ORACLE

Oracle Utilities

Application Framework Software
Development Kit

Developer's Guide

Release 4.5.0.1.2

F83917-01

August 2023

Oracle Utilities Application Framework Software Development Kit
Release 4.5.0.1.2

F83917-01

August 2023

Documentation build: 8.14.2023 17:58:59 [SDK_1689201599000]

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under alicense agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
trandlate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to
license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create arisk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.Intel and Intel
Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is aregistered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expresdy disclaim all warranties of any kind with respect to third-party content,
products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Chapter 1. Oracle Utilities Application Framework Software Development Kit............ccccceeiieeeeineniinnnnnens 7
Chapter 2. USEr GUIE..........uuiiiiieeeiciieiieeeteeeeteeeeneeeeeeeeenaeeeeeeeeensssssseseesnssssssssessnssssssessssnsssssessssnnsssnsesane 8
OVEIVIBW...... ittt ettt ettt bbb et ettt e b e e bt bt e bt et et bt e bt ebe bt ent e s b st sbeebeententenaenaeee 8
Converted COBOL PrOgramiS........cccueieiiiiiieieieierie sttt et e sttt e e testeste e st eseeseesesaeesesseeneensensessesnens 8
Development ENVIFONIMENT.cc.oi ettt et e e et e et e e aae e eaae e eateeeateeeaeeeeanas 8
OVEIVIBW....c.iiiieieeit ettt ettt ettt et e b ekt b e bt et et e bbbt eb e e bt et et e sbesbesbeebeesnennens 8
Components of the Software Development Kit...........ccccooieiieieeiiinieceeeesee e 9
DiIrECTOTY STTUCTUN ettt ettt ettt ettt et e e bt e e bt e eaeeeaeeenbeeebeeeseeenneean 11
Synchronizing with the Project REPOSITOrY..........c.coviiuiiiuiiiieiiceceeeeee e 18

RV = £5] Lo o = J PRSP RPRUSPR 19
ProduCt SINGIE FIXES....uieiieiieiieeieceeeee ettt ettt sttt et b e e b e s saessaesseensaensesnsesnsensnan 20
BUIIA SEIVET ...ttt b et h ettt b et b et e e e st st e e neebeseenes 21
Tailoring Your Oracle Utilities Application Implementation............coceoeriiiiineiee e 21
Preserving CUStOmMEr ChangEs.........oouieuioiieiecececee ettt ettt e enes 22
JUNIE 1SN ettt et e et e et e e e be e s b e e eabeeeebeesabeestbeesabeesseeasseeeseenens 26
= gL F= T o I =TS Ao 1] TSRS 26
Technical BaCKGrOUNG...........oooiiiiieeee ettt et ettt et et e e beeaaeenaessnesneenseenes 43
TECHNOIOGY OVEIVIEW......oieiiiiiiiiecte ettt ettt ettt e et e et eeaaeeteesteesteeveesseeaseersesreens 44
OUAF WED SEIVICES.....ccueiieieeiietiet ettt sttt et et e e be s te et esteneeneeseeseeseeseeneensesenseeseenas 45
SPL Service XML Metainfo FileS........coviiiieieeiiee ettt 46
Server ArChitECIUrE OVEIVIEW........co.iiuiiiiieieieteee ettt 51
Client ArChITECTUIE OVEIVIEW......c..iiiiiieiieeieiieee ettt ettt e et et e et es e eneenaensesaeeneeseeneesensens 52
SPL CHENT APttt ettt et a et et sttt et et e be st e e e st e te e e st ebeeaeneebeaseneeneas 56
METAAATA DVEIVIEW. ...ttt b et b et e st b et e st b et et ebe st et bt ebeneens 73
Generated Tab Menu Metadata...........ooieieieeiiiee e 73
Generated Ul Program Component Metadata...........covevieiieiieiiciecieeeeeeee e 74

Menu and Navigation Metadata...........ccoooiiiiiiiicee e 76

Contents | iii

Table-Related Metadata..........cccoooiieiieiieiececeee ettt sttt st sre b e aaeens 77
Maintenance Object Metadata...........cccoouiviiiuiiieiiiieee et 79
Defining Generator TOOIS Metadata...........cc.oceiiiiiiiiiiiceeeee ettt e 80
DEVEIOPMENT PrOCESS........oiitieiieiieieeie ettt ettt ettt et esteebeesbeeebestaesba e seesseesseessesssesseessaenseensennsenns 81
HOOKING INTO USEI EXItS.....oiieiiiiieieceee ettt ettt et ettt ete e eae e 81
Extending BUSINESS ENTIIES.......cooiuiiiieiiciiceeceee ettt ettt be e e 81
Extending MaintenanCe ClasSSES......ccuiuiiiieiiiieiieiieeieet ettt et ebeeseeesessaesse e seeseenseessesssensnas 83
Creating BUSIiNESS COMPONENTS.......ooiiiiiiieiiie ettt e e e e e ere e e st e e e e seraeeessneeeeenaaeeas 84
Plugging in AlQOTTRMIS........ocuiiiiiiiceee ettt ettt st veebeeaseeteeeteesreeveens 85
Creating BackgrouUnd PrOCESSES.........cc.evuiiiiiiieiieieeieeie ettt ettt et esteeseenseessesssessaesseenseas 86
Creating MOs and Maintenance TransSacCtionsS..........c..ccooiiiiiiieciceeee e 87
Creating Javadocs for CM SoUrCe COE........c.oooviiiieiieiiiiecieecteeteee ettt 88
COOKDOOK. ...ttt ettt e ettt e st et e e be et e eabeeteesteesteebeesbeesbessaesseeseenseenbeessenseenseenns 89
HOOKING INTO USEI EXItS.....oiieiiiiiiieeeee ettt ettt et ettt ete e ete e 89
Maintaining General-Purpose Maintenance ClasSSes.........cccveviiiiiiiiiieiieeieee et 104
MaINTAINING MOS..... ettt et e st e ettt e seb e e e nbe e naeesnseesseeessseeasaeenseenneeans 106
Maintaining Database Meta-data..............oooooouiiiiiiiccceee e 110
Maintaining Java ClaSSES.........couiiiieiieiiciecieecte ettt ettt et te e be b e eseetaeeteesreeareens 111
MaINTAINING SEIVICES. ... ittt et e st e st e e s ate e st e eneeeseeesaeesaeenneenn 130
Maintaining Foreign Key REfErENCES.........cc.ovviiiiiiieicieeeeee et 130
Maintaining LOOKUP TabIES.......c..ooiiiiiiice ettt et 131
Maintaining Navigation KEYS..........oo ittt ettt et et e e tee e e e e 131
Maintaining Navigation OPtiONS..........ooi it e v e e eareeeenes 131
Maintaining USEr INTEITACES.coouiiiieeieceeceeecteee ettt ettt ettt veer e e eeneereeereens 131
MaINTAINING MENUS...... ..ottt et e et e st e e s st e e sseeesaeenseeenseeenseeenseeenns 132
Maintaining ApPliCatioN SECUTILY........ccieieieieiee ettt ettt eseeneens 132
Maintaining Ul Components (Translation)...........c.ccoeviviiiiirieiiiieiicicceeeeee e 132
Plugging in AlGOTITNMIS........oouiiiiieiieiieeee ettt et e e e ssaeste e beebeenbeenseees 149

Maintaining Portals and ZONES............ooeiouiiii ettt 152

Contents | iv

Maintaining Background PrOCESSES..........ccuevieriiiiieiieiieiese ettt esbe s eeaessaessaesees 153
Creating Javadocs for CM SOUICE COAE..........coviiuiiiiiiieee et 156
UPGrade JSP 10 XSLTottt ettt ettt te v e et eeabeeaseeteesae e beenveenns 157

U 13T T ST TSRS 160
Environment BatCh ProgramiS..........o.ooouiiuiiieeee ettt ettt et ettt et eae e 160
SEIVICES ..ttt ettt ettt ettt a e h e ea et et a et bttt netes 162
ECliPSE TOOIS/WIZAIAS......c.eiiieieeeeieee ettt ettt st s ae et e e e e sae e enes 163
UPGrade JSP 10 XSLT ... oottt ettt et te e teeete e ae e eteeeaeeeteeneeenes 179
JAVAAOCS. ...ttt bbbttt ettt ene 180
Chapter 3. Developer GUIdE..........cccciiiiiiiriiiiiiieieeeeeeeeeeeeeeeeeesssnnsssaessssassssesasesssseseessssssnsnsssssssssssssssssssss 182
OVEIVIEW....c.eiteeeteet ettt ettt ettt h et e bt et eat e sat e she e s bt et e et e eeteeutesbeesbeenbeemteemnesanenaeens 182
JAVA ANNOTATIONS......oiiiiiiiiie ettt ettt st ettt sb e et enne e 182
PUDIIC APttt st e sttt e b e st et e e e e s esees e s eseese b eneese s entesesaenseneesesenens 185
SQL RETUIMN COUES....c ittt ettt ae st ae bt s e be st et e bt s be e e st sbenseneenesbeneas 185
Standard BuSiNeSs MEhOAS.cc.oiuiiiiiiiiic et 186
Business Entity PUDIIC MEthOdS............ooiiiieieecceeee e e 187
Maintenance Class PUblic MEthOdS...........cooiiiiiiieei s 188

UL JAVASCIIPT USEE EXITS...iiiiiiiiiiiie ettt ettt ettt e e e sta e e taeetbeestbeessaeessaeessaesssaanssaens 189
Java User Exits (interceptors) Interfaces and ClassSes............ccoveeoveveueceeeeeeeeeeeeeeeee e, 214
RequestContext MEthOdS...........c.ooi ettt 221
DAta OBJECES.....uiiiieiece ettt ettt e b ettt be b e b e e aeesaeeeteereenns 221
APPIICALION LOGS...uiiiiiiiiiiiiiieeiiete ettt ettt ettt et e e e saesseesse e seesseesseesbesssaeseesseeseenseenseessasssenssenses 224
Logging Within BUSINESS LOGIC........cciiiuieieieee ettt ettt ens 224
Configuring Logging at RUNTIMIE.........cooiiiiiiiice et 225
Java Programming STandards.............cceoiiiiiiiieniieiieiece ettt ne e ae e 226
RATIONAIE. ...ttt ettt et s a ettt et s et e st et e bt st e e et e aeeenea 227
GUIAEIINES ...ttt b s bbbttt b s bbbt et ebe st et ebe e b nnenea 227
NaAMING STANAAIAS. .. .iciiciieieceeeee ettt et et e et este et e et e ebeesbeessesteesseesseenseessesssesseesseens 228

HQL Programming StandardsS............oooviiiioiiiee ettt ettt ete e eae e eaeea 231

Contents | v

EXAIMIPIES. ..ottt ettt ettt ettt e et eeta e teesae e be et e nbeesbeetbeatee bt enbeenbeenbeeaaeeraennean 233
UNHON QUETIES. ..ottt et e ettt e e et e e et e e e eataeeestbeeesssbeeeessseeessssaeessssaeeesseeeasseeeanns 234
POITOIMMANCE. ...ttt ettt ettt et benaens 234

2 1T 0] USRS 234
SQL Programming StandardS............ccoooiiiiiioiieee ettt ettt e te e eaeaas 235
CompoSiNg SQL StatemMENTS.......oiiiieiie ettt eb e e b e e s tbe e tbe e sbeesseessseenens 235
Testing SQL StatemMENTS.oi ittt et e et e et e et e st e et e e sateesnseesnseenneeeneeans 241
More Extensive Performance TeSHING........cooviiiiiiieeceee e 247
SQL Development and Tuning Best PractiCes.........ccvovuieiiiiiiiiiiieieceeeee e 247
Database DESIGN......cccuiieiiiiieieeie ettt ettt ettt eebe et e e b e et e e teesteesbe e beenbeeabeeaeenre e beebeenbeenbeeneens 249
Database ObJect Standard............c.couoiiiiiiieieieieeee ettt sttt beereene e 250
SYSTEM TaDIE GUITE........ooiviiiiiiieeeee ettt ettt et b e et e e te e e aeesbeebeenbeeasesasennas 254
GV €T o 1= = Lo o TSSO 254
Metadata for KEY GeNEratioN...........cciiiiuiiuiiieieieceeeeeetet ettt et sae et et ss s ens 255
Development Performance GUIAEIINES...........c.ooviiiiiiiiiieieeeceeeeeeee et 256
Object-Relational Mapping: BaCkgrouUnd............c.cooieiiiiiiieieeieeeese et 256
AVOIA EXIFA SQL...eceeeiiieeeee ettt sttt bt s ettt b ettt sttt e aeneene 261
Prepared statement - Use biNdiNg..........cooouiiiiiiiiiiie s 261
Service SCript VS. JAVA SEIVICES.oi ittt ettt et e s e e sete e seaeesnseanns 261
Java Performance PatlerNS... ..ottt 262
BatCh PerfOrmManCe.........o.oou ittt 262
Light BUSINESS ODJECES......eiiiiiiiiiieieee ettt ettt e teesbeesseesaesssesssensean 262
DAtA EXPIOTEIttt ettt e ettt e te e te et e e e e ae e e te e teeeteeteeaneens 265

UL MAPS @NA BPAS......oeiieieeeeeee ettt ettt ettt e s e e ta e te e te e beeaseeabeetaesaneaen 267
Diagnosing PerformanCe ISSUES...........ccoouiiuiiuieeieiieeeeeeee ettt ettt eae s 267
Optimization and Performance Profiling.............cccoooiiiiiiioiee e 268
References and Additional RESOUICES...........ccueuiiiiiiiriiniciieee e 272
Chapter 4. Packaging GUIAE...........ccceiiiiirieeiieiieieierrreeeeeeeeeeaeeeeeeeeeeeeeeeeeeesannsssssssssssssssssssssssssnssssnans 274

CM Packaging Utilities COOKDOOK..........cciiiiiiiiii et 274

Contents | vi

App Server CM Packaging OVEIVIEW..........cccuiiiiiiieriieie e eie ettt et et ete st e steesreebeesaeeneesseeseeenns 274
App Server CM Packaging TOOIS.........ooui ittt ettt ettt et eaeens 280
POST INSTAIl SETUP.eoeiiiiiieeeceeeeet ettt ettt ettt et et e e ab e e aeesteeeaeebeenreenns 280
Using the extractCMSoUrce.pIX ULIlITY.......cccoooieiiiiiiiieeeeeee et 281
Using the appIyCM ULITIEY.......covoiviiieieeeeeeee ettt eae e 282
Using the create_CM_Release ULility..........ccocoieiiiiiiiiiieeeeeeeeee e 284
Using the create_CM_PatCh ULIliTy........cccooveiieiiei et 285
Multi-CM Application FUNCHIONAIITY..........cccoeiiiiiiiicicecee e 287
CM System Data Packaging TOOIS........ccuiiiiiiiiiicii ettt ettt ettt ve e e e e e 288
CM System Data Packaging OVEIVIEW..........ccuiviiiiieiiieiieieeie ettt ettt ebeebeenveeenas 288
EXTrACT PrOCESS...ceeioeiiie ettt et sttt ettt ettt naeen 289
UPIOAA PrOCESS.....ccuvieeiiceie ettt ettt ettt ettt e b et e s te e e te e beeabeenbeeeseeaeesaeesaeenseenns 291
Tailoring Your Oracle Utilities Application Implementation.............cccoevieeieciii i 294
Preserving CUStOMEr ChaNGES.........oouiouiiieeeeie ettt ettt ettt eae e e e eteeeaeens 294

Chapter 1. Oracle Utilities Application Framework
Software Development Kit

Welcome to the Oracle Utilities Application Framework Software Development Kit.

The Oracle Utilities Software Development Kit is a set of utilities designed to build applications based on
Oracle Utilities Application Framework, the application framework built by Oracle. It provides utilities for
implementers to extend applications without compromising upgradeability. This document describes the

Software Development Kit.

This document is divided into the following parts:

 The User Guide describes how to use the Software Development Kit to customize products.
 The Developer Guide presents information that aid the development process including technical

references and standards.
 The Packaging Guide describes the procedures for taking developed code and data to the target

environments.

Chapter 2. User Guide

Overview

The Oracle Utilities Software Development Kit is a set of utilities designed to build applications based
on Oracle Utilities Application Framework, the application framework built by Oracle. It provides utilities
for base product developers and implementers to extend OUAF applications without compromising
upgradeability. This document discusses the details of application development using Software

Development Kit, including:

« The Development Environment section describes the environment that developers work on while
using the Software Development Kit.

- The Build Server section describes the procedure for setting up a build server.

- The Technical Architecture section describes applications developed on framework. It describes
the framework technical architecture at a high level and then describes its components in detail.

» The Meta-data is the core component of applications built on framework. The meta-data section
describes the purpose, structure, and use of the meta-data tables.

- The Development Process section contains high level, quick reference guides on common tasks in
building applications based on framework.

 The Cookbook section describes the development tasks in detail. The Development Process
section contains links to specific sections in this section.

- The Utilities section describes the tools provided with Software Development Kit. These tools
include batch programs and Perl scripts developed to automate several stages of the development

process.

Converted COBOL Programs

! Important:
As of Oracle Utilities Application Framework Release 4.3.0.0.0, all COBOL programs have been
converted to Java. This version of the SDK therefore does not require a COBOL runtime or
compiler. The term COBOL is still used to refer to metadata in some places, but in those and any

other case, "COBOL" in this document implicitly means "Converted COBOL Program".

Development Environment

Overview

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 9

The App Server is the Development Environment

The Software Development Kit development environment is built on a standard app server install of the
product being customized. Put another way, the app server is the development environment.

Source code is written and generated within the app server directory structure and executables are
generated where the app server expects them and are therefore ready to be executed.

For example:

« Ul code is written directly where the app server looks for them.
* The jar file for the Java programs is created directly where the app server looks for it.

Development App Server is Local, Not Shared

Each developer has a development app server in his workstation for each project. This means that a
developer can code and unit test all within his workstation. This also means work-in-progress code
contained within the developer's workstation.

Repository for Project

All finished code is submitted into the project repository. As such, developers synchronize with the project
repository to get their local development environments current with the rest of the team.

The project repository is also set up as a development environment. When developers synchronize with
the project repository, they get a development environment including configuration necessary for that
project.

Components of the Software Development Kit

The following diagram illustrates the development environment.

Note:

Please see the installation guide for instructions on how to set up the Software Development Kit

and its components.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 10

Development Proje_ect
Workstation Repository

Sync / Submit Code

Project
Dev DB
i

=il

Development Environment

Development
Client

The following are both Development
Clients:

* Project Repository
* Development Workstation

Development Clients have:
* Development App Server
* QUAF SDK Client

» Java IDE

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 11

Development Client

Project Development Database

Each project has a development database. This is a regular database install of the product that is being
customized. System data for customizations are stored in this database. Development processes
like code generation connect to this database. In addition, development app servers in development

workstations connect to this database.

Project Repository

The project repository serves the following purposes:

- It is the central storage for all completed, unit-tested code.

- It provides the environment from which to build the latest state of the project.

- It provides the latest state of the project dev app server from which all developers can synchronize
with.

- It is the source for CM Packaging.

To support these purposes:

- It has to be accessible to all developers.
* It is set up as a development client, e.g., similar to a development workstation (see Development

Workstation below).

Development Workstation

Developers write, generate, compile, and test code on development workstations. A development client is

installed for each project that the developer works on.

The main components of a development client are the following:

« Project Dev App Server. Code is developed on and executables built into the project dev app
server.

« Software Development Kit Client. This is the primary development tool of the Software
Development Kit.

- Eclipse SDK. This is the Java development tool used in the Software Development Kit.

Directory Structure

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 12

The App Server Directory

As mentioned earlier, the app server is the development environment. Source code and executables are
therefore placed within the directory structure of the app server.

Standard App Server Directory Structure

A typical application server will be installed with a directory structure similar to this:

bin
cobal

FH &

ekc

[IE

! java
ks

) logs

FH H H

) produck

[

scripks

splapp
struckures

HHH

templates

[+

, Ekmp

) koals

[+

Within this structure only some of the subdirectories are of interest to a developer.

The cobol directory may still exist for some applications (e.g., CCB), but that is now obsolete as all COBOL

programs have been converted to Java for edge applications running on OUAF 4.5.0.x.

The spl app directory contains all the main application files, including the deployed custom jars (cm j ar)
and Web server files (e.g. JSP, Javascript).

= |2 splapp
= |[Z) applications
= 21 appWiewer
1 config
=l) data
+ () source
= () wml
oM
1 images
5 WEB-INF
= 1) help
[ARA
[EMG
5 WEB-INF

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 13

= [roak
|5 bakch
2 i
I3 em
I cm_templates
I code
= [common
+) configlab
|5 database
|5 images
|5 portalll
125 report
F 15 security
=) todo
= (2 kil
) WEB-INF
F 155 workflow
H) xai
51 xjs_templates

= 15 %Alapp
IC5) WEB-INF
I billiew
= 123 mpl
I lib
= 1= standalone
I config
= lib
= 15 xai
IC5) schemas
[®miMetalnfo

Additional Directories for Development

Java

A directory structure with a base directory of java is used for Java development, as shown in the following

image.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 14

=l) java
= I3 source
=l I cm
1 cobolServices
= |1 com
= |1 sphag
=l I cm
4 () domain
=l) sourceqen
=l I3 cm
[cobaolServices
= [com
= |1 sphag
= I cm
) domain
[services
=l) target
=l I3 cm
[cobalServices
= [com
= I sphag
= I cm
) domain
[services

« source contains the code that the developer writes or generates that is submitted to the repository.
Under this is the com.splwg.cm.domain folder, which contains the CM Java source code.

- sourcegen contains generated code that is necessary to build the project. All files in this structure
are generated and therefore must not be modified manually in any way.

- target contains the runtime files created from source and sourcegen. The content of this directory
is what is deployed as a jar file to the app server. All files in this structure are generated and
therefore must not be modified manually in any way.

» The cobolServices folder contains any Converted COBOL service XML mapping files.

Project Configuration Information
Project information is stored in the SPLSDKCommon directory structure.

- eclipseLaunchScripts contains the Eclipse launch scripts for various tools.
- eclipseProject contains the project configuration information for Eclipse.
- tools contains the tools that are required for the project.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 15

= [0 SPLSDKCommon
1 eclipselaunchscripks
1 eclipsePraject
) boals

Pertinent Directories in the App Server

Item

Java sources

Web Application

Standalone Applica-
tion

XAl Schemas

Service XML files

Eclipse Launch Scripts

Eclipse Project

Directory

java\source\cm\com\splwg\cm.domain

splapp\applications\root\cm

splapp\applications\root\WEB-INF\lib

splapp\standalone\\lib

splapp\xai\schemas\CM*.xml

splapp\xmiIMetalnfo\CM*.xml

SPLSDKCommon\eclipseLaunchScripts

SPLSDKCommon\eclipseProject

Software Development SPLSDKCommon\tools

Kit Tools

Content

Java source code.

Ul code.

cm.jar file is deployed
here.

CM?* jar file.

cm.jar file is deployed
here.

XAl schemas.

Service XMLs for Java.

Eclipse launch scripts.

Project configura-
tion information for

Eclipse.

Tools required by the
Software Development
Kit.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 16

Client Directory

The Oracle Utilities Application Framework (OUAF) Software Development Kit client directory contains
both the Software Development Kit itself and some project-specific information such as the Eclipse

workspace.

The location of the Software Development Kit client is stored in the environment variable SPLSDKROOT.

= 120 auafsdk,
=) ccB_250 101
[[eclipseworkspace
I et
+ [CCB_250_102
= [SOk

The Software Development Kit Client

The Software Development Kit client is installed in Sbk/ <ver si on>.

B S0k
) eclipse
J help
Scripks
shortcuts
, kemp
Tools

The SDK folder has the following scripts at the top level:

E App.ico
] setCommonEry, bat
[E] setsdkenw bat

=
e

h| setepleny, bat

"5; splUserOptions, bat

Additionally, a copy of Eclipse is installed later into the eclipse directory.

Note:
Updates are unique versions of the Software Development Kit and therefore have their own

directories.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 17

(L ™
Note:
A separate copy of Eclipse is installed per version of the Software Development Kit client because
each version may have its own set of plug-ins and the plug-ins must be in the plugins directory of

Eclipse.
N /

All of these files are not meant to be executed directly by the developer and are intended to be executed

through scripts in the shortcuts folder.
The set sdkenv. bat script specifies the OUAF SDK version version and installation folder.

The set pl env. bat scriptsets up the environment variables needed to correctly run a development

environment for the application server.

(L N
Note:
A copy of Eclipse is installed later into the eclipse directory. This folder is created when the
user first runs the startEclipse shortcut script. A separate copy of Eclipse is installed per version
of the Software Development Kit client because each version may have its own set of plug-ins,

and the plug-ins must be in the pl ugi ns directory of Eclipse.
- J

Project Directories

Each project has its own directory.

= 120 auafsdk,
=) ccB_250 101
[[eclipseworkspace
I et

- eclipseWorkspace contains Eclipse workspace files.

- etc contains additional project-related files, including set spl env. bat, which is used to set
environment variables for the project. This script is executed before other scripts so that
succeeding scripts operate on the project.

- eclipseProject (not shown above) exists only in development workstations (not in the project

repository). It is a copy of the same directory in the app server.

Note:

setsplenv.bat is generated when the project is created/configured.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 18

Shortcuts Directory

The shortcuts directory contains various scripts used in development.

| buildappviewersrcdL , bat
&5 buildPrompted.cmd

] cammandPrompt. bat

] createMewEny. bat

i) displayErvironment, bat
4] generatelavadoc.bat

%] generateLike.bat

| newGeneratar, bat

25| reindexJavadoc, bat

25 setupSvermiPrompled bat
& startEclipse. bat

] switchEnviranments. bat

| updateXMLMetalrfo.bat

Except for conmandPr onpt . bat, cr eat eNewEnv. bat, and st art Ecl i pse. bat, all of these script are intended to

be executed on the command line (see commandPr onpt . bat).

The commandPr onpt . bat script initializes the appropriate environment variables for a development
environment so that OUAF SDK scripts, particularly those in the shortcut directory, can be executed on the

Windows command prompt.

The creat eNewknv. bat script allows a developer to set up another development environment for another
application server in the workstation. The initial development environment is first created on installation
of the OUAF SDK.

The start Ecl i pse. bat script installs the Eclipse IDE and sets up the OUAF plugin in Eclipse if these
are not yet installed. Otherwise, it initializes the appropriate environment variables for a development
environment that the OUAF Eclipse plugin requires.

Synchronizing with the Project Repository

Developers synchronize the whole of the app server directory except for the following:

* java\sourcegen
« java\target
« splapp\xmIMetalnfo

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 19

« splapp\applications\root\WEB-INF\lib\cm.jar
« splapp\standalone\lib\cm.jar

« splapp\XAIApp\WEB-INF\lib\cm.jar

* logs\system

Versions

Version Number

The Software Development Kit version number comprises five period-delimited segments. The first four
segments indicate the Framework (FW) version number, and the fifth specifies the SDK update number

The SDK update number starts with 1 (and increments by one) for each FW version. For example, an SDK
version of 4.3.0.0.1 means that it is the first first SDK developed for FW 4.3.0.0, whereas 4.3.0.1.1 would
be the first SDK version for FW 4.3.0 Service Pack 1.

Compatibility with Products

Generally, unless noted otherwise, an OUAF SDK product should only be used for its intended FW version.

That general rule applies to all previous versions of the Oracle Utilities Framework SDK.

For example, OUAF SDK FW 4.2.0.2.4 is not compatible with OUAF SDK 4.3.0.0.1, and OUAF SDK 4.3.0.0.1
and FW 4.3.0.1.1 are never compatible.

Updates

Each new version of the OUAF SDK installs to its own folder, allowing you to use several version of the
SDK on the same workstation. An OUAF SDK installation should never be used to overwrite an existing
SDK installation with the intent of "upgrading" it. You should only develop using the version of the OUAF
SDK that runs the same OUAF version that your application server runs.

New versions of the OUAF SDK can be installed and old versions uninstalled without affecting the
application server. These options allow you to migrate your application servers to a newer version of the
OUAF while allowing you to still refer to the original application server setup.

Moving Up to a New Update

Since an update of the OUAF SDK installs to its own folder, a new development workspace for your
application server must be created as well. If it has not yet been created by the OUAF SDK ClientSetup

program, use the cr eat eNewEnv. bat shortcut script to create one for your application server.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 20

You will also need to install Eclipse through the st art Ecl i pse. bat shortcut script and create a new Eclipse
project for your project. Since the CM Java sources are already present in the application server, you need
only re-run the Generate Artifact launch configuration in Eclipse to generate code before you rebuild your

project.

You should not run the Generate Artifact launch configuration in the Eclipse installation of the older OUAF

SDK installation at this point.

Moving Up to a New Version of a Product

Moving to a new version of a product requires creating a new development environment suited for the
new version. A new version is likely to be built on a new version of the Framework, which would mean that

a new compatible version of the Software Development Kit is required.

The steps are as follows:

1. Stabilize the project on the old version of the product. Ensure that the project is in a stable state
and that all developers have submitted all code to the repository.
2. Prepare the database for the new project:
a. Copy the database of the project in the old version to a new database.
b. Upgrade this newly created database to the new version of the product by following the
database upgrade procedures of the product.
3. Set up the repository for the new project:
a. Prepare a project repository as described in the installation documentation.
b. Copy source code from the repository of the previous version into the project repository.
c. Update code, if necessary, as specified in the documentation of the new version of the
product.
d. Build the entire project. This includes generation of code, compilation, generation of
services, etc.
e. Test the customizations.
4. Set up development workstations. At this point, developers can set up their workstations for the
new project on the new version of the product. Each developer must follow the workstation setup

procedure.

Product Single Fixes

When single fixes to products are released, the following should be done for projects for which the single

fixes are required:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 21

« Stabilize the project by making sure that the project is in a stable state and that all developers have
submitted all code to the repository.

« Apply the single fix to the project repository.

- Each developer of the project must then synchronize with the project repository.

Build Server

Every enterprise has its own software development practices that cover how developers update

code, how changes are tracked and tested and how new releases are created. We generally expect

that whatever practices have historically worked within an organization will continue to work for the
implementation of this application. However, a build methodology was developed that has worked well for

managing concurrent changes to the application that is based on the following principles:

« All of the application should work all of the time. Therefore, changing one small part of the
application requires that all of the application be retested.

« Bugs are more expensive to fix the longer they stay in a system. This principle has been proven
time and time again in software engineering. This truth mostly owes to the fact that it is easiest to
find the offending developer immediately after he or she broke the system and also that developer
has less recollection of how and where the system was broken as time goes by.

« In a complex system malfunctions can occur "far away" from the points of code modification. It is
unreliable to expect selective retesting based on what was likely to malfunction to find the all the

places of actual malfunction.

Tailoring Your Oracle Utilities Application Implementation

This document describes the naming conventions and processes that must be followed to ensure

a successful upgrade of the Oracle Utilities application base product release-on-release. The
implementation team responsible for tailoring the Oracle Utilities application to meet specific customer
needs must follow this guide to preserve their changes and ensure successful upgrades. Only the
changes described in this document are considered as permitted for the tailoring of the base product. Any
changes that do not conform to these rules may be overridden by the install utility during a base product
upgrade.

Some naming conventions used in this document:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 22

« $sPLEBASE (for UNIX) and usPLEBASE%(for Windows) is the generic Oracle Utilities environment
directory name.

« $SPLENVI RON (for UNIX) and usPLEBASE%(for Windows) is the generic Oracle Utilities environment
name.

« $sPLDB (for UNIX) and usPLDB%(for Windows) is the database type.

Preserving Customer Changes

For any kind of a customer modification, the file's directory structure and naming conventions are defined
in this section. The implementation team must follow these conventions to preserve the results of their

work during a subsequent base product upgrade.

« The configuration parameters of the environment being upgraded are displayed (as default
parameters) during the configuration stage of the install process. These parameters may be
changed if new settings are preferred.

» The base product is shipped with examples of different kinds of modules that may be used by
implementation teams. The examples can be found in the following directories:

o $SPLEBASE/ spl app/ appl i cati ons/root/cm t enpl at es contains Oracle Utilities Application
Framework Web file examples.

° $SPLEBASE/ spl app/ appl i cati ons/root/<application product code>/cmtenpl ates. This
directory contains Oracle Utilities application product Web file examples. The <application
product code> varies by product; for example, the Oracle Utilities Customer Care and Billing,
the <application product code> is c1.

o $SPLEBASE/ scri pt s/ cm exanpl es. For batch script examples, this directory has two
subdirectories: Fwfor Oracle Utilities Application Framework examples, and <application
product code> for Oracle Utilities application product examples (e.g., ccs for Oracle Utilities

Customer Care and Billing, TAx for Oracle Public Sector Revenue Management).

(L N
Note:
For simplicity, this document generally uses UNIX platform naming conventions. To apply these
names to the Windows platform, use the Windows naming conventions "%" sign instead of the
"$" sign, and backslashes ("\") instead of forward slashes ("/") as directory separators (e.g.,

YSPLEBASE% spl app\ appl i cati ons\root\cm tenpl at es).

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 23

Tailoring Web Files

Base product Ul files are located in the directory $SPLEBASE/ spl app/ appl i cat i ons/ r oot . Implementers may
develop their own Ul files under the directory $SPLEBASE/ spl app/ appl i cat i ons/ root / cm No specific naming
conventions are enforced under this directory.

The root directory may be deployed in war file format for runtime environment (SPLApp. war). Use provided
utilities to incorporate your ecm directory into the SPLApp. war file.

Tailoring the CM Java Application

Implementers may write their own Java classes to extend the Oracle Utilities application functionality. All
Java files should belong to the com spl wg. cmpackage. The CM Java application should be compiled into
ajar file named cm j ar. The SDK Customer Modification packaging utilities will help build this file. The
cm j ar is typically deployed into the following directories:

$SPLEBASE/ spl app/ appl i cati ons/root/WEB-I NF/|ib
$SPLEBASE/ spl app/ appl i cati ons/ XAl App/ \EB- | NF/ | i b
$SPLEBASE/ spl app/ busi nessapp/ | i b

$SPLEBASE/ spl app/ st andal one/ | i b

Additional third-party jar files can be deployed by following the cnt. j ar naming standard. Customers
may use this option to deploy any additional functionality, interfaces with other applications, and so on.
These will not be built by the SDK Customer Modification packaging utilities, but will be deployed into the
application once it is supplied in jar format.

The root directory may be deployed in a war file format for the runtime environment (SPLApp. war). Use the
provided utilities to incorporate your / cmdirectory into spLApp. war file.

Important:
All cnr . j ar files that need to be applied must be defined in $SPLEBASE/ st ructures/cm jars_
structure. xni . If the file does not exist in the target environment, the sample cm j ars_

structure. xn . exanpl e file can be copied from the SDK packaging's / et ¢ folder.

Manual cm.jar deployment

The cmj ar file is usually deployed as part of the CM packaging process (ext r act CMsour ce, appl ycM
create_CM rel ease, etc.), but in some cases it may be desirable to manually deploy the cm j ar file to one

or more target environments.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 24

@ CAUTION:

This should be done with care and should only be considered if the cm j ar components are self-
contained and have no external dependencies.

To manually deploy cm j ar:

1. The SPLEBASE/structures/cm_jars_structure.xml must exist and should have at least the
following:

<?xm version="1.0" encodi ng="UTF-8"?>
<j ar_structure>
<cm j ar>
<source_dir_jar>@PLEBASE@ et c/ | i b</ source_dir_jar>
<dest _f ol der s>
<dest _f ol der _1>@SPLEBASE@ spl app/ appl i cati ons/ XAl App/ W\EB- | NF/ | i b</ dest _f ol der _1>
<dest _f ol der _2>@SPLEBASE@ spl app/ appl i cati ons/ root/WEB- | NF/ | i b</ dest _f ol der _2>
<dest _f ol der _3>@PLEBASE@ spl app/ busi nessapp/ | i b</ dest _f ol der _3>
<dest _f ol der _4>@PLEBASE@ spl app/ st andal one/ | i b</ dest _f ol der _4>
</ dest _f ol der s>
<chi | d_j vm pat h>@PLEBASE@ spl app/ st andal one/ | i b</ chi | d_j vm pat h>
</cmjar>

</jar_structure>

The <cm.jar> element identifies the jar file name, usually cm j ar, as defined here.

Element <source_dir_jar> defines the source location of the abovementioned jar. The directory in

the example above should work for most cases.

The dest _f ol der_ n elements point to the target locations where the jar will be placed. The
directories in this example should work for all.

2. Manually copy the cm j ar to the directory specified in the <sour ce_di r_j ar > element, typically
$SPLEBASE/ etc/ | i b.

3. Run initialSetup.sh (or .bat on Windows) to do the rest. This will copy the cm j ar to the specified
target locations and rebuild the war and ear files.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 25

Positioning Custom Scripts

Customers and implementers may put their scripts under the directory $SPLEBASE/ scri pt s/ cm

Replacing the Oracle Utilities Logo

Customers may want to replace the Oracle Utilities logo image on the Main menu with another logo
image. To do this, put the logo <customer_logo_file>.gif file into the directory $SPLEBASE/ et ¢/ conf / r oot / cm

and create a new "External” Navigation Key called CM_logolmage.

To replace the logo, run the Oracle Utilities application from the browser with the parameters:

http://<host name>: <port>/cis.jsp?utilities=true&t ool s=true

From the Admin menu, select Navigation Key. Add the above Navigation Key with its corresponding URL
Override path.

The syntax for the URL path is:

For Windows:

http://<host name>: <port>/cni <custoner _| ogo_file>. gif

For UNIX:

http://<host name>: <port>/spl/cm <custoner_| ogo_file>. gif

The root directory may be deployed in war file format for the runtime environment (SPLApp. war). Use the
provided utilities to incorporate your cmdirectory into the sPLApp. war file.

Using the Implementation Version File

Implementers may keep the implementation version number in the owERSI O\ t xt file in the $SPLEBASE/ et ¢
directory. This file is preserved by the install utility.

Tailoring XML Schema

Note:

This implementation option is applicable for Oracle Enterprise Taxation Management application

only.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 26

Implementers may generate their own XML schemas and store them in the directory $SPLEBASE/ spl app/

xm Met al nf 0. The implementation schemas must use the naming convention cM.*. xni .

Tailoring Templates and User Exits

The templates delivered under the folder $SPLEBASE/ t enpl at es can be overridden by the Application
by creating a copy of the template file with the same name but prefixed by "cm.". The cm copy will be

customized.

Since the templates can contain user exits (special statements that allow to import external files during
the template processing). Those user exits can be overridden by creating a copy of the user exit file with

the same name but prefixed by "cm_". The cm copy will be customized.

JUnit testing

JUnit is a Java framework that supports writing unit tests that help ensure your code works as
desired, and existing code is not broken by new changes. It is often useful to create JUnit tests during
development to verify that your code works as expected, and to keep and rerun the tests in the future to

ensure that later changes in your (or someone else's code) don't unexpectedly break your code.
More information on JUnit testing philosophy is available at JUnit.org.

Note:

This document assumes that you use Eclipse. However you can choose to use different IDE but

then you have to find how to achieve the equivalent functionality that Eclipse provides.

Assuming you have an existing JUnit test class, you can execute them directly within Eclipse by:

« Right-clicking on the class in Package Explorer

Run -> JUnit Test

All the tests for an application can be run from Eclipse by running the com spl wg. Al | Test s class in the

"test" directory as a JUnit test.

Standard test cases

There are framework classes that are helpful for specific test cases:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 27

Testing Searches

There is a convenient test superclass for search services, com spl wg. base. api . t est ers. Sear chTest Case.
This test class only requires that you override two methods:

* String get Servi ceNane() - this method specifies the service name, eg CILCACCS, for the search
* Li st getSearchTrials() -this method should return a list of SearchTrial s

A search trial describes information about a particular invocation of a search. You need to describe the
inputs (the input fields and the search type), and then describe the expected output for that given input:

- Some expected rows, in the order expected

In order to properly test searches, the expected results is not required to contain every search result-
if new rows are added by some other process, they will not cause the test to fail. The search results,
however, must contain at least all of the expected results, in the relative order they are added.

