
Oracle® Communications Unified
Inventory Management
Web Services Developer's Guide

Release 7.5
F46670-02
May 2022

Oracle Communications Unified Inventory Management Web Services Developer's Guide, Release 7.5

F46670-02

Copyright © 2014, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

Diversity and Inclusion x

1 Web Services Overview

About UIM Web Service Standards and Specifications 1-1

About the UIM Web Services Framework 1-2

About the UIM Web Service Module 1-3

About Message Queues 1-4

About Message Queues for Custom Web Services 1-4

About Transaction Handling 1-4

About Exception Stacktraces 1-5

About UIM Web Services 1-5

2 Working with the Service Fulfillment Web Service

About the Service Fulfillment Web Service 2-1

About Business Interactions and Services 2-3

About Engineering Work Orders 2-4

About the Web Service Packaging 2-4

About the WSDL and Schema Files 2-5

About the WSDL File 2-5

About the Schema Files 2-6

Reference Schemas 2-6

Web Service Schemas 2-6

Business Schemas 2-6

CaptureInteraction 2-7

Associating Business Interactions 2-8

CaptureInteraction Logic Flow 2-8

Validating Input Data 2-10

captureInteractionRequest 2-11

iii

Business Interaction 2-14

Business Interaction Item 2-14

Business Interaction Item Parameter 2-14

Service 2-16

Associated Business Interaction 2-16

ExecuteProcess Element 2-17

ResponseLevel Element 2-17

captureInteractionResponse 2-17

ProcessInteraction 2-18

ProcessInteraction Logic Flow 2-18

Service Configuration Association 2-19

Customizing ProcessInteraction 2-20

Modeling the Service in Design Studio 2-20

Customizing Service Actions 2-20

Customizing the Automation of Service Configurations 2-22

ProcessInteraction Example 2-23

processInteractionResponse 2-25

GetInteraction 2-25

GetInteraction Logic Flow 2-25

getInteractionResponse 2-26

UpdateInteraction 2-26

UpdateInteraction Logic Flow 2-27

updateInteractionResponse 2-27

GetConfiguration 2-28

getConfigurationRequest 2-29

Request Search Options 2-29

Request Search Option Examples 2-30

Additional Request Options 2-31

Additional Request Options Example 2-32

ResponseLevel Element 2-32

GetConfiguration Logic Flow 2-32

getConfigurationResponse 2-33

Customizing GetConfiguration 2-33

Extension Points 2-34

Customization Steps 2-34

Customized Response 2-35

GetConfigurationDifferences 2-36

getConfigurationDifferencesRequest 2-37

Request Search Options 2-37

Request Search Option Examples 2-39

Additional Request Options 2-40

iv

Additional Request Options Example 2-42

GetConfigurationDifferences Logic Flow 2-42

Child Configurations 2-43

Example 1 2-43

Example 2 2-44

Example 3 2-45

Overriding the Process Logic that Determines Child Configurations 2-47

getConfigurationDifferencesResponse 2-47

Customizing GetConfigurationDifferences 2-48

UpdateConfiguration 2-48

updateConfigurationResponse 2-49

Customizing the Web Service Operations 2-49

Extending Web Service Requests and Responses 2-49

Additional Information 2-51

Deploying, Testing, and Securing the Web Service 2-51

3 Working with the Network Resource Management Web Service

About the NRM Web Service 3-1

About the Web Service Packaging 3-1

About the WSDL and Schema Files 3-2

About the WSDL File 3-2

About the Schema Files 3-3

Reference Schemas 3-3

Web Service Schemas 3-3

Business Schemas 3-3

CreateEntity 3-4

createEntityRequest 3-4

Multiple Entities 3-5

Optional Elements 3-5

Example 3-5

createEntityResponse 3-6

FindEntity 3-7

findEntityRequest 3-7

Multiple Entities 3-10

Examples 3-10

findEntityResponse 3-12

FindTNBlock 3-12

findTNBlockRequest 3-12

Example 3-13

findTNBlockResponse 3-14

v

UpdateEntity 3-14

updateEntityRequest 3-14

Multiple Entities 3-17

Optional Elements 3-17

Examples 3-17

updateEntityResponse 3-18

DeleteEntity 3-18

deleteEntityRequest 3-18

Multiple Entities 3-21

Optional Elements 3-22

Examples 3-22

deleteEntityResponse 3-22

ReserveEntity 3-23

reserveEntityRequest 3-23

Resource Entity Search Criteria 3-23

Multiple Entities 3-27

Optional Elements 3-27

Example 3-27

reserveEntityResponse 3-27

ReserveTNBlock 3-28

reserveTNBlockRequest 3-28

Telephone Number Block Search Criteria 3-28

Example 3-29

reserveTNBlockResponse 3-30

UnreserveEntity 3-30

unreserveEntityRequest 3-30

Resource Entity Search Criteria 3-30

Multiple Entities 3-33

Optional Elements 3-33

Examples 3-34

unreserveEntityResponse 3-35

UpdateReservation 3-35

updateReservationRequest 3-35

Multiple Reservations 3-35

Optional Elements 3-35

Example 3-36

updateReservationResponse 3-36

AssociateEntity 3-36

associateEntityRequest 3-36

Multiple Entities 3-40

Example 3-40

vi

associateEntityResponse 3-40

DisassociateEntity 3-41

disassociateEntityRequest 3-41

Multiple Entities 3-44

Example 3-44

disassociateEntityResponse 3-44

ImportEntity 3-45

importEntityRequest 3-45

Multiple Entities 3-45

Example 3-45

Spreadsheet Format 3-45

Spreadsheet Row Order 3-52

importEntityResponse 3-53

ExportEntity 3-54

exportEntityRequest 3-54

Multiple Entities 3-56

Example 3-56

exportEntityResponse 3-57

TelephoneNumber Sheet 3-57

LogicalDevice Sheet 3-58

LogicalDeviceAccount Sheet 3-58

PhysicalDevice Sheet 3-59

exportEntityResponse Faults 3-59

Determining Criteria Item Names 3-59

Customizing the Web Service Operations 3-61

Extending Web Service Requests and Responses 3-62

Deploying, Testing, and Securing the Web Service 3-62

4 Developing Custom Web Services

About the UIM Reference Web Service 4-1

About the WSDL and Schema Files 4-2

About the WSDL File 4-2

About the Schema Files 4-3

About Namespaces 4-3

About the Ant Build File 4-4

Guidelines for Developing Custom Web Services 4-6

Using the WSDL-First Approach to Developing Custom Web Services 4-6

Class Diagrams 4-7

WSDL Interface Guidelines 4-10

Operation Signatures 4-10

vii

Signature Components 4-11

Signature Pattern and Examples 4-11

Schema Guidelines 4-12

Transaction Guidelines 4-13

Developing and Running Custom Web Services 4-14

Configuring Your Work Environment 4-15

WebLogic Server 4-15

UIM 4-15

Design Studio 4-16

Importing the Reference Web Service Project 4-16

Configuring the Imported Project 4-18

Configuring the COMPUTERNAME.properties File 4-18

Configuring the web.xml File 4-20

Configuring the Project Library List 4-20

Locating the API Method Signature in the Javadoc 4-22

Information to Capture 4-22

Developing the Web Service 4-23

Creating the WSDL File 4-23

Creating Schema Files 4-24

Creating Java Source Files 4-25

Generating Java Source Based on the WSDL 4-27

Creating the WAR File 4-29

Packaging the WAR File in the EAR File 4-30

Extracting and Updating the application.xml File 4-31

Additional Custom Work 4-32

Importing the WAR File into the EAR File 4-36

Deploying the EAR File 4-36

Verifying the Deployment 4-37

Specifying a Deployment Plan 4-37

Deploying, Testing, and Securing the Web Service 4-38

5 Deploying, Testing, and Securing UIM Web Services

Deploying Web Services 5-1

Verifying Deployments 5-2

Testing Web Services 5-2

Test Input XML 5-3

Pre-configuration for Testing 5-3

Securing Web Services 5-3

About Policy Files 5-4

Modifying Web Service Security 5-5

viii

Accessing Security 5-5

Associating a Policy File 5-5

Disassociating a Policy File 5-6

Modifying the Deployment Plan 5-6

Securing Custom Web Services 5-7

ix

Preface

This guide describes the Oracle Communications Unified Inventory Management
(UIM) Web Services. The information provided in this guide includes the UIM Web
Service framework that supports web services, the various UIM Web Services that are
available, and how to create custom web services.

When creating custom web services, you can use Oracle Communications Design
Studio, which is an Eclipse-based integrated development environment. This guide
includes references to both Design Studio and UIM, and often directs the reader to see
the Design Studio Help and the UIM Help for instructions on how to perform specific
tasks.

This guide includes examples used in given situations. The guidelines and examples
may not be applicable in every situation.

Audience
This guide is intended for developers who have a working knowledge of web services
in general, and who understand XML, Ant and Java development, including JPA,
standard Java practices, and J2EE principles.

You should read UIM Concepts before reading this guide.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

these technical constraints, our effort to remove insensitive terms is ongoing and will take
time and external cooperation.

Preface

xi

1
Web Services Overview

Web services support interoperable machine-to-machine interaction over a network. Web
services are APIs that can be accessed over a network, and run on a remote system hosting
the requested services. Web service operations are described by the Web Service Definition
Language (WSDL).

This chapter provides introductory information about the Oracle Communications Unified
Inventory Management (UIM) Web Services.

Note:

In this guide, UIM_CONFIG_PATH represents the directory for UIM configuration
files, as follows:

• In a traditional environment, UIM_CONFIG_PATH is UIM_Home/config.
UIM_Home is Oracle_home/user_projects/domains/domain_name/UIM,
where domain_name is the domain name you supplied when installing UIM.

• In a cloud native environment, UIM_CONFIG_PATH is
UIM_IMAGE_BUILDER_TOOLKIT/staging/cnsdk/uim-model/UIM/config. You
can obtain UIM_IMAGE_BUILDER_TOOLKIT from Oracle Software Delivery
Cloud. To modify configuration files in UIM cloud native, see "Customizing UIM
Configuration Properties" in UIM Cloud Native Deployment Guide and
"Administering a UIM Cloud Native Deployment" in UIM System Administrator's
Guide.

In this guide, UIM_SDK_Home represents the directory where you extract
UIM_SDK.zip, as follows:

• In a traditional environment, the files present in UIM_SDK_Home are also
present in UIM_Home.

• When working with UIM web services or developing custom web services, see
"Using Design Studio to Extend UIM" in UIM Developer's Guide.

About UIM Web Service Standards and Specifications
Table 1-1 lists the UIM web service standards and specifications.

Table 1-1 UIM Web Service Standards and Specifications

Standard and
Specification

Version Release Description Compliance

JAX-RPC 1.1 XML <--> Java binding
specification

Compliant.

1-1

Table 1-1 (Cont.) UIM Web Service Standards and Specifications

Standard and
Specification

Version Release Description Compliance

JSR-181 NA Java web service annotations Deprecated.

Uses basic annotations for
inter operability.

SOAP 1.1 Simple Object Access Protocol

(Also referred to as Service
Orientated Architecture
Protocol.)

Compliant.

Uses XML/SOAP/HTTP and
XML/SOAP/JMS.

Transport
Protocols

HTTP 1.0,
HTTPS 1.0
(HTTP 1.1), JMS
1.1

NA NA

WSDL 1.1 Web Service Definition
Language

Compliant.

XML 1.1 NA Compliant.

Uses XML/SOAP/HTTP and
XML/SOAP/JMS.

About the UIM Web Services Framework
Figure 1-1 shows the different paths traveled by a call originating from the UIM UI
client, and a call originating from outside UIM that is then processed by the web
service client.

Figure 1-1 UIM Web Services

Chapter 1
About the UIM Web Services Framework

1-2

The path of the web service includes:

• Web Service Client

This represents the web service user (client, web service client, or customer). Web
service operations are called by sending SOAP messages over HTTP or HTTPS, or by
posting SOAP messages on a UIM-defined JMS message queue. See "About Message
Queues" for more information.

• Web Service Module

This represents all the sub-modules required for implementing a web service, including
the web service, the web service framework, WSDL interfaces, and WSDL
implementations. The web service module is deployed as a WAR file.

See "About the UIM Web Service Module" for more information.

• UIM business logic

This represents all the sub-modules required for attaining business functionality. This
includes the Java API, the Java API framework, business logic, and persistence
framework.

Details of the UIM business logic are not within the scope of this document.

About the UIM Web Service Module
Figure 1-2 shows the web service module in more detail.

Figure 1-2 Web Service Module

The web service module includes:

• Platform-provided Web Services Framework

This represents the web service framework provided by Java EE platforms, such as
Oracle WebLogic Server.

• Web Service Operations

This represents the Java web service implementation class. This is the entry point to a
UIM web service. The web service operations are Java representations of the WSDL.

• Adapters

Chapter 1
About the UIM Web Services Framework

1-3

The web service operations layer calls the adapters, which direct the calls and
collect data from the appropriate UIM API managers. Transaction handling is
performed in the adapters.

• Mappers

Mapper classes convert data from XML to Java, and from Java to XML.
Specifically, data elements of an incoming XML request are converted to data
attributes of a Java class so the data can be processed. When processing is done,
the data attributes of the Java class are converted to data elements of an outgoing
XML response. Mapper classes are typically called by the adapter code.

• Workers

Worker classes assist the working logic of the adapters.

The web service operations, adapter, mapper, and worker classes are further explored
in "Developing Custom Web Services".

About Message Queues
The UIM installation provides the following message queues to use when calling the
Inventory Web Services, which includes the UIM Service Fulfillment Web Service and
the Network Resource Management Web Service, both of which are packaged in the
InventoryWS.war file:

• inventoryWSQueue

• inventoryWSQueueAlternate

Two message queues are provided for efficient processing of web service calls. For
example, you may have all web service operation calls except ProcessInteraction use
inventoryWSQueue, and have ProcessInteraction use inventoryWSQueueAlternate
because the ProcessInteraction operation takes longer to run than the other
operations.

About Message Queues for Custom Web Services
The UIM installation also provides the following message queue to use when calling
custom web services packaged in the provided custom.ear file:

• inventoryCustomWSQueue

Note:

If you package your custom web service in an EAR file other than the
provided custom.ear file, you must create your own message queue, create
a custom listener class, and configure the class to listen to the queue. See
"Packaging the WAR File in the EAR File" for more information.

About Transaction Handling
The adapter layer performs transaction handling. Transactions are started only if the
thread is not already within a transaction.

Chapter 1
About the UIM Web Services Framework

1-4

About Exception Stacktraces
Exception stacktraces are available in the WebLogic server logs. Exception stacktraces are
not available in the UIM web service responses.

About UIM Web Services
UIM provides the following web services:

• The Service Fulfillment Web Service defines operations that enable you to create and
modify business interactions, through which you can create and modify services, service
configurations, and service configuration items. See "Working with the Service Fulfillment
Web Service" for more information.

• The Network Resource Management Web Service defines operations that enable you to
create, find, update, and delete various entities in UIM. The web service also enables you
to reserve and unreserve various resource entities, and also update reservations. Lastly,
the web service enables you to import and export various entities into and out of UIM.
See "Working with the Network Resource Management Web Service" for more
information.

• UIM also provides a way for you to develop, build, and deploy custom web services. The
UIM Reference Web Service defines a single operation to create a Logical Device. This
web service serves as an example to reference when developing custom web services.
See "Developing Custom Web Services" for more information.

Note:

The deprecated Reference Web Service operations are removed. The Service
Fulfillment Web Service operations replace these deprecated operations. See
"Working with the Service Fulfillment Web Service" for more information.

• The Cartridge Management Web Service defines various operations that support
deploying cartridges. The Cartridge Deployer Tool and Oracle Communications Design
Studio use this web service to manage cartridges. The Cartridge Management Web
Service is deployed as an installation step and is displayed on the Oracle WebLogic
Server Administration Console.

• The NFV Orchestration RESTful APIs define operations that enable you to create,
implement, and manage the life cycles of network services and their deployment as
interconnected virtual network functions (VNFs) on virtual resources. Refer to the UIM
NFV Orchestration Implementation Guide for more information.

Chapter 1
About UIM Web Services

1-5

2
Working with the Service Fulfillment Web
Service

This chapter provides information about the Oracle Communications Unified Inventory
Management (UIM) Service Fulfillment Web Service.

About the Service Fulfillment Web Service

Note:

For this web service, you need an understanding of the following subjects described
in UIM Concepts:

• Planning (business interactions, business interaction items, and engineering
work orders)

• Services (services, service configurations, and service configuration items)

• Life-cycle management

• Service fulfillment

The Service Fulfillment Web Service enables an external system to create new business
interactions and change existing business interactions in UIM. Similarly, this web service
enables an external system to create new engineering work orders and change existing
engineering work orders. The Service Fulfillment Web Service also enables you to create
multiple pending configurations for a service. See UIM Concepts for more information.

The Service Fulfillment Web Service also enables you to disconnect a service. When you
disconnect a service using the Service Fulfillment Web Service, all the configuration versions
on the service transition to Canceled status, and an additional configuration version is
created with the current date after the service configuration version that is in Completed
status.

Note:

Engineering work orders are a type of business interaction. They are based on a
special Business Interaction specification and have the same supported Service
Fulfillment Web Service functionality as business interactions.

Through business interactions, an external system can manage services, resources
associated with services, and relationships between services.

The Service Fulfillment Web Service enables you to:

2-1

• Plan the addition, change, or disconnection of a service through a business
interaction

• Process business interactions to move planned services into current inventory or
change existing services in current inventory, and, through custom rulesets and
custom code, create or change service configuration items and allocate resources
for services in current inventory

• Retrieve business interactions

• Transition business entities through their respective life-cycle states within the
context of a business interaction

• Retrieve configurations

• Retrieve configuration differences

• Transition services and service configurations through their respective life-cycle
states

Figure 2-1 provides an overview of the Service Fulfillment Web Service and its
intended usage.

Figure 2-1 Service Fulfillment Web Service Overview

Chapter 2
About the Service Fulfillment Web Service

2-2

The following describes the steps for the Service Fulfillment Web Service usage illustrated in
Figure 2-1:

1. Call the CaptureInteraction operation. The request provides details regarding the action
to take on a service, and includes a list of parameters that provide information UIM needs
to provision the service. UIM creates a business interaction and persists the request. The
business interaction ID (or external ID representing the business interaction) is returned
to the external system.

2. Call the ProcessInteraction operation. The request includes the business interaction ID.
This ID is the external ID representing the business interaction. UIM uses the business
interaction ID to retrieve the business interaction and the persisted
captureInteractionRequest data.

UIM evaluates the service action on the persisted captureInteractionRequest:

• When the service action is create, UIM creates a new service and service
configuration.

• When the service action is change, UIM finds the service based on the service ID
and creates a new service configuration.

A new service configuration is associated to the business interaction. UIM then calls the
automateConfiguration() method. You must extend this empty method through a custom
ruleset. This method is intended to design and assign the service. See UIM Developer's
Guide for more information on custom rulesets.

Within the automateConfiguration ruleset, you can access the following:

• Business interaction entity

• Service configuration entity

• List of parameters from captureInteractionRequest

• UIM APIs to call and perform various functions, such as unassigning existing
resources on the configuration or creating new resources to assign to the
configuration.

After resources are assigned to the configuration, the assignments on the service
configuration are set to Pending status.

3. Call the UpdateInteraction operation to approve the configuration. This updates the status
of the assignments on the service configuration from Pending to Approved.

4. Call the GetConfigurationDifferences operation to get details of changes that resulted
from the design and assign during ProcessInteraction.

5. Call the UpdateInteraction operation to issue the configuration. This updates the status of
the assignments on the service configuration from Approved to Issued.

6. Call the UpdateInteraction operation to complete the configuration. This updates the
status of the assignments on the service configuration from Issued to Completed, and
also updates the business interaction status to Completed.

About Business Interactions and Services
Only business interactions that support services and service configurations can be added
through the web service. However, after the business interaction is created in UIM, you can
use the UI to add business interaction items of any type.

Even though business interactions support only services through the web service, services
have service configurations, which can have child configurations, and the web service can

Chapter 2
About the Service Fulfillment Web Service

2-3

support these child configurations. For example, a service configuration may have a
child configuration that is a service, logical device, logical device account, network,
pipe (representing a pipe or channelized connectivity), or place configuration, and
these configurations can be added through the customized ProcessInteraction
operation as children of a service configuration. Child configurations can also be
retrieved through the GetConfiguration operation, and retrieved and compared through
the getConfigurationDifferences operation.

Note:

The configuration-specific operation sections of this chapter apply to all
configurable entities: service, logical device, logical device account, network,
pipe (representing a pipe or channelized connectivity), and place entities.

A configurable place is actually a GeographicSite specialization of the
abstract Place entity; GeographicSite is the only specialization of the Place
entity that is configurable. See Oracle Communications Information Model
Reference for more information.

About Engineering Work Orders
Engineering work orders are related to and share functionality with business
interactions. They are based on special Business Interaction specification that you
must install by deploying the ora_uim_workorder base cartridge. Engineering work
orders have the same supported functionality as business interactions with the Service
Fulfillment Web Service.

See UIM Installation Guide for more information about installing base cartridges. See
UIM Concepts for more information about engineering work orders and business
interactions.

About the Web Service Packaging
The Service Fulfillment Web Service is packaged in the inventory.ear file, within the
InventoryWS.war file. When the installer deploys the inventory.ear file, the Service
Fulfillment Web Service is automatically deployed and ready to use.

Note:

The InventoryWS.war file also includes all of the Network Resource
Management Web Service operations. See "Working with the Service
Fulfillment Web Service" for information about these operations.

The Service Fulfillment Web Service is no longer packaged within the
UIMServiceFulfillment.war file. This was previously deprecated and is now
removed. The URI for the HTTP protocol is /InventoryWS/InventoryWSHTTP
and for JMS protocol is /InventoryWS/InventoryWSJMS.

Chapter 2
About the Web Service Packaging

2-4

About the WSDL and Schema Files
The Service Fulfillment Web Service is defined by the InventoryWS.wsdl file and is
supported by several schema files. The WSDL file and supporting schema files are located in
the UIM_SDK_Home/webservices/schema_inventory_webservice.zip file.

About the WSDL File
Within the ZIP file, the WSDL file is located in the ora_uim_webservices/wsdl directory. The
WSDL file defines the CaptureInteraction, ProcessInteraction, GetInteraction,
UpdateInteraction, GetConfiguration, GetConfigurationDifferences, and UpdateConfiguration
operations. Each web service operation defines a request, a response, and the possible
faults that can be thrown. For example, the WSDL file defines the following for the
CaptureInteraction operation:

• CaptureInteractionRequest

• CaptureInteractionResponse

• CaptureInteractionFault

• InventoryFault

• ValidationFault

The request, response, and faults each define an XML structure that is defined in the
supporting schema files. The following excerpts show how an XML structure defined in the
WSDL correlates to the supporting schema files.

For example, the WSDL file defines and references the biws namespace (in bold):

xmlns:biws="http://xmlns.oracle.com/communications/inventory/webservice/
businessinteraction"
.
.
.
targetNamespace
.
.
.
<xsd:import namespace="http://xmlns.oracle.com/communications/inventory/webservice/
businessinteraction" schemaLocation="./schemas/InteractionMessages.xsd"/>
.
.
.
<wsdl:message name="CaptureInteractionRequest">
 <wsdl:part name=
 captureInteractionRequest" element="biws:captureInteractionRequest"/>
</wsdl:message>

This tells you that the captureInteractionRequest XML structure is defined in the schema file
that defines the specified namespace as its target namespace. A search for the specified
namespace reveals that InteractionMessages.xsd defines the referenced namespace as its
target namespace.

After you determine which schema file defines the XML structure that the WSDL file
references, you can navigate through the schema files to determine child XML structures and
elements.

Chapter 2
About the WSDL and Schema Files

2-5

About the Schema Files
Several schema files support the Service Fulfillment Web Service. These schemas are
categorized as reference schemas, web service schemas, and business schemas.

Reference Schemas
Within the ZIP file, the reference schemas are located in the ora_uim_webservices/
wsdl/referenceSchemas directory. The reference schemas define common elements
used by more than one operation. So, the elements are defined in one place and then
referenced.

The reference schemas are:

• InventoryCommon.xsd

• InventoryFaults.xsd

• FaultRoot.xsd

Web Service Schemas
Within the ZIP file, the web service schemas are located in the
ora_uim_webservices/wsdl/schemas directory. The web service schemas define
elements specific to the web service, such as the request structures, the response
structures, and any fault structures.

The web service schemas are defined in the following files:

• InteractionMessages.xsd

• ConfigurationMessages.xsd

Note:

The web service schemas use the type-mapping.xsdconfig file to map
XML namespaces to Java packages.

Business Schemas
Within the ZIP file, the business schemas are located in the ora_uim_business/
schemas directory. Each web service operation wraps a call (or multiple calls) to the
UIM business layer, which is exposed through APIs. The wrapped APIs are the same
APIs that the UIM UI calls in response to user input. The business layer APIs are
based on functional area, as are the business schemas.

The business schemas are:

• Activity.xsd

• BusinessInteraction.xsd

• Configuration.xsd

• Connectivity.xsd

Chapter 2
About the WSDL and Schema Files

2-6

• CustomNetworkAddress.xsd

• CustomObject.xsd

• Entity.xsd

• InventoryGroup.xsd

• IPAddress.xsd

• LogicalDevice.xsd

• MediaStream.xsd

• Network.xsd

• NetworkAddress.xsd

• Number.xsd

• Party.xsd

• PhysicalDevice.xsd

• Place.xsd

• Property.xsd

• PropertyLocation.xsd

• Role.xsd

• Service.xsd

• Specification.xsd

• Structure.xsd

• TNBlockModelType.xsd

Note:

The API schemas use the xmlbeans-mapping.xsdconfig file to map XML
namespaces to Java packages.

CaptureInteraction
The CaptureInteraction operation plans the addition, change, or disconnection of a service
through a business interaction. Business interactions are used for planning inventory
resources, prior to making the inventory resources available in current inventory.

captureInteractionRequest defines one order per request. The order can define multiple line
items, and multiple child orders. Each child order is defined by the same structure as the
order on the request. Each child order can define multiple line items and multiple child orders,
and so forth.

captureInteractionRequest must specify an interaction action of CREATE or CHANGE. The
interaction action is defined as an enumeration in the BusinessInteraction.xsd schema file.
The enumeration defines several actions, but CREATE and CHANGE are the only valid
actions for CaptureInteraction.

Chapter 2
CaptureInteraction

2-7

When captureInteractionRequest specifies the CREATE interaction action, it creates a
business interaction to contain the order information sent in the request, and creates
an attachment that contains the entire <interaction> element from
captureInteractionRequest. CaptureInteraction then associates the attachment to the
business interaction.

When captureInteractionRequest specifies the CREATE interaction action, you can
specify an external ID for the business interaction. The external ID must be unique
within UIM, and the calling system is responsible for enforcing the uniqueness; UIM
does not enforce uniqueness on external IDs. When an external ID is specified, UIM
captures it and stores it with all of the other request data. A subsequent request can
then specify a CHANGE interaction action and supply the external ID to identify the
business interaction to be changed.

When captureInteractionRequest specifies the CHANGE interaction action, the
request must provide either the external ID or the business interaction ID to indicate
the business interaction to change. If the request provides an external ID,
CaptureInteraction assumes the external ID was supplied when the business
interaction was created. CaptureInteraction then retrieves the business interaction and
updates it with the order information sent in the request. CaptureInteraction also
creates another attachment with a higher sequence number that contains the entire
<interaction> element from captureInteractionRequest, and associates the attachment
to the business interaction.

You can view the XML that is contained in the attachment from within the UIM UI. If a
business interaction has multiple sequence numbers for an attachment, you can view
all of them in UIM.

Associating Business Interactions
In UIM, business interactions can be associated with one another.
captureInteractionRequest defines an element that enables you to associate one or
more child business interactions to the business interaction you are creating or
changing. Furthermore, you can associate one or more child business interactions to
each child business interaction, which would be the grandchild business interactions to
the business interaction you are creating or changing, and so forth.

CaptureInteraction Logic Flow
Figure 2-2 shows what occurs when the CaptureInteraction operation is called. A
business interaction is represented as BI in the figure.

Chapter 2
CaptureInteraction

2-8

Figure 2-2 CaptureInteraction Logic Flow

In Figure 2-2, the Validate XML Input box represents the custom ruleset that you can
configure to run before the creation of the attachment. See "Validating Input Data" for more
information.

CaptureInteraction wraps the BusinessInteraction.captureInteraction() API method. The API
method defines two arguments: the parent business interaction, and the XML. When
CaptureInteraction calls the API method, the parent business interaction argument is always
null. If the interaction action is CREATE, the API method creates a business interaction,
creates an attachment, and associates the attachment to the business interaction. If the
interaction action is CHANGE, the API method changes the business interaction, creates an
attachment with a higher sequence number, and associates the attachment to the business
interaction.

If the business interaction defines a child business interaction, the API method is called from
within itself. In this scenario, the parent business interaction argument is no longer null. As a
result, after the business interaction is created, and the attachment is created and
associated, the business interaction is associated to the parent business interaction that was
specified by the argument. For example, a request defines one new business interaction that
has one child business interaction. CaptureInteraction calls the API method with a parent
business interaction argument of null. Business interaction A is created. The attachment is
created and associated to business interaction A. Because the parent business interaction
argument is null, the Associate BI to Parent BI box does nothing. Next, the first (in this
example, the only) child business interaction is processed and calls the API method with a
parent business interaction argument (business interaction A). Business interaction B is
created. The attachment is created and associated to business interaction B. Because the
parent business interaction argument is not null, business interaction B is associated to the
parent business interaction argument that was supplied (business interaction A).

Chapter 2
CaptureInteraction

2-9

Validating Input Data
You can validate the request input data through custom code. The custom code can
reside in a ruleset, or in Java code that the ruleset calls. You can configure your
ruleset to run at a provided base extension point that defines the createBIAttachment()
method. By configuring your ruleset to run before this method, your custom validations
run before the attachment is created. If the validation fails, the session rolls back and
the business interaction that was created is not committed.

To validate input data:

1. In Design Studio, create an Inventory project.

2. Open the Project editor.

3. Click the Dependency tab.

4. Add the ora_uim_base_extpts cartridge to the list of dependencies.

5. Save the project.

6. Create a ruleset.

Write your custom validations in the ruleset or in Java code that the ruleset calls.
For information about writing custom rulesets, see UIM Developer's Guide.

