Oracle® Communications Unified

Inventory Management
AP| Overview

Release 8.0
G36725-01
October 2025

ORACLE"

Oracle Communications Unified Inventory Management API Overview, Release 8.0
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

About This Content

1 Overview

2 Working with Transactions, Exceptions, and Logging

Working with Transactions

Working with Exceptions

Working with Logging
Configuring the Logging Level
Working with the Log Interface
About UIM Log Messages
Defining Custom Log Messages

A DA DA W W WOWDN PR

Working with the FeedbackProvider Interface

3 Implementing a Generic Service Fulfillment Scenario

About the Generic Service Fulfillment Scenario
Querying for the Specification
Querying for the Specification Using Finder API
Creating the Service and Service Configuration
Creating the Service
Retrieving the Service Configuration Specification
Retrieving the Service Configuration Specification Using Finder API

© © 00 o U B~ b~ P

Creating the Service Configuration

=
o

About Alternate Flows

=Y
o

Changing the Service

[N
N

Disconnecting the Service

=
w

Creating and Associating the Party

=Y
w

Creating the Party

'—\
I

Creating the Party Role

=
(6]

Associating the Party and Party Role with the Service

[N
al

About Alternate Flows

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page i of iii

Disassociating the Party and Party Role from the Service 16

Deleting the Party 16
Deleting the Party Role 17
Creating and Associating the Geographic Address with the Service 17
Creating the Geographic Place 18
Creating the Place Role 19
Associating the Geographic Place and Place Role with the Service 19
About Alternate Flows 20
Disassociating the Geographic Place and Place Role from the Service 20
Deleting the Geographic Place 21
Deleting the Place Role 22
Configuring the Resources for the Service Configuration 22
Finding the Service 23
Finding the Service by ID Using Finder API 24
Finding the Current Service Configuration Version 25
Finding the Service Configuration Item 25
Finding the Custom Object to Assign 26
Creating the Custom Object to Assign 27
Assigning the Resource to a Configuration Item 28
Referencing the Resource to a Configuration Item 30
About Alternate Flows 32
Unassigning Resources from a Configuration Item 33
Reserving a Custom Object 34
Unreserving a Custom Object 37
Creating a Blocked Condition for a Custom Object 37
Deleting a Blocked Condition for a Custom Object 39

Setting Characteristic Values for the Service Configuration Item 41
Finding Configuration Item and Setting Characteristics 42
About Alternate Flows 46
Unsetting Characteristic Values for the Service Configuration Item 46
Transitioning the Lifecycle Status 46
Creating a Property Location 48
Referring Property Location to a Service Configuration Item 49
About Undo Actions 49

4 Implementing a Channelized Connectivity Enablement Scenario

About the Channelized Connectivity Enablement Scenario

Creating a Property Location and Associating Network Entity Codes

Creating a Logical Device and Associating LD Interfaces with Network Entity Codes
Creating Channelized Connectivity

o o A~ N B

Create Channelized Connectivity

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page ii of iii

Configure Capacity on the Channelized Connectivity 8
Configure Auto Termination on the Channelized Connectivity 9
Enabling Channelized Connectivity 10
Manually Enabling Channelized Connectivity 10
Performing Gap Analysis 11
Adding Segments To Connectivity Path Based on the Gap Analysis Results 12
A UIM Entity Managers
B NFV Orchestration Java Managers
C Common Utility Code Examples
D Frequently Used APIs for Design and Assign Methods
Reference UIMTECHPACK Cartridge D-1
oracle.communications.inventory.api.dna.ServiceDesigner D-1
oracle.communications.inventory.api.dna. ConnectivityDesigner D-4
oracle.communications.inventory.api.dna. ConnectivityHelper D-5
oracle.communications.inventory.api.dna. ResourceHelper D-6

API| Overview
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iii of iii

ORACLE

About This Content

API Overview
G36725-01

This guide explains how to extend Oracle Communications Unified Inventory Management
(UIM) through standard Java practices using Oracle Communications Service and Design
Catalog - Design Studio, which is an Eclipse-based integrated development environment. This
guide includes references to both applications, and often directs the reader to see the Design
Studio Help and the UIM Help for instructions on how to perform specific tasks. This guide
includes information about the UIM entity managers. This guide also includes the list of Java
managers which provide UIM's NFV Orchestration functionality. Similar to extending UIM and
using the UIM APIs, the information in this guide applies to extending the NFV Orchestration
functionality as well. This guide should be read after reading UIM Concepts, because this
guide assumes that the reader has a working knowledge of UIM architecture and concepts.
This guide should be read from start to finish because the information presented in a chapter
often builds upon information presented in a preceding chapter. This guide includes examples
of typical development code used in given situations. The guidelines and examples may not be
applicable in every situation.

Audience

This guide is intended for developers who implement code to extend UIM. The developers
should have a good working knowledge of XML and Java development and, in particular, JPA,
standard Java practices, and J2EE principles. In working with the NFV Orchestration
functionality, this guide assumes you have a working knowledge of NFV concepts.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Pageiofi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Overview

API Overview
G36725-01

This document provides information that you can use when working with the Oracle
Communications Unified Inventory Management (UIM) application programming interfaces
(APIs). This document also provides information that you can use when working with NFV
Orchestration Java manager APIs which are also UIM APIs. The UIM APIs can be extended
through custom code. The APIs, or extended APIs, can be called from various places, such as
from custom rulesets, custom web services, or customized portions of the user interface (Ul).

This document provides information on common tasks you need to do when working with any
of the UIM APIs, such as working with transactions, handling errors, and logging messages.
This information is described in Working with Transactions, Exceptions, and Logging.

The bulk of this document is an overview of numerous UIM APIs, which were specifically
selected to describe APl usage patterns and best practices for implementing common
business scenarios. Code samples are provided to show correct usage of the APIs and
expectations of implementing the APIs. This information is described in Implementing a
Generic Service Fulfillment Scenario and Implementing a Channelized Connectivity
Enablement Scenario.

This document also provides a listing of the following:

< UIM entity manager classes. See "UIM Entity Managers" for more information.

e NFV Orchestration Java managers. See "NFV Orchestration Java Managers" for more
information.

e Code examples for common utility methods. See "Common Utility Code Examples" for
more information.

e Frequently used APIs. See "Frequently Used APIs for Design and Assign Methods" for
more information.

This document does not cover detailed Javadoc information, nor does it cover model and
domain information provided in other UIM documentation. This document assumes that you
are familiar with UIM functionality, and are planning to extend UIM functionality by
implementing a custom solution based on information provided in UIM Developer's Guide or
UIM NFV Orchestration Implementation Guide.

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 1 of 1

Working with Transactions, Exceptions, and
Logging

This chapter describes working with transactions, exceptions, and logging. You can use this
information when working with all UIM APIs because all APIs must be called from within a
transaction, and the calling code must handle exceptions and log any errors.

See the UIM Javadoc for detailed information about APl methods, such as the exception
thrown by each method.

Working with Transactions

This section describes handling transactions when calling APIs. A standard transaction flow
typically includes:

e Starting a transaction

e Calling an API

» Determining if an error occurred

« Performing a commit or rollback of the transaction based on whether an error occurred

Example 2-1 shows a custom method that calls a manager API within a transaction:
Example 2-1 Call to an API from within a Transaction

public void sanpl eCal | API ()
{
User Envi ronnment ue
User Transaction ut
try {
/] Step 1: Begin a User Environment and Transaction
ue = startUserEnvironnment (); /* see appendix */
ut = PersistenceHel per. makePersi st enceManager (). get Transaction();
ut . begin();

nul | ;
nul | ;

[l Step 2: Call the API
Pl aceManager ngr = Persi stenceHel per. makePl aceManager () ;
Li st <Pl aceSpecification> list = ngr.get All Pl aceSpecs();
/1 Do sonmething with the list...
}
catch (Throwable t) {
/1 Step 3. Handl e Exception
try {
if (t instanceof ValidationException)
/1 Do something with the Exception, such as print it.
Systemout. println("Method call returned validation exception.");

}
catch (Exception ignore) {}

}

finally {
[l Step 4. Commit or Rollback Transaction
commi t Or Rol | back(ut); /* see appendix */

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE’

/] Step 5. End User Environment

if (ue !'=null)

}

endUser Envi ronnent (ue);

Chapter 2
Working with Exceptions

/* see appendix */

When managing transactions and calling APIs from within a transaction, consider the following:

e A commitis usually needed between separate groups of API calls that are making updates
to the database. The group of APlIs is called for an atomic and complete set of operations.

e Arollback is needed when any error occurs.

* Ensure the API call is made within the correct context of live or business interaction.

» Ensure the User Environment is started before the transaction, and is ended within the
finally block.

Working with Exceptions

This section describes the exceptions that the UIM APIs can throw. The EntityManager API
methods typically throw a ValidationException when a validation error is encountered.
However, other exceptions can also be thrown. Table 2-1 describes all of the UIM Exceptions
that can be thrown, including the ValidationException.

Table 2-1 Exception Descriptions

Exception

Extends

Description

ValidationException

InventoryException

This exception is widely used and represents all variations
of business validation exceptional conditions.

TransientObjectException

ValidationException

This exception is thrown by manager methods if an object
is passed into a method in a transient state.

ReadOnlyEntityException RuntimeException This exception is thrown when a read-only entity is
updated or deleted. A read-only entity can be an entity that
is in a queued/planned object state.

InventoryException Exception This exception is the Base Inventory Exception and other

exceptions extend it.

InvalidBusinessinteractionExc
eption

RuntimeException

This exception is thrown when the caller attempts to
perform an operation against an entity under a
Businessinteraction with an invalid status such as
completed or cancelled.

DeletedObjectException

ValidationException

This exception is thrown by manager methods if an object
is passed into a method in a deleted state.

BusinesslinteractionDisassocia
tionException

ValidationException

This exception is thrown when the manager method is
attempting to alter a Business Interaction or Business
Interaction Item and the Business Interaction validation
determines it is not allowed.

BusinessinteractionCompleteE
xception

ValidationException

This exception is thrown when the manager method is
attempting to complete a Business Interaction and the
validation determines it is not allowed.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 5

ORACLE’

Chapter 2
Working with Logging

Working with Logging

Configuring

This section describes logging messages (informational, warning, and debug messages). This
section also describes detecting what messages were logged during an API call, which is
helpful when trying to determine the success or failure of an API call.

See "Unified Inventory Management System Administration Overview" in UIM System
Administrator's Guide for information on configuring UIM logging, including changing the
logging level.

the Logging Level

The logging level, which is the amount of logging output to the log files from UIM API calls, is
determined by the values configured in the UIM_Homelconfig/lloggingconfig.xml file.

Example 2-2 shows an entry from the loggingconfig.xml file. This entry results in any debug
messages (through log.debug) existing in the code to be output to the log file when the class
exists in the specified package:

Example 2-2 Entry from loggingconfig.xml

<Logger name="oracl e. conmuni cations.inventory.extensibility" additivity="fal se">
<l evel ="debug" />
<Appender Ref ref="stdout"/>
<Appender Ref ref="rollingFile"/>

</ Logger >

Working with the Log Interface

The Log interface is located in the package:
oracle.communications.inventory.api.framework.logging

The Log interface provides the ability for an API, or custom code calling an API, to log errors,
throw exceptions, and log informational, warning, or debug messages.

Table 2-2 lists the items that can be requested from the Log interface. See the UIM Javadoc for
information regarding the specific parameters of each method.

Table 2-2 Log Interface Description

Description Method to Use Throws Exception Checked with Method on
FeedbackProvider

Fatal Exception fatal() LogFatalException getFatals()

Validation Exception validationException() ValidationException or the getErrors()hasMessages()

exception type provided on
method input

Validation Error

validationError() Currently does not throw a getErrors()hasMessages()
ValidationException

Warning Message warn() Not applicable getWarnings()hasMessages()
Informational Message info() Not applicable getNotes()hasMessages()
Debug Message debug() Not applicable getDebugs()

API Overview
G36725-01

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

Chapter 2
Working with Logging

When calling an APl method, additional errors may be thrown. For example, a custom ruleset
that calls an APl method may throw additional log messages that the developer wants to
include in the log file. Example 2-3 shows custom code that adds additional log messages to
the log file by calling the Log interface to log an informational message and a debug message:

Example 2-3 Using the Log Interface

i nport oracle.comunications.inventory.api.framework. | oggi ng. Log;
i nport oracle.comunications.inventory.api.framework.|oggi ng. LogFactory;
protected Log | og;

public void testLog()

{
this.log = LogFactory. getLog(this.getCass());
this.log.validationError("service.findServiceError", service.getld());

if (this.log.islnfoEnabled())

this.log.info ("", "This is an informational message");

if (this.log.isDebugEnabled())
this.log.debug ("", "This is a debug message.");

}

About UIM Log Messages

Messages logged by UIM APIs are defined in several *.properties files, per domain. For
example, the service.properties file defines the messages for the service domain, and the
equipment.properties file defines the messages for the equipment domain. All message-
specific *.properties files are located in the UIM_Homelconfiglresources/logging directory.

Several of the methods on the Log interface define an input parameter of a String key for an
error message. These unique keys, along with a corresponding error message String, are
defined in the message-specific *.properties files. Example 2-4 shows a single message entry
from the service.properties file:

Example 2-4 Message Entry from service.properties

service. findServiceError.id=110311
service. findServiceError=Error finding service with id {0}.

The numbers within the braces are parameter values passed in as arguments to the method
call.

Defining Custom Log Messages

You can define custom log messages in the UIM_Homelconfiglresourcesl/logging /

* properties files by adding a unique key and corresponding message. The key must be
unigue across all *.properties files in this directory, and across any *.properties files
contained in any installed cartridges.

Working with the FeedbackProvider Interface

API Overview
G36725-01

The FeedbackProvider interface is located in the package:
oracle.communications.inventory.api.framework.logging

After calling an API, the code must determine what messages have been logged. The
FeedbackProvider interface provides the ability for an API, or custom code calling an API, to

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 2
Working with Logging

interrogate what has occurred. Example 2-5 shows code that checks to see if an error has
been logged, and then prints the error:

Example 2-5 Using the FeedbackProvider Interface

public void sanpl eCal | APl Wt hFeedbackPr ovi der ()

{
User Envi ronment ue = nul | ;
User Transaction ut = null;
try {
/] Step 1. Begin a User Environment and Transaction
[l Step 2. Call the API
if ('hasErrors()) /* see appendix */
ut.commt();
el se {
ut.roll back();
Li st <FeedbackMessage> errors =
ue. get FeedbackProvi der (). getErrors();
for (java.util.lterator iter = errors.iterator(); iter.hasNext();)
FeedbackMessage error = (FeedbackMessage)iter.next();
Systemout.printIn("Error occurred: " + error.getMessage());
}
}
catch (Throwable t)
{
[l Step 3: Handl e Exception
}
finally
{
[l Step 4. Commit or Rollback Transaction
[l Step 5: End User Environment
}
}

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 5 of 5

Implementing a Generic Service Fulfillment
Scenario

This chapter describes implementing a generic service fulfillment scenario using various
Oracle Communications Unified Inventory Management (UIM) application program interfaces
(APIs). You can use this information to gain a better understanding of how the UIM APIs can
be used to implement any service scenario.

About the Generic Service Fulfillment Scenario

The generic service fulfillment scenario is a Service entity with a single Custom Object
resource assignment. The example Service entity is simplified, but the API descriptions are

applicable and extensible to other types of services with various types of resource
assignments.

Figure 3-1 shows the process flow for a generic service fulfillment scenario:

API Overview

G36725-01 October 30, 2025
Copyright © 2013, 2025, Oracle and/or its affiliates. Page 1 of 51

ORACLE"

Chapter 3

About the Generic Service Fulfillment Scenario

Figure 3-1 Process Flow of Generic Service Fulfillment Scenario

Create and
—=» Associate -7
i Party 1
i |
I |
I i
1 |
| 1
: Create and :
= — =M Associate b ——1
: Address :
1 1
1 1
! :
Create Configure
Query Create 7
; ! ; Service » Resources for
Bpecification Service Configuration Sdni
/__"\ f_Aﬁ :
Retrieve
Contgurton - | e
Specification
A J A A F
Create Intitial Creat Transition
' Service R it Lifecycle
Configuration bl Statuses
¥ ¥ 1
Default Valid O
Service Config ipagine
i esources
Assign and
Unassign (e
Resources
Reference and L
Unreference I
Resources
Undo Actions
(Reallocate- |
Reassign/ -
Rereference |’
Resources)
Reserve and
» ggﬂg: Unreserve
Resources
oi Ad(; and Delete
APl Overview — ®| Service BERENCn
G36725-01 Henifons October 30, 2025
Copyright © 2013, 2025-Oraele-andforits affiliates. Page 2 of 51

ORACLE

API Overview
G36725-01

Chapter 3
About the Generic Service Fulfillment Scenario

The process flow begins with querying for the service specification, which is used in
subsequent steps in the process flow, such as creating the Service and searching for
resources.

The process flow continues with creating the service, based upon the retrieved service
specification.

Next is creating the service configuration, which involves querying for the service configuration
specification, creating the service configuration based upon the retrieved service configuration
specification, and creating default service configuration items.

The process flow continues with the optional steps of creating additional entities, such as Party
and Geographic Address (a concrete Geographic Place entity representing a Service
Address). These entities are created and associated to the Service with specific inventory
roles.

Next in the process flow is configuring the resources for the service (resource management),
which involves querying for resources based on specific criteria using core API searches or
using custom searches. For example, you can call an API directly to search for a Custom
Object by ID, or you can call a custom API to search for a Custom Object by its association to
an Inventory Group or association to another Custom Object. You can also create resources
for immediate assignment to the service. The main goal of resource management is to retrieve
and validate the correct resources for assignment to the service. However, you can also
manage the resources with alternate flows, such as creating reservations and conditions.
Assignments, references, reservations, and conditions are the main consumption concepts for
a given resource.

In addition to resource assignments and references, the service and service configuration also
have characteristic values. These values are used to setup and configure the service instance.

After the service has been configured through resource and characteristic value assignments,
the process flow continues with transitioning the lifecycle status of various entities. APIs are
presented to show the transition of the statuses, and how the statuses are managed within the
core API functionality.

The process flow shown in Figure 3-1 shows the initial creation of the service, and also shows
other scenarios, such as changing the service configuration and disconnecting the service.
These additional scenarios are also described.

Now that you have a high-level understanding of the generic service fulfillment process flow,
each part of the process flow is further described in the following sections. Each section
includes information about the specific UIM APIs used to perform each step and possible
alternate flows of each step. Example code is also included for each step.

e Querying for the Specification

e Creating the Service and Service Configuration

¢ Creating and Associating the Party

* Creating and Associating the Geographic Address with the Service

* Configuring the Resources for the Service Configuration

e Setting Characteristic Values for the Service Configuration ltem

e Transitioning the Lifecycle Status

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 3 of 51

ORACLE Chapter 3
Querying for the Specification

Querying for the Specification

This section describes the UIM APl method used to query for the service specification. The
retrieved service specification will later be used to create the service.

Table 3-1 and example code provide information about using the APl method.

Table 3-1 Querying for the Specification
|

Topic Information

Name SpecManager.findSpecifications

Description This method retrieves specifications based on input criteria.

Pre-Condition The service specification already exists.

Internal Logic The database is queried for specifications meeting the input criteria.
Specifications matching the criteria are returned.

Post-Condition The desired service specification has been retrieved.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to select

the desired specification to be used to create the service.

Set the SpecSearchCriteria.setValidSpecsOnly (true) to instruct the find
method to only return active specifications.

Set the SpecSearchCriteria.setSpecClass (ServiceSpecification.class) to
instruct the find method to only return service specifications.

Additional criteria, such as name, may also be set to further constrain the list
of service specifications returned by the find method.

This method is applicable for retrieving other types of specifications by
supplying the correct Specification class as the query parameter. For
example, it can be used to retrieve a CustomObiject specification to be used
later for resource query or creation.

Example 3-1 Querying for the Specification

Speci fication spec = null;
SpecManager specMyr = Persi st enceHel per. makeSpecManager () ;

SpecSearchCriteria criteria = specMyr. makeSpecSearchCriteria();
CriterialtemcritSpecName = criteria. makeCriterialten();

crit SpecNane. set Val ue(specNane) ;

critSpecNane. set Operator (CriteriaQperator. EQUALS_| GNORE_CASE) ;
criteria.setNane(critSpecNane);

criteria.setSpecd ass(ServiceSpecification.class);

Li st<Speci fication> specs = specMyr.findSpecifications(criteria);
if (Wils.isEmty(specs))
{

}

spec = specs. get(0);

/* log error */

Querying for the Specification Using Finder API

This section describes the UIM APl method used to query for a service specification using a
generic Finder.findByName API.

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 4 of 51

ORACLE Chapter 3
Creating the Service and Service Configuration

Table 3-2 and example code provide information about using this APl method.

Table 3-2 Querying for the Specification Using Finder API
|

Topic Information

Name Finder.findByName

Description This method retrieves entity objects based on input criteria.

Pre-Condition The service specification already exists.

Internal Logic The database is queried for specifications meeting the input criteria.
Specifications matching the criteria are returned.

Post-Condition The desired service specification has been retrieved.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to select

the desired specification to be used to create the service.

If the specification is not found, the Find method returns empty collection
<ServiceSpecification>.

Note: The specification name is not a unique field, but it is recommended to
have unigue specification names.

This method is applicable for retrieving other types of specifications by
supplying the correct Specification class as the query parameter. For
example, it can be used to retrieve a CustomObject specification or any UIM
entity to be used later for resource query or creation.

Example 3-2 Querying for the Service Specification Using Finder API

Speci fication spec = null;
Finder f = null;

tryf{
f = PersistenceHel per. makeFi nder ();

Col | ection<Servi ceSpecification> specs =
f.findByNane(ServiceSpecification.class, “Service_Spec_nanme");
if (Uils.isEmty(specs))

/* log error */
}

spec = specs.iterator().next();

}
cat ch(Exception e){

/* 1og exception */

}
finally{
if(fl=null){
f.close();
}
}

Creating the Service and Service Configuration

This section describes the UIM API methods used to create the service and service
configuration, and to create default configuration items on the service configuration. The API
methods are listed in the order in which they must be called.

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 5 of 51

ORACLE’

Chapter 3

Creating the Service and Service Configuration

Figure 3-2 shows the generic service configuration specification used in the generic service

fulfillment scenario:

Figure 3-2 Generic Service Configuration Specification Example

ServiceSpecification

CONFIG

(Generic Service Spec)

Creating the Service

InventoryConfiguration
Spec
{Generic Service Config Spec)

Characteristic
Specification
(Char 1 Spec)

ITEM (1.1}

InventoryConfiguration
Spec
(CO ltem)

Characteristic
Specificaiton
(Char 2 Spec)

SpeclnventoryConfig
SpecOption

CustomObject
Specification
(CO Spec)

This section describes the UIM APl method used to create the service, based upon the
retrieved service specification.

Table 3-3 and example code provide information about using the APl method.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 51

ORACLE Chapter 3
Creating the Service and Service Configuration

Table 3-3 Creating the Service
|

Topic Information
Name ServiceManager.createService
Description This method creates a service instance built from the input service

specification. The service will be populated with the hard facts and
characteristics supplied by the caller.

