
Oracle® Communications Unified
Inventory Management
Web Services Developer's Guide

Release 8.0
G36720-01
October 2025

Oracle Communications Unified Inventory Management Web Services Developer's Guide, Release 8.0

G36720-01

Copyright © 2014, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

1 Web Services Overview

About UIM Web Service Standards and Specifications 1

About the UIM Web Services Framework 2

About the UIM Web Service Module 3

About Message Queues 4

About Message Queues for Custom Web Services 4

About Transaction Handling 4

About Exception Stacktraces 4

About UIM Web Services 4

2 Working with the Service Fulfillment Web Service

About the Service Fulfillment Web Service 1

About Business Interactions and Services 3

About Engineering Work Orders 4

About the Web Service Packaging 4

About the WSDL and Schema Files 4

About the WSDL File 5

About the Schema Files 5

Reference Schemas 6

Web Service Schemas 6

Business Schemas 6

CaptureInteraction 7

Associating Business Interactions 8

CaptureInteraction Logic Flow 8

Validating Input Data 9

captureInteractionRequest 10

Business Interaction 13

Business Interaction Item 14

Business Interaction Item Parameter 14

Service 15

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of vii

Associated Business Interaction 16

ExecuteProcess Element 16

ResponseLevel Element 16

captureInteractionResponse 17

ProcessInteraction 17

ProcessInteraction Logic Flow 18

Service Configuration Association 19

Customizing ProcessInteraction 19

Modeling the Service in Design Studio 19

Customizing Service Actions 20

Customizing the Automation of Service Configurations 21

ProcessInteraction Example 23

processInteractionResponse 24

GetInteraction 24

GetInteraction Logic Flow 24

getInteractionResponse 25

UpdateInteraction 25

UpdateInteraction Logic Flow 26

updateInteractionResponse 26

GetConfiguration 27

getConfigurationRequest 28

Request Search Options 28

Request Search Option Examples 29

Additional Request Options 29

Additional Request Options Example 30

ResponseLevel Element 30

GetConfiguration Logic Flow 30

getConfigurationResponse 31

Customizing GetConfiguration 32

Extension Points 32

Customization Steps 32

Customized Response 33

GetConfigurationDifferences 34

getConfigurationDifferencesRequest 35

Request Search Options 35

Request Search Option Examples 38

Additional Request Options 39

Additional Request Options Example 40

GetConfigurationDifferences Logic Flow 41

Child Configurations 41

Example 1 42

Example 2 43

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page ii of vii

Example 3 44

Overriding the Process Logic that Determines Child Configurations 45

getConfigurationDifferencesResponse 45

Customizing GetConfigurationDifferences 46

UpdateConfiguration 46

updateConfigurationResponse 47

Customizing the Web Service Operations 47

Extending Web Service Requests and Responses 47

Additional Information 49

Deploying, Testing, and Securing the Web Service 49

3 Working with the Network Resource Management Web Service

About the NRM Web Service 1

About the Web Service Packaging 1

About the WSDL and Schema Files 2

About the WSDL File 2

About the Schema Files 3

Reference Schemas 3

Web Service Schemas 3

Business Schemas 3

CreateEntity 4

createEntityRequest 4

Multiple Entities 5

Optional Elements 5

Example 5

createEntityResponse 6

FindEntity 6

findEntityRequest 7

Multiple Entities 10

Examples 10

findEntityResponse 11

FindTNBlock 12

findTNBlockRequest 12

Example 13

findTNBlockResponse 14

UpdateEntity 14

updateEntityRequest 14

Multiple Entities 16

Optional Elements 16

Examples 16

updateEntityResponse 17

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iii of vii

DeleteEntity 17

deleteEntityRequest 18

Multiple Entities 21

Optional Elements 21

Examples 21

deleteEntityResponse 22

ReserveEntity 22

reserveEntityRequest 22

Resource Entity Search Criteria 22

Multiple Entities 25

Optional Elements 26

Example 26

reserveEntityResponse 26

ReserveTNBlock 27

reserveTNBlockRequest 27

Telephone Number Block Search Criteria 27

Example 28

reserveTNBlockResponse 28

UnreserveEntity 29

unreserveEntityRequest 29

Resource Entity Search Criteria 29

Multiple Entities 32

Optional Elements 32

Examples 32

unreserveEntityResponse 33

UpdateReservation 33

updateReservationRequest 34

Multiple Reservations 34

Optional Elements 34

Example 34

updateReservationResponse 34

AssociateEntity 35

associateEntityRequest 35

Multiple Entities 38

Example 38

associateEntityResponse 38

DisassociateEntity 39

disassociateEntityRequest 39

Multiple Entities 42

Example 42

disassociateEntityResponse 42

ImportEntity 43

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page iv of vii

importEntityRequest 43

Multiple Entities 43

Example 43

Spreadsheet Format 43

Spreadsheet Row Order 49

importEntityResponse 51

ExportEntity 52

exportEntityRequest 52

Multiple Entities 54

Example 54

exportEntityResponse 54

TelephoneNumber Sheet 55

LogicalDevice Sheet 55

LogicalDeviceAccount Sheet 55

PhysicalDevice Sheet 56

exportEntityResponse Faults 56

Determining Criteria Item Names 56

Customizing the Web Service Operations 58

Extending Web Service Requests and Responses 59

Deploying, Testing, and Securing the Web Service 59

4 Developing Custom SOAP Web Services

About the UIM Reference Web Service 1

About the WSDL and Schema Files 2

About the WSDL File 2

About the Schema Files 3

About Namespaces 3

About the Ant Build File 4

Guidelines for Developing Custom Web Services 6

Using the WSDL-First Approach to Developing Custom Web Services 6

Class Diagrams 7

WSDL Interface Guidelines 10

Operation Signatures 10

Signature Components 10

Signature Pattern and Examples 11

Schema Guidelines 12

Transaction Guidelines 13

Developing and Running Custom Web Services 14

Configuring Your Work Environment 15

WebLogic Server 15

UIM 15

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page v of vii

Design Studio 15

Importing the Reference Web Service Project 16

Configuring the Imported Project 17

Configuring the COMPUTERNAME.properties File 18

Configuring the web.xml File 19

Configuring the Project Library List 19

Locating the API Method Signature in the Javadoc 21

Information to Capture 22

Developing the Web Service 22

Creating the WSDL File 22

Creating Schema Files 24

Creating Java Source Files 24

Generating Java Source Based on the WSDL 27

Creating the WAR File 28

Packaging the WAR File in the EAR File 29

Extracting and Updating the application.xml File 30

Additional Custom Work 31

Importing the WAR File into the EAR File 35

Deploying the EAR File 35

Verifying the Deployment 36

Specifying a Deployment Plan 36

Deploying, Testing, and Securing the Web Service 36

5 Developing Custom REST Web Services

About the UIM REST Reference Web Services 1

Prerequisites for Customizing REST Web Services 1

Installing Gradle 2

Setting Up Proxy 2

About the YAML File 2

About the Gradle Build File 4

Guidelines for Developing Custom REST Web Services 5

About Class Diagrams 6

Transaction Guidelines for the REST Web Services 7

Developing the REST Web Services 8

Generating and Copying Model, API, and API impl Files 8

Creating Java Source Files 9

Generating Java Source Based on the YAML File 9

Creating a WAR File 10

Packaging the WAR File in EAR File 10

Extracting and Updating the EAR File 10

Copying application.xml and the WAR File into the EAR Folder 10

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vi of vii

Redeploying custom.ear 11

6 Deploying, Testing, and Securing UIM Web Services

Deploying Web Services 1

Verifying Deployments 2

Testing Web Services 2

Test Input XML 3

Pre-configuration for Testing 3

Securing Web Services 3

About Policy Files 4

Modifying Web Service Security 4

Accessing Security 5

Associating a Policy File 5

Disassociating a Policy File 5

Modifying the Deployment Plan 6

Securing Custom Web Services 6

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page vii of vii

About This Content

This guide describes the Oracle Communications Unified Inventory Management (UIM) Web
Services. The information provided in this guide includes the UIM Web Service framework that
supports web services, the various UIM Web Services that are available, and how to create
custom web services. When creating custom web services, you can use Oracle
Communications Service Catalog and Design - Design Studio, which is an Eclipse-based
integrated development environment. This guide includes references to both Design Studio
and UIM, and often directs the reader to see the Design Studio Help and the UIM Help for
instructions on how to perform specific tasks. This guide includes examples used in given
situations. The guidelines and examples may not be applicable in every situation.

Audience

This guide is intended for developers who have a working knowledge of web services in
general, and who understand XML, Ant and Java development, including JPA, standard Java
practices, and J2EE principles.

You should read UIM Concepts before reading this guide.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page i of i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Web Services Overview

This chapter provides introductory information about the Oracle Communications Unified
Inventory Management (UIM) Web Services.

Web services support interoperable machine-to-machine interaction over a network. Web
services are APIs that can be accessed over a network, and run on a remote system hosting
the requested services. Web service operations are described by the Web Service Definition
Language (WSDL).

Note

In this guide, UIM_CONFIG_PATH represents the directory for UIM configuration files,
as follows:

• In a traditional environment, UIM_CONFIG_PATH is UIM_Home/config.
UIM_Home is Oracle_home/user_projects/domains/domain_name/UIM, where
domain_name is the domain name you supplied when installing UIM.

• In a cloud native environment, UIM_CONFIG_PATH is
UIM_IMAGE_BUILDER_TOOLKIT/staging/cnsdk/uim-model/UIM/config. You
can obtain UIM_IMAGE_BUILDER_TOOLKIT from Oracle Software Delivery
Cloud. To modify configuration files in UIM cloud native, see "Customizing UIM
Configuration Properties" in UIM Cloud Native Deployment Guide and
"Administering a UIM Cloud Native Deployment" in UIM System Administrator's
Guide.

In this guide, UIM_SDK_Home represents the directory where you extract
UIM_SDK.zip, as follows:

• In a traditional environment, the files present in UIM_SDK_Home are also present
in UIM_Home.

• When working with UIM web services or developing custom web services, see
"Using Design Studio to Extend UIM" in UIM Developer's Guide.

About UIM Web Service Standards and Specifications
Table 1-1 lists the UIM web service standards and specifications.

Table 1-1 UIM Web Service Standards and Specifications

Standard and
Specification

Version Release Description Compliance

JAX-RPC 1.1 XML <--> Java binding
specification

Compliant.

JSR-181 NA Java web service annotations Deprecated.

Uses basic annotations for
inter operability.

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 5

Table 1-1 (Cont.) UIM Web Service Standards and Specifications

Standard and
Specification

Version Release Description Compliance

SOAP 1.1 Simple Object Access Protocol

(Also referred to as Service
Oriented Architecture
Protocol.)

Compliant.

Uses XML/SOAP/HTTP and
XML/SOAP/JMS.

Transport
Protocols

HTTP 1.0,
HTTPS 1.0
(HTTP 1.1), JMS
1.1

NA NA

WSDL 1.1 Web Service Definition
Language

Compliant.

XML 1.1 NA Compliant.

Uses XML/SOAP/HTTP and
XML/SOAP/JMS.

About the UIM Web Services Framework
Figure 1-1 shows the different paths traveled by a call originating from the UIM UI client, and a
call originating from outside UIM that is then processed by the web service client.

Figure 1-1 UIM Web Services

The path of the web service includes:

• Web Service Client

Chapter 1
About the UIM Web Services Framework

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 5

This represents the web service user (client, web service client, or customer). Web service
operations are called by sending SOAP messages over HTTP or HTTPS, or by posting
SOAP messages on a UIM-defined JMS message queue. See "About Message Queues"
for more information.

• Web Service Module

This represents all the sub-modules required for implementing a web service, including the
web service, the web service framework, WSDL interfaces, and WSDL implementations.
The web service module is deployed as a WAR file.

See "About the UIM Web Service Module" for more information.

• UIM business logic

This represents all the sub-modules required for attaining business functionality. This
includes the Java API, the Java API framework, business logic, and persistence
framework.

Details of the UIM business logic are not within the scope of this document.

About the UIM Web Service Module
Figure 1-2 shows the web service module in more detail.

Figure 1-2 Web Service Module

The web service module includes:

• Platform-provided Web Services Framework

This represents the web service framework provided by Java EE platforms, such as Oracle
WebLogic Server.

• Web Service Operations

This represents the Java web service implementation class. This is the entry point to a UIM
web service. The web service operations are Java representations of the WSDL.

• Adapters

The web service operations layer calls the adapters, which direct the calls and collect data
from the appropriate UIM API managers. Transaction handling is performed in the
adapters.

• Mappers

Chapter 1
About the UIM Web Services Framework

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 5

Mapper classes convert data from XML to Java, and from Java to XML. Specifically, data
elements of an incoming XML request are converted to data attributes of a Java class so
the data can be processed. When processing is done, the data attributes of the Java class
are converted to data elements of an outgoing XML response. Mapper classes are typically
called by the adapter code.

• Workers

Worker classes assist the working logic of the adapters.

The web service operations, adapter, mapper, and worker classes are further explored in
"Developing Custom SOAP Web Services".

About Message Queues
The UIM installation provides the following message queues to use when calling the Inventory
Web Services, which includes the UIM Service Fulfillment Web Service and the Network
Resource Management Web Service, both of which are packaged in the InventoryWS.war file:

• inventoryWSQueue

• inventoryWSQueueAlternate

Two message queues are provided for efficient processing of web service calls. For example,
you may have all web service operation calls except ProcessInteraction use
inventoryWSQueue, and have ProcessInteraction use inventoryWSQueueAlternate because
the ProcessInteraction operation takes longer to run than the other operations.

About Message Queues for Custom Web Services
The UIM installation also provides the following message queue to use when calling custom
web services packaged in the provided custom.ear file:

• inventoryCustomWSQueue

Note

If you package your custom web service in an Enterprise Archive (EAR) file other than
the provided custom.ear file, you must create your own message queue, create a
custom listener class, and configure the class to listen to the queue. See "Packaging
the WAR File in the EAR File" for more information.

About Transaction Handling
The adapter layer performs transaction handling. Transactions are started only if the thread is
not already within a transaction.

About Exception Stacktraces
Exception stacktraces are available in the WebLogic server logs. Exception stacktraces are not
available in the UIM web service responses.

About UIM Web Services
UIM provides the following web services:

Chapter 1
About UIM Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 5

• The Service Fulfillment Web Service defines operations that enable you to create and
modify business interactions, through which you can create and modify services, service
configurations, and service configuration items. See "Working with the Service Fulfillment
Web Service" for more information.

• The Network Resource Management Web Service defines operations that enable you to
create, find, update, and delete various entities in UIM. The web service also enables you
to reserve and unreserve various resource entities, and also update reservations. Lastly,
the web service enables you to import and export various entities into and out of UIM. See
"Working with the Network Resource Management Web Service" for more information.

• UIM also provides a way for you to develop, build, and deploy custom web services. The
UIM Reference Web Service defines a single operation to create a Logical Device. This
web service serves as an example to reference when developing custom web services.
See "Developing Custom SOAP Web Services" for more information.

Note

The deprecated Reference Web Service operations are removed. The Service
Fulfillment Web Service operations replace these deprecated operations. See
"Working with the Service Fulfillment Web Service" for more information.

• The Cartridge Management Web Service defines various operations that support deploying
cartridges. The Cartridge Deployer Tool and Oracle Communications Service Catalog and
Design - Design Studio use this web service to manage cartridges. The Cartridge
Management Web Service is deployed as an installation step and is displayed on the
Oracle WebLogic Server Administration Console.

• The NFV Orchestration RESTful APIs define operations that enable you to create,
implement, and manage the life cycles of network services and their deployment as
interconnected virtual network functions (VNFs) on virtual resources. Refer to the UIM NFV
Orchestration Implementation Guide for more information.

Chapter 1
About UIM Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 5

2
Working with the Service Fulfillment Web
Service

This chapter provides information about the Oracle Communications Unified Inventory
Management (UIM) Service Fulfillment Web Service.

About the Service Fulfillment Web Service

Note

For this web service, you need an understanding of the following subjects described in
"About Unified Inventory Management" in UIM Concepts:

• Planning (business interactions, business interaction items, and engineering work
orders)

• Services (services, service configurations, and service configuration items)

• Life-cycle management

• Service fulfillment

The Service Fulfillment Web Service enables an external system to create new business
interactions and change existing business interactions in UIM. Similarly, this web service
enables an external system to create new engineering work orders and change existing
engineering work orders. The Service Fulfillment Web Service also enables you to create
multiple pending configurations for a service. See "About Unified Inventory Management" in
UIM Concepts for more information.

The Service Fulfillment Web Service also enables you to disconnect a service. When you
disconnect a service using the Service Fulfillment Web Service, all the configuration versions
on the service transition to Canceled status, and an additional configuration version is created
with the current date after the service configuration version that is in Completed status.

Note

Engineering work orders are a type of business interaction. They are based on a
special Business Interaction specification and have the same supported Service
Fulfillment Web Service functionality as business interactions.

Through business interactions, an external system can manage services, resources associated
with services, and relationships between services.

The Service Fulfillment Web Service enables you to:

• Plan the addition, change, or disconnection of a service through a business interaction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 49

• Process business interactions to move planned services into current inventory or change
existing services in current inventory, and, through custom rulesets and custom code,
create or change service configuration items and allocate resources for services in current
inventory

• Retrieve business interactions

• Transition business entities through their respective life-cycle states within the context of a
business interaction

• Retrieve configurations

• Retrieve configuration differences

• Transition services and service configurations through their respective life-cycle states

Figure 2-1 provides an overview of the Service Fulfillment Web Service and its intended usage.

Figure 2-1 Service Fulfillment Web Service Overview

Chapter 2
About the Service Fulfillment Web Service

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 49

The following describes the steps for the Service Fulfillment Web Service usage illustrated in
Figure 2-1:

1. Call the CaptureInteraction operation. The request provides details regarding the action to
take on a service, and includes a list of parameters that provide information UIM needs to
provision the service. UIM creates a business interaction and persists the request. The
business interaction ID (or external ID representing the business interaction) is returned to
the external system.

2. Call the ProcessInteraction operation. The request includes the business interaction ID.
This ID is the external ID representing the business interaction. UIM uses the business
interaction ID to retrieve the business interaction and the persisted
captureInteractionRequest data.

UIM evaluates the service action on the persisted captureInteractionRequest:

• When the service action is create, UIM creates a new service and service
configuration.

• When the service action is change, UIM finds the service based on the service ID and
creates a new service configuration.

A new service configuration is associated to the business interaction. UIM then calls the
automateConfiguration() method. You must extend this empty method through a custom
ruleset. This method is intended to design and assign the service. See "Overview" in UIM
Developer's Guide for more information on custom rulesets.

Within the automateConfiguration ruleset, you can access the following:

• Business interaction entity

• Service configuration entity

• List of parameters from captureInteractionRequest

• UIM APIs to call and perform various functions, such as unassigning existing
resources on the configuration or creating new resources to assign to the
configuration.

After resources are assigned to the configuration, the assignments on the service
configuration are set to Pending status.

3. Call the UpdateInteraction operation to approve the configuration. This updates the status
of the assignments on the service configuration from Pending to Approved.

4. Call the GetConfigurationDifferences operation to get details of changes that resulted from
the design and assign during ProcessInteraction.

5. Call the UpdateInteraction operation to issue the configuration. This updates the status of
the assignments on the service configuration from Approved to Issued.

6. Call the UpdateInteraction operation to complete the configuration. This updates the status
of the assignments on the service configuration from Issued to Completed, and also
updates the business interaction status to Completed.

About Business Interactions and Services
Only business interactions that support services and service configurations can be added
through the web service. However, after the business interaction is created in UIM, you can
use the UI to add business interaction items of any type.

Even though business interactions support only services through the web service, services
have service configurations, which can have child configurations, and the web service can
support these child configurations. For example, a service configuration may have a child

Chapter 2
About the Service Fulfillment Web Service

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 49

configuration that is a service, logical device, logical device account, network, pipe
(representing a pipe or channelized connectivity), or place configuration, and these
configurations can be added through the customized ProcessInteraction operation as children
of a service configuration. Child configurations can also be retrieved through the
GetConfiguration operation, and retrieved and compared through the
getConfigurationDifferences operation.

Note

The configuration-specific operation sections of this chapter apply to all configurable
entities: service, logical device, logical device account, network, pipe (representing a
pipe or channelized connectivity), and place entities.

A configurable place is actually a GeographicSite specialization of the abstract Place
entity; GeographicSite is the only specialization of the Place entity that is configurable.
See Oracle Communications Information Model Reference for more information.

About Engineering Work Orders
Engineering work orders are related to and share functionality with business interactions. They
are based on special Business Interaction specification that you must install by deploying the
ora_uim_workorder base cartridge. Engineering work orders have the same supported
functionality as business interactions with the Service Fulfillment Web Service.

See "Unified Inventory Management Installation Overview " in UIM Installation Guide for more
information about installing base cartridges. See "About Unified Inventory Management" in UIM
Concepts for more information about engineering work orders and business interactions.

About the Web Service Packaging
The Service Fulfillment Web Service is packaged in the inventory.ear file, within the
InventoryWS.war file. When the installer deploys the inventory.ear file, the Service Fulfillment
Web Service is automatically deployed and ready to use.

Note

The InventoryWS.war file also includes all of the Network Resource Management
Web Service operations. See "Working with the Service Fulfillment Web Service" for
information about these operations.

The Service Fulfillment Web Service is no longer packaged within the
UIMServiceFulfillment.war file. This was previously deprecated and is now removed.
The URI for the HTTP protocol is /InventoryWS/InventoryWSHTTP and for JMS
protocol is /InventoryWS/InventoryWSJMS.

About the WSDL and Schema Files
The Service Fulfillment Web Service is defined by the InventoryWS.wsdl file and is supported
by several schema files. The WSDL file and supporting schema files are located in the
UIM_SDK_Home/webservices/schema_inventory_webservice.zip file.

Chapter 2
About the Web Service Packaging

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 49

About the WSDL File
Within the ZIP file, the WSDL file is located in the ora_uim_webservices/wsdl directory. The
WSDL file defines the CaptureInteraction, ProcessInteraction, GetInteraction,
UpdateInteraction, GetConfiguration, GetConfigurationDifferences, and UpdateConfiguration
operations. Each web service operation defines a request, a response, and the possible faults
that can be thrown. For example, the WSDL file defines the following for the CaptureInteraction
operation:

• CaptureInteractionRequest

• CaptureInteractionResponse

• CaptureInteractionFault

• InventoryFault

• ValidationFault

The request, response, and faults each define an XML structure that is defined in the
supporting schema files. The following excerpts show how an XML structure defined in the
WSDL correlates to the supporting schema files.

For example, the WSDL file defines and references the biws namespace (in bold):

xmlns:biws="http://xmlns.oracle.com/communications/inventory/webservice/
businessinteraction"
.
.
.
targetNamespace
.
.
.
<xsd:import namespace="http://xmlns.oracle.com/communications/inventory/webservice/
businessinteraction" schemaLocation="./schemas/InteractionMessages.xsd"/>
.
.
.
<wsdl:message name="CaptureInteractionRequest">
 <wsdl:part name=
 captureInteractionRequest" element="biws:captureInteractionRequest"/>
</wsdl:message>

This tells you that the captureInteractionRequest XML structure is defined in the schema file
that defines the specified namespace as its target namespace. A search for the specified
namespace reveals that InteractionMessages.xsd defines the referenced namespace as its
target namespace.

After you determine which schema file defines the XML structure that the WSDL file
references, you can navigate through the schema files to determine child XML structures and
elements.

About the Schema Files
Several schema files support the Service Fulfillment Web Service. These schemas are
categorized as reference schemas, web service schemas, and business schemas.

Chapter 2
About the WSDL and Schema Files

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 49

Reference Schemas
Within the ZIP file, the reference schemas are located in the ora_uim_webservices/wsdl/
referenceSchemas directory. The reference schemas define common elements used by more
than one operation. So, the elements are defined in one place and then referenced.

The reference schemas are:

• InventoryCommon.xsd

• InventoryFaults.xsd

• FaultRoot.xsd

Web Service Schemas
Within the ZIP file, the web service schemas are located in the ora_uim_webservices/wsdl/
schemas directory. The web service schemas define elements specific to the web service,
such as the request structures, the response structures, and any fault structures.

The web service schemas are defined in the following files:

• InteractionMessages.xsd

• ConfigurationMessages.xsd

Note

The web service schemas use the type-mapping.xsdconfig file to map XML
namespaces to Java packages.

Business Schemas
Within the ZIP file, the business schemas are located in the ora_uim_business/schemas
directory. Each web service operation wraps a call (or multiple calls) to the UIM business layer,
which is exposed through APIs. The wrapped APIs are the same APIs that the UIM UI calls in
response to user input. The business layer APIs are based on functional area, as are the
business schemas.

The business schemas are:

• Activity.xsd

• BusinessInteraction.xsd

• Configuration.xsd

• Connectivity.xsd

• CustomNetworkAddress.xsd

• CustomObject.xsd

• Entity.xsd

• InventoryGroup.xsd

• IPAddress.xsd

• LogicalDevice.xsd

Chapter 2
About the WSDL and Schema Files

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 49

• MediaStream.xsd

• Network.xsd

• NetworkAddress.xsd

• Number.xsd

• Party.xsd

• PhysicalDevice.xsd

• Place.xsd

• Property.xsd

• PropertyLocation.xsd

• Role.xsd

• Service.xsd

• Specification.xsd

• Structure.xsd

• TNBlockModelType.xsd

Note

The API schemas use the xmlbeans-mapping.xsdconfig file to map XML
namespaces to Java packages.

CaptureInteraction
The CaptureInteraction operation plans the addition, change, or disconnection of a service
through a business interaction. Business interactions are used for planning inventory
resources, prior to making the inventory resources available in current inventory.

captureInteractionRequest defines one order per request. The order can define multiple line
items, and multiple child orders. Each child order is defined by the same structure as the order
on the request. Each child order can define multiple line items and multiple child orders, and so
forth.

captureInteractionRequest must specify an interaction action of CREATE or CHANGE. The
interaction action is defined as an enumeration in the BusinessInteraction.xsd schema file.
The enumeration defines several actions, but CREATE and CHANGE are the only valid actions
for CaptureInteraction.

When captureInteractionRequest specifies the CREATE interaction action, it creates a
business interaction to contain the order information sent in the request, and creates an
attachment that contains the entire <interaction> element from captureInteractionRequest.
CaptureInteraction then associates the attachment to the business interaction.

When captureInteractionRequest specifies the CREATE interaction action, you can specify an
external ID for the business interaction. The external ID must be unique within UIM, and the
calling system is responsible for enforcing the uniqueness; UIM does not enforce uniqueness
on external IDs. When an external ID is specified, UIM captures it and stores it with all of the
other request data. A subsequent request can then specify a CHANGE interaction action and
supply the external ID to identify the business interaction to be changed.

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 49

When captureInteractionRequest specifies the CHANGE interaction action, the request must
provide either the external ID or the business interaction ID to indicate the business interaction
to change. If the request provides an external ID, CaptureInteraction assumes the external ID
was supplied when the business interaction was created. CaptureInteraction then retrieves the
business interaction and updates it with the order information sent in the request.
CaptureInteraction also creates another attachment with a higher sequence number that
contains the entire <interaction> element from captureInteractionRequest, and associates the
attachment to the business interaction.

You can view the XML that is contained in the attachment from within the UIM UI. If a business
interaction has multiple sequence numbers for an attachment, you can view all of them in UIM.

Associating Business Interactions
In UIM, business interactions can be associated with one another. captureInteractionRequest
defines an element that enables you to associate one or more child business interactions to
the business interaction you are creating or changing. Furthermore, you can associate one or
more child business interactions to each child business interaction, which would be the
grandchild business interactions to the business interaction you are creating or changing, and
so forth.

CaptureInteraction Logic Flow
Figure 2-2 shows what occurs when the CaptureInteraction operation is called. A business
interaction is represented as BI in the figure.

Figure 2-2 CaptureInteraction Logic Flow

In Figure 2-2, the Validate XML Input box represents the custom ruleset that you can
configure to run before the creation of the attachment. See "Validating Input Data" for more
information.

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 49

CaptureInteraction wraps the BusinessInteraction.captureInteraction() API method. The API
method defines two arguments: the parent business interaction, and the XML. When
CaptureInteraction calls the API method, the parent business interaction argument is always
null. If the interaction action is CREATE, the API method creates a business interaction,
creates an attachment, and associates the attachment to the business interaction. If the
interaction action is CHANGE, the API method changes the business interaction, creates an
attachment with a higher sequence number, and associates the attachment to the business
interaction.

If the business interaction defines a child business interaction, the API method is called from
within itself. In this scenario, the parent business interaction argument is no longer null. As a
result, after the business interaction is created, and the attachment is created and associated,
the business interaction is associated to the parent business interaction that was specified by
the argument. For example, a request defines one new business interaction that has one child
business interaction. CaptureInteraction calls the API method with a parent business
interaction argument of null. Business interaction A is created. The attachment is created and
associated to business interaction A. Because the parent business interaction argument is null,
the Associate BI to Parent BI box does nothing. Next, the first (in this example, the only) child
business interaction is processed and calls the API method with a parent business interaction
argument (business interaction A). Business interaction B is created. The attachment is
created and associated to business interaction B. Because the parent business interaction
argument is not null, business interaction B is associated to the parent business interaction
argument that was supplied (business interaction A).

Validating Input Data
You can validate the request input data through custom code. The custom code can reside in a
ruleset, or in Java code that the ruleset calls. You can configure your ruleset to run at a
provided base extension point that defines the createBIAttachment() method. By configuring
your ruleset to run before this method, your custom validations run before the attachment is
created. If the validation fails, the session rolls back and the business interaction that was
created is not committed.

To validate input data:

1. In Design Studio, create an Inventory project.

2. Open the Project editor.

3. Click the Dependency tab.

4. Add the ora_uim_base_extpts cartridge to the list of dependencies.

5. Save the project.

6. Create a ruleset.

Write your custom validations in the ruleset or in Java code that the ruleset calls. For
information about writing custom rulesets, see "Overview" in UIM Developer's Guide.

7. Save the ruleset.

8. Create a ruleset extension point and configure it as follows:

a. In Ruleset, select your ruleset.

b. In Point, select the
BusinessInteractionManager_createBusinessInteractionAttachment base
extension point.

c. In Placement, select BEFORE.

d. Save the ruleset extension point.

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 49

9. Open the Service Order base specification.

This step assumes you are using the Service Order base specification, and have copied it
from the ora_uim_basespecifications cartridge into your project for modifying. If you are
not using the Service Order base specification for your Business Interaction specification,
open the Business Interaction specification that you are using. See "Business Interaction"
for more information about the Service Order base specification.

10. Click the Rules tab.

11. Click Select.

12. Select your ruleset extension point.

13. Click OK.

14. Save the Business Interaction specification.

15. Build the project.

16. Deploy the resultant cartridge.

captureInteractionRequest
Figure 2-3 shows the high-level content of captureInteractionRequest. Each request defines a
single interaction, which specifies the data used to create the business interaction. The
interaction defines a header and a body. The body defines a sequence of items: each item
defines a service, and each service defines a service configuration. The body also defines a
sequence of interactions, which specifies the data used to create any child business
interactions.

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 49

Figure 2-3 Request Content

Example 2-1 is a condensed version of captureInteractionRequest that highlights the main
content to better understand CaptureInteraction. The example is numbered so that information
describing the example can be referenced.

Example 2-1 omits the following:

• Namespaces, and assumes that they are properly defined

• Elements such as notes, start and end dates, effective dates, and descriptions

• Structures that detail an external ID, specification, configuration, and configurationItem

• Structures and elements within party and place, which are designated with ". . ."

Note

CaptureInteraction, ProcessInteraction, GetInteraction, and UpdateInteraction all use
the same structure for the request and for the response. The only difference is the
actual request/response name (line 01 and line 71).