7. Save the ruleset.

8. Create a ruleset extension point and configure it as follows:

a. In Ruleset, select your ruleset.

b. In Point, select the
BusinessInteractionManager_createBusinessInteractionAttachment base
extension point.

c. In Placement, select BEFORE.

d. Save the ruleset extension point.

9. Open the Service Order base specification.

This step assumes you are using the Service Order base specification, and have
copied it from the ora_uim_basespecifications cartridge into your project for
modifying. If you are not using the Service Order base specification for your
Business Interaction specification, open the Business Interaction specification that
you are using. See "Business Interaction" for more information about the Service
Order base specification.

10. Click the Rules tab.

11. Click Select.

12. Select your ruleset extension point.

13. Click OK.

14. Save the Business Interaction specification.

15. Build the project.

16. Deploy the resultant cartridge.

Chapter 2
CaptureInteraction

2-10

captureInteractionRequest
Figure 2-3 shows the high-level content of captureInteractionRequest. Each request defines a
single interaction, which specifies the data used to create the business interaction. The
interaction defines a header and a body. The body defines a sequence of items: each item
defines a service, and each service defines a service configuration. The body also defines a
sequence of interactions, which specifies the data used to create any child business
interactions.

Figure 2-3 Request Content

Example 2-1 is a condensed version of captureInteractionRequest that highlights the main
content to better understand CaptureInteraction. The example is numbered so that
information describing the example can be referenced.

Example 2-1 omits the following:

• Namespaces, and assumes that they are properly defined

Chapter 2
CaptureInteraction

2-11

• Elements such as notes, start and end dates, effective dates, and descriptions

• Structures that detail an external ID, specification, configuration, and
configurationItem

• Structures and elements within party and place, which are designated with ". . ."

Note:

CaptureInteraction, ProcessInteraction, GetInteraction, and
UpdateInteraction all use the same structure for the request and for the
response. The only difference is the actual request/response name (line 01
and line 71).

Example 2-1 Condensed captureInteractionRequest

01 <captureInteractionRequest>
02 <invbi:interaction>
03 <invbi:header>
04 <invbi:specification/>
05 <invbi:action/>
06 <invbi:id/>
07 <invbi:name/>
08 <invbi:externalIdentity/>
09 <invbi:state/>
10 </invbi:header>
11 <invbi:body>
12 <invbi:item>
13 <invbi:externalIdentity>
14 <invbi:action/>
15 <invbi:service>
16 <invsvc:specification/>
17 <invsvc:id/>
18 <invsvc:action/>
19 <invsvc:name/>
20 <invsvc:externalIdentity/>
21 <invsvc:state/>
22 <invsvc:place>
23 . . .
24 <invplace:service>
25 . . .
26 <invsvc:party>
27 . . .
28 <invparty:service>
29 . . .
30 <invsvc:configuration/>
31 </invparty:service>
32 </invsvc:party>
33 <invsvc:configuration/>
34 </invplace:service>
35 </invsvc:place>
36 <invsvc:party>
37 . . .
38 <invparty:service>
39 . . .
40 <invsvc:place>
41 . . .
42 <invplace:service>

Chapter 2
CaptureInteraction

2-12

43 . . .
44 <invsvc:configuration/>
45 </invplace:service>
46 </invsvc:place>
47 <invsvc:configuration/>
48 </invparty:service>
49 </invsvc:party>
50 <invsvc:configuration/>
51 </invbi:service>
52 <invbi:parameter>
53 <invbi:name/>
54 <invbi:value/>
55 </invbi:parameter>
56 </invbi:item>
57 <invbi:interaction>
58 </invbi:header>
59 <invbi:specification/>
60 <invbi:action/>
61 <invbi:id/>
62 <invbi:name/>
63 <invbi:externalIdentity/>
64 <invbi:state/>
65 </invbi:header>
66 </invbi:interaction>
67 </invbi:body>
68 </interaction>
69 <executeProcess/>
70 <responseLevel/>
71 </captureInteractionRequest>

Throughout Example 2-1, the <specification> element that is shown is actually a structure
that defines the following elements:

Example 2-2 Specification Structure

<invbi:specification>
 <invent:entityNote/>
 <invspec:name/>
 <invspec:entityClass/>
 <invspec:description/>
 <invspec:startDate/>
 <invspec:endDate/>
</invbi:specification>

Within the specification structure, the <name> element is the name of a specification. This
<name> element is not be confused with the <name> element that is specified for the
business interaction (line 07) or for the service (line 19). For example, a request that specifies
the CREATE interaction action must supply the business interaction specification name
(within the specification structure on line 04), and the name of the business interaction being
created by the request (line 07). Similarly, a request that specifies the add service action
must supply the Service specification name (within the specification structure on line 16), and
the name of the service being created by the request (line 19).

Within the specification structure, the <entityClass> element is defined as an enumeration in
the Specification.xsd schema file. The enumeration values reflect UIM entity specification
types, such as BusinessInteraction, Service, Equipment, and so forth. The Service Fulfillment
Web Service does not use the <entityClass> element, so the request does not need to
specify it.

Chapter 2
CaptureInteraction

2-13

Business Interaction
captureInteractionRequest captures one interaction per request (lines 02 through 68).
For each interaction, the request captures one or more items (lines 12 through 56),
and one or more child interactions (lines 57 through 66).

When calling CaptureInteraction, the request must specify an interaction action (line
05) of CREATE or CHANGE. The interaction <action> element is defined as an
enumeration in the BusinessInteraction.xsd schema file.

If the interaction action is CREATE, the request must provide an arbitrary name for the
business interaction (line 07) being created, and the business interaction specification
name (within line 04) upon which the business interaction is being based. (The
specification name is typically Service Order, which is the business interaction
specification provided in the ora_uim_basespecifications cartridge.) The request can
optionally provide an external ID for the business interaction. You do not need to
provide the specification entityClass enumeration value of BusinessInteraction; this
is assumed based on the placement of the specification structure within the
<interaction> element.

If the interaction action is CHANGE, the request must provide the external ID (within
line 08) or the business interaction ID (line 06) to indicate the business interaction to
change, and the actual changes.

Business Interaction Item
captureInteractionRequest captures one or more items per interaction. Example 2-1
shows just one item (lines 12 through 56). To include multiple items, replicate the item
and place it between lines 56 and 57.

Each item defines an interaction action (line 14), which must be ADD regardless of the
request.

Note:

The interaction action must be ADD. It cannot be another action value and it
cannot be left blank. If the interaction action is not ADD, the operation errors.

Business Interaction Item Parameter
Each business interaction item optionally specifies one or more input parameters. For
these parameters, the complex type ParameterType is defined as the following:

<xsd:element maxOccurs="unbounded" minOccurs="0"
 name="parameter" type="invbi:ParameterType">
</xsd:element>

The value element definition within ParameterType is the following:

<xs:element name="value" type="xsd:anyType">

For the value element with the anyType declaration, you can use any valid XML
schema type that provides the following:

Chapter 2
CaptureInteraction

2-14

• An entity in UIM

• A type of StructuredType, defined in the business schema file Structure.xsd

Use the StructuredType complex type to pass entities with multiple property values.
Example 2-3 provides sample XML for using StructuredType with one level of property
information.

Example 2-3 Parameter Sample using StructuredType with One Level

<invbi:parameter>
 <invbi:name>StructuredType Parameter</invbi:name>
 <invbi:value xsi:type="invstruc:StructuredType">
 <invstruc:name>CPE Device 1</invstruc:name>
 <invstruc:property>
 <invprop:name>CPE_MAC</invprop:name>
 <invprop:value xsi:type="xs:string">01-23-45-67-89-ab</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_Model</invprop:name>
 <invprop:value xsi:type="xs:string">PBS</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_Brand</invprop:name>
 <invprop:value xsi:type="xs:string">Motorola</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_SerialNumber</invprop:name>
 <invprop:value xsi:type="xs:string">4TUI-632552</invprop:value>
 </invstruc:property>
 </invbi:value>
</invbi:parameter>

If you have properties with hierarchical information, you create the parameter list with the
StructuredType including a hierarchy. Example 2-4 provides sample XML for using
StructuredType including a child element representing hierarchical property information.

Example 2-4 Parameter Sample using StructuredType with Hierarchy

<invbi:parameter>
 <invbi:name>Structured Param </invbi:name>
 <invbi:value xsi:type="invstruc:StructuredType">
 <invstruc:name>CPE Device</invstruc:name>
 <invstruc:property>
 <invprop:name>CPE_MAC</invprop:name>
 <invprop:value xsi:type="xs:string">1.2.3.4</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_Model</invprop:name>
 <invprop:value xsi:type="xs:string">MI6</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_Brand</invprop:name>
 <invprop:value xsi:type="xs:string">Motorola</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_SerialNumber</invprop:name>
 <invprop:value xsi:type="xs:string">838373723</invprop:value>
 </invstruc:property>
 <invstruc:child xsi:type="invstruc:StructuredType">
 <invstruc:name>Channel Pack</invstruc:name>
 <invstruc:property>

Chapter 2
CaptureInteraction

2-15

 <invprop:name>CPE_MAC</invprop:name>
 <invprop:value xsi:type="xs:string">1.2.3.5</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>code</invprop:name>
 <invprop:value xsi:type="xs:string">code value A</invprop:value>
 </invstruc:property>
 </invstruc:child>
 </invbi:value>
</invbi:parameter>

Service
Each item defines a service, as shown in Example 2-1 (lines 15 through 51). For each
service, you must supply a valid Service specification name (within line 16) from which
to create an instance of the specification in UIM.

Note:

The <service> element (line 15) is actually defined as a choice in the
BusinessInteraction.xsd schema file, with the choices being service,
connectivity, and entity. However, the service choice is the only choice you
can use in the request. The connectivity choice is not supported by the
Service Fulfillment Web Service, and the entity choice is not used in the
request; it is only used in the response.

Each service also defines a service action (line 18). The service action is not an
enumeration, as are the interaction action and item action. Rather, there are several
predefined service actions that UIM code recognizes. You can extend the list of service
actions and their corresponding processes through custom rulesets. Service actions
are further explored in "Customizing ProcessInteraction".

Specifically, there are some service actions that the core code recognizes. Through a
custom ruleset, you can extend the input service actions and map each custom
service action to one of the service actions that the core code recognizes.

The service may also specify a place (lines 22 through 35) or a party (lines 36 through
49) to associate to the service.

The request and response use the same structure. Most of the elements are used only
by the response, so there are numerous elements that are not used by the request.
For example, a service and configuration for the place (lines 24 through 34), a service
and configuration for the party (lines 38 through 48), and the configuration for the
service itself (line 50).

Associated Business Interaction
captureInteractionRequest captures one or more child interactions per interaction.
Example 2-1 shows just one child interaction (lines 57 through 66). To include multiple
interactions, replicate the child interaction (lines 57 through 66) and place it between
lines 66 and 67.

Chapter 2
CaptureInteraction

2-16

ExecuteProcess Element
The <executeProcess> element (line 69) is defined after the interaction and applies to the
interaction. This element is defined as a Boolean and is used only by CaptureInteraction.
When the value of <executeProcess> is true, CaptureInteraction executes and, upon
completion, ProcessInteraction executes. This eliminates the need to place two separate web
service calls; one for CaptureInteraction and one for ProcessInteraction. When the value of
<executeProcess> is false, just CaptureInteraction executes. The default value is false.

ResponseLevel Element
captureInteractionRequest, processInteractionRequest, getInteractionRequest, and
updateInteractionRequest define the <responseLevel> element (line 70). This element
specifies an enumeration value, as defined by the InteractionResponseLevelEnum
enumeration in the InteractionMessages.xsd schema file.

Depending on the enumeration value specified in the request, the level of information
returned by the response can vary:

• INTERACTION

Returns just the interaction information.

• INTERACTION_ITEM

Returns the interaction and item information.

• INTERACTION_ITEM_ENTITY

Returns the interaction, item, and entity information.

• INTERACTION_ITEM_ENTITY_CONFIGURATION (default option)

Returns the interaction, item, entity, and configuration information.

• INTERACTION_ITEM_ENTITY_CONFIGURATION_EXPANDED

Returns the interaction, item, entity, configuration, and any child configurations.

captureInteractionResponse
captureInteractionResponse returns a varying level of information based on the
<responseLevel> value the request specifies. See "ResponseLevel Element" for more
information.

captureInteractionResponse always includes the business interaction ID and the current
business interaction state. If a new business interaction is created, the business interaction
ID generated by UIM is returned. If an existing business interaction is changed, the business
interaction ID sent with the request is returned. The valid business interaction states are
CREATED, IN_PROGRESS, COMPLETED, or CANCELLED, as defined by an enumeration
in the BusinessInteraction.xsd schema file.

captureInteractionResponse returns an error when:

• The request specifies an interaction action of CREATE with a business interaction ID that
already exists.

• The request specifies an interaction action of CHANGE with a business interaction ID (or
external ID) that does not exist.

Chapter 2
CaptureInteraction

2-17

• An optional extension point is used to validate the input, and the associated
ruleset logs an error. For example, the XML input does not validate.

ProcessInteraction
The ProcessInteraction operation moves planned services into current inventory. The
planned service is represented by the <interaction> element, which is stored in UIM as
a business interaction attachment, having been placed there by CaptureInteraction.

ProcessInteraction retrieves the business interaction and the attachment with the
highest sequence number and, based on the items defined for the interaction,
processes each item. Each item creates or updates a service, including any default
service configuration items defined by the specified Service Configuration
specification.

ProcessInteraction also calls the following methods per service configuration item:

• BusinessInteractionManager.getEntityAction()

• BaseConfigurationManager.automateConfiguration()

The ora_uim_baseextpts cartridge provides base extension points for both of these
methods, which you can use to run custom code that maps custom service actions
and that creates or updates service configuration items. This topic is further explored
in "ProcessInteraction Logic Flow" and "Customizing ProcessInteraction".

When calling ProcessInteraction, the request must specify the external ID or the
business interaction ID to indicate the business interaction to process.

The request can specify whether to process the entire business interaction, or just
specific business interaction items. If the request specifies the external ID or business
interaction ID only, the entire business interaction is processed; if the request specifies
the external ID or business interaction ID and specific business interaction items, only
the specified business interaction items are processed.

ProcessInteraction Logic Flow
Figure 2-4 shows what occurs when processInteractionRequest specifies a CREATE
interaction action. A business interaction is represented as BI in the figure.

Chapter 2
ProcessInteraction

2-18

Figure 2-4 ProcessInteraction Logic Flow

In Figure 2-4, the light gray boxes represent the work performed by ProcessInteraction, prior
to calling the custom ruleset. ProcessInteraction handles the processing of the business
interaction. The dark gray boxes represent the work performed by custom code, which
handles:

• Mapping custom service actions to UIM entity actions (optional)

If your implementation uses only existing service actions, this custom code is not needed;
if your implementation defines additional custom service actions, this custom code is
required.

• Processing business interaction items (required)

The processing of the business interaction items involves customizations that are
necessary to meet the business requirements of providing the specific type of service.
This custom code must process service actions, custom service actions, and custom
parameters, and calls the appropriate UIM API methods to create the service in UIM.

Service Configuration Association
Regarding the Associate Service Configuration to BI box in Figure 2-4: A service
configuration is indirectly associated to a business interaction through the business
interaction items. This association is shown by the dotted line in Figure 2-5. To associate the
service configuration to the business interaction, ProcessInteraction:

• Creates business interaction items based on the items for the interaction in the request

Chapter 2
ProcessInteraction

2-19

• Associates the business interaction items to the service configuration

Figure 2-5 Association of Service Configuration to BI

Customizing ProcessInteraction
Customizing ProcessInteraction involves the following:

• Modeling the Service in Design Studio

• Customizing Service Actions

• Customizing the Automation of Service Configurations

An example of customizing ProcessInteraction is described in "ProcessInteraction
Example".

Modeling the Service in Design Studio
Before you begin customizing ProcessInteraction, you must model your service within
an Inventory project in Design Studio. For example, your Inventory project must define
specifications that describe your service, service configuration, and service
configuration items that fulfill the service in UIM.

See UIM Concepts for information about services and service configurations, and see
the Design Studio Help for information about modeling services in Design Studio.

Customizing Service Actions
captureInteractionRequest defines a service action for each service in the request.
The service action is not an enumeration; rather, there are several predefined actions
(called entity actions) that UIM code recognizes and processes.

The UIM-defined entity actions are:

• create

• change

Chapter 2
ProcessInteraction

2-20

• delete

• disconnect

• suspend

• resume

• no_action

Note:

The no_action service action prevents the creation of new service
configurations as a part of process interaction flow in UIM. This service action
merges the changes into existing service configurations that are in progress.
For example, you can use this service action in Revision orders where the
service is still in Pending and the existing service configurations should be
updated than creating new ones.

The web service recognizes two additional entity actions that enable the web service to
perform additional functionality. They are:

• suspendWithConfiguration

• resumeWithConfiguration

For example, the suspend entity action suspends a service but does not touch the service
configuration. The suspendWithConfiguration entity action suspends a service and creates a
new service configuration version. Similarly, the resume entity action resumes a suspended
service but does not modify the service configuration. The resumeWithConfiguration entity
action resumes a suspended a service and creates a new service configuration version. (For
either action, if an existing service configuration version does not exist, an error is thrown
because the service configuration must already exist if you are suspending or resuming it.)

Note:

All of the entity actions are case sensitive.

Customizations are based on the service action (Example 2-1, line 18) and parameters
(Example 2-1, lines 52 through 55). So, you must establish a finite list of service actions and
parameters that can be specified in the request, which can then be recognized by, and
processed by, the custom code.

To customize service actions:

1. Determine the finite list of service actions and parameters to process.

If your finite list of service actions includes only UIM-defined entity actions (and no
custom service actions), you do not need to perform this procedure.

2. In Design Studio, open the Project editor.

This is the same project that contains the specifications you created to model your
service.

3. Click the Dependency tab.

4. Add the ora_uim_base_extpts cartridge to the list of dependencies.

Chapter 2
ProcessInteraction

2-21

5. Save the project.

6. Create a ruleset.

Write custom code that maps your custom service actions to entity actions. The
custom code can be in the ruleset, or in Java code that the ruleset calls. For
information about writing custom rulesets, see UIM Developer's Guide.

7. Save the ruleset.

8. Create a ruleset extension point and configure it as follows:

a. In Ruleset, select your ruleset.

b. In Point, select the BusinessInteractionManager_getEntityAction base
extension point.

c. In Placement, select INSTEAD.

d. Save the ruleset extension point.

9. Open your Service specification.

10. Click the Rules tab.

11. Click Select.

12. Select your ruleset extension point.

13. Click OK.

14. Save the Service specification.

15. Build the project.

16. Deploy the resultant cartridge.

Customizing the Automation of Service Configurations
To customize the automation of service configurations:

1. In Design Studio, open the Project editor.

This is the same project that contains the specifications that your created to model
your service.

2. Click the Dependency tab.

3. Add the ora_uim_base_extpts cartridge to the list of dependencies.

4. Save the project.

5. Create a ruleset.

Write custom code that processes the business interaction items, evaluates the
mapped entity actions and custom parameters, and calls the appropriate API
methods to create the service in UIM. See "Developing the Custom Code" for
more information.

The custom code can be in the ruleset, or in Java code that the ruleset calls. For
information about writing custom rulesets, see UIM Developer's Guide.

6. Save the ruleset.

7. Create a ruleset extension point and configure it as follows:

a. In Ruleset, select your ruleset.

Chapter 2
ProcessInteraction

2-22

b. In Point, select the BaseConfigurationManager_automateConfiguration base
extension point.

c. In Placement, select INSTEAD.

d. Save the ruleset extension point.

8. Open your Service Configuration specification.

9. Click the Rules tab.

10. Click Select.

11. Select your ruleset extension point.

12. Click OK.

13. Save the Service Configuration specification.

14. Build the project.

15. Deploy the resultant cartridge.

Developing the Custom Code
ProcessInteraction triggers events that result in a call to custom code that automates service
configurations by calling API methods to fulfill the service in UIM.

See UIM API Overview for code examples that show how to call the UIM API methods from
within custom code.

The following information pertains to the custom code:

• The custom code must handle and process the XML payload based on the domain-
specific business rules and models.

• The custom code must handle the creation or deletion of any dependent resources.

• The custom code must handle auto-design for new orders and auto-redesign for change
orders.

• The custom code can assume the service and service configuration are already created;
the purpose of the custom code is to manage the resources and characteristics.

• When modifying a subservice with parent input only:

The business interaction attachment typically may not contain specific change request
information for a subservice that was created when fulfilling the requested service. For
example, a voice mail service created by UIM to fulfill the request for a Mobile GSM
service with a voice mail feature. In this scenario, the voice mail service is a subservice
assigned to the Mobile GSM service. When the subservice requires a change, the
change request and service action are often submitted for the parent service, and not for
the subservice.

In such scenarios, the web service operation has to identify that the change service
action is for the subservice, and process the change for the subservice. For example, if
the custom code needs to act on a subservice, it can build a request based on the
subservice, call CaptureInteraction, and recursively call ProcessInteraction until it returns
the no action entity action.

ProcessInteraction Example
The following list describes some project content your implementation may require to run
ProcessInteraction.

Chapter 2
ProcessInteraction

2-23

• Numerous custom specifications and characteristics

At a minimum, your project needs to define a Service specification, a Service
Configuration specification, and resource-specific specifications, such as
Telephone Number, Physical Device, Logical Device, and so forth. Your project
may also require characteristics in which to store resource-specific data.

• AUTOMATE_MY_CONFIGURATION.ruleset

This is a custom ruleset that is the entry point into the custom code. The ruleset
calls the AutomateMyConfiguration() method, which is defined in a custom Java
class. In this example, the custom Java class is named
MyConfigurationManagerImpl.java, which is also described in this list.

• AUTOMATE_MY_CONFIGURATION_EXT.rst

This is a custom ruleset extension point that associates the
AUTOMATE_MY_CONFIGURATION custom ruleset to the UIM-provided
BaseConfigurationManager_automateConfiguration extension point and
configures the custom ruleset to run instead of the method that the extension
point defines (the BaseConfigurationManager.automateConfiguration() method).

• MAP_MY_SERVICE_ACTION.ruleset

If you defined custom service actions, this is a custom ruleset that evaluates
custom service actions specified in the request and maps them to an entity action
that is recognizable to UIM. In this example, there are five custom service actions,
so this ruleset evaluates the five custom service actions and maps each one to the
appropriate entity action. The entity actions are defined in the Service Fulfillment
Web Service code, as described in "Customizing ProcessInteraction".

Table 2-1 provides an example of mapping custom service actions to UIM entity
actions.

Table 2-1 Example Mapping of Custom Service Actions

Custom Service Action UIM Entity Action

createMyService create

updateMyService change

changeAddToMyService change

disconnectMyService disconnect

suspendMyService suspend

• MAP_MY_SERVICE_ACTION_EXT.rst

This is a custom ruleset extension point that associates the
MAP_MY_SERVICE_ACTION custom ruleset to the UIM-provided
BusinessInteractionManager_getEntityAction extension point and configures the
custom ruleset to run instead of the method that the extension point defines
(BusinessInteractionManager.getEntityAction() method).

• MyConfigurationManagerImpl.java

This is custom Java code that contains a series of if else statements that evaluate
the mapped entity action. For each entity action, the code calls another method
within the same class. Within each of these methods, the finite set of parameters
that are valid for the specific service action that was mapped to the entity action is
evaluated.

Chapter 2
ProcessInteraction

2-24

From there, the custom code calls various API methods to perform the work required to
realize any service in UIM.

• Any additional custom rulesets and ruleset extension points

When the custom code calls API methods, the existing API functionality may need to be
extended to realize a service in UIM. So, your project may also have to define any
needed rulesets that can be configured to run before or after the API methods that the
custom code calls.

processInteractionResponse
processInteractionResponse returns a varying level of information based on the
<responseLevel> value the request specifies. See "ResponseLevel Element" for more
information.

ProcessInteraction returns an error when:

• It cannot find the business interaction specified by the calling system.

• The calling system specifies an input item entity other than Service.

• Any errors thrown by the custom code that ProcessInteraction calls.

GetInteraction
The GetInteraction operation retrieves a business interaction based on an external ID or
business interaction ID. The data returned in the response depends on when GetInteraction
is called and on the <responseLevel> value getInteractionRequest specifies.

When GetInteraction is called before ProcessInteraction, the response returns only the
business interaction data. In this scenario, service data is not returned because
ProcessInteraction has not yet processed the business interaction into current inventory, so
there is no service data in UIM yet.

When GetInteraction is called after ProcessInteraction, the response returns the business
interaction data and service data. In this scenario, service data is returned because
ProcessInteraction has processed the business interaction into current inventory, so there is
service data in UIM to retrieve. The level of detail of service data returned by the response
depends on the <responseLevel> value getInteractionRequest specifies. See
"ResponseLevel Element" for more information.

GetInteraction Logic Flow
Figure 2-6 shows what occurs when the GetInteraction operation is called. A business
interaction is represented as BI in the figure.

Chapter 2
GetInteraction

2-25

Figure 2-6 GetInteraction Logic Flow

getInteractionResponse
getInteractionResponse returns a varying level of information based on when the
operation is called and on the <responseLevel> value the request specifies. See
"ResponseLevel Element" for more information.

GetInteraction returns an error when:

• The request does not specify an external ID or business interaction ID upon which
to base the retrieval

• It cannot find the business interaction specified in the request

UpdateInteraction
The UpdateInteraction operation transitions UIM business entities through their
respective life-cycle states within the context of a business interaction.

When calling UpdateInteraction, the request must specify an external ID or business
interaction ID and an interaction action of APPROVE, ISSUE, CANCEL, or
COMPLETE. If you want to change the effective date of the configuration version, the
request must specify an effectiveDate and an interaction action of CHANGE.

Interaction actions are defined by the BusinessInteractionActionEnum enumeration in
the BusinessInteraction.xsd schema file. This enumeration defines several actions,
but only the APPROVE, ISSUE, CANCEL, COMPLETE, or CHANGE actions are valid
for UpdateInteraction.

UpdateInteraction uses the business interaction ID to find the service and service
configuration, and performs the specified action for the service and service
configuration. For example, if the interaction action is APPROVE, it approves the
service and service configuration associated to the business interaction and performs
the action recursively to any child business interactions.

UpdateInteraction does not cascade to child entities assigned to configuration items.
For example, if the business interaction is associated to a service configuration, and

Chapter 2
UpdateInteraction

2-26

the service configuration has a service configuration item with a child service assigned to it,
UpdateInteraction does not apply the action to the service configuration item child service
status.

UpdateInteraction Logic Flow
Figure 2-7 shows what occurs when the UpdateInteraction operation is called. A business
interaction is represented as BI in the figure.

Figure 2-7 UpdateInteraction Logic Flow

updateInteractionResponse
updateInteractionResponse returns a varying level of information based on the
<responseLevel> value the request specifies. See "ResponseLevel Element" for more
information.

UpdateInteraction returns an error when:

Chapter 2
UpdateInteraction

2-27

• It cannot find the business interaction specified by the calling system

• The request specifies a value for <item> other than <service>

GetConfiguration
The GetConfiguration operation retrieves one of the following, based on a search
option specified in the request:

• Service Configuration

• Pipe Configuration (representing a pipe or channelized connectivity)

• Logical Device Configuration

• Logical Device Account Configuration

• Network Configuration

• Place Configuration

A successful response returns the following for the specified configuration:

• Configuration

• Configuration properties (attributes and characteristics)

• Configuration items (including any assigned or referenced resources)

• Child entities and their child configurations

For example, Figure 2-8 shows the data that can be retrieved, in dark gray, for a
requested configuration. GetConfiguration does not retrieve information about
relationships to other entities. However, you can customize GetConfiguration to return
additional information. See "Customizing GetConfiguration" for more information.

Chapter 2
GetConfiguration

2-28

Figure 2-8 Example Service Configuration Retrieval

Note:

A configurable place is actually a GeographicSite specialization of the abstract
Place entity; GeographicSite is the only specialization of the Place entity that is
configurable. See Oracle Communications Information Model Reference for more
information.

getConfigurationRequest
This section describes getConfigurationRequest, in which you specify a search option that
tells GetConfiguration which type of configuration to return. In the request, you can also
specify additional request options that tell GetConfiguration what data to include in the
response, or to omit from the response.

Request Search Options
In getConfigurationRequest, you specify a search option that indicates the type of
configuration to retrieve. The search options, which are defined in the
ConfigurationMessages.xsd schema file, are listed and described in Table 2-2.

Chapter 2
GetConfiguration

2-29

Note:

For each search option listed in Table 2-2, Entity represents:

• DeviceInterface

• Connectivity

• LogicalDevice

• LogicalDeviceAccount

• Network

• Place

• Service

Table 2-2 GetConfiguration Search Options

Search Option Description

EntityConfigurationSearchB
yConfigId

GetConfiguration retrieves the configuration based on the
specified configuration ID.

EntityConfigurationSearchB
yEntityId

GetConfiguration retrieves the latest active configuration (any
state other than CANCELLED) based on the specified entity ID. If
there is only one configuration, GetConfiguration retrieves it.

EntityConfigurationSearchB
yVersionNumber

GetConfiguration retrieves the configuration based on the
specified entity ID and version number.

EntityConfigurationSearchB
yConfigStatus

GetConfiguration retrieves the latest configuration based on the
entity ID and configuration state. States can be IN_PROGRESS,
DESIGNED, ISSUED, COMPLETED, PENDING_CANCEL, or
CANCELLED.

EntityConfigurationSearchB
yEffectiveDate

GetConfiguration retrieves the configuration based on the
specified entity ID and configuration effective date.

ConnectivityConfigurationS
earchByConnectivityIdentifi
er

GetConfiguration retrieves the latest active pipe configuration
(any state other than CANCELLED) based on the specified
connectivity identifier. If there is only one pipe configuration,
GetConfiguration retrieves it.

This search option is applicable only when getting pipe
configurations.

Request Search Option Examples
Example 2-5 shows getConfigurationRequest with a search option of
ServiceConfigurationSearchByConfigId in bold. The element below the search option
shows the configuration ID to search for.

Example 2-5 getConfigurationRequest

<con:getConfigurationRequest>
 <responseLevel>ENTITY_CONFIGURATION_EXPANDED</responseLevel>
 <con:searchOptions xsi:type="con:GetServiceConfigurationType"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <con:configSearchOption
 xsi:type="con:ServiceConfigurationSearchByConfigId">

Chapter 2
GetConfiguration

2-30

 <con:configurationId>123456</con:configurationId>
 </con:configSearchOption>
 </con:searchOptions>
</con:getConfigurationRequest>

Example 2-6 shows getConfigurationRequest with a search option of
ConnectivityConfigurationSearchByVersionNumber in bold. The elements below the search
option show the entity ID and configuration version number to search for.