« Possibly some prohibited rows, which the search should not find

In addition, there may be times when you want to guarantee that a certain row is definitely NOT found in
the search result. This can be accomplished by adding a prohibitedRow, in the same manner as expected

rows are added to the trial.

The search test FW will then use inputs from each search trial to execute the search, and compare the
expected and prohibited results to the actual search results. It expects to find the expected rows in the
order added, and should find all of them. Any different order or missing row results in a failure. What will
not result in a test failure is if new rows have been added interspersed throughout the expected rows.
These are fine. If a given search result row does not match the next expected result row, it is compared
against all of the prohibited rows. If it matches any of them, the test fails.

The search framework will also examine the information about the search, and ensure that each search

type (main, alternate, alternate2, ...) is executed at least once.

Here is a sample search test class:

package com spl wg. base. domai n. bat ch. bat chControl ;

i nport com spl wg. base. api . | ookup. Sear chTypeLookup;
i nport com spl wg. base. api . t est ers. Sear chTest Case;

i nport com spl wg. base. api . t esters. Sear chTest Resul t;

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 28

i nport com spl wy. base. api . t est ers. SearchTri al ;

inport java.util.Arraylist;

inmport java.util.List;

*x
* @ut hor bosorio

* @ersion $Revision: #2 $

]

public class BatchControl SearchServi ce_Test

extends Sear chTest Case {

J1~ MethodS == ---mmmmm oo e

protected String getServiceNane() {

return "Cl LTBTCS";

*x
* @ee com spl wg. base. api . testers. Sear chTest Case#get Sear chTri al s()
]

protected List getSearchTrials() {

List list = new ArrayList();

/1 Search using Main Criteria
SearchTrial trial = new SearchTrial ("Main search");

trial.setSearchType(Sear chTypeLookup. constants. MAIN);

trial.addl nput (Bat chControl SearchServi ce. | NPUT_NAI N. BATCH_CD,
“ADM') ;

Sear chTest Resul t expectedResult = trial.newExpectedResult();

expect edResul t . put (Bat chCont r ol Sear chSer vi ce. RESULT. BATCH_CD,
"ADM)

list.add(trial);

Il Search using Alternate Criteria

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 29

trial = new SearchTrial ("Search by description");

trial.setSearchType(SearchTypeLookup. const ants. ALTERNATE) ;

trial.addl nput (Bat chCont rol SearchServi ce. | NPUT_ALT. DESCR,
"AcCount D');

expect edResult = trial.newExpectedResult();

expect edResul t . put (Bat chCont r ol Sear chSer vi ce. RESULT. BATCH_CD,
"ADM)

expect edResul t. put (Bat chCont r ol Sear chSer vi ce. RESULT. DESCR,
"Account debt nonitor");

list.add(trial);

return list;

Testing Maintenance Classes

There is a convenient test superclass for entity page maintenance,
com spl wg. base. api . testers. Enti t yPageSer vi ceTest Case. This test class requires several methods to be
implemented to handle setting up the data and validating for each action (Add, Read, Change, Delete).

In case your maintenance doesn't support add and delete, e.qg. it's read and change only, then implement

this method:

protected bool ean i sReadAndChangeOnl y() {

return true;

The test framework will only exercise the read action.

Your maintenance test class must provide the name of the service being tested, eg:

protected String getServiceNane() {

return "Cl LTBTCP";

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 30

Testing Add on Maintenance Class

First, in order to test an add, we need the data to add. This is provided in the method prot ect ed PageBody
get NewEnt i ty() . Here is an example:

prot ected PageBody get NewEntity() {
PageBody body = new PageBody();
body. put (Mai nt enance. STRUCTURE. BATCH_CD, " ZZTEST2");
body. put (Mai nt enance. STRUCTURE. PROGRAM NAME, " ZZPROG');
body. put (Mai nt enance. STRUCTURE. ACCUM ALL_| NST_SW Bool ean. FALSE) ;
body. put (Mai nt enance. STRUCTURE. DESCR, "Test service");
body. put (Mai nt enance. STRUCTURE. LAST_UPDATE_DTTM
LAST_UPDATE_TI MESTAWP) ;
body. put (Mai nt enance. STRUCTURE. LAST_UPDATE_I| NST, Bi gl nt eger. ZERO);

body. put (Mai nt enance. STRUCTURE. NEXT_BATCH_NBR, Bi gl nt eger. ZERO) ;

Itenmlist itenList = body. new tenList
(Mai nt enance. STRUCTURE. | i st _BCP. nane) ;

Li stBody |istBody = itenList.new.istBody();

|'i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. BATCH CD, "ZZTEST2");
I'i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. SEQ_NUM
Bi gl nt eger. val ueOr (10));
| i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. BATCH_PARM NAME,
“paraml");
|'i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. BATCH PARM VAL, "“val 1");
|'i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. REQUI RED_SW
Bool ean. FALSE) ;
|'i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. DESCR50, "Paraneter 1");

| i st Body. pr epar eToAdd() ;

return body;

(This may look like an awful lot of typing, but any IDE like e.g. Eclipse that offers code-completion will

make this kind of code entry very quick).

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 31

If the maintenance performs some server-side "defaulting” (changing of the data), and the result after the
add differs from the data above, you will need to override prot ect ed PageBody get NewReadEnt i t y(PageBody
ori gi nal). This method gets the original data from the method above, and allows manipulation to bring it
to the expected form after a read from the database.

In order to actually perform the read, the read header should be specified in prot ect ed abst ract

PageHeader get ReadHeader (). For example:

prot ected PageHeader get ReadHeader () {
PageHeader header = new PageHeader ();
header . put (Mai nt enance. HEADER. BATCH CD, "ZZTEST2");

return header;

Testing Change on Maintenance Class

Next, a new read is performed (using the same read header above), and you can perform a change to the
page body in the method:

prot ected PageBody changedPageBody(PageBody ori gi nal)

Here is an example:

protected PageBody changedPageBody(PageBody original) {

origi nal . put (Mai nt enance. STRUCTURE. ACCUM ALL_I NST_SW Bool ean. TRUE) ;

ItemList list = original.getList("BCP");

Li st Body param = (ListBody) |ist.getList().get(0);

par am put (Mai nt enance. STRUCTURE. | i st _BCP. DESCR50,
"Changed paraneter 1");

par am pr epar eToChange() ;

return original;

A read is performed after the above changes are sent, and the results are compared.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 32

Testing Delete on Maintenance Class

Finally, a delete is issued on the data, and it is verified that the entity no longer exists.

Test default actions on Maintenance Class

In addition, all defaults that are registered for a page maintenance must also be tested. This should be
done through separate tester methods for each default, calling the FW support method publ i ¢ PageBody

execut eDef aul t (PageBody pageBody, String defaultVal ue) :

public void testDefaul tChg() {

PageBody i nput = new PageBody();

/1 TODO popul ate inputs for default
/Il e.qg.
i nput . put (Mai nt enance. STRUCTURE. FK, "FK CCDE");

PageBody out put = executeDefaul t (i nput, Maintenance. DEFAULTS. CHG ;

/1 TODO conpare the outputs
/Il e.g.
assert Equal s("FK Descri ption",

out put . get (Mai nt enance. STRUCTURE. FK_DESCR)) ;

Here is an example to test the default on a field under a list.

public void testDefaul t Al ogrithn() {

PageBody i nput = new PageBody();

Itenlist itenlist = input.new tenlist
(Mai nt enance. STRUCTURE. | i st _MRRA. nane) ;
Li stBody |istBody = itenList.new.istBody();
|'i st Body. put (Mai nt enance. STRUCTURE. | i st _MRRA. MRR_ACTN_ALG CD,

" MRRCRESVCCC') ;

PageBody out put = executeDefaul t (i nput, Maintenance. DEFAULTS. AAD);

Itenli st outList = output.getlList

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 33

(Mai nt enance. STRUCTURE. | i st _MRRA. nane) ;
Li st Body body = (ListBody) outlList.getList().get(0);
assert Equal s(body. get (Mai nt enance. STRUCTURE. | i st _MRRA. MRRA_DESCR) ,

"Create Service Custoner Contact");

The input page body should be populated with the expected inputs for the default action, while the output
should be compared against the expected output.

Testing Entity Page Maintenance Classes

There is a convenient test superclass for entity page maintenance,

com spl wg. base. api . testers. EntityLi st PageTest Case.

This test class requires several methods to be implemented to handle setting up the data and validating
for each action (Add, Read, Change, Delete).

The maintenance test class must provide the name of the service being tested, eg:

protected String getServiceNane() {

return "Cl LTBTCP";

Testing Add on Entity Page Maintenance Class

First, in order to test an add, we need the data to add. This is provided in the method prot ect ed voi d
popul at eRowFor Add(Li st Body row) . Here is an example:

protected voi d popul at eRowFor Add(Li st Body row) {
row. put (" DESCR50", "description");

row. put ("XAl _IN.SVC_ID"', "$");

We also need to know the ID field, and an example ID, eg

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 34

protected String get Mai nHeader Fi el d() {

return “NT_DWN_TYPE _CD';

protected Stringld getTestld() {

return new Notificati onDownl oadType_| d("FOO");

Testing Change on Entity Page Maintenance Class

Also, a change is attempted, using the same keyed row given by the testld method above.

protected voi d popul at eChangedRow(Li st Body row) {
row. put (" DESCR50", "changed description");

row. put ("XAl _IN_SVC ID", "#");

The Comparisons

After the adds and changes above (also a delete is done), the state of the row is compared against the
new row. By default, the framework implementations should work fine, and you don't need to do anything.
However, in the rare case, you may need to override the following methods:

protected void conpar eAddedRow(Li st Body ori gi nal Li st Body,
Li st Body newLi st Body)
protected voi d conpar eChangedRow Li st Body ori gi nal Li st Body,

Li st Body newlLi st Body)

Test default actions on Entity Page Maintenance Class

In addition, all defaults that are registered for a page maintenance must also be tested. This should be
done through separate tester methods for each default, calling the FW support method publ i ¢ PageBody

execut eDef aul t (PageBody pageBody, String defaultVal ue) :

public void testDefaultChg() {

PageBody i nput = new PageBody();

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 35

/] TODO popul ate inputs for default
/1l e.qg.
i nput . put ("FK", "FK CODE");

PageBody out put = executeDefaul t(input, "CHG');

/1 TODO conpare the outputs
Il e.g.

assert Equal s("FK Description", output.get("FK_DESCR"));

Another example for testing the default on the field which in on the list.

public void testDefaul t Al ogrithn() {
Itenmlist itenList = new ItenList();
itenList.set Name(" MRRA") ;
List list = new ArrayList();
itenList.setList(list);
Li st Body |istBody = new ListBody();
|'i st Body. put (" MRR_ACTN ALG CD', "MRRCRESVCCC'):

l'i st.add(listBody);

PageBody i nput = new PageBody();

i nput . addLi st (i tenList);

PageBody out put = executeDefaul t (i nput, "AAD");
Itenli st outList = output.getList("MRA");

Li st outputlist = outList.getList();

Li st Body body = (ListBody) outlList.getList().get(0);
assert Equal s(body. get (" MRRA_DESCR") ,

"Create Service Custonmer Contact");

The input page body should be populated with the expected inputs for the default action, while the output
should be compared against the expected output.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 36

Testing Business Entity Validation

To test our validation, a test class needs to be created. The one-off generation process has created one
for each of the existing entities in the system. The following is the one it created for the Characteristic

Type entity:

public class CharacteristicType_Test extends AbstractEntityTestCase {

private static Logger |ogger = LoggerFactory. getlLogger(CharacteristicType_Test.cl ass);

I*i
* @ee com splwg. base. api . testers. Abstract EntityTest Case#get ChangeHandl er G ass()
&/

protected C ass get ChangeHandl er d ass() {

return CharacteristicType_CHandl er. cl ass;

This is a JUnit test case. Let's run it. From within Eclipse, right-click on the test class from within the

Package Explorer.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 37

File Edt Source Refactor Mavigate Search Project Tomcat Run Window Help

jei-E - v [REE [35-0-%- | EHeE- | ™|
[8 ee -

JUnit = 0|()| Charect.. | 1)) Charmct.. | [3]Charect... [
- T W eeoteng com splwa.cis.domain.admin.charac
Mew
=7 admin : :
: m.splwg.base.apitesters.AbstractEr
=-H# accessGroup Open F3 G i
B3 accountingCalend, Open With ¥ bm.splwg.shared.legging.Loager;
"'EE accountManagem: Open Type Hisrarchy F4 m.splwg.shared logging. LoggerFact
G- 83 accourtRelationsk —
-8 adjustmentCancelf 1<) Copy Cir=C
-8 adiustment Type W e ated Test Case for CharacteristicType
G- adiustment TypePre
m EI|EI'tT‘_,"|.'.|E ' Delete Delete
& B3 apRequestType Source Ak+Shift=5 * PSS CharacteristicType_Test
"'EE autopayRouteType Refactor M<Shift=T * !s AbstractEntityTestCase {
H-H} autopaySource vy
'"EE W 2wy Import... cfieldsfinitializers
F-H3 batchContral o :
T 1| Emﬂll't ! r=
'"EE batchRun static Logaer logger = LoggerFactor
G- bilableChargaTem Refersnces .
-8 bilableChargeUplo o e *
(-4 billCancelReason
& bilCycle " Refresh F& e com.splwa.base apitesters Abstra
G- 88 billFactor
H} billFactorCharacter Format ar Class netChanneHandlerClass()
-85 bilessage Jii 1 JUnit Plugn Test dler.clas
- bilPencd Debug @ 2 Uit Test
-8 bilRoute Type T 3
F-H3 bil Segment Type Co i
; mparz With L4 Run...
E} budgetPlan Replace With . ﬂ _
EE campaign oA oc aration s0le Progress &
=88 charactensticType o= e ISLOtY-
m CharacteristicE properies At<Enter
STl Characteristic Type -+ cocgasa
m CharactensticValue_Test java
-8 cisDivision
FH-83 collectionAgency

The following image shows the resulting output from JUnit:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 38

£ Jawa - Characteristic Type Test java - Eclipse Platform B ==
Fla Bde Souce Refactor Nawigals Ssarch Projsct Fum Window Help
. | &~ |3 -0-q- g e |® | | §liava Potors [Resouce
| HE SRR
Package Explorer | Hierarchy Pmmmm et |5 - =
Runs: 1/1 5 Errors: 0 B Failures: 1 |
'-".“!’z':h; » = Faiurs Tracs _:n
-] com sphwg cis.don 4 juri ‘rene vork AssedionFadedEmor; The folowing niles wane rot viclated within the execution of the test class com ',p‘ g cis. dom: a-‘c“l-.r_me Charactaistic ,-,:.eTe:
i ol testFoo

Charactaristic’ Tm Validate /
a0 com.spiwg base api testers ~bsiract
at com.sphwg base api testers Wrappe:
at com.spiwg basa api tastars

c‘\‘S.J teHelper and Su eE:re\,.,

ppsd Test Sute Halper private AfterFun Tast (W)
at com.sphwg base api teste pped Test Sute Halper afterRun Test(Wapped Tast SufaHelper,
0o 8PP basa api tastars AhstractEntiy TestCass nn Test [AbatractEntiry TestCass [ava-5E)
TestResut$1 protect{Test Resudt javac106)

1000000 e

As we seg, the tests failed and told us that none of our three validation rules where validated. This is, of
course true, but some explanation is necessary. When we run entity test cases, the framework looks up
the change handler class being tested and collects all of its rules. Then it executes all the tests in the test
class (basically every method starting with "test*"). At the end of each test, it looks to see if the last rule
violated was one of the rules we are testing. At the end of all the tests, if there are still validation rules
that weren't violated, the framework complains. At a minimum, the goal from this point is to create tests
that violate each of our rules at least once. Preferably, tests should be created to violate the rules for all
additional conditions that we can think of that might compromize the state of the entity.

Let's start fixing our tests with the third rule above the "Foreign Key Reference is required for FK
Characteristic Values" rule. With a little head-scratching we determine that this is a "RequireRule" and we
replace it as shown below:

public static ValidationRule
f or ei gnKeyRef er encesRequi r edFor FkChar Val ueRul e() {
return RequireRul e...soneFactoryMethod. .. (

“CharacteristicType: Foreign Key Reference is required for FK
Characteristic Val ues”,

"If the Characteristic Type Lookup is 'Foreign Key Value' then the
Forei gn Key Reference Cd is required",

. some fancy stuff

f kRef er encesRequi r edFor FKChar act eri sti cVal ueMessage) ;

Here's the test that was added to the test class to test it:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 39

/** Test foreignKeyReferencesRequiredFor FkChar Val ueRul e */
public void testFKRef erencesOnl yFor FKCharacteristics() {

Il create a new characteristic type

CharacteristicType char Type = creat eNewTest Cbj ect();

CharacteristicType_DTO char TypeDTO = char Type. get DTQ() ;

/!l set the characteristic value to null for sonme other type
char TypeDTOQ. set For ei gnKeyRef erence("");
char TypeDTO. set Char act eri sti cType

(CharacteristicTypeLookup. PREDEFI NEDVALUE) ;

I/ this should be OK

char Type. set DTQ(char TypeDTO) ;

/1 Now make it a FK characteristic. This should violated the rule
char TypeDTO. set Char act eri sti cType
(CharacteristicTypeLookup. FOREI GNKEYVALUE) ;

try {

char Type. set DTQ(char TypeDTO) ;

fail ("An error should have been thrown");
} catch (ApplicationException e) {

/1 Make sure the correct rule was violated.

VerifyViol at edRul e

(CharacteristicType_CHandl er.

f or ei gnKeyRef er encesRequi r edFor FkChar Val ueRul e()) ;

Note:

Important note: Both a valid test AND an invalid test were added to the method above.

Finally, when the test is rerun, we have one validation rule less needing to be violated.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 40

* Java - Charactesistic Type Test java - Edlipse Platform
He ot Sowrce Refactor Mavigate Search Prowst Bun Window Hep

fir e -0-Q- |tEe- @2 48|84 -26-

=10] x|

L
Packag Expiores | Herrchy | Pandng Changsists |gfu JUn 52 =n
Frishad sher 21571 sacends o

Runs: 22 E Errors: 0 B Failures: 1
R ——

e |
| s Hemarchy [0

ol =

i comagig e domon o chatype Charsctenstc Tipe Tt
el tam FHRsferancesOnly FarF K hamctenatics

Charsctedstic Type-Validate Algarthn within Entity: Validstes Agorthm within Ertity cherlype. se
=t com sphwg base spi testers Abstract Bty TestCase andSute Sxecutionfbetract Ent
2t com sphwg base opi testen Virepped Tem SuteMeber end Sute Snecution (Vitsoped
&t com sphwg base apl testers. Virpped Tes! SuteHeber private MerfunTest Mirppe
at com spiwg base apl testers. Wrapped Test SuteHeiper afterRun Test Winoped Test
at com sphug base api tesien AbsactEntty TesiCase nun Test [Fbstact Entty Tesm Cas
= ot jurit frameewors, Tost Resit §1 orotect (Test Resul java: 106

10010810000 0

o tesfoa ser the
= ehariyp
=l B charTypelTC.
41 it frammawodk AssatieFaladaer The folawing rulss vere net vislated wikin the &

Charsctadstc Type-Value Agodthm not Alawed for Predefmed Charscladstic: Wi this sha

1d violaced the rule

ieTypeleakup . POREIGMEEYVALUE) ;

mandatory field has been 1aIT BlAank.

Hessage)

Fisass snuar a valus

and

= (api.tes
= {api.zes HrappedTest,
— {api.ceszers HrappedTest,
al | o] |l
[l Witabis Smart nset | 114:9

Iterate Until Done

Test handleChange / handleAdd / etc code

Although there is no way to enforce testing of any coding in any of the methods

Handl eRegi st er edChange
(Busi nessEntity changedBusi nessEntity,
Regi st er edChangeDet ai | changeDet ai |)

handl eAdd(Busi nessEntity newBusi nessEntity)

handl eChange(Busi nessEntity changedEntity,

Dat aTr ansf er Cbj ect ol dDTO)

It is still imperative that this code should also be exercised AND verified when testing the change handler.
Please ensure that every path through these methods is exercised and the results verified.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 41

In general, there is a specific set of classes or functionality that is required to have explicitly defined tests.

« Every entity (and entity extension) class must have each of its validation rules explicitly tested.

That is, each rule should fail once, with an explicit acknowledgement of the failed rule expected.

« Every service must have a test.

> Searches must test each search type once.
= "Page" services must test their complete cycle that are available.
= Queries must test read
= Maintenance classes must test add/change/read/delete

« Every maintenance extension must have a test class

* Every algorithm implementation must have a test

o ™
Note:
Currently, the above "must have" tests may still not completely cover all the cases. For example,
one search type may have several inputs, which trigger different code or queries to be executed.
The testing FW as is can not know this, so only requires a single test case for that search type.
However, it is strongly recommended that each specialized case possible be modeled with a test
case, in order to achieve complete code coverage.
- J
- ™
Note:
In addition, there is a desire to assure that each business component or business entity method
has been tested. Currently these tests are not required. However, after a complete build server
run, any business component methods or business entity methods that have not been explicitly
tested will be reported.
- J

Testing for Warnings

In both maintenance classes and entity change handlers, there is the possibility of issuing a warning. This

code should be tested just as well as any other entity validation or default action.

Maintenance Classes

Here is complete valid example of verifying that a maintenance default action issues a proper warning.

public void testDefaul t DEFAULT_FOR ZONE HNDL() {

PageBody i nput = new PageBody();

i nput . put (Cont ent ZoneMai nt enance. STRUCTURE. ZONE_CD, "Cl _AFH");

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 42

/Il test the default and expect to get a warning
try {

execut eDefaul t (i nput, "ZH');

fail ("Should have a warning");
} catch (ApplicationWarning e) {

veri f yWar ni ngCont ai ns(e,

MessageReposi t ory. del et eZonePar anet er s\War ni ng()) ;

di sabl eWar ni ngs();

/Il test the default and do not expect to get a warning or error

PageBody out put = executeDefaul t(input, "zZH");

assert Equal s(Bool ean. TRUE, out put.get (" DELETE_SW));

(L N
Note:
By default, warnings are enabled, thus nothing special need be done. But you should put the
normal try/catch block around the default execution, and catch an application warning. Once
inside the catch block, you should verify that the warning(s) is/are valid expected ones. (This
comparison is only done via the message category and message number. Thus, if there are
parameters to the message construction, it matters not their values, since it may be difficult to

get the values.) You should then retry the default with warnings disabled.
- J

Entity tests

There was no current use of warnings in entity tests that | could easily "improve’, so for now | use a
slightly contrived example. (This is slightly contrived, because Installation is a special record, and the
change below is not actually allowed in the application do to some records on the Adjustment Type table,

and a valdiation on Installation.)

public void testChangeBil | Segnent Freeze() {
Installation installation = getValidTestCbject();

Installation_DTO instDto = (Installation_DTO) installation.getDTQ();

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 43

instDto.setBill Segnent FreezeOpti on
(Bi || Segnent FreezeOpti onLookup. FREEZE_AT_W LL) ;

install ation.setDTQ(i nstDto);

instDto.setBill Segnent FreezeOpti on

(Bi || Segnent FreezeOpti onLookup. FREEZE_AT_BI LL_COVPLETI ON) ;
install ation. set DTQ(i nstDto);
veri f yWar ni ngsCont ai n

(MessageReposi t ory. changeBi | | Segnent Fr eezeWar ni ng()) ;

Again, by default warnings are enabled, so nothing need be stated at the outset. Additionally, the
conversion of warnings to an exception occurs at a later point, so there is no ApplicationWarning to catch.
Instead, after the offending statement (in this case the setDTO method) you should just verify that the

current warnings contain the specified message.

Technical Background

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 44

Technology Overview

Web Browser

User Interface < E = == -—~
with AJAX =5 _E_l;lululu_; .
HTTP .
- XML
i Application
Page Server Integration
: Tool
WebLogic -
WebSphere

Logic (core) Hatron

Server Plug-ins Java

Hibernate

Database Connectivity <
(multi-protocol)

ORACLE [Database
‘] Server

Technology Overview of the OUAF System

Information is presented in a Web browser using HTML and JavaScript (not Java, e.g., no applets). The
browser communicates with a Web Application Server via HTTP.

The Web Application Server is divided into several logical tiers: presentation services, business logic, and
data access. Inbound HTTP requests are handled by Java Servlets in the presentation layer, which may in
turn invoke data service objects. In turns, these objects may route control to Java-based business entities,
which use the Hibernate ORM framework for data access and persistence.

Various static data (control tables for drop-downs, language-specific messages/labels, etc.) are cached
in the presentation layer of the Web Application Server. The presentation layer makes use of XSLT

technology to create HTML for the browser.

As the browser may need several "pages” to show all the information relating to a particular business
entity, a JavaScript "model" is used to manage the data in toto, and the Internet Explorer XMLHTTP object

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 45

is used to send the data to the server as an XML document. Data is provided to the browser as literal
JavaScript. The specialized portal and dashboard areas use server-side XSLT technology to render the
final HTML directly on the server. The HTML for grids in the browser is created using client-side MSXML
XSLT transforms.

This kind of architecture is described as Asynchronous Javascript and XML (AJAX).

Portability

The system is highly portable to various hardware platforms, as web application servers are pure Java
applications and run on myriad operating systems, including Windows clients, servers, and many versions
of UNIX.

In principle, any compliant Java 2 Enterprise Edition container can host the application.

Distribution

The various logical components can be distributed to as many machines as desired. In particular, the web
application server architecture is stateless, so many parallel server machines can be utilized given an

appropriate load-balancing architecture.

OUAF Web Services

The OUAF system makes heavy use of web services, which are data access and update services
ultimately implemented in Java, accessing Oracle databases. Each service invocation represents a
distinct database transaction.

There are three kinds of services: Page, List, and Search.

A Page service defines all the data needed to display data on a single tab menu (e.g. across all child tab
pages). The data structure is logically a tree, with a root object containing attributes as field/value pairs,
and recursively containing lists of similarly structured objects. The typical maximum nesting depth is four
levels of contained lists. Page service names end with the letter "P", e.g. CILCACCP. Page services may be

called in five primary "modes": Read, Change, Add, Copy, Delete, and Default.

List services define a list of objects, possibly containing nested lists. In addition to being accessible
independently for list-oriented data, they can be used to flesh out lists contained in page services where
more data is available than can fit in the (fixed-size) buffer. List services do not support database

updates.

Search services are used to support ad-hoc user searches for data. The results are structurally similar to
List services. The input is a set of criteria and a search mode, with values "MN", "AL’, "A2", A3", etc.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 46

Service requests can return a normal result, or create an error or warning. A warning displays a message
with a list of warning lines, and offers the choice of proceeding (which triggers the same call with a flag
set to suppress warnings), or cancel. Errors create descriptive messages. Search and List services can
only create errors, not warnings, while all Page services except Copy can create warnings and errors.

SPL Service XML Metainfo Files

The OUAF system represents the structure of a service using an XML document (loosely akin to an XML
schema). Every service is defined with a single XML document, which is generated based on the Java

class information.

Service XML documents are created by using annotation-based metainformation combined with system
metadata (stored in the database).

Example using Page Service

The following excerpt of the CIPBSTMP.xml file will motivate the discussion.

<?xm version="1.0"?>

<l-- Service Cl PBSTMP -->

<page service="Cl LBSTMP" >

The root element of the document has the tag "page" to reflect that this is a page service, and describes

the service name as an attribute.

<pageHeader >
<string name="STM | D" size="12"/>

</ pageHeader >

The <page> element contains exactly one <pageHeader> and one <pageBody>. The <pageHeader>
contains any number of "singleton’ fields. This one is a string field named "STM_ID" in the browser,
and with the same name in the original Java source. The field contains up to 12 characters (this is the
"business rule" length, not physical storage).

Other types of singleton fields include <biginteger>, <bigDecimal>, <money>, <date>, <time>, <dateTime>,

and <boolean>.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 47

The number-related fields (<biginteger>, <bigDecimal>, and <money>) have a "precision” attribute, which
describes the maximum number of digits that can be represented. Further, <bigDecimal> and <money>
include the "scale" attribute, describing the number of decimal digits appearing after the decimal point.
Thus, an element like this <bigDecimal precision="4" scale="2"/> can represent numbers in the range
+/-99.99,

Continuing with the page service example, we have this section:

<pageBody>
<row acti onFl ag="ROW ACTI ON_FLG'>
<string name="BATCH CD"
size="8"/>
<bi gl nt eger nane="BATCH_NBR"

preci si on="10"/>

The <pageBody> element contains <row> elements, singleton fields, and <list> elements, in any order.
Here we have another <string> field, as well as a <bigInteger> (an integer value with no decimal fraction),

this one holding (up to) 10 digits. This means numbers in the range +/-9,999,999,999 can be represented.

The <row> element reflect the java entity (row). In terms of the infoset and browser the fields in the <row>
element are effectively merged into the containing <pageBody>, along with fields from any sibling <row>

elements.

The "actionFlag" attribute names the field that contains a flag that determines the server action that
should occur against the row.

<string name="STM CNST_I| D"
si ze="10"/>

<date nane="STM DT" />

<string nane="STM | D"
size="12"
isPK="true"/>

<string name="STM STAT_FLG'
size="2"/>

<bi gl nt eger nane="VERS| O\N"

preci sion="5"/>

</ row>

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 48

The "isPK" attribute marks fields that are part of the logical prime key of the "main" object/table for this
page service.

We then see a <list> element:

<li st name="STM DTL" size="30" service="Cl LBSTDL" user Get More="fal se">

The <list> element describes an elaborately structured array of objects. The element contains exactly one
<listHeader> and <listBody>. Every list within a service buffer has a unique name attribute. The number of
possible list body objects is given by the "size" attribute. In the event a list service exists independently for
the list, it is named by the "service" attribute. Finally the "userGetMore" attribute switches the system into

one of two modes:

userGetMore="false" means the system does not require the consent of the user in order to fetch more
elements, in the event that the physical list buffer is filled to capacity with more elements available in the
database. The system will autonomously call the corresponding list service (if it exists) in order to fetch
the missing elements. In this way clients making one logical page service call may result in one physical
page and several list service invocations.

userGetMore="true" means the system requires the affirmative consent of the user (e.g. via a "get more"

button in the browser) to continue fetching available data. The list buffer is truncated.

<l i st Header | ast|ndex="STM DTL_COLL_CNT"
act i onFl ag="LI ST_ACTI ON_FLG"
nmor eRows=" MORE_ROWS_SW
al ert Rowl ndex=" ALERT_ROW >
<string name="STM | D"
si ze="12"/>
<string name="LAST_STM DTL_| D"
size="12"/>

</li st Header >

The <listHeader> element has a "lastindex” attribute giving the field name that holds the number of
elements actually returned, an "actionFlag" describing the operation to be performed on the list (e.g.
change, delete), the "moreRows" attribute naming the field that holds the boolean that indicates whether
more data remains un-retrieved in the database for the current list, and the "alertRowIndex" attribute,

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 49

naming the field that holds an index into the list to describe the location of a validation error, used to

select the correct item in a browser when presenting the error to the user.

In addition, a <listHeader> can contain any number of singleton fields. These are typically keys describing
how to access this list, and logical "cursor” fields describing how to continue fetching more items.

<l i st Body>
<row acti onFl ag="ROW ACTI ON_FL&" >
<bi gl nt eger nane="VERS|I O\N"
preci si on="5"/>
<string name="STM DTL_I| D"
size="12"
i sPK="true"/>
<string name="STM CNST_DTL_| D"
size="10"/>
<string nane="STM | D"
size="12"/>
</ row>
<string name="STM CNST_DTL_DESCR"
si ze="50"/>
</1i st Body>

</list>

This finishes the <list> element. Some more singleton elements appear before finishing the <pageBody>

and <page>:

<string name="STM CNST_DESCR'
si ze="50"/>
<bool ean name="ACT|I ON_GENERATE_SW />
</ pageBody>

</ page>

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 50

Example Using Search Service

List service XML files essentially contain a <list> element as the document root, and will not be described
further. Search service XML files are very similar to those for page services. Here is an example

illustrating the differences:

<?xm version="1.0"?>
<l-- XM Javal/ Tuxedo meppi ng Cl PCACCS
Autonatical |y generated by makeXM.Map Sat Nov 10 09: 08: 30 2001
Sour ce copybooks: CI CCACCS Cl CCACCH - - >
<sear ch nane="ACCT"
servi ce="Cl LCACCS"
si ze="300">
<sear chHeader | ast | ndex="ACCT_COLL_CNT"
acti onFl ag="SRCH_ACTI ON_FLG'

sear chByFl ag="SEARCH BY_FLG'>

The <search> element is the root of the document, and contains a <searchHeader> and <listBody>.

The <search> element is similar to the <list> element described above, and includes name, service, and
size attributes. The <searchHeader> includes the "lastindex" attribute, which gives the name of the field
holding the number of returned elements, "actionFlag" which names the field containing the search action
flag, and "searchByFlag" which names the field holding the search "mode". The <searchHeader> further
contains singleton fields describing search criteria. These are adorned with extra attributes describing
whether they are distinguished criteria that should always be populated from the search client (optional,

defaults to "false"), and a criteria group designation.

<string name="ACCT_| D"
si ze="10"
isCriteriaExtract="true"
criteriaG oup="M"/>
<string name="ENTI TY_NAME"
si ze="50"
criteriaG oup="AL"/>

</ sear chHeader >

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 51

The <listBody> was described previously, and describes the structure of the elements matching the
search criteria. In addition, the "isReturn" attribute describes fields that should be returned as the result

data when a particular result row is selected (optional, defaults to "false").

<l i st Body>
<row acti onFl ag="ROW ACTI ON_FLG' >
<string name="ACCT_| D"
si ze="10"
i sReturn="true"/>
<string name="ENTI TY_NAME"
si ze="50"/>
<string name="ACCT_REL_DESCR'
si ze="50"/>
<string name="NAME_TYPE_FLG'
size="4"/>
</ row>
</1i st Body>

</ sear ch>

Server Architecture Overview

The Java server is logically divided into several distinct layers, with different responsibilities. Form the
point of view of a request from the browser, there are a handful of general-purpose data-centric servlets
that can handle any service requests. These servlets handle HTTP requests and transform them into
data objects and commands for further processing. Once an appropriate service is identified for handling
a request, its metainfo is used to build a rich Java data structure from the (string-based) browser data
representation. This data, in turn, forms the input to a Java service class.

In our terminology, a page service is a self-contained piece of server functionality that principally acts
upon a particular "root" Java entity object (and table) and its child entities (tables). The framework
automates the process of mapping data to and from these entities by making use of the service XML
metainfo. These Java objects are also known as domain objects. These objects are made persistent via
Hibernate, which offers the simpler HQL query language as an alternative to "raw” SQL. In the simplest

cases, no human-written imperative code need be written to implement a page service.

For updates, validation is handled via both automatic logic determined by database metadata, including
application-level referential integrity checking, and hand-coded validations implemented by change-
handler classes.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 52

For presentation-level requests (e.g. HTML constructs) the server uses XSL/T to create HTML from our
Ul metadata structure. Since Ul layouts are fairly static the web presentation layer uses caching to help
optimize performance.

The development process is geared to keeping generated and human-maintained artifacts completely
separate. For instance, we generate superclasses that contain generated code that is e.g. required

by Hibernate or the service framework, and programmers will implement subclasses that implement
methods for unusual or extra behavior.

The artifact generation is driven principally by parsing special markup in Java sources known as
annotations, combined with metadata held in the database (principally relating to tables, fields, and
constraints). On a modern machine (eg. 3 GHz P-4) artifact generation for the entire system takes only a

few minutes.

Client Architecture Overview

Introduction

The OUAF browser client uses many novel mechanisms in order to support the system design goals of
high system performance, including low latency and high throughput. The core design principle is that
the system is stateless, meaning only the browser client itself is aware of the session state, that is the
application’'s context-what data is being viewed/modified and all other information related to a user more
typically associated with session state on the server. This document discusses the important design

points that implement a stateless architecture.

Client Architecture Discussion

Note:

This page is related to fixed pages in the application.

The web browser client communicates with the Web Application Server via HTTP, and receives two kinds
of dynamic content:

- Views - HTML entities that describe how things look

 Model - Pure data in a convenient representation

The views are served as HTML that contain labels and HTML <SELECT> elements (drop-downs) that
are localized to the user's language. Since drop-downs are fairly static, the view objects are cached on

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 53

the browser via the HTTP 1.1 Cache-Control directive in order to avoid repeatedly accessing the Web

Application Server for the same content.

The web server creates HTML using XSLT technology. The technique is as follows: the original metadata
that defines HTML documents is copied from the database into XML files residing in the server. These
files are shipped as part of a OUAF system deployment. At runtime the server converts these Ul metadata
documents into HTML in two steps. First, the logical structure is converted into a nearly-final HTML
structure, lacking only language-specific information (labels and <select> lists), via XSLT, using one of

a handful of standard XSLT template files. The result object is then transformed again, in order to inject
language-specfic elements, creating the final HTML.

As a special case, for performance reasons the HTML for grids (lists and search windows) is created
using client-side XSLT (MSXML).

Data is provided via servlets, of which there are only a few. The data is represented as literal JavaScript,
which happens to be very convenient to handle by the browser (since it includes a native JavaScript
parser). The model takes the form of a "tree" of JavaScript object nodes and values, with a distinguished
root node. The model is converted into an XML document string when submitted to the server, using

the HTTP POST method. This is convenient for the Web Application Server because it is equipped with
powerful Java-based XML parsers.

Here is a table of servlets, and a brief description of each:

Servlet Name HTTP Method Usage

logininfo GET Provides useful global data at login, retained
for life of session, such as a map of all system
URLs and a definition of menu structures.

pageRead GET Returns a data model object given one or more

key/value pairs.

pageChange POST Accepts a data model representing modifica-
tions that should take place against an existing
database entity, returns modified model.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 54

Servlet Name

pageAdd

pageDefault

pageDelete

pageCopy

listRead

Search

StringSort

POST

POST

POST

POST

GET

GET

POST

HTTP Method

Usage

Accepts a data model representing a new enti-
ty that should be inserted into the database, re-

turns new model.

Accepts a data model describing a triggered
"default" operation, returns a model object con-
taining default values.

Accepts a data model representing a database
entity to be deleted, returns nothing.

Accepts a data model representing a model
that should be duplicated, returns the dupli-
cate.

Accepts key/value pairs describing a list of
database entities, returns said list.

Accepts key/value pairs containing search cri-
teria, returns list of objects satisfying said crite-
ria.

Allows locale-sensitive sorting of strings. Used
for sorting strings in grids when user clicks on
the column header.

It is important to remember that the servlets deal with "pure" model data, and have no visible

representation. Since actual business logic and database access resides in the app server, the servlets

take the role of dispatchers and most servlets accept a "service" parameter describing which app server

back-end service to invoke.

The model data is combined with the view on the browser client whenever the model changes or the view

needs to be refreshed. This is done by a name-matching scheme where every HTML element that shows

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 55

a model value has a name that "picks out" a corresponding value from the current model. All such HTML

fields must include the string "data" in their HTML class.

The simplest case is showing a value from the "root" object, in which case the field name, also referred to
as the "JS name" simply matches the model's attribute name.

There is more complexity in the case of lists. Every list in the model has a unique name, regardless of
nesting depth, so a JS name that combines the list name with the property name suffices to uniquely
identify a section of the model.

