emails[?(@.status == 'VERIFIED')].value,1) returns 30

The following is a BDD example for an Array Value:

Then get mock response, processing Customer subscribed date and subscription
details
Validate:
| firstPlan | %ARRAY_VALUE(subscriptions[?(@.status=='ACTIVE')].plan) |
| activePlanExpiry | %ARRAY_VALUE(subscriptions[?
(@.status=='ACTIVE')].expiry,0) |

The following is the runtime BDD response:

Validate:
#| Property | Value | Property Value | Runtime Value | Result |

Chapter 5
JSON and Response Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 15

 | firstPlan | %ARRAY_VALUE(subscriptions[?(@.status=='ACTIVE')].plan)
Premium | Premium | PASSED |
 | activePlanExpiry | %ARRAY_VALUE(subscriptions[?
(@.status=='ACTIVE')].expiry,0)| 2025-03-15 | 2025-03-15 | PASSED |
 | subscriptionCount | %ARRAY_SIZE(subscriptions) | 2 | 2 | PASSED |

Array Size

This function returns the number of elements in an array.

%ARRAY_SIZE(<JSON Path>) : Returns the size of the array returned by the JSON path

For example,

Validate:
#| Property | Value | Property Value |
Runtime Value | Result |
 | subscriptionCount | %ARRAY_SIZE(subscriptions) | 2 |
2 | PASSED |

Returns: 2 (since there are two subscription entries)

Response Header

This function returns the value for the given header key, if it is present in response headers.

For example,

{
...
"headers" : {
 "transfer-encoding" : "chunked",
 "connection" : "keep-alive",
 "Date" : "Wed, 25 Aug 2021 04:51:40 -0700",
 "Content-Type" : "application/json"
 }
...
}

Get the Date header from response.

%RESPONSE_HEADER(Date) returns "Wed, 25 Aug 2021 04:51:40 -0700"

The following is a BDD example for using %RESPONSE_HEADER() in Save block:

Then get mock response, processing Customer subscription details
Save:
| Date | %RESPONSE_HEADER(Date) |
| Connection | %RESPONSE_HEADER(connection) |

The following is the runtime BDD response for using %RESPONSE_HEADER() in Save block:

Then get mock response, processing Customer subscription details
 Save:
#| Property | Value | Runtime

Chapter 5
JSON and Response Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 15

Value |
| Date | %RESPONSE_HEADER(Date) | Wed, 25 Aug 2021 04:51:36
-0700 |
| Connection | %RESPONSE_HEADER(connection) | keep-
alive |

The following is a BDD example for using %RESPONSE_HEADER() in Validate block:

Then get mock response, processing Customer subscription details
Validate:
| %RESPONSE_HEADER(connection) | ${connection} |

The following is the runtime BDD response for using %RESPONSE_HEADER() in Validate
block:

Then get mock response, processing Customer subscription details
Validate:
#| Property | Value | Property Value |
Runtime Value | Result |
| %RESPONSE_HEADER(connection) | ${connection} | keep-alive
| keep-alive | PASSED |

Data Type Functions
Data Type functions are used in Data block to represent the type of property value. By default,
all data is treated as a string. To convert data to other types, use the appropriate data type
functions.

Table 5-1 describes Data Type functions used in Data block to represent the type of property
value.

Table 5-1 Data Type Functions

Function Description Example: Data

%INT(<int value>) To represent integer values %INT(200) -→ "value": 200

%DOUBLE(<double value>) To represent floating/double
values

%DOUBLE(35.75) -→
"billAmount": 35.75

%BOOLEAN(<boolean value>) To represent boolean values %BOOLEAN(true) →> "created" :
true

Date Type Functions
These functions retrieve, modify, and transform dates in various formats and are useful for
timestamping, scheduling, and handling date-based calculations.

Retrieve Current Date (%NOW())

Returns current date in YYYY-MM-ddTHH:mm:ss.SSSZ format. For example, %NOW() →
"2021-08-25T14:16:28.312Z"

The following is a BDD example for retrieving current date:

Chapter 5
Data Type Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 15

When add todo task, for booking an appointment

Data: Table 5-2 lists out the values in NOW format.

Table 5-2 NOW format

Property Value Runtime Value

description %NOW() 2021-08-25T14:16:28.312Z

Retrieve Current Date in a Custom Format (%NOW(<format>))

Returns current date in specified format. For example, %NOW(YYYY-MM-dd) → "2021-08-25"

The following is a BDD example for retrieving current date in a custom format:

When add todo task, for booking an appointment

Data: Table 5-3 lists out the values in NOW format.

Table 5-3 NOW format

Property Value Runtime Value

description %NOW(YYYY-MM-dd) 2021-08-25

For more information on formatting the date, see Class SimpleDateFormat in Oracle Java
documentation.

Add or Subtract Time (%NOWADD(<field>, <+/- value>))

Modifies the current date or time by adding or subtracting a specific amount from a time field.

Default format (YYYY-MM-dd'T'HH:mm:ss.SSS'Z')

For example, | dateTime | %NOWADD(5,10) | # Adds 10 units to field 5 | dateTime |
%NOWADD(5,-10) | # Subtracts 10 units from field 5

Custom Format (%NOWADD(<field>, <+/- value>, <output format>))

For example, | dateTime | %NOWADD(5,10,yyyy-MM-dd HH:mm:ss) |

Output:

"2024-05-07 10:10:10"

Modify a Saved Date (%NOWADD(<field>, <+/- value><output format>))

Adds or Subtracts from a date field and returns date in specified format.

Add or Subtract from current time using Custom Format

| dateTime | %NOWADD(5,10,yyyy-MM-dd HH:mm:ss) |

%DATEADD(<field>, <+/- value>)

Add/Subtract from a date field and returns date in default format YYYY-MM-
dd'T'HH:mm:ss.SSS'Z'.

For example, | dateTime | %DATEADD(${datavar},5,5,yyyy-MM-dd HH:mm:ss) |

Advanced example, (%DATEADD(<field>, <+/- value>, <input format>, <output format>):

Chapter 5
Date Type Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 15

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

| dateTime | %DATEADD(2024-05-07 10:10:10,5,-5,yyyy-MM-dd HH:mm:ss,dd-MM-YYYY) |

Transforms: "2024-05-07 10:10:10" → "07-05-2024"

Transform Date Formats (%TRANSFORM(<date1><inputFormat><outputFormat>))

Transforms given date in the input format to specified output format.

The following BDD example uses Transform function to transform date in the Save section to
specified format:

When execute mock action, reading the task
Data:
| $request | $arraydata2 |
Save:
| dateTime | %TRANSFORM(2024-05-07 10:10:10,YYYY-MM-dd HH:mm:ss,dd-MM-YYY) |
with backslash format
| dateTime | %TRANSFORM(2024-05-07 10:10:10,YYYY-MM-dd HH:mm:ss,MM\/dd\/yyyy
HH:mm:ss) |

Format Number Functions
The Format Number function formats a numeric value according to a specified pattern,
applying different rounding modes as needed such as FLOOR, CEILING, and ROUND. It
supports various separators, custom decimal places, and string interpolation within the
formatted output.

Table 5-4 describes variants of Format Number Functions.

Table 5-4 Variants and Descriptions

Variant Description

CEILING Rounding mode to round towards positive infinity.

DOWN Rounding mode to round towards zero.

FLOOR Rounding mode to round towards negative infinity.

HALF_DOWN Rounding mode to round towards nearest neighbor
unless both neighbors are equidistant, in which
case you round down instead.

HALF_EVEN Rounding mode to round towards the nearest
neighbor unless both neighbors are equidistant, in
which case, round towards the even neighbor.

HALF_UP Rounding mode to round towards nearest neighbor
unless both neighbors are equidistant, in which
case you round up instead.

UNNECESSARY Rounding mode to assert that the requested
operation has an exact result, hence no rounding is
necessary.

UP Rounding mode to round away from zero.

The following example shows the BDD code to format a number:

Case: Format Number
When set variable, customer bill value is taken as input
Save:

Chapter 5
Format Number Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 15

| price | 1234567.89 |
When set variable, to get formatted customer bill details
Save:
formattedBill	%FORMAT_NUMBER(481.195)
decimalBill	%FORMAT_NUMBER(${price},0.0)
roundedBill	%FORMAT_NUMBER(${price},0)
roundedBill2	%FORMAT_NUMBER(${price},#.##,CEILING)
roundedBill3	%FORMAT_NUMBER(${price},#%{,}###.##,CEILING)
roundedBill4	%FORMAT_NUMBER(${price},Amount to be payable is $#%{,}###.#
for this month,CEILING)	
discountedBill	%FORMAT_NUMBER(${price},#,FLOOR)
discountedBill1	%FORMAT_NUMBER(${price},#,HALF_EVEN)
discountedBill2	%FORMAT_NUMBER(${price},#,HALF_UP)
discountedBill3	%FORMAT_NUMBER(${price},#,HALF_DOWN)
Output (Runtime BDD):
When set variable, to get formatted customer bill details
Save:
#| Property |
Value
 | Runtime Value |
 | price |
1234567.89
 | 1234567.89 |
 | test |
12.053548387096775
 | 12.053548387096775 |
 | formattedBill |
%FORMAT_NUMBER(481.195)
 | 481.20 |
 | decimalBill | %FORMAT_NUMBER($
{price},0.0) |
1234567.9 |
 | roundedBill | %FORMAT_NUMBER($
{price},0) |
1234568 |
 | roundedBill2 | %FORMAT_NUMBER($
{price},#.##,CEILING) |
1234567.89 |
 | roundedBill3 | %FORMAT_NUMBER($
{price},#%{,}###.##,CEILING) |
1,234,567.89 |
 | roundedBill4 | %FORMAT_NUMBER(${price},Amount to be payable
is $#%{,}###.# for this month,CEILING) | Amount to be payable
is $1,234,567.9 for this month |
 | discountedBill | %FORMAT_NUMBER($
{price},#,FLOOR) |
1234567 |
 | discountedBill1 | %FORMAT_NUMBER($
{price},#,HALF_EVEN) |
1234568 |
 | discountedBill2 | %FORMAT_NUMBER($
{price},#,HALF_UP) |
1234568 |
 | discountedBill3 | %FORMAT_NUMBER($
{price},#,HALF_DOWN) |
1234568 |

Chapter 5
Format Number Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 15

Format Patterns

DecimalFormat is a concrete subclass of NumberFormat that formats decimal numbers. It has
a variety of features designed to parse and format numbers in any locale, including support for
Western, Arabic, and Indic digits. It also supports different kinds of numbers, including integers
(123), fixed-point numbers (123.4), scientific notation (1.23E4), percentages (12%), and
currency amounts ($123). All of these can be localized.

To obtain a NumberFormat for a specific locale, including the default locale, use one of
NumberFormat's factory methods, such as getInstance(). In general, avoid using the
DecimalFormat constructors directly, since the NumberFormat factory methods may return
subclasses other than DecimalFormat. A DecimalFormat comprises a pattern and a set of
symbols. The pattern may be set directly using applyPattern(), or indirectly using the API
methods. The symbols are stored in a DecimalFormatSymbols object. When using the
NumberFormat factory methods, the pattern and symbols are read from localized
ResourceBundles. To customize format object, perform the following action:

A DecimalFormat comprises a pattern and a set of symbols. The pattern may be set directly
using applyPattern(), or indirectly using the API methods. The symbols are stored in a
DecimalFormatSymbols object. When using the NumberFormat factory methods, the pattern
and symbols are read from localized ResourceBundles.

Patterns
DecimalFormat patterns have the following syntax:
 Pattern:
 PositivePattern
 PositivePattern ; NegativePattern
 PositivePattern:
 Prefixopt Number Suffixopt
 NegativePattern:
 Prefixopt Number Suffixopt
 Prefix:
 any Unicode characters except \uFFFE, \uFFFF, and special characters
 Suffix:
 any Unicode characters except \uFFFE, \uFFFF, and special characters
 Number:
 Integer Exponentopt
 Integer . Fraction Exponentopt
 Integer:
 MinimumInteger
 #
 # Integer
 # , Integer
 MinimumInteger:
 0
 0 MinimumInteger
 0 , MinimumInteger
 Fraction:
 MinimumFractionopt OptionalFractionopt
 MinimumFraction:
 0 MinimumFractionopt
 OptionalFraction:
 # OptionalFractionopt
 Exponent:
 E MinimumExponent

Chapter 5
Format Number Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 15

 MinimumExponent:
 0 MinimumExponentopt

Understanding DecimalFormat Patterns

DecimalFormat patterns help format numerical values for proper display. They define prefixes,
numeric values, and suffixes while handling positive and negative subpatterns, separators, and
formatting symbols.

The following are the key features of DecimalFormat Patterns:

• Contains positive and negative subpatterns (for example, `"#,##0.00;(#,##0.00)"`).

• If no negative subpattern is provided, the positive pattern is prefixed with a localized minus
sign (`'-'` in most locales).

• Customizable prefixes and suffixes can be used for different formatting styles.

Here is the behavior of positive and negative subpatterns.

• `"0.00"` is equivalent to `"0.00;-0.00"` since the minus sign is automatically applied.

• If a negative subpattern is explicitly defined, only the prefix and suffix change while the
numerical rules remain the same.
For example, `"#,##0.0#;(#)"` behaves exactly the same as `"#,##0.0#;(#,##0.0#)"`.

Formatting Symbols and Separators

Symbols for infinity (`∞`), digits (`0-9`), thousand separators (`,`), and decimal points (`.`) are
fully customizable. Care must be taken to avoid conflicts to ensure:

• Positive and negative prefixes or suffixes are distinct for accurate parsing.

• Decimal separator and thousand separator are unique to prevent errors.

Grouping Separators and their Behavior

Typically used for thousands, though some locales use them for ten-thousands. The grouping
size determines the digit intervals.

For example, `3` for `"100,000,000"` or `4` for `"1,0000,0000"`.

If multiple grouping characters are provided, the last grouping separator before the integer end
is used. For example, `"#,##,###,####"` == `"######,####"` == `"##,####,####"`.

Chapter 5
Format Number Functions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 15

6
Using Control Structures in Steps

Learn to use different control structures in steps for Oracle Communications Solution Test
Automation Platform (STAP).

Topics in this chapter:

• Overview

• Scenario Execution Flow

• Using Reference Cases

Overview
You can use control structures like if, for, and while for steps in the Behavior-Driven
Development (BDD) language. They are the building blocks within each test case and
determine the flow of execution for each step based on specific conditions. Steps dictate the
flow within test cases, while scenario execution flow governs the execution of the entire test
scenario.

Scenario Execution Flow
The Scenario Execution Flow relies on the outcomes of the steps in the scenario. If a step
within a test case fails, it impacts the flow by skipping remaining steps and potentially other test
cases within the scenario.

Figure 6-1 shows the detailed flow of a scenario execution.

Figure 6-1 Scenario Execution Flow

If the scenario execution is successful:

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 16

• Test Scenario Execution: If all the test cases within a scenario are run successfully, the
entire scenario is considered passed.

• Test Case Execution: When all test steps within a test case are run without any errors,
the test case is considered passed.

If the scenario execution fails:

• Test Scenario Execution: If a test case within a scenario fails, all subsequent test cases
in that scenario are skipped, and the entire scenario is marked as failed.

• Test Case Execution: If any test step within a test case fails, the remaining test steps in
that test case are skipped, and the test case is marked as failed.

This detailed flow ensures that the execution process is efficient and that any failures are
quickly identified and addressed, preventing unnecessary execution of subsequent steps or
cases.

Action Execution
There are two types of Action Executions:

• Static Action (Default)

• Controlled Step

Static Action (Default)

Performs the action once (in sequence).

Figure 6-2 shows the detailed flow of a static action.

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 16

Figure 6-2 Static Step

Controlled Step: Dynamic Action

Controlled execution of Step

• Condition: Conditional Execution (IF)

– Perform action when the condition is PASSED.

• repeatTimes (FOR)

– Repeat number of times.

• repeatUntil (UNTIL)

– Repeat until the condition is PASSED.

• repeatWhile (WHILE)

– Repeat while the condition is true.

Conditional Execution

• Perform Action when the condition is successful.

• Supports multiple conditions using 'Condition'.

Figure 6-3 shows the detailed flow of a conditional execution.

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 16

Figure 6-3 Conditional Execution

For example,

This block of code checks if the category is Platinum, if yes, then it
changes to Gold through the action file request
When change category, for changing customer category
Condition:
| ${category} | Platinum |
Validate:
| $status | 201 |
| category | Gold |
Save:
| name | name |
| category | category |
RepeatTimes

Repeat Times

Repeatedly perform the action given number of times.

Figure 6-4 shows the flow of repeat times.

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 16

Figure 6-4 Repeat Times

The success of the step depends on the outcome of each action. If any iteration fails, the step
is marked as failed but continues to run.

The following are the various ways through which you can specify the repeat number of times:

• n : integer: number of times

• ${variable}: integer variable of times

• ${array}: array of integers. Action is repeated for array length number of times

• ${index}: index value of iteration. Values: 1-n

• ${nextValue} gives next array value.

• $breakOnFailure: YES breaks the loop, Default: NO

Example

Case: RepeatTimesAction
When set variable, create bills list
Save:
| $ARRAY{bills} | 25.213 |
| $ARRAY{bills} | 30.456 |
Then get mock response, repeatedly to send payment reminders of bills
executes this block for variable times - size of array
RepeatTimes:
| $times | $ARRAY{bills} |
Data:
| id | getdata |
| index | ${nextValue} |
Validate:
| $status | 200 |
| bills[${index}] | $ARRAY{bills[${index}]} |

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 16

Then get mock response, repeatedly to send payment reminders of bills
#executes this block of code for predefined number of times
RepeatTimes:
| $times | 2 |
Data:
| id | getdata |
| index | ${nextValue} |
Validate:
| $status | 200 |
| bills[${index}] | $ARRAY{bills[${index}]} |
RepeatUntil

Repeat Until

• Repeatedly perform the action until the given condition is true.

• At least one Condition is mandatory. (?)

• $breakOnFailure : YES breaks the loop on action validation failure. Default: NO.

When set variable, create bills list
Save:
$ARRAY{bills}	25.213
$ARRAY{bills}	30.456
$ARRAY{bills}	28.712
$ARRAY{bills}	26.389
$ARRAY{bills}	31.243
executes this block of code until all the conditions are true
Then get mock response, sending notifications until customer bill equals a
value
RepeatUntil:
| $ARRAY{bills[${index}]} | 30.456 |
Data:
| id | getdata |
| index | ${nextValue} |
Validate:
| $status | 200 |
Repeat Until with time durations and frequency interval

Repeat Until with Time Durations and Frequency Interval

Figure 6-5 shows the flow of Repeat Until with Time Durations and Frequency Interval.

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 16

Figure 6-5 Repeat Until with Time Durations and Frequency Interval

$startAfter : Optional. Start executing action after this duration of time.
By default, starts immediately.The duration is in seconds.
$endAfter : Mandatory. Break after the completion of this time duration.
$interval: Optional. interval duration to run the action. By default,
executes continuously.
Specify duration in Seconds.
Breaks if the condition is true even before $endAfter.
$breakOnFailure : YES will breaks loop on action validation failure, Default:
NO.

Example scenario:
example

Case: RepeatUntilAction
When set variable, create bills list
Save:
$ARRAY{bills}	25.213
$ARRAY{bills}	30.456
$ARRAY{bills}	28.712
$ARRAY{bills}	26.389
$ARRAY{bills}	31.243
executes this block of code until all the conditions are true

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 16

Then get mock response, sending notifications until customer bill equals a
value
RepeatUntil:
| $ARRAY{bills[${index}]} | 30.456 |
start execution after 1 second
| $startAfter | 1 |
1 second interval for every execution
| $interval | 1 |
stop execution after 5 seconds
| $endAfter | 5 |
Data:
| id | getdata |
| index | ${nextValue} |
Validate:
| $status | 200 |
RepeatWhile

When set variable, setting customer bill Amount
Save:
| billAmount | 30 |
All the conditions must hold true -> While executes the condition first
Then get mock response, sending notifications of pending bills while amount
is under a threshold
RepeatWhile:
The variable used here must be defined already
| ${billAmount} | %GREATER_THAN(25) |
Data:
| id | getcust |
| index | ${nextValue} |
Validate:
| $status | 200 |
| extractedNotice | 'Your subscription is expiring soon' |
RepeatWhile with time durations and interval

Repeat While

• Repeatedly perform the action while the given condition is true.

• $breakOnFailure: YES will break loop on action validation failure, Default: NO.

Figure 6-6 shows the flow of 1st iteration.

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 16

Figure 6-6 Repeat While 1st Iteration

Figure 6-7 shows the flow of other iterations.

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 16

Figure 6-7 Repeat While Other Iterations

Case: RepeatWhileAction
When set variable, setting customer bill Amount
Save:
| billAmount | 30 |
All the conditions must hold true -> While executes the condition first
Then get mock response, sending notifications of pending bills while amount
is under a threshold
RepeatWhile:
The variable used here must be defined already
| ${billAmount} | %GREATER_THAN(25) |
starts execution after 1 second
| $startAfter | 1 |
1 second interval for every execution
| $interval | 1 |
stop execution after 5 seconds
| $endAfter | 5 |
Data:
| id | getcust |
| index | ${nextValue} |
Validate:

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 16

| $status | 200 |
| extractedNotice | 'Your subscription is expiring soon' |

Repeat While: Examples of Time Durations and Interval

$startAfter : Optional. Start executing action after this duration of time.
By default, starts immediately.
$endAfter : Mandatory. Break after the completion of this time duration.
$interval: Optional. interval duration to run the action. By default,
executes continuously.
Specify duration in Seconds.
Breaks if the condition is true even before $endAfter.
$breakOnFailure : YES breaks a loop on action validation failure. Default: NO.

Case: RepeatWhileAction
When set variable, setting customer bill Amount
Save:
| billAmount | 30 |
All the conditions must hold true -> While executes the condition first
Then get mock response, sending notifications of pending bills while amount
is under a threshold
RepeatWhile:
The variable used here must be defined already
| ${billAmount} | %GREATER_THAN(25) |
starts execution after 1 second
| $startAfter | 1 |
1 second interval for every execution
| $interval | 1 |
stop execution after 5 seconds
| $endAfter | 5 |
Data:
| id | getcust |
| index | ${nextValue} |
Validate:
| $status | 200 |
| extractedNotice | 'Your subscription is expiring soon' |

Repeat Case

• Repeatedly run the case until the validation passes

• Ensure that at least one condition is met.

For example,

$endAfter : Optional. Break after the completion of this time duration.
$interval: Optional. interval duration to run the Step. By default, executes
continuously.
Specify interval duration in Seconds.
$times: Optional. Number of times the case can be repeated.

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 16

Note

If both $times and $endAfter are provided, the case will repeat up to $times within
the specified duration.

Figure 6-8 Repeat Case

Case: Import and Publish Mobile Product Model
Given create an import job

Data:
| $formData.name | primaryFile |
| $formData.file | $FILE(DBE_PI2_Mobile_Model_PSP.json) |

Validate:
| $status | 201 |
| status | NOT_STARTED |

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 16

Save:
| importJobId | id |

Then verify the import job status by id
Data:
| id | ${importJobId}
Validate:
| ${jobstatus} | SUCCEEDED |
RepeatCase:
$interval	5
$times	2
$endAfter	6

Using multiple test data files in control actions

Action using multiple data
When create product offering, with multiple data sets
repeatTimes: 2
Data:
| $request | $FILE(productOffering_${index}.json) |
(data/product Offering_0.json
data/productOffering_1.json)
| variable | I Value${index}-${UlD} |
Validate:
| statusCode | 201 |
Save :
| $ARRAY{productOfferingId} | id |
(data/productOffering_O.json
data/productOffering_1.json
productQtferingJd Array)

Action using multiple data sets
When Dummy, save some values
Save:
| $ARRAY{poNames} | VoicePO |
| $ARRAY{poNames} | SMSPO |
| $ARRAY{poNames} I VolPPO |
When create product offering, with multiple data sets
Repeat Times:
| $times | $ARRAY{poNames} I
Data:
| $request |$FILE(productOffering_${nextValue}.json |
(data/productOffering_VoicePO.json
data/productPffering_SMSPO.json
data/productOffering_VolPPO.json)
| variable | Values${nectValue}-${index}-${UID} |
Validate:
| statusCode | 201 |
Save :
| $Array{productOfferinfId} | id |

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 16

Using Conditional Cases
Cases to run are mentioned in the scenario.config file. With conditional case execution, you
can specify a set of conditions, and only the cases which satisfy all specified conditions are
run.