Example 2-6 getConfigurationRequest

<con:getConfigurationRequest>
 <responseLevel>ENTITY_CONFIGURATION_EXPANDED</responseLevel>
 <con:searchOptions xsi:type="con:GetConnectivityConfigurationType"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <con:configSearchOption
 xsi:type="con:ConnectivityConfigurationSearchByVersionNumber">
 <con:entityId>1</con:entityId>
 <con:versionNumber>1</con:versionNumber>
 </con:configSearchOption>
 </con:searchOptions>
</con:getConfigurationRequest>

Additional Request Options
In getConfigurationRequest, you can also specify the following options. If an option is not
specified in the request, the operation uses the default value.

• includeTags

– When set to true, the response includes tags on configuration items, with the tag
name and description populated.

– When set to false (the default), the response does not include tags on configuration
items.

For information about tags, see the Design Studio Help.

• includeTagsOtherInfo

– When set to true, tag name, description, and otherInformation are populated.

– When set to false (the default), tag name and description are populated;
otherInformation is not populated.

Note:

The includeTagsOtherInfo option is only applicable when includeTags is
true.

For information about tags, see the Design Studio Help.

• includeNetworkTargets

– When set to true, the response includes network targets.

– When set to false (the default), the response does not include network targets.

For information about network targets, see UIM Concepts.

Chapter 2
GetConfiguration

2-31

Additional Request Options Example
Example 2-7 shows getConfigurationRequest with the additional request options.

Example 2-7 getConfigurationRequest

<con:getConfigurationRequest>
 <com:header></com:header>
 <con:searchOptions
 .
 .
 .
 </con:searchOptions>
 <con:includeTags>true</con:includeTags>
 <con:includeTagsOtherInfo>true</con:includeTagsOtherInfo>
</con:getConfigurationRequest>

ResponseLevel Element
getConfigurationRequest and updateConfigurationRequest define the
<responseLevel> element. This element specifies an enumeration value, as defined by
the ConfigurationResponseLevelEnum enumeration in the
ConfigurationMessages.xsd schema file. (This element does not apply to
getConfigurationDifferencesRequest.)

Depending on the enumeration value specified in the request, the level of information
returned by the response can vary:

• ENTITY_CONFIGURATION (default option)

Returns the entity and configuration information.

• ENTITY_CONFIGURATION_EXPANDED

Returns the entity, configuration, and any child configurations.

GetConfiguration Logic Flow
Figure 2-9 shows what occurs when the GetConfiguration operation is called.

Depending on which search option is specified, the logic flow may start with the Get
Configuration box, or it may start with the Get Entity box. For example, if the search
option is EntityConfigurationSearchByConfigId, the entry point to the logic flow is the
Get Configuration box. If the search option is any other option, which are all based
on an entity ID, the entry point to the logic flow is the Get Entity box.

Chapter 2
GetConfiguration

2-32

Figure 2-9 GetConfiguration Logic Flow

getConfigurationResponse
getConfigurationResponse returns a varying level of information based on the
<responseLevel> value the request specifies. See "ResponseLevel Element" for more
information.

GetConfiguration returns an error when:

• The request specifies a search option other than the valid search options listed in
Table 2-2.

• The request does not specify the data that the search option needs to perform the
search.

• The operation cannot find the configuration ID, entity ID, or connectivity identifier
specified in the request.

Customizing GetConfiguration

Note:

This section describes the use of rulesets and extension points to customize
GetConfiguration. See UIM Developer's Guide for detailed information about
rulesets and extension points.

Chapter 2
GetConfiguration

2-33

For your implementation, you may need more information than GetConfiguration
returns. For example, GetConfiguration does not retrieve information about
relationships to other entities. If you have an assigned entity that is a physical device,
you may want GetConfiguration to return the mapped logical device or some of its
characteristics. Or, for a device interface, you may want GetConfiguration to return the
mapped physical port. For such scenarios, you can customize GetConfiguration to
return additional information.

Extension Points
The UIM_SDK_Home/cartridges/base/ora_uim_baseextpts cartridge provides the
following specification-based extension points for customizing GetConfiguration:

• BaseConfigurationManager_populateCustomProperties.rstp, which defines the
following method signature:

public Map<String, String>
populateCustomProperties(ConsumableResource resource,
InventoryConfigurationItem item,
InventoryConfigurationVersion inventoryConfigurationVersion)

• BaseConfigurationManager_populateCustomProperties2.rstp, which defines the
following method signature:

public Map<String, String>
populateCustomProperties(ConfigurationReferenceEnabled entity,
InventoryConfigurationItem item,
InventoryConfigurationVersion inventoryConfigurationVersion)

GetConfiguration always calls the populateCustomProperties() methods, which are
empty methods that exist for customizing GetConfiguration. Within a configuration,
each configuration item represents a resource, which may be assigned or referenced.
The populateCustomProperties() methods define different inputs; a consumable
resource entity versus a reference-enabled entity. The former method is called during
the process of retrieving assigned resources, and the latter method is called during the
process of retrieving referenced resources.

Customization Steps
To customize GetConfiguration:

1. Create a ruleset to retrieve any additional assigned resource data that your
implementation requires.The ruleset must return a Map containing a name/value
pair of the retrieved data name and corresponding data value.

2. Create a ruleset extension point to configure your ruleset to run after the
populateCustomProperites() method, using the
BaseConfigurationManager_populateCustomProperties.rstp extension point.

3. Create a ruleset to retrieve any additional referenced resource data that your
implementation requires. The ruleset must return a Map containing a name/value
pair of the retrieved data name and corresponding data value.

4. Create a ruleset extension point to configure your ruleset to run after the
populateCustomProperites() method, using the
BaseConfigurationManager_populateCustomProperties2.rstp extension point.

5. Configure any applicable specifications with the appropriate ruleset extension
point. (The base extension points are specification-based, not global.)

Chapter 2
GetConfiguration

2-34

6. Deploy the cartridge or cartridges containing the ruleset, ruleset extension points, and
specifications.

7. Call GetConfiguration.

GetConfiguration calls the populateCustomProperties() methods, and your rulesets run
afterward, populating the customProperty element in the response. See "Customized
Response" for more information.

Customized Response
Example 2-8 shows an excerpt from the Configuration.xsd file, which defines the
customProperty element.

Example 2-8 customProperty

<xs:element name="customProperty" type="invprop:PropertyType" nillable="true"
minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Custom Properties added for the entity Assignment/Reference.
 </xs:documentation>
 </xs:annotation>
</xs:element>

Example 2-9 shows an excerpt from the Property.xsd file, which defines the PropertyType
structure. (The customProperty element references PropertyType in its definition.)

Example 2-9 PropertyType

<xs:complexType name="PropertyType">
 <xs:annotation>
 <xs:documentation>PropertyType holds a single dynamic property as a
 name-value pair.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="value" type="xs:string" nillable="true" />
 <xs:element name="action" type="invent:EntityActionEnum" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Action holds the property Action which indicates whether the
 property needs to be added/deleted/updated.
 Valid values for this element are defined by EntityActionEnum.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>

Example 2-10 shows the structure that ends up in the response when customizations are in
place.

Example 2-10 Response

<con:customProperty>
 <invprop:name>customDataName1</invprop:name>
 <invprop:value>customDataValue1</invprop:value>
 <invprop:action><invprop:action>
</con:customProperty>
<con:customProperty>

Chapter 2
GetConfiguration

2-35

 <invprop:name>customDataName2</invprop:name>
 <invprop:value>customDataValue2</invprop:value>
 <invprop:action><action>
</con:customProperty>
<con:customProperty>
 <invprop:name>customDataName3</invprop:name>
 <invprop:value>customDataValue3</invprop:value>
 <invprop:action><invprop:action>
</con:customProperty>

GetConfigurationDifferences
The GetConfigurationDifferences operation compares two versions of a service, pipe
(representing a pipe or channelized connectivity), logical device, logical device
account, network, or place configuration and returns the differences. The type of
configuration compared is based on a search option specified in the request. A
successful response returns the differences between properties (attributes and
characteristics); differences between configuration items, including any assigned or
referenced resources; and the differences between any child entities and their child
configurations. For example, Figure 2-10 shows the data that is retrieved and
compared, in dark gray, for a requested configuration (service, logical device, logical
device account, network, pipe (representing a pipe or channelized connectivity), or
place) comparison. You can customize GetConfigurationDifferences to return
additional information. See "Customizing GetConfigurationDifferences" for more
information.

Figure 2-10 Example Service Configuration Differences

Chapter 2
GetConfigurationDifferences

2-36

Note:

GetConfigurationDifferences calls GetConfiguration, which returns the properties
(attributes and characteristics) for all resources, but GetConfigurationDifferences
does not compare the returned properties for the resources.

getConfigurationDifferencesRequest
This section describes getConfigurationDifferencesRequest, in which you specify a search
option that tells GetConfigurationDifferences which type of configuration versions to compare
and return. In the request, you can also specify additional request options that tell
GetConfigurationDifferences what data to include in the response, or to omit from the
response.

Request Search Options
In getConfigurationDifferencesRequest, you specify a search option that indicates the type of
configuration versions. The search options, which are defined in the
ConfigurationMessages.xsd schema file, are listed and described in Table 2-3.

Table 2-3 GetConfigurationDifferences Search Options

Search Option Description

BusinessInteractionConfigurati
onDifferencesSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this business interaction,
based on the specified business interaction ID or external ID
representing a business interaction.

This search option also finds the differences between two
configuration versions associated with any child business interactions.

ServiceConfigurationDifferenc
esSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this service, based on the
specified service ID or external ID representing a service.

This search option also finds the differences between two
configuration versions associated with any child services.

ConnectivityConfigurationDiffe
rencesSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this pipe, based on the
specified pipe ID (representing a pipe or channelized connectivity).

This search option does not find the configuration differences for child
pipes.

LogicalDeviceConfigurationDiff
erencesSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this logical device, based on
the specified logical device ID.

This search option does not find the configuration differences for child
logical devices because logical devices cannot have a parent/child
relationship.

Chapter 2
GetConfigurationDifferences

2-37

Table 2-3 (Cont.) GetConfigurationDifferences Search Options

Search Option Description

LogicalDeviceAccountConfigur
ationDifferencesSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this logical device account,
based on the specified logical device account ID.

This search option does not find the configuration differences for child
logical device accounts because logical device accounts cannot have
a parent/child relationship.

NetworkConfigurationDifferenc
esSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this network, based on the
specified network ID.

This search option does not find the configuration differences for child
networks because networks cannot have a parent/child relationship.

PlaceConfigurationDifferences
SearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this place, based on the
specified place ID.

This search option also finds the differences between two
configuration versions associated with any child places.

All search options inherit from the abstract ConfigurationDifferencesSearchOption, and
all entity-specific search options inherit from the abstract
EntityConfigurationDifferencesSearchOption, as shown in Figure 2-11.

Figure 2-11 Search Options

The request must specify one of the following:

• Business interaction ID

• Entity ID

• External ID for a business interaction

• External ID for a service entity

Chapter 2
GetConfigurationDifferences

2-38

In the above list, the entity ID can be for a service, pipe (representing a pipe or channelized
connectivity), logical device, logical device account, network, or place entity. However, the
external ID for an entity can only be for a service entity.

Target and Source Configuration Versions

ConfigurationDifferencesEntitySearchOption, from which all search options inherit, defines
the following:

• Target configuration version

• Source configuration version

The target and source configuration versions indicate the configuration versions to compare.
The target configuration is the root of the comparison. Depending on what is specified in the
request, the operation does the following:

• If the request specifies both the target and source configuration versions, the operation
compares the two configuration versions.

• If the request specifies only a target configuration version, the operation compares the
specified target configuration version to a defaulted source configuration version. In this
scenario, the source configuration version defaults to the latest non-cancelled
configuration version that precedes the specified target configuration version.

• If the request specifies neither, the operation compares a defaulted target configuration
version to a defaulted source configuration version. In this scenario, the target
configuration version defaults to the latest non-cancelled configuration version, and the
source configuration version defaults to the latest non-cancelled configuration version
that precedes the defaulted target configuration version.

• If the request specifies only a source configuration version (which is not recommended),
the operation compares a defaulted target configuration version to the specified source
configuration version. In this scenario, the target configuration defaults to the latest non-
cancelled configuration version that follows the specified source configuration version, if it
exists. If the operation is unable to default the target configuration version, the response
returns an error.

Request Search Option Examples
Example 2-11 shows getConfigurationDifferencesRequest with a search option of
BusinessInteractionConfigurationDifferencesSearchOption in bold. The elements below the
search option show the specified business interaction ID to search for.

This request example also shows how you can specify an external ID for a business
interaction to search for. In the example, these elements are commented out because you
can only specify one or the other when using this search option.

Example 2-11 getConfigurationDifferencesRequest

<con:getConfigurationDifferencesRequest>
 <com:header/>
 <con:searchOptions
 xsi:type="con:BusinessInteractionConfigurationDifferencesSearchOption"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <con:interaction xsi:type="bus:BusinessInteractionType">
 <bus:header>
 <bus:id>123456</bus:id>
 <!--
 <bus:externalIdentity xsi:type="invent:ExternalIdentityType">

Chapter 2
GetConfigurationDifferences

2-39

 <invent:externalObjectId>9876543</invent:externalObjectId>
 </bus:externalIdentity>
 -->
 </bus:header>
 </con:interaction>
 </con:searchOptions>
</con:getConfigurationDifferencesRequest>

Example 2-12 shows getConfigurationDifferencesRequest with a search option of
ServiceConfigurationDifferencesSearchOption in bold. The elements below the search
option show the specified service ID to search for. In this example, where the search
option inherits from the EntityConfigurationDifferencesSearchOption, the request also
specifies a source configuration version and a target configuration version.

Example 2-12 getConfigurationDifferencesRequest

<con:getConfigurationDifferencesRequest>
 <com:header></com:header>
 <con:searchOptions
 xsi:type="con:ServiceConfigurationDifferencesSearchOption"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <con:service xsi:type = "ser:ServiceCriteriaType">
 <ser:serviceId>2468</ser:serviceId>
 </con:service>
 <con:targetConfigurationCriteriaType
 xsi:type="conf:ConfigurationCriteriaType">
 <conf:configurationVersionNumber>2</conf:configurationVersion
 Number>
 </con:targetConfigurationCriteriaType>
 <con:sourceConfigurationCriteriaType
 xsi:type="conf:ConfigurationCriteriaType">
 <conf:configurationVersionNumber>1</conf:configurationVersion
 Number>
 </con:sourceConfigurationCriteriaType>
 </con:searchOptions>
</con:getConfigurationDifferencesRequest>

Additional Request Options
In getConfigurationDifferencesRequest, you can also specify the following options. If
an option is not specified in the request, the operation uses the default value.

• includeConfigItemDifferences

– When set to true, the response includes changes on the configuration item
itself. For example, adding or removing configuration items.

– When set to false (the default), the response includes only changes on the
resources.

• includeChildConfigDifferences

– When set to true, the response includes differences for child configurations
referenced or assigned to a configuration item on a parent configuration. For
example, when a resource-facing service (RFS) is assigned on a customer-
facing service (CFS).

– When set to false (the default), the response does not include these
differences.

• includeActionPerformedInTargetVersion

Chapter 2
GetConfigurationDifferences

2-40

– When set to true, the response includes the actionPerformedInTargetVersion
element within the target configuration item differences. The
actionPerformedInTargetVersion element is a Boolean value in the response; when
true is returned, it indicates the action taken was performed in the target version;
when false is returned, it indicates the action taken was performed in the source
version.

For example, when comparing version 1 (source) and version 4 (target), where
versions 2 and 3 are not cancelled, and resource A is assigned in version 1: If
resource A is modified in version 3, actionPerformedInTargetVersion is set to false;
but if resource A is modified in version 4 (the version to compare),
actionPerformedInTargetVersion is set to true.

– When set to false (the default), the response does not include the
actionPerformedInTargetVersion element within the target configuration item
differences.

• includeTarget

– When set to true (the default), the response includes the target configuration.

– When set to false, the response does not include the target configuration.

Note:

The includeTarget option takes precedence over the
returnTargetWhenNoChange option. For example, if returnTarget is true and
returnTargetWhenNoChange is false, and the configurations versions being
compared are the same, the response includes the target configuration.

• includeSource

– When set to true (the default), the response includes the source configuration.

– When set to false, the response does not include the source configuration.

• returnTargetWhenNoChange

– When set to true, and the versions being compared are the same, the response
returns an action of Unchanged and populates the target configuration; the source
configuration is not populated.

– When set to false (the default), and the versions being compared are the same, the
response returns an action of Unchanged and populates neither configuration (target
or source).

• includeTags

– When set to true, the response includes tags on configuration items, with the tag
name and description populated.

– When set to false (the default), the response does not include tags on configuration
items.

For information about tags, see the Design Studio Help.

• includeTagsOtherInfo

– When set to true, tag name, description, and otherInformation are populated.

– When set to false (the default), tag name and description are populated;
otherInformation is not populated.

Chapter 2
GetConfigurationDifferences

2-41

Note:

The includeTagsOtherInfo option is only applicable when
includeTags is true.

For information about tags, see the Design Studio Help.

• includeNetworkTargets

– When set to true, the response includes network targets.

– When set to false (the default), the response does not include network targets.

For information about network targets, see UIM Concepts.

Additional Request Options Example
Example 2-13 shows getConfigurationRequest with the additional request options.

Example 2-13 getConfigurationDifferencesRequest

<con:getConfigurationDifferencesRequest>
 <com:header></com:header>
 <con:searchOptions>
 .
 .
 .
 </con:searchOptions>
 <con:includeConfigItemDifferences>true</con:includeConfigItemDifferences>
 <con:includeChildConfigDifferences>true</con:includeChildConfigDifferences>
 <con:includeActionPerformedInTargetVersion>true</
con:includeActionPerformedInTargetVersion>
 <con:includeTarget>true</con:includeTarget>
 <con:includeSource>true</con:includeSource>
 <con:returnTargetWhenNoChange>true</con:returnTargetWhenNoChange>
 <con:includeTags>true</con:includeTags>
 <con:includeTagsOtherInfo>true</con:includeTagsOtherInfo>
</con:getConfigurationDifferencesRequest>

GetConfigurationDifferences Logic Flow
Figure 2-12 shows what occurs when the GetConfigurationDifferences operation is
called.

The first two boxes in Figure 2-12 represent functionality that is only performed when
applicable, depending on what is specified in the request. For example, if the request
specifies a target configuration version, the logic flow would start with Determine
Source Configuration Version, and if the request specifies a target configuration
version and a source configuration version, the logic flow would start with Get Source
Configuration Version.

Chapter 2
GetConfigurationDifferences

2-42

Figure 2-12 GetConfigurationDifferences Logic Flow

If the request specifies a business interaction ID or an external ID for a business interaction,
the operation retrieves and compares any associated service configurations with their
previous configuration version.

Child Configurations
If the configuration has a child configuration, and includeChildConfigDifferences is set to true
in the request, the operation also compares two versions of the child configuration and
returns those differences as well. See the description of includeChildConfigDifferences in
"Additional Request Options" for more information.

All configurations have a start date and an end date. The operation determines which child
configuration versions to compare based on the start and end dates of the child
configurations and the start and end dates of the parent configurations.

Specifically, when comparing parent configuration versions P.3 and P.2, the operation
determines which child configurations through the following process:

1. Find the first child configuration starting on or after the start date of parent configuration
version P.3 and before the start date (if any) of the next configuration version (P.4). If not
found, find the first child configuration version starting before the start date of parent
configuration version P.3.

2. Do the same for parent configuration P.2:

Find the first child configuration starting on or after the start date of parent configuration
version P.2 and before the start date (if any) of the next configuration version (P.3). If not
found, find the first child configuration version starting before the start date of parent
configuration version P.2.

The following examples show how the operation determines which child configuration
versions to compare. In the examples, the parent configuration is represented as P, and the
child configuration is represented as C. Versions of the parent configuration are represented
as P.1, P.2, and P.3, and versions of the child configuration are represented as C.1, C.2, and
C.3.

Example 1
Figure 2-13 shows an example where the start date and end date of the child configuration
are on or after the parent configuration start date.

Chapter 2
GetConfigurationDifferences

2-43

Figure 2-13 Child Start Date Is After Parent Start Date

In this example, the operation is comparing configuration versions P.2 and P.3.
Configuration P is a parent to child configuration C, so the operation must determine
which versions of child configuration C to compare.

The process:

1. Starts with parent configuration version P.3, which has a start date of 7/15.

2. Looks for a child configuration version with a start date that is on or after 7/15.

3. Finds child configuration version C.3, which has a start date of 8/15.

4. Proceeds to parent configuration version P.2, which has a start date of 4/15.

5. Looks for a child configuration version with a start date that is on or after 4/15.

6. Finds child configuration version C.2, which has a start date of 5/15.

The operation determines that child configuration version C.3 is compared with child
configuration version C.2.

Example 2
In this example, the start dates and end dates of the child configurations are both
before and after the parent's configuration start dates, as shown in Figure 2-14:

Chapter 2
GetConfigurationDifferences

2-44

Figure 2-14 Child Start Date Before and After Parent Start Date

In this example, the operation is comparing configuration versions P.2 and P.3. Configuration
P is a parent to child configuration C, so the operation must determine which versions of child
configuration C to compare.

The process:

1. Starts with parent configuration version P.3, which has a start date of 7/15.

2. Looks for a child configuration version with a start date that is on or after 7/15, but does
not find one.

3. Looks for a child configuration version with a start date that is before 7/15.

4. Finds child configuration version C.3, which has a start date of 6/15.

5. Proceeds to parent configuration version P.2, which has a start date of 3/15.

6. Looks for a child configuration version with a start date that is on or after 3/15.

7. Finds child configuration version C.1, which has a start date of 4/15.

The operation determines that child configuration version C.3 is compared with child
configuration version C.1.

Example 3
In this example, the same child configuration version is applicable two versions of the parent
configuration, as shown in Figure 2-15:

Chapter 2
GetConfigurationDifferences

2-45

Figure 2-15 Same Child Configuration

In this example, the operation is comparing configuration versions P.2 and P.3.
Configuration P is a parent to child configuration C, so the operation must determine
which versions of child configuration C to compare.

The process:

1. Starts with parent configuration version P.3, which has a start date of 7/15.

2. Looks for a child configuration version with a start date that is on or after 7/15, but
does not find one.

3. Looks for a child configuration version with a start date that is before 7/15.

4. Finds child configuration version C.2, which has a start date of 3/15.

5. Proceeds to parent configuration version P.2, which has a start date of 4/15.

6. Looks for a child configuration version with a start date that is on or after 4/15, but
does not find one.

7. Looks for a child configuration version with a start date that is before 4/15.

8. Finds child configuration version C.2, which has a start date of 3/15.

The operation determines that child configuration version C.2 is compared with the
same child configuration version. In this scenario, the response returns an action of
Unchanged and may populate the target configuration, depending on what is
specified in the request for the returnTargetWhenNoChange option. See the
description of returnTargetWhenNoChange in "Additional Request Options" for more
information.

Chapter 2
GetConfigurationDifferences

2-46

Overriding the Process Logic that Determines Child Configurations
The process logic that determines the child configuration versions to compare resides in the
BaseConfigurationManager.getEffectiveChildConfiguration() method, and Oracle provides a
base extension point that defines this method.

You can override the logic by writing a custom ruleset that contains custom code that
retrieves the child configuration versions based on your business requirements. You can then
configure the custom ruleset to run at the provided base extension point, resulting in the
custom ruleset running instead of the
BaseConfigurationManager.getEffectiveChildConfiguration() method. See UIM Developer's
Guide for more information about rulesets and extension points.

You can find the BaseConfigurationManager_getEffectiveChildConfiguration base extension
point in the UIM_SDK_Home/cartridges/base/ora_uim_baseextpts.jar file.

getConfigurationDifferencesResponse
getConfigurationDifferencesResponse returns a varying level of information based on the
options specified in the request, as described in "Additional Request Options".

At a high-level, the response returns the following:

• Configuration differences []

– Configuration item difference []

– Target configuration

* Configuration specification

* Configuration item []

– Source configuration

* Configuration specification

* Configuration item []

GetConfigurationDifferences returns an error when:

• The request specifies a search option other than the valid search options listed in
Table 2-3.

• The request does not specify a business interaction ID, entity ID, external ID for a
business interaction, or external ID for an entity that the search option needs to perform
the search.

• The operation cannot find the business interaction ID, entity ID, external ID for the
business interaction, or external ID for the service entity specified in the request.

• The request specifies a target configuration version and a source configuration version,
and the source configuration version number is greater than the target configuration
version number.

• The request specifies a source configuration version and the operation is unable to
determine a target configuration version.

• The request specifies a target configuration version that is cancelled.

• The request specifies a source configuration version that is cancelled.

Chapter 2
GetConfigurationDifferences

2-47

GetConfigurationDifferences request is for configuration versions in the Designed or
Issued state. For instance, the operation returns messages in the following scenarios:

• If the source or target configuration version requested is invalid, the following error
message is given: “Invalid source and target versions. Source and target must be
greater than 0, Source Version number cannot be greater that Target Version
number. Source is 3 and Target is 0."

• If the configuration version requested is in the In Progress, Cancelled,
Completed, or Pending Cancel state, for example, the following warning
message is given and the operation continues processing: “Inventory
Configuration 123 is in Completed state. This operation has been requested on a
configuration version that is in state that is not designed for this Web Service.
Results may be inaccurate."

• The operation is intended for the requested configuration version to be compared
to the previous Completed version. If no previous Completed configuration
version exists, or no previous configuration version exists at all, the following
message is given and the operation continues processing: “A previous
configuration version does not exist."

• The operation is intended for the requested configuration version to be compared
to the previous Completed version. If no previous Completed configuration
version exists, or no previous configuration version exists at all, the following
informational message is given and the operation continues processing: “A
previous configuration version does not exist."

Customizing GetConfigurationDifferences
For your implementation, you may need more information than
GetConfigurationDifferences returns. In such scenarios, you can customize
GetConfigurationDifferences to return additional information.

Customizing GetConfigurationDifferences is similar to customizing GetConfiguration.
See "Customizing GetConfiguration" for more information.

After you customize GetConfigurationDifferences to return any additional data you may
need, your code that calls GetConfigurationDifferences needs to be customized to
compare the versions that are returned in the response to determine the differences.

UpdateConfiguration
The UpdateConfiguration operation transitions a service or service configuration
through its respective life-cycle states.

To transition a service, the request must specify the service action and service ID.

The valid service actions are:

• COMPLETE

• CANCEL

• DISCONNECT

• SUSPEND

• RESUME

Chapter 2
UpdateConfiguration

2-48

To transition a service configuration, the request must specify the service configuration action
and one of the following:

• Service ID

• Service configuration ID

• Service ID and service configuration version number

If the first option is specified (service ID), the operation transitions the latest active service
configuration.

The valid service configuration actions are:

• APPROVE

• ISSUE

• CANCEL

• COMPLETE

updateConfigurationResponse
updateConfigurationResponse includes a success or failure message regarding the update to
transition the service or service configuration. The response returns a varying level of
information based on the <responseLevel> value the request specifies. See "ResponseLevel
Element" for more information.

UpdateConfiguration returns an error when:

• The request specifies an invalid service action or service configuration action.

• The request specifies invalid data for service ID, service configuration ID, or service
configuration version number.

Customizing the Web Service Operations
You must customize the ProcessInteraction operation, and you can optionally customize the
GetConfiguration and GetConfigurationDifferences operations. See the following sections for
more information:

• Customizing ProcessInteraction

• Customizing GetConfiguration

• Customizing GetConfigurationDifferences

Extending Web Service Requests and Responses
You can extend web service requests and responses by extending GenericHandler.class,
which supports the use of SOAP handlers and which is used by the UIM Service Fulfillment
Web Service.

To extend a web service request or response:

1. In Design Studio, create a custom Inventory project.

2. Within your custom Inventory project, create a custom Java class that does the following:

Chapter 2
Customizing the Web Service Operations

2-49

• Imports javax.xml.rpc.handler.GenericHandler.class (include the jaxrpc.jar if
necessary)

• Extends GenericHandler

• Overrides the handleRequest() or handleResponse() methods, or both, per
your specific business requirements

3. Build your custom Inventory project.

A successful build of your custom Inventory project creates a deployable custom
cartridge, which is a JAR file with the same name as your Inventory project.

4. Deploy your custom cartridge into your UIM traditional environment. If you use
UIM cloud native, see "Deploying Cartridges" in UIM Cloud Native Deployment
Guide.

5. Update the deployment plan:

• For the UIM cloud native deployment, see "Customizing Images" in UIM Cloud
Native Deployment Guide.

• For the traditional deployment, update the UIM_Home/app/plan/Plan.xml file
to include the following:

– Add the following <variable> elements under the <variable-definition> tag
to define the variables of HandlerName and HandlerClassName, and to
define their respective values, which is your custom Java class name and
fully qualified custom Java class name:

<variable>
 <name>HandlerName</name>
 <value>MyCustomHandler</value>
</variable>
<variable>
 <name>HandlerClassName</name>
 <value>oracle.communications.webservice.ws.MyCustomHandler</
value>
</variable>

– Add the following <variable-assignment> elements under the <module-
descriptor> element, as shown here:

<module-override>
 <module-name>InventoryWS.war</module-name>
 <module-type>war</module-type>
 ...
 ...
 <module-descriptor external="true">
 <root-element>webservices</root-element>
 <uri>WEB-INF/webservices.xml</uri>
<!-- ==================== START OF NEW CONTENT
==================== -->
 <variable-assignment>
 <name>HandlerName</name>
 <xpath>
/webservices/webservice-description/
[webservice-description-name=
"oracle.communications.inventory.webservice.ws.InventoryWSPortImpl"]
/port-component/
[port-component-name="InventoryWSHTTPPort"]/handler/handler-name
 </xpath>
 </variable-assignment>
 <variable-assignment>

Chapter 2
Extending Web Service Requests and Responses

2-50

 <name>HandlerClassName</name>
 <xpath>
/webservices/webservice-description/
[webservice-description-name=
"oracle.communications.inventory.webservice.ws.InventoryWSPortImpl"]
/port-component/
[port-component-name="InventoryWSHTTPPort"]/handler/[handler-
name="MyCustomHandler"]/handler-class
 </xpath>
 </variable-assignment>
<!-- ==================== END OF NEW CONTENT ==================== -->
 </module-descriptor>
 ...
 ...
</module-override>

• These additions to the Plan.xml file results in the following being added to the
webservice.xml file at run-time:

<handler>
 <handler-name>MyCustomHandler</handler-name>
 <handler-class>oracle.communications.webservice.ws.MyCustomHandler
 </handler-class>
</handler>

6. In the UIM traditional deployment, redeploy the inventory.ear file.

This action redeploys the UIM Service Fulfillment Web Service with the updated
Plan.xml file.