Pre-Condition A service specification has been selected.

Internal Logic The service is created using the input service specification.
Post-Condition The service has been created and is in Pending status.

Extensions Not applicable

Tips The Service.startDate and Service.name are required attributes. The

Service.characteristics can be populated with the desired characteristics. If
the service specification is defined with any required characteristics that do
not have default values specified, then those characteristics must be set on
the service in order for it to be created successfully.

Example 3-3 Creating the Service with Characteristics

Servi ceManager sngr = null;

Finder f = null;

tryf{
smgr = Per si st enceHel per. makeSer vi ceManager () ;

f = PersistenceHel per. nakeFi nder ();

Col | ecti on<Servi ceSpecification> serviceSpecCol |l ection =
f.findByName(Servi ceSpecification.class, "service_spec");

Servi ceSpeci fication serviceSpec = (ServiceSpecification)
serviceSpecCol | ection.iterator().next();

Servi ce serviceMdel = sngr.makeService(Service.class);
servi ceMbdel . set Nane(" Servi ce_t est 22");

servi ceMbdel . set Descri ption("Service_test22 desc");
servi ceMbdel . setld("Service_test22");

servi ceMbdel . set Speci fi cati on(servi ceSpec);

HashSet <Char act eri sti cSpeci fication> char Specs =
new HashSet <Characteri sticSpecification>();
char Specs =
CharacteristicHel per. getCharacteristicSpecifications(serviceSpec);
/*char Specs is populated with the characteristics specifications of the serviceSpec.
Now, we are ready to set the value for each characteristic based on its name. Bel ow code
has if-else condition for the same.
*/
if (!charSpecs.isEnpty()) {
Set <Servi ceCharacteristic> servChars =
new HashSet <Servi ceCharacteristic>();
ServiceCharacteristic servChar = null;
for (CharacteristicSpecification charSpec : charSpecs) {

servChar = sd. makeServiceCharacteristic();

servChar. set Nane(char Spec. get Nane());

i f (charSpec. get Name().equals ("test_CharSpec_text")) {
servChar. set Val ue("service testing char");

}

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 7 of 51

ORACLE Chapter 3
Creating the Service and Service Configuration

else if
(char Spec. get Name() . equal s("t est _Char Spec_TF_Nuneric")) {
servChar. set Val ue("500");
1

servChar. set CharacteristicSpecification(charSpec);
servChars. add(servChar);

}

servi ceModel . set Characteristics(servChars);

}

Col | ection<Service> services = new ArraylLi st<Service>();
servi ces. add(servi ceMbdel) ;

Li st<Service> createdServices = sngr.createService(services);
service = createdServices.get(0);
}
cat ch(Exception e){
/* 10og exception */

}
finally{
if(fl=null){
f.close();
}
}

Retrieving the Service Configuration Specification

This section describes the UIM API method used to retrieve the service configuration
specification. The retrieved service configuration specification will later be used to create the
service configuration.

Table 3-4 and example code provide information about using the APl method.

Table 3-4 Retrieving the Service Configuration Specification
e ___|

Topic Information

Name ConfigurationManager.getConfigSpecTypeConfig

Description This method retrieves the configuration specifications related to the input
service specification.

Pre-Condition The service specification is associated to one or more configuration
specifications.

Internal Logic The configuration specifications related to the service specification are
retrieved and returned.

Post-Condition A configuration specification has been selected.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to select

the desired specification to be used to create the service configuration.

Example 3-4 Retrieving the Service Configuration Specification

Confi gurati onManager configurationManager =
Per si st enceHel per. makeConfi gur ati onManager () ;

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 8 of 51

ORACLE Chapter 3
Creating the Service and Service Configuration

Li st< I nventoryConfigurationSpec > configSpecs =
configurationManager. get Confi gSpecTypeConfi g(serviceSpec, true);

return configSpecs;

Retrieving the Service Configuration Specification Using Finder API

You can retrieve the service configuration specification using the finder.findByName API. See
Table 3-2 for more information.

Example 3-5 Querying for the Service Configuration Specification Using Finder API

I nvent oryConfi gurationSpec spec = null;
Finder f = null;

try{
f = PersistenceHel per. makeFi nder ();

Col | ection< InventoryConfigurati onSpec > specs =
f.findByNane(l nventoryConfigurationSpec.class, “Service_Configuration_Spec_name");
if (Wils.isEmty(specs))

{
/* log error */
}
spec = specs.iterator().next();
}

cat ch(Exception e){
/* 1og exception */

}
finally{
if(fl=null){
f.close();
}
}

Creating the Service Configuration

This section describes the UIM APl method used to create the service configuration, based
upon the retrieved service configuration specification.

Table 3-5 and example code provide information about using the APl method:

Table 3-5 Creating the Service Configuration

- __|
Topic Information

Name BaseConfigurationManager.createConfigurationVersion(Configurable
configurable, InventoryConfigurationVersion configuration,
InventoryConfigurationSpec configSpec)

Description This method creates a service configuration version and associates it to the
service.

Pre-Condition The service exists with no service configuration versions.

Internal Logic Not applicable

Post-Condition The first configuration version is created and associated to the service. This
method will default the configuration items based on the input configSpec.

Extensions Not applicable

Tips The service, configuration and configSpec parameters are required.

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 9 of 51

ORACLE

Chapter 3
Creating the Service and Service Configuration

Example 3-6 Creating the Service Configuration

Finder f = null;
try{
f = PersistenceHel per. nakeFi nder ();
Col | ecti on<Servi ce> serviceCol | ection =
f.findByld(Service.class, servid);
Service serv = serviceCollection.iterator().next();
f.reset();
Col | ecti on<l nvent oryConfi gurati onSpec> i nvSpecCol | ection =
f.findByName(I nventoryConfigurationSpec.cl ass,"Serv_Config");
I nvent oryConfi gurati onSpec invSpec =
i nvSpecCol | ection.iterator().next();
BaseConfi gurati onManager bcd =
Per si st enceHel per. makeConfi gur ati onManager
(Servi ceConfigurationVersion.class);
I nvent oryConfi gurati onVersion scv =
bcd. makeConfi gur ati onVersi on(serv);
scv. set Description(configld);
scv. setld(configld);
scv. set Name(configld);
scv. set Ef f Dat e(new Date());
I nvent oryConfi gurationVersion createdConfig =
bcd. creat eConfi gurati onVersion(serv, scv,invSpec);
}cat ch(Exception e){
/* 1og exception*/

}
finally{
if(f!l=null)
f.close();
}

About Alternate Flows

The generic service fulfillment scenario creates a service and initial service configuration.
Alternate flows to this scenario may be to change the service, or to disconnect the service.

The alternate flows described in this section are:

* Changing the Service

* Disconnecting the Service

Changing the Service

API Overview
G36725-01

This section describes the UIM APl method used to change an existing service by adding a
new service configuration version. The main goal is to create an IN_PROGRESS service
configuration version so additional resource or characteristic changes can be run. For
example, after creating an initial service configuration version to assign a custom object to a
service, a second service configuration version can be created to unassign the custom object
previously allocated.

Table 3-6 and example code provide information about using the APl method.

Table 3-6 Changing the Service

. __|
Topic Information

Name BaseConfigurationManager.createConfigurationVersion(Configurable
configurable, InventoryConfigurationVersion configuration)

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 10 of 51

ORACLE Chapter 3
Creating the Service and Service Configuration

Table 3-6 (Cont.) Changing the Service
|

Topic Information

Description This method creates new configuration version from the most recently
completed previous configuration version.

Pre-Condition A service with a completed service configuration version must exist.

Internal Logic Not applicable

Post-Condition A service configuration version is created with a status of IN_PROGRESS.

Extensions Not applicable

Tips The service and configuration parameters are required.

Example 3-7 Changing the Service

Finder f = null;
try{
f = PersistenceHel per. makeFi nder();
Col | ecti on<Servi ce> serviceCol | ection = f.findByld(Service.class, servid);
Service serv = serviceCollection.iterator().next();
f.reset();
Col | ecti on<l nvent oryConfi gurati onSpec> i nvSpecCol | ection =
f.findByName(l nventoryConfigurationSpec.cl ass,"Serv_Config");

I nvent oryConfi gurati onSpec invSpec =

i nvSpecCol | ection.iterator().next();
BaseConfi gurati onManager bcd =

Per si st enceHel per. makeConfi gur ati onManager (Ser vi ceConf i gur ati onVer si on. cl ass);
I nvent oryConfi gurationVersion scv =

bcd. makeConfi gurati onVersi on(serv);
scv. set Description(configld);
scv.setld(configld); scv.setNane(configld);
scv. set Ef f Dat e(new Date());
I nvent oryConfi gurationVersion createdConfig =

bcd. creat eConfi gurati onVersion(serv, scv);

}
cat ch(Exception e){
/*1 og exception */
Hinally{

if(f!=null)

f.close();

}

Example 3-8 Updating the Characteristics of a Service

Service service = null;
Finder f = null;
BaseConfi gurati onManager configMyr = null;

try{

f = PersistenceHel per. makeFi nder ();
Col | ection<Service> services = f.findByNane(Service.class, "service_name");
Service = Services.iterator.next();

HashSet <Char act eri sti cSpecification> char Specs =
new HashSet <Char act eri sticSpecification>();
char Specs = CharacteristicHel per.getCharacteristicSpecifications
(Service. get Specification());
if (!charSpecs.isEmpty()) {

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 11 of 51

ORACLE’

}
}

service.

}
}

Chapter 3
Creating the Service and Service Configuration

Set <Servi ceConfigurationltenCharacteristic> sciChars =
new HashSet <Servi ceConfi gurationltenCharacteristic>();

Servi ceConfigurationltenCharacteristic sciChar = null;

for (CharacteristicSpecification charSpec : charSpecs) {

sci Char = configltem makeCharacteristiclnstance();
String charName = sci Char. get Nane(char Spec. get Name()) ;
i f (charName. equal s("char_name_1)){

sci Char. set Val ue("textupdated");

}
sci Chars. add(sci Char) ;

set Characteristics(sciChars);

cat ch(Exception e){

/*
}
finally{

i f(f
}

| og exception*/

L=null)
f.close();

Disconnecting the Service

API Overview
G36725-01

This section describes the UIM APl method used to disconnect a service when the service is
no longer needed.

Table 3-7 and example code provide information about using the APl method.

Table 3-7 Disconnecting the Service

Topic Information

Name ServiceManager.disconnectService

Description This method will transition the state of a service and invoke necessary
business logic for the service and configuration version depending on the
type of transition initiated.

Pre-Condition The service exists and there are no configuration versions in a state other
than Completed or Cancelled.

Internal Logic Not applicable

Post-Condition The service has a Pending Disconnect status.
A new configuration version is created and any resources that are currently
assigned, are unassigned. The configuration version has an In Progress
status.

Extensions Not applicable

Tips The businessAction to be passed as input to the transition method is
ServiceAction.DISCONNECT.

Example 3-9 Disconnecting the Service

Servi ceManager sm = Per si st enceHel per. makeSer vi ceManager () ;
sm di sconnect Servi ce(service);

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 12 of 51

ORACLE’

Chapter 3
Creating and Associating the Party

Creating and Associating the Party

This section describes the UIM APl methods used to create a party, create a party role, and
associate the party and party role with the service. The APl methods are listed in the order in
which they must be called.

@® Note

The associations of the party and party role with the service are optional, and can be
associated before or after the creation of the initial service configuration. Typically,
these types of associations do not change for the service, but alternate flows are
presented to show how the associations can be changed if necessary.

Creating the Party

This section describes the UIM APl method used to create the party.

Table 3-8 and example code provide information about using the APl method.

Table 3-8 Creating the Party

Topic

Information

Name

PartyManager.createParties

Description

This method takes a collection of Party entities and persist them into the
database. The Party Role and association to the Service is setup by a
different API.

Pre-Condition

Party Specification is valid and retrieved from the database. Party has a valid
and unique ID.

Internal Logic

Take the collection of transient Party entities and persists them into the
database, and return the collection of persisted Party entities. Validate that
the Parties are not duplicated by ID and they all have valid PartySpecification.

Post-Condition

Persistent Party entities are returned.

Extensions

This APl is defined as an extension point to allow custom validation before or
after the Parties are created. For instance, the IDs can be generated based
on some custom algorithm.

Tips

Party is a CharacteristicExtensible entity. The characteristic values should be
added when the Party instance is created. Use RoleManager APIs to manage
the roles played by a given Party, and use AttachmentManager to associate
the Party with specific Role to a given Service.

Example 3-10

Fi nder finder

Creating the Party

PartyManager ngr = null;

try{

finder = PersistenceHel per. makeFi nder();

mgr = Persi st enceHel per. makePart yManager () ;
Party party = mgr. makeParty();
Col | ection<Party> parties = new ArrayList<Party>();

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 51

ORACLE’

party.setld(partyld);

Chapter 3
Creating and Associating the Party

party.set Name("Party_Nane");

party.setDescription("

Party Description");

Col | ecti on<PartySpecification> partyspec =

finder.findByNang(

PartySpecification.class,"Test_Party_Spec");

PartySpecification partySpec =partyspec.iterator().next();
party.set Speci fication(partySpec);

parties.add(party);

List<Party> results =

mor.createParties(parties);

Party resulty = results.iterator().next();

}
cat ch(Exception e){

/*1 og exception he
Hinal I y{
if(finder!=null){

finder.close();
}

}

Creating the Party Role

re*/

This section describes the UIM APl method used to create the party role.

Table 3-9 and example

code provide information about using the API method.

Table 3-9 Creating the Party Role
- __|

Topic Information
Name RoleManager.createlnventoryRole
Description This method takes a collection of InventoryRole entities and persist them into

the database. The roles passed in are the concrete subclass, for instance
PartyRole.

Pre-Condition

InvRoleSpecification is valid and retrieved from the database. The Party
which has the roles is already created.

Internal Logic

Take the collection of transient InventoryRole entities and persists them into
the database, and return the collection of persisted InventoryRole entities.
Validate that the roles are not duplicated and they all have valid
InvRoleSpecification.

Post-Condition

Persistent concrete subclass (i.e. PartyRole) entities are returned.

Extensions

Not applicable

Tips

Use RoleManager.makePartyRole() API to get a transient instance of the
correct concrete subclass of role to create. InvRoleSpecification is required.

Example 3-11 Creating the Party Role

Finder finder = Persis
Rol eManager rol eMyr =

t enceHel per. makeFi nder () ;
Per si st enceHel per. makeRol eManager () ;

PartyRol e role = rol eMyr. makePartyRol e();

/* Wility Method Call
Col | ecti on<I nvRol eSpec

finder.findByNang(
I nvRol eSpecification r

API| Overview
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

- see 3.2.1 Query Spec */

ification> invrolespeclist =

I nvRol eSpeci fication.class,"Test_Party_Rol e_Spec")
ol espec =

October 30, 2025
Page 14 of 51

ORACLE’

Chapter 3
Creating and Associating the Party

(I'nvRol eSpeci fication)invrol especlist.iterator().next();
rol e. set Speci fication(rol eSpec);
Li st<lnventoryRol e> rol es = new ArraylLi st<lnventoryRol e>();
rol es.add(role);
rol eMyr. createlnventoryRol e(roles);

Associating the Party and Party Role with the Service

This section describes the UIM APl method used to associate the party and party role with the
service. The API method must be called once per association. So, in this scenario, the API is
called to associate the party with the service, and then called again to associate the party role
with the service.

Table 3-10 and example code provide information about using the APl method. The example
shows associating the party with the service; it does not show associating the party role with
the service, which is accomplished by calling the same API method.

Table 3-10 Associating the Party and Party Role with the Service
- __|

Topic Information

Name AttachmentManager.createRel

Description This method creates an involvement (an association) between two entities.
Pre-Condition Service, Party and PartyRole are already created.

Internal Logic Creates an involvement entity to represent the relationship from Party to

Service with a specific PartyRole. The Party is the parent of this involvement.
Validates that the relationship is not duplicated.

Post-Condition PartyServiceRel is created referencing the entities.
Extensions Not applicable
Tips Set the FROM entity to Party and TO entity to Service. Set the FROM entity

role to the PartyRole.

Example 3-12 Associating the Party to the Service

String roleGd =role.getGd();
Attachnment Manager invol venent Myr =
Per si st enceHel per. makeAt t achment Manager () ;
I nvol venent invol venent =
i nvol venent Myr . makeRel (PartyServi ceRel . cl ass);
i nvol vement . set ToEntity(service);
i nvol vement . set FronEntity(party);
i nvol vement . set FronEnti t yRol eKey(rol eG d);
i nvol vement Myr . cr eat eRel (i nvol verrent) ;
PartyServi ceRel partyServiceRel = (PartyServiceRel)invol venent;

About Alternate Flows

API Overview
G36725-01

The generic service fulfillment scenario creates a party and party role, and associates them
with the service. Alternate flows to this scenario may be to disassociate the party and party role
from the service, and then delete the party and party role.

The alternate flows described in this section are:

» Disassociating the Party and Party Role from the Service

e Deleting the Party

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 15 of 51

ORACLE’

Chapter 3
Creating and Associating the Party

» Deleting the Party Role

Disassociating the Party and Party Role from the Service

This section describes the UIM APl methods used to retrieve a party or service, and then use
the retrieved data to disassociate the party from the service. The APl methods are listed in the
order in which they must be called.

The API methods must be each called once per disassociation. So, in this scenario, an APl is
called to retrieve the party or service, and another API is called to disassociate the party from
the service. This process is repeated to disassociate the party role from the service: An APl is
called to retrieve the party role or service, and another APl is called to disassociate the party
role from the service.

Table 3-11 and Table 3-12 provide information about using the APl methods.

Table 3-11 Getting the Party and the Service

Topic Information
Name Service.getParty() or Party.getService()
Description These methods are used to retrieve the bidirectional relationship

PartyServiceRel between Party and Service. Once retrieved, the correct
instance can be deleted.

Pre-Condition PartyServiceRel is already created.

Internal Logic Simple relationship attribute on the entities to get list of relationships to iterate
through.

Post-Condition PartyServiceRel is found and passed to next method for deletion.

Extensions Not applicable

Tips Not applicable

Table 3-12 Disassociating the Party from the Service

Topic Information
Name AttachmentManager.deleteRel
Description This method deletes an involvement (an association) between two entities. In

this example, an existing relationship between the Party and Service with a
specific role is deleted.

Pre-Condition PartyServiceRel is already created.

Internal Logic Delete the PartyServiceRel entity.

Post-Condition PartyServiceRel is deleted.

Extensions Not applicable

Tips Delete existing PartyServiceRel and create new ones to change Party to

Service relationships.

Deleting the Party

API Overview
G36725-01

This section describes the UIM APl method used to delete a party.

Table 3-13 provides information about using the APl method.

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 16 of 51

ORACLE’

Chapter 3
Creating and Associating the Geographic Address with the Service

Table 3-13 Deleting the Party
|

Topic

Information

Name

PartyManager.deleteParty

Description

This method deletes an existing Party, and all its existing PartyRoles.

Pre-Condition

Party is already created.

Internal Logic

Delete the Party entity. The Party will not be deleted if it is associated with
other entities, such as involvement with a Service.

Post-Condition

Party is deleted.

Extensions

The APl is an extension point for adding custom validation logic, such as
logging and removing any relationships before deleting.

Tips

Use this method to delete an incorrect or obsolete Party before creating a
new Party.

Deleting the Party Role

This section describes the UIM APl method used to delete a party role.

Table 3-14 provides information about using the APl method.

Table 3-14 Deleting the Party Role
|

Topic

Information

Name

RoleManager.deletelnventoryRoles

Description

This method deletes an existing InventoryRole on a given entity. In this
example, a PartyRole subclass instance is deleted.

Pre-Condition

PartyRole is already created.

Internal Logic

Delete the PartyRole entity.

Post-Condition

PartyRole is deleted.

Extensions

Not applicable

Tips

Use this method to delete an incorrect or obsolete role before creating a new
role.

Creating and Associating the Geographic Address with the

Service

This section describes the UIM APl methods used to create a place, create a place role, and
associate the place and place role with the service. (A place is a GeographicPlace entity, which
is a concrete entity representing a geographic address/service address.) The APl methods are
listed in the order in which they must be called.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 51

ORACLE’

Chapter 3
Creating and Associating the Geographic Address with the Service

@® Note

The associations of the place and place role with the service are optional, and can be
associated before or after the creation of the initial service configuration. Typically,
these types of associations do not change for the service, but alternate flows are
presented to show how the associations can be changed if necessary.

Creating the Geographic Place

API Overview
G36725-01

This section describes the UIM APl method used to create the geographic place.

Table 3-15 and example code provide information about using the APl method.

Table 3-15 Creating the Geographic Place
|

Topic Information
Name PlaceManager.createGeographicPlace
Description This method takes a collection of Geographic Address entities that represents

the Service Address and persist them into the database. The Place Role and
association to the Service is setup by a different API. For this example, create
a Geographic Address, a concrete subclass of Geographic Place, as an
instance of the Service Address.

Pre-Condition Place Specification is valid and retrieved from the database. Geographic
Address has a valid and unique ID.

Internal Logic Take the collection of transient Geographic Address entities and persists
them into the database, and return the collection of persisted Geographic
Address entities. Validate that the Geographic Address are not duplicated by
ID and they all have valid PlaceSpecification.

Post-Condition Persistent Geographic Address entities are returned.

Extensions This APl is defined as an extension point to allow custom validation before or
after the Geographic Addresses are created. For instance, the IDs can be
generated based on some custom algorithm.

Tips Geographic Address is a CharacteristicExtensible entity. Its characteristic
values should be added as the instance is created. Use RoleManager APIs to
manage the roles played by a given Geographic Address, and use
AttachmentManager to associate the Geographic Address with specific Role

to a given Service. (Same as Party.)

Example 3-13 Creating the Geographic Place

Fi nder finder = PersistenceHel per.makeFi nder();
Pl aceManager pl aceMyr = Persi stenceHel per. makePl aceManager () ;
CGeogr aphi cAddress pl ace =
pl aceMyr . makeGeogr aphi cPl ace(Geogr aphi cAddr ess. cl ass);
pl ace.setld("Place_ID");
pl ace. set Nane(" Pl ace_Nane");

Col | ecti on<Pl aceSpeci ficati on> pl aceSpecification = finder.findByNane
(Pl'aceSpecification.class, (String)paramvap. get (" Test_Pl ace_Spec"));

Pl aceSpeci fication pcspec = PlaceSpecification.iterator().next();
pl ace. set Speci fication((Pl aceSpeci fication) placeSpec);

Li st places = new ArraylLi st <Geographi cAddress>();

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 18 of 51

ORACLE’

Chapter 3
Creating and Associating the Geographic Address with the Service

pl aces. add(pl ace);
pl aces = pl aceMyr. creat eGeogr aphi cPl ace(pl aces);
pl ace = (Geographi cAddress) places.iterator().next();

Creating the Place Role

This section describes the UIM APl method used to create the place role.

Table 3-16 and example code provide information about using the APl method.

Table 3-16 Creating the Place Role
- __|

Topic Information

Name RoleManager.createlnventoryRole

Description This method takes a collection of InventoryRole entities and persist them into
the database. The roles passed in are the concrete subclass, for instance
PlaceRole.

