
Oracle® Communications
Unified Inventory and Topology Deployment
Guide

Release 7.6.0
F95168-01
June 2024

Oracle Communications Unified Inventory and Topology Deployment Guide, Release 7.6.0

F95168-01

Copyright © 2023, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Diversity and Inclusion viii

1 About Unified Inventory and Topology

Unified Inventory and Topology Architecture 1-1

About UIM 1-2

About UTIA 1-2

About Unified Operations Message Bus 1-3

About Common Authentication 1-3

Planning and Validating Your Cloud Environment 1-3

Installing Oracle Property Graph 1-3

Kubernetes Storage Class 1-4

2 About the Unified Inventory and Topology Toolkit

Unified Inventory and Topology Toolkit 2-1

Image Builders 2-2

About the Manifest File 2-2

Deployment Toolkits 2-4

Common Cloud Native Toolkit 2-4

Deploying the Services 2-5

Setting Up Prometheus and Grafana 2-6

Setting Up Elastic Stack 2-6

Setting Up OpenSearch 2-8

Adding Common OAuth Secret and ConfigMap 2-9

3 Deploying the Common Authentication Service

Building the OHS Image 3-1

Deploying OAM along with OHS for Authentication Service 3-1

Deploying OAM Using Common Cloud Native Toolkit Scripts 3-2

iii

Using Wild Card Certificates 3-5

Configuring Ingress and Ingress Controller for OAM 3-6

Upgrading OAM 3-7

Uninstalling OAM 3-7

Specifying the Proxy Settings 3-8

Accessing the WebLogic Server Administration Console and the OAM Console 3-8

Configuring OAM 3-9

Configuring OAuth Service Settings 3-12

Creating an OAuth Identity Domain 3-12

Creating a Resource 3-13

Creating a Client 3-13

Debugging and Troubleshooting 3-14

Unable to create Domain or Admin Server is not coming up 3-14

Unable to Access OAM Console 3-15

Inventory UI is not appearing after successful login 3-16

UIM UI Not Accessible on Using SSL Port of Traditional UIM Instance 3-17

Self-signed SSL Certificates 3-19

Generating Self-signed Certificates 3-19

Generating Wild Card SSL Certificate 3-20

4 Deploying Unified Operations Message Bus

Message Bus Cloud Native Architecture 4-2

Access to Message Bus 4-2

Strimzi Operator 4-4

Create Global Resources 4-4

Private Container Repository 4-4

ImagePullPolicy 4-5

Resources 4-6

Deploying Strimzi Operator 4-6

Upgrading Strimzi Operator 4-7

Uninstalling Strimzi Operator 4-7

Validating Strimzi Operator 4-7

Restarting the Strimzi Operator 4-8

Registering the Namespaces with Strimzi Operator 4-8

Unregistering the Namespaces with Strimzi Operator 4-8

Deploying and Managing Message Bus 4-8

Deploying Message Bus 4-9

Upgrading Message Bus 4-9

Deleting Message Bus 4-9

Validating Message Bus 4-10

Restarting Message Bus 4-11

iv

Configuring the applications.yaml File 4-11

Using Image Pull Secrets 4-12

Security Context 4-12

Cluster Size 4-13

Storage 4-13

Broker Defaults 4-14

JVM Options 4-14

Kafka Topics 4-14

Accessing Kafka Cluster 4-15

Configuring Authentication 4-17

Using GC Logs 4-20

Alternate Configuration Options 4-20

Log Level 4-20

Choosing Worker Nodes for Running Message Bus Service 4-20

Managing Message Bus Metrics 4-23

Installing and Configuring Mirror Maker 2.0 4-24

Configuring Source and Target Message Bus (Kafka cluster) Details 4-24

Installing Mirror Maker 4-25

Uninstalling Mirror Maker 4-26

Client Access 4-26

Configuring Message Bus Listeners 4-35

Debugging and Troubleshooting 4-38

5 Deploying the Unified Topology for Inventory and Automation Service

Overview of UTIA 5-1

UTIA Architecture 5-1

UIM as the Producer 5-2

Topology as the Consumer 5-2

Topology Graph Database 5-2

Topology In-Memory Database 5-3

UTIA User Interface 5-3

Creating UTIA Images 5-3

Prerequisites for Creating UTIA Images 5-3

Configuring Unified Topology Images 5-3

Creating Unified Topology Service Images 5-3

Post-build Image Management 5-5

Customizing the Images 5-5

Creating a Unified Topology Instance 5-5

Installing Unified Topology Cloud Native Artifacts and Toolkit 5-6

Setting up Environment Variables 5-6

Registering the Namespace 5-7

v

Creating Secrets 5-7

Installing Unified Topology Service Schema 5-11

Configuring the applications.yaml File 5-13

Configuring Unified Topology Application Properties 5-14

Max Rows 5-15

Date Format 5-15

Alarm Types 5-15

Event Status 5-15

Event Severity 5-16

Path Analysis Cost Values 5-16

Integrate Unified Topology Service with Message Bus Service 5-17

Creating a Unified Topology Instance 5-18

Accessing Unified Topology 5-18

Validating the Unified Topology Instance 5-19

Deploying the Graph Server Instance 5-19

Scheduling the Graph Server Restart CronJob 5-20

Affinity on Graph Server 5-20

Upgrading the Unified Topology Instance 5-21

Restarting the Unified Topology Instance 5-21

Alternate Configuration Options for UTIA 5-22

Setting up Secure Communication using TLS 5-22

Enabling Authentication for UTIA 5-25

Registering UTIA in Identity Provider 5-25

Common Secret and Properties 5-26

Registering Identity Provider for UTIA 5-27

Choosing Worker Nodes for Unified Topology Service 5-29

Setting up Persistent Storage 5-30

Managing Unified Topology Logs 5-31

Viewing Logs using Elastic Stack 5-31

Setting Up Elastic Stack 5-31

Viewing Logs using OpenSearch 5-33

Managing Unified Topology Metrics 5-33

Allocating Resources for Unified Topology Service Pods 5-35

Scaling Up or Scaling Down the Unified Topology Service 5-35

Enabling GC Logs for UTIA 5-35

Geo Redundancy Support 5-36

Disaster Recovery Support 5-38

Disaster Recovery across Data Centers 5-38

About Switchover and Failover 5-39

About Kafka Mirror Maker 5-40

Installation and Configuration 5-40

Setting up the Primary (active) Instance 5-40

vi

Setting up the Secondary (standby) Instance 5-42

Switchover Sequence 5-44

Failover Sequence 5-44

Debugging and Troubleshooting 5-45

Fallout Events Resolution 5-47

Deleting and Recreating a Unified Topology Instance 5-48

UTIA Support for Offline Maps 5-49

Allowlisting Map URLs 5-49

Setting Up a Local Tile Server 5-50

Manual Changes for Setting Up a Local Tile Server 5-50

6 Data Migration and Dynamic Attribute Mapping

Planning the Topology Migration 6-1

Customizing Topology JSON files for Migration 6-4

Dynamic Data Mapping from UIM 6-11

Mapping the Dynamic Data from UIM 6-12

7 Upgrading UTIA

Prerequisites for Upgrading UTIA 7-1

Upgrading the UTIA Application 7-2

Upgrading the UTIA Schema 7-2

Upgrading the UTIA Instance 7-3

8 Checklists for Integration of Services

Integrating UIM with UTIA and Message Bus 8-5

Integrating UIM CN with Message Bus and UTIA 8-5

Integrating Traditional UIM with Message Bus and UTIA 8-6

vii

Preface

This guide describes how to deploy and administer Oracle Communications Unified Inventory
and Topology in a cloud native environment.

Audience
This document is for system administrators, database administrators, and developers who
install and configure Unified Inventory and Topology.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
About Unified Inventory and Topology

Unified Inventory and Topology includes the following services:

• Unified Inventory Management (UIM)

• Unified Topology for Inventory and Automation (UTIA)

• Unified Operations Message Bus

• Common Authentication that leverages Oracle Access Manager (OAM) tool

UTIA, Unified Operations Message Bus, and Common Authentication are cloud native
containerized applications that are supported in a Kubernetes environment. UIM can be a
traditional application or a cloud native instance.

• The embedded topology from UIM is now available as a micro-service (UTIA) based on
Helidon MP.

• The communication between UIM and the UTIA service is asynchronous and this is
achieved by using Message Bus service.

• OAM is an optional Identity Provider that supports OAuth2.0 protocol, used for single sign-
on (SSO).

Unified Inventory and Topology Architecture
Figure 1-1 shows a high-level architecture of Unified Inventory and Topology and how the
services communicate.

1-1

Figure 1-1 High-level Architecture of Unified Inventory and Topology

See the corresponding architecture diagrams of the services for more information.

About UIM
UIM is a standards-based telecommunications inventory management application that enables
you to model and manage customers, services, and resources. UIM supports complex
business relationships and provides full life-cycle management of services and resources. UIM
provides you with a real-time, unified view of customers, services, and resource inventory,
enabling you to develop and introduce new services quickly and cost-effectively. UIM supports
two deployment models: traditional (on-premise) deployment and cloud native deployment in a
Kubernetes cluster.

About UTIA
Unified Topology for Inventory and Automation (UTIA) enables you to view the service,
network, and resource topologies in the form of topology graphs. UTIA uses Oracle Property
Graph DB to manage the topology hierarchy.

UTIA has the following sub components.

• Unified Topology API

• Unified Topology PGX

• Unified Topology Consumer

Chapter 1
About UIM

1-2

• Unified Topology UI

See UTIA User’s Guide for more information.

About Unified Operations Message Bus
Message Bus is a distributed event store and stream-processing service. Message Bus service
sends and receives events and messages asynchronously to a specific destination (called as
Topic) between the services. The Message Bus service uses Apache Kafka, which is a
distributed event store and stream-processing platform, as the messaging platform. For
packaging or deploying, Strimzi is used. Strimzi simplifies the process of running Apache Kafka
in a Kubernetes cluster. Strimzi also provides container images and operators for running
Kafka on Kubernetes.

About Common Authentication
The Common Authentication service leverages Oracle Access Manager (OAM) or any
Identity Provider to implement the single sign-on (SSO) authentication solution with the
services (UIM, Unified Topology services, and Message Bus service). This enables you to
seamlessly access multiple applications without being prompted to authenticate for each
application separately. The main advantage of SSO is that you are authenticated only once,
which is when you log in to the first application; you are not required to authenticate again
when you subsequently access different applications within the same web browser session.

OAM also supports the single logout (SLO) feature. If you access multiple applications using
SSO within the same web browser session, and then if you log out of any one of the
applications, you are logged out of all of the applications.

For more information about OAM, see Administering Oracle Access Management.

Planning and Validating Your Cloud Environment
To deploy the Unified Topology for Inventory and Automation services, you must set up and
validate a list of prerequisite software. See Planning and Validating Your Cloud
Environment in UIM Cloud Native Deployment Guide for more information.

Before starting the service deployments:

• Install property graph plugins on the PDB that are used for UTIA.

• Configure the Storage Class in Kubernetes to provision Persistent Volumes dynamically to
be used for the Message Bus service.

Installing Oracle Property Graph
UTIA uses Oracle Property Graph of Oracle Database that offers a powerful graph support to
explore and discover complex relationships within UTIA topology graphs.

Graph Server and Client is a software package that is required for Property Graph.

To install Property Graph:

1. Download Oracle Graph Server, oracle-graph-plsql-<version>.zip, from Oracle E-
Delivery: https://www.oracle.com/database/technologies/spatialandgraph/property-graph-
features/graph-server-and-client/graph-server-and-client-downloads.html

Chapter 1
About Unified Operations Message Bus

1-3

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/introducing-oracle-access-management.html#GUID-D1D083AA-538E-4063-A921-9328DB784319
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

Note:

The versions are available at: Oracle Graph Server. See UIM Compatibility
Matrix for the corresponding version of Oracle Graph PL/SQL Patch.

2. Extract oracle-graph-plsql-<version>.zip and open the 19c and above folder.

3. Follow the instructions in the readme.md file to install Property Graph.

Kubernetes Storage Class
The Kubernetes Cluster administrator should create the Storage Class which can provision the
persistent volumes dynamically.

Chapter 1
Planning and Validating Your Cloud Environment

1-4

https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

2
About the Unified Inventory and Topology
Toolkit

This chapter describes the components required for Unified Inventory and Topology.

Unified Inventory and Topology Toolkit
From Oracle Software Delivery Cloud, download the following:

• Oracle Communications Unified Inventory Management Cloud Native Toolkit

• Oracle Communications Unified Inventory Management Cloud Native Image Builder

• Oracle Communications Unified Inventory Management UTIA Image Builder

• (Optional) Oracle Communications Unified Inventory Management OHS Image Builder

• Oracle Communications Unified Inventory Management Common Toolkit

Perform the following tasks:

1. Copy the above downloaded archives into directory workspace and unzip the archives.

2. Export the unzipped path to the WORKSPACEDIR environment variable.

3. On Oracle Linux, where Kubernetes is hosted, download and extract the tar archive on
each host. This host has a connectivity to the Kubernetes cluster.

4. Alternatively, on OKE, for an environment where Kubernetes is running, extract the
contents of the tar archive (on each OKE client host). The OKE client host is the bastion
host that is set up to communicate with the OKE cluster.

$ mkdir workspace
$ export WORKSPACEDIR=$(pwd)/workspace
//Untar UIM Builder
$ tar -xf $WORKSPACEDIR/uim-image-builder.tar.gz --directory workspace
//Untar UIMCN Toolkit
tar -xf $WORKSPACEDIR/uim-cntk.tar.gz --directory workspace
//Untar OHS Builder
tar -xf $WORKSPACEDIR/ohs-builder.tar.gz --directory workspace
//Untar UTIA Builder
$ tar -xf $WORKSPACEDIR/unified-topology-builder.tar.gz --directory
workspace
//Untar Common Toolkit
$ tar -xf $WORKSPACEDIR/common-cntk.tar.gz --directory workspace
$ export COMMON_CNTK=$WORKSPACEDIR/common-cntk

Assembling the Specifications

To assemble the specifications:

2-1

1. Create a directory (either in local machine or version control system where the deployment
pipelines are available) to maintain the specification files needed to deploy the service.
Export the directory to SPEC_PATH environment variable.

2. Copy the Strimzi Operator deployment specification file (strimzi-operator-override-
values.yaml) to your $SPEC_PATH/<STRIMZI_PROJECT>.

cp $COMMON_CNTK/samples/strimzi-operator-override-values.yaml $SPEC_PATH/
<STRIMZI_PROJECT>/strimzi-operator-override-values.yaml

3. Copy the Micro Services deployment application specification file (applications.yaml) to
your $SPEC_PATH/<PROJECT>/<INSTANCE>.

cp $COMMON_CNTK/samples/applications.yaml $SPEC_PATH/<PROJECT>/<INSTANCE>/
applications.yaml

4. Copy the Micro Services database specification file (database.yaml) to your $SPEC_PATH/
<PROJECT>/<INSTANCE>.

cp $COMMON_CNTK/samples/database.yaml $SPEC_PATH/<PROJECT>/<INSTANCE>/
database.yaml
cp $COMMON_CNTK/samples/appications-dev.yaml $SPEC_PATH/<PROJECT>/
<INSTANCE>/applications-dev.yaml

5. Copy other specification files as required:

• Persistent volumes and persistent volume claims files from $COMMON_CNTK/
samples/nfs

• Role and role bindings from $COMMON_CNTK/samples/rbac

• Credential files from $COMMON_CNTK/samples/credentials

Image Builders
The following image builders are required to build the corresponding services for an end-to-end
integrated environment:

• UIM Image Builder: This includes archive uim-image-builder.tar.gz, which is
required to build UIM, UIM DB Installer Images. See Creating the UIM Cloud Native
Images in UIM Cloud Native Deployment Guide for more information.

• (Optional) OHS Builder: This includes ohs-builder.tar.gz, required to build OHS
image. See "Building the OHS Image" for more information.

• UTIA Builder: This includes unified-topology-builder.tar.gz, required to build
Unified Topology API, Unified Topology UI, Unified Topology PGX, Unified Topology
Consumer, and the Unified Topology DB Installer images.

All builder toolkits include manifest files and scripts to build the images.

About the Manifest File
A manifest file can be found in directory path $WORKSPACEDIR/<service-builder>/bin/
<service>_manifest.yaml. The manifest file describes the input that goes into the service
images. It is consumed by the image build process. The default configuration in the latest
manifest file provides all necessary components for creating the service images easily. A
service can be OHS, UTIA, or UIM.

Chapter 2
Image Builders

2-2

You can also customize the manifest file. This enables you to:

• Specify any Linux image as the base, as long as it is a binary and is compatible with
Oracle Linux.

• Upgrade the Oracle Enterprise Linux version to a newer version to uptake a quarterly CPU.

• Upgrade the JDK version to a newer JDK version to uptake a quarterly CPU.

• Choose a different userid and groupid for oracle:oracle user:group that the image
specifies. The default is 1000:1000.

Note:

The schemaVersion and date parameters are maintained by Oracle. Do not
modify these parameters. Version numbers provided here are only examples. The
manifest file specifies the actual versions that Oracle recommends.

There are various sections in the manifest file such as:

• Service Base Image: The Service Base image is a necessary building block of the final
service container images. However, it is not required by the service to create or manage
any service instances.
Linux parameter: The Linux parameter specifies the base Linux image to be used as the
base Docker or Podman image. The version is the two-digit version from /etc/redhat-
release:

linux:
 vendor: Oracle
 version: 8-slim
 image: <container>/os/oraclelinux:8-slim

The vendor and the version details are used for validating while an image is being built and
for querying at run-time.

Note:

To troubleshoot issues, Oracle support requires you to provide these details in
the manifest file used to build the image.

• The userGroup parameter that specifies the default userId and groupId:

userGroup:
 username: <username>
 userid: <userID>
 groupname: <groupname>
 groupid: <groupID>

• The jdk parameter that specifies the JDK vendor, version, and the staging path:

jdk:
 vendor: Oracle
 version: <jdk_version>

Chapter 2
Image Builders

2-3

 path: $CN_BUILDER_STAGING/downloads/java/jdk-<jdk_version>_linux-
x64_bin.tar.gz

• The Tomcat parameter specifies the Tomcat version and its staging path.

Note:

This is applicable only for the UTIA service.

tomcat:
 version: <tomcat_version>
 path: $CN_BUILDER_STAGING/downloads/tomcat/tomcat-<tomcat_version>.tar.gz

• A serviceImage parameter, where tag is the tag name of the service image.

serviceImage:
 tag: latest

Note:

See UIM Compatibility Matrix for software versions.

Deployment Toolkits
The following toolkits are required to deploy the services for an end-to-end integrated
environment:

• UIM Cloud Native toolkit: Includes uim-cntk.tar.gz file that is required to deploy UIM in
cloud native environment. See Creating a Basic UIM Cloud Native Instance in UIM
Cloud Native Deployment Guide, for more information.

• Common Cloud Native toolkit: Includes common-cntk.tar.gz file that is required to deploy
the OAM (optional), UTIA, and Message Bus services in the cloud native environment.

Common Cloud Native Toolkit
The Common cloud native toolkit (Common CNTK) includes:

• Helm charts to manage the UTIA, Common Authentication, and Message Bus services.

• Scripts to manage secrets for the services.

• Scripts to manage schemas for the services.

• Scripts to create, update, and delete the UTIA and Message Bus services.

• Scripts to create and delete the Common Authentication service.

• Sample pv and pvc yaml files to create persistent volumes.

• Sample charts to install Traefik.

• Scripts to register and un-register the namespaces with Traefik and Strimzi operator.

Chapter 2
Deployment Toolkits

2-4

• The applications.yaml and, database.yaml files that provide the required configuration
for the services which can be used for a production environment.

• The applications-dev.yaml file that contains the required configuration for the services
which can be used for a development environment.

• The strimzi-operator-override-values.yaml file that enables you to override the
configuration for deploying strimzi operator which is used for message bus service.

The applications.yaml and database.yaml files have common values that are applicable for
all services in Common CNTK along with the values that are applicable for specific services.

For customized configurations to override the default values, update the values under the
specific application sections in $SPEC_PATH/<PROJECT>/<INSTANCE>/applications.yaml.

While executing the scripts, the project and instance values should be provided, where project
indicates the namespace of the Kubernetes environment where the service is deployed and
instance is the identifier of the corresponding service instance, if multiples instances are
created within the same namespace.

Note:

As multiple instances of Message Bus cannot exist in the same namespace, only one
instance is created for all services within the same namespace.

While creating a basic instance for all these services, the project name is considered as sr and
the instance name is considered as quick.

Note:

• Project and Instance names must not contain any special characters.

• There are common values specified in the applications.yaml and
database.yaml files for the services. To override the common value user can
specify that value under the chart name of a service. If the value under the chart
is empty, then common value is considered.

Deploying the Services
You must deploy and configure all services in the following sequence:

1. (Optional) Deploy Authentication Service (OAM along with OHS).

Note:

Authentication service is only needed for deployment if you do not have any
Identity Provider that supports SAML 2.0 and OIDC or OAuth 2.0 protocols.

2. Deploy Message Bus.

3. Deploy UIM (traditional or cloud native).

Chapter 2
Deploying the Services

2-5

4. Configure Traditional UIM with Message Bus and UTIA, and restart UIM. See Setting
System Properties in UIM System Administrator’s Guide, for more information.

5. Configure OAM for UTIA client creation.

6. Deploy UTIA.

Note:

Ensure that each individual service is deployed successfully and verified in the above
mentioned order as there are dependencies between these services. Ensure that for
production instance, for High Availability, the Message Bus is set up with at least 3
replicas for kafka-cluster.

Setting Up Prometheus and Grafana
Message Bus has been tested with Prometheus and Grafana server installed and configured
using the Helm charts.

• Prometheus Community is available at https://prometheus-community.github.io/helm-
charts and uses the prometheus-community/prometheus chart.

• Grafana Community is available at https://grafana.github.io/helm-charts and uses the
grafana/grafana chart.

Setting Up Elastic Stack
To set up Elastic Stack:

1. Install Elasticsearch and Kibana using the following commands:

#Install elasticsearch and kibana . It might take time to download images
from docker hub.
kubectl apply -f $COMMON_CNTK/samples/charts/elasticsearch-and-kibana/
elasticsearch_and_kibana.yaml

#Check if services are running, append namespace if deployment is other
than default like:- kubectl get services --all-namespaces
kubectl get services

Access kibana dashboard

Method 1 - kubectl get svc (will return all the services , append
namespace if deployment is other than default like:- kubectl get services
--all-namespaces)

Ex- elasticsearch ClusterIP 10.96.190.99 <none> 9200/
TCP,9300/TCP 113d
 kibana NodePort 10.100.198.88 <none>
5601:31794/TCP 113d

Kibana service nodeport at port 31794 is created

Chapter 2
Setting Up Prometheus and Grafana

2-6

https://prometheus-community.github.io/helm-charts
https://prometheus-community.github.io/helm-charts
https://grafana.github.io/helm-charts

Now access kibana dashboard using url - http://<IP address of
VM>:<nodeport>/

2. Run the following command to create a namespace ensuring that it does not already exist.

kubectl get namespaces
export FLUENTD_NS=fluentd
kubectl create namespace $FLUENTD_NS

3. Update $COMMON_CNTK/samples/charts/fluentd/values.yaml with Elastic Search Host
and Port.

elasticSearch:
 host: "elasticSearchHost"
 port: "elasticSearchPort"

For example:

elasticSearch:
 host: "elasticsearch.default.svc.cluster.local"
 port: "9200"

4. Modify the Fluentd image resources if required.

image: fluent/fluentd-kubernetes-daemonset:v1-debian-elasticsearch
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi

5. Run the following commands to install fluentd-logging using the $COMMON_CNTK/
samples/charts/fluentd/values.yaml file in the samples:

helm install fluentd-logging $COMMON_CNTK/samples/charts/fluentd -
n $FLUENTD_NS --values $COMMON_CNTK/samples/charts/fluentd/values.yaml \
--set namespace=$FLUENTD_NS \
--atomic --timeout 800s

6. Run the following command to upgrade fluentd-logging:

helm upgrade fluentd-logging $COMMON_CNTK/samples/charts/fluentd -
n $FLUENTD_NS --values $COMMON_CNTK/samples/charts/fluentd/values.yaml \
 --set namespace=$FLUENTD_NS \
 --atomic --timeout 800s

7. Run the following command to uninstall fluentd-logging:

helm delete fluentd-logging -n $FLUENTD_NS

8. Use 'fluentd_logging-YYYY.MM.DD' (default index configuration) index pattern in Kibana to
check the logs.

Chapter 2
Setting Up Elastic Stack

2-7

Visualize logs in Kibana

To visualize logs in Kibana:

1. Navigate to Kibana dashboard (http://<IP address of VM>:<nodeport>/).

2. Create Index pattern (fluentd_looging-YYYY.MM.DD).

3. Click on Discover.

Setting Up OpenSearch
The Common CNTK has a sample that provides deployment instructions for OpenSearch on
Kubernetes cluster using Helm charts. For more information, see https://opensearch.org/docs/
latest/install-and-configure/install-opensearch/helm/

Create Kubernetes namespace to install OpenSearch and export it to the environment variable
as follows:

Sample: export OPENSEARCH_NS=monitoring

Installing OpenSearch

Install OpenSearch as follows:

#Export the kubernetes namespace to be used for OpenSearch installation
export OPENSEARCH_NS=<kubernetes namespace>
export COMMON_CNTK=<path to common cntk>

#Install OpenSearch
helm install os-engine opensearch/opensearch --values=$COMMON_CNTK/samples/
charts/opensearch/os_engine_values.yaml --namespace=$OPENSEARCH_NS

#Install OpenSearch Dashboard
helm install os-board opensearch/opensearch-dashboards --values=$COMMON_CNTK/
samples/charts/opensearch/os_board_values.yaml --namespace=$OPENSEARCH_NS

#Accessing Dashboard
export NODE_PORT=$(kubectl get --namespace $OPENSEARCH_NS -o
jsonpath="{.spec.ports[0].nodePort}" services os-board-opensearch-dashboards)
export NODE_IP=$(kubectl get nodes --namespace $OPENSEARCH_NS-o
jsonpath="{.items[0].status.addresses[0].address}")
echo http://$NODE_IP:$NODE_PORT

Installing FluentD

Update the $COMMON_CNTK/samples/charts/fluentd/template/fluentd-config-map.yaml file
with OpenSearch details such as type, host, port, scheme, user, password, and ssl_verify as
follows:

#Export the kubernetes namespace to be used for OpenSearch installation
helm install fluentd-logging $COMMON_CNTK/samples/charts/fluentd --
values $COMMON_CNTK/samples/charts/fluentd/values.yaml --set
namespace=$OPENSEARCH_NS --atomic --timeout 800s

Chapter 2
Setting Up OpenSearch

2-8

https://opensearch.org/docs/latest/install-and-configure/install-opensearch/helm/
https://opensearch.org/docs/latest/install-and-configure/install-opensearch/helm/

Accessing OpenSearch Dashboard

Access the OpenSearch dashboard using nodeport of the OpenSearch dashboard service in
the namespace. Find and create index pattern with fluentd_logging-*.

Uninstalling OpenSearch

Uninstall OpenSearch as follows:

helm uninstall os-board --namespace=$OPENSEARCH_NS
helm uninstall os-engine --namespace=$OPENSEARCH_NS
helm uninstall fluentd-logging --namespace=$OPENSEARCH_NS

Adding Common OAuth Secret and ConfigMap
To add COMMON OAUTH secret and ConfigMap:

1. Run the following command to create or update truststore by passing Identity Provider SSL
certificate:

keytool -importcert -v -alias <param> -file <path to IDP cert file> -
keystore <truststorename>.jks -storepass <password>

A sample is as follows:

keytool -importcert -v -alias idpcert -file identityprovidercert.pem -
keystore truststore.jks -storepass ****

Note:

You must add the corresponding certificates for UIM and Identity Providers. If the
Identity Provider and UIM certificates are not common, add both in the same
truststore.

2. Run the following script to create the OAuth configuration as secrets and ConfigMap:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml create oauthConfig

Enter the values as prompted:

Provide Oauth credentials for 'sr-quick' ...
Client Id: topologyClient #Provide Client ID
Client Secret: xxxxx #Provide Client Secret
Client Scope: <oauth-client-scope> (if scope is not configured for oidc-
client keep blank)
Client Audience: <oauth-client-audience> (if audience not configured for
oidc-client keep blank)
Token Endpoint Uri: https://<instance>.<project>.ohs.<oam-host-
suffix>:<port>/oauth2/rest/token #Provide oauth token endpoint URI
Valid Issue Uri: https:// <instance>.<project>.ohs .<oam-host-

Chapter 2
Adding Common OAuth Secret and ConfigMap

2-9

suffix>:<port>/oauth2 #Provide oauth valid issue URI
Introspection Endpoint Uri: https:// <instance>.<project>.ohs .<oam-host-
suffix>:<port> /oauth2/rest/token/introspect #Provide Oauth Introspection
Endpoint URI
JWKS Endpoint Uri: https://<instance>.<project>.ohs.<oam-host-
suffix>:<port>/oauth2/rest/security #Provide JWKS Endpoint URI

Provide Truststore details ...
Certificate File Path (ex. oamcert.pem): ./commoncert.pem #provide
Certificate file path
Truststore File Path (ex. truststore.jks): ./commontrust.jks #provide
Truststore file path
Truststore Password: xxxx #provide Truststore password

Sample for IDCS is as follows:

Provide Oauth credentials for 'sr-quick' ...
Client Id: e6e0b2c6c3a845709bc51b561e0f008c
Client Secret: xxxx-xxxx-xxxx-xxxx
Client Scope: https://quick.sr.topology.uim.org:30443/first_scope
Client Audience: https://quick.sr.topology.uim.org:30443/
Token Endpoint Uri: https://<IDCS URL>:443/oauth2/v1/token
Valid Issue Uri: https://identity.oraclecloud.com/
Introspection Endpoint Uri: https://<IDCS URL>:443/oauth2/v1/introspect
JWKS Endpoint Uri: https://<IDCS URL>:443/admin/v1/SigningCert/jwk
Provide Truststore details ...
Certificate File Path (ex. oamcert.pem): ./identity-pint-oc9qadev-com.pem
Truststore File Path (ex. truststore.jks): ./truststore.jks
Truststore Password: xxxxx #provide Truststore password

3. Verify the following:

$kubectl get secret -n sr
sr-quick-oauth-credentials

$kubectl get cm -n sr
sr-quick-oauth-config-cm

Note:

The oauthConfig secret is used by both messaging-bus and unified topology
applications. If you are creating them in different namespaces or instances, you need
to create this secret in both namespaces or instances.

Chapter 2
Adding Common OAuth Secret and ConfigMap

2-10

3
Deploying the Common Authentication Service

This chapter describes how to optionally deploy and manage the Common Authentication
service.

Building the OHS Image
To build OHS image:

1. Go to WORKSPACEDIR that is created in "Unified Inventory and Topology Toolkit".

2. Download V983369-01.zip: Oracle Fusion Middleware 12c (12.2.1.4.0) HTTP Server for
Linux x86-64, 1.9 GB file from Oracle E-Delivery by searching for the file from Oracle
HTTP Server 12.2.1.4.0 for (Linux x86-64) and copy them to the $WORKSPACEDIR/ohs-
builder/staging/downloads/ folder.

3. Modify ohsBaseImage.package.path in $WORKSPACEDIR/ohs-builder/bin/
ohs_manifest.yaml with the filename of the downloaded OHS archive file.

4. Download jdk-<version>_linux-x64_bin.tar.gz and copy to
the $WORKSPACEDIR/ohs-builder/staging/downloads/java folder.

Note:

See UIM Compatibility Matrix for the latest versions of software.

5. Modify the ohsBaseImage.jdk.path in $WORKSPACEDIR/ohs-builder/bin/
ohs_manifest.yaml file with the name of the downloaded JDK file.

6. Run build-all-images.sh in bin directory to build all images on OHS.

Deploying OAM along with OHS for Authentication Service
Before deploying OAM using the COMMON CNTK scripts, ensure the following:

• WebLogic Operator is deployed and configured as per UIM_CNTK. See Setting Up
Oracle WebLogic Server Kubernetes Operator in UIM Cloud Native Deployment Guide
for more information.

• Namespace is registered with WebLogic Operator using the UIM_CNTK script. See
Registering the Namespace in UIM Cloud Native Deployment Guide for more
information.

• Traefik (ingress-based) load balancer is installed as per UIM_CNTK script. See Installing
the Traefik Container Image in UIM Cloud Native Deployment Guide for more
information.

• Pull the Oracle Access Manager Image or latest cpu image from Oracle Container Registry
as follows:

1. Launch a browser and access the Oracle Container Registry.

2. Click Sign In and enter your username and password.

3-1

https://container-registry.oracle.com/

3. In the Search field, enter Oracle Access Manager and press Enter.

4. Click oam_cpu for the latest CPU patch image of Oracle Access Manager.

5. In the Terms and Conditions box, select the language as English.

6. Click Continue and accept Terms and Restrictions.

7. On your Podman environment, log in to the Oracle Container Registry and enter your
Oracle SSO username and password when prompted:

$ podman login container-registry.oracle.com
Username: <username>
Password: <password>
$ podman pull <oam-cpu-image-name>

8. Pull the Oracle Access Manager Image or latest CPU image from Oracle Container
Registry as follows.
For example: Use the following command to pull OAM CPU image from Oracle
Container Registry:

docker pull container-registry.oracle.com/middleware/oam_cpu:12.2.1.4-
jdk8-ol7-221014

• Download Oracle Communications Unified Inventory Management Common Toolkit
from Oracle Software Delivery Cloud.

Deploying OAM Using Common Cloud Native Toolkit Scripts
To deploy OAM using COMMON_CNTK scripts:

1. Go to the $WORKSPACEDIR/common_cntk folder created in Unified Inventory and
Topology Toolkit and export the path to a variable COMMON_CNTK. See "Unified
Inventory and Topology Toolkit" for more information.

2. Modify the parameters in the $SPEC_PATH/sr/quick/applications.yaml file as
follows:

• inventory.host: Provide the inventory host IP or address where UIM traditional
application is installed. This is a mandatory parameter. For UIM cloud native instance,
the value is: <uimproject>-<uiminstance>-cluster-
uimcluster.<uimproject>.svc.cluster.local

• inventory.port: Provide the inventory host port where the UIM on-perm is installed.
This is a mandatory parameter. For UIM cloud native instance, the value is 8502.

• inventory.isSSL: If traditional UIM has the SSL port used, change the value to true,
for Cloud Native Inventory always false.

• imagePullSecret: Provide the Kubernetes secret name containing the Docker secrets
to pull images. This is a mandatory parameter. This secret should be accessible, which
means that it must be created in the same namespace as OAM.

• persistentVolumeClaimName: Provide the existing pvc name for storage of OAM
domain. This is a mandatory parameter.

• hostSuffix: By default it is .uim.org.

• loadBalancerPort: The load balancer port exposed by Traefik or external load
balancer. Enter the Secure/SSL port.