In the UIM cloud native deployment, rebuild the image with the modifications performed
in the previous step. For details, see "Customizing Images" in UIM Cloud Native
Deployment Guide. Also, create the instance with a generated image.

Additional Information
For more information about SOAP handlers, see "Creating and Using SOAP Message
Handlers" in Fusion Middleware Developing JAX-RPC Web Services for Oracle WebLogic
Server.

Deploying, Testing, and Securing the Web Service
Information about deploying, testing, and securing the web service is described in "Deploying,
Testing, and Securing UIM Web Services".

Chapter 2
Deploying, Testing, and Securing the Web Service

2-51

3
Working with the Network Resource
Management Web Service

This chapter provides information about the Oracle Communications Unified Inventory
Management (UIM) Network Resource Management (NRM) Web Service.

Note:

If you use UIM cloud native deployment for updating configuration files, refer to
"Customizing UIM Configuration Properties" in UIM Cloud Native Deployment
Guide.

About the NRM Web Service

Note:

Before reading about the NRM Web Service, read UIM Concepts to have an
understanding of UIM.

The NRM Web Service enables an external system to manage entities in UIM by supporting
operations that enable you to:

• Create, find, update, and delete entities in UIM

• Reserve and unreserve resource entities in UIM

– Find or create a reservation in UIM when reserving resource entities

– Find or delete a reservation in UIM when unreserving resource entities

• Update reservations in UIM

• Associate and disassociate entities in UIM

• Import and export entities into and from UIM

About the Web Service Packaging
The NRM Web Service is packaged in the inventory.ear file, within the InventoryWS.war
file. When the installer deploys the inventory.ear file, the NRM Web Service is automatically
deployed and ready to use.

3-1

Note:

The InventoryWS.war file includes all of the Service Fulfillment Web Service
operations as well. See "Working with the Service Fulfillment Web Service"
for information about these operations.

About the WSDL and Schema Files
The NRM Web Service is defined by the InventoryWS.wsdl file and is supported by
several schema files. The WSDL file and supporting schema files are located in the
UIM_SDK_Home/webservices/schema_inventory_webservice.zip file.

About the WSDL File
Within ZIP file, the WSDL file is located in the ora_uim_webservices/wsdl directory.
The WSDL file defines several operations. Each web service operation defines a
request, a response, and the possible faults that can be thrown. For example, the
WSDL file defines the following for the CreateEntity operation:

• createEntityRequest

• createEntityResponse

• createEntityFault

• inventoryFault

• validationFault

The request, response, and faults each define an XML structure that is defined in the
supporting schema files. The following excerpts show how an XML structure defined in
the WSDL correlates to the supporting schema files.

For example, the WSDL file defines and references the invnsrm namespace (bolded):

xmlns:invnsrm="http://xmlns.oracle.com/communications/inventory/webservice/nsrm"
.
.
.
targetNamespace
.
.
.
<xsd:import
namespace="http://xmlns.oracle.com/communications/inventory/webservice/nsrm"
schemaLocation="./schemas/NSRMMessages.xsd"/>
.
.
.
<wsdl:message name="CreateEntityRequest">
 <wsdl:part name="CreateEntityRequest" element="invnsrm:createEntityRequest">
 </wsdl:part>
</wsdl:message>

This tells you that the createEntityRequest XML structure is defined in the schema file
that defines the specified namespace as its target namespace. A search for the

Chapter 3
About the WSDL and Schema Files

3-2

specified namespace reveals that NSRMMessages.xsd defines the referenced namespace
as its target namespace.

After you determine which schema file defines the XML structure that the WSDL file
references, you can navigate through the schema files to determine child XML structures and
elements.

About the Schema Files
Several schema files support the NRM Web Service. These schemas are categorized as
reference schemas, web service schemas, and business schemas.

Reference Schemas
Within the ZIP file, the reference schemas are located in the ora_uim_webservices/wsdl/
referenceSchemas directory. The reference schemas define common elements used by
more than one operation. So, the elements are defined in one place and then referenced.

The reference schemas are:

• InventoryCommon.xsd

• InventoryFaults.xsd

• FaultRoot.xsd

Web Service Schemas
Within the ZIP file, the web service schemas are located in the ora_uim_webservices/wsdl/
schemas directory. The web service schemas define elements specific to the web service,
such as the request structures, the response structures, and any fault structures.

The web service schema is defined in the NRMMessages.xsd file.

Note:

The web service schema uses the type-mapping.xsdconfig file to map XML
namespaces to Java packages.

Business Schemas
Within the ZIP file, the business schemas are located in the ora_uim_business/schemas
directory. Each web service operation wraps a call (or multiple calls) to the UIM business
layer, which is exposed through APIs. The wrapped APIs are the same APIs that the UIM UI
calls in response to user input. The business layer APIs are based on functional area, as are
the business schemas.

The business schemas are:

• Activity.xsd

• BusinessInteraction.xsd

• Configuration.xsd

• Connectivity.xsd

Chapter 3
About the WSDL and Schema Files

3-3

• CustomNetworkAddress.xsd

• CustomObject.xsd

• Entity.xsd

• InventoryGroup.xsd

• IPAddress.xsd

• LogicalDevice.xsd

• MediaStream.xsd

• Network.xsd

• NetworkAddress.xsd

• Number.xsd

• Party.xsd

• PhysicalDevice.xsd

• Place.xsd

• Property.xsd

• PropertyLocation.xsd

• Role.xsd

• Service.xsd

• Specification.xsd

• Structure.xsd

• TNBlockModelType.xsd

Note:

The API schemas use the xmlbeans-mapping.xsdconfig file to map XML
namespaces to Java packages.

CreateEntity
The CreateEntity operation enables external systems to send a request to UIM to
create certain entities in UIM.

createEntityRequest
You must specify the type of entity to create based on the entity types defined in the
schema files. Each entity type defines different elements that pertain specifically to the
entity type, which you use to define the entity you are creating. Table 3-1 lists the valid
entity types and the schema files in which they are defined.

Chapter 3
CreateEntity

3-4

Table 3-1 Entity Types for CreateEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

EquipmentType PhysicalDevice.xsd

FlowIdentifierType LogicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

Note:

PlaceType represents a GeographicLocation, which is a specialization of the
abstract Place entity. See Oracle Communications Information Model Reference for
more information.

Multiple Entities
You can create multiple entities per request by specifying one or more <entity> elements;
however, all <entity> elements must specify the same entity type per request. For example,
you can create multiple logical devices with a single request, and you can create multiple
logical device accounts with a single request, but you cannot create multiple logical devices
and multiple logical device accounts with a single request.

Optional Elements
You can specify an existing inventory group with which to associate the created entities. If
you specify an inventory group that does not exist in UIM, an error is thrown.

You can specify parameters that define name/value pairs, which you can use with custom
code to extend the operation. CreateEntity does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Example
Example 3-1 shows a request that specifies an entity type of TelephoneNumberType, which
defines telephone number-specific elements such as <tn:rangeFrom> and <tn:rangeTo>.

Chapter 3
CreateEntity

3-5

This particular request:

• Creates a range of telephone numbers based on the usTelephoneNumber
specification

• Adds the characteristics of tnCountryCode, winback, responsibleProvider, and
tnType to each of the telephone numbers created, as specified by the property
name element

• Sets the characteristic values, as specified by the property value element

• Associates the created telephone numbers with the MobileServingArea inventory
group

Example 3-1 createEntityRequest

<nsrm:createEntityRequest>
 <nsrm:entity xsi:type="tn:TelephoneNumberType">
 <tn:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </tn:specification>
 <tn:rangeFrom>9729630001</tn:rangeFrom>
 <tn:rangeTo>9729630020</tn:rangeTo>
 <tn:description>Owned Number</tn:description>
 <tn:property>
 <prop:name>tnCountryCode</prop:name>
 <prop:value>1</prop:value>
 </tn:property>
 <tn:property>
 <prop:name>winback</prop:name>
 <prop:value>false</prop:value>
 </tn:property>
 <tn:property>
 <prop:name>responsibleProvider</prop:name>
 <prop:value>AT&T</prop:value>
 </tn:property>
 <tn:property>
 <prop:name>tnType</prop:name>
 <prop:value>OWNED</prop:value>
 </tn:property>
 </nsrm:entity>
 <nsrm:inventoryGroup>
 <ig:specification>
 <spec:name>MobileServingArea</spec:name>
 </ig:specification>
 <ig:name>North Dallas</ig:name>
 </nsrm:inventoryGroup>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:createEntityRequest>

createEntityResponse
createEntityResponse returns information about the created entities. The information
returned in the response is dependent upon the entity types that were created, as
specified in the request.

createEntityResponse returns an error message when:

Chapter 3
CreateEntity

3-6

• The request specifies a specification that does not exist in UIM

• The request specifies an inventory group that does not exist in UIM

• The call to the UIM API fails

FindEntity
The FindEntity operation enables external systems to send a request to UIM to find and
return certain entities in UIM, based on specified search criteria.

findEntityRequest
You must specify search criteria to find the entities to retrieve. You have the choice of
specifying search criteria one of two ways. With either choice, you must specify the type of
entity to find based on the entity types defined in the schema files. Each entity type defines
different elements that pertain specifically to the entity type, which you use as search criteria
to find entities. Table 3-2 lists the valid entity types and the schema files in which they are
defined.

Table 3-2 Entity Types for FindEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

EquipmentType PhysicalDevice.xsd

FlowIdentifierType LogicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

The choices are:

• <entity>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

Chapter 3
FindEntity

3-7

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only
entity type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Note:

Within each EntityType structure, the property element defines
name, value, and action. However, action is not used; rather, the
NRM Web Service operations always assume an operand of
EQUALS.

• <criteria>

In this search option, you specify the entity type and use the following search
criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is
defined by the following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined
by the following enumeration values:

Chapter 3
FindEntity

3-8

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated
with inventory groups that are associated with the specified place. If searching for
entities other than telephone numbers, the inventoryGroup geographicLocation is not
used.

– geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

– quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned. If the quantity is not given, the default retrieved is 10. If you want more than
10 entities returned, then a quantity must be given. Also, this quantity must be less
than the maximum query range provided in the system-config.properties file for the
uim.ws.search.query.range property setting. This setting can be set for all entities or
for specific entities. Refer to UIM System Administrator's Guide for more information
on this property setting.

– reservation

If you specify reservation information, FindEntity also reserves any found entities.
See "ReserveEntity" for more information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities.

If you specify row-locking information, FindEntity does not release locked entities;
you must manually release locked entities by calling the
RowLockManager.releaseLock() method, or wait for the timer to release locked
entities.

If you specify row-locking information for entities that are not consumable
(Geographic Location and Inventory Group), an error is thrown.

See Optimizing Concurrent Resource Allocation in UIM Developer's Guide for more
information about row locking, and see the Javadoc for information about the
RowLockManager.releaseLock() method.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

Chapter 3
FindEntity

3-9

* Name of a criteria item as defined by the EntitySearchCriteria class, where
Entity is the name of a specific entity such as TelephoneNumber,
LogicalDevice, and so forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic
and corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one entity type to search for per request. For example, you can search for
logical devices with a single request, and you can search for logical device accounts
with a single request, but you cannot search for logical devices and logical device
accounts with a single request.

Examples
Example 3-2 shows a request that specifies an entity type of TelephoneNumberType,
and uses the telephone number-specific element of <tn:id> to search for the
9729630012 telephone number created from the usTelephoneNumber specification.

Note:

Example 3-2 shows all of the telephone-number specific elements, even
though they are not being used. Your requests do not need to include
optional, unused elements; they are shown here as an example of entity-
specific elements.

Example 3-2 findEntityRequest

<nsrm: findEntityRequest >
 <ent:entity xsi:type="tn:TelephoneNumberType">
 <tn:specification>

Chapter 3
FindEntity

3-10

 <spec:name>usTelephoneNumber</spec:name>
 </tn:specification>
 <tn:id>9729630012</tn:id>
 <tn:name/>
 <tn:rangeFrom/>
 <tn:rangeTo/>
 <tn:description/>
 <tn:state/>
 <tn:startDate/>
 <tn:endDate/>
 <tn:property/>
 <prop:name/>
 <prop:value/>
 </tn:property>
 </ent:entity>
</nsrm: findEntityRequest >

Example 3-3 shows a request that specifies an entity type of TelephoneNumberType, but the
telephone number-specific elements are not used to specify the search criteria (nor are they
shown). Rather, this example specifies search criteria to find telephone numbers created from
the usTelephoneNumber specification.

This request specifies row-locking information that indicates to lock and return four telephone
numbers.

Note:

Example 3-3 shows all of the optional search criteria elements, even though they
are not all being used. Your requests do not need to include optional, unused
elements; they are shown here as an example of the possible search criteria
elements.

Example 3-3 findEntityRequest

<nsrm:findEntityRequest>
 <nsrm:criteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType">
 <!-- tn-specific elements are not shown -->
 </ent:entityType>
 <ent:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </ent:specification>
 <ent:adminState/>
 <ent:assignmentState/>
 <ent:inventoryGroup/>
 <ig:geographicPlace/>
 </ent:inventoryGroup>
 <ent:geographicPlace/>
 <ent:quantity/>
 <ent:reservation/>
 <ent:lock>
 <ent:lockAllOrNone>true</ent:lockAllOrNone>
 <ent:quantity>4</ent:quantity>
 </ent:lock>
 <ent:criteriaItem/>
 <ent:property/>

Chapter 3
FindEntity

3-11

 </nsrm:criteria>
</nsrm:findEntityRequest>

findEntityResponse
findEntityResponse returns the found entities, based on the search criteria specified in
the request. The information returned in the response is dependent upon the entity
types that were searched for and subsequently found.

If you specified reservation information in the request, reservation information is also
returned.

findEntityResponse returns an error message when:

• The request specifies a lock policy for the non-consumable entities of Geographic
Location or Group Inventory

• The request specifies a lock policy that specifies the number of resources to lock,
and there are not enough resources available to lock

• The call to the UIM API fails

FindTNBlock
The FindTNBlock operation enables external systems to send a request to UIM to find
and return telephone number blocks in UIM, based on specified search criteria.

findTNBlockRequest
You must specify search criteria to find the telephone number blocks to retrieve. In the
search criteria, you must specify the entity type of TelephoneNumberType, which is
defined in the Number.xsd schema file.

In the <criteria> search option, you specify the entity type (TelephoneNumberType)
and use the following search criteria:

• specification

The search returns entities created from the specified Telephone Number
specification.

• adminState

The search returns entities in the specified administrative state, which is defined
by the following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

• assignmentState

Chapter 3
FindTNBlock

3-12

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="TRANSITIONAL"/>
<xs:enumeration value="PORTED"/>

• inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup and the
search returns telephone number entities associated with inventory groups.

• (optional) quantity

The search returns the specified quantity of telephone number block. For example, if the
search finds 300 telephone number blocks and the criteria specifies a quantity of 50, the
first 50 telephone number blocks found are returned.

• criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

– Name of a criteria item as defined by the EntitySearchCriteria class, where Entity is
the name of a specific entity such as TelephoneNumber, LogicalDevice, and so forth
(see "Determining Criteria Item Names")

– Value of specified criteria item

– Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Example
Example 3-4 shows a request that specifies an entity type of TelephoneNumberType to
search for a telephone number block of size 10 for the BATTNSpec specification.

Example 3-4 findTNBlockRequest

<nsrm:findTNBlockRequest>
 <nsrm:criteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType"></ent:entityType>
 <ent:specification>
 <spec:name>BATTNSpec</spec:name>
 </ent:specification>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:inventoryGroup>
 <gro:name>NORTH_AMERICA</gro:name>
 </ent:inventoryGroup>
 <ent:criteriaItem>
 <ent:name>serviceSpec</ent:name>

Chapter 3
FindTNBlock

3-13

 <ent:value xsi:type="xs:string">BATServiceSpec</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>
 <ent:serviceSpec>BATServiceSpec</ent:serviceSpec>
 <ent:criteriaItem>
 <ent:name>CONDITION_TYPE</ent:name>
 <ent:value xsi:type="xs:string">INFORMATIONAL</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>
 <ent:criteriaItem>
 <ent:name>rangeFrom</ent:name>
 <ent:value xsi:type="xs:string">1</ent:value>
 <ent:operator>GREATER_THAN_EQUAL</ent:operator>
 </ent:criteriaItem>
 <ent:criteriaItem>
 <ent:name>rangeTo</ent:name>
 <ent:value xsi:type="xs:string">100000000</ent:value>
 <ent:operator>LESS_THAN_EQUAL</ent:operator>
 </ent:criteriaItem>
 <ent:criteriaItem>
 <ent:name>blockSize</ent:name>
 <ent:value xsi:type="xs:string">10</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>
 <ent:quantity>50</ent:quantity>
 </nsrm:criteria>
</nsrm:findTNBlockRequest>

findTNBlockResponse
findTNBlockResponse returns the found telephone number blocks, based on the
search criteria specified in the request.

findTNBlockResponse returns an error message when:

• The request does not find the specified Inventory Group. In this case, the following
error message is displayed:

No InventoryGroups found with criteria.
• The call to the UIM API fails

UpdateEntity
The UpdateEntity operation enables external systems to send a request to UIM to
update certain entities in UIM.

updateEntityRequest
You must specify the type of entity to update based on the entity types defined in the
schema files. Each entity type defines different elements that pertain specifically to the
entity type, which you use to specify what to update. Table 3-3 lists the valid entity
types and the schema files in which they are defined.

Chapter 3
UpdateEntity

3-14

Table 3-3 Entity Types for UpdateEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

FlowIdentifierType LogicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceAccountType LogicalDevice.xsd

LogicalDeviceType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

You must specify the same entity type twice: First, within the <entityDetails> element to
specify the data to update; and second, within the <entitySearchCriteria> element to find the
entities to update.

<entitySearchCriteria> defines the following search criteria:

• specification

The search returns entities created from the specified specification.

• adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

• assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>

Chapter 3
UpdateEntity

3-15

<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

• inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated
with inventory groups that are associated with the specified place. If searching for
entities other than telephone numbers, the inventoryGroup geographicLocation is
not used.

• geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

• quantity

The search returns the specified quantity of entities. For example, if the search
finds 1,000 entities and the criteria specifies a quantity of 50, the first 50 entities
found are returned.

• reservation

If you specify reservation information, UpdateEntity ignores it; FindEntity is the
only operation that uses the reservation element. See "FindEntity" for more
information.

• lock

Row locking is used to optimize concurrent resource allocation for consumable
entities.

If you specify row-locking information, UpdateEntity releases locked entities; you
do not need to manually release locked entities by calling the
RowLockManager.releaseLock() method, or wait for the timer to release locked
entities.

If you specify row-locking information for entities that are not consumable
(Geographic Location and Inventory Group), an error is thrown.

See Optimizing Concurrent Resource Allocation in UIM Developer's Guide for
more information about row locking.

• criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

– Name of a criteria item as defined by the EntitySearchCriteria class, where
Entity is the name of a specific entity such as TelephoneNumber,
LogicalDevice, and so forth (see "Determining Criteria Item Names")

– Value of specified criteria item

– Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />

Chapter 3
UpdateEntity

3-16

<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

• property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

– Name of characteristic

– Value of specified characteristic

– Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one <entityDetails> element per request, and one <entitySeachCriteria> element
per request. For example, if the search criteria that <entitySearchCriteria> specifies returns
50 records, all 50 records are updated with the same data that <entityDetails> specifies.

Optional Elements
You can specify parameters that define name/value pairs, which you can use with custom
code to extend the operation. UpdateEntity does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Examples
Example 3-5 shows a request that specifies an entity type of TelephoneNumberType and that
specifies to update the description to Update for Testing. The request then specifies an
entity type of TelephoneNumberType a second time to specify the search criteria to find the
entities to update. In this example, the search criteria is to find telephone numbers created
from the usTelephoneNumber specification.

Example 3-5 updateEntityRequest and TelephoneNumberType

<nsrm:updateEntityRequest>
 <nsrm:entityDetails xsi:type="tn:TelephoneNumberType">
 <tn:description>Update for Testing</tn:description>
 </nsrm:entityDetails>
 <ent:entitySearchCriteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType" />
 <ent:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </ent:specification>
 </ent:entitySearchCriteria>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:updateEntityRequest>

Chapter 3
UpdateEntity

3-17

Example 3-6 shows a request that specifies an entity type of ActivityType and that
specifies the activity as complete. The request then specifies an entity type of
ActivityType a second time to specify the search criteria to find the entities to update.
In this example, the search criteria finds an activity by its name.

Example 3-6 updateEntityRequest and ActivityType

<nsrm:updateEntityRequest>
 <nsrm:entityDetails xsi:type="act:ActivityType">
 <act:action>complete</act:action>
 </nsrm:entityDetails>
 <nsrm:entitySearchCriteria xsi:type="act:ActivitySearchCriteriaType">
 <ent:entityType xsi:type="act:ActivityType" >
 <act:name>Acquire Property Location</act:name>
 <act:businessInteractionId>1</act:businessInteractionId>
 </ent:entityType>
 </nsrm:entitySearchCriteria>
 <nsrm:parameter>
 <bus:name></bus:name>
 <bus:value></bus:value>
 </nsrm:parameter>
</nsrm:updateEntityRequest>

updateEntityResponse
updateEntityResponse returns information about the updated entities. The information
returned in the response is dependent upon the entity types that were updated, as
specified in the request.

updateEntityResponse returns an error message when:

• The request specifies two different entity types in the request entity type and the
criteria entity type

• The request specifies a lock policy that specifies the number of resources to lock,
and there are not enough resources available to lock

• The call to the UIM API fails

DeleteEntity
The DeleteEntity operation enables external systems to send a request to UIM to
delete certain entities in UIM.

deleteEntityRequest
You must specify search criteria to search for entities to delete. You have the choice of
specifying search criteria one of two ways. With either choice, you must specify the
type of entity to find based on the entity types defined in the schema files. Each entity
type defines different elements that pertain specifically to the entity type, which you
use as search criteria to find entities to delete. Table 3-4 lists the valid entity types and
the schema files in which they are defined.

Chapter 3
DeleteEntity

3-18

Table 3-4 Entity Types for DeleteEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

EquipmentType PhysicalDevice.xsd

FlowIdentifierType LogicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

The choices are:

• <entity>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only entity
type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

Chapter 3
DeleteEntity

3-19

* Value of specified characteristic

Note:

Within each EntityType structure, the property element defines
name, value, and action. However, action is not used; rather, the
NRM Web Service operations always assume an operand of
EQUALS.

• <criteria>

In this search option, you specify the entity type and use the following search
criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is
defined by the following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined
by the following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities
associated with inventory groups that are associated with the specified place.
If searching for entities other than telephone numbers, the inventoryGroup
geographicLocation is not used.

– geographicLocation

Chapter 3
DeleteEntity

3-20

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

– quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned.

– reservation

If you specify reservation information, DeleteEntity ignores it; FindEntity is the only
operation that uses the reservation element. See "FindEntity" for more information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities; however, DeleteEntity does not use row locking.

If you specify row-locking information, DeleteEntity ignores it.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one entity type to delete per request, and one entity search criteria to find the
entities to delete per request. For example, you can search for logical devices to delete with a
single request, and you can search for logical device accounts to delete with a single request,

Chapter 3
DeleteEntity

3-21

but you cannot search for logical devices and logical device accounts to delete with a
single request.

Optional Elements
You can specify parameters that define name/value pairs, which you can use with
custom code to extend the operation. DeleteEntity does not process specified
parameters unless customized to do so. See "Customizing the Web Service
Operations" for more information.

Examples
Example 3-7 shows a request that specifies an entity type of TelephoneNumberType,
and uses entity-specific elements to find a particular telephone number to delete,
9729630014, created from the usTelephoneNumber specification.

Example 3-7 deleteEntityRequest

<nsrm:deleteEntityRequest>
 <ent:entity xsi:type="tn:TelephoneNumberType">
 <tn:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </tn:specification>
 <tn:id>9729630014</tn:id>
 </ent:entity>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:deleteEntityRequest>

Example 3-8 shows a request that specifies an entity type of TelephoneNumberType,
and specifies search criteria to find telephone numbers to delete created from the
usTelephoneNumber specification that are installed and unassigned.

Example 3-8 deleteEntityRequest

<nsrm:deleteEntityRequest>
 <ent:criteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType"/>
 <ent:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </ent:specification>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 </ent:criteria>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:deleteEntityRequest>

deleteEntityResponse
deleteEntityResponse returns information about the deleted entities. The information
returned in the response is dependent upon the entity types that were deleted, as
specified in the request.

Chapter 3
DeleteEntity

3-22

deleteEntityResponse returns an error message when:

• The call to the UIM API fails

ReserveEntity
The ReserveEntity operation enables external systems to send a request to UIM to find an
existing reservation or new create a reservation, and to add certain resource entities to the
existing or newly created reservation.

reserveEntityRequest
The request structure defines the ResourceReservationType entity type; you do not specify
the entity type for the reservation.

Within the reservation-specific elements, you specify one or both of the following:

• An existing reservation number

• Reservation information with which to create a reservation, which at a minimum must
include:

– reservedFor

– reservedForType

– reservationType

If you specify an existing reservation number, the operation attempts to find the reservation
based on the specified reservation number. If the reservation is found, additional resources
are added to it. If the reservation is not found, an error is thrown.

If you specify reservation information with which to create a reservation, the operation
generates a reservation number and creates a reservation using the specified information.

If you specify both a reservation number and reservation information with which to create a
reservation, the operation attempts to find the reservation based on the specified reservation
number. If the reservation is found, additional resources are added to it, but the reservation is
not updated with the specified reservation information. If the reservation is not found, the
operation creates a reservation using the specified reservation number and reservation
information.

If you specify neither a reservation number nor reservation information, an error is thrown.

Resource Entity Search Criteria
You must specify search criteria to find existing resource entities to add to the reservation.
You have the choice of specifying search criteria one of two ways. With either choice, you
must specify the type of resource entity to find based on the entity types defined in the
schema files. Each entity type defines different elements that pertain specifically to the entity
type, which you use as search criteria to find entities. Table 3-5 lists the valid entity types and
the schema files in which they are defined.

Table 3-5 Entity Types for ReserveEntity

Entity Type Schema File

CustomNetworkAddressType CustomNetworkAddress.xsd

Chapter 3
ReserveEntity

3-23

Table 3-5 (Cont.) Entity Types for ReserveEntity

Entity Type Schema File

CustomObjectType CustomObject.xsd

FlowIdentifierType LogicalDevice.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

TelephoneNumberType Number.xsd

The choices are:

• <resourceEntities>

In this search option, you specify the entity type and use the entity-specific
elements to specify search criteria.

For each entity type, the <entity> structure varies. For example,
TelephoneNumberType defines <rangeFrom> and <rangeTo>, but none of the
other entity types define these elements.

Even though the <entity> structure varies per entity type, the following elements
are common across most entity types:

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only
entity type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Chapter 3
ReserveEntity

3-24

Note:

Within each EntityType structure, the property element defines name,
value, and action. However, action is not used; rather, the NRM Web
Service operations always assume an operand of EQUALS.

• <resourceCriteria>

In this search option, you specify the entity type and use the following search criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is defined by
the following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated
with inventory groups that are associated with the specified place. If searching for
entities other than telephone numbers, the inventoryGroup geographicLocation is not
used.

– geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.
(You cannot reserve inventory groups, so geographicLocation is not used for
ReserveEntity.)

Chapter 3
ReserveEntity

3-25

– quantity

The search returns the specified quantity of entities. For example, if the search
finds 1,000 entities and the criteria specifies a quantity of 50, the first 50
entities found are returned.

– reservation

If you specify reservation information, ReserveEntity ignores it; FindEntity is
the only operation that uses the reservation element. See "FindEntity" for more
information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities.

ReserveEntity always uses row locking, regardless of whether or not you
specify the number of rows to lock. ReserveEntity releases locked entities; you
do not need to manually release locked entities by calling the
RowLockManager.releaseLock() method, or wait for the timer to release
locked entities.

See Optimizing Concurrent Resource Allocation in UIM Developer's Guide for
more information about row locking.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where
Entity is the name of a specific entity such as TelephoneNumber,
LogicalDevice, and so forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic
and corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Chapter 3
ReserveEntity

3-26

Multiple Entities
You specify one reservation per request, and one search criteria per request. For example, if
the search criteria returns 50 resources, all 50 resources are added to the specified
reservation.

Optional Elements
You can specify parameters that define name/value pairs, which you can use with custom
code to extend the operation. ReserveEntity does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Example
Example 3-9 shows a request that specifies reservation information with which to create a
reservation, and specifies search criteria to find two logical device resources based on their
specification name and ID. Based on this request, a new reservation is created, and the two
logical device resources are added to the reservation.

Example 3-9 reserveEntityRequest

<nsrm:reserveEntityRequest>
 <nsrm:reservation>
 <config:state/>
 <config:reservationNumber/>
 <config:reservationType>SHORTTERM</config:reservationType>
 <config:expiry/>
 <config:reservedForType>ORDER</config:reservedForType>
 <config:reservedFor>Customer XYZ</config:reservedFor>
 <config:reason/>
 </nsrm:reservation>
 <nsrm:entityType xsi:type="ld:LogicalDeviceType"/>
 <nsrm:resources>
 <ent:entity xsi:type="ld:LogicalDeviceType">
 <ld:specification>
 <spec:name>SIMCard</spec:name>
 </ld:specification>
 <ld:id>3101500000000009901</ld:id>
 </ent:entity>
 <ent:entity xsi:type="ld:LogicalDeviceType">
 <ld:specification>
 <spec:name>SIMCard</spec:name>
 </ld:specification>
 <ld:id>3101500000000009902</ld:id>
 </ent:entity>
 </nsrm:resources>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:reserveEntityRequest>

reserveEntityResponse
reserveEntityResponse returns information about the reservation and the reserved resource
entities. The resource entity information returned in the response is dependent upon the
resource entity types that were reserved, as specified in the request.