There are two sub cases of displaying properties of lists. The first is where the desired index into the list is
known (e.g. grids). In this case, the JS name combines the list name, index, and property name as follows:
<LIST_NAME>:POSITIONSELEMENT_PROPERTY, e.g. ACCTS:3SACCT_ID. Note indexes are always 0-
based in the browser (in accordance with JavaScript arrays). This example refers to the fourth element of
the ACCTS list, and retrieves the ACCT_ID.

The other case is where the desired index is inferred as the "current” index (e.g. scrolls). Every list in the
model keeps track of its current position index, which is used when no external index is provided. Hence
the JS name ACCTSSACCT_ID refers to the ACCT_ID property of the currently selected/visible element
(presumably in a scroll) of the ACCTS list.

In the rare case that header fields should be displayed, they can be accessed using the JS name pattern
LIST_NAME#HEADER_PROPERTY.

Generally, whenever a value is changed in an HTML element or focus is moved after making a change, the

system attempts to "commit" the change back to the model. This involves several steps:

« Validating the input for syntax, possibly according to the current locale (e.g. dates)
- Identifying the relevant model node to receive the change
« Updating the node

« Marking the node dirty

The last step is important because we wish to know whether the user has made any changes to the
model.

Saving changes to the server generally involves the following steps:

Identifying the servlet to be invoked (e.g. pageChange vs. pageAdd) depending on whether the model
represents a new or already persistent entity.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 56

Converting the model tree into a literal XML string representation.

Submitting the XML string to the Web Application Server via the appropriate servlet using the POST
method, including a parameter describing the service. This is accomplished via the Internet Explorer
XMLHTTP ActiveX object, using a synchronous calling mechanism.

The servlet, constituting a core piece of the Web Application Server "web presentation” layer, retrieves the
service parameter, obtains the XML-based metainfo describing the service, and converts the XML request

string into a Java object tree, ready to be passed to the "data service" layer.
The data service layer converts the Java object tree into a Jolt data buffer.
The relevant app service is invoked passing in the data buffer.

The result buffer is converted into a Java object tree.

The Java object tree is converted into a literal JavaScript representation (as needed) and transmitted to

the browser.
The returned data (literal JavaScript) is mapped into a new live JavaScript object model.
The user interface is refreshed with the new data.

The portal screens use zone configuration to create HTML. Each distinct zone within the portal is created
by a Java object known as a zone type. The zone type is responsible for acquiring data and rendering the
displayed HTML. The portal framework takes care of common features such as zone expand/collapse.

SPL Client API

Overview

The OUAF system offers a large number of useful JavaScript functions in the client (browser). These
allow manipulation of widgets, data, and triggering requests to the Web Application Server to view another

page and/or object.

This document discusses functions that developers of user exit functions may wish to use.

Client API Discussion

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 57

JavaScript Invocation Context

To use client-side JavaScript functions effectively you have to understand the way JavaScript partitions
the client window into independent object spaces (via iframes), and the way common JavaScript
framework code is made available to those spaces.

While this may be old hat for experienced browser-side JavaScript programmers, it is important to
remember that every window or iframe contains an independent object space, with a separate space

of global variables and objects. Adding, modifying, or deleting objects (or classes) in one iframe has no
effect on any objects in other iframes. However, it is possible to refer to objects that "live" in a different
iframe with variables in a different iframe. This is somewhat dangerous; if the iframe that instantiated the
object (where its prototype lives) goes away (by being closed, or having its href modified) the object may
no longer be able to carry out any operations. However, "value" objects such as strings or numbers may
safely be shared across frames, even if the creating frame closes.

An iframe can have JavaScript code defined directly into its HTML page, or it can include JavaScript code
that exists in a separate file. The latter technique allows the creation of standard "library" code that is
available to many iframes, without the network or development overhead of copying the same functions
into hundreds/thousands of files.

The subtle point to remember in the foregoing is that even though the same JavaScript file may be
included in different iframes, each definition is completely independent of every other. If the included

JavaScript defines a global, then every iframe gets its own separate global variable binding.

Since there are some commonly used objects, most iframes define and initialize global variables to
reference these objects. The "main" object usually refers to the main iframe, containing cisMain.jsp. This
iframe is never reloaded during a client session, and holds the central model object. The model itself is
usually available as the "model" global in most iframes.

Data Representation and Localization

The browser handles localization. The client browser object model is logically divided into a display
("view") and data ("model") layer. The responsibility for localizing the data values to the user's locale
rests with the display layer, not the model layer. All code that retrieves model values and prepares them
for display makes use of formatting code, for instance to display dates in the user's preferred fashion.
Similarly, all user input is parsed in the context of the current locale to convert the data into the internal
format that is stored in the model (and passed to Servlete Container/Java/database).

The internal format for model properties is to use strings (not JavaScript numbers or dates) for everything

except boolean values.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 58

The functions that are responsible for converting model data values into localized displayable ones

are named convertinternalXYZToLocal(internalValue), while the reverse conversions are named
convertLocalXYZTolnternal(localValue). Note that latter can fail and include extensive validation, possibly
triggering error message alerts.

Core JavaScript Classes

These classes are defined in cis.js, which is included by the main frame.

CisModel

The CisModel class plays two roles. The first role is to provide the metadata that describes the currently
loaded model instance. The methods that serve this role are static methods, e.g., defined directly on the
CisModel prototype object. These methods are accessible using the syntax CisModel.function(params),
assuming you are in the main frame. If not, use main.CisModel.function(params). Instance methods
and variables are, of course, accessible through any instance of CisModel, e.g. model.pageData or
model.getValue(ACCT_ID").

Data representation

The data stored in instances of CisModel uses an internal system representation, not a localized
representation. This means code that manipulates the model is unaware of the user's locale and display
preferences. For instance, date values are always stored using the ISO 8601 string representation YYYY-
MM-DD, and numbers are always stored as strings, not JavaScript numbers (because the required

precision may exceed that of JavaScript's native number type).

The data takes the form of a tree of data nodes of two classes, DataElement (the singleton node class
holding data attributes as JavaScript properties), and List, which manages an array of DataElement
instances. Every list has a unique name property, regardless of its position in the tree (e.g. independent of
nesting depth), making it possible to uniquely identify and retrieve any list by its name. The DataElement
instances each keep a "dirty" flag to mark whether the user modified any properties, representing work
that needs to be persisted to the database.

Every element instance is always in one of three logical states:
Persistent
New/Dirty

New/Clean (e.g. a "phantom”)

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 59

Phantom elements are used to populate otherwise empty lists, to give a starting point in which to enter
data. Unlike other new objects, phantoms are initially clean so they don't participate in persistence

operations until explicitly modified.

Many CisModel methods act as starting points for recursive implementation through the data tree, and

methods with the same or similar names are available on the DataElement class.

Navigation

Many methods accept list names as arguments in order to operate a unique list instance within the model
data tree. Since it is possible for lists to be nested inside other lists, the system assumes the intended list
is the one identified by the "current" list positions in the ancestor branch.

CisModel Instance Variables
» pageData

Used to access the root data node (e.g. model.pageData), an instance of the DataElement class.

Static methods

« parseNames(fieldName)

This function accepts a string containing a JS field name (the id of an HTML element) and cracks it into
its constituent components: the list name, index, and property. The result is an object with three attributes,
property and listName (which are null if missing), and position, which is actually a function that takes the
current list position as an integer argument. The reason for this is to allow the calculation of the current
position (no index) and a fixed index. If the list fragment is missing the listName and position are both

null.

CisModel Instance Methods

The most commonly accessed instance of CisModel is the central model containing the data for the
current page, typically available through the "main" global variable in most frames. (Recall again that all
such globals refer to the same object; hence changes made with code running in one iframe are visible

from any other iframe.)
« getValue(fieldName)

This accessor method returns the data value corresponding to the provided fieldName. The field name
string will be cracked into constituent pieces using the static parseNames() method, in order to identify

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 60

the instance of DataElement within the data "tree" that contains the desired property, and then to retrieve

the property.
- getOriginalValue(fieldName)

If a model property has been modified, but the change has not yet been committed (e.g. with the Save
button), the system tracks the originally retrieved value of the property. This accessor method can be
used to retrieve the original value. Useful for implementing certain business rules having to do with logical

state transitions.
« canSetValue(fieldName, value)

This method answers a boolean indicating whether the model is capable of accepting the given value for
the provided fieldName. The method would answer false if buffer capacity limits would be exceeded were

the change to be accepted.
« setValue(fieldName, value)

This setter modifies the property identified by fieldName to hold the given value. Defaulting will not be

triggered.
- setLocalValueWithDefault(fieldName, localValue)

Sets the property identified by the given fieldName to the specified localValue. This method does not
handle conversion errors, so the provided localValue should have already passed syntactic validation.

- setValueWithDefault(clientWindow, fieldName, value, element, afterFieldUpdateFunction,

continuation, forceDefault, skipDefault, successFunction)

Sets the property identified by the given fieldName to the specified value. This method may trigger a

default, and therefore requires further parameters:

clientWindow - the window object containing the element triggering the default.

element - the HTML element that is attempting to accept the value.

afterFieldUpdateFunction - a thread-safe continuation to be run after the value has been changed
continuation - a function to be run whether or not the value can be accepted (may be null)

forceDefault - an optional boolean that forces the default checking code to run, bypassing a shortcut

execution path (presumeably to obtain a desired side-effect from defaulting)

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 61

skipDefault - an optional boolean that bypasses the default triggering logic

successFunction - continuation to execute if the value is accepted by the default logic

(L ™
Note:
Note this function is not "thread-safe’, in the sense that it cannot be safely called e.g. in a loop
that may issue several calls to this function. The workaround is to make use of the continuation
function to "schedule" the follow-up operation.

« setListPosition(listName, newPosition)

Sets the list identified by the given listName to the position (a zero-based integer value) given by
newPosition. Useful when you want to display a particular element in a scroll.

- getList(listName)
Answers the list object (instance of List) with the given name.
- replaceWithNewList(listName, sourceModel)

Typically called from the default handler callback, this method replaces the entire contents of the given
list in the receiver (e.g. the model whose method is being called) with the list as provided in sourceModel.
All elements in the list are considered new, and are eligible to be added to the database when the Save
button is used.

+ hasRealElements(listName)

Answer a boolean indicating whether the indicated list contains any persistent or dirty elements (not
merely a single phantom).

- getElement(fieldName)

Returns the data element (instance of DataElement) corresponding to the given field name. The method
resolves the list name and position index, if any, in order to navigate to the appropriate data element.

« markAsNew()

Mark the model "clean" by recursively clearing all dirty flags throughout the tree structure. Note this is a
very "sensitive" method and should only rarely be needed.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 62

DataElement

Instances of DataElement play the role of the nodes in the data model tree. They have properties
corresponding to business attributes, and also define the tree structure by holding references to their
parent data element and list(s) of children elements. The distinguished root DataElement instance in the

core model instance is accessed using with the "pageData" property.

DataElement Instance Variables
* _isDirty

This boolean flag indicates whether the business attributes (stored as JavaScript object properties) have
been modified since the DataElement was created (either using persistent database attributes or as a
new object that will be added later). This attribute should not be modified directly.

- _originallndex

An integer representing the position of this DataElement in its containing list when it was first retrieved
from the server. For non-persistent data elements this value is -1.

DataElement Instance Methods
- set(property, value)

Set the given property to the given value. This apparently simple method can trigger a variety of side
effects, including intelligently converting key attributes to uppercase (which is the default unless turned
off with the tabMenu.shouldNotAutoUppercase property). The method returns a boolean indicating
whether the setter succeeded; reasons for failure include if the existing value is identical to the current
value (this is needed to avoid needlessly marking the data element dirty), and if the mutation capacity
would be exceeded.

Further, if the modified attribute represents a key value, the change is propagated recursively through all

child data elements by matching the attribute names.

In addition, the original, unmodified, property value is retained for future reference, and can be accessed
using the originalValue function.

« originalValue(property)

Returns the original, unmodified value for the given property name. This is useful for user exit code
implementing business rules that depend not only on the new attribute value but also the original value.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 63

« isNew()

Answers a boolean indicating whether this DataElement instance is new, e.g. created by the user.
Persistent instances answer false. The method uses the _originallndex attribute to decide.

« isPersistent()

The logical opposite of isNew(); answers true only for persistent data elements. Useful for avoiding
excessive use of logical not (!) operators, thus clarifying the intentions of the code.

- isDirty()

Answers a boolean indicating whether the message receiver data element or any descendant child data

element is marked with the _isDirty flag.
« list(listName)

Answers the list (instance of List) corresponding to the given list name.
« clearDirtyFlag()

Set the receiver's _isDirty flag to false. Potentially dangerous because it subverts the systems automatic
dirty tracking system.

« canBecomeDirty(property, value)

Answers a boolean indicating whether the receiver can accept the given value for the given property. The
method answers false for various reasons, including if the proposed value matches the previous vaule,
the receiver is not dirty and its parent list may not become dirty, and the property is not known to the
metadata.

List

Instances of List represent a collection of DataElement instances, held by a parent DataElement. Every
List is held by a DataElement, but the pageData "root" node has no parent list (it's held directly by the
model).

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 64

List Instance Variables

« parentElement

The instance of DataElement that contains this list.

* name

The name of the list.

* position

The integer index (0-based) of the "current" element.

« header

The JavaScript object representing the list header. This is rarely accessed.

- elements

A JavaScript array containing the current list of elements (instances of DataElement).
List Instance Methods
« size()
Answers the number of elements held by the receiver. Does not include elements scheduled for deletion.
« currentElement()

Answer the DataElement instance from the elements collection referred to by the currentPosition instance
variable.

- isDirty()

Answer a boolean indicating whether any element is dirty. The test is recursive, and answers true if any

descendant has the _isDirty flag set.
« markElementsAsNew()

This convenience method marks all elements in the collection as new, setting the _isDirty flag to true and
setting the originallndex to -1 for every DataElement. The method acts recursively on all descendant lists

and elements.

« realSize()

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 65

Answers the number of elements, disregarding any phantom element.
« hasRealElements()

Answers true if the list contains at least one non-phantom element.

Free Functions

top.js

This is the set of "free" functions available in top.js, which is included by cis.jsp. You typically access
these functions using the top.xyz() syntax, assuming your code is running in an iframe nested under
cis.jsp.

The trend has been to de-emphasize the use of functions at this level, and migrate them to the main level.

In the future we plan to eliminate the distinction between the top and main frames.
- getNavigationKeyForService(service)

Answers the navigation key corresponding to the given service (string). Since there may be several nav
keys for the same service, the last one is answered. You always get the correct response for tab menus.

+ getURL(navigationKey, withoutLanguage)

Answer the URL (string) corresponding to the given navigation key (also a string). If the withoutLanguage
boolean is false, the user's language code is appended to the URL as a GET parameter.

- getFieldLevelSecuritylnfo(navigationKeyOrService)

Answer the field-level security meta-data for the tab menu given by the navigation key or service. The
result takes the form of a simple JavaScript object, with security types as properties, and values as arrays
of all related authentication levels. For example, assume that adjustment maintenance has field-level
security defined for a user for security type "ADJAMT", with two associated authentication levels, "1, and
"3". To retrieve the object defining all field-level security info for the service:

var info = top.getFieldLevelSecuritylnfo('adjustmentMaint’)
or

var info = top.getFieldLevelSecuritylnfo('CILAADUP")

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 66

(Note the literal JavaScript representation of the result object would be {ADJAMT: ['1','3})

To determine the array of authentication levels associated with this service and security type in one step:
var authenticationLevels = top.getFieldLevelSecuritylnfo('adjustmentMaint’)[ADJAMT']

or

var authenticationLevels = top.getFieldLevelSecurityinfo('CILAADUP)[ADJAMT|
« getMain()

This heavily used function returns a reference to the window constituting the "main" iframe, containining
cisMain.jsp and the core model. The typical usage is top.getMain(), but many iframes define a global

variable "main" for convenience.
« tabMenu()

This function returns a reference to the current tabMenu iframe window. The typical usage is
top.tabMenu(). Many iframes define a global variable "topMenu" for convenience.

- tabPage()

This function returns a reference to the current tabPage iframe window. The typical usage is

top.tabPage(). Many iframes define a global variable "topPage" for convenience.
« model()

This convenience accessor method returns a reference to the core model held in the "main" frame.
« openPage(navigationKey, tabName, keys, extraPageState, keepMemento, forceOpen)

This is a convenience function for the same function defined in cis.js. See the description there for a fuller
description.

« getUser()
Returns the user id of the current user.
« getUser()

Returns the user id of the current user.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 67

« getLanguage()
Returns the language code of the current user.
cis.js
The cis.js file contains the bulk of the core framework functions. In addition to defining the major
framework classes (CisModel, DataElement, List, etc.) it contains a number of important functions that

are described here. These functions are typically invoked by navigating to the main level, e.g. main.xyz(),
where the global main has been defined to point to the frame containing cisMain.jsp.

- array_remove_element(array, element)

Remove the indicated element from the given array. Do nothing if it is not found. If the element appears
more than once in the array, remove only the first one. Uses simple object comparison (==).

- array_index_of(array, element)

Return the index (0-based) of the given element in the given array. Answer -1 if the element cannot
be found. If the element appears multiple times, answer the first (lowest) index. Uses simple object
comparsion (==).

« array_remove(array, index)

Compensate for missing functionality in the built-in JavaScript Array class in early versions of JScript.
Answers a new array instance with the element at the given index removed. The length of the new array is
one less than the length of the given one.

« array_includes(array, element)

Answers a boolean indicating whether the given element is present in the given array. Uses simple object

comparison (==).
- array_numeric_sort(array)
Sort the elements of the given array into numeric order, using a simple a < b comparison.

« arrayDo(array, oneArgClosure)

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 68

Perform a loop over the elements of the given array, applying the function given by oneArgClosure to each
element in turn. The oneArgClosure function takes exactly one argument. Extremely useful for signalling

the intention of looping structures. For example, consider this typical code:
var max = array.length;

for (vari=0;i< max; i++) {

var element = arrayf[il;

<do something to element>

This common structure can be simplified to the following:
arrayDo(array, oneArgFunction)

where oneArgFunction takes an array element as its parameter, and corresponds to the <do something to

element> block above.
- arraySelect(array, selectClosure)

Returns a new array consisting of elements from the given array that return true when applied to the
selectClosure (a function that takes one argument). For example, do this to find all numbers greater than

3 in an array:
var closure = function(each) {return each > 3},

var resultArray = arraySelect(array, closure);
- arrayReject(array, rejectClosure)

Returns a new array consisting of all elements from the given array except those that return true when
applied to the rejectClosure (a function that takes one argument). For example, do this to find all numbers

not greater than 3 in an array:
var closure = function(each) {return each > 3},

var resultArray = arrayReject(array, closure);

- arrayDetect(array, detectClosure)

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 69

Returns the first element in the given array that returns true when applied to detectClosure, a one-

argument function. Return null if no element is found.
- arrayDetectlfFound(array, detectClosure, doClosure)

Similar to arrayDetect(), but proceeds to execute the one-argument function doClosure with the detected

element.
« arrayDetectIindex(array, detectClosure)

Similar to arrayDetect(), but answers the index of the first element that satisfies the detectClosure
function.

- arrayCollect(array, collectClosure)

Return a new array consisting of the results of applying the collectClosure one-argument function in turn
to each element of array. For example, to double the values of an array holding numbers and store the

result in a new array:
var closure = function(each) {return each * 2},

var resultArray = arrayCollect(array, closure);
- arrayCopy(array)

Answers a new array holding the same elements as the given array. Also known as a "shallow copy".
« arrayContains(array, detectClosure)

Returns a boolean indicating whether the given array contains an element that satisfies detectClosure, a

one-argument function returning a boolean.
- arrayUniquePush(array, object)

Similar to array_push, but skips appending the given object if an identical object is already present in the

array. Uses simple equality (==) for the comparison.

« configureMainButtons()

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 70

Enable or disable the buttons on the main button bar according to the current state of the system. This
method should be triggered only if there is a reason to believe that circumstances have left the buttons in

an inappropriate state.

- openPage(navigationKey, tabName, keys, extraPageState, keepMemento, forceOpen,

extraLoadKeys)

Navigate the system to the tab menu identified by the given navigationKey. The particular tab page

may be identified with the given tabName (string), which can also be identified as an integer index (0-
based), otherwise the first tab page is used. To display a particular object on the tabMenu/tabPage
populate the keys parameter with a key/value object holding the logical keys that identify the object.
[The extraPageState parameter is deprecated]. The boolean keepMemento parameter identifies whether
a memento should be stored for the current location, e.g. whether it will enter the history menu. If not
provided, it defaults to true. The forceOpen boolean (defaults to false) controls whether the system
should still show the tabMenu/tabPage if the desired object cannot be read (e.g. it was deleted from the
database). The optional extraLoadKeys object is merged with keys prior to performing the read query,

allowing the addition or overriding of key values.

- showMessageDescription(categoryNumberFieldName, messageNumberFieldName,

shortDescriptionFieldName)

Open an alert dialog box showing a server message (the long message). The category and message
numbers are given indirectly via the categoryNumberFieldName and messageNumberFieldName,

which are property names in the model from which the actual numbers are fetched. An optional a short
description field name can also be provided. The alertClientWindow is a reference to a window object that
should act as "host" to the alert dialog box, in order to keep focus on the correct window when the dialog

is dismissed.

« basicShowMessageDescription(categoryNumber, messageNumber, shortDescription,
alertClientWindow)

Similar to showMessageDescription() as above, but directly accepts the desired category and message
numbers rather than retrieving them from the model.

+ showErrorMessage(categoryNumber, messageNumber, clientSubstitutions, element,
alertClientWindow)

Show the server error message identified by the given category and message numbers, and relating to the
HTMLElement given as element (optional), which should receive focus. The alertClientWindow parameter

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 71

provides an optional reference to the "client" of this dialog that can be useful to preserve the correct focus

when the dialog is dismissed. The clientSubstitutions parameter is private.
« restoreElements()

Frequently used in conjunction with setAvailableSignal(), this method clears flags that are used to

implement synchronization control.
« doSave(specialActionField, successFunction, forceSave)

Submit a change request to the server using the current model. The specialActionField, if specified, is set
to boolean true before submitting the model, without otherwise permanently changing the model. Execute
the given successFunction if the save operation succeeds. A "clean" model is not submitted to the server
unless the optional forceSafe boolean is true. The browser will refresh itself to show the version of the
model as returned from the server, unless the operation resulted in a warning or error. In the first case a
dialog shows the warning message line(s), and the user can choose to redo the save operation, ignoring
further warnings. In the second case a descriptive error dialog is shown.

« doDelete()

Submit a delete request to the server using the current model. Clears the window if the operation

succeeds.
- safelySetFocus(element)

Attempt to set focus to the given HTMLElement.
« updateElementFromModel(htmlElement)

Fetch the current value for the model attribute appropriate to the given htmlElement widget (using the

name of the element) and display it.
- setAvailableSignal(aWindow)

Configure the system to accept input after processing a request for the server. Implemented by disabling
the cisDisabled.css stylesheet. Typically used in conjunction with restoreElements().

« convertinternalDateTimeToLocal(value)

Convert the given internal date-time value to the user's localized format and answer it.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 72

« convertLocalTolnternal(htmlElement, value)

Using the datatype associated with the given html element (as described with its className), convert the

given localized value into the internal system value and answer it.
« convertinternalMoneyToLocal(value)

Convert the given money value (a String) into its localized representation and answer it.
« updateField(event)

Update the value of the relevant HTML element based on the given event object. This may involve side
effects such as updating the model.

« moneyToWholelnteger(amount)

This utility function helps you do simple arithmetic with money amounts. Since the precision of OUAF
system monetary amounts can exceed that offered by the built-in JavaScript number types, we cannot
perform arithmetic operations with those numbers without risking loss of precision and rounding
problems. The solution is to eliminate the decimal point (if any) in the amounts in order to yield "pure"
integers, which admit to exact arithmetic (for addition, subtraction, and multiplication) to very high orders
of precision. The final result is then converted back into an internal money amount.

This function accepts an internal money amount (String) and returns a JavaScript "integer" representing

the value.
« wholelntegerToMoney(integer)

Reverse the moneyToWholelnteger operation to yield a monetary amount corresponding to the given
integer.

« getinstallationData(key)

« Returns the installation data (string) associated with the given key.

« isUserModified()

* Returns a boolean indicating whether the user has made any changes to the model that should be

preserved (e.g. the system will issue a warning if the changes are not saved).

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 73

Metadata Overview

The generation of program components is dependent upon the Oracle Utilities Application Framework
meta-data. The meta-data used by framework consists of program variables, program locations, program
elements, menu options, navigation keys, tables and fields, and many more.

The meta-data itself can be split into distinct groupings. These groupings will be covered in more detail
below.

The basic principle is that a developer enters meta-data for each component to be generated. The
generation process applies the meta-data to the generator templates to create the final, deployable
component, along with any necessary infrastructure changes. This chapter defines the framework
metadata and its inter-relationships.

Generated Tab Menu Metadata

The following entity relationship diagram describes the metadata related to generated tab menus.

Template Program F’rogr_am
Component Location

Program Program

Variable Tab

Tab Module+~— Module

Generated Tab Menu Metadata ERD

Note:

The tab menu is represented by program component in the ERD above.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 74

Every framework user interface (Ul) transaction has a tab menu, which links together the different tab

pages that are available on the transaction.

The Software Development Kit generator creates the tab menu using a specific template that is defined in
the template meta-data. The tab menu's template is maintained from the Ul Program Components Object

View.

The generated tab menu resides in a certain physical directory in the server's file system. Location,
the abstract name that represents the actual location of the tab meny, is entered in the Ul Program
Components Object View. The actual location information and the abstract name are maintained from the

Locations Object View.

Tab menus may have one or more program variables that control its behavior and/or appearance. These
variables are maintained from the Program Variable Collection of the Ul Program Components Object

View.

Tab menus also have one or more program tabs, which specify the labels and sequence of the tab pages
in the transaction. These tabs are maintained from the Tab Menu Tabs Collection of the Ul Program

Components Object View.

The use of each tab may be restricted, based on the license key, as specified in tab module. This
information is maintained from the Tab Module Collection of the Tab Menu Tabs Collection.

Generated Ul Program Component Metadata

The following entity relationship diagram describes the metadata related to generated Ul programs.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 75

Template ——» Program PR F’rogr_am
Component Location
h 4
Program Program Navigation
Variable Section Key
h 4
Program Element
‘—,
Element Type
Element
Type
Y Attributes
Program Element
Element « Attribute
Attribute Type

Generated User Interface Program Component Meta-data ERD

Note:

The Ul program component is represented by program component in the ERD above.

Each tab that is specified on the tab menu is linked to a particular Ul program component - more

commonly referred to as "Ul page" or "tab page”.

Every Ul Program Component has a type (e.g. Search Page, List Grid, etc). The Software Development Kit
generator uses this information to know how to create a certain type of program. The types are stored in

the template meta-data table.

Just like tab menus, the generated tab page resides in a certain physical directory in the server's file
system. Location, the abstract name that represents the actual location of the program, is specified in the

Ul Program Components Object View.

Tab pages may have one or more program variables that control its behavior and/or appearance. These
variables are maintained from the Program Variable Collection of the Ul Program Components Object

View.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 76

Each tab page has at least one program section. Each section has at least one element of a particular
type. A program element may have one or more element attributes that control its behavior and/or
appearance. For example, an element attribute may specify whether or not a field is hidden. Elements
may be as simple as input text fields or buttons, and as complicated as trees, grids or graphs. The latter
types of elements are actually contained in their own tab page and are referenced from the calling tab
page. Please refer to Ul Program Components Object View to see how these components are created and

maintained.

When Ul program components are referred to from other Ul program components, instead of referencing
these programs by their physical names, pseudo names/aliases (called navigation keys) are used. The
navigation keys abstract the physical name and location of the program component from the application,
making it easier to change and maintain such details. The link between this pseudo address and the
actual location of the program is maintained from the Navigation Keys Object View.

Menu and Navigation Metadata

The following entity relationship diagram describes the metadata related to menus and navigation.

Menu Navigation Navigation =
Module Key i Mode | Favailios
' Menu Foreign Key
Reference
Navigation
¥ Option
Menu Line Campaign
Merilicrs Navigation | | Navigation
—» Menu Item " adile Option Option Script Step
Context Usage

Menu and Navigation Metadata ERD

Transactions within framework are accessed through menus. The menu framework uses navigation

options to define the information required in navigating between transactions. The most important

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 77

attribute of a navigation option is the Target Navigation Key. This identifies the transaction the navigation

option will navigate to.

A navigation key is a logical name/pseudo address for Ul components. Its prime responsibility is to
transform a logical address to a specific URL. The link between this pseudo address and the actual

location of the program is maintained from the Navigation Key Object View.

The menu type defines how the menu is used. You have the following options:

- Main defines a menu that appears on the menu bar.

« Admin is a special type of Main menu as admin menu items can be grouped alphabetically or
by functional group. Refer to the user documentation for more information about admin menu
options.

« Context defines a context menu.

- Submenu defines a menu that appears when a menu item is selected. For example, the Main menu

contains numerous submenus. Each submenu contains the navigation options used to open a

page.

Table-Related Metadata

Table ——— Constraint

Constraint

Table Field Fielg

Field

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 78

Table Metadata ERD

Table information is used for various purposes. Table information is stored in metadata. This includes
which fields are on the table (table field) and business rules for the fields. Constraints define the keys of
tables. Constraints also define relationships between tables. Constraint fields specify the fields involved

in the keys or relationships between tables.
Multi-Language

The framework product is available worldwide. This means that the product must be able to display

information in many languages.

Some field and table information is language-dependent. Table, table / field and field all have child
language tables that hold descriptions specific to each supported language. When field information is
retrieved, the system returns not only the base field information, but also the descriptions associated with

the user's language.

This process is also used for labels (fields with Work Switch set to Y). When a label is needed by the
system, the work field information is obtained and the description (from the language table) is displayed
on the UL

Note:

Developers should not use plain text on the Ul. All labels should be defined as work fields so that

the system will recognize the field and obtain the correct, language-based description to display.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 79

Maintenance Object Metadata

MO Program
Component
MO Table Sompaie: .
Type |
Table Role !
Field Tabe | . |
Table Field

Maintenance Object ERD

A maintenance object (MO) represents a group of tables maintained within framework. These objects are
primarily used by the ConfigLab functionality and by the archiving engine to process archiving or purging
tasks.

MOs also provide structure from which the various program components (needed to maintain an object)
can be created. To be specific, both the front-end user interface (Ul) components and the back-end
program components can be generated from the MO. The MO specifies the key program component,
namely:

« Ul Tab Menu

MOs have at least one associated table, e.g. a primary table, sometimes referred to as the root table. In
most cases, there are child tables associated with the primary table. E.g. a language table, person name
table (child of person table), etc. The Table Role specifies whether the table is a child or a primary.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 80

The Compare Type indicates the comparison method that is used in the ConfigLab functionality. This field

is not used for the purpose of building program components from MOs.

MO Table information is maintained from the Maintenance Object Tables Collection of the Maintenance
Objects Object View.

- N

Note:
Oracle recommends that customers using Oracle Utilities Application Framework version 4.2 or
later and currently using ConfigLab switch to Configuration Migration Assistant (CMA) for their
configuration data migration needs and retain ConfigLab for migration of master and transaction
data migration. Also note that CMA functionality is not available to every Framework-based
product. For details, including tips and requirements for moving from ConfigLab to CMA for
configuration data migrations, see the "Configuration Migration Assistant" section in the Oracle

Utilities Application Framework Aministration Guide.
N /

Defining Generator Tools Metadata

Before generating new programs, you must create the metadata to be used by the generator tools.

Warning:

Please refer to the System Table Guide in the Database Administration Guide for the standard
naming convention of each metadata object. Compliance to the standard naming conventions is
critical in ensuring the ability to upgrade.

Please refer to the Oracle Utilities Application Framework Administration Guide for details about setting up

each of these metadata tables.

« Fields (Database Tools, Defining Fields)

« Foreign Key References (Database Tools, Defining Foreign Key References)
« Lookup Tables (Database Tools, Defining Lookups)

« Navigation Options (User Interface Tools, Defining Navigation Options)

« Services (Configuration Tools, Service Program)

* Tables (Database Tools, Defining Tables)

« Menus (User Interface Tools, Defining Foreign Key References)

« Maintenance Objects (Database Tools, Defining Maintenace Objects)

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 81

Development Process

This chapter provides a quick reference for common development tasks. The details are described in the

Cookbook chapter.

Hooking into User Exits

Hooking into Ul Javascript User Exits

Ul pages can have various events extended in order to add to or possibly override base product behavior.

To create a Javascript user exit:

- Identify the page to extend.

- Create a JSP extension file (.xjs file) for the given page containing the necessary method for the
given action.

- Identify user exits to code.

« Code the desired user exit logic into the JSP extension file.

Hooking into Java User Exits (interceptors)

Interceptors allow additional logic to be executed before or after the invocation of a service. To implement

an interceptor:

- Identify the page to extend.

- Identify the interceptor interface to implement.

« Create an interceptor class.

« Code the desired logic into the interceptor class.

« Register the class in CMServiceConfig.xml.

Extending Business Entities

Business entities are the Java representation of persistent data in the system. These objects are
transparently initialized and persisted into the database. Many entities are already defined by the base
application but may be extended through customization. Likewise, new entities may be created which

expose custom tables as business entities.

There are two kinds of hand-coded logic associated with business entities: logic that exposes useful
methods to the outside world and logic that is used within the entity itself to perform validation and

handle the cascading effects of its changes in state.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 82

Logic exposed to outside callers is what is coded on the business entity's implementation class (the
"Impl") class. These "business methods" are then generated onto the entity's "business interface" (e.g. the
Person interface). The business interface is the contract that the entity has with other objects.

Quite another thing is how an entity validates and otherwise deals with its changes of state. This is event-
driven logic that is not exposed to outside callers and never belongs on the business interface. This type
of interface is commonly referred as a "specialization interface" rather than a "business interface" and is
coded in change handlers. Unlike a business interface, which receives messages from other objects, a
specialization interface is one that provides a mechanism purely for extension of some baseline behavior.
In that spirit, the framework design clearly separates the two kinds of code.

Extending the Business Interface

- Create a new implementation class.

- Specify appropriate annotations for an extension implementation class.
« Code business methods.

« Generate artifacts.

* Create a JUnit test.

- Generate artifacts.

* Run JUnit tests.

« Deploy to runtime.

* Test in runtime.

Extending the Specialization Interface

+ Create a new change handler.

- Specify appropriate annotations for a change handler.
- Code specialization interface.

« Generate artifacts.

* Create a JUnit test.

- Generate artifacts.

* Run JUnit tests.

« Deploy to runtime.

* Test in runtime.

Creating New Business Entities

Business entities are the object representation of persistent data in the database. To create a new

business entity the tables, fields and other meta-data should have already been defined in corresponding

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 83

meta-data tables. Likewise, the schema objects must already be in the database. Having completed these

steps, the business entity is defined to the Java programming and runtime environment by:

Specifying the Business Interface

« Create a new implementation class.

- Specify appropriate annotations for an implementation class.
+ Code business methods.

* Create a JUnit test.

- Generate artifacts.

* Run JUnit tests.

« Deploy to runtime.

» Test in runtime.

Specifying the Specialization Interface

- Create a new change handler.

- Specify appropriate annotations for a change handler.
- Code specialization interface, if any.

* Create a JUnit test.

- Generate artifacts.

* Run JUnit tests.

« Deploy to runtime.

» Test in runtime.

Extending Maintenance Classes

The topics in this section describe maintenance class extension procedures.

Maintenance extensions

Not all maintenance logic can go in the initial application's Maintenance. For instance, how can you
retrieve the description of a foreign key whose table does not exist in that application?

An "extension" methodology exists whereby an existing page can have behavior added to it at

predetermined plug-in points.

This is done by having a list of maintenance extensions that can be supplied for any given maintenance.
At runtime, this list is kept and when a maintenance is initialized, new instances of its extensions are

created. These extensions are called after any original maintenance behavior, and in the order of loaded

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 84

applications. This means that the extensions should have no dependence on what other extensions have

run, excepting the original maintenance having run.

To extend a maintenance:

- Create a new maintenance extension class.

- Specify the annotations required for a maintenance extension.

« Code desired logic in appropriate methods (see Abst r act Mai nt enanceExt ensi on).
* Generate artifacts.

« Code JUnit tests.

* Run JUnit tests.

« Deploy to runtime.

* Test in runtime.

Creating Business Components

Business Components provide a mechanism to provide non-persistent business logic (as opposed to

business entities that add to persistent objects). An example business component is as follows:

/**
* Conponent used to query for {@ink Person} instances based on various

* predefined criteria.

* @Busi nessConponent
& (custom zati onRepl aceabl e = fal se)
*/
public class PersonFi nders_| npl

extends Generi cBusi nessConponent

i npl ements PersonFi nders

/**

* @aram naneType a hane type

* @eturn count of names by nane type

* @Busi nessMet hod (custoni zationCallable = true)

*/

public int findCountByNanmeType(Lookup nameType) {
Query query = createQuery

(" FROM Per sonNanme name where name. naneType = :type");

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 85

query. bi ndLookup("type", nanmeType);

return (int) query.listSize();

To add a new component:

- Create a new implementation class.

- Specify appropriate annotations for a business component implementation class.
« Code business methods.

» Specify appropriate annotations for business methods.

* Create a JUnit test.

- Generate artifacts.

* Run JUnit tests.

« Deploy to runtime.

» Test in runtime.

Plugging in Algorithms

Algorithms provide a powerful and flexible way of extending applications that use the Oracle Utilities
Software Development Kit.

Algorithm spots in the application identify different areas that can be extended or customized by
implementers. Each algorithm spot defines a set of inputs (typically via set- methods) and output

(typically by get- methods).

During implementation, implementers can either re-use existing algorithm types or create new plug-in

algorithm. To add a new plug-in algorithm, an implementer will follow these steps:

- Identify the plug-in spot.

« Create an algorithm component.

- Specify appropriate annotations for algorithm component.

« Code the desired logic into the invoke() method.

» Code methods to implement the algorithm spot interface.

* Create a JUnit test.

« Generate artifacts.

* Run JUnit tests.

« Deploy to runtime.

- Create a java class to perform a special plug-in action. This typically would be a modified version

of an existing plug-in class. Refer to the algorithm spot definition for the various parameters that

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 86

are available. In writing it, look out for possible soft parameters that will add flexibility to the plug-
in.

« Add an Algorithm Type to correspond to the new plug-in behavior. This includes naming the java
class that was created in the previous step. In addition, the soft parameters that are expected by
the algorithm are also defined here.

- Create Algorithm specifying the specific algorithm parameter values where applicable. If the
algorithm type is flexible enough, it may end up being reused in multiple algorithms, each having a
different set of soft parameter values.

- Add the algorithm to the appropriate control table's algorithms. With this step, the plug-in is
available to the application.

» Test in runtime.

Creating Background Processes

To create a background process, there are three important classes that need to be created.

« An implementation of com.splwg.base.api.batch.BatchJob. This is the "driver" and should:
o Include a "BatchJob" class annotation
o Extend a generated superclass. In the case where the batch job is named "Foo", the
generated superclass will be "Foo_Gen".

- An implementation of com.splwg.base.api.batch.ThreadWorker. This is responsible for processing
the work distributed to a processing thread. By convention, this is coded as a static inner class
within the BatchJob class implementation described above. If the file becomes excessively large,
the worker can be split into its own source file. The worker class extends a generated abstract
superclass. In the case of the "Foo" batch job, the worker should be named FooWorker and extend
"FooWorker_Gen".

- At least one test class extending com.splwg.base.api.testers.BatchJobTestCase. This class will
perform automated tests on the batch process. The runs are performed within the test thread and
transaction and all changes are rolled back at the end of the test.

After creating the background process, a corresponding entry should be made in the Batch Control table
referencing the created BatchJob's class.