Chapter 3
Deploying OAM Using Common Cloud Native Toolkit Scripts

3-2

• gcLogs: To enable GC logs for OAM, set enabled to true and configure the number of
files and size of each file. You can uncomment values inside oam-server to override
common values for gcLogs.
For example:

gcLogs:
 enabled: true
 fileSize: 10M
 noOfFiles: 10

• tls.enabled: Flag to enable tls or ssl. By default, it is true. If true, create the certificate
and the key mentioned in next step. Oracle recommends not to disable SSL in
production environment.

3. If SSL is enabled that is, tls.enabled is true, create the certificate as follows:

a. Create certs folder in $COMMON_CNTK.

b. Copy your signed certificate and key into certs folder by renaming the certificate
name as commoncert.pem and renaming the key file name as commonkey.pem.

Note:

OAM supports wild card certificates. Your certificate can be updated with the
*.<hostSuffix>. By default, the hostSuffix value is uim.org from
applications.yaml. See "Using Wild Card Certificates" for more information.

c. (Optional) Run the following command to create Single Certificate and Key for OAM,
messaging-bus, UIM, and UTIA:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $COMMON_CNTK/certs/commonkey.pem -out $COMMON_CNTK/certs/
commoncert.pem -subj "/CN=<instance>.<project>.admin.uim.org" -
extensions san -config <(echo '[req]'; echo 'distinguished_name=req';
echo '[san]';echo 'subjectAltName=@alt_names'; \echo '[alt_names]'; \
echo 'DNS.1=<instance>.<project>.admin.uim.org'; \
echo 'DNS.2=<instance>.<project>.oam.uim.org'; \
echo 'DNS.3=<instance>.<project>.ohs.uim.org'; \
echo 'DNS.4=uim.org'; \
echo 'DNS.5=<instance>.<project>.topology.uim.org'; \
echo 'DNS.6=localhost'; \
echo 'DNS.7=svc.cluster.local'; \
echo 'DNS.8=<instance>.<project>.uim.org'; \
echo 'DNS.9=admin.<instance>.<project>.uim.org'; \
echo 'DNS.10=t3.<instance>.<project>.uim.org'; \
)

An example for project:sr and instance: quick:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $COMMON_CNTK/certs/commonkey.pem -out $COMMON_CNTK/certs/
commoncert.pem -subj "/CN=quick.sr.admin.uim.org" -extensions san -
config <(echo '[req]'; echo 'distinguished_name=req'; echo '[san]';echo
'subjectAltName=@alt_names'; \echo '[alt_names]'; \

Chapter 3
Deploying OAM Using Common Cloud Native Toolkit Scripts

3-3

echo 'DNS.1=quick.sr.admin.uim.org'; \
echo 'DNS.2=quick.sr.oam.uim.org'; \
echo 'DNS.3=quick.sr.ohs.uim.org'; \
echo 'DNS.4=uim.org'; \
echo 'DNS.5=quick.sr.topology.uim.org'; \
echo 'DNS.6=localhost'; \
echo 'DNS.7=svc.cluster.local'; \
echo 'DNS.8=quick.sr.uim.org'; \
echo 'DNS.9=admin.quick.sr.uim.org'; \
echo 'DNS.10=t3.quick.sr.uim.org'; \
)

Note:

Ensure that commoncert.pem and commonkey.pem files are present in
the $COMMON_CNTK/certs folder.

OAM, UIM, UTIA, and Message Bus support wildcard certificates. See "Using
Wild Card Certificates" for more information.

d. (Optional) To generate your own self-signed certificates, see "Self-signed SSL
Certificates".

4. Create the secrets for OAM as follows:

a. Create the mandatory secrets according to the system prompts as follows:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a oam create
database,wlsadmin,ingressTLS
Applications specified - oam

====create database,wlsadmin,ingressTLS secret for oam Application====
Provide Database credentials for 'sr-quick-oam' ...
OAM DB Admin(sys) Username: <PDB-ADMIN-USER>
OAM DB Admin(sys) Password: <PDB-ADMIN-PWD>
OAM Schema Username: <OAM_SCHEMA_USER>
OAM Schema Password: <OAM_SCHEMA_PWD>
OAM DB Host: <DB_HOSTNAME>
OAM DB Port: <DB_PORT>
OAM DB Service Name: <SERVICE-NAME>

Provide Weblogic Admin credentials for 'sr-quick-oam' ...
Weblogic Admin Username: <WL_ADMIN_USER>
Weblogic Admin Password: <WL_ADMIN_PWD>

Provide Ingress TLS Credentials for OAM application 'sr-quick-oam' ...
Ingress TLS Certificate Path (PEM file): $COMMON_CNTK/certs/
commoncert.pem
Ingress TLS Key file Path (PEM file): $COMMON_CNTK/certs/commonkey.pem

secret/sr-quick-oam-rcu-credentials created
secret/sr-quick-oam-wls-credentials created
secret/sr-quick-oam-ingress-tls-cert-secret created

Chapter 3
Deploying OAM Using Common Cloud Native Toolkit Scripts

3-4

Execution status of secrets for command - create:
OAM MICROSERVICE...........Ok

Note:

The RCU Schema password guideline specifies that a valid password must
be specified. The password should be alpha numeric only and can contain
the following special characters: # , _ . The password should not start with a
number or a special character.

<OAM_SCHEMA_USER> should be less 12 characters and
<OAM_SCHEMA_PWD> is the RCU Schema password.

b. Ensure the following secrets are created:

• Database secret : Contains the details of OAM database schema. For example,
sr-quick-oam-rcu-credentials.

• wlsadmin secret: Contains the credentials for WebLogic and oamconsole. For
example, sr-quick-oam-wls-credentials.

• ingressTLS: Contains certificate and key for OAM. For example, sr-quick-
oam-ingress-tls-cert-secret.

c. For traditional UIM, if SSL port is used, you must create additional configmap to pass
the inventory certificate.

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a oam create inventorySSL
Provide Inventory SSL Credentials for OAM application 'sr-quick-oam' ...
On-prem Inventory SSL Certificate Path (PEM file): <provide inventory
certificate>

5. Configure Ingress and Ingress Controller for OAM. See "Configuring Ingress and Ingress
Controller for OAM" for more information.

6. Create schema by running the following commands to install OAM DB and ensure that
database secret and image name for database.yaml are correct:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/database.yaml -a oam -c 1

7. Create OAM by running the following command to install OAM and ensure that you
updated applications.yaml file:

$COMMON_CNTK/scripts/create-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a oam

Using Wild Card Certificates
OAM, UIM, UTIA and Message Bus supports wildcard certificates. You can generate wildCard
Certificates with the hostSuffix value provided in applications.yaml. The default is uim.org.

To use wild card certificates:

Chapter 3
Deploying OAM Using Common Cloud Native Toolkit Scripts

3-5

1. To create a self-signed wild card certificate, use the following command:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout $COMMON_CNTK/
certs/wildcardkey.pem -out $COMMON_CNTK/certs/wildcardcert.pem -subj "/
CN=*.uim.org" -extensions san -config <(echo '[req]'; echo
'distinguished_name=req';
echo '[san]';echo 'subjectAltName=@alt_names'; \echo '[alt_names]'; \
echo 'DNS.1=*.uim.org'; \
)

2. Change the subDomainNameSeperator value from period (.) to hyphen (-) so that the
incoming hostnames match the wild card DNS pattern.
Update the $SPEC_PATH/project/instance/applications.yaml file as follows:

#Uncooment and provide the value of subDomainNameSeparator, default is "."
#Value can be changed as "-" to match wild-card pattern of ssl
certificates.
#Example hostnames for "-" quick-sr-topology.uim.org
subDomainNameSeparator: "-"

3. If you have configured the above settings, the following are the hostnames to access OAM
application for project:sr, instance:quick, and hostSuffix: uim.org:

oam-admin hostname: quick-sr-admin.uim.org
oam-ohs hostname: quick-sr-ohs.uim.org
oam hostname: quick-sr-oam.uim.org
oam-policy hostname: quick-sr-policy.uim.org

Configuring Ingress and Ingress Controller for OAM
OAM supports standard Kubernetes ingress API and provides samples for integration. The
following configuration provides the OAM required annotations for Nginx.

Any Ingress Controller that conforms to the standard Kubernetes Ingress API and supports
annotations needed by OAM should work. Oracle does not certify any individual Ingress
controllers to confirm this generic compatibility.

The annotations for OAM are:

• To use Annoation Base Generic Ingress Controller, update applications.yaml
from $SPEC_PATH/project/instance as follows:

Valid values are TRAEFIK, GENERIC
ingressController: "GENERIC"

ingress:
 className: nginx ##provide ingressClassName value, default value for
nginx ingressController is nginx.
 annotations:
 nginx.ingress.kubernetes.io/affinity: "cookie"
 nginx.ingress.kubernetes.io/affinity-mode: "persistent"
 nginx.ingress.kubernetes.io/session-cookie-name: "nginxingresscookie"
 nginx.ingress.kubernetes.io/proxy-body-size: "50m"
 nginx.ingress.kubernetes.io/proxy-buffer-size: 64k

Chapter 3
Deploying OAM Using Common Cloud Native Toolkit Scripts

3-6

• To enable SSL, provide the following annotations in applications.yaml under oam-server
tag:

oam-server:
 ingress:
 annotations:
 nginx.ingress.kubernetes.io/configuration-snippet: |
 more_clear_input_headers "WL-Proxy-Client-IP" "WL-Proxy-SSL" "X-
Custom-Request-Header" ;
 more_set_input_headers "X-Forwarded-Proto: https";
 more_set_input_headers "WL-Proxy-SSL: true";
 more_set_input_headers "IS_SSL: ssl";

• To use TRAEFIK Ingress Controller, update applications.yaml from $SPEC_PATH/
project/instance as following:

Valid values are TRAEFIK, GENERIC
ingressController: "TRAEFIK"

Upgrading OAM
To upgrade OAM, you can use following command:

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a oam

Note:

This upgrade command will restart OAM and OHS deployments. If you want to
update ingressTLS, inventorySSL secrets or want to make any changes in
applications.yaml for OAM, you can perform this operation.

This command will not make any changes to OAM domain. To update domain, you
need to uninstall OAM and recreate.

Uninstalling OAM
To uninstall OAM:

1. Delete OAM as follows:

$COMMON_CNTK/scripts/delete-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a oam

2. Delete OAM db schema as follows:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/database.yaml -a oam -c 2

3. Run the file $COMMON_CNTK/scripts/uninstall.sh.

Chapter 3
Upgrading OAM

3-7

Note:

Ensure the domain folder and its contents on the PV_SHARED_PATH or Path
sharedDomainPath on NFS are deleted after the uninstallation. That is, delete
<project>-<instance>-oam and <project>-<instance>-oam-ohs
folders.

Specifying the Proxy Settings
Enter the following proxy settings:

• In the browser, go to network no-proxy settings and include the *<hostSuffix> value
from $SPEC_PATH/sr/quick/applications.yaml. By default, it is .uim.org that is,
*.uim.org.

• In /etc/hosts the following may changed based on the <instance>, <project>, and
hostSuffix values in $SPEC_PATH/sr/quick/applications.yaml.

etc/hosts:

<k8s cluster ip> <instance>.<project>.oam.<hostSuffix>
<instance>.<project>.admin.<hostSuffix>
<instance>.<project>.policy.<hostSuffix> <instance>.<project>.ohs.<hostSuffix>
for example:
<k8s cluster ip> quick.sr.oam.uim.org quick.sr.admin.uim.org
quick.sr.policy.uim.org traefik.uim.org quick.sr.ohs.uim.org

Accessing the WebLogic Server Administration Console and the
OAM Console

You need to complete the proxy settings for accessing the WebLogic Server Administration
console and the OAM console. The credentials for accessing WebLogic console or OAM
console are stored in the wlsadmin secret.

WebLogic Console:

https://<instance>.<project>.admin.<hostSuffix>:<loadBalancerPort>/console

For example:

https://quick.sr.admin.uim.org:30443/console

OAM Console:

https://<instance>.<project>.admin.<hostSuffix>:<loadBalancerPort>/oamconsole

For example:

https://quick.sr.admin.uim.org:30443/console

Chapter 3
Specifying the Proxy Settings

3-8

Configuring OAM
To configure OAM before using it for SSO authentication:

1. Log in to Oracle Access Management (OAM) Console:

https://<instance>.<project>.admin.<hostSuffix>:<loadBalancerPort>/
oamconsole

2. Click Configuration at the top right corner of the Console to show Configuration Launch
Pad.

3. Click on Available Services and then click Enable Service for OAuth and
OpenIDConnect Service.

4. From Configuration Launch Pad, select Access Manager from the View menu in the
Settings section:

a. Under Load Balancing and WebGate Traffic Load Balancer, modify OAM Server
Host with <instance>.<project>.ohs.<hostSuffix >. The hostSuffix
value is taken from $SPEC_PATH/sr/quick/applications.yaml. By default, it
is .uim.org.

b. Modify OAM Server Protocol to https.

c. Modify OAM Server Port to <loadBalancerPort>. This value is
from $SPEC_PATH/sr/quick/applications.yaml.

d. Secure the load balancer port.

e. Click Apply to save.

Figure 3-1 Access Manager Settings

Chapter 3
Configuring OAM

3-9

5. From Configuration Launch Pad, select User Identity Stores to create an ID store for
using the embedded LDAP of UIM:

a. Click Create under the IDS Profiles section for creating an IDS profile.

b. Specify Name as UIMEmbeddedLDAP.

c. (Optional) Provide Description.

d. Configure the Repository properties under Repository:

i. Choose Repository Options by selecting Create New.

ii. Provide Directory Type as Weblogic Server Embedded LDAP.

iii. Provide Host Name as <Inventory's AdminHost> and Port as
<Inventory's AdminPort> under Hosts.

Note:

In case of UIM Cloud Native Environment, provide AdminServer service
name and port for <Inventory's AdminHost>:<Inventory's
AdminPort> as <uim-project>-<uim-instance>-admin:8501
(sample: sr-quick-admin:8501).

iv. If UIM onPrem admin server is SSL enabled, select SSL Enabled, for UIM Cloud
Native environment not required.

v. Provide the Bind DN as cn=Admin.

vi. Specify Bind Password provided for the embedded LDAP in the WebLogic admin
console. Ensure that the following steps are performed in WebLogic console
where UIM is deployed. In the WebLogic Server admin console, change the
credential for the embedded LDAP server as follows:

Note:

In case of UIM Cloud Native environment, enter your WebLogic
password in the Password field.

• Expand Domain > Security > Embedded LDAP.

• In the Credential field, enter the new credential.

• In the Confirm Credential field, enter the new credential again.

• Click Save.

• Reboot the WebLogic server.

vii. Provide Base DN as follows:

ou=myrealm,dc=<inventory application domain name>

Chapter 3
Configuring OAM

3-10

Note:

In case of UIM Cloud Native Environment, provide <inventory application
domain name> as domain. On UIM CN, WebLogic domain name is set to
domain by default.

e. Configure the user properties to configure the LDAP user object under User section:

i. Provide Base DN as ou=people,ou=myrealm,dc=<inventory
application domain name>.

ii. Provide Login ID Attribute as uid.

f. Configure the Group properties to configure the LDAP group object under Group
section:

g. Provide Base DN as ou=groups,ou=myrealm,dc=<inventory application
domain name>.

h. Click Test Connection on the top-right corner to ensure the connection to embedded
LDAP is successful.

i. Click OK to close the Connection Status dialog box.

j. Click Create to create IDS profile.
Entries with the profile name are displayed in the IDS Profiles and IDS Repositories
table.

k. Click Sync IDS Profiles button on right side of OAM ID Stores section to see the
IDSPROFILE-UIMEmbeddedLDAP entry displayed under OAM ID Stores table.

6. Click Application Security at the top right corner of the Console to show the Application
Security Launch Pad.

7. Click Agents and then Search to show the UnifiedWebgate in the table.

8. Select UnifiedWebgate from the table and click Edit to modify the Webgate settings:

a. Modify Logout Redirect URL as:

https://<instance>.<project>.ohs.<hostSuffix>:<loadBalancerPort/oam/
server/logout

b. Modify the Access Server and Host Name under Primary Server List as Other and
<domainUID> -oam-server1 ' where domainUID is the <project>-
<instance>-oam. By default, it is sr-quick-oam-oam-server1.

c. Click Apply to save.

9. From the Application Security Launch Pad, select Authentication Modules from Plug-ins
to create 'UIM Embedded LDAP Module' authentication module.

a. Click Create LDAP Authentication Module in the Create dropdown, under Search
Results section.

b. Provide Name as UIM Embedded LDAP Module.

c. Choose User Identity Store as IDSPROFILE-UIMEmbeddedLDAP that is created
above.

d. Click Apply to save.

10. From the Application Security Launch Pad, select Authentication schemas from Access
Manager to create 'UIM Embedded LDAP Schema' authentication schema.

Chapter 3
Configuring OAM

3-11

a. Click Create under Search Results section.

b. Provide Name as UIM Embedded LDAP Schema.

c. Provide Description as UIM Embedded LDAP Schema.

d. Modify the Authentication Level as 2.

e. Provide Challenge Method as FORM.

f. Provide Challenge Redirect URL as /oam/server/.

g. Choose Authentication Module as UIM Embedded LDAP Module.

h. Provide Challenge URL as /login.jsp.

i. Choose Context Type as customwar.

j. Provide Context Value as /customConsent.

k. Click Apply to save.

11. From the Application Security Launch Pad, select Application Domains from Access
Manager to edit UnifiedWebgate application domain.

a. Click Search to show the UnifiedWebgate in the table.

b. Select UnifiedWebgate from the table and click Edit to modify the Application Domain
settings.

c. Select Authentication Policies tab and select the Protected Resource Policy table
item.

d. Click Edit button to open Protected Resource Policy authentication policy settings.

e. Choose Authentication Schema as UIM Embedded LDAP Schema from the drop
down.

f. Click Apply to save.

Configuring OAuth Service Settings
Complete the proxy settings as mentioned in the above section.

Ensure environment variable NO_PROXY is set with <hostSuffix>.

Run the following commands from the machine on which the proxy settings are done:

export CREDS=`echo -n "<OAM_Domain_Username>:<password>" | base64 -w 0`
export OAMHOST=<instance>.<project>.admin.<hostSuffix> (example,
quick.sr.admin.uim.org)
export OAMPORT=<loadBalancerPort> (the value provided in $SPEC_PATH/sr/quick/
applications.yaml)

Creating an OAuth Identity Domain
Run the following curl statement to create the UnifiedIdDomain identity domain with
custom-consent enabled and using IDSPROFILE-UIMEmbeddedLDAP as the identity provider:

curl -i -H "Content-Type: application/json" -H "Authorization:Basic ${CREDS}"
--cacert $COMMON_CNTK/certs/commoncert.pem --noproxy $NO_PROXY --request POST
https://${OAMHOST}:${OAMPORT}/oam/services/rest/ssa/api/v1/oauthpolicyadmin/
oauthidentitydomain -d '{"consentPageURL":"/customConsent/

Chapter 3
Configuring OAuth Service Settings

3-12

customConsent.jsp","issueTLSClientCertificateBoundAccessTokens":false,"tokenSe
ttings":
[{"tokenType":"ACCESS_TOKEN","tokenExpiry":3600,"lifeCycleEnabled":false,"refr
eshTokenEnabled":true,"refreshTokenExpiry":86400,"refreshTokenLifeCycleEnabled
":false},
{"tokenType":"AUTHZ_CODE","tokenExpiry":3600,"lifeCycleEnabled":false,"refresh
TokenEnabled":true,"refreshTokenExpiry":86400,"refreshTokenLifeCycleEnabled":f
alse},
{"tokenType":"SSO_LINK_TOKEN","tokenExpiry":3600,"lifeCycleEnabled":false,"ref
reshTokenEnabled":true,"refreshTokenExpiry":86400,"refreshTokenLifeCycleEnable
d":false}],"customAttrs":"{\"allowedCustomPlugins\":\"OAuthCustomClaimsPlugin\
"}","name":"UnifiedIdDomain","description":"Unified Identity
Domain","identityProvider":"IDSPROFILE-UIMEmbeddedLDAP","errorPageURL":"/oam/
pages/servererror.jsp","keyPairRolloverDurationInHours":48}'

Creating a Resource
Run the following curl statement to create UnifiedRserver resource with default scope as
Info:

curl -i -H "Content-Type: application/json" -H "Authorization:Basic ${CREDS}"
--cacert $COMMON_CNTK/certs/commoncert.pem --noproxy $NO_PROXY --request POST
https://${OAMHOST}:${OAMPORT}/oam/services/rest/ssa/api/v1/oauthpolicyadmin/
application -d '{"tokenAttributes":
[],"resServerType":"CUSTOM_RESOURCE_SERVER","resourceServerNameSpacePrefix":"U
nifiedRserver.","name":"UnifiedRserver","description":"Unified Resource
Server","audienceClaim":null,"scopes":
[{"scopeName":"Info","description":"null"},
{"scopeName":"DefaultScope","description":"DefaultScope"}],"idDomain":"Unified
IdDomain","resourceServerId":"1f50f6f4-06a9-4d1b-8347-bc5672a12e56"}'

Creating a Client
Run the curl statement to create topologyClient client.

The following is an example for creating a client with <project> as sr and <instance> as quick:

curl -i -H "Content-Type: application/json" -H "Authorization:Basic ${CREDS}"
--cacert $COMMON_CNTK/certs/commoncert.pem --noproxy $NO_PROXY --request POST
https://${OAMHOST}:${OAMPORT}/oam/services/rest/ssa/api/v1/oauthpolicyadmin/
client -d
'{"clientType":"CONFIDENTIAL_CLIENT","issueTLSClientCertificateBoundAccessToke
ns":false,"name":"topologyClient","grantTypes":
["PASSWORD","CLIENT_CREDENTIALS","JWT_BEARER","REFRESH_TOKEN","AUTHORIZATION_C
ODE"],"description":"null","attributes":
[{"attrName":"customeAttr1","attrValue":"CustomValue","attrType":"STATIC"}],"i
d":"topologyClient","secret":"<secret>","scopes":
["UnifiedRserver.Info"],"defaultScope":"UnifiedRserver.Info","redirectURIs":
[{"url":"https://quick.sr.topology.uim.org:30443/topology","isHttps":true},
{"url":"https://quick.sr.topology.uim.org:30443/redirect/unified-topology-
ui","isHttps":true}],"idDomain":"UnifiedIdDomain"}'

Chapter 3
Configuring OAuth Service Settings

3-13

Add topology service specific redirect URLs under redirectURIs attribute in json data and
update <secret>:

• For Topology-API:

redirect-uri: "https://<instance>.<project>.topology.<hostSuffix>:<port>/
topology"

• For Topology-UI:

redirect-uri: https://<instance>.<project>.topology.<hostSuffix>:<port>/
redirect/unified-topology-ui

Note:

If an external load balancer is used with a default port of 80 or 443, you do not
mention ports in redirect URIs. In that case, redirect URIs will be as follows:

"redirectURIs":[{"url":"https://quick.sr.topology.uim.org/
topology","isHttps":true},
{"url":"https://quick.sr.topology.uim.org/redirect/unified-topology-
ui","isHttps":true}]

Debugging and Troubleshooting
The following are some common issues.

Unable to create Domain or Admin Server is not coming up
To troubleshoot the issue:

1. Check if a folder with the domain name already exists at the persistentVolumeClaim
location.
If there is a Domain Exists error, the following message appears:

The domain will be created using the script /u01/weblogic/create-domain-
script.sh
ERROR: The create domain job will not overwrite an existing domain. The
domain folder /u01/oracle/user_projects/domains/accessdomain already exists

2. Ensure RCU schema creation is successful.

kubectl -n <NAMESPACE> get pods

3. Check the logs of <project>-<instance>-oam-dbschema (kubectl -n
<NAMESPACE>), which ends with Repository Creation Utility - Create :
Operation Completed line.

4. Check the logs of <project>-<instance>-oam-create-infra-domain-job-
<podsuffix>.

Chapter 3
Debugging and Troubleshooting

3-14

To resolve the issue:

1. If a folder with the same domain name already exists, delete the domain folders (<project>-
<instance>-oam and <project>-<instance>-oam-ohs) and its contents.

2. Uninstall OAM. See Uninstalling OAM for more information.

3. If RCU Schema creation is not successful, then check the rcuDatabaseURL and
rcuSchemaPrefix values provided.

Note:

Same rcuSchemaPrefix value cannot be used for different domains with in the
same database.

4. Resolve the database issues and run the scripts again.

5. Resolve the errors appeared in the logs of <project>-<instance>-oam-create-
infra-domain-job-<podsuffix>:

a. If you see mkdir: cannot create directory ... : Permission denied
error, then ensure the PVC/sharedDomainPath has permissions. For example: chmod
777 /scratch/shared.

b. If there are no errors or exceptions in logs, ensure the <NAMESPACE> is registered
with the WebLogic operator as mentioned in prerequisites for running scripts.

6. Before running the scripts again, remove the Helm releases that are partially installed as
follows to get the helm releases in the namespace:

helm ls -n <NAMESPACE> -

Unable to Access OAM Console
Unable to access OAM Console using: https://
admin.<DOMAIN_NAME><hostSuffix>:<loadBalancerPort>/oamconsole
To troubleshoot the issue:

• Ensure the OHS service is up and running the following commands:

kubectl -n <NAMESPACE> logs <project>-<instance>-oam-ohs-<podSuffix>

• Ensure the loadBalancerPort is correct and provide secure port if SSL is enabled.

• Ensure proxy settings are done.

To resolve the issue, identify and uninstall the failed pod as follows:

1. Check if there are any pods that are failed or in the Error state using:

kubectl -n <NAMESPACE> get pods

2. Check the release of the pods using the following Helm command:

helm ls -n <NAMESPACE>

Chapter 3
Debugging and Troubleshooting

3-15

3. If RCU Schema creation has failed, uninstall <project>-<instance>-oam-dbschema
release using:

helm -n <NAMESPACE> uninstall <project>-<instance>-oam-dbschema

4. If OAM domain creation has failed, uninstall <project>-<instance>-oam-
createdomain release using:

helm -n <NAMESPACE> uninstall <project>-<instance>-oam-createdomain

5. Run $COMMON_CNTK/scripts/delete_applications.sh -p <project> -i
<instance> -f $SPEC_PATH/sr/quick/applications.yaml -a oam then
ensure the <DOMAIN_NAME> folder and <DOMAIN_NAME>-ohs folder (if exists) from the
PVC/sharedDomainPath is deleted.

Inventory UI is not appearing after successful login
To troubleshoot the issue, check if you have the credentials to view UIM and check the logs ot
Topology-UI service.

The following error appears if you have recreated UIM.

Failure of Web Server bridge:

No back-end server available for connection: timed out after 10 seconds or idempotent set to
OFF or method not idempotent.

To resolve the issue:

1. Restart the OHS pod.

2. Get the OHS pod name using kubectl -n <namespace> get pods command where
the name of the pod is <project>-<instance>-oam-ohs-<podsuffix>.

Note:

The pod name starts with Pod name starts with <project>-
<instance>-oam-ohs-<number>.

3. Open the OHS pod using: kubectl -n oamns exec -it <OHS_POD_NAME> –-
bash.

4. Run the command:

echo '<DOMAIN_USER_PWD>' | /u01/oracle/ohssa/user_projects/domains/
<project>-<instance>-oam-ohs/bin/restartComponent.sh ohs1

5. Exit from the pod using exit.

Alternatively, you can restart OHS by rolling out restart from deployments as follows:

 kubectl -n <namespace> get deployments
 kubectl -n <namespace> rollout restart deployment <project>-
<instance>-oam-ohs

Chapter 3
Debugging and Troubleshooting

3-16

UIM UI Not Accessible on Using SSL Port of Traditional UIM Instance
Check the OHS logs and if you observe SSL Handshake error message in logs. For example,
wl_ssl_open : SSL Handshake failed onserror : Success, error : 29024,
status : 2, perform the following resolution steps:

1. Identify the Inventory certificate file (.pem) and copy it into OHS pod.

kubectl -n <NAMESPACE> cp <inventory-certificate-file> <NAMESPACE>/
<OHS_POD_NAME>:/u01/oracle/ohssa/user_projects/domains/<project>-
<instance>-oam-ohs/config/fmwconfig/components/OHS/instances/ohs1/
keystores/

2. Enter the OHS pod using:

kubectl -n <NAMESPACE> exec -it <OHS_POD_NAME> bash

3. Run the below commands inside the OHS pod:

cd /u01/oracle/ohssa/user_projects/domains/<project>-<instance>-oam-ohs/
config/fmwconfig/components/OHS/instances/ohs1/keystores

/u01/oracle/ohssa/oracle_common/bin/orapki wallet create -wallet <wallet-
name> -auto_login_only

/u01/oracle/ohssa/oracle_common/bin/orapki wallet add -wallet <wallet-
name> -trusted_cert -cert <inventory-certificate-file> -auto_login_only

cd ..

vim mod_wl_ohs.conf

#edit the file for the locations mentioned as below

 <Location /Inventory>
 WLSRequest On
 WebLogicHost <inventory.host>
 WeblogicPort <inventory.port>
 #WLProxySSL ON
 WLProxySSLPassThrough ON
 SecureProxy ON
 WLSSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/<wallet-name>"
 SetHandler weblogic-handler
 </Location>
 <Location /InventoryWS>
 WLSRequest On
 WebLogicHost <inventory.host>
 WeblogicPort <inventory.port>
 #WLProxySSL ON
 WLProxySSLPassThrough ON
 SecureProxy ON
 WLSSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/<wallet-name>"

Chapter 3
Debugging and Troubleshooting

3-17

 SetHandler weblogic-handler
 </Location>
 <Location /InventoryRSOpenAPI>
 WLSRequest On
 WebLogicHost <inventory.host>
 WeblogicPort <inventory.port>
 #WLProxySSL ON
 WLProxySSLPassThrough ON
 SecureProxy ON
 WLSSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/<wallet-name>"
 SetHandler weblogic-handler
 </Location>
 <Location /cartridge>
 WLSRequest On
 WebLogicHost <inventory.host>
 WeblogicPort <inventory.port>
 #WLProxySSL ON
 WLProxySSLPassThrough ON
 SecureProxy ON
 WLSSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/<wallet-name>"
 SetHandler weblogic-handler
 </Location>
 <Location /mapviewer>
 WLSRequest On
 WebLogicHost <inventory.host>
 WeblogicPort <inventory.port>
 #WLProxySSL ON
 WLProxySSLPassThrough ON
 SecureProxy ON
 WLSSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/<wallet-name>"
 SetHandler weblogic-handler
 </Location>

4. Restart the OHS server:

echo '<WL_ADMIN_PWD>' | /u01/oracle/ohssa/user_projects/domains/<project>-
<instance>-oam-ohs/bin/restartComponent.sh ohs1

5. See the Configuring a Plug-In for One-Way SSL section from Using Oracle WebLogic
Server Proxy Plug-Ins 12.2.1.4.0 and perform the following:

Note:

Perform this in UIM administrator console.

a. Log into the Oracle WebLogic Server administration console.

b. In the Domain Structure pane, expand the Environment node. If the server instances
that are used to proxy the requests from Oracle HTTP Server are in a cluster, select
Clusters. Otherwise, select Servers.

Chapter 3
Debugging and Troubleshooting

3-18

c. Select the server or cluster that you want to proxy the requests from Oracle HTTP
Server.

d. In the Configuration: General tab, scroll down to the Advanced section and expand
it.

e. Do one of the following:

• To enable one-way SSL, select WebLogic Plug-In Enabled.

• To enable two-way SSL where client certificates are used to authenticate, select
Client Cert Proxy Enabled.

• To enable two-way SSL with client certificates, select Both.

f. If you have selected Servers in Step 2, repeat steps 3 and 4 for the other servers to
which you want to proxy the requests from Oracle HTTP Servers.

g. Click Save.

h. For the change to take effect, you must restart the server instances.

See the Configuring the SSL Policy/Certificate section from UIM System Administrator's
Guide for configuring SSL with Oracle WebLogic server.

Self-signed SSL Certificates
This section provides information on generating your self-signed SSL certificates.

Generating Self-signed Certificates
To generate self-signed certificates:

1. Create the certs folder under the $COMMON_CNTK directory.

mkdir $COMMON_CNTK/certs

2. Update the following command with the appropriate values of instance, project, and
hostSuffix names and run it to generate a common self-signed certificate and key that can
be used for OAM, message-bus, UIM, and UTIA. You can add or remove the DNS entries
from the below command based on your requirements.

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout $COMMON_CNTK/
certs/commonkey.pem -out $COMMON_CNTK/certs/commoncert.pem -subj "/
CN=<INSTANCE>.<PROJECT>.admin.<hostSuffix>" -extensions san -config <(echo
'[req]'; echo 'distinguished_name=req'; echo '[san]';echo
'subjectAltName=@alt_names'; \echo '[alt_names]'; \
echo 'DNS.1=<INSTANCE>.<PROJECT>.admin.<hostSuffix>'; \
echo 'DNS.2=<INSTANCE>.<PROJECT>.oam.<hostSuffix>'; \
echo 'DNS.3=<INSTANCE>.<PROJECT>.ohs.<hostSuffix>'; \
echo 'DNS.4=<hostSuffix>'; \
echo 'DNS.5=<INSTANCE>.<PROJECT>.topology.<hostSuffix>'; \
echo 'DNS.6=localhost'; \
echo 'DNS.7=svc.cluster.local'; \
echo 'DNS.8=<INSTANCE>.<PROJECT>.<hostSuffix>'; \
echo 'DNS.9=admin.<INSTANCE>.<PROJECT>.<hostSuffix>'; \
echo 'DNS.10=t3.<INSTANCE>.<PROJECT>.<hostSuffix>'; \
echo 'DNS.11=<INSTANCE>.<PROJECT>.messaging.broker0.<hostSuffix>'; \
echo 'DNS.12=<INSTANCE>.<PROJECT>.messaging.broker<N>.<hostSuffix>'; \

Chapter 3
Self-signed SSL Certificates

3-19

echo 'DNS.13=<INSTANCE>.<PROJECT>.messaging.bootstrap.<hostSuffix>'; \
)

3. You can add or remove the DNS entries in the above sample certificate. Check the
following scenarios for removing or adding the DNS entries:

• If the Message Bus ingress listener is not enabled, you can remove the following DNS
entries:

quick.sr.messaging.broker0.uim.org
quick.sr.messaging.broker1.uim.org
quick.sr.messaging.bootstrap.uim.org

• For traditional UIM, you can remove the following DNS entries and add the hostnames
of traditional UIM servers:

quick.sr.uim.org
admin.quick.sr.uim.org
t3.quick.sr.uim.org

• If OAM is not used as IdP, you can remove following hostnames from the certificate:

quick.sr.admin.uim.org
quick.sr.oam.uim.org
quick.sr.ohs.uim.org

Generating Wild Card SSL Certificate
To generate wild card SSL certificate:

1. Create the certs folder in $COMMON_CNTK directory as follows:

mkdir $COMMON_CNTK/certs

2. To generate a wild card SSL certificate you can update <hostSuffix> value. The default is
uim.org and run following command:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout $COMMON_CNTK/
certs/wildcardkey.pem -out $COMMON_CNTK/certs/wildcardcert.pem -subj "/
CN=*.<hostSuffix>" -extensions san -config <(echo '[req]'; echo
'distinguished_name=req';
echo '[san]';echo 'subjectAltName=@alt_names'; \echo '[alt_names]'; \
echo 'DNS.1=*.<hostSuffix>'; \
)

Chapter 3
Self-signed SSL Certificates

3-20

Note:

• To use wild card certificates, you must configure subDomainNameSeperator
field as -, in applications.yaml and project.yaml in the spec path location.