Chapter 3
ReserveEntity

3-27

reserveEntityResponse returns an error message when:

• The request specifies a reservation that does not exist

• The request specifies no reservation number and no reservation information with
which to create a reservation

• The request specifies a resource that does not exist

• The call to the UIM API fails

ReserveTNBlock
The ReserveTNBlock operation enables external systems to send a request to UIM to
find an existing reservation or create a new reservation, and to add telephone number
blocks to the existing or newly created reservation.

reserveTNBlockRequest
The request structure defines the ResourceReservationType entity type; you do not
specify the entity type for the reservation.

Within the reservation-specific elements, you specify one or both of the following:

• An existing reservation number

• Reservation information with which to create a reservation, which at a minimum
must include:

– reservedFor

– reservedForType

– reservationType

If you specify an existing reservation number, the operation attempts to find the
reservation based on the specified reservation number. If the reservation is found, the
telephone number block is added to it. If the reservation is not found, an error is
thrown.

If you specify reservation information with which to create a reservation, the operation
generates a reservation number and creates a reservation using the specified
information.

If you specify both a reservation number and reservation information with which to
create a reservation, the operation attempts to find the reservation based on the
specified reservation number. If the reservation is found, the telephone number block
is added to it, but the reservation is not updated with the specified reservation
information. If the reservation is not found, the operation creates a reservation using
the specified reservation number and reservation information.

If you specify neither a reservation number nor reservation information, an error is
thrown.

Telephone Number Block Search Criteria
You must specify search criteria to find an existing telephone number block to add to
an existing reservation or to a new reservation. The reserveTNBlockRequest XML
structure is defined in the TNBlockModelType.xsd schema file.

Chapter 3
ReserveTNBlock

3-28

You can specify the following in the request criteria:

• <reservation>

If this request option, specify the reservation information by using the following search
criteria:

– reservationNumber

The reservation number after the reservation has been created.

– reservationType

The type of reservation; for example, Shortterm or Longterm.

– startDate

The date on which the reservation becomes effective.

– (Optional) expiryDate

The date on which the reservation expires.

– reservedForType

The type of entity or process for which the reservation is made.

– reservedFor

Identifies who is making the reservation.

– reason

The reason for the reservation.

• <tnBlockCriteria>

In this request option, you can specify the following criteria:

– startNumber

The starting number of a range of numbers that you want to reserve.

– endNumber

The ending number of a range of numbers that you want to reserve.

– blockSize

The telephone number block size that you want to reserve.

Example
Example 3-10 shows a request that specifies an existing reservation number of 1125010, and
specifies the criteria to reserve a telephone number block size of 10 within a telephone
number range between 295 and 395.

Example 3-10 reserveTNBlockRequest

 <nsrm:reserveTNBlockRequest>
 <nsrm:reservation>
 <con:reservationNumber>1125010</con:reservationNumber>
 <con:reservationType>SHORTTERM</con:reservationType>
 <con:startDate>2018-07-19T20:47:12.380+05:30</con:startDate>
 <con:expiryDate>2018-08-31T21:47:12.380+05:30</con:expiryDate>
 <con:reservedForType>CUSTOMER</con:reservedForType>
 <con:reservedFor>CUSTOMER_NAME</con:reservedFor>
 <con:reason>REASON_FOR_RESERVATION</con:reason>

Chapter 3
ReserveTNBlock

3-29

 </nsrm:reservation>
 <nsrm:tnBlockCriteria>
 <tnb:startNumber>295</tnb:startNumber>
 <tnb:endNumber>395</tnb:endNumber>
 <tnb:blockSize>10</tnb:blockSize>
 </nsrm:tnBlockCriteria>
 </nsrm:reserveTNBlockRequest>

reserveTNBlockResponse
reserveTNBlockResponse returns information about the reservation and the reserved
telephone number block.

reserveTNBlockResponse returns an error message when:

• The request specifies a reservation that does not exist

• The request specifies no reservation number and no reservation information with
which to create a reservation

• The request specifies a telephone number block that does not exist

• The call to the UIM API fails

UnreserveEntity
The UnreserveEntity operation enables external systems to send a request to UIM to
unreserve certain resource entities from an existing reservation in UIM. If no resources
remain for the reservation after the specified resource entities are unreserved, the
reservation is deleted.

unreserveEntityRequest
The request structure defines the ResourceReservationType entity type; you do not
specify the entity type.

Within the reservation-specific elements, you specify an existing reservation number. If
the reservation is not found, an error is thrown.

Resource Entity Search Criteria
You must specify search criteria to find existing resource entities to unreserve. You
have the choice of specifying search criteria one of two ways. With either choice, you
must specify the type of resource entity to find based on the entity types defined in the
schema files. Each entity type defines different elements that pertain specifically to the
entity type, which you use as search criteria to find entities. Table 3-6 lists the valid
entity types and the schema files in which they are defined.

Table 3-6 Entity Types for UnreserveEntity

Entity Types Schema File

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

FlowIdentifierType LogicalDevice.xsd

Chapter 3
UnreserveEntity

3-30

Table 3-6 (Cont.) Entity Types for UnreserveEntity

Entity Types Schema File

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

TelephoneNumberType Number.xsd

The choices are:

• <resourceEntities>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only entity
type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Note:

Within each EntityType structure, the property element defines name,
value, and action. However, action is not used; rather, the NRM Web
Service operations always assume an operand of EQUALS.

Chapter 3
UnreserveEntity

3-31

• <resourceCriteria>

In this search option, you specify the entity type and use the following search
criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is
defined by the following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined
by the following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities
associated with inventory groups that are associated with the specified place.
If searching for entities other than telephone numbers, the inventoryGroup
geographicLocation is not used.

– geographicLocation

The search returns inventory group entities associated with the specified
place. If searching for entities other than inventory groups, geographicLocation
is not used. (You cannot unreserve inventory groups, so geographicLocation is
not used for UnreserveEntity.)

– quantity

The search returns the specified quantity of entities. For example, if the search
finds 1,000 entities and the criteria specifies a quantity of 50, the first 50
entities found are returned.

– reservation

Chapter 3
UnreserveEntity

3-32

If you specify reservation information, UnreserveEntity ignores it; FindEntity is the
only operation that uses the reservation element. See "FindEntity" for more
information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities; however, UnreserveEntity does not use row locking.

If you specify row-locking information, UnreserveEntity ignores it.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one reservation per request, and one search criteria per request. For example, if
the search criteria returns 50 resources, all 50 resources are unreserved for the specified
reservation. If no resource entities remain on the reservation, the reservation is deleted.

Optional Elements
You can specify parameters that define name/value pairs, which you can use with custom
code to extend the operation. UnreserveEntity does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Chapter 3
UnreserveEntity

3-33

Examples
Example 3-11 shows a request that specifies an existing reservation number of
12345678, and specifies search criteria to find a particular telephone number range
based on its specification name. Based on this request, the telephone numbers
8588880081 through 8588880083 are unreserved for reservation 12345678.

Example 3-11 unreserveEntityRequest with a Telephone Number Range

<nsrm:unreserveEntityRequest>
 <nsrm:reservation>
 <config:reservationNumber>12345678</config:reservationNumber>
 </nsrm:reservation>
 <nsrm:resourceCriteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType"/>
 <ent:specification>
 <spec:name>BATTNSpec</spec:name>
 </ent:specification>
 <ent:criteriaItem>
 <ent:name>rangeFrom</ent:name>
 <ent:value xsi:type="xs:string">8588880081</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>
 <ent:criteriaItem>
 <ent:name>rangeTo</ent:name>
 <ent:value xsi:type="xs:string">8588880083</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>
 </nsrm:resourceCriteria>
</nsrm:unreserveEntityRequest>

Example 3-12 shows a request that specifies an existing reservation number of
123456789, and specifies search criteria to find a particular telephone number
resource based on its specification name and resource ID. Based on this request, the
9729630012 telephone number resource is unreserved. The 9729630012 telephone
number is the only resource on the reservation, and the reservation is deleted.

Note:

If this type of request is used for a reservation of a range of numbers the
entire range is unreserved. Therefore, this type of request is only valid to
unreserve a single reserved telephone number.

Example 3-12 unreserveEntityRequest for a Single Telephone Number

<nsrm:unreserveEntityRequest>
 <nsrm:reservation>
 <config:reservationNumber>123456789</config:reservationNumber>
 </nsrm:reservation>
 <nsrm:entityType xsi:type="tn:TelephoneNumberType"/>
 <nsrm:resources>
 <ent:entity xsi:type="tn:TelephoneNumberType">
 <tn:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </tn:specification>

Chapter 3
UnreserveEntity

3-34

 <tn:id>9729630012</tn:id>
 </ent:entity>
 </nsrm:resources>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:unreserveEntityRequest>

unreserveEntityResponse
unreserveEntityResponse returns information about the reservation and the unreserved
resources (entities). The information returned in the response is dependent upon the
resource entity types that were unreserved.

unreserveEntityResponse returns an error message when:

• The specified reservation number is not found

• The request specifies search criteria that retrieves resources not related to the specified
reservation number

• The call to the UIM API fails

UpdateReservation
The UpdateReservation operation enables external systems to send a request to UIM to
update a reservation in UIM. This operation updates only reservation information; it does not
update resources on the reservation, and it does not reserve or unreserve resources on the
reservation. See "ReserveEntity" for information about reserving resources for a reservation,
and see "UnreserveEntity" for information about unreserving resources for a reservation.

updateReservationRequest
The request structure defines the ResourceReservationType entity type; you do not specify
the entity type.

Within the reservation-specific elements, you specify an existing reservation number and for
whom the reservation is reserved, as well as any reservation information to update. If the
reservation is not found, an error is thrown.

Multiple Reservations
You can update only one reservation per request.

Optional Elements
You can specify parameters that define name/value pairs, which you can use with custom
code to extend the operation. UpdateReservation does not process specified parameters
unless customized to do so. See "Customizing the Web Service Operations" for more
information.

Chapter 3
UpdateReservation

3-35

Example
Example 3-13 shows a request that specifies an existing reservation number of
12345678 for Clark Kent, and specifies reservation information with which to update
the reservation. <reservationNumber> and <reservedFor> are required elements used
to retrieve the reservation. The remaining elements are optional and are used to
specify the data with which to update the reservation.

Example 3-13 updateReservationRequest

<nsrm:updateReservationRequest>
 <nsrm:reservation>
 <config:reservationNumber>12345678</config:reservationNumber>
 <config:reservationType>LONGTERM</config:reservationType>
 <config:expiry>2018-12-31T00:00:00.000-06:00</config:expiry>
 <config:reservedForType>CSR</config:reservedForType>
 <config:reservedFor>Clark Kent</config:reservedFor>
 <config:reason>Testing</config:reason>
 </nsrm:reservation>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:updateReservationRequest>

updateReservationResponse
updateReservationResponse returns information about the updated reservation.

updateReservationResponse returns an error message when:

• The specified reservation number is not found

• The call to the UIM API fails

AssociateEntity
The AssociateEntity operation enables external systems to send a request to UIM to
associate certain entities in UIM.

associateEntityRequest
You must specify an association type of ASSOCIATE or PAIR, which are enumeration
values defined in the entity.xsd file.

An association of type ASSOCIATE indicates a one-to-many association between a
single specified source entity and multiple specified target entities. An association type
of PAIR indicates a one-to-one association between a source entity and a target entity;
in this type of association, multiple source entities and multiple target entities can be
specified, but the number of each specified must be the same.

You must specify search criteria to find existing source entities to associate; and you
must specify search criteria to find existing target entities to associate. You have the
choice of specifying search criteria one of two ways. With either choice, you must
specify the type of source/target entity to find based on the entity types defined in the
schema files. Each entity type defines different elements that pertain specifically to the

Chapter 3
AssociateEntity

3-36

entity type, which you use as search criteria to find entities. Table 3-7 lists the valid entity
types and the schema files in which they are defined.

Table 3-7 Entity Types for AssociateEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

EquipmentType PhysicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

The choices are:

• <entity>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only entity
type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Chapter 3
AssociateEntity

3-37

Note:

Within each EntityType structure, the property element defines
name, value, and action. However, action is not used; rather, the
NRM Web Service operations always assume an operand of
EQUALS.

• <criteria>

In this search option, you specify the entity type and use the following search
criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is
defined by the following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined
by the following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities
associated with inventory groups that are associated with the specified place.
If searching for entities other than telephone numbers, the inventoryGroup
geographicLocation is not used.

– geographicLocation

Chapter 3
AssociateEntity

3-38

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

– quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned.

– reservation

If you specify reservation information, AssociateEntity ignores it; FindEntity is the only
operation that uses the reservation element. See "FindEntity" for more information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities.

If you specify row-locking information, AssociateEntity releases locked entities; you
do not need to manually release locked entities by calling the
RowLockManager.releaseLock() method, or wait for the timer to release locked
entities.

If you specify row-locking information for entities that are not consumable
(Geographic Location and Inventory Group), an error is thrown.

See Optimizing Concurrent Resource Allocation in UIM Developer's Guide for more
information about row locking.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />

Chapter 3
AssociateEntity

3-39

<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one association type per request, and two sets of search criteria per
request; one to find the source entities to associate, and one to find the target entities
to associate.

Example
Example 3-14 shows a request that associates the specified source and target entities
with an association type of ASSOCIATE. The source entity (only one source entity is
specified in this example) is the MobileServingArea inventory group. The target entities
are all logical devices created from the SIMCard specification that are installed and
unassigned.

Example 3-14 associateEntityRequest

<nsrm:associateEntityRequest>
 <nsrm:associationType>ASSOCIATE</nsrm:associationType>
 <nsrm:sourceEntities>
 <nsrm:entityType xsi:type="ig:InventoryGroupType" />
 <ent:criteria>
 <ent:entityType xsi:type="ig:InventoryGroupType" />
 <ent:specification>
 <spec:name>MobileServingArea</spec:name>
 </ent:specification>
 </ent:criteria>
 </nsrm:sourceEntities>
 <nsrm:targetEntities>
 <nsrm:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:criteria>
 <ent:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:specification>
 <spec:name>SIMCard</spec:name>
 </ent:specification>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 </ent:criteria>
 </nsrm:targetEntities>
</nsrm:associateEntityRequest>

associateEntityResponse
associateEntityResponse returns information about the associated entities. The
information returned in the response is dependent upon the entity types that were
associated, as specified in the request.

associateEntityResponse returns an error message when:

• The request specifies search criteria that results in no entities found to associate

• The request specifies an association type of PAIR and the number of sources and
targets found is the not the same

• The call to the UIM API fails

Chapter 3
AssociateEntity

3-40

DisassociateEntity
The DisassociateEntity operation enables external systems to send a request to UIM to
disassociate certain existing associated entities in UIM.

disassociateEntityRequest
You must specify an association type of ASSOCIATE or PAIR, which are enumeration values
defined in the entity.xsd file.

An association of type ASSOCIATE indicates a one-to-many association between a single
specified source entity and multiple specified target entities. An association type of PAIR
indicates a one-to-one association between a source entity and a target entity.

You must specify search criteria to find existing source entities to disassociate; and you must
specify search criteria to find existing target entities to disassociate. You have the choice of
specifying search criteria one of two ways. With either choice, you must specify the type of
source/target entity to find based on the entity types defined in the schema files. Each entity
type defines different elements that pertain specifically to the entity type, which you use as
search criteria to find entities. Table 3-8 lists the valid entity types and the schema files in
which they are defined.

Table 3-8 Entity Types for DisassociateEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

EquipmentType PhysicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

The choices are:

• <entity>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

Chapter 3
DisassociateEntity

3-41

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only
entity type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Note:

Within each EntityType structure, the property element defines
name, value, and action. However, action is not used; rather, the
NRM Web Service operations always assume an operand of
EQUALS.

• <criteria>

In this search option, you specify the entity type and use the following search
criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is
defined by the following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined
by the following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>

Chapter 3
DisassociateEntity

3-42

<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated
with inventory groups that are associated with the specified place. If searching for
entities other than telephone numbers, the inventoryGroup geographicLocation is not
used.

– geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

– quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned.

– reservation

If you specify reservation information, DisassociateEntity ignores it; FindEntity is the
only operation that uses the reservation element. See "FindEntity" for more
information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities; however, DisassociateEntity does not use row locking.

If you specify row-locking information, DisassociateEntity ignores it.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

Chapter 3
DisassociateEntity

3-43

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic
and corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one association type per request, and two sets of search criteria per
request; one to find the source entities to associate, and one to find the target entities
to associate.

Example
Example 3-15 shows a request that disassociates the specified source and target
entities. The source entity (only one source entity is specified in this example) is the
MobileServingArea inventory group. The target entities are all logical devices created
from the SIMCard specification that are installed and unassigned.

Example 3-15 disassociateEntityRequest

<nsrm:disassociateEntityRequest>
 <nsrm:sourceEntities>
 <nsrm:entityType xsi:type="ig:InventoryGroupType" />
 <ent:criteria>
 <ent:entityType xsi:type="ig:InventoryGroupType" />
 <ent:specification>
 <spec:name>MobileServingArea</spec:name>
 </ent:specification>
 </ent:criteria>
 </nsrm:sourceEntities>
 <nsrm:targetEntities>
 <nsrm:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:criteria>
 <ent:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:specification>
 <spec:name>SIMCard</spec:name>
 </ent:specification>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 </ent:criteria>
 </nsrm:targetEntities>
</nsrm:disassociateEntityRequest>

disassociateEntityResponse
disassociateEntityResponse returns information about the disassociated entities. The
information returned in the response is dependent upon the entity types that were
disassociated, as specified in the request.

disassociateEntityResponse returns an error message when:

• The call to the UIM API fails

Chapter 3
DisassociateEntity

3-44

ImportEntity
The ImportEntity operation enables external systems to send a request to import certain
entities into UIM.

importEntityRequest
You specify a SOAP attachment that is a spreadsheet containing the entities for import. The
spreadsheet must be a specific format: see "Spreadsheet Format".

For information about SOAP attachments, see the SoapUI website at:

http://www.soapui.org/SOAP-and-WSDL/adding-headers-and-attachments.html#2

Multiple Entities
You can import multiple entities of varying entity types per request. For example, a
spreadsheet may define fifteen rows that result in the import of five telephone number
entities, five logical device entities, and five physical device entities.

Example
Example 3-16 shows importEntityRequest, which uses of a SOAP attachment.

Example 3-16 importEntityRequest

<soapEnv:Envelope xmls:soapenv="http://schemas.xmlsoap.org/soap/envelope/".......>
 <soapEnv:Header/>
 <soapEnv:Body>
 <nsrm:importEntityRequest>
 <octet/>
 </nsrm:importEntityRequest>
 <soapEnv:Body/>
</soapEnv:Envelope/>

Spreadsheet Format
Example 3-17 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the column names for the ImportEntity
spreadsheet. You can change the name of existing column names defined in this file, but you
cannot add new columns to the spreadsheet by defining additional column names in this file.

Example 3-17 importExport.properties: Column Names

#Use import properties to customize column names for excel of ImportEntity
import.rowNumber=rowNumber
import.action=action
import.entityType=entityType
import.id=id
import.rangeFromID=rangeFromID
import.rangeToID=rangeToID
import.quantity=quantity
import.name=name
import.rangeFromName=rangeFromName
import.rangeToName=rangeToName
import.specification=specification

Chapter 3
ImportEntity

3-45

http://www.soapui.org/SOAP-and-WSDL/adding-headers-and-attachments.html#2

import.description=description
import.attribute=attribute
import.characteristic=characteristic
import.relatedRow=relatedRow

Table 3-9 describes the columns defined in the importExport.properties file.

Table 3-9 Spreadsheet Column Names

Name Description

rowNumber rowNumber is required and must be unique; it is a numeric value that you assign to
each row in the spreadsheet.

UIM uses rowNumber for referencing other rows in the spreadsheet for creating
relationships.

action action is required and must be one of the following values:

• create: Creates one or more entities and associates them with other entities
• associate: Associates one or more entities with other entities
• information: Provides search criteria information for the specified entityType

entityType entityType is required and must be one of the following values:

• InventoryGroup
• IPv4Address
• IPv6Address
• IPSubnet
• LogicalDevice
• LogicalDeviceAccount
• PhysicalDevice
• TelephoneNumber

id When the action is create and the specification requires a user-provided ID, id is
required.

When the action is create and the specification automatically generates an ID, do not
specify id.

When the action is associate or information, id can optionally specify search criteria.

The value can be numeric or alphanumeric.

rangeFromID rangeFromID populates the same database table and column as id, but it is used
when creating entities in bulk.

When the action is create, and you are creating LogicalDevice,
LogicalDeviceAccount, or PhysicalDevice entities in bulk, and the specification
requires a user-provided ID, rangeFromID is required and specifies the starting ID.
When rangeFromID is specified, you must also specify quantity. See "quantity".

When the action is create, and you are creating TelephoneNumber entities,
rangeFromID is not valid. For TelephoneNumber entities, you specify
rangeFromName and rangeToName. See "rangeFromName" and "rangeToName".

When the action is associate or information, rangeFromID, along with rangeToID,
can optionally specify search criteria.

The value must be numeric.

rangeToID When the action is associate or information, rangeToID, along with rangeFromID,
can optionally specify search criteria.

The value must be numeric.

Chapter 3
ImportEntity

3-46

Table 3-9 (Cont.) Spreadsheet Column Names

Name Description

quantity When the action is create, and you are creating LogicalDevice,
LogicalDeviceAccount, or PhysicalDevice entities in bulk, quantity specifies the
number of entities to create.

When the action is create, and you are creating TelephoneNumber entities, quantity
is not valid. For TelephoneNumber entities, you specify rangeFromName and
rangeToName. See "rangeFromName" and "rangeToName".

The value must be numeric.

name When the action is create, name specifies the name of the entity or entities you are
creating. When creating entities in bulk, all entities are created with the same name.

When the action is associate or information, name can optionally specify search
criteria.

The value can be alphanumeric or numeric.

rangeFromName (rangeFromName populates the same database table and column as name.)

When the action is create, and you are creating TelephoneNumber entities,
rangeFromID is specified along with rangeToName. See "rangeToName".

When the action is create, and you are creating LogicalDevice,
LogicalDeviceAccount, or PhysicalDevice entities in bulk, rangeFromName specifies
the starting name of the entities to create. When rangeFromName is specified in this
scenario, you must also specify quantity. See "quantity".

When the action is associate or information, rangeFromName, along with
rangeToName, can optionally specify search criteria.

The value must be numeric.

rangeToName When the action is create, and you are creating TelephoneNumber entities,
rangeToID is specified along with rangeFromName. See "rangeFromName".

When the action is associate or information, rangeToName, along with
rangeFromName, can optionally specify search criteria.

The value must be numeric.

specification When the action is create, specification is required to specify the specification used to
create the entity.

When the action is associate or information, specification can optionally specify
search criteria.

The value must represent an existing specification in UIM.

description When the action is create, description specifies the name of the entity or entities you
are creating. When creating entities in bulk, all entities are created with the same
name. Specifying a description is optional.

The value must be alphanumeric.

Chapter 3
ImportEntity

3-47

Table 3-9 (Cont.) Spreadsheet Column Names

Name Description

attribute When the action is create, attribute specifies the attribute name/value pair per cell for
the entity or entities you are creating. The name/value pair is specified as
attributeName=attributeValue. For example, or myAttribute=123.

The number of attribute columns depends on the number of attributes defined for the
entity you are creating. For example, when creating a PhysicalDevice entity, your
spreadsheet may specify four attribute columns containing the name/value pair for the
following attributes:

• networkLocation
• physicalAddress
• serialNumber
• physicalLocation
When creating entities in bulk, specifying attributeName=attributeValue creates all
entities with same attribute and same attribute value. For example, if you specify
myAttr=123, all entities are created with the myAttr attribute and all myAttr attribute
values are m123.

When the action is associate or information, attribute can specify search criteria.
For example, attributeName=attributeValue searches for entities with the specified
attribute and attribute value. For example, if you specify myAttr=123, the search looks
for entities with the myAttr attribute that has an attribute value of 123.

The value for any given attribute must match the data type defined for the attribute.

characteristic When the action is create, characteristic specifies the characteristic name/value pair
per cell for the entity or entities you are creating. The name/value pair is specified as
characteristicName=characteristicValue. For example, myChar=123.

The number of characteristic columns depends on the number of characteristics
defined for the entity you are creating. The characteristic column works similarly to the
attribute column. See "attribute" for an example.

When creating entities in bulk, you can specify:

• characteristicName=characteristicValue to create all entities with same
characteristic and same characteristic value. For example, if you specify
myChar=123, all entities are created with the myChar characteristic and all
myChar characteristic values are 123.

• characteristicName.rangeFrom=characteristicStartValue to create all entities with
the same characteristic and a range of characteristic values. In this scenario,
characteristicStartValue must be numeric. For example, if you specify
myChar.rangeFrom=123, all entities are created with the myChar characteristic
and characteristic values are 123, 124, 125, and so forth.

When the action is associate or information, characteristic can specify search
criteria as follows:

• characteristicName=characteristicValue searches for entities with the specified
characteristic and characteristic value. For example, if you specify myChar=123,
the search looks for entities with the myChar characteristic that has a
characteristic value of 123.

• characteristicName.range=characteristicStartValue, characteristicEndValue
searches for entities with the specified characteristic and range of characteristic
values. In this scenario, characteristicStartValue and characteristicEndValue
must be numeric. For example, if you specify myChar.range=123,200, the search
looks for entities with the myChar characteristic that has a characteristic value
ranging from 123 through 200.

The value for any given characteristic must match the data type defined for the
characteristic.

Chapter 3
ImportEntity

3-48

Table 3-9 (Cont.) Spreadsheet Column Names

Name Description

relatedRow relatedRow specifies rowNumber from the row with which the current row entity will
get paired (associated with a type of PAIR).

When the action is create for the source row and target row, both rows must point to
each other (the source row's pair value must reflect the target row's rowNumber, and
the target row's pair value must reflect the source row's rowNumber).

The value must be numeric.

The following list shows all valid relations. (In the list, LD is LogicalDevice, LDA is
LogicalDeviceAccount, PD is PhysicalDevice, TN is TelephoneNumber, and IG is
InventoryGroup):

• LD:LDA(1:n)

When LD and LDA are source-target or target-source, n LDAs are associated
with specified LD.

• LD:PD(1:n)

When LD and PD are source-target or target-source, n PDs are associated with
specified LD.

• LD:TN (n:n)

When LD and TN are source-target or target-source, a preconfigured custom
involvement is created with each pair of LD and TN. For example, when five LDs
and five TNs are specified, the first LD and first TN are paired, the second LD
and second TN are paired, and so forth.

• LD:IG(m:n)

When LD and IG are source-target or target-source, all LDs are associated to all
IGs. For example, m x n associations are created.

• PD:TN (n:n)

When PD and TN are source-target or target-source, a preconfigured custom
involvement is created with each pair of PD and TN. For example, when five PDs
and five TNs are specified, the first PD and first TN are paired, the second PD
and second TN are paired, and so forth.

• PD:IG (m:n)

When PD and IG are source-target or target-source, all PDs are associated to all
IGs.

• LDA:IG (m:n)

When LDA and IG are source-target or target-source, all LDAs are associated to
all IGs.

• TN:IG (m:n)

When TN and IG are source-target or target-source, all TNs are associated to all
IGs.

Chapter 3
ImportEntity

3-49

Note:

The following columns from Table 3-9 do not support the IPAM-specific
entities of IPv4Address, IPv6Address or IPSubnet:

• rangeFromID, rangeToID

• quantity

• rangeFromName, rangeToName

• relatedRow

Table 3-10 shows an example input spreadsheet for the request. The table shows
various values for the id, rangeFromID, rangeToID, quantity, name, rangeFromName,
and rangeToName columns when using the ImportEntity operation. In this example,
all rows specify the create action and the LogicalDevice entityType and a dash
represents no data for a cell.

Note:

The following columns were omitted from the spreadsheet example for
clarity:

• action (required column)

• entityType (required column)

• description

• attribute

• characteristic

• relatedRow

Table 3-11 shows the results of processing each row in Table 3-10.

Table 3-10 Example Spreadsheet

row
Number

id range
FromID

range
ToID

quantity name range
FromName

range
ToName

specification

1 - - - - testLD1 - - LDSpec

2 - - - - testLD2 - - LDSpec

3 - - - 2 testLD3 - - LDSpec

4 - - - 2 - 11001 - LDSpec

5 - - - 2 testLD5 - - LDSpec

6 - - - 2 - 12001 - LDSpec

7 1000 - - - testLD7 - - LDSpec_ManualID

8 1001 - - - testLD8 - - LDSpec_ManualID

9 - 1002 - 2 testLD9 - - LDSpec_ManualID

Chapter 3
ImportEntity

3-50

Table 3-10 (Cont.) Example Spreadsheet

row
Number

id range
FromID

range
ToID

quantity name range
FromName

range
ToName

specification

10 - 1004 - 2 - 13001 - LDSpec_ManualID

11 - 1006 - 2 testLD11 - - LDSpec_ManualID

12 - 1008 - 2 - 14001 - LDSpec_ManualID

Table 3-11 Example Spreadsheet Results

row
Number

Result

1 One LogicalDevice entity is created from the LDSpec specification.

Then entity is named testLD1.

The entity id is generated.

2 One LogicalDevice entity is created from the LDSpec specification.

Then entity is named testLD2.

The entity id is generated.

3 Two LogicalDevice entities are created from the LDSpec specification.

Both entities are named testLD3.

The entity ids are generated.

4 Two LogicalDevice entities are created from the LDSpec specification.

The first entity is named 11001, and the second entity is named 11002.

The entity ids are generated.

5 Two LogicalDevice entities are created from the LDSpec specification.

Both entities are named testLD5.

The entity ids are generated.

6 Two LogicalDevice entities are created from the LDSpec specification.

The first entity is named 12001, and the second entity is named 12002.

The entity ids are generated.

7 One LogicalDevice entity are created from the LDSpec_ManualID specification.

The entity is named testLD7.

The entity id is 1000.

8 One LogicalDevice entity are created from the LDSpec_ManualID specification.

The entity is named testLD8.

The entity id is 1001.

9 Two LogicalDevice entities are created from the LDSpec_ManualID specification.

Both entities are named testLD9.

The first entity id is 1002 and the second entity id is 1003.

10 Two LogicalDevice entities are created from the LDSpec_ManualID specification.

The first entity is named 13001, and the second entity is named 13002.

The first entity id is 1004 and the second entity id is 1005.

Chapter 3
ImportEntity

3-51

Table 3-11 (Cont.) Example Spreadsheet Results

row
Number

Result

11 Two LogicalDevice entities are created from the LDSpec_ManualID specification.

Both entities are named testLD11.