Pre-Condition InvRoleSpecification is valid and retrieved from the database. The

Geographic Address which has the roles is already created.

Internal Logic Take the collection of transient InventoryRole entities and persists them into
the database, and return the collection of persisted InventoryRole entities.
Validate that the roles are not duplicated and they all have valid
InvRoleSpecification.

Post-Condition Persistent concrete subclass (i.e. PlaceRole) entities are returned.
Extensions Not applicable
Tips Use RoleManager.makePlaceRole() API to get a transient instance of the

correct concrete subclass of role to create. InvRoleSpecification is required.

Example 3-14 Creating the Place Role

Fi nder finder = PersistenceHel per.makeFi nder();
Rol eManager rol eMyr = Persi stenceHel per. makeRol eManager () ;
Pl aceRol e role = rol eMyr. nakePl aceRol e();

Col | ecti on<l nvRol eSpeci fication> invrol especlist =
f.findByName(I nvRol eSpeci fication.class, "Test_Place_Rol e_Spec");

I nvRol eSpeci fication rol espec =

(I'nvRol eSpeci fication)invrol especlist.iterator().next();
rol e. set Speci fication(rol eSpec);
Li st<InventoryRol e> rol es = new ArraylLi st<lnventoryRol e>();
rol es.add(role);
rol eMyr. createlnventoryRol e(roles);

Associating the Geographic Place and Place Role with the Service

API Overview
G36725-01

This section describes the UIM APl method used to associate the geographic place and place
role with the service. The API method must be called once per association. So, in this
scenario, the API is called to associate the geographic place with the service, and then called
again to associate the place role with the service.

Table 3-17 and example code provide information about using the APl method. The example
shows associating the geographic place with the service; it does not show associating the
place role with the service, which is accomplished by calling the same API method.

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 19 of 51

ORACLE’

Chapter 3
Creating and Associating the Geographic Address with the Service

Table 3-17 Associating the Geographic Place and Place Role with the Service

Topic Information
Name AttachmentManager.createRel
Description This method creates an involvement (an association) between two entities. In

this example, a relationship is created between Geographic Address and
Service with a specific role created earlier.

Pre-Condition

Service, Geographic Address and PlaceRole are already created.

Internal Logic

Creates an involvement entity to represent the relationship from Geographic
Address to Service with a specific PartyRole. The Geographic Address is the
parent of this involvement. Validates that the relationship is not duplicated.

Post-Condition

PlaceServiceRel is created referencing the entities.

Extensions

Not applicable

Tips

Set the FROM entity to Geographic Address and TO entity to Service. Set the
FROM entity role to the PlaceRole.

Example 3-15 Associating the Geographic Place with the Service

String roleGd =role.getGd();

At t achment Manager invol venent Myr = Per si st enceHel per. makeAt t achment Manager () ;
I nvol venent invol venent = invol vement Myr. makeRel (Pl aceServi ceRel . cl ass);

i nvol venment . set ToEntity(service);

i nvol venment . set FronEntity(pl ace);

i nvol vement . set FronEnti t yRol eKey(rol eG d);

i nvol venment Myr . cr eat eRel (i nvol verrent) ;

Pl aceServi ceRel placeServiceRel = (Pl aceServiceRel) invol verent;

About Alternate Flows

The generic service fulfillment scenario creates a geographic place and place role, and
associates them with the service. Alternate flows to this scenario may be to disassociate
geographic place and place role from the service, and then delete the geographic place and

place role.

The alternate flows described in this section are:

» Disassociating the Geographic Place and Place Role from the Service

» Deleting the Geographic Place

+ Deleting the Place Role

Disassociating the Geographic Place and Place Role from the Service

This section describes the UIM APl methods used to retrieve a place or service, and then use
the retrieved data to disassociate the place from the service. The APl methods are listed in the
order in which they must be called.

The API methods must be each called once per disassociation. So, in this scenario, an APl is
called to retrieve the place or service, and another API is called to disassociate the place from
the service. This process is repeated to disassociate the place role from the service: An APl is
called to retrieve the place role or service, and another APl is called to disassociate the place

role from the service.

API Overview
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 51

ORACLE’

Chapter 3
Creating and Associating the Geographic Address with the Service

Table 3-18 and Table 3-19 provide information about using the APl methods.

Table 3-18 Getting the Place and Service

Topic Information
Name Service.getPlace() or GeographicPlace.getPlaceservicerels ()
Description These methods are used to retrieve the bidirectional relationship

PlaceServiceRel between Geographic Address and Service. Once retrieved,
the correct instance can be deleted.

Pre-Condition

PlaceServiceRel is already created.

Internal Logic

Simple relationship attribute on the entities to get list of relationships to iterate
through.

Post-Condition

PlaceServiceRel is found and passed to next method for deletion.

Extensions

Not applicable

Tips

Not applicable

Table 3-19 Disassociating the Place and Place Role from the Service

Topic Information
Name AttachmentManager.deleteRel
Description This method deletes an involvement (an association) between two entities. In

this example, an existing relationship between the Geographic Address and
Service with a specific role is deleted.

Pre-Condition

PlaceServiceRel is already created.

Internal Logic

Delete the PlaceServiceRel entity.

Post-Condition

PlaceServiceRel is deleted.

Extensions

Not applicable

Tips

Delete existing PlaceServiceRel and create new ones to change Geographic
Address to Service relationships.

Deleting the Geographic Place

API Overview
G36725-01

This section describes the UIM APl method used to delete a geographic place.

Table 3-20 provides information about the APl method.

Table 3-20 Deleting the Geographic Place

Topic Information
Name PlaceManager.deleteGeographicPlace
Description This method deletes an existing Geographic Address, and all its existing

PlaceRoles. In this example, the Service Address as in instance of a
Geographic Address is deleted.

Pre-Condition

Geographic Address is already created.

Internal Logic

Delete the Geographic Address entity, and all its existing PlaceRoles. The
Geographic Address will not be deleted if it is associated with other entities,
such as involvement with a Service.

Post-Condition

Geographic Address is deleted.

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 51

ORACLE Chapter 3
Configuring the Resources for the Service Configuration

Table 3-20 (Cont.) Deleting the Geographic Place

- __|
Topic Information

Extensions The API is an extension point for adding custom validation logic, such as
logging and removing any relationships before deleting them.

Tips Use this method to delete an incorrect or obsolete Geographic Address
before creating a new Geographic Address.

Deleting the Place Role

This section describes the UIM APl method used to delete a place role.

Table 3-21 provides information about the APl method.

Table 3-21 Deleting the Place Role
e ___|

Topic Information

Name RoleManager.deletelnventoryRoles

Description This method deletes an existing InventoryRole on a given entity. In this
example, a PlaceRole subclass instance is deleted.

Pre-Condition PlaceRole is already created.

Internal Logic Delete the PlaceRole entity.

Post-Condition PlaceRole is deleted.

Extensions Not applicable

Tips Use this method to delete an incorrect or obsolete role before creating a new
role.

Configuring the Resources for the Service Configuration

This section describes the APIs needed to assign a custom object to a service configuration
item. The APIs are listed in the order in which they must be called.

@® Note

If assignment is being done as part of creating the service and service configuration
(see "Creating the Service and Service Configuration"), then start at section "Finding
the Service Configuration Item" because the service and service configuration are
already known.

Figure 3-3 shows how the service and configuration are created by calling the APIs described
in Creating the Service and Service Configuration.

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 22 of 51

ORACLE’

Chapter 3
Configuring the Resources for the Service Configuration

Figure 3-3 Generic Service Example

IN PROGRESS

Service
(Generic SVC-1)

ServiceConfiguration
Version
Wersion 1)

Finding the Service

ServiceConfiguration
ltem

ServiceConfiguration
ltem
(CO ltem)

This section describes the UIM APl method used to find the service. The retrieved service will
be used to find the service configuration.

Table 3-22 and example code provide information about using the APl method.

Table 3-22 Finding the Service
e ___|

Topic Information
Name ServiceManager.findServices
Description This method retrieves services based on input criteria.

Pre-Condition

The desired service already exists.

Internal Logic

The database is queried for services meeting the input criteria. Services
matching the criteria are returned.

Post-Condition

The desired service has been retrieved.

Extensions

Not applicable

Tips

If a list of services is returned, the list will need to be iterated to select the
desired service.

API| Overview
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 51

ORACLE’

Finding the

API Overview
G36725-01

Chapter 3
Configuring the Resources for the Service Configuration

Example 3-16 Finding the Service

Servi ceManager ngr = Persi stenceHel per. makeServi ceManager () ;
ServiceSearchCriteria criteria = ngr.mkeServiceSearchCriteria();
citem= criteria. mkeCriterialtem);

citem set Val ue("Servi ce_Test _22");

citemset Operator(CriteriaQperator. EQUALS);
criteria.setName(citem;

List<Service> list = ngr.findServices(criteria);

Service by ID Using Finder API

This section describes the UIM API method that is used to find the service using the
finder.findByName API.

Table 3-23 and example code provide information about using the APl method.

Table 3-23 Querying for the Service by ID using Finder API
|

Topic Information

Name Finder.findByName

Description This method retrieves services based on input criteria.

Pre-Condition The desired service already exists.

Internal Logic The database is queried for services meeting the input criteria. Services
matching the criteria are returned.

Post-Condition The desired service has been retrieved.

Extensions Not applicable

Tips If a list of services is returned, the list will need to be iterated to select the

desired service.
If the service is not found, the find method will return empty collection.

Note: The name is not a unique field, but it is common to have unique service
names.

This method is applicable for retrieving other entities by supplying the correct
class as the query parameter. For example, it can be used to retrieve a
CustomObiject or any UIM entity to be used later for resource query or
creation.

Example 3-17 Finding the Service by ID Using Finder API

Service service = null;
Finder f = null;

try{

f = PersistenceHel per. makeFi nder ();

Col | ection<Service> services = f.findByNane(Service.class, "service_name");
service = Services.iterator.next();

}

cat ch(Exception e){

/* log exception*/

}
finally{
if(fl=null)
f.close();
}

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 24 of 51

ORACLE Chapter 3
Configuring the Resources for the Service Configuration

Finding the Current Service Configuration Version

To find the current service configuration version:

1. Find the service. See "Finding the Service".

2. Select the service configuration versions using service.getConfigurations().

3. Process the retrieved service configuration versions, looking for one with a configState of
IN_PROGRESS, DESIGNED or ISSUED.

There will only be one service configuration version in one of these states at a given point
in time for a service. If a service configuration version is not found in one of these states,
you cannot proceed with resource assignment.

In the generic service fulfillment scenario, Version 1 would be selected.
Example 3-18 Finding the Current Service Configuration Version

I nvent oryConfi gurationVersion invConfigVersion = null;

Servi ceConfi gurati onManager scm =
Per si st enceHel per. makeSer vi ceConfi gur ati onManager () ;
Busi nesslnteractionState configState = BusinesslnteractionState. | N PROGRESS;
/*simlarly, other BusinesslnteractionStates (COWLETED, CANCELLED) can al so be passed
as paraneter*/

Li st<I nvent oryConfi gurationVersion> configs =
scm get EntityConfigurationVersions(configurable, configState);

I nvent oryConfi gurationVersion latestConfig = null;
if ('Uils.isEnpty(configs)) {

i nvConfigVersion = configs.get(0);

}

Servi ceConfigurationVersion scv = (ServiceConfigurationVersion) invConfigVersion;

Finding the Service Configuration Item

To find the service configuration item:

1. Find the current service configuration version. See "Finding the Current Service
Configuration Version".

2. Select the service configuration items using service.getConfigltems().

3. Process the retrieved service configuration items, looking for one with the configType of
ITEM.

In the generic service fulfillment scenario, CO Item would be selected.

@® Note

In this simplified example, we know there is only one item level configuration item,
and we know it is associated to an option for a custom object specification, which
is why the following sections find or create a custom object to assign.

Example 3-19 Finding the Current Service Configuration Item

Servi ceConfigurationVersion scv = (ServiceConfigurationVersion) invConfigVersion;
Li st<? extends InventoryConfigurationlten> items = confVersion.getConfigltens();
I nventoryConfigurationlteminvConfigltem= null;

for (InventoryConfigurationltemitem: items) {

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 25 of 51

ORACLE’

Chapter 3
Configuring the Resources for the Service Configuration

i f (nane. equal sl gnoreCase(item getNanme())) {
invConfigltem=item
br eak;

}

Example 3-20 Finding the Current Service Configuration Item - Alternate Way Including
Checks for Existing References or Assighments on the Item

Servi ceConfigurationVersion scv = (ServiceConfigurationVersion) invConfigVersion;
bool ean checkRef erenceAndAssi gnnent = true;
Li st<? extends InventoryConfigurationltens items = confVersion.getConfigltems();
I nvent oryConfigurationlteminvConfigltem= null;
for (InventoryConfigurationitemitem: itens) {
i f (nanme.equal sl gnoreCase(item getName())) {

i f (checkRef erenceAndAssi gnment) {
if (configltemgetAssignment() == null
&& configltem get Reference() == null) {
invConfigltem=item
br eak;
}
}

}

Finding the Custom Object to Assign

API Overview
G36725-01

This section describes the UIM APl method used to find the custom object to assign to the
retrieved service configuration item. When assigning a custom object to a service configuration
item, you can either find an existing custom object, or you can create a new custom object to
assign, as described in the following section, "Creating the Custom Object to Assign".

Table 3-24 and example code provide information about using the APl method.

Table 3-24 Finding the Custom Object
|

Topic Information

Name CustomObjectManager.findCustomObjects

Description This method retrieves custom objects based on input criteria.

Pre-Condition The custom object to be allocated already exists.

Internal Logic The database is queried for custom objects meeting the input criteria. Custom
objects matching the criteria are returned.

Post-Condition The desired custom object has been retrieved.

Extensions Not applicable

Tips Set the

CustomObijectSearchCriteria.setAssignmentState(AssignmentState. UNASSI
GNED) to instruct the find method to only return available custom objects.

In this example, we could choose to set the
CustomObijectSearchCriteria.setCustomObjectSpecification
(CustomObjectSpecification) to the CO Spec instance.

If a list of custom objects is returned, the list will need to be iterated to select

the desired custom object to be allocated to the service configuration item.

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 26 of 51

ORACLE’

Chapter 3
Configuring the Resources for the Service Configuration

Example 3-21 Finding the Custom Object

Fi nder finder = null;
Cust omhj ect Manager nmgr = nul | ;
try{
mgr = Persi st enceHel per. makeCust onbj ect Manager () ;
Cust omhj ect SearchCriteria criteria =

ngr . makeCust onhj ect SearchCriteria();
criteria.setAdnmi nState(lnventoryState.|NSTALLED);
finder = PersistenceHel per. makeFi nder();
int quantity = 1;// any positive nunber to ensure the query does not go unbounded
Col | ecti on<Cust onbj ect Speci fi cati on> cust onbj ect Specs =

finder.findByName(Cust onmbj ect Speci fi cation. cl ass, " Test _Cust om Obj ect _Spec");

criteria.setCustonbject Specification(custonbjectSpecs.iterator().next());
criteria.setRange(0, quantity);
mgr . findCust onChj ects(criteria);

/* another exanple */
Col | ecti on<Cust omObj ect > cust Cbjs = f.findByl d(Custonbject.class, "CO1");

catch (Exception e){
/* 1og exception */

}
finally{
if(f!l=null)
f.close();
}

Creating the Custom Object to Assign

API Overview
G36725-01

This section describes the UIM APl method used to create a custom object to assign to the
retrieved service configuration item. When assigning a custom object to a service configuration
item, you can either create a new custom object, or you can find an existing custom object to
assign, as described in "Finding the Custom Object to Assign".

Table 3-25 and example code provide information about using the APl method.

Table 3-25 Creating the Custom Object
|

Topic Information

Name CustomObjectManager.createCustomObjects

Description This method creates a custom object. The custom object will be populated
with the hard facts and characteristics supplied by the caller.

Pre-Condition Not applicable

Internal Logic The custom object is created.

Post-Condition The custom object has been created and is in Installed status.

Extensions Not applicable

Tips A custom object can be created with or without a specification.

Example 3-22 Creating the Custom Object

Finder f = null;
Cust onbj ect Manager custMgr = null;

try{
cust Mgr = Persi st enceHel per. makeCust onhj ect Manager () ;

f = PersistenceHel per. makeFi nder ();

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 27 of 51

ORACLE’

Chapter 3
Configuring the Resources for the Service Configuration

Col | ecti on<Cust onhbj ect Speci fi cati on> specList =
new ArrayLi st <Cust onbj ect Speci fi cati on>
(f.findByName(Cust ombj ect Speci fication.class, "SPEC CUST 001"));

if (specList !'= null && !specList.isEnpty())
{
Cust ombj ect Speci fi cation cust Ghj Spec =
specList.iterator().next();

Col | ecti on<Cust omObj ect > cust Cbj ects = new ArrayLi st <Cust onbj ect >();
Cust ombj ect cust Cbj = cust Myr. nakeCust onhj ect () ;

cust Cbj . setld("CUST_OBJ_ID");

cust Cbj . set Name(" CUST_OBJ_NAME");

cust Cbj . set Descri ption("CUST_OBJ_DESC');

cust Obj . set Speci fication(custChj Spec); /* optional */

cust Obj ects. add(cust Ohj) ;

cust Myr. creat eCust onbj ect s(cust Ohj ects);}

}
cat ch(Exception e){

/* 10og exception*/

}
finally{
if(f!=null)
f.close();
}

Assigning the Resource to a Configuration Item

API Overview
G36725-01

This section describes the UIM APl method used to assign the resource to a configuration
item. In the generic service fulfillment scenario, the resource is the custom object that was
either found or created when "Finding the Custom Object to Assign" or "Creating the Custom
Object to Assign".

Table 3-26 and example code provide information about using the APl method.

Table 3-26 Assighing the Resource to a Configuration Item

. __|
Topic Information

Name BaseConfigurationManager.assignResource(E
item,oracle.communications.inventory.api.entity.common.ConsumableResour
ce resource,java.lang.String reservedFor,java.lang.String reservedForType)

In this example, the full signature of the method is included because there are
multiple overloaded assignResource methods.

Description This method assigns the input resource to the input service configuration
item. In this example, a custom object is used as the consumable resource for
assignment.

Pre-Condition The configuration item to allocate the custom object to has been selected.

Internal Logic Not applicable

Post-Condition The custom object has been allocated to the service configuration item.

Extensions Not applicable

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 28 of 51

ORACLE Chapter 3
Configuring the Resources for the Service Configuration

Table 3-26 (Cont.) Assigning the Resource to a Configuration Item

- __|
Topic Information

Tips The input item is the entity configuration item to assign the resource to
(ConsumableResource). In this example, ConsumableResource is set to the
CustomObiject for CO-1. The reservedFor and reservedForType parameters
should be populated if the resource to be assigned is reserved, so the
reservation can be redeemed.

Example 3-23 Assigning the Resource to a Configuration Item

Finder finder = PersistenceHel per. makeFi nder();
Col | ecti on<Cust onbj ect > cust Cbj s =
finder.findByName(Cust ombj ect.class, "CO1");
Cust ombj ect custCbj = custCbjs.iterator().next();
Servi ceManager ngr = Persi st enceHel per. makeServi ceManager () ;

ServiceSearchCriteria criteria = ngr.mkeServiceSearchCriteria();
Criterialtemcitem= criteria. makeCriterialten();

citem set Val ue(" Servi ce_Test _22");

citemset Operator(CriteriaQperator. EQIALS);
criteria.setName(citem;

List<Service> list = ngr.findServices(criteria);

Service service = list.get(0);

Li st <Servi ceConfi gurationVersion> srvConfigurations =
service. get Configurations();

Servi ceConfigurationltemAl | ocationData itenData =
new Servi ceConfigurationltemAl | ocationData();

int i = srvConfigurations.get(0).getVersionNunber();

//Wite logic to get the |atest ServiceConfigurationVersion of the Service.
/I Process the retrieved service configuration versions,

//1ooking for one with a configState of | N PROGRESS, DESI GNED or | SSUED.
Servi ceConfi gurationVersion | atestConfiguration;

/1 Assign the |atest ServiceConfigurationVersion
//to the variable |atestConfiguration
Li st <Servi ceConfigurationltenm configltenms =

| at est Configuration.getConfigltems();
for(ServiceConfigurationltemitem: configltens)

{
if((itemgetName()!= null && item get Nane().equal sl gnoreCase("CO Iteni)))

{
i tenDat a. set Resour ce(cust Obj);
i tenDat a. set Servi ceConfigurationlten(iten;
String reservedFor= null; // "Service-123"
String reservedFor Type= null; // "Longternt
BaseConfi gur ati onManager bcd =
Per si st enceHel per. makeConf i gur at i onManager
(Servi ceConfigurationVersion.class);
bcd. assi gnResource(item cust Qoj, reservedFor, reservedFor Type);
br eak;

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 29 of 51

ORACLE’

Chapter 3

Configuring the Resources for the Service Configuration

Referencing the Resource to a Configuration ltem

This section describes the UIM APl method used to reference the resource to a configuration
item. In a generic service fulfillment scenario, the resource is a custom object that was either
found or created when "Finding the Custom Object to Assign" or "Creating the Custom Object

API Overview
G36725-01

to Assign”.

Table 3-24 and example code provide information about using the APl method.

Table 3-27 Referencing the Resource to a Configuration Item

CustomObject for CO-1.

Topic Information

Name BaseConfigurationManager. referenceEntity (E item,
ConfigurationReferenceEnabled entity)

Description This method refers the input resource to the input service configuration item.
In this example, a custom object is used as the resource for reference.

Pre-Condition The configuration item to allocate the custom object to has been selected.

Internal Logic Not applicable

Post-Condition The custom object has been allocated to the service configuration item.