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 49

Example 2-1 Condensed captureInteractionRequest

01 <captureInteractionRequest>
02 <invbi:interaction>
03 <invbi:header>
04 <invbi:specification/>
05 <invbi:action/>
06 <invbi:id/>
07 <invbi:name/>
08 <invbi:externalIdentity/>
09 <invbi:state/>
10 </invbi:header>
11 <invbi:body>
12 <invbi:item>
13 <invbi:externalIdentity>
14 <invbi:action/>
15 <invbi:service>
16 <invsvc:specification/>
17 <invsvc:id/>
18 <invsvc:action/>
19 <invsvc:name/>
20 <invsvc:externalIdentity/>
21 <invsvc:state/>
22 <invsvc:place>
23 . . .
24 <invplace:service>
25 . . .
26 <invsvc:party>
27 . . .
28 <invparty:service>
29 . . .
30 <invsvc:configuration/>
31 </invparty:service>
32 </invsvc:party>
33 <invsvc:configuration/>
34 </invplace:service>
35 </invsvc:place>
36 <invsvc:party>
37 . . .
38 <invparty:service>
39 . . .
40 <invsvc:place>
41 . . .
42 <invplace:service>
43 . . .
44 <invsvc:configuration/>
45 </invplace:service>
46 </invsvc:place>
47 <invsvc:configuration/>
48 </invparty:service>
49 </invsvc:party>
50 <invsvc:configuration/>
51 </invbi:service>
52 <invbi:parameter>
53 <invbi:name/>
54 <invbi:value/>
55 </invbi:parameter>
56 </invbi:item>
57 <invbi:interaction>
58 </invbi:header>
59 <invbi:specification/>
60 <invbi:action/>

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 49

61 <invbi:id/>
62 <invbi:name/>
63 <invbi:externalIdentity/>
64 <invbi:state/>
65 </invbi:header>
66 </invbi:interaction>
67 </invbi:body>
68 </interaction>
69 <executeProcess/>
70 <responseLevel/>
71 </captureInteractionRequest>

Throughout Example 2-1, the <specification> element that is shown is actually a structure that
defines the following elements:

Example 2-2 Specification Structure

<invbi:specification>
 <invent:entityNote/>
 <invspec:name/>
 <invspec:entityClass/>
 <invspec:description/>
 <invspec:startDate/>
 <invspec:endDate/>
</invbi:specification>

Within the specification structure, the <name> element is the name of a specification. This
<name> element is not to be confused with the <name> element that is specified for the
business interaction (line 07) or for the service (line 19). For example, a request that specifies
the CREATE interaction action must supply the business interaction specification name (within
the specification structure on line 04), and the name of the business interaction being created
by the request (line 07). Similarly, a request that specifies the add service action must supply
the Service specification name (within the specification structure on line 16), and the name of
the service being created by the request (line 19).

Within the specification structure, the <entityClass> element is defined as an enumeration in
the Specification.xsd schema file. The enumeration values reflect UIM entity specification
types, such as BusinessInteraction, Service, Equipment, and so forth. The Service Fulfillment
Web Service does not use the <entityClass> element, so the request does not need to specify
it.

Business Interaction
captureInteractionRequest captures one interaction per request (lines 02 through 68). For each
interaction, the request captures one or more items (lines 12 through 56), and one or more
child interactions (lines 57 through 66).

When calling CaptureInteraction, the request must specify an interaction action (line 05) of
CREATE or CHANGE. The interaction <action> element is defined as an enumeration in the
BusinessInteraction.xsd schema file.

If the interaction action is CREATE, the request must provide an arbitrary name for the
business interaction (line 07) being created, and the business interaction specification name
(within line 04) upon which the business interaction is being based. (The specification name is
typically Service Order, which is the business interaction specification provided in the
ora_uim_basespecifications cartridge.) The request can optionally provide an external ID for
the business interaction. You do not need to provide the specification entityClass enumeration
value of BusinessInteraction; this is assumed based on the placement of the specification
structure within the <interaction> element.

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 49

If the interaction action is CHANGE, the request must provide the external ID (within line 08) or
the business interaction ID (line 06) to indicate the business interaction to change, and the
actual changes.

Business Interaction Item
captureInteractionRequest captures one or more items per interaction. Example 2-1 shows just
one item (lines 12 through 56). To include multiple items, replicate the item and place it
between lines 56 and 57.

Each item defines an interaction action (line 14), which must be ADD regardless of the
request.

Note

The interaction action must be ADD. It cannot be another action value and it cannot be
left blank. If the interaction action is not ADD, the operation errors.

Business Interaction Item Parameter
Each business interaction item optionally specifies one or more input parameters. For these
parameters, the complex type ParameterType is defined as the following:

<xsd:element maxOccurs="unbounded" minOccurs="0"
 name="parameter" type="invbi:ParameterType">
</xsd:element>

The value element definition within ParameterType is the following:

<xs:element name="value" type="xsd:anyType">

For the value element with the anyType declaration, you can use any valid XML schema type
that provides the following:

• An entity in UIM

• A type of StructuredType, defined in the business schema file Structure.xsd

Use the StructuredType complex type to pass entities with multiple property values.
Example 2-3 provides sample XML for using StructuredType with one level of property
information.

Example 2-3 Parameter Sample using StructuredType with One Level

<invbi:parameter>
 <invbi:name>StructuredType Parameter</invbi:name>
 <invbi:value xsi:type="invstruc:StructuredType">
 <invstruc:name>CPE Device 1</invstruc:name>
 <invstruc:property>
 <invprop:name>CPE_MAC</invprop:name>
 <invprop:value xsi:type="xs:string">01-23-45-67-89-ab</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_Model</invprop:name>
 <invprop:value xsi:type="xs:string">PBS</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_Brand</invprop:name>

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 49

 <invprop:value xsi:type="xs:string">Motorola</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_SerialNumber</invprop:name>
 <invprop:value xsi:type="xs:string">4TUI-632552</invprop:value>
 </invstruc:property>
 </invbi:value>
</invbi:parameter>

If you have properties with hierarchical information, you create the parameter list with the
StructuredType including a hierarchy. Example 2-4 provides sample XML for using
StructuredType including a child element representing hierarchical property information.

Example 2-4 Parameter Sample using StructuredType with Hierarchy

<invbi:parameter>
 <invbi:name>Structured Param </invbi:name>
 <invbi:value xsi:type="invstruc:StructuredType">
 <invstruc:name>CPE Device</invstruc:name>
 <invstruc:property>
 <invprop:name>CPE_MAC</invprop:name>
 <invprop:value xsi:type="xs:string">1.2.3.4</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_Model</invprop:name>
 <invprop:value xsi:type="xs:string">MI6</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_Brand</invprop:name>
 <invprop:value xsi:type="xs:string">Motorola</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>CPE_SerialNumber</invprop:name>
 <invprop:value xsi:type="xs:string">838373723</invprop:value>
 </invstruc:property>
 <invstruc:child xsi:type="invstruc:StructuredType">
 <invstruc:name>Channel Pack</invstruc:name>
 <invstruc:property>
 <invprop:name>CPE_MAC</invprop:name>
 <invprop:value xsi:type="xs:string">1.2.3.5</invprop:value>
 </invstruc:property>
 <invstruc:property>
 <invprop:name>code</invprop:name>
 <invprop:value xsi:type="xs:string">code value A</invprop:value>
 </invstruc:property>
 </invstruc:child>
 </invbi:value>
</invbi:parameter>

Service
Each item defines a service, as shown in Example 2-1 (lines 15 through 51). For each service,
you must supply a valid Service specification name (within line 16) from which to create an
instance of the specification in UIM.

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 49

Note

The <service> element (line 15) is actually defined as a choice in the
BusinessInteraction.xsd schema file, with the choices being service, connectivity,
and entity. However, the service choice is the only choice you can use in the request.
The connectivity choice is not supported by the Service Fulfillment Web Service, and
the entity choice is not used in the request; it is only used in the response.

Each service also defines a service action (line 18). The service action is not an enumeration,
as are the interaction action and item action. Rather, there are several predefined service
actions that UIM code recognizes. You can extend the list of service actions and their
corresponding processes through custom rulesets. Service actions are further explored in
"Customizing ProcessInteraction".

Specifically, there are some service actions that the core code recognizes. Through a custom
ruleset, you can extend the input service actions and map each custom service action to one of
the service actions that the core code recognizes.

The service may also specify a place (lines 22 through 35) or a party (lines 36 through 49) to
associate to the service.

The request and response use the same structure. Most of the elements are used only by the
response, so there are numerous elements that are not used by the request. For example, a
service and configuration for the place (lines 24 through 34), a service and configuration for the
party (lines 38 through 48), and the configuration for the service itself (line 50).

Associated Business Interaction
captureInteractionRequest captures one or more child interactions per interaction. Example 2-1
shows just one child interaction (lines 57 through 66). To include multiple interactions, replicate
the child interaction (lines 57 through 66) and place it between lines 66 and 67.

ExecuteProcess Element
The <executeProcess> element (line 69) is defined after the interaction and applies to the
interaction. This element is defined as a Boolean and is used only by CaptureInteraction.
When the value of <executeProcess> is true, CaptureInteraction executes and, upon
completion, ProcessInteraction executes. This eliminates the need to place two separate web
service calls; one for CaptureInteraction and one for ProcessInteraction. When the value of
<executeProcess> is false, just CaptureInteraction executes. The default value is false.

ResponseLevel Element
captureInteractionRequest, processInteractionRequest, getInteractionRequest, and
updateInteractionRequest define the <responseLevel> element (line 70). This element
specifies an enumeration value, as defined by the InteractionResponseLevelEnum
enumeration in the InteractionMessages.xsd schema file.

Depending on the enumeration value specified in the request, the level of information returned
by the response can vary:

• INTERACTION

Returns just the interaction information.

• INTERACTION_ITEM

Chapter 2
CaptureInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 49

Returns the interaction and item information.

• INTERACTION_ITEM_ENTITY

Returns the interaction, item, and entity information.

• INTERACTION_ITEM_ENTITY_CONFIGURATION (default option)

Returns the interaction, item, entity, and configuration information.

• INTERACTION_ITEM_ENTITY_CONFIGURATION_EXPANDED

Returns the interaction, item, entity, configuration, and any child configurations.

captureInteractionResponse
captureInteractionResponse returns a varying level of information based on the
<responseLevel> value the request specifies. See "ResponseLevel Element" for more
information.

captureInteractionResponse always includes the business interaction ID and the current
business interaction state. If a new business interaction is created, the business interaction ID
generated by UIM is returned. If an existing business interaction is changed, the business
interaction ID sent with the request is returned. The valid business interaction states are
CREATED, IN_PROGRESS, COMPLETED, or CANCELLED, as defined by an enumeration in
the BusinessInteraction.xsd schema file.

captureInteractionResponse returns an error when:

• The request specifies an interaction action of CREATE with a business interaction ID that
already exists.

• The request specifies an interaction action of CHANGE with a business interaction ID (or
external ID) that does not exist.

• An optional extension point is used to validate the input, and the associated ruleset logs an
error. For example, the XML input does not validate.

ProcessInteraction
The ProcessInteraction operation moves planned services into current inventory. The planned
service is represented by the <interaction> element, which is stored in UIM as a business
interaction attachment, having been placed there by CaptureInteraction.

ProcessInteraction retrieves the business interaction and the attachment with the highest
sequence number and, based on the items defined for the interaction, processes each item.
Each item creates or updates a service, including any default service configuration items
defined by the specified Service Configuration specification.

ProcessInteraction also calls the following methods per service configuration item:

• BusinessInteractionManager.getEntityAction()

• BaseConfigurationManager.automateConfiguration()

The ora_uim_baseextpts cartridge provides base extension points for both of these methods,
which you can use to run custom code that maps custom service actions and that creates or
updates service configuration items. This topic is further explored in "ProcessInteraction Logic
Flow" and "Customizing ProcessInteraction".

When calling ProcessInteraction, the request must specify the external ID or the business
interaction ID to indicate the business interaction to process.

Chapter 2
ProcessInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 49

The request can specify whether to process the entire business interaction, or just specific
business interaction items. If the request specifies the external ID or business interaction ID
only, the entire business interaction is processed; if the request specifies the external ID or
business interaction ID and specific business interaction items, only the specified business
interaction items are processed.

ProcessInteraction Logic Flow
Figure 2-4 shows what occurs when processInteractionRequest specifies a CREATE
interaction action. A business interaction is represented as BI in the figure.

Figure 2-4 ProcessInteraction Logic Flow

In Figure 2-4, the light gray boxes represent the work performed by ProcessInteraction, prior to
calling the custom ruleset. ProcessInteraction handles the processing of the business
interaction. The dark gray boxes represent the work performed by custom code, which
handles:

• Mapping custom service actions to UIM entity actions (optional)

If your implementation uses only existing service actions, this custom code is not needed;
if your implementation defines additional custom service actions, this custom code is
required.

• Processing business interaction items (required)

The processing of the business interaction items involves customizations that are
necessary to meet the business requirements of providing the specific type of service. This

Chapter 2
ProcessInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 49

custom code must process service actions, custom service actions, and custom
parameters, and calls the appropriate UIM API methods to create the service in UIM.

Service Configuration Association
Regarding the Associate Service Configuration to BI box in Figure 2-4: A service
configuration is indirectly associated to a business interaction through the business interaction
items. This association is shown by the dotted line in Figure 2-5. To associate the service
configuration to the business interaction, ProcessInteraction:

• Creates business interaction items based on the items for the interaction in the request

• Associates the business interaction items to the service configuration

Figure 2-5 Association of Service Configuration to BI

Customizing ProcessInteraction
Customizing ProcessInteraction involves the following:

• Modeling the Service in Design Studio

• Customizing Service Actions

• Customizing the Automation of Service Configurations

An example of customizing ProcessInteraction is described in "ProcessInteraction Example".

Modeling the Service in Design Studio
Before you begin customizing ProcessInteraction, you must model your service within an
Inventory project in Design Studio. For example, your Inventory project must define
specifications that describe your service, service configuration, and service configuration items
that fulfill the service in UIM.

See "About Unified Inventory Management" in UIM Concepts for information about services
and service configurations, and see "SCD Design Studio Modeling Inventory" for information
about modeling services.

Chapter 2
ProcessInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 49

Customizing Service Actions
captureInteractionRequest defines a service action for each service in the request. The service
action is not an enumeration; rather, there are several predefined actions (called entity actions)
that UIM code recognizes and processes.

The UIM-defined entity actions are:

• create

• change

• delete

• disconnect

• suspend

• resume

• no_action

Note

The no_action service action prevents the creation of new service configurations
as a part of process interaction flow in UIM. This service action merges the
changes into existing service configurations that are in progress. For example, you
can use this service action in Revision orders where the service is still in Pending
and the existing service configurations should be updated than creating new ones.

The web service recognizes two additional entity actions that enable the web service to
perform additional functionality. They are:

• suspendWithConfiguration

• resumeWithConfiguration

For example, the suspend entity action suspends a service but does not touch the service
configuration. The suspendWithConfiguration entity action suspends a service and creates a
new service configuration version. Similarly, the resume entity action resumes a suspended
service but does not modify the service configuration. The resumeWithConfiguration entity
action resumes a suspended a service and creates a new service configuration version. (For
either action, if an existing service configuration version does not exist, an error is thrown
because the service configuration must already exist if you are suspending or resuming it.)

Note

All of the entity actions are case sensitive.

Customizations are based on the service action (Example 2-1, line 18) and parameters
(Example 2-1, lines 52 through 55). So, you must establish a finite list of service actions and
parameters that can be specified in the request, which can then be recognized and processed
by the custom code.

To customize service actions:

1. Determine the finite list of service actions and parameters to process.

Chapter 2
ProcessInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 49

If your finite list of service actions includes only UIM-defined entity actions (and no custom
service actions), you do not need to perform this procedure.

2. In Design Studio, open the Project editor.

This is the same project that contains the specifications you created to model your service.

3. Click the Dependency tab.

4. Add the ora_uim_base_extpts cartridge to the list of dependencies.

5. Save the project.

6. Create a ruleset.

Write custom code that maps your custom service actions to entity actions. The custom
code can be in the ruleset, or in Java code that the ruleset calls. For information about
writing custom rulesets, see "Overview" in UIM Developer's Guide.

7. Save the ruleset.

8. Create a ruleset extension point and configure it as follows:

a. In Ruleset, select your ruleset.

b. In Point, select the BusinessInteractionManager_getEntityAction base extension
point.

c. In Placement, select INSTEAD.

d. Save the ruleset extension point.

9. Open your Service specification.

10. Click the Rules tab.

11. Click Select.

12. Select your ruleset extension point.

13. Click OK.

14. Save the Service specification.

15. Build the project.

16. Deploy the resultant cartridge.

Customizing the Automation of Service Configurations
To customize the automation of service configurations:

1. In Design Studio, open the Project editor.

This is the same project that contains the specifications that you created to model your
service.

2. Click the Dependency tab.

3. Add the ora_uim_base_extpts cartridge to the list of dependencies.

4. Save the project.

5. Create a ruleset.

Write custom code that processes the business interaction items, evaluates the mapped
entity actions and custom parameters, and calls the appropriate API methods to create the
service in UIM. See "Developing the Custom Code" for more information.

Chapter 2
ProcessInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 49

The custom code can be in the ruleset, or in Java code that the ruleset calls. For
information about writing custom rulesets, see "Overview" in UIM Developer's Guide.

6. Save the ruleset.

7. Create a ruleset extension point and configure it as follows:

a. In Ruleset, select your ruleset.

b. In Point, select the BaseConfigurationManager_automateConfiguration base
extension point.

c. In Placement, select INSTEAD.

d. Save the ruleset extension point.

8. Open your Service Configuration specification.

9. Click the Rules tab.

10. Click Select.

11. Select your ruleset extension point.

12. Click OK.

13. Save the Service Configuration specification.

14. Build the project.

15. Deploy the resultant cartridge.

Developing the Custom Code
ProcessInteraction triggers events that result in a call to custom code that automates service
configurations by calling API methods to fulfill the service in UIM.

See "Overview" in UIM API Overview for code examples that show how to call the UIM API
methods from within custom code.

The following information pertains to the custom code:

• The custom code must handle and process the XML payload based on the domain-specific
business rules and models.

• The custom code must handle the creation or deletion of any dependent resources.

• The custom code must handle auto-design for new orders and auto-redesign for change
orders.

• The custom code can assume the service and service configuration are already created;
the purpose of the custom code is to manage the resources and characteristics.

• When modifying a subservice with parent input only:

The business interaction attachment typically may not contain specific change request
information for a subservice that was created when fulfilling the requested service. For
example, a voice mail service created by UIM to fulfill the request for a Mobile GSM
service with a voice mail feature. In this scenario, the voice mail service is a subservice
assigned to the Mobile GSM service. When the subservice requires a change, the change
request and service action are often submitted for the parent service, and not for the
subservice.

In such scenarios, the web service operation has to identify that the change service action
is for the subservice, and process the change for the subservice. For example, if the
custom code needs to act on a subservice, it can build a request based on the subservice,

Chapter 2
ProcessInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 49

call CaptureInteraction, and recursively call ProcessInteraction until it returns the no
action entity action.

ProcessInteraction Example
The following list describes some project content your implementation may require to run
ProcessInteraction.

• Numerous custom specifications and characteristics

At a minimum, your project needs to define a Service specification, a Service Configuration
specification, and resource-specific specifications, such as Telephone Number, Physical
Device, Logical Device, and so forth. Your project may also require characteristics in which
to store resource-specific data.

• AUTOMATE_MY_CONFIGURATION.ruleset

This is a custom ruleset that is the entry point into the custom code. The ruleset calls the
AutomateMyConfiguration() method, which is defined in a custom Java class. In this
example, the custom Java class is named MyConfigurationManagerImpl.java, which is also
described in this list.

• AUTOMATE_MY_CONFIGURATION_EXT.rst

This is a custom ruleset extension point that associates the
AUTOMATE_MY_CONFIGURATION custom ruleset to the UIM-provided
BaseConfigurationManager_automateConfiguration extension point and configures the
custom ruleset to run instead of the method that the extension point defines (the
BaseConfigurationManager.automateConfiguration() method).

• MAP_MY_SERVICE_ACTION.ruleset

If you defined custom service actions, this is a custom ruleset that evaluates custom
service actions specified in the request and maps them to an entity action that is
recognizable to UIM. In this example, there are five custom service actions, so this ruleset
evaluates the five custom service actions and maps each one to the appropriate entity
action. The entity actions are defined in the Service Fulfillment Web Service code, as
described in "Customizing ProcessInteraction".

Table 2-1 provides an example of mapping custom service actions to UIM entity actions.

Table 2-1 Example Mapping of Custom Service Actions

Custom Service Action UIM Entity Action

createMyService create

updateMyService change

changeAddToMyService change

disconnectMyService disconnect

suspendMyService suspend

• MAP_MY_SERVICE_ACTION_EXT.rst

This is a custom ruleset extension point that associates the MAP_MY_SERVICE_ACTION
custom ruleset to the UIM-provided BusinessInteractionManager_getEntityAction
extension point and configures the custom ruleset to run instead of the method that the
extension point defines (BusinessInteractionManager.getEntityAction() method).

• MyConfigurationManagerImpl.java

Chapter 2
ProcessInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 49

This is custom Java code that contains a series of if else statements that evaluate the
mapped entity action. For each entity action, the code calls another method within the
same class. Within each of these methods, the finite set of parameters that are valid for the
specific service action that was mapped to the entity action is evaluated.

From there, the custom code calls various API methods to perform the work required to
realize any service in UIM.

• Any additional custom rulesets and ruleset extension points

When the custom code calls API methods, the existing API functionality may need to be
extended to realize a service in UIM. So, your project may also have to define any needed
rulesets that can be configured to run before or after the API methods that the custom
code calls.

processInteractionResponse
processInteractionResponse returns a varying level of information based on the
<responseLevel> value the request specifies. See "ResponseLevel Element" for more
information.

ProcessInteraction returns an error when:

• It cannot find the business interaction specified by the calling system.

• The calling system specifies an input item entity other than Service.

• Any errors thrown by the custom code that ProcessInteraction calls.

GetInteraction
The GetInteraction operation retrieves a business interaction based on an external ID or
business interaction ID. The data returned in the response depends on when GetInteraction is
called and on the <responseLevel> value getInteractionRequest specifies.

When GetInteraction is called before ProcessInteraction, the response returns only the
business interaction data. In this scenario, service data is not returned because
ProcessInteraction has not yet processed the business interaction into current inventory, so
there is no service data in UIM yet.

When GetInteraction is called after ProcessInteraction, the response returns the business
interaction data and service data. In this scenario, service data is returned because
ProcessInteraction has processed the business interaction into current inventory, so there is
service data in UIM to retrieve. The level of detail of service data returned by the response
depends on the <responseLevel> value getInteractionRequest specifies. See "ResponseLevel
Element" for more information.

GetInteraction Logic Flow
Figure 2-6 shows what occurs when the GetInteraction operation is called. A business
interaction is represented as BI in the figure.

Chapter 2
GetInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 49

Figure 2-6 GetInteraction Logic Flow

getInteractionResponse
getInteractionResponse returns a varying level of information based on when the operation is
called and on the <responseLevel> value the request specifies. See "ResponseLevel Element"
for more information.

GetInteraction returns an error when:

• The request does not specify an external ID or business interaction ID upon which to base
the retrieval

• It cannot find the business interaction specified in the request

UpdateInteraction
The UpdateInteraction operation transitions UIM business entities through their respective life-
cycle states within the context of a business interaction.

When calling UpdateInteraction, the request must specify an external ID or business
interaction ID and an interaction action of APPROVE, ISSUE, CANCEL, or COMPLETE. If you
want to change the effective date of the configuration version, the request must specify an
effectiveDate and an interaction action of CHANGE.

Interaction actions are defined by the BusinessInteractionActionEnum enumeration in the
BusinessInteraction.xsd schema file. This enumeration defines several actions, but only the
APPROVE, ISSUE, CANCEL, COMPLETE, or CHANGE actions are valid for
UpdateInteraction.

UpdateInteraction uses the business interaction ID to find the service and service
configuration, and performs the specified action for the service and service configuration. For
example, if the interaction action is APPROVE, it approves the service and service
configuration associated to the business interaction and performs the action recursively to any
child business interactions.

UpdateInteraction does not cascade to child entities assigned to configuration items. For
example, if the business interaction is associated to a service configuration, and the service
configuration has a service configuration item with a child service assigned to it,

Chapter 2
UpdateInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 49

UpdateInteraction does not apply the action to the service configuration item child service
status.

UpdateInteraction Logic Flow
Figure 2-7 shows what occurs when the UpdateInteraction operation is called. A business
interaction is represented as BI in the figure.

Figure 2-7 UpdateInteraction Logic Flow

updateInteractionResponse
updateInteractionResponse returns a varying level of information based on the
<responseLevel> value the request specifies. See "ResponseLevel Element" for more
information.

UpdateInteraction returns an error when:

• It cannot find the business interaction specified by the calling system

• The request specifies a value for <item> other than <service>

Chapter 2
UpdateInteraction

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 49

GetConfiguration
The GetConfiguration operation retrieves one of the following, based on a search option
specified in the request:

• Service Configuration

• Pipe Configuration (representing a pipe or channelized connectivity)

• Logical Device Configuration

• Logical Device Account Configuration

• Network Configuration

• Place Configuration

A successful response returns the following for the specified configuration:

• Configuration

• Configuration properties (attributes and characteristics)

• Configuration items (including any assigned or referenced resources)

• Child entities and their child configurations

For example, Figure 2-8 shows the data that can be retrieved, in dark gray, for a requested
configuration. GetConfiguration does not retrieve information about relationships to other
entities. However, you can customize GetConfiguration to return additional information. See
"Customizing GetConfiguration" for more information.

Figure 2-8 Example Service Configuration Retrieval

Chapter 2
GetConfiguration

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 49

Note

A configurable place is actually a GeographicSite specialization of the abstract Place
entity; GeographicSite is the only specialization of the Place entity that is configurable.
See Oracle Communications Information Model Reference for more information.

getConfigurationRequest
This section describes getConfigurationRequest, in which you specify a search option that tells
GetConfiguration which type of configuration to return. In the request, you can also specify
additional request options that tell GetConfiguration what data to include in the response, or to
omit from the response.

Request Search Options
In getConfigurationRequest, you specify a search option that indicates the type of configuration
to retrieve. The search options, which are defined in the ConfigurationMessages.xsd schema
file, are listed and described in Table 2-2.

Note

For each search option listed in Table 2-2, Entity represents:

• DeviceInterface

• Connectivity

• LogicalDevice

• LogicalDeviceAccount

• Network

• Place

• Service

Table 2-2 GetConfiguration Search Options

Search Option Description

EntityConfigurationSearchByC
onfigId

GetConfiguration retrieves the configuration based on the specified
configuration ID.

EntityConfigurationSearchByE
ntityId

GetConfiguration retrieves the latest active configuration (any state
other than CANCELLED) based on the specified entity ID. If there is
only one configuration, GetConfiguration retrieves it.

EntityConfigurationSearchByV
ersionNumber

GetConfiguration retrieves the configuration based on the specified
entity ID and version number.

EntityConfigurationSearchByC
onfigStatus

GetConfiguration retrieves the latest configuration based on the entity
ID and configuration state. States can be IN_PROGRESS, DESIGNED,
ISSUED, COMPLETED, PENDING_CANCEL, or CANCELLED.

EntityConfigurationSearchByE
ffectiveDate

GetConfiguration retrieves the configuration based on the specified
entity ID and configuration effective date.

Chapter 2
GetConfiguration

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 49

Table 2-2 (Cont.) GetConfiguration Search Options

Search Option Description

ConnectivityConfigurationSear
chByConnectivityIdentifier

GetConfiguration retrieves the latest active pipe configuration (any state
other than CANCELLED) based on the specified connectivity identifier.
If there is only one pipe configuration, GetConfiguration retrieves it.

This search option is applicable only when getting pipe configurations.

Request Search Option Examples
Example 2-5 shows getConfigurationRequest with a search option of
ServiceConfigurationSearchByConfigId in bold. The element below the search option shows
the configuration ID to search for.

Example 2-5 getConfigurationRequest

<con:getConfigurationRequest>
 <responseLevel>ENTITY_CONFIGURATION_EXPANDED</responseLevel>
 <con:searchOptions xsi:type="con:GetServiceConfigurationType"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <con:configSearchOption
 xsi:type="con:ServiceConfigurationSearchByConfigId">
 <con:configurationId>123456</con:configurationId>
 </con:configSearchOption>
 </con:searchOptions>
</con:getConfigurationRequest>

Example 2-6 shows getConfigurationRequest with a search option of
ConnectivityConfigurationSearchByVersionNumber in bold. The elements below the search
option show the entity ID and configuration version number to search for.

Example 2-6 getConfigurationRequest

<con:getConfigurationRequest>
 <responseLevel>ENTITY_CONFIGURATION_EXPANDED</responseLevel>
 <con:searchOptions xsi:type="con:GetConnectivityConfigurationType"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <con:configSearchOption
 xsi:type="con:ConnectivityConfigurationSearchByVersionNumber">
 <con:entityId>1</con:entityId>
 <con:versionNumber>1</con:versionNumber>
 </con:configSearchOption>
 </con:searchOptions>
</con:getConfigurationRequest>

Additional Request Options
In getConfigurationRequest, you can also specify the following options. If an option is not
specified in the request, the operation uses the default value.

• includeTags

– When set to true, the response includes tags on configuration items, with the tag
name and description populated.

– When set to false (the default), the response does not include tags on configuration
items.

For information about tags, see "SCD Design Studio Modeling Inventory".

Chapter 2
GetConfiguration

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 49

• includeTagsOtherInfo

– When set to true, tag name, description, and other information are populated.

– When set to false (the default), tag name and description are populated; other
information is not populated.

Note

The includeTagsOtherInfo option is only applicable when includeTags is true.

For information about tags, see "SCD Design Studio Modeling Inventory".

• includeNetworkTargets

– When set to true, the response includes network targets.

– When set to false (the default), the response does not include network targets.

For information about network targets, see "About Unified Inventory Management" in UIM
Concepts.

Additional Request Options Example
Example 2-7 shows getConfigurationRequest with the additional request options.

Example 2-7 getConfigurationRequest

<con:getConfigurationRequest>
 <com:header></com:header>
 <con:searchOptions
 .
 .
 .
 </con:searchOptions>
 <con:includeTags>true</con:includeTags>
 <con:includeTagsOtherInfo>true</con:includeTagsOtherInfo>
</con:getConfigurationRequest>

ResponseLevel Element
getConfigurationRequest and updateConfigurationRequest define the <responseLevel>
element. This element specifies an enumeration value, as defined by the
ConfigurationResponseLevelEnum enumeration in the ConfigurationMessages.xsd
schema file. (This element does not apply to getConfigurationDifferencesRequest.)

Depending on the enumeration value specified in the request, the level of information returned
by the response can vary:

• ENTITY_CONFIGURATION (default option)

Returns the entity and configuration information.

• ENTITY_CONFIGURATION_EXPANDED

Returns the entity, configuration, and any child configurations.

GetConfiguration Logic Flow
Figure 2-9 shows what occurs when the GetConfiguration operation is called.

Chapter 2
GetConfiguration

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 49

Depending on which search option is specified, the logic flow may start with the Get
Configuration box, or it may start with the Get Entity box. For example, if the search option is
EntityConfigurationSearchByConfigId, the entry point to the logic flow is the Get Configuration
box. If the search option is any other option, which are all based on an entity ID, the entry point
to the logic flow is the Get Entity box.

Figure 2-9 GetConfiguration Logic Flow

getConfigurationResponse
getConfigurationResponse returns a varying level of information based on the
<responseLevel> value the request specifies. See "ResponseLevel Element" for more
information.

GetConfiguration returns an error when:

• The request specifies a search option other than the valid search options listed in
Table 2-2.

• The request does not specify the data that the search option needs to perform the search.

• The operation cannot find the configuration ID, entity ID, or connectivity identifier specified
in the request.

Chapter 2
GetConfiguration

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 49

Customizing GetConfiguration

Note

This section describes the use of rulesets and extension points to customize
GetConfiguration. See "Overview" in UIM Developer's Guide for detailed information
about rulesets and extension points.

For your implementation, you may need more information than GetConfiguration returns. For
example, GetConfiguration does not retrieve information about relationships to other entities. If
you have an assigned entity that is a physical device, you may want GetConfiguration to return
the mapped logical device or some of its characteristics. Or, for a device interface, you may
want GetConfiguration to return the mapped physical port. For such scenarios, you can
customize GetConfiguration to return additional information.

Extension Points
The UIM_SDK_Home/cartridges/base/ora_uim_baseextpts cartridge provides the following
specification-based extension points for customizing GetConfiguration:

• BaseConfigurationManager_populateCustomProperties.rstp, which defines the following
method signature:

public Map<String, String>
populateCustomProperties(ConsumableResource resource, InventoryConfigurationItem
item,
InventoryConfigurationVersion inventoryConfigurationVersion)

• BaseConfigurationManager_populateCustomProperties2.rstp, which defines the following
method signature:

public Map<String, String>
populateCustomProperties(ConfigurationReferenceEnabled entity,
InventoryConfigurationItem item,
InventoryConfigurationVersion inventoryConfigurationVersion)

GetConfiguration always calls the populateCustomProperties() methods, which are empty
methods that exist for customizing GetConfiguration. Within a configuration, each configuration
item represents a resource, which may be assigned or referenced. The
populateCustomProperties() methods define different inputs; a consumable resource entity
versus a reference-enabled entity. The former method is called during the process of retrieving
assigned resources, and the latter method is called during the process of retrieving referenced
resources.