Note

• You mention the conditions after the case name within curly brackets, separated
by a comma. For example, sampleCase {condition1, condition2}.

• If the condition value or condition variable is from a saved variable in any of the
previous cases run, they are to be specified within ${ }.

• Only = or Equals to operation is supported for condition evaluation.

The following are the configurations to set to run conditional cases.

The syntax for scenario.config configuration file:

Header.info
Data.case
MockAction.case
MockAction.case{${executeMockAction}=${value}}
#MockAction.case{${executeMockAction}=true}
MockAction.case{${executeMockAction}=true,${day}=wednesday}

The following is the syntax for data.case file:

Case: Data creation for conditional execution

When dummy
Save:
value	true
executeMockAction	true
day	wednesday

The following is the syntax for MockAction.case file:

Case: Mock action test

When execute mock action, creating a task
Data:
| id | WeekdayTask-${UID} |
| name | WeekdayTask-${UID} |
Save:
| taskId | id |
| taskName | name |

When execute mock action, reading the task
Data:

Chapter 6
Scenario Execution Flow

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 16

| $requestString | {"id":"id"} |
| id | ${taskId} |

Using Reference Cases
If you want to test the same case across different scenarios, you can define the case once as a
reference case and reuse the case file across scenarios.

Reference cases let you define a case once and reference it in other locations, instead of
defining the same case file again. Updates to the original case appear everywhere it is used.

Reference cases are present under the referenceCaseLibrary folder with the file
extension .caseref. To create the reference case library, run the following command in
config.properties:

referenceCaseHome
referenceCases.home=${WORKSPACE}/referenceCaseLibrary

where:

• referenceCaseHome is the title of the folder where you want to store reference cases.

• workspace is your STAP workspace directory.

To run a scenario using the .caseref file, create and define it under the referenceCaseLibrary.

The following is an example for a reference case .caseref file:

Case: case title
Description: case description
tag: tag1, tag2
ReferenceCaseId: caseTitle

When...,to...
Data:

Then..., in the ...
Data:

Validate:
| $status | status code |

Save:
| _subscription.id | id |

Then, create a .case file under the scenario folder that you want to run, and refer to the
reference case ID in the .case file. The following is the syntax for the .case file:

Case: caseName
ReferenceCaseId: referenceCaseID

When you run a test case using this file as the case, it automatically fills in details from
the .caseref file. The following example uses the .caseref to create a new subscriber in a
billing system:

Chapter 6
Using Reference Cases

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 16

Case: Test Case
Description: Test description
tag: test

ReferenceCaseId: SetVariable

When set variable, for default values
Save:
subscriber.name	John Doe
subscriber.category	PLATINUM
subscriber.type	RESIDENTIAL
subscriber.age	30
subscriber.address	123 California Street
subscriber.state	CA
subscriber.city	Mountain View
subscriber.country	USA
subscriber.code	12345
subscriber.emailId	john.doe@oracle.com
subscriber.mobile	1234567890

Then create a new subscription, in the billing system
Data:
name	${subscriber.name}
category	${subscriber.category}
type	${subscriber.type}
age	${subscriber.age}
address	${subscriber.address}
state	${subscriber.state}
city	${subscriber.city}
country	${subscriber.country}
code	${subscriber.code}
emailId	${subscriber.emailId}
mobile	${subscriber.mobile}
Validate:	
$status	201

Save:
| _subscription.id | id |

Chapter 6
Using Reference Cases

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 16

7
STAP Action Plug-ins

Learn about different Oracle Communications Solution Test Automation Platform (STAP) Action
Plug-ins and their functions.

Topics in this chapter:

• Introduction to STAP Action Plug-ins

• REST

• SOAP

• SSH SFTP

• Process Plug-in

• Seagull

• JMX

• Kafka

• UI Automation Plug-in

• URL Access Validation

• Custom Actions

Introduction to STAP Action Plug-ins
STAP Action plug-ins enable automation to interact seamlessly with various product interfaces,
such as REST and SOAP. These plug-ins enable developers and testers to automate tasks,
ensure consistency, and improve efficiency in managing interactions with diverse systems.
Automation plug-ins significantly enhance productivity by eliminating manual interventions.

Adding tools like Seagull process execution plug-ins further broadens the scope of automation,
making it easier to manage diverse and complex workflows. Selecting the right plug-in
depends on factors such as the complexity of the task, integration requirements, and the
technology stack in use.

The available automation plug-ins are:

• REST API

• SOAP API

• SSH/SFTP

• Process

• Kafka

• Seagull (Multi Protocol Traffic Generator)

• URL Validator

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 62

REST Plug-in
Representational State Transfer (REST) is a widely used interface for web services due to its
simplicity and scalability. The REST plug-in facilitates tasks such as making requests, handling
JSON requests/payloads, and validating status and response data.

The key features of the REST plug-in are:

• Payload Management: Simplifies sending and receiving JSON or XML data.

• Request Handling: Includes constructing the payload along with the REST methods such
as GET, POST, PUT, DELETE, and other HTTP methods.

• Authentication Support: Handles OAuth, API keys, and Basic Authentication.

• Response Validation: Supports assertions on HTTP status codes, headers, and body
content.

The Rest plug-in is used to automate the execution of REST API endpoints and to validate the
response.

REST Connection

To use the REST interface, you must first set up the connection environment. An environment
is a setup where applications or integrated solutions operate. A connection serves as an
interface to the application running in the environment, allowing communication with the
application.

Environment configuration includes the settings for these connections. Each STAP plug-in has
its own environment connection configuration, and some plug-ins can have multiple
environment configuration files for different products tested using various scenarios. For more
information, see Setting Up The STAP Environment

You can combine REST and SOAP in a single environment, but other types of interfaces need
to have their own environment:

• Multiple: This includes REST, SOAP

• Single: This includes SSH, KAFKA, URL_VALIDATION, SEAGULL

REST supports two types of authentications:

• Basic

• OAuth

Basic Authentication
Basic Authentication is a straightforward authentication method where the client provides
credentials (username and password).

Following is a sample of an environment.properties file for basic authentication.

Environment name
name=todo
type=REST

hostname=hostname
url=url

#===
=

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 62

Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=YES
oauth2/basic
authorization.type=basic

#- BASIC Authorization
basic.username=
basic.password=

OAuth2 Authentication

OAuth2 supports client_credentials and password_credentials grant types.

Following is a sample of an environment.properties file for a client_credentials grant using
OAuth authentication.

#---
Environment name.
#---
name=care
#---
Type of the connection.
#---
type=REST

#---
REST Configuration
#---
#Hostname
hostname=hostname
#---
#Base URL
#---
url=url
#---
#===
=
Authorization Configuration
#===
=
authorization=YES
#---
Authorization Type
One of oauth2/basic
#---
authorization.type=oauth2
#---
OAUTH2 - IDCS Configuration
#---
oauth2.grantType=client_credentials
oauth2.clientId=*****************************
oauth2.clientSecret=*****************************

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 62

oauth2.tokenUrl=*****************************
oauth2.scope=****************

Following is a sample of an environment.properties file for a password_credentials grant using
OAuth authentication.

#---
Environment name.
#---
name=care
#---
Type of the connection.
One of api.rest, api.soap or ssh
#---
type=REST

#---
REST Configuration
#---
#Hostname
hostname=hostname
#---
#Base URL
#---
url=url
#---

#===
=
Authorization Configuration
#===
=
authorization=YES
#---
Authorization Type
One of oauth2/basic
#---
authorization.type=oauth2
#---
OAUTH2 - IDCS Configuration
#---
oauth2.grantType=password_credentials
oauth2.clientId=*****************************
oauth2.clientSecret=*****************************
oauth2.tokenUrl=*****************************
oauth2.scope=****************
oauth2.authorization=YES
oauth2.authorization.username=************
oauth2.authorization.password=************

Gateway types

The REST plug-in supports two gateway types for constructing URLs dynamically:

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 62

default : Resource mentioned in the action file is added to the base URL to construct the final
URL.

fabric : When the base URL remains the same but different resource endpoints need to be
tested during execution, connection URLs can be used.

Configuration key: connection.uri.resourceName

URL is constructed by joining the base url, value of the connection uri for the resource
mentioned in action file, and the resource in the action file.

For example,

#---
Environment name. Ref. Supported list above.
#---
name=care
#---
Type of the connection.
One of api.rest, api.soap or ssh
#---
type=REST
#---
REST Configuration
#---
#Hostname
#---
#Hostname
hostname=hostname
#---
#Base URL
#---
url=url
#---
Connection Type : Direct or through Fabric
connectionType=fabric/default
#---
connection.type=fabric
connection.uri.customerBill=customerBillManagement/v4
connection.uri.customerBillOnDemand=customerBillManagement/v4
connection.uri.payment=payment/v4
connection.uri.paymentAllocation=payment/v4
connection.uri.adjustBalance=prepayBalanceManagement/v4
connection.uri.usage=usageManagement/v2
connection.uri.appliedCustomerBillingRate=customerBillManagement/v4
connection.uri.disputeBalance=prepayBalanceManagement/v4
#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=NO
#---

Action Files in the REST Plug-in

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 62

Action files define how API requests are constructed and executed within the REST plug-in.

For example, in the following JSON file:

{
"path":"care/customerBill/read-customerBill/read-customerBill-by-id",
"name":"Read customer bill by id",
"bdd":"read customer bill by id",
"description":"Read customer bill by id",
"product":"care",
 "actionType":"REST",
"tags":["customer","bill"],
"resource":"customerBill",
"method":"GET",
"expectedStatusCode":200
}

The final URL for the example is constructed by combining the following elements:

resource : customerBill

Value of connection uri for the resource in action file: customerBillManagement/v4

The supported action types are:

• GET

• POST

• PUT

• PATCH

• DELETE

Method: GET

read-todo-task.action.json

{
"path":"/category/getcategory",
"name":"Read all categories",
"bdd":"read all categories",
"description":"Reading all categories of customer",
"product":"mockserver",
 "actionType":"REST",
"tags":["category","read","all"],
"resource":"getcategory",
"method":"GET",
 "expectedStatusCode":200
}

Method: POST

mockpost.action.json

{
 "path":"/category/postdetails/",
 "name":"add category",

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 62

 "bdd":"add category",
 "description":"Adding category",
 "product":"mockserver",
 "actionType":"REST",
 "tags":["add","category"],
 "resource":"mock/postcust",
 "method":"POST",
 "requestType":"FILE",
 "request":"mockpost.request.json",
 "expectedStatusCode":201
 }

Request Json :

add-todo-task.request.json

{
 "name":"John Doe",
 "category":"Platinum",
}

Method: PUT

mockput.action.json

{
 "path":"/category/changedetails/",
 "name":"change details",
 "bdd":"change details",
 "description":"Changing customer details",
 "product":"mockserver",
 "actionType":"REST",
 "tags":["change","details"],
 "resource":"mock/patchcust",
 "method":"PATCH",
 "requestType":"FILE",
 "request":"mockpatch.request.json",
 "expectedStatusCode":200
 }

Request Json :

put-todo-task.request.json

{
 "name" : "John Doe",
 "category" : "Gold"
}

Method: PATCH

mockpatch.action.json

{
 "path":"/category/changedetails/",

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 62

 "name":"change details",
 "bdd":"change details",
 "description":"Changing customer details",
 "product":"mockserver",
 "actionType":"REST",
 "tags":["change","details"],
 "resource":"mock/patchcust",
 "method":"PATCH",
 "requestType":"FILE",
 "request":"mockpatch.request.json",
 "expectedStatusCode":200
 }

Request Json :

mockpatch.request.json

{
 "name":"Sam Curran",
 "category":"Platinum"
 }

Method: DELETE

mockdelete.action.json

{
"path":"category/deletecategory",
"name":"Delete category",
"bdd":"delete category",
"description":"Delete category of customer",
"product":"mockserver",
 "actionType":"REST",
"tags":["category","delete"],
"resource":"deletecategory",
"method":"DELETE",
 "expectedStatusCode":202
}

Dynamic Request JSON

Creating a dynamic request JSON file enhances flexibility in API automation by allowing
dynamic data injection at runtime instead of relying on predefined request structures.

To use a dynamic request JSON file instead of the request JSON file mentioned in the action
file:

1. Create a folder named 'data' under the folder for scenario.

2. Create a dynamic request JSON file with the name in the following format:
actualName.dynamicName.request.json, where actualName is the name of the request
file up to the first period, and dynamicName is a one-word name for the dynamic request,
followed by the one word name for dynamic request and ending with .request.json.

3. In the test step's data section, use $request for the variable name to access the
information, and use dynamicName as the value.

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 62

Refer to the following example to see how to use a dynamic request json, replacing predefined
request files for greater flexibility.
If the ordinary request file is named update-one-todo-task.UpdateStatus.request.json, and
you name the dynamic file update-one-todo-task.UpdateTodo.request.json, you access the
data this way:

Data:
$request	$UpdateTodo
id	${id}
description	Arrange meeting for service updates
Validate:	
$status	202

Query parameters
Query parameters in REST are key-value pairs added to the URL after a ? (question mark).
They are used to filter, sort, or modify a request without changing the resource path.

Query parameters to the endpoint can be configured in the test step using $query for GET and
POST methods.

The following BDD example provides query parameter account.id value in the url to read the
payment details:

Provide direct value in the query parameter value
Then read payment, Retrieve the Payment details
Data:
| $query | account.id=abcde |

#Using saved context variable in query parameter value
Then read payment, Retrieve the Payment details
Data:
| $query | account.id=${accountPoid} |

multiple query parameters
Then read payment, Retrieve the Payment details
Data:
| $query | account.id=${accountPoid}&limit=1 |

Note

For Patch method use $urlSuffix to send query parameters as part of url.

Using Variables in Query Parameters (Release 1.25.1.1.0 or later)

Query parameters in REST calls can include variables, which are dynamically substituted with
runtime values. For example,

https://api.example.com/resource?searchspec=([Name]="${accountName}")

In this case, ${accountName} will be replaced with its runtime value before the request is
sent.

Refer to the following BDD example:

Scenario: Query Param processor for Variable substitution

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 62

Description: Automation for validating correct handling of query parameters containing
multiple equals signs.

Tags: Test, E2E, QueryParamProcessing

Case: Process query params

Given set variable, to set name
Save:
| accountName | Marlan Brando |

Then get query param response, to search for given name
Data:
| id | param |
| $query | searchspec=([Name]="${accountName}") |
Validate:
| $status | 200 |
Save:
| resp | $data |

Custom Headers
Custom header parameter can be passed in the test step.

• To provide a custom value to a request header parameter, prefix the header key with
" $header_ ".

• Custom values for header parameter can be either a string or a variable saved in any of
the previous steps.

• Passing Authorization header :

– If other custom headers are present, but not an authorization header, then a new
access token will be generated depending on the authorization type configured in the
corresponding environment.properties file and will be passed in the authorization
header while executing the step.

– If there is an access token already available, to pass it in the step, use the custom
value $header_Authorization for the access token to be passed with appropriate prefix
(Example: Basic/ Bearer) depending on the authorization type being used.

For example,

When add category, for verifying customer details
Data:
$header_Date	Wed, 17 April 2024 04:51:36 -0700
name	John Doe
category	Platinum

Authorization header : Bearer token
When add category, for verifying customer details
Data:
$header_Authorization	Bearer abcedeeeeeeeee
name	John Doe
category	Platinum

Authorization header : Basictoken
When add category, for verifying customer details
Data:

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 62

$header_Authorization	Basic abcedeeeeeeeee
name	John Doe
category	Platinum

Using saved context variables in the header value
When add category, for verifying customer details
Data:
$header_Date	${Date}
$header_Authorization	%CONCAT(Bearer, ,${Token})
name	John Doe
category	Platinum

URL Suffix:

Suffixes to an actual url can be added dynamically using $urlSuffix variable.

Actual url : http://localhost/todoApp/todo

For example,

Data:
| $urlSuffix | /purge |

URL used during execution will be http://localhost/todoApp/todo/purge

Using saved context variable in url suffix
Given set variable, dummy step
Save:
| param | /paramValue |

Given post step test, URL Suffix is a saved variable
Data:
| $urlSuffix | ${param} |
Validate:
| $status | 404 |

#
Case: URL Params URL Suffix and URL Id test
Given put step test, test post
Data:
| $urlSuffix | /$urlId/checkin |
| $urlId | MyURLID400 |
Validate:
| $status | 404 |

URL ID with URL suffix
$urlId can be used to add an ID value along with the URL suffix.

• Actual url: http://localhost/todoApp/todo

• Required url: http://localhost/todoApp/todo/{{id}}/checkin

• Final url: http://localhost/todoApp/todo/MyURLID400/checkin

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 62

http://localhost/todoApp/todo
http://localhost/todoApp/todo
http://localhost/todoApp/todo
http://localhost/todoApp/todo
http://localhost/todoApp/todo

For example,

Given put step test, test post
Data:
| $urlSuffix | /$urlId/checkin |
| $urlId | MyURLID400 |
Validate:
| $status | 404 |

#using saved context variable in urlId
Given put step test, test post
Data:
| $urlSuffix | /$urlId/checkin |
| $urlId | ${accountId} |
Validate:
| $status | 404 |

URL ID with URL suffix incase of multiple dynamic parameters

• Endpoint: http://localhost/todoApp/apilayer/v1/

• Required url: http://localhost/todoApp/apilayer/v1/subscriptions/{{identifier}}/bundles/
{{basebundle}}

• Final url: http://localhost/todoApp/apilayer/v1/subscriptions/2025092405/bundles/
NOMT-123

For example,

When set variable, to concat url
Save:| suffix | %CONCAT(${serviceIdentifier},/bundles/,${baseBundle}) |
#serviceIdentifier and baseBundle are dynamic

When Get bundle API, Get bundle via API
Data:
$urlSuffix	/$urlId/bundles/$urlAdd
$urlId	${serviceIdentifier}
$urlAdd	${baseBundle}
$header_countryCode	NO
$header_orderId	123456

Note

In case you do not have set variable action, use the following action.

{
"path":"set/setVariable",
"name":"set variable",
"bdd":"set variable",
"description":"set variable values in Save",
"product":"system",
 "actionType":"REST",

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 62

http://localhost/todoApp/apilayer/v1/subscriptions/2025092405/bundles/NOMT-123
http://localhost/todoApp/apilayer/v1/subscriptions/2025092405/bundles/NOMT-123
http://localhost/todoApp/apilayer/v1/subscriptions/2025092405/bundles/NOMT-123
http://localhost/todoApp/apilayer/v1/subscriptions/2025092405/bundles/NOMT-123
http://localhost/todoApp/apilayer/v1/subscriptions/2025092405/bundles/NOMT-123

"tags":["set","variabhle"],
"resource":"NO_RESOURCE",
"method":"GET",
 "expectedStatusCode":0
}

Scenario Example :

TodoAppScenario.json

Scenario: RestAPI Scenarios
Description: Scenario for validating all the RestAPI plugin calls

Tags: RestAPI, Category, Customer

Case: Create a customer profile and view

When add category, for verifying customer details
Data:
| name | John Doe |
| category | Platinum |
Validate:
| $status | 200 |
Save:
firstUser.id	id
firstUser.name	name
firstUser.category	category

Then read category, by id
Data:
| id | ${firstUser.id} |
Validate:
$status	200
name	${firstUser.name}
category	${firstUser.category}

When add category, for buying gold subscription
Data:
| name | John Doe |
| category | Gold |
Validate:
| $status | 200 |

Then read all todo tasks, that are created above.
Validate:
[0].id	1
[0].name	John Doe
[0].category	Platinum
[1].id	2
[1].name	John Doe
[1].category	Gold
Save:	
variable1	%ARRAY_VALUE([?(@.category == 'Platinum')].name)

Chapter 7
REST Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 62

SOAP Plug-in
The Simple Object Access Protocol (SOAP) plug-in is used to automate the execution of
SOAP API endpoints and to validate their responses. Automation plug-ins for SOAP focus on
handling XML-based payloads and ensuring Web Services (WS-*) standard compliance.

The following are the key features of SOAP:

• Message Customization: Support for modifying SOAP body.

• Security: Handle WS-Security, SSL, and SAML token integration.

• Assertions: Validate SOAP responses against schemas and expected values.

SOAP Connection supports two types of authentications:

• Basic

• OAuth2

Refer to the following example for a Basic Authorization.

soap-environment.properties

#===
=
BRM SOAP Environment Configuration
#===
=
name=brm
type=SOAP

#SOAP BASE URL
url=url

#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=NO

#- BASIC Authorization
basic.username=
basic.password=

connection.uri.read_services_uri=BrmWebServices/BRMReadServices_v2?WSDL
connection.uri.cust_services_uri=BrmWebServices/BRMCustServices_v2?WSDL
connection.uri.payment_services.uri=BrmWebServices/BRMPymtServices_v2?WSDL

Refer to the following example for a Oauth2Authorization.

soap-environment.properties

#===
=

Chapter 7
SOAP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 62

BRM SOAP Environment Configuration
#===
=
name=brm
type=SOAP

#SOAP BASE URL
url=url

connection.uri.read_services_uri=BrmWebServices/BRMReadServices_v2?WSDL
connection.uri.cust_services_uri=BrmWebServices/BRMCustServices_v2?WSDL
connection.uri.payment_services.uri=BrmWebServices/BRMPymtServices_v2?WSDL

#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=YES
authorization.type=oauth2

OAUTH2 - IDCS Configuration
#oauth2.grantType= password_credentials OR client_credentials

oauth2.grantType=client_credentials
oauth2.clientId=
oauth2.clientSecret=
oauth2.tokenUrl=
oauth2.scope=
#username and password in case of password_credentials grant type
oauth2.authorization.username=
oauth2.authorization.password=

Action Configuration:

Action Configuration involves making SOAP API calls to perform operations such as creating a
customer, updating information, or retrieving data.

Refer to the following example for creating a customer (create-customer.action.json).

{
 "path":"soap/brm/customer/create-customer",
 "name":"create customer",
 "description":"Create customer",
 "product":"brm",
 "actionType":"SOAP",
 "serviceURI":"${cust_services_uri}",
 "bdd":"create customer",
 "tags":["create","account"],
 "requestType":"FILE",
 "request":"create-customer.request.xml",
 "expectedStatusCode":200
}

Custom Headers

Chapter 7
SOAP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 62

In Custom Headers, parameters can be passed in the test step.

Note

1. Prefix the header key with "$header_" to provide a custom value.

2. The custom value can be a string or a variable saved in previous steps.

Refer to the following example.

Then search plan, Search the Plan Poid by Giving the plan name in BRM
Data:
| $header_Date | Wed, 17 April 2024 04:51:36 -0700 |
| planName | ${VistaOfferSalePOName} |
Validate:
| $status | 200 |
Save:
| timoDealPoid | //DEALS/DEAL_OBJ/text()|
| timoPlanPoid | //RESULTS/POID/text() |

Scenario Example :

brm-soap.scenario

Scenario: BRM Scenario steps to create customer for E2E Scenario POC
Description: BRM Scenario steps to create customer for E2E Scenario POC

Case: Creating customer
Then search plan, Search the Plan Poid by Giving the plan name in BRM
Data:
| planName | ${VistaOfferSalePOName} |
Validate:
| $status | 200 |
Save:
| timoDealPoid | //DEALS/DEAL_OBJ/text()|
| timoPlanPoid | //RESULTS/POID/text() |

Then search deal, Search the Deal Poid by Giving the Deal name in BRM
Data:
| dealName | ${VistaOfferSalePOName} |
Validate:
| $status | 200 |
Save:
| timoProductPoid | //PRODUCT_OBJ/text() |

When create customer, Create a subscription account in BRM with the same
account no as Fusion
Data:
productPoid	${timoProductPoid}
dealPoid	${timoDealPoid}
planPoid	${timoPlanPoid}
serviceName	telco/gsm/telephony
accountNo	${subscrAccountNumber}
qty	1

Chapter 7
SOAP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 62

firstName	Tony
lastName	Stark
email	no-reply@oracle.com
address	123 Main St
city	San Jose
state	CA
country	US
zip	95110
login	ts${UID}
Validate:	
$status	201
Save:	
accountPoid	//ACCOUNT_OBJ/text()
billingInfoPoid	//BILLINFO_OBJ/text()

Query Parameters

Query parameters in the SOAP plugin can be defined using $query variable in Data. Only
one $query should be defined and it is sent as part of URL with ?$query after processing any
variable in the value.