The first entity id is 1006 and the second entity id is 1007.

12 Two LogicalDevice entities are created from the LDSpec_ManualID specification.

The first entity is named 14001, and the second entity is named 14002.

The first entity id is 1008 and the second entity id is 1009.

Spreadsheet Row Order
The rows in the spreadsheet must be provided to ImportEntity in a specific order. The
order is based on a combination of the action, relatedRow, and entityType column
values.

The spreadsheet row order must be:

1. create-create paired rows

First, provide the rows of entities to create that are to be paired with another entity;
that is, both rows specify the create action and both rows specify a relatedRow
value that indicates each other.

If you are creating entities of varying entity type, specify your create-create paired
rows in the following entityType order:

• TelephoneNumber

• LogicalDevice

• LogicalDeviceAccount

• PhysicalDevice

• InventoryGroup

2. create rows

Next, provide the rows of entities to create that are not to be paired with another
entity; that is, rows that specify the create action and specify no relatedRow value.

If you are creating entities of varying entity type, specify your create rows in the
following entityType order:

• TelephoneNumber

• LogicalDevice

• LogicalDeviceAccount

• PhysicalDevice

• InventoryGroup

3. create-information paired rows

Next, provide the rows of entities to create for which additional information is
provided in a corresponding row; that is, one row specifies the create action, one

Chapter 3
ImportEntity

3-52

row specifies the information action, and both rows specify a relatedRow value that
indicates each other.

If you are creating entities of varying entity type, specify your create-information paired
rows in the following entityType order:

• TelephoneNumber

• LogicalDevice

• LogicalDeviceAccount

• PhysicalDevice

• InventoryGroup

4. associate-information paired rows

Last, provide the rows of entities to associate for which additional information is provided
in a corresponding information row; that is, one row specifies the associate action, one
row specifies the information action, and both rows specify a relatedRow value that
indicates each other.

If you are associating entities of varying entity type, specify your associate-information
paired rows in the following entityType order:

• TelephoneNumber

• LogicalDevice

• LogicalDeviceAccount

• PhysicalDevice

• InventoryGroup

importEntityResponse
importEntityResponse returns information about the imported entities. The information
returned in the response is dependent upon the entity types that were imported, as specified
in the request.

importEntityResponse returns an error message when the request specifies the following. (In
the list, LD is LogicalDevice, LDA is LogicalDeviceAccount, PD is PhysicalDevice, and TN is
TelephoneNumber):

• A rowNumber less than zero, or duplicate row numbers

• More than 10,000 rows

• A column name that is not defined in the properties file

• No action

• The create action with no specification

• The create action with a specification that does not exist

• A quantity of zero or less than zero

• The create action for an LD, LDA, or PD, and specifies a rangeToID or rangeToName
(which is used only for TN)

• No id or rangeToID for Manual ID specifications of LD, LDA, or PD

• No quantity with rangeFromID for Manual ID specifications of LD, LDA, or PD

Chapter 3
ImportEntity

3-53

• A rangeFromID that is not numeric for LD, LDA, or PD

• Both id and quantity LD, LDA, or PD

• Both id and rangeFromID LD, LDA, or PD

• Both id and rangeFromID for auto-generated ID specifications of LD, LDA, or PD

• Both Name and rangeFromName for LD, LDA, PD, or TN

• No name and no rangeFromName for LD, LDA, PD, or TN

• A rangeFromName that is not numeric LD, LDA, PD, or TN

• An incorrect attribute for any entity

• No rangeFromName and no rangeToName for TN

• id, rangeFromID, rangeToID, quantity, rangeFromName, or rangeToName for
InventoryGroup

• More than one LD for LD-LDA association

• More than one LD for LD-PD association

• Pairing information for association when action is create in both rows does not
match

• Invalid association types (For example, LD-LD, PD-LDA, and so forth)

• An unequal number of entities for LD-TN or PD-TN

• Incorrect relatedRow information (For example, relatedRow does not specify the
information action)

• An InventoryGroup that does not exist

• The call to the UIM API fails

ExportEntity
The ExportEntity operation enables external systems to send a request to export
certain existing entities from UIM. The entities found for export are returned in a
spreadsheet through a SOAP attachment in the response.

exportEntityRequest
You must specify search criteria to find existing entities to export. Search criteria is
specified using the <criteria> element, which includes entity type.

You specify the type of entity to export based on the entity types defined in the schema
files. Each entity type defines different elements that pertain specifically to the entity
type, which you use to specify what to update. Table 3-12 lists the valid entity types
and the schema files in which they are defined.

Table 3-12 Entity Types for ExportEntity

Entity Type Schema File

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

Chapter 3
ExportEntity

3-54

Table 3-12 (Cont.) Entity Types for ExportEntity

Entity Type Schema File

TelephoneNumberType Number.xsd

<criteria> defines the following search criteria:

• specification

The search returns entities created from the specified specification.

• adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

• assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

• inventoryGroup

The search returns entities associated with the specified inventory group.

• quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned.

• reservation

If you specify reservation information, ExportEntity ignores it; FindEntity is the only
operation that uses the reservation element. See "FindEntity" for more information.

• lock

Row locking is used to optimize concurrent resource allocation for consumable entities;
however, ExportEntity does not use row locking.

Chapter 3
ExportEntity

3-55

If you specify row-locking information, ExportEntity ignores it.

• criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

– Name of a criteria item as defined by the EntitySearchCriteria class, where
Entity is the name of a specific entity such as TelephoneNumber,
LogicalDevice, and so forth (see "Determining Criteria Item Names")

– Value of specified criteria item

– Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

• property

The search returns entities with the data specified by property, which is an
unbounded structure that provides the ability to specify the following:

– Name of characteristic

– Value of specified characteristic

– Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You can export multiple entities of varying entity types per request. For example, the
request search criteria may return telephone number entities, logical device entities,
and physical device entities, and the varying types of entities are exported.

Example
Example 3-18 shows search criteria to find LogicalDevice entities created from the
SIMCard specification that are installed and unassigned.

Example 3-18 exportEntityRequest

<nsrm:exportEntityRequest>
 <ent:criteria>
 <ent:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:specification>
 <spec:name>SIMCard</spec:name>
 </ent:specification>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 </ent:criteria>
</nsrm:exportEntityRequest>

Chapter 3
ExportEntity

3-56

exportEntityResponse
exportEntityResponse returns a spreadsheet containing the exported entities as a SOAP
attachment in the response. The entities returned in the response are dependent upon the
entity types that were exported, as specified in the request.

Example 3-19 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the column names for the ExportEntity
spreadsheet. These column names are common across all ExportEntity-supported entity
types. You can change the name of existing column names defined in this file, but you cannot
add new columns to the spreadsheet by defining additional column names in this file.

Example 3-19 importExport.properties: Column Names

#Use export properties to customize column names for excel of ExportEntity
export.slNo=serialNumber
export.entityType=entityType
export.id=ID
export.name=name
export.specification=specification
export.description=description
export.attribute=attribute
export.characteristic=characteristic

Exported entities are grouped by entity type per sheet. Example 3-20 shows an excerpt from
the UIM_CONFIG_PATH/config/importExport.properties file, which defines the sheet
names. You can change the name of existing sheets, but you cannot add new sheets to the
spreadsheet by defining additional sheets in this file.

Example 3-20 importExport.properties: Sheet Names

#Use export properties to customize name sheets for different entities
export.sheet.telephoneNumber=TelephoneNumber
export.sheet.logicalDevice=LogicalDevice
export.sheet.logicalDeviceAccount=LogicalDeviceAccount
export.sheet.physicalDevice=PhysicalDevice

The sheets are created when entities are found for export. So, all sheets are not always
returned. For example, if the specified search criteria finds only logical devices to export, only
the LogicalDevice sheet is returned.

If no entities are found for export, no sheets are created, and no attachment is returned in the
response.

TelephoneNumber Sheet
If telephone number entities are found for export based on the specified search criteria, the
TelephoneNumber sheet is created. This sheet contains the column names that are common
across all ExportEntity-supported entity types (shown in Example 3-19), as well as column
names that represent telephone number attributes.

Example 3-21 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the available telephone number attribute column
names you can add to the sheet by setting to true, or omit from the sheet by setting to false.

You can change the name of existing column names defined in this file, but you cannot add
new columns to the TelephoneNumber sheet by defining additional column names in this file.

Chapter 3
ExportEntity

3-57

Example 3-21 importExport.properties: TN-Specific Column Names

#Use TelephoneNumber export properties for exporting attributes
tn.export.partition=true
tn.export.owner=true
tn.export.permissions=tue

LogicalDevice Sheet
If logical device entities are found for export based on the specified search criteria, the
LogicalDevice sheet is created. This sheet contains the column names that are
common across all ExportEntity-supported entity types (shown in Example 3-19), as
well as column names that represent logical device attributes.

Example 3-22 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the available logical device attribute
column names you can add to the sheet by setting to true, or omit from the sheet by
setting to false.

You can change the name of existing column names defined in this file, but you cannot
add new columns to the LogicalDevice sheet by defining additional column names in
this file.

Example 3-22 importExport.properties: LD-Specific Column Names

#Use LogicalDevice export properties for exporting attributes
ld.export.partition=true
ld.export.owner=true
ld.export.permissions=true
ld.export.networkLocationEntityCode=true
ld.export.deviceIdentitfier=true

LogicalDeviceAccount Sheet
If logical device account entities are found for export based on the specified search
criteria, the LogicalDeviceAccount sheet is created. This sheet contains the column
names that are common across all ExportEntity-supported entity types (shown in
Example 3-19), as well as column names that represent logical device account
attributes.

Example 3-23 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the available logical device account
attribute column names you can add to the sheet by setting to true, or omit from the
sheet by setting to false.

You can change the name of existing column names defined in this file, but you cannot
add new columns to the LogicalDeviceAccount sheet by defining additional column
names in this file.

Example 3-23 importExport.properties: LDA-Specific Column Names

#Use LogicalDeviceAccount export properties for exporting attributes
lda.export.partition=true
lda.export.owner=true
lda.export.permissions=true

Chapter 3
ExportEntity

3-58

PhysicalDevice Sheet
If physical device entities are found for export based on the specified search criteria, the
PhysicalDevice sheet is created. This sheet contains the column names that are common
across all ExportEntity-supported entity types (shown in Example 3-19), as well as column
names that represent physical device attributes.

Example 3-24 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the available physical device attribute column
names you can add to the sheet by setting to true, or omit from the sheet by setting to false.

You can change the name of existing column names defined in this file, but you cannot add
new columns to the PhysicalDevice sheet by defining additional column names in this file.

Example 3-24 importExport.properties: PD-Specific Column Names

#Use PhysicalDevice export properties for exporting attributes
pd.export.partition=true
pd.export.owner=true
pd.export.permissions=true
pd.export.networkLocation=true
pd.export.physicalLocation=true
pd.export.physicalAddress=true
pd.export.serialNumber=true

exportEntityResponse Faults
exportEntityResponse returns an error message when:

• The call to the UIM API fails

Determining Criteria Item Names
This section provides detailed information regarding determining criteria item names, as
referenced from "FindEntity", "FindTNBlock", "UpdateEntity", "DeleteEntity", "ReserveEntity",
"UnreserveEntity", "AssociateEntity", "DisassociateEntity", and "ExportEntity".

When using the criteriaItem structure, the search returns entities based on specified criteria
item name/value pairs.

To determine the valid criteria item names you can specify, you must look in the Javadoc for
the EntitySearchCriteria class, where Entity is the name of a specific entity such as
TelephoneNumber, LogicalDevice, and so forth. For each EntitySearchCriteria class, you can
only specify criteria items that are native to the class. For example, Figure 3-1 shows an
excerpt of the TelephoneNumberSearchCriteria Javadoc.

Chapter 3
Determining Criteria Item Names

3-59

Figure 3-1 Javadoc Example

In this example, the following are valid criteria item names you can specify:

• adminState

• assignmentState

• conditionType

• customerId

• id

• inventoryGroupName

• name

• rangeFrom

• rangeTo

• blockSize

Chapter 3
Determining Criteria Item Names

3-60

Criteria items that are native to the class are listed as type CriteriaItem in the Javadoc
method summary Modifier and Type column. You cannot specify criteria items that are type
boolean, java.util.List, or another UIM entity class, such as InventoryGroup as shown in the
example.

Note:

Be mindful that getter and setter method names alter the criteria item name.

For example, the getAdminState() method spells AdminState with an uppercase
“A", but the criteria item name is actually adminState with a lowercase “a".

For information about accessing the UIM Javadoc, see UIM Developer's Guide.

Customizing the Web Service Operations
You can customize any of the web service operations by creating a custom Java class that
extends an existing UIM class. In the custom Java class, you can define methods that
override and modify the methods defined in the parent class you are extending.

To customize web service operations:

1. Open the UIM_CONFIG_PATH/config/nsrm-ws.properties file.

The file lists the delegate web service classes and the delegate API classes. All of the
delegate classes listed in the nsrm-ws.properties file are described in the Javadoc.

2. Use the Javadoc to determine which delegate class you want to customize.

To access the Javadoc, enter the following in your Web browser:

http://server:port/ora_uim_javadoc

where server is the specific server on which the application is deployed and port is the
port on which the application listens.

For detailed instructions on accessing the Javadoc, see UIM Developer's Guide.

3. Create a custom Java class that extends a delegate class.

4. In the custom Java class, you can customize any of the methods defined in the parent
class by defining the same methods in the child class, and modifying the methods as
needed for your business requirements.

Your custom code can also execute a ruleset. For example, you may want to utilize
existing functionality provided in the base rulesets. See UIM Developer's Guide for more
information about rulesets, including how to execute a ruleset from within custom code.

5. In the nsrm-ws.properties file:

a. Copy and paste the property that defines the delegate class you extended.

b. Comment out the original property that defines the delegate class you extended.

c. Update the copied property to reflect the name of your custom class.

For example:

#ws.delegate.TelephoneNumberType=oracle.communications.inventory.
#webservice.delegate.TelephoneNumberDelegate

Chapter 3
Customizing the Web Service Operations

3-61

ws.delegate.TelephoneNumberType=oracle.communications.inventory.
webservice.delegate.MyCustomTNDelegate

6. Deploy the custom code.

For traditional UIM:

• If your custom code resides within an Inventory cartridge project, you deploy
the cartridge through Design Studio. See UIM Developer's Guide for more
information.

• If your custom code resides within a WAR file in the custom.ear file, you
deploy the custom.ear file through the WebLogic Administration Console. See
"Developing Custom Web Services" for more information.

For cloud native UIM:

• Deploy the custom code into UIM cloud native by rebuilding the customized
image and creating the instance with generated image. For more information,
see "Customizing Images" in UIM Cloud Native Deployment Guide.

Extending Web Service Requests and Responses
You can extend web service requests and responses by extending
GenericHandler.class, which supports the use of SOAP handlers and which is used
by the UIM Network Resource Management Web Service.

Extending Network Resource Management Web Service requests and responses is
done the same way as extending Service Fulfillment Web Service requests and
responses. Both web services are packaged together in the InventoryWS.war file, so
all of the steps are the same. See "Extending Web Service Requests and Responses"
in the Service Fulfillment Web Service chapter for detailed instructions about extending
web service requests and responses.

Deploying, Testing, and Securing the Web Service
Information about deploying, testing, and securing the web service is described in
"Deploying, Testing, and Securing UIM Web Services".

Chapter 3
Extending Web Service Requests and Responses

3-62

4
Developing Custom Web Services

This chapter provides information about integrating Oracle Communications Unified Inventory
Management (UIM) with external systems by developing custom web services. It describes
the approach to developing web services and the guidelines you should follow.

About the UIM Reference Web Service
The chapter uses the UIM Reference Web Service as an example that you can extend.

Note:

Previous Reference Web Service operations were deprecated in earlier releases.
The deprecated operations have now been removed from the
reference_webservice.zip file.

The UIM Reference Web Service is part of the UIM Software Developer's Kit (SDK). The UIM
SDK provides the resources required to build an Inventory cartridge in Design Studio. For
more information about the UIM SDK, see UIM Developer's Guide.

This chapter assumes you are using Design Studio to develop custom web services. If you
use an integrated development environment (IDE) other than Design Studio, you can ignore
the .classpath and .project files in the reference_webservice.zip file.

You can view the contents of reference_webservice.zip file in Oracle Communications
Design Studio by importing the archive ZIP file into Design Studio. The ZIP file contains
several types of files including the following:

• WSDL File

The ReferenceUim.wsdl file defines the CreateLogicalDevice web service operation that
creates a logical device. CreateLogicalDevice also defines an input, an output, and the
possible faults that can be thrown.

See "About the WSDL File" for more information about the ReferenceUim.wsdl file.

• Schema Files

The schema files define XML structures for the inputs, outputs, faults and operation
definitions of the Reference Web Service.

See "About the Schema Files" for more information about the schema files.

• Java Source Files

The Java source files provide the web service operation code. For example, these source
files provide the following:

– Input request and output response XML mapping

– An API manager call to UIM core for the operation

4-1

– Transaction management for the operation with the commit or rollback result

See "Developing the Web Service" for more information about the Java source
files, including a listing and description of each type of class file, and information
about which files need to be created or modified.

• Ant Build File

The build.xml file defines Ant targets that you can run to build a custom web
service. Ant targets are a set of executable tasks defined in the build.xml file. See
"About the Ant Build File" for more information.

About the WSDL and Schema Files
The Reference Web Service operation is defined by the ReferenceUim.wsdl file, and
is supported by several schema files. The WSDL file and supporting schema files are
located in the UIM_SDK_Home/webservices/reference_webservice.zip file, where
UIM_SDK_Home is the local directory for the UIM SDK.

About the WSDL File
The WSDL file is located in the wsdl directory of the reference_webservice.zip file.
The WSDL file defines the web service operation CreateLogicalDevice. This operation
defines a request, a response, and the possible faults that can be thrown on error. For
example, the WSDL file defines the following for the CreateLogicalDevice operation:

• createLogicalDeviceRequest

• createLogicalDeviceResponse

The request, response, and faults each define an XML structure that is defined in the
supporting schema files. Example 4-1 shows the port definition, the operation, and the
input request message.

Example 4-1 WSDL File Excerpt

<wsdl:portType name="ReferenceUimPort">
 <wsdl:operation name="CreateLogicalDevice">
 <wsdl:input message="invws:CreateLogicalDeviceRequest" />
 <wsdl:output message="invws:CreateLogicalDeviceResponse" />
 <wsdl:fault name="InventoryFault" message="invws:InventoryFault" />
 <wsdl:fault name="ValidationFault" message="invws:ValidationFault" />
 </wsdl:operation>
</wsdl:portType>
.
.
.
<wsdl:message name="CreateLogicalDeviceRequest">
 <wsdl:part name="createLogicalDeviceRequest"
 element="invldmsgs:createLogicalDeviceRequest"/>
</wsdl:message>

This WSDL excerpt shows the message CreateLogicalDeviceRequest is defined by
the element createLogicalDeviceRequest. createLogicalDeviceRequest references the
invldmsgs namespace which indicates where the XML structure is defined. See
"About Namespaces" for more information.

Chapter 4
About the WSDL and Schema Files

4-2

About the Schema Files
There are several schema files that support the Reference Web Service operation. These
schemas are categorized as reference schemas and web service schemas.

Reference Schemas

The reference schemas define common elements used by all of the UIM web services, not
just by the Reference Web Service. These elements are defined in the framework and then
referenced in the various WSDL files.

The reference schemas are:

• InventoryCommon.xsd

• InventoryFaults.xsd

• FaultRoot.xsd

The reference schemas are contained in the uim-webservices-framework.jar. You can copy
them into your workspace using the get-framework-files Ant target defined in the build.xml
file. The build.xml file is contained in the reference_webservice.zip file. See "About the Ant
Build File" for more information.

Note:

The reference schemas use the Inventory.xsdconfig file to map XML namespaces
to Java packages.

Web Service Schemas

Within the reference_webservice.zip file, the example schema file is located in the wsdl/
schemas directory. The web service schema defines elements specific to the web service,
such as the request structures, the response structures, and any fault structures.

The example web service schema file name is LogicalDeviceMessages.xsd.

Note:

The web service schemas use the type-mapping.xsdconfig file to map XML
namespaces to Java packages.

About Namespaces
The WSDL file defines a namespace to avoid naming conflicts. You use the namespace to
determine the schema file location of the schema reference. Example 4-2 shows how a
namespace defined in the WSDL file correlates to the supporting schema files.

In this example, the ReferenceUim.wsdl defines and references the invldmsgs namespace.

Chapter 4
About Namespaces

4-3

Example 4-2 Namespace Example

.

.

.
xmlns:invldmsgs="http://xmlns.oracle.com/communications/inventory/webservice/
logicaldevice"
.
.
.
<xsd:import namespace=
 "http://xmlns.oracle.com/communications/inventory/webservice/logicaldevice"
 schemaLocation="./schemas/LogicalDeviceMessages.xsd"/>
 .
 .
 .
 <wsdl:message name="CreateLogicalDeviceRequest">
 <wsdl:part name="createLogicalDeviceRequest"
 element="invldmsgs:createLogicalDeviceRequest"/>
 </wsdl:message>
 .
 .
 .

The CreateLogicalDeviceRequest message declaration tells you that
createLogicalDeviceRequest is defined in the schema file that supports the invldmsgs
namespace. A search for the namespace and for the following string reveals that the
LogicalDeviceMessages.xsd schema file defines the structures for the invldmsgs
namespace:

xmlns.oracle.com/communications/inventory/webservice/logicaldevice

After you determine that the LogicalDeviceMessages.xsd schema file defines the
XML structure, you can navigate through the schema files to determine child XML
structures if applicable.

Refer to the following website for more information on namespaces:

https://www.w3.org/TR/REC-xml-names/

About the Ant Build File
The build.xml file defines Ant targets that you can run to build a custom web service.
These Ant targets are a set of executable tasks that aid building a web service.

Table 4-1 describes the Ant targets defined in the build.xml file. See "Developing and
Running Custom Web Services" for information about when to run these Ant targets.
For information more information about running Ant targets within Design Studio, see
UIM Developer's Guide.

Table 4-1 build.xml Ant Targets

Ant Target Description

clean Deletes the generated, temporary, and deliverable files and
directories.

Chapter 4
About the Ant Build File

4-4

https://www.w3.org/TR/REC-xml-names/

Table 4-1 (Cont.) build.xml Ant Targets

Ant Target Description

all Initiates the complete build process for the web service supporting
both HTTP and JMS. Identical to the build.full Ant target, it calls
the following Ant targets in this order: clean,generate-from-wsdl,
build-service.

copyResources Copies the properties files that store localized error messages to
the appropriate UIM deployment directory. These properties files
are located in a ZIP file in the config/resources/logging directory
and are copied to the UIM_HOME/config/resources/logging
directory.

Note: For cloud native deployments, if you want to add additional
logging properties files, you add these files to solution cartridges or
localization cartridges
(ora_uim_localization_reference_cartproj.zip).

wspolicy Updates the WAR file with the web service policy files, which
describe the authentication and encryption mechanism for web
service calls.

build.full Initiates the complete build process for the web service supporting
both HTTP and JMS. Calls the following Ant targets in this order:
clean,generate-from-wsdl, build-service.

build.full.http Initiates the complete build process for the web service WAR file
supporting HTTP. Calls the following Ant targets in this order:
clean,generate-from-wsdl, build-service-http.

build.full.jms Initiates the complete build process for the web service WAR file
supporting JMS. Calls the following Ant targets in this order:
clean,generate-from-wsdl, build-service-jms.

build-service Builds the web service WAR file for both HTTP and JMS, and
stores it in the webarchive directory. The name of the WAR file is
wsdl_name.war, where wsdl_name is the name specified by the
WSDL_NAME parameter in the COMPUTERNAME.properties file.

build-service-http Builds the web service WAR file for HTTP and stores it in the
webarchive directory. The name of the WAR file is
wsdl_nameHTTP.war, where wsdl_name is the name specified by
the WSDL_NAME parameter in the COMPUTERNAME.properties
file.

build-service-jms Builds the web service WAR file for JMS and stores it in the
webarchive directory. The name of the WAR file is
wsdl_nameJMS.war, where wsdl_name is the name specified by
the WSDL_NAME parameter in the COMPUTERNAME.properties
file.

build.deliverable Builds the web service cartridge JAR file and stores it in the
deliverables directory. Calls the build.full Ant target first to get a
complete build for the WAR file.

generate-from-wsdl Performs WSDL-to-Java conversions and generates object
representations of the schemas. This includes business schema
files such as LogicalDevice.xsd. Calls the get-framework-files
Ant target.

Chapter 4
About the Ant Build File

4-5

Table 4-1 (Cont.) build.xml Ant Targets

Ant Target Description

get-framework-files Extracts the framework schema files InventoryCommon.xsd and
InventoryFaults.xsd from the uim-webservices-framework.jar
file stored in the directory specified by APP_LIB parameter defined
in the COMPUTERNAME.properties file. The framework schema
XSD files are also located in the
schema_Inventory_webservice.zip file in the UIM SDK.

extract.ear Extracts the application.xml file from the EAR file specified by the
EAR_PATH parameter defined in the
COMPUTERNAME.properties file into the
reference_webservice_home/META-INF directory, where
reference_webservice_home is the location of thea extracted
reference_webservice.zip file. The application.xml file needs to
be edited manually so that the EAR file can be updated for proper
deployment of the web services.

Note: The above description is not applicable for UIM cloud native
deployments. Building customized image packages the WAR file.

update.ear Updates the EAR file specified by the EAR_PATH parameter in the
COMPUTERNAME.properties file by adding the generated web
service WAR file and the edited application.xml file in the
webarchive directory into the EAR file. The updated EAR file can
be deployed to test the web services.

Note: The above description is not applicable for UIM cloud native
deployments. Building customized image packages the WAR file.

Note:

The UIM Reference Web Service is an example web service to follow for
developing custom web services. The Reference Web Service cannot be
used for production deployments.

Guidelines for Developing Custom Web Services
This section describes the guidelines for developing a web service. It also contains
class diagrams that represent the UIM Reference Web Service development classes.

Using the WSDL-First Approach to Developing Custom Web Services
The WSDL-first approach (also known as the top-down approach), is the
recommended way to achieve interoperability, platform independence, and WSDL
consistency across web services. Figure 4-1 shows the design and development
sequence of the WSDL-first approach.

Chapter 4
Guidelines for Developing Custom Web Services

4-6

Figure 4-1 WSDL-First Design and Development Sequence

• Define WSDL and schemas

Write the WSDL and the corresponding schemas (XSD files) to define the operations and
data.

• WSDL-to-Java generation

Use the build.xml Ant targets provided by the Reference Web Service to generate Java
source files based on the WSDL and schema definitions.

• Develop Java web service interface implementation

Use the web service development environment and tools provided by the Reference Web
Service to implement the web service interface by creating new Java source files and
changing existing ones.

For example, the UIM Reference Web Service module was designed using the WSDL-first
approach. This means that:

• The ReferenceUimPortImpl Java source file is generated based on the WSDL. This
generation results in the WSDL operation being defined in the ReferenceUimPortImpl
Java source file, but with no coding details.

• Within the ReferenceUimPortImpl Java source, an operation is manually modified to call
its respective operation in the AdapterRouter class.

• The AdapterRouter class calls the respective operation in each individual Adapter class.

• The build generates the ReferenceUimPort interface based on the WSDL.

Class Diagrams
In the following class diagrams, Action represents a UIM business action such as Create, and
Entity represents a UIM entity such as LogicalDevice. In the Reference Web Service, an
example of ActionEntity is the CreateLogicalDevice operation. You should use the
CreateLogicalDevice example as a template when creating custom web services. Consider
the following recommendations:

• Follow the naming convention of ActionEntity for consistency on new operations.

• Follow the template code example for the user environment and transaction management
functionality. See "Transaction Guidelines" for more information on transaction
management.

• Make calls to UIM core functionality by invoking the API manager methods.

Some additional types of classes may be needed depending on the complexity of the web
service operation that is developed. See "Creating Java Source Files" for more information
about these additional types of classes.

Figure 4-2 through Figure 4-7 show the class designs provided by the Reference Web
Service. These designs include request types, response types, fault types, adapters, and
implementations.

Chapter 4
Guidelines for Developing Custom Web Services

4-7

You should follow the patterns illustrated in Figures 4-2 through 4-7 when you design
interfaces and classes.

Note:

Several of the XSD files in this section are not in the Reference Web Service
even though they are referenced in the ReferenceUim.wsdl file. You pull
these files into the wsdl directory by initiating the get-framework-files Ant
target in the build.xml file. See "About the Ant Build File" for more
information.

Figure 4-2 shows the recommended class design for custom request types.
ReferenceUim.wsdl specifies the element createLogicalDeviceRequest as type
CreateLogicalDeviceRequestType, which is defined in LogicalDeviceMessages.xsd.
CreateLogicalDeviceRequestType extends InventoryRequestType, which is defined in
InventoryCommon.xsd.

Figure 4-2 Request Types

Figure 4-3 shows the recommended class design for custom response types.
ReferenceUim.wsdl specifies the element createLogicalDeviceResponse as type
CreateLogicalDeviceResponseType, which is defined in
LogicalDeviceMessages.xsd. CreateLogicalDeviceResponseType extends
InventoryResponseType, which is defined in InventoryCommon.xsd.

Figure 4-3 Response Types

Chapter 4
Guidelines for Developing Custom Web Services

4-8

Figure 4-4 shows the recommended class design for custom fault types. ReferenceUim.wsdl
uses the base fault types of InventoryFaultType and ValidationFaultType. These types are
defined in InventoryFault.xsd. InventoryFaultType defines a sequence of faults, which are
defined by ApplicationFaultType in FaultRoot.xsd.

Figure 4-4 Fault Types

Figure 4-5 shows the recommended class design for custom adapters. The example adapter
file is LogicalDeviceAdapter.java, which extends InventoryAdapterRoot.java. The UIM-
owned InventoryAdapterRoot.java class extends the Platform-owned AdaptorRoot.java
class.

Figure 4-5 Adapters

Figure 4-6 shows the recommended class design for the implementation class. The
ReferenceUim.wsdl file is used to generate the ReferenceUimPort.java source file. The
ReferenceUimPortImpl.java example file provides a skeleton class that implements the
interface in the ReferenceUimPort.java source file.

Note:

The sequence of the method signatures in the implementation class is important
and must match the generated source. The generated source is based on the
WSDL file definitions.