Customization Steps
To customize GetConfiguration:

1. Create a ruleset to retrieve any additional assigned resource data that your implementation
requires. The ruleset must return a Map containing a name/value pair of the retrieved data
name and corresponding data value.

2. Create a ruleset extension point to configure your ruleset to run after the
populateCustomProperites() method, using the
BaseConfigurationManager_populateCustomProperties.rstp extension point.

Chapter 2
GetConfiguration

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 49

3. Create a ruleset to retrieve any additional referenced resource data that your
implementation requires. The ruleset must return a Map containing a name/value pair of
the retrieved data name and corresponding data value.

4. Create a ruleset extension point to configure your ruleset to run after the
populateCustomProperites() method, using the
BaseConfigurationManager_populateCustomProperties2.rstp extension point.

5. Configure any applicable specifications with the appropriate ruleset extension point. (The
base extension points are specification-based, not global.)

6. Deploy the cartridge or cartridges containing the ruleset, ruleset extension points, and
specifications.

7. Call GetConfiguration.

GetConfiguration calls the populateCustomProperties() methods, and your rulesets run
afterward, populating the customProperty element in the response. See "Customized
Response" for more information.

Customized Response
Example 2-8 shows an excerpt from the Configuration.xsd file, which defines the
customProperty element.

Example 2-8 customProperty

<xs:element name="customProperty" type="invprop:PropertyType" nillable="true"
minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Custom Properties added for the entity Assignment/Reference.
 </xs:documentation>
 </xs:annotation>
</xs:element>

Example 2-9 shows an excerpt from the Property.xsd file, which defines the PropertyType
structure. (The customProperty element references PropertyType in its definition.)

Example 2-9 PropertyType

<xs:complexType name="PropertyType">
 <xs:annotation>
 <xs:documentation>PropertyType holds a single dynamic property as a
 name-value pair.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="value" type="xs:string" nillable="true" />
 <xs:element name="action" type="invent:EntityActionEnum" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Action holds the property Action which indicates whether the
 property needs to be added/deleted/updated.
 Valid values for this element are defined by EntityActionEnum.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>

Example 2-10 shows the structure that ends up in the response when customizations are in
place.

Chapter 2
GetConfiguration

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 49

Example 2-10 Response

<con:customProperty>
 <invprop:name>customDataName1</invprop:name>
 <invprop:value>customDataValue1</invprop:value>
 <invprop:action><invprop:action>
</con:customProperty>
<con:customProperty>
 <invprop:name>customDataName2</invprop:name>
 <invprop:value>customDataValue2</invprop:value>
 <invprop:action><action>
</con:customProperty>
<con:customProperty>
 <invprop:name>customDataName3</invprop:name>
 <invprop:value>customDataValue3</invprop:value>
 <invprop:action><invprop:action>
</con:customProperty>

GetConfigurationDifferences
The GetConfigurationDifferences operation compares two versions of a service, pipe
(representing a pipe or channelized connectivity), logical device, logical device account,
network, or place configuration and returns the differences. The type of configuration compared
is based on a search option specified in the request. A successful response returns the
differences between properties (attributes and characteristics); differences between
configuration items, including any assigned or referenced resources; and the differences
between any child entities and their child configurations. For example, Figure 2-10 shows the
data that is retrieved and compared, in dark gray, for a requested configuration (service, logical
device, logical device account, network, pipe (representing a pipe or channelized connectivity),
or place) comparison. You can customize GetConfigurationDifferences to return additional
information. See "Customizing GetConfigurationDifferences" for more information.

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 49

Figure 2-10 Example Service Configuration Differences

Note

GetConfigurationDifferences calls GetConfiguration, which returns the properties
(attributes and characteristics) for all resources, but GetConfigurationDifferences does
not compare the returned properties for the resources.

getConfigurationDifferencesRequest
This section describes getConfigurationDifferencesRequest, in which you specify a search
option that tells GetConfigurationDifferences which type of configuration versions to compare
and return. In the request, you can also specify additional request options that tell
GetConfigurationDifferences what data to include in the response, or to omit from the
response.

Request Search Options
In getConfigurationDifferencesRequest, you specify a search option that indicates the type of
configuration versions. The search options, which are defined in the
ConfigurationMessages.xsd schema file, are listed and described in Table 2-3.

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 49

Table 2-3 GetConfigurationDifferences Search Options

Search Option Description

BusinessInteractionConfigurati
onDifferencesSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this business interaction, based
on the specified business interaction ID or external ID representing a
business interaction.

This search option also finds the differences between two configuration
versions associated with any child business interactions.

ServiceConfigurationDifference
sSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this service, based on the
specified service ID or external ID representing a service.

This search option also finds the differences between two configuration
versions associated with any child services.

ConnectivityConfigurationDiffer
encesSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this pipe, based on the specified
pipe ID (representing a pipe or channelized connectivity).

This search option does not find the configuration differences for child
pipes.

LogicalDeviceConfigurationDiff
erencesSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this logical device, based on the
specified logical device ID.

This search option does not find the configuration differences for child
logical devices because logical devices cannot have a parent/child
relationship.

LogicalDeviceAccountConfigur
ationDifferencesSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this logical device account,
based on the specified logical device account ID.

This search option does not find the configuration differences for child
logical device accounts because logical device accounts cannot have a
parent/child relationship.

NetworkConfigurationDifferenc
esSearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this network, based on the
specified network ID.

This search option does not find the configuration differences for child
networks because networks cannot have a parent/child relationship.

PlaceConfigurationDifferences
SearchOption

GetConfigurationDifferences finds the differences between two
configuration versions associated with this place, based on the
specified place ID.

This search option also finds the differences between two configuration
versions associated with any child places.

All search options inherit from the abstract ConfigurationDifferencesSearchOption, and all
entity-specific search options inherit from the abstract
EntityConfigurationDifferencesSearchOption, as shown in Figure 2-11.

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 49

Figure 2-11 Search Options

The request must specify one of the following:

• Business interaction ID

• Entity ID

• External ID for a business interaction

• External ID for a service entity

In the above list, the entity ID can be for a service, pipe (representing a pipe or channelized
connectivity), logical device, logical device account, network, or place entity. However, the
external ID for an entity can only be for a service entity.

Target and Source Configuration Versions

ConfigurationDifferencesEntitySearchOption, from which all search options inherit, defines the
following:

• Target configuration version

• Source configuration version

The target and source configuration versions indicate the configuration versions to compare.
The target configuration is the root of the comparison. Depending on what is specified in the
request, the operation does the following:

• If the request specifies both the target and source configuration versions, the operation
compares the two configuration versions.

• If the request specifies only a target configuration version, the operation compares the
specified target configuration version to a defaulted source configuration version. In this
scenario, the source configuration version defaults to the latest non-cancelled configuration
version that precedes the specified target configuration version.

• If the request specifies neither, the operation compares a defaulted target configuration
version to a defaulted source configuration version. In this scenario, the target
configuration version defaults to the latest non-cancelled configuration version, and the
source configuration version defaults to the latest non-cancelled configuration version that
precedes the defaulted target configuration version.

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 49

• If the request specifies only a source configuration version (which is not recommended),
the operation compares a defaulted target configuration version to the specified source
configuration version. In this scenario, the target configuration defaults to the latest non-
cancelled configuration version that follows the specified source configuration version, if it
exists. If the operation is unable to default the target configuration version, the response
returns an error.

Request Search Option Examples
Example 2-11 shows getConfigurationDifferencesRequest with a search option of
BusinessInteractionConfigurationDifferencesSearchOption in bold. The elements below the
search option show the specified business interaction ID to search for.

This request example also shows how you can specify an external ID for a business interaction
to search for. In the example, these elements are commented out because you can only
specify one or the other when using this search option.

Example 2-11 getConfigurationDifferencesRequest

<con:getConfigurationDifferencesRequest>
 <com:header/>
 <con:searchOptions
 xsi:type="con:BusinessInteractionConfigurationDifferencesSearchOption"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <con:interaction xsi:type="bus:BusinessInteractionType">
 <bus:header>
 <bus:id>123456</bus:id>
 <!--
 <bus:externalIdentity xsi:type="invent:ExternalIdentityType">
 <invent:externalObjectId>9876543</invent:externalObjectId>
 </bus:externalIdentity>
 -->
 </bus:header>
 </con:interaction>
 </con:searchOptions>
</con:getConfigurationDifferencesRequest>

Example 2-12 shows getConfigurationDifferencesRequest with a search option of
ServiceConfigurationDifferencesSearchOption in bold. The elements below the search option
show the specified service ID to search for. In this example, where the search option inherits
from the EntityConfigurationDifferencesSearchOption, the request also specifies a source
configuration version and a target configuration version.

Example 2-12 getConfigurationDifferencesRequest

<con:getConfigurationDifferencesRequest>
 <com:header></com:header>
 <con:searchOptions
 xsi:type="con:ServiceConfigurationDifferencesSearchOption"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <con:service xsi:type = "ser:ServiceCriteriaType">
 <ser:serviceId>2468</ser:serviceId>
 </con:service>
 <con:targetConfigurationCriteriaType
 xsi:type="conf:ConfigurationCriteriaType">
 <conf:configurationVersionNumber>2</conf:configurationVersion
 Number>
 </con:targetConfigurationCriteriaType>
 <con:sourceConfigurationCriteriaType
 xsi:type="conf:ConfigurationCriteriaType">
 <conf:configurationVersionNumber>1</conf:configurationVersion

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 49

 Number>
 </con:sourceConfigurationCriteriaType>
 </con:searchOptions>
</con:getConfigurationDifferencesRequest>

Additional Request Options
In getConfigurationDifferencesRequest, you can also specify the following options. If an option
is not specified in the request, the operation uses the default value.

• includeConfigItemDifferences

– When set to true, the response includes changes on the configuration item itself. For
example, adding or removing configuration items.

– When set to false (the default), the response includes only changes on the resources.

• includeChildConfigDifferences

– When set to true, the response includes differences for child configurations referenced
or assigned to a configuration item on a parent configuration. For example, when a
resource-facing service (RFS) is assigned on a customer-facing service (CFS).

– When set to false (the default), the response does not include these differences.

• includeActionPerformedInTargetVersion

– When set to true, the response includes the actionPerformedInTargetVersion element
within the target configuration item differences. The actionPerformedInTargetVersion
element is a Boolean value in the response; when true is returned, it indicates the
action taken was performed in the target version; when false is returned, it indicates
the action taken was performed in the source version.

For example, when comparing version 1 (source) and version 4 (target), where
versions 2 and 3 are not cancelled, and resource A is assigned in version 1: If
resource A is modified in version 3, actionPerformedInTargetVersion is set to false; but
if resource A is modified in version 4 (the version to compare),
actionPerformedInTargetVersion is set to true.

– When set to false (the default), the response does not include the
actionPerformedInTargetVersion element within the target configuration item
differences.

• includeTarget

– When set to true (the default), the response includes the target configuration.

– When set to false, the response does not include the target configuration.

Note

The includeTarget option takes precedence over the returnTargetWhenNoChange
option. For example, if returnTarget is true and returnTargetWhenNoChange is
false, and the configurations versions being compared are the same, the
response includes the target configuration.

• includeSource

– When set to true (the default), the response includes the source configuration.

– When set to false, the response does not include the source configuration.

• returnTargetWhenNoChange

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 49

– When set to true, and the versions being compared are the same, the response
returns an action of Unchanged and populates the target configuration; the source
configuration is not populated.

– When set to false (the default), and the versions being compared are the same, the
response returns an action of Unchanged and populates neither configuration (target
or source).

• includeTags

– When set to true, the response includes tags on configuration items, with the tag
name and description populated.

– When set to false (the default), the response does not include tags on configuration
items.

For information about tags, see the Design Studio Help.

• includeTagsOtherInfo

– When set to true, tag name, description, and other information are populated.

– When set to false (the default), tag name and description are populated; other
information is not populated.

Note

The includeTagsOtherInfo option is only applicable when includeTags is true.

For information about tags, see the Design Studio Help.

• includeNetworkTargets

– When set to true, the response includes network targets.

– When set to false (the default), the response does not include network targets.

For information about network targets, see UIM Concepts.

Additional Request Options Example
Example 2-13 shows getConfigurationRequest with the additional request options.

Example 2-13 getConfigurationDifferencesRequest

<con:getConfigurationDifferencesRequest>
 <com:header></com:header>
 <con:searchOptions>
 .
 .
 .
 </con:searchOptions>
 <con:includeConfigItemDifferences>true</con:includeConfigItemDifferences>
 <con:includeChildConfigDifferences>true</con:includeChildConfigDifferences>
 <con:includeActionPerformedInTargetVersion>true</
con:includeActionPerformedInTargetVersion>
 <con:includeTarget>true</con:includeTarget>
 <con:includeSource>true</con:includeSource>
 <con:returnTargetWhenNoChange>true</con:returnTargetWhenNoChange>
 <con:includeTags>true</con:includeTags>
 <con:includeTagsOtherInfo>true</con:includeTagsOtherInfo>
</con:getConfigurationDifferencesRequest>

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 40 of 49

GetConfigurationDifferences Logic Flow
Figure 2-12 shows what occurs when the GetConfigurationDifferences operation is called.

The first two boxes in Figure 2-12 represent functionality that is only performed when
applicable, depending on what is specified in the request. For example, if the request specifies
a target configuration version, the logic flow would start with Determine Source
Configuration Version, and if the request specifies a target configuration version and a
source configuration version, the logic flow would start with Get Source Configuration
Version.

Figure 2-12 GetConfigurationDifferences Logic Flow

If the request specifies a business interaction ID or an external ID for a business interaction,
the operation retrieves and compares any associated service configurations with their previous
configuration version.

Child Configurations
If the configuration has a child configuration, and includeChildConfigDifferences is set to true
in the request, the operation also compares two versions of the child configuration and returns
those differences as well. See the description of includeChildConfigDifferences in "Additional
Request Options" for more information.

All configurations have a start date and an end date. The operation determines which child
configuration versions to compare based on the start and end dates of the child configurations
and the start and end dates of the parent configurations.

Specifically, when comparing parent configuration versions P.3 and P.2, the operation
determines which child configurations through the following process:

1. Find the first child configuration starting on or after the start date of parent configuration
version P.3 and before the start date (if any) of the next configuration version (P.4). If not
found, find the first child configuration version starting before the start date of parent
configuration version P.3.

2. Do the same for parent configuration P.2:

Find the first child configuration starting on or after the start date of parent configuration
version P.2 and before the start date (if any) of the next configuration version (P.3). If not
found, find the first child configuration version starting before the start date of parent
configuration version P.2.

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 41 of 49

The following examples show how the operation determines which child configuration versions
to compare. In the examples, the parent configuration is represented as P, and the child
configuration is represented as C. Versions of the parent configuration are represented as P.1,
P.2, and P.3, and versions of the child configuration are represented as C.1, C.2, and C.3.

Example 1
Figure 2-13 shows an example where the start date and end date of the child configuration are
on or after the parent configuration start date.

Figure 2-13 Child Start Date Is After Parent Start Date

In this example, the operation is comparing configuration versions P.2 and P.3. Configuration P
is a parent to child configuration C, so the operation must determine which versions of child
configuration C to compare.

The process:

1. Starts with parent configuration version P.3, which has a start date of 7/15.

2. Looks for a child configuration version with a start date that is on or after 7/15.

3. Finds child configuration version C.3, which has a start date of 8/15.

4. Proceeds to parent configuration version P.2, which has a start date of 4/15.

5. Looks for a child configuration version with a start date that is on or after 4/15.

6. Finds child configuration version C.2, which has a start date of 5/15.

The operation determines that child configuration version C.3 is compared with child
configuration version C.2.

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 42 of 49

Example 2
In this example, the start dates and end dates of the child configurations are both before and
after the parent's configuration start dates, as shown in Figure 2-14:

Figure 2-14 Child Start Date Before and After Parent Start Date

In this example, the operation is comparing configuration versions P.2 and P.3. Configuration P
is a parent to child configuration C, so the operation must determine which versions of child
configuration C to compare.

The process:

1. Starts with parent configuration version P.3, which has a start date of 7/15.

2. Looks for a child configuration version with a start date that is on or after 7/15, but does not
find one.

3. Looks for a child configuration version with a start date that is before 7/15.

4. Finds child configuration version C.3, which has a start date of 6/15.

5. Proceeds to parent configuration version P.2, which has a start date of 3/15.

6. Looks for a child configuration version with a start date that is on or after 3/15.

7. Finds child configuration version C.1, which has a start date of 4/15.

The operation determines that child configuration version C.3 is compared with child
configuration version C.1.

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 43 of 49

Example 3
In this example, the same child configuration version is applicable two versions of the parent
configuration, as shown in Figure 2-15:

Figure 2-15 Same Child Configuration

In this example, the operation is comparing configuration versions P.2 and P.3. Configuration P
is a parent to child configuration C, so the operation must determine which versions of child
configuration C to compare.

The process:

1. Starts with parent configuration version P.3, which has a start date of 7/15.

2. Looks for a child configuration version with a start date that is on or after 7/15, but does not
find one.

3. Looks for a child configuration version with a start date that is before 7/15.

4. Finds child configuration version C.2, which has a start date of 3/15.

5. Proceeds to parent configuration version P.2, which has a start date of 4/15.

6. Looks for a child configuration version with a start date that is on or after 4/15, but does not
find one.

7. Looks for a child configuration version with a start date that is before 4/15.

8. Finds child configuration version C.2, which has a start date of 3/15.

The operation determines that child configuration version C.2 is compared with the same child
configuration version. In this scenario, the response returns an action of Unchanged and may
populate the target configuration, depending on what is specified in the request for the

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 44 of 49

returnTargetWhenNoChange option. See the description of returnTargetWhenNoChange in
"Additional Request Options" for more information.

Overriding the Process Logic that Determines Child Configurations
The process logic that determines the child configuration versions to compare resides in the
BaseConfigurationManager.getEffectiveChildConfiguration() method, and Oracle provides a
base extension point that defines this method.

You can override the logic by writing a custom ruleset that contains custom code that retrieves
the child configuration versions based on your business requirements. You can then configure
the custom ruleset to run at the provided base extension point, resulting in the custom ruleset
running instead of the BaseConfigurationManager.getEffectiveChildConfiguration() method.
See "Overview" in UIM Developer's Guide for more information about rulesets and extension
points.

You can find the BaseConfigurationManager_getEffectiveChildConfiguration base extension
point in the UIM_SDK_Home/cartridges/base/ora_uim_baseextpts.jar file.

getConfigurationDifferencesResponse
getConfigurationDifferencesResponse returns a varying level of information based on the
options specified in the request, as described in "Additional Request Options".

At a high-level, the response returns the following:

• Configuration differences []

– Configuration item difference []

– Target configuration

* Configuration specification

* Configuration item []

– Source configuration

* Configuration specification

* Configuration item []

GetConfigurationDifferences returns an error when:

• The request specifies a search option other than the valid search options listed in
Table 2-3.

• The request does not specify a business interaction ID, entity ID, external ID for a business
interaction, or external ID for an entity that the search option needs to perform the search.

• The operation cannot find the business interaction ID, entity ID, external ID for the
business interaction, or external ID for the service entity specified in the request.

• The request specifies a target configuration version and a source configuration version,
and the source configuration version number is greater than the target configuration
version number.

• The request specifies a source configuration version and the operation is unable to
determine a target configuration version.

• The request specifies a target configuration version that is cancelled.

• The request specifies a source configuration version that is cancelled.

Chapter 2
GetConfigurationDifferences

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 45 of 49

GetConfigurationDifferences request is for configuration versions in the Designed or Issued
state. For instance, the operation returns messages in the following scenarios:

• If the source or target configuration version requested is invalid, the following error
message is given: “Invalid source and target versions. Source and target must be greater
than 0, Source Version number cannot be greater than Target Version number. Source is 3
and Target is 0."

• If the configuration version requested is in the In Progress, Cancelled, Completed, or
Pending Cancel state, for example, the following warning message is given and the
operation continues processing: “Inventory Configuration 123 is in Completed state. This
operation has been requested on a configuration version that is in the state that is not
designed for this Web Service. Results may be inaccurate."

• The operation is intended for the requested configuration version to be compared to the
previous Completed version. If no previous Completed configuration version exists, or no
previous configuration version exists at all, the following message is given and the
operation continues processing: “A previous configuration version does not exist."

• The operation is intended for the requested configuration version to be compared to the
previous Completed version. If no previous Completed configuration version exists, or no
previous configuration version exists at all, the following informational message is given
and the operation continues processing: “A previous configuration version does not exist."

Customizing GetConfigurationDifferences
For your implementation, you may need more information than GetConfigurationDifferences
returns. In such scenarios, you can customize GetConfigurationDifferences to return additional
information.

Customizing GetConfigurationDifferences is similar to customizing GetConfiguration. See
"Customizing GetConfiguration" for more information.

After you customize GetConfigurationDifferences to return any additional data you may need,
your code that calls GetConfigurationDifferences needs to be customized to compare the
versions that are returned in the response to determine the differences.

UpdateConfiguration
The UpdateConfiguration operation transitions a service or service configuration through its
respective life-cycle states.

To transition a service, the request must specify the service action and service ID.

The valid service actions are:

• COMPLETE

• CANCEL

• DISCONNECT

• SUSPEND

• RESUME

To transition a service configuration, the request must specify the service configuration action
and one of the following:

• Service ID

• Service configuration ID

Chapter 2
UpdateConfiguration

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 46 of 49

• Service ID and service configuration version number

If the first option is specified (service ID), the operation transitions the latest active service
configuration.

The valid service configuration actions are:

• APPROVE

• ISSUE

• CANCEL

• COMPLETE

updateConfigurationResponse
updateConfigurationResponse includes a success or failure message regarding the update to
transition the service or service configuration. The response returns a varying level of
information based on the <responseLevel> value the request specifies. See "ResponseLevel
Element" for more information.

UpdateConfiguration returns an error when:

• The request specifies an invalid service action or service configuration action.

• The request specifies invalid data for service ID, service configuration ID, or service
configuration version number.

Customizing the Web Service Operations
You must customize the ProcessInteraction operation, and you can optionally customize the
GetConfiguration and GetConfigurationDifferences operations. See the following sections for
more information:

• Customizing ProcessInteraction

• Customizing GetConfiguration

• Customizing GetConfigurationDifferences

Extending Web Service Requests and Responses
You can extend web service requests and responses by extending GenericHandler.class,
which supports the use of SOAP handlers and which is used by the UIM Service Fulfillment
Web Service.

To extend a web service request or response:

1. In Design Studio, create a custom Inventory project.

2. Within your custom Inventory project, create a custom Java class that does the following:

• Imports javax.xml.rpc.handler.GenericHandler.class (include the jaxrpc.jar if
necessary)

• Extends GenericHandler

• Overrides the handleRequest() or handleResponse() methods, or both, per your
specific business requirements

3. Build your custom Inventory project.

Chapter 2
Customizing the Web Service Operations

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 47 of 49

A successful build of your custom Inventory project creates a deployable custom cartridge,
which is a JAR file with the same name as your Inventory project.

4. Deploy your custom cartridge into your UIM traditional environment. If you use UIM cloud
native, see "Deploying Cartridges" in UIM Cloud Native Deployment Guide.

5. Update the deployment plan:

• For the UIM cloud native deployment, see "Customizing Images" in UIM Cloud Native
Deployment Guide.

• For the traditional deployment, update the UIM_Home/app/plan/Plan.xml file to
include the following:

– Add the following <variable> elements under the <variable-definition> tag to define
the variables of HandlerName and HandlerClassName, and to define their
respective values, which is your custom Java class name and fully qualified
custom Java class name:

<variable>
 <name>HandlerName</name>
 <value>MyCustomHandler</value>
</variable>
<variable>
 <name>HandlerClassName</name>
 <value>oracle.communications.webservice.ws.MyCustomHandler</value>
</variable>

– Add the following <variable-assignment> elements under the <module-descriptor>
element, as shown here:

<module-override>
 <module-name>InventoryWS.war</module-name>
 <module-type>war</module-type>
 ...
 ...
 <module-descriptor external="true">
 <root-element>webservices</root-element>
 <uri>WEB-INF/webservices.xml</uri>
<!-- ==================== START OF NEW CONTENT ==================== -->
 <variable-assignment>
 <name>HandlerName</name>
 <xpath>
/webservices/webservice-description/
[webservice-description-name=
"oracle.communications.inventory.webservice.ws.InventoryWSPortImpl"]
/port-component/
[port-component-name="InventoryWSHTTPPort"]/handler/handler-name
 </xpath>
 </variable-assignment>
 <variable-assignment>
 <name>HandlerClassName</name>
 <xpath>
/webservices/webservice-description/
[webservice-description-name=
"oracle.communications.inventory.webservice.ws.InventoryWSPortImpl"]
/port-component/
[port-component-name="InventoryWSHTTPPort"]/handler/[handler-
name="MyCustomHandler"]/handler-class
 </xpath>
 </variable-assignment>
<!-- ==================== END OF NEW CONTENT ==================== -->
 </module-descriptor>
 ...

Chapter 2
Extending Web Service Requests and Responses

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 48 of 49

 ...
</module-override>

• These additions to the Plan.xml file results in the following being added to the
webservice.xml file at run-time:

<handler>
 <handler-name>MyCustomHandler</handler-name>
 <handler-class>oracle.communications.webservice.ws.MyCustomHandler
 </handler-class>
</handler>

6. In the UIM traditional deployment, redeploy the inventory.ear file.

This action redeploys the UIM Service Fulfillment Web Service with the updated Plan.xml
file.

In the UIM cloud native deployment, rebuild the image with the modifications performed in
the previous step. For details, see "Customizing Images" in UIM Cloud Native Deployment
Guide. Also, create the instance with a generated image.

Additional Information
For more information about SOAP handlers, see "Creating and Using SOAP Message
Handlers" in Fusion Middleware Developing JAX-RPC Web Services for Oracle WebLogic
Server.

Deploying, Testing, and Securing the Web Service
Information about deploying, testing, and securing the web service is described in "Deploying,
Testing, and Securing UIM Web Services".

Chapter 2
Deploying, Testing, and Securing the Web Service

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 49 of 49

https://docs.oracle.com/middleware/1213/wls/WSRPC/jax-rpc-handlers.htm#WSRPC407
https://docs.oracle.com/middleware/1213/wls/WSRPC/jax-rpc-handlers.htm#WSRPC407

3
Working with the Network Resource
Management Web Service

This chapter provides information about the Oracle Communications Unified Inventory
Management (UIM) Network Resource Management (NRM) Web Service.

Note

If you use UIM cloud native deployment for updating configuration files, refer to
"Customizing UIM Configuration Properties" in UIM Cloud Native Deployment Guide.

About the NRM Web Service

Note

Before reading about the NRM Web Service, read UIM Concepts to have an
understanding of UIM.

The NRM Web Service enables an external system to manage entities in UIM by supporting
operations that enable you to:

• Create, find, update, and delete entities in UIM

• Reserve and unreserve resource entities in UIM

– Find or create a reservation in UIM when reserving resource entities

– Find or delete a reservation in UIM when unreserving resource entities

• Update reservations in UIM

• Associate and disassociate entities in UIM

• Import and export entities into and from UIM

About the Web Service Packaging
The NRM Web Service is packaged in the inventory.ear file, within the InventoryWS.war file.
When the installer deploys the inventory.ear file, the NRM Web Service is automatically
deployed and ready to use.

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 59

Note

The InventoryWS.war file includes all of the Service Fulfillment Web Service
operations as well. See "Working with the Service Fulfillment Web Service" for
information about these operations.

About the WSDL and Schema Files
The NRM Web Service is defined by the InventoryWS.wsdl file and is supported by several
schema files. The WSDL file and supporting schema files are located in the UIM_SDK_Home/
webservices/schema_inventory_webservice.zip file.

About the WSDL File
Within ZIP file, the WSDL file is located in the ora_uim_webservices/wsdl directory. The
WSDL file defines several operations. Each web service operation defines a request, a
response, and the possible faults that can be thrown. For example, the WSDL file defines the
following for the CreateEntity operation:

• createEntityRequest

• createEntityResponse

• createEntityFault

• inventoryFault

• validationFault

The request, response, and faults each define an XML structure that is defined in the
supporting schema files. The following excerpts show how an XML structure defined in the
WSDL correlates to the supporting schema files.

For example, the WSDL file defines and references the invnsrm namespace (bolded):

xmlns:invnsrm="http://xmlns.oracle.com/communications/inventory/webservice/nsrm"
.
.
.
targetNamespace
.
.
.
<xsd:import
namespace="http://xmlns.oracle.com/communications/inventory/webservice/nsrm"
schemaLocation="./schemas/NSRMMessages.xsd"/>
.
.
.
<wsdl:message name="CreateEntityRequest">
 <wsdl:part name="CreateEntityRequest" element="invnsrm:createEntityRequest">
 </wsdl:part>
</wsdl:message>

This tells you that the createEntityRequest XML structure is defined in the schema file that
defines the specified namespace as its target namespace. A search for the specified
namespace reveals that NSRMMessages.xsd defines the referenced namespace as its target
namespace.

Chapter 3
About the WSDL and Schema Files

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 59

After you determine which schema file defines the XML structure that the WSDL file
references, you can navigate through the schema files to determine child XML structures and
elements.

About the Schema Files
Several schema files support the NRM Web Service. These schemas are categorized as
reference schemas, web service schemas, and business schemas.

Reference Schemas
Within the ZIP file, the reference schemas are located in the ora_uim_webservices/wsdl/
referenceSchemas directory. The reference schemas define common elements used by more
than one operation. So, the elements are defined in one place and then referenced.

The reference schemas are:

• InventoryCommon.xsd

• InventoryFaults.xsd

• FaultRoot.xsd

Web Service Schemas
Within the ZIP file, the web service schemas are located in the ora_uim_webservices/wsdl/
schemas directory. The web service schemas define elements specific to the web service,
such as the request structures, the response structures, and any fault structures.

The web service schema is defined in the NRMMessages.xsd file.

Note

The web service schema uses the type-mapping.xsdconfig file to map XML
namespaces to Java packages.

Business Schemas
Within the ZIP file, the business schemas are located in the ora_uim_business/schemas
directory. Each web service operation wraps a call (or multiple calls) to the UIM business layer,
which is exposed through APIs. The wrapped APIs are the same APIs that the UIM UI calls in
response to user input. The business layer APIs are based on functional area, as are the
business schemas.

The business schemas are:

• Activity.xsd

• BusinessInteraction.xsd

• Configuration.xsd

• Connectivity.xsd

• CustomNetworkAddress.xsd

• CustomObject.xsd

Chapter 3
About the WSDL and Schema Files

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 59

• Entity.xsd

• InventoryGroup.xsd

• IPAddress.xsd

• LogicalDevice.xsd

• MediaStream.xsd

• Network.xsd

• NetworkAddress.xsd

• Number.xsd

• Party.xsd

• PhysicalDevice.xsd

• Place.xsd

• Property.xsd

• PropertyLocation.xsd

• Role.xsd

• Service.xsd

• Specification.xsd

• Structure.xsd

• TNBlockModelType.xsd

Note

The API schemas use the xmlbeans-mapping.xsdconfig file to map XML
namespaces to Java packages.

CreateEntity
The CreateEntity operation enables external systems to send a request to UIM to create
certain entities in UIM.

createEntityRequest
You must specify the type of entity to create based on the entity types defined in the schema
files. Each entity type defines different elements that pertain specifically to the entity type,
which you use to define the entity you are creating. Table 3-1 lists the valid entity types and the
schema files in which they are defined.

Table 3-1 Entity Types for CreateEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

Chapter 3
CreateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 59

Table 3-1 (Cont.) Entity Types for CreateEntity

Entity Type Schema File

EquipmentType PhysicalDevice.xsd

FlowIdentifierType LogicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

Note

PlaceType represents a GeographicLocation, which is a specialization of the abstract
Place entity. See Oracle Communications Information Model Reference for more
information.

Multiple Entities
You can create multiple entities per request by specifying one or more <entity> elements;
however, all <entity> elements must specify the same entity type per request. For example,
you can create multiple logical devices with a single request, and you can create multiple
logical device accounts with a single request, but you cannot create multiple logical devices
and multiple logical device accounts with a single request.

Optional Elements
You can specify an existing inventory group with which to associate the created entities. If you
specify an inventory group that does not exist in UIM, an error is thrown.

You can specify parameters that define name/value pairs, which you can use with custom code
to extend the operation. CreateEntity does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Example
Example 3-1 shows a request that specifies an entity type of TelephoneNumberType, which
defines telephone number-specific elements such as <tn:rangeFrom> and <tn:rangeTo>.