Refer to this example where the url is appended with '?version=1' as the query parameter.

When soap mock action with query param,
Data:
| $query | version=1 |
| $query | version=1&name= | #for multiple query params
Validate:
| $status | 200 |

XML API: Support for Sending Body in x-www-form-urlencoded
Any data sent in the case file needs to be appended with key_ to indicate that this is a key-
value pair content that needs to be sent in the request body with type as x-www-form-
urlencoded.

Note

The 'Login to XML API' step is required to obtain the JSession ID from a successful
login response. This ID must be included in the request headers of subsequent calls
as a cookie to maintain the session.

The following are the contents of a case file that contains an XML API test:

Case: XML API Test with URL Encoding Content Type

Given login to XML API, using basic auth credentials

Validate:
| statusCode | 200 |
Save:
| JSESSIONID | %RESPONSE_HEADER(Set-Cookie) |

Chapter 7
SOAP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 62

Given external reference id for getting order id
Data:
| $header_Cookie | ${JSESSIONID} |
| $contentType | URL_ENCODED |
| key_xmlDoc | <Query.Request
xmlns="urn:com:metasolv:oms:xmlapi:1"><Reference>465-119337432</
Reference><OrderType>PO_OrderFulfillment</
OrderType><OrderSource>PO_OrderFulfillment</OrderSource><SingleRow>true</
SingleRow></Query.Request> |
Validate:
| statusCode | 200 |
Save:
| order_id | //Orderdata/_order_seq_id/text() |

The following are the contents of an action file that contains an XML API:

login.action.json

{
 "path":"soap/xmlAPI/login",
 "name":"login",
 "description":"login",
 "product":"xmlAPI",
 "actionType":"API",
 "apiActionType":"SOAP",
 "serviceURI":"${xmlapi.login}",
 "bdd":"login to XML API",
 "tags":["login","XML API"],
 "expectedStatusCode":200
}

order.action.json

{
 "path":"soap/xmlAPI/xmlAPI",
 "name":"order",
 "description":"order",
 "product":"xmlAPI",
 "actionType":"API",
 "apiActionType":"SOAP",
 "serviceURI":"${xmlapi.order}",
 "bdd":"external reference id for getting order id",
 "tags":["order","reference"],
 "expectedStatusCode":200
}

The following are the contents of properties file that contains an XML API:

#===
=
BRM SOAP Environment Configuration

Chapter 7
SOAP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 62

#===
=
name=xmlAPI
type=api.soap
#***s*******
**
Pre Defined Environment Properties
#***
*
\u200B
#SOAP BASE URL
#url= example.com
url= example.com
#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=YES
authorization.type=BASIC
\u200B
#- BASIC Authorization
basic.username=omsadmin
basic.password=Osmpass1
\u200B
#***
*
Custom Environment Properties
#***
*
#custom.read_services_uri=BrmWebServices/BRMWSReadServices_V2.wsdl
\u200B
connection.uri.xmlapi.login=login
connection.uri.xmlapi.order=XMLAPI

Figure 7-1 shows a sample of the automation report.

Figure 7-1 Automation Report Sample

Chapter 7
SOAP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 62

SSH SFTP Plug-in
The Secure Shell (SSH) Plug-in is used to run shell commands and SFTP is used to transfer
files. They automate interactions with remote servers, making them invaluable for configuration
management, server monitoring, and deploying applications.

The following are the key features of the SSH SFTP Plug-in:

• Command Execution: Automate execution of shell commands on remote servers.

• File Transfers: Transfer files securely using SCP or SFTP protocols.

• Session Management: Handle multiple sessions with session reusability.

Environment Connection Configuration

SSH SFTP supports two types of authentications:

• Basic

• Key (Public/Private)

Basic Authorization

Basic Authentication supports a straightforward authentication method where the client
provides credentials (username and password).

Refer to the following example for basic authorization.

Environment name
name=tasstest-ssh
type=SSH

#Configuration
hostname=hostname.oracle.com
port=22
#---
Authorization
#---
authorization=YES
authorization.type=basic
username=
password=

Private Key Authorization

Supports only RSA private key.

Note

The key.file has to be present in the user's local system from where the scenario is
performed.

#---

SSH Command Sample Environment Connection Configuration

Chapter 7
SSH SFTP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 62

Using Authentication KEY
#---

name=dx4c-ssh
type=SSH

#Configuration
hostname=123.456.78.9
port=22
#---
Authorization
#---
authorization=YES
authorization.type=KEY
key.file=C:/Users/MSHAIK/.ssh/id_rsa
key.user=opc

Action Configuration:

The following are the contents of an action file that contains SSH commands:

{
"path":"SSHCommand/run-ssh-command",
"name":"run SSH command",
"bdd":"run SSH command",
"description":"run SSH command",
"tags":["ssh"],
"product":"ssh-test",
 "actionType":"SSH",
 "subType":"SSHCommandAction",
 "expectedStatusCode":0
}

TestStep

Step: run SSH command

Data parameter: SSH command, environment name

Validation parameters:

• SSH Command exit code using $status

• Response string : Using validation variable : $data

• Error response: Using validation variable : $error

Save parameters:

• Use save variable with value '$data' to save the command response.

• If the command is known to return an error, use $error to save the error response.

Scenario Example :

Then run SSH command, to check the current directory
Data:
| $command | pwd |
| $environment | tasstest-ssh |

Chapter 7
SSH SFTP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 62

Validate:
| $status | 0 |
| $data | %CONTAINS(tenant1) |
Save:
| currentDir | $data |
| homeDir | %SUBSTRING(${currentDir},0,5) |

Then run SSH command, to check the current directory and to check the user
Data:
| $command | pwd;whoami |
| $environment | tasstest-ssh |
Validate:
| $status | 0 |
| $data | %CONTAINS(tenant1) |

#command that generates both response and error
Then run SSH command, command generating both response and error
Data:
| $command | pwd;ls -lrt dummy.txt |
| $environment | ssh-test |
Validate:
| $status | 2 |
| $error | %CONTAINS(No such file or directory) |
Save:
| response | $data |
| errorResponse | $error |

Replacing Special Characters

If the SSH Command has any of the following special characters, they should be replaced with
keywords, otherwise publish scenario scripts might fail.

Table 7-1 Replacing Special Characters

Character Description Replace with

' Single Quote %{SQUOTE}

" Double Quote %{DQUOTE}

\ Backslash %{BACKSLASH}

, Comma %{COMMA}

For example,

Then run SSH command, update the subscriberIdentifier in the
scenario_params_tmp.csv file
 Data:
 | $command | cd $HOME/enablement/seagull ; awk 'NR==2 {$2="\"${login_details}
\""} 1' FS=";" OFS=";" scenario_params_tmp.csv > temp && mv temp
#scenario_params_tmp.csv |
 | $environment | pdc-ssh |
 Validate:
 | $status | 0 |

Chapter 7
SSH SFTP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 62

SSH command in the example above should be provided as follows.

Then run SSH command, update the subscriberIdentifier in the
scenario_params_tmp.csv file
 Data:
 | $command | cd $HOME/enablement/seagull ; awk %{SQUOTE}NR==2 {$2=%{DQUOTE}%
{DQUOTE}${login_details}%{DQUOTE}%{DQUOTE}} 1%{SQUOTE} FS=%{DQUOTE};%{DQUOTE}
OFS=%{DQUOTE};%{DQUOTE} scenario_params_tmp.csv > temp && mv temp
scenario_params_tmp.csv |
 | $environment | pdc-ssh |
 Validate:
 | $status | 0 |

ExitCondition

Commands that do not exit on their own or take a long time to complete can be assigned an
exit condition.

$exitCondition: A predefined response from the SSH command can be used as an exit
condition. If the SSH command freezes during execution or fails to return control, the response
is checked for this exit condition. If it is detected, the SSH channel is closed by STAP.

$endAfter: When an exit condition is present, it is mandatory to provide the end after time, to
avoid an indefinite wait time. While checking for the exit condition in the SSH response, if it is
not found even after the end after duration elapses, STAP forcefully closes the SSH
channel. $endAfter is mentioned in seconds.

Note

The exit status of the SSH command in the above case is set to -1 to indicate forceful
termination.

For example,

#command that does not exit by itself
Then run SSH command, echo command, usage of expected response
Data:
$command	sleep 5;echo done;sleep 20
$exitCondition	%CONTAINS(done)
$endAfter	15
$environment	ssh-test
Validate:	
$status	-1

Chapter 7
SSH SFTP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 62

Note

• Only the SSH command can be passed as a data parameter to "the run SSH
command" step.

• More than one command can be passed in a single step, by separating the
commands using semicolons(;).

• Supported validations are:

– Exit code of the command using the validation property $status.

– %CONTAINS checks for any string that may be a part of the command
response or error.

• In response validation, a single string can be passed to the %CONTAINS
operator.

• the save variable with value '$data' should be used to save the command
response. If the command generates any errors, it can be saved in $error.
Functions can be operated on these saved variables.

• Both $data and $error can be used in single step. For instance, it is possible that a
command generates some response but there is also an error in response, in
which case both $data and $error can be used to validate and save the response
accordingly.

• Each SSH Step opens a new ssh session with the remote server and hence any
prerequisites needed for the command such as environment variables should also
be set in the command.

Some exit codes and their definitions

• Exitcode 0: Command successfully performed

• Exitcode 1: Catchall for general errors

• Exitcode 99: Problem in the context of the specific program

• Exitcode 126: A command is found but is not executable

• Exitcode 127: Command not found

SFTP Commands

SSH File Transfer Protocol commands for uploading and downloading files are supported as
shown below.

For example,

Then run SSH command, upload file
 Data:
$command	$sftp:UPLOAD_FILE
$environment	brm-ssh
$source	$FILE(usageFile.csv)
$target	/scratch/ri-user-1/dummy/sample.csv
Validate:	
$status	0

Then run SSH command, download file

Chapter 7
SSH SFTP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 62

 Data:
$command	$sftp:DOWNLOAD_FILE
$environment	brm-ssh
$source	/scratch/ri-user-1/dummy/sample.csv
$target	$FILE(usageFile1.csv)
Validate:	
$status	0

Step: run SSH command

Data parameters: SFTP command, environment name, source and target paths for file
transfer.

Validation parameters: SFTP Command exit code.

Commands:

• $sftp:UPLOAD_FILE: Used to transfer file from local system to remote server.
Parameters:

– Source: Name of the local file to be transferred to remote server, where the file name
should be specified as $FILE(filename) and it should be present inside "data" folder.

– Target: The absolute path of the file destination on remote server.

• $sftp:DOWNLOAD_FILE: Used to transfer file from remote server to local system.
Parameters:

– Source: The absolute path of the source file on remote server.

– Target: Name of the local file to which the remote file should be copied, where the file
name should be specified as $FILE(filename).

Note

• Both the source and target paths are mandatory for file transfer.

• File names should be specified with extension.

SSH Private Key

STAP SSH Command supports only RSA private key.

If you see this error in STAP.

**********--

Running...SSH Command Action
Server : ssh
Action : run SSH command
Error : Failed to run command. Error : invalid privatekey: [B@222a59e6
**********--

Chapter 7
SSH SFTP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 62

If your private key appears similar to the example below when viewed in a text editor, you
should convert it to an RSA private key.

-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC...
...
...
...MAECAwQF
-----END OPENSSH PRIVATE KEY-----

Use ssh-keygen to convert your private key to RSA private key

ssh-keygen -p -f ~/.ssh/id_rsa -m pem

Note

Replace the location of private key ~/.ssh/id_rsa

-----BEGIN RSA PRIVATE KEY-----
MIIG4wIBAAK...
...
...
...E428GBDI4
-----END RSA PRIVATE KEY-----

Troubleshooting

If the command is a script execution, ensure any prerequisites needed for it are also set in the
command.

For example,

Then run SSH command and the script for modifying the account's profile (it
calls PCM_OP_CUST_MODIFY_PROFILE internally)
Data:
| $command | sh associateFFmember.sh ${profileObj} |
| $environment | pdc-ssh |
Validate:
| $status | 0 |

Generates an error:

testnap: error while loading shared libraries: libportal.so: cannot open shared
object file: No such file or directory

Here command contains execution of a script associateFFmember.sh that internally runs a
command that needs the proper path set on $LD_LIBRARY_PATH. Since each STAP ssh step
opens a new ssh connection, it is important to make sure path is set properly.

Resolution:

Then run SSH command, run the script for modifying the account's profile (it
calls PCM_OP_CUST_MODIFY_PROFILE internally)

Chapter 7
SSH SFTP Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 62

Data:
| $command | export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/scratch/ri-user-1/opt/
portal/BRM/lib64:/scratch/ri-user-1/opt/portal/BRM/
lib;echo $LD_LIBRARY_PATH;sh associateFFmember.sh ${profileObj} |
| $environment | pdc-ssh |
Validate:
| $status | 0 |

Process Plug-in
The STAP process plug-in is used to run the shell commands locally using java.lang.process.

Action

The command to be run using the process plug-in is mentioned in the action.json's field
'command'.

Supported Types of commands :

1. Simple shell command

2. Command with variables

3. Command with parameters

1. Simple command:

Example: To run a shell command to fetch th current directory :

run-pwd.action.json

{
"path":"process/run-command",
"name":"run pwd command",
"bdd":"run pwd command",
"description":"run pwd command",
"product":"process",
 "actionType":"PROCESS",
"tags":["custom","process"],
 "expectedExitCode":0,
"command":"sh,-c,pwd"
}

Example: To launch Notepad.exe

launch-notepad.action.json example

{
"path":"process/run-command",
"name":"launch notepad",
"bdd":"launch notepad",
"description":"launch notepad",
"product":"process",
"actionType":"PROCESS",
"tags":["custom","process"],
 "expectedExitCode":0,

Chapter 7
Process Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 62

"command":"notepad.exe"
}

2.Command with variables

A command can contain the variables whose value is updated from the context during runtime.

Syntax : ${ VariableName }

Note

The variable name should have been saved in any of the steps that are performed
before the step (action) which has that variable name in the action's command.

For example, in the following action.json, command has a variable : ${messageScript} that
indicates the location of the script file to be run.

process-action.json example

{
"path":"process/run-command",
"name":"run message script",
"bdd":"run message script",
"description":"run message script",
"product":"process",
 "actionType":"PROCESS",
"tags":["custom","process"],
 "expectedExitCode":0,
"command":"sh,-c,sh ${messageScript}"
}

In the following scenario, the value for variable messageScript is saved in the step: 'set
variable' before the step 'run message script'

So that updated command during execution will be : "sh,-c,sh ProcessPlugin/Message.sh"

message.scenario

#saving scripts paths
When set variable,
Save:
| messageScript | $FILE(Message.sh) |

When execute message script,
Validate:
| $status | 0 |

3.Command with parameters

Parameters/arguments in the command can be mentioned in format : %{ ParameterName :
ParameterValue }

'ParameterValue' is the default value to be used. ParameterName is used just to check if value
for it is passed from the Test Step's 'Data' section.

Chapter 7
Process Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 62

If yes, then the data variable's value overrides the default 'ParameterValue' . The final value of
the parameter replaces %{ ParameterName : ParameterValue } in the command.

For example, in the following action.json, the command has two parameters : %
{FirstName:John} and %{SecondName:Tribbiani}.

If custom value for parameters FirstName and SecondName are specified from the test
steps's Data section, then those values override the default values John and Tribbiani
respectively.

process-action.json example

{
"path":"process/run-command",
"name":"run test script",
"bdd":"run test script",
"description":"run test script",
"product":"process",
 "actionType":"PROCESS",
"tags":["custom","process"],
"expectedExitCode":0,
"command":"sh,-c,sh ${testScript} %{FirstName:John} %{SecondName:Tribbiani}"
}

In the following scenario, a custom value is provided for parameter 'FirstName' only.
Parameter 'SecondName' takes the default value.

So that updated command during execution will be : "sh,-c,sh ProcessPlugin/test.sh Joey
Tribbiani"

test.scenario

When set variable,
Save:
| testScript | ProcessPlugin/test.sh |

When run test script
Data:
#passing custom value for the parameter 'FirstName'
| FirstName | Joey |
Validate:
| $status | 0 |

Test Step:

Data:
 a) Parameters/Arguments for the command to be run.
 b) waitAfter : By default stap process plugin waits for 2 seconds for the
command to finish execution. If a command is known to take more than 2
seconds, then user must specify custom wait time in the Test Step using data
variable 'waitAfter'

Validation:
 a) $status : Expected exit code for the process executing the command.
Multiple comma separated exit codes can be specified.

Chapter 7
Process Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 62

 b) $data : String to be validated against the entire Response of the process
executing the command.

Save:
a) $data : Entire Response of the process executing the command

Validation:

1. If Validation for the exit code is not explicitly given in the Test Step (that is $status), then
the expectedExitCode mentioned in the action.json is used to validate if the execution is
successful or not.

2. The only Validation properties supported in Process plug-in are $status and $data.
Functions and operators are supported on the $data as shown in below example.

example

When run test script
Data:
| UserName | Joey |
Validate:
| $status | 0 |
| $data | %CONTAINS(Joey) |

Save:

The only Save property supported in Process plug-in is $data. Once $data is saved in a
variable, Functions and operators are supported on that variable as shown in below example.

example

When run test script
Data:
| UserName | Joey |
Save:
scriptResponse	$data
scriptResponse2	%UPPERCASE(${scriptResponse})
scriptResponse3	%SUBSTRING(${scriptResponse},0,4)

Scenario Example:

process.scenario

Scenario: Process Plugin Automation Scenario
Description: Process Plugin Automation Scenario

Tags: Test, Process

Case: Process action test

When launch notepad
Validate:
| $status | 1 |

When execute pwd command

Chapter 7
Process Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 62

Validate:
| $status | 0 |

#Multiple exit codes in validation
When execute pwd command, multple validation codes
Validate:
| $status | 0,1,2 |

#saving scripts paths
When set variable,
Save:
| messageScript | $FILE(Message.sh) |
| testScript | $FILE(processPluginTest.sh) |

#variables to be updated in action file's command
When execute test script, sending variables to be updated in action file's
command
Data:
UserName	Joey
FullName	Joey_Tribbiani
Age	30
Validate:	
$status	0
$data	%CONTAINS(Joey)
#Saving response and operations on response and validation	
Save:	
scriptResponse	$data
scriptResponse2	%UPPERCASE(${scriptResponse})

#specifying waitAfter time
When execute message script,
Data:
| message | Hello_Good_morning |
| waitAfter | 2 |
Validate:
| $status | 0 |

Seagull
Seagull is an open-source tool for testing and simulating network protocols. The STAP Seagull
plug-in is used to run the seagull test scenarios. It can be used to generate the diameter traffic,
provided the scenario and the required configuration files are present.

Key Features:

• Protocol Simulation: Simulate protocols like SIP, Diameter, and HTTP.

• Traffic Generation: Generate high volumes of traffic for stress testing.

• Custom Scenarios: Define custom test scenarios with dynamic parameters.

• Performance Analysis: Measure response times and system behavior under load.

Seagull Connection:

Chapter 7
Seagull

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 62

seagull-environment.properties

#===
=
Seagull Connection Configuration
#===
=
#Fixed fields of seagull connection,do not modify.
name=seagull
type=SEAGULL

User modifiable fields of seagull connection.
#Absolute path of seagull installation directory.
seagull.installationDirectory =
#seagull supported log levels
seagull.logLevel = ETMA
#Absolute path to store seagull execution logs.
seagull.logDirectory =

Action:

Supported action types:

• Creating seagull instance (Fixed action)

• Running seagull scenario

Create seagull instance

The following action.json is used to create seagull instance. The field 'instanceName' is the
default name used to create the instance. This is the fixed action to create the seagull instance
and should not be modified. Multiple seagull instances (that is, having different config files and
dictionary files) can be created by reusing this same action and saving the instance with a
different name using the $name save variable in the test step.

create-seagull-instance.action.json

{
"path":"CustomAction/seagull-action",
"name":"Create seagull instance",
"bdd":"create seagull instance",
"description":"create seagull instance",
"product":"seagull",
 "actionType":"SEAGULL",
 "subType":"CREATE_INSTANCE",
"tags":["custom","process"],
"instanceName":"seagull"
}

Running seagull scenario

Depending on the scenario to run, any number of action.jsons can be created.

The name of the scenario to be performed is specified using the field 'scenario'.

Chapter 7
Seagull

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 62

client-scenario-sar.action.json

{
"path":"CustomAction/seagull-action",
"name":"Run client scenario",
"bdd":"run client scenario sar",
"description":"run client scenario",
"product":"seagull",
 "actionType":"SEAGULL",
 "subType":"RUN_SCENARIO",
"tags":["custom","process"],
"scenario":"sar-saa.client.xml"
}

Test Step:

Creating a seagull instance:

Data:
a) $configFile : Name of the config file to be used for creating seagull
instance.
b) $dictionaryFile : Name of the dictionary file to be used for creating
seagull instance.

Save :
a)$name : Custom name for the seagull instance. This name overrides the
instanceName given in action.json.

For example,

create-seagull.case

When create seagull instance,
Data:
| $configFile | conf.client.xml |
| $dictionaryFile | base_cx.xml |
Save:
#
| seagull1 | $name |

Running seagull scenario

Data:

a) $name : Name of the seagull instance to be used for running the scenario.
An instance of this name should have been created before using 'create
seagull instance' step, otherwise execution will result in failure.
b) $externalDataFile : Name of the external data file (CSV format). This
data file is used to change content of the message in seagull scenario before
sending.
c) $params : To send the dynamic values for one or more fields, using these
values, the external data file is updated.

Chapter 7
Seagull

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 62

 Syntax : Data types of the field separated by comma ;Values of the fields
separated by comma.
 Example:
 | $params | number;16 |

For example,

create-seagull.case

When run client scenario sar,
Data:
$name	seagull1
$externalDataFile	external_client_data.csv
$params	number;16

Note

If the $externalDataFile is specified and $params is not specified, then the external
data file is used as it is during scenario execution. If $params is present, then
contents of external data file is overridden with the value of $params.

You must carefully supply data types and values depending on the seagull scenario to
be run.

Test Step Data:

You should create a folder named 'data' under the same folder where the STAP scenario to run
seagull is created. The data files for creating seagull instance such as config.xml and
dictionary.xml , Seagull scenario file scenario.xml and the external data file should be copied to
this 'data' folder.

Figure 7-2 displays the Seagull folder structure:

Chapter 7
Seagull

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 62

Figure 7-2 Seagull Folder Structure

Note

• In STAP, Seagull is launched in the background mode because otherwise it
expects keyboard input.

• If there are any errors found in the seagull log file, then an error is thrown and
STAP execution fails. User needs to have the knowledge of the seagull
configurations (config.xml, dictionary.xml) and the seagull scenarios and should
put these appropriate files under the 'data' folder in order to ensure successful
execution of the STAP scenario.

Scenario Example:

seagullServer.case

Case: Seagull test-Server instance

#instance creation using default name
When create seagull instance,
Data:
| $configFile | conf.server.xml |
| $dictionaryFile | base_cx.xml |

When run server scenario sar,
Data:
| $name | seagull |

Chapter 7
Seagull

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 62

seagullClient.case

Case: Seagull client test

When create seagull instance,
Data:
| $configFile | conf.client.xml |
| $dictionaryFile | base_cx.xml |
Save:
| seagull1 | $name |

#scenario execution with external data file
When run client scenario sar,
Data:
$name	seagull1
$externalDataFile	external_client_data.csv
$params	number;16

Report

• configurations hyperlink in the report shows the seagull instance created and used for the
scenario execution.

• seagullLogs hyperlink shows the logs generated by the seagull scenario execution.

Figure 7-3 displays an example Seagull Plug-in Test yScenario Summary Report:

Figure 7-3 Seagull Plug-in Test yScenario Summary Report

JMX
JMX plugins are used for monitoring and managing Java applications and their resources.