An example batch Job is com.splwg.base.domain.todo.batch.BatchErrorToDoCreation and the test is
BatchErrorToDoCreationTest.

Testing Background Processes

BatchJob classes can be tested with JUnit in two ways:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 87

« Extending the BatchJobTestCase class and implementing abstract methods.
« Calling the submitBatchJob(SubmissionParameters) method in any ContextTestCase. This allows

testing a mix of one or more background process and other business logic to be tested.

In both of these approaches, the normal commit and rollback logic of BatchJobs is subverted so that all
updates performed by the batch process are rolled back when the test completes, either successfully or
unsuccessfully. Therefore, these JUnit tests provide a safe way to test batch processes without making

irreversible database updates.

Creating MOs and Maintenance Transactions

A typical development of a new MO and its corresponding maintenance transaction entails the following

steps:

- Create database objects, e.g., tables, indexes, etc.
- Enter database type of meta-data using online application from the Admin Menu. This includes:
> Field
> Table
o Table/Field
o Constraints

« Enter MO meta-data using the online system from the Admin Menu.

« Create the entity, changeHandler, and maintenance impl (implementation) classes using Eclipse.

- Generate artifacts based on the impl classes using the Artifact Generator. The artifact generator
must also be executed whenever annotations and/or meta-data are changed.

 Add business rules on either the entity or changehandler using Eclipse.

« Create business components, if necessary, in Eclipse.

« Create test classes and then execute JUnit tests in Eclipse.

- If necessary, update maintenance impl class annotation to include fields with derived values using
Eclipse. Regenerate artifacts after changing annotation. This generates the service metainfo.

 Add business logic on maintenance impl classes using Eclipse.

- Create maintenance test classes and then execute JUnit tests in Eclipse.

« Create search impl classes using Eclipse.

« Create search test classes and then execute JUnit tests in Eclipse.

- Create a new Maintenance Object from the Admin Menu -> Maintenance Object. This would
automaticaly create the Tab Menus and Tab Pages necessary for a new transaction. This will also
create the appropriate navigation key for each program component.

« Create javascript user exits for Ul program components (e.g. tab menu, tab page, list grid, etc.).

« Add security access to the new application service.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 88

- Create Menu entry for new application service.

« Launch Tomcat server and test the new application service.

Building General Purpose Maintenance Classes

The steps for developing general-purpose maintenance classes are similar to those for MO-based
maintenance classes, as described above, but without the need to rely on entity or MO metadata.

- Create the maintenance impl (implementation) classes using Eclipse.

- Generate artifacts based on the impl classes using the Artifact Generator. The artifact generator
must also be executed whenever annotations and/or meta-data are changed.

« Create business components, if necessary, in Eclipse.

« Create test classes and then execute JUnit tests in Eclipse.

- If necessary, update maintenance impl class annotation to include fields with derived values using
Eclipse. Regenerate artifacts after changing annotation. This generates the service metainfo.

- Add business logic on maintenance impl classes using Eclipse.

- Create maintenance test classes and then execute JUnit tests in Eclipse.

- Create javascript user exits for Ul program components (e.g. tab menu, tab page, list grid, etc.).

 Add security access to the new application service.

- Create Menu entry for new application service.

- Launch Tomcat server and test the new application service.

Creating Javadocs for CM Source Code

Information about the Javadoc tool can be found at the following location: https://www.oracle.com/
technical-resources/articles/java/javadoc-tool.html. Please refer to the documentation concerning how to

write tags, troubleshoot warnings and errors, and any other Javadoc tool questions.

Some known warnings are generated as part of the CM Javadoc process. The following two warnings are
safe to ignore:

- The product's annotations currently use tags that are unrecognized by the Javadoc tool. Currently,
the Javadoc tool is reporting these as warnings. These warnings are safe to ignore. For the list of
tags that are relevant, please refer to the reference guide. For example, the Javadoc tool emits the
following warning when it encounters the product's EntityPageMaintenance annotation. It is safe to
ignore.

war ni ng - @ntityPageMai ntenance is an unknown tag

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 89

- The Javadocs tool may also generate warnings that appear from the generated artifacts. These
are easily identifiable by looking at the path for the name "sourcegen.” For example the following
warning can be ignored since path name includes the "sourcegen” directory.

C:\spI\CCB_PROJ1\java\sourcegen\cm\com\splwg\cm\domain\common\cmCisDiv

\CmCisDivisionMaintenance_Gen.java:437

For all other warnings, please refer to the Javadoc documentation.
To generate Javadocs, run the utility script generateJavadoc.bat.

To integrate CM and the product's Javadocs, run the utility script reindexJavadoc.bat to recreate the

indices to reflect current environment.

Generate CM Javadocs
Prerequisite: all artifacts need to be generated and the code needs to be compiled without errors.

The first step is to generate Javadocs for CM code. The standard behavior of the Javadoc tool is to create
indices that show the packages and classes of the source code that the tool was run on. The resulting
indices will only show links to the CM classes and not the product's. To recreate the indices so that they
include both the CM and the product's Javadocs, follow the next step.

Recreate the Javadoc Indices

A utility script can recreate the Javadoc indices to include both the CM and the product's Javadocs. The
script will scan the files in the Javadoc directory and recreate the indices based on the files that it finds.

Cookbook

Hooking into User Exits

Hooking into Maintenance Class User Exits

Maintenance extensions

Not all maintenance logic can go in the initial application's Maintenance. For instance, how can you
retrieve the description of a foreign key whose table doesn't exist in that application?

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 90

Therefore, an "extension” methodology needs to exist whereby an existing page can have behavior added

to it at predetermined plug-in points.

This is done by having a list of maintenance extensions that can be supplied for any given maintenance.
At runtime, this list is kept and when a maintenance is initialized, new instances of its extensions are
created. These extensions are called after any original maintenance behavior, and in the order of loaded
applications. This means that the extensions should have no dependence on which other extensions have
run, excepting the original maintenance having run.

Developing Maintenance Extensions

Maintenance extensions must use the same buffer structure as the original maintenance. The only
change allowed is to add possible new default values. Thus a maintenance extension with its annotation
might look like this:

[xx
* @ersion $Revision: #1 $
* @i nt enanceExt ensi on (serviceName = Cl LTALTP,
* newDef aul t s={ @avaNanmeVal ue (val ue = TEST, nane = test)
* }
*)
*/
public class Al gorithniTypeMai nt enanceExt ensi on
extends Al gorithnilypeMai nt enanceExt ensi on_GCen {

}

The maintenance extension will have its superclass generated to give easy access to the STRUCTURE
definition and HEADER and DEFAULT constants, as well as provide an easy hook for any future
functionality that might need to be inserted.

You must use the constants on the STRUCTURE or HEADER structure definitions to reference input header

fields or which output fields to populate.

The maintenance extension can then override any methods needed to provide its functionality. Some
examples of methods available are:

[**

* Process a default

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 91

* @aram def aul t Val ue the raw string value of the default (can conpare
& agai nst DEFAULTS const ants)

* @aramitemthe itemto be nodified with default val ues

*/

public void processDefaul t(String defaultVal ue, DataEl ement item {}

/**

* Process the data after the whole add (root and chidren) action is
* done.

* @aramoriginalltemthe input item

*/

public void afterAdd(DataEl enent originalltem {}

IEs
* Process the data after the whole read (root and children) action is
* done.

* @aramresult the output item
*/

public void afterRead(DataEl enent result) {}

| *x
* Process the data after an el enent of the given list has been read.
* @aramlistNane the |ist name
* @ar am out put El enent the out put el enent
* @aram sourceEntity the just read entity
*/

public void afterPopul ateEl enent (String |istNang,

Dat aEl enent out put El ement, BusinessEntity sourceEntity) {}

/**
* Process the data after an el enent of the given |list has been changed.
* @aramlistNane the |ist name
* (@aram input El ement the input el ement
* @aram changedEntity the changed entity
*/

public void afterChangeEl ement (String |istNane,

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 92

Dat aEl enent i nput El ement, Busi nessEntity changedEntity) {}

The complete list can be found in the hierarchy of the extension class (e.g.,

Abst r act Mai nt enanceExt ensi on) http://www.python.org/

Hooking into Ul Javascript User Exits

The client-side external user exits are designed to give implementers flexibility and power to extend the
base package user interface. Implementers have the ability to add additional business logic without
changing base html files. These user exits were developed such that developers can create an include-like
file based on external user exit templates.

There are two types of client user exits available. There are process-based user exits that wrap the similar
product user exit code with pre- and post- external user exit calls, and there are also data-based user exits
that simply allow the implementer to add/delete data from the product returned data.

Both types of external user exit are only called if the function exists in the implementer's external
include JSP file. All available user exits are listed online in the system through the relative URL: /code/
availableUserExits.jsp, with definition examples and links to the Framework code that executes the call.

http://www.python.org/

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 93

-3 Available User exits - Microsoft Internet Explarer -Iﬂlﬂ
Il File Edit ‘Wiew Favoites Took Help
I [
||| Address [€] hip:/ni-boig 020 code/availableUseiExis jsp =] @G0
-
Calling file Called Base exit name Return type example Product declaration example CM dec
Client Listservice...
: : |funetion et CreemideContesd,
cis s ishMeny ovemridsContexthocomntld | [String gw'mmm&"cmmﬁmwm{ ltprodustRetumValue){
It
’ : [function extCrvemideContexd]
sis jo bbMeny |lovemideContextParsonld String ?’m'mmmcmmp‘”"'mm [tproductRetamValue){
|}
y ; : funtion extOnverideContest]
sia s {shMenu |loveridsContextPremiseld String g““'mmma”cmmp’m”m{ [tprodustRetumYalue){
[}
= \funtion extShouldbot dutal
i tah I houldNats utelTppe BoaleanVal If shouldot A utol ppercase = fals [
e N il i i ‘m i ‘ ‘u e " lBockan)
; . |function extotUppercaseFs
cisjs fhMenu potUppersseFielis fmay i‘m"”" o T ypeoceadFiska([tproductRetumV alue){
1
;s T |Pumetion extTgnorehModifiedF
5t My ignorelodifisdFields Ay i e R l(productRetunVahue){
i}
: [function extDontCopykeyhl
A ikMeny |/doniCopyKeubames by List f“m"““d“‘c"”“w““‘—”sm{ |t productRetum¥ alue)
|t
funection initialize HewElement_LIST \furction extinitialize NewEle
HENE tablulenu ingtializeMewElement rooid List (dataElement) { \(dataFlerrent){
} I}
' : |function extFields Tolncludel
siage bstOrid |felisTolnclodelnlistXMI, | |Ammay i}"m’m ekt Talwlic nLsLART0L [tproductRetumalue)(
It
i : i [function extSaveButtonEndal
sia o tbMeny |lsaveButionErshlingOverrids |[Bocken ?”’MSMB““C'MWMD{ [tproductRetamValus){
I}

Miscellaneous How-To's

The following are some how-to examples of typical behavior utilizing some of the standard user exits.

The examples are written for cases of modifying new CM transaction pages, where the function

definitions are put into "extended JavaScipt" files (.xjs) that are meant to contain JavaScript user exits

directly for a page.

If, on the other hand, an implementer wishes to modify the behavior of a shipped product page, each

of the functions below have a corresponding "ext" function that can defined in a /cm/extXXX.jsp file

corresponding to the desired page that will fire after any product function call (see above an example of

hiding the Sequence column in the algorithm maintenance page).

How Do | Control the Initial Focus Within Tab Pages/Grids/Search Pages?

The system automatically places the initial focus on an appropriate widget (generally input fields) within a

Tab Page/Search Page/Grid.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 94

By default it will place focus on the first enabled field with a data class defined on it. (If input fields do not

have the Field Name / Table Name defined within Meta Data they will have no data class)

If there are no fields satisfying this criteria within the tab page it will continue to look (recursively) into all

the contained frames (e.g. list grids etc.)
If no field is found then no element receives focus.

You can override the default behavior at each level via the provision of a focusWidgetOverride() function

within the user exit file which will return the Name of the Field to receive the focus or null.

If null is returned it will ignore all fields within this document and continue to search in lower level

documents.
E.G.

From within a Tab Page (If you want focus to go on to a sub document)

function focusW dget Override() {

return null;

From within a List Grid

function focusW dget Override() {

return "TD_TYPE_DRLKY: 0$TBL_NAME";

from within a Search Page

function focusWdgetOverride() {

return "LAST_NAME';

}

o ™
Note:
These functions can be as simple or complicated as you want. You could conditionally return
a field name or null and this code will run each time the window loads. Also, if a tab page has a
popup window or a search window open as it is loading then the initial focus will not be set to the

tab page but stay with the popup window
- _/

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 95

How Do | Mark Fields that Won't Make the Model Dirty?

In certain windows, we have a concept of a "locator” field, which typically acts as a filter on some lists of
the object you're looking at. Examples are user group's filter on description, and several IB windows' filter

by date.

With the warning about loss of data when throwing away a dirty model, this results in the use of locator
fields giving this warning, which wouldn't be expected. In order to avoid this warning on locator fields, you

can add a function like the one that follows that enumerates the locator fields:

function ignoreMdifiedFields(){

return [' START_DTTM]

You can include any nunber of fields in the array, e.g.

return ['FIELD 1', 'FIELD 2', 'FIELD 3']

How Do | Control the Triggering of Defaults After a Search?

If a search returns multiple fields and more than one of these fields can trigger default, then it might be

more efficient to only have one of these fields trigger the defaulting.

This is accomplished by creating a new function called overrideDefaultTriggersFor_.SEARCHGROUP
within the tab page that contains the search, where SEARCHGROUP is the name of the searchGroup you

want to override.

The function must return an object with the triggering field(s) are attributes with a true value.

For example

function overrideDefaul tTriggersFor_SRCHL() {

var triggers = {};

triggers["ACCT_ID'] = true;

triggers["“SA_ | D']=true;

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 96

return triggers;

}

How Do | Avoid Automatically Setting Fields to Uppercase?

Model attributes that are also key fields are automatically coerced to be in uppercase. You can block this
behavior on a field-by-field basis by defining the notUppercaseFields() function in your TabMenu's user
exit file to return an array of field names that should not be converted.

Example:

function not UppercaseFiel ds() {

return [' ELEM ATT$AT_NAME]

You can also provide a "global” override for an entire TabMenu by setting the shouldNotAutoUppercase

variable to true:

var shoul dNot Aut oUpper case = true;

How Can | Force the Save Button to be Enabled?

The save button usually synchronizes itself to the state of the model such that if it hasn't been "dirtied"
the button is disabled. You may wish to control the state of the save button e.g. because a save should

always/never be allowed.

Simply define the function saveButtonEnablingOverride() on your TabMenu user exit file to return a
boolean indicating whether the save button should be enabled. You can simply return a literal boolean, or
perform any desired processing to determine the return value.

Example:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 97

function saveButtonEnablingOverride() {

return false;

How Can | Override the Processing After a Change/Add?

If you need to intervene in the processing after the system successfully completes a Change or Add
operation, define the function privatePostChangeSucceeded() or privatePostAddSucceeded() in your
TabMenu user exit file. The function should return a boolean to indicate whether the system should
refresh the Ul with the newly returned server data. You'd want to return false if e.g. you navigate to a
different TabMenu.

Example :

function privatePost AddSucceeded() {
var nodel = parent.nodel;
var nodeFl ag = nodel . get Val ue(' COVPL_NAV_MODE_FLG) ;
var navKey = nodel . get Val ue(' COVPL_NAV_KEY') ;
var conpl Sw = nodel . get Val ue(' CMPLT_CLI CKED_SW) ;
if (conpl Sw && nodel . get Val ue(' ENRL_STATUS FLG) == '30') {
if (nodeFl g & navKey) {
if (nmodeFlag == "'G) {
par ent . t abPage. got oCont ext (navKey) ;
return false;
} else if(nodeFlag == 'A") {
par ent . t abPage. addCont ext (navKey) ;

return false;

}

return true;

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 98

How Do | Prevent the System from Setting Focus to a Widget After an
Error?

When a service receives an error and shows a message after calling a back-end service, the browser
attempts to set focus to the relevant widget in error. If you don't need this behavior, you can define the

TabMenu variable dontSetFocusOnError to boolean "true.

Example:

var dont Set FocusOnError = true;

How Do | Prevent Attributes From Being Copied into New List Elements?

The system automatically copies key fields (based on name matching) from a parent list element into new
child elements (e.g. created by using the scroll '+ button), in order to keep their prime keys consistent.

If you want to inhibit this operation for certain fields, define the TabMenu function dontCopyKeyNames_
<LIST NAME> to return an array of fields that should not be copied into new elements of the list named
LIST_NAME

Example:

function dont CopyKeyNames_ENRL_FLD() {

return [' SEQ NUM]

How Do | Customize New List Elements?

When you use '+' button on a grid or scroll you get a new, empty list element. If you want to customize
the object, define a function in the TabMenu's user exit file named initializeNewElement_<LIST_
NAME>(newElement).

Example:
function initializeNewEl enent ENRL_LOG(newEl enent) {

newkl ement . set (* ENRL_LOG TYPE_FLG , ' USER);

newEl enent . set (' USER_| NFO , parent. nodel . get Val ue(' CURRENT_USER | NFO)) ;

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 99

How Can | Get My Sequence Numbers to Default Properly on My List Grid?

If you are working with a List Grid that uses some type of sequence field (e.g. SEQNO, LINE_SEQ, SORT_
SEQ), there is a handy bit of technology that you can use that will cause the Ul to do this job for you.

Just follow the steps below and you'll have the problem solved in no time. The sequence field will be
populated in your "empty line" and any elements that are added from then on will have an appropriate
value in the sequence field. If the user edits the sequence field at any point, the next element added to the

list will incorporate the change without any problems.

o ™
Note:
The default Sequence Number functionality will default the next nearest tens value from the
highest sequence. The defaulting will do nothing after the sequence reaches the highest number

it can hold.
N J

« In the user exit file of the Tab Menu - not the main Page or the List Grid - copy this JavaScript code:

function initializeNewEl ement _LI ST_NAVE(newEl ement) {
var nyListName = "LI ST_NAVE";
var nyLi st SeqName = "Fl ELD_NAME";
var nyLi st MaxSeq = 999;

def aul t SequenceNunber (myLi st Nane, nmyLi st SeqNane, nyLi st MaxSeq, newEl enent)

</ SCRI PT>
<SCRI PT src="/zz/ def aul t SequenceNunber/ def aul t SequenceNunber . j s"></ SCRI PT>

<SCRI PT>

» For LIST_NAME, substitute your List Grid's list name. Be careful not to lose that underscore [_] just
in front of LIST_NAME in the first line! Remember that JavaScript is case-sensitive and make sure
that you use all UPPERCASE letters as shown here.

- For FIELD_NAME, substitute the name of your sequence field, whatever that might be in your List.
Don't lose the quotes ["]! Again, use all UPPERCASE letters.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 100

How Do | Override the Tab Page Shown After an Error in a List (Grid/Scroll)?

When the system receives an error (e.g. after a Save) it attempts to set focus on the relevant widget,
which might require flipping to a different tab page. If the error relates to a list (grid or scroll) the system
might not choose the tab page you'd prefer. In that event you can control the tab page that should be
opened by defining the TabMenu function overrideErrorTabPage_<LIST_NAME>().

Example:

function overrideError TabPage_BPA() {

return ' bussProcessAssi st ant St epPage’ ;

How Do | Disregard Unwanted Criteria from a Search Triggered by a Search
Button?

When a search button (currently implemented as an IMG) is pushed, the system launches a search and
"pulls" all applicable criteria values from the current model. It might be that certain criteria fields should
be ignored in a particular case. You can define the function addignoreFieldsFor_<triggerFieldName>()
on a tab or search page's user exit file to specify fields to ignore whenever the IMG button named

triggerFieldName is pushed on that page.

The function takes a single argument, fields, and you should add key/value pairs where the key is a field

name to ignore, and the value is true.

Example:

addl gnor eFi el dsFor _ADDRESS1_SRCH = function(fields) {

fields['CITY_SRCH] = true

addl gnor eFi el dsFor _PER I D = function(fields) {

fields[' ENTI TY_NAME_SRCH] = true

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 1071

How Do | Disregard Unwanted Search Result Columns?

When you accept the result of a NOLOAD search the system tries to populate the selected search result
row into the current model. Sometimes this doesn't make sense e.g. because there is no corresponding
attribute for a display-only column. You can exclude a column from being returned as part of a search
result by defining the search client's (Tab Page or Search window) function ignoreResultColumns() in the
corresponding page's user exit file. Return an object with keys specifying attributes and values all set to

boolean "true".
Example:

function ignoreResul t Col ums() {

return { ADDRESS1: true, CITY: true, POSTAL: true };

Since Searches can be shared by many search clients, it is possible that some clients want to get a
specific column, but others don't. In that case, define the TabMenu function ignoreResultColumnsFor_

<service> as above.
Example:

function ignoreResul t Col untmsFor_Cl LCCOPS() {

return { CONT_OPT_TYPE_CD: true}

How Do | Format a Value Based on a Given Format?

If you need to format a value based on a given format, for example, on Person ID Number, if you select
ID Type as SSN (999-99-9999), you can always format the Person ID Number before committing it to the

server.

To do so, you can call the formatValue javascript function.

« In the user exit file of the tab page include the following lines:

</ SCRI PT>

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 102

<SCRI PT src="/zz/format Val ue/ f or mat Val ue. j s"></ SCRI PT>

<SCRI PT>

» Now, you can start using the function to format a value. To use this function, you need to pass in

both the value and the format into the function.

var phFormat = nyData. get Val ue(pureLi st Name + ' PHONE_TYPE_FORVAT') ;
if (pureFieldName == 'PHONE') {
updat eFi el d(pureLi st Nanme + ' PHONE

f or mat Val ue(nyDat a. get Val ue(pur eLi st Nanme + ' PHONE'), phFornmat));

Hooking into Java User Exits (interceptors)

Create a class implementing any of the following Interceptor Java Interfaces whenever processing is
required before or after the invocation of a service. The CMServiceConfig.xml file contains the mapping
between services and corresponding classes that implement pre/post processing plug-ins. The files
should reside in the same directory as the service xml files, that is, in the <classpath>/services folder. This
can be arranged by placing the files in the web application server's WEB-INF/classes/services folder, or

placing them in an existing jar file.

Note:

Note: CM interceptors defined on the CMServiceConfig.xml override base product interceptors on

the same service and action.

To implement an interceptor:

- Creating a class implementing any of the Interceptor Java Interfaces.
* Register the class in CMServiceConfig.xml.

Example

The following is a sample interceptor and configuration file, where one interceptor class implements all

four interfaces.

Configuration file CMServiceConfig.xml:

<Servicel nterceptors

<Servi ce name="CM.TBTCP" >

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 103

<l nterceptor action="add">

com splwg. cis.interceptortest.|nterceptorTest
</ | nt erceptor>
<Interceptor action="change">

com splwg. ci s.interceptortest.|nterceptorTest
</ I nterceptor>
<Interceptor action="delete">

com splwg. cis.interceptortest.|nterceptorTest
</ | nt erceptor>
<Interceptor action="read">

com splwg. ci s.interceptortest.|nterceptorTest
</ I nterceptor>

</ Servi ce>

</ Servi cel nt er cept or s>

Class com.splwg.cm.interceptortest.InterceptorTest:

package com splwg.cminterceptortest;

i nport com spl wg. base. api . servi cei nterception. | Addl nterceptor;

i nport com spl wg. base. api . servi cei nterception. | Changel nterceptor;
i nport com spl wg. base. api . servi cei nterception.|Del etelnterceptor;
inport com spl wg. base. api . servi cei ntercepti on. | Readl nt er cept or;
inport com spl wg. base. api . servi ce. PageBody;

i nport com spl wy. base. api . servi ce. PageHeader ;

i nport com spl wg. base. api . servi ce. Request Cont ext ;

public class InterceptorTest inplenents |IAddlnterceptor, |Changelnterceptor,

| Del etel nterceptor, |Readlnterceptor {

publ i ¢ PageBody about ToAdd(Request Cont ext context, PageBody in) {

System out . pri ntl n("about ToAdd: +in);

return null;

public void afterAdd(Request Cont ext context, PageBody added) {

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 104

Systemout. println("afterAdd: " + added);

publ i c PageBody about ToChange(Request Cont ext context, PageBody in) {
System out. printl n("about ToChange: " + in);

return null;

public void afterChange(Request Cont ext context, PageBody changed) {

Systemout. println("afterChange: " + changed);

publ i ¢ bool ean about ToDel et e(Request Cont ext cont ext, PageBody in) {
System out. println("about ToDel ete: " + in);

return true;

public void afterDel et e(Request Context context, PageBody in) {

Systemout.println("afterDelete: " + in);

publ i c PageBody about ToRead(Request Cont ext context, PageHeader in) {
System out. println("about ToRead: " + in);

return null;

public void afterRead(Request Cont ext context, PageBody result) {

Systemout.println("afterRead: " + result);

Maintaining General-Purpose Maintenance Classes

While most page maintenance classes are actually Entity-based (see Maintaining MO's, below), it is

sometimes necessary to write a general-purpose maintenance class for some specific purpose.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 105

To develop such a Page Maintenance class, you need to create a hand-coded implementation class.

This class subclasses a class (to be generated) with the same name (and package) as your class,

but with the suffix "_Gen". For example, if your class is named Sanpl ePageMai nt enance, you'll subclass

Sanpl ePageMai nt enance_Gen. Your class must include an annotation providing the metadata that describes
the maintenance. This annotation is essentially a subset of the annotation for an entity page maintenance
(aka MO maintenance), but leaves out details specific to the entity model (also known as the domain

model). For example, the RowFi el d annotation is not supported, since it links directly to an entity.

Here is an example of a simple PageMai nt enance annotation:

@ageMi nt enance (secured = fal se, service = Cl LABCDE,
body = @at aEl enent (contents = { @ataField (name = DATA_FI ELD1, overrideFi el dName = FLD_NANE)
, @ataField (DATA VALUEL)}),
actions = { "read"},
header = { @ataField (name = | NPUT_FI ELD1, overrideFi el dName = FLD_NAME)
, @ataField (nane = | NPUT_VALUEL) },
headerFields = { @ataField (name = CONTEXT_NAMELl, overrideFi el dName = FLD_NAME)
, @pat aField (name = CONTEXT_VALUELl, overrideFi el dName = FK_VALUEL)
, @pataField (name = CONTEXT_NAME2, overrideFi el dName = FLD_NANE)
, @pataField (nanme = CONTEXT_VALUE10, overrideFi el dNane = FK_VALUEl)},

nmodul es = { "foundation"})

This example doesn't use any lists, but they are described and supported as are any entity maintenance
classes. By definition, any lists here are unmapped--that is, they are not populated by the framework from
the entity model.

The supported actions are r ead, change, add, and del et e. You can leave out the actions annotation
completely if you intend to support all four of these actions. Otherwise, it's useful to declare what
methods you'll support, so the framework can create an appropriate error message when an unsupported

method is invoked.

You must implement one or more of the following action methods.

protected DataEl enent read(PageHeader header)
protected voi d change(Dat aEl enent itemn)
protected PageHeader add(DataEl enent item
protected PageHeader copy(PageHeader header)

protected voi d del et e(DataEl enent itemn

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 106

The body of the implementation is completely up to you. The available APl is largely the same as for entity
page maintenance, e.g. you have a current session/transaction in which to execute queries, can access
the entity model, etc. You are expected to throw Appl i cati onError OF Appl i cati onvar ni ng Java exceptions,
as appropriate (e.g. via addError () and addwar ni ng()), unless a serious or unforeseen problem occurs,

in which case you should throw a LoggedExcept i on, or simply let the underlying Java runtime exception
"bubble up".

The usual implementation of the read method would be to retrieve one or more parameters from the input
page header, and construct a Dat aEl erent holding the desired return values, including any lists (which may

be recursive).

For the change method, the usual behavior would be to examine the provided Dat aEl ement object, perform
some operation, and return a different data element to hold the "changed" values.

The add method is similar to change in that it accepts an input Dat aEl enent, and returns the "newly added"
Dat aEl ement instance (which should be a different instance than the input).

The del et e method accepts a Dat aEl enent, but returns nothing after the conclusion of the operation.

Maintaining MOs

Maintaining Maintenance Classes for MOs

For a new MO, use the Eclipse plugin to create the skeletal class structure for a new maintenance object
class.

For other services not linked to a MO, you will need to write a new maintenance subclass and create the

annotation.

To develop an Entity Page Maintenance class, you need to create a hand-coded implementation class.
This class must include an annotation providing the metadata that describes the maintenance. In

addition, the business entities that "back" the maintenance must already have been created.

Let's take a look at a simple maintenance annotation example to illustrate its properties:

@nti t yPageMai nt enance (
program = Cl PTBTCP,
service = Cl LTBTCP,

entity = batchControl,

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 107

copy = true,

body = @pat aEl enent (
contents = {@ataFi el d (DEFAULT_FOR_FLG
, @RowFi eld (nane=foo, entity=batchControl)

, @i stField(nane=BCP, owner=foo, property = paraneters)

DE
lists = {@ist (nane = BCP, size = 50, copy = true,
program=Cl PTBCPL, const ant Name="Cl - CONST- CT- MAX- FI FTY- COLL",

body = @at aEl ement (contents = {@owFi el d (batchControl Paraneter)}))

First we see that this tag is an EntityPageMaintenance, meaning it is a page maintenance for a

single entity root object. Here it is a batch control, but account, person, premise, etc. would also be
examples. The idea here is that, by default, the maintenance framework tries to read, save, and delete
the tree of data that starts with an instance of batch control. (Another kind of page maintenance is
EntityListPageMaintenance, where you maintain a list of entities without a single root object. It has
slightly different attributes than those discussed below.)

Next we list some attributes of the top-level annotation. The required pr ogr amattribute gives the
equivalent Converted COBOL Program page module name that we're replacing.

The servi ce is the name of the page service that we are implementing. This is required so the Framework

knows that it should route requests for this service directly to this Java class.

The required ent i ty property names the entity that this maintenance uses for its root. It should match an

entity that is defined within the system, else the maintenance obviously can't work!

The copy attribute signals that certain copy fields should be defined in the service. Making the framework
explicitly aware of these fields is preferable to "dumb" coding of these fields.

Now we hit the two major structural elements, the body and | i st s attributes.

The body attribute always resolves to a DataElement, which is simply a way to organize the collection
of "rows", "loose fields", and lists that belong to a particular level in the service data structure. These
contents are simply held in the cont ent s array, which here starts with a simple datafield, DEFAULT_FOR_
FLG. Note that you simply reference the field name, and the generator uses the field metadata to infer
its type and size. The next element of the cont ent s array in this example is RowField. This is essentially
a way of naming a reference to the properties of a single entity/table, including its language fields, if

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 108

appropriate. You need to specify its enti ty and name. Here | use a dummy name, "foo". Finally we have a
ListField, which consists of a reference to a list structure that is defined in a separate tag (1 i st s). Here we
merely name the referenced list by name, provide the owner which matches the name of the "parent” row,
and the property, which tells the system how to access the list from the parent. Here we deduce that the
get Par anet er s() method on a batch control will yield the desired child list.

List Maintenance Classes

Writing a new list maintenance class requires you to create a new class, that provides an annotation with

metadata, and lets you implement any user exits you need.
The class should subclass a generated class with the same name, but with suffix _Gen.

The annotation is @i st Servi ce, and is the same annotation structure that is used for lists within
PageMaintenance. The service name should end with "L".

If there are child lists, you need to declare them with the I'i st s annotation, just like for PageMaintenance.

You should specify any query criteria (from clause, where clause, order by clause) in the List Service
annotation, see MaintenanceListFilter on how to implement that.

The default test superclass simply tests that at least one result row is returned.

Here is an example for testing this list maintenance:

package com spl wg. base. domai n. bat ch. bat chRun;

i nport com spl wy. base. api . servi ce. Li st Header ;

i nport com spl wg. base. api . t est ers. Li st Servi ceTest Case;
import java.math. Bi gl nt eger;
public class ThreadList!nquiry_Test

extends Li st ServiceTest Case {

/1~ Met hods

public String getServiceNane() {

return "Cl LTBTHL";

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 109

BT
* @ee com spl wg. base. api . testers. Li st Servi ceTest Case#get ReadLi st Header ()
*/

protected ListHeader getReadLi stHeader() {

Li st Header header = new Li st Header();
header . put ("BATCH CD', "TD- BTERR');
header . put (" BATCH _NBR', Bi gl nteger.val uedf(1));

header . put (" BATCH RERUN_NBR', Bi gl nt eger.val uecf (0));

return header;

Maintenance List Filters

A given list on a maintenance may not need to return all the data in the list. Instead, a filter can be applied
to return a subset of the data. You get the main list by default. And now, you can modify the SQL that

will be used for the list retrieval by writing HQL to filter the list. This HQL goes into the @.i st annotation's
“fromClause” and "whereClause" properties. This is written as an HQL filter HQL, where the main table
(and its language alias, if one exists) already "exists" in the background, and can be referenced by the
alias "this" (and "thisLang" for the language row). New entities can be added to the 'from’ clause, and a
'where' clause can be specified. A select clause should not be specified (instead results can be added in
the bindList user exit - see below), and neither should an order by (the order by is specified separately).

Additionally, if there are extra values that can be retrieved via a join, the loose data fields can be specified
as @i st Dat aFi el d , with an hqglPath property specifying the hql path to select the result. And finally, you
can bind parameters and also specify extra results into the query in the bindList user exit specific for the

given list.

List Maintenance Get More

When a list is too large to send to the Ul in one shot, there is the ability to "get more" rows.

An @List can simply have its order set (separate from any other Maintenance List Filter properties).
Everything else is automated by the FW. There is no need to add special LAST_ fields to the annotation/
service, nor even to add the parent's PKs.

The order of a maintenance's list can be given in two ways:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 110

« The order can come from the domain _Impl class. However, this is limited as it may only use fields
on the entity table itself (not even language properties).

« The order can be specified on the @List annotation as a string "orderBy", written in hgl form, using
the special entity alias "this" to refer to the row (and "thisLang" to refer to the language row if one
exists), and including any other aliases available from the fromClause property.

The list will retrieve rows in chunk sizes given by the size property on the @List annotation.

An example of using this filtering to join extra information is available on the class
Mai nt enanceObj ect Mai nt enance. Another example on a Li st Servi ce, is available on the class

Navi gat i onOpt i onMenulLi st .

Besides using a MaintenanceListFilter and knowing how to deal with list get mores, lists in a page
maintenance will automatically retrieve (and cache) the language row associated with the main row of
the list. This helps the n+1 select problem (only a single SQL is issued, instead of the main one, plus
an extra one for each of the rows' language row), and also provides the ability to have short hand for
the orderBy property of a list. If the order is simply by a language property, then you can reference it by
t hi sLang.property, without having to supply a filterClause.

Maintaining Maintenance Objects

A maintenance object is a group of tables maintained together within the system.

Note:

For detailed information about Maintenance Objects, please refer to user document Framework

Administration, Database Tools, Defining Maintenance Object Options

Maintaining Database Meta-data

Maintaining Fields
Field represents a column on a database table. A Field must exist before it can be defined on a Table.

Note:

For detailed information about fields, please refer to user document Framework Administration,

Database Tools, Defining Field Options.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 111

Maintaining Tables

Table represents a database table used to store data or a database view.

Note:

For detailed information about menus, please refer to user document Framework Administration,

Database Tools, Defining Table Options.

Maintaining Java Classes

Maintaining Business Entities

Business Entity Background

A central framework concept is the Business Entity that allows for persistent data in the database to be
interacted with as objects. In general there is at least one Business Entity class corresponding to each
table in the system. Likewise an instance of one of these classes corresponds to a row in the database.

Here are some things to remember about Business Entities:

» When you create a new instance of a Business Entity and the current transaction commits, a new
row is committed to the database. Likewise when instances are deleted or changed, corresponding
deletes or updates are performed on the database. There is no concept of a transient entity in our
architecture; application logic is dealing with only persistent objects.

» When the actual insert, update and delete statements are issued to the database is controlled
by the framework and may be deferred for performance reasons. The framework is, however,
expected to issue DML with sufficient timeliness to maintain data consistency so that application
code need not concern itself with when statements are actually executed.

» When you use the query language (HQL) the returned objects are Business Entities (or scalars in
the case of "count” or other aggregate functions). These objects may be modified by application
code and those changes will be persisted to the database.

- The way you change the properties on entities is via the Data Transfer Objects corresponding to

the entity.

How Do | Create a New Business Entity Instance?

Creating a new entity is equivalent to inserting a new row into the database. The first thing you need is
to have the framework create a new instance of the correct Data Transfer Object for you so that you can
set properties for the new entity instance. This can be done via one of the standard framework methods

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 112

accessible from the abstract superclasses of classes holding business logic. This method can be told
which DTO to create by passing the business interface class for the entity. In the example below, we are

creating a new Person_DTO.

Per son_DTO personDTO = (Person_DTO) creat eDTQ(Person. cl ass);

Alternatively, if you find that you have a reference to an Id class, the appropriate DTO can be created via a

method generated onto that Id class.

Person_ld aPersonld = new Person_|d("123467890");

Per son_DTO per sonDTO = aPer sonl d. newDTQ() ;

Now let's set some values for the new Person instance:

personDTO. set Statel d(state.getld());

per sonDTO. set Languagel d(| anguage. get1d());

Finally we try to create a persistent instance based on these values. This is equivalent to doing the insert
against the underlying table except that: (1) required validation occurs and (2) the timing of actual insert

occurs at the discretion of the framework.

Person person = (Person) createBusinessEntity(personDTO);

That's it. When the current transaction is committed, a new person will be added to the database.

How Do | Change Values on an Existing Business Entity Instance?

There are really three steps:

« Ask the existing entity for its DTO.
» Change the appropriate values on the DTO.
« Call setDTO() on the entity instance.

Person_DTO dto = person. get DTQ() ;

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 113

dt o. set Address1("invalid val ue");

per son. set DTQ(dt 0) ;

Necessary Change Handlers will fire to validate the change to this "person” object as well as other

cascading events as specified in the entity's change handlers.

How Do | Delete a Business Entity Instance?

There are a number of ways to delete entities.

1. Delete an instance that you have a reference to:

person. del ete();

2. Delete an instance where you have only its Id:

del et e(personl d);

3. Delete the results of a query

Query query = createQuery("from Person person where exists ("
+ " from PersonNanme as per Name where person = perNane.id. person and "
+ "per Nane. i sPrimaryName = :systenBool and perNane. entityNane "
+ "like :name)");
query. bi ndLi kabl eStri ng("name", "ABC', 64);

query. bi ndBool ean("syst enBool *, com spl wg. base. api . dat at ypes. Bool . TRUE) ;

long rowsDel eted = query.delete();

Persistent Classes

Behind the scenes, the persistence and validation mechanisms are quite complex and require the
collaboration of many classes and pieces of configuration data. Thankfully, most of this complexity is
hidden from the application programmer. Still, there are various classes that the application programmer

will deal with:

- Framework Classes that act as an application programming interface. These API classes are

directly referenced by application code.
- Generated Classes that are created for each business entity that serve two purposes:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 114

> They provide convenient methods (like property "getters" and "setters") based on the
structure of the specific entity, it's fields, child collections and key structure for example.
> They are necessary for the persistence mechanisms to work correctly.
- Handcoded classes that the application programmer is expected to write. Many of the handcoded
classes are read by the artifact generator so the framework can "wire up" the handcoded

functionality.

Some examples of the above classes are shown below.