Extensions Not applicable

Tips The input item is the entity configuration item to refer the resource to

(referenceEnabledEntity). In this example, resource is set to the

Example 3-24 Referencing the Resource to a Configuration Item

Fi nder finder = null;
BaseConf i gurati onManager confighyr = null
Servi ceManager nmgr = nul | ;

tryf{
finder = PersistenceHel per. makeFi nder();

Col | ecti on<Cust onbj ect > cust Cbj s =

finder.findByName(Cust onbj ect. class, "CO1");
Cust omhj ect custCbj = custQbjs.iterator().next();
mgr = Persi st enceHel per. makeServi ceManager () ;

ServiceSearchCriteria criteria = ngr.mkeServiceSearchCriteria();
Criterialtemcitem= criteria. makeCriterialten();

citem set Val ue(" Servi ce_Test _22");

citemset Operator(CriteriaQperator. EQUALS);
criteria.setName(citem;

List<Service> list = ngr.findServices(criteria);

Service service = list.get(0);

Li st <Servi ceConfi gurationVersion> srvConfigurations =
service. get Configurations();

Servi ceConfigurationltemAl | ocationData itenData =
new Servi ceConfigurationltemAl | ocationData();

int i = srvConfigurations.get(0).getVersionNunber();

/I/Wite logic to get the |atest ServiceConfigurationVersion of the Service.
/I Process the retrieved service configuration versions,

//1ooking for one with a configState of | N_PROGRESS, DESI GNED or | SSUED.
Servi ceConfi gurationVersion | atestConfiguration;

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 51

ORACLE

API Overview
G36725-01

Chapter 3
Configuring the Resources for the Service Configuration

/1 Assign the |atest ServiceConfigurationVersion
//to the variable |atestConfiguration
Li st<Servi ceConfigurationltenr configltens =

| at est Configuration.getConfigltenms();

Servi ceConfigurationltemconfigltem= null;

confi gMyr = Persi st enceHel per. makeConfi gur ati onManager
(ServiceConfigurationltenDAQ cl ass);

ConfigurationltenSearchCriteria configltenCriteria =
confi gMyr. makeConfi gurationltenSearchCriteria();

configltenCriteria.setConfigurationltenC ass(ServiceConfigurationltenDAO class);
Criterialtemcriterialtem= configltenCriteria mkeCriterialtem);
criterialtemsetValue("itemnane");
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationltemNane(criterialten);

criterialtem= configltenCriteria. makeCriterialten();
criterialtem setVal ue(version. getVersionNurmber());
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationVersionNunber(criterialten);

Li st<lI nventoryConfigurationltenr configltens =
configMyr.findConfigurationltenms(configltenCriteria);

configltem= configltens.iterator().next();
if (configltem!= null) {
BaseConfi gurati onManager confi gurati onManager =
Per si st enceHel per. makeConfi gur ati onManager (confi gltem getd ass());
configurationManager.referenceEntity(configltem referenceEnabl edEntity);

cat ch(Exception e){
/* 1og exception*/

}
finally{
i f(finder!=null)
finder.close();
}

Example 3-25 Unreferencing the Resource to a Configuration Item

Fi nder finder = null;
BaseConf i gur ati onManager configMyr = null;
Servi ceManager nmgr = nul | ;

tryf{
finder = PersistenceHel per. makeFi nder();

Col | ecti on<Cust onbj ect > cust Cbj s =

finder.findByName(Cust onbj ect. class, "CO1");
Cust omhj ect custCbj = custQbjs.iterator().next();
mgr = Persi st enceHel per. makeServi ceManager () ;

ServiceSearchCriteria criteria = ngr.mkeServiceSearchCriteria();
Criterialtemcitem= criteria. makeCriterialten();

citem set Val ue("Servi ce_Test _22");

citemset Operator(CriteriaQperator. EQUALS);
criteria.setName(citem;

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 31 of 51

ORACLE

Chapter 3
Configuring the Resources for the Service Configuration

List<Service> list = ngr.findServices(criteria);
Service service = list.get(0);
Li st <Servi ceConfi gurationVersi on> srvConfigurations =
service. get Configurations();
Servi ceConfigurationltemd | ocationData itenData =
new Servi ceConfigurationltemAl | ocationData();
int i = srvConfigurations.get(0).getVersionNunber();

/I/Wite logic to get the |atest ServiceConfigurationVersion of the Service.
/I Process the retrieved service configuration versions,

/11ooking for one with a configState of | N PROGRESS, DESI GNED or | SSUED.
Servi ceConfigurationVersion | atestConfiguration;

/1 Assign the |atest ServiceConfigurationVersion
//to the variable |atestConfiguration
Li st<Servi ceConfigurationltenr configltens =

| at est Configuration.getConfigltenms();

Servi ceConfigurationltemconfigltem= null;

confi gMyr = Persi st enceHel per. makeConfi gur ati onManager
(ServiceConfigurationltenDAQ class);

ConfigurationltenSearchCriteria configltenCriteria =
confi gMyr. makeConfi gurationltenSearchCriteria();

configltenCriteria.setConfigurationltenC ass(ServiceConfigurationltenDAO class);
Criterialtemcriterialtem= configltenCriteria mkeCriterialtem();
criterialtemsetValue("itemnane");
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationltemNane(criterialten);

criterialtem= configltenCriteria. makeCriterialten();
criterialtem setVal ue(version. getVersi onNunmber());
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationVersionNurmber(criterialten);

Li st<lInventoryConfigurationltenr configltens =
configMyr.findConfigurationltens(configltenCriteria);

if ('Uils.isEnpty(configltens)) {
configMyr. dereferencel nventoryConfigurationltens (configltens);

}

}
cat ch(Exception e){

/* 1og exception*/

}
finally{
i f(finder!=null)
finder.close();
}

About Alternate Flows

API Overview
G36725-01

The generic service fulfillment scenario assigns a custom object resource to a service
configuration item. An alternate flow to this scenario may be to unassign the resource from a
configuration item.

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 32 of 51

ORACLE’

Chapter 3
Configuring the Resources for the Service Configuration

Additional alternate flows may be to manage consumable resources by creating reservations
and conditions. Reservations are created to prevent a given resource to be consumed by
another service. The reservation can only be redeemed successfully during resource
assignment when the correct token is provided. Also, a reservation can expire if not redeemed
within the expiry time period. Conditions are created to add informational or blocking codes to
a given resource. A blocking condition prevents a resource from being assigned.

The alternate flows described in this section are:

¢ Unassigning Resources from a Configuration Item

¢« Reserving a Custom Object

¢ Unreserving a Custom Object

¢ Creating a Blocked Condition for a Custom Object

¢ Deleting a Blocked Condition for a Custom Object

Unassigning Resources from a Configuration ltem

API Overview
G36725-01

This section describes the UIM APl method used to unassign the resource from a configuration
item.

Table 3-28 and example code provide information about using the APl method.

Table 3-28 Unassigning Resources from a Configuration Item
|

Topic Information

Name BaseConfigurationManager.unallocatelnventoryConfigurationltems(java.util.C
ollection<E> configurationltems)

Description This method unassigns/deallocates resources that were previously assigned
on a configuration item of a service configuration version.

Pre-Condition A service configuration version exists with a custom object assigned to a
configuration item of the version.

Internal Logic Not applicable

Post-Condition The custom object/s has been unassigned.

Extensions Not applicable

Tips In this example the ConsumableResource to be unassigned is custom object
'‘CO-1'.

Example 3-26 Unassignhing Resources from a Configuration Item

BaseConfi gurati onManager bcd =
Per si st enceHel per. makeConfi gur ati onManager (Ser vi ceConf i gur ati onVer si on. cl ass);
Finder f = PersistenceHel per. makeFi nder ();

Col | ecti on<Cust omObj ect > cust Cbjs = f.findByl d(Cust onbject.class, "CO1");
Cust ombj ect custCbj = custCbjs.iterator().next();
Col | ecti on<Servi ceConfi gurationVersion> scvList =

f.findByName(Servi ceConfigurationVersion.class, "Se_123 2");

Servi ceConfigurationVersion scv =
(ServiceConfigurationVersion)scvList.iterator().next();
Busi nessl nteracti onManager bi Myr =
Per si st enceHel per. makeBusi nessl nt eracti onManager () ;
bi Myr. swi t chCont ext (scv, null);

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 33 of 51

ORACLE’

Chapter 3
Configuring the Resources for the Service Configuration

/* Find Service Configuration Item (SCl) by: */

/* 1) Using Finder query by name, OR */

/* 2) Get Service Configuration and iterate to correct SCI */

/1 Col | ection<ServiceConfigurationltenm serviceConfigltenms =

/1 f.findByNane(ServiceConfigurationltemclass, "COIltent);

/'] ServiceConfigurationltemsci = serviceConfigltens.iterator().next();

Servi ceConfigurationltemunSci = null;
Col | ecti on<Servi ceConfigurationltenm scilist = scv.getConfigltens();
for (ServiceConfigurationltemsci : scilist)

{
if (sci.getName().equals("COlten) &&
sci.getConfigAction() == ConfigurationltemAction. ASSIGN &&
sci.getAssignment() !'= null &&
sci . getAssi gnment () instanceof Assignment)
{
Assi gnment assi gnment = (Assignment) sci.getAssignnent();
i f (assignment. getResource().equal s(custhj))
{
unSci = sci;
br eak;
}
}
}

if (unSci != null)

Col | ecti on<Servi ceConfigurationlten> unScilist =
new ArrayLi st <Servi ceConfigurationltenp();
unSci Li st. add(unSci);
bcd. unal | ocat el nvent oryConfi gurationltens(unSci List);

}

Reserving a Custom Object

API Overview
G36725-01

This section describes the UIM APl methods used to make a reservation and to reserve a
custom object using the reservation. To find a custom object to reserve, you must find or create
a custom object. See "Finding the Custom Object to Assign" or "Creating the Custom Object to

Assign".

Table 3-29, Table 3-30, Table 3-31 and example code provide information about using the API
methods.

Table 3-29 Making a Reservation

. __|
Topic Information

Name ReservationManager.makeReservation(ConsumableResource conRes)

In this example, the full signature of the method is included because there are
multiple overloaded makeReservation methods.

Description This method will make an instance of the appropriate Reservation class
based on the type of ConsumableResource. For example, if a CustomObject
is input, then a CustomObjectReservation will be returned.

Pre-Condition Not applicable

Internal Logic This method will determine the appropriate Reservation class to be
constructed based on the input ConsumableResource.

Post-Condition The caller has an instance of the appropriate Reservation class. In this
scenario, it will be a CustomObjectReservation.

Extensions Not applicable

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 34 of 51

ORACLE

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-29 (Cont.) Making a Reservation

Topic

Information

Tips

The CustomObiject instance for CO-1 should be passed as input to the
method.

Table 3-30 Reserving a Resource
- ___|

Topic

Information

Name

ReservationManager.reserveResource(Collection <? extends
ConsumableResource> resources, Reservation reservation)

Description

This method will reserve the input resources.

Pre-Condition

The resource exists. In this scenario the resource is Custom Object CO-1.

Internal Logic

The input parameters are validated, and if no errors are detected each input
resource is reserved. The system will generate a new reservation number. All
the input resources will be reserved for this reservation number.

Post-Condition

The resource (Custom Object CO-1) is reserved.

Extensions

The RESERVATION_EXPIRATION ruleset can be customized to change the
default behavior of setting the expiry date for a resource reservation. By
default, a long term reservation will expire after 30 days and a short term
reservation will expire after 10 minutes.

Tips

At least one ConsumableResource must be input. For this scenario, it will be
the CustomObject instance for CO-1.

The Reservation passed to the method must have the following attributes set:
* Reservation.reservedFor

(Free form text identifying the reserver.)
* Reservation.reservedForType

(A ReservedForType such as CUSTOMER.)
* Reservation.reservationType

(This would be set to ReservationType.LONGTERM for this scenario.)
Optionally, the Reservation.reason can be set. This is free form text.

The startDate, endDate, and expiry can also be set, but for this example we
will allow them to be defaulted by the system.

You can also add a resource to an existing reservation number by calling the
ReservationManager.addResourceToReservation method using this API method:

Table 3-31 Adding a Resource to a Reservation

Topic

Information

Name

ReservationManager.addResourceToReservation(Collection <? extends
ConsumableResource> resources, Reservation reservation)

Description

This method will reserve the input resources.

Pre-Condition

The resource exists. In this scenario the resource is Custom Object CO-1.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 51

ORACLE

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-31 (Cont.) Adding a Resource to a Reservation

Topic

Information

Internal Logic

The input parameters are validated, and if no errors are detected each input
resource is reserved. The resources will be reserved with an existing
reservation number. The reservedFor and reservedForType values will always
be the same for all resource reservations for the same reservation number.
Other reservation information, such as reason and expiry, can differ among
resource reserved with the same reservation number.

Post-Condition

The resource (Custom Object CO-1) is reserved.

Extensions The RESERVATION_EXPIRATION ruleset can be customized to change the
default behavior of setting the expiry date for a resource reservation. By
default, a long term reservation will expire after 30 days and a short term
reservation will expire after 10 minutes.

Tips At least one ConsumableResource must be input. For this scenario, it will be

the CustomObject instance for CO-1.
The Reservation passed to the method must have the following attributes set:
* Reservation.reservationNumber
An existing resource reservation must already exist with this same
reservation number.
* Reservation.reservationType
In the generic service fulfillment scenario, this would be set to
ReservationType.LONGTERM.
If Reservation.reservedForType or Reservation.ReservedFor are populated,
they must match the equivalent values for existing resource reservations for
the reservationNumber.
The startDate, endDate, and expiry can also be set, but for this scenario,
these dates are defaulted by the system.

Example 3-27 Reserv

ing a Custom Object

Reservat i onManager resMgr = Persi stenceHel per. makeReservati onManager () ;

Consunmbl eResource cr =
Li st <Consunabl eResour ce
crList.add(cr);

Reservation reservation
reservation. set Reason("
reservation. set Reserved
reservation. set Reserved
reservation. set Reservat

resMyr. reser veResour ce(

(Consumabl eResour ce) cust Ovj ;
> crList = new ArrayList<Consunabl eResource>();

= resMyr. makeReservation(cr);
Future reqiurement");
For (" Order-333");
For Type(Reser vedFor Type. ORDER) ;
i onType(Reservati onType. LONGTERM) ;

crlist, reservation);

ReservationManager resMgr = Persi stenceHel per. makeReservati onManager () ;
Consumabl eResource cr = (Consumabl eResource) cust Ovj ;

Li st <Consunabl eResour ce
crlist.add(cr);

Reservation reservation
reservation. set Reservat
reservation. set Reserved
reservation. set Reservat

resMyr. addResour ceToRes

API| Overview
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

> crlList = new ArraylLi st <Consumabl eResour ce>();

= resMyr. makeReservation(cr);
i onNumber ("111111111"); reservation. set ReservedFor (" Or der-333");
For Type(Reser vedFor Type. ORDER) ;
i onType(Reservati onType. LONGTERW) ;

ervation(crlList, reservation);

October 30, 2025
Page 36 of 51

ORACLE Chapter 3
Configuring the Resources for the Service Configuration

Unreserving a Custom Object

This section describes the UIM APl methods used to unreserve a custom object. To find the
custom object to unreserve, you must find the custom object. See "Finding the Custom Object

to Assign”.

Table 3-32 and example code provide information about using the APl method.

Table 3-32 Unreserving a Custom Object
- __|

Topic Information

Name ReservationManager.unreserveResource(Collection<? extends
ConsumableResource> resources, String redeemer, ReservedForType
redeemerType)

In this example, the full signature of the method is included because there are
multiple overloaded unreserveResource methods.

Description This method will delete the reservation for the input resources.
Pre-Condition The resource exists and is reserved.
Internal Logic The input parameters are validated, and if no errors are detected each input

resource is unreserved. The input redeemer and redeemerType must match
the persisted reservation information for each of the input resources.

Post-Condition The resource (custom object CO-1) is no longer reserved.
Extensions Not applicable
Tips At least one ConsumableResource must be input. For this scenario, it will be

the CustomObject instance for CO-1.
The redeemer and redeemerType are required.

Example 3-28 Unreserving a Custom Object

Reservati onManager resMyr = InventoryHel per. makeReservati onManager () ;
Consumabl eResource cr = (Consumabl eResource) cust Ovj;

Li st <Consumabl eResour ce> crList = new Arrayli st <Consumabl eResour ce>();
crlist.add(cr);

resMyr. unreserveResource(crlList, "Oder-333", ReservedFor Type. ORDER);

Creating a Blocked Condition for a Custom Object

This section describes the UIM APl methods used to create a blocked condition for a custom
object. To find a custom object to create the condition for, you must find or create a custom
object. See "Finding the Custom Object to Assign" or "Creating the Custom Object to Assign".

Table 3-33, Table 3-34 and example code provide information about using the APl methods.

Table 3-33 Making a Condition

. __|
Topic Information

Name ConditionManager.makeCondition(ConsumableResource conRes)

In this example, the full signature of the method is included because there are
multiple overloaded makeCondition methods.

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 37 of 51

ORACLE’

Chapter 3
Configuring the Resources for the Service Configuration

Table 3-33 (Cont.) Making a Condition
|

Topic

Information

Description

This method will make an instance of the appropriate Condition class based
on the type of ConsumableResource. For example, if a CustomObject is
input, then a CustomObjectCondition will be returned.

Pre-Condition

Not applicable

Internal Logic

This method will determine the appropriate Condition class to be constructed
based on the input ConsumableResource.

Post-Condition

The caller has an instance of the appropriate Condition class. In this scenario,
it will be a CustomObjectCondition.

Extensions

Not applicable

Tips

The CustomObject instance for CO-1 should be passed as input to the
method.

Table 3-34 Creating Conditions
|

Topic Information
Name ConditionManager.createConditions
Description This method will create a condition on each of the input resources.

Pre-Condition

The resource exists. In this scenario the resource is Custom Object CO-1.

Internal Logic

The input Condition instances are validated, and if no errors are detected a
condition is created for each resource specified in the input Condition
collection.

Post-Condition

The resource (custom object CO-1) has a blocked condition.

Extensions

Not applicable

Tips

The Condition passed to the method must have the following attributes set:
» Condition.resource
This should be set to the CustomObject instance for CO-1.
* Condition.reason
This is free form text describing the reason for the condition. For
example, Under Repair.
e Condition.type
This should be set to ConditionType.BLOCKED.

Optionally, the Condition.validFor can be set with a startDate and endDate
value. If startDate is not specified, it is defaulted to the current date. If
endDate is not specified, it is defaulted to the java max date value of 18-
Jan-2038.

Optionally, the Condition.description can be set. This is free form text.

Example 3-29 Creating a Blocked Condition for a Custom Object

Condi ti onManager conMyr = Persi st enceHel per. makeCondi ti onManager () ;
Col | ecti on<Condi ti on> input Cons = new ArrayLi st <Condition>();

Fi nder f = PersistenceHel per. nakeFi nder ();
Col | ecti on<Cust onhj ect > cust Chjs = f.findByl d(Custonthject.class, "CO1");

Cust ombj ect custChj =

Condi tion con = conMyr.

API| Overview
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

custbjs.iterator().next();

makeCondi ti on(cust Cbj) ;

October 30, 2025
Page 38 of 51

ORACLE’

Chapter 3
Configuring the Resources for the Service Configuration

con. set Description("Test Failure");
con. set Reason("Under Repair");
con. set Type(Condi ti onType. BLOCKED) ;

Date now = new Date();

Date later = getEndDate(now); /* call to an utility nethod */
con. set Val i dFor (new Ti mePeri od(now, later));

con. set Resour ce(cust vj);

con. set Master(true);

i nput Cons. add(con);

Col | ection <? extends Condition> cons = conMyr. createConditions(inputCons);

Deleting a Blocked Condition for a Custom Object

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

This section describes the UIM APl methods used to delete a blocked condition from a custom
object. To find the custom object to delete the blocked condition from, you must find the custom
object. See "Finding the Custom Object to Assign". To delete the condition from the custom
object, you must first find the condition to be deleted using the APl method described here.

Table 3-35, Table 3-36, Table 3-37 and example code provide information about using the API
methods.

Table 3-35 Making a Condition Search Criteria
|

Topic Information
Name ConditionManager.makeConditionSearchCriteria
Description This method will make an instance of ConditionSearchCriteria.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition The caller has an instance of ConditionSearchCriteria.

Extensions Not applicable

Tips Not applicable

Table 3-36 Finding Conditions
|

Topic Information
Name ConditionManager.findConditions
Description This method retrieves conditions based on input criteria.

The custom object to find conditions for has been selected. The desired
condition exists.

Pre-Condition

The database is queried for conditions meeting the input criteria. Conditions
matching the criteria are returned.

Internal Logic

Post-Condition The desired condition has been retrieved.

Extensions Not applicable

October 30, 2025
Page 39 of 51

ORACLE Chapter 3
Configuring the Resources for the Service Configuration

Table 3-36 (Cont.) Finding Conditions

- __|
Topic Information

Tips In this scenario, the following Criterialtems could be populated on the
ConditionSearchCritiera:
° resource
The CustomObiject instance for CO-1.
¢ type
ConditionType.BLOCKED

If a list of conditions is returned, the list will need to be iterated to select the
desired condition to be deleted.

Table 3-37 Deleting Conditions
- ___|

Topic Information

Name ConditionManager.deleteConditions

Description This method will delete conditions on resources.

Pre-Condition The condition to be deleted has been selected.

Internal Logic The input Condition instances are validated, and if no errors are detected the
conditions are deleted.

Post-Condition The resource (Custom Object CO-1) no longer has the blocked condition.

Extensions Not applicable

Tips Not applicable

Example 3-30 Deleting a Blocked Condition from a Custom Object

Finder f = PersistenceHel per. makeFi nder ();
Col | ecti on<Cust omObj ect > cust Cbjs = f.findByl d(Custonbject.class, "CO1");
Cust ombj ect custCbj = custQbjs.iterator().next();

Condi ti onManager conMyr = Per si st enceHel per. makeCondi ti onManager () ;
Condi ti onSearchCriteria criteria = conMyr. makeConditionSearchCriteria();

Criterialtemres = criteria.makeCriterialten();
res. set Val ue(cust Qvj) ;
res.setQperator(CriteriaQperator. EQUALS);
criteria.setResource(res);

Criterialtemtype = criteria.makeCriterialten();

type. set Val ue(Condi ti onType. BLOCKED) ;

type. set Operator (CriteriaQOperator. EQIALS | GNORE_CASE) ;
criteria.setType(type);

Col | ection <Custombj ect Condi tion> cons = conMyr.findConditions(criteria);
Cust ombj ect Condi tion con = cons.iterator().next();

conMyr . del et eCondi tions(cons);

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 40 of 51

ORACLE Chapter 3
Setting Characteristic Values for the Service Configuration Item

Setting Characteristic Values for the Service Configuration ltem

The following APIs are used to set characteristic values on a service configuration item. The
set of allowable characteristic values for a given service configuration item are defined by the
service configuration specification used to create the service configuration.

The following shows a configuration item hierarchy that has two characteristic values
associated with the Customer Equipment (CE) Router ITEM:

ITEM - Site

e ITEM - Customer Equipment Router
— Specification - Logical Device
— Characteristic - Customer
— Instructions - Characteristics
— Additional Information

The Configuration ITEMs are used to create the Service Configuration Item instances.
Characteristics will be related to the Service Configuration Item. Since Service Configuration
Item is a Characteristic Extensible entity, we can use the CharacteristicManager.init API to
initialize the set of characteristic values on the entity. In the example above, the two
Characteristics under the Customer Equipment Router ITEM would create two instances on
the ServiceConfigurationltemCharacteristic, and if there is default values defined, it is also
copied.

Table 3-38 and example code provide information about using the APl method.

Table 3-38 Setting Characteristic Values for the Service Configuration Item

. __|
Topic Information

Name CharacteristicManager.init(CharacteristicExtensible<CharValue>
characteristicExtensible, Specification spec)

Description This method initializes the CharacteristicExtensible entity. In this case, the
ServiceConfigurationltem). It sets the default value for each characteristic
which has one.

Pre-Condition A service configuration item exists and the InventoryConfigurationSpec is
known.
Internal Logic The InventoryConfigurationSpec is used to get the CharacteristicSpecUsage,

from the CharacteristicSpecUsage to get the CharacteristicSpecification, so
that the default spec value can be retrieved and set to the CharValue. And the
Charvalue will be set to the Service configuration item.

