Oracle® Communications Unified

Inventory Management
Cloud Native Deployment Guide

Release 8.0
G36724-01
October 2025

ORACLE"

Oracle Communications Unified Inventory Management Cloud Native Deployment Guide, Release 8.0
G36724-01
Copyright © 2021, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

About This Content

1 Overview of the UIM Cloud Native Deployment

About the UIM Cloud Native Deployment
UIM Cloud Native Architecture
About the WebLogic Domain

About Kubernetes Custom Resource Definitions (CRD) and Domain Configuration
Config Map

About Oracle WebLogic Server Deploy Tooling (WDT)
About UIM Configuration and Specification Layers
About Helm Overrides

About the Common Cloud Native Toolkit

2 Planning and Validating Your Cloud Environment

N -

A A W WODN

Required Components for UIM Cloud Native
Planning Your Cloud Native Environment
Setting Up Your Kubernetes Cluster
Synchronizing Time Across Servers
Provisioning Oracle Multitenant Container Database (CDB)
Provisioning an Empty PDB
About Container Image Management
Installing Helm
About Load Balancing and Ingress Controller
Using Domain Name System (DNS)
Configuring Kubernetes Persistent Volumes
About NFS-based Persistence
About BV-based Persistence
About Authentication
Management of Secrets
Using Kubernetes Monitoring Toolchain
About Application Logs and Metrics Toolchain
Role of Continuous Integration (Cl) Pipelines

Cloud Native Deployment Guide
G36724-01
Copyright © 2021, 2025, Oracle and/or its affiliates.

© © 00 O Ul A A W WDNDNP

e e e =
N N R O O O

October 30, 2025
Page i of vii

Role of Continuous Delivery (CD) Pipelines 13

Planning Your Container Engine for Kubernetes (OKE) Cloud Environment 13
Compute Disk Space Requirements 14
Connectivity Requirements 14
Using Load Balancer as a Service (LBaaS) 14
About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones 15
Using Persistent Volumes and File Storage Service (FSS) 15
Leveraging Oracle Cloud Infrastructure Services 16

Validating Your Cloud Environment 16
Performing a Smoke Test 16
Validating Common Building Blocks in the Kubernetes Cluster 18
Running Oracle WebLogic Kubernetes Operator Quickstart 22

3 Creating the UIM Cloud Native Images

Downloading the UIM Cloud Native Image Builder
Prerequisites for Creating UIM Images
Configuring the UIM Cloud Native Images
Creating the UIM Cloud Native Images

o o N P

Customizing Images

Including User Interface Customizations and Localizing UIM Help in UIM Cloud Native
Images

©

Including Custom Web Services 9
Adding Third-party Libraries 11
Adding WebLogic Deployable Applications 11
Adding Solution Cartridge Customizations 12
Extending Entity Life Cycles 13

4 Creating a Basic UIM Cloud Native Instance

Installing the UIM Cloud Native Artifacts and the Toolkit
Assembling the Specifications
Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller
Installing the WebLogic Kubernetes Operator Container Image
Installing the Ingress Controller
Creating a Basic UIM Instance
Setting Environment Variables
Registering the Namespace
Creating Secrets
Creating Secrets for LDAP System Users
Installing the UIM and RCU Schemas
Generating Encrypted WebLogic Administrator's Password

0 N O 00~ BB W WOWDN PP P

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page ii of vii

Configuring the Specification Files 9

Creating an Ingress 11
Creating a UIM Instance 11
Assigning Roles 13
Validating the UIM Instance 14
Scaling the UIM Application Cluster 14
Deleting and Recreating Your UIM Instance 15
Cleaning Up the Environment 16
Troubleshooting Issues with the Scripts 17
Next Steps 18
5 Planning Infrastructure
Sizing Considerations 1
Managing Configuration as Code 1
Creating Source Control Repository 2
Managing UIM Instances 2
Deciding on the Scope 2
About the Repository Directory Structure 2
Deployment Consideration 3
Setting the Repository Path During Instance Creation 3
Setting Up Automation 4
Securing Operations in Kubernetes Cluster 7
6 Creating Your Own UIM Cloud Native Instance

Customizing UIM Configuration Properties 1
Deploying Cartridges 2
Deploying Cartridges Using Design Studio 3
Deploying Cartridges Using Cartridge Management Tool 3
Deploying Cartridges using SSL 4
Adding New WDT Metadata 6
Working with Kubernetes Secrets 7
About Mandatory Secret 7
About Optional Secrets 8
About Custom Secrets 8
Accommodating the Scope of Secrets 9
Mechanism for Creating Custom Secrets 11
Creating Inventory Users 12
Creating Users in Embedded LDAP 12
Creating Users in OpenLDAP 13
Configuring Other LDAP Systems 15

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page iii of vii

Assigning Application Roles to Inventory Users 15

7 Extending the WebLogic Server Deploy Tooling (WDT) Model

About the Custom WDT Extension Mechanism 1
Using the WDT Model Tools 1
WDT Discover Domain Tool 1
WDT Validate Model Tool 2
Common WDT Extension Mechanism 2
Using the Sample Scripts to Extend the WDT Model 5
Adding a JDBC DataSource 5
Adding a JMS System Resource 8
Adding a Store-and-Forward-Agent and SAF Resources 9
Deploying Entities to a UIM WebLogic Domain 11
Extending the WDT Metadata for an External Authenticator 13
Extending WDT for Email Notification 15
Accessing Kubernetes Secrets from WDT Metadata 18
Troubleshooting WDT Issues 19
8 Exploring Alternate Configuration Options
Setting Up Authentication 1
Enabling SAML Based Authentication Provider 3
Publishing UIM Cloud Native Service Provider Metadata File 6
Working with Shapes 6
Creating Custom Shapes 8
Choosing Worker Nodes for Running UIM Cloud Native 8
Working with Ingress, Ingress Controller, and External Load Balancer 10
Using an Alternate Ingress Controller 11
Reusing the Database State 12
Recreating an Instance 13
Creating a New Instance 15
Setting Up Persistent Storage 16
Managing Logs 19
Viewing Logs using Fluentd and OpenSearch Dashboard 19
Enabling GC Logs 20
WebLogic Diagnostic Logs 21
Managing UIM Cloud Native Metrics 21
Configuring Prometheus for UIM Cloud Native Metrics 21
Viewing UIM Cloud Native Metrics Without Using Prometheus 22
Viewing UIM Cloud Native Metrics in Grafana 23
Exposed UIM Service Metrics 23

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page iv of vii

Managing WebLogic Monitoring Exporter (WME) Metrics 25

Generating the WME WAR File 25
Deploying the WME WAR File 26
Configuring the Prometheus Scrape Job for WME Metrics 26
Viewing WebLogic Monitoring Exporter Metrics in Grafana 27

9 Integrating UIM

Integrating with UIM Cloud Native 1
Connectivity Between the Building Blocks 1
Inbound HTTP Requests 2
Inbound JMS Requests 3
Inbound JMS Requests Within the Same Kubernetes Cluster 3
Outbound HTTP Requests 4
Outbound JMS Connectivity 4

Configuring SAF 5

Applying the WebLogic Patch for External Systems 7

Configuring SAF on External Systems 8

Setting Up Secure Communication with SSL 8
Configuring Secure Incoming Access with SSL 8

Generating SSL Certificates for Incoming Access 9
Setting Up UIM Cloud Native for Incoming Access 9
Configuring Incoming HTTP and JMS Requests for External Clients 11
Configuring Access to External SSL-Enabled Systems 11
Loading Certificates for Outgoing Access 12
Enabling SSL on an External WebLogic Domain 12
Setting Up UIM Cloud Native for Outgoing Access 13
Adding Additional Certificates to an Existing Trust 14
Debugging SSL 15
Using Wild Card SSL Certificates 16
10 Running the SAF Sample for UIM Cloud Native

Preparing WebLogic System to Run the Emulator 2

Deploying the Emulator on the WebLogic System 3

Preparing the UIM Cloud Native Instance 3

Deploying the SAF Sample Cartridge 5

Validating the SAF Endpoints 5

Performing a Test 5

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page v of vii

11 Upgrading the UIM Cloud Native Environment

Rolling Restart 2
Identifying Your Upgrade Path 2
Offline Change Upgrade Paths 3
Online Change Upgrade 4
Exceptions and Unsupported Tasks 5
UIM Cloud Native Upgrade Procedures 5
PDB Upgrade Procedure 5
UIM Application Upgrade 6
Updating the Default Settings for Coherence Cluster 6
Online Cartridge Deployment 6
Upgrades to Infrastructure 7
Miscellaneous Upgrade Procedures 8
Running Operational Procedures 9
Triggering Introspection 9
Scaling Down the Cluster 9
Scaling Up the Cluster 10
Restarting the Instance 10
Fast Delete 10
Upgrade Path Flow Chart 11
12 Moving to UIM Cloud Native from a Traditional Deployment

Supported Releases 1
About the Move Process 1
Pre-move Development Activities 2
Moving to a UIM Cloud Native Deployment 3
Quiescing the Traditional Instance of UIM 4
Exporting and Importing JMS Messages 4
Exporting JIMS Messages 4
Importing JIMS Messages 5
Upgrading the Database 5
Upgrading the Database Server 5
Preparing the Required Database Entities for UIM Cloud Native 6
Upgrading the UIM Schema 6
Switching Integration with Upstream Systems 6
Reverting to Your UIM Traditional Deployment 7
Cleaning Up 7

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page vi of vii

13 Debugging and Troubleshooting

Setting Up Java Flight Recorder (JFR) 1
Troubleshooting Issues with Nginx, UIM Ul, and WebLogic Administration Console 2
Recovering a UIM Cloud Native Database Schema 6
Common Problems and Solutions 6
Upgrading WebLogic Operator 12
Known Issues 12

14 Differences Between UIM Cloud Native and UIM Traditional Deployments

A Migrating from Traefik Ingress Controller to Annotations-Based Generic
Ingress Controller

B Managing Certificate Expiry

C Migrating UIM_CNTK to COMMON_CNTK

Changes Due to Migration C-1
Changes in Artifacts C-1
Changes in Specification Files C-1
Changes in WLSKO Helper Operations C-2
Changes in Secrets C-3
Changes in Embedded LDAP C-3
Changes in Schema Operations C-4
Changes in Instance Operations Cc-4
Changes in Customizations C-5
Changes in Post-Deployment Operations C-6

Migrating from the Existing Files C-6
Mapping the Existing Specification Files to New C-6
Copying the Configuration Files C-8
Performing the Operations C-8

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page vii of vii

ORACLE’

About This Content

This document describes how to install and administer Oracle Communications Unified
Inventory Management (UIM) cloud native deployment.

Audience

This document is for system administrators, database administrators, and developers who
install and configure UIM. The person installing the software should be familiar with the
following topics:

e Operating system commands
e Database configuration

e Oracle WebLogic Server

e Network management

Before reading this guide, you should have familiarity with UIM. See UIM Concepts.

UIM requires Oracle Database and Oracle WebLogic Server. See the documentation for these
products for installation and configuration instructions.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Pageiofi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Overview of the UIM Cloud Native Deployment

Get an overview of Oracle Communications Unified Inventory Management (UIM) cloud native
deployment, architecture, and the UIM cloud native package.

This chapter provides an overview of Oracle Communications Unified Inventory Management
(UIM) deployed in a cloud native environment using container images and a Kubernetes
cluster.

About the UIM Cloud Native Deployment

You can deploy UIM in a Kubernetes-based shared cloud (cluster) while implementing modern
DevOps “Configuration as Code” principles to manage system configuration in a consistent
manner. You can automate system lifecycle management. You set up your own cloud native
environment and can then use the UIM cloud native toolkit to automate the deployment of UIM
instances. By leveraging the pre-configured Helm charts, you can deploy UIM instances
quickly ensuring your services are up and running in far less time than a traditional
deployment.

UIM cloud native supports the following deployment models:

e On Private Kubernetes Cluster: UIM cloud native is certified for a general deployment of
Kubernetes.

e On Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE): UIM cloud
native is certified to run on Oracle's hosted Kubernetes OKE service.

UIM Cloud Native Architecture

This section describes and illustrates the UIM cloud native architecture and the deployment
environment.

The following diagram illustrates the UIM cloud native architecture.

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 5

Chapter 1

ORACLE
UIM Cloud Native Architecture

Figure 1-1 UIM Cloud Native Architecture

Docker repository

& /\ um) (ulmdb \nslall\

Weblogic domain

&

Deployment Automation

. Kubernetes Cluster

UIM Cloud Native
Toolkit

Nar

um1
ms1

uim1

mespace:
um1

|

1

Weblogic domain

Namespace:

uim2
UIM2 admin

%—» &

uim2
mMs1
UIM1 (PDB)

Authentication

um1
ms2 K8S Secrets e

JFR

Logs
Metrics

coB

The UIM cloud native architecture requires components such as the Kubernetes cluster and
WebLogic Kubernetes Operator, which are under your control to install and configure. A single
WebLogic Operator can manage multiple UIM domains in multiple namespaces. Each domain
is a dynamic cluster with multiple managed servers that is configured for integration with both
optional and required components.

About the WebLogic Domain

The following diagram illustrates the UIM cloud native deployment environment and important
concepts about producing a WebLogic domain that is capable of supporting UIM cloud native.

Figure 1-2 UIM Cloud Native Deployment Environment

. Kubernetes cluster

WLS C]usler

n amaspaca

Weblegic Domain

Introspection

® i
Weblogic Operator 7 1

helm install ! <«

admin server

namespace

| (Domain Contguration) |

0 Config map

: MS1 H 2
: namespace i ¢

In the deployment environment, the Helm chart that is provided with the UIM cloud native
toolkit is deployed into the Kubernetes cluster producing two Kubernetes resources. These
resources are then consumed by the WebLogic Kubernetes Operator (WKO).

About Kubernetes Custom Resource Definitions (CRD) and Domain
Configuration Config Map

The Kubernetes API provides extensions called custom resources. To understand more about
a Custom Resource Definition (CRD) and why it might be used, see the Kubernetes

Cloud Native Deployment Guide
G36724-01
Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 5

ORACLE

Chapter 1
UIM Cloud Native Architecture

CustomResourceDefinition (CRD) documentation at: https://kubernetes.io/docs/tasks/access-
kubernetes-api/custom-resources/custom-resource-definitions/

To configure the operator for your WebLogic domain, you set up and configure your own
domain resource. The domain resource does not replace the traditional configuration of the
WebLogic domains found in the domain configuration files, but instead co-operates with those
files to describe the Kubernetes artifacts of the corresponding domain. Refer to the Oracle
WebLogic Kubernetes Operator User Guide to understand how to use a CRD to describe a
WebLogic domain resource.

While the domain resource describes much of the operational details for a domain such as
domain identification, secrets, pod creation, server instances, startup and shutdown, security,
logging, clusters, admin and managed servers, and JVM options, the details about the more
traditional configuration (deployed applications, JMS Queues, data sources and so on) are
provided in a configuration map and are described using a metadata model specified by the
WebLogic Deploy Tooling (WDT). The UIM cloud native toolkit provides the base configuration
to produce these resources.

About Oracle WebLogic Server Deploy Tooling (WDT)

The WebLogic Server Deploy Tooling (WDT) has the following main purposes:

e It provides a metadata model that describes a WebLogic Server domain configuration.

» It provides scripts that perform domain lifecycle operations, simplifying the definition and
the creation of domains. This capability provides an alternative to programmatic ways of
defining domain configuration such as WebLogic Scripting Tool (WLST) or Java Mbeans
manipulation.

The UIM cloud native toolkit leverages the WDT metadata model only. It does not use the
scripting capabilities directly.

The toolkit provides the WDT metadata for a domain that is capable of supporting UIM. The
toolkit enables you to easily override much of the base configuration through the use of Helm
charts. Additionally, the toolkit framework allows you to add supplementary WDT metadata
fragments to the domain. WDT provides tools that help with this task by inspecting an existing
domain to produce the WDT metadata required for the configuration.

For more details about WDT, see the Oracle WebLogic Server Deploy Tooling documentation
on GitHub at: https://github.com/oracle/weblogic-deploy-tooling

About UIM Configuration and Specification Layers

The UIM configuration defines the deployment footprint, layout, and tuning. Managing this
configuration as a single monolithic unit is not optimal for sustainability or scalability. To
address this, a layered configuration approach is adopted, enabling better modularity,
maintainability, and risk management.

The following layers are defined, which include a set of values that are specific to the function
of that layer:

* Base: This foundational layer is shared across all applications deployed using the common
cloud native toolkit. It includes settings such as the ingress controller, SSL, authentication
mechanisms, storage volumes, garbage collection (GC), log configuration, and so on.

» UIM-Specific: This layer includes parameters that are specific to a UIM instance such as
external authentication providers, custom templates, SAF, JMS queues database identities,
and cluster size.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 5

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://oracle.github.io/weblogic-kubernetes-operator/
https://oracle.github.io/weblogic-kubernetes-operator/
https://github.com/oracle/weblogic-deploy-tooling

ORACLE

Chapter 1
About the Common Cloud Native Toolkit

« Shape: The shape layer defines the hardware resource utilization and the resulting tuning.
Java Heap Size is an example of a configuration value found in the shape specification.

- Database: The database layer includes the parameters that are specific to schema
operations (for example: create, upgrade, delete, purge schema), such as the DB installer
image, table space info, and so on. The UIM instance do not read the parameters from this
layer.

The layers are implemented as specification files written in YAML:
e application-base

e app-uim

e <shape>/uim

+ database

Each UIM deployment requires a project and an instance name:

* Project refers to the Kubernetes namespace where UIM is deployed.

* Instance is a logical identifier used to differentiate multiple UIM deployments within the
same namespace.

You can deploy multiple UIM instances within a single project. However, if you intend to use
UIM services alongside the core UIM instance, Oracle recommends you to maintain a single
UIM instance and add all services within one hamespace. If you need more UIM instances,
deploy them in separate namespaces.

Each of the above configuration layers: base, UIM-specific, database and shape, should be
unique to the project and instance.

About Helm Overrides

The specification files are consumed in a hierarchical fashion. If a value is found in multiple
specification files (layers), the one further up the hierarchy takes precedence. This allows the
application specification to have the final control over its configuration by being able to override
a value that is prescribed in either the shape or base specifications. This allows Oracle to
define sealed, base configuration, while still providing you the control over the values used for
the UIM instance.

Following are the specification files, listed in the order of the highest priority to the lowest:
e app-uim.yaml

e applications-base.yam|

e <shape>/uim.yaml

e <values>.yaml

While the specification for an app-uim points to the specification for the shape to be used
(implying the order here may be out of sequence), the values found in the specification for the
shape are loaded for processing before the values in the specification for the application.

The app-uim specification remains the final authority on any values that are found in multiple
specification files.

About the Common Cloud Native Toolkit

The Common cloud native toolkit is an archive file that includes the default configuration files,
utility scripts, and samples to deploy UIM in a cloud native environment. With UIM cloud native,

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE

Chapter 1
About the Common Cloud Native Toolkit

managing the domain Configuration as Code (CaC) is paramount. UIM cloud native provides
guidance on effective management of this configuration to ensure that instances can be
created in a standardized and repeatable fashion.

Contents of the Common Cloud Native Toolkit

Helm charts for UIM and UIM database installer:
— The Helm chart for UIM is located in SCOMMON_CNTKI/charts/uim-app.

— The Helm chart for the UIM DB Installer is located in $SCOMMON_CNTK/charts/uim-
dbinstaller-app.

Mechanism to extend the domain and WDT samples and scripts for some common use
cases

Utility scripts to help with the lifecycle of WebLogic Kubernetes Operator
Sample scripts to manage pre-requisite secrets. These are not pipeline-friendly.

Scripts to manage the lifecycle of a UIM instance. These are pipeline friendly.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 5

Planning and Validating Your Cloud
Environment

In preparation for Oracle Communications Unified Inventory Management (UIM) cloud native
deployment, you must set up and validate pre-requisite software. This chapter provides
information about planning, setting up, and validating the environment for UIM cloud native
deployment.

See the following topics:

* Required Components for UIM Cloud Native

* Planning Your Cloud Native Environment

* Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

« Validating Your Cloud Environment

If you are already familiar with traditional UIM, for important information on the differences
introduced by UIM cloud native, see "Differences Between UIM Cloud Native and UIM
Traditional Deployments".

Required Components for UIM Cloud Native

In order to run, manage, and monitor the UIM cloud native deployment, the following
components and capabilities are required. These must be configured in the cloud environment:

e Kubernetes Cluster

e Oracle Multitenant Container Database (CDB)
* Container Image Management

e Helm

* Oracle WebLogic Server Kubernetes Operator
* Load Balancer

e Domain Name System (DNS)

e Persistent Volumes

e Authentication

e Secrets Management

e Kubernetes Monitoring Toolchain

e Application Logs and Metrics Toolchain

For details about the required versions of these components, see "UIM Software Compatibility"
in UIM Compatibility Matrix.

In order to utilize the full flexibility, reliability and value of the deployment, the following aspects
must also be set up:

* Continuous Integration (CI) pipelines for custom images and cartridges

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 22

ORACLE Chapter 2
Planning Your Cloud Native Environment

e Continuous Delivery (CD) pipelines for creating, scaling, updating, and deleting instances
of the cloud native deployment

Planning Your Cloud Native Environment

This section provides information about planning and setting up UIM cloud native environment.
As part of preparing your environment for UIM cloud native, you choose, install, and set up
various components and services in ways that are best suited for your cloud native
environment. The following sections provide information about each of those required
components and services, the available options that you can choose from, and the way you
must set them up for your UIM cloud native environment.

For more information on Planning UIM Cloud Native environment, see "Planning UIM
Installation" and "Planning UIM Cloud Native Upgrade"

Setting Up Your Kubernetes Cluster

For UIM cloud native, Kubernetes worker nodes must be capable of running Linux 8.x pods
with software compiled for Intel 64-bit cores. A reliable cluster must have multiple worker
nodes spread over separate physical infrastructure and a very reliable cluster must have
multiple Master nodes spread over separate physical infrastructure.

The following diagram illustrates Kubernetes cluster and the components that it interacts with.

"

s —. Pods &
Z-Load B .anceF"““-\

Containers

/

{

III
[O
Illl-iii
RS |

|
00 (.
[s]u]

Worker nodes docker

Cracle Linux

UIM cloud native requires:

* Kubernetes
To check the version, run the following command:

kubect| version

» Docker (for Linux version 7.x)

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 22

ORACLE

Chapter 2
Planning Your Cloud Native Environment

To check the version, run the following command:

docker version

e Podman (for Linux version 8.x)
To check the version, run the following command:

podman version

* Flannel
To check the version, run the following command on the Master node running the kube-
flannel pod:

docker images | grep flannel
kubect| get pods --all-nanmespaces | grep flannel

Typically, Kubernetes nodes are not used directly to run or monitor Kubernetes workloads. You
must reserve worker node resources for processing Kubernetes workload. However, multiple
users (manual and automated) of the cluster require a point from which to access the cluster
and operate on it. This can be achieved by using kubectl commands (either directly on
command line and shell scripts or through Helm) or Kubernetes APIs. For this purpose, set
aside a separate host or set of hosts. Operational and administrative access to the Kubernetes
cluster can be restricted to these hosts and specific users can be given named accounts on
these hosts to reduce cluster exposure and promote traceability of actions.

Typically, the Continuous Delivery pipeline automation deploys directly on a set of such
operations hosts (as in the case of Jenkins) or leverage runners deployed on such operations
hosts (as in the case of GitLab CI). These hosts must run Linux, with all interactive-use
packages installed to support tools such as Bash, Wget, cURL, Hostname, Sed, AWK, cut, and
grep. An example of this is the Oracle Linux 8.x image on Oracle Cloud Infrastructure.

In addition, you need the appropriate tools to connect to your overall environment, including
the Kubernetes cluster. For instance, for a Container Engine for Kubernetes (OKE) cluster, you
must install and configure the Oracle Cloud Infrastructure Command Line Interface.

Additional integrations may need to include LDAP for users to be able to login to this host,
appropriate NFS mounts for home directories, security lists and firewall configuration for
access to overall environment, and so on.

Synchronizing Time Across Servers

It is important that you synchronize the date and time across all machines that are involved in
testing, including client test drivers and Kubernetes worker nodes. Oracle recommends that
you do this using Network Time Protocol (NTP), rather than manual synchronization, and
strongly recommends it for Production environments. Synchronization is important in inter-
component communications and in capturing accurate run-time statistics.

Provisioning Oracle Multitenant Container Database (CDB)

UIM cloud native architecture is best supported by the multitenant architecture that enables an
Oracle database to function as a multitenant container database (CDB). A container database
is either a Pluggable Database (PDB) or the root container. The root container is a collection of
schemas, schema objects, and non-schema objects to which all PDBs belong. A PDB
container for UIM cloud native contains the UIM schema and RCU schema. Each instance of
UIM has its own PDB. UIM cloud native requires access to PDBs in an Oracle 19¢ Multitenant

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 22

ORACLE

Chapter 2
Planning Your Cloud Native Environment

database. For more information about the benefits of Oracle Multitenant Architecture for
database consolidation, see Oracle Database Concepts for more information.

You can provision a CDB in an on-premise installation by following the instructions in Oracle
Database Installation Guide for Linux for more information. Alternatively, you can set it up as
an Oracle Cloud Infrastructure DB system. For details on the supported versions, see "UIM
Software Compatibility" in UIM Compatibility Matrix. The provisioning process can vary based
on the needs and the setup of your organization.

Provisioning an Empty PDB

To create an empty PDB:

1. Run the following SQL commands using the sys dba account for the CDB:

CREATE PLUGGABLE DATABASE <PDB_NAME> ADM N USER <ADM N_USER> | DENTI FI ED BY
" <ADM N_PASSWORD>" DEFAULT TABLESPACE "<TABLESPACE NAME>" DATAFI LE ' +DATA
SI ZE 5M REUSE
AUTCEXTEND ON,

2. Log into the PDB as the sys dba account for the PDB (defined by the
"_replace_this_text_with_admin_name_" parameter in the above commands) and adjust
the PDB tablespace by running the following command:

@ Note

In the command, replace DATA with the proper name from v$asm_diskgroup.

create tabl espace <TABLESPACE NAME> datafile '+DATA size 1024mreuse autoextend on
next 64m
ALTER PLUGGABLE DATABASE DEFAULT TABLESPACE <TABLESPACE_NAME>;

About Container Image Management

A UIM cloud native deployment generates container images for UIM and UIM database
installer. Additionally, images are downloaded for WebLogic Kubernetes Operator and Nginx
(depending on the choice of Ingress controllers).

Oracle highly recommends that you create a private container repository and ensure that all
nodes have access to that repository. Images are saved in this repository and all nodes would
then have access to the repository. This may require networking changes (such as routes and
proxy) and include authentication for logging in to the repository.

Failing to ensure that all nodes have access to a centralized repository will mean that images
have to be synced to the hosts manually or through custom mechanisms (for example, using
scripts), which are error-prone operations as worker nodes are commissioned,
decommissioned or even rebooted. When an image on a particular worker node is not
available, then the pods using that image are either not scheduled to that node, wasting
resources, or fail on that node. If image names and tags are kept constant (such as
myapp:latest), the pod may pick up a pre-existing image of the same name and tag, leading to
unexpected and hard to debug behaviors.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 22

ORACLE

Chapter 2
Planning Your Cloud Native Environment

Installing Helm

UIM cloud native requires Helm, which delivers reliability, productivity, consistency, and ease of
use.

In a UIM cloud native environment, using Helm enables you to achieve the following:

* You can apply custom domain configuration by using a single and consistent mechanism,
which leads to an increase in productivity. You no longer need to apply configuration
changes through multiple interfaces such as WebLogic Console, WLST, and WebLogic
Server MBeans.

* Changing the UIM domain configuration in the traditional installations is a manual and
multi-step process which may lead to errors. This can be eliminated with Helm because of
the following features:

— Helm Lint allows pre-validation of syntax issues before changes are applied

— Multiple changes can be pushed to the running instance with a single upgrade
command

— Configuration changes may map to updates across multiple Kubernetes resources
(such as domain resources, config maps and so on). With Helm, you merely update
the Helm release and its responsibility to determine which Kubernetes resources are
affected.

* Including configuration in Helm charts allows the content to be managed as code, through
source control, which is a fundamental principle of modern DevOps practices.

In order to co-exist with older Helm versions in production environments, UIM requires Helm
3.3.4 or later saved as helm in PATH.

The following text shows sample commands for installing and validating Helm:

$ cd some-tnp-dir
$ wget https://get.hel msh/hel mv3.12.0-1inux-and64.tar. gz
$ tar -zxvf hel mv3.12.0-1inux-and64.tar. gz

Find the helmbinary in the unpacked directory and nove it to its desired
destination. You need root user.
$ sudo nv |inux-and64/ hel m/usr/local/bin/helm

verify Hel mversion

$ hel mversion

ver si on. Bui | dl nf o{ Versi on: "v3.12. 0",

G tConmit:"472c5736ab01133de504a826bd9eel2che4e7904", GtTreeState: "cl ean”,
GoVersion: "gol. 18. 10"}

For more information on helm version, see "UIM Cloud Native Deployment Software
Compatibility" in UIM Compatibility Matrix.

Helm leverages kubeconfig for users running the hel mcommand to access the Kubernetes
cluster. By default, this is $HOME/.kubelconfig. Helm inherits the permissions set up for this
access into the cluster. You must ensure that if RBAC is configured, then sufficient cluster
permissions are granted to users running Helm.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 22

ORACLE Chapter 2
Planning Your Cloud Native Environment

About Load Balancing and Ingress Controller

Each UIM cloud native instance is a WebLogic cluster running in Kubernetes. To access
application endpoints, you must enable HTTP/S connectivity to the cluster through an
appropriate mechanism. This mechanism must be able to route traffic to the appropriate UIM
cloud native instance in the Kubernetes cluster (as there can be many) and must be able to
distribute traffic to the multiple Managed Server pods within a given instance. Each instance
must be insulated from the traffic of the other instance. Distribution within an instance must
allow for session stickiness so that UIM client Uls bind to a managed server wherever possible
and therefore not require arbitrary re-authentication by the user. In the case of HTTPS, the
load balance mechanism must enable TLS and handle it appropriately.

For UIM cloud native, an ingress controller is required to expose appropriate services from the
UIM cluster and direct traffic appropriately to the cluster members. An external load balancer is
an optional add-on.

The ingress controller monitors the ingress objects created by the UIM cloud native
deployment, and acts on the configuration embedded in these objects to expose UIM HTTP
and HTTPS services to the external network. This is achieved using NodePort services
exposed by the ingress controller.

The ingress controller must support:

e Sticky routing (based on standard session cookie).

* Load balancing across the UIM managed servers (back-end servers).
e SSL termination and injecting headers into incoming traffic.

Examples of such ingress controllers include Nginx, Voyager, and Traefik. The Common cloud
native toolkit provides samples and documentation that use Nginx as the ingress controller.

An external load balancer serves to provide a highly reliable singe-point access into the
services exposed by the Kubernetes cluster. In this case, this would be the NodePort services
exposed by the ingress controller on behalf of the UIM cloud native instance. Using a load
balancer removes the need to expose Kubernetes node IPs to the larger user base, and
insulates the users from changes (in terms of nodes appearing or being decommissioned) to
the Kubernetes cluster. It also serves to enforce access policies. The Common cloud native
toolkit includes samples and documentation that show integration with Oracle Cloud
Infrastructure LBaaS when Oracle OKE is used as the Kubernetes environment.

Using Generic Ingress Controller

UIM cloud native supports annotation-based generic ingress creation. Which means, the use of
the standard Kubernetes Ingress API (in contrast with a proprietary ingress Custom Resource
Definition) that is verified by Kubernetes Conformance tests. The advantage of using a generic
ingress is that it works for any Kubernetes certified ingress controller, provided that the ingress
controller offers annotations (which are usually proprietary to the ingress controller) required for
UIM.

Annotations applied to an ingress resource allow you to use advanced features such as
connection timeout, URL rewrite, retry, additional headers, redirects, sticky cookie services,
and so on and to fine-tune the functionality of that ingress resource. Different ingress
controllers support different annotations. For more information on various ingress controllers,
see Kubernetes documentation at: https://kubernetes.io/docs/concepts/services-networking/
ingress-controllers/. Refer this document to understand the annotations supported for your
ingress controller.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 22

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

ORACLE Chapter 2
Planning Your Cloud Native Environment

The samples are provided that include Ingress Nginx as Generic Ingress controller. If you have
selected any other ingress controller, perform the corresponding steps for that ingress
controller.

To install Nginx ingress controller:

1. Add helm repo as follows:

hel mrepo add ingress-nginx https://kubernetes.github.io/ingress-nginx --
force-update

2. Create namespace for Nginx:
kubect| create namespace ngi nx

3. Configure the SCOMMON_CNTK/samples/charts/nginx/values.yaml file as follows:

a. Enable allowSnippetAnnotations flag to add snippet annotations.
control | er.al |l owSni ppet Annot ations: "true"

b. If you are planning to create ingress | i st ener s for Message Bus, you must enable
ssl passthrough flag while installing Nginx:

control | er. extraArgs. enabl e- ssl - passt hrough: "true"

c. Configure nodeports for Nginx service:

control | er.service.nodePorts. http: 30505
control | er.service.nodePorts. https: 30543

d. In case of multiple Nginx controllers, configure the className for Nginx:

control | er.ingressd assResource. name: "ngi nx"
control | er.ingressd ass. nane: "nginx

4. Install Nginx:

hel minstall nginx-operator ingress-nginx/ingress-nginx --namespace ngi nx
--val ues $COMMON_CNTK/ sanpl es/ chart s/ ngi nx/ val ues. yani

Any ingress controller that conforms to the standard Kubernetes ingress APl and supports
annotations needed by UIM should work. However, Oracle does not certify individual ingress
controllers to confirm the generic compatibility.

For more information about ingress Nginx controller, see https://github.com/kubernetes/
ingress-nginx/blob/main/README.md#readme

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 22

https://github.com/kubernetes/ingress-nginx/blob/main/README.md#readme
https://github.com/kubernetes/ingress-nginx/blob/main/README.md#readme

ORACLE

Chapter 2
Planning Your Cloud Native Environment

@® Note

* By default, Ingress Nginx opens “30505” and “30543" ports on all nodes of cluster.
Make sure these ports are not used by any other processes.

* IngressClassName used while installing ingress controller has to be used while
creating ingress of UIM. By default, className value is nginx. If you have
changed, it ensure that you provide the same value in applications-base.yaml
while creating ingress for UIM.

Using Domain Name System (DNS)

A Kubernetes cluster can have many routable entrypoints. Common choices are:

e External load balancer (IP and port)
e Ingress controller service (Master node IPs and ingress port)
e Ingress controller service (worker node IPs and ingress port)

You must identify the proper entrypoint for your Kubernetes cluster.

UIM cloud native requires hostnames to be mapped to routable entrypoints into the Kubernetes
cluster. Regardless of the actual entrypoints (external load balancer, Kubernetes Master node,

or worker nodes), users who need to communicate with the UIM cloud native instances require
name resolution.

The access hostnames take the prefix.domain form. prefix and domain are determined by the
specifications of the UIM cloud native configuration for a given deployment. prefix is unique to
the deployment, while domain is common for multiple deployments.

The default domain in UIM cloud native toolkit is ui m or g.

For a particular deployment, as an example, this results in the following addresses:
e devl.wrel ess. ui morg (for HTTP access)

e« admin.devl. wirel ess. ui morg (for WebLogic Console access)

e t3.devl.wirel ess. ui morg (for T3 IMS/SAF access)

These "hostnames" must be routable to the entry point of your Ingress Controller or Load
Balancer. For a basic validation, on the systems that access the deployment, edit the local
hosts file to add the following entry:

@® Note

The hosts file is located in /etc/hosts on Linux and MacOS machines and in
C:\Windows\System32\drivers\etc\hosts on Windows machines.

i p_address devl.wireless.uimorg adnin.devl.wireless.uimorg
t3.devl.wireless.uimorg

However, the solution of editing the hosts file is not easy to scale and co-ordinate across
multiple users and multiple access environments. A better solution is to leverage DNS services
at the enterprise level.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 22

ORACLE

Chapter 2
Planning Your Cloud Native Environment

With DNS servers, a more efficient mechanism can be adopted. The mechanism is the creation
of a domain level A-record:

A-Record: *.uimorg |P_address

If the target is not a load balancer, but the Kubernetes cluster nodes themselves, a DNS
service can also insulate the user from relying on any single node IP. The DNS entry can be
configured to map *.uim.org to all the current Kubernetes cluster node IP addresses. You must
update this mapping as the Kubernetes cluster changes with adding a new node, removing an
old node, reassigning the IP address of a node, and so on.

With these two approaches, you can set up an enterprise DNS once and modify it only
infrequently.

Configuring Kubernetes Persistent Volumes

Typically, runtime artifacts in UIM cloud native are created within the respective pod
filesystems. As a result, they are lost when the pod is deleted. These artifacts include
application logs, Fusion MiddleWare logs, and JVM Java Flight Recorder data.

While this impermanence may be acceptable for highly transient environments, it is typically
desirable to have access to these artifacts outside of the lifecycle of the UIM could native
instance. It is also highly recommended to deploy a toolchain for logs to provide a centralized
view with a dashboard. To allow for artifacts to be independent of the pod, UIM cloud native
allows for them to be maintained on Kubernetes Persistent Volumes.

UIM cloud native does not dictate the technology that supports Persistent Volumes, but
provides samples for NFS-based persistence and BV-based persistence. Additionally, for UIM
cloud native on an Oracle OKE cloud, you can use persistence based on File Storage Service
(FSS) or Block Volume (BV).

Regardless of the persistence provider chosen, persistent volumes for UIM cloud native use
must be configured:

* With accessMode ReadWriteMany for NFS-based Persistence
* With accessMode ReadWriteOnce for BV-based Persistence

* With capacity to support intended workload

Log size and retention policies can be configured as part of the shape specification.

About NFS-based Persistence

For use with UIM cloud native, one or more NFS servers must be designated.
It is highly recommended to split the servers as follows:

« At least one for the development instances and the non-sensitive test instances (for
example, for Integration testing)

« At least one for the sensitive test instances (for example, for Performance testing, Stress
testing, and production staging)

e One for the production instance

In general, ensure that the sensitive instances have dedicated NFS support, so that they do
not compete for disk space or network IOPS with others.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 22

ORACLE Chapter 2
Planning Your Cloud Native Environment

The exported filesystems must have enough capacity to support the intended workload. Given
the dynamic nature of the UIM cloud native instances it is prudent to put in place a set of
operational mechanisms to:

e Monitor disk usage and warn when the usage crosses a threshold

e Clean out the artifacts that are no longer needed

If a toolchain such as ELK Stack picks up this data, then the cleanup task can be built into this
process itself. As artifacts are successfully populated into the toolchain, they can be deleted
from the filesystem. You must take care to only delete log files that have rolled over.

About BV-based Persistence

In case of using Block Volumes with UIM cloud native, perform the following to create PV-PVC
pairs for each block volume:

1. Create a Persistent Volume (PV) for each block volume. The PV should specify the storage
capacity, access mode, and the path to the block volume on the host node.

2. Create a Persistent Volume Claim (PVC) for each server that requires access to the block
volume. The PVC should specify the storage class, access mode, and the storage capacity
required.

3. Bind each PVC to a PV.

4. Repeat the steps from 1 to 3 for every server that requires access to the block volume,
including the db-installer, introspector, admin, and for each managed server.

® Note

Creating separate PVs and PVCs for each server enables each server to have its
own dedicated storage space.

About Authentication

UIM cloud native requires external LDAP to be configured for human users to access UIM
application. For fixed users, either embedded LDAP or external LDAP can be used. It is
recommended to use embedded LDAP for fixed users during instance creation. These fixed
users can perform cartridge deployment and application administrative tasks.

When UIM cloud instances use external authentication, ensure that you create separate users
and groups for each environment (or class of environments) in the external LDAP service. The
specifications of this depend on the LDAP service provider.

UIM cloud native toolkit provides a sample configuration that uses OpenLDAP to demonstrate
how to integrate with external LDAP server for human users. For details on setting up the
OpenLDAP server and the layout of the data within it, see "Setting Up Authentication" for more
information.

Management of Secrets

UIM cloud native leverages Kubernetes Secrets to store sensitive information securely. This
sensitive information is, at a minimum, the database credentials and the WebLogic
administrator credentials. Additional credentials may be stored to authenticate with the external
LDAP system. Your custom cartridges may need to communicate with other systems, such as

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 22

ORACLE

Chapter 2
Planning Your Cloud Native Environment

Order and Service Management (OSM). The credentials for such systems too are managed as
Kubernetes Secrets.

These secrets need to be secured over their lifecycle by the Kubernetes cluster administration.
RBAC should be used to restrict the entities that can describe, view, or mount these
credentials.

UIM cloud native scripts assume that a set of pre-requisite secrets exist when they are
invoked. As such, creation of the secrets is a pre-requisite step in the pipeline. UIM cloud
native toolkit provides a sample script to create some of the common secrets it needs, but this
script is interactive and therefore not suitable for Continuous Delivery (CD) automation
pipelines. The sample script serves to provide a basic mechanism to add secrets and
illustrates the names and structure of the secrets that UIM cloud native requires.

You can create the secrets manually by using the sample script for each instance. The sample
can be augmented to include additional custom secrets. This method requires exposing RBAC
for creating secrets for a larger group of users, which might not be desirable. It can also result
in human errors, such as mistyping a password, which will only be detected during the runtime
of the UIM instance.

A more sustainable and scalable option is using a secrets management system. There are
several secrets management systems available for use with Kubernetes. Choose a system that
offers a secure API (to be called from the CD pipeline) and populates the sensitive information
as secrets into Kubernetes, as opposed to populating into pods through environment variables.
The installation, configuration, and validation of such a secrets management system is a pre-
requisite to uptake UIM cloud native. For details on setting up the secrets management
system, see the documentation of the system that you adopt.

Using Kubernetes Monitoring Toolchain

A multi-node Kubernetes cluster with multiple users and an ever-changing workload requires a
capable set of tools to monitor and manage the cluster. There are tools that provide data, rich
visualizations and other capabilities such as alerts. UIM cloud native does not require any
particular system to be used, but recommends using such a monitoring, visualization and
alerting capability.

For UIM cloud native, the key aspects of monitoring are:

* Worker capacity in CPU and memory. The pods take up non-trivial amount of worker
resources. For example, pods configured for production performance use 32 GB of
memory. Monitoring the free capacity leads to predictable UIM instance creation and scale-

up.
e Worker node disk pressure

* Worker node network pressure

* Health of the core Kubernetes services

* Health of WebLogic Kubernetes Operator

* Health of Nginx (or other load balancer in the cluster)

The namespaces and pods that UIM cloud native uses provide a cross instance view of UIM
cloud native.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 22

ORACLE Chapter 2
Planning Your Cloud Native Environment

About Application Logs and Metrics Toolchain

UIM cloud native generates all logs that traditional UIM and WebLogic Server typically
generate. The logs can be sent to a shared filesystem for retention and for retrieval by a
toolchain such as Elastic Stack.

In addition, UIM cloud native generates metrics and JVM Java Flight Recorder (JFR) data. UIM
cloud native exposes metrics for scraping by Prometheus. These can then be processed by a
metrics toolchain, with visualizations like Grafana dashboards. Dashboards and alerts can be
configured to enable sustainable monitoring of multiple UIM cloud native instances throughout
their lifecycles. The UIM JFR data can be retrieved by Java Mission Control or such similar
tools to analyze the performance of UIM at the JVM level. Performance metrics include heap
utilization, threads stuck, garbage collection, and so on.

Oracle highly recommends using a toolchain to effectively monitor UIM cloud native instances.
The dynamic lifecycle in UIM cloud native, in terms of deploying, scaling and updating an
instance, requires proper monitoring and management of the database resources as well. For
non-sensitive environments such as development instances and some test instances, this
largely implies monitoring the tablespace usage and the disk usage, and adding disk space as
needed.

Another important facet is to track PDB usage to ensure PDBs that are no longer required are
deleted so that the resources are freed up. Sensitive environments such as production and
stress test instances require close monitoring of the database resources such as CPU, SGA/
PGA, top-runner SQLs, and IOPS.

A key implication of the dynamic behavior of UIM cloud native on the database is when the
instances are dehydrated. Very often, there is a requirement to have a UIM instance kept
around even when it is not being actively used. Such an environment lies idle until it is needed
again. With UIM cloud native, there is no retained state within the run-time instance. The
information on creating the instance is in the CD artifacts (the various specification files), and
all the UIM application information is in the PDB. As a result, when the instance is not actively
needed, all Kubernetes resources for it can be freed up by deleting the instance. This does not
delete the PDB. The CD artifacts and the PDB can be used to rehydrate the instance when
required. In the meantime, if the instance is not required for a while (or if there is database
capacity pressure), the PDB can be unplugged to no longer consume any run-time resources.
An unplugged PDB can even be transferred to another CDB and plugged in there.

Role of Continuous Integration (CI) Pipelines

The roles of CI pipelines in a UIM cloud native environment are as follows:

* To generate standard UIM cartridge JAR files and store them in a central location with
appropriate path and naming convention for deployment. Developers run this automation
as they modify cartridges for testing. Standalone mechanisms that generate "official”
cartridge builds for testing and production use also run automation.

* To generate custom UIM cloud native images. The UIM cloud native images contain all the
components needed to run UIM cloud native. However, you may require some
customizations to be addressed in the image such as, additional applications to be co-
hosted by the UIM WebLogic cluster, Ul-Customization, Localization. Few of these
customizations are layered on top of the UIM cloud native image to generate a custom
image. Automation can accomplish this by running customization scripts that are provided
in the image builder toolkit. The generated images must be uploaded to the internal
container repository for use by deployment. The path and naming convention must be

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 22

ORACLE

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

followed to designate images that are in development versus images that are ready for
testing; and to version the images themselves.

UIM cloud native does not mandate the use of a specific set of tools for Cl automation.
Common choices are GitLab Cl and Jenkins. As part of preparing for UIM cloud native, you
must evaluate Cl automation tools and choose one that fits your business needs and the
desired source control mechanisms.

Role of Continuous Delivery (CD) Pipelines

The role of CD pipelines in a UIM cloud native environment is to perform operations on the
target Kubernetes cluster to automate the full lifecycle of a UIM cloud native instance.

The following are the main operations you must implement:

* Create instance: This must drive off the source-controlled UIM cloud native specification
files and run through the various stages (secrets creation, PDB creation, UIM database
installation, UIM instance creation, load balancer creation) to create a new UIM cloud
native instance. Variability should be built in for some key phases as secrets may already
exist and may need to be updated, or PDB may already exist with or without UIM schema,
and so on. As a result, this automation is written to a "create-or-update" pattern.

e Update instance: This must be a variant of the instance creation automation, skipping the
PDB creation and perhaps the load balancer (Ingress) creation. The automation takes the
source-controlled UIM cloud native specification files, which have presumably been
modified in some way since the instance was created, and runs through the steps to make
those changes appear in the provisioned UIM instance. The specification changes could
be as simple as a change in the number of desired Managed Servers, or could be as
complex as introducing a new UIM container image.

* Delete instance: This must clean up the Kubernetes resources used by the instance.
Typically, the PDB is left alone to be handled separately, but it is possible to chain its
deletion to the clean up operation as well.

UIM cloud native does not mandate the use of a particular set of tools for CD automation.
Common choices are GitLab CD and Jenkins. As part of preparing for UIM cloud native, you
must evaluate CD automation tools and choose one that fits your business needs and the
target Kubernetes environment.

Planning Your Container Engine for Kubernetes (OKE) Cloud
Environment

This section provides information about planning your cloud environment if you want to use
Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE) for UIM cloud native.
Some of the components, services, and capabilities that are required and recommended for a
cloud native environment are applicable to the Oracle OKE cloud environment as well.

« Kubernetes and Container Images: You can choose from the version options available in
OKE as long as the selected version conforms to the range described in the section about
planning cloud native environment.

e Container Image Management: UIM cloud native recommends using Oracle Cloud
Infrastructure Registry with OKE. Any other repository that you use must be able to serve
images to the OKE environment in a quick and reliable manner. The UIM cloud native
images are of the order of 3 GB each.

e Oracle Multitenant Database: It is strongly recommended to run Oracle DB outside of
OKE, but within the same Oracle Cloud Infrastructure tenancy and the region as an Oracle

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 22

ORACLE

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

DB service (BareMetal, VM, or ExaData). The database version should be 19c¢. You can
choose between a standalone DB or a multi-node RAC.

* Helm and Oracle WebLogic Kubernetes Operator: Install Helm and Oracle WebLogic
Kubernetes Operator as described for the cloud native environment into the OKE cluster.

« Persistent Volumes: Use NFS-based persistence. UIM cloud native recommends the use
of Oracle Cloud Infrastructure File Storage service in the OKE context.

* Authentication and Secrets Management: These aspects are common with the cloud
native environment. Choose your mechanisms to deliver these capabilities and implement
them in your OKE instance.

* Monitoring Toolchains: While the Oracle Cloud Infrastructure Console provides a view of
the resources in the OKE cluster, it also enables you to use the Kubernetes Dashboard.
Any additional monitoring capability must be built up.

* Cl and CD Pipelines: The considerations and actions described for Cl and CD pipelines in
the cloud native environment apply to the OKE environment as well.

Compute Disk Space Requirements

Given the size of the UIM cloud native container images (approximately 3 GB), the size of the
UIM cloud native containers, and the volume of the UIM logs generated, it is recommended
that the OKE worker nodes have at least 40 GB of free space that the /var/lib filesystem can
use. Add disk space if the worker nodes do not have the recommended free space in the /
varllib filesystem.

Work with your Oracle Cloud Infrastructure OKE administrator to ensure worker nodes have
enough disk space. Common options are to use Compute shapes with larger boot volumes or
to mount an Oracle Cloud Infrastructure Block Volume to Ivar/lib/docker.