ParsonMames <:]_ A |
+addl}
: Fremover)

tractDataTransferObject | Stringld | AbstractBusinessEntity
L [t _ EnityLin
|SimpleEntityList|
Parson_DTO Person_Id | Person_Gen |
— i terlac PersonNames_Impl
address1 winterfacer
+oetld()

+gethddressi()

ramewaork Class
ainterfaces
Person Parson_Impl

Generated Class

rgetinfol) Handcoded Class

Creating the Implementation Class

There is very little that needs to be done by application developers to create a basic business entity.
In addition to the setup of the CI_MD_* tables describing the entity and its constraints only an
implementation class (or "Impl" for short) needs to be added. In this case a developer added Person_Impl.

The following is a simple example of an "Impl" class for the Person entity.

/**
* @BusinessEntity

d (tabl eNanme = Cl _PER,

& oneToManyCol | ections = { @hild(collectionNanme = nanes,
2 chi | dTabl eName = Cl _PER_NAME,
* order ByCol utmmNanmes = { SEQ NUM })

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 115

public class Person_I npl
extends Person_Gen {
*x
* @eturn the U Display "info" for this person
*/
public String getlnfo() {

return “PrimaryNane: " + getPrinmaryNanme().getlnfo();

Important parts of the implementation class are described below:

 The implementation class name must end with the suffix "_Impl". For example, if the entity has
a name of "person” then the implementation class name of "some.package.Person_Impl". It also
means that the generated business interface will have a name of "some.package.Person".
« A Class Annotation which declares:
o What table this entity represents
> What the owned-child tables are and what they should be called
o Other information. Please see the BusinessEntityAnnotation class for more details.
- The class extends an abstract superclass having the suffix of "_Gen". Continuing the example
of an entity named "person’, the implementation class would extend a not-yet-created abstract
superclass named "some.package.Person_Gen". This superclass is created by the artifact
generator based on metadata about the table and contains:
o Getter methods for properties including parent objects and collections
> The getDTO() and setDTO(...) methods that allow for properties to be changed
o Access to standard framework methods like createQuery(...)
« Business methods. Any hand coded public methods are automatically exported onto the generated
business interface (e.g. "some.package.Person"). Client code can then access the added business

method as follows:

Person aPerson = sone logic retrieving a person instance

String thePersonslnfo = aPerson. getlnfo();

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 116

- Constants. Any hand coded public static final variables are automatically exported onto the
generated business interface. This will be useful for constants related to the entity.

- Having created a new entity, it is likely that validation rules and other behaviors should be added to
it. Please see Adding Change Handlers for more information.

Developing Change Handlers

The creation of Business Entities allows business logic to interact with rows in database tables as objects
and in doing so allows business methods to be invoked on those objects to perform some business
function. Quite another thing is how the entities react to proposed changes in their state. Outside callers
have no business being exposed to the internal validations and cascading state changes within the
objects that they interact with. Because of object encapsulation, they should not be exposed to such
issues. Nonetheless, there needs to be a way to program the internal logic of entities. This is the reason
for Change Handlers, to provide for objects to react to proposed changes in their state.

Change Handlers are classes that add behavior to entities. This behavior takes two forms.

- Validation rules. This allows for proposed changes to be validated against business rules. These
rules are expected to be "side effect free" meaning that the validation does not change the state of
the system. By calling side effect free validations only after all changes to entity state have been
performed, the framework can avoid many complex scenarios where invalid data can "slip past"
validations.

« Cascading change logic. This allows changes to this entity to cause changes to other entities.

Creating the Change Handler Class

A Business Entity may have more than one Change Handler. The framework will call each handler
associated with an entity when an attempt is made to modify the state of the underlying entity. The
following are the important parts of a Change Handler class:

- The class should extend the AbstractChangeHandler class and have a class name ending with "_
CHandler".

» The @ChangeHandler class annotation. This tells the framework which entity to attach the change
handler to at runtime.

« Implement any "handle" methods. These are methods that can implement any cascading effects of
the proposed change to the entity's state.

- Construct Validation Rules that are returned by public static methods on the change handler class.
There should be one static method per rule. The reason for exposing these methods is to facilitate

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 117

testing (see below). Static methods are used instead of static variables to prevent timing problems
associated with the static initialization of static variables.

« Return an array of the rules created above via the getValidationRules() method. The framework
invokes this method at runtime to retrieve the rules.

« Make sure to run the artifact generator and rebuild source code after adding a Change Handler or

modifying its annotation.

Testing the Change Handler Class

When adding behavior to an entity, it is desirable to do the following:

« Break the rules into modular pieces that can be independently maintained and tested.
- Test that each behavior works by creating a JUnit test for each distinct behavior.

The following steps are recommended when adding new change handlers so that the additional behavior

is sufficiently tested.

« Add each rule to the change handler at once using instances of the PlaceHolderRule class. Use an
appropriate Ruleld and Description as self-documentation of what the rule is supposed to do.

- Add a new test class by extending AbstractEntityTestCase. This class should reference the change
handler being added and will insure that each rule is violated by at least one test. The test class

name should end with "Test".

* Run the test class as a JUnit test. The test class should complain that there was at least one rule
that was not violated by the test class. For the rule that was not violated, add a test method to the
test class and also add the "real" validation logic to the change handler class. Try executing the test
class again. Continue implementing more test methods and rules until all rules are tested and the
JUnit class completes successfully. Below is an example, test method for a rule that tests both a
successful change and an unsuccessful change. It is important to insure that the validation error is

thrown by the actual rule being tested.

public void test AddressOneLabel Requi r edl f Addr essOnel sAvai | abl e() {
/| pass
Country country = (Country) createQuery(
“"from Country country").firstRow();
Country_DTO countryDto = country. get DTQ) ;

country. set DTQ(count ryDt o) ;

/1fail

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 118

count ryDt 0. set Addr ess1Avai | abl e(Bool . TRUE) ;
countryDt 0. set LanguageAddress1("");
try {
country. set DTQ(count ryDt o) ;
fail ("A validation error should have been thrown");
} catch (ApplicationException e) {
verifyViol at edRul e(Count ry_Chandl er

. addr essOnelLabel Requi r edl f Addr essOnel sAvai | abl e(), e);

+ Add other test methods to test "handle" methods on the change handler as well as business
methods that may have been added.

Validation Rules

Validation rules are the mechanism for describing to the runtime system how it should validate business
entities. There are a few important characteristics of these rules:

« The coding style is declarative. That is, every attempt has been made so the programmer specifies
what makes data valid, not how or when the validation should take place.

« Only in the case of "custom rules” does the programmer need to build the step-by-step logic
specifying how the validation should take place.

- Validation rules are side-effect free. That is, they cannot change the persistent state of the system.
This insures that all the validations are performed on the complete set of changes. Likewise, it
allows for the startChange()/saveChanges() logic to safely defer the firing of rules until the end of
the coherent set of changes.

The Rules

A number of useful rules are provided in the interest that the application programmer can use them
with a minimum of programming. These are classes that implement ValidationRule and can be used by
application logic:

* ProtectRule will protect one or more properties on an entity.

« RequireRule will require that a property be populated.

« AllowRule allows a value to be populated.

« AllowAndRequireRule both allows and requires that a property be populated.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 119

 DecimalRule provides some common validations against decimal data types.

- CustomRule will create a rule out of a CustomValidation class implementing logic that just cannot
be handled by existing rules.

« RestrictRule will restrict a property to a set of values

Each of the rules above provides standard rules that represent similarly configured rules that are used
repeatedly in the system. These standard rules can be created via static "factory” methods on the rules
themselves. Consider the following standard rule:

| **

* Protect the dependant property when the prinmary property is equal to the supplied | ookup val ue.
*
* @aramruleld a unique ruleld
* (@aram description a description
* @aram primaryProperty the property that the condition depends on
* @ar am dependant Property the property that is protected when the condition is true
* @aram pri maryLookupVal ue a { @i nk Lookup} value that the primary property nust equal for the dependant property
& to be protected
* @eturn a new rule
*/
public static ProtectRul e
dependant Pr opert yWhenPr i mar yMat hesLookup
(String ruleld,
String description,
Si ngl eVal ueProperty pri maryProperty,
Si ngl eVal ueProperty dependant Property,

Lookup pri maryLookupVal ue)

What this rule does is prevent one property from being changed (the "dependant" property) when another
property (the "primary" property) matches a certain value. An example would be the "freeze date/time

cannot be changed when the status is 'frozen". In this case, the dependant property would be the freeze
date/time and the primary property would be the status. The lookup value of "frozen" would be passed in

as the lookup value.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 120

Custom Rules

There are situations when custom rules need to be coded. These are for situations too complex for a

declarative rule. The process is as follows:

Create a class that extends AbstractCustomValidation. Implement one or more of the abstract
methods corresponding to various "events" that may occur with respect to the underlying entity.
Within any change handler requiring this rule, instantiate a CustomRule passing in the class
created above.

For details on the "events" that can be processed by the custom validation, please refer to the
JavaDocs.

When coding a CustomValidation that will be used by a CustomRule. It is important to understand
when these events fire.

Eager Validations fire "immediately” when the underlying entity is changed (either via delete,
setDTO(), or createEntity()).

validateAdd() fires only on an add

validateChange() fires only when an existing entity is changed
validateAddOrChange fires in addition to either validateAdd() or validateChange()
validateDelete fires when the entity is being deleted

validateRegisteredChange() fires when "some other object is changed" (like a child). This can

be any random entity instance that feels like notifying you regarding a change of state or, more
commonly, the framework automatically registers a change when a child collection is manipulated.
Your custom code can determine if a change has been made to a child it's interested in by calling
the getChangeToList() method on the change detail passed in. You just pass in the class of your
child collection and it passes back changes, if any.

Lazy Validations fire when a "coherent set of changes” is complete.

validateSave() can be used to implement validations that needs to be performed "at the end" of
some set of changes. By default a set of changes is both started and saved within individual calls
to setDTO or createBusinessEntity, etc. However, this can be controlled programmatically by calling
the startChanges() and saveChanges() methods that are available from within all business objects
(change handlers, entities, components, etc). Any type of change (add, change, deleted, register
change) will trigger validateSave().

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 121

Conditions

The rules wouldn't be very useful if all you could do was always protect or require properties. This
behavior is usually based on conditions. Rules take as input one or more Conditions (e.g. objects
implementing the Condition interface). Right now, there are several conditions that can be used:

« Equals. This condition can compare properties to each other or to constants (lookup values,
Strings, etc). Likewise, the size of a collection can be compared using Equals (e.g. determine
personNames' size equals 0 would mean there are no names for a person). Finally, null values can
be tested using a special constant value "Constant.NULL'.

* Not. This is the basic boolean operator that can change the value of other conditions.

» And. This is the basic boolean operator that takes two child condtions, and return true if each of
them are true. This is evaluated "lazily" and won't even evaluate the second condition if the first is
false (a performance enhancement).

- Or. This is the basic boolean operator that takes two child conditions, and return true if either of
them are true. This is evaluated "lazily" and won't even evaluate the second condition if the first is
true (a performance enhancement).

- GreaterThan / GreaterThanOrEquals. This evaluates whether one property/constant is greater than
(or greater than or equal to) to another property/constant.

+ LessThan / LessThanOrEquals. This evaluates whether one property/constant is less than (or less
than or equal to) to another property/constant.

« Contains. These are conditions for a collection of children- at least one element has condition X,
at most 2 elements match condition y, etc). The child condition's properties should be referenced

from the point-of-view of the child row.

Each of these conditions is accessible from the corresponding property or condition. There should be no
reason in normal development to use the constructors for the conditions above. Instead, you could say,
for instance

Condi tion isPrinmaryNanme = PersonNane. properties.isPrinaryNane.isTrue();

or

Condition isAlias

= PersonNane. properties. naneType. i sEqual To(NameTypeLookup. ALI AS) ;

or

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 122

Condi ti on greaterThan

= PersonNane. properties. sequence. i sG eat er Than(Bi gl nt eger. ZERO) ;

or

Condi ti on hasOnePri mar yNane

= Person. properties. names. cont ai nsAt Least One(i sPri maryNane) ;

or

Condition notAlias = isAlias.not();

Change Handler Helpers for Maintenance Objects

The Business Object based Maintenance objects have some standard validations. The Helper classes
described below will help in reusing the validation code. The Change Handler Helpers have been created

for the following objects:

« BO based MO
« Standard MO Log table
« Standard MO Log Parameter table

BO-Based MO

The com spl wg. base. api . nai nt enanceObj ect . BOBasedMai nt enanceCbj ect CHandl er Hel per can be used for the
BO-based MO Change Handler validations.

The following standard validations are provided by this helper class:

« The Business Object cannot be changed
« The Business Object must be for the correct MO
« Status is required if the Business Object has a lifecycle

- Status must be a valid lifecycle status
The following methods are provided by this helper class:

+ Adding log entries for entity creation and entity status change (if the MO does not already have a

transition algorithm)

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 123

To use the validations, create an instance of the helper class in the MO Change Handler and get the

validation rules from the Helper, as illustrated in the following sample code.

Change Handler Sample Code

public class QutboundCrossRef erenceMessage_CHandl er extends Abstract ChangeHandl er <Qut boundCr ossRef er enceMessage>
{

private final BOBasedMai nt enanceCbj ect CHandl er Hel per hel per = new BOBasedMai nt enanceCbj ect CHandl er Hel per <

Qut boundCr ossRef er enceMessage> (new Mai nt enanceCbj ect _I d(" O2- OXREFMSG') ,

Qut boundCr ossRef er enceMessage. properties,

Qut boundCr ossRef er enceMessage. properti es. | ookOnBusi nessCbj ect ());

public voi d handl eAddOr Change (Qut boundCr ossRef er enceMessage changedQut boundCr ossRef er enceMessage,
Dat aTr ansf er Obj ect < Qut boundCr ossRef er enceMessage> ol dDTO)

{

hel per. handl eAddOr Change(changedQut boundCr ossRef er enceMessage, ol dDTO);

}

public ValidationRule[] getValidationRules()

{

return hel per. getValidationRul es();

}

}

Change Handler Junit Test Code

public void testBoCannot BeChanged()

{

start Changes();

Qut boundCr ossRef er enceMessage_DTO dto = (CQut boundCr ossRef er enceMessage_DTO)
creat eDTQ(Qut boundCr ossRef er enceMessage. cl ass) ;

dt 0. set Busi nessQbj ect | d(new Busi nessCbj ect _| d("ZzZ- OXREFBO")) ;

set Dt oDat a(dt o) ;

Qut boundCr ossRef er enceMessage out boundCr ossRef erenceMessage = dto. newentity();
saveChanges();

try

{

dt 0. set Busi nessbj ect | d(new Busi nessObj ect _I d("Zz- CASE")) ;

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 124

out boundCr ossRef er enceMessage. set DTQ(dt o) ;

saveChanges() ;

fail ("An error should have been thrown");

}

catch (ApplicationError e)

{

veri fyVi ol at edRul e(BOBasedMai nt enanceObj ect CHandl er Hel per . boCannot BeChanged(
Qut boundCr ossRef er enceMessage. properties, OutboundCrossRef erenceMessage. properties
.| ookOnBusi nessCbj ect()), e);

}

}

Standard MO Log Table

The com spl wy. base. api . mai nt enanceObj ect . Mai nt enanceLogCHandl er Hel per can be used for the Standard
MO Log Table Change Handler validations.

The following standard validations are provided by this helper class:

« Log entry cannot be deleted if of type:Created, Exception, Status Transition, Status Transition Error,
System, User Details

- Validates the characteristic value possibly stored on the log entry

« Long description or message are required, but not both

« User details must provide long description

The following default methods for Add are provided by this helper class:

* Log dateTime to system date time

- User to current system user

* Log sequence to next highest number

« Status to the parent entity's status (will warn if specified input differs from parent status)

To use the validations, create an instance of the helper class in the MO Change Handler and get the
validation rules from the Helper. First you must create a new Characteristic Entity in the Characteristic
Entity Lookup for your object. This entity can be selected on any Characteristic Type to indicate that that

characteristic type can be used in the log messages for this log. Sample code follows.

Change Handler Sample Code

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 125

public class QutboundCrossRef er enceMessagelLog_CHandl er ext ends Abstract ChangeHand| er <Qut boundCr ossRef er enceMessagelLog>
{

private final MaintenanceLogCHandl er Hel per hel per = new Mai nt enanceLogCHandl er Hel per <Qut boundCr ossRef er enceMessagelog,
Qut boundCr ossRef er enceMessage>(new Mi nt enanceCbj ect _| d(" O2- OXREFMSG'), Qut boundCr ossRef er enceMessagelog. properti es,
Qut boundCr ossRef er enceMessagelog. properti es. | ookOnPar ent Qut boundCr ossRef er enceMessage(),

CharacteristicEntityLookup. constants. OUTBOUND_CROSS_REFERENCE_MESSAGE LOG) ;

public voi d prepareToAdd(Dat aTr ansf er Obj ect <Qut boundCr ossRef er enceMessageLog> newDTO)

{

hel per. pr epar eToAdd(newDTO) ;

}

public voi d prepareToChange(Cut boundCr ossRef erenceMessagelLog unchangedEntity,

Dat aTr ansf er Cbj ect <Qut boundCr ossRef er enceMessageLog> newDTO)

{

hel per. prepar eToChange(unchangedEntity, newDTO);

}

public ValidationRule[] getValidationRules()

{

return hel per. getValidationRul es();

}

}

Change Handler Junit Test Code

public void testLongDescRequiredlfLogTypel sUserDet ai | s()

{

start Changes();

Qut boundCr ossRef er enceMessage_DTO dto = (Qut boundCr ossRef erenceMessage_DTO) creat eDTQ(Qut boundCr ossRef er enceMessage. cl a
ss);

dt 0. set Busi nessCbj ect | d(new Busi nessCbj ect _| d("ZZ- OXREFBO')) ;

out Xref MsgTest . set Dt oDat a(dt o) ;

Qut boundCr ossRef er enceMessage out boundCr ossRef er enceMessage = dto. neweEntity();

Qut boundCr ossRef er enceMessageLog_DTO out boundCr ossRef er enceMessageLogDt 01 = (Qut boundCr ossRef er enceMessagelLog_DTO)
creat eDTQ(Qut boundCr ossRef er enceMessagelog. cl ass) ;

out boundCr ossRef er enceMessagelLogDt ol. set LogEnt ryType(LogEnt r yTypeLookup. const ant s. USER_DETAI LS) ;

try

{

out boundCr ossRef er enceMessage. get Logs() . add(out boundCr ossRef er enceMessageLogDt o1, nul |);

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 126

saveChanges() ;

fail ("An error should have been thrown");

}

catch (ApplicationError e)

{

veri fyVi ol at edRul e(Mai nt enanceLogCHandl er Hel per

.l ongDescri pti onl sRequi redl f LogTypel sUser Det ai | s
(Qut boundCr ossRef er enceMessagelog. properties), e);
}

}

Standard MO Log Parameter Table

The com spl wg. base. api . mai nt enanceObj ect . Mai nt enancelLogPar amet er CHand| er Hel per can be used for the

Standard MO Log Parameter Table Change Handler.

The following standard methods on Add are provided by this helper class:
« Parameter sequence to next highest number

To use the Helper, create an instance of the helper class in the MO Change Handler and get the validation

rules from the Helper, as illustrated in the following sample code.

Change Handler Sample Code

public class QutboundCrossRef er enceMessagelLogPar anet er _CHandl er

ext ends Abst ract ChangeHandl er <Qut boundCr ossRef er enceMessagelLogPar anet er >

{

private final MintenancelLogParaneter CHandl er Hel per hel per = new Mai nt enanceLogPar anet er CHandl er Hel per <

Qut boundCr ossRef er enceMessagelLogPar anet er, Qut boundCr ossRef er enceMessagelLog>(new Mai nt enanceChbj ect _| d(" O2- OXREFMSG') ,
Qut boundCr ossRef er enceMessagelLogPar anet er. properti es,

Qut boundCr ossRef er enceMessagelLogPar anet er. properti es.

| ookOnPar ent Qut boundCr ossRef er enceMessagelog()) ;

public voi d prepareToAdd(Dat aTr ansf er Obj ect newDTO)
{
hel per. prepar eToAdd(newDTO) ;

}

public ValidationRule[] getValidationRules()

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 127

{

return hel per. getValidationRul es();
}
}

Additional Validations
Using Helper Class Validations Only

If only validations from the helper class are required, use the Change Handlers get val i dat i onRul es()
method to return the hel per . get val i dat i onRul es() . This will enforce all the validations in the Helper class
on the Change Handler.

Sample code:

public ValidationRule[] getValidationRules() {
return hel per.getValidationRul es();

}

Using Helper and Change Handler Validations

Create an Array of ValidationRules in the get val i dat i onRul es() method of the Change Handler and pass
this array to the hel per . get val i dat i onRul es() method. The Helper class adds the rules passed to it to the
standard set to provided validations.

Sample code:

public ValidationRule[] getValidationRules() {
return hel per.getValidationRul es(<Array of Validation Rules>);

}

Maintaining Business Components

Business Components are business objects having two important characteristics.

- They are non-persistent holders of business logic. That is, they are the place to put business logic
not tied to a single business entity instance (e.g. a single "Account” or "Person".) This makes them
analogous to "common routines".

« When allowed, implementations of business components may be replaced at runtime by custom

classes implementing the same business interface. An example of this includes "info" logic.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 128

Creating Business Components

Much like Business Entities, it is necessary to create an implementation (*_Impl) class containing the
actual logic that is then processed by the artifact generator. Below is an example that would be created by
hand:

[**

* Conponent used to query for {@ink Person} instances based on various

* predefined criteria.

* @usi nessConponent
d (cust om zati onRepl aceabl e = fal se)
*/
public class PersonFinders_I npl
ext ends Generi cBusi nessConponent
i npl ement s Per sonFi nder s
] x*
* @aram naneType a nane type
* @eturn count of names by nane type
*
* @Busi nessMet hod (custoni zationCallable = true)
*/
public int findCount ByNaneType(Lookup naneType) {
Query query = createQuery
(" FROM Per sonNane name where nane. naneType = :type");

query. bi ndLookup(“type", naneType);

return (int) query.listSize();

This example shows a "finder" component that is responsible for holding queries related to the "person"
entity. These queries are not related to any particular person because, in that case, they would rightfully
belong on the entity implementation class itself. Our (cooked up) example shows a single method that

returns a count of PersonName instances by name type.

Let's look at various parts of the component:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 129

» @BusinessComponent class annotation.

- customizationReplaceable attribute specifies whether or not customers can replace this
component at runtime. The default is false. If a component is "replaceable”, its methods are
assumed to be "customizationCallable".

- GenericBusinessComponent is extended which gives this class access to framework methods.

« PersonFinders is implemented. This is the name of the generated business interface. Any
customized replacement of the business component would implement this interface as well.

« The business method findCountByNameType. For the method to be exported to the business
interface (and therefore callable by other business objects), it must be public.

> @BusinessMethod is an optional method-level annotation.

= customizationCallable specifies that this method is part of the "supported" API.
That is, our customers are entitled to call this method from their customizations and

therefore, we must change this method with great reluctance in future release.

Component Replacement

Business Components provide a simple extension mechanism where base-package code can be made
available to be replaced by customizations. For this to take place, two things must take place:

» A component is added as described above with the customizationReplaceable annotation attribute
set to true.

- A replacement component is created that implements the business interface of the original
component and also sets the replacementComponent attribute to true.

An example, replacement of the PersonFinders component is shown below. Component implementations
are registered in the same order as the "application stack’, that is "base" followed by "ccb" then followed
by "cm". After the component is defined in one application, derived applications (higher on the stack) can

replace the implementation.

package com abcutilities.cis.custonm zations. person;
/**
* @Busi nessConponent
* (repl acenent Conponent = true)
*/
public class Custoni zedPer sonFi nder sl npl
extends Generi cBusi nessConponent

i npl enments PersonFinders {

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 130

public Integer findCountByNaneType(Per Or BusLookup nanmeType) {

. custom zed code ...

Calling Components

Business Components are accessed via their business interfaces. Following is an example of how to call
the above component from some other business object:

Per sonFi nders finders = PersonFinders. Fact ory. new nst ance();
int count = finders.findCountByNaneType(NameTypeLookup. const ants. PRI MARY) ;

| ogger.info(count + " primary names found");

Maintaining Maintenance Classes, including collections

Maintaining Services

This defines services available in the system. These include user interface services as well as stand-alone
XAl services. Use this transaction to introduce a new user interface or stand-alone XAl service.

o ™
Note:
For detailed information about service programs, please refer to user document Framework
Administration, XML Application Integration, Setting Up Your XAl Environment, Setting Up Your

Registry, Service Program.
N /

Maintaining Foreign Key References

You need to setup foreign key references if you have characteristics whose valid values are defined in

another table (e.g., if you use "foreign key reference" characteristic types).

Note:

For detailed information about foreign keys, see "Primary and Foreign Keys" in the Oracle Utilities

Application Framework Administration Guide.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 131

Maintaining Lookup Tables

Some special fields are defined as "lookups” in the system. These fields have a predefined set of values
for which language-dependent descriptions are supplied to be displayed in the online system.

Note:

For detailed information about lookups, please refer to user document Framework Administration,

Database Tools, Defining Look Up Options.

Maintaining Navigation Keys

Each location to which a user can navigate (e.g., transactions, tab pages, tab menus, online help links,
etc.) is identified by a navigation key. A navigation key is a logical identifier for a URL.

Note:

For detailed information about navigation keys, please refer to user document Framework

Administration, User Interface Tools, Defining Navigation Keys.

Maintaining Navigation Options

Every time a user navigates to a transaction, the system retrieves a navigation option to determine which
transaction should open. Many navigation options are shipped with the base package and cannot be
modified as these options support core functionality, but you may need to add additional navigation

options to support your specific business processes.

Note:

For detailed information about navigation options, please refer to user document Framework

Administration, User Interface Tools, Defining Navigation Options.

Maintaining User Interfaces

The configuration tools allow you to extend the front-end user interface. The main component of this is a
Ul Map, supported by Business Objects and Business Services.

Note:

For detailed information about user interfaces, please refer to user document Framework

Administration, Configuration Tools.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 132

Maintaining Menus

This metadata represents the root of a menu "tree". A menu contains a list of menu "lines", which, in turn,
contains a list of menu "items". Lines can define navigation keys and/or associated actions, or further

submenus.

Note:

For detailed information about menus, please refer to user document Framework Administration,

User Interface Tools, Defining Menu Options.

Maintaining Application Security

Application security defines how a particular application service is used, namely:

» Which user groups can access the service

- What actions may be performed within the service

Note:

For detailed information on how to define application security, please refer to user document

Framework Administration, Defining Security & User Options.

Maintaining Ul Components (Translation)

You can use the override fields on some of the system data tables to modify and customize the labels,
buttons, titles, tab names and messages on the standard user interface. This may be helpful to correct
minor interface inconsistencies and inappropriate translations as well as to provide translations for any
single fixes that you may have applied to your environment. (Single fixes release without translation, so

you may need to translate any labels and descriptions for new Ul components or messages.)

You can manually modify the descriptions or translations of the following items:

« Dialog titles

« Transaction titles and tab labels
* Field labels on tab pages

- Button labels

» Messages

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 133

Flushing Server and Client Caches

A great deal of information in the user interface changes infrequently, including field labels, menu

items, and drop down lists. In order to avoid accessing the database every time this type of information
is required by an end-user, the system maintains a cache of static information on the web server.
Additionally, depending on how you set up the preferences on your Web browser, these items may also be
cached in the browser.

After you make a change to a user interface item, such as a field label, you may need to flush the
appropriate cache on the Web server as well as the client.

- ™
Note:
For information about flushing caches on the Web server, refer to the Caching Overview section in
the Defining General Options chapter of the Oracle Utilities Application Framework Administration

documentation.
o J

User Language

You must log in as a user ID that has the same language as the items for which you want to modify the
description. For example, if you want to modify a French message, you must log in with a user ID that is
set to use French. The instructions in the following sections assume that you are logged in with a user ID
that has the appropriate language set.

Modifying Dialog Titles

A dialog can be a search window or dialogs that provide additional functionality, such as the Start / Stop
Confirmation Dialog or the Generate Bill dialog.

ORACLE’

Home Menu .'i- History - Person

m Correspondence info Characteristics Persons Person Portal

®ee

I

PersonName | PersonID | ID Type , ID Mumber | Name Type

Person Names

in Menu

Dialog Title

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 134

To modify a dialog title:

 Navigate to and open the dialog with the title that you want to change.
« Right-click near the top of the dialog and select View Source from the pop-up menu.

ORACLE’

Home Menu + @ History = Person

m Correspondence info Characteristics Persons Person Portal

Fersan Informa) @ Person Search - Windows Internet Explorer l
Person/Busine Person Name @
® |
[v] ®

PersonMame | PersonID | IDType | IDMumber | Mame Type

Person Mames

Select Al

Main Menu

Craate Shortcut

Add to Favorites...
View: Source D\‘g o
Encading »

Print...
Print Pravisw, ..
Refresh

Person Phane:
Export to Microsoft Excel
Send To Bluetooth

Properties

View Dialog Source

(L ™
Note:
Many dialogs and windows have multiple source files; so if you can't locate the field you are
looking for, try right clicking in a different area (closer to the label you want to modify). For
example, if you right-click in the grid area of the Person Search illustrated above, you will open a
different source file. If you already know the name of the field you want to modify, you can skip

this step.

- In the displayed source file, locate the field name that has the value you want to modify. The field
for the dialog title is clearly labelled and the current value of the field is displayed after the hyphen.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 135

Home Menu & Hstory - Person
Correspondence Info Characteristics Persons Person Portal
Person Informatl @8 parsan Search - Windows Internet Explorer = _l
Person/Businesd || = o1 Hame ® |
®
ID Type :‘ m
ID Murnber [E_ hittp://sf-ugbu-32.us.oracle.com: 10000/gold/uiPage/personSearchPage?language=ENG - Original Source E@
4| File Edit Format
Perean e,/ B[<! DCCTYPE hum: PUSLIC “-//W3C//DID HINL 4.0 Transivicnal//EN"> T~

Person Names

Main Menu

Person Phones

Person IDs

Title Field Name

- To modify the field override via the application, navigate to Admin Menu - Database - Field in the
Oracle Utilities Application Framework application.

» When the field search dialog appears, enter the name of the field as it appears in the source.

« Enter an Override Label with a title description to suit your needs and save your changes.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 136

Home Menu = & History ~
. Tovies Using Feld
Field Name [TITLE_CIPCPERPSP Q
Data Type | Character ﬂ
ExtData Type I
Predision £
Scale 2
Sigr D

Level 33 Cpybk

Description Person Search

personSearch

Adrnin Menu

Help Text [Test I

-4

ext [Test I

=]

QOverride He

Database - Field
« Flush the server and browser caches and verify that the new dialog title appears correctly.
Modifying Transaction Titles and Tab Labels

You can modify the transaction title and or the tab labels that appear on a transaction.

Preferences Help Logout

Home Menu + @ History « Account

Main Auto Pay Persons Financial Balances bill Messages C&C Budget Deposits Characieristics. Alerts Account Portal

Tab Labels Transaction Title

Auto Pay Source Code %

Main Menu
%

Transaction Title and Tab Labels

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 137

To modify the transaction title and/or tab labels:

« Navigate to the transaction that has the title and/or tab name you want to modify.
* Right-click in the empty area to the right or left of the tab bar and select View Source from the drop-

down menu.

Preferences Help Logout

Home Menu » & History « Account

Bill Messages C&cC Deposis Characteristics Aleris

View Image
Copy Image
Copy Image Location

Save Image As... =
Email Image... i &rale
Set As Desktop Background...
View Image Info }
This Frame F| show Only This Frame

| Open Frame in New Tab

Inspect Element () Open Frame in Mew Window

2 Masimurn Withdrawal | & Inspect Element with Firebug Reload Erame
o
£ Better Bug Keyword... Bookmark This Frame 4
=P
£ || Comments Save Frame As..
=
Print Frame...
View Frame Source

View Frame Info

View Transaction Title/Tab Source

- N
Note:
Many dialogs and windows have multiple source files; so if you can't locate the field you are
looking for, try right-clicking in a different area (closer to the label you want to modify). To view
the source for the transaction title and tab bar, right-click directly to the right or left of the tab bar.

If you already know the name of the field you want to modify, you can skip this step.
o /

« In the displayed source file, locate the field name that has the value you want to modify. The fields
for the transaction titles and tab labels are clearly labelled and the current values of the fields are

displayed after the hyphens.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 138

e

Home Menu & History - Account

Main = - e B P P = = e T T . ;
T —
; @ Source of: http: /- Pmmna i m s ¥ e ol s e gt - (- JOJBd
Account
Elle Edit View Help F
Account Auto Pay e T e ——_— e Ty, - = s
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> |
Start Date <html dir="1ltx" lang="en-U3":> B
<head> F
Auto Pay Source Cof <META http-equiv="Content-Type"™ content="text/html; charsec=UTF-8">
A " <titlerdccount Tabs</title>
External Account ID 2
il
Expires On N S Ll T T T T T T T T T T T e
MName +* Prog
; * Prog
3 | Maximum Withdrawal it
5 * Prog
= + Prog
£ || Comments .
i * Tam
=
Tem
* Inc i
2 c:
*
* Titles:
£, App Svc Name SENAME CIPCSACCTM - Account
*
-
= TLBL - M=zin
* SANTOEAWSEREEE — Anto Pay %
- =3 T,
* 5 I TLEL
* 5 SG TLB
7 5C & TL
* SBUDGET TLBL
* SDEPOSITS T
i Saﬂﬂrﬁ-_-s.:_h—
ACCTCHAT
= SALERT TLEL
* SC C BL - Account Portal
B e S S SR T T F F o T paa e e e e e ey
% XMT,: CILCACCP. xml
7 Service: CILCACCP.cbl
[aa}
€ Juu | ¥
Line 22, Cal 12

Transaction Title and Tab Field Names

Note:

Subsystem Name. If you modify the subsystem field description, your changes will appear on

every transaction that is part of the subsystem.

 To modify the field override via the application, navigate to Admin Menu - Database - Field in the
Oracle Utilities Application Framework application.

- When the field search dialog appears, enter the name of the field as it appears in the source.

- Enter an Override Label with a title or tab description to suit your needs and save your changes.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 139

Preferences Help Logout

Home HMenu + & History Duplcate Delete

Tables Using Field

I.lUTCPﬂY_'I'LBI. Ck Owmer Bass
Characher ZI
[l
1]
1}
ALto Pay
2 |sutoPay
o
i Override Labe | L\\"
E Work Field
2 Enter Aute Pay detais to update the selected accounts automatic payment information. o] 4
 =
i <ii>Select Cancel Existing Autopay to expire auto pay for selected account’s that currently pay ther bills automaticaly.,. e
lelp Text Auto pay end date is set to the current date. <> e | | Test
|w

<hi>Enter auto pay detals to use when updaiing selected accounts wheo wish to pay their bills automatically (e.g., by direct debit or
credit card)<fi>

[Test

Override Help Text

Database - Field

« Flush the server and browser caches and verify that the new field label appears correctly.

Modifying Field Labels on Pages

You can modify field labels that appear on transactions.

Preferences Help Logout

History Account

Home Menu + &

Main Auto Pay Persons Financial Balances bill Messages C&C Budget Deposits Characieristics: Alerts Account Portal

Account Auto Pay (;:II]]I] Hews HDEED :{,_. _—
[start Date End Date vy & Auto Pay ID
Auto Pay Source Code 'Ck \ Field Labels

Account ID

Comments

Main Menu
%

Field Labels

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 140

Warning:
Field labels may be reused! A field label may be reused on multiple transactions and tabs. If you

override the field's label, your changes affect all pages and transactions on which that field label
appears.

To modify the field labels that appear on transactions:

« Navigate to the transaction that has the field name you want to modify.

« Right-click in an empty area near the label and select View Source from the drop-down menu.

ORACLE

Home Menu - & History = Account

Main Auio Pay Persons Financial Balances Bil Messages C&C Budget Deposits Characteristics Alerts Account Portal

t Auto Pay <::|D|JE| Hewr [UDI:D w..ll'_, ==

Back
| End Date
I =
I Q Reload

| Bookmark This Page
£ R Save Page As..
Expires On [

" & Sedect All
E = ' This Frame r Shawy Only This Frame
= m—— Qpen Frame in New Tab
.g Comments _L'e'" ag= .SNI".E COpen Frame in New Window
= view Pags [nfo
= Reload Frame
inspect Elament (Q)
Bookmark This Frame
“i(‘l'ﬂs:lac: Element with Firebug Save Erame As
Print Frame...
View Frame Source
View Frame Info
View Page Source

Note:)

Many dialogs and windows have multiple source files; so if you can't locate the field you are
looking for, try right-clicking in a different area (closer to the label you want to modify). If you
already know the name of the field you want to modify, you can skip this step.

J

- In the displayed source file, locate the field name that has the value you want to modify. The fields

for the labels are clearly identified and the current values of the fields are displayed after the
hyphens.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 141

@ source of: http://s =l >
Fa
<!DOCTYPE html PUBLIC “-//W3C//DID HTML 4.0 Tramsicional//EN">
<html dir="ltcr" lang="en=-U53"> 3
<head>

<HMETA hitp-equiv="Content-Iyvpe" content="vext/huml; charsec=UIF-8">
€=

#
1
1
4
*
#
4
1
4
+
*
*
1
*
*
#
1
1
[T

w0 o

"
T ;1'] +

N
o O

1
"
O O

.
.:J
il

* * % 3 3
S

[&]

Line 20, Col 23

Field Label Names and Values

o ™
Note:
Table-specific Fields. Note that some labels may be specific to the table on which they appear,
while other labels are generic throughout the application. If a field label is specific to a table, the
table name appears before the $ in the field list.

- If the label is table-specific, navigate to Admin Menu - Database - Table in the Oracle Utilities
Application Framework application and search for the name of the table.

Table Mame [[@

Description | | @

Table ‘Descriph’nn |

Search for Table

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 142

+ Navigate to the Table Field tab and scroll to the field whose label you wish to modify.

Logout

Preferences Help

Delete

Table

Home Menu ~ @ History «
Main Eicl-nsrra'm!s- Referred By Constraints
!_e:u'e Mame CI_ACCT_APAY \:k Owmer Base
|Feits 4R000 1013 WIED fp =
|
Cwmer Base

lame SHUE| [ACCT_apav_D @, AutoPayD Java Field Name accountAutcPayid O

Admin Menu i

7
[Test |
Field Usage [ae]
Table Field

« Enter an Override Label to suit your needs and save your changes.
- If the label is not table-specific, navigate to Admin Menu - Database - Field and search for the field

name.
» When the field appears, enter an Override Label to suit your needs and save your changes.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 143

Preferences Help Logout

Home Menu & History « Dupbcate Delete
R oo vsing Fiei
Character ﬂ
1
1]
Acoount
2 account
o
=
= L
z P
Help Text Test
Qverride Help Text Test

Database - Field

* Flush the server and browser caches and verify that the new field label appears correctly.

Modifying Button Labels

Button labels are just like field labels; they are stored in the field table. You can modify button labels just
like you can field labels.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 144

Home

Menu - & History ~

m Bill Segmenis Bill Routings Bill Messages Characteristics

Preferences

Help Logout

Account 1D SE 1588930257 _-k Garden Equipment Inc - VAT Commercial

Bill Segment ‘Cwenmrmun: Status éRemarles |

=
=
@
-3
= Button labels
-
Total Generated Charge 0.00
Bill Segment Action | _Generate | | |
i Bill Action | | | |

Button Labels

To modify button labels:

« Navigate to the transaction that has the button label you want to modify.

« Right-click in an empty area near the label and select View Source from the drop-down menu.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 145

Preferences Help Logout

Home Menu - & History

R o scomens

Bill Roufings Bl Messages Characteristics

Create

omplet:

Back

Reload Amount | Status | Remarks

Bockmark This Page
Save Page As...