This particular request:

• Creates a range of telephone numbers based on the usTelephoneNumber specification

• Adds the characteristics of tnCountryCode, winback, responsibleProvider, and tnType to
each of the telephone numbers created, as specified by the property name element

Chapter 3
CreateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 59

• Sets the characteristic values, as specified by the property value element

• Associates the created telephone numbers with the MobileServingArea inventory group

Example 3-1 createEntityRequest

<nsrm:createEntityRequest>
 <nsrm:entity xsi:type="tn:TelephoneNumberType">
 <tn:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </tn:specification>
 <tn:rangeFrom>9729630001</tn:rangeFrom>
 <tn:rangeTo>9729630020</tn:rangeTo>
 <tn:description>Owned Number</tn:description>
 <tn:property>
 <prop:name>tnCountryCode</prop:name>
 <prop:value>1</prop:value>
 </tn:property>
 <tn:property>
 <prop:name>winback</prop:name>
 <prop:value>false</prop:value>
 </tn:property>
 <tn:property>
 <prop:name>responsibleProvider</prop:name>
 <prop:value>AT&T</prop:value>
 </tn:property>
 <tn:property>
 <prop:name>tnType</prop:name>
 <prop:value>OWNED</prop:value>
 </tn:property>
 </nsrm:entity>
 <nsrm:inventoryGroup>
 <ig:specification>
 <spec:name>MobileServingArea</spec:name>
 </ig:specification>
 <ig:name>North Dallas</ig:name>
 </nsrm:inventoryGroup>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:createEntityRequest>

createEntityResponse
createEntityResponse returns information about the created entities. The information returned
in the response is dependent upon the entity types that were created, as specified in the
request.

createEntityResponse returns an error message when:

• The request specifies a specification that does not exist in UIM

• The request specifies an inventory group that does not exist in UIM

• The call to the UIM API fails

FindEntity
The FindEntity operation enables external systems to send a request to UIM to find and return
certain entities in UIM, based on specified search criteria.

Chapter 3
FindEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 59

findEntityRequest
You must specify search criteria to find the entities to retrieve. You have the choice of
specifying search criteria in one of two ways. With either choice, you must specify the type of
entity to find based on the entity types defined in the schema files. Each entity type defines
different elements that pertain specifically to the entity type, which you use as search criteria to
find entities. Table 3-2 lists the valid entity types and the schema files in which they are
defined.

Table 3-2 Entity Types for FindEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

EquipmentType PhysicalDevice.xsd

FlowIdentifierType LogicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

The choices are:

• <entity>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only entity
type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

Chapter 3
FindEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 59

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Note

Within each EntityType structure, the property element defines name,
value, and action. However, action is not used; rather, the NRM Web
Service operations always assume an operand of EQUALS.

• <criteria>

In this search option, you specify the entity type and use the following search criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated with

Chapter 3
FindEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 59

inventory groups that are associated with the specified place. If searching for entities
other than telephone numbers, the inventoryGroup geographicLocation is not used.

– geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

– quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned. If the quantity is not given, the default retrieved is 10. If you want more than
10 entities returned, then a quantity must be given. Also, this quantity must be less
than the maximum query range provided in the system-config.properties file for the
uim.ws.search.query.range property setting. This setting can be set for all entities or for
specific entities. Refer to UIM System Administrator's Guide for more information on
this property setting.

– reservation

If you specify reservation information, FindEntity also reserves any found entities. See
"ReserveEntity" for more information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities.

If you specify row-locking information, FindEntity does not release locked entities; you
must manually release locked entities by calling the RowLockManager.releaseLock()
method, or wait for the timer to release locked entities.

If you specify row-locking information for entities that are not consumable (Geographic
Location and Inventory Group), an error is thrown.

See "Optimizing Concurrent Resource Allocation in UIM" in UIM Developer's Guide for
more information about row locking, and see the Javadoc for information about the
RowLockManager.releaseLock() method.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

Chapter 3
FindEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 59

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one entity type to search for per request. For example, you can search for logical
devices with a single request, and you can search for logical device accounts with a single
request, but you cannot search for logical devices and logical device accounts with a single
request.

Examples
Example 3-2 shows a request that specifies an entity type of TelephoneNumberType, and uses
the telephone number-specific element of <tn:id> to search for the 9729630012 telephone
number created from the usTelephoneNumber specification.

Note

Example 3-2 shows all of the telephone-number specific elements, even though they
are not being used. Your requests do not need to include optional, unused elements;
they are shown here as an example of entity-specific elements.

Example 3-2 findEntityRequest

<nsrm: findEntityRequest >
 <ent:entity xsi:type="tn:TelephoneNumberType">
 <tn:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </tn:specification>
 <tn:id>9729630012</tn:id>
 <tn:name/>
 <tn:rangeFrom/>
 <tn:rangeTo/>
 <tn:description/>
 <tn:state/>
 <tn:startDate/>
 <tn:endDate/>
 <tn:property/>
 <prop:name/>
 <prop:value/>
 </tn:property>
 </ent:entity>
</nsrm: findEntityRequest >

Example 3-3 shows a request that specifies an entity type of TelephoneNumberType, but the
telephone number-specific elements are not used to specify the search criteria (nor are they
shown). Rather, this example specifies search criteria to find telephone numbers created from
the usTelephoneNumber specification.

Chapter 3
FindEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 59

This request specifies row-locking information that indicates to lock and return four telephone
numbers.

Note

Example 3-3 shows all of the optional search criteria elements, even though they are
not all being used. Your requests do not need to include optional, unused elements;
they are shown here as an example of the possible search criteria elements.

Example 3-3 findEntityRequest

<nsrm:findEntityRequest>
 <nsrm:criteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType">
 <!-- tn-specific elements are not shown -->
 </ent:entityType>
 <ent:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </ent:specification>
 <ent:adminState/>
 <ent:assignmentState/>
 <ent:inventoryGroup/>
 <ig:geographicPlace/>
 </ent:inventoryGroup>
 <ent:geographicPlace/>
 <ent:quantity/>
 <ent:reservation/>
 <ent:lock>
 <ent:lockAllOrNone>true</ent:lockAllOrNone>
 <ent:quantity>4</ent:quantity>
 </ent:lock>
 <ent:criteriaItem/>
 <ent:property/>
 </nsrm:criteria>
</nsrm:findEntityRequest>

findEntityResponse
findEntityResponse returns the found entities, based on the search criteria specified in the
request. The information returned in the response is dependent upon the entity types that were
searched for and subsequently found.

If you specified reservation information in the request, reservation information is also returned.

findEntityResponse returns an error message when:

• The request specifies a lock policy for the non-consumable entities of Geographic Location
or Group Inventory

• The request specifies a lock policy that specifies the number of resources to lock, and
there are not enough resources available to lock

• The call to the UIM API fails

Chapter 3
FindEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 59

FindTNBlock
The FindTNBlock operation enables external systems to send a request to UIM to find and
return telephone number blocks in UIM, based on specified search criteria.

findTNBlockRequest
You must specify search criteria to find the telephone number blocks to retrieve. In the search
criteria, you must specify the entity type of TelephoneNumberType, which is defined in the
Number.xsd schema file.

In the <criteria> search option, you specify the entity type (TelephoneNumberType) and use
the following search criteria:

• specification

The search returns entities created from the specified Telephone Number specification.

• adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

• assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="TRANSITIONAL"/>
<xs:enumeration value="PORTED"/>

• inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup and the
search returns telephone number entities associated with inventory groups.

• (optional) quantity

The search returns the specified quantity of telephone number block. For example, if the
search finds 300 telephone number blocks and the criteria specifies a quantity of 50, the
first 50 telephone number blocks found are returned.

• criteriaItem

Chapter 3
FindTNBlock

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 59

The search returns entities based on data specified by criteriaItem, which is an unbounded
structure that provides the ability to specify the following:

– Name of a criteria item as defined by the EntitySearchCriteria class, where Entity is the
name of a specific entity such as TelephoneNumber, LogicalDevice, and so forth (see
"Determining Criteria Item Names")

– Value of specified criteria item

– Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Example
Example 3-4 shows a request that specifies an entity type of TelephoneNumberType to search
for a telephone number block of size 10 for the BATTNSpec specification.

Example 3-4 findTNBlockRequest

<nsrm:findTNBlockRequest>
 <nsrm:criteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType"></ent:entityType>
 <ent:specification>
 <spec:name>BATTNSpec</spec:name>
 </ent:specification>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:inventoryGroup>
 <gro:name>NORTH_AMERICA</gro:name>
 </ent:inventoryGroup>
 <ent:criteriaItem>
 <ent:name>serviceSpec</ent:name>
 <ent:value xsi:type="xs:string">BATServiceSpec</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>
 <ent:serviceSpec>BATServiceSpec</ent:serviceSpec>
 <ent:criteriaItem>
 <ent:name>CONDITION_TYPE</ent:name>
 <ent:value xsi:type="xs:string">INFORMATIONAL</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>
 <ent:criteriaItem>
 <ent:name>rangeFrom</ent:name>
 <ent:value xsi:type="xs:string">1</ent:value>
 <ent:operator>GREATER_THAN_EQUAL</ent:operator>
 </ent:criteriaItem>
 <ent:criteriaItem>
 <ent:name>rangeTo</ent:name>
 <ent:value xsi:type="xs:string">100000000</ent:value>
 <ent:operator>LESS_THAN_EQUAL</ent:operator>
 </ent:criteriaItem>
 <ent:criteriaItem>
 <ent:name>blockSize</ent:name>
 <ent:value xsi:type="xs:string">10</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>
 <ent:quantity>50</ent:quantity>

Chapter 3
FindTNBlock

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 59

 </nsrm:criteria>
</nsrm:findTNBlockRequest>

findTNBlockResponse
findTNBlockResponse returns the found telephone number blocks, based on the search
criteria specified in the request.

findTNBlockResponse returns an error message when:

• The request does not find the specified Inventory Group. In this case, the following error
message is displayed:

No InventoryGroups found with criteria.

• The call to the UIM API fails

UpdateEntity
The UpdateEntity operation enables external systems to send a request to UIM to update
certain entities in UIM.

updateEntityRequest
You must specify the type of entity to update based on the entity types defined in the schema
files. Each entity type defines different elements that pertain specifically to the entity type,
which you use to specify what to update. Table 3-3 lists the valid entity types and the schema
files in which they are defined.

Table 3-3 Entity Types for UpdateEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

FlowIdentifierType LogicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceAccountType LogicalDevice.xsd

LogicalDeviceType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

You must specify the same entity type twice: First, within the <entityDetails> element to specify
the data to update; and second, within the <entitySearchCriteria> element to find the entities to
update.

<entitySearchCriteria> defines the following search criteria:

Chapter 3
UpdateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 59

• specification

The search returns entities created from the specified specification.

• adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

• assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

• inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated with
inventory groups that are associated with the specified place. If searching for entities other
than telephone numbers, the inventoryGroup geographicLocation is not used.

• geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

• quantity

The search returns the specified quantity of entities. For example, if the search finds 1,000
entities and the criteria specifies a quantity of 50, the first 50 entities found are returned.

• reservation

If you specify reservation information, UpdateEntity ignores it; FindEntity is the only
operation that uses the reservation element. See "FindEntity" for more information.

• lock

Row locking is used to optimize concurrent resource allocation for consumable entities.

If you specify row-locking information, UpdateEntity releases locked entities; you do not
need to manually release locked entities by calling the RowLockManager.releaseLock()
method, or wait for the timer to release locked entities.

Chapter 3
UpdateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 59

If you specify row-locking information for entities that are not consumable (Geographic
Location and Inventory Group), an error is thrown.

See "Optimizing Concurrent Resource Allocation in UIM" in UIM Developer's Guide for
more information about row locking.

• criteriaItem

The search returns entities based on data specified by criteriaItem, which is an unbounded
structure that provides the ability to specify the following:

– Name of a criteria item as defined by the EntitySearchCriteria class, where Entity is the
name of a specific entity such as TelephoneNumber, LogicalDevice, and so forth (see
"Determining Criteria Item Names")

– Value of specified criteria item

– Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

• property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

– Name of characteristic

– Value of specified characteristic

– Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one <entityDetails> element per request, and one <entitySeachCriteria> element
per request. For example, if the search criteria that <entitySearchCriteria> specifies returns 50
records, all 50 records are updated with the same data that <entityDetails> specifies.

Optional Elements
You can specify parameters that define name/value pairs, which you can use with custom code
to extend the operation. UpdateEntity does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Examples
Example 3-5 shows a request that specifies an entity type of TelephoneNumberType and that
specifies to update the description to Update for Testing. The request then specifies an entity
type of TelephoneNumberType a second time to specify the search criteria to find the entities
to update. In this example, the search criteria is to find telephone numbers created from the
usTelephoneNumber specification.

Chapter 3
UpdateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 59

Example 3-5 updateEntityRequest and TelephoneNumberType

<nsrm:updateEntityRequest>
 <nsrm:entityDetails xsi:type="tn:TelephoneNumberType">
 <tn:description>Update for Testing</tn:description>
 </nsrm:entityDetails>
 <ent:entitySearchCriteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType" />
 <ent:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </ent:specification>
 </ent:entitySearchCriteria>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:updateEntityRequest>

Example 3-6 shows a request that specifies an entity type of ActivityType and that specifies the
activity as complete. The request then specifies an entity type of ActivityType a second time to
specify the search criteria to find the entities to update. In this example, the search criteria
finds an activity by its name.

Example 3-6 updateEntityRequest and ActivityType

<nsrm:updateEntityRequest>
 <nsrm:entityDetails xsi:type="act:ActivityType">
 <act:action>complete</act:action>
 </nsrm:entityDetails>
 <nsrm:entitySearchCriteria xsi:type="act:ActivitySearchCriteriaType">
 <ent:entityType xsi:type="act:ActivityType" >
 <act:name>Acquire Property Location</act:name>
 <act:businessInteractionId>1</act:businessInteractionId>
 </ent:entityType>
 </nsrm:entitySearchCriteria>
 <nsrm:parameter>
 <bus:name></bus:name>
 <bus:value></bus:value>
 </nsrm:parameter>
</nsrm:updateEntityRequest>

updateEntityResponse
updateEntityResponse returns information about the updated entities. The information returned
in the response is dependent upon the entity types that were updated, as specified in the
request.

updateEntityResponse returns an error message when:

• The request specifies two different entity types in the request entity type and the criteria
entity type

• The request specifies a lock policy that specifies the number of resources to lock, and
there are not enough resources available to lock

• The call to the UIM API fails

DeleteEntity
The DeleteEntity operation enables external systems to send a request to UIM to delete certain
entities in UIM.

Chapter 3
DeleteEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 59

deleteEntityRequest
You must specify search criteria to search for entities to delete. You have the choice of
specifying search criteria in one of two ways. With either choice, you must specify the type of
entity to find based on the entity types defined in the schema files. Each entity type defines
different elements that pertain specifically to the entity type, which you use as search criteria to
find entities to delete. Table 3-4 lists the valid entity types and the schema files in which they
are defined.

Table 3-4 Entity Types for DeleteEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

EquipmentType PhysicalDevice.xsd

FlowIdentifierType LogicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

The choices are:

• <entity>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only entity
type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

Chapter 3
DeleteEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 59

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Note

Within each EntityType structure, the property element defines name,
value, and action. However, action is not used; rather, the NRM Web
Service operations always assume an operand of EQUALS.

• <criteria>

In this search option, you specify the entity type and use the following search criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated with

Chapter 3
DeleteEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 59

inventory groups that are associated with the specified place. If searching for entities
other than telephone numbers, the inventoryGroup geographicLocation is not used.

– geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

– quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned.

– reservation

If you specify reservation information, DeleteEntity ignores it; FindEntity is the only
operation that uses the reservation element. See "FindEntity" for more information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities; however, DeleteEntity does not use row locking.

If you specify row-locking information, DeleteEntity ignores it.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Chapter 3
DeleteEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 59

Multiple Entities
You specify one entity type to delete per request, and one entity search criteria to find the
entities to delete per request. For example, you can search for logical devices to delete with a
single request, and you can search for logical device accounts to delete with a single request,
but you cannot search for logical devices and logical device accounts to delete with a single
request.

Optional Elements
You can specify parameters that define name/value pairs, which you can use with custom code
to extend the operation. DeleteEntity does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Examples
Example 3-7 shows a request that specifies an entity type of TelephoneNumberType, and uses
entity-specific elements to find a particular telephone number to delete, 9729630014, created
from the usTelephoneNumber specification.

Example 3-7 deleteEntityRequest

<nsrm:deleteEntityRequest>
 <ent:entity xsi:type="tn:TelephoneNumberType">
 <tn:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </tn:specification>
 <tn:id>9729630014</tn:id>
 </ent:entity>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:deleteEntityRequest>

Example 3-8 shows a request that specifies an entity type of TelephoneNumberType, and
specifies search criteria to find telephone numbers to delete created from the
usTelephoneNumber specification that are installed and unassigned.

Example 3-8 deleteEntityRequest

<nsrm:deleteEntityRequest>
 <ent:criteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType"/>
 <ent:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </ent:specification>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 </ent:criteria>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:deleteEntityRequest>

Chapter 3
DeleteEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 59

deleteEntityResponse
deleteEntityResponse returns information about the deleted entities. The information returned
in the response is dependent upon the entity types that were deleted, as specified in the
request.

deleteEntityResponse returns an error message when:

• The call to the UIM API fails

ReserveEntity
The ReserveEntity operation enables external systems to send a request to UIM to find an
existing reservation or newly create a reservation, and to add certain resource entities to the
existing or newly created reservation.

reserveEntityRequest
The request structure defines the ResourceReservationType entity type; you do not specify the
entity type for the reservation.

Within the reservation-specific elements, you specify one or both of the following:

• An existing reservation number

• Reservation information with which to create a reservation, which at a minimum must
include:

– reservedFor

– reservedForType

– reservationType

If you specify an existing reservation number, the operation attempts to find the reservation
based on the specified reservation number. If the reservation is found, additional resources are
added to it. If the reservation is not found, an error is thrown.

If you specify reservation information with which to create a reservation, the operation
generates a reservation number and creates a reservation using the specified information.

If you specify both a reservation number and reservation information with which to create a
reservation, the operation attempts to find the reservation based on the specified reservation
number. If the reservation is found, additional resources are added to it, but the reservation is
not updated with the specified reservation information. If the reservation is not found, the
operation creates a reservation using the specified reservation number and reservation
information.

If you specify neither a reservation number nor reservation information, an error is thrown.

Resource Entity Search Criteria
You must specify search criteria to find existing resource entities to add to the reservation. You
have the choice of specifying search criteria in one of two ways. With either choice, you must
specify the type of resource entity to find based on the entity types defined in the schema files.
Each entity type defines different elements that pertain specifically to the entity type, which you
use as search criteria to find entities. Table 3-5 lists the valid entity types and the schema files
in which they are defined.

Chapter 3
ReserveEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 59

Table 3-5 Entity Types for ReserveEntity

Entity Type Schema File

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

FlowIdentifierType LogicalDevice.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

TelephoneNumberType Number.xsd

The choices are:

• <resourceEntities>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only entity
type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Chapter 3
ReserveEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 59

Note

Within each EntityType structure, the property element defines name,
value, and action. However, action is not used; rather, the NRM Web
Service operations always assume an operand of EQUALS.

• <resourceCriteria>

In this search option, you specify the entity type and use the following search criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated with
inventory groups that are associated with the specified place. If searching for entities
other than telephone numbers, the inventoryGroup geographicLocation is not used.

– geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.
(You cannot reserve inventory groups, so geographicLocation is not used for
ReserveEntity.)

– quantity

Chapter 3
ReserveEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 59

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned.

– reservation

If you specify reservation information, ReserveEntity ignores it; FindEntity is the only
operation that uses the reservation element. See "FindEntity" for more information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities.

ReserveEntity always uses row locking, regardless of whether or not you specify the
number of rows to lock. ReserveEntity releases locked entities; you do not need to
manually release locked entities by calling the RowLockManager.releaseLock()
method, or wait for the timer to release locked entities.

See "Optimizing Concurrent Resource Allocation in UIM" in UIM Developer's Guide for
more information about row locking.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one reservation per request, and one search criteria per request. For example, if
the search criteria returns 50 resources, all 50 resources are added to the specified
reservation.

Chapter 3
ReserveEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 59

Optional Elements
You can specify parameters that define name/value pairs, which you can use with custom code
to extend the operation. ReserveEntity does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Example
Example 3-9 shows a request that specifies reservation information with which to create a
reservation, and specifies search criteria to find two logical device resources based on their
specification name and ID. Based on this request, a new reservation is created, and the two
logical device resources are added to the reservation.

Example 3-9 reserveEntityRequest

<nsrm:reserveEntityRequest>
 <nsrm:reservation>
 <config:state/>
 <config:reservationNumber/>
 <config:reservationType>SHORTTERM</config:reservationType>
 <config:expiry/>
 <config:reservedForType>ORDER</config:reservedForType>
 <config:reservedFor>Customer XYZ</config:reservedFor>
 <config:reason/>
 </nsrm:reservation>
 <nsrm:entityType xsi:type="ld:LogicalDeviceType"/>
 <nsrm:resources>
 <ent:entity xsi:type="ld:LogicalDeviceType">
 <ld:specification>
 <spec:name>SIMCard</spec:name>
 </ld:specification>
 <ld:id>3101500000000009901</ld:id>
 </ent:entity>
 <ent:entity xsi:type="ld:LogicalDeviceType">
 <ld:specification>
 <spec:name>SIMCard</spec:name>
 </ld:specification>
 <ld:id>3101500000000009902</ld:id>
 </ent:entity>
 </nsrm:resources>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:reserveEntityRequest>

reserveEntityResponse
reserveEntityResponse returns information about the reservation and the reserved resource
entities. The resource entity information returned in the response is dependent upon the
resource entity types that were reserved, as specified in the request.

reserveEntityResponse returns an error message when:

• The request specifies a reservation that does not exist

• The request specifies no reservation number and no reservation information with which to
create a reservation

Chapter 3
ReserveEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 59

• The request specifies a resource that does not exist

• The call to the UIM API fails

ReserveTNBlock
The ReserveTNBlock operation enables external systems to send a request to UIM to find an
existing reservation or create a new reservation, and to add telephone number blocks to the
existing or newly created reservation.

reserveTNBlockRequest
The request structure defines the ResourceReservationType entity type; you do not specify the
entity type for the reservation.

Within the reservation-specific elements, you specify one or both of the following:

• An existing reservation number

• Reservation information with which to create a reservation, which at a minimum must
include:

– reservedFor

– reservedForType

– reservationType

If you specify an existing reservation number, the operation attempts to find the reservation
based on the specified reservation number. If the reservation is found, the telephone number
block is added to it. If the reservation is not found, an error is thrown.

If you specify reservation information with which to create a reservation, the operation
generates a reservation number and creates a reservation using the specified information.

If you specify both a reservation number and reservation information with which to create a
reservation, the operation attempts to find the reservation based on the specified reservation
number. If the reservation is found, the telephone number block is added to it, but the
reservation is not updated with the specified reservation information. If the reservation is not
found, the operation creates a reservation using the specified reservation number and
reservation information.

If you specify neither a reservation number nor reservation information, an error is thrown.

Telephone Number Block Search Criteria
You must specify search criteria to find an existing telephone number block to add to an
existing reservation or to a new reservation. The reserveTNBlockRequest XML structure is
defined in the TNBlockModelType.xsd schema file.

You can specify the following in the request criteria:

• <reservation>

If this request option, specify the reservation information by using the following search
criteria:

– reservationNumber

The reservation number after the reservation has been created.

– reservationType

Chapter 3
ReserveTNBlock

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 59

The type of reservation; for example, Shortterm or Longterm.

– startDate

The date on which the reservation becomes effective.

– (Optional) expiryDate

The date on which the reservation expires.

– reservedForType

The type of entity or process for which the reservation is made.

– reservedFor

Identifies who is making the reservation.

– reason

The reason for the reservation.

• <tnBlockCriteria>

In this request option, you can specify the following criteria:

– startNumber

The starting number of a range of numbers that you want to reserve.

– endNumber

The ending number of a range of numbers that you want to reserve.

– blockSize

The telephone number block size that you want to reserve.

Example
Example 3-10 shows a request that specifies an existing reservation number of 1125010, and
specifies the criteria to reserve a telephone number block size of 10 within a telephone number
range between 295 and 395.

Example 3-10 reserveTNBlockRequest

 <nsrm:reserveTNBlockRequest>
 <nsrm:reservation>
 <con:reservationNumber>1125010</con:reservationNumber>
 <con:reservationType>SHORTTERM</con:reservationType>
 <con:startDate>2018-07-19T20:47:12.380+05:30</con:startDate>
 <con:expiryDate>2018-08-31T21:47:12.380+05:30</con:expiryDate>
 <con:reservedForType>CUSTOMER</con:reservedForType>
 <con:reservedFor>CUSTOMER_NAME</con:reservedFor>
 <con:reason>REASON_FOR_RESERVATION</con:reason>
 </nsrm:reservation>
 <nsrm:tnBlockCriteria>
 <tnb:startNumber>295</tnb:startNumber>
 <tnb:endNumber>395</tnb:endNumber>
 <tnb:blockSize>10</tnb:blockSize>
 </nsrm:tnBlockCriteria>
 </nsrm:reserveTNBlockRequest>

reserveTNBlockResponse
reserveTNBlockResponse returns information about the reservation and the reserved
telephone number block.

Chapter 3
ReserveTNBlock

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 59

reserveTNBlockResponse returns an error message when:

• The request specifies a reservation that does not exist

• The request specifies no reservation number and no reservation information with which to
create a reservation

• The request specifies a telephone number block that does not exist

• The call to the UIM API fails

UnreserveEntity
The UnreserveEntity operation enables external systems to send a request to UIM to
unreserve certain resource entities from an existing reservation in UIM. If no resources remain
for the reservation after the specified resource entities are unreserved, the reservation is
deleted.

unreserveEntityRequest
The request structure defines the ResourceReservationType entity type; you do not specify the
entity type.

Within the reservation-specific elements, you specify an existing reservation number. If the
reservation is not found, an error is thrown.

Resource Entity Search Criteria
You must specify search criteria to find existing resource entities to unreserve. You have the
choice of specifying search criteria in one of two ways. With either choice, you must specify the
type of resource entity to find based on the entity types defined in the schema files. Each entity
type defines different elements that pertain specifically to the entity type, which you use as
search criteria to find entities. Table 3-6 lists the valid entity types and the schema files in
which they are defined.

Table 3-6 Entity Types for UnreserveEntity

Entity Type Schema File

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

FlowIdentifierType LogicalDevice.xsd

IPv4AddressType IPAddress.xsd

IPv6AddressType IPAddress.xsd

IPSubnetType IPAddress.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

TelephoneNumberType Number.xsd

The choices are:

• <resourceEntities>

Chapter 3
UnreserveEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 59

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only entity
type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Note

Within each EntityType structure, the property element defines name,
value, and action. However, action is not used; rather, the NRM Web
Service operations always assume an operand of EQUALS.

• <resourceCriteria>

In this search option, you specify the entity type and use the following search criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

Chapter 3
UnreserveEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 59

– assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated with
inventory groups that are associated with the specified place. If searching for entities
other than telephone numbers, the inventoryGroup geographicLocation is not used.

– geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.
(You cannot unreserve inventory groups, so geographicLocation is not used for
UnreserveEntity.)

– quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned.

– reservation

If you specify reservation information, UnreserveEntity ignores it; FindEntity is the only
operation that uses the reservation element. See "FindEntity" for more information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities; however, UnreserveEntity does not use row locking.

If you specify row-locking information, UnreserveEntity ignores it.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />

Chapter 3
UnreserveEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 59

<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one reservation per request, and one search criteria per request. For example, if
the search criteria returns 50 resources, all 50 resources are unreserved for the specified
reservation. If no resource entities remain on the reservation, the reservation is deleted.

Optional Elements
You can specify parameters that define name/value pairs, which you can use with custom code
to extend the operation. UnreserveEntity does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Examples
Example 3-11 shows a request that specifies an existing reservation number of 12345678, and
specifies search criteria to find a particular telephone number range based on its specification
name. Based on this request, the telephone numbers 8588880081 through 8588880083 are
unreserved for reservation 12345678.

Example 3-11 unreserveEntityRequest with a Telephone Number Range

<nsrm:unreserveEntityRequest>
 <nsrm:reservation>
 <config:reservationNumber>12345678</config:reservationNumber>
 </nsrm:reservation>
 <nsrm:resourceCriteria>
 <ent:entityType xsi:type="tn:TelephoneNumberType"/>
 <ent:specification>
 <spec:name>BATTNSpec</spec:name>
 </ent:specification>
 <ent:criteriaItem>
 <ent:name>rangeFrom</ent:name>
 <ent:value xsi:type="xs:string">8588880081</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>
 <ent:criteriaItem>
 <ent:name>rangeTo</ent:name>
 <ent:value xsi:type="xs:string">8588880083</ent:value>
 <ent:operator>EQUALS</ent:operator>
 </ent:criteriaItem>

Chapter 3
UnreserveEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 59

 </nsrm:resourceCriteria>
</nsrm:unreserveEntityRequest>

Example 3-12 shows a request that specifies an existing reservation number of 123456789,
and specifies search criteria to find a particular telephone number resource based on its
specification name and resource ID. Based on this request, the 9729630012 telephone number
resource is unreserved. The 9729630012 telephone number is the only resource on the
reservation, and the reservation is deleted.

Note

If this type of request is used for a reservation of a range of numbers the entire range
is unreserved. Therefore, this type of request is only valid to unreserve a single
reserved telephone number.

Example 3-12 unreserveEntityRequest for a Single Telephone Number

<nsrm:unreserveEntityRequest>
 <nsrm:reservation>
 <config:reservationNumber>123456789</config:reservationNumber>
 </nsrm:reservation>
 <nsrm:entityType xsi:type="tn:TelephoneNumberType"/>
 <nsrm:resources>
 <ent:entity xsi:type="tn:TelephoneNumberType">
 <tn:specification>
 <spec:name>usTelephoneNumber</spec:name>
 </tn:specification>
 <tn:id>9729630012</tn:id>
 </ent:entity>
 </nsrm:resources>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:unreserveEntityRequest>

unreserveEntityResponse
unreserveEntityResponse returns information about the reservation and the unreserved
resources (entities). The information returned in the response is dependent upon the resource
entity types that were unreserved.

unreserveEntityResponse returns an error message when:

• The specified reservation number is not found

• The request specifies search criteria that retrieves resources not related to the specified
reservation number

• The call to the UIM API fails

UpdateReservation
The UpdateReservation operation enables external systems to send a request to UIM to
update a reservation in UIM. This operation updates only reservation information; it does not
update resources on the reservation, and it does not reserve or unreserve resources on the

Chapter 3
UpdateReservation

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 59

reservation. See "ReserveEntity" for information about reserving resources for a reservation,
and see "UnreserveEntity" for information about unreserving resources for a reservation.

updateReservationRequest
The request structure defines the ResourceReservationType entity type; you do not specify the
entity type.

Within the reservation-specific elements, you specify an existing reservation number and for
whom the reservation is reserved, as well as any reservation information to update. If the
reservation is not found, an error is thrown.

Multiple Reservations
You can update only one reservation per request.

Optional Elements
You can specify parameters that define name/value pairs, which you can use with custom code
to extend the operation. UpdateReservation does not process specified parameters unless
customized to do so. See "Customizing the Web Service Operations" for more information.

Example
Example 3-13 shows a request that specifies an existing reservation number of 12345678 for
Clark Kent, and specifies reservation information with which to update the reservation.
<reservationNumber> and <reservedFor> are required elements used to retrieve the
reservation. The remaining elements are optional and are used to specify the data with which
to update the reservation.

Example 3-13 updateReservationRequest

<nsrm:updateReservationRequest>
 <nsrm:reservation>
 <config:reservationNumber>12345678</config:reservationNumber>
 <config:reservationType>LONGTERM</config:reservationType>
 <config:expiry>2018-12-31T00:00:00.000-06:00</config:expiry>
 <config:reservedForType>CSR</config:reservedForType>
 <config:reservedFor>Clark Kent</config:reservedFor>
 <config:reason>Testing</config:reason>
 </nsrm:reservation>
 <nsrm:parameter>
 <bi:name></bi:name>
 <bi:value></bi:value>
 </nsrm:parameter>
</nsrm:updateReservationRequest>

updateReservationResponse
updateReservationResponse returns information about the updated reservation.

updateReservationResponse returns an error message when:

• The specified reservation number is not found

• The call to the UIM API fails

Chapter 3
UpdateReservation

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 59

AssociateEntity
The AssociateEntity operation enables external systems to send a request to UIM to associate
certain entities in UIM.

associateEntityRequest
You must specify an association type of ASSOCIATE or PAIR, which are enumeration values
defined in the entity.xsd file.

An association of type ASSOCIATE indicates a one-to-many association between a single
specified source entity and multiple specified target entities. An association type of PAIR
indicates a one-to-one association between a source entity and a target entity; in this type of
association, multiple source entities and multiple target entities can be specified, but the
number of each specified must be the same.