Post-Condition ServiceConfigurationltem has the default characteristics set.
Extensions Not applicable
Tips Not applicable

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 41 of 51

ORACLE

Chapter 3
Setting Characteristic Values for the Service Configuration Item

@® Note

When creating a Service Configuration Item, call CharacteristicManager.init
(CharacteristicExtensible<CharValue> characteristicExtensible, Specification spec)
method to initiate the default characteristics value.

Example 3-31 Setting Characteristic Values for the Service Configuration Item

CharacteristichManager characteristicManager =
Per si st enceHel per. makeChar act eri sti cManager ();

Il Initialize the characteristics to the item
characteristicManager.init((CharacteristicExtensible)childConfigltem
i nvent or yConfi gurati onSpec);

/| Get the characteristics fromservice config item
HashSet <Char Val ue> characteristics = serviceConfigltem getCharacteristics();

/1 Loop through the HashSet of characteristics and set the value as defined
for (CharVal ue charValue : characteristics)

char Val ue. set Val ue(" nyVal ue");
char Val ue. set Label (" nyLabel ");

}

Finding Configuration Item and Setting Characteristics

API Overview
G36725-01

Characteristics can be added to the service configuration items. The service configuration
items are maintained on each service configuration version as a tree, as specified in Design
Studio. This is to make sure the history of the characteristics are set or unset across the
service configuration versions.

These characteristics cannot be added on service configuration version. They can be added
only on the Service Configuration Items. The characteristics added directly under the Service
Configuration Specification tree are added to the top-most item of the service configuration
version, called CONFIG item.

Unlike other entities, characteristics cannot be added to a service configuration item when it is
created, except for the default characteristics.

Example 3-32 Creating Characteristics on Top-most Service Configuration Item

Service service = null;
Finder f = null;

try{

f = PersistenceHel per. makeFi nder ();
Col | ection<Service> services = f.findByNane(Service.class, "service_name");
Service = Services.iterator.next();

Servi ceConfigurationVersion version = null;
Li st <Servi ceConfi gurationVersion> configs = service. get Configurations();

for (ServiceConfigurationVersion config : configs) {
if (config.getAdnm nState().equal s(BusinesslnteractionState. | N PROGRESS)) {
version = config; }

}

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 42 of 51

ORACLE Chapter 3
Setting Characteristic Values for the Service Configuration Item

if(version !'= null){
Servi ceConfigurationltemconfigltem=
(ServiceConfigurationltenversion. get ConfigltenilypeConfig();

HashSet <Char act eri sti cSpecification> char Specs =
new HashSet <Characteri sticSpecification>();
char Specs =
CharacteristicHel per. getCharacteristicSpecifications(configSpec);
if (!charSpecs.isEmty()) {
Set <Servi ceConfigurationltenCharacteristic> sciChars =
new HashSet <Servi ceConfi gurationltenCharacteristic>();
Servi ceConfigurationltenCharacteristic sciChar = null;
for (CharacteristicSpecification charSpec : charSpecs) {

sci Char = configltem makeCharacteristiclnstance();

sci Char. set Nanme(char Spec. get Nane()) ;

i f (char Spec. get Control Type() == Control Type. CALENDAR) {
sci Char. set Val ue("07/ 15/ 2019");

}el se if(charSpec. get Control Type() == Control Type. CHECKBOX) {
sci Char. setVal ue("true");

}el se if(charSpec. get Control Type() == Control Type. DROPDOMN_LI ST) {
Set <CharacteristicSpecVal ue> val ues = char Spec. get Val ues();

sci Char. set Val ue(((Di screteChar SpecVal ue) val ues.iterator().next()).getValue());
}el se if(charSpec. get Control Type() == Control Type. TEXT_FI ELD){

i f (char Spec. get Val ueType() == Val ueType. NUVERI C)
sci Char. set Val ue("500");

el se if(charSpec. getVal ueType() == Val ueType. URL)
sci Char. setVal ue("http://oracle.cont);

el se
sci Char. set Val ue(" pi pe testing");

}

sci Char. set Characteri sticSpecification(charSpec);
sci Chars. add(sci Char);

}

configltem setCharacteristics(sciChars);

}
cat ch(Exception e){
/*l og exception*/

}
finally{
if(f!=null)
f.close();
}

Example 3-33 Creating Characteristics On Any Level Service Configuration Item

Service service = null;
Finder f = null;
BaseConfi gurati onManager configMyr = null;

try{

f = PersistenceHel per. nakeFi nder ();
Col | ection<Service> services = f.findByNane(Service.class, "service_name");
Service = Services.iterator.next();

Servi ceConfigurationVersion version = null;
Li st <Servi ceConfi gurationVersion> configs = service. getConfigurations();

API Overview
G36725-01 October 30, 2025
Copyright © 2013, 2025, Oracle and/or its affiliates. Page 43 of 51

ORACLE Chapter 3
Setting Characteristic Values for the Service Configuration Item

for (ServiceConfigurationVersion config : configs) {
if (config.getAdm nState().equal s(BusinesslnteractionState. |IN PROGRESS)) {
version = config; }

}

if(version = null){
Servi ceConfigurationltemconfigltem= null;

confi gMyr = Persi st enceHel per. makeConfi gur ati onManager
(ServiceConfigurationltenDAQ cl ass);

ConfigurationltenSearchCriteria configltenCriteria =
confi gMyr. makeConfi gurationltenSearchCriteria();

configltenCriteria.setConfigurationltenC ass(ServiceConfigurationltenDAO class);
Criterialtemcriterialtem= configltenCriteria mkeCriterialtem);
criterialtemsetValue("itemnane");
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationltemNane(criterialten);

criterialtem= configltenCriteria. makeCriterialten();
criterialtem setVal ue(version. getVersionNurber());
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationVersionNunber(criterialten);

Li st<lI nventoryConfigurationltenr configltens =
configMyr.findConfigurationltenms(configltenCriteria);

if(!Wils.isEmty())
configltem= configltens.iterator.next();
HashSet <Char act eri sti cSpecification> char Specs =
new HashSet <Char acteri sti cSpecification>();
char Specs =
CharacteristicHel per. getCharacteristicSpecifications(configSpec);
if (!charSpecs.isEmty()) {
Set <Servi ceConfigurationltenCharacteristic> sciChars =
new HashSet <Servi ceConfi gurationltenCharacteristic>();
Servi ceConfigurationltenCharacteristic sciChar = null;
for (CharacteristicSpecification charSpec : charSpecs) {

sci Char = configltem makeCharacteristiclnstance();

sci Char. set Nanme(char Spec. get Nane()) ;

i f (char Spec. get Control Type() == Control Type. CALENDAR) {
sci Char. set Val ue("07/ 15/ 2019");

}el se if(charSpec. get Control Type() == Control Type. CHECKBOX) {
sci Char. setVal ue("true");

}
el se if(char Spec. get Control Type() == Control Type. DROPDOMN_LI ST) {
Set <CharacteristicSpecVal ue> val ues = char Spec. get Val ues();

sci Char. set Val ue(((Di screteChar SpecVal ue) val ues.iterator().next()).getValue());
}el se if(charSpec. get Control Type() == Control Type. TEXT_FI ELD){

i f (char Spec. get Val ueType() == Val ueType. NUVERI C)
sci Char. set Val ue("500");

el se if(charSpec. getVal ueType() == Val ueType. URL)
sci Char. setVal ue("http://oracle.cont);

el se
sci Char. set Val ue(" pi pe testing");

}

sci Char. set Characteri sticSpecification(charSpec);

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 44 of 51

ORACLE Chapter 3
Setting Characteristic Values for the Service Configuration Item

sci Chars. add(sci Char);
}

configltem setCharacteristics(sciChars);

}
cat ch(Exception e){

/*l og exception*/

}
finally{
if(f!=null)
f.close();
}

Example 3-34 Modifying Characteristics on Service Configuration Item

Service service = null;
Finder f = null;
BaseConfi gurati onManager configMyr = null;

try{

f = PersistenceHel per. nakeFi nder ();
Col | ection<Service> services = f.findByNane(Service.class, "service_name");
Service = Services.iterator.next();

Servi ceConfigurationVersion version = null;
Li st <Servi ceConfi gurationVersi on> configs = service.getConfigurations();

for (ServiceConfigurationVersion config : configs) {
if (config.getAdnm nState().equal s(BusinessinteractionState. | N PROGRESS)) {

version = config; }
}if(version !'= null){ Servi ceConfigurationltemconfigltem= null;configMyr =
Per si st enceHel per. makeConf i gur ati onManager
(ServiceConfigurationltenDAQ cl ass); ConfigurationltenSearchCriteria

configltenCriteria = configMr.makeConfigurationltenBearchCriteria();
configltenCriteria.setConfigurationltenC ass(ServiceConfigurationltenDAQ cl ass);
Criterialtemcriterialtem= configltenCriteria. mkeCriterialten();
criterialtemsetValue("itemname");
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationltenmNane(criterialten; criterialtem=
configltenCriteria. mkeCriterialten();
criterialtem setVal ue(version. getVersionNurber());
criterialtemsetQperator(CriteriaQperator. EQUALS);
configltenCriteria.setConfigurationVersionNunber(criterialten);
Li st<l nventoryConfigurationlten> configltems =
configMyr.findConfigurationltems(configltenCriteria);if(!Utils.isEmpty())configltem=
configltens.iterator.next(); HashSet <Char act eri sti cSpeci fi cation> char Specs
= new HashSet <Characteri sticSpecification>(); char Specs

CharacteristicHel per.getCharacteristicSpecifications(configSpec); if (!

char Specs. i sEnpty()) { Set <Servi ceConfi gurationltenCharacteristic>

sci Chars = new

HashSet <Ser vi ceConf i gurati onltenCharacteristic>();

Servi ceConfigurationltenCharacteristic sciChar = null; for

(CharacteristicSpecification charSpec : charSpecs) { sci Char =

configltem makeCharacteristiclnstance(); String charName =

sci Char . set Name(char Spec. get Nane()); if

(char Nane. equal s("char _nane_12))

{ sci Char . set Val ue("updat ed_val ued"); }
sci Char. set Characteri sticSpecification(char Spec);

sci Chars. add(sci Char); }

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 45 of 51

ORACLE Chapter 3
Transitioning the Lifecycle Status

configltem setCharacteristics(sciChars);}catch(Exception e){/*log
exception*/}finally{ if(fl=null) f.close();}

About Alternate Flows

The generic service fulfillment scenario sets characteristic values for the service configuration
item. An alternate flow to this scenario may be to unset characteristic values from the service
configuration item.

The alternate flow described in this section is "Unsetting Characteristic Values for the Service
Configuration Item".

Unsetting Characteristic Values for the Service Configuration ltem

The following API is to unset characteristic values on a service configuration.

The following example code provides information about using the API method.

@® Note

From ServiceConfigurationltem, get the characteristics and then delete the
ServiceConfigurationltemCharacteristics to remove the characteristic values. If only
one particular characteristic needs to be deleted for the ServiceConfigurationltem,
then a name match should be compared before deleting the
ServiceConfigurationltemCharacteristic.

Example 3-35 Unsetting Characteristic Values for the Service Configuration

HashSet <Ser vi ceConf i gurationltenCharacteristic> characteristics =
servi ceConfigltem get Characteristics();

Iterator<ServiceConfigurationltenCharacteristic>itr =
characteristics.iterator();

while (itr.hasNext())
{

Servi ceConfigurationltenCharacteristic characteristic = itr.next();
if characteristic.getNane().equal s("nmyName")
itr.remove();}

Transitioning the Lifecycle Status

The transition APls are used for transitioning the lifecycle status of a given entity which
implements the LifeCycleManaged interface. The state transition rules are defined in the *-
transitions.xml files.

Table 3-39 and example code provide information about using the APl method.

Table 3-39 Transitioning the Lifecycle Status

- ___|
Topic Information

Name TransitionManager.transition

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 46 of 51

ORACLE

API Overview
G36725-01

Chapter 3
Transitioning the Lifecycle Status

Table 3-39 (Cont.) Transitioning the Lifecycle Status

- __|
Topic Information

Description Transitions a LifeCycleManaged entity by finding the matching transition
definition which has the business action defined and the object activity
defined the same as the input parameters, and which from business state
matches the entity's business state.

Pre-Condition TransitionManager.isValidTransition has successfully validated that the
specified business action can trigger the transition of either the business state
or the object state.

Internal Logic Finds a matching transition definition. For a version object it matches on
business action and object activity only. Other objects are matched from most
specific to least specific in the following order:

1. Match businessAction, objectActivity, entity type, and the specification.
2. Match businessAction, objectActivity, entity type.
3. Match businessAction, objectActivity.

Switches to a Business Interaction context if applicable and updates the
business or object state of the object and its dependents based on the
transition definition.

Post-Condition The object state or business state is updated.
Extensions BusinessinteractionSpec_TransitionManager_validateBusinessStateTransition
s

BusinesslinteractionSpec_TransitionManager_validateObjectStateTransitions

Tips See "Overview" in UIM Developer's Guide for more information.

Example 3-36 Transitioning the Lifecycle Status

Transi ti onManager transitionManager =
Per si st enceHel per. makeTr ansi ti onManager (service);

bool ean success = fal se;
success = transitionManager.transition(service, ServiceAction. COWLETE);

Example 3-37 Performing Operations Under Business Interaction Context

To perform operations such as assign, unassign, reference, or unreferenced and set, unset, or
modify characteristics, you need to make sure the business interaction context is set before
running the code.

Add the following code before running the code:

Busi nessinteraction currentBl =
(Busi nessl nteraction)User Envi ronment Fact ory. get Busi nessl nteraction();

if(currentBl == null){Businessinteraction bi =

(Busi nessinteraction)f.findByld(Businesslnteraction.class, "bild").iterator().next();
currentBl = bi;

}

Busi nessl nt eracti onManager bi Myr = Persi stenceHel per. makeBusi nessl nt eracti onManager ();

bi Myr. swi t chContext (currentBl, null);

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 47 of 51

ORACLE’

Chapter 3
Creating a Property Location

After the operation is complete, block the switch back to the current context by entering the

following code:

currentBl = null;
bi Myr. swi t chContext (currentBl, null);

Creating a Property Location

API Overview
G36725-01

Example 3-38 provides information about creating a property location.

Example 3-38 Creating a Property Location

Finder finder = null;

Propertylocation propertylLocation = null;
PropertyAddress propertyAddress = nul | ;
FeedbackPr ovi der I npl . get FeedbackProvi der (). reset();

try {

Locati onManager | ocationManager =

Per si st enceHel per. makeLocat i onManager ();
finder = PersistenceHel per. makeFi nder();
Busi nessl nt eracti onManager hingr =

Per si st enceHel per. makeBusi nessl nt eracti onManager () ;

bi mgr. switchContext ((String)null, null);
String networkLocationCode ="ALLNTX";
PropertyLocation networkLocation =

this.findNetworkEntityLocation(networkLocationCode);
[11f PropertyLocation is not already created then only create it

if (networkLocation == null) {

FeedbackPr ovi der | npl . get FeedbackProvi der().reset();

propertyAddress = | ocati onManager . makePr opert yAddress();
propertylLocation = | ocati onManager. nakePropertylLocation();

propertyAddress. set Street Address("ALLNTX street1");

propertyAddress.setGity("ALLN cityl"));
propertyAddress. set State("TX1");
propertyAddress. set Country("US");
propertyAddress. setlsVal i dated(true);

propertyAddress. set | sNonVal i dat edAddr essAccept ed(fal se);

propertyAddress. set | sPri maryAddress(true);
Set <Pr opert yAddr ess> addressSet =

new HashSet <Propert yAddress>(1);
addr essSet . add(propertyAddress);

propertylocation. set PropertyAddresses(addressSet);

propertylocation. set Net wor kLocat i onCode(net wor kLocat i onCode) ;

propertylocation. setlatitude("34");
propertylocation. setLongi tude("75");
Col | ection<PropertylLocation> list =

new ArrayLi st <Propertylocation>(1);
|'i st.add(propertyLocation);
Li st<PropertylLocation> propLocobjects =

| ocati onManager . creat ePropertylLocation(list);

net wor kLocati on = proplLocobjects. get(0);
net wor kLocat i on. connect () ;
}
Li st <Net wor kEnt i t yCode> networkEntityCodes =
new ArrayLi st <Net wor kEntityCode>();
List<String> NECs = {"0,1, 2, 3,4"};
if (!Wils.isEnpty(NECs)) {
for (String necStr : NECs) {
Net wor kEnt i t yCode exi stingNEC =

this. findNetworkEntityCode(networkLocation, necStr);

if (existingNEC == null) {

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 48 of 51

ORACLE Chapter 3
About Undo Actions

Net wor kEnt i t yCode nec =

| ocat i onManager . makeNet wor kEnt i t yCode() ;
nec. set Nane(necStr);
net wor kEnt i t yCodes. add(nec) ;

}
}
if (!Uils.isEmty(networkEntityCodes)) {
| ocati onManager . associ at eNet wor kEnt i t yCodeToNet wor kLocat i on(net wor kEnt i t yCodes,

net wor kLocat i on) ;

}

Referring Property Location to a Service Configuration Item

A property location can be referenced to service configuration item. It cannot be assigned to
any service configuration item.

See "Referencing the Resource to a Configuration ltem" for more information.

About Undo Actions

You can Undo and unassign a resource for a configuration item that is in Pending Unassign
status.

This transition happens when all the following conditions are met:

e The resource is in a pending status in the current configuration.
e The current configuration is in progress.

e The resource belongs to a configuration item in an earlier configuration for the same
service.

e The earlier configuration is also in progress.

Table 3-40 Reallocating a Resource on the Service Configuration Item
|

Topic Information

Name BaseConfigurationManager.reallocateEntityConfigurationitems(Collection<E>
configurationltems)

Description This method reallocates the de-allocated entities on a given configuration
item.

The configuration version cannot be in a completed or cancelled state.

Pre-Condition A service configuration item exists on which an assignment was just
unassigned.

Internal Logic The assignment state on the consumable resource is transitioned back to
ASSIGNED state.

Post-Condition The resource is assigned again.

Extensions Not Applicable

Tips Not Applicable

You can undo the removal of a resource reference for a configuration item that is in Pending
Un-reference status. This transition happens when all the following conditions are met:

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 49 of 51

ORACLE’

Chapter 3
About Undo Actions

e The resource is in a pending status in the current configuration.

e The resource is in a pending status in the current configuration.

* The resource belongs to a configuration item in an earlier configuration for the same

service.

e The earlier configuration is also in progress.

Table 3-41 Referencing a Resource on the Service Configuration Item

Topic Information

Name BaseConfigurationManager.rereferencelnventoryConfigurationitems(Collectio
n<E> configurationltems)

Description This method reallocates the de-allocated entities on a given configuration

item.
The configuration version cannot be in a completed or cancelled state.

Pre-Condition

A service configuration item exists on which an assignment was just
unreferenced.

Internal Logic

The assignment state on the consumable resource is transitioned back to
REFERENCED state.

Post-Condition

The resource is referenced again.

Extensions

Not Applicable

Tips

Not Applicable

Example 3-39 Referencing the Resource to a Configuration Item

Finder f = null;

BaseConfi gurati onManager bcd = nul | ;

try {

f = PersistenceHel per. makeFi nder () ;
Per si st enceHel per. makeBusi nessl nt eracti onManager (). sw tchContext ((String)null,null);
Servi ceConfigurationVersion configuration =
f.findByNane(ServiceConfigurationVersion.class, configld).iterator().next();
I nvent oryConfigurationltemicToAssign = null;
Col | ection<l nvent oryConfigurationlten> dereferencelist = new
ArraylLi st<lnventoryConfigurationltens();

for (InventoryConfigurationltemic : configuration.getConfigltens()) {
if (ConfigurationType. CONFI G equal s(ic.getConfigType()))

conti nue;

if(ic.getReference() !'= null){

Per si st enceHel per. makeBusi nessl nt eracti onManager (). swi t chCont ext (confi guration, null);

i f(ConfigurationReferenceState. PENDI NG UNREFERENCE. equal s(((Confi gurati onReference)ic.ge
tReference()).get AdminState()) && ic.getDepChildConfigltem() == null){
deref erencelLi st. add(ic);

}
}
}

f.reset();

Cust ombj ect coToAssi gn = f.findByName(Cust ombj ect. cl ass,
" CO2_ASSI GNO009").iterator().next();

bcd = Persi st enceHel per. makeConfi gurati onManager (confi guration.getC ass());

API Overview
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 50 of 51

ORACLE Chapter 3
About Undo Actions

bcd. rereferencel nvent oryConfigurationltens(dereferencelist);

} catch (Throwabl e t
cat chThrowabl e(t,
} finally {
if (f '=null) {
f.close();
}

}

) {
ut);

t

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 51 of 51

Implementing a Channelized Connectivity
Enablement Scenario

This chapter describes implementing a channelized connectivity enablement scenario using
various Oracle Communications Unified Inventory Management (UIM) application program
interfaces (APIs). You can use this information to gain a better understanding of how the UIM
APIs can be used to implement any channelized connectivity enablement scenario.

About the Channelized Connectivity Enablement Scenario

Figure 4-1 shows the process flow for a channelized connectivity enablement scenario:

Figure 4-1 Process Flow for a Generic Channelized Connectivity Scenario

Create Create Create —\ Enable
O—» Property > Logical Channelized Channelized
Location Device Connectivity Connectivity
T T T T
| | | |
¥ ¥ ¥ ¥
Associate Associate LD Confiqure Search for
MWetwork with Network Ca agci Channelized
Entity Codes Entity Codes pacity Connectivity
T T
| |
¥ ¥
G“;Ef';m Perform
Termination Gap Analysis
T
|
¥
Add Segments
to Connectivity
Path

This process flow begins with creating a property location and associating network entity codes
with the property location. The network entity codes are used in subsequent steps in the
process flow, such as associating them with logical devices.

API| Overview
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 14

ORACLE

Chapter 4
Creating a Property Location and Associating Network Entity Codes

The process flow continues with creating logical devices with device interfaces that can
terminate on the bearer channelized connectivity, and associating logical devices with the
network entity codes previously created. This involves creating logical device search criteria to
find the required logical device specification.

Next is creating channelized connectivity, which represents bearer channelized connectivity
between two network entity codes that define attributes of technology, rate code, and
channelized connectivity function.

The process flow continues by configuring the capacity for the channelized connectivity to
channelize it, and by optionally terminating them on the device interfaces of logical devices
previously created. This is called auto termination of device interfaces because it also
terminates the sub-device interfaces down the hierarchy to the channels when the channelized
connectivity is terminated automatically. This represents the bearer channelized connectivity
that will be used in enablement in subsequent steps of the process flow.

The process flow continues with creating channelized connectivity to represent the rider
between two network entity codes that define attributes of technology, rate code, and
channelized connectivity function. For a channelized connectivity entity to be enabled by a
channel, its rate code must match or be compatible with the rate code of the channel.

Next is enabling channelized connectivity, which can be manually done by searching for and
adding the bearer channelized connectivity's channel. This involves creating channelized
connectivity search criteria to search for the bearer channelized connectivity and selecting the
appropriate channel. Enablement can also be done by adding bearer channelized connectivity
through gap analysis to the rider that involves creating path analysis criteria to search for the
bearer channelized connectivity between a source/intermediate/target property locations or
logical devices.