@® Note

The reference to logs in this section applies to the container logs and other
infrastructure logs. The space considerations still apply even if the UIM cloud native
logs are being sent to an NFS Persistent Volume.

Connectivity Requirements

UIM cloud native assumes the connectivity between the OKE cluster and the Oracle CDBs is a
LAN-equivalent in reliability, performance and throughput. This can be achieved by creating the

Oracle CDBs within the same tenancy as the OKE cluster, and in the same Oracle Cloud
Infrastructure region.

UIM cloud native allows for the full range of Oracle Cloud Infrastructure "cloud-to-ground"

connectivity options for integrating the OKE cluster with on-premise applications and users.
Selecting, provisioning, and testing such connectivity is a critical part of adopting Oracle Cloud
Infrastructure OKE.

Using Load Balancer as a Service (LBaaS)

For load balancing, you have the option of using the services available in OKE. The
infrastructure for OKE is provided by Oracle's laaS offering, Oracle Cloud Infrastructure. In
OKE, the Master node IP address is not exposed to the tenants. The IP addresses of the
worker nodes are also not guaranteed to be static. This makes DNS mapping difficult to

Cloud Native Deployment Guide

G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 22

ORACLE

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

achieve. Additionally, it is also required to balance the load between the worker nodes. In order
to fulfill these requirements, you can use Load Balancer as a Service (LBaaS) of Oracle Cloud
Infrastructure.

The load balancer can be created using the service descriptor in SCOMMON_CNTK/samples/
charts/nginx/oci-Ib-nginx.yaml. The subnet ID referenced in this file must be filled in from
your Oracle Cloud Infrastructure environment (using the subnet configured for your LBaaS).
The port values assume you have installed Nginx using the unchanged sample values.

The configuration can be applied using the following command (or for traceability, by wrapping
it into a Helm chart):

$ kubect! apply -f oci-Ib-nginx.yan
service/ oci -1 b-servi ce-ngi nxconfi gured

The Load Balancer service is created for Nginx pods in the nginx namespace. Once the Load
Balancer service is created successfully, an external IP address is allocated. This IP address
must be used for DNS mapping.

kubect| get svc -n nginx oci-|b-service-nginx

NAMVE TYPE CLUSTER-I P EXTERNAL- | P
PORT(S)
oci -1 b-servi ce- ngi nx LoadBal ancer 10.96.103. 118 100.77.24.178

80: 32006/ TCP, 443: 32307/ TCP

For additional details, see the following:

e "Creating Load Balancers to Distribute Traffic Between Cluster Nodes" in Oracle Cloud
Infrastructure documentation.

¢ "Load Balancer Annotations" in Oracle GitHub documentation.

About Using Oracle Cloud Infrastructure Domain Name System (DNS)

Zones

While a custom DNS service can provide the addressing needs of UIM cloud native even when
UIM is running in OKE, you can evaluate the option of Oracle Cloud Infrastructure Domain
Name System (DNS) zones capability. Configuration of DNS zones (and integration with on-
premise DNS systems) is not within the scope of UIM cloud native.

Using Persistent Volumes and File Storage Service (FSS)

In the OKE cluster, UIM cloud native can leverage the high performance, high capacity, high
reliability File Storage Service (FSS) as the backing for the persistent volumes of UIM cloud
native. There are two flavors of FSS usage in this context:

e Allocating FSS by setting up NFS mount target
* Native FSS

To use FSS through an NFS mount target, see instructions for allocating FSS and setting up a
Mount Target in "Creating File Systems" in the Oracle Cloud Infrastructure documentation.
Note down the Mount Target IP address and the storage path and use these in the UIM cloud
native instance specification as the NFS host and path. This approach is simple to set up and
leverages the NFS storage provisioner that is typically available in all Kubernetes installations.
However, the data flows through the mount target, which models an NFS server.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 22

https://docs.cloud.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancer.htm
https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-annotations.md
https://docs.cloud.oracle.com/en-us/iaas/Content/File/Tasks/creatingfilesystems.htm

ORACLE’

Chapter 2
Validating Your Cloud Environment

FSS can also be used natively, without requiring the NFS protocol. This can be achieved by
leveraging the FSS storage provisioner supplied by OKE. The broad outline of how to do this is
available in the blog post "Using File Storage Service with Container Engine for Kubernetes"
on the Oracle Cloud Infrastructure blog.

Leveraging Oracle Cloud Infrastructure Services

For your OKE environment, you can leverage existing services and capabilities that are
available with Oracle Cloud Infrastructure. The following table lists the Oracle Cloud
Infrastructure services that you can leverage for your OKE cloud environment.

Table 2-1 Oracle Cloud Infrastructure Services for OKE Cloud Environment

Type of Service Service Indicates Mandatory /
Recommended / Optional

Developer Service Container Clusters Mandatory

Developer Service Registry Recommended

Core Infrastructure Compute Instances Mandatory

Core Infrastructure File Storage Recommended

Core Infrastructure Block Volumes Optional

Core Infrastructure Networking Mandatory

Core Infrastructure Load Balancers Recommended

Core Infrastructure DNS Zones Optional

Database BareMetal, VM, and ExaData Recommended

Validating Your Cloud Environment

Before you start using your cloud environment for deploying UIM cloud native instances, you
must validate the environment to ensure that it is set up properly and that any prevailing issues
are identified and resolved. This section describes the tasks that you should perform to
validate your cloud environment.

You can validate your cloud environment by:

» Performing a smoke test of the Kubernetes cluster
e Validating the common building blocks in the Kubernetes cluster

* Running tasks and procedures in Oracle WebLogic Kubernetes Operator Quickstart

Performing a Smoke Test

You can perform a smoke test of your Kubernetes cloud environment by running nginx. This
procedure validates basic routing within the Kubernetes cluster and access from outside the
environment. It also allows for initial RBAC examination as you need to have permissions to
perform the smoke test. For the smoke test, you need nginx 1.14.2 container image.

Cloud Native Deployment Guide

G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 22

https://blogs.oracle.com/cloud-infrastructure/using-file-storage-service-with-container-engine-for-kubernetes

ORACLE

Chapter 2
Validating Your Cloud Environment

@® Note

The requirement of the nginx container image for the smoke test can change over
time. See the content of the deployment.yaml file in step 3 of the following procedure
to determine which image is required. Alternatively, ensure that you have logged in to
Docker Hub so that the system can download the required image automatically.

To perform a smoke test:

1.

Download the nginx container image from Docker Hub.

For details on managing container images, see "About Container Image Management".

After obtaining the image from Docker Hub, upload it into your private container repository
and ensure that the Kubernetes worker nodes can access the image in the repository.

Oracle recommends that you download and save the container image to the private
Docker repository even if the worker nodes can access Docker Hub directly. The images in
the UIM cloud native toolkit are available only through your private Docker repository.

Run the following commands:

kubect| apply -f https://k8s.iol exanpl es/ application/depl oynment.yam # the
depl oyment specifies two replicas

kubect| get pods # Must return two pods in the Running state
kubect| expose depl oynent ngi nx-depl oynent --type=NodePort --name=external -
ngi nx

kubect| get service external-nginx # Make a note of the external port
for nginx

These commands must run successfully and return information about the pods and the
port for nginx.

Open the following URL in a browser:

http:// master_|P:port/

where:

 master_IP is the IP address of the Master node of the Kubernetes cluster or the
external IP address for which routing has been set up

e portis the external port for the external-nginx service

To track which pod is responding, on each pod, modify the text message in the web page
served by nginx. In the following example, this is done for a deployment of two pods:

$ kubect! get pods -o wide | grep nginx

ngi nx- depl oynent - 5¢689d88bb- g7zvh 1/1 Running O 1d
10.244.0.149 workerl <none>

ngi nx- depl oynent - 5c689d88hbb-r68g4 1/1 Running O 1d
10.244.0.148 worker2 <none>

$cd/tmp

$ echo "This is pod A - nginx-depl oynment - 5c689d88bb- g7zvh - worker1" >

i ndex. ht m

$ kubect! cp index.html nginx-depl oynment-5c689d88bb-g7zvh:/usr/share/ ngi nx/
htm /i ndex. ht m

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 17 of 22

ORACLE

Chapter 2
Validating Your Cloud Environment

$ echo "This is pod B - nginx-depl oynent - 5c689d88bb-r68g4 - worker2" >

i ndex. ht m

$ kubect! cp index.htnml nginx-depl oyment-5c689d88bb-r68g4:/ usr/ share/ ngi nx/
htm /i ndex. ht m

$ rmindex. htni

6. Check the index.html web page to identify which pod is serving the page.

7. Check if you can reach all the pods by running refresh (Ctrl+R) and hard refresh
(Ctrl+Shift+R) on the index.html Web page.

8. If you see the default nginx page, instead of the page with your custom message, it
indicates that the pod has restarted. If a pod restarts, the custom message in the page
gets deleted.

Identify the pod that restarted and apply the custom message for that pod.
9. Increase the pod count by patching the deployment.

For instance, if you have three worker nodes, run the following command:

@® Note

Adjust the number as per your cluster. You may find you have to increase the pod
count to more than your worker node count until you see at least one pod on each
worker node. If this is not observed in your environment even with higher pod
counts, consult your Kubernetes administrator. Meanwhile, try to get as much
worker node coverage as reasonably possible.

kubect| patch depl oyment ngi nx-depl oyment -p '{"spec":{"replicas":3}}'
type nerge

10. For each pod that you add, repeat step 5 to step 8.

Ensuring that all the worker nodes have at least one nginx pod in the Running state ensures
that all worker nodes have access to Docker Hub or to your private Docker repository.

Validating Common Building Blocks in the Kubernetes Cluster

To approach UIM cloud native in a sustainable manner, you must validate the common building
blocks that are on top of the basic Kubernetes infrastructure individually. The following sections
describe how you can validate the building blocks.

Network File System (NFS)

UIM cloud native uses Kubernetes Persistent Volumes (PV) and Persistent Volume Claims
(PVC) to use a pod-remote destination filesystem for UIM logs and performance data. By
default, these artifacts are stored within a pod in Kubernetes and are not easily available for
integration into a toolchain. For these to be available externally, the Kubernetes environment
must implement a mechanism for fulfilling PV and PVC. The Network File System (NFS) is a
common PV mechanism.

For the Kubernetes environment, identify an NFS server and create or export an NFS
filesystem from it.

Ensure that this filesystem:

* Has enough space for the UIM logs and performance data.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 18 of 22

ORACLE

Chapter 2
Validating Your Cloud Environment

* Is mountable on all the Kubernetes worker nodes

Create an nginx pod that mounts an NFS PV from the identified server. For details, see the
documentation about "Kubernetes Persistent Volumes" on the Kubernetes website. This
activity verifies the integration of NFS, PV/PVC and the Kubernetes cluster. To clean up the
environment, delete the nginx pod, the PVC, and the PV.

Ideally, data such as logs and JFR data is stored in the PV only until it can be retrieved into a
monitoring toolchain such as Elastic Stack. The toolchain must delete the rolled over log files
after processing them. This helps you to predict the size of the filesystem. You must also
consider the factors such as the number of UIM cloud native instances that will use this space,
the size of those instances, the volume of orders they will process, and the volume of logs that
your cartridges generate.

Validating the Load Balancer

For a development-grade environment, you can use an in-cluster software load balancer.
Common cloud native toolkit provides documentation and samples that show you how to use
Nginx to perform load balancing activities for your Kubernetes cluster.

It is not necessary to run through Kubernetes Ingress as part of validating the environment.
However, if the UIM cloud native instances have connectivity issues with HTTP/HTTPS traffic,
and the UIM logs do not show any failures, it might be worthwhile to take a step back and
validate using Kubernetes documentation about Ingress and Ingress Controller.

A more intensive environment, such as a test, a production, a pre-production, or performance
environments can additionally require a more robust load balancing service to handle the
HTTP/HTTPS traffic. For such environments, Oracle recommends using a load balancing
hardware that is set up outside the Kubernetes cluster. A few examples of external load
balancers are Oracle Cloud Infrastructure LBaaS for OKE, Google's Network LB Service in
GKE, and F5's Big-IP for private cloud. The actual selection and configuration of an external
load balancer is outside the scope of UIM cloud native itself, but is an important component to
sort out in the implementation of UIM cloud native. For more details on the requirements and

options, see "Integrating UIM".

To validate the ingress controller of your choice, you can use the same nginx deployment used
in the smoke test described earlier. This is valid only when run in a Kubernetes cluster where
multiple worker nodes are available to take the workload.

To perform a smoke test of your ingress setup:

1. Run the following commands:

kubect!| apply -f https://k8s.iofl exanpl es/ application/depl oynent.yan
kubect| get pods -0 wide # two nginx pods in Running state; ensure
these are on different worker nodes
cat > snoke-internal -nginx-svc. yam <<ECF
api Version: vl
ki nd: Service
met adat a
name: snoke-internal - ngi nx
nanespace: default
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
sel ector:
app: nginx

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 19 of 22

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

ORACLE Chapter 2
Validating Your Cloud Environment

sessi onAffinity: None

type: CusterlP
EOF
kubect!| apply -f ./smoke-internal-nginx-svc. yan
kubect| get svc smoke-internal - ngi nx

2. Create your ingress targeting the internal-nginx service. The following text shows a
sample ingress annotated to work with the Nginx ingress controller:

api Version: extensions/vlbetal

kind: |ngress

met adat a

annot ati ons

ngi nx. i ngress. kubernetes.io/affinity: cookie
ngi nx. i ngress. kubernetes.io/affinity-mde: persistent
ngi nx. i ngress. kuber net es. i o/ proxy- body-si ze: 50m
ngi nx. i ngress. kuber net es. i o/ proxy-buffer-size: 64k
ngi nx. i ngress. kuber net es. i o/ sessi on- cooki e- nane: ngi nxi ngresscooki e

spec:
i ngressC assNane: ngi nx
rul es:
- host: instance.project.uimorg
http:
pat hs:
- backend:
servi ce:
nane: project-instance-cluster-uintluster
port:
nunber: 8502

pat hType: |npl ementati onSpecific
- host: t3.instance.project.uimorg
http:
pat hs:
- backend:
servi ce:
nane: project-instance-cluster-uintluster
port:
nunber: 30303
pat hType: |npl ementati onSpecific
- host: adm n.instance.project.uimorg

http:
pat hs:
- backend:
servi ce:
nane: project-instance-admn
port:
nunber: 8501

pat hType: |npl ementati onSpecific

If Ingress Obiject is created and points to Ingress-Nginx Controller through
ingressClassName property, the Ingress-Nginx Controller creates a reverse proxy and a
load balancer for the Nginx deployment. For more details, see Ingress Nginx Controller
documentation.

If you plan to use other ingress controllers, refer to the documentation about the
corresponding controllers for information on creating the appropriate ingress and make it

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 20 of 22

ORACLE

Chapter 2
Validating Your Cloud Environment

known to the controller. The ingress definition should be largely reusable, with ingress
controller vendors describing their own annotations that should be specified, instead of the
Nginx annotation used in the example.

3. Create alocal DNS/hosts entry in your client system mapping smoke.nginx.uimtest.org
to the IP address of the cluster, which is typically the IP address of the Kubernetes Master
node, but could be configured differently.

4. Open the following URL in a browser:

http://smoke. ngi nx. ui nt est. org: Ngi nx_Port/

where Nginx_Port is the external port that Ingress Nginx has been configured to expose.
5. Verify that the web address opens and displays the nginx default page.

Your ingress controller must support session stickiness for UIM cloud native. To learn how
stickiness should be configured, refer to the documentation about the ingress controller you
choose. For Nginx, stickiness must be set up by providing annotations. For testing purposes,
you can modify the internal-nginx service to enable stickiness by running the following
commands:

kubect| del ete ingress smoke-ngi nx-ingress

vi snmoke-internal - ngi nx-svc. yan

Add an annotation section under the netadata section

annotation

ngi nx. i ngress. kubernetes.io/affinity: "cookie"

ngi nx. i ngress. kubernetes.io/affinity-nmde: "persistent”

kubect!| apply -f ./smoke-internal-nginx-svc.yan

now apply back the ingress snoke-ngi nx-ingress using the above yan
definition

Other ingress controllers may have different configuration requirements for session stickiness.
Once you have configured your ingress controller, and the smoke- ngi nx-i ngress and
snoke- i nt er nal - ngi nx services as required, repeat the browser-based procedure to verify
and confirm if nginx is still reachable. As you refresh (Ctrl+R) the browser, you should see the
page getting served by one of the pods. Repeatedly refreshing the web page should show the
same pod servicing the access request.

To further test session stickiness, you can either do a hard refresh (Ctrl+Shift+R) or restart your
browser (you may have to use the browser in Incognito or Private mode), or clear your browser
cache for the access hostname for your Kubernetes cluster. You may observe that the same
nginx pod or a different pod is servicing the request. Refreshing the page repeatedly should
stick with the same pod while hard refreshes should switch to the other pod occasionally. As
the deployment has two pods, chances of a switch with a hard refresh are 50%. You can
modify the deployment to increase the number of replica nginx pods (controlled by the

repli cas parameter under spec) to increase the odds of a switch. For example, with four
nginx pods in the deployment, the odds of a switch with hard refresh rise to 75%. Before
testing with the new pods, run the commands for identifying the pods to add unique
identification to the new pods. See the procedure in "Performing a Smoke Test" for the
commands.

To clean up the environment after the test, delete the following services and the deployment:
e snoke-ngi nx-i ngress
* snoke-internal - ngi nx

* ngi nx-depl oynent

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 21 of 22

ORACLE

Chapter 2
Validating Your Cloud Environment

Running Oracle WebLogic Kubernetes Operator Quickstart

Oracle recommends that you validate your new Kubernetes environment for UIM cloud native
by performing the procedures described in Oracle WebLogic Kubernetes Operator Quickstart
available at: https://oracle.qgithub.io/weblogic-kubernetes-operator/quickstart/

The quickstart guide provides instructions for creating a WebLogic deployment in a Kubernetes
cluster with the Oracle WebLogic Kubernetes Operator. The guide also provides instructions
for downloading and installing a load balancer, and a domain. Follow the instructions provided
above for Helm 3.x.

When you run and complete the tasks in the quickstart successfully, the following aspects of
the cloud environment are tested and verified:

* Private Docker repository (or procedures to sync per-node Docker cache on a multi-node
Kubernetes cluster)

e Initial view of the chosen in-cluster load balancers

* RBAC for WebLogic Kubernetes Operator

* Procedure to introduce secrets into the cloud environment

* Basic compatibility of the cloud environment with WebLogic Kubernetes Operator

The quickstart also contains instructions for cleaning up the environment after you finish the
validation and testing. Perform these clean-up procedures to return the environment to the
original state for UIM cloud native.

After completing the clean-up procedures, ensure that the WebLogic Kubernetes Operator
CustomResourceDefinition (CRD) is removed from your cluster by running the following
commands:

$ kubect| get crd donmins. webl ogic. oracle
if this returns an existing CRD even after WKO quickstart cleanup, then run:
$ kubect| delete crd domains.webl ogic.oracl e

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 22 of 22

https://oracle.github.io/weblogic-kubernetes-operator/quickstart/

Creating the UIM Cloud Native Images

UIM cloud native requires container images be made available to create and manage UIM
cloud native instances. This chapter describes how to create those UIM cloud native images.

UIM cloud native requires two container images. The UIM DB installer image is used to
manage the UIM and Fusion MiddleWare schemas -create,delete,upgrade - as well as purging
in the UIM schema. It is also used to generated encrypted weblogic credentials. The other
image is the UIM image itself. This image is the basis for all of the long running pods - the
WebLogic admin server and all the Managed Servers that comprise a UIM cloud native
instance. Each image is built on top of a Linux base image and adds Java, Fusion MiddleWare
components and UIM product components on top.

UIM Cloud native images are created using the UIM cloud native builder toolkit and a
dependency manifest file. The UIM cloud native Image Builder is intended to be run as part of
a Continuous Integration process that generates images. It needs to run on Linux and have
access to the local Docker daemon. The versions of these are as per the UIM statement of
certification in the UIM documentation. The dependency manifest is a file that describes all the
versions and patches required to build out the image.

Downloading the UIM Cloud Native Image Builder

You download the UIM cloud native image builder from My Oracle Support at: https://
support.oracle.com

The UIM cloud native image builder is bundled with the following components:
* UIM cloud native builder kit. The kit contains:

— The UIM Domain WDT Model.

— The UIM DB Installer scripts and manifest files.

e Staging directory structure.

Prerequisites for Creating UIM Images

The pre-requisites for building UIM cloud native images are:

* Docker client and daemon on the build machine.

* Installers for WebLogic Server and JDK. Download these from the Oracle Software
Delivery Cloud:

https://edelivery.oracle.com

* Required patches. Download these from My Oracle Support:

https://support.oracle.com/

« Java, installed with JAVA_HOME set in the environment.
e Bash, to enable the “<tab>" command complete feature.

See "UIM Software Compatibility" in UIM Compatibility Matrix for details about the required and
supported versions of these pre-requisite software.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 15

https://support.oracle.com
https://support.oracle.com
https://edelivery.oracle.com
https://support.oracle.com/

ORACLE Chapter 3
Configuring the UIM Cloud Native Images

Configuring the UIM Cloud Native Images

The dependency manifest file describes the input that goes into the UIM images. It is
consumed by the image build process. The default configuration in the latest manifest file
provides all the necessary components and required patches for creating the UIM cloud native
images easily.

You can also modify the manifest file to extend it to meet your requirements. This enables you
to:

* Specify any Linux image as the base, as long as its binary is compatible with Oracle Linux.
* Upgrade the Oracle Enterprise Linux version to a newer version to uptake a quarterly CPU.
* Upgrade the JDK version to a newer JDK version to uptake a quarterly CPU.

* Upgrade the Fusion Middleware version to a newer version. For example, you upgrade the
Fusion Middleware version to a newer version when you initiate the upgrade to pick up
new PSU or when Oracle recommends a new update.

* Change the set of patches applied on WebLogic Server, Coherence, Fusion Middleware,
and OPatch to stay aligned with evolving UIM recommendations.

* Change the UIM artifacts to newer artifacts to uptake a new UIM patch.

* Choose a different userid and groupid for oracle:oracle user:group that the image
specifies. The default is 1000:1000.

The breakdown of each section in the dependency manifest file is as follows:

@® Note

The schemaVer si on and dat e parameters are maintained by Oracle. Do not modify
these parameters.

Version numbers provided here are only examples. The manifest file used specifies
the actual versions currently recommended.

* UIM Cloud Native Infrastructure Image

While not required by UIM cloud native to create or manage UIM instances, this
infrastructure image is a necessary building block of the final UIM container image.

l'inux:
vendor: Oracle
version: 9-slim
i mage: container-registry.oracle.con os/oraclelinux:9-slim

The Li nux parameter specifies the base Linux image to be used as the base docker
image. The version is the two-digit version from letc/redhat-release.

The vendor and version details are specified and used for:

— Validation when an image is built.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 15

ORACLE

Chapter 3

Configuring the UIM Cloud Native Images

— Querying at run-time. To troubleshoot issues, Oracle support requires you to provide

these details in the manifest file used to build the image.

user G oup:
username: oracle
userid: 1000

groupnane: oracle
groupi d: 1000

The user G oup parameter specifies the default userld and groupld for or acl e

j dk:
vendor: Oracle
version: 21.0.6
path: $CN _BUI LDER STAG NG j ava/j dk-2106-1i nux-x64 bin.tar.gz

The j dk parameter specifies the JDK vendor, version, and the staging path.

f

version: 14.1.2.0.0

path: $CN BUI LDER STAG NG fmw/instal |/
frw 14.1.2.0.0_infrastructure_Di sk1_lof1l.zip

The f mw parameter specifies the Fusion Middleware version and staging path.

oPat ch:
description: Wbl ogi c Opatch
pat chNunber: 28186730
pat chl d: 28186730_13.9.4.2.19
pat h: $CN_BU LDER STAG NG f mw/ pat ch/ p28186730_1394219 Generic.zip

The oPat ch parameter specifies the Oracle Patch tool and staging path.

f mPat ch

- description: Coherence Cunulative Patch 14.1.2.0.1

pat chNunber: 37658370

pat chld: 37658370_14.1.2.0.0

pat h: $CN_BU LDER STAG NG f mw pat ch/ p37658370_141200_Generi c. zi
- description: WS PATCH SET UPDATE 14.1.2.0.250102

pat chNunber: 37439198

patchld: 37439198 14.1.2.0.0

pat h: $CN_BU LDER STAG NG f mw/ pat ch/ p37439198_141200_Generi c. zi
- description: OPSS Bundl e Patch 12.2.1.4.220311(APR 2022 CPU)

pat chNunber: 33950717

patchld: 33950717_12.2.1.4.0

pat h: $CN_BU LDER _STAG NG f mw/ pat ch/ p33950717_122140_Generic. zi p
- description: FMNV COWON THI RD PARTY SPU 12.2.1.4.0 (OCT 2023 CPU)

pat chNunber: 35882299

pat chld: 35882299 12.2.1.4.0

p

p

Cloud Native Deployment Guide

G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

pat h: $CN_BU LDER _STAG NG f mw/ pat ch/ p35882299_122140_Generic. zi p
- description: FMAN Control SPU Patch (OCT 2022 CPU)
pat chNunber: 34542329
patchld: 34542329 12.2.1.4.0
October 30, 2025
Page 3 of 15

ORACLE Chapter 3
Configuring the UIM Cloud Native Images

pat h: $CN_BU LDER _STAG NG f mw/ pat ch/ p34542329_122140_Generic. zi p
- description: LOG N FAILS AFTER APPLYI NG 1. 80.331 JDK (APR 2022 CPU)
pat chNunber: 33903365
pat chld: 33903365_12.2.1.4.0
pat h: $CN_BU LDER _STAG NG f mw/ pat ch/ p33903365_122140_Generic. zi p
- description: DVS Metric table uses UUID for Keys
pat chNunber: 28334768
patchld: 28334768_12.2.1.4.0
pat h: $CN_BU LDER _STAG NG f mw/ pat ch/ p28334768_122140_Generic. zi p
- description: STUCK THREAD AT

The f mvPat ch parameter specifies additional patches and their staging paths.

* UIM Cloud Native Image

@® Note

Do not modify this section other than for name, tag, and layertag. Rest of the
parameters are maintained by Oracle.

ui mCnl mage:
name: ui mcn-base
tag: 8.0.0.0.0
layertag: 8.0.0.0.0.1
wdt
version: 4.3.3
path: $CN_BU LDER STAG NG cnsdk/ t ool s/ webl ogi c- depl oy. zi p
model files: $CN_BU LDER _STAG NG cnsdk/ ui m model / ui m donai n- confi g/ ui m
base- domai n. yam , $CN_BUI LDER_STAG NG cnsdk/ ui m nodel / ui m domai n- conf i g/
properties/ docker-buil d/ domai n. properties
application: $CN_BU LDER _STAG NG cnsdk/ ui m nodel / ui m app- ar chi ve. zi p
cust omAppl i cation: $CN_BU LDER _STAG NG cnsdk/ ui m nmodel / ui m cust om
archive.zip
customConfig: $CN _BU LDER STAG NG cnsdk/ ui m nodel / ui m cust om config
configfiles: $CN_BU LDER_STAG NG cnsdk/ ui m nodel / U M
docker Ext ensi on: $CN_BUI LDER_STAG NG cnsdk/ ui m nodel /
addi ti onal Bui | dConmands. t xt

Where nane is the name of the UIM image, t ag is the tag name of the UIM image, and
| ayert ag is the tag name of the customized UIM image.

The ui nCnl mage section specifies details about the UIM artifacts required to build the
UIM base image and UIM layered image. These include the inventory.ear, sharedLibraries,
UIM application configuration files, customizations, WDT and base model files.

e UIM Cloud Native DB Installer Image

ui mCnDbl nst al | er | mage:
name: uimcn-db-installer
tag: 8.0.0.0.0

dbt ool s:
vendor: Oracle
path; $CN BUI LDER STAG NG cnsdk/ ui m db/ ora_ui m dbt ool s. j ar

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 15

ORACLE Chapter 3
Creating the UIM Cloud Native Images

The ui nCnDbl nst al | er | mage parameter specifies the DB Installer image name and
version. This includes UIM DB Utility jar and Password Encryptor jar.

Creating the UIM Cloud Native Images

To create the UIM image or UIM DB Installer image, the image builder initially generates
infrastructure image with the following:

» Starts with a base-level operating system image (for example, oraclelinux:9-slim).
e Creates user and group (for example, oracle:oracle).

« Updates the image with the necessary packages for installing Fusion Middleware.

e Installs Java, Fusion Middleware and applies patches.

To create the UIM image, the image builder does the following:

* Infrastructure image is reused if it exists, else it builds infrastructure image.
e Installs the UIM application base on the WDT model along with customizations.

To create the UIM DB Installer image, the image builder does the following:

« Infrastructure image is reused if it exists else it builds infrastructure image.
e Installs the UIM DB Installer with ora_uim_dbtools.jar and password_encryptor.jar.

You can specify any Linux image as the base, as long as its binary is compatible with Oracle
Linux and conforms to the compatibility matrix. See "UIM Software Compatibility” in UIM
Compatibility Matrix for details about the supported software.

The following packages must be installed onto the given base image, or be already present:

© gzip
e tar
° unzip

Creating the UIM and UIM DB Installer Images
To create the UIM and UIM DB Installer images:

1. Create the workspace directory:
mkdi r wor kspace

2. Obtain and untar the UIM image builder file: uim-image-builder.tar.gz to the workspace
directory:

tar -xf ./uiminage-builder.tar.gz --directory workspace

3. Download JDK to the workspaceluim-image-builder/stagingl/javadirectory directory.
The JDK version to be downloaded is described in the dependency manifest file.

cp jdk-2106-1inux-x64 bin.tar.gz ./workspace/ui minage-buil der/staging/
javalj dk-2106-1inux-x64 bin.tar.gz

4. From Oracle Software Delivery Cloud, download Fusion Middleware Infrastructure installer
for the version listed in the dependency manifest file under the fmw tag. The downloaded
package name may differ (for example, V983368-01.zip). and copy it to the workspacel

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 15

https://edelivery.oracle.com

ORACLE

Chapter 3
Creating the UIM Cloud Native Images

uim-image-builder/staging/fmwlinstall directory. The Fusion Middleware Infrastructure
installer version to be download is described in the dependency manifest file under the
f mw section.

cp frmw 14.1.2.0.0 infrastructure_Di skl lof1.zip ./workspace/ ui minmage-
bui | der/staging/fmvinstall/fmv 14.1.2.0.0_infrastructure Diskl lofl.zip

From https://github.com/oracle/weblogic-deploy-tooling/releases, download WDT 4.3.6
(weblogic-deploy.zip) and copy it to the workspaceluim-image-builder/staging/cnsdk/
tools directory.

From https://github.com/oracle/weblogic-image-tool/releases, download WIT 1.15.0
(imagetool.zip) and copy it to the workspace/uim-image-builder/staging/cnsdk/tools
directory.

Download all the listed patches to the workspaceluim-image-builder/staging/fmwI/patch
directory. The list of required patches is in the dependency manifest file in the oPat ch and
f mmPat ch sections.

You can download the patches using any of the following options:

* (Recommended) Manually search for and download each OPatch/FMW patches from
Oracle Support to the current working directory and then copy to the staging directory.

CP PXXXXXX_XXXXX_Generic.zip ./workspace/ ui minmage-bui | der/stagi ng/ f myv
pat ch

e Provide your My Oracle Support account credentials when invoking the build-uim-
images.sh script, and let the builder download the patches automatically:

@® Note

Some patches may not be retrievable in this manner. If the image build
process fails with errors about a missing patch, use the recommended option.

. I'wor kspace/ ui mi mage- bui | der/ bi n/ bui | d-ui mi mages. sh -f $DMANI FEST -
s $STAG NG -¢ uim-u MOS_usernanme -p MOS_password

Run customization.sh if you made any customizations. For making customizations, see
"Customizing Images". Export the variables as required and then run customization.sh:

mkdi r wor kspace/ cust om zati on
mkdi r wor kspace/ t enp

* Export the work space as follows. WORKSPACEDIR is the mandatory parameter that
has the path where uim-image-builder is extracted.

export WORKSPACEDI R=$(pwd) / wor kspace

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 15

https://github.com/oracle/weblogic-deploy-tooling/releases
https://github.com/oracle/weblogic-image-tool/releases

ORACLE

Chapter 3
Creating the UIM Cloud Native Images

Export the custom folder as follows. CUSTOMFOLDER is the parameter for the path
where the custom folder of uim-app-archive.zip is copied and modified for the
customization.

export CUSTOVFOLDER=$(pwd) / wor kspace/ cust omi zat i on
###text ract custom fol der of ui mapp-archive.zip in this directory

Export the temp directory as follows. TEMPDIR is the mandatory parameter to store
the temp location where we have the merged folder of uim-app-archive.zip with
customizations for any future reference.

export TEMPDI R=$(pwd) / wor kspace/ t enp

Apply customizations to UIM application as follows:

. I'wor kspace/ ui mi mage- bui | der/ bi n/ cust om zation. sh

® Note
You can also export the following variables:

« CARTRIDGESDIR is the parameter that has the path to copy solution
cartridges. The default path is $CUSTOMFOLDER/ cust om cartri dges.

* PURGELIMIT the optional parameter that sets the number of folders. Not
setting any value defaults to having 3 existing folders in it.

Run build-uim-images.sh and pass the dependency manifest file, staging path, and the
type of image to be created.

export DMANI FEST=$(pwd) / wor kspace/ ui m i mage- bui | der/ bi n/
uimcn_ci _mani fest. yanl
export STAG NG=$(pwd) / wor kspace/ ui m i mage- bui | der/ st agi ng

To create UIM image, use - ¢ ui mas shown:

. I wor kspace/ ui mi mage- bui | der/ bi n/ bui | d-ui mi mages. sh -f $DVANI FEST -
s $STAG NG -c uim

To create UIM DB installer image, use - ¢ dbi nst al | er as shown:

. I'wor kspace/ ui mi mage- bui | der/ bi n/ bui | d-ui mi mages. sh -f $DVANI FEST -
s $STAG NG -c¢ dbinstaller

To create UIM layered image, use - ¢ | ayer as shown:

. I'wor kspace/ ui mi mage- bui | der/ bi n/ bui | d-ui mi mages. sh -f $DVANI FEST -
s $STAG NG -c¢ | ayer

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 15

ORACLE

Chapter 3
Customizing Images

@® Note

Run customization.sh before you create UIM layered image. This can used
during solution development phase for creating updated image in case of Java
code changes in the cartridges.

These steps can be included into your CI pipeline as long as the required components are
already downloaded to the staging area.

Post-build Image Management

The UIM cloud native image builder creates images with names and tags based on the settings
in the manifest file. By default, this results in the following images:

e uim-cn-infrastructure:14.1.2.0.0
e uim-cn-base:8.0.0.0.0
e uim-cn-db-installer:8.0.0.0.0

* uim-cn-base:8.0.0.0.1

@® Note

An optional layered image is created, if Customization is enabled and either Java
Ruleset code or configuration files are present in the solution cartridges.

Once images are built in a ClI pipeline, the pipeline uniquely tags the images and pushes them
to an internal Docker repository. An uptake process can then be triggered for the new images:

e Sanity Test

« Development Test (for explicit retesting of scenarios that triggered the rebuild, if any)
e System Test

e Integration Test

¢ Pre-Production Test

e Production

Customizing Images

Various customizations such as Ul, Localization, Web Services, and so on can be performed
during the docker image creation. To apply these customizations, you have to run an additional
script uim-image-builder/bin/customization.sh, in the UIM image builder toolkit before
creating the UIM docker image. Based on the customization type, an additional layer is
generated with the Layer tag, as defined in the uim-image-builder/bin/
uim_cn_ci_manifest.yaml file. For example, if solution cartridges contain configuration files,
Java ruleset code, and for custom applications, the layered build gets generated.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 15

ORACLE Chapter 3
Customizing Images

@® Note

For certain customization types, additional layer is built on the top of the base image.
This approach makes a quick turnaround time for validating solution cartridge changes
during the development phase. In case of any changes to the Javaruleset code or
configuration files in the cartridges, you do not need to build the UIM Image but you
can build only the layer after running uim-image-builder/bin/customization.sh as
follows:

. Iwor kspace/ ui m i mage- bui | der/ bi n/ bui | d-ui mi mages.sh -f $DVANI FEST -
s $STAG NG -c | ayer

Including User Interface Customizations and Localizing UIM Help in UIM
Cloud Native Images

To include the user interface customizations in UIM cloud native images:

1. Customize the user interface and generate inv.war file after including the Ul
customizations. See "Overview" in UIM Developer's Guide for customizing the user
interface and deploying the customizations.

2. Include Localizing UIM Help customizations in the same inv.war file. See "Localizing
UIM" for localizing UIM Help and "Localizing the Network Plan and Design Process Page
for localizing Network Pland and Design in UIM Developer's Guide.

3. Place the inv.war file in the $CUSTOMFOLDER\custom\ui_customization folder.

@® Note

The CUSTOMFOLDER is the parameter for the path where the custom folder of
uim-app-archive.zip is copied and modified for the customization.

4. |If there are any logo customizations, place the comms-platform-ui.jar file in the
customlui_customization folder.

Including Custom Web Services

To include the custom web services in UIM Cloud Native images:

1. Develop custom web services and create the WAR file. See "Web Services Overview" in
UIM Web Services Developer's Guide for developing custom web services.

2. Place the web service's WAR file in the CUSTOMFOLDER at custom\customWsS.

@ Note

The CUSTOMFOLDER is the parameter for the path where the custom folder of
uim-app-archive.zip is copied and modified for the customization.

3. Update application.xml and inventory-clusterPlan.xml files with the new custom web
service details.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 15

ORACLE

Chapter 3
Customizing Images

During the image creation, these custom web services are packaged in inventory.ear.

4. After a new instance is created with the new image, verify the updated custom web
services from the WebLogic console under oracle.communications.inventory.

Updating application.xml

Add the following information to the <nmodul e> element to identify the following for the custom
web service:

« The WAR file name, such as ReferenceUim.war

* The WSDL file prefix, such as ReferenceUim

® Note

Add the <web- uri > element for the WAR file name and the <cont ext - r oot >
element for the WSDL name, as shown in Example.

The sample is as follows:

<l-- Custom Wb Service WAR -->

<mpdul e>

<web>

<web- uri >Ref erenceUi m war </ web-uri >

<cont ext - r oot >Ref er enceU nx/ cont ext - r oot >
</ web>

</ modul e>

Updating inventory-clusterPlan.xml

You can find the inventory-clusterPlan.xml from the CUSTOMFOLDER\custom\plans
directory.

To secure the custom webservice, update the deployment plan with required policies. You can
use the security policy that comes with the UIM instance Auth.xml, the security policy that
comes in the Reference Web Service ZIP file SampleAuth.xml, or create your own security
policy file. Custom policies are available in the <custom webservice war>/WEB-INF/policies
folder. The following example shows an update to inventory-clusterPlan.xml with default
Auth.xml policy:

<nmodul e-overri de>

<modul e- name>Ref er encelUi m war </ nodul e- nane>

<modul e-t ype>war </ modul e-t ype>

<modul e-descriptor external ="fal se">
<root - el ement >webl ogi c- web- app</root - el ement >
<uri >VEB- | NF/ webl ogi ¢. xm </ uri >

</ modul e- descri pt or >

<modul e-descriptor external ="fal se">
<root - el ement >web- app</r oot - el enent >
<uri >VEB- | NF/ web. xm </ uri >

</ modul e- descri pt or >

<modul e-descriptor external ="fal se">
<root - el ement >webl ogi c- webser vi ces</ root - el ement >
<uri >WEB- | NF/ webl ogi c- webservi ces. xm </ uri >

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 15

ORACLE Chapter 3
Customizing Images

</ modul e- descri pt or >
<modul e-descriptor external ="fal se">
<r oot - el enent >webser vi ces</root - el enent >
<uri >WEB- | NF/ webser vi ces. xm </ uri >
</ modul e- descri pt or >
<modul e-descriptor external ="fal se">
<root - el ement >webser vi ce- pol i cy-ref</root-el ement >
<uri >VEB- | NF/ webl ogi c- webser vi ces-policy. xm </ uri >
<vari abl e- assi gnnent >
<nanme>WPol i cy_policy: Aut h. xm _Direction_13075993400140</ name>
<xpat h>/ webservi ce- poli cy-ref/port-policy/[port-
name="U MRef er enceUi nHTTPPort"]/ws-policy/[uri="policy:Auth.xm"]/direction</
xpat h>
</vari abl e-assi gnnent >
<vari abl e- assi gnnent >
<nanme>WPol i cy_policy: Aut h. xm _Direction_13075993400140</ name>
<xpat h>/ webser vi ce- poli cy-ref/port-policy/[port-
name="U MRef er enceUi mIMSPort "]/ ws-policy/[uri="policy:Auth.xm"]/direction</
xpat h>
</vari abl e-assi gnnent >
</ modul e- descri pt or >
</ modul e- overri de>

Adding Third-party Libraries
To add third-party libraries:
1. Copy third-party libraries to CUSTOMFOLDER\customllibraries folder.

® Note
The CUSTOMFOLDER is the parameter for the path where the custom folder of
uim-app-archive.zip is copied and modified for the customization.

2. After a new instance is created with the new image, verify that the third-party libraries are
available in the pod in the path JUIMI/lib, by running the following command:

kubect| exec <project>-<instance>-msl -n <project>-- Is /JUMIib

Adding WebLogic Deployable Applications

To add WebLogic deployable applications, you can copy WebLogic deployable applications to
CUSTOMFOLDER\custom\applications folder.

@ Note

The CUSTOMFOLDER is the parameter for the path where the custom folder of uim-
app-archive.zip is copied and modified for the customization.

You can also add WebLogic deployable applications using extensions. This mechanism keeps
the ear file together with the domain configuration in one location. This is best suited to
applications that can be considered standard or fixed for all variants of a domain that are

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE

Chapter 3
Customizing Images

required (test, development, and production). This is best suited in configuring MapViewer in
the UIM cloud native instance.

The default WDT model for these applications is constructed while running the customization
script as follows:

appDepl oynent s:
Application:
"<application-nanme>':
Sour cePat h: ' w sdepl oy/ appl i cations/ cust om <appl i cati on-nane>. ear’
Modul eType: ear
St agi nghbde: nost age
Pl anSt agi nghbde: nost age
Target: ' @@PROP: CLUSTER_NAVE@D

See "Deploying Entities to a UIM WebLogic Domain" for more information deploying the
custom applications using extensions.

Adding Solution Cartridge Customizations

To add solution cartridge customizations, copy all cartridges to CARTRIDGEDIR

or $CUSTOMFOLDER/custom/cartridges. You need to run the customization script that
scans and packages the configuration files, images, and java ruleset codes into the container
image and scans the cartridge jar files and extracts them to $CARTRIDGES_PATH/unpack.

Configuration Files

The configuration files are packaged into a layered image. After a new instance is created with
the new image, verify the configuration files in the pod, by running the following command:

kubect| exec <project>-<instance>-msl -n <project> -- Is /U Mconfig

Images

The image files are packaged into the base image. After a new instance is created with the
new image, verify the images files in the pod, by running the following command:

kubect| exec <project>-<instance>-msl -n <project> -- |s /U Minmages

Localization

The localization changes are packaged into the base image. Verify the localization in UIM
cloud native instance with newly generated image by changing the browser settings. See
"Overview" in UIM Developer's Guide to build cartridges with localization files.

Custom Library or Java Ruleset Code

The Java ruleset code is packaged into a layered image. If *Lib.jar or *aop.jar exists in the
extracted folder of SCARTRIDGES_PATH/unpack, then uim_custom_lib.ear is updated in
uim-custom-archive.zip file.

The Java ruleset code is packaged into layered image as follows:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE

Chapter 3
Customizing Images

Table 3-1 Custom Library in Layered Images

Customization Type CUSTOMFOLDER CARTRIDGESDIR Layered Image
User interface The customized inv.war is NA No layered image generated.
placed

in $CUSTOMFOLDER\custo
m\ui_customization.

Custom Webservice

The customized war files are | NA No layered image generated.
placed

in $CUSTOMFOLDER\custo
m\customWsS.

Libraries

Third-party libraries are NA Layered image is generated.
placed

in $CUSTOMFOLDER\custo
m\libraries.

Applications

Place Weblogic Deployable NA Layered image is generated.
applications

in SCUSTOMFOLDER\custo
m\applications.

Solution cartridges

Optional if CARTRIDGEDIR | Optional if CUSTOMFOLDER | Layered image generated for

is exported. is exported. configuration files and Java
Solution Cartridge jars are Solution Cartridge jar files Ruleset Code.

placed are placed Layered image not generated
in $CUSTOMFOLDER/ in SCARTRIDGESDIR. for images and localization.

custom/cartridges.

Extending Entity Life Cycles

You can extend entity life cycles in UIM cloud native environment. See "Extending Life Cycles"
in UIM Developer's Guide for more information on extending life cycles. The image builder tool
kit includes the latest customizations.sh file that enables life cycle extensions support.

To set up your cloud native deployment for extending entity life cycles:

1.

From uim-app-archive.zip, copy the inventory-adapter.ear and core_lib.ear files to a
temporary location. For example: D:lworkspacel/tmp.

In Design Studio:

a.

Rename COMPUTERNAME.properties to match with the name of your computer and
update its content to match with your environment.

Update the EAR_PATH and CORE_LIB_DIR path values with the paths of the
temporary location where you copied the inventory-adapter.ear and core_lib.ear
files. The following text shows changes to the computer properties:

APP_NAME=i nvent ory

JDK_HOVE=C: / Program Fi | es/ Java/j dk-21.0.6
JAVA HOVE=${ JDK_HOMVE}

ANT_HOVE=C: / sof t war e/ apache-ant-1.9.2

EAR BUI LD DI R=gener at ed

#l ocation of the UMhonme fromthe installer setup.
Ul M_HOVE=/ webl ogi cDomai nHone/ U M

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE

Chapter 3
Customizing Images

DB _HOVE=C. / app/ or cl user/ product/14. 1. 2/ dbhone_1
DB_DRI VER=${DB_HOVE}/j dbc/ i b/ oj dbcll. | ar
DATABASE=or acl e

#project honme |ocation this has to change based on the project |ocation.
PRQIECT_HOME=D: / Ecl i pse_Phot on/ U M/42/ ora_ui mentity_sdk/src

#POVB | ocati on

POVS_SRCHOVE=${ PRQJECT HOWVE}/ pl at f or nFi | es/ ext ract / obj ngnt / pons
POMS extract |ocation.

POVS_ROOT=pl at f or nFi | es/ extract

APP_LIB=D:/tnp/UMSDK/ Iib ### Path to UMSDK Iib

#i nvent ory- adapt er. ear
EAR_PATH=D: / wor kspace/ t np

CLASSPATH=${ JDK HOMVE}/lib/tool s.jar; ${IJDK HOVE}/jre/lib/rt.jar;$
{ DB DRI VER}

#This is required for finding the path for uimcore |ib.ear
CORE_LI B_DI R=D: / wor kspace/ t mp

@ Note
Both EAR_PATH and CORE_LIB_DIR can have the same path values.

(Optional) Follow the steps described in the Customizing Service Lifecycle to Introduce
a New State. (Doc ID 1918850.1) knowledge article on My Oracle Support to
customize entity life cycles.

(Optional) Save the build.xml file.

Add any new custom metadata files to define the new custom state and build the
project.

The build updates the .ear files that you copied to your local folder.

@ Note

During the build process, uim-entities.jar is modified. This .jar file contains the
entity Java classes for all UIM entities and all custom entities. After the build, the
inventory-adapter.ear and uim_core_lib.ear files in the tmp folder are updated
along with the uim_entities.jar file.

Copy the updated inventory-adapter.ear and uim_core_lib.ear files from the tmp folder
to $CUSTOMFOLDER\custom\staticExtensions folder.

@® Note

CUSTOMFOLDER is the parameter for the path where uim-app-archive.zip is
copied and modified for customization.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 15

ORACLE Chapter 3
Customizing Images

4. Under the modellcontent/product_homelconfig/resourcesl/logging directory of the
ora_uim_localization_reference project, modify the status.properties file to display the
new state on the Ul.

® Note

The Ul-specific properties files are located in the
ora_uim_localization_reference project, under the model/content/
product_homelconfiglresourcesl/logging directory. See "Overview" in UIM
Developer's Guide for localizing the Ul-specific files.

5. Add solution cartridge customizations to package the cartridge.

See "Adding Solution Cartridge Customizations" for more information.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 15

Creating a Basic UIM Cloud Native Instance

This chapter describes how to create a basic UIM cloud native instance in your cloud
environment using the operational scripts and the base UIM configuration provided in the UIM
cloud native toolkit. You can create a UIM instance quickly in order to become familiar with the
process, explore the configuration, and structure your own project. This procedure is intended
to validate that you are able to create a basic UIM instance in your environment. For
information on creating your own project with custom configuration, see "Creating Your Own
UIM Cloud Native Instance".

Before you can create a UIM instance, you must do the following:
* Download and extract the Common cloud native toolkit (COMMON CNTK) archive file.

* Assemble the specifications.

* Install WebLogic Operator. For more information, see "Installing the WeblL ogic Kubernetes
Operator Container Image".

* Install Nginx Ingress. For more information, see "About Load Balancing and Ingress
Controller".

Installing the UIM Cloud Native Artifacts and the Toolkit

Build container images for the following using the UIM cloud native Image Builder:

* UIM core application
e UIM database installer

You must create a private Docker repository for these images, ensuring that all nodes in the
cluster have access to the repository. See "About Container Image Management" for more
information.

Download the Common cloud native toolkit archive and do the following:

* On Oracle Linux: Where Kubernetes is hosted on Oracle Linux, download and extract the
tar archive to each host that has connectivity to the Kubernetes cluster.

e On OKE: For an environment where Kubernetes is running in OKE, extract the contents of
the tar archive on each OKE client host. The OKE client host is the bastion host/s that is
set up to communicate with the OKE cluster.