• WebLogic by default does not recognizes wild card certificates. In production
environment, you must configure the custom hostname verifier as
weblogic.security.utils.SSLWLSWildcardHostnameVerifier. See
WebLogic documentation for setting up hostNameVerifier.

• In development environment, you can disable hostname verification.

Chapter 3
Self-signed SSL Certificates

3-21

4
Deploying Unified Operations Message Bus

This chapter describes how to deploy Unified Operations Message Bus.

Unified Operations Message Bus Overview

The Oracle Communications Unified Operations Message Bus (OCUOMB) service is a
distributed event store and stream-processing platform service. The Message Bus clients send
and receive events and messages from the Message Bus service that in turn sends and
receives from a specific channel called Topic. This enables that the source and target clients or
services are loosely coupled and asynchronous. Message Bus uses Apache Kafka in its
platform to support the event store and stream-processing and for packaging. For deployment,
Message Bus uses Strimzi.

Strimzi simplifies the process of running Apache Kafka in a Kubernetes cluster. Strimzi
provides container images and operators for running Apache Kafka on Kubernetes. Strimzi
operators are fundamental for the smooth running of Strimzi. These operators are software
extensions to Kubernetes that make use of custom resources to manage applications and their
components. These operators simplify the process of:

• Deploying, running, and upgrading the Kafka cluster and its components.

• Configuring and securing access to Kafka.

• Creating and managing Kafka topics.

Operators are a method of packaging, deploying, and managing a Kubernetes application. The
Strimzi operators extend Kubernetes functionality and automate common and complex tasks
related to a Kafka deployment. By implementing knowledge of Kafka operations in code, Kafka
administration tasks are simplified and require less manual intervention. See https://strimzi.io/
docs/operators/latest/overview.html for more details on the Strimzi operators. Strimzi has the
following operators:

• Cluster Operator: Deploys and manages the Apache Kafka clusters, Kafka Connect, Kafka
Mirror Maker, Kafka Bridge, Kafka Exporter, Cruise Control, and the Entity Operator.

• Entity Operator: Comprises the Topic Operator and User Operator

• Topic Operator: Manages Kafka topics

See the following webssites for more information on Strimzi and Apache Kafka:

• Strimzi: https://strimzi.io/

• Apache Kafka: https://kafka.apache.org/

The Message Bus service provides scripts and helm charts to deploy and manage the Apache
Kafka cluster in Kubernetes by using the Strimzi operator and Kubernetes Custom Resources
definitions. The Message Bus service does not provide any image builder toolkits to build the
container images and by default, Helm charts pull the required container images from the
quay.io/strimzi container repository.

4-1

https://strimzi.io/docs/operators/latest/overview.html
https://strimzi.io/docs/operators/latest/overview.html
https://strimzi.io/
https://kafka.apache.org/
http://quay.io/strimzi

Table 4-1 Container Images and Purposes

Container Image Purpose

quay.io/strimzi/
operator:<Strimzi_Operator_version>

Container Image with Strimzi Operator.

quay.io/strimzi/kafka:<Strimzi_Operator_version>-
kafka-<Kafka_version>

Container Image with Apache Kafka and Strimzi
distribution.

In the following sections, the reference to the
container image is named as
STRIMZI_KAFKA_IMAGE_NAME

Note:

See UIM Compatibility Matrix for the latest versions of software.

Message Bus Cloud Native Architecture
The Message Bus service uses Apache Kafka as a distributed event store platform. To run an
Apache Kafka cluster on Kubernetes, the Message Bus service uses the Strimzi operator.
Strimzi is an open-source project that provides container images and operators for running
Apache Kafka on Kubernetes.

Figure 4-1 Message Bus Cloud Native Architecture

Access to Message Bus
While deploying the Message Bus Service in Kubernetes namespace, the following
Kubernetes service objects are created to access the Message Bus pods either internally or
externally (through an ingress controller). The external access is provided through the ingress
controller by IngressRouteTCP objects.

You can override the value of subDomainNameSeparator. The default separator is ".", This
value can be modified as "-" to match the wild-card pattern of SSL certificates.

Chapter 4
Message Bus Cloud Native Architecture

4-2

To override, uncomment and change the value in applications.yaml as follows:

#subDomainNameSeparator: "."
#Example hostnames for "-" : quick-sr-messaging-bootstrap.uim.org

Figure 4-2 Process of Accessing the Message Bus

The external access to Message Bus service is supported with TCP+TLS+OAuth 2.0
Authentication through Traefik ingress controller or a Generic ingress controller. The internal
access to Message Bus Service is also supported with TCP+TLS+OAuth 2.0 Authentication
where TLS can be configurable. Access to Message Bus service is configured through the
listeners section in applications.yaml file.

Note:

• If the client is in the same Kubernetes cluster, the internal listener is used.

• If the client is outside the Kubernetes cluster, the ingress listener is used.

The Message Bus is deployed using the scripts provided in Common CNTK. For deployment
prerequisites, see "Planning and Validating Your Cloud Environment".

The following steps need to be followed to deploy a Kafka cluster in a Kubernetes namespace
in a cluster:

1. Deploy the Strimzi operator to manage your Kafka cluster.

Note:

This is an administrative one-time activity where additional cluster roles are
required.

a. Create a namespace to deploy Strimzi Operator.

Chapter 4
Message Bus Cloud Native Architecture

4-3

b. Deploy Strimzi Operator in the namespace. See "Deploying Strimzi Operator" for more
information.

2. Deploy the Message Bus that has Kafka cluster, ZooKeeper cluster, and entity operator.

a. Create a namespace to deploy the Kafka cluster.

b. Register the namespace with Strimzi Operator. See "Register namespaces with Strimzi
Operator" for more information.

c. Register the namespace with Traefik. See "Registering the Namespaces with Strimzi
Operator" for more information.

Note:

• The ingress controller (Traefik or Generic) has to be available.

• Register the namespace with Traefik ingress controller. If you use
Generic Ingress controller, ensure that ingress.className is set in the
applications.yaml file.

d. Deploy Kafka Cluster in the namespace. See "Deploy Kafka Cluster and Kafka Topic"
for more information.

3. Validate the deployment with sample standalone producer and consumer clients. See the
"Validating the Kafka cluster" and "Internal access - same namespace - plain" for more
information.

Strimzi Operator
Export the Strimzi operator namespace environment variable to run the deployment script
using the COMMON_CNTK:

export STRIMZI_NS=<STRIMZI_OPERATOR_NAMESPACE>

The configurable parameters of the Strimzi Operator charts and their default values are listed
in the corresponding subsections within this document.

See the Assembling the Specifications section in strimzi-operator-override-values.yaml.
To override the default values, copy the $COMMON_CNTK/samples/strimzi-operator-
override-values.yaml file to the directory $SPEC_PATH/<STRIMZI_PROJECT>, where
<STRIMZI_PROJECT> is the Kubernetes namespace where the Strimzi operator is being
deployed.

Create Global Resources
Configure the createGlobalResources value in strimzi-operator-override-values.yaml file
(sample). If you require more than one strimzi-cluster-operator in the same cluster, set the
value to false. Only the latest versions of strimzi should be installed, in case of multiple strimzi-
operator to avoid any risk related to backward compatibility.

Private Container Repository
The Strimzi operator pulls the Strimzi component container images from quay.io registry. If you
want to maintain private container registry, pull the images from the quay.io registry and

Chapter 4
Strimzi Operator

4-4

push them into the private container registry. It is mandatory to push the images with same
name and tag, the repository path can be different. For Strimzi image and tag names, see
"Unified Operations Message Bus Overview" for more information.

See About Container Image Management section from UIM Cloud Native Deployment Guide
for more information on private container repository management.

To use the private container registry, uncomment and modify the values in $SPEC_PATH/
<STRIMZI_PROJECT>/strimzi-operator-override-values.yaml file. Provide the modified
strimzi-operator-override-values.yaml file path as an -f option to the Strimzi operator
create/upgrade command.

If the private container registry requires authentication, create the Kubernetes secret in the
namespace and provide the secret name as part of strimzi-operator-override-values.yaml
file. Create the secret with same name in the namespace where the Kafka cluster is planned to
deploy.

strimzi-operator-override-values.yaml file (Sample)

defaultImageRegistry: <Image registry>
defaultImageRepository: <Image Repository>
image:
 imagePullSecrets: <Pull Secret>

The following is a sample command to create Kubernetes secret for the registry. Create the
secret in the namespace where the Strimzi operator is being deployed. See https://
kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/ for creating
secret.

kubectl create secret docker-registry <secret-name> --docker-server=<Image
Registry> \
 --docker-
username=<Username> \
 --docker-
password=<Password> \
 -n
<STRIMZI_OPERATOR_NAMESPACE>

ImagePullPolicy
The following sample of ImagePullPolicy for Strimzi Operator is provided. To create the policy
using a different procedure, see https://kubernetes.io/docs/concepts/containers/images/
#image-pull-policy

strimzi-operator-override-values.yaml file (Sample)

image:
 imagePullPolicy: IfNotPresent

Chapter 4
Strimzi Operator

4-5

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy
https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy

Resources
These resources are used for configuring the virtual resources (limits and requests).
Uncomment or add the blow resources section with new values in the strimzi-operator-
override-values.yaml file.

resources:
 requests:
 memory: <Mi>
 cpu: <m>
 limits:
 memory: <Gi>
 cpu: <"1">

fullReconciliationIntervalMs: 120000
operationTimeoutMs: 300000

The default values are as follows:

resources.limits.memory: 500Mi
resources.limits.cpu: 500m
resources.requests.memory: 1Gi
resources.requests.cpu: 1

Along with the above resources, you can provide the following additional configurations:

Full reconciliation interval in milliseconds
fullReconciliationIntervalMs: 120000
Operation timeout in milliseconds
operationTimeoutMs: 300000

Deploying Strimzi Operator
Run the following script to deploy the Strimzi operator in the Kubernetes namespace:

$COMMON_CNTK/scripts/strimzi-operator.sh -p <STRIMZI_OPERATOR_NAMESPACE> -c
create

Optionally, run the following script to deploy the Strimzi operator in Kubernetes namespace
with custom image registry and repository:

$COMMON_CNTK/scripts/strimzi-operator.sh -p <STRIMZI_OPERATOR_NAMESPACE> -c
create -f $SPEC_PATH/<STRIMZI_OPERATOR_NAMESPACE>/strimzi-operator-override-
values.yaml

Chapter 4
Strimzi Operator

4-6

Upgrading Strimzi Operator
Run the following script to upgrade the Strimzi Operator in Kubernetes namespace:

$COMMON_CNTK/scripts/strimzi-operator.sh -p <STRIMZI_OPERATOR_NAMESPACE> -c
upgrade

Optionally, run the following script to deploy the Strimzi operator in Kubernetes namespace
with custom image registry and repository:

$COMMON_CNTK/scripts/strimzi-operator.sh -p <STRIMZI_OPERATOR_NAMESPACE> -c
upgrade -f $SPEC_PATH/<STRIMZI_OPERATOR_NAMESPACE>/strimzi-operator-override-
values.yaml

Note:

If you are upgrading strimzi-cluster-operator to a newer version, the old toolkit should
be used for old version of strimzi (the one already deployed) and the new toolkit
should be used while upgrading to the newer version, in case of Create, Upgrade,
Delete, Register, and Unregister.

Uninstalling Strimzi Operator
Run the following script to uninstall the Strimzi Operator from Kubernetes namespace:

$COMMON_CNTK/scripts/strimzi-operator.sh -p <STRIMZI_OPERATOR_NAMESPACE> -c
delete

Validating Strimzi Operator
Validate the Strimzi operator that is installed in the provided namespace by running the
following command:

$kubectl get pod -n <STRIMZI_OPERATOR_NAMESPACE>

NAME READY STATUS RESTARTS AGE
strimzi-cluster-operator-*******-*** 1/1 Running 0 6m55s

Validate the Helm release installed for the Strimzi operator in the provided namespace by
running the following command:

$helm list -n <STRIMZI_OPERATOR_NAMESPACE>

NAME NAMESPACE REVISION
STATUS CHART APP VERSION
strimzi-operator <STRIMZI_OPERATOR_NAMESPACE> 1
deployed strimzi-kafka-operator-x.y.z x.y.z

Chapter 4
Strimzi Operator

4-7

Restarting the Strimzi Operator
Run the following script to restart the Strimzi Operator:

$COMMON_CNTK/scripts/strimzi-operator.sh -p <STRIMZI_OPERATOR_NAMESPACE> -c
restart

Registering the Namespaces with Strimzi Operator
To create and manage the Kafka cluster in a Kubernetes namespace, this namespace must be
registered with the Strimzi operator to monitor the CRDs.

Run the following script to register the namespace(s) with the Strimzi operator to monitor and
create or manage the Kafka cluster and its components:

$COMMON_CNTK/scripts/register-namespace.sh -p <Namespace to be monitored> -t
strimzi

Unregistering the Namespaces with Strimzi Operator
Run the following script to unregister the namespaces from the Strimzi operator:

$COMMON_CNTK/scripts/unregister-namespace.sh -p <Namespace to be un-
monitored> -t strimzi

Deploying and Managing Message Bus
Kafka cluster consists of Kafka Brokers and Zookeeper nodes. Once the Strimzi operator is
successfully installed in the Kubernetes cluster and a namespace for the Kafka cluster is
registered to monitor, you can deploy and manage the Kafka cluster.

Update the applications.yaml file as per your requirement and verify the following
configuration elements in the yaml file before deploying the Kafka cluster:

Note:

If applications.yaml is not copied from Common CNTK, copy
the $COMMON_CNTK/samples/applications.yaml file to your local directory, for
example: $SPEC_PATH/sr/quick, where the sr is the Kubernetes namespace and
quick is the instance name.

• The Storage class name that is used to create persistent volumes.

• The Kafka cluster replicas, which is the number of Kafka Brokers and Zookeeper nodes.

• Virtual Resource sizing.

• The Kafka Broker default settings.

• The listeners to be exposed with authentication and TLS.

Chapter 4
Deploying and Managing Message Bus

4-8

• Authentication details.

• Metrics enablement.

• Affinity settings

• Update partitions, replicas, and retention period values for the default Kafka Topics.

See "Configuring the applications.yaml File" for more details.

Deploying Message Bus
Run the following commands to deploy the Kafka cluster with Kafka Topics in a Kubernetes
namespace:

$COMMON_CNTK/scripts/create-applications.sh \
-p <kafka cluster namespace> \
-i <kafka cluster instance name> \
-f <path to override values yaml file> \
-a messaging-bus

For example:

In the following command, sr is a namespace and quick an instance name:

$COMMON_CNTK/scripts/create-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a messaging-bus

Upgrading Message Bus
The Kafka cluster upgrade requires persistent storage enabled for rolling update. Oracle
recommends you have multiple replicas so that the service is not down while upgrading.

Update the Kafka cluster configuration in the applications.yaml file:

$COMMON_CNTK/scripts/upgrade-applications.sh \
-p <kafka cluster namespace> \
-i <kafka cluster instance name> \
-f <path to override values yaml file> \
-a messaging-bus

For example, run the following command to upgrade the Kafka cluster and Kafka topic running
in sr namespace with instance as quick:

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a messaging-bus

Deleting Message Bus
Run the following script to delete or uninstall the Kafka cluster and Kafka Topic from the
Kubernetes namespace:

$COMMON_CNTK/scripts/delete-applications.sh \
-p <kafka cluster namespace> \
-i <kafka cluster instance name> \

Chapter 4
Deploying and Managing Message Bus

4-9

-f <path to override values yaml file> \
-a messaging-bus

For example: Run the following command to delete the Kafka cluster with Kafka topic running
in sr namespace with instance as quick:

$COMMON_CNTK/scripts/delete-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a messaging-bus

Validating Message Bus
Check the pods created for the Kafka cluster. The following sample output shows the internal
listener configuration. If it has any external listener settings, the additional service objects
appear:

$kubectl get svc -n sr

NAME TYPE CLUSTER-IP EXTERNAL-
IP PORT(S) AGE
sr-quick-messaging-kafka-bootstrap ClusterIP <clusterIP>
<none> 9091/TCP,9092/TCP 22m
sr-quick-messaging-kafka-brokers ClusterIP None
<none> 9090/TCP,9091/TCP,9092/TCP 22m
sr-quick-messaging-zookeeper-client ClusterIP <clusterIP>
<none> 2181/TCP 23m
sr-quick-messaging-zookeeper-nodes ClusterIP None
<none> 2181/TCP,2888/TCP,3888/TCP 23m

Check the Service object created for the Kafka cluster. The following sample output shows the
Kafka and ZooKeeper replica as 1.

$kubectl get pod -n sr

 NAME READY STATUS
RESTARTS AGE
 sr-quick-messaging-entity-operator-*****-**** 3/3 Running
0 27h
 sr-quick-messaging-kafka-0 1/1 Running
0 27h
 sr-quick-messaging-zookeeper-0 1/1 Running
0 27h

Check the Helm release:

$helm list -n sr

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
sr-quick-messaging sr 1 *****
deployed kafka-cluster-<x.y.z> <x.y.z>

Chapter 4
Deploying and Managing Message Bus

4-10

Check the persistent volume claims created:

$kubectl get pvc -n sr`

NAME STATUS
VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
data-sr-quick-messaging-kafka-0 Bound <volume> 1Gi
RWO sc 27h
data-sr-quick-messaging-zookeeper-0 Bound <volume> 1Gi
RWO sc 27h

Run a standalone producer or consumer. See "Internal access - same namespace – plain" to
run standalone producer and consumer pods in a Kafka cluster namespace.

Note:

As part of deploying, upgrading, and deleting the Message Bus, the Kafka topics are
also created, upgraded, and deleted from the configuration provided in the input yaml
file.

Restarting Message Bus
The restart-application.sh script with application name as messaging-bus restarts all the
subcomponents such as Kafka, ZooKeeper, and Entity Operators of the Message Bus. Run the
following command to restart:

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a messaging-bus

Note:

The Message Bus service restart requires to have multiple replicas so that the
service is not down while upgrading and the replica count should be greater than or
equal to 2.

To validate the restart option, see "Validating Message Bus ".

Configuring the applications.yaml File
Modify the values in the applications.yaml file and upgrade or create the Message Bus
service. The following configurations are available for the Message Bus service:

• Image Pull Secrets

• Security Context

• Cluster Size

• Storage

Chapter 4
Configuring the applications.yaml File

4-11

• Broker Defaults

• JVM Options

• Kafka Topics

• Accessing Kafka Cluster

• Authentication

Using Image Pull Secrets
You use the Image Pull Secrets sample only while using the private container repository that
requires authentication. These authentication details have to be provided as Kubernetes secret
object in the namespace where the Kafka cluster is planned to be deployed. This process is
also followed while deploying Strimzi Operator.

Note:

Provide the secret name in the kafka-cluster section, if using different secret name
than in the Strimzi Operator's namespace.

Image Pull Secrets (Sample)

imagePullSecret:
 imagePullSecrets:
 - name: <secret name>

The sample command to create secret object for registry authentication is as follows:

kubectl create secret docker-registry <secret-name> --docker-server=<Image
Registry> \
 --docker-
username=<Username> \
 --docker-
password=<Password> \
 -n <Kafka-Namespace>

See https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/ to
create the secret object.

Security Context
The userSecurity section that has securityContext is applicable only when you want to
define privilege and access control settings for a pod or container. The pod security context
which is configured at the pod-level is provided as a sample and is applied to all containers in
given pod.

Chapter 4
Configuring the applications.yaml File

4-12

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

Note:

If a value is commented, it cannot be used, To use a different key-value, uncomment
the corresponding value in applications.yaml.

See https://strimzi.io/blog/2022/09/09/configuring-security-context-in-pods-managed-by-strimzi/
and https://kubernetes.io/docs/tasks/configure-pod-container/security-context/ for more
information.

Security-Context (Sample)

userSecurity:
 securityContext:
 runAsNonRoot: <true/false>
 runAsUser: <userID>
 runAsGroup: <groupID>
 fsGroup: <fsGroup>

Cluster Size
The Message Bus cluster consists of Kafka Brokers and Zookeeper nodes. Modify the replicas
count for the Kafka Brokers and Zookeeper nodes according to the usage. For high availability
of Message Bus service, make sure the number of replicas is minimum 3 for Kafka and
Zookeeper, in production instance and adjust Kafka Broker configuration accordingly:

kafka-cluster:
 replicas:
 kafka: 3
 zookeeper: 3

Storage
The Message Bus uses Strimzi to deploy the Apache Kafka cluster in Kubernetes cluster. For
Strimzi to work as required, an efficient data storage infrastructure is essential. Oracle
recommends using a block storage as Strimzi is tested for using with block storage. For more
information on data storage, see https://strimzi.io/docs/operators/latest/
deploying#considerations-for-data-storage-str

The Message Bus Service stores the events (or messages) in block storage using the
Kubernetes Persistent Volumes. Modify the values for class, size, and isDeleteClaim values in
storage section under the Kafka cluster. The storage class must have dynamic persistent
volume provision capability:

kafka-cluster:
 #storage:
 #When storage.type below is set as "persistent-claim", the storage class
name & size are mandatory to be set
 #type: persistent-claim
 #class: psrnfsn1
 #size: 1Gi
 #isDeleteClaim: false

Chapter 4
Configuring the applications.yaml File

4-13

https://strimzi.io/blog/2022/09/09/configuring-security-context-in-pods-managed-by-strimzi/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://strimzi.io/docs/operators/latest/deploying#considerations-for-data-storage-str
https://strimzi.io/docs/operators/latest/deploying#considerations-for-data-storage-str

For development to use ephemeral (that is, temporary container storage), do not change the
values. These values must be commented for ephemeral.

Broker Defaults
The following configuration is applied when the Topics are auto created. Modify the following
settings in the kafkaConfig section under the Kafka cluster accordingly:

kafka-cluster:
 kafkaConfig:
 #The default replication factor for automatically created topics
 defaultReplicationFactor: 2
 offsetsTopicReplicationFactor: 2
 transactionStateLogReplicationFactor: 2
 transactionStateLogMinIsr: 2
 minInsyncReplicas: 2
 logRetentionMinutes: 30
 numPartitions: 3

The values for replicationFactors and minimum in-sync replicas must be entered according to
the values entered in the Kafka Cluster. These values must be less than or equal to the Kafka
Cluster replica values.

For more information on the values, see the Kafka documentation at: https://
kafka.apache.org/081/documentation.html#brokerconfigs

JVM Options
The Message Bus cluster consists of Kafka Brokers and Zookeeper nodes. Modify the
jvmOptions for Kafka Brokers and Zookeeper nodes according to the usage. See https://
strimzi.io/docs/operators/latest/full/configuring.html#con-common-configuration-jvm-reference
for more details.

jvmOptions:
 kafka:
 -Xms: 1024m
 -Xmx: 1024m
 # javaSystemProperties:
 # - name: <placeHolder>
 # value: <value>

 zookeeper:
 -Xms: 1024m
 -Xmx: 1024m
 # javaSystemProperties:
 # - name: <placeHolder>
 # value: <value>

Kafka Topics
Add or update the Kafka Topics in the applications.yaml file in the kafkaTopics section which
are required for the Message Bus service clients (producers or receivers).

Chapter 4
Configuring the applications.yaml File

4-14

https://kafka.apache.org/081/documentation.html#brokerconfigs
https://kafka.apache.org/081/documentation.html#brokerconfigs
https://strimzi.io/docs/operators/latest/full/configuring.html#con-common-configuration-jvm-reference
https://strimzi.io/docs/operators/latest/full/configuring.html#con-common-configuration-jvm-reference

For example:

kafka-topic:
 #List of Kafka topics
 kafkaTopics:
 - name: <topic1>
 partitions: <no_partitions>
 replicas: <no_replicas>
 config:
 retention: 7200000
 segmentBytes: 1073741824

The following topics are required for the UTIA integration which are defined in the
applications.yaml file within the Common CNTK samples. These topics are created during
the deployment of Message Bus service using Common CNTK:

Table 4-2 Topic, producer, and consumer details.

Topic Producer Consumer Additional Details

ora-uim-topology UIM Unified Topology See UIM System
Administrator’s Guide for
more details.

ora-fault-topology Assurance System Unified Topology See Unified Topology for
more details

ora-retry-topology Unified Topology Unified Topology See Unified Topology for
more details

ora-dlt-topology Unified Topology Unified Topology See Unified Topology for
more details

Note:

Do not use the default topics (ora-uim-topology, ora-fault-topology, ora-retry-topology
and ora-dlt-topology) for a standalone testing. Use only the ora-test-topic to test the
deployment of Message Bus service.

Accessing Kafka Cluster
There are various listener type configurations available to access the Message Bus service
internally and externally. The Authentication configuration is applied across all listener types.
As part of Kafka cluster deployment, the Kubernetes service objects are created to provide
access to Kafka cluster pods. This service objects are created based on the listener type
configuration in the applications.yaml file for message-bus section. You can access the
Message Bus service in any of the following ways:

• Accessing within the same cluster (Internal access)

• Accessing from outside of the cluster (External access)

Chapter 4
Configuring the applications.yaml File

4-15

Note:

When a Message Bus service is deployed, it autogenerates the certificates of TLS for
server and client. You must use the custom certificates so that the certificates are
retained when the service is terminated and created again. See "Using Wild Card
Certificates" for more information.

Accessing the Message Bus service from within the same cluster (Internal access)

The internal listener configuration in the applications.yaml file is used when the client
services are in the same Kubernetes cluster, which can be in the same namespace or a
different namespace. This configuration is enabled by default.

kafka-cluster:
 listeners:
 #Plain is for internal access within the same k8s cluster.
 internal:
 # Enable the tls to true if encryption/decryption is needed for
internal access
 #tls: false

See "Configuring Message Bus Listeners" for more information.

Accessing the Message Bus service from outside of the cluster (External access)

The ingress listener configuration in the applications.yaml file is used when the client
services are outside of the Kubernetes cluster. This access is achieved using the ingress
controller.

To expose the kafka-cluster to external kafka clients via ingress
controller uncomment the following and modify accordingly.

Valid values are TRAEFIK, GENERIC
ingressController: <INGRESS_CONTROLLER>

#ingress:
#specify className field for ingressClassName of generic ingress
controller.
#In case of nginx the default values is nginx
className: "nginx"

#provide loadbalancer port
if TLS is enabled in global section, then loadbalancerport will be used as
external port for Generic or Traefik.
loadbalancerport: <loadBalancer-port>

kafka-cluster:
 listeners:
 #To expose the kafka-cluster to external kafka clients via ingress
controller (traefik or generic) uncomment the following and modify
accordingly.
 #ingress:

Chapter 4
Configuring the applications.yaml File

4-16

 # #The secure port of either ingress controller or external load-
balancer. If TLS is Disabled in global, then below ingressSslPort will be
used as external port.
 # ingressSslPort: <LOADBALANCER_PORT>
 # #If using Generic Ingress controller, below given annotations are
mandatory for Message-Bus external access.
 # #These annotations are required for nginx ingress controller.
 # annotations:
 # nginx.ingress.kubernetes.io/ingress.allow-http: "false"
 # nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"
 # ingress.kubernetes.io/ssl-passthrough: "true"
 # nginx.ingress.kubernetes.io/ssl-passthrough: "true"

See "Configuring Message Bus Listeners" for more information.

Accessing the Message Bus service using a nodeport listener

The nodeport listener configuration in applications.yaml file configuration is also used when
the client services are outside of the Kubernetes cluster. The access is directly with the
Kubernetes work node’s port.

Note:

Oracle does not recommend this listener for production. It must be used only for
debugging where ingress controller is not deployed.

kafka-cluster:
 listeners:
 #To expose the kafka-cluster to external kafka clients without ingress
controller, uncomment the following section and modify accordingly
 #nodeport:
 #default is true. can be turned off if needed
 #tls: true
 #if need to expose on a static nodeport, pease uncomment the below
section and provide values
 #nodePort: 32100

See "Configuring Message Bus Listeners" for more information.

Configuring Authentication
Kafka 2.0.0 or later supports an extensible OAuth 2.0 compatible token-based mechanism
available, called SASL OAUTHBEARER. Strimzi has developed extensions that provide
integration with OAuth 2.0 compliant authorization servers. That means, in principle, you can
use any OAuth 2.0 compliant authorization server to enable centrally managed users for
authentication with Kafka.

The Message Bus service uses a Strimzi operator to deploy Kafka brokers and in-turn use
OAuth 2.0 token-based authentication while establishing a session to a Kafka broker. With this
authentication, Message Bus clients (or Kafka clients) and Kafka brokers communicate with a
central OAuth 2.0 compliant authorization server. These Kafka clients use the authorization
server to obtain access tokens and are configured with access tokens issued by the server.
Kafka brokers communicate with authorization server to validate the tokens presented by the

Chapter 4
Configuring the applications.yaml File

4-17

clients, thus confirming their identities. You can perform the validation of access token using a
fast local JWT validation or a token validation using an introspection endpoint.

To configure OAuth 2.0 support for Kafka Brokers in the Message Bus service, you need to
update applications.yaml file and create or upgrade the service.

Prerequisites

• The Authorization server (OAuth 2.0 compliant) is up and running. See "Deploying OAM
along with OHS for Authentication Service" in Authentication Service

• Configure the client for Kafka broker in the authorization server. See "Creating a Client"
section in Authentication Service

• Configure the clients for Kafka producer or consumer application in the authorization
server. See "Creating a Client" section in Authentication Service

• Kafka cluster is configured with oauth type Authentication. See the following sections.

Enable Authentication on Kafka Cluster:

This procedure describes how to configure Kafka brokers so that the broker listeners are
enabled to use OAuth 2.0 authentication by using an authorization server.

Note:

Oracle recommends to use OAuth 2.0 over an encrypted interface through a listener
with tls. Plain listeners are not recommended.

To enable authentication on the Kafka cluster:

1. In applications.yaml, un-comment or add the following configurations:

a. Set the authentication.enabled flag to true and update the loadbalancerhost,
loadbalancerport and ohsHostname in $SPEC_PATH/sr/quick/applications.yaml
file.

b. To use fast local JWT validation, set useFastLocalJWTvalidation value to true under
kafka-cluster.listeners.authentication. If not set, the introspection endpoint is used
for validation.

The enabled flag is to enable or disable authentication
authentication:
 enabled: true

#Uncomment the below host aliases section and provide hostname to
ipaddresss mappings
#This will add entries to POD's /etc/hosts file for hostname resolution
when DNS and other options are not applicable.
#For more details see https://kubernetes.io/docs/tasks/network/
customize-hosts-file-for-pods/

#hostAliases:
#- ip: <ip-address>
 #hostnames:
 #- <hostname-1> # Ex. quick.sr.ohs.uim.org

Chapter 4
Configuring the applications.yaml File

4-18

#Sample sub-section for using fast local jwt validation
kafka-cluster:
 listeners:
 authentication:
 useFastLocalJWTvalidation: true

2. The Message Bus service uses other configuration values from Kubernetes Secret
(<namespace>-<instance>-oauth-credentials) and Config Map (<namespace>-
<instance>-oauth-config-cm) objects from the same namespace. This Secret and
Configuration Map Kubernetes objects have to be created before deploying the Message
Bus service for authentication. See "Adding Common OAuth Secret and ConfigMap" for
creating the secret. The configuration values used are:

• clientID: The client ID to identify the client.

• clientSecret: The client secret used for authentication.

• validIssuerUri: The URI of the token issuer used for authentication.

• introspectionEndpointUri: The URI of the token introspection endpoint.

• jwksEndpointUri: The endpoint with public keys of authentication server that has to be
used for fast local JWT validation.

• tlsTrustedCertificate: The trusted certificates for TLS connection to the authorization
server.

The following optional values are supported for authentication. See Strimzi documentation
https://strimzi.io/docs/operators/in-development/configuring.html#type-
KafkaListenerAuthenticationOAuth-reference for details on each value. Add the following
optional values as required, under the kafka-cluster.listeners.authentication section in
applications.yaml file:

Additional optional authentication values
kafka-cluster:
 listeners:
 authentication:
 oauthConfig:
 #Enable or disable audience checking
 checkAudience:
 #Enable or disable issuer checking. By default issuer is checked
using the value configured by validIssuerUri
 checkIssuer:
 #The audience to use when making requests to the authorization
server’s token endpoint
 clientAudience:
 #The scope to use when making requests to the authorization server’s
token endpoint
 clientScope:
 #The connect timeout in seconds when connecting to authorization
server
 connectTimeoutSeconds:
 #Enable or disable TLS hostname verification. Default value is false.
 disableTlsHostnameVerification:
 #The read timeout in seconds when connecting to authorization server.
 readTimeoutSeconds:
 #URI of the User Info Endpoint to use as a fallback to obtaining the
user id
 userInfoEndpointUri:

Chapter 4
Configuring the applications.yaml File

4-19

https://strimzi.io/docs/operators/in-development/configuring.html#type-KafkaListenerAuthenticationOAuth-reference
https://strimzi.io/docs/operators/in-development/configuring.html#type-KafkaListenerAuthenticationOAuth-reference

 #Name of the claim from the JWT authentication token
 userNameClaim:

Using GC Logs
By default, GC logs are disabled, you can enable it and view the logs on stdout by using
kubectl logs <kafka-cluster-pod-name>.

To Enable GC logs, update $SPEC_PATH/<project>/<instance>/applications.yaml file as
follows:

1. Under gcLogs make enabled as true.

2. Uncomment the gcLogs option under kafka-cluster to override common values.

gcLogs:
 enabled: true

Note:

You do not have to configure fileSize and noOfFiles as the logs are printed on the
stdout.

Alternate Configuration Options
There are various alternate options for configuring the Message Bus.

Log Level
Kafka uses Apache log4j. By default, it is enabled with INFO. Update this for debugging:

logging:
 kafka:
 logLevel: INFO
 zookeeper:
 logLevel: INFO

Choosing Worker Nodes for Running Message Bus Service
Update the Message Bus service configuration section in the applications.yaml file to node
affinity or pod affinity and anti-affinity to constrain which nodes your pod can be scheduled.
Alternatively, co-locate the pods in same node (or separate) and run either create or upgrade
script.

Node Affinity

Node affinity is conceptually similar to nodeSelector, that enables you to constrain which
nodes your pod can be scheduled, based on the node labels.

There are two types of node affinities:

Chapter 4
Alternate Configuration Options

4-20

• Schedule a pod using required node affinity: The scheduler cannot schedule the pod
unless the rule is met.

• Schedule a pod using preferred node affinity: The scheduler tries to find a node that meets
the rule. If a matching node is not available, the scheduler continues to schedule the pod.

Preferred node affinity

The sample configuration for enabling preferred node affinity is as follows:

kafka-cluster:
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: name
 operator: In
 values:
 - south_zone

Kubernetes pod is scheduled on the node with label name as south_zone. If node with label
name: south_zone is not available, pod will still be scheduled on another node.

Pod Affinity and Anti-Affinity

The Pod Affinity or anti-affinity allows you to constrain which node your pod is eligible to be
scheduled, based on the labels on other pods.