JMX Connection:

Supported Authorization types:

• Basic

Chapter 7
JMX

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 62

• No Authorization

Basic Authorization

Example:

ece-jmx-environment.properties

name=Test-JMX
type=JMX

hostname=hostname
port=1234

#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=YES

authorization.type=basic

#- BASIC Authorization
basic.username=
basic.password=

No Authorization

Example:

ece-jmx-environment.properties

name=Test-JMX
type=JMX

hostname=hostname
port=1234

#===
=
Authorization Configuration
Values = YES : Use authorization NO : No authorization required.
#===
=
authorization=NO

#authorization.type=basic

#- BASIC Authorization
#basic.username=
#basic.password=

Supported Actions:

Chapter 7
JMX

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 62

• Get Attribute

• Set Attribute

• Set Attributes

• Get Bean Info

• Get Bean Config Info

• Invoke Operation Get

• Invoke Operation Set

Get Attribute

To fetch the value of the attribute of an Mbean on the JMX server provided in the Scenario file.

The beanName and the attributeName should be provided in the scenario file.

Action.json

get_attribute_value.action.json

{
"path":"CustomAction/brm-action",
"name":"get attribute",
"bdd":"get attribute",
"description":"get attribute",
"product":"ECE",
 "actionType":"JMX",
 "subType":"GET_ATTRIBUTE",
"tags":["custom","jmx"]
 }

Data needed:

Data

Data:
$beanName - beanName of the attribute
$attributeName - name of the attribute

Validate:
$data : fetched value to be validated against the expected value

Case:

Example

When get attribute, display the value of the attribute

Data:
| $beanName | Users:type=UserDatabase,database=UserDatabase |
| $attributeName | pathname |
Validate:
| $status | SUCCESS |
| $data | %CONTAINS(testing)|

Chapter 7
JMX

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 62

Set Attribute

To update value of the attribute of a mBean provided in the scenario file.

The beanName, attributeName, attributeValue and the attribute datatype should be provided in
the scenario file.

The supported values for attributeType are: string, long, integer, and boolean

set_attribute_value.action.json

{
"path":"CustomAction/brm-action",
"name":"set attribute",
"bdd":"set attribute",
"description":"set attribute",
"product":"ECE",
 "actionType":"JMX",
 "subType":"SET_ATTRIBUTE",
"tags":["custom","jmx"]

 }

Data

Data:
$beanName - beanName of the attribute
$attributeName - name of the attribute
$attributeValue - the new value to be updated
$attributeType - the datatype of the attribute. (string | long | integer |
boolean)

Validate:
$status: successful update of the attribute value

Example

When set attribute, set the value of the attribute

Data:
$beanName	Users:type=UserDatabase,database=UserDatabase
$attributeName	pathname
$attributeValue	testing
$attributeType	string
Validate:	
$status	SUCCESS

Set Attributes

To update multiple attributes under a single mBean.

The attributes and the values are specified in a separate json file.

Chapter 7
JMX

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 62

set_multiple_attributes_value.action.json

{
"path":"JMX",
"name":"set attributes",
"bdd":"set attributes",
"description":"set attributes",
"product":"ECE",
 "actionType":"JMX",
 "subType":"SET_ATTRIBUTES",
"tags":["custom","jmx"],
"attributesType": "FILE"

 }

Data

Data:
$beanName - beanName of the attribute
$request - filename with the attributes data JSON

For example,

When set attributes, set the value of the attributes

Data:

| $beanName | Users:type=UserDatabase,database=UserDatabase |
| $request | $dynamic |
Validate:
| $status | SUCCESS |

Attributes data JSON:

JMX.dynamic.request.json

{
"attributes": [
 {
 "name": "pathname",
 "value": "testing",
 "attributeType":"string"
 },
 {
 "name": "pathname",
 "value": "testing",
 "attributeType":"string"
 },
 {
 "name": "pathname",
 "value": "testing",
 "attributeType":"string"

Chapter 7
JMX

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 40 of 62

 }
]
}

Get Bean Info

To display the mBeanInfo for the mBean name mentioned in the scenario file

The beanName should be provided in the scenario file.

displayMbean.action.json

{
"path":"CustomAction/brm-action",
"name":"display mBean Info",
"bdd":"display mBean Info",
"description":"display mBean Info",
"product":"ECE",
 "actionType":"JMX",
 "subType":"GET_BEAN_INFO",
"tags":["custom","jmx"]

 }

Data

Data:
$beanName - beanName of the attribute

Validate:
$status: successful display of the mBeanInfo

Save:
beanInfo: Bean Info of the mBean

For example,

Step

When display mBean Info, display the bean info
Data:
| $beanName | Users:type=UserDatabase,database=UserDatabase |
Validate:
| $status | SUCCESS |
Save:
| beanInfo | $data|

Get Bean Config Info

To display the Config info for the mBean name mentioned in the scenario file

The beanName should be provided in the scenario file.

Chapter 7
JMX

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 41 of 62

get_config.action.json

{
"path":"CustomAction/brm-action",
"name":"get config",
"bdd":"get config",
"description":"get configuration",
"product":"ECE",
 "actionType":"JMX",
 "subType":"GET_CONFIG",
"tags":["custom","jmx"]
 }

For example,

When get config, get the value of configuration

Data:

| $beanName | ${beanName} |

Validate:
| name | Users:type=UserDatabase,database=UserDatabase |
| children[0].name | UserDatabase,database=UserDatabase |
Save:
beanName	name
child	children[0].name
descriptor	children[0].info[0]
mBeanInfo	children[0].info[1]
attribute	children[0].attributes[0].name
attributeInfo	children[0].attributes[0].info[0]

Invoke Operation Get

To invoke JMX operations that return data from the JMX server.

The returned data can be saved and validated.

This case requires a bean name, an operation name, and a JSON containing the parameters.

invoke_get_operation.action.json

{
"path":"JMX",
"name":"invoke get operation",
"bdd":"invoke get operation",
"description":"invoke get operation",
"product":"ECE",
 "actionType":"JMX",
 "subType":"INVOKE_OPERATION_GET",
"tags":["custom","jmx"]

 }

Chapter 7
JMX

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 42 of 62

For example,

Example
When invoke get operation, invokes the JMX operation

Data:
$beanName	${beanName}
$operationName	findGroup
$params	$dynamicGetParams

Validate:
| $status | SUCCESS |
| $data |
%CONTAINS(Users:type=Group,groupname="jpprasad",database=UserDatabase)|

Save:
| groupName | data |

Parameter JSON:

The order of parameters should be as mentioned in the JMX API documentation for the
operation.

JMX.dynamicGetParams.request.json

{

"params": [
 {
 "name": "groupname",
 "value": "jpprasad",
 "attributeType":"string"
 }
]

}

Invoke Operation Set

To invoke JMX operations that sets attributes or performs operations on the JMX server. There
is no data returned from the JMX server when this operation is invoked.

This case requires a bean name, an operation name, and a JSON containing the parameters.

invoke_set_operation.action.json

{
"path":"JMX",
"name":"invoke set operation",
"bdd":"invoke set operation",
"description":"invoke set operation",
"product":"ECE",
 "actionType":"JMX",
 "subType":"INVOKE_OPERATION_SET",
"tags":["custom","jmx"],
"paramType":"FILE",

Chapter 7
JMX

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 43 of 62

"paramFile":"invoke_set_operation.param.json"

 }

Param.json

The order of parameters should be as mentioned in the JMX API documentation for the
operation.

invoke_set_operation.param.json

{

"params": [
 {
 "name": "groupname",
 "value": "jpprasad",
 "attributeType":"string"
 },
 {
 "name": "description",
 "value": "jpprasad group",
 "attributeType":"string"
 }
]

}

For example,

When invoke set operation, invokes the JMX operation

Data:
| $beanName | ${beanName} |
| $operationName | createGroup |

Validate:
| $status | SUCCESS |

Kafka
STAP Kafka is a component used within the Kafka Connect framework to integrate Apache
Kafka with various data systems.

Message Queue Interface for Kafka

Automation plug-ins for message queues enable efficient testing and monitoring of message-
driven systems.

Key Features:

• Message Publishing: Automate sending messages to queues.

• Consumption: Automate message retrieval and processing.

Chapter 7
Kafka

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 44 of 62

• Serialization Support: Handle Text, JSON and XML formats.

Kafka Connection

#---

Environment name
#---

name=test
type=Kafka

#---

Bootstrap Servers
List of comma separated bootstrap servers
#---

servers=servername

#---

Authorization
-- Not used in this version --
#---

authorization=NO

Action

The following table lists the action properties:

Table 7-2 Action Properties

Property Mandatory Description Default Value Allowed Values

actionType Yes Kafka Plug-in Type Kafka Kafka

subType Yes Kafka action sub
types

GET_TOPIC_LATE
ST_MESSAGE,
PING_SERVER,
SEND_TOPIC_ME
SSAGE,
GET_MESSAGE_
COUNT,
DELETE_TOPIC_
MESSAGES

topic Yes Topic name

commit No Commit message
read

false true, false

Supported Action Types:

• Get Topic Last Message

• Ping Server

• Send Topic Message

Chapter 7
Kafka

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 45 of 62

• Get Message Count

Get Topic Last Message

{
"path":"Kafka",
"name":"Get Topic Last Message",
"bdd":"get topic last message",
"description":"get topic last message",
"tags":["Kafka,get,topic,message"],
"product":"test",
 "actionType":"Kafka",
 "subType":"GET_TOPIC_LATEST_MESSAGE",
 "topic":"test-topic",
 "commit": false
}

Ping Server

{
"path":"Kafka",
"name":"Ping Server",
"bdd":"ping server",
"description":"ping server",
"tags":["Kafka,ping,server,test"],
"product":"test",
 "actionType":"Kafka",
 "subType":"PING_SERVER",
 "topic":"test-topic",
 "commit": false
}

Send Topic Message

{
"path":"Kafka",
"name":"Send Topic Message",
"bdd":"send topic message",
"description":"Send Topic Message",
"tags":["Kafka,send,message"],
"product":"test",
 "actionType":"Kafka",
 "subType":"SEND_TOPIC_MESSAGE",
 "topic":"test-topic",
 "commit": false
}

Get Message Count

{
"path":"Kafka",
"name":"Get Message Count",
"bdd":"get message count",
"description":"get number of messages",

Chapter 7
Kafka

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 46 of 62

"tags":["Kafka,get,message,count"],
"product":"test",
 "actionType":"Kafka",
 "subType":"GET_MESSAGE_COUNT",
 "topic":"test-topic",
 "commit": false
}

Scenario Examples

Read last JSON message

When set variable,
Save:
| name | USER |

When get topic last message, for validating account creation message
Data:
| $messageType | JSON |
Validate:
$status	SUCCESS
name	stap user
%SUBSTRING($name,5)	user
%SUBSTRING($name,5)	%LOWERCASE(${name})
address.residenceNo	100001
Save:	
id	id
name	%SUBSTRING($name,5)
pin	address.pin

Runtime Scenario

Auto-generated by stap-BDD Formatter Version 1.0
Scenario: Kafka Automation Scenarios
Description: Kafka Automation Scenarios
#Tags:

#Persona:
Case: Kafka test

When set variable,
Save:
#| Property | Value | Runtime Value |
 | name | USER | USER |

When get topic last message, for validating account creation message
Data:
#| Property | Value | Runtime Value |
 | $messageType | JSON | null |
Validate:
#| Property | Value | Property Value |
Runtime Value | Result |
 | $status | SUCCESS | SUCCESS |
SUCCESS | PASSED |

Chapter 7
Kafka

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 47 of 62

 | name | stap user | stap user | stap
user | PASSED |
 | %SUBSTRING($name,5) | user | user |
user | PASSED |
 | %SUBSTRING($name,5) | %LOWERCASE(${name}) | user |
CONDITION: SUCCESS | PASSED |
 | address.residenceNo | 100001 | 100001 |
100001 | PASSED |
Save:
#| Property | Value | Runtime Value |
id	id	532457234857234879594
name	%SUBSTRING($name,5)	user
pin	address.pin	560001

Read Last XML Message

When set variable,
Save:
| name | USER |

When get topic last message, for validating account creation message
Data:
| $messageType | XML |
Validate:
$status	SUCCESS
//name	stap user
//address/city	Bangalore
%SUBSTRING($//name,5)	user
%SUBSTRING($//name,5)	%LOWERCASE(${name})
%SUBSTRING(${name},1)	SER
Save:	
id	//id
name	%SUBSTRING($//name,5)
pin	//address/pin

Runtime Scenario

Auto-generated by stap-BDD Formatter Version 1.0
Scenario: Kafka Automation Scenarios
Description: Kafka Automation Scenarios
#Tags:

#Persona:
Case: Kafka test

When set variable,
Save:
#| Property | Value | Runtime Value |
 | name | USER | USER |

When get topic last message, for validating account creation message
Data:
#| Property | Value | Runtime Value |
 | $messageType | XML | null |

Chapter 7
Kafka

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 48 of 62

Validate:
#| Property | Value | Property Value |
Runtime Value | Result |
 | $status | SUCCESS | SUCCESS |
SUCCESS | PASSED |
 | //name | stap user | stap user | stap
user | PASSED |
 | //address/city | Bangalore | Bangalore |
Bangalore | PASSED |
 | %SUBSTRING($//name,5) | user | user |
user | PASSED |
 | %SUBSTRING($//name,5) | %LOWERCASE(${name}) | user |
CONDITION: SUCCESS | PASSED |
 | %SUBSTRING(${name},1) | SER | SER |
SER | PASSED |
Save:
#| Property | Value | Runtime Value |
id	//id	532457234857234879594
name	%SUBSTRING($//name,5)	user
pin	//address/pin	560001

Runtime Scenario with all cases:

Scenario: Kafka Automation Scenarios
Description: Kafka Automation Scenarios

Case: Kafka test

When set variable,
Save:
#| Property | Value | Runtime Value |
 | name | USER | USER |

When ping server, checking if kafka is available
Validate:
| $status | SUCCESS |

When send topic message, sending message for a topic
Validate:
| $status | SUCCESS |

When get message count, getting number of messages
Validate:
| $status | SUCCESS |

When get topic last message,
Data:
| $messageType | JSON |
Validate:
$status	SUCCESS
name	stap user
%SUBSTRING($name,5)	user
address.residenceNo	100001
Save:	
id	id

Chapter 7
Kafka

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 49 of 62

| name | %SUBSTRING($name,5) |
| pin | address.pin |

When get message count, getting number of messages
Validate:
| $status | SUCCESS |

UI Automation Plug-in
The STAP UI Automation Plug-in delivers reliable, low-code browser automation within the
STAP ecosystem, streamlining UI testing with intelligent waits, self-healing selectors, and a
consistent action interface.

The STAP UI Automation Plug-in extends the STAP Action Plug-in Framework to automate and
validate interactions with web user interfaces. It abstracts Selenium-based browser automation
behind a consistent action interface to enable low-code, browser-independent, and
maintainable tests. To reduce flakiness and improve robustness, the plug-in includes intelligent
selectors, dynamic wait strategies, automatic retry logic, DOM stabilization detection, and self-
healing selectors. Future releases will add AI-assisted element identification, wait
management, and failure recovery.

Key capabilities:

• Low-code, browser-agnostic UI automation integrated with the STAP execution lifecycle.

• Intelligent waits, retries, and self-healing selectors to stabilize tests across UI changes.

• Consistent interface across automation types (REST, SOAP, SSH, UI).

Now let us look at how to use the STAP UI plug-in in practice.

UI Plug-in Testing

Use the UI Automation Plug-in to validate end-to-end user journeys, confirm UI behavior, and
capture visual evidence as part of continuous testing. The plug-in operates as an action
handler within the platform, parsing UI actions, resolving elements, interacting with the browser
driver, and returning structured results to the core engine.

With the testing approach in mind, let’s walk through the required setup and execution steps.

Prerequisites

• Installed browser and matching WebDriver (ChromeDriver or GeckoDriver (for Firefox) or
msEdgeDriver).

• Access to the AUT, including network routes, credentials, and test data.

• STAP Engine and STAP platform - access and permissions.

• Java runtime (if required by your environment) with adequate heap for UI tests.

• File system access for WebDriver and download directories.

• Stable test URLs and dedicated test accounts.

Steps to Run UI Test Automation Using UI Plu-gin

1. Configure the UI Plug-in Environment

To configure the UI-plug-in, create a uiPlugin-environment.properties file with the following
properties.

Chapter 7
UI Automation Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 50 of 62

uiPlugin-environment.properties

#Name of the application
name=STAP

#Type Of application
type=UI

#Base url of application
url=

#short description of application
description=stap-ui platform

#browser on which automation will be performed.
Supported browsers : FIREFOX, CHROME, EDGE, and SAFARI
browser=firefox

File location: $testWS/config/environments/uiPlugin-environment.properties

2. UI-Product and Browser Configuration

The next step is to configure the browser. This is done by creating a browser-specific
properties file (for example, chrome.properties, firefox.properties) with settings for the
browser.

The driver.path property is mandatory and should be set to the location of the webdriver file.

The other properties in the browser properties file have default values that can be used or
modified as needed.

chrome.properties

chrome.properties

#browser-driver path (Mandatory)
driver.path=

Launch browser in headless mode, i.e (no browser window will appear,
Browser operations run in the background).
headless=false

Set window size
window.size=1920,1080

Open browser in incognito
incognito=false

Disable extensions
disable.extensions=true

Disable pop-up blocking
TRUE: Allows pop-ups to open, which may be necessary for certain web
application tests involving pop-ups or new windows.
disable.popup.blocking=true

Custom user agent (leave blank to use default; Websites can detect the

Chapter 7
UI Automation Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 51 of 62

browser and platform from the User-Agent. Customizing it is useful for
simulating different devices or browsers or bypassing certain restrictions.)
user.agent=CustomUserAgent

Download directory (use absolute path)
download.directory=

Disable GPU
disable.gpu=true

Disable notifications (Stops "Allow/block notification" prompts from
appearing, reducing flakiness in automated tests.)
disable.notifications=true

Proxy settings
proxy.server=http://proxy:8080

File Location: $testWS.config.plugins.ui.browsers

Note

The UI Automation Plug-in loads a browser driver during execution that could
introduce performance overheads.

3. Create Scenario Files

The scenario files define the test cases for UI testing. A scenario file typically includes:

• Scenario: The name of the scenario.

• Description: A brief description of the scenario.

• Tags: Relevant tags for the scenario.

• Case: The specific case being tested.

• When statements: The steps to be performed during the test.

For more information see, Creating Scenarios

Scenarios-Library.scenario

Scenario: Scenarios library functionality
Description: Actions library functionality
Tags: STAP, Selenium, Scenarios

Case: Scenarios Library Page

When on STAP UI login page, provide login details and submit
Data:
$open	@uri
$input	$username,tesuser
$input	$password,welcome
$pressKeysSequentially	$mockLocator,ENTER

When on STAP UI scenarios page, selecting scenarios and displaying the steps
Data:

Chapter 7
UI Automation Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 52 of 62

$click	$menu
$click	$scenarios
$click	$firstScenario
$click	$collapseAllCases
$click	$expandAllCases
$click	$collapseAllScenarios
$click	$expandAllScenarios

Organizing Scenario Files

To maintain consistency and simplify test case management, scenario files should follow a
structured folder hierarchy as outlined below.

Scenario File Location Convention

Scenario files should be placed under:

$testWS/scenarios/{ProductName}/{productPage}/{functionality.scenario}

• $testWS: Your test workspace root directory

• ProductName: The product/component being tested (for example, STAP)

• productPage: The specific UI page or module under test (for example, actions)

• functionality.scenario: The scenario file for a specific feature or test case (for example,
actions_library_functionality.scenario)

Example:

$testWS/
└── scenarios/
 └── {ProductName}/
 └── {productPage}/
 └── {functionality}.scenario

Scenarios_Library.scenario

$testWS/
└── scenarios/
 └── STAP/
 └── Scenarios-Library/
 └── Scenarios-Library.scenario

4. Create Action Files and Page Properties Files

After creating the scenario file, create the corresponding action files and page properties files.

Action files define the metadata for a specific action. An action file typically includes:

• path: The path to the action.

• name: The name of the action.

• description: A brief description of the action.

• actionType: The type of action (UI), same as mentioned in uiPlugin-
environment.properties.

Chapter 7
UI Automation Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 53 of 62

• product: The product name, same as mentioned in uiPlugin-environment.properties (case-
sensitive)

• pageElementConfig: The configuration for the page elements.

• tags: Relevant tags for the action.

Example

stap.scenarios.action.json

{
 "path":"Stap/scenarios",
 "name":"on STAP UI scenarios page",
 "bdd":"on STAP UI scenarios page",
 "description":"on STAP UI scenarios page",
 "actionType":"UI",
 "product":"STAP",
 "pageElementConfig":"scenarios",
 "tags":["selenium","stap-ui"]
}

Page properties files define the locators for the page elements. The file name should be in the
format <pageElementConfig>.page.properties, where <pageElementConfig> is the value of
the pageElementConfig property in the action file.

Example (actions.page.properties):

scenarios.page.properties

page.wait=2000,5000
page.next=history_page

uri = /

menu=xpath://*[@id="drawerToggleButton"]/button
menu.wait=2000,4000

scenarios=xpath://*[@id="ScenarioLibrary"]/a
scenarios.wait=2000,4000

searchScenarios=xpath://input[@placeholder='search...' and contains(@class,
'oj-text-field-input')]
searchScenarios.wait=2000,4000

mockLocator=/
mockLocator.wait=2000,4000

expandAllScenarios=xpath://oj-button[.//span[text()='Expand all']]//button
expandAllScenarios.wait=2000,4000

collapseAllScenarios=xpath://oj-taas-libraries-oj-taas-scenario-library//oj-
button//span[text()='Collapse all']
collapseAllScenarios.wait=2000,4000

expandAllCases=xpath://oj-taas-libraries-oj-taas-scenario-library//oj-button//
span[text()='Expand cases']
expandAllCases.wait=2000,4000

Chapter 7
UI Automation Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 54 of 62

collapseAllCases=xpath://oj-taas-libraries-oj-taas-scenario-library//oj-
button//span[text()='Collapse cases']
collapseAllCases.wait=2000,4000

firstScenario=xpath://ul[contains(@class, 'oj-listview-element')]/li[1]
firstScenario.wait=2000,4000

Organizing Action and Page Properties Files

To ensure a clean and maintainable project structure, action and page properties files should
be organized in a standardized folder hierarchy. This enables easy navigation and scalability
as your UI automation project grows.

1. Create a folder named after your product inside the main actions directory.

2. Within the product folder, create a subfolder named UI.

3. Inside the UI folder, create a folder for each specific page (use the page’s name).

4. Place both the action file (for example, xyz.action.json) and the page properties file (for
example, abc.page.properties) inside the respective page folder.

Example

actions/
└── <productName>/
 └── UI/
 └── <pageName>/
 ├── <productName>.<pageElementConfig>.action.json
 └── <pageElementConfig>.page.properties

Example folder structure:

actions/
└── STAP/
 └── UI/
 └── scenarios/
 ├── scenarios.page.properties
 └── stap.scenarios.action.json

Troubleshooting and Best Practices

For uninterrupted UI tests, follow these best practices:

• The folder containing the action.json file should have the same name as the product
name (case-sensitive).

• All file names should be in lowercase.

• The product name is case-sensitive inside the action.json file and in uiPlugin-
environment.properties.

• The action.json file naming convention is
product_name.page_element_config.action.json (in lowercase).

• The page properties file naming convention is page_element_config.page.properties (in
lowercase).

Run UI Tests

Chapter 7
UI Automation Plug-in

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 55 of 62

To run the UI tests, ensure that the scenarios are added in the execution.config.json file under
scenarios section.

testWS/
└── config/
 └── execution/
 └── execution.config.json

Summary
To avoid any failures during UI testing with the STAP Engine, follow these steps and best
practices:

• Configure UI-Plugin:

– Create a uiPlugin-environment.properties file with the required properties.

– Ensure the product name is case-sensitive.

• Configure Browser:

– Update browser-specific properties file (for example, chrome.properties,
firefox.properties).

– Set the driver.path property to the location of the webdriver file.