Assembling the Specifications

You must assemble the specification files to use the Common cloud native toolkit. To assemble
the specification files:

1. Extract the archive.
2. Set up the environment.

3. Prepare the configuration.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 18

ORACLE’

Chapter 4
Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller

Run the following command to assemble specification:

#Extract comon-cntk
cd workspace
tar -xvf common-cntk.tar.gz

#Create spec directory
mkdi r spec_dir

#Export vari abl es

export COVMON_CNTK=(pat h_to_wor kspace)/ common- cnt k

export SPEC PATH=(path_to_workspace)/spec_dir

export STRIMZI _NS=stri nei #this is strinzi namespace for message bus, if
not applicable to you can keep default value “strinzi’

#Run assenbl e specification
$COMMON_CNTK/ scri pt s/ assenbl e- speci fications.sh -p project -i instance -
s $SPEC_PATH

After assembling the specifications successfully without any errors, verify if the configuration
files are correctly assembled by checking the contents of the $SPEC_PATH directory.

@® Note

All scripts in common-cntk are designed to read the required configuration files from
the path specified by $SPEC_PATH.

Installing WebLogic Kubernetes Operator (WKO) and Ingress

Controller

In a shared environment, multiple developers may create UIM instances in the same cluster,
using a shared WebLogic Kubernetes Operator.

@® Note

There can be multiple operators in a Kubernetes cluster, and in that case, you must
ensure that the namespaces managed by these operators do not overlap. A
namespace can be managed by one operator.

For each cluster in your environment, you download and install the following:

* WebLogic Kubernetes Operator (WKO) application deployment.
* Nginx Ingress Controller deployment
Before installing the WKO and the Nginx, do the following tasks:

* Remove the instances of the WKO and Nginx that you installed to validate your cloud
environment.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 18

ORACLE Chapter 4
Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller

* Ensure that you have cleaned up the environment. See "Validating Your Cloud
Environment" for instructions on cleaning up.

« Ensure that there are no WebLogic Server Operator artifacts in the environment.

Installing the WebLogic Kubernetes Operator Container Image

UIM cloud native package does not provide scripts to install or remove the WebLogic
Kubernetes operator. See WKO Documentation for Installing and uninstalling Weblogic
Operator.

See "UIM Software Compatibility" in UIM Compatibility Matrix for WKO recommended version.
For example, to download and install the WKO version:

1. See https://github.com/oracle/weblogic-kubernetes-operator/releases/.

2. Choose a hamespace for the operator and set the W.SKO_NS environment variable to the
Kubernetes namespace in which WKO will be deployed.

@® Note

Oracle recommends you use --version=<version> while installing. See "UIM
Software Compatibility" UIM Compatibility Matrix for the corresponding WKO
version.

Oracle recommends you set the label to the same as namespace using - - set
"domai nNanespacelabel Sel ect or =<nanmespace>=enabl ed" instead of the
default label " webl ogi c- oper at or =enabl ed" as having multiple operators
installed with the same label is not recommended.

3. After successful installation of WKO, validate that the operator is installed by running the
following command:

kubect| get pods -n $W.SKO NS

If you are using a version older than 3.1.0, the operator is supported to specify the
namespaces that can be managed only through a list. Currently, the operator supports a list of
namespaces, a label selector, or a regular expression matching namespace names.

@® Note

If you are upgrading from UIM CN 7.5.1 and an older version of the WebLogic
Operator, see "Upgrading the UIM Cloud Native Environment" for more information.

Installing the Ingress Controller

You can use any Ingress Controller that conforms to the standard Kubernetes ingress APl and
that supports annotations required for UIM. See "About Load Balancing and Ingress Controller"
and "Working with Ingress, Ingress Controller, and External Load Balancer" for more
information.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 18

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator
https://github.com/oracle/weblogic-kubernetes-operator/releases/

ORACLE Chapter 4
Creating a Basic UIM Instance

@® Note

Oracle does not certify individual Ingress Controllers to confirm this generic
compatibility.

WebLogic Kubernetes Operator describes the installation and the usage of the Nginx Ingress
controller. See https://github.com/oracle/weblogic-kubernetes-operator/blob/release/4.1/
kubernetes/samples/charts/nginx/README.md for more information. To know the supported
WebLogic version, see UIM Cloud Native Deployment Software Compatibility.

Creating a Basic UIM Instance

This section describes how to create a basic UIM instance. In this section, while creating a
basic instance, the project name is considered as "sr" and instance name is considered as
"quick".

Setting Environment Variables

UIM cloud native relies on access to certain environment variables to run seamlessly. Ensure
the following variables are set in your environment:

« Path to your specification directory.

e Path to your Common cloud native toolkit directory.
e Path to your WebLogic operator namespace.

To set the environment variables:

1. Ensure that you have copied the corresponding files to the specification directory as
mentioned in "Assembling the Specifications".

@® Note

You must provide full path of specification directory for SPEC_PATH variable as
follows:

$ export SPEC PATH=<path to workspec>/spec_dir

2. Setthe COMMON_CNTK variable for common-cntk directory path as follows:
$ export COWMON CNTK=<path to workspace>/ conmon-cnt k
3. Setthe WLSKO_NS variable for WebLogic operator namespace as follows:

$ export W.SKO NS = wl sko namespace

Registering the Namespace

After you set the environment variables, register the namespace. If you are working with
W sko as the t ar get Nanespace, then RegisterNamespace script offers an additional - |
option that enables you to include the label selector used during the operator installation.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 18

https://github.com/oracle/weblogic-kubernetes-operator/blob/release/4.1/kubernetes/samples/charts/nginx/README.md
https://github.com/oracle/weblogic-kubernetes-operator/blob/release/4.1/kubernetes/samples/charts/nginx/README.md

ORACLE

Chapter 4
Creating a Basic UIM Instance

If a label selector is not added while installing the operator:

By default the webl ogi c- enabl ed=t r ue label is added to your $W.SKO NS namespace so
that the operator can monitor it.

If a label selector is added while installing the operator:
Ensure that you include the same label using the - | option, as follows.

To register the namespace for wilsko, run the following command:

#if you have defined | abel sel ector while installing operator Exanple:

w sko=enabl ed

$COMMON_CNTK/ scri pt s/ regi st er-nanespace.sh -p <project> -t targets -1 <l abel -
Sel ector>

#For exanpl e, $COMMON_CNTK/ scri pts/regi ster-nanmespace.sh -p sr -t wsko -|

w sko=enabl ed

@® Note

» wisko is the name of the targets for registering the namespace. The script uses
WLSKO_NS to locate these targets.

» For Generic IngressController, the registration of namespace is not required. To
select the ingress controller, you need to provide the i ngr essC assNane value
under the ingress.className field in the applications-base.yaml file.

* For more information about ingressClassName, see https://kubernetes.io/docs/
concepts/services-networking/ingress/.

Creating Secrets

You must store sensitive data and credential information in the form of Kubernetes Secrets that
the scripts and Helm charts in the toolkit consume. Managing secrets is out of the scope of the
toolkit and must be implemented while adhering to your organization's corporate policies.
Additionally, UIM cloud native does not establish password policies.

@® Note

The passwords and other input data such as RCU schema prefix length that you
provide must adhere to the policies specified by the appropriate component.

As a prerequisite to use the toolkit for either installing the UIM database or creating a UIM
instance, you must create secrets to access the following:

* UIM database

+ RCUDB

« OPSS

e Operator artifacts for the instance

* WebLogic Server Admin (credentials used while creating the domain)

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 18

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

ORACLE

Chapter 4
Creating a Basic UIM Instance

The toolkit provides sample scripts for this purpose. However, they are not pipeline-friendly.
The scripts should be used for creating an instance manually and quickly, but not for any
automated process for creating instances. The scripts also illustrate both the naming of the
secret and the layout of the data within the secret that UIM cloud native requires. You must
create secrets prior to running the install-database.sh or create-applications.sh scripts.

Ensure that you have assembled the specification before you the following script.

Run the following script to create the required secrets:

$COMMON_CNTK/ scri pt s/ manage- app- credentials.sh -p sr -i quick -s $SPEC PATH -
a uimcreate W sadmi n, opssWp, wl sRTE, r cudb, ui mdb

where:

e ui ndb specifies the connectivity details and the credentials for connecting to the UIM PDB
(UIM schema). This is consumed by the UIM DB installer and UIM runtime.

@ Note

The uimdb secrets contain PDB sysdba user and uim main schema user. The
names of these must be unique.

* rcudb specifies the connectivity details and the credentials for connecting to the UIM PDB
(RCU schema). This is consumed by the UIM database installer and UIM and Fusion
MiddleWare runtime.

« W sadni n is the credential for the intended user that will be created with administrative
access to the WebLogic domain.

* opssWPis the password for encrypting and decrypting the ewallet contents.

W sRTE s the password used to encrypt the operator artifacts for this instance. The
merged domain model and the domain ZIP are available in the operator config map and
are encoded using this password.

Verify that the following secrets are created:

sr-qui ck- dat abase-credential s

sr-qui ck- enbedded- | dap-credential s
sr-qui ck-webl ogi c-credential s

sr-qui ck-rcudb-credentials

sr-qui ck-opss-wal | et - passwor d- secr et
sr-qui ck-runtime-encryption-secret

Additionally, the secret opssWF is created by the installation process and does not follow the
same guidelines. It is therefore not a pre-requisite for creating a new instance. In scenarios
where a database is being re-used for a different UIM instance, then this becomes a pre-
requisite secret. For more details, see "Reusing the Database State".

Creating Secrets for LDAP System Users

To create secrets for LDAP system users:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 18

ORACLE

Chapter 4
Creating a Basic UIM Instance

Create a user information file, for example: Idap_users.txt, with the list of users and
groups as follows:

ui m ui madmni nuser: secret: ui musers
ui mui ntmasuser : secret: Admini strators, Cartri dge_Managenent WebServi ce
ui mui mretricsuser:secret:uimmetrics-users

Run the following command to create the required secrets for embedded LDAP system
users:

$COMMON_CNTK/ sanpl es/ credent i al s/ manage-ui mcredentials.sh -p sr -i quick -
c create -f "location to |dap_users.txt"

Installing the UIM and RCU Schemas

This procedure configures an empty PDB. Depending on the database strategy for your team,
you may have already performed this procedure as described in "Planning Your Cloud Native
Environment". Before continuing, confirm whether the PDB being used for creating the UIM
instance has been cloned from a Master PDB that includes the schema installation. If the PDB
already has the schema installed, skip this procedure and proceed to the Creating UIM Users
and Groups topic.

After the PDB is created, it is configured with the UIM schema, the RCU schema, and the
cluster leasing table.

To install the UIM and RCU schemas:

@® Note

YAML formatting is case-sensitive. While the next step uses vi editor for editing, if you
are not familiar with editing YAML files, use a YAML editor to ensure that you do not
make any syntax errors while editing. Follow the indentation guidelines for YAML, as
incorrect spacing can lead to errors.

Edit the database.yaml specification file and update the DB installer image to point to the
location of your image as shown below:

@® Note

Before changing the default values provided in the specification file, confirm that
they align with the values used during PDB creation. For example, the default
tablespace name should match the value used when PDB is created.

ui mdbinstaller:
dbi nstal | er:
i mage:
name: "uimcn-db-installer”
tag: "latest”

If your environment requires a password to download the container images from your
repository, create a Kubernetes secret with the Docker pull credentials. See the

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 18

ORACLE

Chapter 4
Creating a Basic UIM Instance

"Kubernetes documentation" for details. Refer the secret name in the database.yaml
specification file.

The image pull access credentials for the "docker |ogin" into Docker
repository, as a Kubernetes secret.

Uncomment and set if required.

imgePul | Secret: ""

Configure the tablespace details. By default, the def aul t Tabl espace and
t enpTabl espace is SYSTEM and TEMP respectively as follows:

db:
def aul t Tabl espace: " SYSTEM
tenpTabl espace: " TEMP"

Run the following script to start the UIM DB installer, which instantiates a Kubernetes Pod
resource. The pod resource lives until the DB installation operation completes.

#(U M Schens)

$COMMON_CNTK/ scri pts/install -database.sh -p project -i instance -
s $SPEC PATH -a uim-c 1

once finished #(RCU Schens)

$COVMMON_CNTK/ scri pts/install -dat abase.sh -p project -i instance -
s $SPEC PATH -a uim-c 2

You can invoke the script with - h to see the available options.
Check the console to see if the DB installer is installed successfully.

If the installation failed, run the following command to review the error message in the log:
kubect! logs -n sr sr-quick-dbinstaller

Clean up the failed pod by running the following command:

hel m uninstall sr-quick-dbinstaller -n sr

Go back to step 4 and run the script again to install the UIM DB installer.

Generating Encrypted WebLogic Administrator's Password

To generate encrypted WebLogic administrator's password:

1.

Run the following command to start the UIM DB installer, which initiates a Kubernetes Pod
resource. The pod resource is available until the DB installation completes.

$COMMON_CNTK/ scri pts/install -dat abase.sh -p project -i instance -
s $SPEC PATH -a uim-c 8

® Note

To see further options available, use - h command.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 18

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

ORACLE

2.

Chapter 4
Creating a Basic UIM Instance

Check the WebLogic console for successful DB installation. If the installation failed, run the
following command to view the error message from the log:

kubect! logs -n sr sr-quick-dbinstaller

Clean up the failed pod using the following command:
hel m uni nstall sr-quick-dbinstaller -n sr
Verify the new secret that is created as follows:

kubect| get secrets -n sr | grep encrypted
sr-qui ck-webl ogi c-encrypt ed-credential s Qpaque 1 5nmB2s

Configuring the Specification Files

Ensure that you have assembled the specification, and you have to edit and provide the values
for the files in $SPEC_PATH location.

To configure the base specification, edit $SSPEC_PATHI/project/instancelapplications-
base.yaml:

1.

Provide the ingressController details as follows for Nginx ingress controller, if you are
using any other ingress controller, provide the corresponding details:

ingressController: "CGENER C'
i ngress:
#provi de appropriate ingressC ass for controller, “nginx” is default for
Ngi nx ingressController
cl assNanme: "ngi nx"
annot ati ons
ngi nx. i ngress. kubernetes.io/affinity: "cookie"
ngi nx. i ngress. kubernetes.io/affinity-node: "persistent"
ngi nx. i ngress. kuber net es. i o/ sessi on- cooki e- name: " ngi nxi ngr esscooki e"
ngi nx. i ngress. kuber net es. i o/ proxy- body-si ze: "50nf
ngi nx. i ngress. kubernetes. i o/ proxy-buffer-size: 64k

If your environment requires a password to download the container images from your
repository, create a Kubernetes secret with the Docker pull credentials. For more
information, see Kubernetes documentation. Check the secret name in the project
specification.

The image pull access credentials for the "docker |ogin" into Docker
repository, as a Kubernetes secret.

uncomment and set if required.

#i magePul | Secret :

imagePul | Secrets:

-name: <inmage-pul | -secret>

For your DNS resolution mechanism, change the default load balancer sub domain name
as per your requirement:

host Suffix: "uimorg"

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 18

ORACLE

Chapter 4
Creating a Basic UIM Instance

Select the shape to be used. shape is the file that contains the resources for UIM service
and must present at location $SPEC_PATHIproject/instance/shape directory:

shape: dev

If external load balancer is used, provide the loadbalancerport of load balancer. Else,
provide the Nginx Ingress Controller NodePort as loadBalancerPort. 30505 is the default
value of non-ssl NodePort of Nginx in the sample files:

| oadbal ancerport: 30505

To configure the app specification, edit $SSPEC_PATH/project/instance/app-uim.yaml:

1.

Provide the image in your repository (name and tag):

** edit the inage to reflect the UMinmage name and | ocation in your
docker repository
uim
i mage:
name: "ui mcn-base"
tag: "latest"

Provide the list of inventory users. All these users should be present in project-instance-
uimcn-cred-uim secret:

i nvent oryUsers:
- Ui ndev
- cmawsdev

Specify the database details to enable MultiDataSource and ServerAffinity:

db:
dat asour cesPri mary:
port: 1521
rcuPort: 1521
Bel ow boolean is to enable server affinity, by default it is false
server AffinityEnabl ed: false
Bel ow boolean is to enable RAC DB Setup, by default it is false.
mul ti Dat aSour ceEnabl ed: fal se
|f using RAC enabl e mul ti Dat aSour ceEnabl ed and provide Iist of SCAN
host name/ | P addr esses
If not using RAC, comment it out "#uinBScans:"
#ui nBcans:
- scanl-ip
- scan2-ip

#
#
|f using RAC, provide either a list of VIP hostnane/|P addresses

or a list of | NSTANCE NAMES

|f not using RAC, comment these out "#uinVips:" and "#ui m nstances:"
#

#ui nVi ps:

- vipl-ip

- vip2-ip

#--- OR---

#ui m nst ances:

- instance-1

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 18

ORACLE Chapter 4
Creating a Basic UIM Instance

- instance-2

By default rcu and uimschema are colocated, if we have different rcu
schema and different uimthen bel ow RAC details are to be provided.

If not provided it will not be considered as RAC
rculi nSchemaColLocat ed: true

RCU db information

|f using RAC, provide list of SCAN hostname/|P addresses

If not using RAC, comment it out "#rcuScans:"

#rcuScans:

- scanl-ip

- scan2-ip

#

|f using RAC, provide either a list of VIP hostnane/|P addresses
or a list of | NSTANCE NAMES

|f not using RAC, comment these out "#rcuVips:" and "#rcul nstances:"
#

#rcu\i ps:

- vipl-ip

- vip2-ip

#--- OR---

#rcul nst ances:
- instance-1
- instance-2

Creating an Ingress

An ingress establishes connectivity to the UIM instances.
To create an Ingress, run the following command:
$COVMMON_CNTK/ scri pts/create-ingress.sh -p sr -i quick -s $SPEC PATH -a uim

Proj ect Namespace : sr
I nstance Full name : sr-quick

LB _HOST ; quick.sr.uimorg
Ingress Controller: GENERIC
External LB IP : 192.0.0.8

NAME: sr-qui ck-ingress

LAST DEPLOYED: Wed Jul 1 10:20:27 2020
NAMESPACE: sr

STATUS: depl oyed

REVISION: 1

TEST SU TE: None

I ngress created successfully...

Creating a UIM Instance

This procedure describes how to create a UIM instance in your environment using the scripts
that are provided with the toolkit.

To create a UIM instance:

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 18

ORACLE

1.

Chapter 4
Creating a Basic UIM Instance

Run the following command:

$COMMON_CNTK/ scri pts/ create-applications.sh -p sr -i quick -s $SPEC PATH -
auim

The create-applications.sh script uses the Helm chart located in the charts/uim-app
directory to create and deploy the domain custom resource and the domain config map for
your instance. If the scripts fails, see the Troubleshooting Issues section at the end of
this topic, before you make additional attempts.

The instance creation process creates the opssWF secret, which is required for access to
the RCU DB. It is possible to handle the wallet manually if needed. To do so, pass - wto
the create-applications.sh script, which creates the wallet file at a location you choose.
You can then use this wallet file to create a secret by using the manage instance
credentials script.

Validate the important input details such as Image name and tag, specification files used
(Values Applied), hostname, and port for ingress routing:

$COMMON_CNTK/ scri pts/ create-applications.sh -p sr -i quick -s $SPEC PATH -
auim

Calling helmlint==> Linting /scratch/sthatipa/cloudl ab/ui mcntk/
scripts/../charts/uim

[INFQ Chart.yam: icon is recomended

1 chart(s) linted, O chart(s) failed

Proj ect Namespace : sr

I nstance Full name : sr-quick

LB HOST : quick.sr.uimorg

LB_PORT : 30505

Image : uimecn-base:7.5.1.0.1

Shape : dev

Val ues Applied :

Qutput wallet : n/a

After the script finishes running, the log shows the following:

NAMVE READY STATUS RESTARTS AGE
sr-quick-admn 1/1 Runni ng 0 2mL2s
Sr-qui ck-msl 0/1 ContainerCreating O 1s

Provide opss wallet File for 'sr-quick’

For exanple : '/path-to-uimcntk/sr-quick.ewallet’
opss wal let File:

secret/sr-qui ck-opss-wal l etfile-secret created

Instance 'sr/sr-quick' admin server is now running.
Creation of instance 'sr/sr-quick’ has conpleted successfully.

The create-applications.sh script also provides some useful commands and configuration
to inspect the instance and access it for use.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 18

ORACLE Chapter 4
Creating a Basic UIM Instance

@® Note

While creating an instance on new RCU Schema, provide -w option to save OPSS
eWallet data of instance. By default, this data is pushed into the opssWF secret
automatically.

3. If you query the status of the pods, the READY state of the managed servers may display
0/1 for several minutes while the UIM application is starting.
When the READY state shows 1/1, your UIM instance is up and running. You can validate
the instance by deploying UIM base cartridges and creating Custom Object instance in the
UIM Home page.

The base hostname required to access this instance using HTTP is qui ck. sr. ui m or g. See
"Planning Your Cloud Native Environment" for details about hostname resolution.

The create-applications script prints out the following valuable information that you can use
while working with your UIM domain:

e TheT3URL:http://t3.quick.sr.uimorg: 30505 This is required for external client
applications such as JMS and WLST.

e Log in to the WebLogic Remote Console by:
1. Open WebLogic Remote Console Application application.
2. Choose startup task as Add Admin Server Connection Provider.

3. Enter URL as follows:
http:// Server Name: Port

4. Enter the WebLogic server administration user name and password.

* The URL for access to the UIM Uls, which is provided through the ingress controller that
requires the host to be specified as: ht t p: // qui ck. sr. ui m or g: 30505/ | nvent ory/
Logi n. j sp.

Assigning Roles

To access UIM Home page, you need to assign roles. You can use EM console for role
assignments.

To assign roles:

1. Create uim-user-roles.txt as follows:

ui ndev: ui muser
cmwsdev: ui muser

2. Run the following command to assign the roles:

$COMMON_CNTK/ sanpl es/ credenti al s/ assign-role.sh -p sr -i quick -f uimuser-
rol es. t xt

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 18

ORACLE Chapter 4
Creating a Basic UIM Instance

Validating the UIM Instance

After creating an instance, you can validate it by checking the domain configuration and the
client Uls.

Run the following command to display the domain configuration details of the UIM instance
that you have created:

kubect| describe domain sr-quick -n sr

The command displays the domain configuration information.

To verify the client Uls:

* Log into the WebLogic console using the URL specified in the output of the create-
instance script: http://admin.quick.sr.uim.org:30505/console

You can use the console to verify the configuration that has been applied and to see that
the UIM application is in an active state.

* Log into the UIM Task Web client user interface with the UIM administrator login
credentials created as part of "Creating Secrets" using the URL (http:/
quick.sr.uim.org:30505/Inventory/Login.jsp) specified in the output of the create-
applications script.

® Note

After a UIM instance is created, it may take a few minutes for the UIM user interface to
become active.

Scaling the UIM Application Cluster

Now that your UIM shape is up and running, you can explore the ability to dynamically scale
the application cluster. Update the shape directory name that you have provided.

To scale the UIM application cluster, edit the configuration:

1. Inthe shape specification directory mentioned in applications-base.yaml, change the
value for cl ust er Si ze in uim.yaml file manually. This change would ultimately be
performed by an automated CI/CD pipeline.

vi $SPEC PATH sr/ qui ck/ shapes/ dev/ ui m yani
Change the cluster size to a value not larger than 18

#tcl uster size
clusterSize: 2

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 18

ORACLE Chapter 4
Creating a Basic UIM Instance

@® Note

You can watch the Kubernetes pods in your namespace shrink or grow in real-
time. To watch the pods shrink or grow, in a separate terminal window, run the
following command:

kubect! get pods -n sr --watch

2. Upgrade the deployed Helm release:

$COVMMON_CNTK/ scri pt s/ upgr ade-applications.sh -p sr -i quick -s $SPEC PATH -
auim

This pushes the new configuration to the deployed Helm release so the operator can take
the necessary steps.

The WebLogic operator monitors changes to cl ust er Si ze and results in the operator
spinning up or tearing down managed servers to align with the requested cluster size.

Deleting and Recreating Your UIM Instance

Deleting Your UIM Instance
To delete your UIM instance, run the following command:

$COMMON_CNTK/ scri pt s/ del et e-applications.sh -p sr -i quick -s $SPEC PATH -a
uim

Re-creating Your UIM Instance

When you delete a UIM instance, the database state for that instance still remains unaffected.
You can re-create a UIM instance with the same project and the instance names, pointing to
the same database.

@ Note

Ensure that you use the same specifications that you used for creating the instance
and that the following secrets have not been deleted:

e uimdb
* rcudb
° OpssWF
° OpssWP
* WISRTE

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 18

ORACLE Chapter 4
Creating a Basic UIM Instance

To re-create a UIM instance, run the following command:

SCOMMON_CNTK/ scri pts/ create-applications.sh -p sr -i quick -s $SPEC PATH -a
uim

@® Note

After re-creating an instance, client applications such as SoapUl and HermesJMS may
need to be restarted to avoid using expired cache information.

Cleaning Up the Environment

To clean up the environment:
1. Delete the instance:

$COMMON_CNTK/ scri pt s/ del et e-applications.sh -p sr -i quick -s $SPEC PATH -
auim

2. Delete the ingress:
$COVMMON_CNTK/ scri pt s/ del ete-ingress.sh -p sr -i quick -s $SPEC PATH -a uim

3. Delete the namespace, which in turn deletes the Kubernetes namespace and the secrets:

$COMMON_CNTK/ scri pt s/ unregi ster-nanespace.sh -p sr -d -t targets

@® Note

w sko is the name of the target for registration of the namespace. The script uses
WLSKO NS to find the target.

4. (Optional) To stop WebLogic Operator from monitoring the namespace, unregister it:

e Ensure that you provide the | abel sel ect or you used while registering the
namespace with Wl sko. For example, for wko412=enabl ed, use the following
command for unregistering. You can describe the project namespace and check the
label to see which label selector is used.

$COMMON_CNTK/ scri pt s/ unregi st er - nanespace. sh -p <project> -t w sko -I
| abel

#For exanpl e,
$COMMON_CNTK/ scri pt s/ unregi ster-nanespace.sh -p sr -t w sko -1 w sko412

@® Note

You do not have to provide the complete label, which is key=val ue. You can
provide only the key of the label.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 16 of 18

ORACLE

Chapter 4
Creating a Basic UIM Instance

5. Drop the PDB as follows:

Drop UM Schena
$COMMON_CNTK/ scri pts/install-database.sh -p project -i instance -
s $SPEC PATH -a uim-c 5

Drop RCU Schenm
$COMMON_CNTK/ scri pts/install-database.sh -p project -i instance -
s $SPEC PATH -a uim-c 6

If RCU dropped, You can delete the secret
kubect| delete secret -n project project-instance-opss-walletfile-secret

Troubleshooting Issues with the Scripts

This section provides information about troubleshooting some issues that you may come
across when running the scripts.

If you experience issues when running the scripts, do the following:

* Check the operator logs to find out the details about the issue:

kubect| get pods -n $W.SKO NS
get the operator pod nane to be used in the next comand
kubect| logs -n $W.SKO NS operator_pod

* Check the "Status" section of the domain to see if there is useful information:

kubect| describe domain -n sr sr-quick

"Timeout" Issue

In the logs, you may sometimes see the word "timeout” when the create-applications script
fails. When you run the create-applications script, it may take a long time to pull the image, if
you are doing it for the first time. In such a scenario, the script may fail and display the text
"timeout" in the log.

To resolve this issue, try increasing the podSt ar t upDeadl i neSeconds parameter. The
podSt ar t upDeadl i neSeconds parameter is a configurable parameter exposed in the
instance specification that can be increased if required. Start with a very high timeout value
and then monitor the average time it takes, because it depends on the speed with which the
images are downloaded and how busy your cluster is. Once you have a good idea of the
average time, you can reduce the timeout value accordingly to something that considers both
the average time and some buffer.

Mdify the timeout value to start introspector pod. Miinly
when using against slow DB or pulling imge first tine.
podSt art upDeadl i neSeconds: 800

After adjusting the parameter, clean up the failed instance and re-create the instance.
Cleanup Failed Instance

When a create-applications script fails, you must clean up the instance before making
another attempt at instance creation.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 17 of 18

ORACLE Chapter 4
Next Steps

@® Note

Do not retry running the create-applications script or the upgrade-applications
script immediately to fix any errors, as they would return errors. The upgrade-
applications script may work but re-running it does not complete the operation.

To clean up the failed instance:

1. Delete the instance:

$COVMMON_CNTK/ scri pt s/ del et e-applications.sh -p sr -i quick -s $SPEC PATH -
auim

2. Delete and recreate the RCU schema:

$COMMON_CNTK/ scri pts/install -database.sh -p project -i instance -
s $SPEC PATH -a uim-c 5
$COMMON_CNTK/ scri pts/install -database.sh -p project -i instance -

s $SPEC PATH -a uim-c 2

Recreating an Instance

If you face issues when creating an instance, do not try to re-run the create-applications.sh
script as this will fail. Instead, perform the cleanup activities and then run the following
command:

$COVMMON_CNTK/ scri pts/create-applications.sh -p sr -i quick -s $SPEC PATH -a
uim

Next Steps

A basic UIM cloud native instance should now be running in your environment. This process
exposed you to some of the base functionality and concepts that are new to UIM cloud native.
You can continue in your sandbox environment learning about more UIM cloud native
capabilities by following the learning path.

If, however, your first priority is to understand details on infrastructure setup and structuring of
UIM instances for your organization, then you should follow the infrastructure path.

To follow the infrastructure path, proceed to "Planning Infrastructure".

To follow the learning path, proceed to "Creating Your Own UIM Cloud Native Instance".

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 18 of 18

Planning Infrastructure

In "Creating a Basic UIM Cloud Native Instance", you learned how to create a basic UIM
instance in your cloud native environment. This chapter provides details about setting up
infrastructure and structuring UIM instances for your organization. However, if you want to
continue in your sandbox environment learning about more UIM cloud native capabilities, then
proceed to "Creating Your Own UIM Cloud Native Instance".

See the following topics:

Sizing Considerations
Managing Configuration as Code
Setting Up Automation

Securing Operations in Kubernetes

Sizing Considerations

The hardware utilization for a UIM cloud native deployment is approximately the same as that
of a UIM traditional deployment.

Consider the following when sizing for your cloud native deployment:

Oracle recommends sizing using a given production shape as a building block, adjusting
the UIM cluster size to meet target order volumes.

In addition to planning hardware for a production instance, Oracle recommends planning
for a Disaster Recovery size and key non-production instances to support functional,
integration and performance tests The Disaster Recovery instance can be created against
an Active Data Guard Standby database when needed and terminated when no longer
needed to improve hardware utilization.

Non-production instances can likewise be created when needed, either against new or
existing database instances.

Contact Oracle Support for further assistance with sizing.

Managing Configuration as Code

Managing Configuration as Code involves the following tasks:

Creating Source Control Repository
Managing UIM instances

Deciding on the Scope

Deployment Considerations

Creating an Instance Using the Repository

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE

Chapter 5
Managing Configuration as Code

Creating Source Control Repository

Managing Configuration as Code (CAC) is a central tenet of using UIM cloud native. You must
create a source control repository to store all configuration that is necessary to re-create
instance (or PDB) if it is lost. This does not include the toolkit scripts.

You must also set up a Docker repository for the UIM and UIM DB Installer images, as well as
any custom versions of the UIM image for your use cases. For example, custom images are
required to deploy a custom application .ear file. For more details on custom images, see
"Customizing Images".

Managing UIM Instances

To extract the full benefits of UIM cloud native, it is imperative that you consider the
management of the UIM instances before making potential configuration changes. The
sections that follow describe how to structure your repositories to group project level artifacts,
while allowing for other artifacts to be re-used (if needed) by the multiple UIM instances within
a project.

Example Scenario
This section describes a scenario to help illustrate the concepts.

Let us assume that in an organization, UIM is used for two business purposes each of which is
handled by two separate teams. The first team uses UIM to orchestrate wire line (triple play)
orders for residential customers, and a second team uses UIM to process carrier ethernet for
enterprises.

Deciding on the Scope

You must first decide on the scope of the project including how many instances are required.
Choose meaningful names for your project and instance.

The organization in our example will have two projects named resiwireline and bizwireless.
We can assume that each project team has a predefined "pre-production” instance for final
validation or production changes, a geo-redundant production instance for disaster recovery, a
final User Acceptance Testing (UAT) instance for business testing, a few small Quality
Assurance (QA) systems and many small development instances.

The directory structure for your configuration repository should reflect the hierarchical
relationship of the project/instance relationship as well as isolating different projects from each
other.

About the Repository Directory Structure

The project directory includes the instance directories as well as configuration that is common
to all instances, whereas instance directory contains all individual specification files of an
instance.

- Each project requires its own project specifications (YAML files).

e Optional artifacts such as the list of users that are located under the top level project
directory.

< All artifacts under the project can be shared across the instances. Instance directories
contain the individual specification files.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE’

Chapter 5
Managing Configuration as Code

The following illustration shows the structure and hierarchy of the project directory with an
example.

Figure 5-1 Project Directory Structure

project/ resiwireline/
project specification resiwireline.yam|
custom shapes({optional) resiwireline-prodshape.yaml
extensionsy extensions/
custom WD T(optional) _custom-domain-model.tpl
instances/ _custom-ap plicatio n-support.tpl
instancel _custom-jms-support.tpl
instance specification instances,
instance2 prod/
instance specification resiwireline-prod.yaml
uat/
resiwireline-uat.yaml
qa/

resiwireline-ga.yaml

Deployment Consideration

As the scenario shows, there will be many bits of configuration that may mix and match in
different ways to produce a specific UIM instance. While all of these instances are pre-defined
in the source control repository, they need not be deployed all the time.

Consider the following:

* For each project, one or more production instances may be deployed.

* It would be reasonable for pre-production to be deployed only when needed while first
cloning the production DB.

* Likewise, the performance instance could also be deployed only when needed. Its PDB
could be cloned from a specially generated PDB with synthetic test data, providing a
consistent starting point.

» Likewise, the UAT instance could be deployed when needed, starting from similarly saved
UAT PDB.

* The GR instance application would not be pre-deployed, but its database would be created
in a DR site and synchronized from production via Active Data Guard.

Setting the Repository Path During Instance Creation

To offer flexibility in how the repository directory structure develops, the create-
applications.sh script takes as input, the path to the specification files.

The -s specPath parameter is mandatory in create-applications.sh. The specPath structure
should exactly match the structure that assemble-specification creates. Therefore, ensure
that you run the script before performing any operation.

specPath would contain all the directories that contain specification files used for creating an
instance:

Cloud Native Deployment Guide

G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 8

ORACLE

Chapter 5
Setting Up Automation

* repolresiwireline

* repolresiwirelinelga:repolresiwireline/ga/shape. This will include all specification files at
the resiwireline project level, as well as the specification files in the ga instance directory.

Additionally, a separate parameter is used to point to the directory where custom extensions
are found.

The -m customExtPath parameter is an optional parameter that can be passed into the
create-applications.sh script.

customExtPath would point to all the directories where custom template files reside for the
instance being created: fileRepo/resiwireline/extensions

Setting Up Automation

This section describes the complete sequence of activities for setting up a UIM environment
with the aim of grouping repeatable steps into high-level categories. You should start to plan
the steps that you can automate to some degree. This section does not include details on the
changes that must be made to the specification files, which is described in "Creating a Basic
UIM Instance".

@® Note

These steps exclude any one-time setup activities. For details on one-time setup
activities, see the tasks you must do before creating a UIM instance in "Creating a
Basic UIM Cloud Native Instance".

Where pre-requisite secrets are required, the toolkit provides sample scripts for this activity.
However, the scripts are not pipeline-friendly. Use the scripts for manually standing up an
instance quickly and not for any automated process for creating instances. These scripts are
also important because they illustrate both the naming of the secret and the layout of the data
within the secret that UIM cloud native requires. You must replace references to toolkit scripts
for creating secrets with your own mechanism in your DevOps process.

Configuring Code for Creating a UIM Instance

To configure code for creating an instance, you assemble the configuration. While some of
these activities could be automated, much of the work is manual in nature.

1. Assemble the configuration.
To assemble the configuration:

a. Run the following command to copy the default specification files to spec directory. It
copies applications-base.yaml, app-uim.yaml, all config files, and shape files to
provided $SPEC_PATH location:

$COMMON_CNTK/ scri pt s/ assembl e- speci fications.sh -p project -i instance -
s $SPEC PATH

b. Assemble the optional configuration files as needed. These files include custom WDT
fragments and custom shapes for deployment.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE

Chapter 5
Setting Up Automation

Create pre-requisite secrets for UIM DB access, RCU DB access, UIM system users,
OPSS, Introspector and the WLS Admin credentials used when creating the domain.

$COMMON_CNTK/ scri pt s/ manage- app- credential s.sh -p project -i instance -
s $SPEC PATH -a uimcreate W sadnin, opssWP, Wl sRTE, r cudb, ui nub

@® Note

Passwords and other secret input must adhere to the rules specified of the
corresponding component.

Create custom secrets as required for creating UIM embedded LDAP users.

$COMMON_CNTK/ sanpl es/ credent i al s/ manage- ui mcredential s.sh -p project -i
i nstance \

-C create \

-f user information file

** $COMMON_CNTK/ sanpl es/ credent i al s/ manage- ui m credentials.sh -h for help

Create other custom secrets as required by optional configuration.

Populate the embedded LDAP with all the fixed users in the app-uim.yaml file. During the
creation of the UIM server instance, for all the users listed, an account is created in
embedded LDAP with the same username and password as the Kubernetes secret:

i nvent oryUsers:
- ui madm nuser
- ui nrcmasuser
- uimmetricsuser

After the configuration and the input are available, the remaining activities are focused on
Continuous Delivery, which can be automated.

1.

2.

Register a namespace per project:

$COMMON_CNTK/ scri pt s/ regi ster-nanespace.sh -p project -t wsko -1
<| abl eSel ect or >

For exanpl e,
$COMMON_CNTK/ scri pt s/ regi ster-nanespace.sh -p sr -t w sko -1 w sko=enabl ed

Create one UIM PDB per instance:

e If the Master UIM PDB exists in the CDB, clone the PDB. In this scenario, a Master
PDB is created by cloning a seed PDB, deploying the UIM/RCU schema, and then
optionally deploying cartridges. This Master is only valid for a specific UIM schema
version.

e If the Master CDB does not have the schema provisioned, do the following:

a. Clone the seed PDB and then run the DB installer to create UIM and the RCU
schema:

$COMMON_CNTK/ scri pts/install -database.sh -p project -i instance -
s $SPEC PATH -a uim-c 1 (U M Schenma)

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE

Chapter 5
Setting Up Automation

$COMMON_CNTK/ scri pts/install -dat abase.sh -p project -i instance -
s $SPEC PATH -a uim-c¢ 2 (RCU Schenm)

Alternatively, the RCU schema can be reused. See "Reusing the RCU" section of
"Recreating an Instance" for more information.

3. Create the Ingress:

$COMMON_CNTK/ scri pts/create-ingress.sh -p project -i instance -
s $SPEC PATH -a uim

4. Create the instance.

$COMMON_CNTK/ scri pts/create-instance.sh -p project -i instance -
s $SPEC PATH a uim

Deleting an Ingress

To delete an ingress, run the following command:

$COMMON_CNTK/ scri pts/ del ete-ingress.sh -p project -i instance -s $SPEC PATH -
auim

Deleting an Instance

This section describes the sequence of activities for deleting and cleaning up various aspects
of the UIM environment.

To delete the application instance:

1. Run the following command:

$COMMON_CNTK/ scri pt s/ del et e-applications.sh -p project -i instance -
s $SPEC PATH -a uim

2. Remove the instance content manually from the LDAP server using your LDAP Admin
client. Specify ou=project-instance.

To clean up the PDB, drop it.

To clean up the configuration as code:
1. Delete the UIM instance and the database instance specification files.

2. Delete the secrets:

$COVMMON_CNTK/ scri pt s/ manage- app- credential s.sh -p project -i instance -
s $SPEC PATH -a ui m del ete ui m dap, ui mdb, rcudb, wl sadmi n, opssWP, W sRTE

3. Delete any additional custom secrets using kubectl.

Trying to streamline the processes and identifying when to omit certain activities and where
other activities must be repeated can be challenging. For instance, dropping the UIM RCU
schema is independent of deleting an instance, which happens through different script
invocations. While the life-cycle of the UIM instance and the PDB should be aligned, there are
also use cases where the business data in a PDB is required for re-use by a different UIM
instance. For details on specific use cases, see "Reusing the Database State".

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE

Chapter 5
Securing Operations in Kubernetes Cluster

Securing Operations in Kubernetes Cluster

This section describes how to secure the operations of UIM cloud native users in a Kubernetes
cluster. A well-organized deployment of UIM cloud native ensures that individual users have
specific privileges that are limited to the requirements for their approved actions. The
Kubernetes objects concerned are service accounts and RBAC objects.

All UIM cloud native users fall into the following three categories:

e Infrastructure Administrator
* Project Administrator
e UIM User

Infrastructure Administrator
Infrastructure Administrators perform the following operations:

e Install WebLogic Kubernetes Operator in its own namespace
e Create a project for UIM cloud native and configure it

- After creating a new project, run the register-namespace.sh script provided with the
Common cloud native toolkit

- Before deleting a UIM cloud native project, run the unregister-namespace.sh script
e Delete a UIM cloud native project
e Manage the lifecycle of WebLogic Kubernetes Operator (restarting, upgrading, and so on)

Project Administrator

Project Administrators can perform all the tasks related to an instance level UIM cloud native
deployment within a given project. This includes creating, updating, and deleting secrets, UIM
cloud native instances, UIM cloud native DB Installer, and so on. A project administrator can
work on one specific project. However, a given human user may be assigned Project
Administrator privileges on more than one project.

UIM User

This class of users corresponds to the users described in the context of traditionally deployed
UIM. These users can log into the user interfaces (Ul) of UIM and can call the UIM APIs.
These users are not Kubernetes users and have no privileges outside that granted to them
within the UIM application. For details about user management, see "Unified Inventory
Management System Administration Overview" in UIM System Administrator's Guide and
"Setting Up Authentication" in this guide.

RBAC Requirements

The RBAC requirements for the WebLogic Kubernetes Operator are documented in its user
guide. The privileges of the Infrastructure Administrator have to include these. In addition, the
Infrastructure Administrator must be able to create and delete namespaces, operate on the
WebLogic Kubernetes Operator's namespace. Depending on the specifics of your Kubernetes
cluster and RBAC environment, this may require cluster-admin privileges.

The Project Administrator's RBAC can be much more limited. For a start, it would be limited to
only that project's namespace. Further, it would be limited to the set of actions and objects that
the instance-related scripts manipulate when run by the Project Administrator. This set of
actions and objects is documented in the Common cloud native toolkit sample located in the
samples/rbac directory.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE

Chapter 5
Securing Operations in Kubernetes Cluster

Structuring Permissions Using the RBAC Sample Files

There are many ways to structure permissions within a Kubernetes cluster. There are
clustering applications and platforms that add their own management and control of these
permissions. Given this, the Common cloud native toolkit provides a set of RBAC files as a
sample. You will have to translate this sample into a configuration that is appropriate for your
environment. These samples are in samplesi/rbac directory within the toolkit.

The key files are project-admin-role.yaml and project-admin-rolebinding.yaml. These files
govern the basic RBAC for a Project Administrator.

Do the following with these files:

1. Make a copy of both these files for each particular project, renaming them with the project/
namespace name in place of "project". For example, for a project called "biz", these files
would be biz-admin-role.yaml and biz-admin-rolebinding.yaml.

2. Edit both the files, replacing all occurrences of project with the actual project/namespace
name.

For the project-admin-rolebinding.yaml file, replace the contents of the "subjects" section
with the list of users who will act as Project Administrators for this particular project.

Alternatively, replace the contents with reference to a group that contains all users who will
act as Project Administrators for this project.

3. Once both files are ready, they can be activated in the Kubernetes cluster by the cluster
administrator using kubectl apply -f filename.

It is strongly recommended that these files be version controlled as they form part of the
overall UIM cloud native configuration.

In addition to the main Project Administrator role and its binding, the samples contain two
additional and optional role-rolebinding sets:

e project-admin-addon-role.yaml and project-admin-addon-rolebinding.yaml: This role
is per project and is an optional adjunct to the main Project Administrator role. It contains
authorization for resources and actions in the project namespace that are not required by
the toolkit, but might be of some use to the Project Administrator for debugging purposes.

* wko-read-role.yaml and wko-read-rolebinding.yaml: This role is available in the
WebLogic Kubernetes Operator's namespace, and is an optional add-on to the Project
Administrator's capabilities. It lets the user list the WKO pods and view their logs, which
can be useful to debug issues related to instance startup and upgrade failures. This is
suitable only for sandbox or development environments. It is strongly recommended that,
even in these environments, WKO logs be exposed via a logs toolchain. The WebLogic
Kubernetes Operator's Helm chart comes with the capability to interface with an ELK
stack. For details, see https://oracle.qgithub.io/weblogic-kubernetes-operator/managing-
operators/#optional-elastic-stack-elasticsearch-logstash-and-kibana-integration.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 8

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/#optional-elastic-stack-elasticsearch-logstash-and-kibana-integration
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/#optional-elastic-stack-elasticsearch-logstash-and-kibana-integration

Creating Your Own UIM Cloud Native Instance

This chapter provides information on creating your own UIM instance. This chapter provides
information on how you can create a UIM instance that is tailored to the business requirements
of your organization. However, if you want to first understand details on infrastructure setup
and structuring of UIM instances for your organization, then see "Planning Infrastructure".

Before proceeding with creating your own UIM instance, you can look at the alternate and
optional configuration options described in "Exploring Alternate Configuration Options".

When you created a basic instance, you used the operational scripts and the base
configuration provided with the toolkit.

Creating your own instance involves various activities spanning both instance management
and instance configuration and includes some of the following tasks:

e Customizing UIM Configuration Properties
e Deploying Cartridges

e Extending the WDT Model

e Working with Kubernetes Secrets

e Creating Inventory Users

e Assigning Application Roles to Inventory Users

Customizing UIM Configuration Properties

You use files to control many aspects of UIM performance and configuration. These system
configuration files are located in UIM_builder_toolkit/staging/lcnsdk/uim-model/UIM/config.
Each file includes properties for which you can set values. See "Unified Inventory Management
System Administration Overview" in UIM System Administrator's Guide for more information on
property files and their contents.

In cloud native, these system configuration files are packaged into docker image while building
the image and these files are available under I[UIM/config folder within the pods.

Sample system configuration custom-config.properties.sample file is provided

under $SPEC_PATHI/projectl/instancelconfig/uim/system-config folder and will be available
only after assembling the specifications. If you are doing it for the first time, run the assemble-
specifications.sh script as mentioned in "Assembling the Specifications" and copy the sample
property file to custom-config.properties and add key value to override the default value
provided out-of-the-box for any specific system configuration property. The properties defined
in custom-config.properties file are fed into the container using Kubernetes configuration
maps. Any changes to these properties require the instance to be upgraded. Some properties
can be updated dynamically and some may require rolling restart.

For properties with dynamic updates, run the following command after you change the property
values:

$COMMON_CNTK/ scri pt s/ upgrade- appl i cations.sh -p project -i instance -
s $SPEC PATH -a uim

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 15

ORACLE

Chapter 6
Deploying Cartridges

For properties with rolling restarts, run the following command after you change the property
values:

$COMMON_CNTK/ scri pts/restart-applications.sh -p project -i instance -
s $SPEC PATH -a uim-r ns

Sample custom-config.properties File

The sample custom-config.properties file is as follows:

#Add the overridden value for key in this customconfig.property file
ui . | ast SavedSear ch=true

MapViewer U l, use this entry if mapviewer is running in a seperate domain
mapvi ewer Ur | =ht t p: // host name: port/ mapvi ewer

#Ti mer properties

#Add new set of tiners

#timer. MyTestingTimer. firstTime=120

#timer. MyTestingTi mer. period=120

#timer. MyTestingTimer.|istener=oracle.conmunications. custontimer. MTestingTi ne
r

Adding New Properties
You can add new properties in either of the following ways:

« Define configuration files in solution cartridges. These configuration files are packaged into
the customized docker image. See "Customizing Images" for more information. You need
to build the image and restart the application in case of any changes to these properties.

e Update custom-config.properties in $SPEC_PATHI/project/instance/config/uim/
system-config to include new properties. These properties are available after you start the
application and can be read using SystemConfig API.

Deploying Cartridges

Existing UIM cartridges that run on a traditional UIM deployment can still be used with UIM
cloud native, but you prepare and deploy those cartridges differently when the cartridges have
configuration files and Java code.

The cartridges can be categorized as follows:

e Simple cartridges that have entity specifications and Groovy or Drools code.

e Custom Extension cartridges that have Java code, configuration files, images, custom
applications, Java libraries, Aspects, and localization.

Simple cartridges can be deployed on UIM Cloud Native running instance using Cartridge
Management Tool or Design Studio. See "Overview" in UIM Cartridge Guide for more
information.

To deploy Custom Extension cartridges in UIM Cloud Native environment:

1. Package the custom extension content of the cartridge into UIM docker image while
building the image. The customized image should be generated with these cartridges. See
"Customizing Images" for more information.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 15

ORACLE

Chapter 6
Deploying Cartridges

2. Deploy the cartridge on a running instance of UIM Cloud Native with the customized
docker image. This can be done using CMT or Design Studio.

® Note

You can follow the custom extension cartridge deployment by default in case you
cannot identify the cartridge type.

Deploying Cartridges Using Design Studio

You can deploy cartridges directly from Design Studio using the Eclipse user interface or
headless Design Studio. However, use Design Studio for deploying cartridges in scenarios
where there is a lot of churn in the build, deploy and test cycle, but not for production
environments.

In order to incorporate Design Studio into the larger UIM cloud native ecosystem, you need to
have previously taken care of the mapping of the hostname to the Kubernetes cluster or the
load balancer as described in "Planning and Validating Your Cloud Environment".