You must specify search criteria to find existing source entities to associate; and you must
specify search criteria to find existing target entities to associate. You have the choice of
specifying search criteria in one of two ways. With either choice, you must specify the type of
source/target entity to find based on the entity types defined in the schema files. Each entity
type defines different elements that pertain specifically to the entity type, which you use as
search criteria to find entities. Table 3-7 lists the valid entity types and the schema files in
which they are defined.

Table 3-7 Entity Types for AssociateEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

EquipmentType PhysicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

The choices are:

• <entity>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

Chapter 3
AssociateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 59

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only entity
type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Note

Within each EntityType structure, the property element defines name,
value, and action. However, action is not used; rather, the NRM Web
Service operations always assume an operand of EQUALS.

• <criteria>

In this search option, you specify the entity type and use the following search criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>

Chapter 3
AssociateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 59

<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated with
inventory groups that are associated with the specified place. If searching for entities
other than telephone numbers, the inventoryGroup geographicLocation is not used.

– geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

– quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned.

– reservation

If you specify reservation information, AssociateEntity ignores it; FindEntity is the only
operation that uses the reservation element. See "FindEntity" for more information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities.

If you specify row-locking information, AssociateEntity releases locked entities; you do
not need to manually release locked entities by calling the
RowLockManager.releaseLock() method, or wait for the timer to release locked
entities.

If you specify row-locking information for entities that are not consumable (Geographic
Location and Inventory Group), an error is thrown.

See "Optimizing Concurrent Resource Allocation in UIM" in UIM Developer's Guide for
more information about row locking.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

Chapter 3
AssociateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 37 of 59

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one association type per request, and two sets of search criteria per request; one
to find the source entities to associate, and one to find the target entities to associate.

Example
Example 3-14 shows a request that associates the specified source and target entities with an
association type of ASSOCIATE. The source entity (only one source entity is specified in this
example) is the MobileServingArea inventory group. The target entities are all logical devices
created from the SIMCard specification that are installed and unassigned.

Example 3-14 associateEntityRequest

<nsrm:associateEntityRequest>
 <nsrm:associationType>ASSOCIATE</nsrm:associationType>
 <nsrm:sourceEntities>
 <nsrm:entityType xsi:type="ig:InventoryGroupType" />
 <ent:criteria>
 <ent:entityType xsi:type="ig:InventoryGroupType" />
 <ent:specification>
 <spec:name>MobileServingArea</spec:name>
 </ent:specification>
 </ent:criteria>
 </nsrm:sourceEntities>
 <nsrm:targetEntities>
 <nsrm:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:criteria>
 <ent:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:specification>
 <spec:name>SIMCard</spec:name>
 </ent:specification>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 </ent:criteria>
 </nsrm:targetEntities>
</nsrm:associateEntityRequest>

associateEntityResponse
associateEntityResponse returns information about the associated entities. The information
returned in the response is dependent upon the entity types that were associated, as specified
in the request.

associateEntityResponse returns an error message when:

Chapter 3
AssociateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 38 of 59

• The request specifies search criteria that results in no entities found to associate

• The request specifies an association type of PAIR and the number of sources and targets
found is the not the same

• The call to the UIM API fails

DisassociateEntity
The DisassociateEntity operation enables external systems to send a request to UIM to
disassociate certain existing associated entities in UIM.

disassociateEntityRequest
You must specify an association type of ASSOCIATE or PAIR, which are enumeration values
defined in the entity.xsd file.

An association of type ASSOCIATE indicates a one-to-many association between a single
specified source entity and multiple specified target entities. An association type of PAIR
indicates a one-to-one association between a source entity and a target entity.

You must specify search criteria to find existing source entities to disassociate; and you must
specify search criteria to find existing target entities to disassociate. You have the choice of
specifying search criteria in one of two ways. With either choice, you must specify the type of
source/target entity to find based on the entity types defined in the schema files. Each entity
type defines different elements that pertain specifically to the entity type, which you use as
search criteria to find entities. Table 3-8 lists the valid entity types and the schema files in
which they are defined.

Table 3-8 Entity Types for DisassociateEntity

Entity Type Schema File

ActivityType Activity.xsd

CustomNetworkAddressType CustomNetworkAddress.xsd

CustomObjectType CustomObject.xsd

EquipmentType PhysicalDevice.xsd

InventoryGroupType InventoryGroup.xsd

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

PlaceType Place.xsd

TelephoneNumberType Number.xsd

The choices are:

• <entity>

In this search option, you specify the entity type and use the entity-specific elements to
specify search criteria.

For each entity type, the <entity> structure varies. For example, TelephoneNumberType
defines <rangeFrom> and <rangeTo>, but none of the other entity types define these
elements.

Chapter 3
DisassociateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 39 of 59

Even though the <entity> structure varies per entity type, the following elements are
common across most entity types:

– specification

The search returns entities created from the specified specification.

– id

The search returns the entity with the specified id. (InventoryGroupType is only entity
type with no id; the inventory group name is the id.)

– name

The search returns entities with the specified name.

– description

The search returns entities with the specified description.

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

* Value of specified characteristic

Note

Within each EntityType structure, the property element defines name,
value, and action. However, action is not used; rather, the NRM Web
Service operations always assume an operand of EQUALS.

• <criteria>

In this search option, you specify the entity type and use the following search criteria:

– specification

The search returns entities created from the specified specification.

– adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

– assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>

Chapter 3
DisassociateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 40 of 59

<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

– inventoryGroup

The search returns entities associated with the specified inventory group.

If searching for telephone number entities, you can specify the inventoryGroup
geographicLocation and the search returns telephone number entities associated with
inventory groups that are associated with the specified place. If searching for entities
other than telephone numbers, the inventoryGroup geographicLocation is not used.

– geographicLocation

The search returns inventory group entities associated with the specified place. If
searching for entities other than inventory groups, geographicLocation is not used.

– quantity

The search returns the specified quantity of entities. For example, if the search finds
1,000 entities and the criteria specifies a quantity of 50, the first 50 entities found are
returned.

– reservation

If you specify reservation information, DisassociateEntity ignores it; FindEntity is the
only operation that uses the reservation element. See "FindEntity" for more
information.

– lock

Row locking is used to optimize concurrent resource allocation for consumable
entities; however, DisassociateEntity does not use row locking.

If you specify row-locking information, DisassociateEntity ignores it.

– criteriaItem

The search returns entities based on data specified by criteriaItem, which is an
unbounded structure that provides the ability to specify the following:

* Name of a criteria item as defined by the EntitySearchCriteria class, where Entity
is the name of a specific entity such as TelephoneNumber, LogicalDevice, and so
forth (see "Determining Criteria Item Names")

* Value of specified criteria item

* Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

– property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

* Name of a characteristic

Chapter 3
DisassociateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 41 of 59

* Value of specified characteristic

* Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Multiple Entities
You specify one association type per request, and two sets of search criteria per request; one
to find the source entities to associate, and one to find the target entities to associate.

Example
Example 3-15 shows a request that disassociates the specified source and target entities. The
source entity (only one source entity is specified in this example) is the MobileServingArea
inventory group. The target entities are all logical devices created from the SIMCard
specification that are installed and unassigned.

Example 3-15 disassociateEntityRequest

<nsrm:disassociateEntityRequest>
 <nsrm:sourceEntities>
 <nsrm:entityType xsi:type="ig:InventoryGroupType" />
 <ent:criteria>
 <ent:entityType xsi:type="ig:InventoryGroupType" />
 <ent:specification>
 <spec:name>MobileServingArea</spec:name>
 </ent:specification>
 </ent:criteria>
 </nsrm:sourceEntities>
 <nsrm:targetEntities>
 <nsrm:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:criteria>
 <ent:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:specification>
 <spec:name>SIMCard</spec:name>
 </ent:specification>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 </ent:criteria>
 </nsrm:targetEntities>
</nsrm:disassociateEntityRequest>

disassociateEntityResponse
disassociateEntityResponse returns information about the disassociated entities. The
information returned in the response is dependent upon the entity types that were
disassociated, as specified in the request.

disassociateEntityResponse returns an error message when:

• The call to the UIM API fails

Chapter 3
DisassociateEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 42 of 59

ImportEntity
The ImportEntity operation enables external systems to send a request to import certain
entities into UIM.

importEntityRequest
You specify a SOAP attachment that is a spreadsheet containing the entities for import. The
spreadsheet must be a specific format: see "Spreadsheet Format".

For information about SOAP attachments, see the SoapUI website at:

http://www.soapui.org/SOAP-and-WSDL/adding-headers-and-attachments.html#2

Multiple Entities
You can import multiple entities of varying entity types per request. For example, a
spreadsheet may define fifteen rows that result in the import of five telephone number entities,
five logical device entities, and five physical device entities.

Example
Example 3-16 shows importEntityRequest, which uses of a SOAP attachment.

Example 3-16 importEntityRequest

<soapEnv:Envelope xmls:soapenv="http://schemas.xmlsoap.org/soap/envelope/".......>
 <soapEnv:Header/>
 <soapEnv:Body>
 <nsrm:importEntityRequest>
 <octet/>
 </nsrm:importEntityRequest>
 <soapEnv:Body/>
</soapEnv:Envelope/>

Spreadsheet Format
Example 3-17 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the column names for the ImportEntity
spreadsheet. You can change the name of existing column names defined in this file, but you
cannot add new columns to the spreadsheet by defining additional column names in this file.

Example 3-17 importExport.properties: Column Names

#Use import properties to customize column names for excel of ImportEntity
import.rowNumber=rowNumber
import.action=action
import.entityType=entityType
import.id=id
import.rangeFromID=rangeFromID
import.rangeToID=rangeToID
import.quantity=quantity
import.name=name
import.rangeFromName=rangeFromName
import.rangeToName=rangeToName
import.specification=specification
import.description=description

Chapter 3
ImportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 43 of 59

http://www.soapui.org/SOAP-and-WSDL/adding-headers-and-attachments.html#2

import.attribute=attribute
import.characteristic=characteristic
import.relatedRow=relatedRow

Table 3-9 describes the columns defined in the importExport.properties file.

Table 3-9 Spreadsheet Column Names

Name Description

rowNumber rowNumber is required and must be unique; it is a numeric value that you assign to each row
in the spreadsheet.

UIM uses rowNumber for referencing other rows in the spreadsheet for creating
relationships.

action action is required and must be one of the following values:

• create: Creates one or more entities and associates them with other entities
• associate: Associates one or more entities with other entities
• information: Provides search criteria information for the specified entityType

entityType entityType is required and must be one of the following values:

• InventoryGroup
• IPv4Address
• IPv6Address
• IPSubnet
• LogicalDevice
• LogicalDeviceAccount
• PhysicalDevice
• TelephoneNumber

id When the action is create and the specification requires a user-provided ID, id is required.

When the action is create and the specification automatically generates an ID, do not specify
id.

When the action is associate or information, id can optionally specify search criteria.

The value can be numeric or alphanumeric.

rangeFromID rangeFromID populates the same database table and column as id, but it is used when
creating entities in bulk.

When the action is create, and you are creating LogicalDevice, LogicalDeviceAccount, or
PhysicalDevice entities in bulk, and the specification requires a user-provided ID,
rangeFromID is required and specifies the starting ID. When rangeFromID is specified, you
must also specify quantity. See "quantity".

When the action is create, and you are creating TelephoneNumber entities, rangeFromID is
not valid. For TelephoneNumber entities, you specify rangeFromName and rangeToName.
See "rangeFromName" and "rangeToName".

When the action is associate or information, rangeFromID, along with rangeToID, can
optionally specify search criteria.

The value must be numeric.

rangeToID When the action is associate or information, rangeToID, along with rangeFromID, can
optionally specify search criteria.

The value must be numeric.

quantity When the action is create, and you are creating LogicalDevice, LogicalDeviceAccount, or
PhysicalDevice entities in bulk, quantity specifies the number of entities to create.

When the action is create, and you are creating TelephoneNumber entities, quantity is not
valid. For TelephoneNumber entities, you specify rangeFromName and rangeToName. See
"rangeFromName" and "rangeToName".

The value must be numeric.

Chapter 3
ImportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 44 of 59

Table 3-9 (Cont.) Spreadsheet Column Names

Name Description

name When the action is create, name specifies the name of the entity or entities you are creating.
When creating entities in bulk, all entities are created with the same name.

When the action is associate or information, name can optionally specify search criteria.

The value can be alphanumeric or numeric.

rangeFromName (rangeFromName populates the same database table and column as name.)

When the action is create, and you are creating TelephoneNumber entities, rangeFromID is
specified along with rangeToName. See "rangeToName".

When the action is create, and you are creating LogicalDevice, LogicalDeviceAccount, or
PhysicalDevice entities in bulk, rangeFromName specifies the starting name of the entities to
create. When rangeFromName is specified in this scenario, you must also specify quantity.
See "quantity".

When the action is associate or information, rangeFromName, along with rangeToName,
can optionally specify search criteria.

The value must be numeric.

rangeToName When the action is create, and you are creating TelephoneNumber entities, rangeToID is
specified along with rangeFromName. See "rangeFromName".

When the action is associate or information, rangeToName, along with rangeFromName,
can optionally specify search criteria.

The value must be numeric.

specification When the action is create, specification is required to specify the specification used to create
the entity.

When the action is associate or information, specification can optionally specify search
criteria.

The value must represent an existing specification in UIM.

description When the action is create, description specifies the name of the entity or entities you are
creating. When creating entities in bulk, all entities are created with the same name.
Specifying a description is optional.

The value must be alphanumeric.

attribute When the action is create, attribute specifies the attribute name/value pair per cell for the
entity or entities you are creating. The name/value pair is specified as
attributeName=attributeValue. For example, or myAttribute=123.

The number of attribute columns depends on the number of attributes defined for the entity
you are creating. For example, when creating a PhysicalDevice entity, your spreadsheet may
specify four attribute columns containing the name/value pair for the following attributes:

• networkLocation
• physicalAddress
• serialNumber
• physicalLocation
When creating entities in bulk, specifying attributeName=attributeValue creates all entities
with same attribute and same attribute value. For example, if you specify myAttr=123, all
entities are created with the myAttr attribute and all myAttr attribute values are m123.

When the action is associate or information, attribute can specify search criteria. For
example, attributeName=attributeValue searches for entities with the specified attribute and
attribute value. For example, if you specify myAttr=123, the search looks for entities with the
myAttr attribute that has an attribute value of 123.

The value for any given attribute must match the data type defined for the attribute.

Chapter 3
ImportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 45 of 59

Table 3-9 (Cont.) Spreadsheet Column Names

Name Description

characteristic When the action is create, characteristic specifies the characteristic name/value pair per cell
for the entity or entities you are creating. The name/value pair is specified as
characteristicName=characteristicValue. For example, myChar=123.

The number of characteristic columns depends on the number of characteristics defined for
the entity you are creating. The characteristic column works similarly to the attribute column.
See "attribute" for an example.

When creating entities in bulk, you can specify:

• characteristicName=characteristicValue to create all entities with same characteristic
and same characteristic value. For example, if you specify myChar=123, all entities are
created with the myChar characteristic and all myChar characteristic values are 123.

• characteristicName.rangeFrom=characteristicStartValue to create all entities with the
same characteristic and a range of characteristic values. In this scenario,
characteristicStartValue must be numeric. For example, if you specify
myChar.rangeFrom=123, all entities are created with the myChar characteristic and
characteristic values are 123, 124, 125, and so forth.

When the action is associate or information, characteristic can specify search criteria as
follows:

• characteristicName=characteristicValue searches for entities with the specified
characteristic and characteristic value. For example, if you specify myChar=123, the
search looks for entities with the myChar characteristic that has a characteristic value of
123.

• characteristicName.range=characteristicStartValue, characteristicEndValue searches for
entities with the specified characteristic and range of characteristic values. In this
scenario, characteristicStartValue and characteristicEndValue must be numeric. For
example, if you specify myChar.range=123,200, the search looks for entities with the
myChar characteristic that has a characteristic value ranging from 123 through 200.

The value for any given characteristic must match the data type defined for the characteristic.

Chapter 3
ImportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 46 of 59

Table 3-9 (Cont.) Spreadsheet Column Names

Name Description

relatedRow relatedRow specifies rowNumber from the row with which the current row entity will get
paired (associated with a type of PAIR).

When the action is create for the source row and target row, both rows must point to each
other (the source row's pair value must reflect the target row's rowNumber, and the target
row's pair value must reflect the source row's rowNumber).

The value must be numeric.

The following list shows all valid relations. (In the list, LD is LogicalDevice, LDA is
LogicalDeviceAccount, PD is PhysicalDevice, TN is TelephoneNumber, and IG is
InventoryGroup):

• LD:LDA(1:n)

When LD and LDA are source-target or target-source, n LDAs are associated with
specified LD.

• LD:PD(1:n)

When LD and PD are source-target or target-source, n PDs are associated with
specified LD.

• LD:TN (n:n)

When LD and TN are source-target or target-source, a preconfigured custom
involvement is created with each pair of LD and TN. For example, when five LDs and
five TNs are specified, the first LD and first TN are paired, the second LD and second
TN are paired, and so forth.

• LD:IG(m:n)

When LD and IG are source-target or target-source, all LDs are associated to all IGs.
For example, m x n associations are created.

• PD:TN (n:n)

When PD and TN are source-target or target-source, a preconfigured custom
involvement is created with each pair of PD and TN. For example, when five PDs and
five TNs are specified, the first PD and first TN are paired, the second PD and second
TN are paired, and so forth.

• PD:IG (m:n)

When PD and IG are source-target or target-source, all PDs are associated to all IGs.
• LDA:IG (m:n)

When LDA and IG are source-target or target-source, all LDAs are associated to all IGs.
• TN:IG (m:n)

When TN and IG are source-target or target-source, all TNs are associated to all IGs.

Note

The following columns from Table 3-9 do not support the IPAM-specific entities of
IPv4Address, IPv6Address or IPSubnet:

• rangeFromID, rangeToID

• quantity

• rangeFromName, rangeToName

• relatedRow

Table 3-10 shows an example input spreadsheet for the request. The table shows various
values for the id, rangeFromID, rangeToID, quantity, name, rangeFromName, and

Chapter 3
ImportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 47 of 59

rangeToName columns when using the ImportEntity operation. In this example, all rows
specify the create action and the LogicalDevice entityType and a dash represents no data for
a cell.

Note

The following columns were omitted from the spreadsheet example for clarity:

• action (required column)

• entityType (required column)

• description

• attribute

• characteristic

• relatedRow

Table 3-11 shows the results of processing each row in Table 3-10.

Table 3-10 Example Spreadsheet

row
Number

id range
FromID

range
ToID

quantity name range
FromName

range
ToName

specification

1 - - - - testLD1 - - LDSpec

2 - - - - testLD2 - - LDSpec

3 - - - 2 testLD3 - - LDSpec

4 - - - 2 - 11001 - LDSpec

5 - - - 2 testLD5 - - LDSpec

6 - - - 2 - 12001 - LDSpec

7 1000 - - - testLD7 - - LDSpec_ManualID

8 1001 - - - testLD8 - - LDSpec_ManualID

9 - 1002 - 2 testLD9 - - LDSpec_ManualID

10 - 1004 - 2 - 13001 - LDSpec_ManualID

11 - 1006 - 2 testLD11 - - LDSpec_ManualID

12 - 1008 - 2 - 14001 - LDSpec_ManualID

Table 3-11 Example Spreadsheet Results

row
Number

Result

1 One LogicalDevice entity is created from the LDSpec specification.

Then entity is named testLD1.

The entity id is generated.

2 One LogicalDevice entity is created from the LDSpec specification.

Then entity is named testLD2.

The entity id is generated.

Chapter 3
ImportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 48 of 59

Table 3-11 (Cont.) Example Spreadsheet Results

row
Number

Result

3 Two LogicalDevice entities are created from the LDSpec specification.

Both entities are named testLD3.

The entity ids are generated.

4 Two LogicalDevice entities are created from the LDSpec specification.

The first entity is named 11001, and the second entity is named 11002.

The entity ids are generated.

5 Two LogicalDevice entities are created from the LDSpec specification.

Both entities are named testLD5.

The entity ids are generated.

6 Two LogicalDevice entities are created from the LDSpec specification.

The first entity is named 12001, and the second entity is named 12002.

The entity ids are generated.

7 One LogicalDevice entity are created from the LDSpec_ManualID specification.

The entity is named testLD7.

The entity id is 1000.

8 One LogicalDevice entity are created from the LDSpec_ManualID specification.

The entity is named testLD8.

The entity id is 1001.

9 Two LogicalDevice entities are created from the LDSpec_ManualID specification.

Both entities are named testLD9.

The first entity id is 1002 and the second entity id is 1003.

10 Two LogicalDevice entities are created from the LDSpec_ManualID specification.

The first entity is named 13001, and the second entity is named 13002.

The first entity id is 1004 and the second entity id is 1005.

11 Two LogicalDevice entities are created from the LDSpec_ManualID specification.

Both entities are named testLD11.

The first entity id is 1006 and the second entity id is 1007.

12 Two LogicalDevice entities are created from the LDSpec_ManualID specification.

The first entity is named 14001, and the second entity is named 14002.

The first entity id is 1008 and the second entity id is 1009.

Spreadsheet Row Order
The rows in the spreadsheet must be provided to ImportEntity in a specific order. The order is
based on a combination of the action, relatedRow, and entityType column values.

The spreadsheet row order must be:

1. create-create paired rows

First, provide the rows of entities to create that are to be paired with another entity; that is,
both rows specify the create action and both rows specify a relatedRow value that
indicates each other.

Chapter 3
ImportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 49 of 59

If you are creating entities of varying entity type, specify your create-create paired rows in
the following entityType order:

• TelephoneNumber

• LogicalDevice

• LogicalDeviceAccount

• PhysicalDevice

• InventoryGroup

2. create rows

Next, provide the rows of entities to create that are not to be paired with another entity; that
is, rows that specify the create action and specify no relatedRow value.

If you are creating entities of varying entity type, specify your create rows in the following
entityType order:

• TelephoneNumber

• LogicalDevice

• LogicalDeviceAccount

• PhysicalDevice

• InventoryGroup

3. create-information paired rows

Next, provide the rows of entities to create for which additional information is provided in a
corresponding row; that is, one row specifies the create action, one row specifies the
information action, and both rows specify a relatedRow value that indicates each other.

If you are creating entities of varying entity type, specify your create-information paired
rows in the following entityType order:

• TelephoneNumber

• LogicalDevice

• LogicalDeviceAccount

• PhysicalDevice

• InventoryGroup

4. associate-information paired rows

Last, provide the rows of entities to associate for which additional information is provided in
a corresponding information row; that is, one row specifies the associate action, one row
specifies the information action, and both rows specify a relatedRow value that indicates
each other.

If you are associating entities of varying entity type, specify your associate-information
paired rows in the following entityType order:

• TelephoneNumber

• LogicalDevice

• LogicalDeviceAccount

• PhysicalDevice

• InventoryGroup

Chapter 3
ImportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 50 of 59

importEntityResponse
importEntityResponse returns information about the imported entities. The information returned
in the response is dependent upon the entity types that were imported, as specified in the
request.

importEntityResponse returns an error message when the request specifies the following. (In
the list, LD is LogicalDevice, LDA is LogicalDeviceAccount, PD is PhysicalDevice, and TN is
TelephoneNumber):

• A rowNumber less than zero, or duplicate row numbers

• More than 10,000 rows

• A column name that is not defined in the properties file

• No action

• The create action with no specification

• The create action with a specification that does not exist

• A quantity of zero or less than zero

• The create action for an LD, LDA, or PD, and specifies a rangeToID or rangeToName
(which is used only for TN)

• No id or rangeToID for Manual ID specifications of LD, LDA, or PD

• No quantity with rangeFromID for Manual ID specifications of LD, LDA, or PD

• A rangeFromID that is not numeric for LD, LDA, or PD

• Both id and quantity LD, LDA, or PD

• Both id and rangeFromID LD, LDA, or PD

• Both id and rangeFromID for auto-generated ID specifications of LD, LDA, or PD

• Both Name and rangeFromName for LD, LDA, PD, or TN

• No name and no rangeFromName for LD, LDA, PD, or TN

• A rangeFromName that is not numeric LD, LDA, PD, or TN

• An incorrect attribute for any entity

• No rangeFromName and no rangeToName for TN

• id, rangeFromID, rangeToID, quantity, rangeFromName, or rangeToName for
InventoryGroup

• More than one LD for LD-LDA association

• More than one LD for LD-PD association

• Pairing information for association when action is create in both rows does not match

• Invalid association types (For example, LD-LD, PD-LDA, and so forth)

• An unequal number of entities for LD-TN or PD-TN

• Incorrect relatedRow information (For example, relatedRow does not specify the
information action)

• An InventoryGroup that does not exist

• The call to the UIM API fails

Chapter 3
ImportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 51 of 59

ExportEntity
The ExportEntity operation enables external systems to send a request to export certain
existing entities from UIM. The entities found for export are returned in a spreadsheet through
a SOAP attachment in the response.

exportEntityRequest
You must specify search criteria to find existing entities to export. Search criteria is specified
using the <criteria> element, which includes entity type.

You specify the type of entity to export based on the entity types defined in the schema files.
Each entity type defines different elements that pertain specifically to the entity type, which you
use to specify what to update. Table 3-12 lists the valid entity types and the schema files in
which they are defined.

Table 3-12 Entity Types for ExportEntity

Entity Type Schema File

LogicalDeviceType LogicalDevice.xsd

LogicalDeviceAccountType LogicalDevice.xsd

PhysicalDeviceType PhysicalDevice.xsd

TelephoneNumberType Number.xsd

<criteria> defines the following search criteria:

• specification

The search returns entities created from the specified specification.

• adminState

The search returns entities in the specified administrative state, which is defined by the
following enumeration values:

<xs:enumeration value="END_OF_LIFE"/>
<xs:enumeration value="INSTALLED"/>
<xs:enumeration value="PENDING_INSTALL"/>
<xs:enumeration value="PENDING_REMOVE"/>
<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PENDING_AVAILABLE"/>
<xs:enumeration value="PLANNED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="PENDING_DISCONNECT"/>
<xs:enumeration value="DISCONNECTED"/>

• assignmentState

The search returns entities in the specified assignment state, which is defined by the
following enumeration values:

<xs:enumeration value="PENDING_ASSIGN"/>
<xs:enumeration value="ASSIGNED"/>
<xs:enumeration value="PENDING_UNASSIGN"/>
<xs:enumeration value="UNASSIGNED"/>
<xs:enumeration value="DISCONNECTED"/>
<xs:enumeration value="PENDING_AVAILABLE"/>

Chapter 3
ExportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 52 of 59

<xs:enumeration value="PENDING_UNAVAILABLE"/>
<xs:enumeration value="PORTED"/>
<xs:enumeration value="UNAVAILABLE"/>
<xs:enumeration value="TRANSITIONAL"/>

• inventoryGroup

The search returns entities associated with the specified inventory group.

• quantity

The search returns the specified quantity of entities. For example, if the search finds 1,000
entities and the criteria specifies a quantity of 50, the first 50 entities found are returned.

• reservation

If you specify reservation information, ExportEntity ignores it; FindEntity is the only
operation that uses the reservation element. See "FindEntity" for more information.

• lock

Row locking is used to optimize concurrent resource allocation for consumable entities;
however, ExportEntity does not use row locking.

If you specify row-locking information, ExportEntity ignores it.

• criteriaItem

The search returns entities based on data specified by criteriaItem, which is an unbounded
structure that provides the ability to specify the following:

– Name of a criteria item as defined by the EntitySearchCriteria class, where Entity is the
name of a specific entity such as TelephoneNumber, LogicalDevice, and so forth (see
"Determining Criteria Item Names")

– Value of specified criteria item

– Enumerated operand with which to evaluate the specified criteria item and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

• property

The search returns entities with the data specified by property, which is an unbounded
structure that provides the ability to specify the following:

– Name of characteristic

– Value of specified characteristic

– Enumerated operand with which to evaluate the specified characteristic and
corresponding specified value:

<xs:enumeration value="EQUALS" />
<xs:enumeration value="NOT_EQUALS" />
<xs:enumeration value="BEGINS_WITH" />
<xs:enumeration value="ENDS_WITH" />
<xs:enumeration value="CONTAINS" />

Chapter 3
ExportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 53 of 59

Multiple Entities
You can export multiple entities of varying entity types per request. For example, the request
search criteria may return telephone number entities, logical device entities, and physical
device entities, and the varying types of entities are exported.

Example
Example 3-18 shows search criteria to find LogicalDevice entities created from the SIMCard
specification that are installed and unassigned.

Example 3-18 exportEntityRequest

<nsrm:exportEntityRequest>
 <ent:criteria>
 <ent:entityType xsi:type="ld:LogicalDeviceType" />
 <ent:specification>
 <spec:name>SIMCard</spec:name>
 </ent:specification>
 <ent:adminState>INSTALLED</ent:adminState>
 <ent:assignmentState>UNASSIGNED</ent:assignmentState>
 </ent:criteria>
</nsrm:exportEntityRequest>

exportEntityResponse
exportEntityResponse returns a spreadsheet containing the exported entities as a SOAP
attachment in the response. The entities returned in the response are dependent upon the
entity types that were exported, as specified in the request.

Example 3-19 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the column names for the ExportEntity
spreadsheet. These column names are common across all ExportEntity-supported entity types.
You can change the name of existing column names defined in this file, but you cannot add
new columns to the spreadsheet by defining additional column names in this file.

Example 3-19 importExport.properties: Column Names

#Use export properties to customize column names for excel of ExportEntity
export.slNo=serialNumber
export.entityType=entityType
export.id=ID
export.name=name
export.specification=specification
export.description=description
export.attribute=attribute
export.characteristic=characteristic

Exported entities are grouped by entity type per sheet. Example 3-20 shows an excerpt from
the UIM_CONFIG_PATH/config/importExport.properties file, which defines the sheet
names. You can change the name of existing sheets, but you cannot add new sheets to the
spreadsheet by defining additional sheets in this file.

Example 3-20 importExport.properties: Sheet Names

#Use export properties to customize name sheets for different entities
export.sheet.telephoneNumber=TelephoneNumber
export.sheet.logicalDevice=LogicalDevice

Chapter 3
ExportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 54 of 59

export.sheet.logicalDeviceAccount=LogicalDeviceAccount
export.sheet.physicalDevice=PhysicalDevice

The sheets are created when entities are found for export. So, all sheets are not always
returned. For example, if the specified search criteria finds only logical devices to export, only
the LogicalDevice sheet is returned.

If no entities are found for export, no sheets are created, and no attachment is returned in the
response.

TelephoneNumber Sheet
If telephone number entities are found for export based on the specified search criteria, the
TelephoneNumber sheet is created. This sheet contains the column names that are common
across all ExportEntity-supported entity types (shown in Example 3-19), as well as column
names that represent telephone number attributes.

Example 3-21 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the available telephone number attribute column
names you can add to the sheet by setting to true, or omit from the sheet by setting to false.

You can change the name of existing column names defined in this file, but you cannot add
new columns to the TelephoneNumber sheet by defining additional column names in this file.

Example 3-21 importExport.properties: TN-Specific Column Names

#Use TelephoneNumber export properties for exporting attributes
tn.export.partition=true
tn.export.owner=true
tn.export.permissions=true

LogicalDevice Sheet
If logical device entities are found for export based on the specified search criteria, the
LogicalDevice sheet is created. This sheet contains the column names that are common
across all ExportEntity-supported entity types (shown in Example 3-19), as well as column
names that represent logical device attributes.

Example 3-22 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the available logical device attribute column
names you can add to the sheet by setting to true, or omit from the sheet by setting to false.

You can change the name of existing column names defined in this file, but you cannot add
new columns to the LogicalDevice sheet by defining additional column names in this file.

Example 3-22 importExport.properties: LD-Specific Column Names

#Use LogicalDevice export properties for exporting attributes
ld.export.partition=true
ld.export.owner=true
ld.export.permissions=true
ld.export.networkLocationEntityCode=true
ld.export.deviceIdentitfier=true

LogicalDeviceAccount Sheet
If logical device account entities are found for export based on the specified search criteria, the
LogicalDeviceAccount sheet is created. This sheet contains the column names that are
common across all ExportEntity-supported entity types (shown in Example 3-19), as well as
column names that represent logical device account attributes.

Chapter 3
ExportEntity

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 55 of 59

Example 3-23 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the available logical device account attribute
column names you can add to the sheet by setting to true, or omit from the sheet by setting to
false.

You can change the name of existing column names defined in this file, but you cannot add
new columns to the LogicalDeviceAccount sheet by defining additional column names in this
file.