• Create Scenario Files:

– Define the test cases for UI testing.

– Use the correct syntax and formatting.

• Create Action Files and Page Properties Files:

– Create action files with the correct metadata.

– Create page properties files with the correct locators.

– Follow the naming conventions:

* action.json file: product_name.page_element_config.action.json (in
lowercase).

* Page properties file: page_element_config.page.properties(in lowercase).

URL Access Validation
Accessibility of URLs can be verified from automation using URL Validation actions.

Environment connection:

URLs are specified with prefix "url." and request headers are specified with prefix "header." in
the environment.properties file.

The value given for step's data variable: "url" should match with one of the url names
mentioned in environment.properties file.

ui-environment.properties

name=test-ui
type=URL_VALIDATION

#UI Urls
url.launch=https://example.oracle.com/

Chapter 7
URL Access Validation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 56 of 62

url.care = https://example.oracle.com/
url.billingcare=http://example.oraclecloud.com/
url.pdc=http://example.oraclecloud.com/
url.osm_task=http://example.osm.org/
url.osm_orchestration=http://example.osm.org/
url.siebel=https://example.oracle.com/enu
url.siebel2=https://example.oracle.com/

#Request header configurations
header.Host = example.oraclecloud.com
header.Accept = text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,*/*;q=0.8
header.Accept-Encoding = gzip, deflate
header.Accept-Language = en-US,en;q=0.5
header.Upgrade-Insecure-Requests = 1
#header.User-Agent = Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/
20100101 Firefox/91.0

Action:

Action file structure

{
"path":"CustomAction/url-action",
"name":"Validate URL",
"bdd":"validate URL",
"description":"run URL validation",
"tags":["custom","URL"],
"product":"test-ui",
 "actionType":"URL_VALIDATION",
 "expectedStatusCode":200
}

Request json

{
 "url":"url"
}

Scenario Example :

Case file

Case: Check accessibility of the DX4C UI Urls

Given validate URL, Launch UI
Data:
| url | launch |
Validate:
| $status | 200 |

Given validate URL, Care UI
Data:
| url | care |
Validate:

Chapter 7
URL Access Validation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 57 of 62

| $status | 200 |

Given validate URL, Billing care UI
Data:
| url | billingcare |
Validate:
| $status | 200 |

Given validate URL, PDC UI
Data:
| url | pdc |
Validate:
| $status | 200 |

Given validate URL, osm_task UI
Data:
| url | osm_task |
Validate:
| $status | 200 |

Given validate URL, osm_orchestration UI
Data:
| url | osm_orchestration |
Validate:
| $status | 200 |

Given validate URL, Siebel UI
Data:
| url | siebel |
Validate:
| $status | 200 |

Given validate URL, Siebel UI
Data:
| url | siebel2 |
Validate:
| $status | 200 |

Report:

Note

The Response section in step result shows the static web page of the URL specified,
if the URL returns HTML content.

Custom Actions
Following custom actions can be used to generate pass, validation error and general error
cases from the scenarios.

Action

Action file structure

Chapter 7
Custom Actions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 58 of 62

{
"path":"CustomAction/run-custom-action",
"name":"run custom action",
"bdd":"run custom action",
"description":"run custom action",
"tags":"custom",
"product":"custom",
 "actionType":"CUSTOM",
 "customActionType":"CustomTestAction",
 "expectedStatusCode":0
}

Test Step

Data parameters
a) type : Custom action type (PASS / THROW_ERROR / THROW_VALIDATION_ERROR)
b) duration : Duration in milliseconds for which the execution should be paused.
c) error_message : Meaningful error message in case the type passed is THROW_ERROR /
THROW_VALIDATION_ERROR

Scenario Example

Examples

When run custom action, pass case
Data:
| type | PASS |
| duration | 2000 |

When run custom action, validation error case
Data:
type	THROW_ERROR
duration	2000
error_message	Error occurred, please try again

When run custom action, validation error case
Data:
type	THROW_VALIDATION_ERROR
duration	2000
error_message	Validation error occurred

Mock Custom Action
Mock actions are the custom actions mainly used for testing. Test steps using mock actions ,
update the request with dynamic values and context values if present, and return it as
response.

Action

Action file structure

{
"path":"CustomAction/mock-action",
"name":"run mock action",
"bdd":"run mock action",
"description":"run mock action",
"product":"custom",
 "actionType":"CUSTOM",
 "subType":"MockTestAction",
"tags":["custom","mock"],
"requestType":"FILE",

Chapter 7
Custom Actions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 59 of 62

"request":"run-mock-action.request.json",
 "expectedStatusCode":200
}

Request json:

mock-action.request.json

{
 "id": "1",
 "name": "Buy 2L Milk",
 "description": "Buy 2L milk from nandini booth",
 "status": "CREATED"
}

data/tasks/mock-action.request.json

{
"id":"$ReferenceTask[0]",
"description":"$ReferenceTask[0]"
}

Scenario Example

Case file

Case: Mock action test

When run mock action, creating a task
Data:
| id | WeekdayTask-${UID} |
| name | WeekdayTask-${UID} |
Save:
| taskId | id |
| taskName | name |

#Updating request field id with saved taskId
When run mock action, reading the task
Data:
| $requestString | {"id":"id"} |
| id | ${taskId} |

#Saving data in reference object
When run mock action, creating a task
Data:
id	WeekEndTask-${UID}
name	WeekEndTask-${UID}
description	Take a walk in the park
Save:	
$REFERENCE{ReferenceTask}	id
$REFERENCE{ReferenceTask}	name
$REFERENCE{ReferenceTask}	description

When run mock action, creating a task
Data:

Chapter 7
Custom Actions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 60 of 62

id	WeekEndTask2-${UID}
name	WeekEndTask2-${UID}
description	Do yoga and meditation
Save:	
$REFERENCE{ReferenceTask}	id
$REFERENCE{ReferenceTask}	name
$REFERENCE{ReferenceTask}	description

#Using control structure on mock action
When run mock action, reading the task
RepeatTimes:
| $times | 2 |
Data:
| $requestString | {"id":"id","description":"description"} |
#| id | %CONCAT(${taskId},"-",tuesday) |
| id | $REFERENCE{ReferenceTask:WeekEndTask} |
| description | $REFERENCE{ReferenceTask:WeekEndTask} |

#Reference data passed in both request json and Data section of the step.
When run mock action, reading the task
Reference:
| $referenceData | tasks |
| ReferenceTask | WeekEndTask |
Data:
| id | $REFERENCE{ReferenceTask:WeekEndTask2} |
#| description | $REFERENCE{ReferenceTask:WeekEndTask2} |

Runtime Scenario

run-mock-action.runtime.scenario

Auto-generated by stap-BDD Formatter Version 1.0
Scenario: Contest Loading Test
Description: Test to validate the context loading
#Tags:

#Persona:
Case: Mock action test

When run mock action, creating a task
Data:
#| Property | Value | Runtime Value |
 | id | WeekdayTask-${UID} | WeekdayTask-mphAhXsyVrnjuA |
 | name | WeekdayTask-${UID} | WeekdayTask-mphAhXsyVrnjuA |
Save:
#| Property | Value | Runtime Value |
 | taskId | id | WeekdayTask-mphAhXsyVrnjuA |
 | taskName | name | WeekdayTask-mphAhXsyVrnjuA |

When run mock action, reading the task
Data:
#| Property | Value | Runtime Value |
 | $requestString | {"id":"id"} | {"id":"id"} |
 | id | ${taskId} | WeekdayTask-mphAhXsyVrnjuA |

Chapter 7
Custom Actions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 61 of 62

When run mock action, creating a task
Data:
#| Property | Value | Runtime Value |
id	WeekEndTask-${UID}	WeekEndTask-mphAhXsyVrnjuA
name	WeekEndTask-${UID}	WeekEndTask-mphAhXsyVrnjuA
description	Take a walk in the park	Take a walk in the park
Save:		
#	Property	Value
$REFERENCE{ReferenceTask}	id	WeekEndTask-mphAhXsyVrnjuA
$REFERENCE{ReferenceTask}	name	WeekEndTask-mphAhXsyVrnjuA
$REFERENCE{ReferenceTask}	description	Take a walk in the park

When run mock action, creating a task
Data:
#| Property | Value | Runtime Value |
id	WeekEndTask2-${UID}	WeekEndTask2-mphAhXsyVrnjuA
name	WeekEndTask2-${UID}	WeekEndTask2-mphAhXsyVrnjuA
description	Do yoga and meditation	Do yoga and meditation
Save:		
#	Property	Value
Value		
$REFERENCE{ReferenceTask}	id	WeekEndTask2-
mphAhXsyVrnjuA		
$REFERENCE{ReferenceTask}	name	WeekEndTask2-
mphAhXsyVrnjuA		
$REFERENCE{ReferenceTask}	description	Do yoga and
meditation |

When run mock action, reading the task
Data:
#| Property | Value | Runtime
Value |
 | $requestString | {"id":"id","description":"description"} |
{"id":"id","description":"description"} |
 | id | $REFERENCE{ReferenceTask:WeekEndTask} |
WeekEndTask-mphAhXsyVrnjuA |
 | description | $REFERENCE{ReferenceTask:WeekEndTask} | Take a
walk in the park |

When run mock action, reading the task
Data:
#| Property | Value | Runtime Value
|
 | id | $REFERENCE{ReferenceTask:WeekEndTask2} |
WeekEndTask2-mphAhXsyVrnjuA |
 | $requestString |
{"id":"$ReferenceTask[0]","description":"$ReferenceTask[0]"} |
{"id":"$ReferenceTask[0]","description":"$ReferenceTask[0]"} |

Chapter 7
Custom Actions

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 62 of 62

8
Synthetic Data

Learn about Oracle Communications Solution Test Automation Platform (STAP) Synthetic Data
generation.

Topics in this chapter:

• Synthetic Data Generation

• Number Generation

• Text Generation

• Unique ID Generation

• Fake Data Generation

STAP Synthetic Data Generation
The Synthetic Data Generator is a critical component of a test automation platform, designed
to produce diverse, scalable, and high-quality data for testing applications. It eliminates the
reliance on real-world data by generating customizable data sets that emulate production
conditions, ensuring comprehensive test coverage and improving testing efficiency.

STAP offers two types of plug-ins for synthetic data generation: Internal and External.

• Internal plug-ins handle various data types, including numeric, alphanumeric, and text.

• External plug-ins connect with third-party providers, with the currently supported plug-in
being the global plug-in, which integrates with Data Faker.

For more information about Data Faker, see their website at https://www.datafaker.net/.

For more information on External Generators, refer to Fake Data Plug-in.

Configuration

Synthetic Data Generation plug-ins are assigned or configured with attribute data configuration
which is used in STAP BDD automation. To configure and use synthetic data generation plug-
ins within the STAP Behavior Driven Development automation framework:

1. Configure the attribute home location in config.properties.
Add the property in the ${WORKSPACE}/config/config.properties file. For more details, see
Configuration Folder.

attributeData.home=${Workspace_home}/config/attributeData

2. Add attribute data configuration properties files in ${WORKSPACE}/config/attributeData
directory. Each configuration file name should end with -attributeData.properties.

3. In BDD, use the attribute values in to retrieve next and current values:

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 34

https://www.datafaker.net/

Table 8-1 Synthetic Data Syntax

Value Description Syntax Example

get Next Value Computes the next value
based on configuration
and generates a new
value

@{<attributeName>}

or

@{<attributeName>.ne
xtValue}

@{mobileNumber} or
@{mobileNumber.nextV
alue}

get Current Value Retrieves the current
generated value.

@{<attributeName>.cu
rrentValue}

@{mobileNumber.curre
ntValue}

Plug-in with Internal Generators
This plug-in is a versatile tool for number generation, offering two distinct modes to cater to
various needs:

Number Generation

Table 8-2 describes Unique Number Generation type, its properties, and runtime BDD:

Unique Number Generation:

In this mode, the plug-in ensures that every number generated is distinct, providing a
sequence of non-repeating values. It is ideal for creating identifiers, serial codes, or any
application where uniqueness is essential. Each number is carefully selected to guarantee
exclusivity within the generated set.

Chapter 8
Plug-in with Internal Generators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 34

Table 8-2 Unique Number Generation Table

Type Description Properties Runtime BDD

NUMBER_UNIQ
UE_BOUND

number is bound in
range of [startValue,
endValue)

mobileNumber1-
attributeData.properties

Attribute Name
name=customerMobile
Short description
description=10
digit mobile number
#Plugin associated
with the attribute
plugin=NumberDataPlu
gin
type=NUMBER_UNIQUE_B
OUND
Persist data to
be used in multiple
executions
Persist YES/NO
#persist=NO
Plugin Properties
for generating data
minValue=9999900000
maxValue=9999990009
increment=1

number_unique_bound.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for data
generation
Tags: [attribute,
data]
#Persona:
Case:
UniqueNumberGenerati
on

When set variable, generate
unique customer mobile
numbers Save:

#| Property |
Value
 |
Runtime Value |
 | name |
@{customerMobile.cur
rentValue} |
9999900000 |
 | name |
@{customerMobile}
 |
9999900001 |
 | name |
@{customerMobile.nex
tValue} |
9999900002 |
 | name |
@{customerMobile.cur
rentValue} |
9999900002 |
 | name |
@{customerMobile}
 |
9999900003 |

Chapter 8
Plug-in with Internal Generators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 34

Table 8-2 (Cont.) Unique Number Generation Table

Type Description Properties Runtime BDD

NUMBER_UNIQ
UE_INFINITE

number has startValue
and no endValue. Infinite
values are generated

mobileNumber2-
attributeData.properties

Attribute Name
name=serviceMobile
Short description
description=10
digit mobile number
#Plugin associated
with the attribute
plugin=NumberDataPlu
gin
type=NUMBER_UNIQUE_I
NFINITE
Plugin Properties
for generating data
minValue=999990004
increment=1

number_unique_infinite.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for data
generation
Tags: [attribute,
data]
#Persona:
Case:
UniqueNumberGenerati
on

When set variable,
generating unique
service mobile
numbers
Save:
#| Property |
Value
 |
Runtime Value |
 | name |
@{serviceMobile.curr
entValue} |
999990004 |
 | name |
@{serviceMobile}
 |
999990005 |
 | name |
@{serviceMobile.next
Value} |
999990006 |
 | name |
@{serviceMobile.curr
entValue} |
999990006 |
 | name |
@{serviceMobile}
 |
999990007 |

Chapter 8
Plug-in with Internal Generators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 34

Table 8-2 (Cont.) Unique Number Generation Table

Type Description Properties Runtime BDD

NUMBER_UNIQ
UE_DIGITS

number has startValue
and no endValue.
Number of digits in the
value is specified.

mobileNumber3-
attributeData.properties

Attribute Name
name=agentMobile
Short description
description=10
digit mobile number
#Plugin associated
with the attribute
plugin=NumberDataPlu
gin
type=NUMBER_UNIQUE_D
IGITS
Plugin Properties
for generating data
minValue=999990009
increment=1
numOfDigits=10

number_unique_digits.scena
rio

Scenario:
AttributeData
Description:
Attribute Data
Scenario for data
generation
Tags: [attribute,
data]
#Persona:
Case:
UniqueNumberGenerati
on

When set variable,
generating unique
agent mobile numbers
Save:
#| Property |
Value
 | Runtime
Value |
 | name |
@{agentMobile.curren
tValue} |
999990009 |
 | name |
@{agentMobile}
 |
999990010 |
 | name |
@{agentMobile.nextVa
lue} |
999990011 |
 | name |
@{agentMobile.curren
tValue} |
999990011 |
 | name |
@{agentMobile}
 |
999990012 |

Chapter 8
Plug-in with Internal Generators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 34

Table 8-2 (Cont.) Unique Number Generation Table

Type Description Properties Runtime BDD

NUMBER_UNIQ
UE_VALUES

number has startValue
and no endValue.
Number of values
generated is specified.

mobileNumber4-
attributeData.properties

Attribute Name
name=transactionMobi
le
Short description
description=10
digit mobile number
#Plugin associated
with the attribute
plugin=NumberDataPlu
gin
type=NUMBER_UNIQUE_V
ALUES
Plugin Properties
for generating data
minValue=9999900014
increment=1
numOfValues=5

number_unique_values.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for data
generation
Tags: [attribute,
data]
#Persona:
Case:
UniqueNumberGenerati
on

When set variable,
generating unique
transaction mobile
numbers
Save:
#| Property |
Value
 |
Runtime Value |
 | name |
@{transactionMobile.
currentValue} |
9999900014 |
 | name |
@{transactionMobile}
 |
9999900015 |
 | name |
@{transactionMobile.
nextValue} |
9999900016 |
 | name |
@{transactionMobile.
currentValue} |
9999900016 |
 | name |
@{transactionMobile}
 |
9999900017 |

Random Number Generation:

Here, the focus is on randomness rather than uniqueness. This mode produces a series of
numbers without any specific pattern, making it suitable for simulations, gaming, or statistical

Chapter 8
Plug-in with Internal Generators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 34

modeling. The random numbers can be generated within a defined range, allowing users to
customize the output according to their requirements.

Random Number Generation

Table 8-3 decribes Randome Number Generation types, its properties, and runtime BDD:

Chapter 8
Plug-in with Internal Generators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 34

Table 8-3 Random Number Generation

Type Description Properties Runtime BDD

NUMBER_RANDOM_V
ALUES

random number;
arguments passed are
minimum_value and
maximum_value;
number is bound in
range of
[minimum_value,
maximum_value)

randomNumber1-
attributeData.properties

Attribute Name
name=subscription
ID
Short
description
description=rando
m number
#Plugin
associated with
the attribute
plugin=NumberData
Plugin
type=NUMBER_RANDO
M_VALUES
Plugin
Properties for
generating data
minValue=99999000
00
maxValue=99999900
00

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
RandomNumberGener
ation

When set
variable, for
generating
random
subscription IDs
Save:
#| Property |
Value

| Runtime
Value |
 | name |
@{subscriptionID.
currentValue}
|
9999900000
|
 | name |
@{subscriptionID}

|
9999943495
|
 | name |
@{subscriptionID.
nextValue}
|
9999932406
|
 | name |
@{subscriptionID.
currentValue}
|
9999932406

Chapter 8
Plug-in with Internal Generators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 34

Table 8-3 (Cont.) Random Number Generation

Type Description Properties Runtime BDD

|
 | name |
@{subscriptionID}

|
9999980535 |

Chapter 8
Plug-in with Internal Generators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 34

Table 8-3 (Cont.) Random Number Generation

Type Description Properties Runtime BDD

NUMBER_RANDOM_DI
GITS

random number;
arguments passed are
minimum_digits and
maximum_digits

randomNumber2-
attributeData.properties

Attribute Name
name=phoneNumber
Short
description
description=rando
m number
#Plugin
associated with
the attribute
plugin=NumberData
Plugin
type=NUMBER_RANDO
M_DIGITS
Plugin
Properties for
generating data
minDigits=5
maxDigits=10

Scenario:
3.AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
RandomNumberGener
ation

When set
variable, for
generating
random phone
numbers
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{phoneNumber.cur
rentValue} |
4713264118
|
 | name |
@{phoneNumber}
 |
9633152371
|
 | name |
@{phoneNumber.nex
tValue} |
8724706855
|
 | name |
@{phoneNumber.cur
rentValue} |
8724706855
|
 | name |
@{phoneNumber}

Chapter 8
Plug-in with Internal Generators

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 34

Table 8-3 (Cont.) Random Number Generation

Type Description Properties Runtime BDD

 |
6736490057 |

Text Generation
Table 8-4 describes Text Generation types, its properties, and runtime BDD:

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 34

Table 8-4 Text Generation Table

Type Description Properties Runtime bdd

TEXT_INIT_UPPER Initial letter is
uppercase, remaining
letters are lower case

text1-
attributeData.properties

Attribute Name
name=MessageHeade
r
Short
description
description=rando
m text of
certain/variable
length which
starts with
capital letter
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_INIT_UP
PER
Plugin
Properties for
generating data
minLength=4
maxLength=4

text_init_upper.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random Message
headers
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{MessageHeader.c
urrentValue} |
Vzhn
|
 | name |
@{MessageHeader}
 |
Cebx
|
 | name |
@{MessageHeader.n
extValue} |
Pyjc
|
 | name |
@{MessageHeader.c
urrentValue} |
Pyjc
|
 | name |
@{MessageHeader}

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 34

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

 |
Vqwl |

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 34

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

TEXT_LOWER All letters of the string
are in lowercase

text2-
attributeData.properties

Attribute Name
name=channelId
Short
description
description=rando
m text of
certain/variable
length which has
all letters in
lower case
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_LOWER
Plugin
Properties for
generating data
minLength=5
maxLength=10

text_lower.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random channel
IDs
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{channelId.curre
ntValue} |
wplqxfftdw
|
 | name |
@{channelId}
 |
xnqnjnl
|
 | name |
@{channelId.nextV
alue} |
ouedleyk
|
 | name |
@{channelId.curre
ntValue} |
ouedleyk
|
 | name |
@{channelId}

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 34

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

 |
hxbhksr |

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 34

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

TEXT_UPPER All letters of the string
are in uppercase

ttext3-
attributeData.properties

Attribute Name
name=Transmission
Code
Short
description
description=rando
m text of
certain/variable
length which all
letters are
capital letters
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_UPPER
Plugin
Properties for
generating data
minLength=7
maxLength=7

text_upper.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random
Transmission
Codes
Save:
#| Property |
Value

| Runtime
Value |
 | name |
@{TransmissionCod
e.currentValue}
|
QGJPQZM
|
 | name |
@{TransmissionCod
e}
|
GNCDAYG
|
 | name |
@{TransmissionCod
e.nextValue}
|
IIHHWYF
|
 | name |
@{TransmissionCod
e.currentValue}
|

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 34

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

IIHHWYF
|
 | name |
@{TransmissionCod
e}
|
JVCJIUA |

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 34

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

TEXT_ALPHANUMERI
C

Initial character of the
string is a letter,
remaining are
alphanumeric characters

text4-
attributeData.properties

Attribute Name
name=sessionID
Short
description
description=rando
m text of
certain/variable
length; Initial
character of the
string is a
letter,
remaining are
alphanumeric
characters
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_ALPHANU
MERIC
Plugin
Properties for
generating data
minLength=5
maxLength=15

text_alphanumeric.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random session
IDs
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{sessionID.curre
ntValue} |
E3GcSGp
|
 | name |
@{sessionID}
 |
llDCNvLmW7C
|
 | name |
@{sessionID.nextV
alue} |
DUTyLGj40su
|
 | name |
@{sessionID.curre
ntValue} |
DUTyLGj40su
|
 | name |
@{sessionID}

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 34

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

 |
v4qqu70 |

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 34

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

TEXT_ALPHANUMERI
C_SPECIAL

Initial character of the
string is a letter,
remaining are
alphanumeric and
special characters

text5-
attributeData.properties

Attribute Name
name=accessKey
Short
description
description=rando
m text of
certain/variable
length; Initial
character of the
string is a
letter,
remaining are
alphanumeric and
special
characters
#Plugin
associated with
the attribute
plugin=TextDataPl
ugin
type=TEXT_ALPHANU
MERIC_SPECIAL
Plugin
Properties for
generating data
minLength=10
maxLength=10

text_alphanumeric_spec
ial.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
TextDataGeneratio
n

When set
variable,
generating
random access
keys
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{accessKey.curre
ntValue} |
RU-6t60gH!
|
 | name |
@{accessKey}
 |
LP02z8~Uoj
|
 | name |
@{accessKey.nextV
alue} |
r$:K6UW[9Z
|
 | name |
@{accessKey.curre
ntValue} |
r$:K6UW[9Z
|
 | name |
@{accessKey}

Chapter 8
Text Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 34

Table 8-4 (Cont.) Text Generation Table

Type Description Properties Runtime bdd

 |
AJK/xg-/|I |

Unique ID Generation
Table 8-5 describes Unique ID Generation type, its properties, and runtime BDD:

Chapter 8
Unique ID Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 34

Table 8-5 Unique ID Generation table

Type Description Properties Runtime BDD

UNIQUE_ALPHABETIC All characters are letters uniqueID1-
attributeData.properties

Attribute Name
name=communicatio
nToken
Short
description
description=Uniqu
e alphabetic
value
#Plugin
associated with
the attribute
plugin=UniqueData
Plugin
type=UNIQUE_ALPHA
BETIC
Plugin
Properties for
generating data
length=8

unique_alphabetic.scen
ario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
UniqueDataGenerat
ion

When set
variable, for
generating
random
communication
tokens
Save:
#| Property |
Value

 | Runtime
Value |
 | name |
@{communicationTo
ken.currentValue}
 |
poAAeAKL
|
 | name |
@{communicationTo
ken}
 |
LUoeAoAM
|
 | name |
@{communicationTo
ken.nextValue}
 |
peeUoKKN
|
 | name |
@{communicationTo

Chapter 8
Unique ID Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 34

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

ken.currentValue}
 |
peeUoKKN
|
 | name |
@{communicationTo
ken}
 |
fUoAKUKE |

Chapter 8
Unique ID Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 34

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

UNIQUE_ALPHANUME
RIC

Random no. of letters
and digits in the text;
Initial character is a
letter

uniqueID2-
attributeData.properties

Attribute Name
name=DeviceID
Short
description
description=Uniqu
e alphanumeric
value; first
character is a
letter
#Plugin
associated with
the attribute
plugin=UniqueData
Plugin
type=UNIQUE_ALPHA
NUMERIC
Plugin
Properties for
generating data
length=18

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
UniqueDataGenerat
ion

When set
variable, for
generating
random device IDs
Save:
#| Property |
Value
 |
Runtime
Value |
 | name |
@{DeviceID.curren
tValue} |
p73JD58DW79kjfA0e
0 |
 | name |
@{DeviceID}
 |
L73d3F832HdQ6f0AU
0 |
 | name |
@{DeviceID.nextVa
lue} |
V7N9h5832vTkvBK00
0 |
 | name |
@{DeviceID.curren
tValue} |
V7N9h5832vTkvBK00
0 |
 | name |
@{DeviceID}
 |

Chapter 8
Unique ID Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 34

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

fv39N583279k810AU
A |

Chapter 8
Unique ID Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 34

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

UNIQUE_ALPHANUME
RIC_SPECIAL

Random no. of letters,
digits and, special
characters in the text;
Initial character is a
letter

uniqueID3-
attributeData.properties

Attribute Name
name=ProductKey
Short
description
description=Uniqu
e alphanumeric
value including
special
characters;
first character
is a letter
#Plugin
associated with
the attribute
plugin=UniqueData
Plugin
type=UNIQUE_ALPHA
NUMERIC_SPECIAL
Plugin
Properties for
generating data
length=12

unique_alphanumeric_s
pecial.scenario

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
UniqueDataGenerat
ion

When set
variable, for
generating
random product
keys
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{ProductKey.curr
entValue} | pU!
Uooo!!!0V |
 | name |
@{ProductKey}
 |
L0A00oeK!!0W
|
 | name |
@{ProductKey.next
Value} | L!
Ke0eo!A!0r |
 | name |
@{ProductKey.curr
entValue} | L!
Ke0eo!A!0r |
 | name |
@{ProductKey}

Chapter 8
Unique ID Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 34

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

 |
L!!!!0!0!!Us |

Chapter 8
Unique ID Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 34

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

UNIQUE_FIRST_DIGIT
S

First x-characters are
digits, rest are letters

uniqueID4-
attributeData.properties

Attribute Name
name=SerialNo
Short
description
description=Uniqu
e alphanumeric
value; first x-
characters are
digits, rest are
letters
#Plugin
associated with
the attribute
plugin=UniqueData
Plugin
type=UNIQUE_FIRST
_DIGITS
Plugin
Properties for
generating data
length=12
numOfDigits=4

unique_first_digits.scena
rio

Scenario:
AttributeData
Description:
Attribute Data
Scenario for
data generation
Tags:
[attribute, data]

#Persona:
Case:
UniqueDataGenerat
ion

When set
variable, for
generating
random device IDs
Save:
#| Property |
Value
 |
Runtime Value
|
 | name |
@{SerialNo.curren
tValue} |
1000eeAKAoop
|
 | name |
@{SerialNo}
 |
1000UoAoUoeW
|
 | name |
@{SerialNo.nextVa
lue} |
1000AKUUUAAr
|
 | name |
@{SerialNo.curren
tValue} |
1000AKUUUAAr
|
 | name |
@{SerialNo}

Chapter 8
Unique ID Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 34

Table 8-5 (Cont.) Unique ID Generation table

Type Description Properties Runtime BDD

 |
1000KKeAeAUi
|

Fake Data Generation
Datafaker is a library for Java and Kotlin to generate fake data. This is helpful when generating
test data to fill a database, to generate data for a stress test, or anonymize data from
production services.

STAP leverages data faker 2.4.2 (current or latest) and creates a plug-in to use it to generate
fake data for automation scenarios. It also supports the output in multiple languages.

For more information on Fake Data Plug-in, see Data Faker Resource and Data Faker Github.

Table 8-6 lists the Supported Generator or methods:

Table 8-6 Supported Generator or Methods

Providers Attributes

name fullName, firstName, lastName, femaleFirstName,
malefirstName, nameWithMiddle, prefix, suffix,
title,username

internet emailAddress, domainName, username,
getIpV6Address

address city, streetName, zipCode, buildingNumber,
cityPrefix, citySuffix, country, countryCode,
countyByZipCode, fullAddress, latitude, longitude,
postcode, secondaryAddress, state, stateAbbr,
zipCode, timeZone

number randomNumber, digits, randomDouble,
numberBetween, negative, positive, digit,
randomDigitNotZero

timeAndDate future, past,birthday

phoneNumber phoneNumber, cellPhone, phoneNumberNational,
subscriberNumber, extension

word noun, preposition, conjunction, adverb,
adjective,interjection, verb

text text, lowercaseCharacter, uppercaseCharacter

barcode gtin14

currency name

subscription paymentMethods, paymentTerms,
statuses,subscriptionTerms

unique fetchFromYaml

idNumber idNumber

Chapter 8
Fake Data Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 34

https://www.datafaker.net/
https://github.com/datafaker-net/datafaker

Configuration

To generate fake data, select the provider and corresponding attribute from the Data Faker
Library Documentations mentioned in Table 8-7:

Table 8-7 Data Faker Library Documentations

property key value (eg) description

name fakeData Name of the attribute Data
should be fakeData.

description Fake data generator Any short description.

plugin DataFakerPlugin Plug-in name should be
DataFakerPlugin.

type collection Should be the same value for
pluginManager to recognize.

list email,Double,Number,future Enter comma separated custom
named list of all the keys to be
used in the case file for the
scenarios.

<List>

[n1] email

[n2] firstName.

.

.

.

[n n] Double

internet.emailAddress

firstName=name.fullName

Enter each of the keys entered in
the list and in values the
corresponding provider and its
attribute to be used to generate
random data.

Format:

<key_name_provided_in_list
> =
<data_faker_provider>.<dat
a_faker_attribute>(comma_s
eparated_params/
custom_values_to_be_passed
_in_attribute)
For example,

list=Double

Double=number.randomDouble(2
,500,700)

(the configuration is intended to
generate a double upto two
decimal places between 500 to
700)

locale in ,ar The language the output is
expected in.

Ensure the src/main/java/com/oracle/cagbu/stap/data/plugins/datafaker/
validMethods.properties file supports the entry in attributeData.properties configuration. For
more information, see Data Faker Resource .

The following is an example attributeData.properties File:

Attribute Name
name=fakeData
Short description
description=Fake data generator
#Plugin associated with the attribute

Chapter 8
Fake Data Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 34

https://www.datafaker.net/

plugin=DataFakerPlugin
type=collection
enter the list of methods to be used
list=emailAddress,ip,phoneNumber,fullName,discount,billcharge,dataPlan,future,
past,accessKey,networkName,barcode,currency
enter the key as the method for each of the keys from the above list and
corresponding provider and attribute name as per data faker documentation
emailAddress=internet.emailAddress
ip=internet.getIpV6Address
phoneNumber=phoneNumber.phoneNumber
fullName=name.fullName
discount=number.numberBetween(1,5)
billcharge=number.randomDouble(2,500,700)
dataPlan=subscription.subscriptionTerms
future=timeAndDate.future
past=timeAndDate.past
accessKey=text.text(10,26,true,true,true)
networkName=word.noun
barcode=barcode.gtin14
currency=currency.name
language to be used to generate data
locale=in

Fake Data Usage

Refer to the following format to invoke and use data faker plug-in in a scenario case files:

| variable | @{$<key_mentioned_in_attributeData.properties_file>.<METHOD>} |

example:

Data:
name	@{$firstName.currentValue}
name	@{$firstName.nextValue}
name	@{$firstName}

Table 8-8 lists the methods supported.

Table 8-8 Methods Supported

METHOD EXPECTED OUTPUT

currentValue
outputs the current value

if there is no previously generated value, calls
nextValue

nextValue output is a newly generated value

<empty> defaults to nextValue

Fake Data Generation Example

Example 1:

Chapter 8
Fake Data Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 34

The following example shows how to generate and store random data using a variable-based
approach:

Case: DataFaker

When set variable, generating random email addresses
Save:
emailID1	@{$emailAddress.currentValue}
emailID2	@{$emailAddress.nextValue}
emailID3	@{$emailAddress}

When set variable, generating random ip addresses
Save:
| ipAddress1 | @{$ip.nextValue} |
| ipAddress2 | @{$ip} |

When set variable, generating random phone numbers
Save:
| mobile1 | @{$phoneNumber.nextValue} |
| mobile2 | @{$phoneNumber} |

When set variable, generating random service agent names
Save:
| agentname1 | @{$fullName.nextValue} |
| agentname2 | @{$fullName} |

When set variable, generating random discount percentages
Save:
| discount1 | @{$discount.nextValue} |
| discount2 | @{$discount} |

When set variable, generating random billing charges
Save:
| billing1 | @{$billcharge.nextValue} |
| billing2 | @{$billcharge} |

When set variable, generating random data plans
Save:
| dataplan1 | @{$dataPlan.nextValue} |
| dataplan2 | @{$dataPlan} |

When set variable, generating random expiry dates
Save:
| date1 | @{$future.nextValue} |
| date2 | @{$future} |

When set variable, generating random previous expiry dates
Save:
| expdate1 | @{$past.nextValue} |
| expdate2 | @{$past} |

When set variable, generating random access keys
Save:
| access1 | @{$accessKey.nextValue} |
| access2 | @{$accessKey} |

Chapter 8
Fake Data Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 34

When set variable, generating random network names
Save:
| network1 | @{$networkName.nextValue} |
| network2 | @{$networkName} |

When set variable, generating random bar codes
Save:
| barcode1 | @{$barcode.nextValue} |
| barcode2 | @{$barcode} |

When set variable, generating random currencies
Save:
| currency1 | @{$currency.nextValue} |
| currency2 | @{$currency} |

Saving Synthetic Data into a Variable(Release 1.25.1.1.0 or later)

You can save the synthetic data generated using a data faker into a variable for further use.
For instance, when generating IP addresses dynamically, the next generated IP value can be
stored in a predefined variable for easy reference and reuse.

ipAddress1 = $ip.nextValue

Here, $ip.nextValue represents the next generated IP address, which is then stored in the
variable ipAddress1. This allows the saved value to be used in subsequent operations or
references within the application.

The following example shows how to validate if an account name already exists in Siebel:

And set variable, assign account name value to a variable
Save: | uniqueAccountName | ${accountName} |

And validate account name exists, in Siebel regardless of whether the status
code is 200 or 404
Data: | $query | searchspec=([Name] = "${accountName}") |
Validate: | $status |
$IGNORE_STATUS_VALIDATION |

And validate account name exists, in Siebel and execute the loop until the
status is 200 and
generate account name using Data Faker
RepeatWhile: | ${response.status} | 200 |
Data: | $query | searchspec=([Name] = "${accountName}")
| Validate: | $status | $IGNORE_STATUS_VALIDATION |
Save: | uniqueAccountName | ${accountName} |
| firstName | @{$firstName} | | lastName | @{$lastName} | | accountName |
%CONCAT(${firstName},
,${lastName}) |

And set variable, to save the account name which will be used to create
account in Siebel
Save: | accountName | ${uniqueAccountName} |

Save:
| uniqueAccountName | ${accountName} |
| firstName | @{$firstName} |

Chapter 8
Fake Data Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 34

| lastName | @{$lastName} |
| accountName | %CONCAT(${firstName}, ,${lastName}) |

Chapter 8
Fake Data Generation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 34

Part II
Getting Started with STAP UI

Learn how to use the Oracle Communications Solution Test Automation Platform (STAP) UI.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 1

9
About STAP UI

Learn about Oracle Communications Solution Test Automation Platform (STAP) UI.

The STAP UI is highly extensible and comes with numerous built-in plugins that enable
interaction with various application interfaces, such as REST. For more information about using
the STAP UI, see:

• Icons in STAP UI

• Using Keyboard Shortcuts

Icons in the STAP UI
Table 9-1 lists the icons present in the STAP UI.

Table 9-1 STAP UI Icons

Icon Description

View

Edit

Delete

Add

Run

Restart

Left Navigation Pane

Expand Row

Collapse Row

More Actions
(Only visible when the screen cannot fit all of the
action icons.)

Using Keyboard Shortcuts
You can use keyboard shortcuts for many actions in the STAP UI.

Table 9-2 lists the keyboard shortcuts in the STAP UI.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 2

Table 9-2 Keyboard Shorcuts

Shortcut Function

F2 Enters or exits Actionable Mode. Enables keyboard interaction with focusable
elements inside an item.

Esc Exits Actionable Mode.

Tab In Actionable Mode: moves to the next focusable element within the item (loops to
the first after the last).
Outside Actionable Mode: moves to the next focusable element on the page.

Shift + Tab In Actionable Mode: moves to the previous focusable element within the item (loops
to the last after the first)
Outside Actionable Mode: moves to the previous focusable element on the page.

Arrow Keys Moves focus to the item in the appropriate direction (Up, Down, Left, Right).

Enter Selects the current item. Does not deselect.

Space Selects the current item or deselects any previously selected items.

Ctrl + Space Toggles selection of the current item while preserving selection of other items.

Chapter 9
Using Keyboard Shortcuts

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 2

10
STAP UI Login Methods

Learn about how to get started with Oracle Communications Solution Test Automation Platform
(STAP) UI.

Topics in this chapter:

• Guidelines for Using STAP UI

• About Authorization Modes

• Logging In to STAP

• Resetting Your Password

• #unique_80

• About STAP Dashboard

Guidelines for Using STAP UI
For information about supported browsers, see STAP Compatibility Matrix.

When using the UI:

• To avoid losing data, do not use browser commands like as Back, Forward, and Refresh. If
you accidentally use a browser command, navigate to the dashboard and, if required, sign
in to STAP again.

• Do not open multiple instances of STAP in different browser windows or tabs of the same
browser window.

• Ensure that cookies are enabled in your browser window.

About Authorization Modes
There are two modes of authentication available:

• Basic Authentication supports a straightforward authentication method where the user
provides a username and password.

• Open Authorization (OAuth) is an open standard authorization framework that enables
your system administrators to grant third-party applications access to your data without
exposing the user's usernames and passwords. Instead of sharing credentials directly,
OAuth issues access tokens to authorize specific resource access.

Logging In to STAP
You log in to the STAP UI in a browser window. To log in:

1. Enter your Username and Password.

2. Click Login.
The system validates credentials and grants access if they match stored information,
securely logging in the user.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 3

Resetting Your Password
If you forget your password, follow these steps:

1. Click Forgot Password.
This opens the Reset Password page.

2. Enter the user name and email address associated with the account.

3. Click Reset.
You will receive an email containing instructions for resetting your password.

About STAP Dashboard
You can monitor real-time job execution details and track automation tasks in the main
Dashboard. Table 10-1 shows the different components of main dashboard.

Table 10-1 STAP Dashboard

Field Description

Scheduled Total number of jobs scheduled to run at that point in time.

Jobs Total number of jobs.

Completed Total number of jobs that have been completed.

Running Total number of scenarios running.

Scenarios Total number of scenarios.

Active Total number of scheduled jobs that are running.

Monitoring Real-Time Jobs

You can select the real-time jobs from the list displayed on the screen to monitor. This section
displays the fields listed in Table 10-2.

Table 10-2 Monitoring Real-Time Jobs

Field Description

Job Details The Job number, name, environment, build number, and release.

Progress The percentage of scenarios completed.

Duration Time taken to complete the job.

Result The percentage of passed and failed scenarios.

Failure
Analysis

The number of passed and failed scenarios in a pie chart format.

Viewing the list of Running Jobs

You can view the list of jobs that are currently running. The fields related to the running jobs
are displayed in Table 10-3:

Table 10-3 Fields in Running Jobs

Field Description

Job # Job number (a unique number generated automatically by the system).

Chapter 10
Resetting Your Password

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 3

Table 10-3 (Cont.) Fields in Running Jobs

Field Description

Name Name of the job.

Scenarios Number of scenarios.

Environment The environment in which the jobs are being run.

Start Time The date and time that the job was started.

Progress Indicates the percentage of job execution completion status.

Actions Displays icons to edit or delete the job.

Chapter 10
About STAP Dashboard

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 3

11
STAP System Administration

Learn about user profiles, creating new users, and managing existing users in Oracle
Communications Solution Test Automation Platform (STAP) UI.

Topics in this chapter:

• About the User Profile Page

• About Viewing and Editing Profiles

• Changing Passwords

• Viewing OAuth Environment Profiles

• Administering Users

• Creating a New User

• Role-based Access

About the User Profile Page
The profile page allows users to view and update their profile data. In an OAuth environment,
you can only view profile details; you cannot edit or change your password. Administrative
users have additional privileges and information.

About Viewing and Editing Profiles
You can view key information about a user profile with the following details:

• User Name

• First Name

• Middle Name

• Last Name

• Display Name

• Email Address

• Admin Batch Indicator

– Visual cue indicating admin privileges.

• Admin Dashboard Button

– Visible only to admin users.

– Navigates to the Admin Console page.

• Change Password Button

– Update the current password with a new one.

• To edit profile details, click on the edit () icon.

• To save your changes, click Update.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 3

• To discard the changes done in the current transaction, click Cancel.

Changing Passwords
You can change your password by clicking the Change Password button. This opens a
password change form with the following fields.

Table 11-1 lists the fields and the descriptions on the password change form.

Table 11-1 Change Password

Field Description

Current password Enter the current password.

New password Enter the new password.

Note: The password must be between 6 and 12
characters long and contain only alphanumeric
characters.

Re-enter new password Re-enter the new password.

Viewing OAuth Environment Profiles
You are restricted to viewing profile details only. You cannot edit profile data or change
passwords. Additionally, there is no admin batch indicator, and you do not have access to the
admin dashboard or profile editing features.

Administering Users
The administration environment provides a comprehensive list of all user profiles and facilitates
user management tasks, including viewing, deleting, and creating users. When you click the
Admin Dashboard button, if you are an administrative user you can view the user profiles in a
table format with the following columns:

• User Name

• First Name

• Middle Name

• Last Name

• Display Name

• Email Address

• Actions

– Includes a delete () icon to delete a user after confirmation.

Note

This feature is accessible only to admin users.

Table 11-2 lists the additional fields on the Admin Dashboard page.

Chapter 11
Changing Passwords

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 3

Table 11-2 Additional Fields in the Admin Dashboard

Field Description

Filter Allows searching users based on fields such as
first name or last name.

Create New User Opens a drawer with the fields to create a new
user.

Cancel Returns you to the admin user profile page and
cancels the operation.

Creating a New User
As a admin user, you can create a new user by clicking the Create New User button on the
Admin Dashboard This opens a drawer with the following fields:

• First Name

• Middle Name

• Last Name

• Display Name

• Email Address

Click Create.

An email with a temporary password is sent to the new user. The user can use this password
for initial login.

Role-based Access
STAP categorizes its users into the following types:

• Admin Users:

– Have full control over user management, including viewing, editing, deleting, and
creating users.

– Granted access to the admin dashboard for administrative tasks.

• OAuth Users:

– Limited to read-only access for profile viewing.

– Restricted from accessing management features.

Chapter 11
Creating a New User

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 3

12
STAP UI Environment Management

Learn about creating, updating, and managing environments in Oracle Communications
Solution Test Automation Platform (STAP) UI.

Topics in this chapter:

• About the Environment Page

• Creating a New Environment

• Updating an Existing Environment

• Deleting an Existing Environment

About the Environment Page
To access the environments, from the navigation panel, select Environments option to view
and manage execution environments.

The Environments page displays a list of all configured environments. Each row represents a
unique environment. Table 12-1 lists the columns for the selected unique environment.

Table 12-1 Environment Details

Field Description

Name Environment name.

Connections Number of connections mapped to the
environment.

Release Release number.

Build Build number.

Actions Actions to edit or delete the environment.

Creating a New Environment
You can create new environments with connection mappings for specific testing scenarios.
This is a critical part of STAP, you can use the Environments page to manage execution
environments used across different jobs. Each environment can have zero or more
connections based on the scope of the test. These environments limit or direct job execution
within STAP.

To create a new environment:

1. On the Environments page, click Create Environment.The Create environment page is
displayed.

2. Enter the Name, and if desired also the Release, Build Number, and Description.

3. If you want to add connections to the environment, do the following:

• Click Add Connection.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 2

The Create Connection window is displayed.

4. Enter the connection Name, Description, Product (product or application name), and Type
(for example, REST, SOAP, or Json).

5. Click the add () icon to add one or more Properties. Enter the Property Name and
Value. Click Add Connection.The new connection is created and you are returned to the
Create Environment page.

6. In the Search connection text box under Connection section, specify the just created
connection to ensure that you have a connection tagged to this environment.

7. Click Create button at the top right corner of the screen to create a new environment with
the required connection details.

8. To attach the connections to the environment, Click Add Connections.You are returned to
the Create Environment page.

9. Click Create button to create the new environment.

The newly created environment is displayed at the top of the list on the Environments page.

Updating an Existing Environment
To edit an existing environment:

1. Open the environments page using one of the following methods:

a. Click the edit () icon under Actions column on the row corresponding to the
environment you want to modify.

b. Click anywhere in the row of the environment you want to modify.

This action opens the Edit Environments page, which consists of two sections: Overview
and Connections.

2. Click the edit () icon on each section to edit.

3. In the Overview section, edit the Name, Description, Release, orBuild Number as
needed.

4. If you want to view or delete existing connections, in the Connections Section, enter the
name of the connection in the search field.

5. To add new connections, click the add () icon.

6. Click Update to save your changes.

7. Click Cancel to terminate your changes.

Deleting an Existing Environment
To delete an existing environment:

1. Navigate to Environments page, click the delete () icon under Actions column on the
row corresponding to the environment you want to delete.
A confirmation window appears.

2. Click Delete.

Chapter 12
Updating an Existing Environment

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 2

13
STAP Jobs Management

Learn about creating, managing, and running jobs in Oracle Communications Solution Test
Automation Platform (STAP) UI.

Topics in this chapter:

• About the Jobs Page

• Creating a New Job

• Updating an Existing Job

• Running a Job

• Deleting a Job

About the Jobs Page
The term job represents a package that combines one or more scenarios (sets of test steps) to
be run against a specific environment. A job is a test suite that is configured and ready to be
run as a single entity.

To access jobs, from the navigation panel, select Jobs. The Jobs page allows you to view and
manage all the previously created jobs in a table. Each row represents a unique job.

Table 13-1 lists the columns for each job.

Table 13-1 Job Details

Field Description

Name Name of the job.

Description Brief information about the job.

Scenarios Number of scenarios running within the job.

Environment Linked environment.

Actions Action icons to edit, run, or delete the job.

Creating a New Job
To create a new job:

1. On the Jobs page, click the Create New Job button on the top right corner of the page.
The fields include:

• Name

• Tags (optional)

• Environment

• Description (optional)

• Scenarios: Select each scenario that you would like to include in the job.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 5

2. Click Create Job to add the job.

Updating an Existing Job
To update an existing job:

1. On the Jobs page, click the edit () icon in the Actions column for the row
corresponding to the job you want to modify.
This opens the Edit Job page with the existing information for the job displayed.