After confirming that this has been done, do the following in Design Studio:

* Ensure that the connection URL of the Design Studio environment project matches your
UIM cloud native environment. This is likely: ht t p: / / instance.project. ui m or g: 30505/
cartridge/ wsapi . The suffix ui m or g is configurable.

e Inthe Design Studio workspace, depending on your network setup, you may need to set
the Proxy bypass field in the Network Connection Preferences to:
instance.project. ui m or g

Deploying Cartridges Using Cartridge Management Tool

You can deploy cartridges using Cartridge Management Tool (CMT). Oracle recommends you
to deploy cartridges using CMT in Continuous Deployment (CD).

Provide the following details into CMT:

e Connection URL that matches your UIM cloud native environment as follows:

http://instance. project.ui morg: 30505/ cartridge/ wsapi

The suffix uim.org is configurable.
* UIM cluster name
e Cartridge file location of Super Jar or Simple Jar

The sample build.properties file is as follows:

url =http://quick.sr.uimorg: 30505/ cartridge/ wsapi
usernane=<cartridge managenent web service user nane>
passwor d=<passwor d>

fileLocation=<cartridge file location>

depl oy. w . t arget. nane=ui ntl ust er

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 15

ORACLE Chapter 6
Deploying Cartridges

To deploy the cartridge, run the following command:

ant -lib ../lib -f build. xm deploy-cartridge

Deploying Cartridges using SSL
You can deploy cartridges using SSL in either of the following ways:
e Using CMT
« Using Design Studio

Deploying Cartridges using SSL when SAML 2.0 Authentication is NOT Enabled on UIM
CN in CMT

To deploy cartridges using SSL in CMT:

1. Upload the external server UIM certificate in JVM. The keytool is found in the bin directory
of your jdk installation.

e |n Unix:

.lkeytool -inmportcert -v -trustcacerts -alias <alias> -file /
path_to_copied_uimcertificate/conmoncert. pem -keystore /
path_to_jdk/jre/lib/security/cacerts -storepass <password>

* In Windows (using the command prompt):

keytool -inport -alias <alias> -keystore "/path_to jdk/jre/lib/security/
cacerts" -file "/path_to_copied_uimcertificate/comoncert. pent

Use the default password of Java KeyStore.

2. In CMT build.properties under tag sslKeyStore, provide commoncert.pem file as
follows:

url =https://instance. project.ui morg: 30443/ cartri dge/ wsapi
usernane=<cartridge managenent web service user nane>
passwor d=<passwor d>

ssl KeyStore="/path_to_copied uimcertificate/ comoncert. pent

Deploying Cartridges using SSL when SAML 2.0 Authentication is NOT Enabled on UIM
CN in Design Studio

To deploy cartridges using SSL when authentication is not enabled on UIM CN in Design
Studio:

1. Upload the external server UIM certificate in Ipath_to_jdkljrellib/security/cacerts if not
uploaded earlier:

keytool -inport -alias <alias> -keystore "/path_to jdk/jre/libl/security/
cacerts" -file "/path_to_copied_uimcertificate/commoncert. pent

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 15

ORACLE

Chapter 6
Deploying Cartridges

Provide the following vimar gs in eclipse.ini file as follows:

- vmar gs
-Djavax. net.ssl.trustStore=\path_to_jdk\jre\lib\security\cacerts
- Dj avax. net . ssl . trust St or ePasswor d=<passwor d>

Run Eclipse as Run As Administrator.
Generate jks file from commoncert.pem and provide it in Eclipse under SSL tab under
Studio Environment configuration as follows:

keytool -inportcert -v -alias <alias> -file /path-to/<certificate>. crt -
keystore /path-to/ <truststore>.jks -storepass <password>

Provide the HTTPS address for deploying the cartridge: https://
instance.project.uim.org:30543/cartridge/wsapi

Deploying Cartridge using SSL when SAML 2.0 Authentication is Enabled on UIM CN in
CMT

To deploy cartridges using SSL when SAML 2.0 authentication is enabled on UIM CN in CMT:

Upload the external server IdP and UIM certificate in JVM. The keytool is found in the bin
directory of your jdk installation.

¢ In Unix:

.lkeytool -inmportcert -v -trustcacerts -alias <alias> -file /
path_to_copied_ idp_certificate/idpcert.pem-keystore /
path_to_jdk/jre/lib/security/cacerts -storepass <password>
.lkeytool -inmportcert -v -trustcacerts -alias <alias> -file /
path_to_copied_uimcertificate/conmoncert. pem -keystore /
path_to_jdk/jre/lib/security/cacerts -storepass <password>

* In Windows (using the command prompt):

keytool -inport -alias <alias> -keystore "/path to jdk/jre/libl/
security/ cacerts" -file "/path_to copied idp certificate/idpcert.pent
keytool -inport-alias <alias> -keystore "/path to jdk/jre/lib/security/
cacerts" -file "/path_to copied uimcertificate/commoncert. pent

Generate jks file from idpcert.pem and commoncert.pem and provide path to the jks file
in CMT build.properties.

keytool -importcert -v -alias <alias> -file /
path_to_copied_uimcertificate/ conmoncert. pem -keystore /path-to/
<truststore>.jks -storepass <password>

#add idp certificate to same truststore

keytool -importcert -v -alias <alias> -file /path_to_copied_idp
_certificatel/idpcert.pem-keystore /path-to/

<truststore>.jks -storepass <password>

In CMT build.properties under tag sslKeyStore, provide truststore.jks file as follows:

url =https://<instance>. <proj ect>. <host Suf fi x>: 30543/ cartri dge/ wsapi
usernane=<cartridge managenent web service user nane>

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 15

ORACLE Chapter 6
Adding New WDT Metadata

passwor d=<passwor d>
ssl KeyStore="/path_to_generated_keystore/<truststore>.jks"

Deploying Cartridges using SSL when SAML 2.0 Authentication is Enabled on UIM CN in
Design Studio

To deploy cartridges using SSL when SAML 2.0 authentication is enabled on UIM CN in
Design Studio:

1. Upload the external server IdP and UIM certificate in Ipath_to_jdkl/jrel/lib/security/cacerts
if not uploaded earlier:

keytool -import -alias <alias> -keystore "/path_to jdk/jre/lib/security/
cacerts" -file "/path_to_copied_|DP _certificate/idpcert.pent

keytool -import -alias <alias> -keystore "/path_to jdk/jre/lib/security/
cacerts" -file "/path_to_copied_uimcertificate/conmoncert. pent

2. Provide the following vimar gs in eclipse.ini file as follows:

- Vmar gs
-Djavax.net.ssl.trustStore=\path_to_jdk\jre\lib\security\cacerts
- Dj avax. net. ssl . trust St or ePasswor d=<passwor d>

3. Run Eclipse as Run As Administrator.

4. Generate jks file from commoncert.pem and idpcert.pem and provide it in Eclipse under
SSL tab under Studio Environment configuration as follows:

keytool -inportcert -v -alias <alias> -file /path-to/comoncert. pem -
keystore /path-to/<truststore>.jks -storepass <password>

#add idp certificate to same truststore crated above
keytool -inportcert -v -alias <alias> -file /path-to/idpcert.pem -
keystore /path-to/<truststore>.jks -storepass <password>

5. Provide the HTTPS address for deploying the cartridge: https://
<instance>.<project>.<hostSuffix>:30543/cartridge/wsapi

Adding New WDT Metadata

The Common cloud native toolkit provides the base WDT metadata in $SCOMMON_CNTK/

charts/uim-app/charts/uim/templates. As the UIM application requires this WDT metadata
for the proper functioning, this must not be edited. Instead, the toolkit provides a mechanism
whereby new pieces of WDT metadata can be included in the final description of the domain.

See "Extending the WebLogic Server Deploy Tooling (WDT) Model" for complete details on the
general process for providing custom WDT. The steps described must be repeated for a variety
of WDT use cases.

To provide the required configuration for JMS queues, create custom JMS Resources as
described in "Adding a JMS System Resource".

Handling of sensitive data from within the WDT metadata fragment is supported as described
in the "Accessing Kubernetes Secrets from WDT Metadata".

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 15

Chapter 6

ORACLE
Working with Kubernetes Secrets

Working with Kubernetes Secrets

Secrets are Kubernetes objects that you must create in the cluster through a separate process
that adheres to your corporate policies around managing secure data. Secrets are then made
available to UIM cloud native by declaring them in your configuration.

When the UIM cloud native sample scripts are not used for creating secrets, the secrets you
create must align to what is expected by UIM. The sample scripts contain guidelines for

creating secrets.

The following diagram illustrates the role of Kubernetes Secrets in a UIM cloud environment:

Figure 6-1 Kubernetes Secrets in UIM Cloud Environment

Secrets used by SAF WDT

Secrets used by Custom WDT

a) "'%‘-
UIM Cloud Native &l (o (= Credential Store (used by
c Automation Framewaork)
Toolkit
(o -
fa Proj tar d
wisadmin (53 proj ” T ypti
Helm chart c
~{ roje | 1dap.
ebLogie embedded ©
Operator > 10ap €)
uim f\
DB Installer ! o =
e Y project-instance-
KX openldap-credentials

S

OpenLDAP as
Q] authenticator

opssWP

N
(M/' = Mandatory opssWF

o | = Optional (based on enabling out-

of-box functionality in specifications) Alternate

authenticator

C | =custom DB

There are three classifications of secrets, as shown in the above illustration:
e Mandatory (Pre-requisite) Secrets

e Optional Secrets

¢ Custom Secrets

About Mandatory Secret

Mandatory secrets must be created prior to running the cartridge management scripts or the
instance creation script.

The toolkit provides the sample script: $COMMON_CNTKI/scripts/manage-app-
credentials.sh to create the secrets for you. Refer to the script code to see the naming and

internal structure required for each of these secrets.
See the following topics for more details about Kubernetes Secrets:

e Creating Secrets

« Management of Secrets

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 15

ORACLE

Chapter 6
Working with Kubernetes Secrets

About Optional Secrets

Optional secrets are dictated by enabling the out-of-the-box configuration. There is some
functionality that is pre-configured in UIM cloud native and can be enabled or disabled in the
specification files. When the functionality is enabled, these secrets must be created in the
cluster before a UIM instance is created.

If you use OpenLDAP for authentication, UIM cloud native relies on the following secret to
have been created:

proj ect -i nst ance- openl dap-credential s

The toolkit provides a sample script to create these secrets for you $SCOMMON_CNTK/
samples/credentials/manage-uim-ldap-credentials.sh by passing in - o secret.

When SAF is configured, SAF secrets are used. SAF secrets are similar to custom secrets
and are declared in a specialized area within the app-uim specification that feeds into the
SAF-specific WDT custom template.

saf Destinati onConfig:
- nane: <SAF Configuration Name>
t3Url: <Renote Destination URL>
secret Nane: <Secret Name of Renpte Destination Credential s>

About Custom Secrets

UIM cloud native provides a mechanism where WDT metadata can access sensitive data
through a custom secret that is created in the cluster and then declared in the configuration.
See "Accessing Kubernetes Secrets from WDT Metadata" to familiarize yourself with this
process.

This class of secrets are required only if you need secrets for this mechanism.

To use custom secrets with WDT metadata:

1.

@® Note

As an example, this procedure uses a WDT snippet for authentication.

Add secret usage in the WDT metadata fragment:

Host: ' @@BECRET: aut henti cation-credenti al s: host @@

Port: ' @OBECRET: aut hentication-credential s: port @@

Control Fl ag: SUFFI Cl ENT

Principal : ' @BECRET: aut henti cati on-credential s: princi pal @

Credential Encrypted: ' @IBECRET: aut henti cation-credential s: credenti al @@

Add the secret to the app-uim specification.

proj ect:
cust onBecrets:
secretNames: {} # This enpty declaration should be renoved if adding

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 15

ORACLE

Chapter 6
Working with Kubernetes Secrets

items here.
#secr et Nanes:
- nysecretl
- nysecret2
Create the secret in the cluster, by using any one of the following methods:
e Using Common cloud native toolkit scripts
e Using a Template
e Using the Command-line Interface

In the example metadata shown in step 1, the secret must capture host, port, principal, and
credential.

See "Mechanism for Creating Custom Secrets" for details about the methods.

Accommodating the Scope of Secrets

The WDT metadata fragments are defined at the project level as the project typically owns the
solution definition. Accommodating this is a simple task.

To walk through this, we will use authentication as an example and introduce a UIM project that
includes three instances: development, test, and production. The production environment has
a dedicated authentication system, but the development and test instances use a shared
authentication server.

To accommodate this scenario, the following changes must be made to each of the basic
steps:

1.

Define a naming strategy for the secrets that introduce scoping. For instance, secrets that
need instance level control could prepend the instance name. In the example, this results
in the following secret names:

e U Mdev-authentication-credentials
e U Mtest-authentication-credentials
e U M prod-authentication-credentials

Include the secret in the WDT fragment. In order for this scenario to work, a generic way is
required to declare the "scope” or instance portion of the secret name. To do this, use the
built-in Helm values:

. Val ues. name - references the full instance name (project-instance)
. Val ues. namespace - references the project nane (project)

If the fragment needs to support instance-level control, derive the instance name portion of
the secret name.

Host: ' @@BECRET: {{ .Val ues.name }}-authentication-credentials:host @
Port: ' @®BECRET: {{ .Val ues.name }}-authentication-credentials:port@®
Control Fl ag: SUFFI Cl ENT

Principal : ' @BECRET: {{ .Val ues.nanme }}-authentication-

credential s: princi pal @

Credential Encrypted: ' @®BECRET: {{ . Val ues. name }}-authentication-
credential s:credential @@

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 15

ORACLE Chapter 6
Working with Kubernetes Secrets

3. Add the secret to the app-uim specification.

Dev Instance Spec

#Cust om secrets
Mil tiple secret nanes can be providedi nstance:
cust onBecrets:
secretNames: {} # This enpty declaration should be renoved if adding
items here.
#secr et Nanes:
- nysecretl
- nysecret2

Test Instance spec

#Cust om secrets
Mil tiple secret nanes can be provided
cust onSecret s:
secr et Nanes:
- U Mtest-authentication-credentials

Prod | nstance Spec

#Cust om secrets
Mil tiple secret nanes can be provided
cust onBecrets:
secret Nanes:
- U M prod-authentication-credentials

4. Create the secret in the cluster by following any one of the methods described in
"Mechanism for Creating Custom Secrets". In our example, the secret would need to
capture host, port, principal and credential. Each instance would need a secret created, but
the values provided depend on which authentication system is being used.

Dev secret creation

kubect!| create secret generic U Mdev-authentication-credentials \
-n UM\
--fromliteral =princi pal =<val uel> \
--fromliteral =credential =<val ue2> \
--fromliteral =host=<val ue3> \
--fromliteral =port=<val ue4>

Test secret creation

kubect| create secret generic U Mtest-authentication-credentials \
-n UM\

--fromliteral =princi pal =<val uel> \

--fromliteral =credenti al =<val ue2> \

--fromliteral =host=<val ue3> \

--fromliteral =port=<val ue4>

##Production secret creation

kubect| create secret generic U M prod-authentication-credentials \
-n UM\

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 15

ORACLE Chapter 6
Working with Kubernetes Secrets

--fromliteral =princi pal =<pr odval uel> \
--fromliteral =credenti al =<prodval ue2> \
--fromliteral =host =<pr odval ue3> \
--fromliteral =port=<prodval ue4>

The following diagram illustrates the secret landscape in this example:

Figure 6-2 Landscape of Secrets

Common authentication
server

Production authentication
when WDT allows for server

when WDT enforces only

1= project-level secrets
{{ Values.namespace }}-secret-
credentials

instance-level secrets

{{ Values.name }}-secret-credentials

UIM namespace

UIM-dev UIM-test UIM-prod

TN
{ P | Project level custom secrets

1 Instance level custom secrets

Mechanism for Creating Custom Secrets

You can create custom secrets in any of the following ways:
e Using Scripts
e Using a Template

e Using the Command-line Interface
Using Scripts to Create Secrets

Functionality such as OpenLDAP and Embedded LDAP Store that can be enabled or disabled
in UIM cloud native relies on pre-requisite secrets to be created. In such cases, the toolkit
provides sample scripts that can create the secrets for you. While these scripts are useful for
configuring instances quickly in development situations, it is important to remember that they
are sample scripts, and not pipeline friendly. These scripts are also essential because when
the secret is mandated by UIM cloud native, both the secret name and the secret data are
available in the sample script that populates it.

As an example, the secrets used by the Credential Store mechanism must follow a specific
naming convention:

pr oj ect Nane- i nst anceName- ui mcn- cr ed- mapName

Using a Template

To create custom secrets using a template:

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE Chapter 6
Creating Inventory Users

1. Save the secret details into a template file.

api Version: v2

kind: Secret

met adat a

| abel s:

webl ogi c. resour ceVer si on: donai n-v2
webl ogi c. donai nUI D: proj ect-instance
webl ogi c. domai nNane: project-instance
namespace: proj ect

nane: secret Name
type: Opaque
stringDat a:
password_key: <password_key val ue>
user _key: <user_key val ue>

2. Run the following command to create the secret:

kubect!| apply -f tenplateFile

Using the Command-line Interface

You can also specify the secret name and the details directly on the command-line interface:

kubect| create secret generic secretNane \

-n project \

--fromliteral =password_key=<password_key val ue> \
--fromliteral =user _key=<user _key val ue>

Creating Inventory Users

This section describes how to use the sample scripts to create Inventory Ul and Cartridge
Deployment users and provide required project configuration in the UIM cloud native.

The sample scripts also provide the ability to populate the OpenLDAP server so that UIM can
authenticate any inventory Ul and cartridge deployment users.

Creating Users in Embedded LDAP

A fixed set of users can be created in Embedded LDAP. Sample scripts to create LDAP user
secrets are placed in $COMMON_CNTK/samples/credentialsimanage-uim-credentials.sh.
Create a user information file with the list of users and WebLogic sever groups as follows:

ui mui ndev: secret: ui musers, uimmetrics-users

ui mui nga: secret: ui musers,, uimnetrics-users

ui m cmwsdev: secret: Administrators, Cartridge Managenent WebServi ce
ui mcmysga: secret: Admnistrators, Cartri dge_Management \WWebSer vi ce

To create users in embedded LDAP, run the following command:

.I'manage-ui mcredentials.sh -p project -i instance -c create -f <text file>

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE

Chapter 6
Creating Inventory Users

Verify the Secret Creation

To verify the secret, run the following command:

kubect| get secrets -n project

#
NANVE TYPE
proj ect -i nstance- ui ntn-cred- ui m Opaque

Add all the inventory users to the inventory users in embedded LDAP under the
inventoryUsers section in app-uim file. During the creation of the UIM server instance, for all
the inventory users listed, an account is created in embedded LDAP with the same username
and password and groups as the Kubernetes secret.

List all cartridge users and execute
$COMMON_CNTK/ sanpl es/ credent i al s/ manage-ui mcredential s.sh to create
the cartridge user secret before creating the UM CN instance.
#inventoryUsers: {} # This enpty decl aration shoul d be removed if adding
itenms here.
i nvent oryUsers:

- ui mdev

- uinga

- cnmsdev

- cmwsqa

@® Note

Cartridge deployment can be performed by users crwsdev and crmwsga, where as
users ui ndev and ui nga can access Inventory Ul.

Creating Users in OpenLDAP

UIM cloud native recommends to use external LDAP for maintaining user accounts.
COMMON_CNTK includes sample scripts for OpenLDAP user creation. See "Setting Up
Authentication" to configure OpenLDAP server.

UIM groups need to be created in the OpenLDAP server and assign them to a Human user
before the user can access UIM functioning. The secrets giving access to OpenLDAP server
for authentication purposes need to be set up and then enable the OpenLDAP integration by
setting true to uim.authentication.openldap.enabled in app-uim.yaml file.

The sample app-uim.yaml is as follows:

External authentication
When enabl ed, kubernetes secret "<project>-<instance>-openl dap-credential s"
must exi st
aut henti cation:
openl dap:
enabl ed: true

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE Chapter 6
Creating Inventory Users

Creating Group and User

To create Human user and assign the user to a group in OpenLDAP, edit
the $COMMON_CNTK/samples/credentials/uim_users.txt file.

For example:

ui m ui n dapuser 1: | dap: ui musers
ui m ui n dapuser 2: | dap: ui musers

Install OpenLDAP client on the host where you are running the scripts. Run the following
command that installs the OpenLDAP clients:

sudo -s yum-y install openldap-clients

Run the sample script to populate the OpenLDAP server and create the secret as follows:

$COMMON_CNTK/ sanpl es/ credent i al s/ manage- ui m | dap-credential s.sh -p project -i
i nstance \

-Cc create \

-0 account, secret \

- H <Host nane> \

-A <Admin dn> \

-G <Domai n dn> \

-U <User dn>

Verify the secret creation as follows:

kubect| get secrets -n project

#
NAMVE TYPE
proj ect -i nst ance- openl dap-credential s Opaque

Creating OpenLDAP Users

Create the OpenLDAP users as follows:
$COMMON_CNTK/ sanpl es/ credenti al s/ manage- ui mcredentials.sh -p project -i
instance -c create -f ./uimusers.txt \

-H <Host name> \

-A <Adnmin dn> \
-G <Donmi n dn>

Verify the secret creation as follows:

kubect| get secrets -n project

#
NAMVE TYPE
proj ect -i nst.ance- ui ntn- cred- ui m Opaque

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 15

ORACLE Chapter 6
Assigning Application Roles to Inventory Users

The sample for creating OpenLDAP users is as follows:

$COMMON_CNTK/ sanpl es/ credent i al s/ manage- ui mcredentials.sh -p project -i
instance -c create -f ./uimusers.txt \

- H ui nopenl dap. snphxpr shar edl1. gbucdsi nt 02phx. or acl even. com \

- A cn=Manager, dc=ui ntn- 1| dap, dc=com \

- G ou=Domi ns, dc=ui ntn-1 dap, dc=com

@® Note

The above sample prompts for OpenLDAP administrator's password and passwords
for all the users you are creating. After the users are created successfully you can see
a message similar to LDAP User ui ml dapuser 1 created.

Configuring Other LDAP Systems

The manage-uim-credentials.sh script supports the OpenLDAP system. To provide support
for a different LDAP provider, you must modify the script. Also, the corresponding LDAP client
or the API must be installed on the system where the script is processed.

You must modify the following functions within this script:

e create_|l dap_account . This function creates the user account in the LDAP system and
associates the user to the specified groups.

e updat e_| dap_account . This function updates the user password.

 del ete_| dap_account . This function deletes the user from the LDAP system and
disassociates this user from the specified group.

« verify_|l dap_account. This function verifies that the specified user exists in the LDAP
server.

For details on developing the functions, see the developer's guide of the target LDAP server
that you want to use.

Assigning Application Roles to Inventory Users

Once inventory users are created, applications roles are to be assigned to perform operations
in Inventory Ul. See "Unified Inventory Management System Administration Overview" in UIM
System Administrator's Guide for available application roles. Sample script is provided to
assign roles to the inventory users. EM Console can also be used for role assignments.

To assign role, edit the $COMMON_CNTK/samples/credentials/uim-user-roles.txt file as
follows:

ui M dapuser 1: ui muser, Product Admi ni strat or
ui m dapuser 2: ui muser

Run the sample script to assign roles to the users:

$COMMON_CNTK/ sanpl es/ credenti al s/assign-role.sh -p project -i instance -f
<pat hToTheFi | e>/ ui muser-rol es. t xt

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 15

Extending the WebLogic Server Deploy
Tooling (WDT) Model

While the Common cloud native toolkit provides a domain model that is sufficient to support the
operation of the UIM application, there are a few aspects that you can customize to meet your
business requirements. This chapter provides the general mechanism that UIM cloud native
provides for how custom WebLogic Server Deploy Tooling (WDT) metadata can be used.

The following sections enable you to familiarize yourself with the basic extension mechanism.
For details on using the sample scripts to add custom WDT metadata, see "Using the Sample
Scripts to Extend the WDT Model".

About the Custom WDT Extension Mechanism

The Common cloud native toolkit exposes an extension mechanism to extend the base WDT
domain configuration. For better management practices, you must specify different WDT model
fragments in multiple .tpl files that can be included in instances as necessary.

All extensions must be located in your source control repository in a directory referred to as
customExtPath, which is provided during instance creation. This does not need to be the same
location as specPath that contains the specification files. See the illustration about the directory
structure in "Managing Configuration as Code".

Using the WDT Model Tools

This section describes the WDT model tools that you can use when extending the WDT model.

The WDT model tools are available at: https://github.com/oracle/weblogic-deploy-tooling. The
documentation available on GitHub describes various tools, which are included in the Common
cloud native toolkit.

For a developer trying to modify or extend the WDT model for a custom UIM instance, the
following tools are the most useful:

« WDT Discover Domain
« WDT Validate Model

WDT Discover Domain Tool

One way to generate the desired custom model is to manually create a WLS domain (using
legacy installers, wist scripts, console Ul changes, and so on) that contains all the constructs
that are required and is known to work, in terms of the custom use case. The WDT Discover
Domain tool can be pointed at this WLS domain to generate a set of model files. These can be
scanned and pruned to get the portions that are of custom interest. They can further be
parameterized using WDT's properties files or using Helm values.

If WDT properties are used to parameterize, ensure that you add that properties file to the
extension point in the custom implementation.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 20

https://github.com/oracle/weblogic-deploy-tooling

ORACLE

Chapter 7
Common WDT Extension Mechanism

If Helm values are used to parameterize, ensure that you add these values to the appropriate
location - base/app-uim/shape yamis.

To discover a domain, run the following commands on the prepared WLS admin server or
standalone server:

ensure ORACLE HOME is properly set
cd $ORACLE_HOVE
mkdi r wdt && cd wdt
wget https://github.com oracl e/ webl ogi c- depl oy-t ool i ng/rel eases/ downl oad/
webl ogi c- depl oy-t ool i ng- 1. 6. 0/ webl ogi c- depl oy. zi p
Replace 1.6.0 with the actual VDT version as per U M docunentation
unzi p webl ogi c-depl oy. zi p
cd webl ogi c- depl oy/ bin
./ di scover Domai n. sh -oracl e_hone $ORACLE HOME \
-donai n_hone domai n- hore \
-archive file archive \
-model _file nodel \
- domai n_t ype domai n-type \
-adm n_user admi n-user \
-admn_url t3-admn-url

where:

e archive and model are the directory+name of the files that the discovery tool creates. The
model file is of primary importance in this situation.

e domain-type is JRF for UIM applications

The command extracts the model from the running WLS instance. Alternatively, if it is sufficient
to extract the model from the domain configuration files, the admi n_user and admni n_ur |
parameters can be left out.

WDT Validate Model Tool

This tool is useful in the following scenarios:

« When there is a need to see what attributes and sub-fields are available for a model
element

* When there is a need to see if a model fragment is valid

Trying to test a newly written or even a modified model file by incorporating it into an instance
creation is cumbersome and often an inefficient way to test your changes. You need to check
the Introspector logs to see the details of any errors.

With the Validate Model tool, it is easier to validate the model file, especially if you are building
the model iteratively.

Common WDT Extension Mechanism

This section describes the extension mechanism that is generic and common to all methods of
extending WDT metadata.

Enabling the Extension Mechanism

To enable the extension mechanism:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 20

ORACLE Chapter 7
Common WDT Extension Mechanism

1. Copy $COMMON_CNTKI/samples/uim/customExtensions/_custom-domain-model.tpl
to your source control repository customExtPath. This file is a single location where other
template files, which store specific WDT metadata fragments, can be included for a UIM
instance. This sets up the WDT fragments for re-use across a project, while allowing
conditional inclusion based on instance level values in the specification files.

2. Enable the extension mechanism by setting the custom flag to t r ue in the app-uim
specification and including _cust om domnai n- nodel . t pl :

cust om
enabl ed: true
#wdt Files: {}
wdt Fi | es:

- _cust om donai n- nodel . t pl

The basic extension mechanism is now enabled.

For each WDT fragment that is destined for inclusion, perform the following additional steps:

e Provide the WDT fragment

(Optional) Parameterize the WDT Fragment
* Load the WDT Fragment
e Listthe .tpl files

* Debug the changes in the Helm chart
Providing the WDT Fragment

Naming convention dictates that the template files start with an underscore _. For example,
_cust om ext ensi on-support.tpl.

You can copy any one of the WDT fragments provided in the samples, or you can create your
own. If you provide your own WDT fragment, then you will need to reverse engineer the
required metadata using the WDT tooling. For these samples, see "Using the WDT Model
Tools".

If you create your own .tpl file, ensure that the WDT fragment is enclosed in a def i ne block as
follows:

{{- define "uimcustom extension-support" -}}
cust om nodel fragnent goes here

{{- end }}

(Optional) Parameterizing the WDT Fragment

Instead of hard coding the values into the WDT, you can parameterize the content so that
specific values can be driven from the Helm chart. Determine which values fall into this
category and then apply the following changes:

To parameterize the WDT fragment:

1. Update the WDT to use a parameter as illustrated in the following example:

Host: 'external.provider.hostnange'

becones. ...

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 20

ORACLE

Chapter 7
Common WDT Extension Mechanism

Host: '{{ .Val ues.custom extension. host }}'

2. Add values to the application instance in the app-uim specification found in the source
control at $SPEC_PATH.

custom
enabl ed: true
<ext ensi on>;
host: provide explicit_val ue_here

The custom area of the specification file is where you can add as much content as needed for
your extension use cases. Oracle recommends that you keep the yaml structure as flat as
possible.

Loading the WDT Fragment

The sample _cust om donai n- nodel . t pl already has conditional inclusions for some of the

samples provided in the toolkit. JIMS, JDBC, SAF, and custom application archives can be
enabled by providing the appropriate flag in the instance specification and including the

specific .tpl file in the app-uim specification. For the samples, you do this task as described in
"Using the Sample Scripts to Extend the WDT Model".

Load the model fragment into extension_Directory/_custom-domain-model.tpl as follows:

{{- define "uimcustom domai n-nodel" -}}
{{- $root :=. }}
cust om <ext ensi on>- support. <i ndex>.yam : |+
{{- include "uimcustom extension-support” $root | nindent 2 }}

{{- end }}

@® Note

See the yaml naming convention that is specified by wdt - filename.yaml. The index
used determines the loading order when there are multiple yaml files. Indexes below
80 are reserved for internal Oracle use.

The WDT may only need to be used conditionally. It is important to be able to exclude the
fragment based on the values provided in the app-uim specification. In this case, _cust om
domai n- nodel . t pl should include the condition that needs to be met for the WDT to be
included.

@® Note

Including the WDT in extension_Directory, which makes it available during instance
creation, but not used does not pose any problems for Helm.

{{- define "uimcustom donai n-nmdel" -}}
{{- $root :=. }}
{{- if .Values.custom <extension>. enabled }}
cust om ext ensi on- support.index.yam: |+
{{- include "uimcustom extension-support" $root | nindent 2 }}

Cloud Native Deployment Guide

G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 20

ORACLE’

Chapter 7
Using the Sample Scripts to Extend the WDT Model

{{- end }}
{{- end }}

Listing the TPL Files in the Project

For each WDT fragment that is created in a .tpl file, it needs to be listed in the app-uim
specification.

custom
enabl ed: true
#wdt Files: {}
wdt Fi | es:
- _cust om donai n- nodel . t pl
- new wdt.tpl

Debugging Helm Chart Changes

When making changes to existing yaml files or creating new WDT fragments, it is useful to test
the changes before attempting to create an instance.

You can use the following scripts provided with the toolkit to debug Helm chart changes:
¢ $COMMON_CNTKI/scripts/uim/lint-uim-instance-chart.sh
« $COMMON_CNTKI/scriptsicreate-applications-dry-run.sh

You can now create a UIM instance.

Using the Sample Scripts to Extend the WDT Model

This section provides instructions for extending the WDT model by using the sample scripts
that are provided with the toolkit. You add custom WDT metadata to create your own UIM
instances.

The toolkit includes sample scripts for the following:
* Adding a JDBC DataSource

 Adding a JMS System Resource

* Adding a Store-and-Forward-Agent and SAF Resources

* Deploying Entities to a UIM WebLogic Domain

 Extending the WDT Metadata for an External Authenticator

The general and common extension process described in "Common WDT Extension
Mechanism" must be repeated for each of the use cases described in this section.

Adding a JDBC DataSource

The WDT fragment describing a JDBCSystemResource is provided in
the $SCOMMON_CNTK/samples/uim/customExtension/_custom-jdbc-support.tpl sample
file.

To incorporate this fragment into your UIM instance:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 20

ORACLE Chapter 7
Using the Sample Scripts to Extend the WDT Model

1. Enable the extension mechanism by setting the cust omflag to true and add the custom-
domain-model to the list of included wdtFiles in the app-uim specification:

custom
enabl ed: true
wdt Fi | es:
- _cust om domai n- nodel . t pl

2. Provide the WDT fragment by copying $COMMON_CNTK/samples/uim/
customExtensions/_custom-jdbc-support.tpl to the customExtPath in your source
control repository.

3. Parameterize the WDT fragment. The fragment has already been parameterized and uses
values specified in the shape file. You must update the remaining values enclosed in
angular brackets. By default, this WDT reads the JDBC values from the shape that is
provided during instance creation.

® Note

Kubernetes Secrets can also be used to provide sensitive data such as username
and password. See "Accessing Kubernetes Secrets from WDT Metadata" for
details.

{{/* vim set filetype=nustache: */}}
{{/* Copyright (c) 2021, Oacle and/or its affiliates. */}}
{{/~
Add custom JDBC resources
*1}}
{{- define "uimcustomjdbc-support"” -}}
resour ces:
JDBCSyst enResour ce:
' <cust om conn- pool >':
Target: '{{ .Values.clusterNane}}'
JdbcResour ce:
JDBCDx i ver Par amns:
URL: '"jdbc:oracle:thin: @/
@OBECRET: <cust om secr et _nanme>: <dbconnecti onst ri ng_key>@@
Passwor dEncrypt ed: ' <passwor d>'
#Passwor dEncr ypt ed:
" @IBECRET: <cust om secret _name>: <passwor d_key>@@
DriverNane: oracle.jdbc. OracleDriver
Properties:
user:
Val ue: ' <user>'
#Val ue: ' @IBECRET: <custom secret _name>: <user _key>@d
oracl e. net. CONNECT_TI MECUT:
Val ue: {{ default
"10000" . Val ues. j dbc. oracl eNet Connect Ti meout }}
oracl e. j dbc. ReadTi neout :
Val ue: {{ default
"3660000" . Val ues.|jdbc. oracl eJdbcReadTi meout }}
JDBCConnect i onPool Par ans:
Initial Capacity: {{ default "1" .Values.jdbc.initial Capacity }}
MaxCapacity: {{ default "15" .Values.jdbc.naxCapacity }}

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 20

ORACLE

Chapter 7
Using the Sample Scripts to Extend the WDT Model

M nCapacity: {{ default "1" .Values.|jdbc.m nCapacity }}
Shri nkFrequencySeconds: {{ default
"900" . Val ues. jdbc. shrinkFrequencySeconds }}
Test FrequencySeconds: {{ default
"300" . Val ues.jdbc.testFrequencySeconds }}
Test Connecti onsOnReserve: {{ default
“true" .Values.jdbc.testConnectionsOnReserve }}
SecondsToTr ust Anl dl ePool Connection: {{ default
"10" . Val ues.jdbc. secondsToTrust Anl dl ePool Connection }}
St at enent CacheSi ze: {{ defaul t
"30" .Val ues.jdbc. statenment CacheSi ze }}
Connecti onCreati onRet ryFrequencySeconds: {{ default
"30" . Val ues.jdbc. connectionCreationRetryFrequencySeconds }}
I gnor el nUseConnect i onsEnabl ed: {{ default
“true" .Values.jdbc.ignorel nUseConnectionsEnabl ed }}
I nacti veConnecti onTi meout Seconds: {{ default
"0" .Val ues.jdbc.inactiveConnectionTi meout Seconds }}
St at ement CacheType: ' {{ default
"LRU" . Val ues. jdbc. st at enent CacheType }}'
Count Of Test Fai | uresTi | | Flush: {{ default
"5" . Val ues.jdbc.count Of Test Fai |l uresTil | Flush }}
Count Of Ref reshFai | uresTi | | Di sabl e: {{ default
"5" . Val ues.jdbc. count Of RefreshFail uresTil | Disable }}
Removel nf ect edConnections: {{ default
“fal se" .Val ues.jdbc.remvel nfectedConnections }}
Connecti onReserveTi neout Seconds: {{ default
"10" . Val ues.jdbc. connecti onReserveTi meout Seconds }}
Statenent Ti meout: {{ default
"3630" . Val ues. | dbc. statenment Ti neout }}
JDBCDat aSour cePar ans:
JNDI Nane: ' <j dbc/ cust om conn- pool >'
G obal TransactionsProtocol : ' None'

{{- end }}

The fragment is already configured for conditional loading based on the presence of the
j dbc flag in the app-uim specification. Set the j dbc flag to t r ue.

custom
enabl ed: true
jdbc: true

Add the JDBC .tpl file to the app-uim specification:

cust om
enabl ed: true
jdbc: true
wdt Fi | es:
- _cust om donai n- nodel . t pl
- _customjdbc-support.tpl

You can now create the UIM instance.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 20

ORACLE

6.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

You can create the UIM instance with customExtPath as follows:

$COMMON_CNTK/ scri pt s/ create-applications.sh -p project -i instance -
s $SPEC_PATH -a ui m - m <cust onExt Pat h>

Adding a JMS System Resource

The WDT fragment describing a JMS System Resource is provided in the SCOMMON_CNTKI/
samples/uim/customExtension/_custom-jms-support.tpl sample file.

To incorporate this fragment into your UIM instance:

1.

Enable the extension mechanism by setting the cust omflag to true and add the custom-
domain-model to the list of included wdtFiles in the app-uim specification:

custom
enabl ed: true
wdt Fi | es:
- _cust om donai n- nodel . t pl

Provide the WDT fragment by copying $COMMON_CNTK/samples/uim/
customExtensions/_custom-jms-support.tpl to the customExtPath in your source
control repository. While this sample shows WDT for a JIMS Queue and JMS Topic, any
other JMS entity can be supplied instead. See "Using the WDT Model Tools" for details on
establishing the correct WDT.

Parameterize the WDT fragment. The fragment has not been parameterized. The text
enclosed in angular brackets must be replaced with specific values.

Alternatively, update the WDT to parameterize content and provide actual values in the
app-uim specification.

The fragment is already configured for conditional loading based on the presence of the
j s flag in the app-uim specification. Set the j s flag to t r ue.

custom
enabl ed: true
jne: true

Add the jms tpl file to the app-uim specification:

custom
enabl ed: true
jms: true
wdt Fi | es:
- _cust om domai n- nodel . t pl
- _customjns-support.tpl

You can now create the UIM instance.

You can create the UIM instance with customExtPath as follows:

$COVMMON_CNTK/ scri pt s/ create-applications.sh -p project -i instance -
s $SPEC PATH -a ui m -m <cust onExt Pat h>

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 20

ORACLE

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Adding a Store-and-Forward-Agent and SAF Resources

The WDT fragment that describes a SAF system resource is available in
the $COMMON_CNTK/samples/uim/customExtension/_custom-saf-support.tpl sample

file.

To include the WDT fragment in your UIM instance:

1.

Enable the extension mechanism by setting the cust omflag to t r ue and add the custom-
domain-model to the list of included WDT files in the app-uim specification as follows:

custom
enabl ed: true
wdt Fi | es:
- _custom domai n- nodel . t pl

Provide the WDT fragment by copying $COMMON_CNTK/samples/uim/
customExtensions/_custom-saf-support.tpl to the customExtPath in your source
control repository. See "Using the WDT Model Tools" for more information on setting the
correct WDT.

@® Note

The sample file shows WDT for a SAF agent and SAF resources.

Set the parameters in the WDT fragment using the following commands.

@® Note

The fragment has parameters and uses values specified in the project file. By
default, this WDT reads the SAF configuration values from the app-uim.yaml file
that is provided during the instance creation.

Kubernetes Secrets can also be used to provide sensitive data such as username
and password. See "Accessing Kubernetes Secrets from WDT Metadata" for more
information.

resour ces:
SAFAgent :
' <ui msaf _agent>':
Store: '<inv_jns_store>
Servi ceType: ' Sending-only'
Target: '{{ default "c1" .Values.clusterNane }}'
JMBSyst enResour ce:
{{- range $destConfig := $. Val ues. saf Desti nati onConfig }}
"uim{{- $destConfig.nanme -}}_saf nodul e':
Target: '{{ default "cl1" $root. Val ues.cl usterNane }}'
SubDepl oynent :
' <cust om subdepl oy>":
Target: '<uimsaf _agent>'
JnmsResour ce:
SAFEr r or Handl i ng:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 20

ORACLE Chapter 7
Using the Sample Scripts to Extend the WDT Model

"ui m{{$dest Config.name}} saf error':
LogFormat: "9%eader% %roperties% Y%ody%s
Policy: Log
{{- if $destConfig.destinations }}
SAFRenot eCont ext :
"ui m{{$dest Config.name}} saf context':
SAFLogi nCont ext :
User name: ' @BECRET: {{$dest Confi g. secr et Nane}}: user nanme @@
Passwor dEncrypt ed: ' @@BECRET:
{{$dest Confi g. secret Nane}}: passwor d@@
Logi nURL: ' {{$dest Config.t3Url}}'
SAFI npor t edDest i nati ons:
{{- range $dest!|ndex, $dests := $destConfig.destinations }}
"ui m{{$dest Config.name}} saf destinations_{{$dest!|ndex}}":
SubDepl oynment Nane: ' <cust om subdepl oy>'
JNDI Prefix: '{{- $dests.jndiPrefix -}}'
SAFError Handl i ng: ' ui m {{$dest Config.nane}}_saf error'
SAFRenot eCont ext: ' ui m {{$dest Confi g. nane}} saf context'
{{- if $dests.queues }}
SAFQueue:
{{- range $index, $queue := $dests.queues }}
"saf _queue_{{$i ndex}}":
Renot eJndi Narme: ' {{ $queue. queue.renotelndi }}'
{{- if $queue.queue.local IJndi }}
Local JNDI Name: ' {{ $queue. queue. | ocal Jndi }}'
{{- end }} {{- /* end for if $queue.queue.local Indi */
-1}
{{- end }} {{- /* end for range $dests.queues */ -}}
{{- end }} {{- /* end for if $dests.queues */ -}}
{{- if $dests.topics }}
SAFTopi ¢:
{{- range $index, $topic := $dests.topics }}
"saf topic {{$index}}":
Uni t OF Or der Rout i ng: Hash
NonPer si st ent Qos: ' Exactly-Once'
Renot eJndi Name: ' {{ $topic.topic.renotedndi }}'
{{- if $topic.topic.localJndi }}
Local JNDI Name: ' {{ $topic.topic.localJndi }}'
{{- end }} {{- /* end for if $topic.topic.localJndi */ -}}
{{- end }} {{- /* end for range $dests.topics */ -}}
{{- end }} {{- /* end for if $dests.topics */ -}}
{{- end }} {{- /* end for range $dest Config.destinations

*I -1}

*1 -1}
{{- end }} {{- I* end for
range . Val ues. saf DestinationConfig */ -}}

{{- end }} {{- /* end for if $destConfig.destinations

4. The fragment is already configured for conditional loading based on the availability of the
saf flag in the app-uim specification. Set the saf flagtot r ue as follows:

custom
enabl ed: true
saf: true

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 20

ORACLE Chapter 7
Using the Sample Scripts to Extend the WDT Model

5. Add the saf.tpl file to the app-uim specification as follows:

cust om
enabl ed: true
saf: true
wdt Fi | es:
- _cust om donai n- nodel . t pl
- _custom saf-support.tpl

6. Add the parameter values in the app-uim.yaml file as follows:

When custom saf is enabled, then bel ow SAF destination configurations
wi |l be used. Unconment and provide the val ues here.
#saf DestinationConfig: {} # This enpty declaration should be renoved if
adding itens here.
saf Destinati onConfig:
- nane: <SAF Configuration Name>
t3Url: <Renote Destination URL>
secret Name: <Secret Nane of Renote Destination Credential s>
destinations:
- jndiPrefix: <JNDI Prefix>
queues:
- queue:
l ocal Jndi: <Local Queue JNDI Nane>
renoteJndi: <Renote Queue JNDI Nane>

7. Create the UIM instance with customExtPath as follows:

$COMMON_CNTK/ scri pts/ create-applications.sh -p project -i instance -
s $SPEC PATH -a ui m -m <cust onExt Pat h>

Deploying Entities to a UIM WebLogic Domain

You can deploy any WebLogic Server deployable entity, such as an application EAR or WAR to
a UIM WebLogic domain. The deployment can be achieved in two ways:

« Packaging the application ear file in the Customized Image. See "Customizing Images" for
more information on customizations.

e Using the extension mechanism.

To deploy an entity to a UIM WebLogic Domain using the extension mechanism:

1. Package the entity, for example, the application ear into an archive file and place it inside
the container image used for creating UIM instances.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 20

ORACLE

Chapter 7
Using the Sample Scripts to Extend the WDT Model

@® Note

The WebLogic domain tooling expects application binaries to be available at the
correct path within the archive. A script is provided for your convenience that
packages the application into the correct path.

cp application. ear sanples/uin cust onExtensions
cd sanpl es/ ui m cust onExt ensi ons
. I make- cust om ar chi ve. sh archive_file_nanme.zip application.ear plan.xm

Build a new container image:

cd sanpl es/ ui nf cust onExt ensi ons
docker build -t "image name:tag" --build-arg base_i mage=ui m base i mage --
buil d-arg archive=archive_file_nane.zip .

(Optional) Build a new container image using Podman:

cd sanpl es/ ui nf cust onExt ensi ons
podman build -t "imge _name:tag" --build-arg base_i mage=ui m base i mage --
bui |l d-arg archive=archive file nane.zip -f Dockerfile

Upload the generated image to your private Docker repository.

Add the domain configuration.
In addition to copying the archive file into the base image, you must supply custom
configuration. To use the extension mechanism:

a. Enable the extension mechanism by setting the cust omflag to true and add the
custom-domain-model to the list of included wdtFiles in the app-uim specification:

custom
enabl ed: true
wdt Fi | es:
- _cust om donai n- nodel . t pl

b. Provide the WDT fragment by copying the following to the customExtPath in your
source control repository.

cp $COMMON_CNTK/ sanpl es/ ui nf cust onExt ensi ons/ _cust om domai n- nodel . t pl
cust onExt Pat h/

cp $COMMON_CNTK/ sanpl es/ ui nf cust onExt ensi ons/ _cust om appl i cati on-
support.tpl custonExtPath/

c. Parameterize the WDT fragment. The fragment has already been parameterized.

appDepl oynent s:
Application:
{{- .Values.customapplication_name }}:
Sour cePat h: ' w sdepl oy/
applications/{{- .Values.custombinary nanme }}.ear’
Modul eType: ear
St agi nghbde: nost age

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 20

ORACLE

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Pl anSt agi nghbde: nost age
Target: ' @@PROP: CLUSTER NAVE@D

d. Provide the values in the app-uim specification. The fragment is configured for
conditional loading based on the presence of application flag in the app-uim
specification. See $COMMON_CNTKI/charts/uim-app/charts/uim/templates/
_custom-domain-model.tpl in the toolkit.

cust om
enabl ed: true
application: true
#addi tional val ues here
application_name: myApplication

bi nary_nane: nyApp

e. Add the application tpl file and update the image in the app-uim specification:

custom
enabl ed: true
application: true
wdt Fi | es:
- _cust om donai n- nodel . t pl
- _custom application-support.tpl

6. You can create the UIM instance with customExtPath as follows:

$COMMON_CNTK/ scri pt s/ create-applications.sh -p project -i instance -
s $SPEC PATH -a uim -m cust onExt Pat h

Extending the WDT Metadata for an External Authenticator

The Common cloud native toolkit provides out-of-the-box configuration for a WebLogic domain
using OpenLDAP as the authenticator. Using a different provider (even a different LDAP
provider) requires different WDT metadata, which is a significant undertaking. The
configuration required to support an alternate WLS provider would need to be investigated and
developed independently using an existing WebLogic domain. Oracle's WDT Discover Domain
Tool can analyze an existing domain and generate the corresponding WDT model. The WDT
model fragment can then be used to configure the UIM domain using the toolkit extension
mechanism.

See the following documentation for information on configuring a WebLogic domain with
alternative authentication providers:

e Configuring WebLogic to use LDAP

e Configuring Active Directory (AD) as an Authentication Provider in WebLogic

After the WDT is determined, it is provided during the creation process in the same way as
other WDT metadata fragments. This section describes the process for setting up external
authentication for UIM cloud native.

To set up external authentication:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 20

ORACLE

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Disable OpenLDAP by editing the app-uim specification in specPath:

aut hentication:
openl dap:
enabl ed: fal se

Copy $COMMON_CNTK/samples/uim/_custom-domain-model.tpl to your source
control repository at customExtPath.

Enable the extension mechanism by setting the cust omflag to t r ue in the app-uim
specification and including the _cust om domai n- nodel . t pl

custom
enabl ed: true
wdt Fi | es:
- _cust om domai n- nodel . t pl

Determine and provide the WDT model fragment for the security provider in the WebLogic
domain. Once you know the WDT fragment that needs to be supplied, save it into a file in
your source control repository at the customExtPath (_custom-provider-support.tpl).

{{- define "uimcustom provider-support" -}}
t opol ogy:

SecurityConfiguration:

Real m

myreal m

Aut hent i cati onProvi der:

"I Defaul t Aut henticator':

"IDefaul tldentityAsserter':

YouLDAPPr ovi der St ar t Her e:

<specific details here>

Def aul t Aut henti cat or:

Def aul t Aut henti cat or:

Control Fl ag: SUFFI Cl ENT

UseRetri evedUser NaneAsPrincipal : true
Defaul t1dentityAsserter:

Defaul t1dentityAsserter:

{{- end }}

@® Note

You can review the fragment for an OpenLDAP provider that is included in the
toolkit: SCOMMON_CNTKI/charts/uim-app/charts/uim/templates/_uim-
openldap-support.tpl

The security configuration WDT should respect sensitive data by using secrets. See
"Accessing Kubernetes Secrets from WDT Metadata" for details on how to access secret
data from within your WDT fragment.