Similar to node affinity, there are two types of pod affinity and anti-affinity:

• requiredDuringSchedulingIgnoredDuringExecution
• preferredDuringSchedulingIgnoredDuringExecution
Pod Affinity

Assign a Kubernetes pod to a node based on the labels on other pods using the Pod Affinity in
a Kubernetes cluster. Modify the Kafka cluster override values yaml file.

The sample configuration for enabling the required pod affinity is as follows:

kafka-cluster:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app.kubernetes.io/name
 operator: In
 values:
 - kafka
 topologyKey: "kubernetes.io/hostname"

Kubernetes pod is scheduled on the node which contains a pod with label http://
app.kubernetes.io/name: kafka.

Chapter 4
Alternate Configuration Options

4-21

Modify the Kafka cluster override values yaml file. The sample configuration for enabling the
preferred pod affinity is as follows:

kafka-cluster:
 affinity:
 podAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app.kubernetes.io/name
 operator: In
 values:
 - kafka
 topologyKey: "kubernetes.io/hostname"

The Kubernetes pod is scheduled on the node which contains a pod with label http://
app.kubernetes.io/name: kafka. If the node is not available, pod will still be scheduled on
another node.

Pod anti-affinity

Assign a Kubernetes pod to a node based on the labels on other pods using pod anti affinity in
a Kubernetes cluster.

Modify the Kafka cluster override values yaml file. The sample configuration with required pod
anti-affinity is as follows:

kafka-cluster:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app.kubernetes.io/name
 operator: In
 values:
 - kafka
 topologyKey: "kubernetes.io/hostname"

Kubernetes pod is scheduled on the node which does not contain a pod with label http://
app.kubernetes.io/name: kafka.

Modify the Kafka cluster's override values yaml file. The sample configuration with preferred
pod anti-affinity is follows:

kafka-cluster:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app.kubernetes.io/name

Chapter 4
Alternate Configuration Options

4-22

 operator: In
 values:
 - kafka
 topologyKey: "kubernetes.io/hostname"

Kubernetes pod is scheduled on the node which does not contains a pod with label http://
app.kubernetes.io/name: kafka. If node is not available, pod will still be scheduled on another
node.

Managing Message Bus Metrics
Metrics in Message Bus are configured by enabling the JMX Exporter and Kafka Exporter. JMX
Exporter can be enabled to get JVM metrics of Kafka cluster and Kafka Exporter can be
enabled on a Kafka cluster to extract additional Prometheus metrics data from Kafka brokers,
which is related to offsets, consumer groups, consumer lag, and topics.

See https://strimzi.io/docs/operators/latest/overview.html#metrics-overview_str for more
information on metrics from Strimzi.

Enable metrics

Enable Kafka Exporter and JMX Exporter in the $SPEC_PATH/sr/quick/applications.yaml file
and upgrade or create the Message Bus service. The sample content is as follows:

kafka-cluster:
 metrics:
 kafkaExporter:
 enable: true
 jmxExporter:
 enable: true

The above configuration exposes the Prometheus metrics for Kafka Brokers, Topics, and
Consumer Groups components on metrics end-point on the pods. You can view these details
on Prometheus UI by configuring the Scrape job. You can view this information in the form of
graphs using the Grafana dashboard.

See https://github.com/danielqsj/kafka_exporter#metrics to see the exposed metrics.

Prometheus and Grafana setup

See Setting Up Prometheus and Grafana for more information.

Adding scrape Job in Prometheus

Add the following Scrape job in Prometheus Server. This can be added by editing the config
map used by the Prometheus server:

- job_name: Message_bus
 kubernetes_sd_configs:
 - role: pod
 namespaces:
 names:
 - 'sr'
 relabel_configs:
 - separator: ";"
 regex: __meta_kubernetes_pod_label_(strimzi_io_.+)

Chapter 4
Alternate Configuration Options

4-23

https://strimzi.io/docs/operators/latest/overview.html#metrics-overview_str
https://github.com/danielqsj/kafka_exporter#metrics

 replacement: $1
 action: labelmap
 - source_labels: [__meta_kubernetes_namespace]
 separator: ";"
 regex: (.*)
 target_label: namespace
 replacement: $1
 action: replace
 - source_labels: [__meta_kubernetes_pod_name]
 separator: ";"
 regex: (.*)
 target_label: kubernetes_pod_name
 replacement: $1
 action: replace
 - source_labels: [__meta_kubernetes_pod_node_name]
 separator: ";"
 regex: (.*)
 target_label: node_name
 replacement: $1
 action: replace
 - source_labels: [__meta_kubernetes_pod_host_ip]
 separator: ";"
 regex: (.*)
 target_label: node_ip
 replacement: $1
 action: replace

Sample Grafana dashboards

Add the Prometheus data source and import the sample Grafana dashboards from Strimzi
github.

The sample Grafana dashboard for Kafka and JMX Exporters can be downloaded from the
following links:

• JMX Exporter metrics: https://github.com/strimzi/strimzi-kafka-operator/blob/main/
examples/metrics/grafana-dashboards/strimzi-kafka.json

• Kafka Exporter metrics: https://github.com/strimzi/strimzi-kafka-operator/blob/main/
examples/metrics/grafana-dashboards/strimzi-kafka-exporter.json

Installing and Configuring Mirror Maker 2.0
This section describes the installation and configuration of Mirror Maker 2.0.

Configuring Source and Target Message Bus (Kafka cluster) Details
Update the $COMMON_CNTK/samples/messaging-bus/kafka-mirror-maker/values.yaml with
source and target Kafka cluster details as follows:

sourceCluster:
 #Source Kafka cluster
 name: sr1-quick1-messaging
 #Bootstarp server for connection to the source Kafka cluster
 bootstrapServers: sr1-quick1-messaging-kafka-bootstrap:9092
 targetCluster:

Chapter 4
Installing and Configuring Mirror Maker 2.0

4-24

https://github.com/strimzi/strimzi-kafka-operator/blob/main/examples/metrics/grafana-dashboards/strimzi-kafka.json
https://github.com/strimzi/strimzi-kafka-operator/blob/main/examples/metrics/grafana-dashboards/strimzi-kafka.json
https://github.com/strimzi/strimzi-kafka-operator/blob/main/examples/metrics/grafana-dashboards/strimzi-kafka-exporter.json
https://github.com/strimzi/strimzi-kafka-operator/blob/main/examples/metrics/grafana-dashboards/strimzi-kafka-exporter.json

 #Target Kafka cluster
 name: sr2-quick2-messaging
 #Bootstarp server for connection to the target Kafka cluster
 bootstrapServers: sr2-quick2-messaging-kafka-bootstrap:9092

In the above command:

• sourceCluster.name is the helm release for source Kafka cluster (sr1-quick1-messaging)

• sourceCluster.bootstrapServers is the bootstrap server of source Kafka cluster (sr1-
quick1-messaging-kafka-bootstrap:9092)

• targetCluster.name is the helm release for target Kafka cluster (sr2-quick2-messaging)

• targetCluster.bootstrapServers is the bootstrap server of target Kafka cluster (sr2-
quick2-messaging-kafka-bootstrap:9092)

Note:

To enable geo replication between the Kafka clusters from different namespaces, we
can use the hostname pattern as servicename.namespace.svc.cluster.local while
updating

$COMMON_CNTK/samples/messaging/kafka-mirror-maker/values.yaml

If the sr1-quick1-messaging-kafka-bootstrap service is hosted in Strimzi
namespace on 9092 port and the client application in another namespace, then the
bootstrap-server URL should be used as sr1-quick1-messaging-kafka-
bootstrap.strimzi.svc.cluster.local

If the target cluster is in another Kubernetes cluster, you must to use external listener
for referring to the boostrap server.

While using Nodeport, the worker node IP of the target cluster is to be used as the
target cluster bootstrap address along with the exposed nodeport.

While using Ingress, the hostname of the target cluster is to be used as target
cluster bootstrap address.

Installing Mirror Maker
Run the following command to install Mirror Maker in specific namespace:

helm install mirror-maker $COMMON_CNTK/samples/messaging/kafka-mirror-maker/ -
n <namespace> --values $COMMON_CNTK/samples/messaging/kafka-mirror-maker/
values.yaml

Validate that Mirror Maker is installed by running the following command:

kubectl get pods -n <namespace>
replication-mirror-maker-mirrormaker2-5c6d7dd7d7-r89cj 1/1
Running 0 67m
kubectl get svc -n <namespace>

Chapter 4
Installing and Configuring Mirror Maker 2.0

4-25

replication-mirror-maker-mirrormaker2-api ClusterIP <clusterIP>
<none> 8083/TCP 67m

Uninstalling Mirror Maker
Run the following command to uninstall Mirror Maker from specific namespace:

helm uninstall mirror-maker -n <namespace>

Delete topic mm2-offset-syncs.messaging-test.internal from the source cluster (dev1-
messaging)

$kubectl -n <SourceKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restart=Never -- bin/kafka-
topics.sh --bootstrap-server <instance>-messaging-kafka-bootstrap:9092 --
delete --topic mm2-offset-syncs.messaging-test.internal

Delete topics heartbeats, mirrormaker2-cluster-status, mirrormaker2-cluster-offsets,
mirrormaker2-cluster-configs from the target cluster (dev2-messaging)

$kubectl -n <TargetKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restart=Never -- bin/kafka-
topics.sh --bootstrap-server <namespace>-<instance>-messaging-kafka-
bootstrap:9092 --delete --topic heartbeats

$kubectl -n <TargetKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restart=Never -- bin/kafka-
topics.sh --bootstrap-server <namespace>-<instance>-messaging-kafka-
bootstrap:9092 --delete --topic mirrormaker2-cluster-status

$kubectl -n <TargetKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restart=Never -- bin/kafka-
topics.sh --bootstrap-server <namespace>-<instance>-messaging-kafka-
bootstrap:9092 --delete --topic mirrormaker2-cluster-offsets

$kubectl -n <TargetKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restar

Client Access
Accessing Message Bus in events producer and consumers clients.

Internal Access in the Same namespace for Plain

When the message producer or consumer applications are in same namespace as the
Message Bus service then they can access the Kafka cluster using the Bootstrap Kubernetes
service object name and port.

Run the following command to test the standalone producer. Here the project namespace is
sr and instance is quick.

$kubectl -n sr run kafka-producer-plain -ti \
--image=<STRIMZI_KAFKA_IMAGE_NAME> \

Chapter 4
Client Access

4-26

--rm=true --restart=Never \
-- bin/kafka-console-producer.sh \
--bootstrap-server sr-quick-messaging-kafka-bootstrap:9092 \
--topic ora-test-topic

Type a few lines of text and each ENTER sends a message to Kafka broker. Type CTRL-C to
quit.

Run the following command to test the standalone consumer. Here the project namespace is
sr and instance is quick.

$kubectl -n sr run kafka-consumer-plain -ti \
--image=<STRIMZI_KAFKA_IMAGE_NAME> \
--rm=true --restart=Never \
-- bin/kafka-console-consumer.sh \
--bootstrap-server sr-quick-messaging-kafka-bootstrap:9092 \
--group ora-uim-consumer-test --isolation-level read_committed \
--topic ora-test-topic --from-beginning

You get responses after the validation is successful.

Internal Access in a Different namespace for Plain

When the massage producer or consumer applications are in different namespace than the
Message Bus service then they can access the Kafka cluster using the bootstrap service name
and port but need to suffix <namespace>.svc.cluster.local to the service name.

See "Internal access - same namespace - plain" section on running the standalone console
test producer and consumer pods for testing. Replace the bootstrap-server url with sr-quick-
messaging-kafka-bootstrap.sr.svc.cluster.local, where the namespace is sr and instance is
quick.

Internal Access in the Same namespace for Authentication

When the message producer or consumer applications are in same namespace as the
Message Bus service then they can access the Kafka cluster using the bootstrap Kubernetes
service object name and port.

Create a test client pod definition.

1. Copy the following YAML content into the bastion host (or worker node) as mb-test-client-
deployment.yaml file.

2. Update the hostAliases section according to your OAuth service environment.

3. Update the STRIMZI_KAFKA_IMAGE_NAME.

4. Update the OAUTH Endpoint, Client Id and Secret.

5. Update the OAUTH Endpoint, Client Id, Client Secret, Scope, Audience, and anything
else that are applicable to your client configuration

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mb-test-auth-client-deployment
 labels:
 app: mb-test-auth-client
spec:

Chapter 4
Client Access

4-27

 replicas: 1
 selector:
 matchLabels:
 app: mb-test-auth-client
 template:
 metadata:
 labels:
 app: mb-test-auth-client
 spec:
<Uncomment below and replace with your bootstrap and brokers DNS
names>
 #hostAliases:
 #- ip: <LOADBALANCER_IP>
 # hostnames:
 # - "<OHS_HOSTNAME>"
 containers:
 - name: mb-test-client
 image: <STRIMZI_KAFKA_IMAGE_NAME>
 command:
 - "tail"
 - "-f"
 - "/dev/null"
 imagePullPolicy: IfNotPresent
 env:
 - name: OAUTH_TOKEN_ENDPOINT_URI
 value: <Update the OAUTH_TOKEN_ENDPOINT_URI>
 - name: OAUTH_CLIENT_ID
 value: <Update the OAUTH_CLIENT_ID>
 - name: OAUTH_CLIENT_SECRET
 value: <Update the OAUTH_CLIENT_SECRET>
 # - name: OAUTH_SCOPE
 # value: <Uncomment and update OAUTH_SCOPE>
 # - name: OAUTH_AUDIENCE
 # value: <Uncomment and update OAUTH_AUDIENCE>
 ports:
 - containerPort: 9090
 name: http
 protocol: TCP

Create the authentication properties in a file (mb_test_client.properties).

sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLogin
Module required;
security.protocol=SASL_PLAINTEXT
sasl.mechanism=OAUTHBEARER
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOaut
hLoginCallbackHandler

Run the test client container and provide authentication properties

#Apply the test client pod definition in the namespace (say "sr").
$kubectl apply -f mb-test-client-deployment.yaml -n sr

#Get the newly created pod name
$kubectl get pod -n sr | grep mb-test-auth-client-deployment

Chapter 4
Client Access

4-28

#Sample Output
#mb-test-auth-client-deployment-******-**** 1/1 Running
0 98s

#Copy the mb_authentication.properties file into the pod
$kubectl -n sr cp mb_test_client.properties mb-test-auth-client-deployment-
******-****:/home/kafka/mb_test_client.properties

Test for message bus producer client:

• Start an interactive shell process in the test client pod

• Export the environment variables needed for the authentication

• Run the console producer command.

• Enter some string messages

#Get the newly created pod name
kubectl get pod -n sr | grep mb-test-auth-client-deployment

#Exec into the newly created pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the following test console producer
bin/kafka-console-producer.sh \
--producer.config /home/kafka/mb_test_client.properties \
--bootstrap-server sr-quick-messaging-kafka-bootstrap:9092 \
--topic ora-test-topic

Test for message bus consumer client:

• Start an interactive shell process in the test client pod

• Export the environment variables needed for the authentication

• Run the console consumer command.

• You will see the previous string messages of producer

#Get the newly created pod name
kubectl get pod -n sr | grep mb-test-auth-client-deployment

#Sample Output
#mb-test-auth-client-deployment-******-**** 1/1 Running
0 98s

#Exec into the newly created pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the following test console consumer
bin/kafka-console-consumer.sh \
--consumer.config /home/kafka/mb_test_client.properties \
--bootstrap-server sr-quick-messaging-kafka-bootstrap:9092 \
--topic ora-test-topic \
--from-beginning

Chapter 4
Client Access

4-29

External ingress access - SSL and Authentication

The external access to Message Bus is provided through Ingress controller (Traefik or Generic)
with TLS enabled. The following must be performed in clients for testing:

• Export and import the Message Bus service (that is sr-quick-messaging-cluster-ca-cert,
where sr is namespace and quick is instance) certificate into clients.

• Export and import the certificate of OAuth service into the clients.

Note:

This is optional and is required only if OAuth is enabled for SSL.

• Update the bootstrap and brokers DNS names with load balancer IP in the etc/hosts file of
clients (that is, event producer or consumer applications).

• Update the DNS name of OAuth service with load balancer IP in /etc/hosts file of clients.

Note:

This is optional and is required only if the OAuth service requires DNS name to
access.

• Run the producer or consumer script with SSL and Authentication details

In the following section, the external ingress access test is provided with Strimzi Kafka
container. If you want to test the client code without Kubernetes cluster then you can download
the Apache Kafka and perform the same.

Add Message Bus service and OAuth service certifications to trust store. See Import/export of
TLS certificates section.

#Run the below command to export and import the Message Bus service
certificate into the trust store (mb-cert-keystore.jks) file.
$COMMON_CNTK/scripts/export-cluster-cert.sh -p sr -i quick -l . -k ./mb-test-
client-cert-keystore.jks -a mb-cert

#Get the OAuth (OAM) service certificate and import into trust store (mb-test-
client-cert-keystore.jks) file (Optional, needed if OAuth is SSL)
keytool -importcert -alias oauth-server -file <Path to OAuth Server
certificate, the .pem file> -keystore ./mb-test-client-cert-keystore.jk --
trustcacerts -noprompt

Create the following authentication properties in a file (mb_test_client.properties).

sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLogin
Module required;
security.protocol=SASL_SSL
sasl.mechanism=OAUTHBEARER
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOaut
hLoginCallbackHandler
ssl.endpoint.identification.algorithm=

Chapter 4
Client Access

4-30

Create a test client pod definition.

1. Copy the following YAML content into the bastion host (or worker node) as "mb-test-
client-deployment.yaml" file.

2. Update the Strimzi Kafka image.

3. Update the hostAliases section according to your OAuth and Message Bus service setup.
This will add entries to /etc/hosts file.

4. Update the OAuth Endpoint, Client Id, Client Secret, and Trust Store Password in env
section.

Note:

You can override the value of subDomainNameSeparator. The default is .. This
value can be changed as "-" to match the wild card pattern of SSL certificates.

To override, uncomment and change this value in applications.yaml. See "Using Wild
Card Certificates" for more information.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mb-test-client-deployment
 labels:
 app: mb-test-client
spec:
 replicas: 1
 selector:
 matchLabels:
 app: mb-test-client
 template:
 metadata:
 labels:
 app: mb-test-client
 spec:
<Uncomment below and replace with your bootstrap and brokers DNS names>
hostAliases:
- ip: <Replace with your LOADBALANCER_IP>
hostnames:
- "<INSTANCE.PROJECT.messaging.broker0.uim.org>"
- "<INSTANCE.PROJECT.messaging.brokerN.uim.org>"
- "<INSTANCE.PROJECT.messaging.bootstrap.uim.org>"
- "<Replace with OHS_HOSTNAME>"
 containers:
 - name: mb-test-client
 image: quay.io/strimzi/kafka:0.34.0-kafka-3.4.0
 command:
 - "tail"
 - "-f"
 - "/dev/null"
 imagePullPolicy: IfNotPresent
 env:
 - name: OAUTH_TOKEN_ENDPOINT_URI

Chapter 4
Client Access

4-31

 value: <Replace with your OAUTH_TOKEN_ENDPOINT_URI>
 - name: OAUTH_CLIENT_ID
 value: <Replace with your OAUTH_CLIENT_ID>
 - name: OAUTH_CLIENT_SECRET
 value: <Replace with your OAUTH_CLIENT_SECRET>
 #- name: OAUTH_SCOPE
 # value: <Uncomment and replace with your OAUTH_SCOPE>
 #- name: OAUTH_AUDIENCE
 # value: <Uncomment and replace with yours OAUTH_AUDIENCE>
 - name: KAFKA_OPTS
 value: " \
 -Djavax.net.ssl.trustStore=/home/kafka/mb-test-client-cert-
keystore.jks \
 -Djavax.net.ssl.trustStorePassword=<Replace with your store
password> \
 -Djavax.net.ssl.trustStoreType=JKS"
 ports:
 - containerPort: 9090
 name: http
 protocol: TCP

Run the test client container and apply readiness for authentication and SSL.

#Apply the test client pod definition in the namespace (say "sr").
$kubectl apply -f mb-test-client-deployment.yaml -n sr

#Get the newly created pod name
$kubectl get pod -n sr | grep mb-test-client-deployment

#Sample Output
#mb-test-client-deployment-******-**** 1/1 Running 0
98s

#Copy the certificate store into the newly created pod. Replace the pod name
below
kubectl -n sr cp mb-test-client-cert-keystore.jks <Replace with mb-test-
client-deployment pod name>:/home/kafka/mb-test-client-cert-keystore.jks

#Copy the mb_test_client.properties file into the POD
kubectl -n sr cp mb_test_client.properties <Replace with mb-test-client-
deployment pod name>:/home/kafka/mb_test_client.properties

Start a shell session inside container for console test producer.

#Get the newly created pod name
$kubectl get pod -n sr | grep mb-test-auth-client-deployment

#Sample Output
#mb-test-auth-client-deployment-******-**** 1/1 Running
0 98s

#Exec into the newly created pod
kubectl exec -it<Replace with mb-test-client-deployment pod name> -n sr --
bash

Chapter 4
Client Access

4-32

#Run the following producer command
bin/kafka-console-producer.sh \
--producer.config /home/kafka/mb_test_client.properties \
--bootstrap-server quick.sr.messaging.bootstrap.uim.org:30443 \
--topic ora-test-topic

Start start a shell session inside container for console test consumer:

#Exec into the newly created pod
kubectl exec -it <Replace with mb-test-client-deployment pod name> -n sr --
bash

#Run the following producer command. Replace the bootstrap-server url
accordingly to your environment
bin/kafka-console-consumer.sh \
--consumer.config /home/kafka/mb_test_client.properties \
--bootstrap-server sthatipa.sr.messaging.bootstrap.uim.org:30443 \
--consumer-property group.id=test-client-service \
--topic ora-test-topic --from-beginning

Clean-up the newly created test pod:

kubectl delete -f mb-test-client-deployment.yaml -n sr

External node port access

The nodeport listener type allows the external access from outside of the Kubernetes cluster
using the load balancer or Kubernetes worker node ip address and nodePort(port of worker
node).

The Bootstrap URL is constructed with worker node IP Address and node port of bootstrap
service.

Get the host port of the external bootstrap service using the following command:

$kubectl get service sr-quick-messaging-kafka-nodeport-bootstrap -
o=jsonpath='{.spec.ports[0].nodePort}{"\n"}' -n sr

Output: 32100

Get the IP Address of the Kubernetes worker node. Replace the <NODE_NAME> in the
following with your node name:

$kubectl get node <NODE_NAME> -o=jsonpath='{range .status.addresses[*]}{.type}
{"\t"}{.address}{"\n"}' -n sr

Output:
InternalIP 100.xx.xx.142
Hostname *********

Update the Kafka cluster Bootstrap URL as 100.xx.xx.142:32100 in the events producer and
consumer applications.

Chapter 4
Client Access

4-33

To access with plain, see "Internal access - same namespace - plain" section. Replace the
bootstrap URL with above constructed one.

To access with Authentication, see "Internal access - same namespace - authentication"
section. Replace the bootstrap URL with above constructed one.

To access with SSL and Authentication, see "External ingress access - SSL & Authentication"
section. Replace the bootstrap URL with above constructed one.

Import/export of TLS certificates

To enable TLS encrypted access, the ca-certs of Kafka cluster is needed to be extracted and
imported into key store and the location of that key store is used as the producer or consumer
properties in events application.

Export the ca-certs of the Kafka cluster using the following command:

$COMMON_CNTK/scripts/export-cluster-cert.sh -p <Namespace of kafka cluster> \
-i <instance name of kafka cluster> \
-l <directory to export clustercerts temporarily> \
-k <keystore-location> \
-a <alias for cert>

For example:

$COMMON_CNTK/scripts/export-cluster-cert.sh -p sr -i quick -l . -k ./mb-cert-
keystore.jks -a mb-sr-quick-cert

The export-cluster-cert.sh script creates JKS type truststore by default in the provided key
store location. If any other truststore type is created, specify that as producer or consumer
property while running the clients. These exported artifacts can be used in Kafka client
applications.

Note:

If custom certificates were used during cluster creation, then these can be directly
provided through a keystore than extracting the generated certs.

Using custom certificates

Custom certificates can be used while creating the Kafka cluster:

Prerequisites:

• Certificates and keys are to be in PEM format.

• Key should not be encrypted. Encrypted keys are not supported since they need user
interaction for entering the passphrase during access.

Creating a custom certificate

To create a custom certificate, see Self-signed SSL Certificates.

Chapter 4
Client Access

4-34

Create Kubernetes secret

Run the following command by replacing the placeholders:

kubectl create secret generic <secret-name> --from-file=<key-file-name> --
from-file=<certificate-file-name>
 For example:
kubectl create secret generic myCustomCertSecret --from-file=commonkey.pem --
from-file=commoncert.pem

Update Kafka Cluster configuration

Update the customCerts configuration section in Kafka cluster's override values yaml file:

kafka-cluster:
 ## to enable custom or owned certs for tls please create a kubernetes
secret with the cert and key if not already present, uncomment the below
section and add respective values.
 ## please be advised that encrypted keys are not supported since they
require user interaction for the passphrase
 customCerts:
 # Secret in which cert and key are present
 secretName: <secret-name created above>
 certName: <certificate file used in the secret created above>
 keyName: <key-file used in the secret created above>

Configuring Message Bus Listeners
Message Bus has three listeners (internal, ingress and nodeport) to access the service. These
are described the in following sections.

Message Bus Internal Listener

The following is the configuration for internal listener type which can be commented or
uncommented.

 kafka-cluster:
 listeners:
 # plain is for internal access within the same k8s cluster.
 internal:

From same namespace in cluster

This is an internal access method that is used by the message producer or consumer clients
(or applications) when they are deployed in same namespace as the Message Bus service.
This is enabled by default with internal listener type. To access the Message Bus, the
producer or consumer applications must get the Bootstrap service URL of the Kafka cluster.

To get the Bootstrap service URL of the Kafka cluster run the following command:

kubectl get svc -n sr | grep sr-quick-messaging-kafka-bootstrap

Chapter 4
Configuring Message Bus Listeners

4-35

sr-quick-messaging-kafka-bootstrap ClusterIP <clusterIP>
<none> 9091/TCP,9092/TCP

Note:

The project namesapce is sr and instance is quick.

Use the sr-quick-messaging-kafka-bootstrap:9092 URL in the producer and consumer client
configuration in the applications.

From another namespace in cluster

This is an internal access method which is used by the producer or consumer client
applications when they are deployed in different namespace than the message-bus service.
This is enabled by default with internal listener type. To access the Message Bus, the producer
or consumer client applications have to get the Bootstrap service URL of the Kafka cluster and
convert the URL pattern as serviceName.namespace.svc.cluster.local.

If the sr-quick-messaging-kafka-bootstrap service is hosted in sr namespace on 9092 port and
the client applications from different namespace can access the Kafka cluster with Bootstrap
URL as sr-quick-messaging-kafka-bootstrap.sr.svc.cluster.local:9092

Message Bus Ingress Listener

This is an external access method which is used by message producer or consumer
applications when they are deployed outside of the Kubernetes cluster. This is disabled by
default and must be enabled in the applications.yaml. This external access is provided
through the Traefik Ingress Controller and Generic Ingress Controller to the Kafka cluster. To
enable this external access, the ingress listener type configuration must be enabled in the
Kafka cluster configuration yaml file.

Ingress listener type

Un-comment the ingress lister type section in applications.yaml file to expose the Message
Bus Service outside of Kubernetes cluster. Ingress controller (Traefik or Generic) should be
deployed in order for this ingress listener type to work and Message Bus namespace must be
registered with Traefik operator. In case of Generic Ingress, set ingress.className according
to your Generic Ingress Controller.

In case of Generic Ingress controller (nginx), annotations given under the kafka-
cluster.listeners.ingress.annotations tag in applications.yaml are mandatory.

To expose the kafka-cluster to external kafka clients via ingress
controller uncomment the following and modify accordingly. # Valid values are
TRAEFIK, GENERIC
ingressController: "TRAEFIK"

#ingress:
#specify className field for ingressClassName of generic ingress
controller.
#In case of nginx the default values is nginx
className: "nginx"

#provide loadbalancer port
if TLS is enabled in global section, then loadbalancerport will be used as
external port for Generic or Traefik

Chapter 4
Configuring Message Bus Listeners

4-36

loadbalancerport: <loadBalancer-port>

kafka-cluster
 listeners:
 ingress:
 # if TLS is Disabled in global, then ingressSslPort will be used as
external port.
 ingressSslPort: <LoadBalancer_SSL_Port>
 # If using Generic Ingress controller, below given annotations are
mandatory for Message-Bus external access.
 # These annotations are required for nginx ingress controller in
Message-Bus.
 annotations:
 nginx.ingress.kubernetes.io/ingress.allow-http: "false"
 nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"
 ingress.kubernetes.io/ssl-passthrough: "true"
 nginx.ingress.kubernetes.io/ssl-passthrough: "true"

In external producer or consumer messaging clients (or applications), the following must be
done to access the Kafka cluster through Ingress controller.

• The Bootstrap server and advertised broker host names must be configured in DNS at
client side.

• Import the TLS certificate and trust stores from the Kafka cluster into client configurations.

• Add required additional properties in Kafka producer or consumer client configuration.

DNS settings in client applications host

The Bootstrap server host name and advertised broker host names must be configured in /etc/
hosts file in producer and consumer client applications with the Traefik or Load Balancer IP
Address. Hostnames are pre-configured when deployed with ingress listener type enabled with
the following pattern:

bootstrap-server: <kafka-cluster-instance-name>.<kafka-cluser-project-
name>.messaging.bootstrap.uim.org
broker-0: <kafka-cluster-instance-name>.<kafka-cluser-project-
name>.messaging.broker0.uim.org
broker-1: <kafka-cluster-instance-name>.kafka-cluser-project-
name>.messaging.broker1.uim.org

For example if a instance is quick and namesapce is sr then the hostnames
will be as follows:
bootstrap-server: quick.sr.messaging.bootstrap.uim.org
broker-0: quick.sr.messaging.broker0.uim.org
broker-1: quick.sr.messaging.broker1.uim.org

Chapter 4
Configuring Message Bus Listeners

4-37

Note:

You can override the value of subDomainNameSeparator. The default value is ".",
This value can be changed to "-" to match the wild card pattern of SSL certificates.

To override the value, uncomment and change it in applications.yaml as follows:

#subDomainNameSeparator: "."

#Example hostnames for "-" : quick-sr-messaging-bootstrap.uim.org

Importing certificates into client applications

See the "Import/export of TLS certificates" section in “Client Access” section for exporting the
ca-certs of Kafka cluster to producer or consumer applications.

Message Bus NodePort Listener

This is another external access method which is used by events producer or consumer client
applications when they are deployed out-side of the Kubernetes cluster and wants to access
the message-bus service without ingress controller.

Node port

The following configuration in the application yaml file allows exposing the nodeport listener
type to access the Message Bus externally with tls and OAuth 2.0 Authentication.

Kafka-cluster:
 listeners:
 #To expose the kafka-cluster to external kafka clients without ingress
controller, uncomment the following section and modify accordingly.
 nodeport:
 tls: true
 # if need to expose on a static nodeport, please uncomment the below
nodePort key and provide values.
 nodePort: 32100
 authentication: true

When the tls is enabled the certificates of the Kafka cluster must be imported in the events
producer and consumer clients to access the Kafka cluster.

See the "Import/export of TLS certificates" section in “Client Access” section for exporting the
auto-generated ca-certs of Kafka cluster.

Debugging and Troubleshooting
NotEnoughReplicasException

When you get the org.apache.kafka.common.errors.NotEnoughReplicasException:
Messages are rejected since there are fewer in-sync replicas than required. The reason could
be that the topics replicas is not meeting the default minInsyncReplicas value configured in the
Message Bus service.

Chapter 4
Debugging and Troubleshooting

4-38

Asynchronous auto-commit of offsets failed

When you get the following error in the logs (for example: UTIA Consumer). To resolve this
make sure that max.polling.interval.ms is always greater than the last poll or else reduce the
max.poll.records.

[Consumer clientId=consumer-ora-uim-topology-service-2, groupId=ora-uim-
topology-service] Asynchronous auto-commit of offsets failed: Offset commit
cannot be completed since the consumer is not part of an active group for
auto partition assignment; it is likely that the consumer was kicked out of
the group.. Will continue to join group.

Add these additional properties in the YAML file under the mp.messaging.connector.helidon-
kafka section with override values.

mp.messaging:
 connector:
 helidon-kafka:
 # The following are default global configuration values which effects
for all the consumer groups.
 max.polling.interval.ms: 300000
 max.poll.records: 500

 # The following are channel specific configuration values
 incoming:
 # The toInventoryChannel effects only for ora-uim-topology-service
consumer group
 # uncomment and update the specific values
 #toInventoryChannel:
 #max.polling.interval.ms: 300000
 #max.poll.records: 500

 # The toFaultChannel effects only for ora-uim-topology-retry-service
consumer group
 # Uncomment and update the specific values
 #toRetryChannel:
 #max.polling.interval.ms: 300000
 #max.poll.records: 200

 # The toDltChannel effects only for ora-uim-topology-dlt-service consumer
group
 # uncomment and update the specific values
 #toDltChannel:
 #max.polling.interval.ms: 300000
 #max.poll.records: 100

Performance Tuning: Consumer Configurations

The following are some consumer configuration properties in message consumers which are
related to performance. See https://kafka.apache.org/documentation/#consumerconfigs for all
available consumer config properties.

• max.poll.records (default=500) defines the maximum number of messages that a
consumer can poll at once.

Chapter 4
Debugging and Troubleshooting

4-39

https://kafka.apache.org/documentation/#consumerconfigs

• max.partition.fetch.bytes (default=1048576) defines the maximum number of bytes that the
server returns in a poll for a single partition.

• max.poll.interval.ms (default=300000) defines the time a consumer must process all
messages from a poll and fetch a new poll afterward. If this interval is exceeded, the
consumer leaves the consumer group.

• http://heartbeat.interval.ms (default=3000) defines the frequency with which a consumer
sends heartbeats.

• http://session.timeout.ms (default=10000) defines the time a consumer must send a
heartbeat. If no heartbeat was received in that timeout, the member is considered dead
and leaves the group.

Managing Consumer Groups

For more list of options available on the consumer groups see the apache kafka managing
consumer groups section. The following sub-sections list some significant operations. See
"Message Bus Client Access" for more information.

List consumer groups

#Exec into running message bus test client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to list all the consumer groups
bin/kafka-consumer-groups.sh \
--command-config /home/kafka/mb_test_client.properties \
--bootstrap-server <Your Bootstrap Server URL> \
--list

Describe consumer group

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to describe specific consumer group to check topics,
partitions, offsets
#Replace the command-config, bootstrap, group values accordingly
bin/kafka-consumer-groups.sh \
--command-config /home/kafka/mb_test_client.properties \
--bootstrap-server <Your Bootstrap Server URL> \
--group test-client-service \
--describe

Reset offset of a consumer group

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to reset offset for consumer group for topic to
latest. See Apache Kafka documentation for other available options.
#Replace the command-config, bootstrap, group and topic values accordingly
bin/kafka-consumer-groups.sh \
--command-config /home/kafka/mb_test_client.properties \
--bootstrap-server <Your Bootstrap Server URL> \
--group test-client-service \

Chapter 4
Debugging and Troubleshooting

4-40

--reset-offsets \
--topic ora-test-topic \
--to-latest \
--execute

Topics

For more detailed list of operations available on the topics see the "Apache Kafka
Operations".The following sub-sections list some significant operations. See "Message Bus
Client Access" for more information.