Now that you have a high-level understanding of the channelized connectivity enablement
scenario process flow, each part of the process flow is further described in the following
sections. Each section includes information about the specific UIM APIs used to perform each
step. Example code is also included for each step.

e Creating a Property Location and Associating Network Entity Codes

* Creating a Logical Device and Associating LD Interfaces with Network Entity Codes

e Creating Channelized Connectivity

* Enabling Channelized Connectivity

Creating a Property Location and Associating Network Entity

Codes

API Overview
G36725-01

This section describes the UIM APl methods used to create a property location and to
associate network entity codes with the property location.

Table 4-1, Table 4-2, and example code provide information about using the APl methods to
create a property location and to associate network entity codes to the property location.

Table 4-1 Creating a Property Location
e ___|

Topic Information
Name LocationManager.createPropertyLocation (Collection<PropertyLocation>
locations)

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 2 of 14

ORACLE’

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

Chapter 4
Creating a Property Location and Associating Network Entity Codes

Table 4-1 (Cont.) Creating a Property Location

Topic

Information

Description

Creates the Property Location instances with the given inputs. User has to
specify one mandatory Primary address as input with which a property
Location has to be created.

Every property location also has a property address associated with it.

Pre-Condition

The locations parameter needs to be prepared with necessary attributes

Internal Logic

Not applicable

Post-Condition

Not applicable

Extensions

Not applicable

Tips

* The same method is also used to create Network Location when the
Network Location code is populated in the input. As part of creation of
Network location, the same method also enables users to create
Network entity codes corresponding to the Network Location.

* The Location Identifier which is a concatenated Address format is used
to uniquely identify the Property Location.

e If horizontal/vertical coordinates are given as inputs, the latitude/
longitude coordinates are automatically populated for the created
Property Location and vice versa.

Table 4-2 Associating Network Entity Codes with a Property Location

Topic Information

Name LocationManager.associateNetworkEntityCodeToNetworkLocation
(List<NetworkEntityCode> entitycodes, PropertyLocation location)

Description This method is called during the association or creation of the network entity

code in the context of property location.

Pre-Condition

The location parameter already exists.

Internal Logic

Not applicable

Post-Condition

Not applicable

Extensions

Not applicable

Tips

* Check if the network entity code is unique.
e Check for the length of the network entity code.

Example 4-1 Creating a Property Location and Associating Network Entity Codes with

the Property Location

Fi nder finder = PersistenceHel per.makeFi nder();
PropertyLocation propertylLocation = | ocationManager. makePropertylLocation();

PropertyAddress propertyAddress
Locati onManager | ocati onManager

| ocati onManager . makePr opert yAddress();
Per si st enceHel per. makeLocat i onManager () ;

/1Set all necessary attributes needed for Property Address and Property Location

propertyAddress
propertyAddress
propertyAddress
propertyAddress
propertyAddress

.set Street Address((String)paramvap. get ("street Address"));
.setCity((String)paramvap. get("city"));
.setState((String)paranmvap. get("state"));

.set Country((String)paramvap. get("country"));
.set|sValidat ed(Bool ean. val ueC

((String)paramvap. get ("isValidated")));
propertyAddress. set | sNonVal i dat edAddr essAccept ed(true);

October 30, 2025
Page 3 of 14

ORACLE’

Chapter 4
Creating a Logical Device and Associating LD Interfaces with Network Entity Codes

propertyAddress. set | sPri maryAddress(true);

Set <Pr opert yAddr ess> addressSet = new HashSet <Propert yAddress>(1);
addr essSet . add(propert yAddress);

propertylocation. set PropertyAddresses(addressSet);
propertylocation. set Net wor kLocat i onCode(" PLANO');
propertylLocation. setlLatitude("34");

propertylocation. set Longi tude("54");

Col | ection<PropertylLocation> list = new ArrayLi st <PropertylLocation>(1);
|'i st.add(propertyLocation);
Li st<PropertylLocation> propLocobjects =

| ocati onManager . creat ePropertylLocation(list);
net wor kLocati on = proplLocobjects. get(0);
Li st <Net wor KEnt i t yCode> networ kEntityCodes = new ArrayLi st <Networ kEntityCode>();
Net wor kEnti t yCode nec = | ocati onManager. makeNet wor kEntit yCode();
nec. set Name(necStr);
net wor kEnt i t yCodes. add(nec);
if ('Utils.isEnpty(networkEntityCodes))
{

| ocat i onManager . associ at eNet wor KEnt i t yCodeToNet wor kLocat i on

(networ kEnt it yCodes, net wor kLocat i on);

Creating a Logical Device and Associating LD Interfaces with
Network Entity Codes

API Overview
G36725-01

This section describes the UIM APl methods used to create a logical device with default logical
device interfaces and to associate the logical device interfaces with the previously created
network entity codes.

Table 4-3 and example code provide information about using the APl method to create a
logical device with default logical device interfaces.

Table 4-3 Creating a Logical Device
|

Topic Information

Name LogicalDeviceManager.createLogicalDevice (Collection<LogicalDevice>
logicalDevices)

Description Creates logical device entities and their provided device interfaces and sub-
device interfaces based on the specification.

Pre-Condition Logical device specification with device interfaces is defined and exists
already.

Internal Logic Device interfaces can also provide other device interfaces. The number of

device interfaces to be created will be determined by the minimum value
defined in the specification relationships.

The input logical device entities should be sparsely populated with the
specification, hard attributes and characteristics.

The provided device interfaces will be derived based on the specification.
Characteristics will be defaulted based on the specification. The id of the
device interfaces will be generated.

If required characteristics exist for a provided device interface that are not
defaulted, then the logical device will still be created.

Post-Condition Not applicable

Extensions Not applicable

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 4 of 14

ORACLE Chapter 4
Creating a Logical Device and Associating LD Interfaces with Network Entity Codes

Table 4-3 (Cont.) Creating a Logical Device

- __|
Topic Information

Tips Not applicable

Example 4-2 Creating a Logical Device with Default Logical Device Interfaces

Fi nder finder = PersistenceHel per. makeFi nder();
Logi cal Devi ceManager | dMyr = Persi stenceHel per. makelLogi cal Devi ceManager () ;

Col | ecti on<Speci fication> specs =
finder.findByName(Specification.class,"l dSpecName");

Logi cal Devi ceSpeci fication | dSpec =
(Logi cal Devi ceSpeci fication)specs.iterator().next();

Logi cal Device |d = | dMyr. makeLogi cal Devi ce();

| d. set Nane("| dNane");

Id.setld("ldd");

| d. set Speci fication(ldSpec);

Li st<Logi cal Devi ce> | dLi st = new ArrayLi st<Logi cal Devi ce>();
| dLi st.add(!d);

| dMgr . creat eLogi cal Devi ce(l dList);

The following table and example code provide information about using the API method to
associate a logical device with a network entity code.

Table 4-4 Associating a Logical Device with a Network Entity Code

- __|
Topic Information

Name LogicalDeviceManager.updateLogicalDevice (Collection<LogicalDevice>
logicalDevices)

Description This method is intended to update the hard attributes and characteristics of a
logical device.

Pre-Condition Logical device exists already.

The location of a logical device can only be changed if it does not have any
active consumers or interconnections on the logical device or any of its device

interfaces.
Internal Logic Not applicable
Post-Condition Not applicable
Extensions Not applicable
Tips Not applicable

Example 4-3 Associating a Logical Device with a Network Entity Code

Finder finder = PersistenceHel per. makeFi nder();
Logi cal Devi ceManager | dMyr = Persi stenceHel per. makelLogi cal Devi ceManager () ;
Locati onManager | ocationManager = Persi stenceHel per. makeLocati onManager () ;
/1 find an existing |ogical device
Logi cal Device |d = finder.findByld(Logical Device.class, "Idld").iterator().next();

/1 find an existing property location that has network entity code

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 5 of 14

ORACLE’

Chapter 4
Creating Channelized Connectivity

PropertyLocation pls =
(PropertyLocation)l ocati onManager. fi ndNet wor kEntityLocati on("PLANO');
| d. set PropertyLocation(pls);

Net wor KEnti t yCodeSearchCriteria criteria =
| ocati onManager . makeNet wor kEnt i t yCodeSearchCriteria();
criteria.setPropertylLocation(pls);

//find network entity code matching "001"
Li st <Net wor kEnt i t yCode> networ kEntityCodes =

| ocati onManager . fi ndNet wor kEnti tyCodes(criteria);
Net wor KEnt i t yCode networkEntCd = nul | ;

if ('Utils.isEnpty(networkEntityCodes))

{
String networkEntityCod= "001";
for (NetworkEntityCode nec : networkEntityCodes)
if ((pls.getNetworkLocationCode() + "." + networkEntityCode).equals
nec. get Net wor kLocat i onEnti t yCode()))
{
net wor kEnt Cd = nec;
1
1
}

| d. set Net wor kEnt i t yCode(net wor kEnt Cd) ;

net wor kEnt Cd. set Logi cal Devi ce(ld);

Li st<Logi cal Devi ce> | dLi st = new ArrayLi st<Logi cal Devi ce>();
| dLi st.add(!d);

| dMyr . updat eLogi cal Devi ce(l dList);

Creating Channelized Connectivity

This section describes the UIM APl methods used to:

* Create Channelized Connectivity

e Configure Capacity on the Channelized Connectivity

» Configure Auto Termination on the Channelized Connectivity

Create Channelized Connectivity

API Overview
G36725-01

Table 4-5 and example code provide information about using the APl method to create
channelized connectivity. (You use the same APl method to create the bearer channelized
connectivity and the rider channelized connectivity.)

Table 4-5 Creating Channelized Connectivity

. __|
Topic Information

Name ConnectivityManager.createConnectivity(N connectivity, String
aNetworkLocationEntityCode, String zNetworkLocationEntityCode, int
quantity, boolean contiguousSerialAllocation)

Description This method will create channelized connectivity. Valid A Location and Z
Location must be set on the channelized connectivity instance.

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 6 of 14

ORACLE’

Chapter 4
Creating Channelized Connectivity

Table 4-5 (Cont.) Creating Channelized Connectivity

Topic

Information

Pre-Condition

Two property locations to represent A and Z side of the channelized
connectivity already exists.

ora_uim_basetechnologies is already installed.

Internal Logic

Not applicable

Post-Condition

Not applicable

Extensions

Not applicable

Tips

Not applicable

Example 4-4 Creating Channelized Connectivity

String rateCode
String function
String alLocation =
String zLocation =
String akEntityCode
String zEntityCode

int qtylnt = 1;

" STML,;
" SM1";

"DALLAS";
"PLANO';

"DALLAS. 001";
"PLANO. 001";

bool ean isContiguos = "true";

TDMConnect i vi t yManager manager =
(TDMConnect i vi t yManager) Per si st enceHel per. makeConnecti vi t yManager
(TDMConnectivity. cl ass);

Finder finder = PersistenceHel per. makeFi nder();

Net wor kConnectivity ¢

= manager . mekeTDMFaci i ty();

Net wor kConnectivity nc = (NetworkConnectivity)c;

String technol ogy =

finder.findByName(Technol ogy. cl ass, "SDH').iterator().next();
nc. set Technol ogy(t echnol ogy);

finder.reset();

String rateCode =

finder.findByName(Rat eCode. cl ass, "STML").iterator().next();
nc. set Rat eCode(r at eCode) ;

finder.reset();

String function =

finder.findByName(ConnectivityFunction.class,"SM1").iterator().next();

nc. set Connect i vi t yFuncti on(function);
String alLocationCode = alocation;
if(!Wils.isEnpty(aEntityCode)){

alocationCode = alocation+"."+aEntityCode;}

String zLocationCode = zLocati on;
if('Uils.isEmty(zEntityCode)){
zLocationCode = zLocation+"."+zEntityCode;}

int tenpQy = qtylnt;

whil e(tempQy >0)
{

API Overview
G36725-01

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 7 of 14

ORACLE Chapter 4
Creating Channelized Connectivity

if(tempQy > 99){
gtylnt = 99;}

el sef{
qtylnt = tenpQy;}

Col | ecti on<TDMConnecti vity> creat edConnectivities =
manager . cr eat eConnectivity(c, alLocationCode, zLocati onCode,
gtylnt, isContiguos);
}

Configure Capacity on the Channelized Connectivity

Table 4-6 and example code provide information about using the APl method to configure
capacity on the channelized connectivity.

Table 4-6 Configuring Capacity on the Channelized Connectivity
|

Topic Information

Name SignalTerminationPointManager.applyCapacityConfiguration
(MultiplexedFacility connectivity, List<RateCode> orderedRateCodes, String
signalAddress)

Description This method configures a connectivity to the required rate code level and also
creates channels at those levels.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Also call TDMConnectivityManager.createAndAutoTerminateChannels(M

multiplexedFacility, boolean doValidation) to ensure terminations are also
adjusted accordingly.

Example 4-5 Configuring Capacity on the Channelized Connectivity

Finder finder = PersistenceHel per. makeFi nder();

String connectivityldentifier = "ALLNTXC01 / FRSCTXC01 / STML / SMO1 / 1";
String sourceRateCode = "OVB0O";
String destinitionRateCode = "OV32";

Rat eCode sourceRC =
finder.findByName(Rat eCode. cl ass, sourceRateCode).iterator().next();

Rat eCode destinitionRC =
finder.findByName(Rat eCode. cl ass, destinitionRateCode).iterator().next();

TDMConnect i vi t yManager mgr =
(TDMConnect i vi t yManager) Per si st enceHel per. makeConnect i vi t yManager
(TDWFaci lity. cl ass);

TDMConnectivitySearchCriteria criteria = ngr.makeTDMSearchCriteria();
Criterialtemitem= criteria. mkeCriterialtenm();

i tem set Name("connectivityldentifier");

item setVal ue("connectivityldentifier);
itemsetQperator(CriteriaQperator. EQUALS);
criteria.setConnectivityldentifier(item;

TDMFaci lity tdm = mgr.findTDMConnectivities(criteria).iterator().next();

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 8 of 14

ORACLE’

Chapter 4
Creating Channelized Connectivity

Si gnal Ter m nati onPoi nt Manager stpMyr =
Per si st enceHel per. makeSi gnal Ter m nat i onPoi nt Manager () ;

Li st <Rat eCode> or der edRat eCodes = new ArraylLi st <Rat eCode>();
if (sourceRC != null){

or der edRat eCodes. add(sourceRO) ; }
if (destinitionRC != null){

or der edRat eCodes. add(desti nitionRC);}

st pMyr. appl yCapaci tyConfi guration(tdm orderedRat eCodes, "");
ngyr. cr eat eAndAut oTer mi nat eChannel s(tdm true);

Configure Auto Termination on the Channelized Connectivity

API Overview
G36725-01

Table 4-7 and example code provide information about using the APl method to configure auto-
termination on the channelized connectivity.

Table 4-7 Auto-terminating the Channelized Connectivity
|

Topic Information

Name ConnectivityManager.assignDevicelnterface(E connectivity, Devicelnterface
di, ConnectivityEndpoint endpoint)

Description This method terminates the channelized connectivity with the device interface
at the given end point. Also auto-terminates the channels on the sub-device
interfaces.

Pre-Condition Ensure the capacity is configured at the required level on the channelized
connectivity and the sub-device interfaces are created beforehand until that
level.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Example 4-6 Auto-Terminating the Channelized Connectivity

Finder finder = PersistenceHel per. makeFi nder();

String tdnmNane = "DS3_TDM Tai |l ";

String dild = "DS3-1-1";

Connecti vi t yEndpoi nt endPoi nt = Connecti vityEndpoi nt. A_ ENDPO NT;

Devicelnterface di =
finder.findByld(Devicelnterface.class, dild).iterator().next();
finder.reset(),

TDMFacility tdm =
finder.findByName(TDMFacility.class, tdnNane).iterator().next();

TDMConnect i vi t yManager manager = (TDMConnecti vit yManager)
Per si st enceHel per . nakeConnecti vi t yManager (TDMConnecti vity. cl ass);

tdm = (TDMraci lity) manager.assignDevicelnterface(tdm di, endPoint);

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 9 of 14

ORACLE Chapter 4
Enabling Channelized Connectivity

Enabling Channelized Connectivity

This section describes the UIM APl methods used to enable channelized connectivity by:

e Manually Enabling Channelized Connectivity

e Performing Gap Analysis

* Adding Segments To Connectivity Path Based on the Gap Analysis Results

Manually Enabling Channelized Connectivity

Table 4-8 and example code provide information about using the APl method to manually
enable channelized connectivity by manually searching for the channelized connectivity and
adding segments to the connectivity path.

Table 4-8 Manually Enabling Channelized Connectivity

. __|
Topic Information

Name ConnectivityManager.addSegmentsToConnectivityPath(E connectivityTrail,
PipeConfigurationltem connectivityPath, PipeConfigurationltem gapltem,
List<Pipe> bearerList) throws ValidationException

Description The connectivityTrail parameter is the channelized connectivity that will be
enabled.

The connectivityPath parameter is the PipeConfigurationltem of the path.

The gapltem parameter is the PipeConfigurationltem of the gap that will be
resolved.

The bearerList parameter contains other connectivities to be added for
enablement.

See Oracle Communications Information Model Reference for information on
PipeConfigurationltem.

Pre-Condition Not applicable
Internal Logic Not applicable
Post-Condition Not applicable
Extensions Not applicable
Tips Not applicable

Example 4-7 Manually Enabling Channelized Connectivity by Searching for the
Connectivity and Adding Segments to the Connectivity Path

String trail Name = "EDI NBURGH. 002 / LONDON. 001 / VC12 / vC12 | 1"

//'We want to add connectivities to first path
int pathlndex = "0";

/1 Assuming there are other connectivities already added to this path
int gaplndex = "0";

Per si st enceHel per . makeBusi nessl nt eracti onManager (). swi t chCont ext
((String)null, null);

Fi nder finder = PersistenceHel per. makeFi nder();

Connectivity connectivityTrail =

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 10 of 14

ORACLE Chapter 4
Enabling Channelized Connectivity

finder.findByName(Connectivity.class, trailName).iterator().next();

List<String> bearers = new ArrayList<String>();

bearers. add("EDI NBURGH. 001 / EDI NBURGH. 002 / STM4 / SMD4 / 139 1
bearers. add("EDI NBURGH. 001 / MACHESTER 001 / STM4 / SMD4 / 139 1
bearers. add("LONDON. 001 / MACHESTER 001 / STM4 / SM)4 / 139 / 1-1-1-2");

)

/ 1-1-1-2"
[1-1-1-2")

Li st <Pi pe> bearerList = new ArraylLi st <Pi pe>(bearers.size());
for (String bearerNane : bearers)

{
finder.reset();
Pi pe connectivity = finder.findByNane
(TDMFaci lity.class, bearerName).iterator().next();
bearer Li st. add(connectivity);
}

Pi peConfi gurati onVersi on designVersion =
ConnectivityUWils. getlnProgressDesi gnVersion((Pipe)connectivityTrail);

Li st <Pi peConfigurationlten> allPaths =
Pi peHel per. get Al | Transport|tens(desi gnVersion);

Pi peConfigurationltem connectivityPath = all Paths. get (pathl ndex);

Pi peConfigurationltem gapltem=
connectivityPath. get Chi | dConfigltens(). get(gapl ndex);

Connecti vityManager manager = Persi st enceHel per. makeConnecti vi t yManager () ;
manager . addSegnment sToConnect i vi t yPat h
(connectivityTrail, connectivityPath, gapltem bearerlList);

Performing Gap Analysis

Table 4-9 and example code provide information about using the APl method to perform gap
analysis.

Table 4-9 Performing Gap Analysis

- __|
Topic Information

Name List<PathResultSet> findPaths(PipeSpecification enabledPipe,
PathAnalysisCriteria criteria) throws ValidationException

Description The enabledPipe parameter is the channelized connectivity to be enabled.
The criteria parameter is used in performing gap analysis.

Pre-Condition Ensure the channelize connectivities that you are expecting the results are
already created, terminated, and their capacity is configured.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Example 4-8 Performing Gap Analysis

String sourcelocati onCode = "EDI NBURGH. 002";
String internediatelLocati onCode = "MACHESTER. 001";
String targetLocati onCode = "LONDON. 001";

String rateCodeNane = "VC12";

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 11 of 14

ORACLE’

Chapter 4
Enabling Channelized Connectivity

Locati onManager | ocationManager =
Per si st enceHel per. makeLocat i onManager () ;

Topol ogyQhj ect sourceNode =
(Topol ogyQhj ect) | ocat i onManager . fi ndNet wor kEnti t yLocat i on(sour ceLocati onCode);

Topol ogyQhj ect target Node =
(Topol ogyQhj ect) | ocat i onManager . fi ndNet wor kEnti tyLocati on(target Locati onCode);

Topol ogyQhj ect i nternedi at eNode = nul | ;
if(!Wils.isEnpty(internediatelLocationCode)){

i nt er nedi at eNode =

(Topol ogyQhj ect) | ocat i onManager . fi ndNet wor kEnti tyLocati on
(i nternedi at eLocati onCode) ;

}
i f(sourceNode == null || targetNode == null ||
('Wils.isEmty(intermediatelLocationCode) && intermediateNode == null)){

throw new |11 egal Argunment Exception("Invalid source/internediate/target");
}

Rat eCode rateCode = null;
Capaci t yManager capacit yManager = Persi st enceHel per. makeCapaci t yManager () ;
Rat eCodeSearchCriteria rateCodeSC = capaci t yManager . makeRat eCodeSear chCriteria();

CriterialtemrateCodeNaneltem = rat eCodeSC. makeCriterialten();
rat eCodeNanel t em set Name(r at eCodeNane) ;

rat eCodeNanel t em set Operator (CriteriaQOperator. EQUALS);

rat eCodeNanel t em set Val ue(rat eCodeNarre) ;

rat eCodeSC. set Nane(r at eCodeNanelten);

Li st <Rat eCode> rat eCodes = capacit yManager. fi ndRat eCode(r at eCodeSC);
if ('Utils.isEnpty(rateCodes)) {

rat eCode = rateCodes. get(0);
}

i f(rateCode == null){
throw new Il egal Argunent Exception("Invalid rateCode");
}

Pat hAnal ysi sCriteria criteria = new PathAnal ysisCriteria();
criteria.setSourceNode(sour ceNode);

criteria.setlntermedi at eNode(i nternedi at eNode);
criteria.setTargetNode(targetNode);

criteria.setRat eCode(rateCode);

criteria.setGapAnal ysis(true);

Pat hAnal ysi sManager pat hAnal ysi sManager =
Per si st enceHel per . makePat hAnal ysi sManager () ;

Li st <Pat hResul t Set > pat hs = pat hAnal ysi sManager. findPaths(criteria);

Adding Segments To Connectivity Path Based on the Gap Analysis Results

API Overview
G36725-01

Table 4-10 and example code provide information about using the APl method to add
segments to the connectivity path based on the gap analysis results.

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 12 of 14

ORACLE’

Chapter 4
Enabling Channelized Connectivity

Table 4-10 Adding Segments to Connectivity Path Based on Gap Analysis Results

Topic Information

Name ConnectivityManager.addSegmentsToConnectivityPath (E connectivityTrail,
PipeConfigurationltem connectivityPath, PipeConfigurationltem gapltem,
PathResultSet path) throws ValidationException;

Description The connectivityTrail parameter is the channelized connectivity that will be

enabled.