(Optional) Update any parameters that should not be hard coded in the WDT fragment.
Add these values to the app-uim specification under the "custom" section.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 20

ORACLE Chapter 7
Using the Sample Scripts to Extend the WDT Model

6. Load the model fragment by editing your custom_extension_pathl _custom-domain-
model.tpl file:

{{- define "uimcustom donmai n-nodel " -}}
{{- $root :=. }}
cust om provi der-support.index.yam: |+
{{- include "uimcustom provider-support" $root | nindent 2 }}

{{- end }}

|f you woul d like conditional inclusion of the fragnent...something
like this instead

{{- define "uimcustom donmai n-nodel " -}}
{{- $root :=. }}
{{- if .Values.custom provider.flag}}
cust om provi der-support.index.yam: |+
{{- include "uimcustom<provider>-support” $root | nindent 2 }}

{{- end }}
{{- end }}
@ Note

Remember the yaml naming convention that is specified by wdt - filename.yaml.
The index used determines the loading order when there are multiple yaml files.
Indexes below 80 are reserved for internal Oracle use.

7. Add the tpl file that has the authentication provider WDT into the app-uim specification:

cust om
enabl ed: true
wdt Fi | es:
- _cust om donai n- nodel . t pl
- _custom provider-support.tpl

You can now create a UIM instance.

Extending WDT for Email Notification

When email naotifications are enabled, event notifications are delivered to users at their
configured email addresses. For more information, see "Extending Notifications" in Developer's
Guide.

To configure email notifications, an SMTP server must be available and accessible from the
UIM cloud native instance deployed on the cluster. Communication with the server occurs over
the SMTP protocol. Therefore, ensure that SMTP traffic is permitted from your cluster,
especially if the environment is behind a proxy.

To enable email notifications for UIM cloud native:

1. Create custom WDT extensions to configure email session as follows:

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 20

ORACLE

a.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

Create a custom extension directory if not created:

nmkdir -p $SPEC_PATH $PROJIECT/ $| NSTANCE cust onExt

Create a _custom-mail-support.tpl file in custom extension directory with the
following content:

$ vi m $SPEC_PATH $PRQIJECT/ $I NSTANCE/ cust onExt / _cust om mai | - support. t pl

custommail -support.tpl file content bel ow
{{- define "uimcustommail-support” -}}

{{- $root :=. -}}
resour ces:
Mai | Sessi on:

[nvent or yMai | Sessi on:

JNDI Narme: nai | /1 nvent oryMai | Sessi on
Target: ' @PROP: CLUSTER NAVE@D
Properti es:

mai | . host: <Admn email |d>

mai | . snt p. host: <SMIP server>

mai | . sntp.port: <SMIP port>

mai | .sntp.auth: <false/true>

#Fol l owing Section is required only for Enbedded LDAP,
#l'n case of External LDAP emails should be stored on LDAP Server
#Start Enbedded LDAP Users
t opol ogy:
Security:
User:
{{- range $inventoryUser := .Values.inventoryUsers }}
"{{ $inventoryUser | replace " " "@ }}":
Password: ' @ECRET: {{ $root. Val ues. nane }}-uincn-cred-
ui m {{$i nventoryUser}} @@
G oupMenber O : ' @BBECRET: {{ $root. Val ues. nanme }}-ui ncn-
cred-ui m{{$inventoryUser}}_groups@@
Description: 'Enbedded LDAP User'
UserAttribute:

mai |
{{ index $root.Values.customenails $inventoryUser }}
{{- end }}
#End Enbedded LDAP Users
{{- end }}

Provide appropriate values for the <pl acehol der s> in the _custom-mail-
support.tpl file. Based on the SMTP server configuration, you should specify
additional properties such as nai | . user, mai | . passwor d,

mai | . snt p. ssl . enabl e, and so on.

Copy the _custom-domain-model.tpl file from $COMMON_CNTK/samples/uim/
customExtensions to $SPEC_PATH/$PROJECT/$SINSTANCE/customExt and add
the following entry to it:

{{- if .Values.customnail }}
custom mai | - support.90.yam : |+

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 16 of 20

ORACLE Chapter 7
Using the Sample Scripts to Extend the WDT Model

{{- include "uimcustommail-support” $root | nindent 2 }}

{{- end }}

2. Enable the custom configuration and specify email addresses for all embedded LDAP
users in the $SPEC_PATH/$PROJECTI/$SINSTANCE/app-uim.yaml file.

a. Enable the custom flag, add new mail attribute, and provide the WDT file list.

b. Provide email addresses for all provided embedded LDAP inventoryUsers as follows:

uim
#enmbedded | dap users |ist
i nvent oryUsers:
- userl
- user2
- user3

custom
enabl ed: true
mai | : true
#Map the enbedded | dap users with their emil address
#Bel ow enails will not be required in case of External LDAP
email s:
userl: <userl ermmil address>
user2: <user2 emmil address>
user3: <user3 emmil address>
wdt Fi | es:
- _custom donai n-nodel . tp
- _customnail -support.tp

3. Add email template properties in $SPEC_PATH/$PROJECTI/$INSTANCE/config/uim/
system-config/custom-config.properties. The sample is as follows:

Exanpl e tenplate for ActivityAssignnent

inventory. ActivityAssi gnment Event . message. tenpl ate =

<ht m ><body><pre><span style=\"font-fanmly: tahona, arial, helvetica, sans-
serif; font-size: small;\">${notificationReceiver},

 An
activity named \"${activityNane}\" activity from Wrk

O der \"${workOr der Nane}\" has been assigned to you

 Please note that this activity should start on ${activityStartDate} and
finish no later than $
{activityEndDat e} </ span>.

<span style=\"font-
famly: tahoma, arial, helvetica, sans-serif; font-size: small;\"> Login
to Unified Inventory Managenent Application to
check the details.

<span style=\"font-fanly
tahoma, arial, helvetica, sans-serif; font-size: small;\"> Thanks, </ span></
pre><pre><span style=\"font-famly: tahoma, arial, helvetica, sans-serif;
font-size: small;\"> ${notificationOiginator}</pre></body></htnl >

4. Upgrade the UIM cloud native instance with custom extensions directory path argument as
follows:

$COMMON_CNTK/ scri pt s/ upgr ade- appl i cations.sh -p $PROJECT -i $I NSTANCE -
s $SPEC PATH -a ui m-m $SPEC PATH $PRQIECT/ $I NSTANCE/ cust onmExt

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 17 of 20

ORACLE’

Chapter 7
Accessing Kubernetes Secrets from WDT Metadata

@® Note

For external LDAP, user emails should be managed directly on the LDAP server. You
do not have to define them using the above configurations. Therefore, you can remove
the related settings from the code, related to uim.custom.emails in app-uim.yaml
and the topology section in _custom-mail-support.tpl.

Accessing Kubernetes Secrets from WDT Metadata

The process of handling sensitive data inside a WDT fragment involves the following:

Creating Kubernetes secrets
Declaring the secrets in the specification file

Referencing the secrets from the WDT fragment

To access Kubernetes secrets from WDT metadata:

1.

Create the secret.
Secrets must be created in the correct Kubernetes namespace. The namespace is already
created when registering the namespace and aligns to your project name.

To create the secret using the command line, run the following command:

$kubect| -n project create secret generic secret_Nane \
--fromliteral =keyl=3%val ue \
--fromliteral =key2=3%val ue

Add the secret in the cust omsection of the app-uim.yaml specification in your source
repository:

Custom secrets
replace the enpty secret names with one or nore secrets
i nst ance:
custonBecrets:
secr et Nanes:
- nysecretl
- mysecret?2

Once you have created and declared your custom secrets, they can be referenced from
elsewhere in the WDT model.

Access the secret from inside a WDT fragment:

Fiel dl: ' @@BECRET: secret nane: keyl@®
Fiel d2: ' @BBECRET: secret _nane: key2@®

where secret_name represents the secret name and key represents one of the keys in the
secret.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 18 of 20

ORACLE Chapter 7
Troubleshooting WDT Issues

Troubleshooting WDT Issues

This section provides details about some procedures that you may have to run in order to
resolve issues with WDT.

Starting and Terminating a WDT Pod

The UIM image includes the WDT tools that are often needed to debug or discover a WDT
fragment. You can start a temporary pod that provides access to these tools. Before starting
the pod, download the container image of the UIM base image to ensure that the download
time does not exceed the duration of the Kubernetes pod creation timeout.

kubect! run wdt --generator=run-pod/vl \
--imge U Mbase_imge -- sleep infinity

When the pod is no longer needed, you can delete it:

kubect| del ete pod wdt

Validating a Model YAML File
To validate a model YAML file:

1. Copy a model yaml into your temporary pod:
kubect! cp nodel file wdt:/tnp/nodel file

2. Run the following command and wait for the prompt:
kubect| exec -ti wdt /bin/bash

3. Validate the model file you copied:

cd /u01/wdt/webl ogi c- depl oy/ bi n
.I'val i dat eMbdel . sh -oracl e_hone $ORACLE HOME -nodel file /tnp/model file

4. When you are done validating, exit the pod:
exit

The line numbers returned by the validateModel script are exclusive of the comment lines.
Either strip the comments first or do the calculation to get the "real" line number in the file.

This process can be iterated by first reviewing the WDT errors and warnings, fixing the YAML
file, and then re-running the above procedure. Repeat this as required.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 19 of 20

ORACLE

Chapter 7
Troubleshooting WDT Issues

@® Note

Model files can contain fragments of models, but each model element must have its
full parentage, starting from sect i on. For example, following is the sample if the
fragment is the model element ImsResource:

resour ces:
JMBSyst enResour ce:
JmsResour ce:
model - fragment -t o-val i date

Displaying Valid Attributes and Child Attributes of a WDT Model

To display the attributes of a WDT model, run the following commands:

kubect| exec -ti wdt /bin/bash

wait for pronpt

cd /u01/ wdt/webl ogi c- depl oy/ bin

.Ival i dateMdel . sh -oracl e_home $ORACLE HOME \
-print-usage path

exit

The path here is the WDT path to the model element of interest. For example, to see all the
attributes and child attributes for SAFImportedDestinations, the path is r esour ces: /
JMBSyst enResour ce/ JnsResour ce/ SAFI nport edDest i nati ons.

A common way to construct the path is to look for the element in a discovered model file and
determine its yaml path. Another way is to start off with a path of secti on: , where secti on
is one of "domaininfo”, "topology", "resources" or "appDeployments”. By iteratively discovering
the child attributes, the final path can be built-up.

To shorten this search process, add the - r ecur si ve flag to the validateModel.sh script
command line. Care should be taken as the output can be quite large at the higher levels.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 20 of 20

Exploring Alternate Configuration Options

The Common cloud native toolkit provides samples and documentation for setting up your UIM
cloud native environment using standard configuration options. However, you can choose to
explore alternate configuration options for setting up your environment, based on your
requirements. This chapter describes alternate configurations you can explore, allowing you to
decide how best to configure your UIM cloud native environment to suit your needs.

You can choose alternate configuration options for the following:

e Setting Up Authentication

* Working with Shapes

e Choosing Worker Nodes for Running UIM Cloud Native

« Working with Ingress, Ingress Controller, and External Load Balancer

¢ Using an Alternate Ingress Controller

* Reusing the Database State

e Setting Up Persistent Storage

e Managing Logs
« Managing UIM Cloud Native Metrics

The sections that follow provide instructions for working with these configuration options.

Setting Up Authentication

By default, UIM uses the WebLogic embedded LDAP as the authentication provider. The UIM
cartridge deployment users and application administrative users are created in embedded
LDAP during instance creation. For human users, you may set up an optional authentication
for the users who access UIM through user interfaces. See "Planning and Validating Your
Cloud Environment" for information on the components that are required for setting up your
cloud environment. The Common cloud native toolkit provides samples that you use to
integrate components such as OpenLDAP, WebLogic Kubernetes Operator (WKO), and Nginx.
This section describes the tasks you must do for configuring optional authentication for UIM
cloud native human users.

Perform the following tasks using the samples provided with the Common cloud native toolkit:

e Install and configure OpenLDAP. This is required to be done once for your organization.

e Install OpenLDAP clients. This is required to be performed on each host that installs and
runs the toolkit scripts and when a Kubernetes cluster is shared by multiple hosts.

e Inthe OpenLDAP server, create the root node for each UIM instance.

Installing and Configuring OpenLDAP

OpenLDAP enables your organization to handle authentication for all instances of UIM. You
install and configure OpenLDAP once for your organization.

To install and configure OpenLDAP:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 27

ORACLE Chapter 8
Setting Up Authentication

1. Run the following command, which installs OpenLDAP:

$ sudo -s yum-y install "openldap" "nigrationtools"

2. Specify a password by running the following command:

$ sudo -s sl appasswd
New passwor d:
Re-enter new passwor d:

3. Configure OpenLDAP by running the following commands:

$ sudo -s
$ cd /etc/openl dap/ sl apd. d/ cn=confi g
$ vi ol cDat abase\=\{2\}hdb. | dif

4. Update the values for the following parameters:

® Note

Ignore the warning about editing the file manually.

e olcSuffix: dc=uincn-Idap,dc=com
ol cRoot DN: cn=Manager, dc=ui ntn-1| dap, dc=com

e ol cRoot PW ssha
where ssha is the SSHA that is generated

5. Update the dc values for the olcAccess parameter as follows:

ol cAccess: {0}to * by
dn. base="gi dNunber =0+ui dNunber =0, cn=peer cr ed, cn=ext ernal , cn=aut h"
read by dn. base="cn=Manager, dc=ui ntn-1|dap, dc=con' read by * none

6. Test the configuration by running the following command:
sudo -s slaptest -u

Ignore the checksum warnings in the output and ensure that you get a success message
at the end.

7. Run the following commands, which restart and enable LDAP:

sudo -s systentt!| restart slapd

sudo -s systentt! enable slapd

sudo -s cp -rf [usr/sharel/ openl dap-servers/ DB _CONFI G exanpl e /var/lib/| dap/
DB_CONFI G

| dapadd -Y EXTERNAL -H I dapi:/// -f [etc/openldap/schena/cosine.|dif

| dapadd -Y EXTERNAL -H ldapi:/// -f [etc/openldap/schema/nis.|dif

| dapadd -Y EXTERNAL -H ldapi:/// -f [etc/openldap/schenma/inetorgperson.|dif

8. Create a root node named domain, which will be the top parent for all UIM instances.

9. Run the following command to create a new file named base.ldif:

sudo -s vi /root/base.ldif

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 27

ORACLE

Chapter 8
Enabling SAML Based Authentication Provider

10. Add the following entries to the base.ldif file:

dn: ou=Donai ns, dc=ui ncn- 1 dap, dc=com
obj ectC ass: top

obj ect Gl ass: organi zati onal Unit

ou: Domai ns

11. Run the following commands to update the values in the base.ldif file:

| dapadd -x -W-D "cn=Manager, dc=ui ncn-| dap, dc=comt' -f /root/base.ldif
| dapsearch -x cn=Manager -b dc=ui ntn-1dap, dc=com

12. Open the LDAP port 389 on all Kubernetes nodes in the cluster.

Installing OpenLDAP Clients

In environments where the Kubernetes cluster is shared by multiple hosts, you must install the
OpenLDAP clients on each host. You use the scripts in the toolkit to populate the LDAP server
with users and groups.

On the host on which you want to create a basic UIM instance, run the following command,
which installs the OpenLDAP clients:

sudo -s yum-y install openldap-clients

Creating the Root Node

You must create the root node for each UIM instance before additional UIM non-automation
user and UIM group can be created.

The toolkit provides a sample script ($COMMON_CNTK/samples/credentialsimanaged-uim-
Idap-credentials.sh) that you can use to create the root node in the LDAP tree for the UIM
instance.

Run the $COMMON_CNTK/samples/credentialsimanaged-uim-ldap-credentials.sh script
by passing in -0 account.

Enabling SAML Based Authentication Provider

The Common Cloud Native Tool Kit provides support for SAML-based authentication provider.
This section describes the tasks you must do to configure an optional SAML-based
authentication provider for UIM Cloud Native Deployment.

Prerequisite: Inventory application has to be registered with Authentication Provider to
generate Metadata File which is required during UIM Image creation. In case, Authentication
Provider is chosen to be Identity Cloud Service, see Registering the Inventory Application
in Identity Cloud Service in the Knowledge article #Doc ID 2956673.1.

To enable SAML-based authentication provider, add the corresponding customizations to the
uim-cn-base image and layered image as follows:

1. Extract uim-app-archive.zip for customization references.

unzi p wor kspace/ ui mi mage- bui | der/ st agi ng/ cnsdk/ ui m nodel / ui m app-
archive.zip -d workspace/ customi zati on

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 27

ORACLE Chapter 8
Enabling SAML Based Authentication Provider

2. Export the following variables as required:

mkdi r wor kspace/ t enp

export WORKSPACEDI R=$(pwd) / wor kspace

export CUSTOVFOLDER=$(pwd) / wor kspace/ cust omi zat i on

export TEMPDI R=$(pwd) / wor kspace/t enmp

export DMANI FEST=$(pwd) / wor kspace/ ui m i mage- bui | der/ bi n/
uimcn_ci _mani fest. yanl

export STAG NG=$(pwd) / wor kspace/ ui mi mage- bui | der/ st agi ng

3. Update $CUSTOMFOLDER/custom/plans/inventory-clusterPlan.xml as follows:
a. Change logoutURL address

<vari abl e>

<name>| ogout URL</ nane>

<val ue>htt ps://<i nstance>. <proj ect >. ui m or g: <LB_PORT>/
sam 2/ sp/slolinit</val ue>
</vari abl e>

b. Add new Variable assignment to inv.war and weblogic-web-app root element, in order
to remove cookie-path:

<nmodul e-overri de>
<nmodul e- name>i nv. war </ nodul e- name>
<modul e-t ype>war </ modul e-t ype>
<modul e-descriptor external ="fal se">
<root - el ement >webl ogi c- web- app</r oot - el enent >
<uri >VEB- | NF/ webl ogi ¢. xml </ uri >
<vari abl e- assi gnnment >
<name>cooki e- pat h</ nanme>
<xpat h>/ webl ogi c- web- app/ sessi on- descri pt or/ cooki e- pat h</
xpat h>
<oper at i on>renove</ operati on>
</vari abl e- assi gnnent >
</ modul e- descri pt or >

c. Add a new module in order to remove cookie-path from unified-topology-ui.war:

<modul e-overri de>
<modul e- nane>uni f i ed-t opol ogy- ui . war </ modul e- name>
<modul e-t ype>war </ nodul e-t ype>
<modul e-descriptor external ="fal se">
<root - el enment >webl ogi c- web- app</r oot - el ement >
<uri >WEB- | NF/ webl ogi ¢. xm </ uri >
<vari abl e- assi gnnent >
<name>cooki e- pat h</ name>
<xpat h>/ webl ogi c- web- app/ sessi on- descri pt or/ cooki e- pat h</
xpat h>
<oper ati on>renove</ operati on>
</vari abl e-assi gnnent >
</ modul e- descri ptor>
</ modul e- override>

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 27

ORACLE Chapter 8
Enabling SAML Based Authentication Provider

d. Add a new module in order to remove cookie-path for InventoryRSOpenAPl.war:

<modul e-overri de>
<modul e- nane>| nvent or yRSOpenAPI . war </ nodul e- nane>
<modul e-t ype>war </ nodul e-t ype>
<modul e-descriptor external ="fal se">
<root - el enment >webl ogi c- web- app</r oot - el enent >
<uri >WEB- | NF/ webl ogi ¢. xm </ uri >
<vari abl e- assi gnnent >
<name>cooki e- pat h</ name>
<xpat h>/ webl ogi c- web- app/ sessi on- descri pt or/ cooki e- pat h</
xpat h>
<oper ati on>renove</ operati on>
</vari abl e-assi gnnent >
</ modul e- descri ptor>
</ modul e- override>

4. Update security files in $CUSTOMFOLDER/custom/security/sami2:

a. Place Identity Provider(IdP) metadatafile in $CUSTOMFOLDER/custom/security/
saml2/.

b. Copy $CUSTOMFOLDER/custom/security/saml2/saml2idppartner.properties.sample
to $CUSTOMFOLDER/custom/security/saml2/saml2idppartner.properties and update
the details of description and metadatafile:

sam 2. i dp. part ner s=cust om dp

cust om dp. descri pti on=<|DP Part ner>

cust oni dp. et adat a. fi | e=<I DPMet adat a. xn >
cust oni dp. enabl ed=t rue

customi dp. redirect Ui s=/Inventory/*

cust omi dp. vi rtual User Enabl ed=t r ue

5. Run the customization script and create UIM images, use - ¢ ui mas follows:

. I'wor kspace/ ui mi mage- bui | der/ bi n/ cust om zati on. sh
. I wor kspace/ ui mi mage- bui | der/bi n/ bui | d-ui mi mages. sh -f $DVANI FEST -
s $STAG NG -¢c uim

6. After you build the uim-cn-base image with layered tag, update the app-uim.yaml file as
follows:

aut henti cation:
san :
enabl ed: true
entityld: sam U M #Use same entity id when configuring Idp Provider

7. SSL Incoming configuration on UIM CN Instance should be enabled. See "Configuring
Secure Incoming Access with SSL" for more information.

8. Create a UIM instance:

$COMMON_CNTK/ scri pts/ create-applications.sh -p sr -i quick -s $SPEC PATH -
auim

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 27

ORACLE

Chapter 8
Working with Shapes

@® Note

To Integrate UIM with ATA and Message Bus when authentication is enabled, update
the $SPEC_PATHI/project/instancelconfig/uim/system-config/custom-
config.properties file with appropriate values. See "Checklists for Integration of
Services" section from Unified Inventory and Topology Deployment guide for more
information on integrating UIM with ATA and Message Bus.

Publishing UIM Cloud Native Service Provider Metadata File

If your identity provider supports SAML 2.0 client creation using the service provider metadata
file, create a UIM metadata file in a cloud native environment as follows.

Open the pod sr-quick-admin and run following commands:

W st . sh

connect (' <webl ogi c- user - nane>" , ' <webl ogi c- password>',"'t3://sr-qui ck-msl: 8502")
serverRuntime()

cno. get Si ngl eSi gnOnSer vi cesRunti me() . publi sh(' /1 oghount / Ul MCNVet adat a. xm * |
fal se)

di sconnect ()

exit()

To copy the metadata file outside the pod (if PVC is enabled), the file is stored at pv-path
locations by default. Alternatively, use the following command to copy to a required location:

kubect! cp sr-quick-adm n: /1 ogMunt/U MCNMet adat a. xm ./ Ul MCNMet adat a. xm - n
sr

Working with Shapes

The Common cloud native toolkit provides the following pre-configured shapes. After
assembling specifications, you can see the specification files at the following locations:

* spec_path/projectlinstance/shapes/dev/uim.yaml. This can be used for development,
QA and user acceptance testing (UAT) instances.

* spec_path/project/instance/shapes/devsmall/uim.yaml. This can be used to reduce
CPU requirements for small development instances.

» spec_path/project/instance/shapes/prod/uim.yaml. This can be used for production,
pre-production, and disaster recovery (DR) instances.

* spec_path/project/instance/shapesiprodlarge/uim.yaml. This can be used for
production, pre-production and disaster recovery (DR) instances that require more memory
for UIM cartridges and order caches.

* spec_path/project/instance/shapes/prodsmall/luim.yaml. This can be used to reduce
CPU requirements for production, pre-production and disaster recovery (DR) instances.
For example, it can be used to deploy a small production cluster with two managed servers
when the input request rate does not justify two managed servers configured with a prod
or prodlarge shape. For production instances, Oracle recommends two or more managed
servers. This provides increased resiliency to a single point of failure and can allow order
processing to continue while failed managed servers are being recovered.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 27

ORACLE

Chapter 8

Working with Shapes

You can create custom shapes using the pre-configured shapes. See "Creating Custom

Shapes" for details.

The pre-defined shapes come in standard sizes, which enable you to plan your Kubernetes

cluster resource requirement.

The following table lists the sizing requirements of the shapes for a managed server:

Table 8-1 Sizing Requirements of Shapes for a Managed Server

Shape Kube Request Kube Limit JVM Heap (GB)
prodlarge 80 GB RAM, 15 CPU 80 GB RAM, 15 CPU 64

prod 48 GB RAM, 15 CPU 48 GB RAM, 15 CPU 31

prodsmall 48 GB RAM, 7.5 CPU 48 GB RAM, 7.5 CPU 31

dev 8 GB RAM, 2 CPU 8 GB RAM 5

devsmall N/A N/A 5

The following table lists the sizing requirements of the shapes for an admin server:

Table 8-2 Sizing Requirements of Shapes for an Admin Server

Shape Kube Request Kube Limit JVM Heap (GB)
prodlarge 8 GB RAM, 2 CPU 8 GB RAM 4
prod 8 GB RAM, 2 CPU 8 GB RAM 4
prodsmall 8 GB RAM, 2 CPU 8 GB RAM 4
dev 3 GB RAM, 1 CPU 3 GB RAM 1
devsmall N/A N/A 1

These values are encoded in the specifications and are automatically part of the individual pod
configuration. The Kubernetes schedulers evaluate the Kube request settings to find space for
each pod in the worker nodes of the Kubernetes cluster.

To plan the cluster capacity requirement, consider the following:
* Number of development instances required to be running in parallel: D

* Number of managed servers expected across all the development instances: Md (Md will
be equal to D if all the development instances are 1 MS instances)

* Number of production (and production-like) instances required to be running in parallel: P
* Number of managed servers expected across all production instances: Mp

e Assume use of "dev" and "prod" shapes

e CPUrequirement (CPUs)=D*1+Md*2+P*2+Mp*15

* Memory requirement (GB)=D*4+Md*8+P *8+ Mp * 48

@® Note

The production managed servers take their memory and CPU in large chunks. Kube
scheduler requires the capacity of each pod to be satisfied within a particular worker
node and does not schedule the pod if that capacity is fragmented across the worker
nodes.

Cloud Native Deployment Guide

G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 27

ORACLE

Chapter 8
Choosing Worker Nodes for Running UIM Cloud Native

The shapes are pre-tuned for generic development and production environments. You can
create a UIM instance with either of these shapes, by specifying the preferred one in the
instance specification.

Nanme of the shape. The U Mcloud native shapes are devsnall, dev,

prodsmal |, prod, and prodl arge.

Alternatively, customshape nane can be specified (as the filenane without
t he extension)

Creating Custom Shapes

Choosing

You create custom shapes by copying the provided shapes and then specifying the desired
tuning parameters. Do not edit the values in the shapes provided with the toolkit.

In addition to processor and memory sizing parameters, a custom shape can be used to tune:
e The number of threads allocated to UIM work managers

« UIM connection pool parameters
To create a custom shape:

1. Create a directory with the desired shape name at $SPEC_PATHI/projectl/instance/
shapesl.

2. Copy one of the pre-configured shapes and save it to the above shape directory of your
source repository.

3. Update the tuning parameters as required in uim.yaml under newly create shape directory.

4. In the applications-base.yaml specification, specify the name of the shape you copied
and renamed:

shape: custom

5. Create the domain, ensuring that the location of your custom shape is included in the
comma separated list of directories passed with - s.

$COMMON_CNTK/ scri pts/ create-applications.sh -p project -i instance -
s $SPEC PATH -a uim

@ Note

While copying a pre-configured shape or editing your custom shape, ensure that you
preserve any configuration that has comments indicating that it must not be deleted.

Worker Nodes for Running UIM Cloud Native

By default, UIM cloud native has its pods scheduled on all worker nodes in the Kubernetes
cluster in which it is installed. However, in some situations, you may want to choose a subset
of nodes where pods are scheduled.

For example, these situations include:

e Limitation on the deployment of UIM on specific worker nodes per team for reasons such
as capacity management, chargeback, budgetary reasons, and so on.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 27

ORACLE Chapter 8
Choosing Worker Nodes for Running UIM Cloud Native

To choose a subset of nodes where pods are scheduled, you can use the configuration in the
app-uim specification file.

1f UMCN instances nust be targeted to a subset of worker nodes in the
Kubernetes cluster, tag those nodes with a | abel name and val ue, and choose
that [|abel +val ue here.

keys:

- key . any node | abel key

- operator : Valid operators are In, Notln, Exists, DoesNotExist. &, and
Lt.

- values : values is an array of string val ues.

If the operator is In or Notln, the values array nust be non-
enpty.

If the operator is Exists or DoesNot Exist, the values array
must be enpty (val ues can be renmoved from bel ow).

If the operator is G or Lt, the values array nust have a
single el enent, which will be interpreted as an integer.

#

This can be overriden in instance specification if required.

Node Affinity can be achieved by operator "In" and Node Anti-Affinity by
"Not | n"

oracle.conflicensed-for-coherence is just an indicative exanple; any

label and its values can be used for choosing nodes.

ui ncnTar get Nodes: {} # This enpty declaration should be renmoved if adding

items here.

#ui ntnTar get Nodes:

nodelabel :

keys:

- key: oracle.conllicensed-for-coherence
operator: In

val ues:

- true

- key: failure-donain.beta.kubernetes.iolzone
operator: Notln

val ues:

- PHX-AD-2

- PHX-AD-3

Consider the following when you update the configuration:
e There is no restriction on node label key. Any valid node label can be used.
e There can be multiple valid values for a key.

e You can override this configuration in the instance specification yaml file, if required.

Examples

In the following example, pods are created on the nodes that have keys as failure-
domain.beta.kubernetes.io/lzone and the values as PHX-AD-2 or PHX-AD-3:

Exanpl el
#ui ncnTar get Nodes: {}
ui ncnTar get Nodes:
nodelabel :
keys:
- key: failure-donain.beta.kubernetes.iolzone

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 27

ORACLE’

Chapter 8
Working with Ingress, Ingress Controller, and External Load Balancer

operator: In
val ues:

- PHX- AD- 2
- PHX-AD- 3

In the following example, pods are created on the nodes that do not have keys as name and
have keys as failure-domain.beta.kubernetes.io/zone and the values as neither PHX-AD-2
nor PHX-AD-3.

Exanpl e2
uincnTarget Nodes: {} # This enpty declaration should be renmoved if adding
items here.
ui ncnTar get Nodes:
nodelabel :
keys:
- key: name
operator: DoesNot Exi st
- key: failure-donain.beta.kubernetes.iolzone
operator: Notln
val ues:
- PHX-AD-2
- PHX-AD-3

Working with Ingress, Ingress Controller, and External Load

Balancer

A Kubernetes ingress is responsible for establishing access to back-end services. However,
creating an ingress is not sufficient. An Ingress controller connects the back-end services with
the front-end services that are external to Kubernetes through edge objects such as NodePort
services, Load Balancers, and so on. In UIM cloud native, an ingress controller can be
configured in the applications-base and app-uim specifications.

UIM cloud native supports annotation-based generic ingress creation that uses standard
Kubernetes Ingress API as verified by Kubernetes Conformance tests. This can be used for
any Kubernetes certified ingress controller, if that ingress controller offers annotations that are
usually proprietary to the ingress controller, required for UIM. Annotations applied to an ingress
resource allow you to use features such as connection timeout, URL rewrite, retry, additional
headers, redirects, sticky cookie services, and so on, and to improve the performance of that
ingress resource. The ingress controllers support a corresponding set of annotations. For
information on annotations that are supported by your ingress controller and the list of various
ingress controllers, see https://kubernetes.io/docs/concepts/services-networking/ingress-
controllers/.

Any ingress controller, which conforms to the standard Kubernetes ingress API and supports
annotations needed by UIM should work, although Oracle does not certify individual ingress
controllers to confirm this generic compatibility.

For information about about Ingress NGINX Controller, see https://github.com/kubernetes/
ingress-nginx/blob/main/README.md#readme.

The configurations required in your app-uim specification are as follows:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 27

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://github.com/kubernetes/ingress-nginx/blob/main/README.md#readme
https://github.com/kubernetes/ingress-nginx/blob/main/README.md#readme

ORACLE

Chapter 8
Using an Alternate Ingress Controller

Update the application-base.yaml file from $SPEC_PATHI/projectl/instance to use generic
ingress as follow:

valid values are GENERIC
ingressController: "GENERI C'

You need to provide the following annotations to enable cookies that can meet the hardware
sizing requirements.

Provide an appropriate i ngr essCl assNane value for your ingress controller under the
ingress.className field. Based on the value provided, an ingress object is created for that
ingress class as follows:

i ngress:
classNane: nginx ##provide ingressC assNane val ue, default value for nginx
i ngressController is nginx.
annot at i ons
ngi nx. i ngress. kubernetes.io/affinity: "cookie"
ngi nx. i ngress. kubernetes.io/affinity-node: "persistent”
ngi nx. i ngress. kuber net es. i o/ sessi on- cooki e- name: "ngi nxi ngr esscooki e"
ngi nx. i ngress. kuber net es. i o/ proxy- body-si ze: "50nf

Annotations for Enabling SSL

Update the application-base specification to enable the SSL and also provide
| oadbal ancer port value with appropriate LoadBalancerPort/NodePort of your Ingress
Controller as follows:

| oadbal ancerport: 30543
tls:
enabl ed: true

Update the app-uim.yaml specification file from $SPEC_PATHI/projectlinstance to add
annotations as follows:

uim
i ngress:
annot ati ons:

ngi nx. i ngress. kubernetes.iof configuration-snippet: |
more_clear _input_headers "W.-Proxy-Cient-IP" "W.-Proxy-SSL";
more_set i nput _headers "X- Forwarded-Proto: https";
more_set input _headers "W.-Proxy-SSL. true";

ngi nx. i ngress. kubernetes.io/ingress.allowhttp: "fal se"

For more information on trust and identity provided in the above configuration, see "Setting Up
Secure Communication with SSL".

Using an Alternate Ingress Controller

By default, UIM cloud native supports standard Kubernetes ingress APl and provides sample
files for integration. If your required ingress controller does not support one or more
configurations through annotations on generic ingress, or you use your ingress controller's
CRD instead, you can choose " OTHER" .

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 27

ORACLE Chapter 8
Reusing the Database State

By choosing this option, UIM cloud native does not create or manage any ingress required for
accessing the UIM cloud native services. However, you may choose to create your own
ingress objects based on the service and port details mentioned in the tables that follow. The
toolkit uses an ingress Helm chart (SCOMMON_CNTKIcharts/uim-ingressi/charts/uim-
ingressitemplates/generic-ingress.yaml) and scripts for creating the ingress objects. If you
want to use a generic ingress controller, these samples can be used as a reference and
customized as necessary.

The host-based rules and the corresponding back-end Kubernetes service mapping are
provided using the following definitions:

e domainUID: Combination of project-instance. For example, sr-quick.

e clusterName: The name of the cluster in lowercase. Replace any hyphens "-" with
underscore " _". The default name of the cluster is uimcluster.

The following table lists the service name and service ports for Ingress rules:

Table 8-3 Service Name and Service Ports for Ingress Rules
- __ |

Rule Service Name Service Port Purpose
instance.project.loadBalancer | domainUID-cluster- 8502 For access to UIM through
DomainName clusterName Ul, Web Services, and so on.
t3.instance.project.loadBalan | domainUID-cluster- 30303 UIM T3 Channel access for
cerDomainName clusterName WLST, JMS, and SAF clients.
admin.instance.project.loadB | domainUID-admin 8501 For access to UIM WebLogic
alancerDomainName 8504 (if ssl reencrypt Admin Console UL

strategy is enabled)

Ingresses need to be created for each of the above rules per the following guidelines:
» Before running create-applications.sh, ingress must be created.
e After running delete-applications.sh, ingress must be deleted.

You can develop your own code to handle your ingress controller or copy the sample
i ngress- per - donai n chart and add additional template files for your ingress controller with
a new value for the type (for example, NGINX).

e The reference sample for creation is;: SCOMMON_CNTKI/scripts/create-ingress.sh

e The reference sample for deletion is: $COMMON_CNTKI/scripts/delete-ingress.sh

@® Note

Regardless of the choice of Ingress controller, it is mandatory to provide the value of
| oadbal ancer Port in one of the specification files. This is used for establishing
front-end cluster.

Reusing the Database State

When a UIM instance is deleted, the state of the database remains unaffected, which makes it
available for re-use. This is common in the following scenarios:

* When an instance is deleted and the same instance is re-created using the same project
and the instance names, the database state is unaffected. For example, consider a

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 27

ORACLE

Chapter 8
Reusing the Database State

performance instance that does not need to be up and running all the time, consuming
resources. When it is no longer actively being used, its specification files and PDB can be
saved and the instance can be deleted. When it is needed again, the instance can be
rebuilt using the saved specifications and the saved PDB. Another common scenario is
when developers delete and re-create the same instance multiple times while configuration
is being developed and tested.

* When a new instance is created to point to the data of another instance with a new project
and instance names, the database state is unaffected. A developer, who might want to
create a development instance with the data from a test instance in order to investigate a
reported issue, is likely to use their own instance specification and the UIM data from PDB
of the test instance.

Additionally, consider the following components when re-using the database state:
e The UIM DB (schema and data)
* The RCU DB (schema and data)

Recreating an Instance

You can re-create a UIM instance with the same project and instance names, pointing to the
same database. In this case, both the UIM DB and the RCU DB are re-used, making the
sequence of events for instance re-creation relatively straightforward.

To recreate an instance, the following pre-requisites must be available from the original
instance and made available to the re-creation process:

- PDB

e The project and instance specification files

Reusing the UIM Schema

To reuse the UIM DB, the secret for the PDB must still exist:

proj ect -i nst ance- dat abase-credential s

project-instance- dat abase- credenti al s.

This is the ui ndb credential in the manage-app-credentials.sh script.

Reusing the RCU

To reuse the RCU, the following secrets for the RCU DB must still exist:

e project-instance- r cudb- cr edent i al s. This is the r cudb credential.

e project-instance- opss-wal | et - passwor d- secr et . This is the opssWp credential.

e project-instance- opss-wal | et fil e-secret. This is the opssWF credential.
To import the wallet file from previous installation of UIM:

1. Runthe WLST exportEncryptionKey command in the previous domain where the RCU is
been referenced. This generates ewallet.p12 file.

2. Export the wallet file for generating OPSS wallet on the existing schema and use it to
create UIM CN instance as follows:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 27

ORACLE

Chapter 8
Reusing the Database State

a. Connect to the previous UIM WebLogic domain that refers the RCU schemas as
follows:

$cd<FWM HOMVE>/ or acl e_comon/ common/ bi n>$. /W st. shwl s:/of fli ne>

export EncryptionKey(j psConfigFile, keyFilePath, keyFilePassword)
Export of Encryption key(s) is done. Remenber the password chosen, it
will be required while inporting the key(s)

Where:

e keyFilePassword is same as the OPSS wallet file password that is used during the
secrets creation.

e jpsConfigFile specifies the location of jps-config.xml file that corresponds to the
location where the command is processed.

e keyFilePath specifies the directory where ewallet.p12 file is created. The content
of this file is encrypted and secured by the value passed to keyFilePassword.

e keyFilePassword specifies the password to secure ewallet.p12 file. This password
must be used while importing the file.

b. Download the generated ewallet.p12 file from TEMP_LOCATION folder and copy it
into the Kubernetes worker node in $SPEC_PATH.

Convert the generated ewallet file to Base64 encoded format as follows:

$cd $SPEC_PATH
$base64 ewal | et.pl2 > ewal | et base64. P12

Create OPSSWF secret using the Base64 ewallet as follows:

$COVMMON_CNTK/ scri pt s/ manage- app- credential s.sh -p project -i instance -a
uimcreate opssWr

Enter the Base64 ewallet file location: $SPEC_PATH/ewalletbase64.p12.

@® Note

For opssWP and Wl sRTE, use the same password that you used while exporting
the wallet file.

Create the instance as you would normally do:

$COMMON_CNTK/ scri pts/ create-applications.sh -p project -i instance -
s $SPEC PATH -a uim

@ Note

If the opssWP and opssWF secrets no longer exist and cannot be re-created from
offline data, then drop the RCU schema and re-create it using the UIM DB Installer.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 27

ORACLE Chapter 8
Reusing the Database State

Creating a New Instance

If the original instance does not need to be retained, then the original PDB can be re-used
directly by a new instance. If however, the instance needs to be retained, then you must create
a clone of the PDB of the original instance. This section describes using a newly cloned PDB
for the new instance.

If possible, ensure that the images specified in the app-uim specification (app-uim.yaml) match
the images in the specification files of the original instance.

Reusing the UIM Schema

To reuse the UIM DB, the following secret for the PDB must be created using the new project
and instance names. This is the ui ndb credential in manage-app-credentials.sh and points
to your cloned PDB:

proj ect -i nst ance- dat abase-credential s

If your new instance must reference a newer UIM DB installer image in its specification files
than the original instance, it is recommended to invoke an in-place upgrade of UIM schema
before creating the new instance.

To upgrade or check the UIM schema:
Upgrade the U Mschema to match new application's specification files
Do nothing if schema al ready matches

$COMMON_CNTK/ scri pts/instal |l -database.sh -p project -i instance -s $SPEC PATH
-auim-c 3

@® Note

If the current instance details are different than the previous instance, to reuse the UIM
schema, drop the table with suffix WL_LLR_.

You can choose a strategy for the RCU DB from one of the following options:
* Create a new RCU
* Reuse RCU

Creating a New RCU
If you only wish to retain the UIM schema data, then you can create a new RCU schema.

The following steps provide a consolidated view of RCU creation described in "Managing
Configuration as Code".

To create a new RCU, create the following secrets:

* project-instance- r cudb- cr edenti al s. This is the r cudb credential and describes the
new RCU schema you want in the clone.

e project-instance- opss-wal | et - passwor d- secr et . This is the opssWP credential
unique to your new instance

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 27

ORACLE

Chapter 8
Setting Up Persistent Storage

After these credentials are in place, prepare the cloned PDB:

Create a fresh RCU DB schena while preserving U M schema data
$COMMON_CNTK/ scri pts/instal |l -database.sh -p project -i instance -s $SPEC PATH
-auim-c 2

With this approach, the RCU schema from the original instance is still available in the cloned
PDB, but is not used by the new instance.

Reusing the RCU

Using the manage-app-credentials.sh script, create the following secret using your new
project and instance names:

proj ect-instance-rcudb-credential s

The secret should describe the old RCU schema, but with new PDB details.

* Reusing RCU Schema Prefix

Over time, if PDBs are cloned multiple times, it may be desirable to avoid the proliferation
of defunct RCU schemas by re-using the schema prefix and re-initializing the data. There
is no UIM metadata stored in the RCU DB so the data can be safely re-initialized.

project-instance- opss- wal | et - passwor d- secr et . This is the opssWp credential
unique to your new instance.

To re-install the RCU, invoke DB Installer:

$COMMON_CNTK/ scri pts/install-database.sh -p project -i instance -
s $SPEC PATH -a uim-c 2
* Reusing RCU Schema and Data

In order to reuse the full RCU DB from another instance, the original opssWF and opssWP
must be copied to the new environment and renamed following the convention: project-
instance-opss-wallet-password-secret and project-instance-opss-walletfile-secret.

This directs Fusion MiddleWare OPSS to access the data using the secrets.

Create the instance as you would normally do:

$COMMON_CNTK/ scri pt s/ create-applications.sh -p project -i instance -
s $SPEC PATH -a uim

Setting Up Persistent Storage

UIM cloud native can be configured to use a Kubernetes Persistent Volume to store data that
needs to be retained even after a pod is terminated. This data includes application logs, JFR
recordings and DB Installer logs, but does not include any sort of UIM state data. When an
instance is re-created, the same persistent volume need not be available. When persistent
storage is enabled in the instance specification, these data files, which are written inside a pod
are re-directed to the persistent volume.

Data from all instances in a project may be persisted, but each instance does not need a
unique location for logging. Data is written to a project-instance folder, so multiple instances
can share the same end location without destroying data from other instances.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 16 of 27

ORACLE

Chapter 8
Setting Up Persistent Storage

The final location for this data should be one that is directly visible to the users of UIM cloud
native. The development instances may simply direct data to a shared file system for analysis
and debugging by cartridge developers. Whereas, formal test and production instances may
need the data to be scraped by a logging toolchain such as EFK, that can then process the
data and make it available in various forms. The recommendation therefore is to create a PV-
PVC pair for each class of destination within a project. In this example, one for developers to
access and one that feeds into a toolchain.

A PV-PVC pair would be created for each of these "destinations”, that multiple instances can
then share. A single PVC can be used by multiple UIM domains. The management of the PV
and PVC lifecycles is beyond the scope of UIM cloud native.

The UIM cloud native infrastructure administrator is responsible for creating and deleting PVs
or for setting up dynamic volume provisioning.

The UIM cloud native project administrator is responsible for creating and deleting PVCs as
per the standard documentation in a manner such that they consume the pre-created PVs or
trigger the dynamic volume provisioning. The specific technology supporting the PV is also
beyond the scope of UIM cloud native. However, samples for PV supported by NFS are
provided.

Creating a PV-PVC Pair

The technology supporting the Kubernetes PV-PVC is not dictated by UIM cloud native.
Samples have been provided for NFS and BV, and can either be used as is, or as a reference
for other implementations.

To create a PV-PVC pair supported by NFS:

1. Edit the sample PV and PVC yaml files and update entries with enclosing brackets

@ Note
PVCs need to be ReadWriteMany.

vi $COMMON_CNTK/ sanmpl es/ nf s/ pv. yan
vi $COMMON_CNTK/ sanpl es/ nf s/ pvc. yan

2. Create the Kubernetes PV and PVC.

kubect| create -f $COVMON_CNTK/ sanpl es/ nfs/ pv. yam
kubect| create -f $COVMON_CNTK/ sanpl es/ nfs/ pvc. yam

3. Set up the storage volume. The storage volume type is enpt ydi r by default.

st or ageVol une:
enabl ed: true
pvc: sr-nfs-pvc

pvc: storage-pvc #Specify this only if case type is PVC
i sBl ockVol une: false # set this to true if BlockVolune is used

Deleting the pod that has storage volume disabled deletes the corresponding logs. To
retain the logs:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 17 of 27

ORACLE Chapter 8
Setting Up Persistent Storage

* Uncomment storageVolume.
» Set the storageVolume.enabled to true.

» Specify the name of the pvc created.

The storage vol une nmust specify the PVC to be used for persistent
st orage.
st or ageVol une:

enabl ed: true

pvc: sr-nfs-pvc #Specify this only if case type is PVC

After the instance is created, you should see the following directories in your PV mount point, if
you have enabled logs:

[oracl e@ocal host project-instance]$ dir
server, UM uimdbinstaller

To create a PV-PVC pair supported by BV:

1. Edit the sample PV and PVC yaml files and update entries with enclosing brackets:

vi $COMMON_CNTK/ sanpl es/ bv/ pv. yam
vi $COMMON_CNTK/ sanpl es/ bv/ pvc. yam

2. Create the Kubernetes PV and PVC as follows:

kubect| create -f $COVMMON_CNTK/ sanpl es/ bv/ pv. yam
kubect| create -f $COVMMON_CNTK/ sanpl es/ bv/ pvc. yam

3. Repeat step 1 and 2 to create PV-PVCs required for all the servers such as introspector,
admin, db-installer, and for each managed server.

@® Note

Do not provide <ser ver - nane> in the prefix for db-installer PV-PVC.

4. To use Block Volume:
a. Set St orageVol une. enabl ed to true.

b. Uncomment #pvc: st orage- pvc and replace st or age- pvc with the appropriate
suffix of all the PVCs, which is same as the name of db-installer PVC.

c. Set StorageVol une. i sBl ockVol une to true.

st or ageVol une:

enabl ed: true # Acceptable values are pvc and enptydir

pvc: <proj ect>-<storage-endpoi nt>-bv-pvc #this is equal to suffix of pvc
and equal to pvc used by db-installer

i sBl ockVol une: true # set this to true if BlockVolume is used

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 18 of 27

ORACLE

Chapter 8
Managing Logs

5. Change permissions of blockVolume using initContainer. By default,
initContainerlmage is commented. Uncomment it and mention the corresponding image
name that you want to use.

#uncoment this to use initContainer for introspector,adnin,db-
installer,ns pods and change perm ssion of nount vol ure
i ni t Cont ai nerlmage: "container-registry.oracle.conios/oraclelinux:8-slinf

Managing Logs

UIM cloud native generates traditional textual logs. By default, these log files are generated in
the managed server pod, but can be re-directed to a Persistent Volume Claim (PVC) supported
by the underlying technology that you choose. See "Setting Up Persistent Storage" for details.

By default, logging is enabled. When persistent storage is enabled, logs are automatically re-
directed to the Persistent Volume. The storage volume type is di sabl ed by default.

st or ageVol une:
enabl ed: false # Acceptable values are pvc and enptydir
pvc: storage-pvc #Specify this only if case type is PVC

Deleting the pod that has storage volume type as di sabl ed deletes the corresponding logs.
To retain the logs:

* Uncomment storageVolume.
e Set the storageVolume.enabled to true.

« Specify the name of the pvc created.

The storage vol une must specify the PVC to be used for persistent storage.
st or ageVol une:;

enabl ed: true # Acceptable values are pvc and enptydir

pvc: storage-pvc #Specify this only if case type is PVC

e The UIM application logs can be found at: pv-directorylproject-instance/UIM/logs
e The UIM WebLogic server logs can be found at: pv-directorylproject-instancel/server

e The UIM DB Installer logs can be found at: pv_directory/project-instanceluim-dbinstaller/
logs

Viewing Logs using Fluentd and OpenSearch Dashboard

You can view and analyze the UIM cloud native logs using Fluentd and OpenSearch
dashboard.

The logs are generated as follows:

1. Fluentd collects the text logs that are generated during cloud native deployments and
sends them to OpenSearch.

2. OpenSearch collects all types of logs and converts them into a common format so that
OpenSearch dashboard can read and display the data.