Create

Create a topic with three partitions and two replications.

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to create a topic
bin/kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --create \
 --topic replicated-2 \
 --replication-factor 2 \
 --partitions 3

List

To list all topics:

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to list all the topic
bin/kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --list

Describe

Describes the topic and its partition count, replicas factory along with leaders for the partition.

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to describe the topic
bin/kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --topic replicated-2 \
 --describe

Chapter 4
Debugging and Troubleshooting

4-41

#Sample output
Topic: replicated-2 TopicId: vyalpPOmR0CtYt7Sc-gbxA
PartitionCount: 3 ReplicationFactor: 2 Configs:
min.insync.replicas=1,message.format.version=3.0-IV1

Topic: replicated-2 Partition: 0 Leader: 1 Replicas: 1,0
Isr: 1,0
Topic: replicated-2 Partition: 1 Leader: 0 Replicas: 0,1
Isr: 0,1
Topic: replicated-2 Partition: 2 Leader: 1 Replicas: 1,0
Isr: 1,0

Alter

You can alter a topic and increase the partitions to 2.

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to alter the topic bin/kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --alter \
 --topic <Your Topic Name> \
 --partitions 1

Reassignment

The partition reassignment tool can also be used to selectively move replicas of a partition to a
specific set of brokers. In the following example the partitions for topic (replicated-2) are
reassigned to different brokers.

See the "Message Bus Client Access"section for more information on running the message
bus test pod with required configuration such as Authentication and SSL.

Create a file called custom-reassignment.json file a terminal

{"version":"1", "partitions":
[{"topic":"replicated-2","partition":"0","replicas":"[0,1]"},
{"topic":"replicated-2","partition":1,"replicas":"[1,2]"},
{"topic":"replicated-2","partition":"2","replicas":"[0,2]"}]}

Run the following commands for reassignment:

#Copy the custom-reassignment.json file into the newly created pod under /
home/kafka directory
$kubectl cp custom-reassignment.json mb-test-auth-client-deployment-*****-
****:/home/kafka/custom-reassignment.json -n kafka

#Exec into running test pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash
#Cd directory to /home/kafka

#Validate the topic ("replicated-2"

Chapter 4
Debugging and Troubleshooting

4-42

/opt/kafka/bin/kafka-topics.sh \
--command-config /home/kafka/mb_test_client.properties \
--bootstrap-server <Your Bootstrap Server URL> \
--topic replicated-2 --describe
Topic: replicated-2 TopicId: vyalpPOmR0CtYt7Sc-gbxA PartitionCount:
3 ReplicationFactor: 2 Configs:
min.insync.replicas=1,message.format.version=3.0-IV1
 Topic: replicated-2 Partition: 0 Leader: 1 Replicas:
1,0 Isr: 1,0
 Topic: replicated-2 Partition: 1 Leader: 1 Replicas:
0,1 Isr: 1,0
 Topic: replicated-2 Partition: 2 Leader: 1 Replicas:
1,0 Isr: 1,0

#Run reassign-partitions script to reassign the partitions according to the
json file
$/opt/kafka/bin/kafka-reassign-partitions.sh --bootstrap-server dev-messaging-
kafka-bootstrap:9092 --reassignment-json-file custom-reassignment.json --
execute

Current partition replica assignment

{"version":1,"partitions":[{"topic":"replicated-2","partition":0,"replicas":
[1,0],"log_dirs":["any","any"]},
{"topic":"replicated-2","partition":1,"replicas":[0,1],"log_dirs":
["any","any"]},{"topic":"replicated-2","partition":2,"replicas":
[1,0],"log_dirs":["any","any"]}]}

Save this to use as the --reassignment-json-file option during rollback
Successfully started partition reassignments for
replicated-2-0,replicated-2-1,replicated-2-2

#Verfify the reassignment status
$/opt/kafka/bin/kafka-reassign-partitions.sh --bootstrap-server dev-messaging-
kafka-bootstrap:9092 --reassignment-json-file custom-reassignment.json --
verify

Status of partition reassignment:
Reassignment of partition replicated-2-0 is complete.
Reassignment of partition replicated-2-1 is complete.
Reassignment of partition replicated-2-2 is complete.

Clearing broker-level throttles on brokers 0,1,2
Clearing topic-level throttles on topic replicated-2

Validate the partition assignments
$/opt/kafka/bin//kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --topic replicated-2 --describe
Topic: replicated-2 TopicId: vyalpPOmR0CtYt7Sc-gbxA PartitionCount:
3 ReplicationFactor: 2 Configs:
min.insync.replicas=1,message.format.version=3.0-IV1
 Topic: replicated-2 Partition: 0 Leader: 1 Replicas:
0,1 Isr: 1,0
 Topic: replicated-2 Partition: 1 Leader: 1 Replicas:

Chapter 4
Debugging and Troubleshooting

4-43

1,2 Isr: 1,2
 Topic: replicated-2 Partition: 2 Leader: 0 Replicas:
0,2 Isr: 0,2

Chapter 4
Debugging and Troubleshooting

4-44

5
Deploying the Unified Topology for Inventory
and Automation Service

This chapter describes how to deploy and manage UTIA service.

Overview of UTIA
Oracle Communications Unified Topology for Inventory and Automation (UTIA) represents the
spatial relationships among your inventory entities for the inventory and network topology.

• UTIA provides a graphical representation of topology where you can see your inventory
and its relationships at the level of detail that meets your needs.

See UTIA Help for more information about the topology visualization.

Use UTIA to view and analyze the network and service data in the form of topology diagrams.
UTIA collects this data from UIM.

You use UTIA for the following:

• Viewing the networks and services, along with the corresponding resources, in the form of
topological diagrams and graphical maps.

• Planning the network capacity.

• Tracking networks.

• Viewing alarm information.

UTIA Architecture
Figure 5-1 shows a high-level architecture of the UTIA service.

5-1

Figure 5-1 UTIA Architecture

UIM as the Producer
UIM communicates with the Topology Service using REST APIs and Kafka Message Bus. UIM
is the Producer for Create, Update and Delete operations from UIM that impact Topology. UIM
uses REST APIs to communicate directly with the UTIA Service while building the messages
and can also continue processing when the Topology Service is unavailable.

Topology as the Consumer
The UTIA service is a consumer for inventory system and assurance system messages. UTIA
processes multiple message events including TopologyNodeCreate, TopologyNodeUpdate,
TopologyNodeDelete, TopologyEdgeCreate, TopologyEdgeUpdate, TopologyEdgeDelete,
TopologyFaultEventCreate, TopologyFaultEventUpdate, TopologyPerformanceEventCreate,
TopologyPerformanceEventUpdate.

The service information is updated using the TopologyProfileCreate, TopologyProfileUpdate,
and TopologyProfileDelete events.

Topology Graph Database
The UTIA Service communicates to the Oracle Databases using the Oracle Property Graph
feature with PGQL and standard SQL. It can communicate directly to the database or with the
In-Memory Graph for high performance operations. This converged database feature of Oracle
Database makes it possible to utilize the optimal processing method with a single database.
The Graph Database is isolated and a separate Pluggable Database (PDB) from the UIM
Database but runs on the same 19c version for simplified licensing.

Chapter 5
UTIA Architecture

5-2

Topology In-Memory Database
The UTIA Service also uses the Oracle Labs Parallel Graph AnalytiX (PGX) In-Memory
database. The PGX server is used for Path Analysis and is configured for periodic updates.

UTIA User Interface
UTIA provides a graphical representation of topology where you can see your inventory and its
relationships at the level of detail that meets your needs. UTIA is built using Oracle Redwood
Design System.

Creating UTIA Images
You must install the prerequisite software and tools for creating UTIA images.

Prerequisites for Creating UTIA Images
You require the following prerequisites for creating UTIA images:

• Podman on the build machine if Linux version is greater than or equal to 8.

• Docker on the build machine if Linux version is lesser than 8

• Unified Topology Builder Toolkit (ref about the deliverables)

• Install Maven and update path variable with Maven Home.

Set PATH variable export PATH=$PATH:$MAVEN_HOME/bin

• Java, installed with JAVA_HOME set in the environment.

Set PATH variable export PATH=$PATH:$JAVA_HOME/bin

• Bash, to enable the `<tab>` command complete feature.

See UIM Compatibility Matrix for details about the required and supported versions of these
prerequisite software.

Configuring Unified Topology Images
The dependency manifest file describes the input that goes into the Unified Topology images. It
is consumed by the image build process. The default configuration in the latest manifest file
provides the necessary components for creating the Unified Topology images easily. See
"About the Manifest File" for more information.

Creating Unified Topology Service Images
To create the Unified Topology service images:

Note:

See UIM Compatibility Matrix for the latest versions of software.

Chapter 5
Creating UTIA Images

5-3

1. Go to WORKSPACEDIR.

2. Download graph server war file from Oracle E-Delivery (https://www.oracle.com/database/
technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-
server-and-client-downloads.html → Oracle Graph Server <version>→ Oracle Graph
Webapps <version> for (Linux x86-64)) and copy graph server war file to
directory $WORKSPACEDIR/unified-topology-builder/staging/downloads/graph. Ensure
only one copy of PGX.war exists in …/downloads/graph path.

Note:

The log level is set to debug by default in graph server war file. If required,
update the log level to error/info in graph-server-webapp-23.3.0.war/WEB-
INF/classes/logback.xml before building images.

3. Download tomcat-9.0.62.tar.gz and copy to $WORKSPACEDIR/unified-topology-builder/
staging/downloads/tomcat.

4. Download jdk-17.0.7_linux-x64_bin.tar.gz and copy to $WORKSPACEDIR/unified-
topology-builder/staging/downloads/java.

5. Export proxies in environment variables, fill the details on proxy settings:

export ip_addr=`ip -f inet addr show eth0|egrep inet|awk '{print $2}'|awk -
F/ '{print $1}'`
export http_proxy=
export https_proxy=$http_proxy
export no_proxy=localhost,$ip_addr
export HTTP_PROXY=
export HTTPS_PROXY=$HTTP_PROXY
export NO_PROXY=localhost,$ip_addr

6. Update $WORKSPACEDIR/unified-topology-builder/bin/gradle.properties with required
proxies.

systemProp.http.proxyHost=
systemProp.http.proxyPort=
systemProp.https.proxyHost=
systemProp.https.proxyPort=
systemProp.http.nonProxyHosts=localhost|127.0.0.1
systemProp.https.nonProxyHosts=localhost|127.0.0.1

7. Uncomment the proxy block and provide $WORKSPACEDIR/unified-topology-
builder/bin/m2/settings.xml with required proxies.

<proxies>
 <proxy>
 <id>oracle-http-proxy</id>
 <host>xxxxx</host>
 <protocol>http</protocol>
 <nonProxyHosts>localhost|127.0.0.1|xxxxx</nonProxyHosts>
 <port>xxxxx</port>
 <active>true</active>
 </proxy>
</proxies>

Chapter 5
Creating Unified Topology Service Images

5-4

https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

8. Copy UI custom icons to directory older $WORKSPACEDIR/unified-topology-builder/
staging/downloads/unified-topology-ui/images if you have any customizations for service
topology icon. For making customizations, see "Customizing the Images".

9. Update the image tag in $WORKSPACEDIR/unified-topology-builder/bin/
unified_topology_manifest.yaml

10. Run build-all-images script to create unified topology service images:

$WORKSPACEDIR/unified-topology-builder/bin/build-all-images.sh

Note:

You can include the above procedure into your CI pipeline as long as the
required components are already downloaded to the staging area.

Post-build Image Management
The Unified Topology image builder creates images with names and tags based on the settings
in the manifest file. By default, this results in the following images:

• uim-7.5.1.2.0-unified-topology-base-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-topology-api-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-pgx-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-topology-ui-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-topology-dbinstaller-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-topology-consumer-1.0.0.2.0:latest

Customizing the Images
Service topology can be customized using a JSON configuration file. See Customizing UTIA
Service Topology Configurations from UIM in UIM System Administrator's Guide for more
information. As a part of customization, if custom icons are to be used to represent nodes in
service topology, they must be placed in the $WORKSPACEDIR/unified-topology-builder/
staging/downloads/unified-topology-ui/images/ folder and unified-topology-ui image must
be rebuilt.

Creating a Unified Topology Instance
This section describes how to create a Unified Topology service instance in your cloud native
environment using the operational scripts and the configuration provided in the common cloud
native toolkit.

Before you can create a Unified Topology instance, you must validate cloud native
environment. See "Planning and Validating Your Cloud Environment" for details on
prerequisites.

In this section, while creating a basic instance, the project name is considered as sr and
instance name is considered as quick.

Chapter 5
Customizing the Images

5-5

Note:

Project and Instance names cannot contain any special characters.

Installing Unified Topology Cloud Native Artifacts and Toolkit
Build container images for the following using the Unified Topology cloud native Image Builder:

• Unified Topology Core application

• Unified PGX application

• Unified Topology User Interface application

• Unified Topology database installer

See "Deployment Toolkits" to download the Common cloud native toolkit archive file. Set the
variable for the installation directory by running the following command,
where $WORKSPACEDIR is the installation directory of the COMMON cloud native toolkit:

export COMMON_CNTK=$WORKSPACEDIR/common-cntk

Setting up Environment Variables
Unified Topology Service relies on access to certain environment variables to run seamlessly.
Ensure the following variables are set in your environment:

• Path to your common cloud native toolkit

• Traefik namespace

To set the environment variables:

1. Set the COMMON_CNTK variable to the path of directory where common cloud native
toolkit is extracted as follows:

$ export COMMON_CNTK=$WORKSPACEDIR/common-cntk

2. Set the TRAEFIK_NS variable for Traefik namespace as follows:

$ export TRAEFIK_NS=Treafik Namespace

3. Set the TRAEFIK_CHART_VERSION variable for Traefik helm chart version. Refer UIM
Compatibility Matrix for appropriate version. The following is a sample for Traefik chart
version 15.1.0.

$ export TRAEFIK_CHART_VERSION=15.1.0

4. Set SPEC_PATH variable to the location where application and database yamls are
copied. See "Assembling the Specifications" to copy specification files if not already
copied.

$ export SPEC_PATH=$WORKSPACEDIR/utia_spec_dir

Chapter 5
Creating a Unified Topology Instance

5-6

Registering the Namespace
After you set the environment variables, register the namespace.

To register the namespace, run the following command:

$COMMON_CNTK/scripts/register-namespace.sh -p sr -t targets
For example, $COMMON_CNTK/scripts/register-namespace.sh -p sr -t traefik
Where the targets are separated by a comma without extra spaces

Note:

traefik is the name of the target for registration of the namespace sr. The script
uses TRAEFIK_NS to find these targets. Do not provide the Traefik target if you are
not using Traefik.

For Generic Ingress Controller, you do not have to register the namespace. To select
the ingress controller, provide the ingressClassName value under the
ingress.className field in the applications.yaml file. For more information about
ingressClassName, see https://kubernetes.io/docs/concepts/services-networking/
ingress/

Creating Secrets
You must store sensitive data and credential information in the form of Kubernetes Secrets that
the scripts and Helm charts in the toolkit consume. Managing secrets is out of the scope of the
toolkit and must be implemented while adhering to your organization's corporate policies.
Additionally, Unified Topology service does not establish password policies.

Note:

The passwords and other input data that you provide must adhere to the policies
specified by the appropriate component.

As a prerequisite to use the toolkit for either installing the Unified Topology database or
creating a Unified Topology instance, you must create secrets to access the following:

• UTIA Database

• UIM Instance Credentials

• Secret for UTIA API

• Secret for UTIA UI

• OAM Authentication server details

• Truststore secret for OAM server

The toolkit provides sample scripts to perform this. These scripts should be used for manual
and faster creation of an instance. It does not support any automated process for creating
instances. The scripts also illustrate both the naming of the secret and the layout of the data

Chapter 5
Creating a Unified Topology Instance

5-7

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

within the secret that Unified Topology requires. You must create secrets before running the
install-database.sh or create-applications.sh scripts.

Creating Secrets for Unified Topology Database Credentials

The database secret specifies the connectivity details and the credentials for connecting to the
Unified Topology PDB (Unified Topology schema). This is consumed by the Unified Topology
DB installer and Unified Topology runtime.

1. Run the following script to create the required secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create database

2. Enter the corresponding values as prompted:

• TOPOLOGY DB Admin(sys) Username: Provide Topology Database admin username

• TOPOLOGY DB Admin(sys) Password: Provide Topology Database admin password

• TOPOLOGY Schema Username: Provide username for Unified Topology schema to
be created

• TOPOLOGY Schema Password: Provide Unified Topology schema password

• TOPOLOGY DB Host: Provide Unified Topology Database Hostname

• TOPOLOGY DB Port: Provide Unified Topology Database Port

• TOPOLOGY DB Service Name: Provide Unified Topology Service Name

• PGX Client Username: Provide username for PGX Client User to be created

• PGX Client Password: Provide PGX Client Password

3. Verify that the following secret is created:

sr-quick-unified-topology-db-credentials

Creating Secrets for UIM Credentials

The UIM secret specifies the credentials for connecting to the UIM application. This is
consumed by Unified Topology runtime.

1. Run the following scripts to create the UIM secret:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create uim

2. Enter the credentials and the corresponding values as prompted. The credentials should
be as shown in the following example:

Provide UIM credentials ...(Format should be http: //<host>:<port>)
UIM URL: Provide UIM Application URL, sample https://quick.sr.uim.org:30443
UIM Username: Provide UIM username
UIM Password: Provide UIM password
Is provided UIM a Cloud Native Environment ? (Select number from menu)
1) Yes
2) No
#? 1
Provide UIM Cluster Service name (Format <uim-project>-<uim-instance>-

Chapter 5
Creating a Unified Topology Instance

5-8

cluster-uimcluster.<project>.svc.cluster.local)
UIM Cluster Service name: sr-quick-cluster-uimcluster.sr.svc.cluster.local
#Provide UIM Cluster Service name.

Note:

• If the OAM IDP provider is used for authentication, provide the UIM front-end
hostname URL in the format: https://
<instance>.<project>.ohs.<oam-host-
suffix>:<loadbalancerport>.

• Provide the default UIM URL, if the SAML protocol is configured for
authentication with any IDP (such as IDCS, Keycloak, and so on.) For
example: https://
<instance>.<project>.<hostSuffix>:<loadbalancerport>.

3. Verify that the following secret is created:

sr-quick-unified-topology-uim-credentials

Creating Secrets for Authentication on Unified Topology API

The appUsers secret specifies authentication configuration for Unified Topology API.

1. Update $SPEC_PATH/$PROJECT/$INSTANCE/credentials/topology-user-credentials.yaml
with authentication configuration:

security:
 enabled: true #set enabled flag to true to enable authentication
 providers:
 - oidc:
 identity-uri: #idp-identity-uri
 base-scopes: #idp base scopes along with openid scope if supported
 client-id: topologyClient #Provide name of the client-id created
 client-secret: xxxx #Provide Client Secret
 token-endpoint-auth: CLIENT_SECRET_POST
 cookie-name: "OIDC_SESSION"
 cookie-same-site: "Lax"
 header-use: true
 audience: #idp-audience
 redirect: true
 redirect-uri: "/topology"

2. Run the following script to create the appUsers secret:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -f
$SPEC_PATH/sr/quick/applications.yaml -a unified-topology create appUsers

3. Enter the values appropriately against prompts.

4. Provide App User Credentials for sr-quick.

5. Enter the app credentials file: $SPEC_PATH/$PROJECT/$INSTANCE/credentials/
topology-user-credentials.yaml.

Chapter 5
Creating a Unified Topology Instance

5-9

6. Verify that the following secret is created:

sr-quick-unified-topology-user-credentials

Creating Secrets for Authentication on Unified Topology UI

The appUIUsers secret specifies authentication configuration for Unified Topology UI
application.

1. Update $SPEC_PATH/$PROJECT/$INSTANCE/credentials/topology-ui-user-
credentials.yaml with authentication configuration.

Note:

Uncomment and set the value of the property session timeout same as the value
of tokenExpiry, if tokenExpiry is set with different value than default while
creating an identity domain during OAM setup. tokenExpiry is set while creating
an identity domain during OAM setup. See "Deploying the Common
Authentication Service" for more information.

topology-ui-user-credentials.yaml

security:
 enabled: true #set enabled flag to true to enable authentication
 providers:
 - oidc:
 identity-uri: #idp-identity-uri
 base-scopes: #idp base scopes along with openid scope if supported
 client-id: topologyClient #Provide name of the client-id created
 client-secret: xxxx #Provide Client Secret
 token-endpoint-auth: CLIENT_SECRET_POST
 cookie-name: "OIDC_SESSION"
 cookie-same-site: "Lax"
 header-use: true
 audience: #idp-audience
 redirect: true
 redirect-uri: "/redirect/unified-topology-ui"
 logout-enabled: true
 #The following values are needed when logout is enabled for OIDC
 logout-uri: "/oidc/logout"
 post-logout-uri: apps/unified-topology-ui
 #provide server logout else it it going to userlogout and dispalying
error page of OAM
 logout-endpoint-uri: "https://<oam-instance>.<oam-project>.ohs.<oam-
host-suffix>:<port>/oam/server/logout" #Provide oidc logout, update
<loadbalancerport> value and ohshostname.
 cookie-encryption-password: "lpmaster"

#uncomment and set the value of the property sessiontimeout same as the
value of tokenExpiry, if tokenExpiry is set with different value than
default while creating an identity domain during OAM setup.
#sessiontimeout: 3600

Chapter 5
Creating a Unified Topology Instance

5-10

2. Run the following script to create the appUIUsers secret:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
appUIUsers

3. Enter the Topology UI User Credentials for 'sr-quick'.

4. Enter the app credentials file: $SPEC_PATH/$PROJECT/$INSTANCE/credentials/
topology-ui-user-credentials.yaml #Provide path to the topology-ui-user-
credentials.yaml.

5. Verify that the following secret is created:

sr-quick-unified-topology-ui-user-credentials

Creating Secrets for Authentication Server Details

The OAuth secret specifies details of the authentication server. It is used by Unified Topology
to connect to Message Bus Bootstrap service. See "Adding Common OAuth Secret and
ConfigMap" for more information.

If authentication is enabled on UTIA, ensure that you create an oauthConfig secret with the
appropriate OIDC details of your identity provider. To create an oauthConfig secret, see
"Adding Common OAuth Secret and ConfigMap".

Creating Secrets for SSL enabled on traditional UIM truststore

The inventorySSL secret stores the truststore file of the SSL enabled on traditional UIM, it is
required only if Authentication is not enabled on topology and to integrate topology with UIM
traditional instance.

1. Create truststore file using UIM certificates and to enable SSL on UIM. See UIM System
Administrator's Guide for more information.

2. Once you have the certificate of traditional UIM run following command to create truststore:

keytool -importcert -v -alias uimonprem -file ./cert.pem -keystore ./
uimtruststore.jks -storepass *******

3. After creating uimtruststore.jks run following command to create inventorySSL secret
and pass the truststore created above:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
inventorySSL

The system prompts for the trustsotre file location and passpharase for truststore. Provide
appropriate values.

Installing Unified Topology Service Schema
To install the Unified Topology schema:

1. Update values under unified-topology-dbinstaller in $SPEC_PATH/sr/quick/database.yaml
file with values required for unified topology schema creation.

Chapter 5
Creating a Unified Topology Instance

5-11

Note:

• The YAML formatting is case-sensitive. Use a YAML editor to ensure that you
do not make any syntax errors while editing. Follow the indentation
guidelines for YAML.

• Before changing the default values provided in the specification file, verify
that they align with the values used during PDB creation. For example, the
default tablespace name should match the value used when PDB is created.

2. Edit the database.yaml file and update the DB installer image to point to the location of
your image as follows:

unified-topology-dbinstaller:
 dbinstaller:
 image: DB_installer_image_in_your_repo
 tag: DB_installer image tag in your repo

3. If your environment requires a password to download the container images from your
repository, create a Kubernetes secret with the Docker pull credentials. See "Kubernetes
documentation" for details. Refer the secret name in the database.yaml. Provide image
pull secret and image pull policy details.

unified-topology-dbinstaller:
 imagePullPolicy: Never
The image pull access credentials for the "docker login" into Docker
repository, as a Kubernetes secret.
Uncomment and set if required.
imagePullSecret: ""

4. Run the following script to start the Unified Topology DB installer, which instantiates a
Kubernetes pod resource. The pod resource lives until the DB installation operation
completes.

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/database.yaml -a unified-topology -c 1

5. You can run the script with -h to see the available options.

6. Check the console to see if the DB installer is installed successfully.

7. If the installation has failed, run the following command to review the error message in the
log:

kubectl logs -n sr sr-quick-unified-topology-dbinstaller

8. Clear the failed pod by running the following command:

helm uninstall sr-quick-unified-topology-dbinstaller -n sr

9. Run the install-database script again to install the Unified Topology DB installer.

Chapter 5
Creating a Unified Topology Instance

5-12

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

Configuring the applications.yaml File
The applications.yaml file is a Helm override values file to override default values of unified
topology chart. Update values under chart unified-topology in $SPEC_PATH/<PROJECT>/
<INSTANCE>/applications.yaml to override the default values.

The applications.yaml provides a section for values that are common for all microservices.
Provide Values under that common section and it is reflected for all services.

Note:

There are common values specified in applications.yaml and database.yaml for the
microservices. To override the common value, specify the value for the common
value under chart name of microservice. If value under the chart is empty, then
common value is considered.

To configure the project specification:

1. Edit the applications.yaml to provide the image in your repository (name and tag) by
running the following command:

vi $SPEC_PATH/<PROJECT>/<INSTANCE>/applications.yaml

** edit the topologyAPiName, pgxName, uiName to reflect the Unified
Topology image names and location in your docker repository
** edit the topologyAPiTag, pgxTag, uiTag to reflect the Unified Topology
image names and location in your docker repository

unified-topology:
 image:
 topologyApiName: uim-7.6.0.0.0-unified-topology-api-1.1.0.0.0
 pgxName: uim-7.6.0.0.0-unified-pgx-1.1.0.0.0
 uiName: uim-7.6.0.0.0-unified-topology-ui-1.1.0.0.0
 topologyConsumerName: uim-7.6.0.0.0-unified-topology-consumer-1.1.0.0.0
 topologyApiTag: latest
 pgxTag: latest
 uiTag: latest
 topologyConsumerTag: latest

2. If your environment requires a password to download the container images from your
repository, create a Kubernetes secret with the Docker pull credentials. See the
"Kubernetes documentation" for details. See the secret name in the applications.yaml for
more information.

The image pull access credentials for the "docker login" into Docker
repository, as a Kubernetes secret.
uncomment and set if required.

unified-topology:
imagePullSecret:
imagePullSecrets:
- name: regcred

Chapter 5
Creating a Unified Topology Instance

5-13

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

3. Set Pull Policy for unified topology images in applications.yaml. Set pullPolicy to Always
in case image is updated.

unified-topology:
 image:
 pullPolicy: Never

4. Update loadbalancerport in applications.yaml. If there is no external loadbalancer
configured for the instance change the value of loadbalancerport to the ingressController
NodePort . If SSL is enabled on Unified Topology, provide SSL NodePort and if SSL is
disabled, provide non-SSL NodePort.
If you use Oracle Cloud Infrastructure LBaaS, or any other external load balancer, if TLS is
enabled set loadbalancerport to 443 else set loadbalancerport to 80 and update
the value for loadbalancerhost appropriately.

#provide loadbalancer port
loadbalancerport: 30305

5. To enable authentication, set the flag authentication.enabled to true. If OAM is used for
authentication, provide loadbalancer ip-address and ohs-hostname under hostAliases.
The hostAliases are added under the pods within the /etc/hosts file. If you use any other
IDP and it is not under the public dns server, you can provide the hostAliases.

The enabled flag is to enable or disable authentication
authentication:
 enabled: true

hostAliases:
- ip: <ip-address>
 hostnames:
 - <oam-instance>.<oam-project>.ohs.<hostSuffix> (ex quick.sr.ohs.uim.org)

6. If Authentication is not enabled on UTIA and want to integrate UTIA with traditonal SSL
enabled UIM, you have to create inventorySSL secret and enable the inventorySSL flag
in applications.yaml as shown below:

make it true if using on prem inventory with ssl port enabled and
authentication is not enabled on topology
always false for Cloud Native inventory
not required in production environment
isInventorySSL: true

Configuring Unified Topology Application Properties
Sample configuration files topology-static-config.yaml.sample, topology-dynamic-
config.yaml.sample are provided as follows:

• The sample files for Topology API service are added in $COMMON_CNTK/charts/unified-
topology-app/charts/unified-topology/config/topology-api.

• The sample files for Topology Consumer service are added in $COMMON_CNTK/charts/
unified-topology-app/charts/unified-topology/config/topology-consumer.

To override configuration properties, copy the sample static property file to topology-static-
config.yaml and sample dynamic property file to topology-dynamic-config.yaml. Provide
key value to override the default value provided out-of-the-box for any specific system

Chapter 5
Creating a Unified Topology Instance

5-14

configuration property. The properties defined in property files are fed into the container using
Kubernetes configuration maps. Any changes to these properties require the instance to be
upgraded. Pods are restarted after configuration changes to topology-static-config.yaml.

Max Rows
Modify the following setting to limit the number of records returned in LIMIT queries:

topology:
 query:
 maxrows: 5000

Date Format
Any modifications to the date format used by all dates must be consistently applied to all
consumers of the APIs.

topology:
 api:
 dateformat: yyyy-MM-dd'T'HH:mm:ss.SSS'Z'

Alarm Types
The out of the box alarm types utilize industry standard values. If you want to display a different
value, modify the value accordingly:

For example: To modify the COMMUNICATIONS_ALARM change the value to
COMMUNICATIONS_ALARM: Communications

alarm-types:
 COMMUNICATIONS_ALARM: COMMUNICATIONS_ALARM
 PROCESSING_ERROR_ALARM: PROCESSING_ERROR_ALARM
 ENVIRONMENTAL_ALARM: ENVIRONMENTAL_ALARM
 QUALITY_OF_SERVICE_ALARM: QUALITY_OF_SERVICE_ALARM
 EQUIPMENT_ALARM: EQUIPMENT_ALARM
 INTEGRITY_VIOLATION: INTEGRITY_VIOLATION
 OPERATIONAL_VIOLATION: OPERATIONAL_VIOLATION
 PHYSICAL_VIOLATION: PHYSICAL_VIOLATION
 SECURITY_SERVICE: SECURITY_SERVICE
 MECHANISM_VIOLATION: MECHANISM_VIOLATION
 TIME_DOMAIN_VIOLATION: TIME_DOMAIN_VIOLATION

Event Status
UTIA supports 3 types of events: 'Raised' for new events, 'Updated' for existing events with
updated information and 'Cleared' for events that have been Closed.

To modify the 'CLEARED' event change the value to CLEARED: closed

 event-status:
 CLEARED: CLEARED
 RAISED: RAISED
 UPDATED: UPDATED

Chapter 5
Creating a Unified Topology Instance

5-15

Event Severity
UTIA supports various types of event severity on a Device. The severity from most severe to
least severe is CRITICAL(1), MAJOR(5), WARNING(10), INTERMEDIATE(15), MINOR(20),
CLEARED(25) and None(999).

Internally, a numeric value is used to identify the severity hierarchy. The top three most severe
events are tracked in UTIA.

To modify the 'INTERMEDIATE' severity change the value to INTERMEDIATE: moderate

severity:
 CLEARED: CLEARED
 INDETERMINATE: INDETERMINATE
 CRITICAL: CRITICAL
 MAJOR: MAJOR
 MINOR: MINOR
 WARNING: WARNING

Path Analysis Cost Values
UTIA supports 3 different types of numeric cost values for each edge/connectivity maintained
in topology. The cost type label is configured based on your business requirements and data
available.

You select the cost parameter to evaluate while using path analysis. The cost values are
maintained externally using the REST APIs.

To modify 'costValue3' from Distance to Packet Loss change the value to costValue3:
PacketLoss after updating the data values.

pathAnalysis:
 costType:
 costValue1: Jitter
 costValue2: Latency
 costValue3: Distance

Path Analysis Alarms

Alarms can be used by path analysis to exclude devices in the returned paths. The default
setting is to exclude devices with any alarm.

To allow Minor and Greater alarms modify the setting to:

excludeAlarmTypes: Critical and Greater, Major and Greater

All Paths Limit

To improve the response time, modify the max number of paths returned when using 'All'
Paths.

Topology Consumer

Reduce the Poll size for Retry and dlt Topic

Uncomment or add the configuration values in topology-config.yaml and upgrade the
Topology Consumer service.

Chapter 5
Creating a Unified Topology Instance

5-16

Maximum Poll Interval and Records

Edit max.poll.interval.ms to increase or decrease the delay between invocations of poll()
when using consumer group management and max.poll.records to increase or decrease the
maximum number of records returned in a single call to poll().

mp.messaging:
 incoming:
 toInventoryChannel:
 # max.poll.interval.ms: 300000
 # max.poll.records: 500
 toFaultChannel:
 # max.poll.interval.ms: 300000
 # max.poll.records: 500
 toRetryChannel:
 # max.poll.interval.ms: 300000
 # max.poll.records: 200
 toDltChannel:
 # max.poll.interval.ms: 300000
 # max.poll.records: 100

Partition assignment strategy

The PartitionAssignor is the class that decides which partitions are assigned to which
consumer. While creating a new Kafka consumer, you can configure the strategy that can be
used to assign the partitions amongst the consumers. You can set it using the configuration
partition.assignment.strategy. The partition re-balance (moving partition ownership from one
consumer to another) happens, in case of:

• Addition of new Consumer to the Consumer group.

• Removal of Consumer from the Consumer group.

• Addition of New partition to the existing topic.

To change the partition assignment strategy, update the topology-config.yaml for topology
consumer and redeploy the POD. The below example configuration shows the
CooperativeStickyAssignor strategy. For list of supported partition assignment strategies,
see partition.assignment.strategy in Apache Kafka documentation.

mp.messaging
 connector:
 helidon-kafka:
 partition.assignment.strategy:
org.apache.kafka.clients.consumer.CooperativeStickyAssignor

Integrate Unified Topology Service with Message Bus Service
To integrate Unified Topology API service with Message Bus service:

1. In the file $SPEC_PATH/sr/quick/applications.yaml, uncomment the section
messagingBusConfig.

2. Provide namespace and instance name on which the Messaging Bus service is deployed.

Chapter 5
Creating a Unified Topology Instance

5-17

3. Security protocol is SASL_PLAINTEXT if authentication is enabled on Message bus
service. If authentication is not enabled on the Message Bus service, the security protocol
is PLAINTEXT.