Chapter 4
Guidelines for Developing Custom Web Services

4-9

Figure 4-6 Web Service Implementation

Figure 4-7 shows the class diagram with the ReferenceUimPortImpl, AdapterRouter
and LogicalDeviceAdapter classes and their relationships. This design is
recommended for building your own custom web services for other actions and entities
similar to this example.

Figure 4-7 Implementation Pattern

WSDL Interface Guidelines
ReferenceUim.wsdl defines a single port type (a web service interface) that defines
all of the exposed custom operations. When developing new web service operations,
you create them within this single port.

The current recommended practice in creating UIM web service operations is to use a
single port. Multiple ports are not defined. The only time you use multiple ports is when
you have a port for HTTP and another for JMS. Multiple ports should not be used for
categorically grouping operations.

Operation Signatures
Oracle recommends you follow naming patterns for the following:

• Operation names

• Request type names

• Response type names

• Fault type names

The naming patterns discussed in this section give consistency for the operations
signatures.

Chapter 4
Guidelines for Developing Custom Web Services

4-10

Signature Components
A web service operation signature contains the following:

• Operation name

The pattern for defining an operation name is [action][EntityName] where action
represents a verb action (such as create, update, delete) and the EntityName represents
the entity acted upon (such as Equipment, LogicalDevice, TelephoneNumber). For
example:

– createEquipment

– updateLogicalDevice

– deleteTelephoneNumber

• Request type

The pattern for defining a request type is operationNameRequestType. A single request
type is defined per operation. For example:

– CreateEquipmentRequestType

– UpdateLogicalDeviceRequestType

– DeleteTelephoneNumberRequestType

• Response type

The pattern for defining a response type is operationNameResponseType. A single
response type is defined per operation. For example:

– CreateEquipmentResponseType

– UpdateLogicalDeviceResponseType

– DeleteTelephoneNumberResponseType

• Fault types

The pattern for defining a fault type is businessFaultFaultType, where businessFault
represents a specific business fault that might be thrown back to the user. Multiple
business faults can be defined per operation. For example:

– EquipmentNotUniqueFaultType

– EquipmentNotFoundFaultType

– NotAuthorizedFaultType

Fault types contain the error codes and stack trace set by the business logic. One-to-one
mapping between thrown business logic exceptions and the defined business faults is
required to capture the different exceptions.

Signature Pattern and Examples
The signature pattern of an operation in the Reference Web Service is defined as follows:

public OperationNameResponseType operationName(
 OperationNameRequestType operationNameRequest) throws
 businessFault1FaultType,
 businessFault2FaultType,
 businessFaultNFaultType

Chapter 4
Guidelines for Developing Custom Web Services

4-11

For example, the createLogicalDevice method is defined in the
LogicalDeviceAdapter.java file as the following:

public CreateLogicalDeviceResponseType createLogicalDevice(
 CreateLogicalDeviceRequestType
createLogicalDeviceRequest) throws
 InventoryFaultType,
 ValidationFaultType

Table 4-2 shows the operation signature pattern on commonly used actions. In the
table, Entity represents the name of the entity (such as Equipment, LogicalDevice,
TelephoneNumber) acted upon by the operation.

Table 4-2 Operation Signature Examples

Action Operation Signature

Create CreateEntityResponseType createEntity
 (CreateEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Find FindEntityResponseType findeEntity
 (FindEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Update UpdateEntityResponseType updateEntity
 (UpdateEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Delete DeleteEntityResponseType deleteEntity
 (DeleteEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Calculate CalculateEntityResponseType calculateEntity
 (CalculateEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Schema Guidelines
A custom web service schema is represented by multiple XSD files. The UIM API-level
entity definitions closely follow the TM Forum (TMF) SID standard. Using XSD files
that parallel the UIM APIs ensures SID standard compliance. For example, you build
the XSD files parallel to business entities such as Service, Equipment, LogicalDevice,
and so forth.

Keeping the XSD files separate from the WSDL makes the WSDL independent of web
services and reusable across other software technologies. XSD files differ from WSDL
files because they contain data structure definitions. The WSDL references these data
structure definitions, but does not define them. Also, naming standards for the WSDL

Chapter 4
Guidelines for Developing Custom Web Services

4-12

do not include Type in the name; naming standards for the schema do include Type in the
name.

For example, the ReferenceUim.wsdl file defines createLogicalDeviceRequest as type
CreateLogicalDeviceRequestType, which is defined in the LogicalDeviceMessages.xsd file.
Similarly, the ReferenceUim.wsdl file defines createLogicalDeviceResponse as type
CreateLogicalDeviceResponseType in the LogicalDeviceMessages.xsd file.

Transaction Guidelines
The Reference Web Service performs transaction actions in a specific order when managing
operation transactions.

Note:

You must follow the steps in this order or transaction errors may occur, which can
be hard to debug.

To correctly manage the transaction, you write code that performs the following steps:

1. Start the user environment.

2. Start the transaction.

3. Set the user environment on the transaction.

4. Set up the request, call the API method on the entity manager class, and manage the
response.

5. Commit or rollback the transaction.

6. Ensure a rollback is completed if an error occurred.

7. Ensure the user environment is ended with a call to the endUserEnvironment method
on success or failure.

Example 4-3 provides a code section of how to manage the user environment, transaction
and API manager call. The code section contains the recommended steps described
previously with the relevant code lines in bold.

This code section is taken from the LogicalDeviceAdapter class with some logging logic
removed. The Reference Web Service contains the full class code in the
LogicalDeviceAdapter.java file. You can use this code as a template for similar entity
adapter classes when building custom web services.

Example 4-3 LogicalDeviceAdapter.java Code Section with a Transaction

UserEnvironment userEnvironment = null;
InventoryTransactionValue transValue = null;
 try {
 userEnvironment = startUserEnvironment();
 transValue = startTransaction();
 transValue.setUserEnvironment(userEnvironment);
 LogicalDeviceManager logicalDeviceManager =
 PersistenceHelper.makeLogicalDeviceManager();
 List<LogicalDevice> results = new ArrayList<LogicalDevice>(
 createLogicalDeviceRequest.getLogicalDevices().length);
 LogicalDeviceType[] ldTypes = createLogicalDeviceRequest

Chapter 4
Guidelines for Developing Custom Web Services

4-13

 .getLogicalDevices();
 List<oracle.communications.inventory.xmlbeans.LogicalDeviceType>
 ldTypesList = XMLBeansMappingUtils.fromEntityType(ldTypes);
 mapToLogicalDevice(logicalDeviceManager, ldTypesList, results);
 // call the API method
 results = logicalDeviceManager.createLogicalDevice(results);
 response.setLogicalDevices(mapToWebServiceResponseLDType(results));
 commitOrRollback(transValue);
 } catch (Throwable t) {
 try {
 rollback(transValue);
 } catch (Exception ignore) {
 log.error("", false, ignore, "Rollback failed");
 }
 log.error("", t,
"LogicalDeviceAdapter.createLogicalDeviceFault");
 InventoryFaultType ift = FaultFactory.getFaultType(t);
 throw ift;
 } finally {
 if (userEnvironment != null && userEnvironment.hasErrors())
{
 response.setMessages(new String[] { FAILED });
 } else {
 response.setMessages(new String[] { SUCCESS });
 }
 FeedbackUtils.copyFeedbacktoResponse(response);
 endUserEnvironment(userEnvironment, response);
 }

Developing and Running Custom Web Services
You develop custom web services by working in Design Studio projects. In Design
Studio you can generate the WAR files from the contents of the projects. You then
import the WAR file into a deployable EAR file for deployment and testing. This section
provides instructions to guide you through the WAR file creation and the deployment
process.

Note:

This chapter assumes you are using Design Studio to develop custom web
services. You can alternatively build custom web services by using provided
scripted builds with UIM installed on Linux. For information about using
scripted builds, see UIM Developer's Guide.

This section assumes that you are working in Design Studio and therefore working in a
Windows environment. Based on this assumption, the locations of all required UIM
and Oracle WebLogic Server files are described using Windows paths.

Chapter 4
Developing and Running Custom Web Services

4-14

Note:

Oracle recommends that you perform the instructions to import, configure, and run
the CreateLogicalDevice web service operation before introducing any custom code
for a new web service. A successful test of CreateLogicalDevice ensures that your
project is configured properly before the start of your custom web service
development.

You perform the tasks described in the following development work sections to create a
custom web service. The result of this work is the deployment of an EAR file that contains a
new WAR file that defines the custom web service.

Pre-development work:

• Configuring Your Work Environment

• Importing the Reference Web Service Project

• Configuring the Imported Project

Development work:

• Locating the API Method Signature in the Javadoc

• Developing the Web Service

Post-development work:

• Generating Java Source Based on the WSDL

• Creating the WAR File

• Packaging the WAR File in the EAR File

• Deploying the EAR File

• Deploying, Testing, and Securing the Web Service

Configuring Your Work Environment
Before you begin developing a custom web service, configure your work environment.

WebLogic Server
You must install Oracle WebLogic Server locally. This installation provides the correct version
of the JDK. Depending on the references in your code, you should determine the specific
WebLogic files that are required from the installation to build the web services project.

You can also run WebLogic Server locally; however, UIM is not supported on Windows.
Therefore, UIM can run on Windows for development purposes only. You can optionally run
WebLogic Server remotely.

UIM
To build your project and deploy in a traditional environment, you must have access to some
of the UIM installation files. You can copy these files from a UIM installation on a UNIX
machine to your machine, or you can install UIM locally. The following UIM files are needed:

Chapter 4
Developing and Running Custom Web Services

4-15

• UIM_SDK_Home/webservices/reference_webservice.zip

• UIM_Home/app/custom.ear or inventory.ear

Note:

This file is not required for UIM cloud native deployments.

• WebLogic Server patch files

Note:

You can use WebLogic Server patch files if they are applicable. These
files are located in the UIM_SDK_Home/lib/*.jar directory.

Design Studio
Install and configure Design Studio to work with the Reference Web Service, and to
develop new custom web services. See UIM Developer's Guide for information about
using Design Studio to extend UIM, including information about installing and
configuring Design Studio.

Note:

Configure Design Studio to use the correct version of JDK as specified by
the WebLogic Server installation. See UIM System Administrator's Guide for
version information. If not configured to use the correct version of JDK,
problems can be encountered that are difficult to trace, debug, and resolve.

You must also set the ANT_HOME system variable. See UIM Developer's Guide for
more information.

Importing the Reference Web Service Project
Import the reference_webservice.zip file into Design Studio. For instructions on how
to import projects into Design Studio using archive files, see the Design Studio Help.

To see the ZIP file directories and files in Design Studio after the import, open the Java
perspective with a Navigator view. Table 4-3 shows the directories and top-level files
for the reference_webservice.zip file.

Table 4-3 Contents of reference_webservice.zip

Directory/File Description

codegen The codegen directory contains files that are generated
from the WSDL and schema files. This directory is initially
empty after the import of the reference_webservice.zip
file.

Chapter 4
Developing and Running Custom Web Services

4-16

Table 4-3 (Cont.) Contents of reference_webservice.zip

Directory/File Description

config The config directory contains a properties file that defines
localized error messages used by the web services module.

etc The etc directory contains the
COMPUTERNAME.properties file. See "Configuring the
COMPUTERNAME.properties File" for more information.

src The src directory contains the Java source files that define
the Reference Web Service.

test The test directory contains input test XML files for testing
the Reference Web Service.

webarchive The webarchive directory contains the generated
ReferenceUim.war file.

WEB-INF The WEB-INF directory contains the web.xml file. The
web.xml file is a web application deployment descriptor for
the web service.

wsdl The wsdl directory contains the ReferenceUim.wsdl file
that defines the Reference Web Service example operation.
This directory also contains schema files that support the
WSDL definition inputs, outputs, and faults in the schemas
directory.

Reference schemas InventoryCommon.xsd,
InventoryFault.xsd, and InventoryFaultRoot.xsd reside in
the uim_webservices_framework.jar file and
schema_Inventory_webservice.zip file and are
automatically copied to the wsdl/referenceSchemas
directory when you run the provided get-framework-files
Ant target later in the process. The
schema_Inventory_webservice.zip file is located in the
UIM SDK.

.classpath The .classpath file is an Eclipse-specific file provided with
the imported project. This file contains the directories for the
class path entries for building.

.project The .project file is an Eclipse-specific file provided with the
imported project. This file defines the project library list,
which lists JAR files that are required to build the project.

build.xml The build.xml file defines several Ant targets that you can
run to build a custom web service, as described in
Table 4-1.

reference_webservice.inventory
Cartridge

The reference_webservice.inventoryCartridge file is an
internal Design Studio file. It maintains project information,
such as the project type, the UIM software version, and
Design Studio project dependency information.

.buildNumber The .buildNumber file is in the project directory. It is an
internal Design Studio file.

.studio The .studio file is in the project directory. It is an internal
Design Studio file.

Chapter 4
Developing and Running Custom Web Services

4-17

Note:

After importing the archive ZIP file into your workspace, unresolved errors
appear in Design Studio until you configure the project. See "Configuring the
Imported Project" for more information.

Configuring the Imported Project
You configure the project to build and deploy a web service. Configuring the imported
project involves the following actions:

• Configuring the COMPUTERNAME.properties File

• Configuring the web.xml File

• Configuring the Project Library List

Configuring the COMPUTERNAME.properties File
You set the variables in the COMPUTERNAME.properties file as the first step in
configuring your project. This file contains the values that vary between projects, such
as path names and the WSDL name. To configure the reference_webservice/etc/
COMPUTERNAME.properties file:

1. Copy and rename the COMPUTERNAME.properties file to reflect the name of
the computer on which you have Design Studio installed. You can determine your
computer name by running the following DOS command:

echo %COMPUTERNAME%

An example of the resulting file name is xlc123tx.properties.

2. Update the parameter values defined in the file to reflect the information
appropriate to the computer on which you are developing custom web services.

Table 4-4 file defines the following parameters for the properties file:

Table 4-4 COMPUTERNAME.properties File Parameters

Parameter Description

WSDL_NAME=ReferenceUim The name of the WSDL file without the file extension.
It is also used for deriving the context path and service
URI for the generated web services WAR file. For
example, in this case the web service context path
and URI for the HTTP protocol is:

/ReferenceUim/ReferenceUimHTTP

and for JMS protocol is:

/ReferenceUim/ReferenceUimJMS

Chapter 4
Developing and Running Custom Web Services

4-18

Table 4-4 (Cont.) COMPUTERNAME.properties File Parameters

Parameter Description

QUEUE_NAME=inventoryCustom
WSQueue

The name of the JMS Web Service Queue. It matches
the name of the queue used in the WSDL for the
SOAP <address> element for the service port.

If you package your custom web service in an EAR file
other than the provided custom.ear file, you must
create your own message queue and configure your
custom web service to use that queue by changing
the QUEUE_NAME.

See "Packaging the WAR File in the EAR File" for
more information.

MODULE_NAME=reference_web
service

The name of the web service module. The name is
used for creating the distributable web service
cartridge. It is also the name of the directory where
the generated web service WAR file is stored.

FMW_HOME=C:/Oracle/
Middleware/Oracle_Home

The Fusion Middleware WebLogic Server installation
directory name.

WL_HOME=${FMW_HOME}/
wlserver_Release

The WebLogic Server installation path that
incorporates the FMW_HOME parameter, where
Release is the directory version name portion of the
WebLogic Server library files if needed given the
installation.

DOMAIN_HOME=C:/Oracle/
Middleware/Oracle_Home/
projects/domains

The directory path of the WebLogic Server domains.

DOMAIN_NAME=uim_Release The domain name where uim_Release is the domain
name with the UIM release number.

UIM_HOME=$
{DOMAIN_HOME}/$
{DOMAIN_NAME}/UIM

The UIM home path. The DOMAIN_HOME,
DOMAIN_NAME and UIM_HOME parameters
collectively specify the UIM installation path.

Note: The UIM home path is not applicable for UIM
cloud native deployments.

APP_LIB=UIM_SDK_Home/lib The working directory to which dependent JAR files
are extracted from the inventory.ear file. This working
directory is automatically created for you based on the
name provided here.

EAR_PATH=${UIM_HOME}/app/
custom.ear

The directory where the custom.ear file is located.

If you package your custom web service in a custom
EAR file other than the provided custom.ear file, you
must configure your custom web service to use your
custom EAR file by changing the EAR_PATH value.

See "Packaging the WAR File in the EAR File" for
more information.

Note: The EAR_PATH value is not applicable for UIM
cloud native deployments.

POMS_ROOT=C:/uim/
OracleCommunications/
POMSClient/lib

The location of the POMS JAR file.

PLATFORM=C:/uim/
OracleCommunications/
commsplatform/ws

The location of the Platform web service JAR file.

Chapter 4
Developing and Running Custom Web Services

4-19

Table 4-4 (Cont.) COMPUTERNAME.properties File Parameters

Parameter Description

PATCH_CLASSPATH=pathFileDir
ectoryAndFile

The path to any WebLogic patch files, if applicable.
You must replicate this parameter for each WebLogic
patch file to specify the path and specific patch file
name.

Configuring the web.xml File
The web.xml file must be modified to contain the listener class reference. To configure
the reference_webservice/WEB-INF/web.xml file, add the following:

<listener>
 <listener-class>
 oracle.communications.inventory.api.framework.listener.
 InventoryWebApplicationListener
 </listener-class>
</listener>

Configuring the Project Library List
The project library list of JAR files does not indicate the location of the files, so you
must configure the project library list to point to the location of the JAR files.

Figure 4-8 shows the imported project library list, which includes the JAR files needed
to compile the project.

Figure 4-8 Project Library List Before Configuring

Chapter 4
Developing and Running Custom Web Services

4-20

The required JAR files can be categorized into three groups:

• WebLogic files (FMW_LIB)

• Platform files (POMS_LIB and POMS_PLIB)

• UIM files (UIM_LIB)

You perform the following to configure the Design Studio project:

• Add new variables named FMW_LIB, POMS_LIB, POMS_PLIB, and UIM_LIB to your
project.

• Define these variables to point to the directories listed in Table 4-5.

Table 4-5 Location of JAR Files

Variable Name Directory Name

FMW_LIB FMW_Home

POMS_LIB Oracle_Home/commsplatform/ws

POMS_PLIB Oracle_Home/POMSClient/lib

UIM_LIB UIM_SDK_Home/lib

For detailed instructions on how to configure the project library list, see the Design Studio
Help.

Result of Configuring Project Library List

Figure 4-9 shows the project library list after the variables are added. Notice that the library
list now includes the location of the JAR files, not just the JAR file names.

Figure 4-9 Project Library List After Configuring

Chapter 4
Developing and Running Custom Web Services

4-21

Adding the variables is one way to configure the library list; you can alternatively
perform the following:

1. Write down the names of the required files.

2. Click Add External JARS.

3. Navigate to the directory location of JAR files.

4. Add it directly to the library list.

Either way, the result is the same. The library list has the location to the files needed to
compile the project.

Locating the API Method Signature in the Javadoc
When creating a new web service, you wrap a call to an API manager method. For an
overview of the primary API manager classes, see UIM API Overview.

To locate a particular API method:

1. Access the Javadoc.

For instructions on how to access the Javadoc, see UIM Developer's Guide.

2. Perform a wildcard search for *Manager class.

All manager class names end in Manager, such as
TelephoneNumberManager.class, EquipmentManager.class, and so forth.

3. Open the appropriate manager class.

All exposed methods are defined in manager classes; so, look for a manager class
with a name similar to the functional area that may contain the method you plan to
wrap.

4. Locate the method you plan to wrap.

Information to Capture
You must capture a specific set of information to create a new web service. This
information is available in the Javadoc after locating the method you plan to wrap.
Capture the following information:

• Class name that defines the method to wrap

• Package in which the class resides

• Method signature information:

– Method name

– Input parameters

– Return values

– Exceptions thrown

For example, the CreateLogicalDevice web service operation wraps the
createLogicalDevice() API method. The following information was used to define this
web service in the LogicalDeviceAdapter.java file:

• LogicalDeviceManager is the UIM manager class that defines the
createLogicalDevice() method.

Chapter 4
Developing and Running Custom Web Services

4-22

• LogicalDeviceManager resides in the package
oracle.communications.inventory.api.logicaldevice.

• The method signature information includes:

– Method name: createLogicalDevice

– Input parameters: Collection of LogicalDevice objects

– Return values: List of LogicalDevice objects

– Exceptions thrown: ValidationException

Developing the Web Service
Developing a new web service involves creating a new WSDL file, new schema files, and
new Java source files. This section provides information about creating these files.

Creating the WSDL File
The imported project contains the ReferenceUim.wsdl file, which defines the example web
service operation. Model your custom WSDL file after the ReferenceUim.wsdl file. For more
information, see the W3C Web Services Description Language website at:

http://www.w3.org/TR/wsdl

Note:

The ReferenceUim.wsdl file is written to be independent of the application server.
However, the generate-from-wsdl Ant target in the build.xml file is specific to
generating the required source files for deployment into a WebLogic Server
environment. This target is also needed to pull in other XSD files referenced in the
example ReferenceUim.wsdl file.

WSDL Naming Conventions

The ReferenceUim.wsdl file uses WSDL_NAME variable in the
COMPUTERNAME.properties file for naming its various SOAP elements. This naming
convention allows the build.xml Ant targets to parse these elements consistently, and to
generate the correct source files for the web service interfaces and implementation. Consider
the following list of naming conventions for the WSDL file:

• ReferenceUim

This is the name of the WSDL file without the file extension as set by the WSDL_NAME
variable in the COMPUTERNAME.properties file. This name is also used to
automatically set other important variables in the build.xml file, such as
SERVICE_NAME and PORT_NAME. This name is assumed to be the name of the root
definitions element in the WSDL file. This name identifies the name of the following files,
which are generated later in the process: ReferenceUimPort.java,
ReferenceUimPortImpl.java, ReferenceUim.war, ReferenceUimHTTP.war, and
ReferenceUimJMS.war.

• ReferenceUimPort

Chapter 4
Developing and Running Custom Web Services

4-23

http://www.w3.org/TR/wsdl

This is the name of the PortType that is generated for the implementation later in
the process. It is used by the generated source ReferenceUimPort.java and
ReferenceUimPortImpl.java.

• ReferenceUimHTTPSoapBinding

This is the name of the SOAP binding for web service operations that are exposed
through the HTTP transport protocol. The list of operations identified in this binding
element can be a subset of the operations identified in the <PortType> element.
The list of operations can be the same as or different from the JMS protocol
operations.

• ReferenceUimJMSSoapBinding

This is the name of the SOAP binding for web service operations that are exposed
through the JMS transport protocol. The list of operations identified in this binding
element can be a subset of the operations identified in the <PortType> element.
The list of operations can be the same as or different from the HTTP protocol
operations.

• ReferenceUimHTTPPort

This is the name of the HTTP transport port used in the UIMReference service
definition.

It references the ReferenceUimHTTPSoapBinding binding element identified
earlier. Also, the SOAP address location uses the following for the context path
(HTTP):

http://localhost:7001/ReferenceUim/ReferenceUimHTTP
• ReferenceUimJMSPort

This is the name of the JMS transport port used in the UIMReference service
definition.

It references the ReferenceUimJMSSoapBinding binding element identified earlier.
Also, the SOAP address location uses the following for the context path (JMS):

jms://localhost:7001/ReferenceUim/ReferenceUimJMS?URI=inventoryCustomWSQueue
For example, if you create a new file named MyInventoryWs.wsdl, the naming
conventions result in:

• MyInventoryWsPort

• MyInventoryWsHTTPSoapBinding

• MyInventoryWsJMSSoapBinding

• MyInventoryWsHTTPPort

• MyInventoryWsJMSPort

Creating Schema Files
The imported project provides supporting schemas for the Reference Web Service
operation. The schemas define the inputs, outputs, and faults of the wrapped methods.
The schemas are used to generate the Java representation of the incoming/outgoing
XML, which can then be mapped to an internal Java entity class (see
"EntityMapper.java"). The Java representation is generated by the generate-from-
wsdl Ant target.

Chapter 4
Developing and Running Custom Web Services

4-24

For a new web service, new schemas must be written that reflect the inputs and outputs of
the wrapped method.

Note:

The Reference Web Service schema files are written to be independent of the
application server. However, the generate-from-wsdl Ant target in the build.xml
file is specific to generating the required source files for deployment into a
WebLogic Server environment.

Modifying the Mapping File

The imported project provides the type-mapping.xsdconfig mapping file. This file maps
XML namespaces to Java packages. For a new web service, you modify the mapping file to
update the namespace-to-Java package mappings.

Creating Java Source Files
The imported project provides the supporting Java code for the Reference Web Service
operation. The following list of Java files is a recommended set of classes to implement.

• ReferenceUimPortImpl.java

• AdapterRouter.java

• EntityAdapter.java

• EntityValidator.java

• EntityUtils.java

• EntityWorker.java

• EntityMapper.java

• EntityException.java

• FaultFactory.java

Note:

The example Reference Web Service does not contain all of the following source
files.

The following sections describe detailed information about the recommended Java source
files.

ReferenceUimPortImpl.java

The ReferenceUimPortImpl class is the entry point into the web service logic. This class calls
the AdapterRouter class.

ReferenceUimPortImpl.java is a generated source file with the content based on the
ReferenceUim.wsdl file. This file is generated by the generate-from-wsdl Ant target and is
placed in the following directory:

Chapter 4
Developing and Running Custom Web Services

4-25

codegen/WebServiceImpl/oracle/communications/inventory/webservice/ws

Copy this file to the following destination directory:

src/oracle/communications/inventory/webservice/ws

You use this destination directory as a starting point for the implementation of the web
service calling the respective adapter classes.

This class must be modified to call the AdapterRouter for each new web service
operation. Because this is a generated file, the modifications are based on the WSDL
file.

Note:

When modifying this file with additional operations, do not change the order
of the methods. The generated ReferenceUimPortImpl.java source file has
a specific order of the web service methods, which is based on the order of
how the corresponding operation names are defined in the WSDL. Even
though changing the order of the methods is allowable by the Java language
syntax, doing so may cause the web service to not be found at run time.

AdapterRouter.java

The AdapterRouter class routes the call to a specific adapter. If the input from the
external source requires mapping, the corresponding mapper class is the input/output
parameter for this AdapterRouter class.

This class must be modified for each new web service operation.

EntityAdapter.java

Adapter classes extend the InventoryAdapterRoot class, which extends the Platform-
owned AdapterRoot class. The UIM Reference Web Service provides the
LogicalDeviceAdapter class as an example. Adapters wrap the calls to the UIM API
methods. Typically, one adapter class exists per manager class, such as
EquipmentAdapter.java and TelephoneNumberAdapter.java. However, one adapter
class can wrap multiple methods from different manager classes.

Oracle recommends that adapters be as thin as possible. They should simply contain
a call to the Manager API or to other worker classes.

An adapter calls EntityValidator and, if validations pass, calls the business layer API
method.

An existing adapter class must be modified, or a new adapter class written, for each
new web service operation.

EntityValidator.java

Validator classes define an input validation method per a web service operation (where
applicable). The adapter classes call the corresponding input validation method before
calling the wrapped API method. The throw an error if the validation is not passed.

For cases where input data is passed in, a new validator class is needed per entity.
The UIM Reference Web Service example does not contain this type of class file.

Chapter 4
Developing and Running Custom Web Services

4-26

EntityUtils.java

Utils classes define common utility methods used by the Reference Web Service operations.

The existing EntityUtils class can be extended or a new utils class written, as needed during
the development of a new web service.

EntityWorker.java

Worker classes define methods used by the web service operations.

EntityWorker classes can be written as needed during the development of a new web service.
The UIM Reference Web Service example does not contain this type of class file.

EntityMapper.java

Mapper classes map the generated object representation of the schemas (external) to the
Java entity class (internal) for input parameters. Mapper classes map the Java entity class
(internal) to the generated object representation of the schemas (external) for output
parameters. One mapper class maps a single entity. A mapper class can be shared across
methods in an adapter class if the methods use the same entity.

For cases where the source code references the entity data, a new mapper class is needed
per entity.

Note:

In the UIM Reference Web Service example, the mapping code logic is contained in
the adapter class.

EntityException.java

Exception classes define exceptions specific to a web service.

The existing EntityException classes can be extended or a new exception class written, as
needed during the development of a new web service.

FaultFactory.java

The FaultFactory class maps Exception objects thrown by the API method to
InventoryFaultType objects returned by the web service.

You may need to modify this class for a new web service; it depends on whether the API
method introduces any new Exception objects that are not already mapped.

Generating Java Source Based on the WSDL
The imported project contains the build.xml file, which defines the generate-from-wsdl Ant
target. The generate-from-wsdl Ant target copies the latest framework schema files into the
web services project and generates the Java source based on the input WSDL file and
supporting schemas. You can run the generate-from-wsdl Ant target to automatically copy
the framework files and generate the Java source.

The generated package structure and generated files include:

Chapter 4
Developing and Running Custom Web Services

4-27

• codegen/src/oracle/communications/inventory/webservice

This package contains the generated Java source files.

• codegen/WebServiceImpl/oracle/communications/inventory/webservice/ws

This package contains the generated Java implementation source code file.
Figure 4-10 shows the generated ReferenceUimPortImpl.java source file for the
provided Reference Web Service.

• codegen/WebServiceInterface

This package contains the generated JAR file. Figure 4-10 shows the generated
ReferenceUim_wsdl.jar file for the provided Reference Web Service.

Figure 4-10 Package Explorer View Including the codegen Directory Generated
Files

After the source is generated, the project workspace has access to all the dependent
files needed to compile the project. The compiled classes are stored in the out
directory. Class files compiled from Java source files that are part of the original
imported project are also placed in the out directory, such as the class files in the out/
oracle/communications/inventory/webservice/adapter directory.

Chapter 4
Developing and Running Custom Web Services

4-28

Creating the WAR File
The WAR file contains the compiled classes from the developed custom web service, plus the
JAR file containing the UIM API method that the web service wraps.

The imported project contains the build.xml file, which defines the Ant targets to build the
WAR file. The following Ant targets build the WAR file:

• build-service builds the WAR file for both HTTP and JMS

• build-service-http builds the WAR file for HTTP

• build-service-jms builds the WAR file for JMS

You can run any of these Ant targets to automatically build the WAR file.

Figure 4-11 shows the created ReferenceUim.war file which resides in the webarchive/
reference_webservice directory. The created WAR file name is wsdl_name.war, where
wsdl_name is the name specified by the WSDL_NAME parameter in the
COMPUTERNAME.properties file. The WAR file resides in the webarchive/module_name
directory, where module_name is the name specified by the MODULE_NAME parameter in
the COMPUTERNAME.properties file.