3. OpenSearch dashboard reads the data and presents it in a simplified view.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 19 of 27

ORACLE

Chapter 8
Managing Logs

Setting up OpenSearch Dashboard and Fluentd

To set up OpenSearch Dashboard and Fluentd:

1.

Set up OpenSearch and OpenSearch dashboard. See "Setting Up OpenSearch" in Unified
Inventory and Topology Deployment Guide for more information.

Update the following in app-uim.yaml to enable the sidecar injection:

si decar:
enabl ed: true
cont ai ners:

- tenplate: "fluentd-container"”
vol umeTenpl ate: "fluentd-configmap-vol une”
contai nerFiles:
- fluentd-config-map. yam
- _fluentd-sidecar-container.tpl

Update the values for FLUENT_OPENSEARCH_HOST,
FLUENT_OPENSEARCH_PORT, OPENSEARCH_USER, and
OPENSEARCH_PASSWORD in $COMMON_CNTK/samples/uim/customExtensions/
sidecar-fluentd/_fluentd-sidecar-container.tpl.

(Optional) Update the FluentD ConfigMap file in the customExtensions folder to add
customizations for selecting or adding any required logs.

In the Kubernetes pod, create an instance with sidecar injection as follows:

$COMMON_CNTK/ scri pt s/ create-applications.sh -p <project_nane> -i
<instance_nane> - s $SPEC PATH -m <path to custonExtentions dir/sidecar-
fluentd> -a uim

To access the logs on OpenSearch dashboard, create an Index Pattern as follows:

1.
2.
3.

Click on the Three Bars icon.
Under OpenSearch Dashboards, select Discover.

Create a new Index Pattern using i ndex <pr 0j ect >-<i nst ance>.
The logs can be accessed on the Discover page under <pr 0j ect >- <i nst ance>
i ndex.

Enabling GC Logs

You can monitor the Java garbage collection data by using GC logs. By default, these GC logs
are disabled and you can enable them to view the logs at llogMount/<domain>/servers/
<server-name>.

To enable the GC logs, update <applications-base.yaml> or <app-uim.yaml>
from SSPEC_PATHI/projectlinstance as follows:

1.
2.

Under gcLogs make enabl ed as true.
To configure the maximum size of each file and limit for number of files, setfi | eSi ze and
noCf Fi | es inside gcLogs.

gcLogs:
enabl ed: true

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 20 of 27

ORACLE Chapter 8
Managing UIM Cloud Native Metrics

fileSize: 10M
noCf Files: 10

WebLogic Diagnostic Logs

In UIM cloud native, the WebLogic diagnostic logs are stored (by default) at lu01/oracle/
user_projects/domains/domain/serversimsl/logsl/, inside the pod. To retain these logs after
a pod goes down, redirect them to a storage volume by uncommenting the specified property
in app-uim.yaml. Optionally, you can also specify an additional logger class.

uim
| og:
handl er Level : "ERROR'
This is to optionally control logging |evel for specific classes.
Uncomment to add the entries.
'class' will have full dassNane e.g. comnslv.ons. pol | er. Event Pol | er

'level' will have sane possible values as above e.g. ERROR 1
#l oggers:

- class:

I evel :

Managing UIM Cloud Native Metrics

Authentication is enabled for UIM metrics. Perform the following steps to create Kubernetes
secret for the metrics URL. After you create the secret, configure the metrics scrape job in
Prometheus operator for the UIM cloud native by following the instructions mentioned in
"Configuring Metrics For Services" in Unified Inventory and Topology Deployment Guide.

Creating Secret for UIM Metrics Authentication

To enable Basic Authentication for Prometheus scrape metrics job from UIM service, you
should be creating a Kubernetes secret with user credentials as follows:

1. Create a Kubernetes secret named <pr 0j ect >- <i nst ance>- ui m et ri cs- user.
2. Create this secret in the same namespace where Prometheus Operator is deployed.

3. Ensure that the secret includes username and password that you use to access the UIM
homepage.

4. Ensure that the specified username is part of the uim-metrics-users group, which is
configured during the creation of the Embedded LDAP user secret.

See "Creating Users in Embedded LDAP" for more information.

Configuring Prometheus for UIM Cloud Native Metrics

The following job configuration has to be added to Prometheus configuration, replace the
username & password for the UIM metric endpoint:

- job_name: 'uincn'
kubernetes_sd_confi gs:
- role: pod
rel abel _configs:
- source_| abel s:

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 21 of 27

ORACLE

Chapter 8
Managing UIM Cloud Native Metrics

[' __meta_kubernetes pod_annotationpresent uincn_metricspath']

action: 'keep

regex: 'true

source_labels: [__neta kubernetes_pod_annotation_uintn_netricspath]
action: replace

target _label: _ metrics_path__

regex: (.+)

source_labels: ['__nmeta_kubernetes_pod_annotation_pronet heus_i o_scrape']
action: "drop

regex: 'false

source_labels: [__address__,

__meta_kubernetes_pod_annotation_uincn_netricsport]

action: replace

regex: ([M:14)(?::\d+)?;(\d+)
repl acenent: $1:$2

target label: _ address

#- action: |abel map

regex: __meta_kubernetes_pod |abel (.+)
- source_labels: ['__meta kubernetes_pod_| abel webl ogi c_server Name']
action: replace
target | able: server_nane
- source_labels: ['__nmeta kubernetes_pod_| abel webl ogi c_cl usterNange']
action: replace
target |abel: cluster_name
- source_labels: [__neta kubernetes_pod nane]
action: replace
target | abel: pod_nane
- source_labels: [__neta_kubernetes_nanespace]
action: replace
target _| abel : namespace
basi ¢c_aut h:
usernanme: <METRI CS_UESR_NAME>
password: <PASSWORD>
® Note

UIM cloud native has been tested with Prometheus and Grafana installed and
configured using the Helm chart prometheus-community/kube-prometheus-stack
available at: https://prometheus-community.github.io/helm-charts.

Viewing UIM Cloud Native Metrics Without Using Prometheus

The metrics URL is enabled with BASIC authentication, provide the credentials in the dialog
box. The user must have uim-metrics-group associated. The UIM cloud native metrics can be
viewed at: :

ht t

p://instance. project. domai n_Name: LoadBal ancer_Port/Inventory/metrics

By default, host Suf f i x is set to uim.org and can be modified in applications-base.yaml.
This only provides metrics of the managed server that is serving the request. It does not
provide consolidated metrics for the entire cluster. Only Prometheus Query and Grafana
dashboards can provide consolidated metrics.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 22 of 27

https://prometheus-community.github.io/helm-charts

ORACLE

Chapter 8
Managing UIM Cloud Native Metrics

Viewing UIM Cloud Native Metrics in Grafana

UIM cloud native metrics scraped by Prometheus can be made available for further processing
and visualization. The UIM cloud native toolkit comes with sample Grafana dashboards to get
you started with visualizations.

Import the dashboard JSON files from $COMMON_CNTK/samples/uim/grafana into your
Grafana environment.

The sample dashboards are:

* UIM by Services: Provides a view of UIM cloud native metrics for one or more instances in
the selected managed server.

Exposed UIM Service Metrics

The following UIM metrics are exposed via Prometheus APIs.

@® Note

All metrics are per managed server. Prometheus Query Language can be used to
combine or aggregate metrics across all managed servers.

All metric values are short-lived and indicate the number of requests in a particular
state since the managed server was last restarted.

When a managed server restarts, all the metrics are reset to 0.

Interaction Metrics

The following table lists interaction metrics exposed via Prometheus APIs.

Table 8-4 Interaction Metrics Exposed via Prometheus APIs

Name

Type Help Text Notes

uim_sfws_capture_requests

Summary Summary that tracks the duration of This metric is observed for
sf ws capture requests. the Capturelnteraction
request.

The action can be CREATE
or CHANGE.

uim_sfws_process_requests

Summary Summary that tracks the duration of This metric is observed for
sf ws process requests. the Processinteraction
request.

The action can be
PROCESS.

uim_sfws_update_requests

Summary Summary that tracks the duration of This metric is observed for
sf ws update requests. the Updatelnteraction
request.

The action can be
APPROVE, ISSUE,
CANCEL, COMPLETE or
CHANGE.

Cloud Native Deployment Guide
G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 23 of 27

ORACLE

Chapter 8
Managing UIM Cloud Native Metrics

Table 8-4 (Cont.) Interaction Metrics Exposed via Prometheus APIs

Name Type Help Text Notes
uim_sfws_requests Summary Summary that tracks the duration of This metric is observed for
sf ws requests. the capture, process, and
update interaction requests.

Labels For All Interaction Metrics

The following table lists labels for all interaction metrics.

Table 8-5 Labels for All Metrics

Label Name

Sample Value

action

The values can be CREATE, CHANGE, APPROVE, CANCEL,
COMPLETE, and CANCEL.

Service Metrics

The following metrics are captured for completion of a business interaction.

Table 8-6 Service Metrics Captured for Completion of a Business Interaction

Name

Type

Help Text Summary

uim_services_proc
essed

Counter

Counter that tracks the number of | This metric is observed for
services processed. suspend, resume, complete, and
cancel of a service.

Labels for all Service Metrics

A task metric has all the labels that a service metric has.

Table 8-7 Labels for All Service Metrics
|

Label Sample Value

Notes Source of Label

spec VoipServiceSpec

The service specification | UIM Metric Label Name/Value
name.

status IN_SERVICE

The service status. UIM Metric Label Name/Value

The values can be
IN_SERVICE,
SUSPEND,
DISCONNECT, and
CANCELLED.

Generic Labels for all Metrics

Following are the generic labels for all metrics:

Table 8-8 Generic Labels for all Metrics
|

Label Name

Sample Value Source of the Label

server_name

ms1l Prometheus Kubernetes SD

Cloud Native Deployment Guide

G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 27

ORACLE’

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

Table 8-8 (Cont.) Generic Labels for all Metrics

Label Name Sample Value Source of the Label

job cmen Prometheus Kubernetes SD
namespace sr Prometheus Kubernetes SD
pod_name msl WebLogic Operator Pod Label
weblogic_cluseterName uimcluster WebLogic Operator Pod Label
weblogic_clusterRestartVersion vl WebLogic Operator Pod Label
weblogic_createdByOperator true WebLogic Operator Pod Label
weblogic_domainName domain WebLogic Operator Pod Label
weblogic_domainRestartVersion vl WebLogic Operator Pod Label
weblogic_domainUID quicksr WebLogic Operator Pod Label

Managing WebLogic Monitoring Exporter (WME) Metrics

Generating

UIM cloud native provides a sample Grafana dashboard that you can use to visualize
WebLogic metrics available from a Prometheus data source.

You use the WebLogic Monitoring Exporter (WME) tool to expose WebLogic server metrics.
WebLogic Monitoring Exporter is part of the WebLogic Kubernetes Toolkit. It is an open source
project, based at: https://github.com/oracle/weblogic-monitoring-exporter. You can include
WME in your UIM cloud native images. Once a UIM cloud native image with WME is
generated, creating a UIM cloud native instance with that image automatically deploys a WME
WAR file to the WebLogic server instances. While WME metrics are available through WME
Restful Management API endpoints, UIM cloud native relies on Prometheus to scrape and
expose these metrics. This version of UIM supports WME 1.3.0. See WME documentation for
details on configuration and exposed metrics.

The following topics provide a sample integration:
e Generating the WME WAR File
e Deploying the WME WAR File

e Configuring the Prometheus Scrape Job for WME Metrics

* Viewing WebLogic Monitoring Exporter Metrics in Grafana

the WME WAR File

To generate the WME WAR file, run the following commands, which update the wls-
exporter.war WAR file with the exporter-config.yaml configuration file.

mkdir -p ~/ wre
cd ~/ wre

curl -x $http_proxy -L https://github.conloracl e/ webl ogi c- nonitoring-exporter/
rel eases/ downl oad/ v1. 3. 0/ w s-exporter.war -0 w s-exporter.war

curl -x $http_proxy https://raw. githubusercontent.com oracl e/ webl ogi c-

moni t ori ng- exporter/vl. 3. 0/ sanpl es/ kuber net es/ end2end/ dashboar d/ export er -
config.yam -0 config.ym

jar -uvf w s-exporter.war config.ym

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 25 of 27

https://github.com/oracle/weblogic-monitoring-exporter

ORACLE Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

Deploying the WME WAR File

After the WME WAR file is generated and updated, you can deploy it as a custom application
archive.

For details about deploying entities, see "Deploying Entities to a UIM WebLogic Domain".

You can use the following sample to deploy the WME WAR file to the admin server and the
managed servers in a cluster:

appDepl oynent s:
Application:
"W s-exporter':
Sour cePat h: ' w sdepl oy/ appl i cations/w s-exporter.war'
Modul eType: war
St agi nghbde: nost age
Pl anSt agi nghbde: nost age
Target: ' @@PROP: ADM N_NAMVE@®, @APROP: CLUSTER_NAME@D

Configuring the Prometheus Scrape Job for WME Metrics

The following job configuration has to be added to Prometheus configuration:

@® Note

In the basi c_aut h section, specify the WebLogic username and password.

- job_name: 'basew s
kubernetes_sd_confi gs:
- role: pod
rel abel configs:

- source_|l abels: [
action: 'keep
regex: 'true

- source_labels: [__meta kubernetes_pod_| abel webl ogi c_creat edByQper at or]
action: 'keep
regex: 'true

- source_l abels: [__meta kubernetes_pod_annotation_pronetheus_io_path]
action: replace
target label: _ nmetrics_path__
regex: (.+)

- source_labels: [__address__,

__meta_kubernetes_pod_annotation_promet heus_io_port]

action: replace

regex: ([M:14)(?::\d+)?;(\d+)
repl acenent: $1:$2

target label: _ address _

- action: [abel nap
regex: __ nmeta_kubernetes pod_|abel (.+)

- source_labels: [__meta kubernetes_pod _nane]
action: replace
target | abel: pod_nane

__meta_kubernetes_pod_annotation_pronetheus_io_scrape']

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 26 of 27

ORACLE Chapter 8

Managing WebLogic Monitoring Exporter (WME) Metrics

- source_l abels: [__meta_kubernetes_nanespace]
action: replace
target | abel: namespace
basi ¢c_aut h:
username: webl ogi c_user name
password: webl ogi ¢_password

Viewing WebLogic Monitoring Exporter Metrics in Grafana

WebLogic Monitoring Exporter metrics scraped by Prometheus can be made available for
further processing and visualization. The UIM cloud native toolkit comes with sample Grafana
dashboards to get you started with visualizations. The WebLogic server dashboard provides a
view of WebLogic Monitoring Exporter metrics for one or more managed servers for a given
instance in the selected project namespace.

Import the sample dashboard weblogic_dashboar.json file from https://github.com/oracle/
weblogic-monitoring-exporter/blob/master/samples/kubernetes/end2end/dashboard into your
Grafana environment by selecting Prometheus as the data source.

Cloud Native Deployment Guide

G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 27 of 27

https://github.com/oracle/weblogic-monitoring-exporter/blob/master/samples/kubernetes/end2end/dashboard
https://github.com/oracle/weblogic-monitoring-exporter/blob/master/samples/kubernetes/end2end/dashboard

Integrating UIM

Typical usage of UIM involves the UIM application coordinating activities across multiple peer
systems. Several systems interact with UIM for various purposes. This chapter examines the
considerations involved in integrating UIM cloud native instances into a larger solution

ecosystem.

This chapter describes the following topics and tasks:
e Integration with UIM cloud native

e Configuring SAF

e Applying the WebLogic patch for external systems
e Configuring SAF for External Systems

e Setting up Secure Communication with SSL

Integrating with UIM Cloud Native

Functionally, the integration requirements of UIM do not change when UIM is running in a cloud
native environment. All of the categories of integrations that are applicable to traditional UIM

instances are applicable and must be supported for UIM cloud native.

Connectivity Between the Building Blocks

The following diagram illustrates the connectivity between the building blocks in a UIM cloud

native environment using an example:

Figure 9-1

Kubernetes Control
Overlay Network

HTTP or

! IngressController NodePort

----------- | Public [« 12.0ver HTTF

Ingress
i Controller

|

¥ Ingress Controller

Worker Node 1

User ClientA |-,

NodePort

Integration Across Building Blocks in UIM Cloud Native Environment

Lookup

quick.sruim.org
T

! UM Cloud Native| |

Ingress | i

Load Balancer HTTPIHTTPS or
(optional) T3 over HTTP

v

+ Managed Server 1

v

N
admmf nﬂp‘

Cluster Service |

"~ HTTPHTTPs of
T3 over HTTP

4 Managed Server 2

A Managed Server 3

Cloud Native Deployment Guide
G36724-01
Copyright © 2021, 2025, Oracle and/or its affiliates.

. # userclient |-~

13.quick.sr.uim.org
T

admin.quick.sr.uim.org

DNS Resolver

October 30, 2025
Page 1 of 16

ORACLE

Chapter 9
Integrating with UIM Cloud Native

Invoking the UIM cloud native Helm chart creates a new UIM instance. In the above illustration,
the name of the instance is "quick" and the name of the project is "sr". The instance consists of
the WebLogic cluster that has one Admin Server and three Managed Servers and a
Kubernetes Cluster Service.

The Cluster Service contains endpoints for both HTTP and T3 traffic. The ingress creation
script creates the UIM cloud native Ingress object. The Ingress object has metadata to trigger
the Generic ingress controller as a sample. Ingress controller responds by creating new front-
ends with the configured "hostnames" for the cluster (quick.sr.uim.org and
t3.quick.sr.uim.org in the illustration) and the admin server (admin.quick.sr.uim.org) and
links them up to new back-end constructs. Each back-end routes to each member of the
Cluster Service (MS1, MS2, and MS3 in the example) or to the Admin Server. The
quick.sr.uim.org front-end is linked to the back-end pointing to the HTTP endpoint of each
managed server, while the t3.quick.sr.uim.org front-end links to the back-end pointing to the
T3 endpoint of each managed server.

The prior installation of Ingress Contoller has already exposed Nginx itself through a selected
port number on each worker node.

Inbound HTTP Requests

A UIM instance is exposed outside of the Kubernetes cluster for HTTP access via an Ingress
Controller and potentially a Load Balancer.

Because the Ingress Controller port is common to all UIM cloud native instances in the cluster,
Ingress Controller must be able to distinguish between the incoming messages headed for
different instances. It does this by differentiating on the basis of the "hostname" mentioned in
the HTTP messages. This means that a client (User Client B in the illustration) must believe it
is talking to the "host" quick.sr.uim.org when it sends HTTP messages to Port on the access
IP. This might be the Master node IP, or IP address of one of the worker nodes, depending on
your cluster setup. The "DNS Resolver" provides this mapping.

In this mode of communication, there are concerns around resiliency and load distribution. For
example, If the DNS Resolver always points to the IP address of Worker Node 1 when asked
to resolve quick.sr.uim.org, then that Worker node ends up taking all the inbound traffic for
the instance. If the DNS Resolver is configured to respond to any *.sr.uim.org requests with
that IP, then that worker node ends up taking all the inbound traffic for all the instances. Since
this latter configuration in the DNS Resolver is desired, to minimize per-instance touches, the
setup creates a bottleneck on Worker node 1. If Worker node 1 were to fail, the DNS Resolver
would have to be updated to point *.sr.uim.org to Worker node 2. This leads to an interruption
of access and requires intervention. The recommended pattern to avoid these concerns is for
the DNS Resolver to be populated with all the applicable IP addresses as resolution targets (in
our example, it would be populated with the IPs of both Worker node 1 and node 2), and have
the Resolver return a random selection from that list.

An alternate mode of communication is to introduce a load balancer configured to balance
incoming traffic to the Ingress Controller ports on all the worker nodes. The DNS Resolver is
still required, and the entry for *.sr.uim.org points to the load balancer. Your load balancer
documentation describes how to achieve resiliency and load management. With this setup, a
user (User Client A in our example) sends a message to quick.sr.uim.org, which actually
resolves to the load balancer - for instance, http:/Isr.quick.uim.org:8080/Inventory/faces/
login.jspx. Here, 8080 is the public port of the load balancer. The load balancer sends this to
Ingress Controller, which routes the message, based on the "hostname” targeted by the
message to the HTTP channel of the UIM cloud native instance.

By adding the hostname resolution such that admin.quick.sr.uim.org also resolves to the
Kubernetes cluster access IP (or Load Balancer IP), User Client B can access the WebLogic

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 16

ORACLE Chapter 9
Integrating with UIM Cloud Native

console via http:/ladmin.quick.sr.uim.org/console and the credentials specified while setting
up the "wlsadmin" secret for this instance.

® Note

Access to the WebLogic Admin console is provided for review and debugging use
only. Do not use the console to change the system state or configuration. These are
maintained independently in the WebLogic Operator, based on the specifications
provided when the instance was created or last updated by the UIM cloud native
toolkit. As a result, any such manual changes (whether using the console or using
WLST or other such mechanisms) are liable to be overwritten without notice by the
Operator. The only way to change state or configuration is through the tools and
scripts provided in the toolkit.

Inbound JMS Requests

JMS messages use the T3 protocol. Since Ingress Controllers and Load Balancers do not
understand T3 for routing purposes, UIM cloud native requires all incoming JMS traffic to be
"T3 over HTTP". Hence, the messages are still HTTP, but contain a T3 message as payload.
UIM cloud native requires the clients to target the "t3 hostname" of the instance -
t3.quick.sr.uim.org, in the example. This "t3 hostname" should behave identically as the
regular "hostname” in terms of the DNS Resolver and the Load Balancer. Nginx however not
only identifies the instance this message is meant for (quick.sr) but also that it targets the T3
channel of instance.

The "T3 over HTTP" requirement applies for all inbound JMS messages - whether generated
by direct or foreign JIMS API calls or generated by SAF. The procedure in SAF QuickStart
explains the setup required by the message producer or SAF agent to achieve this
encapsulation. If SAF is used, the fact that T3 is riding over HTTP does not affect the
semantics of IMS. All the features such as reliable delivery, priority, and TTL, continue to be
respected by the system. See "Applying the Webl ogic Patch for External Systems" for more
information.

A UIM instance can be configured for secure access, which includes exposing the T3 endpoint
outside the Kubernetes cluster for HTTPS access. See "Configuring Secure Incoming Access
with SSL" for details on enabling SSL.

Inbound JMS Requests Within the Same Kubernetes Cluster

There can be situations where UIM cloud native needs to be accessed from within the same
Kubernetes cluster where it is deployed. For example, in a Service and Network Orchestration
(SNO) an upstream application (OSM) and downstream application UIM could be deployed in
the same Kubernetes cluster. For such requirements, there is no need for the request to be
routed via an Ingress Controller or a load balancer and resolved via a DNS Resolver.

UIM cloud native exposes a T3 channel exclusively for such connections and can be accessed
via t3:lIproject-instance-cluster-uimcluster.project.svc.cluster.local:31313.

This saves the various network hops typically involved in routing a request from an external
client to UIM cloud native deployed in a Kubernetes cluster. The following diagram illustrates
inbound JMS requests within the same Kubernetes cluster using an example. For the example,
the URL is t3:lIsr-quick-cluster-uimcluster.sr.svc.cluster.local:31313.

Cloud Native Deployment Guide
G36724-01 October 30, 2025
Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 16

ORACLE’

Chapter 9
Integrating with UIM Cloud Native

@® Note

The protocol is T3 as there is no need for wrapping in HTTP; the port is different.

Figure 9-2 Inbound JMS Integration in a Kubernetes Cluster

Kubernetes Cluster

I/ Namespace : other \I Namespace: <project>
JWS Clientin same Administration
namespacs

Server

JMS Client in different
namespace t3://project-instance-cluster-uimcluster. project.svc.cluster.Jocal: 31213

- W51

. project-instance-ms1

t3://project-instance-cluster-uimcluster. project.svc.cluster.local: 21313

Cluster Service

-------- > Ms2
project-nstance-clu ster—mmcluster".‘ project-instance-ms2

< MSn

project-instance-msn

N /

If SSL is enabled for domains, communication between the domains within the Kubernetes
cluster is not secured because the ingress is not involved. See "Setting Up Secure
Communication with SSL" for further details.

Outbound HTTP Requests

No specific action is required to ensure the HTTP messages from UIM cloud native instance
reach out of the Kubernetes Cluster.

When a domain inside a Kubernetes cluster sends REST API or Web Service requests over
HTTP to a domain that is outside the cluster that is enabled with SSL, then you should set up
some required configuration. For instructions, see "Configuring Access to External SSL-
Enabled Systems".

Outbound JMS Connectivity

JMS messages originating from the UIM cloud native instance such as requests to peer
systems always end up on local queues. The UIM cloud native Helm chart allows for the
specification of SAF connections to remote systems in order to get these messages to their
destinations. Custom Templates can be used to create SAF connections in UIM. This allows for
a canonical expression of the SAF connectivity requirements, which are uniquely fulfilled by

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 16

ORACLE

Chapter 9
Configuring SAF

each project by pointing to the appropriate upstream, downstream, peer systems or emulators,
and so on.

When a domain inside a Kubernetes cluster sends JMS messages to a domain that is outside
the cluster that is SSL-enabled, then see "Configuring Access to External SSL-Enabled
Systems" for instructions on setting up some required configuration.

Configuring SAF

UIM cloud native requires SAF to send messages to external systems through JMS. The SAF
configuration in UIM cloud native is configured at app-uim specification level. The app-uim
specification can be used to define all the SAF connections that any UIM cloud native instance
must make. Each of these SAF connections must be given a specific remote endpoint. See
"Adding a Store-and-Forward-Agent and SAF Resources" for more information on configuring
SAF templates.

Configuring the app-uim Specification

The app-uim specification lists out all the SAF connections and endpoint for each of these
SAF connections that are required. These are listed under the safDestinationConfig element
of the app-uim specification. The following sample shows a basic SAF specification that
describes the need to interact with external_system_identifier through SAF. The app-uim
specification contains the T3 URL of the external system along with the name of a Kubernetes
secret that provides the credentials required to interact with that system. The T3 URL can be
specified using any of the standard mechanisms supported by WebLogic. The Kubernetes
secret must contain the fields username and password, carrying credentials which have
permissions to include JMS messages into the remote system. It specifies that the project
accesses two queues on that remote system: remote_queue_1 and remote_queue_2. These
gueues can be addressed using the JNDI prefix prefix_1 on the system. Further,
remote_queue_1 is also mapped locally as local_queue_1. The mapping depends on the
addressing system coded into the UIM cartridge's external sender automation plugins. UIM
cloud native supports both local names and remote names for SAF destinations.

If the external system is a UIM cloud native instance deployed in the same Kubernetes cluster,
use the T3 URL as described "Inbound JMS Requests Within the Same Kubernetes Cluster".

If SSL is enabled for the external system, use the T3 URL as described in "Configuring Access
to External SSL-Enabled Systems".

saf Desti nati onConfi g:
- nane: external _system.identifier
t3Url: t3_url
secret Name: secret t3_user_pass
destinations:
- jndiPrefix: prefix_1
queues
- queue
renotedndi: renote_queue_1
 ocal Jndi: |ocal _queue_1
- queue
renotedndi: renote_queue_2

If the queues of an external system are spread across more than one JNDI prefix, the
jndiPrefix element can be repeated as many times as necessary. In this example, prefix_1
applies to remote_queue_1 and remote_queue_2, while prefix_2 applies to
remote_queue_3.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 16

ORACLE Chapter 9
Configuring SAF

The following sample shows SAF app-uim specification with multiple JNDIs:

saf DestinationConfig:
- name: external _systemidentifier
t3Url: t3_ url
secret Name: secret_t3_user_pass
destinations:
- jndiPrefix: prefix_ 1
queues
- queue:
renotelndi: renote_queue 1
l ocal Jndi: local _queue_1
- queue:
renotelndi: renote_queue 2
- jndiPrefix: prefix 2
queues
- queue:
renotelndi: renote_queue 3

It is possible for an external system to not use a JNDI prefix, which is configured by leaving the
value empty for jndiPrefix. However, at most, one of the jndiPrefix entries in a destinations list
can be empty, as the jndiPrefixes in this list have to be unique. If there are more than one
external system that the project's solution cartridges interact with via SAF, these can be named
and listed as follows:

saf Destinati onConfig:
- name: external _systemidentifier_1
t3Url: t3 url
secret Name: secret _t3_user_pass
destinations:
- jndiPrefix: prefix_1
queues
- queue:
renmoteJndi: renote_queue_1
- name: external _systemidentifier_2
t3Url: t3 url
secret Name: secret _t3_user_pass
destinations:
- jndiPrefix: prefix_2
queues
- queue:
renmot eJndi: renote_queue_2

@® Note

Using the provided configuration, UIM cloud native automatically computes names for
some entities required for completing the SAF setup. You may find such entities when
you log into WebLogic Administration Console for troubleshooting purposes and are
not to be confused.

Configuring Domain Trust

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 16

ORACLE

Chapter 9
Applying the WebLogic Patch for External Systems

For details about global trust, see "Enabling Global Trust" in Oracle Fusion Middleware
Administering Security for Oracle WebLogic Server.

Because the shared password provides access to all domains that participate in the trust, strict
password management is critical. Trust should be enabled when SAF is configured as it is
needed for inter-domain communication using distributed destinations. In a Kubernetes cluster
where the pods are transient, it is possible that a SAF sender will not know where it can
forward messages unless domain trust is configured.

If trust is not configured when using SAF, you may experience unstable SAF behavior when
your environment has pods that are growing, shrinking, or restarting.

To enable domain trust, in your instance specification file, for dormai nTr ust , change the
default value to true:

domai nTrust :
enabl ed: true

If you are enabling domain trust, then you must create a Kubernetes secret (exactly as
specified) to store the shared trust password by running the following command:

@ Note

This step is not required if you are not enabling domain trust in the app-uim
specification.

kubect| create secret generic -n project project-instance-global-trust-
credentials --fromliteral =passwor d=pwd

The same password must be used in all domains that connect to this one through SAF.

Applying the WebLogic Patch for External Systems

When an external system is configured with a SAF sender towards UIM cloud native, using
HTTP tunneling, a patch is required to ensure the SAF sender can connect to the UIM cloud
native instance. This is regardless of whether the connection resolves to an ingress controller
or to a load balancer. Each such external system that communicates with UIM through SAF
must have the WebLogic patch 30656708 installed and configured, by adding -

Dwebl ogi c. rjvm al | owUnknownHost =t r ue to the WebLogic startup parameters.

For environments where it is not possible to apply and configure this patch, a workaround is
available. On each host running a Managed Server of the external system, add the following
entries to the /etc/hosts file:

0.0.0.0 project-instance-nsl
0.0.0.0 project-instance-ns2
0.0.0.0 project-instance-ns3
0.0.0.0 project-instance-ns4
0.0.0.0 project-instance-ns5
0.0.0.0 project-instance-ns6
0.0.0.0 project-instance-ns7
0.0.0.0 project-instance-ns8
0.0.0.0 project-instance-ns9

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 16

ORACLE’

Chapter 9
Configuring SAF on External Systems

0.0.0.0 project-instance-ms10
0.0.0.0 project-instance-nsll
0.0.0.0 project-instance-nsl2
0.0.0.0 project-instance-nms13
0.0.0.0 project-instance-nmsl4
0.0.0.0 project-instance-msl5
0.0.0.0 project-instance-nsl6
0.0.0.0 project-instance-nmsl7
0.0.0.0 project-instance-ns18

You should add these entries for all the UIM cloud native instances that the external system
interacts with. Set the IP address to 0.0.0.0. All the managed servers possible in the UIM cloud
native instance must be listed regardless of how many are actually configured in the instance
specification.

Configuring SAF on External Systems

To create SAF and JMS configuration on your external systems to communicate with the UIM
cloud native instance, use the configuration samples provided as part of the SAF sample as
your guide.

It is important to retain the "Per-JVM" and "Exactly-Once" flags as provided in the sample.
All connection factories must have the "Per-JVM" flag, as must SAF foreign destinations.
Each external queue that is configured to use SAF must have its QoS set to "Exactly-Once".
Enabling Domain Trust

To enable domain trust, in your domain configuration, under Advanced, edit the Credential
and ConfirmCredential fields with the same password you used to create the global trust
secret in UIM cloud native.

Setting Up Secure Communication with SSL

When UIM cloud native is involved in secure communication with other systems, either as the
server or as the client, you should additionally configure SSL/TLS. The configuration may
involve the WebLogic domain, the ingress controller or the URL of remote endpoints, but it
always involves participating in an SSL handshake with the other system. The procedures for
setting up SSL use self-signed certificates for demonstration purposes. However, replace the
steps as necessary to use signed certificates.

If a UIM cloud native domain is in the role of the client and the server, where secure
communications are coming in as well as going out, then both of the following procedures need
to be performed:

e Configuring Secure Incoming Access with SSL

e Configuring Access to External SSL-enabled Systems

Configuring Secure Incoming Access with SSL

This section demonstrates how to secure incoming access to UIM cloud native. In the
TERMINATE strategy, SSL termination happens at the ingress. The traffic coming in from
external clients must use one of the HTTPS endpoints. When SSL terminates at the ingress, it

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 16

ORACLE’

Chapter 9
Setting Up Secure Communication with SSL

implies that communication within the cluster, such as SAF between the UIM cloud native
instances, is not secured.

The Common cloud native toolkit provides the sample configuration for Nginx ingress. If you
use Voyager or other ingress, you can look at the $SCOMMON_CNTKI/charts/uim-ingress/
charts/uim-ingressi/templates/generic-ingress.yaml file to understand the configuration that
is applied.

Generating SSL Certificates for Incoming Access

The following illustration shows when certificates are generated.

Figure 9-3 Generating SSL Certificates

(. perhosiname : .
External Client ! HTTPS Endpoints | C : : Certificate for
H g W : : | T3.instance project uim org
Certicate for ® T : e e 5 Oy
admin.instance project. uim.org - : - g 2
' ' Ingress Domain
& i : ssL :
~ Certificate for o ' i [i Domain
instance project uim org 2 = ¢ - ' i
'H Ingress
\ 7 Certificate for
. 4 » T3.instance project uim.org

Domain

On-premise Domain

When UIM cloud native dictates secure communication, then it is responsible for generating
the SSL certificates. These must be provided to the appropriate client. When a UIM cloud
native instance in a different Kubernetes cluster acts as the external client (Domain Z in the
illustration), it loads the T3 certificate from Domain A as described in "Configuring Access to
External SSL-Enabled Systems".

Setting Up UIM Cloud Native for Incoming Access

The ingress controller routes unique hostnames to different backend services. You can see this
if you look at the ingress controller YAML file (obtained by running kubectl get ingress -n
project ingress_name -0 yaml):

Kind: Rule
Mat ch: Host (" instance.project.uimorg’)
Servi ces:
Nane: project-instance-cluster-uintluster
Port: 8502
Sticky:
Cooki e:
Htp Only: true
Kind: Rule
Mat ch: Host (" t3.instance.project.uimorg’)
Servi ces:
Nane: project-instance-cluster-uintluster
Port: 30303
Sticky:
Cooki e:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 16

ORACLE Chapter 9
Setting Up Secure Communication with SSL

Htp Only: true
Kind: Rule
Mat ch: Host (" admi n.instance.project.uimorg’)
Servi ces:
Narme: project-instance-adnin
Port: 8501
Sticky:
Cooki e:
Htp Only: true

To set up UIM cloud native for incoming access:

1. Use Common certificate and key created while deploying ATA application to create
commoncert.pem and commonkey.pem. See "About Unified Inventory and Topology" in
Unified Inventory and Topology Deployment Guide for more information:

Create a directory to copy your common keys and certificates. This is
for sanple only. Proper management policies should be used to store
private keys.

mkdi r $SPEC _PATH ssl

copy conmoncert.pem and conmonkey. pemto $SPEC PATH ssl |ocation

Create secrets to hold each of the certificates. The secret name nust be
in the format below. Do not change the secret nanes

kubect| create secret -n project tls project-instance-uimtls-cert --
key $SPEC PATH ssl/commonkey. pem --cert $SPEC PATH ssl/comoncert. pem
kubect| create secret -n project tls project-instance-admn-tls-cert --
key $SPEC PATH ssl/commonkey. pem --cert $SPEC PATH ssl/comoncert. pem
kubect| create secret -n project tls project-instance-t3-tls-cert --
key $SPEC PATH ssl/commonkey. pem --cert $SPEC PATH ssl/comoncert. pem

2. Edit the applications-base.yaml specification and sett | s. enabl ed tot r ue

tls:
enabl ed: true

3. Create Ingress as follows:

$COMMON_CNTK/ scri pts/create-ingress.sh -i instance -p project -
s $SPEC PATH -a uim

4. After running create-ingress.sh, you can validate the configuration by describing the
ingress controller for your instance:

kubect| get ingress -n project

NAMVE AGE
proj ect-instance-ingress-admn-tls 22h
proj ect-instance-ingress-t3-tls 22h
proj ect-instance-ingress-uimtls 22h

5. Create your instance as usual.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 16

ORACLE Chapter 9
Setting Up Secure Communication with SSL

Configuring Incoming HTTP and JMS Requests for External Clients

This section describes how to configure incoming HTTP and JMS requests for external clients.

@® Note

Remember to have your DNS resolution set up on any remote hosts that will connect
to the UIM cloud native instance.

Incoming HTTPS Requests

External Web clients that are connecting to UIM cloud native must be configured to accept the
certificates from UIM cloud native. They will then connect using the HTTPS endpoint and port
30443.

Incoming JMS Requests

For external servers that are connected to UIM cloud native through SAF, the certificate for the
t3 endpoint needs to be copied to the host where the external domain is running.

If your external WebLogic configuration uses "CustomldentityAndJavaSTandardTrust", then
you can follow these instructions exactly to upload the certificate to the Java Standard Trust. If,
however, you are using a CustomTrust, then you must upload the certificate into the custom
trust keystore.

The keytool is found in the bin directory of your jdk installation. The alias should uniquely
describe the environment where this certificate is from.

.Ikeytool -inportcert -v -trustcacerts -alias alias -file /path-to-copied-t3-
certificate/t3.crt -keystore /path-to-jdk/jre/lib/security/cacerts -storepass
defaul t _password

For exanple
.I'keytool -inportcert -v -trustcacerts -alias uincn -file /scratch/t3.crt -
keystore /path-to-jdk/jre/lib/security/cacerts -storepass default password

Update the SAF remote endpoint (on the external UIM instance) to use HTTPS and 30443 port
(still t3 hostname).

From the SAF sample provided with the toolkit, the external system would configure the
following remote endpoint URL:

https://t3.quick.sr.uimorg: 30443/ ResponseQueue

Configuring Access to External SSL-Enabled Systems

In order for UIM cloud native to participate successfully in a handshake with an external server
for SAF integration, the SSL certificates from the external domain must be made available to
the UIM cloud native setup. See "Enabling SSL on an External WebLogic Domain" for details
about how you could do this for an on-premise WebLogic domain. If you have an external
system that is already configured for SSL and working properly, you can skip this procedure
and proceed to "Setting Up UIM Cloud Native for Outgoing Access".

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 16

ORACLE Chapter 9
Setting Up Secure Communication with SSL

Loading Certificates for Outgoing Access

In outgoing SSL, the certificates come from the external domain, whether on-premise or in
another Kubernetes cluster. These certificates are then loaded into the UIM cloud native trust.

The following illustration shows information about loading certificates into UIM cloud native
setup.

Figure 9-4 SSL Certificates for Outgoing Requests

Kubernetes Cluster A

On Premise Domain

Hitp endpoint =<4 HTTPS endpoint
: : Domain B
Extemal Web | ——————————> | Traefiidingress [—> Domain 5 O
Client ' A

SSL
Enabled

Kubernetes Cluster Z
HTTPS endpoint N e e R

[- Ingress _|
Z(’@ ? 2 Domain

SsL
| _Enabled

Enabling SSL on an External WebLogic Domain

These instructions are specific to enabling SSL on a WebLogic domain that is external to the
Kubernetes cluster where UIM cloud native is running.

To enable SSL on an external WebLogic domain:

1. Create the certificates. Perform the following steps on the Linux host that has the on-
premise WebLogic domain:

a. Use the Java keytool to generate public and private keys for the server. When the tool
asks for your username, use the FQDN for your server.

pat h-to-j dk/ bi n/ keyt ool -genkeypair -keyal g RSA -keysize 1024 -alias
alias -keystore keystore file -keypass private key password -storepass
keystore password -validity 360

b. Export the public key. This certificate will then be used in the UIM cloud native setup.

pat h-t o-j dk/ bi n/ keyt ool -exportcert -rfc -alias alias -storepass
password -keystore keystore -file certificate

2. Configure WebLogic server for SSL. Follow steps 3 to 17 (skip step 7) in "Set up SSL" in
Oracle Fusion Middleware Administration Console Online Help.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 16

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wlach/taskhelp/security/SetUpSSL.html

ORACLE

3.

Chapter 9
Setting Up Secure Communication with SSL

Validate that SSL is configured properly on this server by importing the certificate to a trust
store. For this example, the Java trust store is used.

pat h-to-j dk/ bi n/ keyt ool -inportcert -trustcacerts -alias alias -file
certificate -keystore path-to-jdk/jre/lib/security/cacerts -storepass
defaul t _password

Verify that t3s over the specified port is working by connecting using WLST.
Navigate to the directory where the WLST scripts are located.

Set the environment variables. Sone shells don't set the variables
correctly so be sure to check that they are set afterward

pat h-t o- FMNV O acl e/ M ddl ewar e/ Or acl e_Homre/ or acl e_common/ common/ bi n/
set WsEnv. sh

ensure CLASSPATH and PATH are set
echo $CLASSPATH

java -
Dwebl ogi c. security. JavaSt andar dTr ust KeySt or ePassPhr ase=def aul t _password
webl ogi c. W.ST

once W st starts, connect using t3s
w s: of fline> connect (' <admin user>','<admi n password>','t3s://
<server>: <port>')

If successful you will see the pronpt
w s: >domai n_name/ ser ver Confi g>

#when fini shed di sconnect
di sconnect ()

Setting Up UIM Cloud Native for Outgoing Access

To set up UIM cloud native for outgoing access:

1.

Set up custom trust using the following steps:

a. Load the certificate from your remote server into a trust store and make it available to
the UIM cloud native instance.
Use the Java keytool to create a jks file (truststore) that holds the certificate from your
SSL server:

keytool -inportcert -v -alias alias -file /path-to/certificate.cer -
keystore /path-to/truststore.jks -storepass password

@® Note

Repeat this step to add as many trusted certificates as required.

b. Create the commonTrust secret to store the created truststore.jks file.

$COMMON_CNTK/ scri pt s/ manage- app- credential s.sh -p project -i instance -
s $SPEC PATH create comonTr ust

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 16

ORACLE Chapter 9
Setting Up Secure Communication with SSL

#Provi de Common Trust Store Details:
Truststore Path: ./truststore.jks #provide truststore path
Truststore Passphrase: ***** #provide truststore passphrase

#verify secret created
secret/project-instance-comon-truststore created
2. Itis mandatory to Set up custom identity using the following steps when trust is passed:
a. Create the keystore from commoncert.pem and commonkey.pem.

openssl pkcsl2 -export -in <path-to-certs>/ comoncert.pem -inkey <path-
t o-cert s>/ commonkey. pem -out keyStore.pl2 -name "identity"

keyt ool -inportkeystore -srckeystore keyStore.pl2 -srcstoretype PKCS12
-destkeystore identity.jks -deststoretype JKS

b. Create the secret.

kubect| create secret generic secretNanme -n project --from
file=secretNane.jks=</path-to/identity.jks> --from
l'iteral =passphrase=passphrase

verify
kubect| describe secret -n project secretNanme

c. Edit the app-uim.yaml file at location $SPEC_PATH/project/instance, uncomment,
and provide following properties:

uim
identity:
name: secretNane .
alias: identity #alias used to store key in keystore

3. Configure SAF by updating the SAF connection configuration in the UIM cloud native app-
uim specification file to reflect t3s and the SSL port:

saf Connecti onConfi g:
- nane: sinple
t3Url: t3s://renote_server: 7002
secret Narme: sinpl esecr et

4. Create the UIM cloud native instance as usual.

Adding Additional Certificates to an Existing Trust

You can add additional certificates to an existing trust while a UIM cloud native instance is up
and running.

To add additional certificates to an existing trust:

1. Setup UIM cloud native for outgoing access. See "Configuring Access to External SSL-
Enabled Systems" for instructions.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 16

ORACLE

Chapter 9
Setting Up Secure Communication with SSL

2. Copy the certificates from your remote server and load them into the existing truststore.jks
file you had created:

keytool -inportcert -v -alias alias -file /path-to/certificate.cer -
keystore /path-to/truststore.jks -storepass password

3. Re-create your Kubernetes secret using the same name as you did previously:

$COMMON_CNTK/ scri pt s/ manage- app- credential s.sh -p project -i instance -
s $SPEC PATH create comonTr ust

#Provi de updated TrustStore Details:

Truststore Path: ./truststore.jks #provide updated truststore path
Truststore Passphrase: ***** #provide truststore passphrase

4. Restart the instance to force WebLogic Operator to re-evaluate:

$COMMON_CNTK/ scri pts/restart-applications.sh -p project -i instance -
s $SPEC PATH -a uim-r all

Debugging SSL

To debug SSL, do the following:

e Verify Hosthame
e Enable SSL logging

Verifying Hostname

When the keystore is generated for the on-premise server, if FQDN is not specified, then you
may have to disable hostname verification. This is not secure and should only be done in
development environments.

To do so, add the following Java option to the managed server in the app-uim specification:

managedSer vers:

proj ect:
#JAVA OPTIONS for all nanaged servers at project |evel
java_options: "-Dweblogic.security.SSL.ignoreHost nameVerification=true"

Enabling SSL Logging

When trying to establish the handshake between servers, it is important to enable SSL specific
logging.

Add the following Java options to your managed server in the app-uim specification. This
should be done for your external server as well.

managedSer vers:

proj ect:
#JAVA OPTIONS for all nmanaged servers at project |evel
java_options: "-Dwebl ogic. Stdout DebugEnabl ed=t rue - Dssl . debug=true -
Dwebl ogi c. security. SSL. ver bose=t rue - Dwebl ogi c. debug. DebugSecuritySSL=true -
D avax. net . debug=ssl "

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 15 of 16

ORACLE Chapter 9
Setting Up Secure Communication with SSL

Using Wild Card SSL Certificates

UIM cloud native supports wildcard certificates. You can generate wildCard Certificates with
the hostSuffix value provided in the applications-base.yaml spec files. The default is
ui morg.

To use Wild Card certificates:

1. To create a self-signed wild card certificate, run the following command:

openssl req -x509 -nodes -days 365 -newkey rsa: 2048 -keyout $COMMON CNTK/
certs/w | dcardkey. pem -out $COMMON_CNTK/ certs/wi | dcardcert. pem -subj "/
CN=*.uimorg" -extensions san -config <(echo '[req]'; echo

" di stingui shed_nane=req';

echo '[san]';echo 'subjectAltNane=@lt _nanes'; \echo '[alt_nanes]'; \
echo 'DNS. 1=*.uimorg'; \

)

2. Change the subDorai nNaneSeper at or value from period (.) to hyphen (-) so that
incoming hostnames match the wild card DNS pattern and update the $SPEC_PATH/
projectlinstancelapplications-base.yaml file as follows:

#Uncoment and provi de the val ue of subDomai nNaneSeparator, default is "."
#Val ue can be changed as "-" to match wild-card pattern of ssl
certificates.

#Exanpl e hostnanes for

qui ck-sr.uimorg

subDonai nNameSepar at or :

adm n-qui ck-sr.uimorg, quick-sr.uimorg, t3-

3. For the above configured settings, use the following hostnames to access UIM application
for proj ect: sr,instance: qui ck and | oadBal ancer Donai nNane: ui m org:

ui madni n hostnane: adm n-qui ck-sr.uimorg
ui m hostname: quick-sr.uimorg
uimt3 hostnane: t3-quick-sr.uimorg

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 16 of 16

Running the SAF Sample for UIM Cloud

Native

It is highly recommended that you explore UIM cloud native support of SAF using a predefined
set of configurations and instructions. This activity not only serves to quickly identify any
environment issues but also provides the experience in setting up the connectivity for your own
projects.

This chapter describes how to run the SAF sample for UIM cloud native.

The SAF sample for UIM cloud native consists of the following components:

The SAFSample cartridge that is ready to be deployed. This cartridge implements a flow
that consists of sending a JMS message to a remote system and receiving a JMS
message in response.

Configuration fragments for a project and an instance. These can be added to your app-
uim specification and contain all the SAF connection specifications as well as endpoint
identification.

A simple emulator that is available as a JAR file, along with instructions and configuration
samples. This emulator can be set up on a WebLogic system outside the Kubernetes
cluster and functions as a "remote system" in the SAF communication. The emulator
simply echos the message given to it.

The SAF sample described in this section uses "sr" as project and "quick" as instance names.

Prerequisites for running the SAF sample

For the SAF sample, you need the following:

A Linux host capable of running WebLogic Server 12.2.1.4 outside of the Kubernetes
cluster.

Traffic should be routable between the Kubernetes cluster and this host.

If you are not using a centralized DNS resolution server, edit the /etc/hosts file of the Linux
host to add resolution for your UIM cloud native instance. For example, use <k8s-access-
ip> quick.sr.uim.org t3.quick.sr.uim.org admin.quick.sr.uim.org.

For further details, see "Planning and Validating Your Cloud Environment".

Running the SAF sample involves the following tasks:

Preparing WebLogic System to Run the Emulator

Deploying the Emulator on the WebLogic System

Preparing the UIM Cloud Native Instance

Deploying the SAF Sample Cartridge
Validating the SAF Endpoints

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE Chapter 10
Preparing WebLogic System to Run the Emulator

Preparing WebLogic System to Run the Emulator

Install WebLogic 12.2.1.4 on the prepared Linux host. The specific patchset does not matter as
long as it contains the patch referenced in "Applying the WebL ogic Patch for External

To prepare the WebLogic system to run the emulator:

1. Create a WebLogic domain while accepting all defaults.

@® Note

Do not enable JRF or any other Fusion Middleware capabilities for this sample.
WebLogic domain should be standalone installation with development mode.