The connectivityPath parameter is the PipeConfigurationltem representing
the path to which the segments have to be added.

The gapltem parameter is the PipeConfigurationltem of the gap that will be
resolved.

The path parameter is the results returned from gap analysis. (You can pass
the results retrieved in the previous example. For example, paths.get(0)).

See Oracle Communications Information Model Reference for information on
PipeConfigurationltem.

Pre-Condition

Not applicable

Internal Logic

Not applicable

Post-Condition

Not applicable

Extensions

Not applicable

Tips

Not applicable

Example 4-9 Adding Segments to Connectivity Path Based on Gap Analysis Results

String trail Name = "EDINBURGH 002 / LONDON. 001 / VCl12 / VCl12 / 1";

/I want to add connectivities to first path

int pathlndex = "0";

/I Assuming there are other connectivities already added to this path

int gaplndex = "0";

Per si st enceHel per. makeBusi nessli nt er acti onManager (). swi t chCont ext
((String)null, null);

Finder finder = PersistenceHel per.makeFi nder();

Connectivity connectivityTrail =
finder.findByName(Connectivity.class, trailNane).iterator().next();

Pi peConfi gurati onVersion designVersion =
ConnectivityUtils.getlnProgressDesignVersion((Pipe)connectivityTrail);

Li st <Pi peConfigurationlten> allPaths =
Pi peHel per. get All Transport|tens(desi gnVersion);

Pi peConfigurationltem connectivityPath = all Paths. get (pat hl ndex);

Pi peConfigurationltem gapltem =
connect i vi tyPat h. get Chi | dConfi gltens(). get(gapl ndex);

Connecti vi tyManager nanager = PersistenceHel per. makeConnecti vityManager ();

/*Here paths are the path returned by gap anal ysis.
Assuming the first one is the list is selected*/

API| Overview
G36725-01
Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 14

ORACLE Chapter 4
Enabling Channelized Connectivity

manager . addSegment sToConnect i vi t yPat h
(connectivityTrail, connectivityPath, gapltem paths.get(0));

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Page 14 of 14

UIM Entity Managers

This appendix provides a listing of Oracle Communications Unified Inventory Management
(UIM) entity manager class names, the package in which they reside, the entities they manage,
and a brief description.

These Java manager classes are found in the uim_managers.jar which is located in the UIM
Software Development Kit (SDK). See "Overview" in UIM Developer's Guide for more

information on the UIM SDK.

@® Note

The package references in Table A-1 assume the package prefix of
oracle.communications.inventory.api.

Table A-1 List of UIM Entity Managers
e

Manager Name

Package

Managed Entities

Description

ActivityManager project.activity Activity Defines the methods for managing
Activityltem Activity entities within a Project along
. with their Activityltem entities.
Project
AddressRangeManager place GeographicAddress Defines a GeographicAddress being
used as a range.
AssignmentManager consumer Assignment Extends ConsumerManager,
managing Assignment logic.
Assignment such as PipeAssignment,
EquipmentAssignment.
AttachmentManager common Involvement Administers Attachments and
Involvements, for example
preconfiguring TelephoneNumber with
LogicalDeviceAccount.
BaselnvManager common <Base Class> Provides application-specific behavior
to methods in the JdoBean. The
JdoBean doesn't know about entities
that are specific to the inventory
application.
BOMManager bom Activity Defines the methods to support
Inventory retrieving Bill of Materials information

as well as populating additional
information on an activity or resource.

BusinesslinteractionManager

businessinteraction

Businessinteraction

Defines methods for managing
Business Interactions.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-1 of A-5

ORACLE’

Table A-1 (Cont.) List of UIM Entity Managers
|

Appendix A

Manager Name Package Managed Entities Description
CapacityManager capacity Capacity Defines the methods for managing
capacity such as
PipeCapacityProvided,
PipeCapacityRequired,
PipeCapacityConsumption.
CharacteristicManager characteristic Characteristics Defines the methods for managing
Characteristics such as
CharacteristicSpecUsage,
CharacteristicSpecValue,
CharacteristicSpecValueUsage.
ConditionManager consumer Condition Extends InventoryManager, managing
Condition logic. Condition such as
PipeCondition, EquipmentCondition.
ConfigurationManager configuration Configuration Administers a configuration and its
subtypes such as
ServiceConfiguration,
PlaceConfiguration.
ConnectivityManager connectivity Connectivity Defines the methods for managing the
Pipe creation, updates, deletions, and
Devicelnterf retrieving of connectivity data. This
evicelnter a_ce manager references a large number of
InterConnection different entities so the primary entities
CrossConnect are listed here as the managed
entities.
ConsumerManager consumer Assignment Validates resource availability.
Condition
Reservation
CustomNetworkAddressMan | custom CustomNetworkAddress Defines the methods for managing
ager CustomNetworkAddress objects.
CustomObjectManager custom CustomObiject Defines the methods for managing
CustomObject objects.
EquipmentManager equipment Equipment Defines the methods for managing
EquipmentHolder equipment and provided equipment
PhysicalPort holders, physical ports and physical
ys.ca 0 connectors of the equipment. This
PhysicalConnector interface also defines the methods for
PhysicalDevice maintaining and finding physical
devices and provided physical ports
and physical connectors of the
physical devices.
FlowldentifierManager networkaddress Flowldentifier Defines the methods for managing flow
InventoryGroup identifiers and relating them to
inventory groups.
InventoryBaseManager inventory InventoryConfigurationltem | Gets and validates inventory
configuration item for configuration.
InventoryGroupManager group InventoryGroup Defines the methods for managing
InvGroupRef inventory groups and related entities.
IPAddressManager ip IPAddress Defines the methods for managing IP
NetworkAddressDomain Addresses.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-2 of A-5

ORACLE
Appendix A

Table A-1 (Cont.) List of UIM Entity Managers
|

Manager Name Package Managed Entities Description

IPNetworkManager ip IPSubnet Defines the methods for creating,
IPAddress deleting, finding, and updating IP
NetworkAddressDomain network objects.

LocationManager location PropertyLocation Defines the methods for managing
PropertyAddress behaviors of property locations.
NetworkEntityCode

LogicalDeviceManager logicaldevice LogicalDevice Defines the methods for managing

Devicelnterface
FlowlInterface

LogicalDevice, Device Interface, and
Flow Interface objects.

LogicalDeviceAccountManag
er

logicaldevice.accoun
t

LogicalDeviceAccount

Defines the methods for managing
LogicalDeviceAccount objects.

LogicalPhysicalResourceBas | resource Contains shared methods and

e variables for managing logical and
physical resources.

MediaManager media Media Defines the methods for managing

Media objects. Most of the methods for
creating, updating, and deleting Media
objects are deprecated because the
functionality was replaced in Design
Studio.

MediaResourceManager

mediaresource

MediaStream

MediaResourcelLogicalDevic
eRel

Defines the methods for managing
MediaStream objects and its
relationships to LogicalDevice objects.
MediaStream is also a MediaResource
which is an abstract entity for various
types of media.

MultiplexedConnectivityMana
ger

connectivity

MultiplexedConnectivity
MultiplexedChannel
MultiplexedFacility

Defines the methods for managing
MultiplexedConnectivity objects as well
as creating and retrieving channels for
a facility. This interface also creates
and removes terminations for a facility.

NetworkAddressBlockManag | networkaddress NetworkAddressBlock Defines methods for managing
er NetworkAddressBlock objects.
NetworkAddressDomainMan | networkaddress NetworkAddressDomain Defines methods for managing
ager NetworkAddressType NetworkAddressDomain objects.
NetworkManager network Network Defines methods for managing
NetworkNode Network, NetworkNode, and
NetworkEdge NetworkEdge objects.
NetworkReconfigurationActiv | project.activity Network Defines methods for managing
ityManager NetworkNode Network, NetworkNode, and
NetworkEd NetworkEdge objects, and their
etworkdge relationships to Activities.
NetworkReconfigurationMan | network Network Defines methods for managing
ager NetworkNode Network, NetworkNode, and
N rkE j for N rk
NetworkEdge etworkEdge objects for Netwo

Configuration scenarios.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-3 of A-5

ORACLE’

Table A-1 (Cont.) List of UIM Entity Managers
|

Appendix A

Manager Name Package Managed Entities Description
PacketConnectivityManager | connectivity NetworkConnectivity Defines the methods for creating
Packet Network Connectivity objects.
PartyManager party Party Defines the methods for managing
Party objects.
PathAnalysisManager topology TopologyEdge Defines the methods for finding paths
ToplogyNode of interconnected TopologyEdge and
TopologyNode objects.
PipeConfigurationManager | connectivity PipeConfigurationVersion Defines the methods for managing
PipeConfigurationitem Pipe Configurations and their related
. entities.
Pipe
PipeTerminationPoint
PipeManager connectivity Pipe Defines the methods for managing
PipeTerminationPoint Pipe and PipeTerminationPoint
objects.
PlaceConfigurationManager | place PlaceConfiguration Defines the methods for managing
PlaceConfiguration objects.
PlaceManager place GeographicPlace Defines the methods for maintaining
GeographicAddress GeographicPlace objects and their
. . concrete subclasses.
GeographicLocation
GeographicSite
ProductManager product Product Defines the methods for managing
Product objects.
ProjectManager project Project Defines the methods for managing
Project objects.
ReservationManager consumer Reservation Extends ConsumerManager,
managing Reservation logic.
Reservation such as PipeReservation,
EquipmentReservation.
RoleManager role Role Defines methods for managing Role
objects.
SecurityManager admin User Defines the methods for managing
Role User, Role, Partition, and
. S ityPoli bjects.
Partition ecurityPolicy objects
SecurityPolicy
ServiceConfigurationManage | service ServiceConfigurationVersion | This manager is used to configure a
r ServiceConfigurationitem service using configuration versions
and items.
ServiceConnectivityManager | connectivity ServiceConnectivity This manager is used to create service
ServiceNetwork connectivity objects with and without a
. i . . ServiceConfigurationVersion.
ServiceConfigurationVersion
ServiceManager service Service Defines the methods for managing

Service objects.

SignalTerminationPointMana
ger

signalterminationpoi
nt

SignalTerminationPoint
TrailTerminationPoint
ConnectionTerminationPoint

Defines methods for managing Signal
Structure and SignalTerminationPoint.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-4 of A-5

ORACLE’

Table A-1 (Cont.) List of UIM Entity Managers

Manager Name

Package

Managed Entities

Appendix A

Description

SpecManager

specification

Specification

Administers a specification and its
subtypes such as PipeSpecification,
EquipmentSpecification.

TagManager

tag

Tag

Defines the methods for managing Tag
objects.

TDMConnectivityManager

connectivity

TDMChannel
TDMFacility

Defines the methods for managing
TDMChannel and TDMFacility objects.

TelephoneNumberManager

number

TelephoneNumber

Defines the methods for managing
TelephoneNumber objects.

TopologyManager

topology

TopologyEdge
TopologyNode

Defines the methods for managing
TopologyEdge and ToplogyNode
objects.

TransitionManager

common

Transitions an entity's business and
object states by finding the matching
transition definitions with business
action, object activity, entity type, and
specification. If the definition's from
state matches the entity's state, then
the entity's state is set to the
definition's to state.

VirtualNetworkManager

network

Network

NetworkNode
NetworkEdge
Flowlnterface
Flowldentifier

Defines the methods for managing
Virtual Networks, Service Networks,
and Packet Virtual Network objects.

WorkflowManager

businessinteraction

EngineeringWorkOrder
Checklist
Activity

Defines the methods for managing
Engineering Work Orders and
Activities. This manager also updates
Activity properties like duration and
their checklists and, also transitioning
an Activity's status.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix A-5 of A-5

NFV Orchestration Java Managers

This appendix provides a listing of Oracle Communications Unified Inventory Management
(UIM) NFV Orchestration Java manager names, the package in which they reside, and a brief

description.

These Java manager classes are found in the nso_managers.jar which is located in the UIM
Software Development Kit (SDK). See "Overview" in UIM Developer's Guide for more
information on the UIM SDK.

Table B-1 contains the list of Java managers in alphabetical order by manager name.

@ Note

The package references in Table B-1 assume the package prefix of
oracle.communications.inventory.nso.

Table B-1 List of NFV Orchestration Java Managers

Manager Name

Package

Description

DescriptorManager

api.descriptor

Defines numerous find methods for retrieving the descriptors and
specifications for Network Services, VNFs, PNFs and orchestration
requests.

EMSManager

api.ems

Defines the methods for finding, creating, updating and deleting
EMSs, which perform the typical management functionality for one
or several VNFs.

NetworkServiceDesignManager

api.c2a

Defines the methods for creating, disconnecting and changing the
configuration version for a Network Service.

NetworkServiceManager

api.ns

Defines various methods to instantiate, activate, terminate and
update Network Service entities. This manager also includes
several find methods for Network Services and methods for Design
and Assign of various Network Service entities.

NFVIManager

nfvi

Defines the methods for managing the NFV infrastructure. This
manager includes methods to create, get and delete objects such
as flavors, ports, networks and virtual routers for the VIM. By
default, NFV Orchestration supports integration with OpenStack,
but you can implement this interface to provide integration to a
custom VIM, for instance supporting VMware vCloud.

NSONotificationManager

api.ns

Defines the methods to process a notification. This manager
provides the mechanism to extend and provide your own custom
required notifications.

NSOResponseManager

api.ns

Defines the methods to aid in sending a response to a topic in the
WebLogic server. By default, NFV Orchestration includes a
response manager that publishes the status of the VNF and
Network Service life-cycle operations to a topic. You can also
implement this interface to provide a custom response manager.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-1 of B-2

ORACLE’

Appendix B

Table B-1 (Cont.) List of NFV Orchestration Java Managers
|

Manager Name

Package

Description

PNFManager

api.pnf

Defines the methods to find, create, update, delete, and manage
PNFs.

PNFServiceDesignManager

api.c2a

Defines the methods to process the actions performed during a
PNF addition to a Network Service or termination from a Network
Service.

ResourceOrchestrationManager

api.ro

Defines the methods used to choose a data center based on the
requirement to provision a Network Service. An instance can be
obtained from the NSOHelper class.

SBSytemManager

api.sb

Defines the south-bound system manager providing methods to
manage the VNF, such as reboot, replace, upgrade, scale and
instantiate. You can implement this interface to integrate NFV
Orchestration with a third-party VNF manager or Oracle's VNF
Manager.

SDNController

nfvi

Defines the methods to create, update, and delete network
forwarding paths (NFPs) for VNF forwarding graphs (VNFFGs). By
default, NFV Orchestration supports integration with OpenStack
Neutron Networking-SFC (Service Function Chaining) using Open
vSwitch (OVS) driver, but you can also implement a custom SDN
controller.

VNFCapabilityServiceManager

api.vnf.capabilit
y

Defines the methods to configure a VNF service. This also contains
a designAndAssign() method, as well as the
issueConfigurationVersion() method.

VNFConfigManager

nfvi

Defines the methods to return the configuration files of a VNF and
generates configuration content for VNF configuration. You can
implement this interface to extend the VNF manager functionality
and its configuration files.

VNFConnectionManager

nfvi

Defined the methods to connect and configure a VNF. You can
implement this interface to extend the VNF manager functionality
for these methods.

VNFLifeCycleManager

nfvi

Defines methods to manage the life cycle of a VNF, such as
instantiate, reboot and terminate. You can implement this interface
to extend the VNF manager functionality for these methods. By
default, NFV Orchestration manages the VNF life-cycle operations
by using OpenStack Compute services (referred to as Nova), but
you can also implement and use a custom VNF life-cycle manager.

VNFMonitoringManager

nfvi

Defines the methods to manage the monitoring of a VNF, such as
create, get and update alarms. By default, NFV Orchestration
supports integration with OpenStack Ceilometer, but you can also
implement and use a custom monitoring engine.

VNFServiceDesignManager

api.c2a

Defines the methods for creating, disconnecting and changing the
configuration version for a VNF.

VNFServiceManager

api.vnf

Defines various methods to instantiate, activate, terminate and
update VNFs. This manager also includes several find methods for
VNFs.

See UIM NFV Orchestration Implementation Guide for more information on extending the Java

managers.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-2 of B-2

Common Utility Code Examples

This appendix provides an example code of common utilities that are often used when working
with the Oracle Communications Unified Inventory Management (UIM) application program
interfaces (APISs).

Example C-1 Common Utility Code

publi ¢ bool ean hasErrors()

{
bool ean hasErrors = fal se;
User Envi ronnent user Envi ronnent = User Envi ronnent Fact ory. get User Envi ronnent () ;
if (userEnvironment !'= null)
{
FeedbackProvi der feedbackProvider = userEnvironnent. get FeedbackProvider();
hasErrors = feedbackProvi der. hasMessages(FeedbackLevel . ERROR) ;
}
return hasErrors;
}

public FeedbackProvi der get FeedbackProvi der ()

{
FeedbackProvi der feedbackProvider = null;
User Envi ronnment user Envi ronment = get User Envi ronment () ;
if (userEnvironment !'= null)
f eedbackProvi der = user Envi ronnent. get FeedbackPr ovi der ();
return feedbackProvider;
}

protected static void comit O Rol | back(UserTransaction ut)throws Exception

{
FeedbackProvi der feedbackProvider =
get User Envi ronnent () . get FeedbackPr ovi der () ;
i f (feedbackProvider.hasMessages(FeedbackLevel . ERROR))
{
if (ut '=null &% ut.getStatus() == Status. STATUS_ACTI VE)
ut. rollback();
}
el se
{
if (ut '=null &% ut.getStatus() == Status. STATUS_ACTI VE)
ut.commt();
}
}

protected static UserEnvironnent startUserEnvironnment()throws Exception

{
User Envi ronnment user Envi ronment = nul | ;
try {
User Envi ronnent = get User Envi ronment () ;
if (userEnvironment != null)

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Appendix C-1 of C-2

ORACLE
Appendix C

|/ Reset the User Context in User Environnent.
user Environnent. reset ();
/1 Begin the UserEnvironment before it is first used.
user Envi ronnent . begi n();
/I Reset the Feedback Provider in User Environment.
user Envi ronnent . get FeedbackProvi der (). reset();
1
1
catch (Exception e) {
e.printStackTrace();
throw e;
1

return userEnvironnent;

protected static void endUserEnvi ronment (User Envi ronment user Envi ronment)

{
if (userEnvironnent == null)
return;

user Envi ronnent . get FeedbackProvi der (). reset();
user Environnent. end();}

protected static UserEnvironment getUserEnvironnent() throws Exception

{
User Envi ronment user Envi ronment = nul | ;
try {
[I'Uils is oracle.commnications.platformutil.UWils
Initial Context initial Context = Utils.getlnitial Context();
String jndi ContextNane = "inv";
String userEnvironnent Nane = "User Environnent";
user Environnent = (UserEnvironnent)initial Context.|ookup
(j ndi Cont ext Name + "/" + user Envi ronment Nare) ;
initial Context.close();
1
catch (Exception e) {
e.printStackTrace();
throw e;
1
return userEnvironnent;
}

Example C-2 Changing date and time to local formats

/1 Wen working with customcharacteristics of type date or datetime, with |ocalization
<<pl ace inport of UWility here>>

/I Either date string should be set using "M DI YYYY hh:nmss" / " MV DD YYYY" fornmats.
Char . set Val ue("10/ 20/ 2023");

/1O Before setting the date value a conversion should be done to change the Date to UM
date

//format using an inbuilt utility method convertToU MDateString for Date type

/I convert ToUl MDat eTi meString and for datetine.

Date date = Utils.convertToUl MDateTi meString(new Dat e(2023 - 1900 , 9,18));

Char. set Val ue(date);

API Overview
G36725-01 October 30, 2025
Copyright © 2013, 2025, Oracle and/or its affiliates. Appendix C-2 of C-2

Frequently Used APIs for Design and Assign

Methods

This appendix provides pointers to the design and assign methods of APIs that are frequently
used when working with the Oracle Communications Unified Inventory Management (UIM)
application programming interfaces (APIs).

You can download this technology pack, use the methods, and see code examples for
common business solutions. You can also include this package in your custom solution to have
numerous classes that are available.

Reference UIMTECHPACK Cartridge

Java package: OracleComms_UIM_DesignAndAssign_Common

oracle.communications.inventory.api.dna.ServiceDesigner

Table D-1 oracle.communications.inventory.api.dna.ServiceDesigner

Topic

Class/Method

oracle.communications.inventory
.api.dna. ServiceDesigner

ServiceDesigner.create(String serviceld, String serviceSpecificationName)
Description: Creates a service with the given service ID and the specification name.

getParentService

ServiceDesigner.getParentService(Service service)

Description: Returns the parent service in which the given service is assigned.Parent
service to child service is not directly between two service entities like other entities. But
it is done using assignment of child services to a configuration item of a parent service's
configuration.

relating child service to a parent
service

ServiceDesigner.addService(Service parentService, Service newService, String
configltem)

Description: Creates a new configuration item with the given name in the parent service
active configuration and assigns the new service to it. This is how parent-child
relationship is created between services. This is a typical example of relating a CFS
(Customer Facing Service - parent service) and an RFS (Resource Facing Service - child
service).

relateServiceToParty

ServiceDesigner.relateServiceToParty(ServiceConfigurationVersion scv, Party
party,String roleSpec)

Description: This method relates the given party to the given service.

getAssociatedService

ServiceDesigner.getAssociatedService (Businessinteraction businessinteraction)

Description: Returns the list of Service Entities associated to the given Business
Interaction via Configuration Version.

getService

ServiceDesigner.getService(String serviceld, String extObjld)

Description: This method gets the service using the service ID. If the service ID is not
specified, the service is retrieved based on the service external object ID.