The WAR file contains the following:

• Compiled generated source files (WSDL and XML object representations)

• Compiled developed source files (contents of the src directory)

• JAR file that contains the classes that define the wrapped methods (UIM business logic)

Figure 4-11 shows the generated directory structure and the ReferenceUim.war file for the
Reference Web Service.

Chapter 4
Developing and Running Custom Web Services

4-29

Figure 4-11 Package Explorer View Including the webarchive Directory

Packaging the WAR File in the EAR File
The Reference Web Service WAR file is not packaged in the inventory.ear file and is
therefore not automatically deployed into UIM. Rather, you must manually import the
provided ReferenceUim.war file into an EAR file to deploy.

In UIM traditional deployments, when developing custom web services, you have the
option of packaging the custom web service WAR file into:

• The custom.ear file

If you develop a single custom web service, Oracle recommends you use the
provided custom.ear file. This approach saves you additional development work
because you can use the provided inventoryCustomWSQueue and the
corresponding listener class.

• Any custom EAR files

If you develop multiple custom web services, Oracle recommends you use a
separate custom EAR for each web service. This approach involves additional
development work because you must create and configure your own message
queue and corresponding listener class. This is the safest approach for multiple
custom web services and provides the most efficient performance. See "Additional
Custom Work" for more information.

In UIM cloud native deployments, the generated WAR file is packaged in the
inventory.ear file using customized image generation. For more information, see
"Creating UIM Cloud Native Images" in UIM Cloud Native Deployment Guide.
Remaining steps in extracting the application file and deploying the inventory.ear file

Chapter 4
Developing and Running Custom Web Services

4-30

are managed differently in UIM cloud native deployments. For more information refer to UIM
Cloud Native Deployment Guide.

Extracting and Updating the application.xml File
Every EAR file contains an application.xml file, which defines the WAR files that comprise
the EAR file. Regardless of which packaging option you choose, the custom web service
WAR file needs to be included in the EAR file, so the application.xml file must be updated to
include the name of the custom web service WAR file.

Extracting the File

The provided custom.ear file contains an application.xml file that you can manually extract,
use as a starting point, and modify as needed.

If you are using the provided custom.ear file to package your custom web service, you can
use the extract.ear Ant target to automatically extract the application.xml file. The EAR file
is specified by the EAR_PATH parameter in the COMPUTERNAME.properties file. The XML
file is extracted into the reference_webservice_home/META-INF directory, where
reference_webservice_home is the location of the extracted reference_webservice.zip file.
See "About the Ant Build File" for more information on the Ant targets.

Note:

This extract.ear Ant target only works if EAR_PATH is set to custom.ear; it does
not work if EAR_PATH is set to a custom EAR file name or set to inventory.ear.
The extract.ear Ant target is provided in the build.xml file.

Updating the application.xml File

Example 4-4 shows the original application.xml file from the custom.ear file. For the custom
web service, you add the following information to the <module> element to identify the
following for the custom web service:

• The WAR file name, such as ReferenceUim.war

• The WSDL file prefix, such as ReferenceUim

You add the <web-uri> item for the WAR file name and the <context-root> item for the WSDL
name, as shown in Example 4-5.

Example 4-4 Original application.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_5.xsd" version="5" xmlns="http://java.sun.com/xml/ns/javaee">
 <display-name>oracle.communications.inventory.customear</display-name>
 <module>
 <java></java>
 </module>
</application>

Example 4-5 Updated application.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Chapter 4
Developing and Running Custom Web Services

4-31

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_5.xsd" version="5" xmlns="http://java.sun.com/xml/ns/javaee">
 <display-name>oracle.communications.inventory.customear</display-name>
 <!-- Custom Web Service WAR -->
 <module>
 <web>
 <web-uri>ReferenceUim.war</web-uri>
 <context-root>ReferenceUim</context-root>
 </web>
 </module>
</application>

Additional Custom Work
This section describes additional work you must perform when packaging your custom
web services in your own custom EAR files.

Note:

• This section is not applicable for UIM cloud native deployments.

• This section is not applicable if you are packaging your custom web
service in the provided custom.ear file.

Example 4-6 shows the custom.ear file content with a view of the notable directories
and files. An EAR file format is similar to a ZIP file format.

Example 4-6 custom.ear File Content

01 META-INF
02 application.xml
03 weblogic-application.xml
04 InventoryCustomQueueMDB.jar
05 META-INF
06 ejb-jar.xml
07 weblogic-ejb-jar.xml
08 oracle
09 communications
10 inventory
11 ejb
12 message
13 custom
14 impl
15 InventoryCustomQueueListener.class
16 poms-ejbs.jar

Your custom EAR file content must use the custom.ear file content as a template to
apply your modifications. Your modifications may include the following:

• Referencing corelib and customlib

• Creating a Message Queue

• Creating a Listener Class

• Configuring the Listener Class

Chapter 4
Developing and Running Custom Web Services

4-32

Referencing corelib and customlib

Each custom EAR file must contain a reference to the following libraries:

oracle.communications.inventory.corelib
oracle.communications.inventory.customlib

You reference these libraries within the META-INF/weblogic-application.xml file (line 03 in
Example 4-6).

For an example to emulate, see the weblogic-application.xml file in the custom.ear file.
Example 4-7 shows the contents of the weblogic-application.xml file.

Example 4-7 weblogic-application.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application http://
www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
<!-- Use the common Oracle Platform Security Services -->
<!-- oracle.communications.inventory application policies -->
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>oracle.communications.inventory</param-value>
 </application-param>
 <library-ref>
 <library-name>oracle.communications.inventory.corelib</library-name>
 <specification-version>7.3</specification-version>
 <implementation-version>7.3.1.0.0</implementation-version>
 <exact-match>false</exact-match>
 </library-ref>
 <library-ref>
 <library-name>oracle.communications.inventory.customlib</library-name>
 <specification-version>7.2</specification-version>
 <implementation-version>7.2.0.0.0</implementation-version>
 <exact-match>false</exact-match>
 </library-ref>
</weblogic-application>

Creating a Message Queue

If you create multiple custom web services, Oracle recommends they reside in different EAR
files. Web services that reside in different EAR files cannot listen to the same queue, so you
must create a message queue for each web service. In addition, Oracle recommends that
you provide a message-driven bean (MDB) to dispatch requests for multi-threaded
processing to ensure optimum performance of your custom web service.

See the WebLogic Server Administration Console documentation for information about
creating message queues. See the Java Platform, Java EE Tutorial website at:

https://docs.oracle.com/javaee/7/tutorial/ejb-intro003.htm
for more information on message-driven beans.

Creating a Listener Class

You must create one listener class for every message queue you create. Example 4-8 shows
a custom listener class named MyCustomQueueListener. The listener classes implement
MessageListener.

Chapter 4
Developing and Running Custom Web Services

4-33

https://docs.oracle.com/javaee/7/tutorial/ejb-intro003.htm

Your custom listener class must reside within your custom EAR file. Specifically, it
must reside within the oracle/communications/inventory/ejb/message/custom/impl
directory (lines 08-14 in Example 4-6), within a custom MDB JAR file (line 04 in
Example 4-6).

Example 4-8 Listener Class

package oracle.communications.inventory.webservice.mdb;

import java.util.HashMap;
import java.util.Set;

import javax.ejb.MessageDrivenContext;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.persistence.PersistenceContext;

import oracle.communications.inventory.api.framework.logging.Log;
import oracle.communications.inventory.api.framework.logging.LogFactory;
import weblogic.wsee.server.jms.JmsWebservicesMessageDispatcher;

@PersistenceContext(name = "persistence/EntityManager", unitName = "default")
public class MyCustomQueueListener implements MessageListener
{
 private static Log log = LogFactory
 .getLog(MyCustomQueueListener.class);
 private static final String CONNECTION_FACTORY = "inventoryWSQueueCF";
 private HashMap<String, JmsWebservicesMessageDispatcher> listeners =
 new HashMap<String, JmsWebservicesMessageDispatcher>();
 private MessageDrivenContext context;

 public void setMessageDrivenContext(
 MessageDrivenContext messageDrivenContext)
 {
 this.context = messageDrivenContext;
 }

 public void onMessage(Message message)
 {
 try
 {
 String uri = message.getStringProperty("URI");
 JmsWebservicesMessageDispatcher listener = getListener(uri);
 if(log.isDebugEnabled())
 {
 log.debug("", "Thread " + Thread.currentThread().getId() + " "
 + Thread.currentThread().hashCode()
 + ": calling onMessage()...");
 }
 if(listener != null)
 {
 listener.dispatchMessage(message);
 }
 }
 catch(Exception e)
 {
 log.error("", "Failed to process JMS message: " + e.getMessage());
 e.printStackTrace();
 }
 }

Chapter 4
Developing and Running Custom Web Services

4-34

 public void ejbCreate()
 {
 }

 public void ejbRemove()
 {
 Set<String> keys = listeners.keySet();
 try
 {
 for(String key : keys)
 {
 JmsWebservicesMessageDispatcher listener = listeners.get(key);
 listener.shutdown();
 }
 }
 catch(Exception e)
 {
 log.error("", "Error closing the listener: " + e.toString());
 }
 listeners.clear();
 listeners = null;
 }

 private JmsWebservicesMessageDispatcher getListener(String uri)
 {
 JmsWebservicesMessageDispatcher listener = null;
 Object obj = listeners.get(uri);
 try
 {
 if(obj == null)
 {
 listener = new JmsWebservicesMessageDispatcher(uri,
 CONNECTION_FACTORY);
 listeners.put(uri, listener);
 }
 else
 {
 listener = (JmsWebservicesMessageDispatcher) obj;
 }
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 return listener;
 }
}

Configuring the Listener Class

After you create one or more listener classes, you must configure them to listen to their
respective queues. This is accomplished by modifying the ejb-jar.xml and weblogic-ejb-
jar.xml files, as shown in Example 4-9 and Example 4-10.

The ejb-jar.xml and weblogic-ejb-jar.xml files must reside within your custom EAR file.
Specifically, they must reside within the META-INF directory (line 05 in Example 4-6), within a
custom MDB JAR file (line 04 in Example 4-6).

Chapter 4
Developing and Running Custom Web Services

4-35

Example 4-9 ejb-jar.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
j2ee/ejb-jar_3_0.xsd"
version="3.0">
 <enterprise-beans>
 <message-driven>
 <ejb-name>MyCustomQueueListener</ejb-name>
 <ejb-class>
 oracle.communications.inventory.webservice.mdb.MyCustomQueueListener
 </ejb-class>
 <transaction-type>Bean</transaction-type>
 <message-destination-type>javax.jms.Queue</message-destination-type>
 </message-driven>
 </enterprise-beans>
</ejb-jar>

Example 4-10 weblogic-ejb-jar.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar
http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">
 <weblogic-enterprise-bean>
 <ejb-name>MyCustomQueueListener</ejb-name>
 <message-driven-descriptor>
 <destination-jndi-name>MyCustomQueue</destination-jndi-name>
 </message-driven-descriptor>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

Importing the WAR File into the EAR File
After you determine which EAR file is to contain the custom web service WAR file,
import the WAR file into the appropriate EAR file.

The imported project contains the build.xml file, which defines the update.ear Ant
target. The update.ear Ant target updates the EAR file by adding the custom web
service WAR file and the edited application.xml file. The update.ear Ant target
determines the location of the EAR file to be updated by using the path you specified
in the COMPUTERNAME.properties EAR_PATH parameter. Run the update.ear Ant
target to automatically perform these updates to the EAR file.

See "About the Ant Build File" for more information on Ant targets.

Deploying the EAR File
The imported project contains the build.xml file, which defines the copyResources
Ant target. The copyResources Ant target copies the referenceWS.properties file
from the imported project to the UIM_Home/config/resources/logging directory.
Before deploying the updated EAR file for the first time, run the copyResources Ant
target. Unless you change the referenceWS.properties file, you only need to run this
Ant target one time.

Chapter 4
Developing and Running Custom Web Services

4-36

Note:

The copyResources Ant target is not applicable for UIM cloud native deployments.
If you want to add and deploy any logging properties files, you should add them to
solution cartridges or to the ora_uim_localization_reference cartridge. For more
information on deploying cartridges, see "Deploying Cartridges" in UIM Cloud
Native Deployment Guide.

If your UIM environment resides on another machine, you must copy the updated EAR file to
that machine before deploying.

For instructions on how to deploy an EAR file, see UIM System Administrator's Guide.

Note:

After you have gone through all the steps in this chapter once, you only need to run
the clean, all, and update.ear Ant targets to rebuild the EAR file before deploying
it.

Verifying the Deployment
After you have deployed the updated EAR file, verify that the deployment includes the custom
web service by viewing the web services in the WebLogic Server Administration Console.
See "Verifying Deployments" for more information.

Specifying a Deployment Plan
If you placed your custom web service in the custom.ear file, or in any custom EAR file, you
must specify a deployment plan for the updated EAR file.

Specifying a deployment plan enables the EAR file to retrieve property values from the
UIM_Home/app/AppFileOverrides/platform/runtime-poms.properties file, which defines
property values that are used by the persistence framework for cache coordination.

To specify a deployment plan:

1. Log in to the WebLogic Server Administration Console.

2. In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

3. In the left panel, under Change Center, click Lock & Edit.

4. Select the check box next to the updated EAR file that contains your custom web service.

5. Click Update.

The Update Application Assistant page appears.

6. Click Change Path.

7. Change the path to UIM_Home/app/plan.

8. Choose Plan.xml, and click Next.

Chapter 4
Developing and Running Custom Web Services

4-37

9. Choose Redeploy this application using the following deployment files, and
click Finish.

Deploying, Testing, and Securing the Web Service
Information about deploying, testing, and securing the web service is described in
"Deploying, Testing, and Securing UIM Web Services".

Chapter 4
Deploying, Testing, and Securing the Web Service

4-38

5
Deploying, Testing, and Securing UIM Web
Services

This chapter provides information about deploying, testing, and securing Oracle
Communications Unified Inventory Management (UIM) Web Services and any custom web
services you may have created.

Deploying Web Services

Note:

In UIM cloud native deployments, you must build customized images for deploying
web services. For more information, see "Customizing Images" in UIM Cloud Native
Deployment Guide.

Each web service is packaged in a WAR file, which is packaged in an EAR file. When you
deploy the EAR file, you also deploy any web services that are packaged within the EAR file.

For example, the Service Fulfillment Web Service is packaged in the inventory.ear file, within
the InventoryWS.war file. So, when you deploy the inventory.ear file, you also deploy the
Service Fulfillment Web Service.

For instructions on how to deploy the inventory.ear file, see UIM System Administrator's
Guide.

For custom web services, you have the option of placing the custom WAR file within the
custom.ear file, within any custom EAR file, or within the inventory.ear file. So, when you
deploy the custom.ear file, or the specified custom EAR file, or the inventory.ear file, you
also deploy the custom web service. See Developing Custom Web Services for more
information.

5-1

Note:

If custom web services are packaged as part of an EAR file, the EAR must
have a deployment plan defined with the following:

1. The plan directory is UIM_Home/app/plan. This is to ensure that the
EclipseLink cache coordination configuration is available in the
classpath for the custom EAR file.

2. For the deployment plan (the XML configuration file) ensure the following
conditions are met:

• If the EAR file has a deployment plan, it must be created under the plan
directory UIM_Home/app/plan.

• If the EAR file does not have any deployment plan, associate the existing
plan (located under the plan directory UIM_Home/app/plan as plan.xml),
to the custom EAR deployment. For a clustered environment, the plan
file name is ClusterPlan.xml.

Verifying Deployments
You can verify that any UIM web service is deployed by viewing it in the WebLogic
Server Administration Console.

To verify that a UIM web service is deployed:

1. Log in to the WebLogic Server Administration Console.

2. In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

3. Expand oracle.communications.inventory.

4. Under oracle.communications.inventory, expand Web Services.

5. Under Web Services, click the link that represents the name of the web service.

The Settings page for the selected web service appears.

6. Click the Testing tab.

7. Expand the name of the web service.

8. Under the expanded web service, click the WSDL link.

The WSDL file appears. Here, you can view the web service operations that are
deployed.

Testing Web Services
After you successfully deploy the web service, you can test the web service.

Web services can be tested by using any software designed to test web services, such
as:

• LISA for testing SOAP XML through HTTP or JMS

• SoapUI for testing SOAP XML through HTTP

Chapter 5
Testing Web Services

5-2

Note:

If you want to test the UIM cloud native instance, you should update proxy
settings in SoapUI Preferences to exclude the domain name. The default
domain name in the UIM cloud native toolkit is uim.org.

• HermesJMS for testing SOAP XML through JMS

Test Input XML
The UIM installation provides the GSM 3GPP cartridge pack and the Cable TV cartridge
pack, and both cartridge packs use the Service Fulfillment Web Service. The cartridge packs
provide test input XML that you can use to test the Service Fulfillment Web Service
operations. For additional information about these cartridge packs, see UIM GSM 3GPP
Cartridge Pack Guide and UIM Cable TV Cartridge Pack Guide.

You can also generate your own test input XML by using any software that generates XML
based on schema, such as XML Spy, LISA, SoapUI, and so forth.

Pre-configuration for Testing
Before running the Service Fulfillment Web Service operations, you must have the UIM base
cartridges deployed into your UIM environment. The base cartridges are located in the
UIM_SDK_Home/cartridges/base directory. For additional information about the base
cartridges, see UIM Cartridge Guide.

Be aware of any pre-configurations that must be in place before testing any custom web
services.

Securing Web Services

Note:

In UIM cloud native deployments, changes such as Adding Policy, Updating
Policy, Removing Policy, or Updating Deployment Plan that you perform using
Oracle WebLogic Console do not persist once the domain restarts. Therefore,
before making the changes, you should package the updates in a customized
image. Refer to UIM System Administration Guide for more information on securing
web services. Refer to the following sections to understand policies.

The Service Fulfillment Web Service has security enabled upon installation. Specifically, the
HTTP and JMS web service ports are associated to the default WebLogic security policy file,
Auth.xml. As a result, a user name and password must be sent in clear text over a secure
tunnel (HTTPS/t3s).

Chapter 5
Securing Web Services

5-3

Note:

The user name and password, and the payload, are not encrypted to avoid
significant performance impacts.

When you create a new web service, it is up to you to secure the web service. See
"Securing Custom Web Services" for more information.

About Policy Files
A policy file can be associated to a port, or to a specific operation defined for the port.
When a policy file is associated to a port, it automatically secures all operations
defined for the web service. When a policy file is not associated to a port, a policy file
can be associated to one or more operations. If necessary, each operation can specify
a different policy file. If no policy file is associated to the port, or to any operations, the
web service is unsecured and no security validations are performed.

Upon installation of UIM, the WebLogic default policy file, Auth.xml, is associated to
UIMInventoryHTTPPort and UIMInventoryJMSPort. So, all operations are
automatically secured, and all operations under each port require a user name and
password in the SOAP message header. Example 5-1 shows a SOAP message
header with a user name and password specified.

Example 5-1 SOAP Message Header

<soapenv:Envelope xmlns:com="http://xmlns.oracle.com/communications/inventory/
webservice/common" xmlns:ser="http://xmlns.oracle.com/communications/inventory/
webservice/service" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-1"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>uimuser1</wsse:Username>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-username-token-profile-1.0#PasswordText">Welcome@123
 </wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ser:captureInteractionRequest>
 .
 .
 .
 </ser:captureInteractionRequest>
 </soapenv:Body>
</soapenv:Envelope>

Chapter 5
Securing Web Services

5-4

Modifying Web Service Security
You can modify the default security settings through the WebLogic Server Administration
Console.

To modify the default web service security settings, see the following:

• Accessing Security

• Associating a Policy File

• Disassociating a Policy File

• Modifying the Deployment Plan

Accessing Security
To access security:

1. Log in to the WebLogic Server Administration Console.

2. In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

3. Expand oracle.communications.inventory.

4. Under oracle.communications.inventory, expand Web Services.

5. Under Web Services, click the link that represents the name of the web service.

For example, click the oracle.communications.inventory.ws.InventoryWSPortImpl
link.

6. Click the Configuration tab, then click the WS-Policy tab.

The WS-Policy tab lists the policy files associated with the web service. Upon installation,
this page lists:

• UIMInventoryHTTPPort with the Auth.xml policy file associated

• UIMInventoryJMSPort with the Auth.xml policy file associated

7. Expand either port.

All operations are listed under the port.

Associating a Policy File
You can associate a policy file to a port, or to a specific operation defined for the port.

To associate a policy file:

1. Access security for the web service.

See "Accessing Security" for more information.

2. Click the port or a specific operation.

The available policy files are listed on the left, and the policy files associated with the port
or operation are listed on the right.

3. In the left side, select an available policy file to associate to the port or operation.

Chapter 5
Securing Web Services

5-5

4. Click the right arrow, which moves the available policy file to the list of associated
policy files.

5. Click OK.

Disassociating a Policy File
You can disassociate a policy file from a port or from a specific operation defined for
the port.

To disassociate a policy file:

1. Access security for the web service.

See "Accessing Security" for more information.

2. Click the port or a specific operation.

The available policy files are listed on the left, and the policy files associated with
the port or operation are listed on the right.

3. In the right side, select the policy file to disassociate from the port or operation.

4. Click the left arrow, which moves the associated policy file to the list of available
policy files.

5. Click OK.

Modifying the Deployment Plan
If you choose to modify the default security settings for the Service Fulfillment Web
Service, then you also need to modify the deployment plan for the Service Fulfillment
Web Service.

The deployment plan is located in the UIM_Home/app/plan/Plan.xml file.

When you install UIM, the deployment plan contains the following:

<variable-definition>
 <variable>
 <name>WsPolicy_policy:Auth.xml_Direction_13075993400140</name>
 <value>inbound</value>
 </variable>
</variable-definition>
<module-descriptor external="false">
 <root-element>webservice-policy-ref</root-element>
 <uri>WEB-INF/weblogic-webservices-policy.xml</uri>
 <variable-assignment>
 <name>WsPolicy_policy:Auth.xml_Direction_13075993400140</name>
 <xpath>
 /webservice-policy-ref/port-policy/
 [port-name="UIMInventoryHTTPPort"]/
 ws-policy/[uri="policy:Auth.xml"]/direction
 </xpath>
 </variable-assignment>
 <variable-assignment>
 <name>WsPolicy_policy:Auth.xml_Direction_13075993400140</name>
 <xpath>
 /webservice-policy-ref/port-policy/
 [port-name="UIMInventoryJMSPort"]/
 ws-policy/[uri="policy:Auth.xml"]/direction
 </xpath>

Chapter 5
Securing Web Services

5-6

 </variable-assignment>
</module-descriptor>

If you modify the default security settings through the WebLogic Server Administration
Console, the <value> element (bold in the example) gets set to both, and must be reset back
to inbound.

Securing Custom Web Services
When you create a new web service, it is up to you to secure the web service. How you
secure the web service depends upon how you created the web service. For example, if your
custom web service deploys with the custom.ear file, you need to create your own
deployment plan; if your custom web service deploys with the inventory.ear file, you need to
modify the inventory.ear deployment plan that is part of the UIM installation
(UIM_Home/app/plan/Plan.xml file).

To secure a custom web service:

1. Access security for the custom web service.

See "Accessing Security" for detailed instructions.

2. Associate a security policy to the custom web service.

See "Associating a Policy File" for detailed instructions. You can use the security policy
that comes with the UIM installation (Auth.xml), or the security policy that comes in the
Reference Web Service ZIP file (SampleAuth.xml), or create your own security policy
file.

Note:

The Auth.xml file is automatically available for selection to associate to your
custom web service. If you are using a security policy other than the Auth.xml
file, there is an additional step required to get the security policy file to be
available for selection to associate to your custom web service: The security
policy file must be placed in your project's policies directory before creating the
WAR file. Then, when you deploy the EAR file that contains the custom web
service WAR file, the security policy in the WAR file becomes available for
selection to associate to your custom web service.

When you associate a security policy to the custom web service, a deployment plan is
generated in the form of a Plan.xml file.

3. Associate the generated deployment plan with the custom web service by redeploying
the EAR file that contains the custom web service; the redeploy prompts you to supply
the path to the EAR file, and to supply the name of the deployment plan (Plan.xml).

The prompt to supply the name of the deployment plan may also prompt you to select
Inbound or Both: Select Inbound.

4. Ensure that the deployment plan reflects Inbound. See "Modifying the Deployment Plan"
for detailed instructions.

Chapter 5
Securing Custom Web Services

5-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Web Services Overview
	About UIM Web Service Standards and Specifications
	About the UIM Web Services Framework
	About the UIM Web Service Module
	About Message Queues
	About Message Queues for Custom Web Services

	About Transaction Handling
	About Exception Stacktraces

	About UIM Web Services

	2 Working with the Service Fulfillment Web Service
	About the Service Fulfillment Web Service
	About Business Interactions and Services
	About Engineering Work Orders

	About the Web Service Packaging
	About the WSDL and Schema Files
	About the WSDL File
	About the Schema Files
	Reference Schemas
	Web Service Schemas
	Business Schemas

	CaptureInteraction
	Associating Business Interactions
	CaptureInteraction Logic Flow
	Validating Input Data
	captureInteractionRequest
	Business Interaction
	Business Interaction Item
	Business Interaction Item Parameter
	Service
	Associated Business Interaction
	ExecuteProcess Element
	ResponseLevel Element

	captureInteractionResponse

	ProcessInteraction
	ProcessInteraction Logic Flow
	Service Configuration Association

	Customizing ProcessInteraction
	Modeling the Service in Design Studio
	Customizing Service Actions
	Customizing the Automation of Service Configurations
	Developing the Custom Code

	ProcessInteraction Example

	processInteractionResponse

	GetInteraction
	GetInteraction Logic Flow
	getInteractionResponse

	UpdateInteraction
	UpdateInteraction Logic Flow
	updateInteractionResponse

	GetConfiguration
	getConfigurationRequest
	Request Search Options
	Request Search Option Examples
	Additional Request Options
	Additional Request Options Example
	ResponseLevel Element

	GetConfiguration Logic Flow
	getConfigurationResponse
	Customizing GetConfiguration
	Extension Points
	Customization Steps
	Customized Response

	GetConfigurationDifferences
	getConfigurationDifferencesRequest
	Request Search Options
	Request Search Option Examples
	Additional Request Options
	Additional Request Options Example

	GetConfigurationDifferences Logic Flow
	Child Configurations
	Example 1
	Example 2
	Example 3
	Overriding the Process Logic that Determines Child Configurations

	getConfigurationDifferencesResponse
	Customizing GetConfigurationDifferences

	UpdateConfiguration
	updateConfigurationResponse

	Customizing the Web Service Operations
	Extending Web Service Requests and Responses
	Additional Information

	Deploying, Testing, and Securing the Web Service

	3 Working with the Network Resource Management Web Service
	About the NRM Web Service
	About the Web Service Packaging
	About the WSDL and Schema Files
	About the WSDL File
	About the Schema Files
	Reference Schemas
	Web Service Schemas
	Business Schemas

	CreateEntity
	createEntityRequest
	Multiple Entities
	Optional Elements
	Example

	createEntityResponse

	FindEntity
	findEntityRequest
	Multiple Entities
	Examples

	findEntityResponse

	FindTNBlock
	findTNBlockRequest
	Example

	findTNBlockResponse

	UpdateEntity
	updateEntityRequest
	Multiple Entities
	Optional Elements
	Examples

	updateEntityResponse

	DeleteEntity
	deleteEntityRequest
	Multiple Entities
	Optional Elements
	Examples

	deleteEntityResponse

	ReserveEntity
	reserveEntityRequest
	Resource Entity Search Criteria
	Multiple Entities
	Optional Elements
	Example

	reserveEntityResponse

	ReserveTNBlock
	reserveTNBlockRequest
	Telephone Number Block Search Criteria
	Example

	reserveTNBlockResponse

	UnreserveEntity
	unreserveEntityRequest
	Resource Entity Search Criteria
	Multiple Entities
	Optional Elements
	Examples

	unreserveEntityResponse

	UpdateReservation
	updateReservationRequest
	Multiple Reservations
	Optional Elements
	Example

	updateReservationResponse

	AssociateEntity
	associateEntityRequest
	Multiple Entities
	Example

	associateEntityResponse

	DisassociateEntity
	disassociateEntityRequest
	Multiple Entities
	Example

	disassociateEntityResponse

	ImportEntity
	importEntityRequest
	Multiple Entities
	Example
	Spreadsheet Format
	Spreadsheet Row Order

	importEntityResponse

	ExportEntity
	exportEntityRequest
	Multiple Entities
	Example

	exportEntityResponse
	TelephoneNumber Sheet
	LogicalDevice Sheet
	LogicalDeviceAccount Sheet
	PhysicalDevice Sheet
	exportEntityResponse Faults

	Determining Criteria Item Names
	Customizing the Web Service Operations
	Extending Web Service Requests and Responses
	Deploying, Testing, and Securing the Web Service

	4 Developing Custom Web Services
	About the UIM Reference Web Service
	About the WSDL and Schema Files
	About the WSDL File
	About the Schema Files

	About Namespaces
	About the Ant Build File
	Guidelines for Developing Custom Web Services
	Using the WSDL-First Approach to Developing Custom Web Services
	Class Diagrams
	WSDL Interface Guidelines
	Operation Signatures
	Signature Components
	Signature Pattern and Examples

	Schema Guidelines
	Transaction Guidelines

	Developing and Running Custom Web Services
	Configuring Your Work Environment
	WebLogic Server
	UIM
	Design Studio

	Importing the Reference Web Service Project
	Configuring the Imported Project
	Configuring the COMPUTERNAME.properties File
	Configuring the web.xml File
	Configuring the Project Library List

	Locating the API Method Signature in the Javadoc
	Information to Capture

	Developing the Web Service
	Creating the WSDL File
	Creating Schema Files
	Creating Java Source Files

	Generating Java Source Based on the WSDL
	Creating the WAR File
	Packaging the WAR File in the EAR File
	Extracting and Updating the application.xml File
	Additional Custom Work
	Importing the WAR File into the EAR File

	Deploying the EAR File
	Verifying the Deployment
	Specifying a Deployment Plan

	Deploying, Testing, and Securing the Web Service

	5 Deploying, Testing, and Securing UIM Web Services
	Deploying Web Services
	Verifying Deployments

	Testing Web Services
	Test Input XML
	Pre-configuration for Testing

	Securing Web Services
	About Policy Files
	Modifying Web Service Security
	Accessing Security
	Associating a Policy File
	Disassociating a Policy File
	Modifying the Deployment Plan

	Securing Custom Web Services