A sample configuration when authentication is enabled and Messaging Bus is deployed on
instance 'quick' and namespace 'sr' is as follows:

applications.yaml

authentication:
 enabled: true

messagingBusConfig:
 namespace: sr
 instance: quick

Creating a Unified Topology Instance
To create a Unified Topology instance in your environment using the scripts that are provided
with the toolkit:

1. Run the following command to create a UTIA instance:

$COMMON_CNTK/scripts/create-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology

The create-applications script uses the helm chart located in $COMMON_CNTK/charts/
unified-topology-app to create and deploy a unified-topology service.

2. If the scripts fail, see the Troubleshooting Issues section at the end of this topic, before you
make additional attempts.

Accessing Unified Topology
Proxy Settings

To set the proxy settings:

1. In the browser's network no-proxy settings include *<hostSuffix>. For example,
*uim.org.

2. In /etc/hosts include etc/hosts

<k8s cluster ip or loadbalancerIP>
<instance>.<project>.topology.<hostSuffix>

for example: <k8s cluster ip or external loadbalancer ip>
quick.sr.topology.uim.org

Exercise Unified Topology service endpoints

If TLS is enabled on Unified Topology, exercise endpoints using Hostname <topology-
instance>.<topology-project>.topology.uim.org.

Unified Topology UI endpoint format: https://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<port>/apps/unified-topology-ui

Chapter 5
Creating a Unified Topology Instance

5-18

Unified Topology API endpoint format: https://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<port>/topology/v2/vertex

• Unified Topology UI endpoint: https://quick.sr.topology.uim.org:30443/apps/unified-
topology-ui

• Unified Topology API endpoint: https://quick.sr.topology.uim.org:30443/topology/v2/vertex

If TLS is not enabled on Unified Topology, exercise endpoints:

Unified Topology UI endpoint format: http://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<port>/apps/unified-topology-ui

Unified Topology API endpoint format: http://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<port>/topology/v2/vertex

Validating the Unified Topology Instance
To validate the UTIA instance:

1. Run the following to check the status of unified-topology instance deployed.

$COMMON_CNTK/scripts/application-status.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a unified-topology

The application-status script returns the status of unified topology service deployments and
pods status.

2. Run the following endpoint to monitor health of unified-topology:

https://<loadbalancerhost>:<loadbalancerport>/unified-topology/health

3. Run the following Unified Topology service endpoints to add entry in /etc/hosts <k8s cluster
ip or external loadbalancer ip> quick.sr.topology.uim.org:

• Unified Topology UI endpoint: https://quick.sr.topology.uim.org:30443/
apps/unified-topology-ui

• Unified Topology API endpoint: https://quick.sr.topology.uim.org:30443/
topology/v2/vertex

Deploying the Graph Server Instance
Graph Server or Pgx Server instance is needed for Path Analysis. By default, replicaCount of
pgx(graph) server pods is set to '0'. For path analysis to function , set the replicaCount of pgx
pods to '2' and upgrade instance. See "Upgrading the UTIA Instance" for more information.

A cron job must be scheduled to periodically reload the active unified-topology-pgx pod.

pgx:
 pgxName: "unified-pgx"
 replicaCount: 2
 java:
 user_mem_args: "-Xms8000m -Xmx8000m -XX:+HeapDumpOnOutOfMemoryError -
XX:HeapDumpPath=/logMount/$(APP_PREFIX)/unified-topology/unified-pgx/"
 gc_mem_args: "-XX:+UseG1GC"
 options:
 resources:

Chapter 5
Deploying the Graph Server Instance

5-19

 limits:
 cpu: "4"
 memory: 16Gi
 requests:
 cpu: 3500m
 memory: 16Gi

Scheduling the Graph Server Restart CronJob
Once the instance is created succesfully, cronjob needs to schedule for unified-topology-pgx
pod restarts. For a scheduled period of time, one of the unified-topology-pgx pod is restarted
and all incoming requests are routed to other unfified-topology-pgx pod seamlessly.

Update the script $COMMON_CNTK/samples/cronjob-scripts/pgx-restart.sh to include required
environment variables - KUBECONFIG, pgx_ns, pgx_instance. For a basic instance, pgx_ns is
sr and pgx_instance is quick.

export KUBECONFIG=<kube config path>
export pgx_ns=<unified-topology project name>
export pgx_instance=<unified-topology instance name>
pgx_pods=`kubectl get pods -n $pgx_ns --sort-by=.status.startTime -o name |
awk -F "/" '{print $2}' | grep $pgx_instance-unified-pgx`
pgx_pod_arr=($pgx_pods)
echo "Deleting pod - ${pgx_pod_arr[0]}"
kubectl delete pod ${pgx_pod_arr[0]} -n $pgx_ns --grace-period=0

The following crontab is scheduled for every day midnight. Scheduled time may vary
depending on the volume of data.

Variable $COMMON_CNTK should be set in environment where cronjob runs or
replace $COMMON_CNTK with complete path.

crontab –e 0 0 * * * $COMMON_CNTK/samples/cronjob-scripts/pgx-restart.sh
> $COMMON_CNTK/samples/cronjob-scripts/pgx-restart.log

Affinity on Graph Server
If multiple PGX pods are scheduled on the same worker node, the memory consumption by
these PGX pods becomes very high. To address this, include the following affinity rule in
applications.yaml, under the unified-topology chart to avoid scheduling of multiple PGX pods
on the same worker node.

The following podantiaffinity rule uses the app= <topology-project>-<topology-instance>-
unified-pgx label. Update the label with the corresponding project and instance names for
UTIA service. For example: sr-quick-unified-pgx.

unified-topology:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In

Chapter 5
Deploying the Graph Server Instance

5-20

 values:
 - <topology-project>-<topology-instance>-unified-pgx
 topologyKey: "kubernetes.io/hostname"

Upgrading the Unified Topology Instance
Upgrading Unified Topology is required when there are updates made to applications.yaml
and topology-static-config.yaml and topology-dynamic-config.yaml configuration files.

Run the following command to upgrade unified topology service.

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -f $COMMON_CNTK/
samples/applications.yaml -a unified-topology

After script execution is done, validate the unified topology service by running application-
status script.

Restarting the Unified Topology Instance
To restart the Unified Topology instance:

1. Run the following command to restart unified topology service

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r all

2. After running the script, validate the unified topology service by running application-status
script.

3. To restart unified-topology-api/unified-topology-ui/unified-pgx, run the above
command by passing -r with service name as follows:

4. To restart Unified Topology API

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r unified-
topology-api

5. To restart Unified Topology PGX

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r unified-pgx

6. To restart Unified Topology UI:

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r unified-
topology-ui

7. To restart Unified Topology Consumer

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r unified-
topology-consumer

Chapter 5
Upgrading the Unified Topology Instance

5-21

Alternate Configuration Options for UTIA
You can configure UTIA using the following alternate options.

Setting up Secure Communication using TLS
When Unified Topology service is involved in secure communication with other systems, either
as the server or as the client, you should additionally configure SSL/TLS.The procedures for
setting up TLS use self-signed certificates for demonstration purposes. However, replace the
steps as necessary to use signed certificates.

To setup secure communication using TLS:

1. Generate keystore by passing commoncert.pem and commonkey.pem generated while
OAM setup for inputs. Provide -name "param".

openssl pkcs12 -export -in $COMMON_CNTK/certs/commoncert.pem -
inkey $COMMON_CNTK/certs/commonkey.pem -out $COMMON_CNTK/certs/
keyStore.p12 -name "topology"

2. Edit the $SPEC_PATH/sr/quick/applications.yaml and set tls enabled to true. Provide tls
strategy to be used either terminate or reencrypt. Tls strategy should be RENCRYPT If
authetication is enabled using OHS service enabled with SSL.

tls:
 # The enabled flag is to enable or disable the TLS support for the
unified topology m-s end points
 enabled: true
 # valid values are TERMINATE, REENCRYPT
 strategy: "REENCRYPT"

Note:

TLS terminate strategy requires ingressTLS secret and TLS reencrypt requires
both ingressTLS and appkeystore secrets to be created.

3. Create IngressTLS secret to pass the generated certificate and key pem files.

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
ingressTLS

4. The script prompts for the following detail:

a. Ingress TLS Certificate Path (PEM file): <path_to_cert.pem>

b. Ingress TLS Key file Path (PEM file): <path_to_key.pem>

Chapter 5
Alternate Configuration Options for UTIA

5-22

5. Create appkeystore secret to pass the generated keystore file.

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
appKeystore

6. The script prompts for the following detail:

• App TLS Keystore Passphrase: <export password value passed while creating
keyStrore.p12 key>

• App TLS Keystore Key Alias: <-name "param" passed while creating keyStore.p12
key>

• App TLS Keystore PrivateKey Path: <path to keyStore.p12>

7. Verify that the following secrets are created successfully.

sr-quick-unified-topology-ingress-tls-cert-secret
sr-quick-unified-topology-keystore

8. Create Unified Topology Instance as usual. Access Topology endpoints using hostname
<topology-instance>.<topology-instance>.topology.uim.org

9. Add entry in /etc/hosts <k8s cluster ip or external loadbalancer ip>
quick.sr.topology.uim.org

10. Unified Topology UI endpoint: https://quick.sr.topology.uim.org:30443/
apps/unified-topology-ui

11. Unified Topology API endpoint: https://quick.sr.topology.uim.org:30443/
topology/v2/vertex

Note:

UTIA supports wild card certificates. You can generate wildCard Certificates with the
hostSuffix value provided in applications.yaml. The default is uim.org.

You must change the subDomainNameSeperator value from period(.) to hyphen(-)
so that the incoming hostnames match the wild card DNS pattern.

Make the following updates to the $SPEC_PATH/project/instance/
applications.yaml file.

#Uncooment and provide the value of subDomainNameSeparator, default
is "."
#Value can be changed as "-" to match wild-card pattern of ssl
certificates.
#Example hostnames for "-" quick-sr-topology.uim.org
subDomainNameSeparator: "-"

Setting up Secure Outgoing Communication using TLS

As part of the secret created under section Creating Secrets for Authentication Server
details,, a truststore is created by adding OAM server certificate. This enables secure
communication between OAM and UTIA applications.

Chapter 5
Alternate Configuration Options for UTIA

5-23

Similarly, to enable secure outgoing communication between the server and UTIA, perform the
steps mentioned in the section Creating Secrets for Authentication Server details.

1. Add server certificates to the truststore.

2. Recreate the secret using Creating Secrets for Authentication Server details.

3. Upgrade the UTIA instance to take the latest truststore from secret. To upgrade UTIA, see
Upgrade Unified Topology Instance section.

For example: To enable SSL outgoing communication from UTIA to UIM on premise
application, Add UIM certificates to the truststore and recreate the secret and upgrade UTIA
application.

Note:

Follow the standard procedure for certificate creation. If UIM Inventory is accessed
using IP address/Hostname of the machine, UIM certificate should contain IP
address/Hostname of the machine as subject alternative name in the certificate.
Sample command for certificate creation along with subject alternative names (Both
the cloud native value and subject alternative names has hostname entry):

openssl req -x509 -newkey rsa:2048 -days 365 -keyout key.pem -out
cert.pem -nodes -subj "/CN=<hostname> /ST=TL /L=HYD /O=ORACLE /
OU=CAGBU" -extensions san -config <(echo '[req]'; echo
'distinguished_name=req'; echo '[san]';echo
'subjectAltName=@alt_names';echo '[alt_names]';echo
'DNS.1=<hostname>';echo 'DNS.2=localhost';echo
'DNS.3=svc.cluster.local';)

Using Annoation-Based Generic Ingress Controller

UTIA supports standard Kubernetes ingress API and has samples for integration. In the
following configuration, the required annotations for UTIA for nginx, are provided.

Any Ingress Controller, which conforms to the standard Kubernetes ingress API and supports
annotations required by UTIA should work, although Oracle does not certify individual Ingress
controllers to confirm this generic compatibility.

To use annotation-based generic ingress controller:

1. Update applications.yaml to provide the following annotations that enable stickiness
through cookies:

Valid values are TRAEFIK, GENERIC
ingressController: "GENERIC"

ingress:
 className: nginx ##provide ingressClassName value, default value for
nginx ingressController is nginx.
 # This annotation is required for nginx ingress controller.
 annotations:
 nginx.ingress.kubernetes.io/affinity: "cookie"
 nginx.ingress.kubernetes.io/affinity-mode: "persistent"

Chapter 5
Alternate Configuration Options for UTIA

5-24

 nginx.ingress.kubernetes.io/session-cookie-name: "nginxingresscookie"
 nginx.ingress.kubernetes.io/proxy-body-size: "50m"

2. To enable SSL REENCRYPT strategy for UTIA, add the applications-specific annotation
under unified-topology tag in applications.yaml as follows:

unified-topology:
 #uncomment and provide applications specific annotations if required,
these will get added to list of annotations specified in common section.
 ingress:
 annotations:
 #following annotation is required if ssl reencrypt strategy is
enabled with nginx
 nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"

Enabling Authentication for UTIA
This section provides you with information on enabling authentication for UTIA.

The samples, for using IDCS as Identity Provider, are packaged with UTIA. To use any Identity
Provider of your choice, you must follow the corresponding configuration instructions.

Registering UTIA in Identity Provider
You can register UTIA as a Confidential application in Identity Provider. To do so:

1. Access the IDCS console and log in as administrator.

2. Navigate to the Domains and select the domain (Default domain) to add Helidon
application as Confidential application.

3. Click Add application to register Helidon application as Confidential application.

a. Choose Confidential Application and click Launch workflow.

b. Enter the name as Unified Topology Application and description as Unified
Topology Application.

c. Select Enforce grants as authorization checkbox under Authentication and
authorization section.

d. Click Next at the bottom of the page.

e. Choose Configure this application as a resource server now radio button under
Resource server configuration.

f. Enter Primary Audience as https://<topology-hostname>:<loadbalancer-port>/.

g. Select Add secondary audience and enter IDCS URL as Secondary audience.

h. Select Add scopes and add utiaScope as allowed scope.

i. Select Configure this application as a client now radio button under the Client
configuration section.

j. Select Resource owner, Client credentials, and Authorization code check boxes.

k. Select Allow HTTP URLs check box only if your UTIA application is not SSL enabled.

l. Enter the following Redirect URLs:

• https://<unified-topology-hostname>:<loadbalancer-port>/topology

Chapter 5
Alternate Configuration Options for UTIA

5-25

• https://<unified-topology-hostname>:<loadbalancer-port>/redirect/unified-topology-
ui/

m. Enter Post-logout redirect URL as https://<topology-hostname>:<loadbalancer-
port>/apps/unified-topology-ui (provide your Helidon application's home page URL).

n. Enter Logout URL as https://<topology-hostname>:<loadbalancer-port>/oidc/
logout (provide your Helidon application's logout URL).

o. (Optional) Select Bypass consent button for skipping the consent page after IDCS
login.

p. Select Anywhere radio button for Client IP address.

q. Click Next and click Finish.

4. Click Activate to create application (Unified Topology Application).

5. Click Activate application from the pop-up window.

6. Click Users on the left side pane to assign users.

a. Click Assign users to add domain users to the registered application.

b. Choose the desired users from the pop-up window and click Assign.

7. (Optional) Click Groups on the left-side pane to assign groups.

a. Click Assign groups to add domain groups to the registered application.

b. Choose the desired groups from the pop-up window and click Assign.

Common Secret and Properties
You create a secret and config map with OAuth client details, which will be required for
Message Bus and UTIA.

Getting Client Credentials
Access the IDCS console and log in as Administrator. To get client credentials:

1. Navigate to Domains and select the domain (Default domain) to add Helidon application
as Confidential application.

2. Click on the Unified Topology Application name from the table.

3. Scroll to view the Client secret under the General Information section.

4. Click Show secret link to open a pop-up window showing the client secret.

5. Copy the link and store it to use in the Helidon application configuration.

Creating the OAuth Secrets and ConfigMap
To create OauthConfig secret with OIDC, see "Adding Common OAuth Secret and
ConfigMap".

The sample for IDCS is as follows:

Client Id: e6e0b2cxxxxxxxxxxxxxx
Client Secret: xxxx-xxxx-xxxx-xxxx
Client Scope: https://quick.sr.topology.uim.org:30443/utiaScope
Client Audience: https://quick.sr.topology.uim.org:30443/
Token Endpoint Uri:https://idcs-
df3***********f64b21.identity.pint.oc9qadev.com:443/oauth2/v1/token

Chapter 5
Alternate Configuration Options for UTIA

5-26

Valid Issue Uri: https://identity.oraclecloud.com/
Introspection Endpoint Uri: https://idcs-
df3***********f64b21.identity.pint.oc9qadev.com:443/oauth2/v1/introspect
JWKS Endpoint Uri: <oauth-jwks-endpoint-uri> : https://idcs-
df3***********f64b21.identity.pint.oc9qadev.com:443/admin/v1/SigningCert/jwk
Certificate File Path: ./identity-pint-oc9qadev-com.pem
Truststore File Path): ./truststore.jks (Note: trustore file should contain
IDP and UIM certificates)
Truststore Password: xxxxxx

Registering Identity Provider for UTIA
You register a OIDC Identity Provider for UTIA.

Creating Secrets for UTIA UI Authentication
The appUIUsers secret stores authentication configuration for UTIA UI.

To create secrets for UTIA UI authentication:

1. Update $COMMON_CNTK/samples/credentials/topology-ui-user-credentials.yaml
with authentication configuration.

security:
 enabled: true
 config.require-encryption: false
 providers:
 - oidc:
 identity-uri: "<oauth-identity-uri>" (Ex. https://idcs-
df3*************f64b21.identity.pint.oc9qadev.com:443)
 client-id: "<oauth-client-id>" (Ex. e6e0b2cxxxxxxxxxxxxxxxxx)
 client-secret: "<oauth-client-secret>" (Ex. xxxx-xxxx-xxxx-xxxx)
 redirect: true
 redirect-uri: "/redirect/unified-topology-ui"
 token-endpoint-auth: CLIENT_SECRET_POST
 audience: "<oauth-client-audience>" (Ex. "")
 base-scopes: "<oauth-client-scope>" (Ex. utiaScope)
 header-use: true
 cookie-name: "OIDC_SESSION"
 cookie-same-site: "LAX"
 logout-enabled: true
 logout-uri: "/oidc/logout"
 logout-endpoint-uri: "<oauth-logout-uri>"
 post-logout-uri: /apps/unified-topology-ui

2. Run the following script to create the appUIUsers secret:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $COMMON_CNTK/samples/applications.yaml -a unified-topology create
appUIUsers

3. Enter the corresponding values as prompted by the system.

4. Provide Topology UI User Credentials for sr-quick.

5. Enter the app credentials file $COMMON_CNTK/samples/credentials/topology-ui-user-
credentials.yaml (provide path to the topology-ui-user-credentials.yaml).

Chapter 5
Alternate Configuration Options for UTIA

5-27

6. Verify if the following secret is created:

sr-quick-unified-topology-ui-user-credentials

The following topology-ui-user-credentials.yaml is a sample file for IDCS:

security:
 enabled: true
 config.require-encryption: false
 providers:
 - oidc:
 identity-uri: "<oauth-identity-uri>" (Ex. <a target="_blank"
href="https://idcs-
df3*************f64b21.identity.pint.oc9qadev.com:443">https://idcs-
df3*************f64b21.identity.pint.oc9qadev.com:443)
 client-id: "<oauth-client-id>" (Ex. e6e0b2cxxxxxxxxxxxxxxxxx)
 client-secret: "<oauth-client-secret>" (Ex. xxxx-xxxx-xxxx-xxxx)
 redirect: true
 redirect-uri: "/redirect/unified-topology-ui"
 token-endpoint-auth: CLIENT_SECRET_POST
 audience: "<oauth-client-audience>" (Ex. "")
 base-scopes: "<oauth-client-scope>" (Ex. utiaScope)
 header-use: true
 cookie-name: "OIDC_SESSION"
 cookie-same-site: "LAX"
 logout-enabled: true
 logout-uri: "/oidc/logout"
 logout-endpoint-uri: "<a target="_blank" href="https://idcs-
df3*****f64b21.identity.oraclecloud.com/oauth2/v1/userlogout"">https://idcs-
df3*****f64b21.identity.oraclecloud.com/oauth2/v1/userlogout"
 post-logout-uri: /apps/unified-topology-ui

Creating Secrets for Authentication on UTIA API
The appUsers secret stores the authentication configuration for UTIA API application.

To create secrets for authentication on UTIA API:

1. Update $COMMON_CNTK/samples/credentials/topology-user-credentials.yaml with
authentication configuration as follows:

security:
 enabled: true
 config.require-encryption: false
 providers:
 - oidc:
 identity-uri: "<oauth-identity-uri>" (Ex. https://idcs-
df3****************f64b21.identity.pint.oc9qadev.com:443)
 client-id: "<oauth-client-id>" (Ex. e6e0b2cxxxxxxxxxxxxxxxxxxxx)
 client-secret: "<oauth-client-secret>" (Ex. xxxx-xxxx-xxxx-xxxx)
 redirect: true
 audience: "<oauth-client-audience>" (Ex. "")
 base-scopes: "<oauth-client-scope>" (Ex. utiaScope)
 redirect-uri: "/topology"
 header-use: true

Chapter 5
Alternate Configuration Options for UTIA

5-28

 cookie-name: "OIDC_SESSION"
 cookie-same-site: "Lax"

2. Run the following script to create the appUIUsers secret:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $COMMON_CNTK/sr/quick/applications.yaml -a unified-topology create
appUsers

3. Enter the corresponding values as prompted by the system.

4. Provide App User Credentials for sr-quick.

5. Enter the app credentials file $COMMON_CNTK/samples/credentials/topology-user-
credentials.yaml (provide path to the topology-user-credentials.yaml).

6. Verify if the following secret is created:

sr-quick-unified-topology-user-credentials

The following topology-user-credentials.yaml is a sample file for IDCS:

 security:
 enabled: true
 config.require-encryption: false
 providers:
 - oidc:
 identity-uri: "<oauth-identity-uri>" (Ex. https://idcs-
df3****************f64b21.identity.pint.oc9qadev.com:443)
 client-id: "<oauth-client-id>" (Ex. e6e0b2cxxxxxxxxxxxxxxxxxxxx)
 client-secret: "<oauth-client-secret>" (Ex. xxxx-xxxx-xxxx-xxxx)
 redirect: true
 audience: "<oauth-client-audience>" (Ex. "")
 base-scopes: "<oauth-client-scope>" (Ex. utiaScope)
 redirect-uri: "/topology"
 header-use: true
 cookie-name: "OIDC_SESSION"
 cookie-same-site: "Lax"

Choosing Worker Nodes for Unified Topology Service
By default, Unified Topology has its pods scheduled on all worker nodes in the Kubernetes
cluster in which it is installed. However, in some situations, you may want to choose a subset
of nodes where pods are scheduled.

For example:

Limitation on the deployment of Unified Topology on specific worker nodes per each team for
reasons such as capacity management, chargeback, budgetary reasons, and so on.

To choose a subset of nodes where pods are scheduled, you can use the configuration in the
applications.yaml file.

Sample node affinity configuration(requiredDuringSchedulingIgnoredDuringExecution) for
unified topology service:

Chapter 5
Alternate Configuration Options for UTIA

5-29

applications.yaml

unified-topology:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: name
 operator: In
 values:
 - south_zone

Kubernetes pod is scheduled on the node with label name as south_zone. If node with label
name: south_zone is not available, pod will not be scheduled.

Sample node affinity configuration (preferredDuringSchedulingIgnoredDuringExecution:) for
unified topology service:

applications.yaml

unified-topology:
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: name
 operator: In
 values:
 - south_zone

Kubernetes pod is scheduled on the node with label name as south_zone. If node with label
name: south_zone is not available, pod will still be scheduled on another node.

Setting up Persistent Storage
Follow the instructions mentioned in UIM Cloud Native Deployment guide for configuring
Kubernetes persistent volumes.

To create persistent storage:

1. Update applications.yaml to enable storage volume for unified topology service and
provide the persistent volume name.

storageVolume:
 enabled: true
 pvc: sr-nfs-pvc #Specify the storage-volume name

2. Update database.yaml to enable storage volume for unified topology dbinstaller and
provide the persistent volume name.

storageVolume:
 enabled: true

Chapter 5
Alternate Configuration Options for UTIA

5-30

 type: pvc
 pvc: sr-nfs-pvc #Specify the storage-volume name

After the instance is created, you must see the directories unified-topology and unified-
topology-dbinstaller in your PV mount point, if you have enabled logs.

Managing Unified Topology Logs
To customize and enable logging, update the logging configuration files for the application.

1. Customize unified-topology-api service logs:

• For service level logs update file $COMMON_CNTK/charts/unified-topology-app/
charts/unified-topology/config/topology-api/logging-config.xml

• For Helidon-specific logs update file $COMMON_CNTK/charts/unified-topology-app/
charts/unified-topology/config/topology-api/logging.properties. By default console
handler is used, you can provide filehandler as well uncomment below lines and
provide <project> and <instance> names for location to save logs

handlers=io.helidon.common.HelidonConsoleHandler,java.util.logging.FileH
andler
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatte
r
java.util.logging.FileHandler.pattern=/logMount/sr-quick/unified-
topology/unified-topology-api/logs/TopologyJULMS-%g-%u.log

2. Customize unified-topology-pgx service logs:
Update file $COMMON_CNTK/charts/unified-topology-app/charts/unified-topology/
config/pgx/logging-config.xml

3. Customize unified-topology-ui service logs:
Update file $COMMON_CNTK/charts/unified-topology-app/charts/unified-topology/config/
topology-ui/logging.properties

4. Update the logging configuration files and upgrade the unified-topology m-s application:

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -f $SPEC_PATH/
applications.yaml -a unified-topology

Viewing Logs using Elastic Stack
You can view and analyze the Unified Topology service logs using Elastic Stack.

The logs are generated as follows:

• Fluentd collects the text logs that are generated during Unified Topology deployment and
sends them to Elasticsearch.

• Elasticsearch collects all types of logs and converts them into a common format so that
Kibana can read and display the data.

• Kibana reads the data and presents it in a simplified view.

See "Setting Up Elastic Stack" for more information.

Setting Up Elastic Stack
To set up Elastic Stack:

Chapter 5
Alternate Configuration Options for UTIA

5-31

1. Install Elasticsearch and Kibana using the following commands:

#Install elasticsearch and kibana . It might take time to download images
from docker hub.
kubectl apply -f $COMMON_CNTK/samples/charts/elasticsearch-and-kibana/
elasticsearch_and_kibana.yaml

#Check if services are running, append namespace if deployment is other
than default like:- kubectl get services --all-namespaces
kubectl get services

Access kibana dashboard

Method 1 - kubectl get svc (will return all the services , append
namespace if deployment is other than default like:- kubectl get services
--all-namespaces)

Ex- elasticsearch ClusterIP 10.96.190.99 <none> 9200/
TCP,9300/TCP 113d
 kibana NodePort 10.100.198.88 <none>
5601:31794/TCP 113d

Kibana service nodeport at port 31794 is created

Now access kibana dashboard using url - http://<IP address of
VM>:<nodeport>/

2. Run the following command to create a namespace ensuring that it does not already exist.

kubectl get namespaces
export FLUENTD_NS=fluentd
kubectl create namespace $FLUENTD_NS

3. Update $COMMON_CNTK/samples/charts/fluentd/values.yaml with Elastic Search Host
and Port.

elasticSearch:
 host: "elasticSearchHost"
 port: "elasticSearchPort"

For example:

elasticSearch:
 host: "elasticsearch.default.svc.cluster.local"
 port: "9200"

4. Modify the Fluentd image resources if required.

image: fluent/fluentd-kubernetes-daemonset:v1-debian-elasticsearch
 resources:
 limits:
 memory: 200Mi
 requests:

Chapter 5
Alternate Configuration Options for UTIA

5-32

 cpu: 100m
 memory: 200Mi

5. Run the following commands to install fluentd-logging using the $COMMON_CNTK/
samples/charts/fluentd/values.yaml file in the samples:

helm install fluentd-logging $COMMON_CNTK/samples/charts/fluentd -
n $FLUENTD_NS --values $COMMON_CNTK/samples/charts/fluentd/values.yaml \
--set namespace=$FLUENTD_NS \
--atomic --timeout 800s

6. Run the following command to upgrade fluentd-logging:

helm upgrade fluentd-logging $COMMON_CNTK/samples/charts/fluentd -
n $FLUENTD_NS --values $COMMON_CNTK/samples/charts/fluentd/values.yaml \
 --set namespace=$FLUENTD_NS \
 --atomic --timeout 800s

7. Run the following command to uninstall fluentd-logging:

helm delete fluentd-logging -n $FLUENTD_NS

8. Use 'fluentd_logging-YYYY.MM.DD' (default index configuration) index pattern in Kibana to
check the logs.

Visualize logs in Kibana

To visualize logs in Kibana:

1. Navigate to Kibana dashboard (http://<IP address of VM>:<nodeport>/).

2. Create Index pattern (fluentd_looging-YYYY.MM.DD).

3. Click on Discover.

Viewing Logs using OpenSearch
You can view and analyze the Application logs using OpenSearch.

The logs are generated as follows:

1. Fluentd collects the application logs that are generated during cloud native deployments
and sends them to OpenSearch.

2. OpenSearch collects all types of logs and converts them into a common format so that
OpenSearch Dashboard can read and display the data.

3. OpenSearch Dashboard reads the data and presents it in a simplified view.

See "Setting Up OpenSearch" for more information.

Managing Unified Topology Metrics
Run the following endpoint to monitor metrics of unified topology:

https://<loadbalancerhost>:<loadbalancerport>/sr/quick/unified-topology/
metrics

Chapter 5
Alternate Configuration Options for UTIA

5-33

Prometheus and Grafana setup

See "Setting Up Prometheus and Grafana" for more information.

Adding scrape Job in Prometheus

Add the following Scrape job in Prometheus Server. This can be added by editing the config
map used by the Prometheus server:

- job_name: 'topologyApiSecuredMetrics'
 oauth2:
 client_id: <client-id>
 client_secret: <client-secret>
 scopes:
 - <Scope>
 token_url: <OAUTH-TOKEN-URL>
 tls_config:
 insecure_skip_verify: true
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
 action: keep
 regex: true
 - source_labels: [__meta_kubernetes_pod_label_app]
 action: keep
 regex: (<project>-<instance>-unified-topology-api)
 - source_labels: [__meta_kubernetes_pod_container_port_number]
 action: keep
 regex: (8080)
 - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: kubernetes_namespace
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: kubernetes_pod_name

Note:

If Authentication is not enabled on Unified Topology, remove oauth section from
above mentioned job.

Chapter 5
Alternate Configuration Options for UTIA

5-34

Allocating Resources for Unified Topology Service Pods
To increase performance of the service, applications.yaml has configuration to provide JVM
memory settings and pod resources for Unified Topology Service.

There are separate configurations provided for topology-api, topology-consumer, pgx and
topology-ui services. Provide required values under the service name under unified-topology
application.

unified-topology:
 topologyApi:
 apiName: "unified-topology-api"
 replicaCount: 3
 java:
 user_mem_args: "-Xms2000m -Xmx2000m -XX:+HeapDumpOnOutOfMemoryError -
XX:HeapDumpPath=/logMount/$(APP_PREFIX)/unified-topology/unified-topology-
api/"
 gc_mem_args: "-XX:+UseG1GC"
 options:
 resources:
 limits:
 cpu: "2"
 memory: 3Gi
 requests:
 cpu: 2000m
 memory: 3Gi

Scaling Up or Scaling Down the Unified Topology Service
Provide replica count in applications.yaml to scale up or scale down the unified topology
pods. Replica count can be configured for topology-api, topology-consumer, pgx and topology-
ui pods individually by updating applications.yaml.

Update applications.yaml to increase replica count to 3 for topology-api deployment.

unified-topology:
 topologyApi:
 replicaCount: 3

Apply the change in replica count to the running Helm release by running the upgrade-
applications script.

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a unified-topology

Enabling GC Logs for UTIA
By default, GC logs are disabled, you can enable them and view the logs at the corresponding
folders inside location /logMount/sr-quick/unified-topology.

To Enable GC logs, update $SPEC_PATH/sr/quick/applications.yaml file as follows:

Chapter 5
Alternate Configuration Options for UTIA

5-35

1. Under gcLogs make enabled as true you can uncomment gcLogs options under
unified-topology to override the common values.

2. To configure the maximum size of each file and limit for number of files you need to set
fileSize and noOfFiles inside gcLogs as follows:

gcLogs:
 enabled: true
 fileSize: 10M
 noOfFiles: 10

Geo Redundancy Support
The Geo Redundancy of Message Bus (which uses Kafka) is achieved with Mirror Maker tool.
Apache Kafka Mirror Maker replicates data across two Kafka clusters, within or across data
centers. See https://strimzi.io/blog/2020/03/30/introducing-mirrormaker2/ for more details.

The following diagram shows an example of how mirror maker replicates the topics from
source Kafka cluster to target Kafka cluster.

The prerequisites are as follows:

• The Strimzi operator should be up and running

• The source Message Bus service should be up and running

• The target Message Bus service should be up and running

Strimzi Operator

Validate that the Strimzi operator is installed by running the following command:

$kubectl get pod -n <STRIMZI_NAMESPACE>

NAME READY STATUS RESTARTS AGE
strimzi-cluster-operator-566948f58c-sfj7c 1/1 Running
0 6m55s

Chapter 5
Geo Redundancy Support

5-36

https://strimzi.io/blog/2020/03/30/introducing-mirrormaker2/

Validate installed helm release for Strimzi operator by running the following command:

$helm list -n <STRIMZI_NAMESPACE>

NAME NAMESPACE REVISION STATUS
CHART APP VERSION
strimzi-operator STRIMZI_NAMESPACE 1 deployed
strimzi-kafka-operator-0.X.0 0.X.0

Source Message Bus

The source Message Bus should be up and running (the Kafka cluster from which the topics
should be replicated).

Validate the Kafka cluster is installed by running the following command:

$kubectl get pod -n sr1

 NAME READY STATUS
RESTARTS AGE
 sr1-quick1-messaging-entity-operator-5f9c688c7-2jcjg 3/3 Running
0 27h
 sr1-quick1-messaging-kafka-0 1/1 Running
0 27h
 sr1-quick1-messaging-zookeeper-0 1/1 Running
0 27h

Validate the persistent volume claims created for the Kafka cluster by running the following
command:

$kubectl get pvc -n sr1

NAME STATUS
VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
data-sr1-quick1-messaging-kafka-0 Bound <volume> 1Gi
RWO sc 27h
data-sr1-quick1-messaging-zookeeper-0 Bound <volume> 1Gi
RWO sc

Target Message Bus

The target Message Bus should be up and running (the Kafka cluster to which the topics
should be replicated).

Validate the Kafka cluster is installed by running the following command:

$kubectl get pod -n sr2

 NAME READY STATUS
RESTARTS AGE
 sr2-quick2-messaging-entity-operator-5f9c688c7-2jcjg 3/3 Running
0 27h
 sr2-quick2-messaging-kafka-0 1/1 Running
0 27h

Chapter 5
Geo Redundancy Support

5-37

 sr2-quick2-messaging-zookeeper-0 1/1 Running
0 27h

Validate the persistent volume claims created for the Kafka cluster by running the following
command:

$kubectl get pvc -n <kafka target namespace>`

NAME STATUS
VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
data-sr2-quick2-messaging-kafka-0 Bound <volume> 1Gi
RWO sc 27h
data-sr2-quick2-messaging-zookeeper-0 Bound <volume> 1Gi
RWO sc 27h

Installing and configuring Mirror Maker 2.0

A sample is provided at $COMMON_CNTK/samples/messaging/kafka-mirror-maker.