Example 3-23 importExport.properties: LDA-Specific Column Names

#Use LogicalDeviceAccount export properties for exporting attributes
lda.export.partition=true
lda.export.owner=true
lda.export.permissions=true

PhysicalDevice Sheet
If physical device entities are found for export based on the specified search criteria, the
PhysicalDevice sheet is created. This sheet contains the column names that are common
across all ExportEntity-supported entity types (shown in Example 3-19), as well as column
names that represent physical device attributes.

Example 3-24 shows an excerpt from the UIM_CONFIG_PATH/config/
importExport.properties file, which defines the available physical device attribute column
names you can add to the sheet by setting to true, or omit from the sheet by setting to false.

You can change the name of existing column names defined in this file, but you cannot add
new columns to the PhysicalDevice sheet by defining additional column names in this file.

Example 3-24 importExport.properties: PD-Specific Column Names

#Use PhysicalDevice export properties for exporting attributes
pd.export.partition=true
pd.export.owner=true
pd.export.permissions=true
pd.export.networkLocation=true
pd.export.physicalLocation=true
pd.export.physicalAddress=true
pd.export.serialNumber=true

exportEntityResponse Faults
exportEntityResponse returns an error message when:

• The call to the UIM API fails

Determining Criteria Item Names
This section provides detailed information regarding determining criteria item names, as
referenced from "FindEntity", "FindTNBlock", "UpdateEntity", "DeleteEntity", "ReserveEntity",
"UnreserveEntity", "AssociateEntity", "DisassociateEntity", and "ExportEntity".

When using the criteriaItem structure, the search returns entities based on specified criteria
item name/value pairs.

To determine the valid criteria item names you can specify, you must look in the Javadoc for
the EntitySearchCriteria class, where Entity is the name of a specific entity such as
TelephoneNumber, LogicalDevice, and so forth. For each EntitySearchCriteria class, you can

Chapter 3
Determining Criteria Item Names

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 56 of 59

only specify criteria items that are native to the class. For example, Figure 3-1 shows an
excerpt of the TelephoneNumberSearchCriteria Javadoc.

Figure 3-1 Javadoc Example

In this example, the following are valid criteria item names you can specify:

• adminState

• assignmentState

• conditionType

• customerId

• id

• inventoryGroupName

• name

Chapter 3
Determining Criteria Item Names

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 57 of 59

• rangeFrom

• rangeTo

• blockSize

Criteria items that are native to the class are listed as type CriteriaItem in the Javadoc method
summary Modifier and Type column. You cannot specify criteria items that are type boolean,
java.util.List, or another UIM entity class, such as InventoryGroup as shown in the example.

Note

Be mindful that getter and setter method names alter the criteria item name.

For example, the getAdminState() method spells AdminState with an uppercase “A",
but the criteria item name is actually adminState with a lowercase “a".

For information about accessing the UIM Javadoc, see "Overview" in UIM Developer's Guide.

Customizing the Web Service Operations
You can customize any of the web service operations by creating a custom Java class that
extends an existing UIM class. In the custom Java class, you can define methods that override
and modify the methods defined in the parent class you are extending.

To customize web service operations:

1. Open the UIM_CONFIG_PATH/config/nsrm-ws.properties file.

The file lists the delegate web service classes and the delegate API classes. All of the
delegate classes listed in the nsrm-ws.properties file are described in the Javadoc.

2. Use the Javadoc to determine which delegate class you want to customize.

To access the Javadoc, enter the following in your Web browser:

http://server:port/ora_uim_javadoc

where server is the specific server on which the application is deployed and port is the port
on which the application listens.

For detailed instructions on accessing the Javadoc, see "Overview" in UIM Developer's
Guide.

3. Create a custom Java class that extends a delegate class.

4. In the custom Java class, you can customize any of the methods defined in the parent
class by defining the same methods in the child class, and modifying the methods as
needed for your business requirements.

Your custom code can also run a ruleset. For example, you may want to utilize existing
functionality provided in the base rulesets. See "Overview" in UIM Developer's Guide for
more information about rulesets, including how to run a ruleset from within custom code.

5. In the nsrm-ws.properties file:

a. Copy and paste the property that defines the delegate class you extended.

b. Comment out the original property that defines the delegate class you extended.

c. Update the copied property to reflect the name of your custom class.

Chapter 3
Customizing the Web Service Operations

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 58 of 59

For example:

#ws.delegate.TelephoneNumberType=oracle.communications.inventory.
#webservice.delegate.TelephoneNumberDelegate
ws.delegate.TelephoneNumberType=oracle.communications.inventory.
webservice.delegate.MyCustomTNDelegate

6. Deploy the custom code.

For traditional UIM:

• If your custom code resides within an Inventory cartridge project, you deploy the
cartridge through Design Studio. See "Overview" in UIM Developer's Guide for more
information.

• If your custom code resides within a Web Archive (WAR) file in the custom.ear file,
you deploy the custom.ear file through the WebLogic Administration Console. See
"Developing Custom SOAP Web Services" for more information.

For cloud native UIM:

• Deploy the custom code into UIM cloud native by rebuilding the customized image and
creating the instance with generated image. For more information, see "Customizing
Images" in UIM Cloud Native Deployment Guide.

Extending Web Service Requests and Responses
You can extend web service requests and responses by extending GenericHandler.class,
which supports the use of SOAP handlers and which is used by the UIM Network Resource
Management Web Service.

Extending Network Resource Management Web Service requests and responses is done the
same way as extending Service Fulfillment Web Service requests and responses. Both web
services are packaged together in the InventoryWS.war file, so all of the steps are the same.
See "Extending Web Service Requests and Responses" in the Service Fulfillment Web Service
chapter for detailed instructions about extending web service requests and responses.

Deploying, Testing, and Securing the Web Service
Information about deploying, testing, and securing the web service is described in "Deploying,
Testing, and Securing UIM Web Services".

Chapter 3
Extending Web Service Requests and Responses

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 59 of 59

4
Developing Custom SOAP Web Services

This chapter provides information about integrating Oracle Communications Unified Inventory
Management (UIM) with external systems by developing custom SOAP web services. It
describes the approach to developing SOAP web services and the guidelines you should
follow.

About the UIM Reference Web Service
The chapter uses the UIM Reference Web Service as an example that you can extend.

Note

Previous Reference Web Service operations were deprecated in earlier releases. The
deprecated operations have now been removed from the reference_webservice.zip
file.

The UIM Reference Web Service is part of the UIM Software Developer's Kit (SDK). The UIM
SDK provides the resources required to build an Inventory cartridge in Design Studio. For more
information about the UIM SDK, see "Overview" in UIM Developer's Guide.

This chapter assumes you are using Design Studio to develop custom web services. If you use
an integrated development environment (IDE) other than Design Studio, you can ignore
the .classpath and .project files in the reference_webservice.zip file.

You can view the contents of reference_webservice.zip file in Oracle Communications
Service Catalog and Design - Design Studio by importing the archive ZIP file into Design
Studio. The ZIP file contains several types of files including the following:

• WSDL File

The ReferenceUim.wsdl file defines the CreateLogicalDevice web service operation that
creates a logical device. CreateLogicalDevice also defines an input, an output, and the
possible faults that can be thrown.

See "About the WSDL File" for more information about the ReferenceUim.wsdl file.

• Schema Files

The schema files define XML structures for the inputs, outputs, faults and operation
definitions of the Reference Web Service.

See "About the Schema Files" for more information about the schema files.

• Java Source Files

The Java source files provide the web service operation code. For example, these source
files provide the following:

– Input request and output response XML mapping

– An API manager call to UIM core for the operation

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 36

– Transaction management for the operation with the commit or rollback result

See "Developing the Web Service" for more information about the Java source files,
including a listing and description of each type of class file, and information about which
files need to be created or modified.

• Ant Build File

The build.xml file defines Ant targets that you can run to build a custom web service. Ant
targets are a set of executable tasks defined in the build.xml file. See "About the Ant Build
File" for more information.

About the WSDL and Schema Files
The Reference Web Service operation is defined by the ReferenceUim.wsdl file, and is
supported by several schema files. The WSDL file and supporting schema files are located in
the UIM_SDK_Home/webservices/reference_webservice.zip file, where UIM_SDK_Home is
the local directory for the UIM SDK.

About the WSDL File
The WSDL file is located in the wsdl directory of the reference_webservice.zip file. The
WSDL file defines the web service operation CreateLogicalDevice. This operation defines a
request, a response, and the possible faults that can be thrown on error. For example, the
WSDL file defines the following for the CreateLogicalDevice operation:

• createLogicalDeviceRequest

• createLogicalDeviceResponse

The request, response, and faults each define an XML structure that is defined in the
supporting schema files. Example 4-1 shows the port definition, the operation, and the input
request message.

Example 4-1 WSDL File Excerpt

<wsdl:portType name="ReferenceUimPort">
 <wsdl:operation name="CreateLogicalDevice">
 <wsdl:input message="invws:CreateLogicalDeviceRequest" />
 <wsdl:output message="invws:CreateLogicalDeviceResponse" />
 <wsdl:fault name="InventoryFault" message="invws:InventoryFault" />
 <wsdl:fault name="ValidationFault" message="invws:ValidationFault" />
 </wsdl:operation>
</wsdl:portType>
.
.
.
<wsdl:message name="CreateLogicalDeviceRequest">
 <wsdl:part name="createLogicalDeviceRequest"
 element="invldmsgs:createLogicalDeviceRequest"/>
</wsdl:message>

This WSDL excerpt shows the message CreateLogicalDeviceRequest is defined by the
element createLogicalDeviceRequest. createLogicalDeviceRequest references the invldmsgs
namespace which indicates where the XML structure is defined. See "About Namespaces" for
more information.

Chapter 4
About the WSDL and Schema Files

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 36

About the Schema Files
There are several schema files that support the Reference Web Service operation. These
schemas are categorized as reference schemas and web service schemas.

Reference Schemas

The reference schemas define common elements used by all of the UIM web services, not just
by the Reference Web Service. These elements are defined in the framework and then
referenced in the various WSDL files.

The reference schemas are:

• InventoryCommon.xsd

• InventoryFaults.xsd

• FaultRoot.xsd

The reference schemas are contained in the uim-webservices-framework.jar. You can copy
them into your workspace using the get-framework-files Ant target defined in the build.xml
file. The build.xml file is contained in the reference_webservice.zip file. See "About the Ant
Build File" for more information.

Note

The reference schemas use the Inventory.xsdconfig file to map XML namespaces to
Java packages.

Web Service Schemas

Within the reference_webservice.zip file, the example schema file is located in the wsdl/
schemas directory. The web service schema defines elements specific to the web service,
such as the request structures, the response structures, and any fault structures.

The example web service schema file name is LogicalDeviceMessages.xsd.

Note

The web service schemas use the type-mapping.xsdconfig file to map XML
namespaces to Java packages.

About Namespaces
The WSDL file defines a namespace to avoid naming conflicts. You use the namespace to
determine the schema file location of the schema reference. Example 4-2 shows how a
namespace defined in the WSDL file correlates to the supporting schema files.

In this example, the ReferenceUim.wsdl defines and references the invldmsgs namespace.

Example 4-2 Namespace Example

.

.

Chapter 4
About Namespaces

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 36

.
xmlns:invldmsgs="http://xmlns.oracle.com/communications/inventory/webservice/
logicaldevice"
.
.
.
<xsd:import namespace=
 "http://xmlns.oracle.com/communications/inventory/webservice/logicaldevice"
 schemaLocation="./schemas/LogicalDeviceMessages.xsd"/>
 .
 .
 .
 <wsdl:message name="CreateLogicalDeviceRequest">
 <wsdl:part name="createLogicalDeviceRequest"
 element="invldmsgs:createLogicalDeviceRequest"/>
 </wsdl:message>
 .
 .
 .

The CreateLogicalDeviceRequest message declaration tells you that
createLogicalDeviceRequest is defined in the schema file that supports the invldmsgs
namespace. A search for the namespace and for the following string reveals that the
LogicalDeviceMessages.xsd schema file defines the structures for the invldmsgs
namespace:

xmlns.oracle.com/communications/inventory/webservice/logicaldevice

After you determine that the LogicalDeviceMessages.xsd schema file defines the XML
structure, you can navigate through the schema files to determine child XML structures if
applicable.

Refer to the following website for more information on namespaces:

https://www.w3.org/TR/REC-xml-names/

About the Ant Build File
The build.xml file defines Ant targets that you can run to build a custom web service. These
Ant targets are a set of executable tasks that aid building a web service.

Table 4-1 describes the Ant targets defined in the build.xml file. See "Developing and Running
Custom Web Services" for information about when to run these Ant targets. For information
more information about running Ant targets within Design Studio, see "Overview" in UIM
Developer's Guide.

Table 4-1 build.xml Ant Targets

Ant Target Description

clean Deletes the generated, temporary, and deliverable files and directories.

all Initiates the complete build process for the web service supporting both
HTTP and JMS. Identical to the build.full Ant target, it calls the following
Ant targets in this order: clean,generate-from-wsdl, build-service.

Chapter 4
About the Ant Build File

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 36

https://www.w3.org/TR/REC-xml-names/

Table 4-1 (Cont.) build.xml Ant Targets

Ant Target Description

copyResources Copies the properties files that store localized error messages to the
appropriate UIM deployment directory. These properties files are located
in a ZIP file in the config/resources/logging directory and are copied to
the UIM_HOME/config/resources/logging directory.

Note: For cloud native deployments, if you want to add additional logging
properties files, you add these files to solution cartridges or localization
cartridges (ora_uim_localization_reference_cartproj.zip).

wspolicy Updates the WAR file with the web service policy files, which describe the
authentication and encryption mechanism for web service calls.

build.full Initiates the complete build process for the web service supporting both
HTTP and JMS. Calls the following Ant targets in this order:
clean,generate-from-wsdl, build-service.

build.full.http Initiates the complete build process for the web service WAR file
supporting HTTP. Calls the following Ant targets in this order:
clean,generate-from-wsdl, build-service-http.

build.full.jms Initiates the complete build process for the web service WAR file
supporting JMS. Calls the following Ant targets in this order:
clean,generate-from-wsdl, build-service-jms.

build-service Builds the web service WAR file for both HTTP and JMS, and stores it in
the webarchive directory. The name of the WAR file is wsdl_name.war,
where wsdl_name is the name specified by the WSDL_NAME parameter
in the COMPUTERNAME.properties file.

build-service-http Builds the web service WAR file for HTTP and stores it in the webarchive
directory. The name of the WAR file is wsdl_nameHTTP.war, where
wsdl_name is the name specified by the WSDL_NAME parameter in the
COMPUTERNAME.properties file.

build-service-jms Builds the web service WAR file for JMS and stores it in the webarchive
directory. The name of the WAR file is wsdl_nameJMS.war, where
wsdl_name is the name specified by the WSDL_NAME parameter in the
COMPUTERNAME.properties file.

build.deliverable Builds the web service cartridge JAR file and stores it in the deliverables
directory. Calls the build.full Ant target first to get a complete build for the
WAR file.

generate-from-wsdl Performs WSDL-to-Java conversions and generates object
representations of the schemas. This includes business schema files such
as LogicalDevice.xsd. Calls the get-framework-files Ant target.

get-framework-files Extracts the framework schema files InventoryCommon.xsd and
InventoryFaults.xsd from the uim-webservices-framework.jar file
stored in the directory specified by APP_LIB parameter defined in the
COMPUTERNAME.properties file. The framework schema XSD files are
also located in the schema_Inventory_webservice.zip file in the UIM
SDK.

Chapter 4
About the Ant Build File

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 36

Table 4-1 (Cont.) build.xml Ant Targets

Ant Target Description

extract.ear Extracts the application.xml file from the EAR file specified by the
EAR_PATH parameter defined in the COMPUTERNAME.properties file
into the reference_webservice_home/META-INF directory, where
reference_webservice_home is the location of the extracted
reference_webservice.zip file. The application.xml file needs to be
edited manually so that the EAR file can be updated for proper
deployment of the web services.

Note: The above description is not applicable for UIM cloud native
deployments. Building customized image packages the WAR file.

update.ear Updates the EAR file specified by the EAR_PATH parameter in the
COMPUTERNAME.properties file by adding the generated web service
WAR file and the edited application.xml file in the webarchive directory
into the EAR file. The updated EAR file can be deployed to test the web
services.

Note: The above description is not applicable for UIM cloud native
deployments. Building customized image packages the WAR file.

Note

The UIM Reference Web Service is an example web service to follow for developing
custom web services. The Reference Web Service cannot be used for production
deployments.

Guidelines for Developing Custom Web Services
This section describes the guidelines for developing a web service. It also contains class
diagrams that represent the UIM Reference Web Service development classes.

Using the WSDL-First Approach to Developing Custom Web Services
The WSDL-first approach (also known as the top-down approach), is the recommended way to
achieve interoperability, platform independence, and WSDL consistency across web services.
Figure 4-1 shows the design and development sequence of the WSDL-first approach.

Figure 4-1 WSDL-First Design and Development Sequence

• Define WSDL and schemas

Write the WSDL and the corresponding schemas (XSD files) to define the operations and
data.

Chapter 4
Guidelines for Developing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 36

• WSDL-to-Java generation

Use the build.xml Ant targets provided by the Reference Web Service to generate Java
source files based on the WSDL and schema definitions.

• Develop Java web service interface implementation

Use the web service development environment and tools provided by the Reference Web
Service to implement the web service interface by creating new Java source files and
changing existing ones.

For example, the UIM Reference Web Service module was designed using the WSDL-first
approach. This means that:

• The ReferenceUimPortImpl Java source file is generated based on the WSDL. This
generation results in the WSDL operation being defined in the ReferenceUimPortImpl Java
source file, but with no coding details.

• Within the ReferenceUimPortImpl Java source, an operation is manually modified to call its
respective operation in the AdapterRouter class.

• The AdapterRouter class calls the respective operation in each individual Adapter class.

• The build generates the ReferenceUimPort interface based on the WSDL.

Class Diagrams
In the following class diagrams, Action represents a UIM business action such as Create, and
Entity represents a UIM entity such as LogicalDevice. In the Reference Web Service, an
example of ActionEntity is the CreateLogicalDevice operation. You should use the
CreateLogicalDevice example as a template when creating custom web services. Consider the
following recommendations:

• Follow the naming convention of ActionEntity for consistency on new operations.

• Follow the template code example for the user environment and transaction management
functionality. See "Transaction Guidelines" for more information on transaction
management.

• Make calls to UIM core functionality by invoking the API manager methods.

Some additional types of classes may be needed depending on the complexity of the web
service operation that is developed. See "Creating Java Source Files" for more information
about these additional types of classes.

Figure 4-2 through Figure 4-7 show the class designs provided by the Reference Web Service.
These designs include request types, response types, fault types, adapters, and
implementations.

You should follow the patterns illustrated in Figures 4-2 through 4-7 when you design interfaces
and classes.

Note

Several of the XSD files in this section are not in the Reference Web Service even
though they are referenced in the ReferenceUim.wsdl file. You pull these files into the
wsdl directory by initiating the get-framework-files Ant target in the build.xml file.
See "About the Ant Build File" for more information.

Chapter 4
Guidelines for Developing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 36

Figure 4-2 shows the recommended class design for custom request types.
ReferenceUim.wsdl specifies the element createLogicalDeviceRequest as type
CreateLogicalDeviceRequestType, which is defined in LogicalDeviceMessages.xsd.
CreateLogicalDeviceRequestType extends InventoryRequestType, which is defined in
InventoryCommon.xsd.

Figure 4-2 Request Types

Figure 4-3 shows the recommended class design for custom response types.
ReferenceUim.wsdl specifies the element createLogicalDeviceResponse as type
CreateLogicalDeviceResponseType, which is defined in LogicalDeviceMessages.xsd.
CreateLogicalDeviceResponseType extends InventoryResponseType, which is defined in
InventoryCommon.xsd.

Figure 4-3 Response Types

Figure 4-4 shows the recommended class design for custom fault types. ReferenceUim.wsdl
uses the base fault types of InventoryFaultType and ValidationFaultType. These types are
defined in InventoryFault.xsd. InventoryFaultType defines a sequence of faults, which are
defined by ApplicationFaultType in FaultRoot.xsd.

Chapter 4
Guidelines for Developing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 36

Figure 4-4 Fault Types

Figure 4-5 shows the recommended class design for custom adapters. The example adapter
file is LogicalDeviceAdapter.java, which extends InventoryAdapterRoot.java. The UIM-
owned InventoryAdapterRoot.java class extends the Platform-owned AdaptorRoot.java
class.

Figure 4-5 Adapters

Figure 4-6 shows the recommended class design for the implementation class. The
ReferenceUim.wsdl file is used to generate the ReferenceUimPort.java source file. The
ReferenceUimPortImpl.java example file provides a skeleton class that implements the
interface in the ReferenceUimPort.java source file.

Note

The sequence of the method signatures in the implementation class is important and
must match the generated source. The generated source is based on the WSDL file
definitions.

Chapter 4
Guidelines for Developing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 36

Figure 4-6 Web Service Implementation

Figure 4-7 shows the class diagram with the ReferenceUimPortImpl, AdapterRouter and
LogicalDeviceAdapter classes and their relationships. This design is recommended for building
your own custom web services for other actions and entities similar to this example.

Figure 4-7 Implementation Pattern

WSDL Interface Guidelines
ReferenceUim.wsdl defines a single port type (a web service interface) that defines all of the
exposed custom operations. When developing new web service operations, you create them
within this single port.

The current recommended practice in creating UIM web service operations is to use a single
port. Multiple ports are not defined. The only time you use multiple ports is when you have a
port for HTTP and another for JMS. Multiple ports should not be used for categorically
grouping operations.

Operation Signatures
Oracle recommends you follow naming patterns for the following:

• Operation names

• Request type names

• Response type names

• Fault type names

The naming patterns discussed in this section give consistency for the operations signatures.

Signature Components
A web service operation signature contains the following:

Chapter 4
Guidelines for Developing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 36

• Operation name

The pattern for defining an operation name is [action][EntityName] where action represents
a verb action (such as create, update, delete) and the EntityName represents the entity
acted upon (such as Equipment, LogicalDevice, TelephoneNumber). For example:

– createEquipment

– updateLogicalDevice

– deleteTelephoneNumber

• Request type

The pattern for defining a request type is operationNameRequestType. A single request
type is defined per operation. For example:

– CreateEquipmentRequestType

– UpdateLogicalDeviceRequestType

– DeleteTelephoneNumberRequestType

• Response type

The pattern for defining a response type is operationNameResponseType. A single
response type is defined per operation. For example:

– CreateEquipmentResponseType

– UpdateLogicalDeviceResponseType

– DeleteTelephoneNumberResponseType

• Fault types

The pattern for defining a fault type is businessFaultFaultType, where businessFault
represents a specific business fault that might be thrown back to the user. Multiple
business faults can be defined per operation. For example:

– EquipmentNotUniqueFaultType

– EquipmentNotFoundFaultType

– NotAuthorizedFaultType

Fault types contain the error codes and stack trace set by the business logic. One-to-one
mapping between thrown business logic exceptions and the defined business faults is
required to capture the different exceptions.

Signature Pattern and Examples
The signature pattern of an operation in the Reference Web Service is defined as follows:

public OperationNameResponseType operationName(
 OperationNameRequestType operationNameRequest) throws
 businessFault1FaultType,
 businessFault2FaultType,
 businessFaultNFaultType

For example, the createLogicalDevice method is defined in the LogicalDeviceAdapter.java
file as the following:

public CreateLogicalDeviceResponseType createLogicalDevice(
 CreateLogicalDeviceRequestType createLogicalDeviceRequest)
throws
 InventoryFaultType,
 ValidationFaultType

Chapter 4
Guidelines for Developing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 36

Table 4-2 shows the operation signature pattern on commonly used actions. In the table, Entity
represents the name of the entity (such as Equipment, LogicalDevice, TelephoneNumber)
acted upon by the operation.

Table 4-2 Operation Signature Examples

Action Operation Signature

Create
CreateEntityResponseType createEntity
 (CreateEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Find
FindEntityResponseType findEntity
 (FindEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Update
UpdateEntityResponseType updateEntity
 (UpdateEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Delete
DeleteEntityResponseType deleteEntity
 (DeleteEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Calculate
CalculateEntityResponseType calculateEntity
 (CalculateEntityRequestType request) throws
 businessFault1FaultType,
 businessFault2FaultType

Schema Guidelines
A custom web service schema is represented by multiple XSD files. The UIM API-level entity
definitions closely follow the TM Forum (TMF) SID standard. Using XSD files that parallel the
UIM APIs ensures SID standard compliance. For example, you build the XSD files parallel to
business entities such as Service, Equipment, LogicalDevice, and so forth.

Keeping the XSD files separate from the WSDL makes the WSDL independent of web services
and reusable across other software technologies. XSD files differ from WSDL files because
they contain data structure definitions. The WSDL references these data structure definitions,
but does not define them. Also, naming standards for the WSDL do not include Type in the
name; naming standards for the schema do include Type in the name.

For example, the ReferenceUim.wsdl file defines createLogicalDeviceRequest as type
CreateLogicalDeviceRequestType, which is defined in the LogicalDeviceMessages.xsd file.
Similarly, the ReferenceUim.wsdl file defines createLogicalDeviceResponse as type
CreateLogicalDeviceResponseType in the LogicalDeviceMessages.xsd file.

Chapter 4
Guidelines for Developing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 12 of 36

Transaction Guidelines
The Reference Web Service performs transaction actions in a specific order when managing
operation transactions.

Note

You must follow the steps in this order or transaction errors may occur, which can be
hard to debug.

To correctly manage the transaction, you write code that performs the following steps:

1. Start the user environment.

2. Start the transaction.

3. Set the user environment on the transaction.

4. Set up the request, call the API method on the entity manager class, and manage the
response.

5. Commit or rollback the transaction.

6. Ensure a rollback is completed if an error occurred.

7. Ensure the user environment is ended with a call to the endUserEnvironment method on
success or failure.

Example 4-3 provides a code section of how to manage the user environment, transaction and
API manager call. The code section contains the recommended steps described previously
with the relevant code lines in bold.

This code section is taken from the LogicalDeviceAdapter class with some logging logic
removed. The Reference Web Service contains the full class code in the
LogicalDeviceAdapter.java file. You can use this code as a template for similar entity adapter
classes when building custom web services.

Example 4-3 LogicalDeviceAdapter.java Code Section with a Transaction

UserEnvironment userEnvironment = null;
InventoryTransactionValue transValue = null;
 try {
 userEnvironment = startUserEnvironment();
 transValue = startTransaction();
 transValue.setUserEnvironment(userEnvironment);
 LogicalDeviceManager logicalDeviceManager =
 PersistenceHelper.makeLogicalDeviceManager();
 List<LogicalDevice> results = new ArrayList<LogicalDevice>(
 createLogicalDeviceRequest.getLogicalDevices().length);
 LogicalDeviceType[] ldTypes = createLogicalDeviceRequest
 .getLogicalDevices();
 List<oracle.communications.inventory.xmlbeans.LogicalDeviceType>
 ldTypesList = XMLBeansMappingUtils.fromEntityType(ldTypes);
 mapToLogicalDevice(logicalDeviceManager, ldTypesList, results);
 // call the API method
 results = logicalDeviceManager.createLogicalDevice(results);
 response.setLogicalDevices(mapToWebServiceResponseLDType(results));
 commitOrRollback(transValue);
 } catch (Throwable t) {

Chapter 4
Guidelines for Developing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 13 of 36

 try {
 rollback(transValue);
 } catch (Exception ignore) {
 log.error("", false, ignore, "Rollback failed");
 }
 log.error("", t, "LogicalDeviceAdapter.createLogicalDeviceFault");
 InventoryFaultType ift = FaultFactory.getFaultType(t);
 throw ift;
 } finally {
 if (userEnvironment != null && userEnvironment.hasErrors()) {
 response.setMessages(new String[] { FAILED });
 } else {
 response.setMessages(new String[] { SUCCESS });
 }
 FeedbackUtils.copyFeedbacktoResponse(response);
 endUserEnvironment(userEnvironment, response);
 }

Developing and Running Custom Web Services
You develop custom web services by working in Design Studio projects. In Design Studio you
can generate the WAR files from the contents of the projects. You then import the WAR file into
a deployable EAR file for deployment and testing. This section provides instructions to guide
you through the WAR file creation and the deployment process.

Note

This chapter assumes you are using Design Studio to develop custom web services.
You can alternatively build custom web services by using provided scripted builds with
UIM installed on Linux. For information about using scripted builds, see "Overview" in
UIM Developer's Guide.

This section assumes that you are working in Design Studio and therefore working in a
Windows environment. Based on this assumption, the locations of all required UIM and Oracle
WebLogic Server files are described using Windows paths.

Note

Oracle recommends that you perform the instructions to import, configure, and run the
CreateLogicalDevice web service operation before introducing any custom code for a
new web service. A successful test of CreateLogicalDevice ensures that your project
is configured properly before the start of your custom web service development.

You perform the tasks described in the following development work sections to create a custom
web service. The result of this work is the deployment of an EAR file that contains a new WAR
file that defines the custom web service.

Pre-development work:

• Configuring Your Work Environment

• Importing the Reference Web Service Project

• Configuring the Imported Project

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 14 of 36

Development work:

• Locating the API Method Signature in the Javadoc

• Developing the Web Service

Post-development work:

• Generating Java Source Based on the WSDL

• Creating the WAR File

• Packaging the WAR File in the EAR File

• Deploying the EAR File

• Deploying, Testing, and Securing the Web Service

Configuring Your Work Environment
Before you begin developing a custom web service, configure your work environment.

WebLogic Server
You must install Oracle WebLogic Server locally. This installation provides the correct version
of the JDK. Depending on the references in your code, you should determine the specific
WebLogic files that are required from the installation to build the web services project.

You can also run WebLogic Server locally; however, UIM is not supported on Windows.
Therefore, UIM can run on Windows for development purposes only. You can optionally run
WebLogic Server remotely.

UIM
To build your project and deploy in a traditional environment, you must have access to some of
the UIM installation files. You can copy these files from a UIM installation on a UNIX machine
to your machine, or you can install UIM locally. The following UIM files are needed:

• UIM_SDK_Home/webservices/reference_webservice.zip

• UIM_Home/app/custom.ear or inventory.ear

Note

This file is not required for UIM cloud native deployments.

• WebLogic Server patch files

Note

You can use WebLogic Server patch files if they are applicable. These files are
located in the UIM_SDK_Home/lib/*.jar directory.

Design Studio
Install and configure Design Studio to work with the Reference Web Service, and to develop
new custom web services. See "Overview" in UIM Developer's Guide for information about

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 15 of 36

using Design Studio to extend UIM, including information about installing and configuring
Design Studio.

Note

Configure Design Studio to use the correct version of JDK as specified by the
WebLogic Server installation. See "Unified Inventory Management System
Administration Overview" in UIM System Administrator's Guide for version information.
If not configured to use the correct version of JDK, problems can be encountered that
are difficult to trace, debug, and resolve.

You must also set the ANT_HOME system variable. See "Overview" in UIM Developer's Guide
for more information.

Importing the Reference Web Service Project
Import the reference_webservice.zip file into Design Studio. For instructions on how to import
projects into Design Studio using archive files, see "SCD Design Studio Modeling Inventory".

To see the ZIP file directories and files in Design Studio after the import, open the Java
perspective with a Navigator view. Table 4-3 shows the directories and top-level files for the
reference_webservice.zip file.

Table 4-3 Contents of reference_webservice.zip

Directory/File Description

codegen The codegen directory contains files that are generated from the
WSDL and schema files. This directory is initially empty after the
import of the reference_webservice.zip file.

config The config directory contains a properties file that defines
localized error messages used by the web services module.

etc The etc directory contains the COMPUTERNAME.properties file.
See "Configuring the COMPUTERNAME.properties File" for more
information.

src The src directory contains the Java source files that define the
Reference Web Service.

test The test directory contains input test XML files for testing the
Reference Web Service.

webarchive The webarchive directory contains the generated
ReferenceUim.war file.

WEB-INF The WEB-INF directory contains the web.xml file. The web.xml
file is a web application deployment descriptor for the web
service.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 16 of 36

Table 4-3 (Cont.) Contents of reference_webservice.zip

Directory/File Description

wsdl The wsdl directory contains the ReferenceUim.wsdl file that
defines the Reference Web Service example operation. This
directory also contains schema files that support the WSDL
definition inputs, outputs, and faults in the schemas directory.

Reference schemas InventoryCommon.xsd,
InventoryFault.xsd, and InventoryFaultRoot.xsd reside in the
uim_webservices_framework.jar file and
schema_Inventory_webservice.zip file and are automatically
copied to the wsdl/referenceSchemas directory when you run
the provided get-framework-files Ant target later in the process.
The schema_Inventory_webservice.zip file is located in the
UIM SDK.

.classpath The .classpath file is an Eclipse-specific file provided with the
imported project. This file contains the directories for the class
path entries for building.