2. Edit the data as needed.

3. Click Update to save the changes and update the jobs table accordingly.

4. Click Cancel to terminate the changes made.

Running a Job
You can run a job in two modes:

• Background

• Run and visit Dashboard (for monitoring realtime execution of the job)

Deleting a Job
To delete an existing job:

1. On the Jobs page, click the delete () icon under the Actions column on the row
corresponding to the job you want to delete.
A confirmation dialog box appears.

2. Click Delete.

Viewing Job History
To manage previously run jobs, from the navigation panel, select History.

The jobs are listed in a table. They are listed in the order of their run date, with the most recent
job at the top of the page. The row for each job displays the job name, job start date and time
(in the time zone of the deployment server), and the job result (passed or failed). You can also:

• View more details about the job by clicking the view button

• Run the job again by clicking the restart button (pic).

Note

If you cannot see the view or restart buttons, you may need to click the more actions

icon () to view or restart the job.

You can access the details of a specific job by clicking its row. The row expands and you can
view the details listed in Table 13-2:

Chapter 13
Updating an Existing Job

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 5

Table 13-2 Viewing Job Details

Field Description

Name Name of the job.

Type Type of the job. The default job type is Instant Job.

Environment The environment in which the job was run.

Start Time The date and time that the job was started.

Duration The amount of time the job took to run, in seconds
and milliseconds.

Result The status of the job: passed or failed.

Viewing the Scenarios for a Job
You can view detailed information about the scenarios in a previously run job by clicking the

view icon () at the end of the row of the respective job in the History page.

#unique_102/unique_102_Connect_42_TABLE_HKP_5ZN_HFC lists the information displayed
for a scenario.

Table 13-3 Scenario Status

Field Description

Result Total scenarios run in percentage.

Percentage Scenarios passed in percentage.

Passed Total number of scenarios passed.

Failed Total number of scenarios failed.

Skipped Total number of scenarios skipped.

You can also view an overview of each scenario of the job in visual graphs:

• Job Results shows the number of passed, failed, and skipped scenarios of the job in a pie
chart format.

• Failure Analysis shows the reason for failure in a pie chart format. For example, it could
show the number of scenarios failed due to validation errors and the number of scenarios
that failed due to configuration errors.

• Results by Duration shows the time taken to run each individual scenario of the job in a
graph format.

For more information, see "Viewing the Results of Each Scenario".

To restart the job, click on the Restart Job button on the top-right corner.

Viewing the Results of Each Scenario
You can view the results of each individual scenario under the selected job under Scenarios
Result.

If you have multiple scenarios, you type its name into the Filter field.

Chapter 13
Viewing the Scenarios for a Job

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 5

Note

This search bar does not support filter tags.

All scenarios in the job are listed with the details listed in the Table 13-4:

Table 13-4 Scenario Results

Field Description

Name Name of the scenario.

Duration The duration of time for which the scenario was
run, in seconds and milliseconds.

Start Time The date and time that the scenario was
commenced.

Result The status of the total number of tasks in the
scenario: number of tasks passed, number of tasks
failed, number of tasks skipped, and number of
tasks containing errors.

Status The final status of the scenario: passed or failed.

Viewing the Detailed Report of Scenarios
From the Scenario Results page, click View Detailed Report. This lets you view each
scenario in detail including the tasks that passed, failed, or skipped.

1. The pane on the left lists all the scenarios. To view details of a particular scenario, click on
its row.
You can view details of each task of the scenario run on the right pane.

2. To expand a task, click its row. You can also filter tasks using the Pass, Fail, and Skip filter
tabs. By default, all filter tabs are enabled.
When you click on a task, you can view a list of the steps it contained.

3. Click on the row of each step to view a detailed report for the step.
This opens a window detailing information about the step.

Table 13-5 lists the details displayed for each step:

Table 13-5 Details displayed for each step

Field Description

Name Name of the task.

Action Action performed in the task.

Type The type of task performed.

Start Time The start date and time of the task. The time for
the job was displayed in the deployment server tme
zone.

End Time The end date and time of the task, in the time zone
set in your UI.

Duration The amount of time the step took to run, in milli
seconds.

Chapter 13
Viewing the Detailed Report of Scenarios

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 5

Table 13-5 (Cont.) Details displayed for each step

Field Description

Data Displays data configured in the step's BDD. If no
data is configured, this section is blank.

Validation Displays validations created under the step in BDD.

Save Displays saved variables and values present in the
step.

Log Displays a detailed report of each action performed

Level The level of the action. You can switch between the
log levels INFO, DEBUG, ERROR, and WARNING
to view detailed logs.

Timestamp The day, date, and time at which the action was
performed.

Message Details of the action performed.

Error Details of an error when the action was performed.
If there is no error, the column is blank.

Chapter 13
Viewing the Detailed Report of Scenarios

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 5

14
Viewing Scenarios

Learn about viewing details of scenarios run in Oracle Communications Solution Test
Automation Platform (STAP) UI.

To view the different scenarios run, navigate to Menu using the navigation panel from
Dashboard. Select Scenarios to view scenario library.

All scenarios are listed on the left of the page, with various cases and tasks present in the
selected scenario on the right panel. To search for a specific scenario, use the Search bar. You
can also search using previously set Tags.

To expand details for each case and tasks, click the respective row of the scenario you want to
expand. To expand all cases, click Expand Cases on the top-right. To expand all cases and
tasks, click Expand All. To collapse all cases, click Collapse Cases. To collapse all cases and
tasks, click Collapse All.

Within each task, you can view the following sections:

• Data: Each property and its value.

• Validate: Each property and its validation.

• Save: Each variable and its corresponding value saved.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 1

15
Viewing Actions

Learn about viewing the details of all actions present in the action library for Oracle
Communications Solution Test Automation Platform (STAP) UI.

Viewing Action Details
To view details of each action, navigate to Menu using the navigation panel from Dashboard.
Select Actions.

The left pane displays a list of all actions present in the action library.

To filter actions by product, select the product from the drop-down list under Products. To filter
actions by type, select the action type in the drop-down list under ActionTypes, for example,
REST, SOAP. To view details of an action, select it in the left pane.

Details

You can view the following under the Details section:

• BDD: The behavioral driven development for this action.

• Type: The type of action. For example, REST.

• Method: The action method. For example, GET, PUT, POST, DELETE, PATCH.

• Path: The path to the file containing the request for the action type.

• Request Type: Refers to the type of request.

• Request: The source of the request file. Only applies to PUT, PATCH, and POST requests.

Note

These properties vary by plug-in type. If an action does not contain a particular
field, it doesn't show under Details.

Request

You can view the request body of the action under Request. The following is an example of a
request body:

 {
 "type": "DEFAULT",
 "name": "subscriber name",
 "region": "default region",
 "category": "default category",
 "offer": "default offer",
 "paymentType": "default payment type"
}

Request Data

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 2

Displays the request input in JSON format.

Validation

Shows the expected status code in the response body if the action is successful. For example,
201.

Chapter 15
Viewing Action Details

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 2

Part III
Setting Up The STAP Environment

Learn about setting up the Oracle Communications Solution Test Automation Platform (STAP)
environment to automate scenarios and publish results.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 1

16
Low Code Automation

Learn about creating automation scenarios in Oracle Communications Solution Test
Automation Platform.

Topics in this chapter:

• Overview

• #unique_111

• Using Tags to Filter Components

• Automating Using the STAP Design Experience

Overview
STAP enables users to automate workflows without writing complex code. You can use the
Behavior-Driven Development (BDD) language to define automation scenarios in a clear,
concise, and human-readable format. This approach simplifies the automation process, making
it accessible to technical and non-technical users.

It is important for you to use a well organized project structure to ensure that you manage
automation assets effectively.

Figure 16-1 shows the key project directories in STAP and their purposes.

Figure 16-1 Automation Workspace File Structure

The workspace should contain the following top-level folders:

• action: Contains action files required for running automation scenarios. For more
information, see "Setting Up Actions".

• config: Contains the config.properties files and directories that contain various
configuration settings for your automation project. For more information, see "Setting Up
STAP Configuration".

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 3

– Environment: Contains environment-specific configurations for your automation tests.
For more information, see "Setting Up Environments".

– Simulation: Contains configurations related to test data simulation. For more
information, see "Setting Up Simulation".

– Execution: Contains execution configurations that define how automation scenarios
are run. For more information, see "Setting Up Execution".

• scenarios: Organizes your automation scenarios into a logical folder structure for
improved maintenance and navigation. For more information, see "Setting Up Scenarios".

• results: STAP automatically publishes all test execution results to this folder. For more
information, see "Setting Up Reports".

• context: Stores automation context data used to avoid redundant execution of steps
during scenario automation. For more information, see "Setting Up Context".

Automating Using the STAP Design Experience
The STAP Design Experience package simplifies the automation of end-to-end scenarios by
offering a user-friendly Behavior-Driven Development (BDD) environment for creating, testing,
and deploying automation. It includes streamlined scripts for compiling, running, and publishing
automation, along with a sample workspace featuring diverse examples across various plug-
ins. Additionally, the package provides ready-to-use environment templates tailored for specific
plug-ins and environments to accelerate the automation process.

Before using the STAP Design Experience package, ensure you have set it up on your system.
For more information, see "Setting Up The STAP Design Experience" in Deployment Guide.

Ensure you have securely stored your automation project in a third-party version control that
includes initializing a repository, tracking changes, and collaborating efficiently.

The following is an end-to-end process of how to set up and run automation using the STAP
Design Experience Package.

1. Create an Automation Workspace: Create a dedicated folder within your project to serve
as the automation workspace. STAP offers two ways to configure folder paths:

• Configuration Folder: Create a config folder within the workspace. This folder
contains the primary configuration file config.properties, which STAP run time uses to
load other configurations. For more information, see "Setting Up STAP Configuration".
Create subfolders within the config to organize other configurations.

• (Optional) Environment Configurations: Create an environments subfolder within
the config. If you have multiple environments, inside each environment folder, create
separate property files for each product API. If you only have one environment, create
all environment property files directly under the environments folder. Update the
config.properties file with the environment configuration location. For more
information, see "Setting Up Environments".

• Results Folder: STAP stores execution results in the results folder. The path can be
relative to the workspace or an external location. Execution results are stored in
timestamped folders under workspace/results/. You open report.html within each
result folder to view the execution report. Configure the results storage location in
config.properties. For more information, see "Setting Up Reports".

• Context Folder: The context folder stores test context data used during scenario
development. Context helps visualize variables and their values used in each step. It
allows executing specific steps while simulating previously run ones using the context.

Chapter 16
Automating Using the STAP Design Experience

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 3

Configure the context storage location in config.properties. For more information, see
"Setting Up Context".

• Scenarios Folder: Define the location of the scenarios folder in config.properties.
Each scenario is stored in a separate folder within this directory. For more information,
see "Creating Scenarios".

2. Compile and Run Automation: Use the Command Line Interface to compile and run
automation. For more information, see "Utility Reference".

3. View Reports: You can view the reports of the scenarios run in the Results folder. For
more information, see "Setting Up Reports".

4. Publish Scenarios: Once the automation is complete, you can publish scenarios. For
more information, see "Utility Reference".

5. Generating Reports: You can publish your automation reports in an HTML or PDF format.
For more information, see "Generating Automation Reports".

Chapter 16
Automating Using the STAP Design Experience

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 3

17
Setting Up The STAP Environment

Learn about setting up the Oracle Communications Solution Test Automation Platform (STAP)
environment in your system.

Setting Up STAP Configuration
Learn about setting up the configuration for STAP. This includes the config folder that contains
the main configuration properties config.properties file. Ensure the attribute home location is
set for the config.properties file. For more information on how to set the the attribute home
location, see "STAP Synthetic Data Generation".

Using the configuration.properties File
The config folder contains the primary configuration file titled config.properties. This file
contains the configurations required to run STAP.

The following is the setup for the configuration folder:

#---
--
STAP Environment Configuration
Version 1.2.0
#---
--
Scenarios location
scenarios.home=${WORKSPACE}/scenarios

#---
--
Environment configurations location
environments.home=${WORKSPACE}/config/environments

#---
--
Execution configurations location
execution.Config.file=${WORKSPACE}/config/execution/execution.config.json
#---
--
Actions location
actions.home=LOAD_FROM_LIBRARY
#
#actions.home=${WORKSPACE}/actions

#---
--
Results storage location
#results=results
results.home=${WORKSPACE}/results

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 8

results.publish=NO
#results.publish.file=C:\software\Servers\apache-
Server-1\webapps\STAPReports\reports\SE2EReports\results.js
#---
--
Context Configuration
#---
--
Context Storage Location
context.home=${WORKSPACE}/context
Scenario Context
Load Context for the test case
Default NO
context.load=NO
context.save=NO
Global Context
context.global.load=NO
context.global.save=NO
#---
--
engine.configuration=${WORKSPACE}/config/engine.config.properties
#---
--

#---
--
 # JMeter Configuration

#---
--
 # JMeter threads
 tools.jmeter.thread=4000
 # JMeter rampup(seconds)
 tools.jmeter.rampup=150
 # JMeter result location
 tools.jmeter.results.home=${WORKSPACE}/results/tools/jmeter

#---
--
 # Plugin Configuration : INTERNAL
 # List of Supported Plugins : REST,SOAP,SSH,Kafka

#---
--
 plugin.internal=REST,SOAP,SSH,Kafka

#---
--
 # Plugin Configuration : CUSTOM
 # Provide plugin configuration in config/plugin folder

#---
--

Chapter 17
Using the configuration.properties File

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 8

 #plugin.custom=

#---
--
 # Attribute Home
 # Provide location to load attribute data

#---
--
 attributeData.home=${WORKSPACE}/config/attributeData

Setting Up Environments
The environments folder contains the various testing environments in STAP. This folder is a
subfolder under the configuration folder.

Note

You can organize environment configurations into distinct folders within the
environment_configurations sub directory.

You create the environments folder under the configuration folder and create folders for each
separate environment. Under each environment folder, create individual files for each product
API.

The following is the location for adding the environment details in the config.properties folder:

environments.home=${WORKSPACE}/config/environments

In STAP, environment configuration involves defining and managing the settings and
parameters needed to run automation tests across different environments, such as
development, testing, and production. This ensures that tests run correctly and produce
accurate results across various target systems. Each environment has its own
environment.properties file.

Setting Up Execution
The execution folder contains an execution.config.json configuration file. This file contains
details of scenarios to run. For more information about scenarios, see "Setting Up Scenarios".

Scenarios are run in various execution groups. You can modify this file to group multiple
automation scenarios and run them at the same time. A minimum of one group is required to
run a scenario.

The execution.config.json contains these components:

• group
Groups are defined under the group keyword, and each group can contain subgroups or
scenario folder entries. Each group has a unique name and its own execution mode. At
least one group entry is required to define the scenario list.

• name

Chapter 17
Setting Up Environments

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 8

Groups can be identified by user-entered names. If no name is provided, a unique group
ID is assigned.

• execution (Optional)
Execution can be configured as serial or parallel for each group or subgroup. This
parameter controls whether the scenarios within the group run one after another (serial) or
at the same time (parallel). If not defined, groups default to serial execution.

• description (Optional):
Provides a textual description of the scenario or group.

• release (Optional):
Indicates the associated release identifier or version, which can help organize or filter
results by release.

• milestone (Optional):
Specifies the milestone connected to the group or scenario.

• build (Optional):
Specifies the build ID for the scenarios.

• level (Optional):
Indicates thehierarchy level for the scenarios.

• reportTitle (Optional):
Sets a custom title that will appear in generated reports. If this field is not set, the default
report title is Automation Report.

The following is an example of the execution.config.json file when a single scenario is run:

{
 "name": "STAP Sample Tests",
 "execution": "serial",
 "group" : [
 {
 "name" : "STAP Sample Tests",
 "scenarios" : [
 "1.ABC"

]
 }
]
}

Creating different groups of scenarios allows independent execution of groups, and the failure
of one group does not halt the execution of others.

When grouping multiple scenarios, each group contains a scenarios list, which specifies the
parent folder names where .scenario files reside.

If .scenario files are located in nested folders, the parent folder names of the scenarios folder
should be specified.

Note

If multiple .scenario files exist in a single folder, only the first .scenario file is run.

The following is an example of the execution.config.json file when multiple scenarios are run:

{
 "execution" : "parallel",

Chapter 17
Setting Up Execution

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 8

 "group" : [
 {
 "name" : "groupOne",
 "execution" : "serial",
 "scenarios" : [
 "ToDo-E2E-Automation",
 "ToDo-FunctionsAndOperators"
]
 },
 {
 "name" : "groupTwo",
 "execution" : "parallel",

 "group" : [
 {
 "name" : "subGroupOne",
 "execution" : "serial",
 "scenarios" : [
 "ToDo-E2E-Automation",
 "ToDo-FunctionsAndOperators"
]
 },
 {
 "name" : "subGroupTwo",
 "execution" : "serial",
 "scenarios" : [
 "ToDo-E2E-Automation"
]
 }
]
 }
]
}

Setting Up Scenarios
A scenario outlines the conditions and expected outcomes of a test, focusing on the overall
flow and user interactions. The file extension for a scenario in Solution Test Automation
Platform is .scenario.

You must create a README.md file in each scenario folder. This file should include the
following details:

• Author

• Supported product versions

• Revision history

• Exceptions (cases where the scenario may fail)

• FAQ for troubleshooting failures

• Other relevant notes

You can use tags to categorize scenarios for easy identification. For more information, see
"Using Tags to Filter Components".

Chapter 17
Setting Up Scenarios

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 8

For more information about scenarios in STAP and how to create them, see "Creating
Scenarios".

Scenarios Folder
The scenarios folder contains the different scenarios to be run. Each scenario is stored in a
separate folder within this folder.

Each scenarios folder has the following components:

• Header.info: Contains the scenario details in the following format:

Scenario: Name of the E2E Scenario
Description: Description of the E2E Scenario
Tags: Tag1, Tag2

• Case files: Each .case file covers a specific logical step in a scenario. For more
information on the contents of the .case file, see "Creating Scenarios".

Note

You only create a separate .case file if your scenario contains multiple cases. If
you have a single case, you can define it within the .scenario file.

• scenario.config: Contains the list of .case files to be merged to create the .scenario file
at run time. This is only applicable for multiple .case files. Use the following format when
creating a scenario configuration file:

Header.info
1.Launch.case
2.Buying.case
3.fusionCDM.case
4.BRM.case
5.Care.case

The following is the configuration for adding the scenario details in the config.properties
folder:

scenarios.home=${WORKSPACE}/scenarios

For more information on creating scenarios, see Creating Scenarios.

Setting Up Simulation
Enter a short description of your topic here (optional).

This is the start of your topic.

Setting Up Actions
The Action component provides all input required to the respective plug-in. This input specifies
how and with what data the plug-in should run the action. For more information on plug-ins,
see "STAP Action Plug-ins".

Chapter 17
Setting Up Simulation

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 8

The structure of the Action folder is in the following hierarchy:

• Product Folder: The folder for the product containing the respective plug-in.

• Plug-In Folder: The type of plug-in. For example, REST.

• Path Folder: The folder containing it's respective actions. For example, bill.

• Action: The action file. Use lowercase letters with hyphens to separate words in action file
names. File names should be self-descriptive and end with the .action.json extension. For
example, create-bill-by-ID.json.

Action files contain common information, such as Name, BDD, Type, and Product. For more
information on creating an action for a specific plug-in, see "Action Execution".

You can share actions across automation projects as libraries by storing and publishing them
as JAR files. For instructions on using action library JARs instead of folders, see "#unique_69".
Ensure to provide a default request/data for the action.

The following example shows how to create an action using the REST plug-in:

{
"path":"subscription/create-new-subscription",
"name":"Create a new subscription",
"bdd":"create a new subscription",
"description":"Create a new subscription in the billing system",
"product":"billing",
"actionType":"REST",
"tags":["billing","subscription","create","new"],
"resource":"subscription",
"method":"POST",
"requestType":"FILE",
"request":"create-new-subscription.request.json",
 "expectedStatusCode":201
}

Setting Up Context
The context folder stores the data of previous steps, enabling the simulation of scenarios
where only the current step needs execution. This eliminates the need to repeatedly run prior
steps, as the context provides the necessary values for the current step.

You configure the location of the context folder in config.properties. The parameters used in
the configuration are described below:

• context.home: Defines the directory where context data is stored.

• context.load: Determines whether to load context data while running (YES/NO).

• context.save: Specifies whether to save context data for a scenario, useful for debugging
(YES/NO).

• context.global.load: Controls whether global context data (shared across scenarios)
should be loaded.

• context.global.save: Controls whether global context data (shared across scenarios)
should be saved.

Chapter 17
Setting Up Context

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 8

Configuration Sample:

context.home=${WORKSPACE}/context
context.load=NO
context.save=NO
context.global.load=NO
context.global.save=NO

Context manages two types of variables:

• Local Variables: These are available only during the execution of a single scenario. They
are not preserved outside the scenario run.

• Global Variables: Global variables are prefixed with an underscore and exist for the
duration of the entire job run, across scenarios and steps.

For more information on variables, see "#unique_125".

Setting Up Reports
Results of the test run are stored in the results folder. The path to this folder can either be
relative to your workspace or a direct path to store the results outside your workspace.

The results of each test run are created under this folder with its relative timestamp. The format
of this timestamp is $results/<timestamp>. To view the execution report, you open the
report.html file.

The following is the configuration for adding the result details in the config.properties folder:

#---
--
Results storage location
#---
--
results.home=${WORKSPACE}/results

Chapter 17
Setting Up Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 8

18
Creating Scenarios

Learn how to create scenarios to be tested and automated in Oracle Communications Solution
Test Automation Platform.

There are two ways to create a scenario:

1. Using A Single Case File: For a simple scenario, you can create a single .scenario file
which contains the case details. The following format shows how to create a .scenario file
with a single case:

Scenario: Name of the E2E Scenario

Description: Description of the E2E Scenario
Description can be of multiple lines>

Tags: Tag1, Tag2

Case: Case Name
Description: Case Description
Tags: Tag1, Tag2
Given/When/Then/And Step description

Data:
| name | value |
| name | value |

Validate:
| name | value |
| name | value |

Save:
| Path | Variable |

2. Using Multiple Case Files: For larger scenarios containing complex multi-product or end-
to-end scenarios, you can split it into multiple .case files, These are configured in the
scenario.config configuration file. To set up the case file, see "Case".
For more information on setting up the scenario folder, see "Scenarios Folder".

Case
A case represents a logical grouping of steps within a scenario. Cases allow you to modularize
your automation scripts, improving readability, maintainability, and re-usability. Ideally, each
case should focus on a single product or functionality within a broader scenario.

The file extension for a case is .case. You can break down your scenario into multiple case
files under the scenario folder, ensuring easy distinction between functionalities and their test
results.

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 3

Each case file looks like this:

Case: Case Name
Description: Case Description
Tags: Tag1, Tag2
Given/When/Then/And Step description

Data:
| name | value |
| name | value |

Validate:
| name | value |
| name | value |

Save:
| Path | Variable |

If your scenario contains just one case, you do not create a separate .case file. Instead, you
define the case within the .scenario file. For more information, see "Creating Scenarios".

You can use tags to categorize cases for easy identification and filtering based on various
contexts like use case, feature, or functionality. For more information, see "Using Tags to Filter
Components".

You can create a dedicated setup case to define the initial data and global variables required
for the scenario. This improves clarity by centralizing data setup and highlighting the scenario's
dependencies. You use multiple steps within the setup case to logically group variable
assignments.

Note

If any required global variable is missing, the setup case will fail.

Step
A step is the fundamental building block of a case within the STAP automation framework.
Each step represents a single action or verification within the overall case flow.

The step uses the BDD syntax of the Given-When-Then structure to clearly define the step's
behavior within the context of the use case:

• Given: Defines the initial state or preconditions.

• When: Describes the action being performed.

• Then: Specifies the expected outcome or verification.

Complete the sentence after each keyword (Given, When, Then) with appropriate text following
the comma, period, or semicolon.

Chapter 18
Step

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 3

Using Tags to Filter Components
Tags provide a mechanism for organizing, categorizing, and managing all automation
components within STAP, including Scenarios, Cases, Steps, and Actions. You can plan and
define a consistent set of tags before starting automation development.