API Overview
G36725-01

October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Appendix D-1 of D-9

ORACLE’

Appendix D
Reference UIMTECHPACK Cartridge

Table D-1 (Cont.) oracle.communications.inventory.api.dna.ServiceDesigner

Topic

Class/Method

updateServiceCharacteristic

ServiceDesigner.updateServiceCharacteristic(Service service, String charName, String
charValue);

Description: Finds and creates a new characteristic on the service with the provided
charName and populates the provided value.

getAssignedService

ServiceDesigner.getAssignedService(ConsumableResource resource)
Description: Returns the assigned service for a given consumable resource.

getAssignedServiceConfigVersio
n

ServiceDesigner.getAssignedServiceConfigVersion(ConsumableResource resource)

Description: Returns the current active configuration in which the given consumable
resource is assigned.

updateConfigltemCharacteristic

ServiceDesigner.updateConfigltemCharacteristic(ServiceConfigurationltem configltem,
String charName, String charValue)

Description: Updates the characteristic of the Service Configuration Item.

assignEntity

ConfigurationDesignerlmpl.assignEntity(Configurable configurable,
ConsumableResource entity, String config-ltemName)

Description: Assigns a given consumable resource entity to the given configurable entity
(Service, Logical Device, Site, network and so on) and associates to the provided
Configuration Item.

referenceEntity

ConfigurationDesignerlmpl.referenceEntity(Configurable configurable,
ConfigurationReferenceEnabled entity, String configitemName)

Description: References a given entity to the given configurable entity (Service, Logical
Device, Site, network and so on) and associates it to the provided Configuration Item.

getAssociatedVersions

ConfigurationDesignerlmpl.getAssociatedVersions(String bild, String extObijld)

Description: Returns the list of Inventory Configurations associated to the given
Business Interaction. Either bild or extObjld are required.

getAssociatedConfigurableEntity

ConfigurationDesignerlmpl.getAssociatedConfigurableEntity(Businessinteraction
businesslinteraction)

Description: Returns the list of Configurable Entities (Service, Logical Device, Device
Interface, Network and so on) associated to given Business Interaction via Configuration
Version.

getPreviousVersion

ConfigurationDesignerlmpl.getPreviousVersion(InventoryConfigurationVersion version)
Description: Returns the latest previous completed configuration version.

getBusinessinteractionltems

ConfigurationDesignerlmpl.getBusinessinteractionltems(Businessinteraction bi)

Description: Returns the list of all Business Interaction Items associated to given
Business Interaction.

getBusinesslinteraction

ConfigurationDesignerimpl.getBusinessinteraction(String bild, String extObijld)

Description: Returns the Business Interaction for the Business Interaction id or External
Object Id. Either bild or extObjld are required.

getConfigurationProperty

ConfigurationDesignerimpl.getConfigurationProperty(InventoryConfigurationltem item,
String name)

Description: Returns the value of a characteristic associated to the configuration item.

getConfigurationltem

ConfigurationDesignerimpl.getConfigurationltem(InventoryConfigurationVersion
ConfVersion, String name)

Description: Returns a configuration item with the given name associated to the
provided Configuration Version.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix D-2 of D-9

ORACLE’

Appendix D
Reference UIMTECHPACK Cartridge

Table D-1 (Cont.) oracle.communications.inventory.api.dna.ServiceDesigner

Topic

Class/Method

isValidConfigltemCharacteristic

ConfigurationDesignerlmpl.isValidConfigltemCharacteristic (InventoryConfigurationltem
item, String charName)

Description: Checks if the given characteristic belongs to the given configuration item.

addChildConfigltem to a given
parentltem

ConfigurationDesignerimpl.addChildConfigltem(InventoryConfigurationVersion
configVersion, InventoryConfigurationltem parentitem, String childitemName)

Description: Creates the child configuration item under the parent configuration item
provided.

getLatestConfigurationVersionFo
rState

ConfigurationDesignerimpl.getLatestConfigurationVersionForState(Configurable
configurable, BusinessinteractionState state)

Description: This method gets the latest configuration version for a given configurable
entity (Service, Logical Device, Network etc.) using the given state as the criteria.

checkltemAssignedReferenced

ConfigurationDesignerimpl.checkltemAssignedReferenced(InventoryConfigurationVersio
n configVersion, InventoryConfigurationltem entityConfigltem)

Description: Checks if the configuration item has a assignment or reference.

getConfigurationVersion

ConfigurationDesignerimpl.getConfigurationVersion(Configurable configurable, String
configSpecName)

Description: This method determines if an in-progress version exists before creating a
new one. If a completed version exists, then it uses that to create the next version. If
neither an in-progress or completed version exists, it uses the configuration specification
to create the first configuration version for the configurable entity such as a service.

getConfigurationltems of an
assignment object

ConfigurationDesignerimpl.getConfigurationltems(Assignment assignment,
InventoryConfigurationVersion scv)

Description: Returns the configuration items based on the assignment object provided.

getConfigurationltems of an
reference object

ConfigurationDesignerlmpl.getConfigurationltems(InventoryConfigurationVersion scv,
ConfigurationReference reference)

Description: Returns the Configuration Items based on the reference object provided.

createConfigurationVersion

ConfigurationDesignerlmpl.createConfigurationVersion(Configurable configurable, String
configSpec)

Description: This method will use the configuration specification to create the
configuration version for the given configurable entity.

getConfigltemByNameAndParen
t

ConfigurationDesignerlmpl.getConfigitemByNameAndParent(InventoryConfiguration\Versi
on scv, String itemName, String parentName)

Description: Returns the configuration item with the given name.If parentName is not
null the method will make sure that the item is child of parent item before returning.

setConfigltemCharacteristics

ConfigurationDesignerlmpl.setConfigltemCharacteristics (InventoryConfigurationltem
configltem, String propertyName, String value)

Description: If a Characteristic with this name already exists, then this method will
update the value. Otherwise creates a new characteristic.

referenceEntityToConfiguration

ConfigurationDesignerimpl.referenceEntityToConfiguration(ConfigurationReferenceEnabl
ed resource, InventoryConfigurationVersion config, String configltemName)

Description: Reference a given resource to the configuration item in the given
configuration version.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix D-3 of D-9

ORACLE Appendix D
Reference UIMTECHPACK Cartridge

Table D-1 (Cont.) oracle.communications.inventory.api.dna.ServiceDesigner

e __|
Topic Class/Method

assignEntityToConfiguration ConfigurationDesignerimpl.assignEntityToConfiguration(InventoryConfigurationVersion
configuration, ConsumableResource consumableResource, String configltemName,
String parentConfigltemName, boolean switchToConfigurationContext)

Description: Assigns a given resource to the configuration item in the given configuration
version.

switchToConfigurationContext: If set to true, ensures that the assignment is done under
configuration context.

switchToConfigurationContext: If set to false, assignment is done in whichever context is
carried in the UserEnvironment at run time, which may result in wrong assignment
depending on the context. Hence, always set switchToConfigurationContext to true for the
right context.

This method also makes sure to set back the context to current or live after the
assignment is done.

referenceEntityToConfiguration | ConfigurationDesignerimpl.referenceEntityToConfiguration(InventoryConfigurationVersion
configuration, ConfigurationReferenceEnabled entity, String configltemName, String
parentConfigltemName, boolean switchToConfigurationContext)

Description: References a given resource to the configuration item in the given
configuration version.

getConfigSpecByResourceSpec | ConfigurationDesignerlmpl.getConfigSpecByResourceSpec(Specification
resourceSpecification, Specification configurationSpec)

Description: Returns the Configuration Item Specification on which this resource
specification can be assigned or referenced in the given Configuration specification.

getParentConfigSpec ConfigurationDesignerlmpl.getParentConfigSpec(InventoryConfigurationSpec childSpec)

Description: Returns the parent configuration item specification for a given child
configuration specification.

getActiveConfigurationVersion ConfigurationDesignerimpl.getActiveConfigurationVersion

Description: This method gets the latest configuration version for a given configurable
Entity like Service, Logical Device, Network, etc.If there is any in progress configuration
version available it returns it.Otherwise it returns the last completed configuration version.

oracle.communications.inventory.api.dna. ConnectivityDesigner

Table D-2 oracle.communications.inventory.api.dna. ConnectivityDesigner

e __|
Topic Class/Method

createServiceConnectivity ConnectivityDesigner.createServiceConnectivity(String connSpec, String technology,String
function, ServiceNetwork serviceNetwork, int serialNumber,

ServiceConfigurationVersion scv, String aLocationName, String zLocationName, BigDecimal
cir, UnitOfMeasure cirUoM, BigDecimal mir, UnitOfMeasure mirUoM)

Description: Helper method used to create Service Connectivity.

API Overview
G36725-01 October 30, 2025
Copyright © 2013, 2025, Oracle and/or its affiliates. Appendix D-4 of D-9

ORACLE’

Appendix D
Reference UIMTECHPACK Cartridge

oracle.communications.inventory.api.dna. ConnectivityHelper

Table D-3 oracle.communications.inventory.api.dna. ConnectivityHelper

Topic

Class/Method

getAssignedConnectivities

ConnectivityHelper.getAssignedConnectivities(LogicalDevice device, Specification
specification, RateCode rateCode)

Description: Returns the connectivities assigned to any interface on the provided logical
device for the provided device interface specification and rate code.

getConnectivityFromTerminat
ion

ConnectivityHelper.getConnectivityFromTermination(Devicelnterface di)
Description: Get the assigned connectivity given the device interface.

getConnectivityUniN

ConnectivityHelper.getConnectivityUniN(Pipe connectivity, String roleName)

Description: Return the Device Interface based on a specific role name. Checks the Z side
first for the role, then checks the A side. The UNI-N is the interface on SP's (Service
Provider's) side of the UNI. Use a device role to identify it.

getDevicelnterfaceRole

ConnectivityHelper.getDevicelnterfaceRole(Devicelnterface di, String roleName)
Description: Returns true if the device interface has a specific role.

getDevicelnterfaceByAssign
ment

ConnectivityHelper.getDevicelnterfaceByAssignment(List<Assignment> assignments, String
roleName)

Description: Return the device interface for a given assignment and role.

findTransportConnectivity

ConnectivityHelper.findTransportConnectivity(LogicalDevice logicalDevice, String
specName)

Description: Returns the first connectivity assigned to a logical device with a specific
connectivity specification name.

findTransportinterface

ConnectivityHelper.findTransportinterface(LogicalDevice logicalDevice, String specName)

Description: Returns the first device interface found on the logical device with a specific
connectivity assigned with a specific type of connectivity specification. For example, inter-
network transport to the core has a unique connectivity specification.

getFunction ConnectivityHelper.getFunction(String name)

Description: Return the Connectivity Function entity with a specific name.
getTechnology ConnectivityHelper.getTechnology(String name)

Description: Returns the technology entity for a specific name.
getRateCode ConnectivityHelper.getRateCode(String name)

Description: Return the Rate Code entity for a specific rate code name.

getConnectivityServiceLocati
on

ConnectivityHelper.getConnectivityServiceLocation(Connectivity connectivity)

Description: Returns the service location for a given connectivity. Assumes there is only one
and checks the A side location first.

hasValidResourceTerminatio
ns

ConnectivityHelper.hasValidResourceTerminations(Connectivity connectivity)

Description: Returns true if the connectivity has any resource terminations. For example,
this method can be used to determine if the connectivity has been terminated to any device
interfaces.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix D-5 of D-9

ORACLE’

Appendix D
Reference UIMTECHPACK Cartridge

oracle.communications.inventory.api.dna. ResourceHelper

Table D-4 oracle.communications.inventory.api.dna. ResourceHelper

Topic

Class/Method

findEntityByName

ResourceHelper.findEntityByName(Class<E> entityClass, String name)
Description: Returns the entity object based on the name and class provided

makeEntityCharacteristic

ResourceHelper.makeEntityCharacteristic(CharacteristicExtensible<T> entity)
Description: Returns new Characteristic Value object for the given entity

setCharacteristic ResourceHelper.setCharacteristic(CharacteristicExtensible<T> entity, List<PropertyType>
properties)
Description: Sets the characteristic value on the given CharacteristicExtensible entity
getSpecification ResourceHelper.getSpecification(Class<T> specClass, SpecificationType specType)

Description: Returns the Specification object based on the Specification class and
Specification Type Provided

getAdminState

ResourceHelper.getAdminState(InventoryStateEnum.Enum state)
Description: Returns the Inventory State based on the state provided.

getAssignmentState

ResourceHelper.getAssignmentState(AssignmentStateEnum.Enum state)
Description: Returns the AssignmentState based on the state provided

getSpecification ResourceHelper.getSpecification(Class specClass, String hame)

Description: Returns the specification based on the name and specification class provided.
findFirstEntityByName ResourceHelper.findFirstEntityByName(Class<E> klass, String name)

Description: Finds and returns the first entity from the result set matching the given

name.Returns null if none found.
findEntityByld ResourceHelper.findEntityByld(Class<E> entityClass, String id)

Description: Finds and returns the entity by given id and class provided.
findEntitiesByName ResourceHelper.findEntitiesByName(Class<E> klass, String name)

Description: Finds and returns the entity by class and name.
findFirstEntityByld ResourceHelper.findFirstEntityByld(Class<E> klass, String id)

Description: Finds and returns the first entity found by class and id.
findEntitiesByld ResourceHelper.findEntitiesByld(Class<E> klass, String id)

Description: Finds and returns a list of entities by class and id.

populateCharacteristics

ResourceHelper.populateCharacteristics(T entity, Set<E> characteristics)

Description: Populates the set of characteristics provided on the characteristicExtensible
entity.

populateCharacteristic

ResourceHelper.populateCharacteristic(T entity, E characteristic)
Description: Populates the characteristic provided on the CharacteristicExtensible entity.

createCustominvolvement

ResourceHelper.createCustominvolvement(E fromEntity, T toEntity)
Description: Creates Custom Involvement between the given from Entity and the to Entity.

deleteCustomlInvolvement

ResourceHelper.deleteCustominvolvement(E fromEntity, T toEntity)

Description: Deletes the custom involvement between the given two entities.First it tries with
the fromEntity and toEntity and find the involvement.If not found it tries other way around by
setting to entity as from entity and to entity as from entity

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix D-6 of D-9

ORACLE’

Appendix D
Reference UIMTECHPACK Cartridge

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic

Class/Method

associateTolnventoryGroup

ResourceHelper.associateTolnventoryGroup(InventoryGroup group, List<GroupEnabled>
entities)

Description: Associate the given list of entities to inventory group.

disassociateFromInventoryGr
oup

ResourceHelper.disassociateFrominventoryGroup(lnventoryGroup group,
List<GroupEnabled> entities)

Description: Disassociates the list of entities from the inventory group.

associateToPlace

ResourceHelper.associateToPlace(GeographicPlace parentPlace, GeographicPlace
childPlace)

Description: Associates the child place to parent place.

associateToPlace
Logical Device to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, LogicalDevice device)
Description: Associates the given Logical Device to the given place.

associateToPlace

Logical Device Account to
Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, LogicalDeviceAccount
account)

Description: Associates given Logical Device Account to the given place.

associateToPlace
Physical Device to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, PhysicalDevice device)
Description: Associates the given Physical Device to the given place.

associateToPlace
Service to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, Service service)
Description: Associates the given Service to the given place.

associateToPlace
Inventory Group to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, InventoryGroup group)
Description: Associates the given Inventory Group to the given place.

associateToPlace

PipeTerminationPoint to
Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, PipeTerminationPoint ptp)
Description: Associates the given Pipe Termination Point to the given place.

associateToPlace
NetworkNode to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, NetworkNode node)
Description: Associates the given Network Node to the given place

disassociateFromPlace

ResourceHelper.disassociateFromPlace(GeographicPlace parentPlace, Persistent entity)
Description: Disassociates the given Persistent entity from the given place.

findInventoryGroup

ResourceHelper.findinventoryGroup(String inventoryGroupName, String specificationName)

Description: Finds and returns Inventory Group based on the inventory group name and
specification name provided.

findDevicelnterfaces

ResourceHelper.findDevicelnterfaces(LogicalDevice device, Specification
specification,RateCode rateCode, AssignmentState state)

Description: Finds the Device interfaces based on the logical device, specification,
assignment state and rate code.Not all arguments are mandatory.Only non null values will be
added as search criteria.

findAndValidateSpecification

ResourceHelper.findAndValidateSpecification(String specificationName)
Description: Returns only valid specification based on the given name.

findAndValidateSpecification

ResourceHelper.findAndValidateSpecification(Class specClass, String specificationName)

Description: Returns only valid specification based on the given name and specification
class.

createParty

ResourceHelper.createParty(Party Type type, String partySpecName, String roleSpecName)

Description: Creates Party based on the party type and specification.If the role specification
is provided it creates party role too.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix D-7 of D-9

ORACLE’

Appendix D
Reference UIMTECHPACK Cartridge

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic

Class/Method

createPartyRole

ResourceHelper.createPartyRole(Party party, String roleSpecName)

Description: Creates the party role object based on the party object and role specification
name provided.

makeCharValue

ResourceHelper.makeCharValue(CharacteristicExtensible<CharValue>
characteristicExtensible, String charSpecName, String value)

Description: Creates and returns the char value object based on the provided details for any
entity which is CharacteristicExtensible like inventory configuration item, logical device,
Service.Network etc.

findOrCreateLogicalDevice

ResourceHelper.findOrCreateLogicalDevice(String logicalDeviceld, String name, String
specName)

Description: Finds the logical device based on the ID, name and specification provided. If
not found, creates a logical device and returns.

createlLogicalDevice

ResourceHelper.createLogicalDevice(String logicalDeviceld, String specName)
Description: Creates a logical device.

findLogicalDevice

ResourceHelper.findLogicalDevice(String id, String name, String specName)
Description: Finds the logical device based on the provided details.

findConnectivity

ResourceHelper.findConnectivity(String identifier)
Description: Finds the connectivity object based on the provided identifier.

createPropertyAddress

ResourceHelper.createPropertyAddress(String streetAddress, String city, String state, String
postalCode, String country)

Description: Creates the property address based on the details provided.

createPropertyLocation

ResourceHelper.createPropertyLocation(PropertyAddress address)

Description: Creates the property Location of type Service Location based on the details
provided.

findPropertyLocations

ResourceHelper.findPropertyLocations(PropertyAddress address)
Description: Finds and returns the Property Location based on the address provided.

findOrCreatePropertylLocatio
n

ResourceHelper.findOrCreatePropertyLocation(PropertyAddress address)

Description: Finds the property Location with the given address. If available, returns the
entity. Otherwise, creates a new Property Location.

createCritierialtem

ResourceHelper.createCritierialtem(String itemName, CriteriaOperator operator,
InventorySearchCriteria criteria)

Description: Creates and returns the criteria Item object.

findCustomObjects

ResourceHelper.findCustomObjects(String specName, String customObjectName)

Description: Finds and returns the custom objects with the given criteria.Either Name or
SpecName is mandatory.

findOrCreateCustomObject

ResourceHelper.findOrCreateCustomObject(String customObjectName, String specName,
Set<CustomObjectCharacteristic> chars)

Description: Finds the Custom Object with the given details. If available, returns the entity.
Otherwise, creates a new Custom Object.

createCustomObject

ResourceHelper.createCustomObject(String customObjectName, String specName,
Set<CustomObjectCharacteristic> chars)

Description: Create a Custom Object.

API Overview
G36725-01

Copyright © 2013, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix D-8 of D-9

ORACLE Appendix D
Reference UIMTECHPACK Cartridge

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic Class/Method

findCharacteristicByName ResourceHelper.findCharacteristicByName(CharacteristicExtensible entity, String
itemName)
Description: Finds and returns the characteristic value for a specific entity and characteristic
name.

findLogicalDevice ResourceHelper.findLogicalDevice(String id, String name)

Description: Finds a logical device by ID and name.

findNetworkLocation ResourceHelper.findNetworkLocation(String networkLocationCode)
Description: Finds and returns a property location using the network location code.

findNetworkEntityCode ResourceHelper.findNetworkEntityCode(PropertyLocation propertyLocation, String
networkEntityCode)

Description: Finds and returns the Network Entity Code given a property location and
network entity code name.

createNetworkEntityCode ResourceHelper.createNetworkEntityCode(PropertyLocation networkLocation, String
networkEntityCode, String networkEntityLocationCode)

Description: Creates a Network Entity Code given a property location, network entity code
and network entity location code.

updateBusinessinteractionC | ResourceHelper.updateBusinessinteractionCharacteristic(Businessinteraction bi, String
haracteristic charName, String charValue)

Description: Updates a Business Interaction Characteristic.

updateNetworkCharacteristic | ResourceHelper.updateNetworkCharacteristic(Network network, String charName, String
charValue)

Description: Updates a Networks Characteristics.

getBlParameterValue by ResourceHelper. getBIParameterValue(BusinessinteractionltemType item, String
BusinesslinteractionltemType | paramName)

Description: Returns the value of parameter provided. It can be used to return the value
from a name/value pairs from the Capturelnteraction Payload given the Parameter name.

getBlParameterValue by ResourceHelper.getBIParameterValue(List<oracle.communications.inventory.xmlbeans.Para
ParameterType meterType> parameterList, String paramName)

Description: Returns the value of parameter provided. It can be used to return the value
from a name/value pairs from the Capturelnteraction Payload given the Parameter name.

API Overview
G36725-01 October 30, 2025

Copyright © 2013, 2025, Oracle and/or its affiliates. Appendix D-9 of D-9

	Contents
	About This Content
	1 Overview
	2 Working with Transactions, Exceptions, and Logging
	Working with Transactions
	Working with Exceptions
	Working with Logging
	Configuring the Logging Level
	Working with the Log Interface
	About UIM Log Messages
	Defining Custom Log Messages
	Working with the FeedbackProvider Interface

	3 Implementing a Generic Service Fulfillment Scenario
	About the Generic Service Fulfillment Scenario
	Querying for the Specification
	Querying for the Specification Using Finder API
	Creating the Service and Service Configuration
	Creating the Service
	Retrieving the Service Configuration Specification
	Retrieving the Service Configuration Specification Using Finder API
	Creating the Service Configuration
	About Alternate Flows
	Changing the Service
	Disconnecting the Service

	Creating and Associating the Party
	Creating the Party
	Creating the Party Role
	Associating the Party and Party Role with the Service
	About Alternate Flows
	Disassociating the Party and Party Role from the Service
	Deleting the Party
	Deleting the Party Role

	Creating and Associating the Geographic Address with the Service
	Creating the Geographic Place
	Creating the Place Role
	Associating the Geographic Place and Place Role with the Service
	About Alternate Flows
	Disassociating the Geographic Place and Place Role from the Service
	Deleting the Geographic Place
	Deleting the Place Role

	Configuring the Resources for the Service Configuration
	Finding the Service
	Finding the Service by ID Using Finder API
	Finding the Current Service Configuration Version
	Finding the Service Configuration Item
	Finding the Custom Object to Assign
	Creating the Custom Object to Assign
	Assigning the Resource to a Configuration Item
	Referencing the Resource to a Configuration Item
	About Alternate Flows
	Unassigning Resources from a Configuration Item
	Reserving a Custom Object
	Unreserving a Custom Object
	Creating a Blocked Condition for a Custom Object
	Deleting a Blocked Condition for a Custom Object

	Setting Characteristic Values for the Service Configuration Item
	Finding Configuration Item and Setting Characteristics
	About Alternate Flows
	Unsetting Characteristic Values for the Service Configuration Item

	Transitioning the Lifecycle Status
	Creating a Property Location
	Referring Property Location to a Service Configuration Item

	About Undo Actions

	4 Implementing a Channelized Connectivity Enablement Scenario
	About the Channelized Connectivity Enablement Scenario
	Creating a Property Location and Associating Network Entity Codes
	Creating a Logical Device and Associating LD Interfaces with Network Entity Codes
	Creating Channelized Connectivity
	Create Channelized Connectivity
	Configure Capacity on the Channelized Connectivity
	Configure Auto Termination on the Channelized Connectivity

	Enabling Channelized Connectivity
	Manually Enabling Channelized Connectivity
	Performing Gap Analysis
	Adding Segments To Connectivity Path Based on the Gap Analysis Results

	A UIM Entity Managers
	B NFV Orchestration Java Managers
	C Common Utility Code Examples
	D Frequently Used APIs for Design and Assign Methods
	Reference UIMTECHPACK Cartridge
	oracle.communications.inventory.api.dna.ServiceDesigner
	oracle.communications.inventory.api.dna. ConnectivityDesigner
	oracle.communications.inventory.api.dna. ConnectivityHelper
	oracle.communications.inventory.api.dna. ResourceHelper