Main Menu

Select Al N ——

This Frame Bl show Only This Frame
Open Frame in New

Open Frame in New Windaw

View Page Source
View Page Info
Reload Frame
Inspect Element (Q)
Bookmark This Frame

"_l;"ir'.spect Element with Firebug Save Frams As.
Better Bug Keyword... | PrintFrame...
View Frame Source

View Frame Info

Total Generated Charge 0.00

Gererate |] |

View Page Source

L)
Note:
Many dialogs and windows have multiple source files; so if you can't locate the field you are
looking for, try right clicking in a different area (closer to the label you want to modify). If you

already know the name of the field you want to modify, you can skip this step.
- /

« In the displayed source file, locate the field name that has the value you want to modify. The fields
for the labels are clearly identified and the current values of the fields are displayed after the

hyphens.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 146

Preferences Help You are logged

ORACLE'

Home

Logout

Menu »

&

EER oo cone

Histary

@ Source of: http://= e won e e e

File Edit View Help

r JSNama='Aoot

= e
JjsName='ACCT ID')

Main Menu
+

[e
Line 43, Col 12
I | 1] |

Field Label Names and Values

- Navigate to Admin Menu - Database - Field in the Oracle Utilities Application Framework
application and search for the field name.
» When the field appears, enter an Override Label to suit your needs and save your changes.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 147

Preferences Help Logout

Home Menu ~ & History ~ Du
R v vsing Fiei
Character \i]
[v]
1
L]
O
Generate
22 generate
|
I
=l
z]
Help Text Tes!
| Cverride Haln Te: Test

Database - Field
« Flush the server and browser caches and verify that the new field label appears correctly.

Modifying Messages

You can modify the message text and description for messages, such as error, warning and validation

messages. The following example shows a validation message:
Microsoft Internet Explorer x|

& Mame Field missing

& mandatory Field has been left blank. Please enter a walue and retry wour request.

If wou need support please supply the Following info to syskem support:

Message number: 3, 253
Call sequence: ;CIPCPMME; CIPCPMML CIPCPERP; CIPZSCOLM

Message

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 148

To edit messages, you need to know the message category and number. The category is the part of the
message number that appears before the comma. In the example message above, the category is 3. The
number is the part of the message number that appears after the comma. In the example message above,

the message number is 253.

To edit the message text or description:

 Navigate to Admin Menu - System - Message.
- Specify the message category in the search dialog.
« Specify the starting message number and click the search icon.

Preferences Help Logout

Home Menu = @& History ~ Message

Details

ategory 3 \-g
s CIS Customer Information
: — - =
ii—i:' tirg Message Mumbser (1] @ |
| Message Number Message Text Owingr "
3 [~
1 -{i- | = 253 %1 fisld missing Base |
|
e 2 %1 field not numeric Hase
o To Message Details i |'
@[[= 255 compute averflow at pasition %1 Bage =
B4 | = 256 %1 %2 field invald Baca
=1 |
(=
5|8+ | = 257 Record not found for %61 %2 %63 &4 %5 Base fwll
| |»
E - W — W A S ——1

System - Message

« Click the go to button for the message you want to edit. You are transferred to the Details tab for

that message.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 149

ORACLE Preferences Help Logout

Home Menu + & History

| Des €IS Customer Information
| Message Collection (‘,I”]] 19 of 50 UEUE’(/ Get More...
(14 253 Owner Base

%el field missing

A mandatory figld has been left blank, Please enter 2 value and retry vour reguest,

Admin Menu)
o

| Customer Spedific Description

b=l

Message Details

- Enter the customer specific message text and description as appropriate for your needs.

(4 N
Note:
Message Variables. Messages may have one or more variables. Variables are indicated by a
percent sign (%) followed by a number. A value is substituted for the variable before the message
is displayed. Do not modify the message variables and make sure that your custom message

contains the same number of variables as the original.

« Save your changes.

If possible, you can attempt to verify that the message was changed correctly. However, it is not always

easy to determine and duplicate the situations where a specific message may appear.

Note:

For more information about system messages, please refer to user document Framework

Administration, User Interface Tools, Defining System Messages.

Plugging in Algorithms

The following will illustrate the steps to create a new plug-in algorithm. This example will create a new

Adhoc characteristic validation algorithm that is very similar to a delivered plug-in.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 150

Creating Algorithm Spot Implementation Class

Review Algorithm Spot Definition

The algorithm spot definition identifies the purpose of the algorithm spot and the required methods per

implementation. It may also help to look at existing implementations of the relevant algorithm spot.

The relevant algorithm spot in this example is AdhocCharacteristicValueValidationAlgorithmSpot in

com.splwg.base.domain.common.characteristicType.

Create Algorithm Component Implementation

Copy the existing numeric validation plug-in "AdhocDateValidationAlgComp_Impl and name it as "
AdhocDateAgeValidationiiiAlgComp_lmpl" where iii is your initials.

Modify the annotation to replace the last Date Format soft parameter with two decimal parameters

(ageFrom and ageTo).

In addition, modify the validateDateInRange method to check that the age (given date less the system's
current date / 365.25) will be greater than the soft parameter ageFrom (if non-zero), and will be less than
the ageTo (if non-zero). Make sure that negative numbers are allowed so that this plug-in can be used to

compare against some future "expiration date" kind of scenarios.
Generate and build the java classes.

Note:

The various "Adhoc characteristic value validation" algorithms that come with the Oracle Utilities

Software Development Kit are good references for algorithm plug-ins.

Add Algorithm Type

Add a new algorithm type copying most of the entries for ADHV-DTD:

« Algorithm Type: CM ADHV-iiiJ whereiiii is your initials.

« Description: Validate Date Field (Age)

+ Long Description: <Copy ADHV-DTD description here>. The Parameters From Age and To Age are
optional decimals. The algorithm will check the "age" (current system date less the characteristic
date / 365.25) is not less than the From Age (if non-zero) and is not more than To Age (if non-
zero).

« Algorithm Entity: Char Type - Adhoc Value Validation

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 151

» Program Type: Java
» Program name:
com.splwg.cm.domain.common.characteristicType.AdhocDateAgeValidationiiiAlgComp where iii
is your initials.
» Parameters:
> Sequence: 1, Parameter: From Date, Required: Not Checked
> Sequence: 2, Parameter: To Date, Required: Not Checked
> Sequence: 3, Parameter: Date Format1 (Stored Format), Required: Checked
- Sequence: 4, Parameter: Date Format2, Required: Not Checked
- Sequence: 5, Parameter: Date Format3, Required: Not Checked
> Sequence: 6, Parameter: Date Format4, Required: Not Checked
o Sequence: 7, Parameter: Date Format5, Required: Not Checked
> Sequence: 8, Parameter: Age From, Required: Not Checked
> Sequence: 9, Parameter: Age To, Required: Not Checked

ORACLE Preferences Help Logout
Home Menu~w | @ History v Algorithm Type Duplicate Delete

Customer Modification

Description Yalidate Date Fielg

This algorithm is used to validate that an ad hoc characteristic value is a date or a dateftime.

1>
N

The Parameters From Date and To Date are both optional. The algerithm will check that the date is later than the From Date (f
entered) and for earlier than the To Date (if entered). If either value is spedfied, they must be in the format YYYYMMDD.
These parameters are ignored if the charactsristic value is a date ftime fiald,

The various Date Format parameters are used to confrol the format in which the date/time is entered by & user. You must
supply at least one format in parameter 3, The other paramaters exist in case you alow multiple date formats to be used.
Examples of date formats indude: YYYYMMDD, DDMMAYYY, DD-MM-YYY, MMDOMYYY, YY-MM-DD), ete. However, only

three types of date/time formats can be used: YYYYM-DD-HH:MI, MM-DDAYYY-HH:MI:SS, and DD-MM-Y-HH:MESS. V:
E | Characteristic Type - Adhoc Validation L] @
= Java [»]
.; com.sphvg. base.domain.commaon. characteristicType. AdhocDateAgeValdationAHPAlgComp gl ‘%
Parameter Required | Owner
From Date O Customer Modification
& | = 2| || ToDate El Customer Madification
& |= 3| | Date Formati (Stored Format) = Customer Modification
4= 4| |IDate Farmats O Customer Madification
+F|= 5| | |Date Format3 0O | Customer Modification
| = 6| ||Date Formats] Customer Madification
g | = 7 Date Formats Ei Customer Modification
& |= 8 From Age O Customer Madification
I &= 5] |[7o Age E Customer Madification

Algorithm Type

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 152

Add Algorithm

Add a new algorithm as follows:

« Algorithm: CM EXPDT-iii.

« Description: Date must be a future date

« Algorithm Type: CM ADHV-iiiJ

- Effective Date: 1/1/2005

» Parameters:
o Sequence: 1, Parameter: blank
> Sequence: 2, Parameter: blank
o Sequence: 3, Parameter: YYYY-MM-DD
o Sequence: 4, Parameter: YYYY/MM/DD
o Sequence: 5, Parameter: MM-DD-YYYY
> Sequence: 6, Parameter: MM/DD/YYYY
o Sequence: 7, Parameter: MM.DD.YYYY
o Sequence: 8, Parameter: 0.001
o Sequence: 9, Parameter: 0

Create References to New Algorithm

Create an ad hoc characteristic type and reference the previously created algorithm on it.

« Char type: CM J-iii

« Description: iii's Adhoc validation test / Expiration Date
« Type of Characteristic Value: Ad hoc Value

« Validation rule: CM EXPDT-iii

+ Allow Search by Char Val: Not Allowed

Characteristic entity: choose Notification Upload Staging.

Maintaining Portals and Zones

The system uses portals and zones to display information throughout the system.

Note:
For more information on this topic, please refer to user documents Framework Administration,
User Interface Tools, The Big Picture of Portals and Zones and Setting Up Portals and Zones.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 153

Maintaining Background Processes

Maintaining Background Processes Overview

Each new background processes require the creation of two new classes: a BatchJob and a
ThreadWorker. These classes fit into the "master-worker" pattern used by the background process runtime
infrastructure to overcome the throughput limitations encountered by single-threaded processes. By
splitting work among many concurrent threads often on multiple physical nodes background processes
can achieve excellent scalability and react to changing work demands without additional programming. In

this pattern:

« A BatchJob is responsible for determining the work to be processed for a batch run and then
splitting that work into pieces that each ThreadWorker will process. When running a single process,
a single BatchJob object is instantiated by the framework. The framework then makes calls to the
BatchJob instance at the appropriate time. One such set of calls to the BatchJob instance is to
return to the framework a collection of ThreadWork instances that will be distributed for execution.
A ThreadWorker is responsible for processing a single ThreadWork instance for a run. Within the

ThreadWork there are many WorkUnits representing the fine-grained units of work to be processed.
In many cases the WorkUnits represent a complete database transaction, for example, a bill being
created for an account. Whether or not the ThreadWorker executes on the same computer as other
ThreadWorkers or the BatchJob that created its work is left as a configuration choice to be made
at runtime. Within a single process, there may be many ThreadWorker objects. In general, each
ThreadWorker instantiated in a batch run has a corresponding row in the Batch Instance table.

The Batch Instance rows provide persistent state that is needed for the ThreadWorkers to operate

correctly in failure/restart situations.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 154

BatchJob

Creates
Work

ThreadWorlk:Units
Consumes

Work

ThreadWorker ThreadWorker ThreadWorker

Creating a BatchJob

A BatchJob class is responsible for determining what work needs to be done within the run and splitting

the work among ThreadWorkers.

The BatchJob Annotation

Each BatchJob class must declare a BatchJob annotation that specifies important attributes of the job.

An example is shown below:

@at chJob (rerunnable = fal se,

nul ti Threaded = true,

nodul es={t odo},

sof t Paraneters = { @Bat chJobSoft Par anet er
(name=0OUTPUT-DI R, type=string) },

toDoCreation = @oDoCreation (drillKeyEntity = user,
sortKeys = {lastNanme, firstNanme},

messageParaneters = {firstNanme, |astName}

)

)

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 155

The annotation declares if the job can be rerun, supports more than one thread of operation, the modules
that the job belongs to, its nonstandard runtime parameters and the details of how "ToDo" entries should
be created in the case of errors. When not specified in the annotation, default values will be used.

Creating JobWork

The most important goal of a BatchJob class is to return an instance of JobWork describing what work
should be done (ThreadWorkUnits) and have that work split into manageable chunks (ThreadWork) that

can be processed by a single ThreadWorker.

Most commonly, ThreadWorkUnits contain only the ID values of the entities to be processed. For example,
one can envision a process that performs an operation on a set of accounts. In general, one would expect
that each ThreadWorkUnit would contain a single Accountld. The ThreadWorker objects would then
be constructed in such a way that when asked to execute for a ThreadWorkUnit it would pull out the

embedded Accountld and then perform the required business function.

There are convenience methods available from the AbstractBatchJob that make it easier to create
JobWork instances. For example, the createJobWorkForEntityQuery(Query) method will accept a
query returning BusinessEntity instances and create a JobWork instance containing the appropriate
number of ThreadWork instances each containing (notwithstanding rounding) the same number of
ThreadWorkUnits.

Declaring a ThreadWorker Class

It is the responsibility of the BatchJob to declare what class defines the ThreadWorkers that should
perform the work. By returning a Class instance rather than ThreadWorker instances, the framework
controls ThreadWorker instantiation which may occur on a different JVM than the one that the BatchJob

instance resides.

Creating a ThreadWorker

The ThreadWorker performs the "heavy lifting" of a batch process. For a given run, there will
ThreadWorkers created equal in number to the "thread count" parameter provided when a process is
requested.

Initializing ThreadWork

Each ThreadWorker instance can expect to have its initializeThreadWork() method called once by the
framework before any actual work is to be performed. This method may be implemented to do any setup
necessary for that thread's execution, most commonly output files opened or variables initialized.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 156

cup

Warning:

It is very important that any setup necessary to execute a WorkUnit is done here and not in the
creation of JobWork, this includes accessing batch parameters. There is no guarantee that static
variables set at the time of JobWork creation will be available at this time. The framework may be

calling ThreadWork in a different process from the creation of JobWork.

Executing a WorkUnit

The ThreadWorker can expect that its executeWorkUnit method will be called once for each
ThreadWorkUnit that that ThreadWorker will process. For example, if the batch process will act upon
10,000 accounts and the process is submitted with a ThreadCount=10, we can expect that there are 10
ThreadWorkers created by the framework and each worker will have its executeWorkUnit method called
by the framework for each of the 1,000 ThreadWorkUnits allocated to that thread.

Finalizing ThreadWork

Each ThreadWorker instance can expect to have its finalizeThreadWork() method called once after all
ThreadWorkUnits have been processed. This gives the opportunity to close any open files or to do any

other "tear down" processing for the ThreadWorker.

Choosing a ThreadExecutionStrategy

ThreadWork instances need to provide a strategy defining the execution policies for its work. That is, how
the work for a thread will be processed. The interface that is implemented is ThreadExecutionStrategy.
The most important aspect of this is how exceptions will be treated with respect to transactions.

« Should all the ThreadWorkUnits be wrapped in a single transaction with a single rollback on an
exception?

« Should each ThreadWorkUnit be in its own transaction?

« Should the framework attempt to process many ThreadWorkUnits within a single transaction?

« If an exception occurs should the framework "back up" and reprocess the successful units?

« In general, new background processes are expected to chose from existing instances of
ThreadExecutionStrategy, not create new ones. Please scan for existing implementations of

ThreadExecutionStrategy.

Creating Javadocs for CM Source Code

Javadocs can be created for CM source code. They are designed to be integrated into the product's

Javadocs.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 157

The product's Javadocs are only delivered for objects or supporting objects that are intended to be
referenced by CM code. For instance, only the domain and api packages are included, and some of the
files created by the artifact generator are not delivered since they have no practical relevance to CM code.
These files have been deliberately and explicitly omitted when creating the product's Javadocs.

Note that the process that generates Javadocs on CM source code is not selective, and running Javadocs

on CM source code may include more object types than what is delivered with the product's Javadocs.

Refer to Creating Javadocs for CM Source Code (on page 88) for more information.

Upgrade JSP to XSLT

Trees and subpanels should be upgraded to use the application's XSLTs instead of the JSPs used in

v1.5.x. This section describes the upgrade process.

Note that all other JSPs (tab pages, list grids, etc) must have been upgraded to XSLTs in v1.5.x. Thus,
there is no tool to upgrade such code in V2.

Create User Exit Files

The user exits in the JSP-based system were directly placed within the JSP as code snippets within
specially located markers. In the XSLT system, the meta-data is separated from the user exit, and resides
in an .xjs file with the same name as the JSP file, with only user exits and each user exit function explicitly
defined in the file.

Going from JSP to XSLT user exits is thus not trivial. However, a set of supplied scripts will create a new
user exit .xjs file for each of the different JSP template files in your system. The following table lists the
scripts to run for each template file:

Sub Panel convertSubPanel.pl

Tree Page convertTreePage.pl

Tree User Exit Changes

Since the XSLT user exits are now callout functions, five tree user exits need to be coded differently. The
main purpose of these five user exits is to change a variable's value. The analogous new XSLT user exits
return the desired value instead.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 158

The user exits have been renamed to more accurately reflect their new function. Below is a comparison of

names and purpose of JSP-based user exits versus XSLT-based user exits.

JSP name

setServicelndex

setNavKey

setNavKeylndex

setimageOpenindex

setimageClosedindex

Main purpose

Sets the desired serviceln-
dex variable.

Sets the desired newNav-

Key variable.

Sets the desired navKeyln-

dex variable.

Sets the desired imageln-
dex variable.

Sets the desired imageln-
dex variable.

XSLT name

overrideServicelndex

overrideNavKey

overrideNavKeylndex

overridelmageOpenindex

overridelmageClosedindex

Main purpose

Returns the desired index
of the service.

Returns the desired nav

key.

Returns the desired index

of the nav key.

Returns the desired index
of the open image.

Returns the desired index
of the closed index.

Each user exit is passed the variable's original value. If the user exit does not return a value, the original

variable's value will be used.
Below is an example of a JSP user exit and a converted XSLT user exit inside an .xjs file.

Here is the JSP user exit.

/1 $#BSES SETSERVI CE
if (nodeName == 'newtype') {
var nylLetter = pageKeys.FT_TYPE. substr (0, 1);
if (nyLetter =="'A) {
servicel ndex = 1;
}
if (myLetter == 'B') {

servi cel ndex = 2;

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 159

}

if (myLetter == "'C) {
servicel ndex = 3;

}

if (nmyLetter == 'P') {

servicel ndex = 4;

}

/1 $#BSEE SETSERVI CE

Here is the same user exit coded in an .xjs file:

function overrideServicel ndex(nodeNane, services, pageKeys, servicelndex) {
var overridel ndex;
if (nodeName == 'newtype') {
var nylLetter = pageKeys.FT_TYPE. substr (0, 1);
if (myLetter == "A") {
overridel ndex = 1;
}
if (nyLetter == 'B') {
overridel ndex = 2;
}
if (myLetter == "'C) {
overridel ndex = 3;
}
if (nyLetter == "'P") {

overridel ndex = 4;

}

return overridel ndex;

}

Change Template Code in Program Components

The meta-data on the database for the CM JSP program component pages needs to point to the new
XSLT template codes. There is a set of SQL scripts that update all the CM tree and sub panel program

components with the correct template.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 160

Run the SQLs in the script changeTemplateCodesTTRAndPN.sgl against your database to perform this
change.

Create XML File with Ul Meta-data

The XSLT framework uses the meta-data at run-time to drive the transform. However, it does not query the
database for this, and instead relies upon an intermediate representation in the form of an XML file stored
with the same name (but with an .xjs extension) and location as the original JSP file.

The XML file is automatically created by the framework the first time the page is viewed if an existing XML
file does not exist. Delete the existing XML file, if one exists, located in the same directory as the original
JSP file. The XML file is named after the program component's name. To generate the XML file, view the
program component from within the application.

Delete the JSP Files

Once the meta-data is changed and the new files are properly placed, there is no longer a need for the
JSP files for the converted program components, and it would be a good idea to delete them to avoid
confusion.

Find the JSP files in the file system and delete them.

Log into the Application and Test

For the new XSLT pages to be used by the system, instead of the system looking for the old JSPs, some
server and browser caches need to be flushed. The easiest thing to do is restart the app server and start a

new browser session.

Login and visit the converted pages to test functionality.

Utilities

Environment Batch Programs

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 161

displayEnvironment.bat
Property
Purpose

Description

Usage
Parameters
switchEnvironments.bat
Property

Purpose

Description

Usage

Parameters

Detail

Displays the current configuration.

Displays a set of environment variables and settings
that may be needed to diagnose compile issues.

displayEnvironment.bat

None.

Detail

Sets the current development environment (project) for
the Software Development Kit.

Displays a list of development environments on the
development client, allows the user to select one, and
sets it as the current development environment for the

Software Development Kit.

switchEnvironments.bat

None.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 162

createNewEnv.bat

Property

Purpose

Description

Usage

Parameters

Services

Detail

Creates a new development environment (project) or
configures a development environment to use the ver-
sion of the Software Development Kit used for the cur-

rent development environment.

Configures a new app server to be a development envi-
ronment.

Also, executing this for an existing development envi-
ronment configures that development environment to
use the version of the Software Development Kit used
by the current development environment.

createNewEnv.bat -a <appServerDir>

- -a <appServerDir>. Specify the base directory of
the app server to configure.

Batch Program setupSvcXMLPrompted.bat

Property

Purpose

Description

Detail

Setup service XML.

After prompting the user for the program name of the
service, this script sets up a service by creating the ser-
vice XML file.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 163

Property Detail

Usage setupSveXmlPrompted.bat
Parameters None.

Batch Program updateXMLMetalnfo.bat

Property Detail
Purpose Updates the XML Metainfo directory with the latest ser-
vice XMLs.
Description Updates the XML Metainfo directory of the current de-

velopment environment with the latest service XMLs.

This is needed, for example, for creating schemas for

XAl
Usage updateXMLMetainfo.bat
Parameters None.

Eclipse Tools/Wizards

There are a few wizards and tools available for developing against the framework within Eclipse plugins.

Batch Program startEclipse.cmd
Property Detail

Purpose Launch the Ecliipse SDK for the current development

environment (project).

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 164

Property Detail

Description Launches the Eclipse SDK for the current development

environment.

Usage startEclipse.cmd.

Parameters None.

Annotation Editor

A lot of the Java classes that will be created to add behavior to the application require Annotations to

provide meta-data about the implementation (see Java Annotations chapter in the Developer Guides).

The annotation editor plugin provides a convenient way to edit the annotations on these classes. It is
available on any class that has an existing annotation, under the Package Explorer panel in Eclipse. Right

click on the file in the Package Explorer, and there will be a menu item "Edit Annotation”.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 165

& Java - BatchJobClassSearch. java - C:\SPLA\FW\2.0. 6\Code\tools\eclipselw
File Edit Source Refactor Mavigate Search Project Run Window Help

o L I H-0-Q- % BEFG- | ™y

: Explorer X Junit = =] m RepartOptionLiskh

2 | B <}==~{> = package com.s
—.1289 % 2 : ; 2 o |
-I-%= Base [sf-pdnk-006, sphwg.cam: 16686;RCannel_vz] ~ @import com.spl
+ - gen
=i java e
He (default package) * @SearchSer
=i com.sphwg * R
- base * i
+- [api * 5
+H charter % returnF
+- £ cobol.zz i)
+--F4 common 2
-3 domain —public class B:
+-H3 applicationiiewer extends Batc
-3 batch
=} batchContral K~ hethods -
+ m BatchControl_CHandler . jawa #1/ |a & public Searcl
+ m BatchConkrol_Impl jawa #1711 <te String qual
+-1J] BatchControlMaintenance. java # vetiive Cor
+-1J] BatchControlParameter_CHandle
+ m BatchControlParameter _Impl,jaw
+ m BatchiControlSearchService. java
+ m W J .
#- {2 batchJobGQuey Mew 4
-3 batchRun | o .
[+ m BatchMessage|]
Cpen With 3
+- 3 comman _
+ 3 conversion Cpen Type Hierarchy F4
+-H} database
: B C Chrl+C
+-H} dataManagement | == orY, £
+- 3 portal [Paste Chrl+y
=8 report # Delete Delete
[EDefiniti
i 88 reportDefinitiol o Lo b
-3 reportHistory
& B8 reportOption Source Alt+shift+5 »
+-1J] ReportOpt Refactar Alt+Shift+T #
+ m REpDrtOpt:
+ m ReportOph RS ITROLE .
#-H3 reportSubmissi g3 Export..,
+m Repoartaction.j
s m ReportMessag References b
+-- 3 security Declarations 3
+- 1 todo 2 3
+- 18 workflow " Refresh F>
+-H xai
: F k
+ m StandardMessage: it :
+- £ messaging Run As
4 B} suppart Debug As 3
+- [web Edit Annotation

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 166

Choosing this menu item will cause a new dialog window to appear, and the file to open into an editor
if it is not already open. The dialog that appears will allow maintenance of the file's current annotation

contents.

& Edit annotation for ReportOptionListMaintenance. java @

Annotation Editor

This page allows editing of an annotation.

Default Cobal Copybook: |

Enkiky: | reportOpkion

Program: | CIPZRPOP

Secured: v

Service: | CILZRPOP

Baody: Edit DataElement. .. |

Default For Add Yalue: Edit key¥alue. .,

Actions: Edit array of Strings. .. |
Defaulk Yalues: | Edit array of Javarameialue. ., |
Header Fieglds: Edit array of Header Fields. .. |
Lisks: Edit array of List... |

Maodules: Edit array of Strings. .. |

Finish Zancel

The appearance of the dialog is dependent upon the particular annotation, but the standard dialog will
present a layout of two columns, a label and an input for each annotation property. The bottom of the
dialog will always present the Finish and Cancel buttons. The Cancel button is always available, and will

throw away any changes made, leaving the file with the annotation unchanged.

The Finish button will only be enabled when the annotation has no errors. The annotation is validated

after any change, and errors will be displayed near the top of the dialog and the Finish button disabled.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 167

& Edit annotation for BatchJobClassSearch. java

Annotation Editor

3 Service is required

Service: |

Language Dependent: [

Returned Entity Name: |

Returns Entiky: [

Main Search: Edit SearchserviceCriteria. . |

alk Search: Edit SearchserviceCriteria. . |

Ak Searchz: Edit SearchserviceCriteria. . |

Ak Searchz: Edit SearchserviceCriteria. . |

At Searchd: Edit SearchserviceCriteria. . |

Ak Searchs: Edit SearchserviceCriteria. . |

At Seatrche: Edit SearchserviceCriteria. . |
Return Figlds: Edit array of SearchReturnField. .. |

| | Zancel

When the property value is itself a list of values or another annotation, there will be a button instead of an
input text box. Clicking the button will bring up another dialog to edit its information. In the case of lists,
there is a standard dialog where elements can be added, deleted, or reordered.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 168

& Edit list returnFields X

array edit

edit array

PROG COM ID return=true

dowin

=
IE3

Einish | Cancel |

To add a new element, click the '+' button. This will popup a new dialog for the annotation being added (or
sometimes a choice of the new annotation's type might need to be chosen first). Clicking the - button will
delete the highlighted element. The 'up' and 'down’ buttons can be used to move the highlighted element
up or down within the list. To modify an existing element, double click its row in the list dialog, and a new
dialog will open to edit its values.

Finally, there is a special list dialog for lists of strings. Instead of editing the elements in the list in a new
dialog, a single input field near the bottom of the dialog is used to edit the highlighted entry.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 169

€ Edit list nullableKeyFields X

array edit

edit array

up

down

S8 E

PER_ID

Eirish | Cancel

When the finish button is finally pressed, the annotation (and only the annotation) in the file will change to
contain the new values entered into the annotation dialogs. The changed file's annotation may be slightly

reformatted. The changed file will also remain unsaved, pending user review of the annotation's changes.

Project database information

In order to use the Maintenance Object Wizard described in the next section, some information will
have to be provided in order for Eclipse to connect to the database to retrieve the Maintenance Object
metadata.

There are two ways to specify the database connection information.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 170

The first is a way for each project to possibly specify different connection information. This is done in the
.proj ect file stored in the project's directory. This is an XML file that describes the project. The database

information can be supplied in a buildCommand node under buildSpec under the projectDescription root
node:

<bui | dSpec>

<bui | dCommand>

<nane>com spl wg. t ool s. dbConnect i on</ nanme>
<ar gunment s>

<di cti onary>

<key>ur | </ key>

<val ue><URL></ val ue>

</ dictionary>

<di cti onary>

<key>user nanme</ key>

<val ue><USERNAME></ val ue>
</ dictionary>

<di cti onary>
<key>passwor d</ key>

<val ue><PASSWORD></ val ue>
</ dictionary>

</ ar gunment s>

</ bui | dCommand>

</ bui | dSpec>

The values <URL>, <USERNAME>, <PASSWORD> should be replaced (including the surrounding '<' and '>')
with the appropriate values for the database for the project.

This file will need to be hand edited, and Eclipse should be restarted after the edit is complete.

The second way is to provide a workspace-wide database connection. This is available in an Eclipse
preference- go to "Window | Preferences...". Then in the tree pane on the left of the Preferences dialog,
choose "SPL Preferences". Under OUAF preferences, choose "Database Connection". The preference pane
on the right will now show inputs for the database connection information.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 171

& Preferences |:|@@

|type fiter text | Database Connection Preferences =R

¥ zeneral
< Ank SPL Incremental Builder Preferences

Checkclipse [Cwerride Defaulk DB Connection

+- Data
Database
Help Database Connection UserMame |
InstalliUpdate
Inkernet
Jalopry
Java
Plug-in Development
Fun/Debug
Server
SPL Preferences
Cobol Conversion Pre
Database Connection
+|- Team

Walidation
4 Welociky LI
+-Web and XML
+-Web Services

Database Connection LIRL |

Database Connection Password |

o O Y B

Restore Defaulks | apply |

Ik | Cancel |

Click the override default DB connection if the database contains materialized views to the true
development database for performance reasons. Enter the information into the appropriate text boxes
and click OK. This will take effect immediately, without need of restarting Eclipse.

Maintenance Object wizard

In cases where a whole new "Maintenance object” is being added to the application, and the data is first
entered onto the CI_MD_MO and related tables, there is a wizard that will use that meta data as a starting
point and with some developer input, create all of the manually coded Java Entity_Impl classes with their

proper tree structure, and also optionally create a Java Maintenance class "starting point".

The "Maintenance Object Wizard" is available under the "New .." menu item, either under the file menu, or
by right clicking a node in the package explorer (the package explorer option is recommended, as it will

default the project and source directory selected). From the list of new wizards available, choose "Other...".

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 172

Ell'{ﬁ jarva
+-f2 cobe
=-F3 com

P o | P oo | |

it |

=0 E CobolReportParame. .. | m
S | = ‘3,:5; = import com.sphwg.base.domr

import com.splwd.base.domr

™ Project...

Clase Project

]
G0 Inko
Cpen in New Window
Open Type Hierarchy F4
4 2 copy Chrl+C
[Paste Chrl+y
M Delete Delete
Build Path
Source AlE+Shifk+5 F
Refactor Alt+Shifk+T F
Exg Import. ..
£ Export. ..
Q-éh Refresh F5

B Package

(& Class

€4 Interface

ﬁ’ Enm

@} Annotation
&Y Source Folder

3
(% Folder

| File
27 Untitled Text File
[EF JUnit Test Case

=

4 Example. ..

kel

This will open a new dialog, where the maintenance object wizard is under SPL:

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 173

Select a wizard

-
——
W

Wizards:

= Cobal Conwversion -
(= WS

[= Data

[= Eclipse Modeling Framewwark

[= Example EMF Maodel Creation YWizards
= lava

[= lawva Emitter Templates

= Plug-in Development

= Server

= Simple

(= sPL

O e O O O O e R O R

Maintenance Object Implementation Classes
+-[= WWeb

+-[= Web Services

F-[= WML W

| Mext = | | Cancel

(Note that you can configure Eclipse so that in the future the "Maintenance Object implementation
classes" wizard appears directly under the first "New..." menu.)

The first page of the wizard asks for the project and source path to place the new files. Then it asks for
the some information it uses to construct the package name for the new files. The standard is that the
new classes go under the application's domain path, with a possible extra sub package (e.g., a subsystem,
like '‘common' or 'customerinformation’), followed by the top level entity's name (e.g., account). The top
level entity's name, along with lots of data used by the next page, comes from the maintenance object
itself.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 174

= New Maintenance Object Implementation Classes @

Maintenance Object and Location information

@ Maintenance Object must be specified

Source folder: | Basefgen Browse. .,

Application | base
Sub Package | COMMMman
Package

Maintenance Object | Browse. ..

Generate UI Maintenance [+

< Back | | Cancel

Finally, you can optionally choose to Generate the Ul Maintenance (the default is to generate it).

The maintenance object input has a "Browse..." button associated with it that will launch a search dialog
where the maintenance object can be searched for by either the Maintenance Object's code, or by the

primary table for the maintenance object.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 175

& Search for Maintenance Object

Maintenance Object | | Search by MO Code |

Prirmary Table Marme Search by Table

Mainkenance Object | Prirmary Table |

O | Cancel

Both of these searches are "likable" in that partial matches starting with the input will be shown.

Pressing OK on the search or double clicking a row will bring the selected maintenance object back into

the Maintenance Object input on the main wizard.

Once the main wizard's inputs are specified, the next button can be pressed. This will display the second
detailed wizard page. A tree view is displayed with the tree representation of the Maintenance object

selected, with its child tables.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 176

& New Maintenance Object Implementation Classes @

Maintenance Object's Entities - More info

@3 Tables [CI_MD_TBL, CI_MD_CONST, CI_MD_CONST_FLD, CI_MD_TEL_FLD]
have nok been verified.

Maintenance Cbject table relationships

SEFOoE - bable (CI_MD_TBLY has Language Table *Mot werified™®
= constrainks (CI_MD_COMNSTY *Mak verified®
fields (CI_MD_COMST_FLDY *Mok verified®
figlds (CI_MD_TEL_FLD) has Language Table *Mot verified®

Info
Enkity name
Table

Lisk property Mame |

Order By |

Clustering Parent properky |
Allow mixed case Id 5
Yerified ||

+ Back | | Cancel

Each node in the tree must be visited in order to enter some information or at least verify that the default

data is correct. The nodes themselves show the list property name, the table, whether the table has a

language table, and whether the node has been verified.

The selected node's data is shown in the "Info" box below the tree. Only editable information is available to

be changed- other values may be disabled. The values that can be changed for each node include the list

property name, the order by fields, the clustering parent property, and whether the Id can contain mixed

case.

The list property name is the name on the parent that the child collection will be accessed by. For

example, in the above Maintenance Object for Table, the table's child collection of rows on the table CI_

MD_CONST will be accessed via the property 'constraints'. And likewise, each constraint will then have a

child collection called fields.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 177

The order by is an optional property. It is a comma-separated list of columns that specify the order
in which the list will be retrieved when the collection is read from the database. An example for the
constraints collection would be "CONST_ID, OWNER_FLG".

The clustering parent property comes into play for generated IDs. In some cases, it is beneficial to cluster
the generated keys for related objects so that batch threading is more efficient. An example is every
Service Agreement can have its ID generated with some portion of its account ID. The account will be
accessed off of a serviceAgreement via the property account. Thus the Service Agreement root node in
the above dialog would probably have a value of ‘account' for the clustering parent property.

In case of user defined string keys, most of the time the application only uses uppercase keys. However,
in some cases, mixed case keys are allowed. The "Allow mixed case Id" check box should be checked in
this event.

Finally, to ensure that the developer reviews each node's values, the Verified check box must be checked

for each node, prior to proceeding to the next page or finishing.

If the option to generate the Maintenance was not chosen, the Finish button will be enabled when the tree
nodes' data is complete and valid. Clicking finish will cause all of the entity classes to be created in the
specified package, and will open an editor window on each new class.

If the option to generate the Maintenance was chosen on the first page, the "Next>" button should be
enabled after all the tree nodes data is finished and valid. Clicking "Next" will then present the final wizard
page, where information about the maintenance class can be entered.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 178

£ New Maintenance Object Implementation Classes @

Maintenance information

3 Service is required

Maintenance class narme |

Maintenance Type |Entit':.f j

Edit annatation

Cancel

On this page, the maintenance class name and maintenance type can be chosen. The maintenance class
name is something like the root entity name followed by 'Maintenance" by convention, although it can
differ. The maintenance type choices are 'Entity', which is a standard maintenance for a single instance
of the maintenance object at a time, with nested child lists, etc. The other choice is 'List", which is a
simplified maintenance where many instances of the maintenance object are edited at once in a grid.
This is usually limited to simple objects with a code and description, and maybe one or two other fields.

Anything more complex would be difficult to present in the single grid.
(Note that changing the Maintenance Type will clear out any existing information on the annotation.)

After the class name and maintenance type is chosen, there is more information required to be edited on
the Annotation. See Java Annotation in the Developer Guide for details about annotations. Clicking on the
"Edit Annotation" button will launch a new dialog window for editing the annotation. The most important
information that every maintenance must specify on the annotation is the service name. This field is
immediately visible on the main dialog for the annotation, and must have a value entered. Most everything

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 179

else will have been defaulted with appropriate values from the Maintenance Object meta data. See the

developer guide mentioned above for more information on using the annotation editor.

After the maintenance information and annotation is complete and valid, pressing finish will cause the
entity files and an empty maintenance class to be created, and editor windows opened on each of them.

Upgrade JSP to XSLT

Note:

JSPs other than trees and subpanels must have been upgraded to XSLTs in v1.5.x. Thus, there is

no tool to upgrade such code in V2.

Batch Program convertTreePageExits.pl

convertTreePageExits Purpose

Creates user exit files from tree JSP files.

convertTreePageExits Description

This program creates user exit .xjs files for all tree JSP files under the current and child directories.
The .xjs file will be created in the same directory with the same name as the JSP.

This should be run from a command prompt in the directory or parent directory of the JSP files.

convertTreePageExits Usage

Perl convertTreePageExits.pl

Batch Program convertSubPanelExits.pl

convertSubPanelExits Purpose

Creates user exit files from subpanel JSP files.

convertSubPanelExits Description

This program creates .xjs files for all subpanel JSP files under the current and child directories. The .xjs
file will be created in the same directory with the same name as the JSP.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 180

This should be run from a command prompt in the directory or parent directory of the JSP files.

convertSubPanelExits Usage

Perl convertSubPanelExits.pl

SQL Script changeTemplateCodesTTRANndPN.pl

changeTemplateCodesTTRANdPN Purpose

Changes the tree and subpanel template codes to the XSLT template codes.

changeTemplateCodesTTRANdPN Description

This changes the template codes of from JSP to XSLT template codes. This template code instructs the
application to use the XSLT engine instead of the referring to a JSP.

These SQL commands should be run against the database.

Javadocs

Batch Program generateJavadoc.bat

Property Detail
Purpose Create javadocs from custom source code.
Description This script runs the javadoc tool bundled with the jdk

against CM source code in the standard directory
and targets the javadocs directory. To integrate the
javadocs with the product's javadocs the reindex tool

needs to be run.

Usage generateJavadoc.bat

Parameters None.

Oracle Utilities Application Framework Software Development Kit | 2 - User Guide | 181

Batch Program reindexJavadoc.bat

Property Detail
Purpose Recreate the Javadoc indices.
Description This script recreates the Javadoc indices so that it

shows all of the Javadocs in the Javadoc folder. If
Javadocs have been generated for CM code, this will
update the indices to include both the CM and the prod-
uct's classes and packages.

Usage reindexJavadoc.bat

Parameters None.

Chapter 3. Developer Guide

Overview

The Oracle Utilities Application Framework provides a rich environment for developing applications.
This document provides a reference for various topics that will help developers make the most of this

application development framework. The sections in this document include:

- The Java Annotations section describes the meta-data that can be embedded in Java code for
various purposes.

« The Public API section describes available methods, interfaces, etc., in the various Java classes
like entities, maintenance classes, etc.