2. Stop WebLogic and find the domain home.

3. Edit <domai n- hone>/ confi g/ confi g. xm with the configuration fragment xml file in
the COMMON_CNTK, at sanpl es/ ui nf saf - sanpl e/ r enot e- webl ogi c-
resour ces/ config/config_fragnent.xn .

4. From the configuration fragment file, copy the following contents to the config.xml file:
a. Add <j ns-syst em r esour ce> for SAF Module at the end, just before </ donai n>.
b. Add <saf - agent > at the end, just before </ domai n>.

This creates a JMS Module and a SAF agent. The SAF agent will eventually get used in
sending emulator responses back to the UIM cloud native instance.

5. From the $COMMON_CNTK folder, copy the sanpl es/ ui m saf - sanpl e/ r enot e-
webl ogi c-resour ces/ config/jnms/ ui m saf - nodul e-j nms. xnl file to <domai n-
home>/ confi g/ j ns.

This creates SAF entities.

6. Update SAF configuration for connecting to UIM cloud native instance. This instance does
not need to be up at this point, but you do need the details such as project name, instance
name, weblogic username, and weblogic password.

a. Edit the <domain-home>/config/jms/uim-saf-module-jms.xml file and update the
following fields:

@® Note

The password is entered as plain text, and gets auto-encrypted during WLS
startup.

<saf -1 ogi n- cont ext >

<l ogi nURL>{uimecn_t 3 url}</Iogi nURL>

<user nane>{ui m cn_webl ogi c_user nane} </ user name>

<passwor d- encrypt ed>{ui m cn_webl ogi ¢_passwor d} </ passwor d- encr ypt ed>
</ saf -1 ogi n- cont ext >

Where ui m cn_t 3_url is http:/it3.instance.project.uim.org:30505 or http://
t3.instance.project.uim.org:80.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE

Chapter 10
Deploying the Emulator on the WebLogic System

b. Start WebLogic. At this point, if you see errors from SAF or JMS about your UIM cloud
native instance, you can ignore the errors. These errors go away once the UIM cloud
native instance is up and configured for SAF sample.

® Note

You can also manually set up SAF agent and SAF entities through WebLogic Server
Administration console.

Deploying the Emulator on the WebLogic System

To deploy the emulator on the WebLogic system:

1.

Find the samples/uim/saf-sample/remote-weblogic-resources/emulator-resources/
uim-emulator-mdb-0.0.1-SNAPSHOT.jar emulator MDB jar file in $COMMON_CNTK.

Open the remote WebLogic console.
In the Install folder of Deployments, upload the emulator MDB jar file under Upload.

Complete the deployment using the defaults and ensure that the MDB file is shown with
State "Active" and Health "OK".

Preparing the UIM Cloud Native Instance

To prepare the UIM cloud native instance for the SAF sample:

1.

Create customized image with $COMMON_CNTK/samples/uim/saf-sample/uim-cn-
resources/cartridge-resources/SAFSample cartridge. See "Adding Solution Cartridge
Customizations" for more information.

Enable the extension mechanism by setting the custom flag to true in the app-uim
specification.

Copy $COMMON_CNTKI/samples/uim/customExtensions/_custom-domain-model.tpl
to your customExtPath directory.

From $COMMON_CNTK, copy the contents from samples/uim/saf-sample/uim-cn-
resources/_custom-jms-support.tpl to SCOMMON_CNTK/samples/uim/
customExtensions/_custom-jms-support.tpl.

Copy $COMMON_CNTK/samples/uim/customExtensions/_custom-jms-support.tpl to
your customExtPath directory.

Set the j s flag in the app-uim specification to true.

From $COMMON_CNTK, copy the contents from samples/uim/saf-sample/uim-cn-
resourcesl/_custom-saf-support.tpl to SCOMMON_CNTK/samples/uim/
customExtensions/_custom-saf-support.tpl.

Copy $COMMON_CNTK/samples/uim/customExtensions/_custom-saf-support.tpl to
your customExtPath directory.

Set the saf flag in the app-uim specification to true.
The sample settings are as follows:

custom
enabl ed: true

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

10.
11.

12.

13.

14.

Chapter 10
Preparing the UIM Cloud Native Instance

application: false

jdbc: false
jms: true
saf: true

#wdtFiles: {} # This enpty declaration should be renmoved if adding itens
here.

wdt Fi | es:

- _cust om domai n- nodel . t pl

- _customjdbc-support.tpl

- _customjns-support.tpl

- _custom saf - support.tpl

Create a secret for storing the remote server credentials.

Replace the user name and password with the values for remote WebLogic credentials as
follows:

kubect| create secret generic secret_name -n project --fromliteral
user nane=r enot e_donai n_webl ogi ¢_usernane --fromliteral
passwor d=r enot e_donai n_webl ogi ¢_password

Configure the SAF URL and SAF Queue (Request Queue). The cartridge deployed for this
sample uses this SAF Queue (Request Queue) to send messages to external Weblogic
domain.

Replace saf Desti nati onConfi g: {} inapp-uim.yaml with the following:

saf Destinati onConfig:
- nane: sanple

t3Url: "t3://{renmote_webl ogi c_host name}: {renote_webl ogic_port}"

secret Name: sanpl esecr et

destinations:

- jndiPrefix:
queues:
- queue:

| ocal Jndi: Request Queue
renotedndi : Request Queue

Replace the value of { r enbt e_webl ogi ¢_host nane} and
{renot e_webl ogi c_port} with the hosthame and port where remote WebLogic is
installed.

@® Note

If saf Dest i nati onConf i g already exists in your app-uim.yaml, do not create a
new element; append SAFSanpl e to the end of the existing list of items in
saf Desti nati onConfi g.

Create UIM cloud native instance as follows:

$COVMMON_CNTK/ scri pt s/ creat e-applications.sh -p sr -i quick -s $SPEC PATH -
m custonExt Path -a uim

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE

Chapter 10
Deploying the SAF Sample Cartridge

Both the SAF endpoints, one on the remote WebLogic and one on this UIM cloud native
instance, become active.

Deploying the SAF Sample Cartridge

Deploy the SAF sample cartridge from $SCOMMON_CNTK/samples/uim/saf-sample/uim-cn-
resources/cartridge-resources/ to UIM cloud native instance using Design Studio or CMT.
The deployment does not have any dependency on base cartridges. See "Deploying
Cartridges" for information on deploying cartridges using Design Studio or CMT.

Validating the SAF Endpoints

To validate the SAF endpoints:

1.

On the remote WebLogic, login to the WebLogic console and perform the following:

a. Navigate to Store and Forward Agents, Monitoring, and then to Remote
Endpoints. You can see a remote endpoint uim-saf-module!uim_saf_destination!
uim_saf_queue@uim_saf_agent with the URL pointing to your UIM cloud native
instance.

b. Navigate to Deployments. You can see the emulator MDB shown with State "Active
and Health "OK".

On the UIM cloud native instance, login to the WebLogic console.

Navigate to Store and Forward Agents, Monitoring, and then to Remote Endpoints.
You can see a remote endpoint uim_sample_saf_module!
uim_sample_saf_destinations_0!saf_queue_0@uim_saf_agent@ms1 with the URL
pointing to your remote WebLogic.

Performing a Test

You can perform a test as follows:

1.
2.

Navigate to Administration, Execute Rule, Select SAFSample, and then to Process.

Navigate to Store and Forward Agents, uim_saf_agent, Monitoring, and then to
Statistics.

Validate messages received count increased in remote WebLogic console.
Validate that the following message appears in custom_jms_module/ResponseQueue:

Hel | o!
Ti meSt anp: 2021. 08. 25. 07. 44. 01

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 5

Upgrading the UIM Cloud Native Environment

This chapter describes the tasks you perform in order to apply a change or upgrade to a
component in the cloud native environment.

Creating a detailed upgrade plan can be a complex process. It is useful to start by mapping
your use case to an upgrade path. These upgrade paths identify a set of sequenced activities
that align to a CD stage. Once you know the activity sequence, you can then look for the
detailed steps involved in each to come up with the comprehensive set of steps to be
performed.

Upgrade paths consist of activities that fall into the following two main categories:
e Operational Procedures

e Component Upgrade Procedures

Operational Procedures

There are many different operational procedures and all of these affect the operating state of
UIM. UIM cloud native provides the mechanism to change the operational state as described in
"Running Operational Procedures".

The flowcharts in this chapter use the following image to depict an operational procedure:

Component Upgrade Procedures

These are the actual set of steps to perform a component upgrade and can be one of the
following types:

e UIM Cloud Native Procedures: UIM cloud native owns the component and therefore the
upgrade procedure for that component. UIM cloud native provides the mechanism to
perform the upgrade via the scripts that are bundled with the Common cloud native toolkit.
An example of this is a change to a value in a UIM cloud native specification file (shape,
project, and instance).

The flowcharts in this chapter use the following image to depict a UIM cloud native owned
procedure.

- External Procedures: These procedures are for components that are part of the UIM
cloud native operating environment, but are out of the control of UIM cloud native. UIM
cloud native does not determine how to apply the upgrade, but provides recommendations
on the operational state of UIM accompanying the upgrade.

An example would be updating the operating system on a worker node.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 13

ORACLE’

Chapter 11
Rolling Restart

The flowcharts in this chapter use the following image to depict an external upgrade
procedure.

* Miscellaneous upgrade procedures: There are some procedures that require special
handling and are not captured in any of the upgrade paths. These are described in
"Miscellaneous Upgrade Procedures"”.

Rolling Restart

Occasionally, you may need to restart UIM managed servers in a rolling fashion, one at a time.
This does not result in downtime, but only reduced capacity for a limited period. A rolling restart
can be triggered by invoking the restart-applications.sh script. This script can restart the
whole instance in a rolling fashion, or only the admin server or all the managed servers in a
rolling fashion. Some operations may automatically trigger rolling restart. These include image
updates, tuning parameter changes, and so on pushed through the upgrade-applications.sh
script.

Identifying Your Upgrade Path

In order to prepare your detailed plan for an upgrade, you need to be able to map your
upgrade use case to an upgrade path. Some common use cases are detailed in the following
charts. If your use case is not listed, see "Upgrade Path Flow Chart", which guides you through
the decision making process to prepare a specific upgrade path.

Table 11-1 Common Upgrade Paths

Upgrade Type |Component Upgrade Path Requires Changing Image?
Cartridge Deploy new cartridge version with | Online change, application Yes
Management Ruleset code (Where the ruleset is | upgrade, cartridge deployment

referring Java files)
Cartridge Redeploy a cartridge against an Online change, application Yes
Management existing cartridge version with upgrade, cartridge deployment

Ruleset code (Where the ruleset is

referring Java files)
Cartridge Deploy new cartridge version Online change, online cartridge No
Management without Ruleset code deployment
Cartridge Redeploy a cartridge against an Online change, online cartridge No
Management existing cartridge version without deployment

Ruleset code
Configuration UIM cluster size (scaling up or Online change, application upgrade | Not applicable
and Tuning down)
Configuration Java parameters (memory, GC, and | Online change, application upgrade | Not applicable
and Tuning S0 on)
Configuration WebLogic domain configuration Online change, application upgrade | No
and Tuning (WDT such as JMS Queue

configuration)
Configuration UIM configuration parameters Online change, application upgrade | No
and Tuning (custom-extensions.properties)

Cloud Native Deployment Guide

G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 13

ORACLE’

Table 11-1 (Cont.) Common Upgrade Paths
|

Chapter 11
Identifying Your Upgrade Path

Upgrade Type |Component Upgrade Path Requires Changing Image?
Database DB Purges Offline Change, PDB upgrade No
Storage

Management

Security WebLogic Password change (poms | Miscellaneous upgrade procedures | No
parameters cache coordination)

Security UIM Schema Password Change Miscellaneous upgrade procedures | No
parameters

Software UIM release or patch upgrade with | Offline change, PDB upgrade, Yes
Upgrade and Database change application upgrade

Patching

Software Fusion MiddleWare upgrade Online change, application upgrade | Yes
Upgrade and (some exceptions needing offline
Patching change)

Software UIM patch upgrade without Online Change, application upgrade | Yes
Upgrade and Database change (some exceptions needing offline
Patching change)

Software Fusion MiddleWare overlay patches | Online Change, application upgrade | Yes
Upgrade and (for example, PSU or one-off patch) | (some exceptions needing offline
Patching change)

Software Java upgrade Online Change, application upgrade | Yes
Upgrade and

Patching

Software Linux Online Change, application upgrade | Yes
Upgrade and

Patching

Software Custom code or third-party tool Online Change, application upgrade | Yes
Upgrade and (custom image) (some exceptions needing offline
Patching change)

Software Common cloud native toolkit The release dictates the Not applicable
Upgrade and constraints.

Patching

Shared Operating system or hardware on Online change, external procedure | No
infrastructure worker node

Shared Docker Online change, external procedure | No
infrastructure

Shared WebLogic Operator minor upgrade | Online change, external procedure | No
infrastructure (backward compatible)

Shared WebLogic Operator major upgrade | Online change, external procedure | No
infrastructure (non-backward compatible)

Once you understand the activities in your upgrade path, you can begin to map out the
sequence of activities that you need to perform.

Offline Change Upgrade Paths

Offline changes are defined as those requiring UIM to be shutdown before the change can be

applied.

All offline upgrades must start with a Scale Down procedure and end with a Scale Up
procedure. You can find the explicit steps to perform these activities in Running Operational

Procedures.

Cloud Native Deployment Guide

G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 13

ORACLE

Chapter 11
Identifying Your Upgrade Path

Once the cluster has been scaled down, you will need to perform either an external procedure
(referencing documentation for the component) or follow a UIM cloud native owned procedure.
See "UIM Cloud Native Upgrade Procedures" for details.

Figure 11-1 Offline Change Upgrade Paths

. UIM application
Offline change, app upgrade Scale Down —_—> upgrade — > Scale Up

Offline change, PDB upgrade 5 PDB upgrade _ Scale Up
- Run external
Scale U
Offline change, external procedure —> upgrade procedure —>
| —

As an example, if your use case is to perform DB purges, then the upgrade path is "Offline
Change, DB Purge procedure". The actual steps involve the following:

* Scale Down

— Edit the shape specification file to set cluster size to 0.

— Run upgrade-applications.sh.
° PDB Upgrade

— Edit the app-uim specification file to include purge command.

— Run install-database.sh with the command appropriate for the purge use case.
e Scale Up

— Edit the shape specification file to return cluster size to original (1-18).

— Run upgrade-applications.sh.

Online Change Upgrade

Online changes are changes for which UIM can remain running while the component upgrade
is performed. There is, therefore, no operational procedure at the start of the flow, but some
paths include a rolling restart after the upgrade procedure is performed.

The component upgrade will either be an external procedure (referencing documentation for
the component) or follow a UIM cloud native owned procedure described in "UIM Cloud Native
Upgrade Procedures".

If explicit post-upgrade operational activities are required, you can find details in "Running
Operational Procedures".

The following flowchart illustrates online change upgrade paths.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE Chapter 11
UIM Cloud Native Upgrade Procedures

Figure 11-2 Online Change Upgrade Paths

Online change, external procedure, external upgrade

no restart procedure

Online change, external procedure, external upgrade Ve
manual restart procedure >

Online change, application UIM application

upgrade upgrade

Online change, application UIM application - 5 Manual restart
upgrade, manual restart Tgets

Exceptions and Unsupported Tasks

Exceptions

The following require shutdown:

e Some UIM patches

e Some Oracle Fusion Middleware overlay patches

e Oracle Fusion Middleware version upgrades

Unsupported Tasks

Adding, modifying, and deleting users or groups from embedded LDAP are not supported
through an upgrade procedure. To make changes to users and groups, the instance must be
deleted and re-create.

UIM Cloud Native Upgrade Procedures

The UIM cloud native owned upgrade procedures are:

 PDB upgrade
e UIM application upgrade
e Online cartridge deployment

Change or upgrade procedures that are dictated by UIM cloud native are applied using the
scripts and the configuration provided in the toolkit.

PDB Upgrade Procedure

Changes impacting the PDB can be found in any of the specification files - app-uim.yaml,
database.yaml, or shape.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE

Chapter 11
UIM Cloud Native Upgrade Procedures

Examples include updating the UIM DB Installer image.

To perform a PDB upgrade procedure:

1.
2.

Make the necessary modifications in your specification files.

Invoke $SCOMMON_CNTKIscripts/install-database.sh with the command appropriate for
your use case.
To see a list of options, invoke with -h.

UIM Application Upgrade

Changes impacting the UIM application can be found in any of the specification files - project,
instance or shape.

Examples include changing an existing value, changing the UIM image or supplying something
new such as a secret or a new WDT extension.

To perform UIM application upgrade:

1.
2.

3.

Make the necessary modifications in your specification files.

Invoke $SCOMMON_CNTKIscripts/upgrade-applications.sh to push out the changes you

just made to the running instance. This also triggers introspection for upgrade paths where

introspection is required.

In upgrade paths where a manual restart is required, restart the instance. See "Restarting
the Instance" for details.

Updating the Default Settings for Coherence Cluster

After you upgrade the UIM application, update the default settings for coherence cluster in the
WebLogic console.

To update the default settings for coherence cluster:

1.
2.

Open the WebLogic console.

Under the Domain Structure section, expand Environment and select Coherence
Clusters.

The Settings for defaultCoherenceCluster page appears.
Under the Members tab:

a. Under the Servers section, deselect AdminServer.

b. Under the Cluster section, select the required clusters.
Click Save.

The default settings for coherence cluster are updated.

Online Cartridge Deployment

The Online deployment mode supports deployment of new cartridges and depends on the type
of the cartridge. The cartridges are classified as follows:

Simple cartridge (such as entity specifications, Groovy, or Drools code)

Custom Extension cartridge (Java code, configuration files, images, custom applications,
Java libraries, Aspects, and localization)

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 11
Upgrades to Infrastructure

For Simple Cartridges, deployment can be performed without any upgrade path.
For Custom Extension Cartridges, perform the deployment as follows:

1. Build customized image.

2. Make the necessary modifications in your app-uim specification to modify the image
name.

3. Upgrade the instance.

4. Deploy cartridges.

Upgrades to Infrastructure

From the point of view of UIM instances, upgrades to the cloud infrastructure fall into two
categories: rolling upgrades and one-time upgrades.

@® Note

All infrastructure upgrades must continue to meet the supported types and versions
listed in the UIM documentation's certification statement.

Rolling upgrades are where, with proper high-availability planning (like anti-affinity rules), the
instance as a whole remains available as parts of it undergo temporary outages. Examples of
this are Kubernetes worker node OS upgrades, Kubernetes version upgrades and Docker
version upgrades.

One-time upgrades affect a given instance all at once. The instance as a whole suffers either
an operational outage or a control outage. Examples of this are WebLogic Operator upgrade
and perhaps Ingress Controller upgrade.

Kubernetes and Docker Infrastructure Upgrades

Follow standard Kubernetes and Docker practices to upgrade these components. The impact
at any point should be limited to one node - Master (Kubernetes and OS) or worker
(Kubernetes, OS, and Docker). If a worker node is going to be upgraded, drain and cordon the
node first. This will result in all pods moving away to other worker nodes. This is assuming your
cluster has the capacity for this - you may have to temporarily add a worker node or two. For
UIM instances, any pods on the cordoned worker will suffer an outage until they come up on
other workers. However, their messages and orders are redistributed to remaining managed
server pods and processing continues at a reduced capacity until the affected pods relocate
and initialize. As each worker undergoes this process in turn, pods continue to terminate and
start up elsewhere, but as long as the instance has pods in both affected and unaffected
nodes, it will continue to process orders.

WebLogic Operator Upgrade

To upgrade the WebLogic Operator, follow the Operator documentation. As long as the current
version can be upgraded to target version through helm upgrade command, a phased cutover
can be performed. In this, you will perform a helm upgrade to the new version of the Operator
into the same namespace. RBAC will not be updated in the namespace. You do not have to
register the namespace again as upgraded WebLogic operator should be monitoring using the
same Labl eSel ect or.

#export \WeblLogi ¢ operator nanespace
export W.SKO NS=w sko

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE

Chapter 11
Miscellaneous Upgrade Procedures

#updat e WebLogi ¢ hel mrepo
hel m repo add webl ogi c-operator https://oracle.github.io/weblogic-
kuber net es-operator/charts --force-update

#upgrade WebLogi ¢ operator, check compatibility matrix for
supported versions
hel m upgr ade webl ogi c-operator \
webl ogi c- oper at or / webl ogi c- operat or \
--version <version-to-be-upgraded>\
--nanespace $W.SKO NS

All instances with the transitioned project are impacted by this operation. However, there is no
order processing outage during the transition. There is a control outage - where no changes
can be pushed to the instances (upgrade-applications.sh, delete-applications.sh or restart-
applications.sh). Also, during the control outage, the termination of a pod does not
immediately trigger healing. However, once the transition of the project is complete, the new
Operator will react to any changed state (whether in the cluster, like pod termination, or in
pushed changes, like instance upgrades) and run the required actions.

Ingress Controller Upgrade

Follow the documentation of your chosen Ingress Controller to perform an upgrade. Depending
on the Ingress Controller used and its deployment in your Kubernetes environment, the UIM
instances it serves may see a wide set of impacts, ranging from no impact at all (if the Ingress
Controller supports a clustered approach and can be upgraded that way) to a complete outage.

To take the sample of Nginx Ingress that the Common cloud native toolkit uses as an Ingress
Controller illustration. See UIM Cloud Native Deployment Software Compatibility for the
corresponding Ingress version.

$ hel mrepo update ingress-nginx

$ hel m upgrade ngi nx-operator ingress-nginx/ingress-nginx --nanmespace ngi nx --
version <version>

During this transition, there will be an outage in terms of the outside world interacting with UIM.
Any data that flows through the ingress will be blocked until the new Nginx takes over. This
includes GUI traffic, order injection, API queries, and SAF responses from external systems.
This outage will affect all the instances in the namespace being transitioned.

Miscellaneous Upgrade Procedures

This section describes miscellaneous upgrade scenarios.
Network File System (NFS)

If an instance is created successfully, but a change to the NFS configuration is required, then
the change cannot be made to a running UIM instance. In this case, the procedure is as
follows:

1. Perform a fast delete. See "Running Operational Procedures" for details.

2. Update the nf s details in the instance specification.
3. Start the instance.

Security Parameters

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE Chapter 11
Running Operational Procedures

To set the security parameters:

1. Perform a fast delete. See "Running Operational Procedures” for details.

2. Update the secrets for WebLogic, PDB credentials, or UIM Schema credentials.

3. Start the instance.

Running Operational Procedures

This section describes the tasks you perform on the UIM server in response to a planned
upgrade to the UIM cloud native environment. You must consider if the change in the
environment fundamentally affects UIM processing to the extent that UIM should not run when
the upgrade is applied or UIM can run during the upgrade but must be restarted to properly
process the change.

The operational procedures are performed using the UIM cloud native specification files and
scripts.

The operational procedures you perform for upgrading your cloud environment are:
e Trigger introspection
e Scaling down the cluster
e Scaling up the cluster
* Restarting the cluster
* Fast delete
— Shutting down the cluster

— Starting up the cluster

Triggering Introspection

When any of the specification files have changed, invoke the upgrade-applications.sh script
to trigger the operator's introspector to examine the change and apply it to the running
instance.

Scaling Down the Cluster

The scaling down procedure described here is only in the context of the upgrade flow diagram.
Hence, scaling down is down to O managed servers. A generalized scaling can change the
cluster size down to a value between 0 and 18 (both inclusive) in any desired increment or
decrement.

To scale down the cluster, edit the shape specification and change the cl ust er Si ze
parameter to 0. This terminates all the managed server pods, but leaves the admin server up
and running.

Apply the change to the running Helm release by running the upgrade script:

$COVMMON_CNTK/ scri pt s/ upgrade- appl i cations.sh -p project -i instance -
s $SPEC PATH -a uim

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE Chapter 11
Running Operational Procedures

Scaling Up the Cluster

The scaling up procedure described here is only in the context of the upgrade flow diagram.
Hence, scaling up is up to the initial cluster size. A generalized scaling can change the cluster
size up to a value between 0 and 18 (both inclusive) in any desired increment or decrement.

To scale up the cluster, edit the shape specification and change the value of the cl ust er Si ze
parameter to its original value to return the cluster to its previous operational state.

Apply the change to the running Helm release by running the upgrade script:

$COMMON_CNTK/ scri pt s/ upgrade-appl i cations.sh -p project -i instance -
s $SPEC PATH -a uim

Restarting the Instance

The Common cloud native toolkit provides a script (restart-applications.sh) that you can use
to perform different flavors of restarts on a running instance of UIM cloud native.

Following is the usage of the restart-applications.sh script

restart-applications.sh paraneters

-p <projectName> : mandatory

-i <instanceNane> : mandatory

-s <applications-specPat h> . mandatory; locations of specification
files

-a <applicationNane> : optional; if not provided values in

applications-base.yam will be considered.

-m <custonExtPath> : optional; only for uim locations of custom
extension files

-r <restart> . optional; Mandatory if ata applicationNane is
provi ded.

restart allowed values for uim

all: Restart the whole instance (rolling restart)

adnmin: Restart the WeblLogic Admin Server only

ms: Restart all the Managed Servers (rolling restart)

For example, to restart a complete cluster, run the following command:

$COMMON_CNTK/ scripts/restart-applications.sh -p project -i instance -
s $SPEC PATH -r al |

Fast Delete

When the entire domain, including the admin server, needs to be taken offline, then the full
shutdown and full startup procedures follow. This can be used to perform a "fast delete" or
"dehydration" of the domain, instead of a full delete-applications operation where you may
have to be concerned about the secrets and other pre-requisites being deleted. To quickly
restore the domain, simply perform the startup procedure.

Shutting Down the Cluster

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 13

ORACLE

Chapter 11
Upgrade Path Flow Chart

To shut down the cluster, edit the app-uim specification and add or modify the value of the
server St art Pol i cy parameter to Never. This terminates all the pods.

Qperational control parameters
scope - dommin or cluster
serverStartPolicy: Never

Apply the change to the running Helm release by running the upgrade script:

$COMMON_CNTK/ scri pt s/ upgrade-appl i cations.sh -p project -i instance -
s $SPEC PATH -a uim

Starting Up the Cluster

To start up the cluster, edit the app-uim specification and comment out or modify the value of
the server St art Pol i cy parameter to IfNeeded. This starts up all the pods.

Qperational control paraneters
scope - domain or cluster
serverStartPolicy: |fNeeded

Apply the change to the running Helm release by running the upgrade script:

$COMMON_CNTK/ scri pt s/ upgr ade- appl i cations.sh -p project -i instance -
s $SPEC PATH -a uim

Upgrade Path Flow Chart

When comparing and contrasting the different flows, identifying common steps or divergences,
it can be useful to have a combined view of the flowcharts along with the main decision points.
This can be useful when trying to automate parts of the process.

The first decision to make is whether UIM can be running when you apply the change.
Typically, UIM needs to be shutdown for PDB impacting scenarios and the exceptions listed in
the "Exceptions and Unsupported Tasks" section.

The following flowchart illustrates the flow for offline upgrades and various scenarios.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE’

Figure 11-3 Upgrade Path Flow for Offline Changes

perform an
upgrads

Does UIM

feed fo be shutdown _

before upgrade is
appiied?

No

Yes

Yes Does UIM
— Scale Down ‘loud native own the - ———>
procedurs?

Offline changes

Does upgrade
involve PDB?

Chapter 11
Upgrade Path Flow Chart

PDE upgrade

Run external
upgrade procedure

L

Is
upgrade required ?

Seale Up

END

I I S |I

!

END

The following flowchart illustrates the flow for online upgrades and various scenarios.

Cloud Native Deployment Guide
G36724-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 13

ORACLE Chapter 11
Upgrade Path Flow Chart

Figure 11-4 Upgrade Path Flow for Online Changes

perform an
upgrace

Online changes

Mo downfime
Dioes LIM
reed (o be shutdawn
before upgrade is
applied?
o
¥
Dioes LIM ()
UlMapglication oes
Dpgrs PREN | SPAER——_L o el
procadure? pgrade pr
l . J' J
Me s manual restart 15 3 restart No
requined? repire?

|m ves|

¥
Manual Manusl
Restart Restirt

Carticge Dcpiuymem_n»{ @

Required?

i
He

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 13

Moving to UIM Cloud Native from a Traditional
Deployment

You can move to a UIM cloud native deployment from your existing UIM traditional deployment.
This chapter describes tasks that are necessary for moving from a traditional UIM deployment
to a UIM cloud native deployment.

Supported Releases

You can move to UIM cloud native from all supported traditional UIM releases.

About the Move Process

The move to UIM cloud native involves offline preparation as well as maintenance outage. This
section outlines the general process as well as the details of the steps involved in the move to
UIM cloud native. However, there are various places where choices have to be made. It is
recommended that a specific procedure be put together after taking into account these choices
in your deployment context.

The UIM cloud native application layer runs on different hardware locations (within a
Kubernetes cluster) than the UIM traditional application layer.

The process of moving to UIM cloud native involves the following sets of activities:

Pre-move development activities, which include the following tasks:

Rebuilding cartridges using Design Studio and UIM SDK (solution task)
Building UIM cloud native images (cloud native task)

Assembling specifications and configuring them for UIM cloud native (cloud native and
solution task)

Creating a UIM cloud native instance for testing (cloud native task)
Validating your solution cartridges (solution task)
Deleting the test UIM cloud native instance (cloud native task)

Finalizing your specifications (cloud native and solution task)

Data synchronization activities, which include the following tasks:

Preparing a new database server (database task)

Synchronizing the current database server (database task)

Tasks for moving to UIM cloud native, which include the following:

Quiescing the UIM traditional instance (solution task)
Backing up the database (database task)

Upgrading the database (database task)

Upgrading the UIM schema (database task)

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE Chapter 12
Pre-move Development Activities

— Creating a UIM cloud native instance (cloud native task)

— Deploying cartridges (solution task)

— Importing IMS messages (WebLogic Server administration task)
— Performing a smoke test (solution task)

— Switching all upstream systems (solution task)

The following diagram illustrates these activities.

® Note

In the diagram, the short form of "UIM CN" stands for "UIM cloud native".

Figure 12-1 Move to UIM Cloud Native Process

Pre-move D Activities
| | Reould carindges Build UIM CN Create UIM CN Create UMEN 15 }] 0oate UM EN test) Delete UM GNtest | |
|| uatnnewer Design | | ¢ iomized Image | | Project Specification [nstance H Instance Validate Solution Instance :
|| Studio and LM SDK =g Jeet Spe Specification(s) | | :
CUCD Development Validation
Data Synchroniza tion
V| Prepare new DB Syne from current DB ¢
| servar server :
Option A

Move to UIM Cloud Native

Quiceea L Export JVS i | Backup Datsbase | | Upgrade Database | | [Upgrade UM schema| £7777
rafitionzl messages ! H 1

Option B

s Create Instance Deploy Cartrigges Import JMS Smoke Test Switch all upsiream
messages systems fo Instance

Senvice Outage

Pre-move Development Activities

In preparation to move your traditional UIM instance into a UIM cloud native environment, you
must do the following activities:

1. If your UIM cartridges were built against a UIM deployment that is older than 7.5.0, use
Design Studio to rebuild them with the UIM SDK of the target release. Select the Design
Studio version based on its compatibility matrix.

2. Build UIM cloud native images. This task includes creating the UIM Docker image and the
DB Installer Docker image by using the UIM cloud native download packages. See
"Creating the UIM Cloud Native Images" for details.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE

Chapter 12
Moving to a UIM Cloud Native Deployment

Analyze your solution and configure a applications-base and app-uim specifications for
your UIM cloud native instance. This specification includes details of IMS queues and
topics, as well as SAF connections and SAF endpoint details.

(Optional) Create a test instance, pointing to a test PDB. You can later change this
specification to point to the migrated database. When creating the specification, choose
your cloud native production shape - prodsmall, prod, prodlarge. Alternatively, create a
custom production shape by copying and modifying one of the shapes. See "Creating
Custom Shapes" for details about custom shapes. See "Configuring the Specification
Files" for details. If your solution requires model extensions or custom files, create the
additional YAML files for those as well.

Create a UIM cloud native test instance and test your specifications. To do this, bring up
the UIM cloud native instance as described in "Creating a Basic UIM Instance" (create
instance secrets, install the RCU schema, install the UIM schema, bring up UIM, and
create ingress, deploy your cartridges).

Validate the solution.
Shut down your test instance and remove the associated secrets, PDB, and ingress.

Finalize your specifications for the move by picking up any changes from your test activity
and re-create instance secrets to use the migrated database. Change the project and
instance specification to:

a. In app-uim specification, point to the migrated database location once it is known.

b. In app-uim specification, switch SAF endpoints to the actual components, instead of
emulators.

c. Inshape and app-uim.yaml specifications, arrange for the same number of managed
servers in your UIM cloud native instance.

UIM cloud native requires the use of standard sizing for managed servers. This is
represented as a set of "shapes". As a result, it is possible that your UIM cloud native
instance needs a different number of managed servers to handle your workload as
compared to your UIM traditional instance. For the purpose of this migration activity, it
is recommended to start with the same number of managed servers, perform the
import and smoke tests, and then scale (scale-up or scale-down) the UIM cloud native
instance to the desired size.

If it is not possible to arrange for the same number of managed servers in your UIM
cloud native instance as there are in your UIM traditional instance, it is recommended
that you get as close as you can. You can then import the JIMS messages from the
leftover managed servers into one of the UIM cloud native managed servers. For
example, consider a UIM traditional instance with four managed servers (msl, ms2,
ms3, and ms4). The analysis may show that you only need two managed servers (cn-
ms1 and ch-ms2) of prod shape in your UIM cloud native instance. You can import all
JMS messages from ms1 into ch-ms1, and from ms2 into cn-ms2. And then, import
the remaining messages from ms3 to ch-ms1 and from ms4 to ch-ms2. Try to spread
the load as evenly as possible.

Moving to a UIM Cloud Native Deployment

Moving to a UIM cloud native deployment from a UIM traditional deployment requires
performing the following tasks:

Quiesce the UIM traditional instance. See "Quiescing the Traditional Instance of UIM" for
more information.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE

Chapter 12
Moving to a UIM Cloud Native Deployment

2. Export IMS messages. See "Exporting and Importing JMS Messages" for more
information.

3. Take a back up and upgrade the database. See "Upgrading the Database" for more
information.

4. Upgrade the UIM schema. See "Upgrading the UIM Schema" for more information.

5. Use the existing RCU schema See "Reusing RCU" section of "Recreating an Instance" for
more information.

6. Create the UIM cloud native instance. See "Creating Your Own UIM Cloud Native
Instance" for more information.

7. Deploy cartridges. See "Deploying Cartridges" for more information.

8. Import IMS messages. See "Importing JMS Messages" for more information.

9. Perform a smoke test. See "Performing a Smoke Test" for more information. Once the UIM
cloud native instance passes smoke test and is optionally resized to the desired target
value, shut down the UIM traditional instance fully.

10. Switch all upstream systems to the UIM cloud native instance. See "Switching Integration
with Upstream Systems" for more information.

Quiescing the Traditional Instance of UIM

At the start of the maintenance window, the UIM traditional instance must be quiesced. This
involves stopping database jobs, stopping all upstream and peer systems from sending
messages (for example, http/s, JIMS, and SAF) to UIM, and ensuring all human users are
logged out. It also involves pausing the JMS queues so that no messages get queued or
dequeued. The result is that UIM is up and running, but completely idle.

Exporting and Importing JMS Messages

Irrespective of the persistence mechanism you use (file-based or JDBC) in your UIM traditional
instance, you must still export and import outstanding messages as described in this section. If
file-based persistence is used, this procedure accomplishes a switch to JDBC-based
persistence. On the other hand, if JDBC-based persistence is already in use, this procedure
brings the setup (in WebLogic and in the database) in line with UIM cloud native requirements.

Overall, this procedure consists of exporting the JIMS messages to disk, switching over to the
UIM cloud native instance, and importing the JMS messages from disk. Due to the
configuration in the UIM cloud native instance, the imported messages will get populated into
the appropriate database tables of the UIM cloud native instance rather than their original
location. The time taken for the export and import depends on the number of messages that
are in the persistent store to begin with.

See the following topics for further details:

* Exporting IMS Messages

e Importing JMS Messages

Exporting JMS Messages

Before exporting JMS messages, validate that your UIM traditional instance has the WebLogic
patch 31169032 (or its equivalent for your WebLogic version) installed. This patch is required
to properly export UIM JMS messages. If it is not installed, follow the standard WebLogic patch
procedures to procure and install the patch.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE

Chapter 12
Moving to a UIM Cloud Native Deployment

To export IMS messages:

1.
2.

Login to the WebLogic Console and navigate to the list of UIM queues.

For each queue, open its Monitoring tab to get the list of current destinations for the queue.
The Monitoring tab shows as many destinations as the number of managed servers.

Select each destination and click Show Messages. If there are any messages pending in
this destination of this queue, click the Export button to export all the messages to a file.
Use the queue name and destination in the filename for ease of tracing.

If you have defined other JIMS Modules as part of your solution, repeat steps 2 and 3 for
each of those modules.

Importing JMS Messages

Before importing JMS messages, ensure that your UIM cloud native instance is up and
running, but quiesced (queues paused and database jobs stopped). It is recommended that
your UIM cloud native instance has the same number of managed servers as your UIM
traditional instance.

To import JIMS messages:

1.
2.

Transfer all the exported files into the Admin Server pod using the kubectl cp command.

Log in to the WebLogic Console and navigate to JMS Modules where the UIM queues are
listed.

For each queue for which you have an export file, open its Monitoring tab.

For each destination on this queue for which you have an export file, find the same
destination in the list

Select the destination and click Show Messages. Click Import to specify the filename and
import the messages.

Upgrading the Database

To upgrade the database, you perform the following tasks:

Upgrading the UIM Schema

Switching Integration with Upstream Systems

Upgrading the Database Server

You may need to upgrade the database server itself to the version supported by the UIM cloud
native release you are moving to. To identify the required version of the database server and to
determine if you need a database server upgrade, see "UIM Software Compatibility" in UIM
Compatibility Matrix.

If you do need a database server upgrade, choose one of the following options:

Option A: Create an additional database server: Create a second database server of
the target database version (with required patches), seeded with an RMAN backup of the
UIM traditional database. Enable Oracle Active DataGuard to continuously synchronize
data from the UIM traditional database to this new database. Use this new database for the
UIM cloud native instance. For further details, see Mixed Oracle Version support with Data
Guard Redo Transport Services (Doc ID 785347.1) knowledge article on My Oracle
Support. The exact mechanisms to be used are subject to circumstances such as resource
availability, size of data, timing, and so on but the goal is to have a second database server

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE

Chapter 12
Moving to a UIM Cloud Native Deployment

running the target database version but always containing the data from the UIM traditional
database.
This option has the following advantages:

— Allows switching from a standalone database to a Container DB and Pluggable DB
model that is required for UIM cloud native, without impacting other users of the
existing database.

— Reduces the duration of a service outage since you can avoid having to backup the
database and upgrade it as part of the maintenance window.

— Preserves the UIM traditional database unchanged reducing the risk and cost
associated with reverting to UIM traditional instance, if that becomes necessary.

Option B: Retain the existing DB server: You can retain the existing database server,
upgrading it in-place to the target database version and patches.

If you choose option A, the upgrade process must pause after the export of JIMS messages,
and ensure the Active DataGuard sync is complete (if there are pending redo logs). Then,
before proceeding, the sync must be turned off and the new database must be brought online
fully.

Preparing the Required Database Entities for UIM Cloud Native

To meet the UIM cloud native pre-requisites, you will have to re-use existing RCU Schema.
See "Reusing the RCU" section of "Recreating an Instance" for more information.

To ensure a clean start for UIM cloud native managed servers, delete the leftover LLR tables.
When UIM cloud native managed servers start, these tables are recreated with the required
data automatically.

To delete the LLR tables:

1.
2.

3.

Connect to the database using the UIM cloud native user credentials.

Get the list of tables to delete:

select 'drop table '||tname||' cascade constraints PURGE;' fromtab where
tnane like (" W_LLR %);

For the tables listed, run the commands for dropping a table.

Upgrading the UIM Schema

To upgrade the UIM schema and cartridges, do the following:

Migrate the UIM schema: To migrate the schema of your UIM traditional instance into a
schema that is compatible with UIM cloud native, run the UIM cloud native DB Installer with
command 3.

Upgrade the UIM Schema to the target version: If you are running a version of UIM
traditional instance that is older than the target UIM cloud native version, use the UIM
cloud native DB Installer with command 3 to upgrade the UIM schema to the correct
version.

Switching Integration with Upstream Systems

After you shut down the UIM traditional instance fully, do the following:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE’

Chapter 12
Reverting to Your UIM Traditional Deployment

* Ensure that the UIM cloud native instance has its JIMS and SAF objects unpaused and its
DB jobs restarted.

« Configure the upstream and peer systems to resume sending messages. See "Integrating
UIM" for more details.

Reverting to Your UIM Traditional Deployment

During the move to UIM cloud native, if there is a need to revert to your UIM traditional
deployment, the exact sequence of steps that you need to perform depend on the options you
have chosen while moving to UIM cloud native.

In general, the UIM traditional deployment application layer should be undisturbed through the
upgrade process. If Option A was followed for upgrading the database, the UIM traditional
instance can simply be started up again, still pointing to its database.

If however, Option B was followed for upgrading the database, the following steps are required
before the UIM traditional instance can be spun up:

* Revert the database server version to the earlier version (if a database server upgrade
was performed as part of the switch to UIM cloud native)

* Restore the database contents from the backup taken as part of Option B for upgrading the
database.

Cleaning Up

Once the UIM cloud native instance is deemed operational, you can release the resources
used for the UIM traditional application layer.

If Option A was adopted for the database, then you can delete the database used for UIM
traditional instance and release its resources as well. If Option B was followed and your UIM
traditional instance was using JDBC persistent stores, the tables corresponding to these are
now defunct and you can delete these as well.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 7

Debugging and Troubleshooting

This chapter provides information about debugging and troubleshooting issues that you may
face while setting up UIM cloud native environment and creating UIM cloud native instances.

This chapter describes information about the following:

e Setting Up Java Flight Recorder (JFR)

e Troubleshooting Issues with Nginx, UIM Ul, and WebLogic Administration Console
¢ Common Error Scenarios

e Known Issues

Setting Up Java Flight Recorder (JFR)

The Java Flight Recorder (JFR) is a tool that collects diagnostic data about running Java
applications. UIM cloud native leverages JFR. See Java Platform, Standard Edition Java Flight
Recorder Runtime Guide for details about JFR.

You can change the JFR settings provided with the toolkit by updating the appropriate values in
the $SPEC_PATHI/projectl/instance/app-uim.yaml specification.

To analyze the output produced by the JFR, use Java Mission Control. See Java Platform
Standard Edition Java Mission Control User's Guide for details about Java Mission Control.

JFR is turned off by default in all managed servers. You can enable this feature by setting the
enabl ed flag to true.

You can customize how much data is maintained, by changing the nmax_age parameter in the
instance specification:

Java Flight Recorder (JFR) Settings
jfr:

enabl ed: true

max_age: 4h

Data that is generated by the JFR is saved in the container in llogMount/$(DOMAIN_UID)/
server/$(SERVER_NAME)/performance.
Persisting JFR Data

JFR data can be persisted outside of the container by re-directing it to persistent storage
through the use of a PV-PVC. See "Setting Up Persistent Storage” for details.

Once the storage has been set up, enable the st or ageVol une. The default storage volume is
f al se. Once enabled, JFR data is re-directed automatically.

st or ageVol ume:
enabl e: fal se
pvc: sr-nfs-pvc #nane of pvc

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 14

https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/index.html
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/index.html
https://docs.oracle.com/javacomponents/jmc-5-5/jmc-user-guide/index.html
https://docs.oracle.com/javacomponents/jmc-5-5/jmc-user-guide/index.html

ORACLE’

Chapter 13
Troubleshooting Issues with Nginx, UIM Ul, and WebLogic Administration Console

Deleting the pod that has storage volume as di sabl ed deletes the corresponding logs. To
retain the logs:

e Set the storageVolume.enable to true.
* Provide storageVolume.pvc.

» Specify the name of the pvc created.

st or ageVol une:
enable: true
pvc: storage-pvc

Troubleshooting Issues with Nginx, UIM Ul, and WebLogic
Administration Console

This section describes how to troubleshoot issues with access to the UIM Ul clients, WLST,
and WebLogic Administration Console.

It is assumed that Nginx is the Ingress controller being used and the domain name suffix is
ui m or g. You can modify the instructions to suit any other domain name suffix that you may
have chosen.

The following table lists the URLs for accessing the UIM Ul clients and the WebLogic
Administration Console, when the Oracle Cloud Infrastructure load balancer is used and not
used:

Table 13-1 URLSs for Accessing UIM Clients
- ____________________________ |

Client If Not Using Oracle Cloud If Using Oracle Cloud
Infrastructure Load Balancer Infrastructure Load Balancer

UIM Web Client http:// http://instance.project.uim.org:80/
instance.project.uim.org:30505/ Inventory
Inventory

WLST http:// http://t3.instance.project.uim.org:80
t3.instance.project.uim.org:30505

WebLogic Admin Console | http:// http://
admin.instance.project.uim.org:3050 | admin.instance.project.uim.org:80/
5/console console

Error: Http 503 Service Unavailable (for UIM Ul Clients)

This error occurs if the managed servers are not running.

To resolve this issue:

1. Check the status of the managed servers and ensure that at least one managed server is

up and running:

kubect! -n project get pods

2. Log into WebLogic Admin Console and navigate to the Deployments section and check if
the State column for oracle.communications.inventory shows Active. The value in the
Targets column indicates the name of the cluster.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 14

ORACLE

Chapter 13
Troubleshooting Issues with Nginx, UIM U, and WebLogic Administration Console

If the application is not Active, check the managed server logs and see if there are any
errors. For example, it is likely that the UIM DB Connection pool could not be created. The
following could be the reasons for this:

* DB connectivity could not be established due to reasons such as password expired,
account locked, and so on.

DB Schema heath check policy failed.
There could be other reasons for the application not becoming Active.

Resolution: To resolve this issue, address the errors that prevent the application from
becoming Active. Depending on the nature of the corrective action you take, you may have
to perform the following procedures as required:

* Restart the instance, by running restart-applications.sh

« Delete and create a new instance, by running delete-applications.sh followed by
create-applications.sh

Security Warning in Mozilla Firefox

If you use Mozilla Firefox to connect to a UIM cloud native instance via HTTP, your connection
may fail with a security warning. You may notice that the URL you entered automatically
change to https://. This can happen even if HTTPS is disabled for the UIM instance. If
HTTPS is enabled, it only happens if you are using a self-signed (or otherwise untrusted)
certificate.

If you wish to continue with the connection to the UIM instance using HTTP, in the configuration
settings for your Firefox browser (URL: "about:config"), set the
network.stricttransportsecurity.preloadlist parameter to FALSE.

Error: Http 404 Page not found
This is the most common problem that you may encounter.
To resolve this issue:

1. Check the Domain Name System (DNS) configuration.

@® Note

These steps apply for local DNS resolution via the hosts file. For any other DNS
resolution, such as corporate DNS, follow the corresponding steps.

The hosts configuration file is located at:
e On Windows: C:\Windows\System32\drivers\etc\hosts
e On Linux: /etc/hosts

Check if the following entry exists in the hosts configuration file of the client machine from
where you are trying to connect to UIM:

» Local installation of Kubernetes without Oracle Cloud Infrastructure load balancer:

Kubernetes_Cl uster_Master _IP instance.project.uimorg
t3.instance.project.uimorg admn.instance.project.uimorg

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 3 of 14

ORACLE

Chapter 13
Troubleshooting Issues with Nginx, UIM U, and WebLogic Administration Console

e |If Oracle Cloud Infrastructure load balancer is used:

Load_bal ancer IP instance.project.uimorg t3.instance.project.uimorg
adnmin.instance.project.uimorg
Resolve the DNS configuration.

Check the browser settings and ensure that *.uim.org is added to the No proxy list, if your
proxy cannot route to it.

Check if the Nginx pod is running if not, install or update the Nginx Ingress Helm chart:
kubect| get pod -n nginx

NAMVE READY STATUS RESTARTS AGE

ngi nx- oper at or - i ngr ess- ngi nx- ** 1/1 Runni ng 0 128m

Check if Nginx service is running:

kubect! -n nginx get svc

NAMVE TYPE CLUSTER- 1 P EXTERNAL- | P PORT(S) AGE
oci -1 b-servi ce- ngi nx LoadBal ancer 10. 96. 136. 31
100. 77. 18. 141 80: 31115/ TCP 20d <---- |s expected in

CCl environnent only -->
ngi nx- oper at or NodePor t 10. 98. 176. 16
<none> 443: 30543/ TCP, 80: 30505/ TCP 141m

If the Nginx service is not running, install or update the Nginx Ingress Helm chart.
Check if Ingress is configured, by running the following command:

NANVE CLASS HCSTS
proj ect-instance-ingress nginx instance.project.uimorg

Verify if the CLASS matches the configured cl assName for IngressNginx. If not, update
applications-base.yaml with the appropriate class name. The default is nginx.

If Ingress is not created, create Ingress by running the following command:

$COMMON_CNTK/ scri pts/create-ingress.sh -p project -i instance -
s $SPEC PATH -a uim

Debugging Nginx Access Logs

To increase the log level and debug Nginx access logs, see https://docs.nginx.com/nginx-
ingress-controller/logging-and-monitoring/logging.

Cleaning Up Nginx

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 4 of 14

https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/logging
https://docs.nginx.com/nginx-ingress-controller/logging-and-monitoring/logging

ORACLE

Chapter 13
Troubleshooting Issues with Nginx, UIM U, and WebLogic Administration Console

® Note
Clean up is not usually required. It should be performed as a desperate measure only.