Disaster Recovery Support
A minimum of two pods is required for a service to be highly available. They should be on
different worker nodes (Kubernetes can schedule the pods on different nodes using pod anti-
affinity). If one node goes down, it takes out the corresponding pod, leaving the other pod(s) to
handle the requests until the downed pod can be rescheduled. When a worker node goes
down, the PODs running on that worker node will be rescheduled on other available worker
nodes.

For DB High Availability we can use the Oracle Real Application Clusters (RAC) to run a single
Oracle Database across multiple servers in order to maximize availability and enable horizontal
scalability.

Disaster Recovery across Data Centers
The disaster recovery when the data center completely goes down is maintained with another
passive data center.

Figure 5-2 documents the disaster recovery plan for the data center. A parallel passive data
center is maintained, where the runtime data is periodically replicated from the active data
center to the passive data center. In the event of any catastrophic failures in the primary (or
active) data center, the load must be switched to secondary (or passive) data center. Before
switching the load to secondary data center, you should shutdown all the services in the
primary data center and start all the services in the secondary data center.

Chapter 5
Disaster Recovery Support

5-38

Figure 5-2 Disaster Recovery Plan for Data Center

About Switchover and Failover
The purpose of a geographically redundant deployment is to provide resiliency in the event of a
complete loss of service in the primary site, due to a natural disaster or other unrecoverable
failure in the primary UIM site. This resiliency is achieved by creating one or more passive
standby sites that can take the load when the primary site becomes unavailable. The role
reversal from the standby site to the primary site can be accomplished in any of the following
ways:

• Switchover, in which the operator performs a controlled shutdown of the primary site
before activating the standby site. This is primarily intended for planned service
interruptions in the primary UIM site. Following a switchover, the former primary site

Chapter 5
Disaster Recovery Support

5-39

becomes the standby site. The site roles of primary site and standby site can be restored
by performing a second switchover operation, which is switchback.

• Failover, in which the primary site becomes unavailable due to unanticipated reasons and
cannot be recovered. The operator then transitions the standby site to the primary role.
The primary site that is down cannot act as a standby site and will require reconstruction of
the database as a standby database before restoring the site roles.

About Kafka Mirror Maker
Kafka's Mirror Maker functionality makes it possible to maintain a replica of an existing Kafka
cluster (which is used in Message Bus service). This mirrors a source Kafka cluster into a
target (mirror) Kafka cluster. To use this mirror, it is a requirement that the source and target
Kafka clusters (that is, Message Bus service) are up and running. If the target Kafka cluster is
down or offline, we cannot mirror into the target cluster.

Oracle Data Guard

Oracle Data Guard is responsible for replicating transactions from the Active DB to the
Standby DB. It is included as a part of every Oracle DB Enterprise Edition installation.

Note:

When using multi-tenant databases involving CDBs and PDBs with Data Guard, the
replication happens at the CDB level. This means all the PDBs from the active CDB
will be replicated over to the standby CDB and also, the commands to enable Data
Guard must be run at the CDB level.

Installation and Configuration
If UTIA is disabled in UIM Cloud Native then it is not required to deploy Message Bus, UTIA
and Mirror Maker Services in the clusters. These commands are intended to be used as
samples. For detailed documentation on deploying UIM, see UIM Cloud Native Deployment
Guide.

Setting up the Primary (active) Instance
To set up the primary (active) instance:

1. Provision Databases one for the primary site and another for the secondary site.

2. Set up Data Guard between primary site and secondary site. Primary site should be in
ACTIVE role. Secondary site should be in STANDBY role. Refer to Oracle 19c
Documentation.

3. Deploy UIM Cloud Native.

a. Create image pull secrets (if required).

b. Create UIM secrets for WLS admin, OPSS, WLS RTE, RCU DB and UIM DB.

Chapter 5
Disaster Recovery Support

5-40

https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html

Note:

uimprimary here refers to the Kubernetes namespace where the primary
instance will be deployed. Replace this with the desired namespace.

$UIM_CNTK/scripts/manage-instance-credentials.sh -p uimprimary -i dr
create wlsadmin,opssWP,wlsRTE,rcudb,uimdb

c. Create Weblogic encrypted password.

$UIM_CNTK/scripts/install-uimdb.sh -p uimprimary -i dr -s $SPEC_PATH -c
8

d. Create UIM users secrets.

$UIM_CNTK/samples/credentials/manage-uim-credentials.sh -p uimprimary -
i dr -c create -f "/home/spec_dir/users.txt"

e. Create DB schemas.

$UIM_CNTK/scripts/install-uimdb.sh -p uimprimary -i dr -s $SPEC_PATH -c
1
$UIM_CNTK/scripts/install-uimdb.sh -p uimprimary -i dr -s $SPEC_PATH -c
2

f. Create UIM instance.

$UIM_CNTK/scripts/create-ingress.sh -p uimprimary -i dr -s $SPEC_PATH
$UIM_CNTK/scripts/create-instance.sh -p uimprimary -i dr -s $SPEC_PATH

g. Add UIM user roles.

$UIM_CNTK/samples/credentials/assign-role.sh -p uimprimary -i dr -f uim-
users-roles.txt

4. Deploy Message Bus.

$COMMON_CNTK/scripts/create-applications.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a messaging-bus

5. Deploy UTIA:

a. Create Topology DB secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology
create database

Chapter 5
Disaster Recovery Support

5-41

b. Create Topology UIM secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology
create uim

c. Create Topology users:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology
create appUsers

d. Create Topology UI users:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology
create appUIUsers

e. Create DB schemas:

$COMMON_CNTK/scripts/install-database.sh -p uimprimary -i dr -
f $SPEC_PATH/<proejct>/<instance>/database.yaml -a unified-topology -c 1

f. Deploy Topology:

$COMMON_CNTK/scripts/create-applications.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology

See "Deploying Unified Operations Message Bus" for deploying Message Bus, "Deploying the
Unified Topology for Inventory and Automation Service" for deploying UTIA.

See UIM Cloud Native Deployment Guide for deploying UIM.

Setting up the Secondary (standby) Instance
To set up the secondary (standby) instance:

1. Perform switchover operation on active (primary site) DB. Now secondary site DB should
be in ACTIVE role and primary site DB should be in PASSIVE role. Refer to Oracle 19c
Documentation.

2. Deploy UIM Cloud Native:

a. Export OPSS wallet file secret from primary instance and recreate in secondary
instance.

Note:

Where, uimsecondary refers to the Kubernetes namespace where the
secondary instance will be deployed. Replace this with the desired
namespace.

kubectl -n uimprimary get configmap uimprimary-dr-weblogic-domain-
introspect-cm -o jsonpath='{.data.ewallet\.p12}' > ./primary_ewallet.p12

Chapter 5
Disaster Recovery Support

5-42

https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html

$UIM_CNTK/scripts/manage-instance-credentials.sh -p uimsecondary -i dr
create opssWF

b. (Optional) Create image pull secrets.

c. Create UIM secrets for WLS admin, OPSS, WLS RTE, RCU DB and UIM DB:

$UIM_CNTK/scripts/manage-instance-credentials.sh -p uimsecondary -i
quick create wlsadmin,opssWP,wlsRTE,rcudb,uimdb

d. Create Weblogic encrypted password:

$UIM_CNTK/scripts/install-uimdb.sh -p uimsecondary -i dr -s $SPEC_PATH -
c 8

e. Create UIM users secrets:

$UIM_CNTK/samples/credentials/manage-uim-credentials.sh -p uimsecondary
-i dr -c create -f "/home/spec_dir/users.txt"

f. Create UIM instance:

$UIM_CNTK/scripts/create-ingress.sh -p uimsecondary -i dr -s $SPEC_PATH
$UIM_CNTK/scripts/create-instance.sh -p uimsecondary -i dr -s $SPEC_PATH

g. Add UIM user roles:

$UIM_CNTK/samples/credentials/assign-role.sh -p uimsecondary -i dr -f
uim-users-roles.txt

3. Deploy message bus:

$COMMON_CNTK/scripts/create-applications.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a messaging-bus

4. Deploy UTIA:

a. Create Topology DB secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-
topology create database

b. Create Topology UIM secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-
topology create uim

c. Create Topology users:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-
topology create appUsers

Chapter 5
Disaster Recovery Support

5-43

d. Create Topology UI users:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-
topology create appUIUsers

e. Deploy Topology:

$COMMON_CNTK/scripts/create-applications.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology

5. Deploy Mirror Maker. See "Installing and Configuring Mirror Maker 2.0" for more
information.

6. After the secondary instance has been setup, switchover back to the primary (active) site.

Switchover Sequence
To perform a switchover between site A (active) and site B (standby):

1. Bring down instances in site A. These include UIM and UTIA. Message Bus must be
enabled to perform the replication using Mirror Maker.

#Disable topology
$COMMON_CNTK/scripts/delete-applications.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology
#Disable UIM
$UIM_CNTK/scripts/delete-instance.sh -p uimprimary -i dr -s $SPEC_PATH

2. Perform switchover on DB. Site B DB will now become Primary. Site B DB will assume
Standby role. Refer to Oracle 19c Documentation.

3. Bring up instances in site B. This includes UIM and UTIA. Message Bus should already be
active:

#EnableUIM
$UIM_CNTK/scripts/create-instance.sh -p uimsecondary -i dr -s $SPEC_PATH
#Enable topology
$COMMON_CNTK/scripts/create-applications.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology

4. Perform DNS switching to route all traffic to site B.

Failover Sequence
In case of any irrecoverable failure in the primary site, perform a failover operation on the
standby site. To do so:

1. Perform failover on DB. Standby (secondary) DB will now become Primary. Primary site
DB will assume Deactivated Standby role. Refer to Oracle 19c Documentation.

2. Bring up instances in standby. This includes UIM and Topology. Message Bus should
already be active:

#EnableUIM
$UIM_CNTK/scripts/create-instance.sh -p uimsecondary -i dr -s $SPEC_PATH
#Enable topology

Chapter 5
Disaster Recovery Support

5-44

https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html

$COMMON_CNTK/scripts/create-applications.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology

3. Perform DNS switching to route all traffic to secondary instances.

Once the primary site to restored, establish a synchronization between secondary and primary
site. To do so:

1. Bring up Message Bus and DB in primary site:

#Enable message bus
$COMMON_CNTK/scripts/create-applications.sh -p uimprimary-i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a messaging-bus

2. Setup Kafka Mirror Maker with secondary Message Bus as source and primary Message
Bus as target. See "About Kafka Mirror Maker" for more information.

3. Switch primary DB role from Deactivated Standby → Standby. See "Deploying Unified
Operations Message Bus" for more information.

As the synchronization between secondary and primary site is established, perform a
switchover to the primary site. To do so:

1. Bring up UIM in primary site:

$UIM_CNTK/scripts/create-instance.sh -p uimprimary -i dr -s $SPEC_PATH

2. Bring up Topology in primary site:

$COMMON_CNTK/scripts/create-applications.sh -p uimprimary-i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology

3. Perform DNS switching to route all traffic to primary instances.

4. Bring down instances in secondary site. This includes UIM and Topology. Message Bus
should remain active for Kafka Mirror Maker synchronization:

#Disable topology
$COMMON_CNTK/scripts/delete-applications.sh -p uimsecondary-i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology
#Disable UIM
$UIM_CNTK/scripts/delete-instance.sh -p uimsecondary -i dr -s $SPEC_PATH

Debugging and Troubleshooting
Common Problems and Solutions

• Unified Topology DBInstaller pod is not able to pull the dbinstaller image.

NAME READY STATUS
RESTARTS AGE
project-instance-unifed-topology-dbinstaller 0/1 ErrImagePull
0 5s

OR

NAME READY STATUS

Chapter 5
Debugging and Troubleshooting

5-45

RESTARTS AGE
project-instance-unifed-topology-dbinstaller 0/1 ImagePullBackOff
0 45s

To resolve this issue

1. Verify that the image name and the tag provided in database.yaml for unified-topology-
dbinstaller and that it is accessible from the repository by the pod.

2. Verify that the image is copied to all worker nodes.

3. If pulling image from a repository, verify the image pull policy and image pull secret in
database.yaml for unified-topology-dbinstaller.

• Unified Topology API, PGX and UI pod is not able to pull the images.

To resolve this issue

1. Verify that the image names and the tags are provided in applications.yaml for
unified-topology and that it is accessible from the repository by the pod.

2. Verify that the image is copied to all worker nodes

3. If pulling image from a repository, verify the image pull policy and image pull secret in
applications.yaml for UTIA service.

• Unified Topology pods are in crashloopbackoff state.

To resolve this issue, describe the Kubernetes pod and find the cause for the issue. It
could be because of missing secrets.

• Unified Topology API pod did not come up.

NAME READY STATUS
RESTARTS AGE
project-instance-unifed-topology-api 0/1 Running 0 5s

To resolve this issue, verify that the Message Bus bootstrap server provided in topology-
static-config.yaml is a valid one.

Test Connection to PGX server

To troubleshoot PGX service, connect to pgx service using graph client by running the
following command.

Connect to pgx service endpoint http://<LoadbalancerIP>:<LoadbalancerPort>/<topology-
project>/<topology-instance>/pgx by providing pgx client user credentials.

C:\TopologyService\oracle-graph-client-22.1.0\oracle-graph-
client-22.1.0\bin>opg4j -b http://<hostIP>:30305/sr/quick/pgx -u
<PGX_CLIENT_USER>

password:<PGX_CLIENT_PASSWORD>
For an introduction type: /help intro
Oracle Graph Server Shell 22.1.0
Variables instance, session, and analyst ready to use.

Chapter 5
Debugging and Troubleshooting

5-46

Fallout Events Resolution
The TOPOLOGY_FALLOUT_EVENTS table in the UTIA schema, persists the failed events
from the Dead-Letter-Topic (that is: ora-dlt-topology) for further analysis and re-processing.
The data between UIM and UTIA can go out of sync when UIM application fails to send
topology events to message-bus and UIM transaction is committed. It can also happen when
topology is disabled in UIM temporarily and re-enabled, or when the UTIA is consuming events
at a much slower rate than that of the rate at which UIM is producing events. These lead to
UTIA data being out of sync with that of the UIM, hence resulting in failed events eventually.

These failed events in the TOPOLOGY_FALLOUT_EVENTS table can be rebuilt and
resubmitted. When a fallout event comes into the table it’s in “PENDING” state. These events
can be Rebuilt or Resubmitted as follows:

• REBUILD: This action processes the Fallout Event and gets any out of sync data from UIM
into UTIA via the Database Link.

• RESUBMIT: This action takes the events from the TOPOLOGY_FALLOUT_EVENTS table
in “PENDING” or “READY_TO_RESUBMIT” states and moves them back into the
“ora_uim_topology” topic to be re-processed.

The following figure illustrates the fallout events resolution process flow.

Figure 5-3 Process Flow of Fallout Events Resolution

Prerequisites for REBUILD

• Before Rebuild is performed, the UTIA Schema user should have the following privileges:

– CREATE JOB

– ALTER SYSTEM

– CREATE DATABASE LINK

Chapter 5
Fallout Events Resolution

5-47

• Ensure a Database Link exists from UTIA schema to UIM schema with the name
“REM_SCHEMA” (that is, UTIA schema user should be able to access objects from UIM
schema). For more information, see https://docs.oracle.com/en/database/oracle/oracle-
database/19/sqlrf/CREATE-DATABASE-LINK.html#GUID-D966642A-
B19E-449D-9968-1121AF06D793

Performing REBUILD Action

You can perform the Rebuild action in the following ways:

• DBMS Job Scheduling: In this approach the REBUILD action on the Fallout Events in
“PENDING” state is scheduled to run for every 6 hours. The frequency at which the job
runs automatically can be configured by changing the repeat_interval.

BEGIN
 DBMS_SCHEDULER.create_job (
 job_name => 'FALLOUT_DATA_REBUILD',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN
PKG_FALLOUT_CORRECTION.SCHEDULE_FALLOUT_JOBS(commitSize => 1000, cpusJobs
=> 4, waitTime => 2); END;',
 start_date => SYSTIMESTAMP,
 repeat_interval => 'FREQ=HOURLY; INTERVAL=6',
 enabled => TRUE
);
END;
/

• On-Demand REST API Call: In this approach the REBUILD action on the Fallout Events
in “PENDING” state is invoked via the REST API. Before invoking the Rebuild API.

– POST - fallout/events/rebuild – To rebuild the Fallout Events on demand as and
whenever required.

– DELETE - fallout/events/scheduledJobs – To drop any running or previously scheduled
jobs.

Performing RESUBMIT Action

Resubmit Action is performed through a REST call and it takes the fallout events in
“READY_TO_RESUBMIT” (post Rebuild) and “PENDING” states based on the query
parameters and pushed the events into the “ora_uim_topology” topic:

POST - fallout/events/resubmit – To resubmit the Fallout Events on demand.

For more information on APIs available, see UTIA REST API Guide.

Deleting and Recreating a Unified Topology Instance
• Run the following command to delete the Unified Topology service:

$COMMON_CNTK/scripts/delete-applications.sh -p sr -i quick -f $COMMON_CNTK/
samples/applications.yaml -a unified-topology

Chapter 5
Deleting and Recreating a Unified Topology Instance

5-48

https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/CREATE-DATABASE-LINK.html#GUID-D966642A-B19E-449D-9968-1121AF06D793
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/CREATE-DATABASE-LINK.html#GUID-D966642A-B19E-449D-9968-1121AF06D793
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/CREATE-DATABASE-LINK.html#GUID-D966642A-B19E-449D-9968-1121AF06D793

• Run the following command to delete the Unified Topology schema:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $COMMON_CNTK/
samples/database.yaml -a unified-topology -c 2

• Run the following command to create the Unified Topology schema:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $COMMON_CNTK/
samples/database.yaml -a unified-topology -c 1

• Run the following command to create the Unified Topology service:

$COMMON_CNTK/scripts/create-applications.sh -p sr -i quick -f $COMMON_CNTK/
samples/applications.yaml -a unified-topology

UTIA Support for Offline Maps
UTIA support for map visualization is provided by the third-party service providers such as
Open Street Maps (OSM), MapBox, Carto, Esri, and Web Map Service (WMS).

UTIA integrates with these service providers and they provide the required components and
computing resources, so that you can avoid setting up and maintaining a local tile server.

Oracle offers the following options to support offline maps:

• Allowlisting map URLs

• Setting up a local tile server

Allowlisting Map URLs
In highly secured installations, you may not provide internet access to the location. In such
situations, Oracle recommends using an allowlist solution so the base maps can include the
streets, cities, buildings, and so on.

For the map tiles to render, allowlist the following URLs:

• Tile 1:

– http://a.tile.openstreetmap.org/11/472/824.png

– http://b.tile.openstreetmap.org/11/472/825.png

– http://c.tile.openstreetmap.org/11/472/825.png

• Tile 2:

– http://a.tiles.mapbox.com/v4/mapbox.satellite/10/236/412@2x.png?
access_token=pk.eyJ1IjoidzhyIiwiYSI6ImNpeGhwaXF1ejAwMHQydG8yZ3pyanZ5aTki
fQ.QNScWNGnLRHIHXeAsGMvyw

– http://b.tiles.mapbox.com/v4/mapbox.satellite/10/235/411@2x.png?
access_token=pk.eyJ1IjoidzhyIiwiYSI6ImNpeGhwaXF1ejAwMHQydG8yZ3pyanZ5aTki
fQ.QNScWNGnLRHIHXeAsGMvyw

– http://c.tiles.mapbox.com/v4/mapbox.satellite/10/236/411@2x.png?
access_token=pk.eyJ1IjoidzhyIiwiYSI6ImNpeGhwaXF1ejAwMHQydG8yZ3pyanZ5aTki
fQ.QNScWNGnLRHIHXeAsGMvyw

• Tile 3:

Chapter 5
UTIA Support for Offline Maps

5-49

– http://a.basemaps.cartocdn.com/light_all/10/235/412@2x.png

– http://b.basemaps.cartocdn.com/light_all/10/235/412@2x.png

– http://c.basemaps.cartocdn.com/light_all/10/235/412@2x.png

• Tile 4:

– http://a.basemaps.cartocdn.com/dark_all/10/236/413@2x.png

– http://b.basemaps.cartocdn.com/dark_all/10/236/413@2x.png

– http://c.basemaps.cartocdn.com/dark_all/10/236/413@2x.png

• Tile 5: http://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer/
tile/10/412/235

• Tile 6: http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/
tile/10/412/236

Setting Up a Local Tile Server
To set up a local tile server, you must deploy the prepared tile files on a local server. Every file
must have its direct link: http://tileserver.com/{z}/{y}/{x}. This format allows getting the
required response for the request http://tileserver.com/{z}/{x}/{y}.png.

Contact your system administrator to install, deploy, and run your own tile server. The
configuration process is dependent on the tile server you choose to implement. The tile server
requires high computing power and requires operations support and maintenance.

The tile server is responsible for caching the tiles, sharing the load, and processing the request
queue at regular intervals.

You can consider some options available in the market such as MapTiler, QGIS, Switch2OSM,
ArcGis Enterprise, and so on.

After you set up the tile server and a successful deployment, you can access the map tiles
through APIs in the format: http://{hostname}:{port}/{baseUrl}/{z}/{x}/{y}.png.

Manual Changes for Setting Up a Local Tile Server
The following manual changes are required to set up a local tile server:

• Update visualization-start-page.js as per your requirement.

• Open unified-topology-ui.jar and navigate to unified-topology-ui/flows/visualization/
pages/visualization-start-page.js.

• In the loadGeoMaps method of visualization-start-page.js, update the mapurl variable
of the custom map API URL.

After you redeploy the updated jar file and run the application, you can see the map tiles
served from your local server.

Chapter 5
UTIA Support for Offline Maps

5-50

6
Data Migration and Dynamic Attribute Mapping

This chapter describes how to perform the Data Migration and Dynamic Attribute Mapping.

Planning the Topology Migration
In preparation for implementing UTIA, you must set up the topology migration and the UIM to
topology configuration. The UIM to topology migration extracts and loads necessary
information from UIM into the topology graph model consisting of vertices and edges.
Following the Database per Service Micro service Design Pattern, the topology graph resides
in a Pluggable Database (PDB) container separated from the UIM database.

The migration consists of the following:

• Index Rebuilding: The index rebuilding consists of re-creating indexes on tables with
migrated data, dropping the temporary tables created during migration and renaming the
tables with migrated data to actual topology tables.

Note:

If the UIM Entities are in ‘UNAVAILABLE’ state prior to migration, such entities will not
be migrated.

Data Migration Approaches

You can follow the following approaches for data migration:

• Data Migration through Database Link: Database Link (DBLink) is created from UTIA
schema to UIM schema.

• Data Migration through Read Access on UIM schema: UTIA schema is set up within the
same PDB as that of the UIM schema. UTIA schema user is granted with SELECT (read
access) along with the tables owned by UIM schema user. Data dump files are created for
the migrated topology data. These dump files are then imported in the target PDB where
the UTIA schema will be placed.

The prerequisites are:

• Add DATAFILE to increase the TABLESPACE available (SYSTEM by default) for the UTIA
schema user. Preferably one-fourth the size of UIM schema.

• Data Migration to custom tablespace can be achieved by making the custom tablespace as
the default tablespace for the UTIA schema user.

The Migration Steps are as follows:

1. Build Characteristics tables for the following topology enabled entities such as Equipment,
Logical Device, Network, Network Edge, Physical Device, Pipe and Place. These
<ENTITY>_CHAR_MIG tables are used to store all characteristics on each entity which
are used during Dynamic Attribute Migration and Customizing Topology JSON files. Build
<ENTITY>_CHAR_MIG tables:

6-1

• Open a command line window and login to SQL*Plus for the UIM database.

• Run the following SQL scripts providing the full path of the files. For example, use the
@scriptFileName command where scriptFileName is the full path and name of the file.

– $WORKSPACEDIR/unified-topology-builder/migration_scripts/Char_Mig_tables/
CREATE_CHAR_MIG_TABLE.sql

– $WORKSPACEDIR/unified-topology-builder/migration_scripts/Char_Mig_tables/
MIGRATION_CHAR1.sql

– $WORKSPACEDIR/unified-topology-builder/migration_scripts/Char_Mig_tables/
MIGRATION_CHAR2.sql

– $WORKSPACEDIR/unified-topology-builder/migration_scripts/Char_Mig_tables/
MIGRATION_CHAR3.sql

• To verify if the scripts ran successfully, you can verify that the UIM schema includes
the following tables:

– EQUIPMENT_CHAR_MIG

– LOGICALDEVICE_CHAR_MIG

– NETWORK_CHAR_MIG

– NETWORKEDGE_CHAR_MIG

– PHYSICALDEVICE_CHAR_MIG

– PIPE_CHAR_MIG

– PLACE_CHAR_MIG

– CHARACTERISTICS_TABLE_MAPPING_MIG

Note:

You can perform this step for any of the data migration approaches.

2. The Topology schema user account must have the following privileges:

• CREATE JOB

• CREATE SESSION

• ALTER SYSTEM

• CREATE DATABASE LINK

• CREATE PROCEDURE

• CREATE SEQUENCE

• CREATE TABLE

• CREATE TYPE

• UNLIMITED TABLESPACE

• CREATE JOB

These above privileges are sufficient for Approach 1, however for Approach 2:

• Create SYNONYM.

Chapter 6
Planning the Topology Migration

6-2

• Grant SELECT permission to all the tables owned by UIM schema user and UTIA
schema user.

CREATE PROCEDURE grant_select(
 username VARCHAR2,
 grantee VARCHAR2)
AS
BEGIN
 FOR r IN (
 SELECT owner, table_name
 FROM all_tables
 WHERE owner = username
)
 LOOP
 EXECUTE IMMEDIATE
 'GRANT SELECT ON '||r.owner||'.'||r.table_name||' to ' ||
grantee;
 END LOOP;
END;
 “username” – UIM Schema User
 “grantee” – UTIA Schema User within the same PDB.

3. Static Attribute Migration:

• Open a command line window and login to SQL*Plus for the Topology database.

• Approach 1:

– Migrate the static attributes data by running $WORKSPACEDIR/unified-topology-
builder/migration_scripts/data_migration_script_using_dblink.sql

– The following input arguments are expected:

* UIM schema username

* UIM schema password

* Database Hostname

* Database port number

* Database Service name

* Commit Size(Optional – 50000(Default))

* Maximum number of parallel processes(Optional – 5(Default))

* Wait Time(Optional – 2(Default in seconds))

• Approach 2:

– Migrate the static attributes data by running $WORKSPACEDIR/unified-topology-
builder/migration_scripts/data_migration_script_using_localCopy.sql

– The expects the following input arguments:

* UIM schema username with in the PDB

* Commit Size(Optional – 50000(Default))

* Maximum number of parallel processes(Optional – 5(Default))

* Wait Time(Optional – 2(Default in seconds))

Chapter 6
Planning the Topology Migration

6-3

Note:

Commit Size: The number of records handled by a single process, Maximum
number of parallel processes – Depends on number of CPU’s available, Wait
Time – Waiting interval after which the listener checks for the availability of jobs.

4. Modify the topology JSON files in $WORKSPACEDIR/unified-topology-builder/
migration_scripts/scriptGenerator/scriptGenerator_Execuable/topologyjsonfiles/ and
run the following commands:
Approach 1: java -jar scriptgenerator_dblink-1.0-jar-with-dependencies.jar

Approach 2: java -jar scriptgenerator_localCopy-1.0-jar-with-dependencies.jar

5. Dynamic Attribute Migration: Once the scriptgenerator_<Approach>-1.0-jar-with-
dependencies.jar is run, the SQLs required for Dynamic attribute migration are generated
in $WORKSPACEDIR/unified-topology-builder/migration_scripts/scriptGenerator/
scriptGenerator_Executable/scriptOutFiles/dynamicAtt.sql. Run the SQL queries
sequentially.

6. Verify the migrated data by going through tables with %_FINAL or %_NEW name.

7. Index Rebuild: The tables with names as %_FINAL and %_NEW contain the actual migrated
data and indexes and constraints have to be added to these tables, these are generated
in $WORKSPACEDIR/unified-topology- builder/migration_scripts / scriptGenerator/
scriptGenerator_Executable/ scriptOutFiles/indexRebuild.sql. Run the SQL queries
sequentially.

8. In case of performing data migration using Approach 2, export the migrated Topology Data
and import the migrated Topology Data into the target PDB where the UTIA schema is
expected to be.

9. Oracle Optimizer determines the cost of each execution plan based on database, schema,
table and other statistics. The changes inside database result in stale statistics. To gather
new statistics, run the following command:

EXEC DBMS_STATS.gather_schema_stats('<TopologySchema_Name>');

Note:

PG_PROFILE tables which store the Service Topology Data are not supported in
existing migration. If you want service topology profile data in the topology schema
you can create a new service configuration and approve it. In 7.5.1.0.0, Profile Data
is created for every service configuration in Approved State.

Customizing Topology JSON files for Migration
The $WORKSPACEDIR/unified-topology-builder/migration_scripts/scriptGenerator/
scriptGenerator_Execuable/topologyjsonfiles/ contains three topology JSON files:

• topologyAttributeMapping.json

• topologyRoleMapping.json

• topologySpecificationMapping.json

Chapter 6
Planning the Topology Migration

6-4

Customize topologyAttributeMapping.json

[
 {
 "name": "LogicalDeviceDAO",
 "properties": [
 {
 "name": "NativeEMSName",
 "property": "NativeEMSName",
 "vertex": "",
 "columnName": ""
 }
]
 }
]

TopologyAttributeMapping (TAM) is an array defining how attributes of different DAO’s can map
to Topology Schema. Each TAM object consists of key-value pairs of name and properties.

• name – Maps to different entity classes and entity specification classes. For example:
“LogicalDeviceDAO”, “EquipmentSpecificationDAO”, “PlaceSpecificationDAO”,
“PropertyLocationDAO” and so on.

• properties – This is an array defining how individual attributes of an entity are supposed to
be stored in Topology schema. Each JSON object of the properties has:

– name – Name of the Attribute.

– property – Name of the key used to store the value retrieved from Attribute.

– vertex – Build the relationship with the Vertices, from Topology Schema.

– columnName – Column from Topology Schema used to store the Attribute values.

Note:

In “properties” array objects, “name” is a mandatory field to be provided which maps
to either “property” or “vertex” or “columnName”.

An example of TAM is:

Assume, the topologyAttributeMapping.json contains the following:

[
 {
 "name": "LogicalDeviceSpecificationDAO",
 "properties": [
 {
 "name": "vendorName",
 "property": "",
 "vertex": "vendor",
 "columnName": ""
 },
 {
 "name": "modelnumber",
 "property": "Model",

Chapter 6
Planning the Topology Migration

6-5

 "vertex": "",
 "columnName": ""
 }
]
 },
 {
 "name": "EquipmentDAO",
 "properties": [
 {
 "name": " NativeEMSName",
 "property": "",
 "vertex": "",
 "columnName": "DEVICEIDENTIFIER"
 }
]
 }
]

In the above example:

• LogicalDeviceSpecification table from UIM schema is expected to have “vendorName” and
“modelnumber” columns which are used to do the following:

– All LogicalDeviceSpecification’s which have a vendorName as some non-null value is
moved to PG_VENDOR table and containment edges between the devices of
LogicalDevice type and their respective vendors are created in
PG_DEVICE_TO_VENDOR table.
Example: Assume there are 2 Logical Devices (“LDSampleDevice1” and
“LDSampleDevice2”) of specification “LDSampleSpec”, and “LDSampleVendor” is the
“vendorName”. Then, vertex/record for “LDSampleVendor” is created in PG_VENDOR
table and the logical devices have their respective containment edges to the
“LDSampleVendor” in PG_DEVICE_TO_VENDOR table.

– All LogicalDeviceSpecification’s which have a “modelnumber” as some non-null value
is stored in “PROPERTIES” column of PG_DEVICE table. For example:
“LDSampleSpec” has “APTS-123” as “modelnumber”, then it’s stored as:

{
 "Model": "APTS-123"
}

– Equipments which have non-null value in “NativeEMSName” are stored in
“DEVICEIDENTIFIER” column of PG_DEVICE table.

Customizing “topologyRoleMapping.json”

[
 {
 "name": "ADM",
 "entityClass": [
 "LogicalDeviceDAO",
 "PhysicalDeviceDAO",
 "EquipmentDAO"
],
 "property": "",
 "vertex": "domain",
 "columnName": ""

Chapter 6
Planning the Topology Migration

6-6

 }
]

TopologyRoleMapping (TRM) is an array defining how entities which are role-enabled are
stored in Topology schema. Each TRM object contains key-values pairs of “name”,
“entityClass”, “property”, “vertex” and “columnName”.

• name – Name of the Role.

• entityClass – Entities which are enabled by the role and want data migrated for.

• property – Name of the key used to store the Role.

• vertex – Build the relationship with the Vertices, from Topology Schema

• columnName – Column from Topology Schema used to store the Role.

Note:

In each TRM object “name” is a mandatory field with role information which can be
mapped to either “property” or “vertex” or “columnName”. If “entityClass” is empty ([])
that is same as role information to be checked in Logical Device, Equipment,
Physical Device, Place, Pipe and Network.

An example of TRM is:

Assume, the topologyRoleMapping.json contains the following:

[
 {
 "name": "ADM",
 "entityClass": [
 "LogicalDeviceDAO",
 "PhysicalDeviceDAO",
 "EquipmentDAO"
],
 "property": "",
 "vertex": "domain",
 "columnName": ""
 },
 {
 "name": "EIGRP",
 "entityClass": [
 "LogicalDeviceDAO"
],
 "property": "routingProtocol",
 "vertex": "",
 "columnName": ""
 },
 {
 "name": "Router",
 "entityClass": [
 "EquipmentDAO"
],
 "property": "",

Chapter 6
Planning the Topology Migration

6-7

 "vertex": "",
 "columnName": "nodeCategory"
 }
]

In the above example,

• A record for ADM is created in PG_DOMAIN table and all logical devices, equipments, and
physical devices that are enabled by the ADM role, have the corresponding records in the
PG_DEVICE_TO_DOMAIN table.

• All logical devices enabled by the EIGRP role have the PROPERTIES column populated
with

{
 "routingProtocol": "EIGRP"
}

• All equipments enabled by the Router role have Router stored in the NODECATEGORY
column of PG_DEVICE table.

Customizing “topologySpecificationMapping.json”

[
 {
 "name": "EthernetDevice",
 "entityType": "LogicalDeviceSpecificationDAO",
 "relatedVertices": [
 {
 "vertex": "domain",
 "value": "Ethernet"
 }
],
 "characteristics": [
 {
 "name": "zoneID",
 "property": "",
 "vertex": "",
 "columnName": "ZONEID"
 }
]
 }
]

TopologySpecificationMapping (TSM) is an array defining how characteristics of a specification
are mapped Topology schema and how all entities of a specification can have containment
edge to other entities. Each TSM object contains key-values pairs of “name”, “entityType”,
“relatedVertices” and “characteristics”.