* The Application Logs section describes how logs are set up and used.

- The Java Programming Standards section describes Java coding practices that promote efficient
development and maintenance as well as upgradeability.

» The HQL Programming Standards section describes HQL coding practices that promote efficient
development and maintenance as well as upgradeability.

- The SQL Programming Standards section describes SQL coding practices that promote efficient
development and maintenance as well as upgradeability.

- The Database Design Standards section describes database design practices that promote an
efficient database, maintenance as well as upgradeability.

 The System Table Guide section describes the set of database tables that contain crucial
information for the configuration and operation of the application. It also describes standards to be
followed to ensure upgradeability.

 The Key Generation section describes the automatic generation of random and sequential primary

keys.

Java Annotations

In order to direct the application how to deal with the code in certain classes, annotations are employed.
These annotations can direct the generator how to generate the superclass, how to register the class,
and at runtime can effect the behavior of the class. The annotations are potent metadata used at several

levels in the application.

Technically, the annotations are structures described inside a JavaDoc comment prior to the start of
classes or methods. They are structured via starting with a ‘@' sign, followed by the annotation name,
and the body of the annotation inside parenthesis. The body can be either comma separated key=value
pairs or a single value which specifies a value for a unique default key. The values can be any of strings

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 183

(needing to be bound by quotes if there are special characters inside the string itself), lists (of either

annotations or strings) bound by curly braces {} and separated by commas, or other annotations.

Each managed class (entity, change handler, business component, maintenance, etc.) typically

has its own annotation. Each of these annotations has an underlying Java class in the
com.splwg.shared.annotations package, where the name of the class is the name of the annotation
suffixed by Annotation. The JavaDoc comments of these annotation classes should give more detail for

each specific annotation.
An example will help illuminate:

Here is the entity annotation for batch control:

[**
* @usinessEntity (tabl eNane = Cl _BATCH CTRL,
oneToManyCol | ections = { @hild (collectionNanme = paraneters, childTabl eNane = Cl _BATCH CTRL_P,
order ByCol utmmNanmes = { “SEQ NUM'})})
*/

public class BatchControl _I npl

The name of the annotation is BusinessEntity. It has specified properties tableName, and
oneToManyCollections (there are others available, but they need not all be specified). The property
tableName specifies the CI_BATCH_CTRL table as the table that this entity maintains. It also contains
some oneToMany child collections, specified by the list of Child annotations. In this case, there is a single
child, with a collection name of parameters, pointing to the child table CI_BATCH_CTRL_P, with a native
order given by the column name SEQ_NUM.

Once an annotation exists, the annotation wizard (in the Eclipse editors plugin) can be used to maintain
the annotation, showing all of the available annotation properties, and with some validation of the values
entered. Thus, one way to create an annotation from scratch is to create a purely empty annotation with
the correct name at the start of the class, and then use the annotation editor to fill in the details, and

assure against typographical errors and not have to hunt down the allowed properties.

Here is a list of top-level annotations and their corresponding purpose or managed class type, and a
pointer to an example class in the FW code where available.

BatchJobAnnotation for batch jobs, defining such properties as whether the batch is multithreaded
and what soft parameters it uses. An example batch job in Java is defined in the class

com.splwg.base.domain.todo.batch .BatchErrorToDoCreation.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 184

BusinessComponentAnnotation for business components. This will register the business component
either as a new one (and define whether it can be replaced or not), or a replacement of an existing one. An
example business component is com.splwg.base.domain.todo.toDoEntry. ToDoEntryAssigner_Impl.

AlgorithmComponentAnnotation for defining algorithm implementations. This is

used to create a new algorithm implementation, defining which algorithm spot

it is for, and what soft parameters it uses. An example algorithm component is
com.splwg.base.domain.common.characteristicType.AdhocNumericValidationAlgComp_Impl.

EntityChangeAuditorAnnotation for implementing audit behavior when an entity is modified. An example

auditing component is com.splwg.base.domain.common.audit.DefaultTableAuditor_Impl.

BusinessEntityAnnotation for defining or extending business entities, with properties
defining the table maintained and any one-to-many child tables, etc. An example entity is
com.splwg.base.domain.batch.batchControl.BatchControl_Impl.

ChangeHandlerAnnotation for extending entity persistence behavior- adding validations, or
adding extra code to execute on add/change/delete actions. An example change handler is
com.splwg.base.domain.common.characteristicType.CharacteristicType_CHandler.

CodeDescriptionQueryAnnotation for adding services to handle drop down lists for the Ul. There are no
examples of this general component- the Oracle Utilities Application Framework implements only entity
code descriptions.

EntityCodeDescriptionQueryAnnotation for adding services to handle drop down lists for the
Ul, that are directly related to entities. An example of an entity code description component is
com.splwg.base.domain.common.country.CountryCodeDescriptionQuery.

MaintenanceExtensionAnnotation for extending a maintenance. There are no examples of maintenance
extensions in the framework. It is purely an implementer component. Please see Maintenance Extensions

(User Guide: Cookbook: , Hooking into User exits: Hooking into Maintenance Class User Exits).

QueryPageAnnotation for creating a new query page service. An example is
com.splwg.base.domain.todo.toDoQueryByCriteria. ToDoQueryByCriteriaMaintenance.

PageMaintenanceAnnotation for creating a new generic page maintenance. An example is
com.splwg.base.domain.security.user.SwitchUserLanguageMaintenance.

EntityListPageMaintenanceAnnotation for creating a new maintenance for an entity-type, with a list based

front end. An example is com.splwg.base.domain.common.phoneType.PhoneTypelListMaintenance.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 185

EntityPageMaintenanceAnnotation for creating a new entity maintenance, that maintains a single

instance at a time. An example is com.splwg.base.domain.batch.batchControl.BatchControlMaintenance.

ListServiceAnnotation for creating a list service (read only), meant for trees for example. An example is

com.splwg.base.domain.security.user.UserAccessGroupCountListinquiry.

Public API

SQL Return Codes

The framework generally returns the database-specific return codes from SQL execution. However, the
framework returns SPL-specific return codes for commonly-used SQL execution result messages. These
SPL-specific return codes are the same regardless of the database. This allows programs to be portable

across different databases.

The following lists the SPL-specific return codes:

SQL Execution Result SPL Return Code
OK 0
* Unnumbered SQL Error 999999990
Warning 999999991
End / no (more) row retrieved 999999992
Duplicate / unique index violation 999999993

More / multiple rows retrieved in single-row select 999999994

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 186

SQL Execution Result SPL Return Code
Deadlock 999999995
No connection 999999996
* Application Error 999999997
* Hibernate Error 999999998
* Programmatic Error 999999999

Note:
The SQL return codes marked with an asterisk ("*") are for errors peripheral to the actual

execution of the SQL and do not have equivalent database return codes.

Standard Business Methods

In general, classes that are created to implement business logic, including change handlers, business
entities, maintenance classes, and business components have access to standard methods intended
to give application code access to framework functionality. Commonly, these classes extend the
GenericBusinessObject class within their inheritance hierarchy. Below are some general descriptions of

the provided methods. Please refer to the JavaDocs for more detail.

« createQuery(String)-Create an HQL query.

- createPreparedStatement(String)-Create a "raw" SQL statement. It is preferable to use the
createQuery method.

- getActiveContextLanguage()/getActiveContextUser()-Get the language and user associated with
the current request.

« createDTO(Class)-Create a new DataTransferObject instance for the entity corresponding to the
provided business interface class.

« getDynamicComponent(various)-Get a Business Component instance corresponding to the input
business interface for the component.

- getSystemDateTime()-Get the current DateTime instance appropriate for business logic.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 187

« IsNull(Object)/notNull(Object)-Methods that answer the question if an object is null or is equivalent
to null.

- isNullOrBlank(String)/notBlank(String)-Methods that answer the question if a String reference is
null, zero length, or all blank.

« startChanges()/saveChanges()-Used to defer validation when making complex changes to entities.
It may be the case where a valid entity can only be constructed by passing through one or more
invalid states. By calling startChanges() at the beginning of the set of changes and saveChanges()

at the end, some validations may be deferred until the entire coherent change is complete.

Business Entity Public Methods

BusinessEntity classes implement a combination of methods inherited from their generated superclasses
as well as the framework classes that those generated superclasses extend. The generated methods are
typically "convenience" methods based on the specific features of the entity. The framework methods

are ones implemented by many or all entities. Similarly, some methods are expected to be invoked from
other objects (public methods) and others are to facilitate business logic coded into the entities' business

methods themselves.

Public Methods

These methods are exposed via the generated "business interface" of the entity.

« registerChange(Change) - Allows for another entity to register the fact that that entity has changed
so that any dependant change handler logic in this entity may fire. This is most useful in situations
where the changed object and the dependant object (the one needing to know about the change)
are not directly related by parent-child relationships.

« getDTO() - Get a DataTransferObject representing the current state of the entity.

- setDTO(DataTransferObject) - Update the state of the entity based on the passed values in the DTO.

- getld() - Each entity has a method by this name with retrieves and Id instance of the appropriate
class for the entity.

« getFoo() - Get the value of the persistent property "foo".

- fetchBar() - Convenience method that will fetch the value of "bar" where "bar" is a parent entity
referenced by an optional foreign key refernce. The word "fetch" is used to denote that navigation
to that entity is not provided from within HQL.

« getBazzes() - Get the EntityList containing members of the entity "baz". For example, a
getPersonNames() method on the "person" entity might return an instance of an EntityList

containing PersonName instances.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 188

Protected Methods

These methods are exposed via the extended generated superclass of an entity (the "_Gen" class) for
the use of business methods implemented on the entity. With few exceptions, the methods exposed as
public methods on business entities are also exposed "within" the entity as protected methods for the

convenience of business logic. Additionally, the following methods are added:

« thisEntity()-Returns the instance of the current entity. Generally, this is used when an entity needs
to pass itself as an argument in a method call.

- addError(ServerMessage)-Add an error relating to the current entity.

- addError(ServerMessage, Property)-Add an error relating to the passed property on the current
entity.

+ addWarning(ServierMessage)-Add a warning to the current warning list.

Data Transfer Object Methods

DataTransferObjects (or DTOs) are transient objects meaning that changes to their state are not directly
persisted. They provide a mechanism where the set of properties of an entity can be passed around in
business logic without the implication that changes to their values will be transparently persisted to the

database.

- getFoo()/setFoo(Bar)-Get or set the value of the property "foo".
- newEntity()-Create a new persistent entity based on the values currently held in the DTO.

Id Methods

Entities generally have an Id class created for them by the artifact generator. This provides clarity in the
application code as to what "kind" of Id is being held or passed. Likewise, there are useful methods on

these Id classes. Id instances are immutable.

« getEntity()-Get the business entity that this Id refers to or null if no such entity instance exists.
« getFoo()-In the case where the Id contains a persistent entity "foo", return that entity.

- getBarld()-Get the contained Id referring to the entity "bar".

« newDTO()-Create a new DTO instance with the Id property already set to this Id's value.

Maintenance Class Public Methods

Please refer to the Javadocs for the public API.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 189

Ul Javascript User Exits

The client-side external user exits are designed to give implementers flexibility and power to extend the
user interface of a OUAF products. Implementers have the ability to add additional business logic without
changing OUAF product HTML files. These user exits were developed such that developers can create an
include-like file based on external user exit templates.

There are two types of client user exits available. There are process-based user exits that wrap the similar
product user exit code with pre- and post- external user exit calls, and there are also data-based user exits
that simply allow the implementer to add/delete data from the product returned data.

Both types of external user exit are only called if the function exists in the implementers external
include JSP file. All available user exits are listed online in the system through the relative URL: /code/

availableUserExits.jsp, with definition examples and links to the framework code that executes the call.

-3 Available User exits - Microsoft Internet Explorer s ..!UIEI
J File Edit ‘“iew Favoites Took Help |_
||| Address [£] hip://ni-boig 8020/ code/ avalablelseiEsils.isp =] @6o
-
Calling file Called Base exit name Return type Fox example Product declaration - example CM dec
Client list/service... |
- . |furction exdCnermideContext,
i o tbMenu |loverridsConterthosountld | String g“m’m ovendeCoribeatArcountiiDl [tproductRetumValus){
1}
: 1 function extOrerideContest]
sis jo bbMeny |lovemideContextParsonld String ?‘”"m ovenideContextFersald(){ [tproductRetamValue){
1}
. ; ; function extOreermideContest]
sis jo sbMery [loversidsContexPremissld IStri.r.g {;’””'m everrideContextPremiseld(){ [eprodustRetamValue){
I}
cis js tabIven shouldNats uto Uppencase ‘Booleaﬂalue ‘ ‘selr.shouﬂﬂommwppemse = false ;functiun exdShonldatAutel;
B | R i | J {aBoolean){ }]
; " |function exttotUppercaseFs
s ibMenn | potUppersseFields ey f”‘““”“ notUppemaseFislds({ ItprodustRetumVale)(
1}
LE . : \funetion extlznoreldodifizdF
cis s tbMenu ignorsModifiedFiekds haray i e R ltproductRetumValus){
1
: [function extDontCopykeyh
cis s fsbMenu doniCopyKeyHlames fmay List f;“m'm domiCopskeylima IBTO. | hiordeciiistuavabnt
1}
finetion iratializeNewElement_LIST |furetion extinitializeNewEle
HENE tablulenu ingtializeMewElement rooid List (dataElement) { \(dataFlerrent){
1 1
i) \function extFieldsTolnsludel
s lstOid |feldsTolncludelnlist XML | |Aray ?‘m""‘“ fettsTolnclods L SIXMUN e rodusiRetanValue)d
L 7 i [function extSaveButtonEndal
sia o tbMeny |lsaveButionErshlingOverrids |[Bocken i}"m’msmmmmm"mm [tproductRetamValus){
I}

Ul Available User Exits - Online Reference

The location of the external JSP file is the \cm directory under the web application root directory:

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 190

< Includes

"]LC.m L1}

:‘l

E xternal
JSP

This document assumes that you are familiar with the framework architecture and its Ul program

component templates (XSLT) and that you know how the base exits work. It also assumes that you are

proficient in JavaScript and HTML.

Client User Exit Flow

The following flowcharts illustrate the most common user exit functions used to modify the user

interface. The flowcharts are designed to help you see the coordination of processing between the client

and the server as well as where the pre and post external user exits can be used.

The following diagram explains the shapes used on subsequent flowcharts:

Start of a function

!

Location where a pre user
exit can be inserted

Location where a post user
exit can be inserted

A function

Flowchart Legend

=]
<&
O

A function that is illustrated in
greater detail in another
diagram

A call to a page maintenance
proagram on the server

A decision based on a
parametervalue

End or return to main
function

Whenever you see a request for a server-side page service, you can refer to the Page Maintenance

Program flowchart to see the server-side processing. You can determine the Page Action based on the

service being requested: Read, Add, Change, Delete, or Default.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 191

Read Page

The Read Page function is executed whenever data needs to be presented from the database to the user.
It is called after a root item is selected from a search page or when navigating to another transaction via a

Go To button or a Context menu.

Do Page Read

Load Object
W odel

Redizplay
Fage

|

Delete Page

The Delete Page function is executed when the user clicks the Delete icon.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 192

Do Page Delete

Prepars
M odel for Add

Refresh
Page

|

Save Page

The Save Page function is called whenever a user clicks the save icon (or the associated accelerator key).
If the user has displayed an existing object on a maintenance page, the Action Flag and therefore the
Change Page Service is requested. If an existing object is not displayed on a maintenance page and the
user presses save (e.g., they are adding a new object to the database), the Action Flag does not equal
change and therefore the Add Page Service is called.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 193

Do Page Save

¥

Load Object
Model

Refrezh
Page

Refresh Page

The Refresh Page function is called from the Read, Delete, and Save page processes. It is also called
when the user clicks the Refresh Page icon (or the related accelerator key) or when the user navigates to

a different tab page.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 194

[
I.' (7]

The pre/post Tab Page Window Load user exit is a good place to implement Field Level Security logic. By
using the getFieldLevelSecurityInfo() function found on the "top" object (please refer to the Free Functions
section found within the Technical Background chapter of the Development Tools documentation), an
implementer can extend the behavior or look of the window. For example, a field can be made "read-

only" if the user's Field Level security is lower than the required security level. This prevents the user from
changing the value of the field.

You can use pre/post List Grid Row Processing exit to manipulate fields within the grid. For example, you

can calculate the default value of a column depending on the values of other columns.

Prepare Model for Add

Prepare Model for Add is called when a user enters a page in Add mode (e.g., they click the + button next
to a menu item). It is also called by Delete Page to load an empty model, which displays page with empty
fields.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 195

Load Detautsfo

> N

Page

L4

Update Field

The Update Field function is called when a user changes the focus from one field on the page to another
(e.g., when a user tabs out of a field or clicks on another field).

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 196

0 25 g

Laomd Oinject

:
o [i
:

The pre/post After Field Update user exit is a good place to manipulate HTML elements (e.g., hiding/
unhiding or enabling/disabling) depending on the value entered by a user.

External User Exit Templates

Below is the list of all available external template files. They are located under the "\cm_templates" folder
of the application root directory.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 197

Note:
The flowcharts above illustrate user exits in the Tab Page and List Grid templates only; these are
the templates in which most of your customizations will occur.

Accordion: accordionPage.jsp

Graph Panel: graphPanelExit.jsp

List Grid: listGridExit.jsp

Search Data: newSearchDataExit.jsp
Search Page: newSearchPageExit.jsp
Sub Panel: subPanelExit.jsp

Tab Page: tabPageExit.jsp

Tree Page: treePageExit.jsp

Template Structure

Each template has three main sections into which you insert your code.

« User Variable Declaration contains global variable declarations. (Do not declare any global
variables unless it is absolutely necessary.)

- User Function Declarations contains your own functions. Your own functions are not called from
the corresponding JSP file. Take coupling and cohesion into consideration when you design your
functions.

« Functions Called from the Corresponding HTML page contains functions that are called from the
HTML page. Uncomment the functions you need to use and add your code. You can find more
technical information about the behavior of these functions in the external template files.

Design Approach

Examine the partial template below to see how the external include file looks. As you might notice
everything is commented out. If you want to call a certain function, you have to uncomment the functions
and/or sections. Please note that only declared functions in the external files can be called from the
HTML Page. To see the entire external file templates or available functions, examine the "\cm_templates"
folder under the application root directory.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 198

<Y@page content Type="text/htnl ;charset=UTF- 8" %
<v@taglib uri="spl.tld" prefix="spl" %

<spl:initializelLocal e/>

SIEE

FoR kK kkkhkkkkkkkhkk kA kkkhkk kA kkkkk kA kkkkkkkkkkkkkkkkkkkkkkkkk ok k kkkk k% %

* *
* Copyright (c) 2000, 2007, Oracle. Al rights reserved. &
o o

ok k k ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ko ok ok ok ko k ok ok ok ko k ok ok ok ko ok ok ok ok ok k k ok ok ok ko k k ok ok ok Kk

$#BSES* REVI SION-INFO Start Exit, Do not nodify - Dev. Only.
* $DateTi ne$
* $File$
* $Revi si on$

$#BSEE* REVI SION-INFO End Exit, Do not nodify - Dev. Only.

hkkk ok ok k ok k ok ok ok ok ok ok ok ok ok ok & %

<script type="text/javascript">

I/ User Variable Declarations

| *

Repl ace Wth Your Code

*/

Il User Function Declarations

| *

Repl ace Wth Your Code

*/

11 User Functions That Are CALLED From According JSP File

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 199

/%
function ext PreOnW ndowlLoadNoLi st Before() {

//This should be used to set values/attributes when the page | oads.
/1 This includes actions after a default.

11

/1 This function is called BEFORE SPL's internal functions are called

/1 Your Code

}

*/

The following discussion explains how the external file is included. The external file is a JSP file. This
JSP is executed with appropriate HTTP request header data from within the XSLT engine that creates
the HTML from the Ul meta-data. The XSLT engine will output the rendered JSP code textually into the
final HTML. If the file does not exist the server will not include the external file, otherwise every defined
function (uncommented) in the file will be included and called at the appropriate times.

Using the External User Exit Templates

All the external user exit templates are located in the \cm_templates directory. Once the Ul Program to be
extended is known, the appropriate user exit template can be selected from the templates directory.

- Use any editor that supports the JSP file editing and open the approprite user exit.

- Determine the base user exit around which to insert your external user exit.

« Uncomment the necessary functions, and add your code.

- Save the external user exit file as ext_<JSPfilename>.jsp under the \cm directory. Where
JSPfilename is the JSP file you want to extend.

* Test.

Create an External User Exit

The following example shows the process of creating an external user exit. In this example, we would like
to disable the Start Date on the Pay Plan page and default it to "today's" date.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 200

Find the Name of the JSP File

In Utilities CC&B, navigate to the Pay Plan Maintenance page (Main Menu -> Credit & Collection -> Pay
Plan) and find the section where the Start Date field is displayed. From the screenshot below we can see

that Start Date is under the main section of the page.

Preferences Help Logout

Home Menu % History =

| T 1
|Pay Plan Pay Plan ID | | Ck
|Accc-u!*.t D | Q% [scheduled Payments

Status ot Scheduled Date Scheduled Amount
Created by i

Last Updated by

Type | \:k
Debt Class

Current Balance 0.00

Delinquent Debt. 0.00

a
=
2\ Third Party Payor [I A,
4
E Payor Account ID

Start Date 02-23-2013 {\

T
Pay Method | 5 [ﬂ
[Total Amount .00
Comments '/

Pay Plan Maintenance Page

Determine the name of the program component we need to extend. Right click on the page and select the
menu option View Source.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 201

. Preferences Help Logout

Home Menu % History »

Pay Flan Pay Plan ID | C%

Account ID [] Q Scheduled Payments
Scheduled Date Scheduled Amount

Status . ;
Created by SYSUSER. | Cance .;f“l:, =L = 3
Last Updated by

Type QU
Debt Class

Current Balance 0,00

Delinguent Debt 0,00 i

b2
L
L\ Third Party Payor [I 4 Save Background As,.
c & Akaensd
E Payor Account ID i
Start Date |oz-z3-zms | [E
Pay Method | [v] Select Al
Create Shortout
Add to Favorites. ..] __/)
Comments h
Encoding 3
Print...
Print Preview. ..
Refresh

Export to Microsoft Excel
Send To Bluetooth

Properties

Pay Plan Maintenance Page - View Source

View Source would open the page source in a text editor.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 202

Preferences Help Logout | You are logged in 3= Engish System (O

Home Menu & History ~ Save Clear Refresh

Pay Fan & Http:l.lfsf-ugbu- 32.us.oracle.com: iMﬁQfgoI&fmbagefpuyﬂ.lanMﬁntlf'lnnbnge?-!anguage-ENG - Orlgina'l Source E]’@
r File Edt Format

0 Transiticnal//EN"> .

5YSUSE

0.00
000

oM

02-23-

(ST IR, IR P

=

2.0.0.9/splapp/applicationa/root/WEB=

Main Menu

=V AREET TR

jaName

JSP Source Code View - payPlanMaintPlanPage

From the menu bar or the program file information section you can identify the program name as
payPlanMaintPlanPage (look for the Program name in the source code comments).

Determine the Base User Exit

For this example, we want to disable the input element corresponding to the start date and display a
message that the start date is disabled. This means we want to disable the field when the page loads; and
therefore we want to insert our code inside the onWindowLoad() function. The external user exit function
that allows us to do this is the extPostOnWindowLoad() function.

You can check the field names under the payPlanMaintPlanPage's Labels section.

* Program nane: payPl anMai nt Pl anPage
* Program |l ocation: /ci/payPlan
* Program versi on: 68

* Programtenplate: U XTP

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 203

* Tenplate file: /1 FW 2. 2. 0/ Code/ npdul es/ web/ sour ce/ r oot / WEB- | NF/ ui XSL/ t abPage2. xsl
* Tenpl ate revision: 4

* Included XSL versions:

* conmon

* commonPage

* commonPagesSi ngl eRecord 3

* Label s:
* Tabl e$Field - | abel (el erent type, js_nane)
* $PP_LBL - Pay Plan (element type='L' , jsName='PP_LBL")

* Wdget Info:

i W dget _| D, Elenment Type - label info - |abel
o

* START_DT, IT - $START_DT - Start Date

* PAY_METH CD, IS - $PAY_METH CD - Pay Met hod

The two important pieces of information in this source view are:
The Program name definition - payPlanMainPlanPage in this example;

The Template file definition - tabPage2.xsl in this example.

Uncomment the Function and Add Code

Once the program name to be extended (e.g. payPlanMainPlanPage) and the template (e.g. tabPage2.xs/)
to use are known, the associated template jsp file can be copied from the web application source's /em_
templates directory to the /cm directory and renamed to have the form ext_XXXX. jsp, where "XXXX" is the

name of the program to be extended.

For example, in this case the jsp user exit template ./cm_examples/tabPageExit.jsp would be copied
and renamed to ./cm/ext_payPlanMaintPlanPage.jsp. The following coding change inside the
extPostOnWindowLoad() function would then be made for the modified behavior.

function ext Post OnW ndowLoad() {

/1 This should be used to set values/attributes when the page | oads.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 204

/1 This includes actions after a default.

/1 This function is called AFTER SPL's internal functions are called

protect Fi el d("START_DT");

alert ("Start Date Field is disabled. Defaulted to Current Date.");

Test Your Code

Now let's see if it works. First make sure that the user exit file is copied under the \cm folder of the
application root directory. Reload the page by right-clicking the page and choosing Refresh from the

context menu.

(Note:

You may need to delete the browser cache before refreshing the page.
-

. Preferences Help Log|
ORACLE

Home Menu - # History =

Pay Flan Pay Plan ID |,
lAcccu.:n.{ D C{ Scheduled Payments

Status Scheduled Date Scheduled Amount
Created by SYSUSER * = =

Last Updated by

| Q

Debt Class

Current Balance 0.00

Start Date Field is disabled. Defaulted ko Current Date.,

Delinguent Debt 0,00 '

Third Party Payoar D I

Payer Account ID
Start Date | E'j

Pay Method | Lv]

Main Menu

[|Total Amount 0.00

Comments

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 205

Pay Plan Main Page after implementing External User Exit

Field-level Security Client-Side User Exit Example
Field level security information is exposed on the browser side.
Use the following function to retrieve a user's field level security for a given service or Navigation Key:

top.getFieldLevelSecuritylnfo(serviceNameOrNavigationKey) > returns an Object keyed by security
type.

The following example illustrates how to implement security for adjustment amount on the client. In
the example, User Group 1 is authorized to freeze adjustments less than $10,000, and User Group 2 can
authorize any adjustment. We want to disable the Freeze button, if the user's security doesn't meet the
condition. There is a security type ADJAMT defined for the Adjustment Maintenance.

’ Fastpath:

Refer to Field Level Security in the Administration Guide, Defining General Options chapter for

information about the data setup.

The following example code would be added to the extPreOnWindowLoad user exit:

var seclnfo = top.getFieldLevel Securitylnfo("adjustnmentMint");

var adj Ant Secl nfo = secl nfo["ADJIAMI"];

if (adjAntSeclnfo < "2" & parseFl oat (nodel . get Val ue("ADJ_AMI")) > 10000) {
//disable the field

prot ect Fi el d(" FREEZE_SW)

How-To
The following are some how-to examples of typical behavior utilizing some of the standard user exits.

The examples are written for cases of modifying new CM transaction pages, where the function
definitions are put into "extended JavaScipt" files (.xjs) that are meant to contain JavaScript user exits

directly for a page.

If, on the other hand, an implementer wishes to modify the behavior of a shipped product page, each
of the function below have a corresponding "ext" function that can defined in a /cm/extXXX.jsp file

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 206

corresponding to the desired page that will fire after any product function call (see above example of

hiding the Sequence column in the algorithm maintenance page).

How Do | Control the Initial Focus Within Tab Pages/Grids/Search Pages?

The system automatically places the initial focus on an appropriate widget (generally input fields) within a
Tab Page/Search Page/Grid.

By default it will place focus on the first enabled field with a data class defined on it. (If input fields do not
have the Field Name / Table Name defined within Meta Data they will have no data class)

If there are no fields satisfying this criteria within the tab page it will continue to look (recursively) into all

the contained frames (e.g. list grids etc.)
If no field is found then no element receives focus.

You can override the default behavior at each level via the provision of a focusWidgetOverride() function

within the user exit file which will return the Name of the Field to receive the focus or null.

If null is returned it will ignore all fields within this document and continue to search in lower level

documents.
E.G.

From within a Tab Page (If you want focus to go on to a sub document)

function focusW dget Override() {

return null;

From within a List Grid

function focusW dget Override() {

return "TD_TYPE_DRLKY: O$TBL_NAME';

from within a Search Page

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 207

function focusW dget Override() {
return "LAST_NAME";

}

(L ™
Note:
These functions can be as simple or complicated as you want. You could conditionally return
a field name or null and this code will run each time the window loads. Also, if a tab page has a
popup window or a search window open as it is loading then the initial focus will not be set to the

tab page but stay with the popup window
- J

How Do | Mark Fields that Won't Make the Model Dirty?

In certain windows, we have a concept of a "locator” field which typically acts as a filter on some lists of
the object you're looking at. Examples are user group's filter on description, and several IB windows filter
by date.

With the warning about loss of data when throwing away a dirty model, this results in the use of locator
fields giving this warning, which wouldn't be expected. In order to avoid this warning on locator fields, you
can add a function like the one that follows that enumerates the locator fields:

function ignoreMdifiedFields(){

return [' START_DTTM]

You can include any nunber of fields in the array, e.g.

return ['FIELD1', 'FIELD 2', 'FIELD 3']

How Do | Control the Triggering of Defaults After a Search?

If a search returns multiple fields and more than one of these fields can trigger default, then it might be

more efficient to only have one of these fields trigger the defaulting.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 208

This is accomplished by creating a new function called overrideDefaultTriggersFor_SEARCHGROUP
within the tab page that contains the search. Where SEARCHGROUP is the name of the searchGroup you

want to override.
The function must return an object with the triggering field(s) are attributes with a true value.

For example

function overrideDefaul t Tri gger sFor _SRCH1() {

var triggers = {};

triggers["ACCT_ID'] = true;

triggers["SA_ | D']=true;

return triggers;

}

How Do | Avoid Automatically Setting Fields to Uppercase?

Model attributes that are also key fields are automatically coerced to be in uppercase. You can block this
behavior on a field-by-field basis by defining the notUppercaseFields() function in your TabMenu's user

exit file to return an array of field names that should not be converted.

Example:

function not Upper caseFi el ds() {

return [' ELEM ATTSAT_NAME]

You can also provide a "global" override for an entire TabMenu by setting the shouldNotAutoUppercase

variable to true:

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 209

var shoul dNot Aut oUpper case = true;

How Can | Force the Save Button to be Enabled?

The save button usually synchronizes itself to the state of the model such that if it hasn't been "dirtied"
the button is disabled. You may wish to control the state of the save button e.g. because a save should

always/never be allowed.

Simply define the function saveButtonEnablingOverride() on your TabMenu user exit file to return a
boolean indicating whether the save button should be enabled. You can simply return a literal boolean, or
perform any desired processing to determine the return value.

Example:

function saveButtonEnablingOverride() {

return fal se;

How Can | Override the Processing After a Change/Add?

If you need to intervene in the processing after the system successfully completes a Change or Add
operation, define the function privatePostChangeSucceeded() or privatePostAddSucceeded() in your
TabMenu user exit file. The function should return a boolean to indicate whether the system should
refresh the Ul with the newly returned server data. You'd want to return false if e.g. you navigate to a
different TabMenu.

Example :

function privatePost AddSucceeded() {
var nodel = parent. nodel;
var nodeFl ag = npdel . get Val ue(' COVPL_NAV_MODE_FLG) ;
var navKey = nodel . get Val ue(' COVPL_NAV_KEY') ;
var conpl Sw = nodel . get Val ue(' CMPLT_CLI CKED_SW) ;

if (conpl Sw & nodel . get Val ue(' ENRL_STATUS_FLG) == '30") {

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 210

if (nodeFl g & navKey) {
if (nmodeFlag == "'G) {
par ent . t abPage. got oCont ext (navKey) ;
return false;
} else if(nodeFlag == 'A") {
par ent . t abPage. addCont ext (navKey) ;

return false;

}

return true;

How Do | Prevent the System from Setting Focus to a Widget After an
Error?

When a service receives an error and shows a message after calling a back-end service, the browser
attempts to set focus to the relevant widget in error. If you don't need this behavior, you can define the

TabMenu variable dontSetFocusOnError to boolean "true.

Example:

var dont Set FocusOnError = true;

How Do | Prevent Attributes from Being Copied into New List Elements?

Key fields are automatically copied (based on name matching) from a parent list element into new child
elements (e.g. created by using the scroll '+ button), in order to keep their prime keys consistent. If you
want to inhibit this operation for certain fields, define the TabMenu function dontCopyKeyNames_<LIST
NAME> to return an array of fields that should not be copied into new elements of the list named LIST_
NAME

Example:

function dont CopyKeyNanes_ENRL_FLD() {

return [' SEQ NUM]

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 211

How Do | Customize New List Elements?

When you use '+ button on a grid or scroll you get a new, empty list element. If you want to customize
the object, define a function in the TabMenu's user exit file named initializeNewElement_<LIST_
NAME>(newElement).

Example:

function initializeNewEl ement ENRL_LOG(newEl enent) {
newEl enent . set (' ENRL_LOG TYPE_FLG, 'USER);

newEl enent . set (' USER_| NFO , parent. nodel . get Val ue(' CURRENT_USER | NFO)) ;

How Can | Get My Sequence Numbers to Default Properly on My List Grid?

If you are working with a List Grid that uses some type of sequence field (e.g. SEQNO, LINE_SEQ, SORT_
SEQ), there is a handy bit of technology that you can use that will cause the Ul to do this job for you.

Just follow the steps below and you'll have the problem solved in no time. The sequence field will be
populated in your "empty line" and any elements that are added from then on will have an appropriate
value in the sequence field. If the user edits the sequence field at any point, the next element added to the

list will incorporate the change without any problems.

(L ™
Note:
The default Sequence Number functionality will default the next nearest tens value from the
highest sequence. The defaulting will do nothing after the sequence reaches the highest number

it can hold.
o J

« In the user exit file of the Tab Menu - not the main Page or the List Grid - copy this JavaScript code:

function initializeNewEl ement _LI ST_NAVE(newEl enent) {
var nyListName = "LI ST_NAVE";
var nyLi st SeqNanme = "Fl ELD_NAME";
var nyLi st MaxSeq = 999;

def aul t SequenceNunber (myLi st Nane, myLi st SeqNane, nyLi st MaxSeq, newEl enent)

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 212

</ SCRI PT>
<SCRI PT src="/zz/ def aul t SequenceNunber/ def aul t SequenceNunber . j s"></ SCRI PT>

<SCRI PT>

» For LIST_NAME, substitute your List Grid's list name. Be careful not to lose that underscore [_] just
in front of LIST_NAME in the first line! Remember that JavaScript is case-sensitive and make sure
that you use all UPPERCASE letters as shown here.

- For FIELD_NAME, substitute the name of your sequence field, whatever that might be in your List.
Don't lose the quotes ["]! Again, use all UPPERCASE letters.

How Do | Override the Tab Page Shown After an Error in a List (Grid/Scroll)?

When an error is received (e.g. after a Save) it attempts to set focus on the relevant widget, which might
require flipping to a different tab page. If the error relates to a list (grid or scroll) the system might not
choose the tab page you'd prefer. In that event you can control the tab page that should be opened by
defining the TabMenu function overrideErrorTabPage_<LIST_NAME>().

Example:

function overrideError TabPage_BPA() {

return ' bussProcessAssi st ant St epPage’ ;

How Do | Disregard Unwanted Criteria from a Search Triggered by a Search
Button?

When a search button (currently implemented as an IMG) is pushed, the system launches a search and
"pulls" all applicable criteria values from the current model. It might be that certain criteria fields should
be ignored in a particular case. You can define the function addignoreFieldsFor_<triggerFieldName>()
on a tab or search page's user exit file to specify fields to ignore whenever the IMG button named

triggerFieldName is pushed on that page.

The function takes a single argument, fields, and you should add key/value pairs where the key is a field

name to ignore, and the value is true.

Example:

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 213

addl gnor eFi el dsFor _ADDRESS1_SRCH = function(fields) {

fields['CITY_SRCH] = true

addl gnor eFi el dsFor_PER I D = function(fields) {

fields[' ENTITY_NAME_SRCH] = true

How Do | Disregard Unwanted Search Result Columns?

When you accept the result of a NOLOAD search the system tries to populate the selected search result
row into the current model. Sometimes this doesn't make sense e.g. because there is no corresponding
attribute for a display-only column. You can exclude a column from being returned as part of a search
result by defining the search client's (Tab Page or Search window) function ignoreResultColumns() in the
corresponding page's user exit file. Return an object with keys specifying attributes and values all set to

boolean "true".
Example:

function ignoreResul t Col ums() {

return { ADDRESS1: true, CITY: true, POSTAL: true };

Since Searches can be shared by many search clients, it is possible that some clients want to get a
specific column, but others don't. In that case, define the TabMenu function ignoreResultColumnsFor_

<service> as above.

Example:

function ignoreResultCol unmsFor _ClI LCCOPS() {

return { CONT_OPT_TYPE_CD: true}

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 214

How Do | Format a Value Based on a Given Format?

If you need to format a value based on a given format, for example, on Person ID Number, if you select
ID Type as SSN (999-99-9999), you can always format the Person ID Number before committing it to the

server.

To do so, you can call the formatValue javascript function.

- In the user exit file of the tab page include the following lines:

</ SCRI PT>
<SCRI PT src="/zz/format Val ue/ f or mat Val ue. j s"></ SCRI PT>

<SCRI PT>

» Now, you can start using the function to format a value. To use this function, you need to pass in
both the value and the format into the function.

var phFormat = nyDat a. get Val ue(pureLi st Name + ' PHONE_TYPE_FORVAT') ;
if (pureFieldName == 'PHONE') {
updat eFi el d(pureLi st Nanme + ' PHONE

f or mat Val ue(nyDat a. get Val ue(pur eLi st Nanme + ' PHONE'), phFornmat));

Java User Exits (interceptors) Interfaces and Classes

The following are the interfaces used for Java User Exits (interceptors).

IAddInterceptor Interface

This interface defines the processing plug-in spots before or after invoking a service in add mode.
Interface com.splwg.base.api.serviceinterception.lAddinterceptor

Methods

PageBody aboutToAdd(RequestContext, PageBody)

This method is called before the service is invoked.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 215

Input

» RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

- PageBody - The input page body to be added.
Return value

 PageBody or null - If a page body is returned, this is considered the result of the service and the

underlying service will not be executed. If null is returned, the service will run normally.

Throws
InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

void afterAdd(RequestContext, PageBody)

This method is called after the service invoked in add mode.

Input

- RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

« PageBody - This contains the information that was added by the underlying service.
Return value

- Void.

Throws
InterceptorError - throw this exception when an error occurs

InterceptorWarning - throws this exception to signal an application warning

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 216

IChangelnterceptor Interface

This interface defines the processing plug-in spots before or after invoking a page service in change

mode.
Interface com.splwg.base.api.serviceinterception.IChangelnterceptor

Methods

PageBody aboutToChange(RequestContext, PageBody)

This method is called before the service invoked in change mode.

Input

- RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

 PageBody - this object contains the information that is to be submitted to the underlying service.

Return value

PageBody or null - if a page body is returned, this is considered the result of the invocation and the

underlying service will not be called. If null is returned, the underlying service will be invoked normally.
Throws
InteceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

void afterChange(RequestContext, PageBody)

This method is called after change action is invoked in change mode.