Warning: The access to UIM instances is configured with Nginx will be interrupted if
Nginx is uninstalled using the above mentioned process.

To clean up the Nginx Helm chart, run the following command:

hel m uni nstal | ngi nx-operator -n nginx

Cleaning up of Nginx does not impact actively running UIM instances. However, they cannot be
accessed during that time. Once the Nginx chart is re-installed with the same i ngr essd ass,
UIM instances can be accessed again.

Setting up Logs

As described earlier in this guide, UIM and WebLogic logs can be stored in the individual pods
or in a location provided via a Kubernetes Persistent Volume. The PV approach is strongly
recommended, both to allow for proper preservation of logs (as pods are ephemeral) and to
avoid straining the in-pod storage in Kubernetes.

Within the pod, logs are available at: JuO1l/oracle/luser_projects/domains/domain/
servers/msl/logs.

@® Note

Replace ms1 with the appropriate managed server or with "admin".

When a PV is configured, stdout logs are available at the following path starting from the root
of the PV storage:

project-instancelserverl<servername>/logs

When a PV is configured, main logs are available at the following path starting from the root of
the PV storage:

project-instancelserverlintrospector/logs

The following logs are available in the location (within the pod or in PV) based on the
specification:

* admin.log - Main log file of the admin server

e admin.out - stdout from admin server

* admin_nodemanager.log: Main log from nodemanager on admin server

* admin_nodemanager.out: stdout from nodemanager on admin server

e admin_access.log: Log of http/s access to admin server

* msl.log - Main log file of the ms1 managed server

* msl.out - stdout from ms1l managed server

* msl_nodemanager.log: Main log from nodemanager on ms1l managed server

* msl_nodemanager.out: stdout from nodemanager on ms1 managed server

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 5 of 14

ORACLE

Chapter 13
Recovering a UIM Cloud Native Database Schema

« msl_access.log: Log of http/s access to ms1 managed server

All the logs in the above list for "ms1" are repeated for each running managed server, with the
logs being named for their originating managed server in each case.

In addition to these logs:

* Each JMS Server configured will have its log file with the name <server>_ms<x>-
jms_messages.log (for example: uim_jms_server_ms2-jms_messages.log). By
default, the JMS queue or topic logs are disabled. These logs temporarily can be enabled
from weblogic console.

* When custom templates for SAF agent are configured, it will have log file with the name
<server>_ms<x>-jms_messages.log (for example: uim_saf_agent_ms1-
jms_messages.log).

UIM Cloud Native and Oracle Enterprise Manager

UIM cloud native instances contain a deployment of the Oracle Enterprise Manager
application, reachable at the admin server URL with the path "/em". However, the use of
Enterprise Manager in this Kubernetes context is not supported. Do not use the Enterprise
Manager to monitor UIM. Use standard Kubernetes pod-based monitoring and UIM cloud
native logs and metrics to monitor UIM.

Recovering a UIM Cloud Native Database Schema

When the UIM DB Installer fails during an installation, it exits with an error message. You must
then find and resolve the issue that caused the failure. You can re-run the DB Installer after the
issue (for example, space issue or permissions issue) is rectified. You do not have to rollback
the DB.

® Note

Remember to uninstall the failed DB Installer helm chart before rerunning it. Contact
Oracle Support for further assistance.

It is recommended that you always run the DB Installer with the logs directed to a Persistent
Volume so that you can examine the log for errors. The log file is located at: filestorel/project-
instance/uim-dbinstaller/logs/DbVersionController.log.

When you install the Oracle Database schema for the first time and if the database schema
installation fails, do the following:

1. Delete the new schema or use a new schema user name for the subsequent installation.

2. Restart the installation of the database schema from the beginning.

To recover a schema upgrade failure, do the following:

1. Fix the issue. Use the information in the log or error messages to fix the issue before you
restart the upgrade process. For information about troubleshooting log or error messages,
see UIM Cloud Native System Administrator's Guide.

Common Problems and Solutions

This section describes some common problems that you may experience because you have
run a script or a command erroneously or you have not properly followed the recommended

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 6 of 14

ORACLE

Chapter 13
Common Problems and Solutions

procedures and guidelines regarding setting up your cloud environment, components, tools,
and services in your environment. This section provides possible solutions for such problems.

Domain Introspection Pod Does Not Start

Upon running create-applications.sh or upgrade-applications.sh, no change is observed.
Running kubect| get pods -n project --watch shows thatthe introspector pod did
not start at all.

The following are the potential causes and mitigations for this issue:

* WebLogic Kubernetes Operator (WKO) is not up or not healthy: Confirm if WKO is up by
running kubect| get pods -n $W.SKO NS. There should be one WKO pod in the
RUNNI NG state. If there is a pod, check its logs. If a pod is not there, check if WKO is
uninstalled. You may need to terminate an unhealthy pod or reinstall WKO.

* Project is not registered with WKO.
Run the following command:

hel m get mani fest -n $W.SKO NS webl ogi c-operator | grep -i
donai nNarmespacelabel Sel ect or

kubect!| get ns <project> -0 yam

Your project namespace should include the label that appeared after

domai nNanespacelLabel Sel ect or in the first command. If it is not listed,

run $COVMMON_CNTK/ scri pt s/ regi st er - nanespace. sh -p <project> -t w sko
-1 <l abel shown>.

For more details on registering wisko with namespace, see "Registering the Namespace"

Other causes are infrastructure related issues such as worker capacity and user RBAC.

In case the introspector does not start, the Operator may not monitoring your namespace or
your namespace that is not tagged to right label which operator is monitoring. See https://
oracle.qgithub.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/
#forgetting-to-configure-the-operator-to-monitor-a-namespace for more information on
Operator monitoring

Domain Introspection Pod Status

While the introspection is running, you can check the status of the introspection pod by running
the following command:

kubect| get pods -n namespace
healthy status | ooks like this

NANVE READY STATUS RESTARTS AGE
proj ect -i nstance-introspect - hzh9t 11 Running 0 3s

The READY field is showing 1/1, which indicates that the pod status is healthy.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 7 of 14

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace

ORACLE

Chapter 13
Common Problems and Solutions

If there is an issue accessing the image specified in the instance specification, then it shows
the following:

NANVE READY STATUS

RESTARTS AGE

proj ect-instance-introspect-r2d6j 0/1 Err | magePul | 0 5s

OR

NANVE READY STATUS

RESTARTS AGE

proj ect-instance-introspect-r2d6j 0/1 | magePul | BackCf f 0 45s

This shows that the introspection pod status is not healthy. If the image can be pulled, it is
possible that it took a long time to pull the image.

To resolve this issue, verify that the image name and the tag and that it is accessible from the
repository by the pod.

You can also try the following:

e Increase the value of podSt art upDeadl i neSeconds in the instance specification.
Start with a very high timeout value and then monitor the average time it takes, because it
depends on the speed with which the images are downloaded and how busy your cluster
is. Once you have a good idea of the average time, you can reduce the timeout values
accordingly to a value that includes the average time and some buffer.

* Pull the container image manually on all Kubernetes nodes where the UIM cloud native
pods can be started up.

Domain Introspection Errors Out
Some times, the domain introspector pod runs, but ends with an error.

To resolve this issue, run the following command and look for the causes:

kubect! 1ogs introspector_pod -n project

The following are the possible causes for this issue:

* RCU Schema is pre-existing: If the logs shows the following, then RCU schema could be
pre-existing:

W.SDPLY- 12409: createDonain failed to create the domain: Failed to wite
donmain to /u0l/oracl e/ user_projects/donai ns/ domai n: w st.witeDonmain(/u0l/
oracl e/ user_proj ects/ domai ns/donain) failed : Error witing donain:
64254: Error occurred in "OPSS Processing" phase execution

64254: Encountered error:

oracl e.security.opss.tools.lifecycle.Lifecycl eException: Error during
configuring DB security store. Exception

oracl e.security.opss.tools.lifecycle.Lifecycl eException: The schena
FMM_OPSS is already in use for security store(s). Please create a new
schema. .

64254; Check log for nore detail.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 8 of 14

ORACLE

Chapter 13
Common Problems and Solutions

This could happen because the database was reused or cloned from a UIM cloud native
instance. If this is so, and you wish to reuse the RCU schema as well, provide the required
secrets. For details, see "Reusing the Database State".

If you do not have the secrets required to reuse the RCU instance, you must use the UIM
cloud native DB Installer to create a new RCU schema in the DB. Use this new schema in
your r cudb secret. If you have login details for the old RCU users in your r cudb secret,
you can use the UIM cloud native DB Installer to delete and re-create the RCU schema in
place. Either of these options gives you a clean slate for your next attempt.

Finally, it is possible that this was a clean RCU schema but the introspector ran into an
issue after RCU data population but before it could generate the wallet secret (opssWF). If
this is the case, debug the introspector failure and then use the UIM cloud native DB
Installer to delete and re-create the RCU schema in place before the next attempt.

* Fusion Middleware cannot access the RCU: If the introspector logs show the following
error, then it means that Fusion Middleware could not access the schema inside the RCU
DB.

WLSDPLY-12409: createDomain failed to create the donain: Failed to get FMN
infrastructure database defaults fromthe service table: Failed to get the
dat abase defaults: Got exception when auto configuring the schema
conponent (s) with data obtained from shadow tabl e:

Failed to build JDBC Connection object:

Typically, this happens when wrong values are entered while creating secrets for this
deployment. Less often, the cause is a corrupted RCU DB or an invalid one. Re-create
your secrets, verifying the credentials and drop and re-create the RCU DB.

Recovery After Introspection Error

If the introspection fails during instance creation, once you have gathered the required
information and have a solution, delete the instance and then re-run the instance creation
script with the fixed specification, model extension, or other environmental failure cause.

If the introspection fails while upgrading a running instance, then do the following:

1. Make the change to fix the introspection failure. Trigger an instance upgrade. If this results
in successful introspection, the recovery process stops here.

2. If the instance upgrade in step 1 fails to trigger a fresh introspection, then do the following:

a. Rollback to the last good Helm release by first running the hel m hi story -n proj ect
proj ect -i nst ance command to identify the version in the output that matches the
running instance (that is, before the upgrade that led to introspection failure). The
timestamp on each version helps you identify the version. Once you know the "good"
version, rollback to that version by running: hel m rol | back -n project project-

i nstance versi on. Monitor the pods in the instance to ensure only the Admin server
and the appropriate number of Managed Server pods are running.

b. Upgrade the instance with the fixed specification.

Instance Deletion Errors with Timeout

You use the delete-applications.sh script to delete an instance that is no longer required. The
script attempts to do this in a graceful manner and is configured to wait up to 10 minutes for
any running pods to shut down. If the pods remain after this time, the script times out and exits
with an error after showing the details of the leftover pods.

The leftover pods can be UIM pods (Admin Server, Managed Server) or the DBInstaller pod.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 9 of 14

ORACLE

Chapter 13
Common Problems and Solutions

For the leftover UIM pods, see the WKO logs to identify why cleanup has not run. Delete the
pods manually if necessary, using the kubectl delete commands.

For the leftover DBInstaller pod, this happens only if install-database.sh is interrupted or if it
failed in its last run. This should have been identified and handled at that time itself. However,
to complete the cleanup, run hel m | s - n project to find the failed DBInstaller release, and
then invoke hel m uni nstal | -n project release. Monitor the pods in the project
namespace until the DBInstaller pod disappears.

Changing the WebLogic Kubernetes Operator Log Level

Some situations may require analysis of the WKO logs. These logs can be certain kinds of
introspection failures or unexpected behavior from the operator. The default log level for the
Operator is INFO.

For information about changing the log level for debugging, see the documentation at: https://
oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-
and-conversion-webhook-logging-level.

Deleting and Re-creating the WLS Operator

You may need to delete a WLS operator and re-create it. You do this when you want to use a
new version of the operator where upgrade is not possible, or when the installation is
corrupted.

When the corresponding operator is removed, the existing UIM cloud native instances continue
to function. However, any updates cannot be processed (when you run upgrade-
applications.sh) or respond to the Kubernetes events such as the termination of a pod.

Go through WKO troubleshooting to avoid errors while installing the operator. To uninstall the
operator, see Uninstall the Operator

Register namespaces using RegisterNamespace and UnregisterNamespace scripts from
CNTK . You can install the operator following the instructions from WKO Documentation and
then register all the projects again, one after the other as mentioned in Registering the

Namespace.

one by following

Normally, the remove-operator.sh script fails if there are UIM cloud native projects registered
with the operator. But you can use the -f flag to force the removal. When this is done, the script
prints out the list of registered projects and reminds you to manually re-register them (by
running register-namespace.sh) after reinstalling the operator.

You can install the operator as usual and then register all the projects again, one by one by
running register-namespace.sh -p project -t wisko.

Lost or Missing opssWF and opssWP Contents

For a UIM instance to successfully connect to a previously initialized set of DB schemas, it
needs to have the opssWF (OPSS Wallet File) and opssWP (OPSS Wallet-file Password)
secrets in place. The SCOMMON_CNTKI/scripts/imanage-app-credentials.sh script can be
used to set these up if they are not already present.

If these secrets or their contents are lost, you can delete and recreate the RCU schemas
(using $SCOMMON_CNTKIscriptsl/install-database.sh with command code 2). This deletes
data (such as some user preferences, MDS, and so on) stored in the RCU schemas and
requires redeployment cartridges. On the other hand, if there is a WebLogic domain currently
running against that DB (or its clone), the "exportEncryptionKey" offline WLST command can
be run to dump out the "ewallet.p12" file. This command also takes a new encryption
password. See "Oracle Fusion MiddleWare WLST Command Reference for Infrastructure

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 10 of 14

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-and-conversion-webhook-logging-level
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-and-conversion-webhook-logging-level
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-and-conversion-webhook-logging-level
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#uninstall-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator
https://docs.oracle.com/middleware/1213/idm/wlst-reference/intro.htm#IDMCR107

ORACLE

Chapter 13
Common Problems and Solutions

Security" for details. The contents of the resulting ewallet.p12 file can be used to recreate the
opssWF secret, and the encryption password can be used to recreate the opssWP secret. This
method is also suitable when a DB (or the clone of a DB) from a traditional UIM installation
needs to be brought into UIM cloud native.

Clock Skew or Delay

When submitting JIMS message over the Web Service queue, you might see the following in
the SOAP response:

Security token failed to validate.
webl ogi c. xnm . crypt 0. wss. SecurityTokenVal i dat eResul t @f laec15[status: fal se][nsg
UNT Error: Message ol der than all owed MessageAge]

Oracle recommends synchronizing the time across all machines that are involved in
communication. See "Synchronizing Time Across Servers" for more details. Implement
Network Time Protocol (NTP) across the hosts involved, including the Kubernetes cluster
hosts.

It is also possible to temporarily fix this through configuration by adding the following properties
to java_options in the app-uim specification for each managed server.managedServers:
project:

#JAVA _OPTIONS for all managed servers at project |evel java_options:
- Dwebl ogi c. wsee. securi ty. cl ock. skew=72000000
- Dwebl ogi c. wsee. securi ty. del ay. max=72000000

Cartridge Deployment Error

When the secret for encrypted WebLogic password <project>-<instance>-weblogic-encrypted-
credentials is incorrect, you may find the following errors during cartridge deployment:

[depl oyCartridge] Deployment of ora uimbaseextpts (7.4.2.0.0) failed due to :
[depl oyCartridge] Exception: EJB Exception: ; nested exception is:

[depl oyCartri dge] j ava. | ang. NoCl assDef FoundError: org/ springfranework/
cont ext/ Appl i cati onCont ext

To resolve this issue:

1. Delete the secret: <project>-<instance>-weblogic-encrypted-credentials.

2. Generate the WebLogic encrypted password as follows:

$ $COVMMON_CNTK/ scri pts/install-database.sh -p project -i instance -
s $SPEC PATH -a uim-c 8

3. Restart the Managed server as follows:

$ $COVMMON CNTK/ scripts/restart-applications.sh -p project -i instance -
s $SPEC PATH -a uim-r ns

Show the encrypted merged model json file for Model in Image

Weblogic operator has scripts to show the encrypted merged model json file for model in
image.

~/ webl ogi c- kuber net es- operat or/ operator/i ntegration-tests/bash/
show _ner ged_nodel . sh - h will provide all the required parameters to use this script.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 11 of 14

https://docs.oracle.com/middleware/1213/idm/wlst-reference/intro.htm#IDMCR107

ORACLE Chapter 13
Upgrading WebLogic Operator

Sample usage:

show nerged _nodel . sh -i nodel -in-inage: vl -n sanpl e-domai nl-ns -p weblogic -d
domai nl

Upgrading WebLogic Operator

To upgrade the WebLogic Operator, you have the following approaches:

* Operator Upgrade: Follow the Operator documentation for a standard upgrade process.
Ensure that the target version is compatible with the current version within your
Kubernetes cluster.

Here are some points you need to consider before using this approach:

— You do not need any additional Kubernetes resources.

— You do not need to register namespace again.

— You cannot test with a canary namespace.

— ltis very challenging to to roll back to the previous version.

* PhasedCutover Approach: To install the new WKO (WebLogic Kubernetes Operator),
create a new namespace with a fresh label selector. Transition UIM namespaces by
removing the old label and adding the new label to each respective namespace. Once all
namespaces have successfully transitioned and are stable, proceed to uninstall the old
WKO.

Here are some points you need to consider before using this approach:

— You can test with a canary namespace before full deployment.
— You can perform a phased cutover while accommodating program timelines.

— This approach supports an easy backout option by reverting the label change on UIM
namespaces.

— This approach requires modification of all UIM namespaces to use the new WKO.

— Extra Kubernetes resources are in use until the old WKO is uninstalled.

Known Issues

This section describes known issues that you may come across, their causes, and the
resolutions.

SituationalConfig NullPointerException

In the managed server logs, you might notice a stacktrace that indicates a
NullPointerException in situational config.

This exception can be safely ignored.
Connectivity Issues During Cluster Re-size

When the cluster size changes, whether from the termination and re-creation of a pod, through
an explicit upgrade to the cluster size, or due to a rolling restart, transient errors are logged as
the system adjusts.

These transient errors can usually be ignored and stop after the cluster has stabilized with the
correct number of Managed Servers in the Ready state.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 12 of 14

https://oracle.github.io/weblogic-toolkit-ui/navigate/kubernetes/k8s-wko/#install-operator

ORACLE

Chapter 13
Known Issues

If the error messages were to persist after a Ready state is achieved, then looking for
secondary symptoms of a real problem would be appropriate. Such connectivity errors could
result in orders that were inexplicably stuck or were otherwise processing abnormally.

While not an exhaustive list, some examples of these transient errors you may see in a
managed server log are:

e« An MDB is unable to connect to a JMS destination. The specific MDB and JMS destination
can vary, such as:

— The Message-Driven EJB inventoryQueuelistener is unable to connect to
the JMS destination inventoryWQueue.

— The Message-Driven EJB ActivityListenerBean is unable to connect to the
JMS destination inventoryActivityQueue.

* Failed to Initialize JNDI context. Connection refused; No available router to destination.
This type of error is seen in an instance where SAF is configured.
- Failed to process events for event type[AutomationEvents].

e Consumer destination was closed.

Upgrade Instance failed with spec.persistentvolumesource: Forbidden: is immutable
after creation.

You may come across the following error when you run the commands for upgrading the UIM
Helm chart:

Error: UPGRADE FAI LED: cannot patch "<project>-<instance> nfs-pv" wth kind
Per si st ent Vol une: Persi st ent Vol ume "<proj ect >-<instance>-nfs-pv" is invalid:
spec. persi st ent vol unesour ce:

For bi dden: is imutable after creation

Error in upgrading U M hel mchart

Once created, the Persistent Volume Claim cannot be changed.

To resolve this issue:

1. Disable NFS by setting the nf s. enabl ed parameter to false and run the upgrade-
instance script. This removes the PV from the instance.

2. Enable it again by changing nf s. enabl ed: to true with the new values of NFS and then
run upgrade-instance.

JMS Servers for Managed Servers are Reassigned to Remaining Managed Servers

When scaling down, the JMS servers for managed servers that do not exist are getting
reassigned to remaining managed servers.

For example, for a JMS server when there is only 1 managed server running, you can see the
server details as follows, in the WebLogic console:

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 13 of 14

ORACLE Chapter 13
Known Issues

Figure 13-1 Server Details for a JMS Server with One Managed Server

Name % Server | Destinations Current

inv_jms_server@msl | msl 5

Notice that ui m j ms_ser ver @rs1 is targeting s 1.

When scaled to 2 Managed Servers, the WebLogic console shows the following server details:

Figure 13-2 Server Details of WebLogic Console with Two Managed Servers

Name «» Server | Destinations Current
inv_jms_server@msl | msl 5
inv_jms_server@ms2 | ms2 5

Notice that ui m j ns_server @rs1 is targeting ns1 and ui m j ns_ser ver @rs2 is targeting
ns2.

After scaling back to 1 managed server, the WebLogic console shows the following server
details:

Figure 13-3 Server Details of WebLogic Console with One Managed Server

Name « Server | Destinations Current
inv_jms_server@msl | msl 5
inv_jms_server@ms2 | msl 5

Notice that the JMS Server ui m j ns_ser ver @s2 is not deleted and is targeting ms1.

This is completely expected behavior. This is a WebLogic feature and not to be mistaken for
any inconsistency in the functionality.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 14 of 14

Differences Between UIM Cloud Native and
UIM Traditional Deployments

If you are moving from a traditional deployment of UIM to a cloud native deployment, this
section describes the differences between UIM cloud native and UIM traditional.

e Embedded LDAP and Open LDAP

You no longer need to create human users using the embedded LDAP capabilities of
WebLogic Server.

By default, UIM uses the WebLogic embedded LDAP as the authentication provider and all
UIM fixed set of users are created in embedded LDAP during the creation of the instance.
The Common cloud native toolkit provides a sample configuration that uses OpenLDAP to
demonstrate how to integrate with external LDAP server for human users.

A sample script for populating users to OpenLDAP can be found at: $COMMON_CNTK/
samples/credentials/Imanage-app-credentials.sh. See "Creating Users in OpenLDAP"
for more details.

* WebLogic Domain Configuration

In a traditional deployment of UIM, the WebLogic domain configuration is done using
WLST or the WebLogic Admin Console. In UIM cloud native, domain configuration is done
by providing WDT metadata in the instance creation process. See "Extending the
WebLogic Server Deploy Tooling (WDT) Model" for details.

Do not perform WebLogic administrative activities such as changing the configuration,
shutting down and restarting the server directly on the WebLogic Server cluster of the UIM
cloud native instance. The same applies to the activities done using WebLogic Server
Admin Console, WLST invocation, or any mechanism, other than those supplied by the
specification files for updating and upgrading the UIM cloud native instance.

* Incoming SAF and Outgoing SAF
For incoming SAF agents, the originator must use T3 over HTTP tunneling.
Outgoing SAF mechanism has not changed.
e UIM Solution Cartridges
Deploy the solution cartridges in UIM cloud native as follows.
1. Build the customized image with solution cartridges.

2. Deploy the cartridge using CMT or Design Studio on UIM cloud native running
instance.
In UIM Cloud Native, the cartridge management variables wladmin.host.name and
wladmin.host.port are not required for deploying cartridges unlike in Traditional
Deployments.

See "Deploying Cartridges" for more information.

e UIM Shared Storage File System: Dependency on shared file system is removed in UIM
cloud native. Persistent Volume Mounts are used only for logging purpose.

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE

Chapter 14

Custom WebServices: The Custom Webservices are packaged in custom.ear in the
traditional environment and are packaged in Inventory application in the cloud native. See
"Customizing Images" to package the Custom WebServices.

UIM Application Roles: The assignment of UIM application roles to UIM users can be
achieved using sample script provided in SCOMMON_CNTK/samples/credentials/
assign-role.sh. The EM console can also be used like in traditional environment.

UIM User Interfaces: All UIM user interfaces are still available with both UIM traditional
and UIM cloud native deployments. The Uls can be accessed using the default hostname:
instance.project.uim.org and port 30505, which is the default but configurable and the path
that is necessary for the specific Ul. For example, to access the Inventory Ul, use:

http://instance. project.ui morg: 30505/ I nvent ory

UIM API: Accessing UIM through the traditional APIs such as the Web Services APl and
the REST API has not changed.

UIM System Configuration Properties: UIM system configuration parameters can be
controlled using the system-config.properties file. This configuration is still available in
the UIM cloud native, but is managed differently. See "Customizing UIM Configuration
Properties" for more details.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Page 2 of 2

Migrating from Traefik Ingress Controller to
Annotations-Based Generic Ingress Controller

This appendix describes how to migrate from Traefik Ingress Controller to annotations-based
generic Ingress controller.

Prerequisites
Here are the prerequisites you need:

e Install annotation-based ingress controller.

Installing Generic Ingress Controller
To install generic ingress controller:

1. You can use any annotation-based ingress controller that supports standard Kubernetes
ingress API. The samples for nginx ingressController are provided.

2. Forinstallation of Nginx, the sample values are provided under SCOMMON_CNTK/
samples/charts/nginx. For more information, see "About Load Balancing and Ingress
Controller".

Migrating to Generic Ingress Controller for UIM CN
To migrate to a generic ingress controller:

1. Delete UIM CN Ingress:

$COMMON_CNTK/ scri pt s/ del ete-ingress.sh -p project -i instance -
s $SPEC PATH -a uim

2. Go to $SPEC_PATH of upgraded UIM release.

3. Update the applications-base.yaml specification file with ingressController as
GENERI C.

ingressController: "GENERI C'

4. Uncomment and provide the ingress annotations according to your ingress controller. The
samples for Nginx are provided. Make sure that you provide the corresponding className
field, which is required to choose your ingress controller based on the ingressClassName
value:

i ngress:
cl assNane: "ngi nx"
annot ati ons:
ngi nx. i ngress. kubernetes.io/affinity: "cookie"
ngi nx. i ngress. kubernetes.iof/affinity-nmode: "persistent"”
ngi nx. i ngress. kuber net es. i o/ sessi on- cooki e- nane: "ngi nxi ngr esscooki e"
ngi nx. i ngress. kuber net es. i o/ proxy- body-si ze: "50nt

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix A-1 of A-2

ORACLE

Appendix A

Update the loadbalancerport value in applications-base.yaml specification file to your
ingess controller loadbalancer or NodePort port.

Based on the SSL-enablement, update annotations in applications-base.yaml
specification file.

Update the custom-config.properties file for ATA details with the updated port number.

Create UIM Ingress:

$COMMON_CNTK/ scri pts/create-ingress.sh -p project -i instance -
s $SPEC PATH -a uim

Upgrade UIM instance to reflect port changes:

$COMMON_CNTK/ scri pt s/ upgrade-instance.sh -p project -i instance -
s $SPEC PATH -a uim

10. Verify if the application can be accessed using your ingressController port.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix A-2 of A-2

Managing Certificate Expiry

The utility scripts to analyze certificates used by UIM cloud native environment are provided.
You can renew the expired certificates using this script. You must follow the prerequisites and
postrequisites for this script.

Here are the guidelines for using the utility script:

e In case of SSL TERMINATE as ingress for UIM CN, you should run this script with the
corresponding arguments and renew or verify the expiry of these certificates.

» This script supports renewal of certificates for any egress communication. If your IDP
certificate is expired, you can replace or add a new certificate to the truststore of UIM CN
using this script.

Prerequisites

Here are the prerequistes for managing the certificate expiry:

* You should have new SSL certificates that should be imported.
e UIM CN must be running over SSL Terminate at ingress.
Renewing Ingress Certificates

To renew ingress certificates:

1. Run the following command to verify ingress certificates:

$COMMON_CNTK/ scri pt s/ manage-certificates.sh -p project -i instance -c
verify -t ingress

This command displays validity for all ingress certificates for UIM CN.

2. Run the following command to renew the ingress certificates:

$COMMON_CNTK/ scri pt s/ manage-certificates.sh -p project -i instance -c
inport -t ingress

This command prompts for the certificate and key inputs. Provide the new certificates so
that all ingress certificates are renewed.

Importing Egress Certificates
To import egress certificates:

1. Run the following command to verify egress certificates:

$COMMON_CNTK/ scri pt s/ manage-certificates.sh -p project -i instance -c
verify -t egress

This command displays validity for all egress certificates from the truststore of all services.

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix B-1 of B-2

ORACLE
Appendix B

2. Run the following command to import egress certificates:

$COMMON_CNTK/ scri pt s/ manage-certificates.sh -p project -i instance -c
inport -t egress

This command prompts for the certificate and alias name as inputs.

@® Note

If the provided alias name already exists, the older certificates will be overridden
by the new certificate. If you want to retain your old certificate, provide a new alias
name.

Postrequisites
Here are the postrequisites:

e Restart the application if you have imported egress certificates for the application.

e After renewal of ingress certificates, ensure that you have imported the new certificates
into the client trust.

Cloud Native Deployment Guide
G36724-01
Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix B-2 of B-2

Migrating UIM_CNTK to COMMON_CNTK

From the UIM 8.0.0.0 release, UIM_CNTK is merged with COMMON_CNTK. For all operations
on the UIM cloud native instance, use COMMON-CNTK.

The reasons for merging UIM cloud native toolkit with Common cloud native toolkit are as
follows:

1. To converge all deployment scripts in a single place, that is in COMMON_CNTK.

2. To simplify the deployment process, Ul-based deployment and configuration management
tool (DCMT) are provided. These are delivered with Common cloud native toolkit.

3. Common configurations such as Ingress Controller, SSL configuration, and so on, can be
managed at a single location instead of duplicating them in both UIM_CNTK and
COMMON_CNTK.

4. To reduce the maintenance overhead of both artifacts.

Changes Due to Migration

This section lists the changes due to this migration.

Changes in Artifacts

The changes in artifacts are as follows:

* UIM_CNTK is now removed.

« Use COMMON_CNTK for all actions on UIM cloud native instance such as create, delete,
upgrade, schema create, schema delete, schema upgrade, and so on.

Changes in Specification Files

The changes in specification files are as follows:

e The contents of project.yaml and instance.yaml are now available in applications-
base.yaml, app-uim.yaml and database.yaml.

° $SPEC_PATHIproject.yaml and $SPEC_PATHI/instance.yaml are now placed
at $SPEC_PATHI/projectlinstancel <applications-base.yaml, app-uim.yaml,
database.yamli>.

e The locations of sample, logging, shape, and configuration files are changed as follows:

Table C-1 Changes in Specification Files
- _______________________ |

File/Directory Old Location New Location

loggingconfig.xml uim-cntk/charts/uim/config/logging $SPEC_PATH/project/instance/
config/uim/logging

e custom-config.properties, uim-cntk/charts/uim/config/system- $SPEC_PATH/project/instance/

« affinity-config.properties config config/uim /system-config

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix C-1 of C-8

ORACLE’

Appendix C
Changes Due to Migration

Table C-1 (Cont.) Changes in Specification Files

File/Directory

Old Location New Location

topologyMapping uim-cntk/charts/uim/topologyMapping $SPEC_PATH/project/instance/
config/uim /topologyMapping

All samples file uim-cntk/samples common-cntk/samples

All Shape files uim-cntk/charts/uim/shapes $SPEC_PATH/project/instance/shapes/

<shape>/uim.yaml

@ Note

Run the assemble-specification script to use COMMON_CNTK. See "Assembling
the Specifications" for information.

Changes in WLSKO Helper Operations

All the commands used to perform any operation on registration of namespace are now
impacted because of this migration. Refer the following old and new commands to understand
better.

Register Namespace
The changes are as follows:

e Old:

$UI M _CNTK/ scri pt s/ regi st er-nanespace.sh -p project -t wsko -
w sko=enabl ed

e New:

$COMMON_CNTK/ scri pt s/ regi ster-nanespace.sh -p project -t wsko -1
w sko=enabl ed

Unregister Namespace
The changes are as follows:

« Old:

$UI M _CNTK/ scri pt s/ unregi st er-nanespace. sh -p project -t wsko -
w sko=enabl ed

¢ New:

$COMMON_CNTK/ scri pt s/ unregi st er-nanespace.sh -p project -t wsko -1
w sko=enabl ed

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix C-2 of C-8

ORACLE Appendix C
Changes Due to Migration

Changes in Secrets

The command to create, delete, or update secrets is changed as follows.
Make sure you explicitly provide the following:

* Provide application name with -a uim option.

* Update applications-base.yaml by uncommenting applications name as uim and
comment all other values.

The changes are as follows:
° Old:

$U M_CNTK/ scri pt s/ manage-i nst ance-credentials.sh -p project -i instance
<creat e/ updat e/ del ete/ verify> w sadmi n, opssWP, wl sRTE, r cudb, ui mndb

¢ New:

$COMMON_CNTK/ scri pt s/ manage- app- credential s. sh -p project -i instance -
s $SPEC PATH -a uim <creat e/ updat e/ del et e/ veri fy>
w sadmi n, opssWP, Wl sRTE, r cudb, ui mdb

@ Note

e In case of SSL communications, create one more commonTrust secret.

* Do not mention the trust.name in the specification files. If the secret is available, it
will be mounted to pods.

The following secret is common for all services with same namespace and instance name:

$COVMMON_CNTK/ scri pt s/ manage- app- credential s.sh -p project -i instance -
s $SPEC PATH create comonTr ust

Changes in Embedded LDAP

All utility scripts and related files to manage LDAP users are moved under COMMON_CNTK/
samples/credentials directory. To create an embedded LDAP user, perform the following
command changes and update the uim.inventoryUsers with users list field in the app-
uim.yaml specification file.

The changes are as follows:

e Old:

$U M_CNTK/ sanpl es/ credenti al s/ manage-ui mcredentials.sh -p project -i
instance -c <create/update/delete/verify> -f <text file>

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix C-3 of C-8

ORACLE Appendix C
Changes Due to Migration

¢ New:

$COMMON_CNTK/ sanpl es/ credent i al s/ manage-ui mcredentials.sh -p project -i
instance -c <create/update/delete/verify> -f <text file>

Changes in Schema Operations

All schema operations will use install-database.sh script. This script reads the
database.yaml present at $SPEC_PATHI/projectlinstance/database.yaml.

The changes are as follows:

° Old:
$UI M CNTK/ scripts/install-uindb.sh -p project -i instance -s $SPEC PATH -c
<1/2/..19>

* New:
$COMMON_CNTK/ scri pts/install -database.sh -p project -i instance -

s $SPEC PATH -a uim -c <1/2/../9>

Changes in Instance Operations

Instance operations commands copy the configuration files from $SPEC_PATHI/project/
instancel/config directory to the corresponding locations in $COMMON_CNTK before running
the command. Therefore, only the application configurations that are present at $SPEC_PATH/
projectlinstancelconfig are applied. Any direct changes under the $COMMON_CNTKI/charts
directory overrides the previous ones.

Creation

The changes are as follows:

 Old:

$UI M CNTK/ scri pts/create-instance.sh -p project -i instance -s $SPEC PATH
* New:

$COMMON_CNTK/ scri pts/ create-applications.sh -p project -i instance -

s $SPEC PATH -a uim

Deletion
The changes are as follows:

e Old:

$U M_CNTK/ scripts/ del ete-instance.sh -p project -i instance

Cloud Native Deployment Guide
G36724-01 October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix C-4 of C-8

ORACLE

Appendix C
Changes Due to Migration

¢ New:

$COMMON_CNTK/ scri pt s/ del et e-applications.sh -p project -i instance -
s $SPEC PATH -a uim

Upgrade

The changes are as follows:

 Old:

$UI M CNTK/ scri pts/ upgrade-instance.sh -p project -i instance -s $SPEC PATH
* New:

$COMMON_CNTK/ scri pt s/ upgrade-appl i cations.sh -p project -i instance -

s $SPEC PATH -a uim

Ingress

The changes are as follows:

 Old:

$UI M CNTK/ scripts/create-ingress.sh -p project -i instance -s $SPEC PATH
* New:

$COMMON_CNTK/ scri pts/create-ingress.sh -p project -i instance -

s $SPEC PATH -a uim

Changes in Customizations

Use COMMON_CNTK for all customizations. The scripts and samples related to
customizations such as dump-merged-mode.sh, customExtensions, are moved to the
corresponding COMMON_CNTKI/scripts and COMMON_CNTK/samples/uim directories.

The changes are as follows:

° Old:
$UI M CNTK/ scri pts/create-instance.sh -p project -i instance -s $SPEC PATH -
m <CUSTOM ZATI ON_LOCATI ON>

* New:
$COMMON_CNTK/ scri pts/create-instance.sh -p project -i instance -

s $SPEC_PATH - m <CUSTOM ZATI ON_LOCATI ON> -a uim

Cloud Native Deployment Guide

G36724-01

October 30, 2025

Copyright © 2021, 2025, Oracle and/or its affiliates. Appendix C-5 of C-8

ORACLE’

@® Note

Appendix C
Migrating from the Existing Files

In the customization WDT files, if you refer to any values from the applications
specification files, Oracle recommends you place these values under uim.custom tag

and not anywhere else.

Changes in Post-Deployment Operations

This section includes the changes in post-deployment operations.

Assign Roles

The changes are as follows:

« Old:

$Ul M_CNTK/ sanpl es/ credenti al s/ assign-role.sh -p project -1 instance -f uim

user-rol es. txt

¢ New:

$COVMMON_CNTK/ sanpl es/ credenti al s/ assi gn-role.sh -p project -1 instance -f

ui muser-rol es. txt

Migrating from the Existing Files

This section provides the details about migration from the existing files.

Mapping the Existing Specification Files to New

Update database.yaml, applications-base.yaml, and app-uim.yaml at $SPEC_PATH/
projectlinstance by copying the relevant configurations from your existing $SPEC_PATH

project.yaml and instance.yaml files.

Following are the examples of mappings:

Table C-2 Examples of Specification File Mappings
- ___|

UIM CNTK - $SPEC_PATH

COMMON CNTK - $SPEC_PATH

#proj ect . yan

i mge: "uimcn-base:latest”

#app- ui m yan

ui m
i mage:
nanme: "ui mcn-base”
tag: “latest”

Cloud Native Deployment Guide
G36724-01
Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-6 of C-8

ORACLE

Appendix C
Migrating from the Existing Files

Table C-2 (Cont.) Examples of Specification File Mappings

UIM CNTK - $SPEC_PATH

COMMON CNTK - $SPEC_PATH

project.yan

dbi nstal | er
i mge: "uimecn-db-installer;latest”

#dat abase. yan

ui mdbinstaller:
dbinstal l er:
i mage:
nane: "uimecn-db-installer”
tag: “latest”

#project.yam

custom
enabl ed: true
application: false
jdbc: false
jms: false
saf: false
wdt Fi | es
- _cust om domai n-nodel . tp

#app- ui m yan

ui m
custom

enabl ed: true
application: false

jdbc: false

jms: false

saf: fal se

wdt Fi | es
- _cust om domai n-nodel . tp

#i nst ance. yan

db
dat asour cesPri nary:
port: 1521
rcuPort: 1521
def aul t Tabl espace: "SYSTEM
t enpTabl espace: " TEMP"

pur ge:

enabl ed: fal se

purgeConmand: ./1dPurge.sh report -
| di d 450003, 450005

#dat abase. yani

ui mdbinstaller:
db:
dat asour cesPri mary:
port: 1521
rcuPort: 1521
def aul t Tabl espace: "SYSTEM'
t enpTabl espace: " TEMP

pur ge:

enabl ed: fal se

pur geCommand: ./1 dPurge. sh report
-1did 450003, 450005

Cloud Native Deployment Guide
G36724-01
Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-7 of C-8

ORACLE

Appendix C
Migrating from the Existing Files

Table C-2 (Cont.) Examples of Specification File Mappings

UIM CNTK - $SPEC_PATH

COMMON CNTK - $SPEC_PATH

#i nst ance. yan

ssl:
incom ng: true
strategy: TERM NATE
trust:
name: truststore

#appl i cati ons-base. yan

tls:
enabl ed: true

(trust it will read fromcomonTrust secret,
make sure you create it with all
certificates using manage-credentials.sh
script)

Copying the Configuration Files

Copy the configurations such as logging, system-config, topologyMapping, siaMapping, and so
on to the specification path location as follows:

* From the existing: $Ul M_CNTK/ chart s/ ui m confi g/ *
e Toanew: $SPEC_PATH proj ect/i nstance/ confi g/ ui m *

Performing the Operations

Use the updated commands from "Changes in Schema Operations" and "Changes in Instance
Operations" to perform any operation on schema or instance using COMMON_CNTK.

Cloud Native Deployment Guide
G36724-01
Copyright © 2021, 2025, Oracle and/or its affiliates.

October 30, 2025
Appendix C-8 of C-8

	Contents
	About This Content
	1 Overview of the UIM Cloud Native Deployment
	About the UIM Cloud Native Deployment
	UIM Cloud Native Architecture
	About the WebLogic Domain
	About Kubernetes Custom Resource Definitions (CRD) and Domain Configuration Config Map
	About Oracle WebLogic Server Deploy Tooling (WDT)
	About UIM Configuration and Specification Layers
	About Helm Overrides

	About the Common Cloud Native Toolkit

	2 Planning and Validating Your Cloud Environment
	Required Components for UIM Cloud Native
	Planning Your Cloud Native Environment
	Setting Up Your Kubernetes Cluster
	Synchronizing Time Across Servers
	Provisioning Oracle Multitenant Container Database (CDB)
	Provisioning an Empty PDB

	About Container Image Management
	Installing Helm
	About Load Balancing and Ingress Controller
	Using Domain Name System (DNS)
	Configuring Kubernetes Persistent Volumes
	About NFS-based Persistence
	About BV-based Persistence
	About Authentication
	Management of Secrets
	Using Kubernetes Monitoring Toolchain
	About Application Logs and Metrics Toolchain
	Role of Continuous Integration (CI) Pipelines
	Role of Continuous Delivery (CD) Pipelines

	Planning Your Container Engine for Kubernetes (OKE) Cloud Environment
	Compute Disk Space Requirements
	Connectivity Requirements
	Using Load Balancer as a Service (LBaaS)
	About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones
	Using Persistent Volumes and File Storage Service (FSS)
	Leveraging Oracle Cloud Infrastructure Services

	Validating Your Cloud Environment
	Performing a Smoke Test
	Validating Common Building Blocks in the Kubernetes Cluster
	Running Oracle WebLogic Kubernetes Operator Quickstart

	3 Creating the UIM Cloud Native Images
	Downloading the UIM Cloud Native Image Builder
	Prerequisites for Creating UIM Images
	Configuring the UIM Cloud Native Images
	Creating the UIM Cloud Native Images
	Customizing Images
	Including User Interface Customizations and Localizing UIM Help in UIM Cloud Native Images
	Including Custom Web Services
	Adding Third-party Libraries
	Adding WebLogic Deployable Applications
	Adding Solution Cartridge Customizations
	Extending Entity Life Cycles

	4 Creating a Basic UIM Cloud Native Instance
	Installing the UIM Cloud Native Artifacts and the Toolkit
	Assembling the Specifications

	Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller
	Installing the WebLogic Kubernetes Operator Container Image
	Installing the Ingress Controller

	Creating a Basic UIM Instance
	Setting Environment Variables
	Registering the Namespace
	Creating Secrets
	Creating Secrets for LDAP System Users

	Installing the UIM and RCU Schemas
	Generating Encrypted WebLogic Administrator's Password
	Configuring the Specification Files
	Creating an Ingress
	Creating a UIM Instance
	Assigning Roles
	Validating the UIM Instance
	Scaling the UIM Application Cluster
	Deleting and Recreating Your UIM Instance
	Cleaning Up the Environment
	Troubleshooting Issues with the Scripts

	Next Steps

	5 Planning Infrastructure
	Sizing Considerations
	Managing Configuration as Code
	Creating Source Control Repository
	Managing UIM Instances
	Deciding on the Scope
	About the Repository Directory Structure
	Deployment Consideration
	Setting the Repository Path During Instance Creation

	Setting Up Automation
	Securing Operations in Kubernetes Cluster

	6 Creating Your Own UIM Cloud Native Instance
	Customizing UIM Configuration Properties
	Deploying Cartridges
	Deploying Cartridges Using Design Studio
	Deploying Cartridges Using Cartridge Management Tool
	Deploying Cartridges using SSL

	Adding New WDT Metadata
	Working with Kubernetes Secrets
	About Mandatory Secret
	About Optional Secrets
	About Custom Secrets
	Accommodating the Scope of Secrets

	Mechanism for Creating Custom Secrets

	Creating Inventory Users
	Creating Users in Embedded LDAP
	Creating Users in OpenLDAP
	Configuring Other LDAP Systems

	Assigning Application Roles to Inventory Users

	7 Extending the WebLogic Server Deploy Tooling (WDT) Model
	About the Custom WDT Extension Mechanism
	Using the WDT Model Tools
	WDT Discover Domain Tool
	WDT Validate Model Tool

	Common WDT Extension Mechanism
	Using the Sample Scripts to Extend the WDT Model
	Adding a JDBC DataSource
	Adding a JMS System Resource
	Adding a Store-and-Forward-Agent and SAF Resources
	Deploying Entities to a UIM WebLogic Domain
	Extending the WDT Metadata for an External Authenticator
	Extending WDT for Email Notification

	Accessing Kubernetes Secrets from WDT Metadata
	Troubleshooting WDT Issues

	8 Exploring Alternate Configuration Options
	Setting Up Authentication
	Enabling SAML Based Authentication Provider
	Publishing UIM Cloud Native Service Provider Metadata File

	Working with Shapes
	Creating Custom Shapes

	Choosing Worker Nodes for Running UIM Cloud Native
	Working with Ingress, Ingress Controller, and External Load Balancer
	Using an Alternate Ingress Controller
	Reusing the Database State
	Recreating an Instance
	Creating a New Instance

	Setting Up Persistent Storage
	Managing Logs
	Viewing Logs using Fluentd and OpenSearch Dashboard
	Enabling GC Logs
	WebLogic Diagnostic Logs

	Managing UIM Cloud Native Metrics
	Configuring Prometheus for UIM Cloud Native Metrics
	Viewing UIM Cloud Native Metrics Without Using Prometheus
	Viewing UIM Cloud Native Metrics in Grafana
	Exposed UIM Service Metrics

	Managing WebLogic Monitoring Exporter (WME) Metrics
	Generating the WME WAR File
	Deploying the WME WAR File
	Configuring the Prometheus Scrape Job for WME Metrics
	Viewing WebLogic Monitoring Exporter Metrics in Grafana

	9 Integrating UIM
	Integrating with UIM Cloud Native
	Connectivity Between the Building Blocks
	Inbound HTTP Requests
	Inbound JMS Requests
	Inbound JMS Requests Within the Same Kubernetes Cluster
	Outbound HTTP Requests
	Outbound JMS Connectivity

	Configuring SAF
	Applying the WebLogic Patch for External Systems
	Configuring SAF on External Systems
	Setting Up Secure Communication with SSL
	Configuring Secure Incoming Access with SSL
	Generating SSL Certificates for Incoming Access
	Setting Up UIM Cloud Native for Incoming Access
	Configuring Incoming HTTP and JMS Requests for External Clients

	Configuring Access to External SSL-Enabled Systems
	Loading Certificates for Outgoing Access
	Enabling SSL on an External WebLogic Domain
	Setting Up UIM Cloud Native for Outgoing Access

	Adding Additional Certificates to an Existing Trust
	Debugging SSL
	Using Wild Card SSL Certificates

	10 Running the SAF Sample for UIM Cloud Native
	Preparing WebLogic System to Run the Emulator
	Deploying the Emulator on the WebLogic System
	Preparing the UIM Cloud Native Instance
	Deploying the SAF Sample Cartridge
	Validating the SAF Endpoints
	Performing a Test

	11 Upgrading the UIM Cloud Native Environment
	Rolling Restart
	Identifying Your Upgrade Path
	Offline Change Upgrade Paths
	Online Change Upgrade
	Exceptions and Unsupported Tasks

	UIM Cloud Native Upgrade Procedures
	PDB Upgrade Procedure
	UIM Application Upgrade
	Updating the Default Settings for Coherence Cluster
	Online Cartridge Deployment

	Upgrades to Infrastructure
	Miscellaneous Upgrade Procedures
	Running Operational Procedures
	Triggering Introspection
	Scaling Down the Cluster
	Scaling Up the Cluster
	Restarting the Instance
	Fast Delete

	Upgrade Path Flow Chart

	12 Moving to UIM Cloud Native from a Traditional Deployment
	Supported Releases
	About the Move Process
	Pre-move Development Activities
	Moving to a UIM Cloud Native Deployment
	Quiescing the Traditional Instance of UIM
	Exporting and Importing JMS Messages
	Exporting JMS Messages
	Importing JMS Messages

	Upgrading the Database
	Upgrading the Database Server
	Preparing the Required Database Entities for UIM Cloud Native

	Upgrading the UIM Schema
	Switching Integration with Upstream Systems

	Reverting to Your UIM Traditional Deployment
	Cleaning Up

	13 Debugging and Troubleshooting
	Setting Up Java Flight Recorder (JFR)
	Troubleshooting Issues with Nginx, UIM UI, and WebLogic Administration Console
	Recovering a UIM Cloud Native Database Schema
	Common Problems and Solutions
	Upgrading WebLogic Operator
	Known Issues

	14 Differences Between UIM Cloud Native and UIM Traditional Deployments
	A Migrating from Traefik Ingress Controller to Annotations-Based Generic Ingress Controller
	B Managing Certificate Expiry
	C Migrating UIM_CNTK to COMMON_CNTK
	Changes Due to Migration
	Changes in Artifacts
	Changes in Specification Files
	Changes in WLSKO Helper Operations
	Changes in Secrets
	Changes in Embedded LDAP
	Changes in Schema Operations
	Changes in Instance Operations
	Changes in Customizations
	Changes in Post-Deployment Operations

	Migrating from the Existing Files
	Mapping the Existing Specification Files to New
	Copying the Configuration Files
	Performing the Operations