.project The .project file is an Eclipse-specific file provided with the
imported project. This file defines the project library list, which
lists JAR files that are required to build the project.

build.xml The build.xml file defines several Ant targets that you can run to
build a custom web service, as described in Table 4-1.

reference_webservice.inventoryCart
ridge

The reference_webservice.inventoryCartridge file is an internal
Design Studio file. It maintains project information, such as the
project type, the UIM software version, and Design Studio project
dependency information.

.buildNumber The .buildNumber file is in the project directory. It is an internal
Design Studio file.

.studio The .studio file is in the project directory. It is an internal Design
Studio file.

Note

After importing the archive ZIP file into your workspace, unresolved errors appear in
Design Studio until you configure the project. See "Configuring the Imported Project"
for more information.

Configuring the Imported Project
You configure the project to build and deploy a web service. Configuring the imported project
involves the following actions:

• Configuring the COMPUTERNAME.properties File

• Configuring the web.xml File

• Configuring the Project Library List

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 17 of 36

Configuring the COMPUTERNAME.properties File
You set the variables in the COMPUTERNAME.properties file as the first step in configuring
your project. This file contains the values that vary between projects, such as path names and
the WSDL name. To configure the reference_webservice/etc/COMPUTERNAME.properties
file:

1. Copy and rename the COMPUTERNAME.properties file to reflect the name of the
computer on which you have Design Studio installed. You can determine your computer
name by running the following DOS command:

echo %COMPUTERNAME%

An example of the resulting file name is xlc123tx.properties.

2. Update the parameter values defined in the file to reflect the information appropriate to the
computer on which you are developing custom web services.

Table 4-4 file defines the following parameters for the properties file:

Table 4-4 COMPUTERNAME.properties File Parameters

Parameter Description

WSDL_NAME=ReferenceUim The name of the WSDL file without the file extension. It is
also used for deriving the context path and service URI for
the generated web services WAR file. For example, in this
case the web service context path and URI for the HTTP
protocol is:

/ReferenceUim/ReferenceUimHTTP

and for JMS protocol is:

/ReferenceUim/ReferenceUimJMS

QUEUE_NAME=inventoryCustomWS
Queue

The name of the JMS Web Service Queue. It matches the
name of the queue used in the WSDL for the SOAP
<address> element for the service port.

If you package your custom web service in an EAR file
other than the provided custom.ear file, you must create
your own message queue and configure your custom web
service to use that queue by changing the QUEUE_NAME.

See "Packaging the WAR File in the EAR File" for more
information.

MODULE_NAME=reference_webser
vice

The name of the web service module. The name is used for
creating the distributable web service cartridge. It is also the
name of the directory where the generated web service
WAR file is stored.

FMW_HOME=C:/Oracle/Middleware/
Oracle_Home

The Fusion Middleware WebLogic Server installation
directory name.

WL_HOME=${FMW_HOME}/
wlserver_Release

The WebLogic Server installation path that incorporates the
FMW_HOME parameter, where Release is the directory
version name portion of the WebLogic Server library files if
needed given the installation.

DOMAIN_HOME=C:/Oracle/
Middleware/Oracle_Home/projects/
domains

The directory path of the WebLogic Server domains.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 18 of 36

Table 4-4 (Cont.) COMPUTERNAME.properties File Parameters

Parameter Description

DOMAIN_NAME=uim_Release The domain name where uim_Release is the domain name
with the UIM release number.

UIM_HOME=${DOMAIN_HOME}/$
{DOMAIN_NAME}/UIM

The UIM home path. The DOMAIN_HOME,
DOMAIN_NAME and UIM_HOME parameters collectively
specify the UIM installation path.

Note: The UIM home path is not applicable for UIM cloud
native deployments.

APP_LIB=UIM_SDK_Home/lib The working directory to which dependent JAR files are
extracted from the inventory.ear file. This working directory
is automatically created for you based on the name
provided here.

EAR_PATH=${UIM_HOME}/app/
custom.ear

The directory where the custom.ear file is located.

If you package your custom web service in a custom EAR
file other than the provided custom.ear file, you must
configure your custom web service to use your custom EAR
file by changing the EAR_PATH value.

See "Packaging the WAR File in the EAR File" for more
information.

Note: The EAR_PATH value is not applicable for UIM cloud
native deployments.

POMS_ROOT=C:/uim/
OracleCommunications/
POMSClient/lib

The location of the POMS JAR file.

PLATFORM=C:/uim/
OracleCommunications/
commsplatform/ws

The location of the Platform web service JAR file.

PATCH_CLASSPATH=pathFileDirect
oryAndFile

The path to any WebLogic patch files, if applicable. You
must replicate this parameter for each WebLogic patch file
to specify the path and specific patch file name.

Configuring the web.xml File
The web.xml file must be modified to contain the listener class reference. To configure the
reference_webservice/WEB-INF/web.xml file, add the following:

<listener>
 <listener-class>
 oracle.communications.inventory.api.framework.listener.
 InventoryWebApplicationListener
 </listener-class>
</listener>

Configuring the Project Library List
The project library list of JAR files does not indicate the location of the files, so you must
configure the project library list to point to the location of the JAR files.

Figure 4-8 shows the imported project library list, which includes the JAR files needed to
compile the project.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 19 of 36

Figure 4-8 Project Library List Before Configuring

The required JAR files can be categorized into three groups:

• WebLogic files (FMW_LIB)

• Platform files (POMS_LIB and POMS_PLIB)

• UIM files (UIM_LIB)

You perform the following to configure the Design Studio project:

• Add new variables named FMW_LIB, POMS_LIB, POMS_PLIB, and UIM_LIB to your
project.

• Define these variables to point to the directories listed in Table 4-5.

Table 4-5 Location of JAR Files

Variable Name Directory Name

FMW_LIB FMW_Home

POMS_LIB Oracle_Home/commsplatform/ws

POMS_PLIB Oracle_Home/POMSClient/lib

UIM_LIB UIM_SDK_Home/lib

For detailed instructions on how to configure the project library list, see "SCD Design Studio
Modeling Inventory".

Result of Configuring Project Library List

Figure 4-9 shows the project library list after the variables are added. Notice that the library list
now includes the location of the JAR files, not just the JAR file names.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 20 of 36

Figure 4-9 Project Library List After Configuring

Adding the variables is one way to configure the library list; you can alternatively perform the
following:

1. Write down the names of the required files.

2. Click Add External JARS.

3. Navigate to the directory location of JAR files.

4. Add it directly to the library list.

Either way, the result is the same. The library list has the location to the files needed to compile
the project.

Locating the API Method Signature in the Javadoc
When creating a new web service, you wrap a call to an API manager method. For an
overview of the primary API manager classes, see "Overview" in UIM API Overview.

To locate a particular API method:

1. Access the Javadoc.

For instructions on how to access the Javadoc, see "Overview" in UIM Developer's Guide.

2. Perform a wildcard search for *Manager class.

All manager class names end in Manager, such as TelephoneNumberManager.class,
EquipmentManager.class, and so forth.

3. Open the appropriate manager class.

All exposed methods are defined in manager classes; so, look for a manager class with a
name similar to the functional area that may contain the method you plan to wrap.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 21 of 36

4. Locate the method you plan to wrap.

Information to Capture
You must capture a specific set of information to create a new web service. This information is
available in the Javadoc after locating the method you plan to wrap. Capture the following
information:

• Class name that defines the method to wrap

• Package in which the class resides

• Method signature information:

– Method name

– Input parameters

– Return values

– Exceptions thrown

For example, the CreateLogicalDevice web service operation wraps the createLogicalDevice()
API method. The following information was used to define this web service in the
LogicalDeviceAdapter.java file:

• LogicalDeviceManager is the UIM manager class that defines the createLogicalDevice()
method.

• LogicalDeviceManager resides in the package
oracle.communications.inventory.api.logicaldevice.

• The method signature information includes:

– Method name: createLogicalDevice

– Input parameters: Collection of LogicalDevice objects

– Return values: List of LogicalDevice objects

– Exceptions thrown: ValidationException

Developing the Web Service
Developing a new web service involves creating a new WSDL file, new schema files, and new
Java source files. This section provides information about creating these files.

Creating the WSDL File
The imported project contains the ReferenceUim.wsdl file, which defines the example web
service operation. Model your custom WSDL file after the ReferenceUim.wsdl file. For more
information, see the W3C Web Services Description Language website at:

http://www.w3.org/TR/wsdl

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 22 of 36

http://www.w3.org/TR/wsdl

Note

The ReferenceUim.wsdl file is written to be independent of the application server.
However, the generate-from-wsdl Ant target in the build.xml file is specific to
generating the required source files for deployment into a WebLogic Server
environment. This target is also needed to pull in other XSD files referenced in the
example ReferenceUim.wsdl file.

WSDL Naming Conventions

The ReferenceUim.wsdl file uses WSDL_NAME variable in the
COMPUTERNAME.properties file for naming its various SOAP elements. This naming
convention allows the build.xml Ant targets to parse these elements consistently, and to
generate the correct source files for the web service interfaces and implementation. Consider
the following list of naming conventions for the WSDL file:

• ReferenceUim

This is the name of the WSDL file without the file extension as set by the WSDL_NAME
variable in the COMPUTERNAME.properties file. This name is also used to automatically
set other important variables in the build.xml file, such as SERVICE_NAME and
PORT_NAME. This name is assumed to be the name of the root definitions element in the
WSDL file. This name identifies the name of the following files, which are generated later in
the process: ReferenceUimPort.java, ReferenceUimPortImpl.java, ReferenceUim.war,
ReferenceUimHTTP.war, and ReferenceUimJMS.war.

• ReferenceUimPort

This is the name of the PortType that is generated for the implementation later in the
process. It is used by the generated source ReferenceUimPort.java and
ReferenceUimPortImpl.java.

• ReferenceUimHTTPSoapBinding

This is the name of the SOAP binding for web service operations that are exposed through
the HTTP transport protocol. The list of operations identified in this binding element can be
a subset of the operations identified in the <PortType> element. The list of operations can
be the same as or different from the JMS protocol operations.

• ReferenceUimJMSSoapBinding

This is the name of the SOAP binding for web service operations that are exposed through
the JMS transport protocol. The list of operations identified in this binding element can be a
subset of the operations identified in the <PortType> element. The list of operations can be
the same as or different from the HTTP protocol operations.

• ReferenceUimHTTPPort

This is the name of the HTTP transport port used in the UIMReference service definition.

It references the ReferenceUimHTTPSoapBinding binding element identified earlier. Also,
the SOAP address location uses the following for the context path (HTTP):

http://localhost:7001/ReferenceUim/ReferenceUimHTTP

• ReferenceUimJMSPort

This is the name of the JMS transport port used in the UIMReference service definition.

It references the ReferenceUimJMSSoapBinding binding element identified earlier. Also,
the SOAP address location uses the following for the context path (JMS):

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 23 of 36

jms://localhost:7001/ReferenceUim/ReferenceUimJMS?URI=inventoryCustomWSQueue

For example, if you create a new file named MyInventoryWs.wsdl, the naming conventions
result in:

• MyInventoryWsPort

• MyInventoryWsHTTPSoapBinding

• MyInventoryWsJMSSoapBinding

• MyInventoryWsHTTPPort

• MyInventoryWsJMSPort

Creating Schema Files
The imported project provides supporting schemas for the Reference Web Service operation.
The schemas define the inputs, outputs, and faults of the wrapped methods. The schemas are
used to generate the Java representation of the incoming/outgoing XML, which can then be
mapped to an internal Java entity class (see "EntityMapper.java"). The Java representation is
generated by the generate-from-wsdl Ant target.

For a new web service, new schemas must be written that reflect the inputs and outputs of the
wrapped method.

Note

The Reference Web Service schema files are written to be independent of the
application server. However, the generate-from-wsdl Ant target in the build.xml file is
specific to generating the required source files for deployment into a WebLogic Server
environment.

Modifying the Mapping File

The imported project provides the type-mapping.xsdconfig mapping file. This file maps XML
namespaces to Java packages. For a new web service, you modify the mapping file to update
the namespace-to-Java package mappings.

Creating Java Source Files
The imported project provides the supporting Java code for the Reference Web Service
operation. The following list of Java files is a recommended set of classes to implement.

• ReferenceUimPortImpl.java

• AdapterRouter.java

• EntityAdapter.java

• EntityValidator.java

• EntityUtils.java

• EntityWorker.java

• EntityMapper.java

• EntityException.java

• FaultFactory.java

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 24 of 36

Note

The example Reference Web Service does not contain all of the following source files.

The following sections describe detailed information about the recommended Java source files.

ReferenceUimPortImpl.java

The ReferenceUimPortImpl class is the entry point into the web service logic. This class calls
the AdapterRouter class.

ReferenceUimPortImpl.java is a generated source file with the content based on the
ReferenceUim.wsdl file. This file is generated by the generate-from-wsdl Ant target and is
placed in the following directory:

codegen/WebServiceImpl/oracle/communications/inventory/webservice/ws

Copy this file to the following destination directory:

src/oracle/communications/inventory/webservice/ws

You use this destination directory as a starting point for the implementation of the web service
calling the respective adapter classes.

This class must be modified to call the AdapterRouter for each new web service operation.
Because this is a generated file, the modifications are based on the WSDL file.

Note

When modifying this file with additional operations, do not change the order of the
methods. The generated ReferenceUimPortImpl.java source file has a specific order
of the web service methods, which is based on the order of how the corresponding
operation names are defined in the WSDL. Even though changing the order of the
methods is allowable by the Java language syntax, doing so may cause the web
service to not be found at run time.

AdapterRouter.java

The AdapterRouter class routes the call to a specific adapter. If the input from the external
source requires mapping, the corresponding mapper class is the input/output parameter for
this AdapterRouter class.

This class must be modified for each new web service operation.

EntityAdapter.java

Adapter classes extend the InventoryAdapterRoot class, which extends the Platform-owned
AdapterRoot class. The UIM Reference Web Service provides the LogicalDeviceAdapter class
as an example. Adapters wrap the calls to the UIM API methods. Typically, one adapter class
exists per manager class, such as EquipmentAdapter.java and
TelephoneNumberAdapter.java. However, one adapter class can wrap multiple methods from
different manager classes.

Oracle recommends that adapters be as thin as possible. They should simply contain a call to
the Manager API or to other worker classes.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 25 of 36

An adapter calls EntityValidator and, if validations pass, calls the business layer API method.

An existing adapter class must be modified, or a new adapter class written, for each new web
service operation.

EntityValidator.java

Validator classes define an input validation method per a web service operation (where
applicable). The adapter classes call the corresponding input validation method before calling
the wrapped API method. They throw an error if the validation is not passed.

For cases where input data is passed in, a new validator class is needed per entity. The UIM
Reference Web Service example does not contain this type of class file.

EntityUtils.java

Utils classes define common utility methods used by the Reference Web Service operations.

The existing EntityUtils class can be extended or a new utils class written, as needed during
the development of a new web service.

EntityWorker.java

Worker classes define methods used by the web service operations.

EntityWorker classes can be written as needed during the development of a new web service.
The UIM Reference Web Service example does not contain this type of class file.

EntityMapper.java

Mapper classes map the generated object representation of the schemas (external) to the Java
entity class (internal) for input parameters. Mapper classes map the Java entity class (internal)
to the generated object representation of the schemas (external) for output parameters. One
mapper class maps a single entity. A mapper class can be shared across methods in an
adapter class if the methods use the same entity.

For cases where the source code references the entity data, a new mapper class is needed
per entity.

Note

In the UIM Reference Web Service example, the mapping code logic is contained in
the adapter class.

EntityException.java

Exception classes define exceptions specific to a web service.

The existing EntityException classes can be extended or a new exception class written, as
needed during the development of a new web service.

FaultFactory.java

The FaultFactory class maps Exception objects thrown by the API method to
InventoryFaultType objects returned by the web service.

You may need to modify this class for a new web service; it depends on whether the API
method introduces any new Exception objects that are not already mapped.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 26 of 36

Generating Java Source Based on the WSDL
The imported project contains the build.xml file, which defines the generate-from-wsdl Ant
target. The generate-from-wsdl Ant target copies the latest framework schema files into the
web services project and generates the Java source based on the input WSDL file and
supporting schemas. You can run the generate-from-wsdl Ant target to automatically copy the
framework files and generate the Java source.

The generated package structure and generated files include:

• codegen/src/oracle/communications/inventory/webservice

This package contains the generated Java source files.

• codegen/WebServiceImpl/oracle/communications/inventory/webservice/ws

This package contains the generated Java implementation source code file. Figure 4-10
shows the generated ReferenceUimPortImpl.java source file for the provided Reference
Web Service.

• codegen/WebServiceInterface

This package contains the generated JAR file. Figure 4-10 shows the generated
ReferenceUim_wsdl.jar file for the provided Reference Web Service.

Figure 4-10 Package Explorer View Including the codegen Directory Generated Files

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 27 of 36

After the source is generated, the project workspace has access to all the dependent files
needed to compile the project. The compiled classes are stored in the out directory. Class files
compiled from Java source files that are part of the original imported project are also placed in
the out directory, such as the class files in the out/oracle/communications/inventory/
webservice/adapter directory.

Creating the WAR File
The WAR file contains the compiled classes from the developed custom web service, plus the
JAR file containing the UIM API method that the web service wraps.

The imported project contains the build.xml file, which defines the Ant targets to build the
WAR file. The following Ant targets build the WAR file:

• build-service builds the WAR file for both HTTP and JMS

• build-service-http builds the WAR file for HTTP

• build-service-jms builds the WAR file for JMS

You can run any of these Ant targets to automatically build the WAR file.

Figure 4-11 shows the created ReferenceUim.war file which resides in the webarchive/
reference_webservice directory. The created WAR file name is wsdl_name.war, where
wsdl_name is the name specified by the WSDL_NAME parameter in the
COMPUTERNAME.properties file. The WAR file resides in the webarchive/module_name
directory, where module_name is the name specified by the MODULE_NAME parameter in the
COMPUTERNAME.properties file.

The WAR file contains the following:

• Compiled generated source files (WSDL and XML object representations)

• Compiled developed source files (contents of the src directory)

• JAR file that contains the classes that define the wrapped methods (UIM business logic)

Figure 4-11 shows the generated directory structure and the ReferenceUim.war file for the
Reference Web Service.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 28 of 36

Figure 4-11 Package Explorer View Including the webarchive Directory

Packaging the WAR File in the EAR File
The Reference Web Service WAR file is not packaged in the inventory.ear file and is therefore
not automatically deployed into UIM. Rather, you must manually import the provided
ReferenceUim.war file into an EAR file to deploy.

In UIM traditional deployments, when developing custom web services, you have the option of
packaging the custom web service WAR file into:

• The custom.ear file

If you develop a single custom web service, Oracle recommends you use the provided
custom.ear file. This approach saves you additional development work because you can
use the provided inventoryCustomWSQueue and the corresponding listener class.

• Any custom EAR files

If you develop multiple custom web services, Oracle recommends you use a separate
custom EAR for each web service. This approach involves additional development work
because you must create and configure your own message queue and corresponding
listener class. This is the safest approach for multiple custom web services and provides
the most efficient performance. See "Additional Custom Work" for more information.

In UIM cloud native deployments, the generated WAR file is packaged in the inventory.ear file
using customized image generation. For more information, see "Creating UIM Cloud Native
Images" in UIM Cloud Native Deployment Guide. Remaining steps in extracting the application
file and deploying the inventory.ear file are managed differently in UIM cloud native
deployments. For more information refer to "Overview of the UIM Cloud Native Deployment" in
UIM Cloud Native Deployment Guide.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 29 of 36

Extracting and Updating the application.xml File
Every EAR file contains an application.xml file, which defines the WAR files that comprise the
EAR file. Regardless of which packaging option you choose, the custom web service WAR file
needs to be included in the EAR file, so the application.xml file must be updated to include
the name of the custom web service WAR file.

Extracting the File

The provided custom.ear file contains an application.xml file that you can manually extract,
use as a starting point, and modify as needed.

If you are using the provided custom.ear file to package your custom web service, you can
use the extract.ear Ant target to automatically extract the application.xml file. The EAR file is
specified by the EAR_PATH parameter in the COMPUTERNAME.properties file. The XML file
is extracted into the reference_webservice_home/META-INF directory, where
reference_webservice_home is the location of the extracted reference_webservice.zip file.
See "About the Ant Build File" for more information on the Ant targets.

Note

This extract.ear Ant target only works if EAR_PATH is set to custom.ear; it does not
work if EAR_PATH is set to a custom EAR file name or set to inventory.ear. The
extract.ear Ant target is provided in the build.xml file.

Updating the application.xml File

Example 4-4 shows the original application.xml file from the custom.ear file. For the custom
web service, you add the following information to the <module> element to identify the
following for the custom web service:

• The WAR file name, such as ReferenceUim.war

• The WSDL file prefix, such as ReferenceUim

You add the <web-uri> item for the WAR file name and the <context-root> item for the WSDL
name, as shown in Example 4-5.

Example 4-4 Original application.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/
application_5.xsd" version="5" xmlns="http://java.sun.com/xml/ns/javaee">
 <display-name>oracle.communications.inventory.customear</display-name>
 <module>
 <java></java>
 </module>
</application>

Example 4-5 Updated application.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/
application_5.xsd" version="5" xmlns="http://java.sun.com/xml/ns/javaee">
 <display-name>oracle.communications.inventory.customear</display-name>

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 30 of 36

 <!-- Custom Web Service WAR -->
 <module>
 <web>
 <web-uri>ReferenceUim.war</web-uri>
 <context-root>ReferenceUim</context-root>
 </web>
 </module>
</application>

Additional Custom Work
This section describes additional work you must perform when packaging your custom web
services in your own custom EAR files.

Note

• This section is not applicable for UIM cloud native deployments.

• This section is not applicable if you are packaging your custom web service in the
provided custom.ear file.

Example 4-6 shows the custom.ear file content with a view of the notable directories and files.
An EAR file format is similar to a ZIP file format.

Example 4-6 custom.ear File Content

01 META-INF
02 application.xml
03 weblogic-application.xml
04 InventoryCustomQueueMDB.jar
05 META-INF
06 ejb-jar.xml
07 weblogic-ejb-jar.xml
08 oracle
09 communications
10 inventory
11 ejb
12 message
13 custom
14 impl
15 InventoryCustomQueueListener.class
16 poms-ejbs.jar

Your custom EAR file content must use the custom.ear file content as a template to apply your
modifications. Your modifications may include the following:

• Referencing corelib and customlib

• Creating a Message Queue

• Creating a Listener Class

• Configuring the Listener Class

Referencing corelib and customlib

Each custom EAR file must contain a reference to the following libraries:

oracle.communications.inventory.corelib
oracle.communications.inventory.customlib

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 31 of 36

You reference these libraries within the META-INF/weblogic-application.xml file (line 03 in
Example 4-6).

For an example to emulate, see the weblogic-application.xml file in the custom.ear file.
Example 4-7 shows the contents of the weblogic-application.xml file.

Example 4-7 weblogic-application.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application http://
www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd" xmlns="http://
www.bea.com/ns/weblogic/weblogic-application">
<!-- Use the common Oracle Platform Security Services -->
<!-- oracle.communications.inventory application policies -->
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>oracle.communications.inventory</param-value>
 </application-param>
 <library-ref>
 <library-name>oracle.communications.inventory.corelib</library-name>
 <specification-version>7.3</specification-version>
 <implementation-version>7.3.1.0.0</implementation-version>
 <exact-match>false</exact-match>
 </library-ref>
 <library-ref>
 <library-name>oracle.communications.inventory.customlib</library-name>
 <specification-version>7.2</specification-version>
 <implementation-version>7.2.0.0.0</implementation-version>
 <exact-match>false</exact-match>
 </library-ref>
</weblogic-application>

Creating a Message Queue

If you create multiple custom web services, Oracle recommends they reside in different EAR
files. Web services that reside in different EAR files cannot listen to the same queue, so you
must create a message queue for each web service. In addition, Oracle recommends that you
provide a message-driven bean (MDB) to dispatch requests for multi-threaded processing to
ensure optimum performance of your custom web service.

See the WebLogic Server Administration Console documentation for information about creating
message queues. See the Java Platform, Java EE Tutorial website at:

https://docs.oracle.com/javaee/7/tutorial/ejb-intro003.htm

for more information on message-driven beans.

Creating a Listener Class

You must create one listener class for every message queue you create. Example 4-8 shows a
custom listener class named MyCustomQueueListener. The listener classes implement
MessageListener.

Your custom listener class must reside within your custom EAR file. Specifically, it must reside
within the oracle/communications/inventory/ejb/message/custom/impl directory (lines
08-14 in Example 4-6), within a custom MDB JAR file (line 04 in Example 4-6).

Example 4-8 Listener Class

package oracle.communications.inventory.webservice.mdb;

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 32 of 36

https://docs.oracle.com/javaee/7/tutorial/ejb-intro003.htm

import java.util.HashMap;
import java.util.Set;

import javax.ejb.MessageDrivenContext;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.persistence.PersistenceContext;

import oracle.communications.inventory.api.framework.logging.Log;
import oracle.communications.inventory.api.framework.logging.LogFactory;
import weblogic.wsee.server.jms.JmsWebservicesMessageDispatcher;

@PersistenceContext(name = "persistence/EntityManager", unitName = "default")
public class MyCustomQueueListener implements MessageListener
{
 private static Log log = LogFactory
 .getLog(MyCustomQueueListener.class);
 private static final String CONNECTION_FACTORY = "inventoryWSQueueCF";
 private HashMap<String, JmsWebservicesMessageDispatcher> listeners =
 new HashMap<String, JmsWebservicesMessageDispatcher>();
 private MessageDrivenContext context;

 public void setMessageDrivenContext(
 MessageDrivenContext messageDrivenContext)
 {
 this.context = messageDrivenContext;
 }

 public void onMessage(Message message)
 {
 try
 {
 String uri = message.getStringProperty("URI");
 JmsWebservicesMessageDispatcher listener = getListener(uri);
 if(log.isDebugEnabled())
 {
 log.debug("", "Thread " + Thread.currentThread().getId() + " "
 + Thread.currentThread().hashCode()
 + ": calling onMessage()...");
 }
 if(listener != null)
 {
 listener.dispatchMessage(message);
 }
 }
 catch(Exception e)
 {
 log.error("", "Failed to process JMS message: " + e.getMessage());
 e.printStackTrace();
 }
 }

 public void ejbCreate()
 {
 }

 public void ejbRemove()
 {
 Set<String> keys = listeners.keySet();
 try
 {
 for(String key : keys)

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 33 of 36

 {
 JmsWebservicesMessageDispatcher listener = listeners.get(key);
 listener.shutdown();
 }
 }
 catch(Exception e)
 {
 log.error("", "Error closing the listener: " + e.toString());
 }
 listeners.clear();
 listeners = null;
 }

 private JmsWebservicesMessageDispatcher getListener(String uri)
 {
 JmsWebservicesMessageDispatcher listener = null;
 Object obj = listeners.get(uri);
 try
 {
 if(obj == null)
 {
 listener = new JmsWebservicesMessageDispatcher(uri,
 CONNECTION_FACTORY);
 listeners.put(uri, listener);
 }
 else
 {
 listener = (JmsWebservicesMessageDispatcher) obj;
 }
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 return listener;
 }
}

Configuring the Listener Class

After you create one or more listener classes, you must configure them to listen to their
respective queues. This is accomplished by modifying the ejb-jar.xml and weblogic-ejb-
jar.xml files, as shown in Example 4-9 and Example 4-10.

The ejb-jar.xml and weblogic-ejb-jar.xml files must reside within your custom EAR file.
Specifically, they must reside within the META-INF directory (line 05 in Example 4-6), within a
custom MDB JAR file (line 04 in Example 4-6).

Example 4-9 ejb-jar.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/j2ee/
ejb-jar_3_0.xsd"
version="3.0">
 <enterprise-beans>
 <message-driven>
 <ejb-name>MyCustomQueueListener</ejb-name>
 <ejb-class>
 oracle.communications.inventory.webservice.mdb.MyCustomQueueListener
 </ejb-class>

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 34 of 36

 <transaction-type>Bean</transaction-type>
 <message-destination-type>javax.jms.Queue</message-destination-type>
 </message-driven>
 </enterprise-beans>
</ejb-jar>

Example 4-10 weblogic-ejb-jar.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar
http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">
 <weblogic-enterprise-bean>
 <ejb-name>MyCustomQueueListener</ejb-name>
 <message-driven-descriptor>
 <destination-jndi-name>MyCustomQueue</destination-jndi-name>
 </message-driven-descriptor>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

Importing the WAR File into the EAR File
After you determine which EAR file is to contain the custom web service WAR file, import the
WAR file into the appropriate EAR file.

The imported project contains the build.xml file, which defines the update.ear Ant target. The
update.ear Ant target updates the EAR file by adding the custom web service WAR file and
the edited application.xml file. The update.ear Ant target determines the location of the EAR
file to be updated by using the path you specified in the COMPUTERNAME.properties
EAR_PATH parameter. Run the update.ear Ant target to automatically perform these updates
to the EAR file.

See "About the Ant Build File" for more information on Ant targets.

Deploying the EAR File
The imported project contains the build.xml file, which defines the copyResources Ant target.
The copyResources Ant target copies the referenceWS.properties file from the imported
project to the UIM_Home/config/resources/logging directory. Before deploying the updated
EAR file for the first time, run the copyResources Ant target. Unless you change the
referenceWS.properties file, you only need to run this Ant target one time.

Note

The copyResources Ant target is not applicable for UIM cloud native deployments. If
you want to add and deploy any logging properties files, you should add them to
solution cartridges or to the ora_uim_localization_reference cartridge. For more
information on deploying cartridges, see "Deploying Cartridges" in UIM Cloud Native
Deployment Guide.

If your UIM environment resides on another machine, you must copy the updated EAR file to
that machine before deploying.

For instructions on how to deploy an EAR file, see "Unified Inventory Management System
Administration Overview" in UIM System Administrator's Guide.

Chapter 4
Developing and Running Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 35 of 36

Note

After you have gone through all the steps in this chapter once, you only need to run
the clean, all, and update.ear Ant targets to rebuild the EAR file before deploying it.

Verifying the Deployment
After you have deployed the updated EAR file, verify that the deployment includes the custom
web service by viewing the web services in the WebLogic Server Administration Console. See
"Verifying Deployments" for more information.

Specifying a Deployment Plan
If you placed your custom web service in the custom.ear file, or in any custom EAR file, you
must specify a deployment plan for the updated EAR file.

Specifying a deployment plan enables the EAR file to retrieve property values from the
UIM_Home/app/AppFileOverrides/platform/runtime-poms.properties file, which defines
property values that are used by the persistence framework for cache coordination.

To specify a deployment plan:

1. Log in to the WebLogic Server Administration Console.

2. In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

3. In the left panel, under Change Center, click Lock & Edit.

4. Select the check box next to the updated EAR file that contains your custom web service.

5. Click Update.

The Update Application Assistant page appears.

6. Click Change Path.

7. Change the path to UIM_Home/app/plan.

8. Choose Plan.xml, and click Next.

9. Choose Redeploy this application using the following deployment files, and click
Finish.

Deploying, Testing, and Securing the Web Service
Information about deploying, testing, and securing the web service is described in "Deploying,
Testing, and Securing UIM Web Services".

Chapter 4
Deploying, Testing, and Securing the Web Service

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 36 of 36

5
Developing Custom REST Web Services

This chapter provides information about integrating Oracle Communications Unified Inventory
Management (UIM) with external systems by developing custom REST web services. It
describes the approach to developing web services and the guidelines you should follow.

About the UIM REST Reference Web Services
This chapter uses the UIM Reference Web Service as an example that you can extend.

The UIM Reference Web Service is part of the UIM Software Developer's Kit (SDK). The UIM
SDK provides the resources required to build an Inventory cartridge in Design Studio. For more
information about the UIM SDK, see "Overview" in UIM Developer's Guide.

This chapter assumes you are using Design Studio to develop custom rest web services. If you
use an integrated development environment (IDE) other than Design Studio, you can ignore
the .classpath and .project files in the reference_rest_webservice.zip file.

You can view the contents of reference_rest _webservice.zip file in Oracle Communications
Service Catalog and Design – Design Studio by importing the archive ZIP file into Design
Studio. The ZIP file contains several types of files including the following:

• YAML Files:

The UIMSample1_0.yaml file defines a sample web service operation. The YAML file also
defines the paths that defines individual API endpoints and HTTP methods (GET, POST,
PATCH, DELETE), components, parameters and payload of operation. See "About the
YAML File" for more information about the UIMSample1_0.yaml file.

• Java Source Files :

The Java source files provide the web service operation code. For example, these source
files provide the following:

– Model files generated out of components mentioned in yaml

– An API manager to call UIM core for the operation

– Transaction management for the operation with the commit or rollback results

See "Developing the REST Web Service" for more information about the Java source files
that includes the list and descriptions for each type of the class files, and information about
the files that need to be created or modified.