• name – Name of the Specification.

• entityType – The type of entity does the specification represent.

• relatedVertices – Create containment edges for all entities of the given specification with
the vertex and value. This contains an array of objects which have:

– vertex – To which vertex the containment edges must be created to.

Chapter 6
Planning the Topology Migration

6-8

– Value – The value of the vertex.

• characteristics – Array of characteristics provided by the specification and how they are
stored in Topology schema.

– name – Name of the characteristic(case-sensitive)

– property- Name of the key used to store the characteristic.

– vertex – Build the relationship with vertices in Topology schema.

– columnName – Column from Topology schema in which the characteristic is stored.

Note:

In each TSM object “name” and “entityType” are mandatory fields with specification
and type of specification information. “relatedVertices” is used to create direct
containment edges for all entities of the specification in question. “characteristics” is
an array of objects where “name” is mandatory and talks about the characteristics
provided by specification and can be mapped to either “property” or “vertex” or
“columnName”.

An example of TSM is:

Assume, the topologySpecificationMapping.json contains the following:

[
 {
 "name": "cableModem",
 "entityType": "PhysicalDeviceSpecificationDAO",
 "characteristics": [
 {
 "name": "deviceType",
 "property": "deviceType",
 "vertex": "",
 "columnName": ""
 }
]
 },
 {
 "name": "EthernetDevice",
 "entityType": "LogicalDeviceSpecificationDAO",
 "relatedVertices": [
 {
 "vertex": "domain",
 "value": "Ethernet"
 }
],
 "characteristics": [
 {
 "name": "Tech",
 "property": "",
 "vertex": "Technology",
 "columnName": ""
 }
]

Chapter 6
Planning the Topology Migration

6-9

 },
 {
 "name": "Generic_Address",
 "entityType": "PlaceSpecificationDAO",
 "characteristics": [
 {
 "name": "CityName",
 "property": "",
 "vertex": "",
 "columnName": "city"
 },
 {
 "name": "StateName",
 "property": "",
 "vertex": "",
 "columnName": "state"
 },
 {
 "name": "PostalCode",
 "property": "",
 "vertex": "",
 "columnName": "postalCode"
 }
]
 }
]

In the above example,

• “cableModem” is a PhysicalDeviceSpecification which has a characteristic “deviceType”.
This characteristic is stored in “PROPERTIES” column of PG_DEVICE table.

{
 "DeviceType": "deviceType"
}

• A record for “Ethernet” is added to PG_DOMAIN table. All devices of “EthernetDevice”
specification have containment edges to “Ethernet” in PG_Device_To_Domain table.

• “EthernetDevice” has a characteristic called “Tech”, so all unique values of “Tech”
characteristic are added to PG_Technology. And for each “EthernetDevice” depending on
its “Tech” characteristic respective containment edges are built.

• “Generic_Address” is a Place which has “CityName”, “StateName” and “PostalCode”
characteristics which are mapped to “CITY”,”STATE” and “POSTALCODE” columns of
PG_LOCATION table.

Customizing Topology JSON Files

To customize the topology JSON files:

1. When migrating Attribute or Role or Characteristic data to “PROPERTIES” column of
respective entity, make sure the key used doesn’t include any empty space or special
characters:

{
 "name": "Vendor Name",

Chapter 6
Planning the Topology Migration

6-10

 "property": "",
 "vertex": "vendor",
 "columnName": ""
}

The above example “Vendor Name” contains empty space. Instead use “VendorName” or
“Vendor_Name”.

2. In topologySpecificationMapping.json if the characteristic being migrated has length
greater than 30 characters or contains special characters, the <ENTITY>_CHAR_MIG, do
not have the characteristic as is. Instead, it has been casted to coded value, which can be
derived from “CHARACTERISTICS_TABLE_MAPPING_MIG” in UIM schema.

For example: “Inter-rack_Power_Distribution” (CHAR_NAME) is the name of the
characteristic which has been casted to “C46575002” (COLUMN_NAME).

{
 "name": "Inter-rack_Power_Distribution",
 "property": "",
 "vertex": "",
 "columnName": "nodeCategory"
}

The above example would result in a column not found error, instead characteristic must be
migrated as follows:

{
 "name": "C46575002",
 "property": "",
 "vertex": "",
 "columnName": "nodeCategory"
}

Dynamic Data Mapping from UIM
The dynamic data mapping takes advantage of UIM characteristics and provides maximum
flexibility for mapping fields from UIM to the topology model.

The dynamic data mapping:

• Does not require any additions, updates, migrations, or deployments of your existing
specifications.

• Guarantees the value is set correctly and does not require a user to select the correct
value.

• Allows UTIA to support data extensions to the topology model without an upgrade.

• Vertex and Edge Labels or Properties in UTIA may require different names than
Characteristics, or Attributes or Roles in the implemented UIM model.

• These items are supported through dynamic data mapping.

The examples are:

• UIM has a 'Vendor' attribute on the Logical Device and Equipment Specifications but some
users have added 'manufacturer' to their Physical Device Specifications.

Chapter 6
Dynamic Data Mapping from UIM

6-11

• Some vertices are not identified specifically in UIM such as Domain and Service Type.
These values are implied based on the '5G' cartridge or the 'FTTx' cartridge but are not
specifically identified on the entity.

Prerequisites for Dynamic Data Mapping from UIM

The prerequisites are as follows:

• The following configuration files are required:

– topologyAttributeMapping.json

– topologyRoleMapping.json

– topologySpecificationMapping.json.

• These files must exist in the <domain>/UIM/config/topologyMappings directory.

• Files with these names plus the extension .sample are provided.

• Prior to migration, the correct configurations must be provided. Else, the data will not be
mapped correctly to UTIA.

• If the file does not exist an error occurs during UIM entity creation.

• If you want to skip this process, you can remove the .sample extension and proceed with
the default settings.

Mapping the Dynamic Data from UIM
To map the dynamic data from UIM, the following definitions are required:

• vertex: A node in the Topology Model, examples are Vendor, Domain, Technology, Network
Type, Device, Location

• property: A column on every vertex and edge in the Topology model.

– It supports JSON allowing for unlimited additional attributes.

– Property is the name of the key used to store the value retrieved from the UIM
attribute.

• properties: is an array defining how individual attributes of an entity are to be stored in
Topology schema.

• columnName: An existing column on a physical table in the Topology Model used to store
the attribute.

• name: Maps to different entity classes and entity specification classes. For example:
“LogicalDeviceDAO”, “EquipmentSpecificationDAO”, “PlaceSpecificationDAO”,
“PropertyLocationDAO” and so on.

The following POST operation creates a logical device, you can see the relationships and
properties with which the dynamic properties are supported.

POST: http://localhost:8080/vertex

Body:

{"entityId":<entityID>,"entityVersion":<entityVersion>,"businessObjectClass":"
LogicalDeviceDAO","id":"<ID>","name":"<name>","specName":"<specificationName>"
,"latitude":0.0,"longitude":0.0,"inventoryStatus":"INSTALLED","referenceId":<r
eferenceID>,"relationships":{"vendor":"<vendor>"},"properties":
{"deviceIdentifier":"<deviceIdentifier>"}}

Chapter 6
Dynamic Data Mapping from UIM

6-12

Note:

• In this example, the TopologyAttributesMapping.json file provides the instructions
to UTIA and the file is available in the UIM/config/topologyMappings directory.

• The topologyAttributesMapping file is used to address hard coded attributes from
UIM tables.

• See topologyAttributesMapping.json for more information.

The POST operation tells the topology:

• Map LogicalDevice.deviceIdentifier to the property deviceIdentifer.

• Map LogicalDeviceSpecification.vendorName to the vertex = vendor

• This is based on the UIM ClassName, it works with any Class or specification that is
topology-enabled.

You can add a role to the Logical Device from the list of roles that are configured in the
TopologyRoleMapping.json file.

You can see that GET that the Logical Device tracks the deviceIdentifier in the properties
column using:

GET: http://localhost:8080/vertex/typeid/1/referenceid/<refID>

{"businessObjectClass":"LogicalDeviceDAO","entityId":<entityID>,"entityVersion
":<entityVersion>,"id":"<versionID>","inventoryStatus":"INSTALLED","latitude":
0.0,"longitude":0.0,"name":"<name>","properties":
{"deviceIdentifier":"<deviceID>"},"referenceId":<referenceID>,"specName":"<spe
cificationName>"}

PUT: http://localhost:8080/vertex

{"businessObjectClass":"LogicalDeviceDAO","entityId":<entityID>,"entityVersion
":3,"id":"<ID>","inventoryStatus":"INSTALLED","latitude":0.0,"longitude":0.0,"
name":"<name>","properties":
{"deviceIdentifier":"<ID>","transmission":"Optical_Transmission"},"referenceId
":<refernceID>,"specName":"<specificationName>"}

In the body:

• The role “Optical_Transmission” is mapped to the property field with name =
“transmission”.

• The role was given a name = “transmission” which was provided by the UIM admin.

• Add, update and delete are supported. This works for Equipment and Physical Device (any
topology-enabled entity that supports roles).

• Roles can be mapped to properties, vertices or columns.

The rules to perform this are:

• The Vertex must exist. The mapping can be performed to multiple vertices and can have
multiple values.

Chapter 6
Dynamic Data Mapping from UIM

6-13

• Property: There can be multiple properties. The UIM integrator is responsible for not
having similar or misspelled values.

• ColumnName: A column can only have 1 value. The user is currently responsible for
assuring this value is unique. It can be overlaid. This should be used for a queried
attributes where an index is needed.

• The possible values of "columnName" are the following:

– PG_DEVICE - [NODECATEGORY, MACADDRESS, IPV4, IPV4SUBNET, IPV6,
IPV6SUBNET, ZONEID, DEVICEIDENTIFIER, NETWORKSTATUS, NODETYPE]

– PG_LOCATION - [DISTRICT, PROVINCE, OPERATOR, CITY, STATE,
POSTALCODE, COUNTRY, AREA, CIRCLE]

– PG_COMMICATION - [FROMNODEDATA, TONODEDATA, RATECODE,
TECHNOLOGY]

– PG_NETWORK - [CATEGORY, SUBCATEGORY, TOPOLOGYTYPE, SUBTYPE]

Note:

UIM currently supports city, state, country and postalcode attributes from the
PropertyLocationDAO and PropertyAddressDAO. The street address or subunit
(apt#, room #) are not supported.

The supported UIM classes are:

LogicalDeviceDAO, GeographicPlaceDAO, PhysicalDeviceDAO, NetworkDAO,
NetworkEdgeDAO, EquipmentDAO, GeographicSiteDAO, PropertyLocationDAO

Note:

This includes the corresponding supported specification classes.

The last configuration is TopologySpecificationMapping.json.

• The related vertices field automatically adds a relationship edge between any instance of
the specification to the vertex with the provided name and value.

• A characteristic does not need to be added and set on the specification to be tracked in
topology.

• This allows our current RI cartridges to be used without any modifications.

• The characteristics column works the same as roles.

• It automatically adds a relationship to a vertex, sets properties or sets a column value.

• Any current characteristics can be used. No changes are needed.

PUT: http://localhost:8080/vertex

{"entityId":<entityID>,"entityVersion":<entityVersion>,"businessObjectTypeId":
1,"businessObjectClass":"LogicalDeviceDAO","id":"<ID>","name":"<name>","specNa
me":"router","latitude":<latitude>,"longitude":<longitude>,"inventoryStatus":"
INSTALLED","isTopLevelNode":true,"nodeAvailable":true,"placeNode":false,"refer

Chapter 6
Dynamic Data Mapping from UIM

6-14

enceId":<referenceID>,"createdUser":"test","lastModifiedUser":"test","relation
ships":{"vendor":"<vendor>","domain":"Ethernet"},"properties":
{"deviceIdentifier":"<deviceID>"}}

Chapter 6
Dynamic Data Mapping from UIM

6-15

7
Upgrading UTIA

This chapter describes how to upgrade the UTIA application.

Prerequisites for Upgrading UTIA
The prerequisites for upgrading UTIA are:

• UTIA Topology Schema should have a database link to the UIM schema with the name
rem_schema. This is mandatory if only UTIA is used with UIM. However, the database link
is not required if UTIA is used with some external system. The rem_schema database link
is created during the first time of complete migration. If the database link is not present, the
database link can be created as follows:

ACCEPT schema CHAR PROMPT "Enter username for remote schema: "
ACCEPT passwd CHAR PROMPT "Enter password for remote schema: " HIDE
ACCEPT host CHAR PROMPT "Enter pingable hostname/ipaddress for remote
schema database host : "
ACCEPT port CHAR PROMPT "Enter port number for remote schema database : "
ACCEPT service_name CHAR PROMPT "Enter SQL*Net / service for remote schema
database: "
ACCEPT commitSize CHAR PROMPT "Enter Batch/Commit size for a single
parallel process(Optional): "
ACCEPT threads CHAR PROMPT "Enter Maximum no.of total parallel process at
any given time(Optional): "
ACCEPT waitTime CHAR PROMPT "Enter Waiting interval after which the
listener checks for the availabilty of jobs in Seconds(Optional): "

PROMPT

alter system set global_names=FALSE scope=both;

CREATE DATABASE LINK rem_schema CONNECT TO &schema IDENTIFIED BY &passwd
USING '(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=&host)(PORT=&port))
(CONNECT_DATA=(SERVICE_NAME=&service_name)))';

• For UTIA 1.0.0.1.0 or later versions, the installer will create an ApplicationInfo table and
will update the VERSION after every upgrade. If you have UTIA 1.0.0.0.0 installed, you will
not be having ApplicationInfo table. Therefore, create ApplicationInfo table before
running an upgrade as follows:

CREATE TABLE APPLICATIONINFO (ENTITYID NUMBER(19,0) NOT NULL ENABLE,
 ENTITYCLASS VARCHAR2(255 BYTE),
 BUILDDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,
 CREATEDDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,
 CREATEDUSER VARCHAR2(255 BYTE),
 ENDDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,
 ENTITYVERSION NUMBER(10,0),
 FILENAME VARCHAR2(255 BYTE),
 LASTMODIFIEDDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,

7-1

 LASTMODIFIEDUSER VARCHAR2(255 BYTE),
 NAME VARCHAR2(255 BYTE),
 STARTDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,
 STATUS VARCHAR2(255 BYTE),
 TYPE VARCHAR2(255 BYTE),
 VERSION VARCHAR2(255 BYTE),
 PRIMARY KEY (ENTITYID));

 INSERT INTO APPLICATIONINFO VALUES (ENTITYID_SEQ.NEXTVAL,
'ApplicationInformationDAO', SYSDATE, SYSDATE, NULL, SYSDATE, 1, NULL,
SYSDATE, NULL, 'Unified Topology for Inventory and Automation', SYSDATE,
'SUCCESS', 'Topolgy', '1.0.0.0.0');

Upgrading the UTIA Application
To upgrade the UTIA application:

1. Download the latest Unified Topology Builder Tool Kit and Common Cloud Native Tool Kit
into the workspace directory.

2. Export the unzipped path to the WORKSPACEDIR environment variable.

export WORKSPACEDIR=$(pwd)/workspace

3. Set the COMMON_CNTK variable to the path of the common-cntk directory in the
workspace.

export COMMON_CNTK=$WORKSPACEDIR/common-cntk

4. Set SPEC_PATH variable to the location where applications.yaml and database.yaml files
are copied :

$ export SPEC_PATH=$WORKSPACEDIR/utia_spec_dir

5. Create UTIA images using the latest Unified Topology Builder Tool Kit. See "Creating UTIA
Images" for more information.

6. Upgrade the UTIA schema. See "Upgrading the UTIA Schema" for more information.

7. Upgrade the UTIA instance. See "Upgrading the UTIA Instance" for more information.

Upgrading the UTIA Schema
To upgrade the UTIA schema:

1. Upgrade PDB by starting $UIM_CNTK/scripts/install-database.sh.

2. To only update the model of UTIA and skip the data migration:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/database.yaml -a unified-topology -c 4

Chapter 7
Upgrading the UTIA Application

7-2

3. To update the model of UTIA and also populate the data from the UIM schema:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/database.yaml -a unified-topology -c 40

Upgrading the UTIA Instance
To upgrade the UTIA instance:

1. Update $COMMON_CNTK/samples/applications.yaml with the latest UTIA API, Unified
PGX, and UTIA UI image names and the corresponding tags.

2. Run $COMMON_CNTK/scripts/upgrade-applications.sh to upgrade the UTIA instance:

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology

Chapter 7
Upgrading the UTIA Instance

7-3

8
Checklists for Integration of Services

This chapter provides a checklist of integrating the services.

The checklists include the following variables:

• <topology-project>: Refers to the Kubernetes namespace on which the UTIA service is
running.

• <topology-instance>: Refers to the instance name of the UTIA service running
on<topology-project> namespace.

• <messaging-project>: Refers to the Kubernetes namespace on which Message Bus
service is running.

• <messaging-instance>: Refers to the instance name of Message Bus running on
<messaging-project> namespace.

• <loadbalancerport>: Refers to the port of loadbalancer configured. If you use Oracle Cloud
Infrastructure LBaaS, or any other external load balancer, if TLS is enabled set
loadbalancerport to 443. Otherwise, set loadbalancerport to 80. If there is no external
loadbalancer configured for the instance, change the value of loadbalancerport to the
default Traefik NodePort. If TLS is enabled on Unified Topology Traefik NodePort is 30443
and if TLS is disabled, is 30305.

• <loadbalancerhost>: Refers to the host of loadbalancer configured. If you use Oracle
Cloud Infrastructure LBaaS, or any other external load balancer, update the value for
loadbalancerhost appropriately. If there is no external loadbalancer configured for the
instance change the value of loadbalancerhost to the worker node IP/ Kubernetes cluster
IP.

• <hostSuffix> : Refers to the host suffix configured using applications.yaml file. The default
is: uim.org.

• <oauth-token-endpoint-uri>: Get the OAuth token endpoint URI from your IdP. Usually, you
can find it on .well-known/openid-configuration endpoint of your IdP. In case of OAM, it is
https://<instance>.<project>.ohs.<hostSuffix>:<loadbalancerport>/oauth2/rest/token

• <oauth-scope>: Provide the configured scope to your OAuth client. If not configured, keep
it empty.

• <oauth-audience>: Provide the configured audience to your OAuth client. If not configured,
keep it empty.

Use the following checklist for integrating UIM cloud native instance, Message Bus, and UTIA:

8-1

Table 8-1 Checklist for UIM cloud native instance, Message Bus, and UTIA

Source
Applicati
on

SSL Enablement Deployment
Configuration

Application Properties

UIM CN See Setting Up
Secure
Communication with
SSL in UIM Cloud
Native Deployment
Guide.

See Enabling OAM
Authentication in UIM
Cloud Native
Deployment Guide

For communications between applications on the same
Kubernetes cluster provide internal Kubernetes service
details.

Configure the Message Bus and UTIA settings.

See UIM System Administrator’s Guide for more information.

$UIM_CNTK/charts/uim/custom-config.properties

UIM CN to Message Bus service settings
bootstrap.server.url=<messaging-project>-<messaging-
instance>-messaging-kafka-bootstrap.<messaging-
project>.svc.cluster.local:9092

#Set below properties to pass Authentication service details

kafka.client.isOAuth=true

kafka.client.oauth.token.endpoint.uri=https://<oam-
instance>.<oam-project>.ohs.<oam-host-
suffix>:<loadbalancerport>/oauth2/rest/token

Note: This is applicable only if OAM is used as IdP.
Otherwise, use the Token URL from the IdP.

kafka.client.oauth.token.endpoint.uri=<oauth-token-endpoint-
uri>

kafka.client.oauth.scope=<oauth-scope>

kafka.client.oauth.audience=<oauth-audience>

kafka.client.oauth.client.id= <oauth-client-id>

kafka.client.oauth.client.secret= <oauth-client-secret>

#Internal commmunications between kubernetes services is
non-ssl. Set kafka.client.isTLs to false.

kafka.client.isTLs=false

UIM CN to Unified Topology API settings
disableTopology=false

microServiceEnabled=true

For Same Namespace: microServiceUrl=http://<topology-
project>-<topologyinstance>-unified-topology-api:8080/
topology/v2/

For Different Namespace : microServiceUrl=http://
<topology-project>-<topologyinstance>-unified-topology-
api.<namespace>.svc.cluster.local:8080/topology/v2/

UIM CN to Unified Topology UI settings
uim.rest.filter.CORSAllowedOrigin=https://<topology-
instance>.<topology-
project>.topology.<hostSuffix>:<loadbalancerport>

topology.ui.host= https://<topology-instance>.<topology-
project>.topology.<hostSuffix>

topology.ui.port= <loadbalancerport>

topology.ui.path=/apps/unified-topology-ui

Chapter 8

8-2

Table 8-1 (Cont.) Checklist for UIM cloud native instance, Message Bus, and UTIA

Source
Applicati
on

SSL Enablement Deployment
Configuration

Application Properties

Message
Bus

N/A See Enable
Authentication on
Kafka Cluster from
"Configuring
Authentication"

N/A

Topology
API or UI

"Setting up Secure
Communication using
TLS"

"Creating Secrets"

"Configuring the
applications.yaml File"

"Registering UTIA in
Identity Provider"

"Integrate Unified Topology Service with Message Bus
Service"

Use the following checklist for integrating traditional UIM, Message Bus, and UTIA:

Checklist for entries in /etc/hosts for integration:

• Authentication service

– If OAM is deployed as IdP:

<loadbalancerIP> <oam-instance>.<oam-project>.ohs.<oam-host-suffix>

– If any IdP is used other than OAM, for accessing UIM:

<instance>.<project>.<hostSuffix>

• Message service

<loadbalacerIP> <messaging-instance>.<messaging-
project>.messaging.bootstrap.<hostSuffix>
<loadbalacerIP> <messaging-instance>.<messaging-
project>.messaging.broker0.<hostSuffix>
<loadbalacerIP> <messaging-instance>.<messaging-
project>.messaging.broker1.<hostSuffix>

• UTIA service

<loadbalancerIP> <topology-instance>.<topology-
project>.topology.<hostSuffix>

Chapter 8

8-3

Table 8-2 Checklist for UIM, Message Bus, and UTIA

Source
Applicati
on

SSL Enablement Deployment
Configuration

Application Properties

UIM N/A For enabling SSO
authentication on UIM
On Premise instance,
see Setting Up
Unified Inventory
Management for
Single Sign-On
Authentication
section in UIM
Installation Guide.

UIM on-prem to Message Bus settings
Provide ingress bootstrap server details as UIM traditional
instance is outside of kubernetes cluster. External access is
TLS enabled

bootstrap.server.url=<messaging-instance>.<messaging-
project>.messaging.bootstrap.uim.org:<loadbalancerport>

#set below properties to pass Authentication service details
kafka.client.isOAuth=true

kafka.client.oauth.token.endpoint.uri=<oauth-token-endpoint-
uri>

kafka.client.oauth.scope=<oauth-scope>

kafka.client.oauth.audience=<oauth-audience>

kafka.client.oauth.client.id=<oauth-client-id>

kafka.client.oauth.client.secret=<oauth-client-secret>

#External commmunications is ssl enabled, provide
truststore details.

kafka.client.isTLs=true

Add common certificate to JAVA HOME of UIM managed
servers:

keytool -import -alias common-cert -
keystore $JAVA_HOME/jre/lib/security/cacerts
-file $COMMON_CNTK/certs/commoncert.pem

Configure the UTIA settings.

See UIM System Administrator’s Guide for more information.

UIM on-prem to UTIA API settings
#provide Unified Topology API kubernetes service name and
port along with endpoint as provided in the sample below.

disableTopology=false

microServiceEnabled=true

microServiceUrl=https://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<loadbalancerport>/
topology/v2

UIM on-prem to UTIA UI settings
uim.rest.filter.CORSAllowedOrigin=https://<topology-
instance>.<topology-
project>.topology.<hostSuffix>:<loadbalancerport>

topology.ui.port=<loadbalancerport>

topology.ui.path=/apps/unified-topology-ui

Message
Bus

See Message Bus
Ingress Listener in
"Configuring Message
Bus Listeners"

See Enable
Authentication on
Kafka Cluster from
"Configuring
Authentication"

N/A

Chapter 8

8-4

Table 8-2 (Cont.) Checklist for UIM, Message Bus, and UTIA

Source
Applicati
on

SSL Enablement Deployment
Configuration

Application Properties

Topology
API or UI

"Setting up Secure
Communication using
TLS"

"Creating Secrets"

"Configuring the
applications.yaml File"

"Registering UTIA in
Identity Provider"

"Integrate Unified Topology Service with Message Bus
Service"

Integrating UIM with UTIA and Message Bus
This section provides you with instructions to integrate UIM (traditional and cloud native) with
UTIA and Message Bus. The samples for IDCS Idp are packaged along with UTIA.

Integrating UIM CN with Message Bus and UTIA
To integrate UIM CN with Message Bus and UTIA:

1. Update $UIM_CNTK/charts/uim/custom-config.properties file with the following details:

• UIM CN to Message Bus service settings:

bootstrap.server.url=<messaging-project>-<messaging-instance>-messaging-
kafka-bootstrap.<messaging-project>.svc.cluster.local:9092
#Set below properties to pass Authentication service details
kafka.client.isOAuth=true
kafka.client.oauth.token.endpoint.uri=<oauth-token-endpoint-uri> (Ex.
https://idcs-df3***********f64b21.identity.pint.oc9qadev.com:443/
oauth2/v1/token)
kafka.client.oauth.client.id=<oauth-client-id> (Ex.
e6e0b2cxxxxxxxxxxxxxxx)
kafka.client.oauth.client.secret=<oauth-client-secret> (Ex. xxxx-xxxx-
xxxx-xxxx)
kafka.client.oauth.client.scope=<oauth-client-scope> (Ex. https://
quick.sr.topology.uim.org:30443/utiaScope)
kafka.client.oauth.client.audience=<oauth-client-audience> (Ex. https://
quick.sr.topology.uim.org:30443/)
#Internal commmunications between kubernetes services is non-ssl. Set
kafka.client.isTLs to false.
kafka.client.isTLs=false

• UIM CN to UTIA API settings:

disableTopology=false
microServiceEnabled=true
microServiceUrl=http://<topology-project>-<topology-instance>-unified-
topology-api:8080/topology/v2/

Chapter 8
Integrating UIM with UTIA and Message Bus

8-5

• UIM CN to UTIA UI settings:

uim.rest.filter.CORSAllowedOrigin=https://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<loadbalancerport>
topology.ui.host=https://<topology-instance>.<topology-
project>.topology.<hostSuffix>
topology.ui.port=<loadbalancerport>
topology.ui.path=/apps/unified-topology-ui

2. Create or restart the UIM CN instance as usual, after the above configurations.

Integrating Traditional UIM with Message Bus and UTIA
To integrate traditional UIM with Message Bus and UTIA:

1. Update the system-config.properties file with the following details:

• UIM to Message Bus service settings:

Provide ingress bootstrap server details as UIM traditional instance is
outside of kubernetes cluster.
bootstrap.server.url=<messaging-instance>.<messaging-
project>.messaging.bootstrap.uim.org:<loadbalancerport>
#Set below properties to pass Authentication service details
kafka.client.isOAuth=true
kafka.client.oauth.token.endpoint.uri=<oauth-token-endpoint-uri> (Ex.
https://idcs-df3***********f64b21.identity.pint.oc9qadev.com:443/
oauth2/v1/token)
kafka.client.oauth.client.id= <oauth-client-id> (Ex.
e6e0b2cxxxxxxxxxxxxxxx)
kafka.client.oauth.client.secret= <oauth-client-secret> (Ex. xxxx-xxxx-
xxxx-xxxx)
kafka.client.oauth.client.scope=<oauth-client-scope> (Ex. https://
quick.sr.topology.uim.org:30443/utiaScope)
kafka.client.oauth.client.audience=<oauth-client-audience> (Ex. https://
quick.sr.topology.uim.org:30443/)
External access is TLS enabled
kafka.client.isTLs=true

• UIM to UTIA API settings:

disableTopology=false
microServiceEnabled=true
microServiceUrl=https://<topology-instance>.<topology-
project>.topology.<hostSuffix>/topology/v2/

• UIM to UTIA UI settings:

uim.rest.filter.CORSAllowedOrigin=https://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<loadbalancerport>
topology.ui.host=https://<topology-instance>.<topology-
project>.topology.<hostSuffix>
topology.ui.port=<loadbalancerport>
topology.ui.path=/apps/unified-topology-ui

Chapter 8
Integrating UIM with UTIA and Message Bus

8-6

2. Add the Identity Providers certificate to JAVA_HOME as follows:

keytool -import -alias idp-cert -keystore $JAVA_HOME/jre/lib/security/
cacerts -file <idp-certificate-file>

3. Add the UTIA certificate to JAVA_HOME as follows:

keytool -import -alias utia-cert -keystore $JAVA_HOME/jre/lib/security/
cacerts -file <utia-certiricate>

4. Add the common certificate to JAVA_HOME as follows:

keytool -import -alias common-cert -keystore $JAVA_HOME/jre/lib/security/
cacerts -file $COMMON_CNTK/certs/commoncert.pem

Note:

Make sure that UTIA and Message bus are configured with commoncert.pem.

Chapter 8
Integrating UIM with UTIA and Message Bus

8-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 About Unified Inventory and Topology
	Unified Inventory and Topology Architecture
	About UIM
	About UTIA
	About Unified Operations Message Bus
	About Common Authentication
	Planning and Validating Your Cloud Environment
	Installing Oracle Property Graph
	Kubernetes Storage Class

	2 About the Unified Inventory and Topology Toolkit
	Unified Inventory and Topology Toolkit
	Image Builders
	About the Manifest File

	Deployment Toolkits
	Common Cloud Native Toolkit

	Deploying the Services
	Setting Up Prometheus and Grafana
	Setting Up Elastic Stack
	Setting Up OpenSearch
	Adding Common OAuth Secret and ConfigMap

	3 Deploying the Common Authentication Service
	Building the OHS Image
	Deploying OAM along with OHS for Authentication Service
	Deploying OAM Using Common Cloud Native Toolkit Scripts
	Using Wild Card Certificates
	Configuring Ingress and Ingress Controller for OAM

	Upgrading OAM
	Uninstalling OAM
	Specifying the Proxy Settings
	Accessing the WebLogic Server Administration Console and the OAM Console
	Configuring OAM
	Configuring OAuth Service Settings
	Creating an OAuth Identity Domain
	Creating a Resource
	Creating a Client

	Debugging and Troubleshooting
	Unable to create Domain or Admin Server is not coming up
	Unable to Access OAM Console
	Inventory UI is not appearing after successful login
	UIM UI Not Accessible on Using SSL Port of Traditional UIM Instance

	Self-signed SSL Certificates
	Generating Self-signed Certificates
	Generating Wild Card SSL Certificate

	4 Deploying Unified Operations Message Bus
	Message Bus Cloud Native Architecture
	Access to Message Bus

	Strimzi Operator
	Create Global Resources
	Private Container Repository
	ImagePullPolicy
	Resources
	Deploying Strimzi Operator
	Upgrading Strimzi Operator
	Uninstalling Strimzi Operator
	Validating Strimzi Operator
	Restarting the Strimzi Operator
	Registering the Namespaces with Strimzi Operator
	Unregistering the Namespaces with Strimzi Operator

	Deploying and Managing Message Bus
	Deploying Message Bus
	Upgrading Message Bus
	Deleting Message Bus
	Validating Message Bus
	Restarting Message Bus

	Configuring the applications.yaml File
	Using Image Pull Secrets
	Security Context
	Cluster Size
	Storage
	Broker Defaults
	JVM Options
	Kafka Topics
	Accessing Kafka Cluster
	Configuring Authentication
	Using GC Logs

	Alternate Configuration Options
	Log Level
	Choosing Worker Nodes for Running Message Bus Service
	Managing Message Bus Metrics

	Installing and Configuring Mirror Maker 2.0
	Configuring Source and Target Message Bus (Kafka cluster) Details
	Installing Mirror Maker
	Uninstalling Mirror Maker

	Client Access
	Configuring Message Bus Listeners
	Debugging and Troubleshooting

	5 Deploying the Unified Topology for Inventory and Automation Service
	Overview of UTIA
	UTIA Architecture
	UIM as the Producer
	Topology as the Consumer
	Topology Graph Database
	Topology In-Memory Database
	UTIA User Interface

	Creating UTIA Images
	Prerequisites for Creating UTIA Images
	Configuring Unified Topology Images

	Creating Unified Topology Service Images
	Post-build Image Management

	Customizing the Images
	Creating a Unified Topology Instance
	Installing Unified Topology Cloud Native Artifacts and Toolkit
	Setting up Environment Variables
	Registering the Namespace
	Creating Secrets
	Installing Unified Topology Service Schema
	Configuring the applications.yaml File
	Configuring Unified Topology Application Properties
	Max Rows
	Date Format
	Alarm Types
	Event Status
	Event Severity
	Path Analysis Cost Values

	Integrate Unified Topology Service with Message Bus Service
	Creating a Unified Topology Instance
	Accessing Unified Topology
	Validating the Unified Topology Instance

	Deploying the Graph Server Instance
	Scheduling the Graph Server Restart CronJob
	Affinity on Graph Server

	Upgrading the Unified Topology Instance
	Restarting the Unified Topology Instance
	Alternate Configuration Options for UTIA
	Setting up Secure Communication using TLS
	Enabling Authentication for UTIA
	Registering UTIA in Identity Provider
	Common Secret and Properties
	Getting Client Credentials
	Creating the OAuth Secrets and ConfigMap

	Registering Identity Provider for UTIA
	Creating Secrets for UTIA UI Authentication
	Creating Secrets for Authentication on UTIA API

	Choosing Worker Nodes for Unified Topology Service
	Setting up Persistent Storage
	Managing Unified Topology Logs
	Viewing Logs using Elastic Stack
	Setting Up Elastic Stack

	Viewing Logs using OpenSearch
	Managing Unified Topology Metrics
	Allocating Resources for Unified Topology Service Pods
	Scaling Up or Scaling Down the Unified Topology Service
	Enabling GC Logs for UTIA

	Geo Redundancy Support
	Disaster Recovery Support
	Disaster Recovery across Data Centers
	About Switchover and Failover
	About Kafka Mirror Maker
	Installation and Configuration
	Setting up the Primary (active) Instance
	Setting up the Secondary (standby) Instance
	Switchover Sequence
	Failover Sequence

	Debugging and Troubleshooting
	Fallout Events Resolution
	Deleting and Recreating a Unified Topology Instance
	UTIA Support for Offline Maps
	Allowlisting Map URLs
	Setting Up a Local Tile Server
	Manual Changes for Setting Up a Local Tile Server

	6 Data Migration and Dynamic Attribute Mapping
	Planning the Topology Migration
	Customizing Topology JSON files for Migration

	Dynamic Data Mapping from UIM
	Mapping the Dynamic Data from UIM

	7 Upgrading UTIA
	Prerequisites for Upgrading UTIA
	Upgrading the UTIA Application
	Upgrading the UTIA Schema
	Upgrading the UTIA Instance

	8 Checklists for Integration of Services
	Integrating UIM with UTIA and Message Bus
	Integrating UIM CN with Message Bus and UTIA
	Integrating Traditional UIM with Message Bus and UTIA