You can filter Scenarios for execution based on specific tags. You can also select and run
Cases within a Scenario using tags as criteria. Furthermore, you can generate automation
execution configurations by filtering components based on tag criteria.

You might use the following information to set up tags:

• Product Name

• Feature Name

• Use Case ID/Name

• Release

• Test Type (for example, Functional, Regression, Performance)

• Priority (for example, High, Medium, Low)

• Customer

• Topology/Setup/Environment

• Group/Category

Chapter 18
Using Tags to Filter Components

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 3

19
Utility Reference

Learn how to use the stap utility to perform actions in Oracle Communications Solution Test
Automation Platform (STAP).

STAP uses the stap utility to perform various actions. The help command provides a
comprehensive list of all commands within STAP. Running the help displays each command's
name alongside a brief description of its function.

To retrieve information on how to run actions in STAP, run the following command in your home
directory:

./stap --help

The help command provides the information required to perform various actions in STAP in its
output.

./stap --help
===
Solution Test Automation Platform CLI
Version : versionNumber
===
Usage: stap --service -command [parameters]

Options:

--version
--help
--automation
 -compile
 workspace
 scenarios
 generate
 config
 -run
 workspace
 scenarios
 tags
 caseTags
 config
 mode
--publish
 -action
 workspace
 -environment
 workspace
 -scenario
 workspace
--simulation
 -run
 workspace
 -compile
 workspace
--secure
 -environment

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 3

 filepath
 keyfilepath
 keystorepass
 aliasname

Parameters

--version

Displays the STAP version information.

--help

Shows documentation and help information about the stap utility commands. Optionally, you
may specify a service or a specific command for more targeted help.

--automation

Indicates automation client operations.

-compile

Compiles the specified automation scenarios.

workspace

Specifies the STAP workspace location as a valid folder path. The default value is the current
directory.

scenarios

Indicates one or more scenarios to compile or run. It accepts a list of values. The default value
is either empty (to compile) or selected scenarios as per configuration or tags (to run).

generate

Specifies whether to generate result files from the compilation. Valid values are NO, YES, or
MERGE.

config

Provides the file path for compile configuration as a valid file path.

-run

Runs the specified automation scenarios.

tags

Selects scenarios that match the specified tags. It accepts a list of values and belongs to the
Scenario Selection group.

caseTags

Selects test cases that match the specified tags. It depends on the value of tags and accepts a
list of values.

mode

Defines the execution mode. Possible values are trail or execute.

--publish

Enables the publish action for scenarios, environment, or workspace.

-action

Chapter 19

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 3

Performs the publish action.

-environment

Carries out the environment publish action.

-scenario

Performs the publish action for a scenario.

--simulation

Executes a simulation.

-run

Runs a simulation publish action.

-compile

Compiles a simulation publish action.

--secure

Performs environment simulation with secure parameters.

-environment

Executes publishing in a secure environment.

filepath

Specifies the path to the JCEKS file, which must be a valid folder path and is mandatory.

keyfilepath

Supplies the path to the .properties file containing the data to be encrypted; this is a
mandatory valid folder path.

keystorepass

Provides the keystore password, which must be supplied as a valid folder path and is
mandatory.

aliasname

Identifies the secret key using an alias name; this is a mandatory value.

Chapter 19

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 3

20
Publishing Data

Learn about publishing data and reports in Oracle Communications Solution Test Automation
Platform (STAP).

Topics in this document:

• Publishing Data Using the Command-Line Interface

• Generating Automation Reports

Publishing Data Using the Command-Line Interface
You can use the STAP utility to publish actions, environments, and scenarios.

Publishing data uploads your scenarios, actions, or environments to the cloud so they can be
executed as jobs. This allows you to run tests remotely, share results, and use cloud resources
instead of your local machine.

Note

To publish components, you must add the TDS environment details in your
environment configurations.

To publish an action, run this command:

./stap --publish -action "workspace=path"

To publish a scenario, run this command:

./stap --publish -scenario "workspace=path"

To publish an environment, run this command:

./stap --publish -environment "workspace=path"

The following is an example of the output for publishing the environment:

./stap --publish -environment workspace=sampleWorkSpace
===
STAP Automation Platform CLI
Version : version
===
WARNING: Runtime environment or build system does not support multi-release
JARs. This will impact location-based features.
Workspace Location : /home/opc/STAP/sampleWorkSpace
==

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 13

===========
CONFIGURING ENVIRONMENT PUBLISH UTILITY
==
===========

Loading REST environment
Loading configuration /home/opc/STAP/sampleWorkSpace/config/config.properties
Loading environment connections from /home/opc/STAP/sampleWorkSpace/config/
environments

==
===========
PUBLISH ENVIRONMENT
==
===========

adding basic...bXVqaWJ1ci5zaGFpa0BvcmFjbGUuY29tOndlbGNvbWUx
End Point=http://123.456.7.890:12345/environment/complete

{"name":"Publish env test","description":"STAP
environment","build":"1.0","release":"3.0 Productize","connection":[]}
Path : http://123.456.7.890:12345/environment/complete
Target : http://123.456.7.890:12345/environment/complete

==
===========
PUBLISH RESULT
==
===========
Status : SUCCESS

Response:
{"_id":1}
==
===========

Generating Automation Reports
Learn about generating automation reports in a PDF format or using a web server in an HTML
format.

Topics in this section:

• Publishing PDF Reports

• Publishing Reports Using Third-Party Web Servers

Publishing PDF Reports
You can use the PDF Generator Adapter in the STAP to generate PDF reports. The PDF
Generator Adapter is a configurable module in the STAP Design Experience that generates
PDF reports from structured data and HTML templates. It supports summary and evidence
report formats and can create single or multiple documents.

You can generate the following report types using the PDF Generator Adapter:

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 13

• Summary Report: Provides an overview of key results. It includes high-level information
about each scenario with it's duration and status, along with an overall summary chart. For
more information, see "Summary Report".

• Evidence Report: Provides a detailed report of each scenario run, alongside information
of each case within the scenario, with request and response data. For more information,
see "Evidence Report".

These reports can either have a single file or multiple files based on their configuration.

Setting Up The PDF Adapter In Your Workspace
Before configuring the method of generating PDF reports, ensure the PDF Generator adapter
is set up correctly in your workspace directory. The folder summaryPDFGenerator is shipped
with the STAP DE package, under the adapters folder in config folder..

summaryPDFGenerator contains the following components:

• .properties file. You can generate PDF reports using the STAP DE, the command-line
interface, or the TES microservice. Each method requires a different properties file:

– pdfGenerator.config.properties: The configuration file for generating reports using
the STAP DE.

– pdf-adapter.properties: The configuration file for generating reports using the
command-line interface.

– pdfGenerator.config.properties: The configuration file generating reports using the
TES microservice.
The property pdf.generate within the .properties file determines the reports to
generate: evidence or summary. To customize this, create a comma-separated list of
the reports you want to generate:

pdf.generate=evidenceReport,summaryReport

• Config Folder: Contains a sub-folder titled Configs, which contains configuration files
specific to each PDF report generated in JSON format:

– evidenceReport.pdf.config.json: The JSON input file that provides structured data
for the evidence report.

– summaryReport.pdf.config.json: The JSON input file that provides structured data
for the summary report.

• Templates Folder: Template files for the summary report, titled
summaryReport.template, and the evidence report, titled evidenceReport.template.
These can either be in an HTML or an FTL format. By default, they are in HTML format.

• Output Folder: The generated evidence and summary reports in PDF format.

• Resources Folder: Contains the static components of the PDF report: the company or
project logo in PNG format, and the report font in TTF format. By default, the resources file
ships with Oracle's logo and default font. However, you can change the logo and font by
replacing the PNG and TTF files with your custom files in the same format.

The final directory structure looks like this:

• Configuration Properties file (dependent on the report generation method)

• Config folder

– Configs Folder

* evidenceReport.pdf.config.json

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 13

* summaryReport.pdf.config.json

• Templates folder

– summaryReport.template.html

– evidenceReport.template.html

• Output folder

– EvidenceReport.pdf

– SummaryReport.pdf

• Resources folder

– logo.png

– font.ttf

After ensuring the structure of the PDF Generator Adapter is set correctly in your workspace,
you can generate PDF reports using three methods:

• To publish PDF reports using the STAP DE, see "Generating PDF Reports With The STAP
DE".

• To publish PDF reports using the command-line interface, see "Generating PDF Reports
With The Command-Line Interface".

• To publish PDF reports using the TES microservice, see "Generating PDF Reports With
The TES Microservice".

Generating PDF Reports With The STAP DE
To generate PDF reports using the STAP DE:

1. Start WireMock:

sh myWorkSpace/WireMock/startWireMock.sh

2. Run the PDF Generator jar file:

sh run.sh

This lets the PDF Generator Adapter read the files within the adapter's folder, alongside
the scenario execution result JSON file generated in the data folder when the scenario is
run.

3. PDF reports of the scenarios run are generated in the Output folder.

Generating PDF Reports With The Command-Line Interface
To generate PDF reports using the command-line interface:

1. Start WireMock:

sh myWorkSpace/WireMock/startWireMock.sh

2. Run the PDF Generator jar file:

sh pdfGenerate.sh myWorkspace jsonResultDirectory

Where:

• pdfGenerate.sh is the PDF Generator Adapter JAR file

• myWorkspace is your workspace directory

• jsonResultDirectory is the path to the scenario's results JSON file in its Data folder.

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 13

This lets the PDF Generator Adapter read the files within the adapter's folder, alongside
the scenario execution result JSON file generated in the data folder when the scenario is
run.

3. PDF reports of the scenarios run are generated in the Output folder.

Generating PDF Reports With The TES Microservice
When generating PDF reports using the TES microservice, you do not need to perform any
additional steps.

A separate configuration JSON file titled adapter.config.json is present within the TES folder:

${TES_HOME}/config/adapters/adapters.config.json

PDF reports for all jobs run will by default be saved in the Output folder.

Viewing PDF Reports
Summary and Evidence reports are pre-structured. For more information about the
components of Summary Report, see "Summary Report". For more information about the
components of Evidence Report, see "Evidence Report".

Summary Report
The Summary Report contains these fields:

• Cover Page: The first page of the summary report. For more information, see "Cover
Page".

• Summary:

– Summary Table: A table summarizing metrics of all scenarios run. For more
information, see "Summary Table".

– Summary Chart: A visual representation of the scenarios run. For more information,
see "Summary Chart".

• Test Scenarios: Report of each test scenario run. For more information, see "Test
Scenarios".

Cover Page

Table 20-1 shows the fields of the cover page of the summary report.

Table 20-1 Cover Page Fields

Field Description

Company Title The title of the company or project. By default, it is
set to Oracle.

Report Type The Type of report. By default, it is set to STAP
Automation Report.

Author The author of the report.

Creation Date The date the report is created.

Last Updated The date the report is updated last.

Version The version of the report.

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 13

Table 20-1 (Cont.) Cover Page Fields

Field Description

Approvals Names of approvers for the report. You can add
approvers in the configuration JSON file. If there
are none, the rows are blank.

Summary

Contains the Summary Table and Summary Chart.

Table 20-2 shows the fields of the summary table in the summary report.

Table 20-2 Summary Table

Field Description

Name The name of the scenario.

Status The status of the scenario.

Pass Number of scenarios passed.

Fail Number of scenarios failed.

Error Number of scenarios containing errors.

Skip Number of scenarios skipped.

Start Time The date and time that the test was started.

End Time The date and time that the test was complete.

Duration The amount of time the test took to run, in
milliseconds.

Summary Chart

Shows a visual representation of the number of scenarios passed and failed in a pie chart
format.

Test Scenarios

Table 20-3 shows the fields of the test scenarios table in test scenarios.

Table 20-3 Test Scenarios

Field Description

Name Name of the scenario.

Description Description of the scenario.

Duration The amount of time the scenario took to run, in
seconds and milliseconds.

Status The status of the scenario: passed or failed.

Tags Any tags set for the scenario.

Evidence Report
The Evidence Report contains these components:

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 13

• Cover Page: The first page of the evidence report. For more information, see "Cover
Page".

• Scenario Summary: Summarizes metrics of all scenarios run. For more information, see
"Scenario Summary".

• Test Case: Details of each test case run. For more information, see "Test Case".

• Test Case Summary: Summarizes metrics of all test cases run. For more information, see
"Test Case Summary".

Cover Page

Table 20-4 shows the components of the cover page of the summary report.

Table 20-4 Cover Page Components

Component Description

Company Title The title of the company or project. By default, it is
set to Oracle.

Report Type The Type of report. By default, it is set to Evidence
Report.

Author The author of the report.

Creation Date The date the report is created.

Last Updated The date the report is updated last.

Version The version of the report.

Approvals Names of approvers for the report. You can add
approvers in the configuration JSON file. If there
are none, the rows are blank.

Scenario Sumary

Provides an overall summary of the scenario run. Table 20-5 shows the components of the
scenario summary.

Table 20-5 Scenario Summary

Component Description

Status The status of the scenario.

Description The description of the scenario.

Tags Any tags set for the scenario.

Start Time The date and time that the test was started.

End Time The date and time that the test was complete.

Duration The amount of time the test took to run, in
milliseconds.

Test Case

This section details runtime results of test case within the scenario, and each step run.
Table 20-6 describes the components under Test Case.

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 13

Table 20-6 Test Case

Field Description

Test Case The title of the test case.

Step The title of the step.

Action Name The title of the action.

Action Type The type of action. For example, REST.

Data The data within the step. This includes its name,
description, and ID.

Save That data to save. This includes name, description,
ID.

Validate The data to validate. This includes its status.

Test Case Summary

Displays the list of cases, along with request and response payloads for the steps within each
case. Table 20-6 shows the fields in Test Case Summary.

Table 20-7 Test Case Summary

Field Description

Case ID The ID of the case.

Name The name of the case.

Status The status of the case: passed or failed.

Start Time The date and time that the case was started.

End Time The date and time that the case was complete.

Duration The amount of time the case took to run, in
milliseconds.

Step Name The name of the step.

Start Time The date and time that the step was started.

End Time The date and time that the step was complete.

Duration The amount of time the step took to run, in
milliseconds.

Status The status of the step: passed or failed.

Request The request payload for the step.

Response The response payload for the step.

Publishing Reports Using Third-Party Web Servers
You can publish user-interactive reports of the scenarios run using third-party web servers.

You can publish automation reports using these web servers:

• To publish reports using Tomcat, see "Configuring Tomcat to View Automation Reports".

• To publish reports using NGINX, see "Viewing Automation Reports Using NGINX".

• To publish reports using the Apache HTTP server, see "Viewing Automation Reports Using
Apache HTTP Server".

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 13

Configuring Tomcat to View Automation Reports
To configure Tomcat to view automation reports:

1. Install Tomcat. For more information, see the Tomcat website:
https://tomcat.apache.org/

Verify that your Tomcat server is running successfully by running the following in the URL
of the Tomcat server:

https://<tomcat-host>:<tomcat-server-port>

2. In the Workspace_home/config/config.properties file, edit the following lines to set up the
location for the published reports:

results.home=${WORKSPACE}/results/reports
results.publish=YES
results.publish.file=${WORKSPACE}/results/results.js

3. Edit the Tomcat server configuration file Tomcat_Home/conf/server.xml.

a. Edit these lines to configure the STAP-DE automation execution reports:

 <Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443"
 maxParameterCount="1000"
 />

 <Connector port="8099" protocol="HTTP/1.1"
 redirectPort="8443" />

b. Edit the Context element inside the Host element to configure the path for the
automation reports:

Context docBase="${STAP_HOME}/sampleWorkSpace/results/" path="/stap-
reports"

This creates an endpoint titled /stap-reports which stores the automation reports.

4. Restart the Tomcat server.

Use a URL in the following format to access the published reports:

https://TomcatHost:TomcatPort/stap-reports

To access individual automation execution results, click on the link for the job.

Viewing Automation Reports Using NGINX
To view automation reports using NGINX, follow these steps:

1. Install NGINX. For more information, see the NGINX website:
https://nginx.org/

2. As an administrator, navigate to the command prompt in your system, and start the NGINX
server.

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 13

https://tomcat.apache.org/
https://nginx.org/

3. In the Workspace_home/config/config.properties file, edit the following lines to set up the
location for the published reports:

results.home=${WORKSPACE}/results/reports
results.publish=YES
results.publish.file=${WORKSPACE}/results/results.js

4. Configure the path for the automation reports by editing the following lines in the
nginx.conf file:

server {
 listen 80;
 server_name localhost;

 root ${STAP_HOME}/sampleWorkSpace/results;
 index index.html index.htm;

 location / {
 autoindex on;
 try_files $uri $uri/ /index.html;
 }
 }

5. Restart the NGINX server.

Use a URL in the following format to access the published reports:

https://NGINXhost:NGINXport/

To access individual automation execution results, click on the link for the job.

Viewing Automation Reports Using Apache HTTP Server
To publish automation reports using Tomcat, follow these steps:

1. Install and configure the Apache HTTP server. For more information, see the Apache
website:
https://httpd.apache.org/

2. Start the Apache HTTP server. Verify the successful installation by navigating to the port.

3. In the Workspace_home/config/config.properties file, edit the following lines to set up the
location for the published reports:

results.home=${WORKSPACE}/results/reports
results.publish=YES
results.publish.file=${WORKSPACE}/results/results.js

4. Configure the path for the automation reports in Apache HTTP Server's httpd.conf file by
running the following:

DocumentRoot "${STAP_HOME}/sampleWorkSpace/results/"
<Directory "${STAP_HOME}/sampleWorkSpace/results/">

5. Restart the Apache HTTP server.

Use a URL in the following format to access the published reports:

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 13

https://httpd.apache.org/

https://ApacheHost:ApachePort/

To access individual automation execution results, click on the link for the job.

Viewing HTML Reports
After configuring HTML reports using a web server, you can access it them a user-interactive
format.

Upon launching a report, it opens an index page titled STAP Execution Results with the total
number of jobs run listed. You use the search bar to search for a particular job. To search for a
job using its execution ID, select ID. To search for a job using its name, select Name.

Figure 20-1 Web Server Report Index Page

Each job row has these fields:

Table 20-8 Web Server Report Index Page

Field Description

Job Execution ID The ID of the job run.

Name The job's name.

Total Number of scenarios in the job.

Passed Number of scenarios passed.

Failed Number of scenarios failed.

Error Number of scenarios containing errors.

Skipped Number of scenarios skipped.

Duration The amount of time the job took to run, in seconds
and milliseconds.

Start The date and time that the test was started.

End The date and time that the test was complete.

Result The result of the scenario: passed or failed.

To view more details about the job run, click on its respective row. The STAP Automation
Report opens.

This report displays these metrics:

• Total number of scenarios in the job, including the number of scenarios passed, failed,
skipped, or those containing errors. Additionally, it shows the total percentage of scenarios
passed, and the amount of time taken to run the job.

• The total number of scenarios in the job, including the number of scenarios passed, failed,
skipped, or those containing errors in a pie chart format.

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 13

• A failure analysis pie chart that presents the number of scenarios failed, and those with
errors.

• The amount of time taken to run each scenario in a horizontal graph.

To return to the index page, click Home on the top right corner.

To view the detailed report of each scenario, click on the scenario name in the list under
Scenario Summary Report. Upon clicking on a scenario report, you can view detailed metrics
of the scenario, each case within the scenario, and each step within the case.

Figure 20-2 Scenario Summary Report

Each case row displays a color-coded status of the steps run under it:

Table 20-9 Color Coded Summary

Color Description

Green The number of steps passed.

Red The number of steps failed.

Yellow The number of steps containing errors.

Grey The number of steps skipped.

By default, the report displays data for all statuses: passed, failed, skipped, and errors. To filter
a case or step using its status, select the status that you want to view under the drop-down
menu titled Statuses.

To view details of a particular step, select its corresponding case by clicking on it under Cases,
and click on the step you want to view under Steps. You can view the following metrics:

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 13

Table 20-10 Detailed Case Report

Field Description

Details The step's details: its name, action name, type,
start time, end time, and duration.

Data Displays data configured in the step's BDD. If no
data is configured, this section is blank.

Validate Displays validations created under the step in BDD.

Save Displays saved variables and values present in the
step.

Error Details of an error when the action was performed.
If there is no error, the column is blank.

Logs Displays a detailed report of each action
performed.

Insights Display screenshots after each step of UI
automation.

Connection Provides details about the endpoint server and its
credentials.

Request The request body of the action.

Response The response body of the action.

To go back to the STAP Automation Report, click on Summary on the top-right corner.

Chapter 20
Generating Automation Reports

User Operations Guide
G39572-01
Copyright © 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 13

	Contents
	About This Content
	Part I Learning About STAP
	1 About Solution Test Automation Platform
	Introduction to STAP
	Features of STAP
	Benefits of STAP
	Microservice Architecture

	2 Introduction to STAP Behavior-Driven Development Language
	Understanding STAP BDD Language
	BDD Use Case
	JSON Data Processing (Release 1.25.1.1.0 or later)

	3 About BDD Operators
	String Operators
	Numeric Operators
	Array Operators

	4 Using Variables
	Overview
	Using Array Variables
	Using Dynamic Array Variable
	Using Array Variable Values

	5 BDD Functions
	Overview of BDD Functions
	String Functions
	Numeric Functions
	Numeric Function: Evaluate to Process Arithmetic Expressions

	JSON and Response Functions
	Data Type Functions
	Date Type Functions
	Format Number Functions

	6 Using Control Structures in Steps
	Overview
	Scenario Execution Flow
	Action Execution
	Using Conditional Cases

	Using Reference Cases

	7 STAP Action Plug-ins
	Introduction to STAP Action Plug-ins
	REST Plug-in
	SOAP Plug-in
	XML API: Support for Sending Body in x-www-form-urlencoded

	SSH SFTP Plug-in
	Process Plug-in
	Seagull
	JMX
	Kafka
	UI Automation Plug-in
	URL Access Validation
	Custom Actions
	Mock Custom Action

	8 Synthetic Data
	STAP Synthetic Data Generation
	Plug-in with Internal Generators
	Text Generation
	Unique ID Generation
	Fake Data Generation

	Part II Getting Started with STAP UI
	9 About STAP UI
	Icons in the STAP UI
	Using Keyboard Shortcuts

	10 STAP UI Login Methods
	Guidelines for Using STAP UI
	About Authorization Modes
	Logging In to STAP
	Resetting Your Password
	About STAP Dashboard

	11 STAP System Administration
	About the User Profile Page
	About Viewing and Editing Profiles
	Changing Passwords
	Viewing OAuth Environment Profiles
	Administering Users
	Creating a New User
	Role-based Access

	12 STAP UI Environment Management
	About the Environment Page
	Creating a New Environment
	Updating an Existing Environment
	Deleting an Existing Environment

	13 STAP Jobs Management
	About the Jobs Page
	Creating a New Job
	Updating an Existing Job
	Running a Job
	Deleting a Job
	Viewing Job History
	Viewing the Scenarios for a Job
	Viewing the Results of Each Scenario

	Viewing the Detailed Report of Scenarios

	14 Viewing Scenarios
	15 Viewing Actions
	Viewing Action Details

	Part III Setting Up The STAP Environment
	16 Low Code Automation
	Overview
	Automating Using the STAP Design Experience

	17 Setting Up The STAP Environment
	Setting Up STAP Configuration
	Using the configuration.properties File
	Setting Up Environments
	Setting Up Execution
	Setting Up Scenarios
	Scenarios Folder

	Setting Up Simulation
	Setting Up Actions
	Setting Up Context
	Setting Up Reports

	18 Creating Scenarios
	Case
	Step
	Using Tags to Filter Components

	19 Utility Reference
	20 Publishing Data
	Publishing Data Using the Command-Line Interface
	Generating Automation Reports
	Publishing PDF Reports
	Setting Up The PDF Adapter In Your Workspace
	Generating PDF Reports With The STAP DE
	Generating PDF Reports With The Command-Line Interface
	Generating PDF Reports With The TES Microservice

	Viewing PDF Reports
	Summary Report
	Evidence Report

	Publishing Reports Using Third-Party Web Servers
	Configuring Tomcat to View Automation Reports
	Viewing Automation Reports Using NGINX
	Viewing Automation Reports Using Apache HTTP Server
	Viewing HTML Reports