• Gradle Build File:

The build.gradle file defines Gradle targets that you can run to build a custom REST web
service. Gradle targets are a set of executable tasks defined in the build.gradle file. See
"About the Gradle Build File" for more information.

Prerequisites for Customizing REST Web Services
You require the following prerequisites for customizing REST web services:

• Install Gradle. See “Installing Gradle” for more information.

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 11

• Set up a proxy. See “Setting Up Proxy” for more information.

• Update the properties file from reference_rest_webservice/etc/
<COMPUTERNAME>.properties

Installing Gradle
To install Gradle:

1. Open the command prompt.

2. Run the gradlew command.
The system installs Gradle from wrapper properties.

Setting Up Proxy
After you install Gradle, the corresponding jar files are pulled from the Maven repository. You
can set up proxy by updating the reference_rest_webservice/gradle.properties file.

About the YAML File
The Reference REST web service operation is defined by the UIMSample1_0.yaml file. The
YAML file is located at UIM_SDK_Home/webservices/reference_rest_webservice.zip\yaml,
where UIM_SDK_Home is the local directory for UIM SDK.

The YAML file defines the REST web service operation. The operation defines a requestBody,
parameters, and all possible server responses. For example, the YAML file defines the
following for the createInventoryGroup operation with HTTP method POST:

The request contains all possible responses where each response defines a JSON structure
that is defined in the supporting schemas.

The following example shows the path definition, operation, and the input request message
within a Sample YAML file:

paths:
 /inventoryGroup:
 post:
 operationId: createInventoryGroup
 summary: Create Ig
 description: |
 Creates a inventory group with the given details
 tags:
 - Sample Inventory Group
 requestBody:
 description: The ig to create.
 required: true
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/InventoryGroup'
 responses:
 '201':
 description: The ig were created successfully.
 content:
 application/json:
 schema:

Chapter 5
About the YAML File

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 11

 type: array
 items:
 $ref: '#/components/schemas/InventoryGroup'
 '400':
 description: The request isn't valid.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '401':
 description: You aren't authorized to make this request.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: The request is forbidden.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '500':
 description: An internal server error occurred.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
.
.
.
components:
 schemas:
 InventoryGroup:
 type: object
 description: A inventoryGroup to associate with the resource.
 properties:
 id:
 type: string
 description: The ID of the ig.
 readOnly: true
 href:
 type: string
 format: uri
 description: The URI for the ig.
 name:
 type: string
 description: The name of the resource.
 description:
 type: string
 description: A free-text description for the resource.
 igSpecification:
 $ref: 'Combined.yaml#/components/schemas/Specification'
 startDate:
 type: string
 description: The date and time when the time period starts.
 format: date-time

Chapter 5
About the YAML File

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 11

 endDate:
 type: string
 description: The date and time when the time period ends.
 format: date-time
 place:
 type: array
 items:
 $ref: 'Combined.yaml#/components/schemas/PlaceRef'
 description: The list of associated geographic places.
 parentGroupRef:
 type: array
 items:
 $ref: '#/components/schemas/GroupRef'
 inventoryGroupItems:
 type: array
 items:
 $ref: '#/components/schemas/GroupItemRef'
 description: The list of associated inventory group items.

The above example shows a model schema for InventoryGroup which is the used as the
request body with Content-Type : application/json. For the response, with SUCCESS (20x),
the same schema of InventoryGroup appears. The error model mentioned in the example is
for the error codes.

For more details on OpenApi structure, see https://swagger.io/docs/specification/about/

About the Gradle Build File
The build.gradle file defines Gradle targets that you can run to build a custom web service.
These build targets are a set of executable tasks that help in building a web service.

Table 5-1 describes the Gradle targets defined in the build.gradle file. See "Developing
Custom REST Web Services" for information about when to run these Gradle targets, the
Gradle commands that you should run, and the project to be imported to Design Studio.

Table 5-1 build.gradle and gradleTargets

Target Description

Clean Deletes the generated, temporary, and deliverable
files and directories.

Build Builds the entire source code using Swagger Code
Generator in build/libs.

copyResources Copies the properties files that store localized error
messages to the appropriate UIM deployment
directory. These properties files are located in a
ZIP file in the config/resources/logging directory
and are copied to the UIM_Home/config/
resources/logging directory.

War Generates a war file with the name mentioned in
WAR_NAME in COMPUTERNAME.properties
file.

Chapter 5
About the Gradle Build File

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 11

https://swagger.io/docs/specification/about/

Table 5-1 (Cont.) build.gradle and gradleTargets

Target Description

extractCustomEar Extracts the application.xml file from the EAR file
specified by the EAR_PATH parameter defined in
the COMPUTERNAME.properties file into the
reference_rest_webservice _home/META-INF
directory, where
reference_rest_webservice_home is the location
of the extracted reference_rest_webservice.zip file.
You must edit the application.xml file manually so
that the EAR file can be updated for proper
deployment of the web services.

copyLibs Copies all the Gradle-pulled jars into
reference_rest_webservice\lib, which can be
used as CART\lib for Design Studio .classpath
reference.
Note: Run this target after the build.

copyModelToSource, copyApiToSource,
copyApiImplToSource

These targets are not for use, if you run these will
replace the model, api, impl with the generate
source losing the manual changes.

For more information on Gradle, see https://docs.gradle.org/current/userguide/userguide.html

Guidelines for Developing Custom REST Web Services
This section describes the guidelines for developing a REST web service. It explains class
diagrams that represent the UIM Reference REST Web Service development classes.

You use the Design-First approach to develop custom REST web services.

The Design-first approach is as follows:

• Define YAML with paths and components. Write the YAML to define the operations and
data.

• Yaml-to-Java generation: Use the build.gradle Gradle targets provided by the Reference
REST web service to generate Java source files, based on the YAML.

• Develop a Java web service interface implementation: Use the web service development
environment and tools provided by the Reference REST web service to implement the web
service interface by creating new Java source files and changing the existing files.

For example, the UIM Reference Rest Web Service module is designed using the Design-first
approach. This means that:

Chapter 5
Guidelines for Developing Custom REST Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 11

https://docs.gradle.org/current/userguide/userguide.html

• The InventoryGroupApiServiceImpl, InventoryGroupApiService, and InventoryGroupType
Java source files are generated based on the YAML (Swagger Code generator). This
generation results in the YAML operation being defined in the Java source file, but with no
coding details as a sample template.

• The build generates model, api, impl Java sources.

About Class Diagrams
In the Reference REST web service, a sample POST method createInventoryGroup operation
is available. You use the createInventoryGroup sample as a template while creating the
custom REST web services.

Consider the following recommendations:

• Follow the naming convention of <HTTP method definition><EntityName appended with
sample> for consistency on new operations.

– <HTTP method definition>: POST means create, GET means retrieve, DELETE
means delete, PATCH means update.

– < EntityName appended with sample>: Do not use duplicate schema names with
product REST, similar to LogicalDevice in custom webservice where you use
LogicalDeviceSample.

• Follow the sample template code for the user environment and transaction management.
See "Transaction Guidelines for Rest" for more information on transaction management.

• Run UIM core functionality by invoking the API manager methods.

The following figure shows the recommended class design for the implementation class. The
UIMSample1_0 .yaml file is used to generate the InventoryGroupApiServiceImpl,
InventoryGroupApiService, and InventoryGroupType source files. The
InventoryGroupApiServiceImpl.java example file provides a template class that implements the
interface in the InventoryGroupApiService.java and the InventoryRootService .java source file
within UIM.

The UIMSample1_0.yaml file has a sample structure of OpenApiSpecification.

The Open API Object contains:

• openapi: The version of OAS

• info: Contains general information about API like title, description, version, and so on

• tags: Used to grouping the API resources

• paths: Defines the endpoints of API

• components: Used to define data model (schemas)

Chapter 5
Guidelines for Developing Custom REST Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 11

A web service operation signature contains the following:

• Paths: Defines the URL endpoint (/inventoryGroup) with baseuri from
RestCustomUtils.java to form @Path("/customInventoryManagement/v3/inventoryGroup").

– Http method: The endpoint with Http method post, get, and so on that creates @POST
when the source file is generated.

* OperationId: The operation to be performed for the endpoint with the
corresponding HTTP method is defined here.

* Parameters: The required set of parameters to be passed during runtime to the
endpoint. For example: '/inventoryGroup/{id}' where parameter id is required.

* requestBody: The schema (model) that is provided in the code generating
@Consumes({ "application/json" }), which customizes the request to have content-
type. If no content-type is mentioned, an HTTP “415 Unsupported Media Type”
error occurs.

* Responses: All possible server responses along with content-type to customize
the response @Produces({ "application/json" }) are generated.

• Components: The data models that describe your API inputs and outputs in schema
section

• Schemas: Defines all models used in paths. For example: InventoryGroup which will be
generated as InventoryGroupType

– Type: The type of model. For example: string, object.

Note

The Object types further contain properties to define the model variables.

– Properties: A variety of properties that can be defined with along with its type and
description. You can reuse the models using $ref.

The following operations are run as per the UIMSample1_0.yaml file:

• POST (create): createInventoryGroup

• DELETE (delete): deleteSampleIG

• GET (retrieve): retrieveSampleIg

• PATCH(update): updateInventoryGroup

Transaction Guidelines for the REST Web Services
The Reference web service performs transaction actions in a specific order while managing
operation transactions.

Note

You must follow the steps in the following order. Otherwise, transaction errors may
occur.

To manage the transaction, you write code that performs the following steps:

Chapter 5
Transaction Guidelines for the REST Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 11

1. Start the user environment.

2. Start the transaction.

3. Set the user environment on the transaction.

4. Set up the request, call the API method on the entity manager class, and manage the
response.

5. Commit or rollback the transaction.

6. (Optional) Perform a rollback when an error occurs.

7. Ensure the user environment is ended with a call to the endUserEnvironment method on
success or failure.

The sample from InventoryGroupApiServiceImpl.java is as follows:

UserEnvironment userEnvironment = null;
 InventoryTransactionValue transValue = null;
 InventoryGroupManager lgManager =
PersistenceHelper.makeInventoryGroupManager();
 InventoryGroup result = null;
 InventoryGroupType resource = null;
 try {
 userEnvironment =
startUserEnvironment(restUtils.getHttpRequest());
 transValue = startTransaction();
 transValue.setUserEnvironment(userEnvironment);
 ……….
 result = lgManager.createInventoryGroup(ig);
 …………………
finally {
 commitOrRollback(transValue);

Developing the REST Web Services
Developing a new web service involves generating new model file, new API file, new API impl
file, and creating new Java source files. After you create these files, you should copy model
file, API file, and API impl file to the corresponding paths within the
reference_rest_webservice directory.

This section provides information about creating and copying these files.

Generating and Copying Model, API, and API impl Files
To generate and copy model, API, and API impl files:

1. Navigate to the reference_rest_webservice directory and run the following command:

gradlew build

The above command generates Model, API, and API impl files within the
reference_rest_webservice directory.

2. Open the generated Model file from the reference_rest_webservice/build/swagger-
code-resourcemodel/src/main/java folder.

Chapter 5
Developing the REST Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 8 of 11

3. Remove the following lines from the Model file:

import org.springframework.validation.annotation.Validated;
@Validated

4. Save the Model file and copy the updated file to the
reference_rest_webservice\src\oracle\communications\inventory\rest\model folder.

5. Copy the API file from the reference_rest_webservice\build\swagger-code-
resourceapi\src\gen\java\oracle\communications\inventory\rest\api folder to the
reference_rest_webservice\src\oracle\communications\inventory\rest\model\api
folder.

6. Copy the API impl file from the reference_rest_webservice\build\swagger-code-
resourceapi\src\main\java\oracle\communications\inventory\rest\api\impl folder to the
reference_rest_webservice\src\oracle\communications\inventory\rest\api\impl folder.

Creating Java Source Files
Update the content in <Entity Name appended with sample>Impl.java as per the requirements.

You can refer to the InventoryGroupApiServiceImpl.java , IpSubnetSampleApiServiceImpl.java,
LogicalDeviceSampleApiServiceImpl.java files.

Use the adapter information from uim-webservices-rest-adapter.jar that delivered as a part of
UIM_LIB (<DOMAIN_HOME>/UIM/lib) for associating any existing entities from the product.

Note

A sample REST SDK testing payload is available at reference_rest
_webservice.zip/doc/SamplePayload.txt.

Generating Java Source Based on the YAML File
To generate Java source from YAML using the Gradle build file:

1. Clean the reference_rest_webservice directory as follows:

gradlew clean

2. If the Model, API, and API imple files are not generated yet, run the following command:

gradlew build

3. Copy any properties files that store localized error messages to the corresponding UIM
deployment directory UIM_Home/config/resources/logging as follows:

gradlew copyResources

Note

The properties files are located within a ZIP file in the config/resources/logging
directory.

Chapter 5
Developing the REST Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 9 of 11

Creating a WAR File
A WAR file contains the compiled classes from the developed custom web service.

Before creating a WAR file, copy all JAR files that are pulled by Gradle into the
reference_rest_webservice\lib folder, which can be used as CART\lib, as follows:

gradlew copyLibs

To create a WAR file with Model, API, and API impl, run the following command:

gradlew war

You can customize the name for the WAR file by updating the COMPUTERNAME.properties
file. The generated WAR file resides in the reference_rest_webservice/build/libs directory.

Packaging the WAR File in EAR File
The Reference REST Web Service WAR file is not packaged in the inventory.ear file and is
therefore not automatically deployed into UIM. Rather, you must manually import the provided
WAR file into an EAR file to deploy.

In UIM traditional deployments, when developing custom web services, you have the option of
packaging the custom web service WAR file into:

• The custom.ear file: If you develop a single custom web service, Oracle recommends you
use the provided custom.ear file.

• Any custom EAR files: If you develop multiple custom web services, Oracle recommends
you use a separate custom EAR for each web service. This approach involves additional
development work as you must create and configure your message queue and
corresponding listener class. It is suitable for multiple custom web services and provides a
better performance.

Extracting and Updating the EAR File
To include the corresponding custom REST web service WAR file name, extract and update
the corresponding EAR file. The provided custom EAR file contains an application.xml file that
you can manually extract, use as a starting point, and modify as needed.

To extract the EAR file, run the following command:

gradlew extractCustomEar

Copying application.xml and the WAR File into the EAR Folder
To copy the application.xml and WAR files into the corresponding EAR folders:
reference_rest_webservice\META-INF\application.xml and
reference_rest_webservice\build\libs\ReferenceRestUim.war

Chapter 5
Creating a WAR File

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 10 of 11

Redeploying custom.ear
If you have placed your custom REST web service in the custom.ear file, or in any custom
EAR file, you must specify a deployment plan for the updated EAR file.

To specify a deployment plan:

1. Log in to the WebLogic Server Administration Console.

2. In the left panel, under Domain Structure, click Deployments.
The Summary of Deployments page appears.

3. In the left panel, under Change Center, click Lock & Edit.

4. Select the check box next to the updated EAR file that contains your custom web service.

5. Click Update.
The Update Application Assistant page appears.

6. Click Change Path and then click Next.
The deployment plan is specified and custom.ear is redeployed.

Chapter 5
Redeploying custom.ear

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 11 of 11

6
Deploying, Testing, and Securing UIM Web
Services

This chapter provides information about deploying, testing, and securing Oracle
Communications Unified Inventory Management (UIM) Web Services and any custom web
services you may have created.

Deploying Web Services

Note

In UIM cloud native deployments, you must build customized images for deploying
web services. For more information, see "Customizing Images" in UIM Cloud Native
Deployment Guide.

Each web service is packaged in a WAR file, which is packaged in an EAR file. When you
deploy the EAR file, you also deploy any web services that are packaged within the EAR file.

For example, the Service Fulfillment Web Service is packaged in the inventory.ear file, within
the InventoryWS.war file. So, when you deploy the inventory.ear file, you also deploy the
Service Fulfillment Web Service.

For instructions on how to deploy the inventory.ear file, see "Unified Inventory Management
System Administration Overview" in UIM System Administrator's Guide.

For custom web services, you have the option of placing the custom WAR file within the
custom.ear file, within any custom EAR file, or within the inventory.ear file. So, when you
deploy the custom.ear file, or the specified custom EAR file, or the inventory.ear file, you also
deploy the custom web service. See Developing Custom SOAP Web Services for more
information.

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 7

Note

If custom web services are packaged as part of an EAR file, the EAR must have a
deployment plan defined with the following:

1. The plan directory is UIM_Home/app/plan. This is to ensure that the EclipseLink
cache coordination configuration is available in the classpath for the custom EAR
file.

2. For the deployment plan (the XML configuration file) ensure the following
conditions are met:

• If the EAR file has a deployment plan, it must be created under the plan directory
UIM_Home/app/plan.

• If the EAR file does not have any deployment plan, associate the existing plan
(located under the plan directory UIM_Home/app/plan as plan.xml), to the custom
EAR deployment. For a clustered environment, the plan file name is
ClusterPlan.xml.

Verifying Deployments
You can verify that any UIM web service is deployed by viewing it in the WebLogic Server
Administration Console.

To verify that a UIM web service is deployed:

1. Log in to the WebLogic Server Administration Console.

2. In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

3. Expand oracle.communications.inventory.

4. Under oracle.communications.inventory, expand Web Services.

5. Under Web Services, click the link that represents the name of the web service.

The Settings page for the selected web service appears.

6. Click the Testing tab.

7. Expand the name of the web service.

8. Under the expanded web service, click the WSDL link.

The WSDL file appears. Here, you can view the web service operations that are deployed.

Testing Web Services
After you successfully deploy the web service, you can test the web service.

Web services can be tested by using any software designed to test web services, such as:

• LISA for testing SOAP XML through HTTP or JMS

• SoapUI for testing SOAP XML through HTTP

Chapter 6
Testing Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 2 of 7

Note

If you want to test the UIM cloud native instance, you should update proxy settings
in SoapUI Preferences to exclude the domain name. The default domain name in
the UIM cloud native toolkit is uim.org.

• HermesJMS for testing SOAP XML through JMS

Test Input XML
The UIM installation provides the GSM 3GPP cartridge pack and the Cable TV cartridge pack,
and both cartridge packs use the Service Fulfillment Web Service. The cartridge packs provide
test input XML that you can use to test the Service Fulfillment Web Service operations. For
additional information about these cartridge packs, see UIM GSM 3GPP Cartridge Pack Guide
and UIM Cable TV Cartridge Pack Guide.

You can also generate your own test input XML by using any software that generates XML
based on schema, such as XML Spy, LISA, SoapUI, and so forth.

Pre-configuration for Testing
Before running the Service Fulfillment Web Service operations, you must have the UIM base
cartridges deployed into your UIM environment. The base cartridges are located in the
UIM_SDK_Home/cartridges/base directory. For additional information about the base
cartridges, see "Overview" in UIM Cartridge Guide.

Be aware of any pre-configurations that must be in place before testing any custom web
services.

Securing Web Services

Note

In UIM cloud native deployments, changes such as Adding Policy, Updating Policy,
Removing Policy, or Updating Deployment Plan that you perform using Oracle
WebLogic Console do not persist once the domain restarts. Therefore, before making
the changes, you should package the updates in a customized image. Refer to UIM
System Administration Guide for more information on securing web services. Refer to
the following sections to understand policies.

The Service Fulfillment Web Service has security enabled upon installation. Specifically, the
HTTP and JMS web service ports are associated to the default WebLogic security policy file,
Auth.xml. As a result, a user name and password must be sent in clear text over a secure
tunnel (HTTPS/t3s).

Note

The user name and password, and the payload, are not encrypted to avoid significant
performance impacts.

Chapter 6
Securing Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 3 of 7

When you create a new web service, it is up to you to secure the web service. See "Securing
Custom Web Services" for more information.

About Policy Files
A policy file can be associated to a port, or to a specific operation defined for the port. When a
policy file is associated to a port, it automatically secures all operations defined for the web
service. When a policy file is not associated to a port, a policy file can be associated to one or
more operations. If necessary, each operation can specify a different policy file. If no policy file
is associated to the port, or to any operations, the web service is unsecured and no security
validations are performed.

Upon installation of UIM, the WebLogic default policy file, Auth.xml, is associated to
UIMInventoryHTTPPort and UIMInventoryJMSPort. So, all operations are automatically
secured, and all operations under each port require a user name and password in the SOAP
message header. Example 6-1 shows a SOAP message header with a user name and
password specified.

Example 6-1 SOAP Message Header

<soapenv:Envelope xmlns:com="http://xmlns.oracle.com/communications/inventory/webservice/
common" xmlns:ser="http://xmlns.oracle.com/communications/inventory/webservice/service"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-1"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>uimuser1</wsse:Username>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-username-token-profile-1.0#PasswordText">Welcome@123
 </wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ser:captureInteractionRequest>
 .
 .
 .
 </ser:captureInteractionRequest>
 </soapenv:Body>
</soapenv:Envelope>

Modifying Web Service Security
You can modify the default security settings through the WebLogic Server Administration
Console.

To modify the default web service security settings, see the following:

• Accessing Security

• Associating a Policy File

• Disassociating a Policy File

• Modifying the Deployment Plan

Chapter 6
Securing Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 4 of 7

Accessing Security
To access security:

1. Log in to the WebLogic Server Administration Console.

2. In the left panel, under Domain Structure, click the Deployments link.

The Summary of Deployments page appears.

3. Expand oracle.communications.inventory.

4. Under oracle.communications.inventory, expand Web Services.

5. Under Web Services, click the link that represents the name of the web service.

For example, click the oracle.communications.inventory.ws.InventoryWSPortImpl link.

6. Click the Configuration tab, then click the WS-Policy tab.

The WS-Policy tab lists the policy files associated with the web service. Upon installation,
this page lists:

• UIMInventoryHTTPPort with the Auth.xml policy file associated

• UIMInventoryJMSPort with the Auth.xml policy file associated

7. Expand either port.

All operations are listed under the port.

Associating a Policy File
You can associate a policy file to a port, or to a specific operation defined for the port.

To associate a policy file:

1. Access security for the web service.

See "Accessing Security" for more information.

2. Click the port or a specific operation.

The available policy files are listed on the left, and the policy files associated with the port
or operation are listed on the right.

3. In the left side, select an available policy file to associate to the port or operation.

4. Click the right arrow, which moves the available policy file to the list of associated policy
files.

5. Click OK.

Disassociating a Policy File
You can disassociate a policy file from a port or from a specific operation defined for the port.

To disassociate a policy file:

1. Access security for the web service.

See "Accessing Security" for more information.

2. Click the port or a specific operation.

Chapter 6
Securing Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 5 of 7

The available policy files are listed on the left, and the policy files associated with the port
or operation are listed on the right.

3. In the right side, select the policy file to disassociate from the port or operation.

4. Click the left arrow, which moves the associated policy file to the list of available policy
files.

5. Click OK.

Modifying the Deployment Plan
If you choose to modify the default security settings for the Service Fulfillment Web Service,
then you also need to modify the deployment plan for the Service Fulfillment Web Service.

The deployment plan is located in the UIM_Home/app/plan/Plan.xml file.

When you install UIM, the deployment plan contains the following:

<variable-definition>
 <variable>
 <name>WsPolicy_policy:Auth.xml_Direction_13075993400140</name>
 <value>inbound</value>
 </variable>
</variable-definition>
<module-descriptor external="false">
 <root-element>webservice-policy-ref</root-element>
 <uri>WEB-INF/weblogic-webservices-policy.xml</uri>
 <variable-assignment>
 <name>WsPolicy_policy:Auth.xml_Direction_13075993400140</name>
 <xpath>
 /webservice-policy-ref/port-policy/
 [port-name="UIMInventoryHTTPPort"]/
 ws-policy/[uri="policy:Auth.xml"]/direction
 </xpath>
 </variable-assignment>
 <variable-assignment>
 <name>WsPolicy_policy:Auth.xml_Direction_13075993400140</name>
 <xpath>
 /webservice-policy-ref/port-policy/
 [port-name="UIMInventoryJMSPort"]/
 ws-policy/[uri="policy:Auth.xml"]/direction
 </xpath>
 </variable-assignment>
</module-descriptor>

If you modify the default security settings through the WebLogic Server Administration
Console, the <value> element (bold in the example) gets set to both, and must be reset back
to inbound.

Securing Custom Web Services
When you create a new web service, it is up to you to secure the web service. How you secure
the web service depends upon how you created the web service. For example, if your custom
web service deploys with the custom.ear file, you need to create your own deployment plan; if
your custom web service deploys with the inventory.ear file, you need to modify the
inventory.ear deployment plan that is part of the UIM installation (UIM_Home/app/plan/
Plan.xml file).

To secure a custom web service:

Chapter 6
Securing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 6 of 7

1. Access security for the custom web service.

See "Accessing Security" for detailed instructions.

2. Associate a security policy to the custom web service.

See "Associating a Policy File" for detailed instructions. You can use the security policy
that comes with the UIM installation (Auth.xml), or the security policy that comes in the
Reference Web Service ZIP file (SampleAuth.xml), or create your own security policy file.

Note

The Auth.xml file is automatically available for selection to associate to your
custom web service. If you are using a security policy other than the Auth.xml file,
there is an additional step required to get the security policy file to be available for
selection to associate to your custom web service: The security policy file must be
placed in your project's policies directory before creating the WAR file. Then,
when you deploy the EAR file that contains the custom web service WAR file, the
security policy in the WAR file becomes available for selection to associate to your
custom web service.

When you associate a security policy to the custom web service, a deployment plan is
generated in the form of a Plan.xml file.

3. Associate the generated deployment plan with the custom web service by redeploying the
EAR file that contains the custom web service; the redeploy prompts you to supply the
path to the EAR file, and to supply the name of the deployment plan (Plan.xml).

The prompt to supply the name of the deployment plan may also prompt you to select
Inbound or Both: Select Inbound.

4. Ensure that the deployment plan reflects Inbound. See "Modifying the Deployment Plan"
for detailed instructions.

Chapter 6
Securing Custom Web Services

Web Services Developer's Guide
G36720-01
Copyright © 2014, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 7 of 7

	Contents
	About This Content
	1 Web Services Overview
	About UIM Web Service Standards and Specifications
	About the UIM Web Services Framework
	About the UIM Web Service Module
	About Message Queues
	About Message Queues for Custom Web Services

	About Transaction Handling
	About Exception Stacktraces

	About UIM Web Services

	2 Working with the Service Fulfillment Web Service
	About the Service Fulfillment Web Service
	About Business Interactions and Services
	About Engineering Work Orders

	About the Web Service Packaging
	About the WSDL and Schema Files
	About the WSDL File
	About the Schema Files
	Reference Schemas
	Web Service Schemas
	Business Schemas

	CaptureInteraction
	Associating Business Interactions
	CaptureInteraction Logic Flow
	Validating Input Data
	captureInteractionRequest
	Business Interaction
	Business Interaction Item
	Business Interaction Item Parameter
	Service
	Associated Business Interaction
	ExecuteProcess Element
	ResponseLevel Element

	captureInteractionResponse

	ProcessInteraction
	ProcessInteraction Logic Flow
	Service Configuration Association

	Customizing ProcessInteraction
	Modeling the Service in Design Studio
	Customizing Service Actions
	Customizing the Automation of Service Configurations
	Developing the Custom Code

	ProcessInteraction Example

	processInteractionResponse

	GetInteraction
	GetInteraction Logic Flow
	getInteractionResponse

	UpdateInteraction
	UpdateInteraction Logic Flow
	updateInteractionResponse

	GetConfiguration
	getConfigurationRequest
	Request Search Options
	Request Search Option Examples
	Additional Request Options
	Additional Request Options Example
	ResponseLevel Element

	GetConfiguration Logic Flow
	getConfigurationResponse
	Customizing GetConfiguration
	Extension Points
	Customization Steps
	Customized Response

	GetConfigurationDifferences
	getConfigurationDifferencesRequest
	Request Search Options
	Request Search Option Examples
	Additional Request Options
	Additional Request Options Example

	GetConfigurationDifferences Logic Flow
	Child Configurations
	Example 1
	Example 2
	Example 3
	Overriding the Process Logic that Determines Child Configurations

	getConfigurationDifferencesResponse
	Customizing GetConfigurationDifferences

	UpdateConfiguration
	updateConfigurationResponse

	Customizing the Web Service Operations
	Extending Web Service Requests and Responses
	Additional Information

	Deploying, Testing, and Securing the Web Service

	3 Working with the Network Resource Management Web Service
	About the NRM Web Service
	About the Web Service Packaging
	About the WSDL and Schema Files
	About the WSDL File
	About the Schema Files
	Reference Schemas
	Web Service Schemas
	Business Schemas

	CreateEntity
	createEntityRequest
	Multiple Entities
	Optional Elements
	Example

	createEntityResponse

	FindEntity
	findEntityRequest
	Multiple Entities
	Examples

	findEntityResponse

	FindTNBlock
	findTNBlockRequest
	Example

	findTNBlockResponse

	UpdateEntity
	updateEntityRequest
	Multiple Entities
	Optional Elements
	Examples

	updateEntityResponse

	DeleteEntity
	deleteEntityRequest
	Multiple Entities
	Optional Elements
	Examples

	deleteEntityResponse

	ReserveEntity
	reserveEntityRequest
	Resource Entity Search Criteria
	Multiple Entities
	Optional Elements
	Example

	reserveEntityResponse

	ReserveTNBlock
	reserveTNBlockRequest
	Telephone Number Block Search Criteria
	Example

	reserveTNBlockResponse

	UnreserveEntity
	unreserveEntityRequest
	Resource Entity Search Criteria
	Multiple Entities
	Optional Elements
	Examples

	unreserveEntityResponse

	UpdateReservation
	updateReservationRequest
	Multiple Reservations
	Optional Elements
	Example

	updateReservationResponse

	AssociateEntity
	associateEntityRequest
	Multiple Entities
	Example

	associateEntityResponse

	DisassociateEntity
	disassociateEntityRequest
	Multiple Entities
	Example

	disassociateEntityResponse

	ImportEntity
	importEntityRequest
	Multiple Entities
	Example
	Spreadsheet Format
	Spreadsheet Row Order

	importEntityResponse

	ExportEntity
	exportEntityRequest
	Multiple Entities
	Example

	exportEntityResponse
	TelephoneNumber Sheet
	LogicalDevice Sheet
	LogicalDeviceAccount Sheet
	PhysicalDevice Sheet
	exportEntityResponse Faults

	Determining Criteria Item Names
	Customizing the Web Service Operations
	Extending Web Service Requests and Responses
	Deploying, Testing, and Securing the Web Service

	4 Developing Custom SOAP Web Services
	About the UIM Reference Web Service
	About the WSDL and Schema Files
	About the WSDL File
	About the Schema Files

	About Namespaces
	About the Ant Build File
	Guidelines for Developing Custom Web Services
	Using the WSDL-First Approach to Developing Custom Web Services
	Class Diagrams
	WSDL Interface Guidelines
	Operation Signatures
	Signature Components
	Signature Pattern and Examples

	Schema Guidelines
	Transaction Guidelines

	Developing and Running Custom Web Services
	Configuring Your Work Environment
	WebLogic Server
	UIM
	Design Studio

	Importing the Reference Web Service Project
	Configuring the Imported Project
	Configuring the COMPUTERNAME.properties File
	Configuring the web.xml File
	Configuring the Project Library List

	Locating the API Method Signature in the Javadoc
	Information to Capture

	Developing the Web Service
	Creating the WSDL File
	Creating Schema Files
	Creating Java Source Files

	Generating Java Source Based on the WSDL
	Creating the WAR File
	Packaging the WAR File in the EAR File
	Extracting and Updating the application.xml File
	Additional Custom Work
	Importing the WAR File into the EAR File

	Deploying the EAR File
	Verifying the Deployment
	Specifying a Deployment Plan

	Deploying, Testing, and Securing the Web Service

	5 Developing Custom REST Web Services
	About the UIM REST Reference Web Services
	Prerequisites for Customizing REST Web Services
	Installing Gradle
	Setting Up Proxy

	About the YAML File
	About the Gradle Build File
	Guidelines for Developing Custom REST Web Services
	About Class Diagrams

	Transaction Guidelines for the REST Web Services
	Developing the REST Web Services
	Generating and Copying Model, API, and API impl Files
	Creating Java Source Files
	Generating Java Source Based on the YAML File

	Creating a WAR File
	Packaging the WAR File in EAR File
	Extracting and Updating the EAR File
	Copying application.xml and the WAR File into the EAR Folder

	Redeploying custom.ear

	6 Deploying, Testing, and Securing UIM Web Services
	Deploying Web Services
	Verifying Deployments

	Testing Web Services
	Test Input XML
	Pre-configuration for Testing

	Securing Web Services
	About Policy Files
	Modifying Web Service Security
	Accessing Security
	Associating a Policy File
	Disassociating a Policy File
	Modifying the Deployment Plan

	Securing Custom Web Services