Input
- RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

« PageBody - This holds the result of the underlying change service.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 217

Return value
« Void.
Throws

InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

IDeletelnterceptor Interface
This interface defines the processing plug-in spots before or after invoking a service in delete mode.
Interface com.splwg.base.api.serviceinterception.|Deletelnterceptor

Methods

boolean aboutToDelete(RequestContext, PageBody)

This method is called before the service with a delete action.

Input

- RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

 PageBody - the data to be deleted.
Return value

- Boolean - indicates whether or not to continue processing of the service. If true, continue with the
normal underlying invocation. If false, do not continue (but the service returns "success" to the

client invoker).

Throws
InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 218

void afterDelete(RequestContext, PageBody)
This method is called after the service invoked in delete mode.

Input

» RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

- PageBody - the data that was deleted by the underlying service
Return value

« Void.

Throws
InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

IReadInterceptor Interface
This interface defines the processing plug-in spots before or after a service retrieves information.
Interface com.splwg.base.api.serviceinterception.IReadInterceptor

Methods

PageBody aboutToRead(RequestContext, PageHeader)

This method is called before a service retrieves information.

Input
- RequestContext - contains session parameters, such as, language cd, user id and etc.

Input/Output

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 219

- PageHeader - The data describing the information that should be read.

» Return value

PageBody or null - If a page body is returned, this is considered the result of the service and

underlying will not be invoked. If null is returned, the underlying service will be invoked normally.

Throws
InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning
void afterRead(RequestContext, PageBody)

This method is called after the service retrieved the information.

Input
- RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output
 PageBody - result of read service
Return value
- Void.
Throws

InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

InterceptorError class

The class com.splwg.base.api.serviceinterception.InterceptorError subclasses the java.lang.Exception
class. This class contains information regarding an error condition that occurred during the pre/post
processing plug-in. This exception is caught by the framework and is used to build the appropriate

application error object.

Attributes

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 220

» Message Category
* Message Number
« List of Parameters (Strings) and types

Methods

void setMessageNumber(BigIinteger messageNumber)

Set the message number (required)

void setMessageCategory(Biglnteger messageCategory)

Set the message category (required)

void setMessageParameters(List messageParameters)

Set the message parameters list

void setMessageParameterTypeFlags(List messageParameterTypeFlags)

Set the message parameter type flags list. The size should match the message parameters list.

InterceptorWarning class

The class com.splwg.base.api.serviceinterception.InterceptorWarning subclasses the java.lang.Exception
class. This class contains information regarding one or more warning conditions that occurred during

the pre/post processing plug-in. This exception is caught by the framework and is used to build the
appropriate application warning object(s).

Attributes
- List of warning server messages

Constructors

InterceptorWarning(ServerMessage warningMessage)

Create a new InterceptorWarning with the given warning message as its sole message

InterceptorWarning(List warningMessages)

Create a new InterceptorWarning with the given List of warning messages

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 221

Methods

void addWarningMessage(ServerMessage message)

Add the given server message to the list of warning messages

RequestContext Methods

Class com.splwg.base.api.service.RequestContext includes the following accessor methods:

String getLanguageCode()

Returns the current user's language code

String getUserld()

Return the user id

Data Objects

Both PageHeader and PageBody are "wrappers" on underlying Maps that hold datatypes of various types,
keyed by field names (Strings). The valid field names for a service are described in the service meta info
file (an xml document). Null values are not allowed; use empty strings to represent missing values (e.g.

for null date).

Note that most system datatypes are represented in these Java objects as simple Strings. Note the
following:

« Booleans are represented by the Java Boolean class

« Date values are represented as Strings in the format YYYY-MM-DD

- Date/Time values are represented as Strings in the format YYYY-MM-DD-HH:MM:SS

- Time values are represented as Strings in the format HH:MM:SS

- BigInteger values are represented as Java Biglnteger values

- BigDecimal and Money values are represented as Java BigDecimal values, with the appropriate
scale.

PageHeader and PageBody Methods

Both PageHeader and PageBody implement the methods described in the following topics.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 222

Object get(String fieldName)

Returns the Object value of the field named fieldName (may need to cast the result to the appropriate
datatype)

String getString(String fieldName)

Convenience method that returns the String value of the field named fieldName.

boolean getBoolean(String fieldName)

Convenience method that returns the Boolean value of the field named fieldName.

BigInteger getBiglnteger(String fieldName)

Convenience method that returns the Biglnteger value of the field name fieldName.

void put(String fieldName, Object value)

Set the value at the given fieldName to the given value.

PageHeader

The methods for class com.splwg.base.api.service.PageHeader are described above.

PageBody

Class com.splwg.base.api.service.PageBody implements the methods described above. In addition, it
supports the following methods:

ltemList getList(String name)

Return the ItemList with the given name

[temList

Class com.splwg.base.api.service.ltemList is the Java representation of a list header and list children
objects. The methods are as follows:

ListHeader getHeader()

Return the list header object.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 223

String getName()

Return the ItemList's name

List getList()

Return the java.util.List of ListBody child objects.

void setList(List list)

Set the underlying list to the provided list of ListBody instances.

ListHeader

The class com.splwg.base.api.service.ListHeader is functionally equivalent to the class PageHeader,
above.

ListBody

The class com.splwg.base.api.service.ListBody is functionally identical to the class PageBody, above. In

addition, it has this useful method:

String getActionFlag()

Return the flag describing the pending action for this ListBody (e.g. add, change, delete).

CMServiceConfig.xml structure

The ServiceConfig.xml and CMServiceConfig.xml will look similar to the following:

<Servi cel nt er cept or s>
<Servi ce name=" CMLPXXXX" >
<Interceptor action="add">
com spl wg. i nt er cept or . CMLPXXXXAddI nt er cept or
</ I nterceptor>
<Interceptor action="change">
com spl wg. i nt er cept or . CMLPXXXXChangel nt er cept or
</ | nterceptor>
</ Servi ce>

</ Servi cel nt er cept or s>

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 224

The above example illustrates how interceptors are defined for the service CMLPXXXX. You can define
one or more interceptors, depending on the action, for each service. The valid actions are "add", "change’,
"delete", and "read".

Note:

It is valid to have the same interceptor class for more than one action as long as the class

implements the corresponding interceptor interface.

Application Logs

Logging has many purposes. Notably, it allows tracing of what is happening when something goes wrong.
However, a user/developer does not always want to see EVERY log entry-besides clutter, it may slow
down the application. In this light, the framework has wrapped the powerful and flexible log4j logging

framework as an API. There are two important aspects:

« Placing logging statements within application code so that logging entries may be created at
runtime.

- Configuring logging at runtime so that the appropriate logging entries are created and directed to
the appropriate log destination.

Logging within Business Logic
The following describes how to implement logging when adding a class that implements business logic:

- Add a constant referencing the logger for the class. By convention logger should be named "logger"
and should pass the declaring class as its argument. For example, a logger in the Adjustment_
CHandler class would be declared as follows:

private static final Logger |ogger

= Logger Fact ory. get Logger (Adj ust ment _CHandl er. cl ass) ;

« Add entries with the appropriate logging level. The levels are: "debug", "info", "warn", "error" and
"fatal". The following will log a warning entry to the log:

| ogger . war n(" Unexpected status for frozen adjustment: " + status);

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 225

- In general, we expect entries of level "info" or more severe to be rare and therefore not to impose
a substantial performance penalty. However, "debug" entries we can expect to be very fine grained
and that they usually will not find their way to actual logs but will be filtered out via runtime
configuration. To lessen the performance impact of debug logging, the logging statement should

be wrapped as follows:

if (logger.isDebugEnabled()) {

| ogger . debug(" Processi ng adj ustment " + adj ustnent.getld());

« There are times when you want to know how long code block takes to execute. In general, the
logging provides the time each log statement is issued. However, it is clearer to see an actual
elapsed time of some process being investigated. In this case, there are some additional methods

on the logger:

debugSt art (message) or infoStart(message)

debugTi me(nessage, start) or infoTi ne(nessage, start)

> These should be used in the pairs given, as follows:

long start = debugStart("Starting process");
/... code for process

debugTi me("End process", start);

o This will cause each statement to be logged, plus the final "End Process" statement will give

the elapsed time since debugStart was called.

Please refer to the JavaDocs on the com.splwg.shared.logging.Logger class for more detail.

Configuring Logging at Runtime

Having instrumented the code to create logging entries, the question remains, how to cause the various
logger level messages to actually trigger at runtime? A very detailed description of this can be found at

http://logging.apache.org/log4j/docs/manual.html.

http://logging.apache.org/log4j/docs/manual.html

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 226

Property Configuration

Control of log4j occurs based on properties typically set in the log4j.properties file in the application
classpath. You can change the log level of a given logger in this file. Note, however, that values may

be overridden on the command line by specifying system properties (e.g. via "-Dlog4j..."). Note that
"inheritance" of logger levels works such that (in our standard of qualified class name as the logger name)
you can change a whole package's log level by specifying only a portion of the logger name. Note that you
may commonly desire to enable ("global") debug logging on your local environment. To do this, you can
simply change the line

| 0g4j . | ogger. com spl wg=i nf o

to

| 0g4j . | ogger. com spl wg=debug

Trace Flags

Trace flags allow for specialized logging that cuts across many classes. They can be set for user requests
by entering the online system in "debug" mode and setting the "trace” flags appropriately. Likewise, they
can be set in batch either by interactive prompts for the trace flag values when a job starts or by setting

system property values. See the JobSubmitterConfiguration class for specific system property names.

« traceSQL - Causes special detail of the submitted SQL. This can be useful when troubleshooting
performance problems.

- traceTime - This can only be enabled for online requests or JUnit tests by setting traceTime(true)
on the request context. Enabling time tracing will cause special profiling entries to be placed in the
application log for the purpose of attributing request latency to the various layers of the application
or to specific SQL statements. These entries are queued in memory until after profiling entries
are no longer being generated and then spooled to the logs so as not to corrupt the performance
instrumentation with logging overhead. The ProfilingReport standalone Java program can be run to

post-process these logs, or a portion of them and generate a report.

Java Programming Standards

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 227

Rationale

In order to make it easier for programmers working on the same codebase to easily read each other's
(and their own!) code, we need to enforce certain standard coding conventions. These conventions will
also be helpful when comparing code revisions under version control, as the code should be formatted

consistently and no irrelevant formatting-related differences will appear in the diff.

Guidelines

First, there are basic code standards documented for Java here: https://www.oracle.com/technetwork/
java/codeconventions-150003.pdf. Like most coding guidelines, these are quite reasonable and differ

only in minor details from other guidelines.

The web page http://geosoft.no/development/javastyle.html also has some very nice tips. Note that we
won't prefix instance variable names with underscores--instead we use Eclipse syntax coloring to make

ivars easily visible.

We use the prefix fetch in method names in entity implementation classes, in order to perform object

navigations that aren't already defined by Hibernate mappings.
Here are some additional notes:

Not surprisingly, a lot can be learned from good Smalltalk style. The books "Smalltalk With Style" (Klimas,
Skublics, Thomas) and "Smalltalk Best Practices Patterns" (Kent Beck) provide a lot of good ideas for

code organization and naming that are applicable to Java as well as Smalltalk.
All code should be:
Written with tabs equal to 4 spaces, not "hard" tabs. Each level of indentation should be one "tab".

Generally free of hard-coded "magic" strings or numbers (e.g. max number of items in some list). If you

need such a string or number value, you should use (or create) a constant or property.

Classes should use specific, not package-based imports, where practical. |.e. import
com.foo.UsefulClass, not com.foo.*.

Variables should generally be private. Only create accessor (e.g. get/set) methods when absolutely

needed ("Dont reveal your private parts").

Prefix "getter" methods with "get", e.g. "getFoo()", setters with "set’, e.g. "setBar(aBar)". Don't use
"Flag" or "Switch", or abbreviations thereof, e.g. "getAllowedSw()" should be "getlsAllowed(), and

"setAllowedSw(aBoolean)" should be "setlsAllowed(aBool)".

http://geosoft.no/development/javastyle.html

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 228

Use camel-case instance and parameter variable names, without underscore prefixes or suffixes (do use
uppercase for constants, as suggested in the guidelines reference above). Instance variables start with
lower-case letters.

Methods should generally be public or private (again, to allow future subclassing). Use of interfaces is

encouraged to declare useful sets of public methods.

Don't abbreviate except for standard industry abbreviations (e.g. HTML, HTTP). Use long, meaningful

class, method, and variable names.

Methods should be short and clear. Instead of placing comments before a section of code in a method,
rather create another method that describes what is being done by the method name.

When using Java API collections, reference them through generic interfaces, not specific implementation

classes, e.g.

Li st soneList = new ArrayList();

Map soneMap = new HashMap();

This lets you change your mind about implementation (e.g. ArrayList to LinkedList) without breaking any

code.

Naming Standards

General guidelines

Don't use reserved java words

Don't use spaces

Don't abbreviate

Don't use punctuation

Don't start the name with a number

Here are our project guidelines for naming properties:

Generally, don't abbreviate. The exceptions are SA, SP when the name would get too long if written as e.g.
ServiceAgreement as part of a much longer field name

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 229

In line with the above, spell out amount and total

Boolean values (SW) are prefixed with is, has, can, are, or should, according to what is grammatically

correct.

Date fields end with Date

Time fields end with Time

Datetime fields end with DateTime

Id is spelled Id

Don'tinclude a final Flag (FLG) or Code (CD)

Use min instead of minimum, and max instead of maximum

Can be generic- that is, for the field BILL_STATUS, you can just name it status

Entity Naming Guidelines

Be specific- the name MUST be unique
Language tables (_L) don't need to be named
Don't append "View" to a view.

Don't abbreviate

Don't use plural names (e.g. BillMessages)

Collection Naming Guidelines

Class Name

The class name for a collection includes the owning entity name and the collection name in singular form.
<owning_entity><collection_name_in_singular_form>

Examples:

AdjustmentTypeAlgorithm

AdjustmentTypeCharacteristic

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 230

BillableChargeTemplateLine

Collection Name

For collections, the one-off generation created a large number of collection names. Many of these are
overly verbose, and should be shortened. Simply modify the collectionName in the entity annotation. Here
are guidelines:

Shorten adjustmentTypeAlgorithms to algorithms

Shorten adjustmentTypeCharacteristics to characteristics (in rare cases you may have more than one
kind of characteristic, in which case you need more specific names)

Remove the owning entity name from the front of the collection name, e.g. billableChargeTemplateLines
becomes lines

Lookup Naming Guidelines

Here are guidelines for naming Lookups (on the Lookup Field maintenance):
Be specific- the name MUST be unique across all lookups

Don't include a final standard suffix Flag or Lookup (The suffix Lookup is automatically added by the

generator to the classes generated for each Lookup field.)

Examples:

WO_STATUS_FLG -> writeOffStatus

STM_RTG_METH_FLG -> statementRoutingMethod

Here are guidelines for naming Lookups Value properties (on Lookup Value maintenance):

Try to word the name in a way that makes sense when prepended by is, and is also valid when standing
alone as a constant. (eg {isComplete, COMPLETE}, {isFrozen, FROZEN})

The name might match the english description of the lookup value.
Examples:

HOW_TO_USE_FLG : - -> subtractive

ITEM_STATUS_FLG : A -> active

DGRP_PRIO_FLG : 10 -> highest10

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 231

DGRP_PRIO_FLG : 20 -> priority20

Special Cases

‘Type' Entity Controlling Characteristics for 'Instance’ Entities -
Characteristic Controls

There are 'type' entities that control the characteristics for their 'instance’ entities. These are tables
typically named CI_CHTY_<type_entity>, e.g., CI_CHTY_CCTY. These type entities specify a list for its
instances the valid characteristic types, default characteristic types, required characteristic types, etc.

This list is the type entity's Characteristic Controls.

The following are the naming conventions for the characteristic controls:

Characteristic control class <type_entity>CharacteristicControl

Characteristic control collection characteristicControls

For example, the class name for characteristic control of Customer Contact Type is

CustomerContactTypeCharacteristicControl.

And the collection is defined as follows:

* @ersion $Revision: #1 $
* @usinessEntity (tableNanme = Cl _CC TYPE,
oneToManyCol | ections = { @hild (collectionName = characteristicControls, childTabl eNane = Cl _CHTY_CCTY)})

*/

HQL Programming Standards

The applications use an object relational mapping library called Hibernate (information available at http://
www.hibernate.org/). This library handles persistence operations against the database for changed

entities, and also provides a querying language.

The Hibernate Query Language (http://www.hibernate.org/hib_docs/reference/en/html/queryhgl.html)
provides a more object oriented approach to querying against the database. Joins can more clearly be

http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/hib_docs/reference/en/html/queryhql.html

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 232

indicated via "navigation" to the related foreign key, letting hibernate fill in the join when it constructs the
SqQL.

Note that in most situations only a subset of the hibernate query language is used. For instance, when
constructing a query whose order is important, the query must programmatically specify the order by,
as opposed to placing the order by clause into the HQL itself. This allows the application to perform
additional operations upon the HQL that may be required for different databases, and also to apply
validations to the HQL.

Here are some examples of creating and using queries. The convenience methods to create the query
are available on any "context managed object"- that is, entities, change handlers, business components,

maintenance classes, and the implementer extensions of any of them.

To select all algorithms with a given algorithm type:

Al gorithniType al gorithniType = ... ;

Query query = createQuery("from Al gorithm al gorithm where " +
“al gorithm al gorithnfType = :algorithnType");

query. bi ndEntity("al gorithniType", algorithniType);

List algorithms = query.list();

The above algorithms list will contain as elements the algorithms for that algorithm type.

To sort the above query by the algorithm's code/id:

Al gorithnilype al gorithnType = ... ;

Query query = createQuery("from Al gorithm al gorithm where " +
“al gorithm al gorithnType = :algorithnfType");

query. bi ndEntity("al gorithniType", algorithniType);

query. addResul t ("al gorithnf, "algorithnt);

query. addResul t ("al gorithm d", "algorithmid");

query. orderBy("al gorithm d", Query.ASCENDI NG ;

Li st queryResults = query.list();

The above queryResults list will contain as elements instances of the interface QueryResultRow. Each
query result row will have two values, keyed by "algorithm" and "algorithmld". The list will be ordered (on
the database) ascending by the algorithm's IDs.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 233

Since HQL works with the entity's properties instead of the tables' column names, there may be extra
research required when writing queries. The source of the property information is in the hibernate
mapping document for each entity class- they are documents that exist in the same package as the entity,
have the same root file name as the entity's interface, and end with .hbm.xml. These files will give the list
of properties available for each entity that can be referenced when writing HQL.

More information can be found in the JavaDocs associated with the Query interface.

Examples

Even with all of the above, there are a few cases that stand out with possibly needing examples in order to
help. Notably, dealing with language entries and lookups may be confusing.

Here is an example of selecting all algorithm types where the description is like some input:

String |ikeDescription = ...;

Query query = createQuery("from Al gorithniType_Language al gTypeLang joi n al gTypeLang. i d. parent al gType where al gTypelLang
.description like :1ikeDescription and al gTypeLang. i d.|anguage = :|anguage");

query. bi ndEntity("l anguage", getActiveContextLanguage());

query. addResul t ("al gType", "al gType);

query. bi ndLi kabl eSt ri ngProperty("likeDescription", Al gorithnilype.properties.|anguageDescription, |ikeDescription);

Li st al gorithniTypes = query.list();

The algorithmTypes list will contain as elements the algorithm types whose description is like
likeDescription. Note that the string likeDescription will have a trailing '%' appended when it is bound to
the query.

Here is an example of selecting particular lookup values, with descriptions like an input value:

String description = header. get String(STRUCTURE. HEADER. DESCR) ;
Query query = createQuery("from LookupVal ue_Language | ookupVal Lang "
+ "wher e upper (| ookupVal Lang. descri ption) |ike upper(:description) and | ookupVal Lang.id.|anguage = :la
nguage and "
+ "l ookupVal Lang.id. parent.id.fiel dName = ' RPT_OPT_FLG);
query. bi ndLi kabl eSt ri ngProperty("description", LookupVal ue.properties.|anguageDescription, description);
query. bi ndEntity("l anguage", getActiveContextLanguage());
query. addResul t ("l ookupVal ue", "Il ookupVal Lang.id. parent");
query. addResul t ("description", "lookupVal Lang. description");

query. orderBy("description");

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 234

List results = query.list();

The list results will contain QueryResultRows, with values keyed by "lookupValue" and "description".

Union queries

You may note that hibernate's HQL does not allow unions, as this does not reconcile with the object
oriented approach of HQL. However, as this can be a common technique to apply, a programmatic union
has been provided in the Oracle Utilities Application Framework. The application will actually open two
cursors and flip back and forth between rows from each cursor when each would be the next one, based
upon the order by clause. This should at most read one extra row from each cursor opened than may be

needed (in the case of limited maximum rows).

In order to union two queries, they must have identical result columns, order by clauses, and max rows
setting. Note that some of the properties of the union query be modified directly, leaving the individual

queries to omit those properties.

Creating a union query is simple. Given two queries that need to be unioned together, simply issue:
UnionQuery union = query.unionWith(query2);

If a third (or later) query needs to be unioned, add it to the union directly:

union.addQueryToUnion(query3);

Performance

In order to evaluate the performance of HQL queries, it is necessary to first run the HQL through the
hibernate engine at run-time in order to produce the equivalent SQL. First, code the initial HQL into the
application or a unit test or standalone executable program. Start the application or test program with
SQL tracing turned on. When the HQL under construction executes, grab the SQL from the log/console.
Then follow the directions in ??? 07 SQL Programming Standards to check the performance of the SQL.

In general, most of the advice under the SQL programming standards applies equally for coding HQL

when applicable at all.

Raw SQL

In rare cases, it may be necessary to forgo the use of HQL and instead use raw SQL. This is not a
preferred approach, as the data returned will not be Java entities, but columns of primitive data types.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 235

However, for possible performance reasons (no db hints are allowed in HQL) or if a table is not mapped

into a Java entity, this approach exists.

There are parallel methods available on subclasses of GenericBusinessObject that create
PreparedStatements, instead of Query objects. So, instead of createQuery, the method

createPreparedStatement should be called on a Raw SQL statement.

The PreparedStatement is similar to the regular jdbc PreparedStatement, but has some extra functionality,
and a slightly different interface so that it is similar to the regular HQL Query interface (they are

interchangeable in some cases).

The main difference is that the prepared statement is created with raw SQL. Use the actual table and
column names instead of the Java entity names and property names. Also, the select clause must exist
as in normal SQL but not HQL.

Additionally, this break-out into raw SQL allows SQL statements that update table data. Again, this is
normally frowned upon, and instead should be done by entity manipulation. However, in cases where a
set-based SQL could update many rows at once, this option is available, whereas HQL is ONLY meant for

querying without any updates.

For more help on constructing raw SQL queries please see SQL Programming Standards (on page 235).

SQL Programming Standards

This document describes the SQL programming standards to be used in any database query. These
standards will ensure that all database queries across the system have been structured properly and thus

have less chance to cause performance issues. All developers must adhere to these standards.

Composing SQL Statements

Prerequisite

This document assumes that you have a basic knowledge of SQL syntax and database functions.

Composing a SELECT Statement

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 236

General SELECT Statement Considerations

« Before composing an SQL statement, you should have in front of you the ERD of the tables involved
in that SQL. You should make sure you fully understand the relationships between the tables.

- As you may know, an SQL may return a single record or a set of records as its result set. When a
set is to be returned, it is managed by a cursor that loops through that set and issues a separate
database call for each record in the set.

- Therefore, when you design your SQL, think carefully if the task can be easily achieved in a single
SQL or rather that the nature of task is such that a row-by-row processing would make more sense.
Examples for the latter could be a list processing or simply because the calculation per row is too
complicated to be handled by the database.

Selection List

- If a list of fields is to be returned, specify them prefixed by their table's alias name as specified in
the From Clause.

« Use the DISTINCT option when the result list of records may contain duplicate rows in respect to
the specified list of fields AND only one copy of the duplicated rows is needed.

« For top-level batch programs, always specify the WITH HOLD keyword on the main SQL of a cursor
based processing. This is to keep the cursor open after a commit or rollback. Without this, main
cursor will be closed and fetch of the next record or restart processing will fail (specific to DB2)
with SQL error 501.

Database-specific Features

Oracle

« Oracle7 and later provides new approach for optimization: cost-based optimization (CBO). CBO
evaluates the cost to, or impact on, your system of the execution path for each specific query
and then select the lowest-cost path. The CBO was designed to save you the trouble of fiddling
with your queries. Occasionally, it is not giving you the results you want and you have exhausted
all other possible problem areas, you can specify hints to direct the CBO as it evaluates a query
and creates an execution plan. If you have used hints before, you know that a hint starts with /
*+ and ends with */. A hint applies only to the statement in which it resides; nested statements
consider as separate statement and require their own hints. Furthermore, a hint currently has a
255-character limit. Since the use of hint is database-specific, we should make use of Database
Functions to accomplish it.

» The most effective hints for use with the CBO are:

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 237

o FULL - tells the optimizer to perform a full table scan on the table specified in the hint
o SELECT /*+FULL(table_name)*/ COLUMN1,COLUMN?2.....
> INDEX - tells the optimizer to use one or more indexes for executing a given query.
> Note: If you just want to ensure the optimizer doesn't perform a table scan, use INDEX hint
without specifying an index name and the optimizer will use the most restrictive index. A
specific index should not be used as the actual index name may differ on the client's site.
o SELECT /*+INDEX(table_name index_name1 indexname2...) */
> COLUMN1, COLUM2
o ORDERED - tells the optimizer to access tables in particular order, based on the order in the
query's FROM clause (often referred to as the driving order for a query)
o SELECT /*+ORDERED*/ COLUMN1, COLUMN2
o FROM TABLET, TABLE2
o ALL_ROWS - tells the optimizer to choose the fastest path for retrieving all the rows of a
query, at the cost of retrieving a single row more slowly.
o SELECT /*+ALL_ROWS*/ COLUMN1, COLUMNZ2...
o FIRST_ROWS - tells the optimizer to choose the approach that returns the first row as quickly
as possible.
> Note: the optimizer will ignore the first rows hint in DELETE and UPDATE statements and in
SELECT statements that contain any of the following: set operators, group by clauses, for
update clause, group functions, and the distinct operators.
o SELECT /*+FIRST_ROWS*/ COLUMN1, COLUMNZ2...
o USE_NL - tells the optimizer to use nested loops by using the tables listed in the hint as
the inner (non-driving) table of the nested loop. Note: if you use an alias for a table in the
statement, the alias name, not the table name, must appear in the hint, or the hint will be
ignored.
o SELECT /*+USE_NL (tableA table B) */ COLUMN1, COLUMN?2...
« Hints are an Oracle specific feature and are not supported by the DB2 SQL syntax.
- If you need to add a hint to your SQL make sure that a different SQL version is used for DB2 where
the hint is not used.
« Base product developers should not duplicate their SQL in this case but rather use the special
database functions file "dbregex.txt". In this file you should add a new hint-code that in Oracle

translates into the specific hint whereas in DB2 it translates into an empty string.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 238

FROM Clause

« Any table that has least one of its fields specified in the Selection List and/or any table that is
directly referred to in the Where Clause (excluding sub-selects if any) must be specified in this
section.

- Label each table with a meaningful short alias and use this alias to reference the table anywhere in
the SQL.

WHERE Clause

General WHERE Clause Considerations

- All tables specified in the From Clause must participate in a join statement with another table.
Table left not joined, would cause a Cartesian join to be applied for this table and any other table on
the list, resulting in an incorrect result list let alone very poor performance.

* Note that there is no such thing as "conditional" join where the only join statement for a table is
under a condition. In cases where the condition is not met and thus the join is not performed, one
would end up with the same problem described previously.

« The final result set is built up by taking the full population of the tables involved and applying the
restricting criteria to it one after another where the intermediate result population of one step is the
input for the next step. Therefore, it is recommended to specify the most restrictive criteria first so
that at the end of one step, lesser records are processed in the next step.

- This is of course a very schematic and simplified way to describe the internal process. This is
not necessarily how the database is actually processing the statements. However, setting up the
criteria as described would direct the database to use the right path.

Use of Sub-Selects

» When you need to further test each processed record in the Where clause for meeting an additional
condition, AND that condition can NOT be checked directly on the Where clause level, you probably
need a sub-select.

« As it is performed once for each outer level record it is considered as quite an expensive tool.
Therefore if the criteria checked in a sub-select can be moved to the outer where clause level, it is
preferable. If you still need to use a sub-select, it is very important to restrict the outer where clause
population to the very minimum possible so that lesser records would need to be further checked
for the sub-select condition.

» When no value needs to be returned from the sub-select query but rather simply use it to check if a

certain condition is true or false, use the EXISTS function as follows:

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 239

o Select ...
o From ...
> Where ... AND EXISTS (<sub-select>)

- A sub-select query may refer to any value of the outer level record as its input parameters. Notice
that if your sub-select does NOT refer to any of the processed record fields, it means that the result
set of the sub-select would be the same for ALL the processed records.

« Note that this could, but not necessarily, be an indication that your sub-select is set up wrong. One

case where it is definitely wrong is when the sub-select result is input to an EXISTS function.

Use of in Function

» Whenever a field needs to be tested against a list of valid values it is recommended to use the IN
function and not compare the field against each and every value.
» Wrong way:
o Select ...
o From ...
> Where ... (A ="10' or A="20' or A='30")
* Right way:
o Select ...
o From ...
> Where ... AIN ('10,20',30")

Use of Database Functions

« Not all database functions available for one database are valid for others. Make sure that when you
do use a database function the SQL works properly on every database supported by the product.

- Avoid using LIKE as this will cause table scans. To achieve the 'LIKE' function where the first part of
the string is specified, e.g., "CM%", BETWEEN may be used with the input criteria padded with high
and low values.

Other

 Depending on the data distribution, search on optional index column will likely to cause time out.
See example -

« Select BSEG_ID

» From CI_BSEG

» Where MASTER_BSEG_ID = & N.MASTER-BSEG-ID

« For such cases, consider additional restrictions or re-create the index to become composite -
MASTER_BSEG_ID + BSEG_ID.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 240

Sort Order

» When a result list should be displayed in a specific order, sorting should take place on the database
level and NOT on the client. This is especially important in cases when the list cannot be returned
in full but rather in batches of records. Sorting each batch of records separately would not
guarantee the sort order between records of different batches.

« Columns in the sort order list must be specified in the selection list.

« Prefix each field used in this clause with its table's alias name.

« Explicitly specify whether sorting should be ascending or descending and do not rely on database

defaults.

Grouping

- When a set of records needs to be grouped together by a simple and straightforward condition,
it is recommended to use the database Group By Clause. In this case only the final summarized
records are to be returned to the client resulting in a lesser number of database calls as opposed to

processing the full list let alone a simpler program without any special grouping logic.

Existence Checks

« The common technique used to check whether a certain condition is met or not, obviously when
no data needs to be returned, is simply COUNT how many records match that condition. A zero
number indicates that no record has met that condition.

- Notice that this is not very efficient as we are asking the database to scan the records for an
accurate number that we don't really care about. All we really want to know if there is at least one
such record and NOT how many they are.

» When the tables involved are of low volume there should be no problem using this technique. It is
very simple and uses common SQL syntax to all databases.

» However, when that condition is checked against a high volume table that many of its records meet
that condition, scanning all the matching records to get a count we don't need should be avoided.

« In this case use the EXISTS function as follows:

* Select 'x'

 From <The main table of the searched field, where it is defined as the PK of that table>

» Where <search field> = <search value> and

« EXISTS

« (<sub-select with the desired condition. This is the high volume table>);

« For example :

* Select 'x'

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 241

* From CI_UOM

» Where UOM_CD = input UOM_CD and

« EXISTS (select 'x'

 From CI_BSEG_CALC_LN

« Where UOM_CD = input UOM_CD);

- If this does not work for your special case, use the following option :

* Select 'x'

» From CI_INSTALLATION

» Where EXISTS

* (<sub-select with the desired condition>) ;

« Remember : This type of existence check using the Installation Options record should only be used
in rare cases and should be consulted with the DBA first before implementation.

* Note that we use CI_INSTALLATION as this table has only one row.

SQL statements to avoid

Decimal Delimiter

In Europe the decimal delimiter is often set to be comma character. DB2 database configured this way will
return SQL syntax error in the following cases:

« select ..., 1,

« insertvalues(...1,2,3...)

« insertvalues(...1,2,...)

- order by 1,2,3

< orderby 1,2

- update...set abc=1,def="XX'
- case (? as varchar(50),12

To avoid this problem, surround the comma with spaces.

Testing SQL Statements

Result Data

Once your SQL is ready, it is essential to test that it actually returns the expected result.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 242

Create sample data for each condition checked by your SQL. Then execute the SQL and make sure it

returns the expected result for each case.

Performance Testing - Oracle Only

Overview

An SQL may perform reasonably well even if not efficiently written in cases where the volume of
processed data is low, like in a development environment. However, the same SQL may perform very
poorly when executed in a real high volume environment. Therefore, any SQL should be carefully checked

to make sure it would provide reasonable performance at execution time.

Obviously there could be many reasons for an SQL to perform poorly and not all of them are easy to
predict or track.

In general, these could be subcategorized into two main groups:

- Basic issues related to the SQL code. These may be missing JOIN statements, inefficient path to
the desired data, inefficient use of database functions, etc.
» More complicated issues having to do with lack of indexes, database tuning and handling of high

volume of data, efficiency of 1/0 system etc.

The latter group of issues may only be truly tested on a designated environment simulating a real
production configuration. These performance tests are typically conducted by a team of database and

operating system experts as part of a thorough performance testing of a predefined set of process.

It is the first group of issues that can and should be tested by the programmer at this stage. This is done
by analysis of the SQL's Explain Plan result.

What is an Explain Plan?

An explain plan is a representation of the access path that is taken when an SQL is executed within
Oracle.

The optimal access path for an SQL is determined by the database optimizer component. With the
Rule Based Optimizer (RBO) it uses a set of heuristics to determine access path. With the Cost Based

Optimizer (CBO) we use statistics to analyze the relative costs of accessing objects.

Since the Cost Based optimizer relies on actual data volume statistics to determine the access path, to
generate an accurate Explain Plan using the cost based optimizer requires a database set up with the

proper statistics of a real high volume data environment.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 243

Note:
A cost based optimizer Explain Plan generated on an inadequate database, would be totally

inaccurate and misleading!

Obviously, our development database does not qualify as an optimal environment of cost based
optimizations. Since the Rule Based optimizer is not data dependant it would provide a more reliable
Explain Plan for this database.

(L ™
Note:
An efficient rule based Explain Plan does not guarantee an efficient cost based one when the SQL
is finally executed on the real target database. However, a poor rule based Explain Plan would

most probably remain such on a database with a higher volume of data.

Note:

When the SQL is complicated and mainly designed to process high volume tables it is

recommended to also analyze its Explain Plan on an appropriate high volume database.
N /

Generate the SQLs Explain Plan

« Let's assume this is the SQL to be checked

SELECT
DA1.INTU_DATA_SET_ID
FROM
CI_INTU_DATA_SET DA1
WHERE

DA1.INTU_PF_ID = :5-ERRDS-IH-DATA.RES-IHTU-PF-ID

AND DA1.SET_STATUS_FLG =
5-ERRD5-IN-DATA.ERROR-STATUS-FLG

AND HOT EXISTS

{SELELT '%°

FROMH CI_IHTU_DATA DBA1

WHERE DBA.IHTU_DATA_SET_ID = DA1.IHTU_DATA_SET_ID)

SQL To Check

« Adjust the SQL Statement:

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 244

o Extract the tested SQL into the SQL Developer editor.

> Replace the COBOL name of each Host Variable with the equivalent database identifier
:b<n> where n is a unique number identifying that host variable. If the same variable appears
more than one in the SQL use the same database host variable id in all occurrences.

o Force the database to analyze the SQL in Rule Base mode by introducing the RULE database

hint phrase.

D‘%'ﬁa @E&. @,?@:E 0 seconds

Worksheet Cuery Builder

1|ESELECT /*+ RULE */

2| D4l.INTY DATA SET ID

3| FROM

4| CI_INTY DATa SET D4l

5| WHERE

E| Dil.INTV_PF_ID = :bhl

? AMD DAl.SET STATUS FLG = :b2
B IHD HOT EXTISTS

9| (SELECT ‘'

10| FROM CI_INTV DATA DEL

11| WHERE DE1.INTV DATa SET ID = DAl.INTV DaTa SET ID):

Adjust the SQL Statement

- Generate the Explain Plan:
o Position the cursor on the SQL statement.

> Run the Explain Plan by hitting F10(or right-click anywhere on the SQL statement and click

Explain Plan... from the context menu).

> The generated plan will appear in the output tab.

THExplain Plan
A S0l | Dseconds

OPERATION OBIECT_MAME &
=@ SELECT STATEMENT
-0 FILTER
048 INDEY (RAMGE SCAN) %T23351
- ¥8 INDEX (RAMNGE SCAN) %TZ34P0

Explain Plan

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 245

Analyzing the Explain Plan

Access Methods

Oracle finds the data to read by using the following methods:

« Full Table Scan (FTS). Using this method the whole table is read.

« Index Lookup (unique & non-unique). Using this method, data is accessed by looking up key values
in an index and returning rowids where a rowid uniquely identifies an individual row in a particular
data block.

 Rowid. This is the quickest access method available. Oracle simply retrieves the block specified
and extracts the rows it is interested in. Most frequently seen in explain plans as Table access by
Rowid.

Common Issues to Be Aware of

Cartesian Product

« A Join is a predicate that attempts to combine 2 row sources. Cartesian Product is created
when there are no join conditions between 2 row sources and there is no alternative method of
accessing the data. Typically this is caused by a coding mistake where a join has been left out. The
CARTESIAN keyword in the Explain Plan indicates this situation.

Full Table Scan

« A Full Table Scan, e.g. TABLE ACCESS FULL phrase, found in the Explain Plan usually indicates an
inefficient access path. This means that the only way the database found to get to the desired data
is by reading every single row in the table.

* Notice that if the logic indeed requires reading all data, then this database decision is indeed
correct. However, if you intended to get a small subset of rows from a large table and ended up
reading all of it this is definitely not efficient and should be fixed. If this is the case, try and find a
better SQL structure that would avoid a full table access. If you can't find such, please consult a
DBA as this SQL may require an additional Index to be created for the table.

» Sometimes there would be a proper index on a particular table but still a full table scan would be
chosen for the access path of that table. This may be as result of an inefficient Join Order. Please
see details below.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 246

Join Order

A Join is a predicate that attempts to combine 2 row sources. We only ever join 2 row sources together.
Join steps are always performed serially even though underlying row sources may have been accessed
in parallel. The join order makes a significant difference to the way in which the query is executed. By

accessing particular row sources first, certain predicates may be satisfied that are not satisfied by with

other join orders. This may prevent certain access paths from being taken.

+ Make sure the join between 2 tables is done via indexed fields as much as possible.
- Also, if such an index exists, make sure you specify fields in the order they are defined by that

index.

Nested Loops

This is a common type of processing a join between 2 row sources. First we return all the rows from row

source 1, then we probe row source 2 once for each row returned from row source 1.

Row source 1

Row 1 - - Probe -> Row source 2
Row 2 --------—---- - Probe -> Row source 2
Row 3 - - Probe -> Row source 2

Row source 1 is known as the outer table. Row source 2 is known as the inner table. Accessing row
source 2 is known a probing the inner table. For nested loops to be efficient it is important that the first
row source returns as few rows as possible as this directly controls the number of probes of the second
row source. Also it helps if the access method for row source 2 is efficient as this operation is being

repeated once for every row returned by row source 1.

Sort

Sorts are expensive operations especially on large tables where the rows do not fit in memory and spill to
disk.

There are a number of different operations that promote sorts:

« Order by clauses
* Group by

 Sort merge join

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 247

Note that if the row source is already appropriately sorted then no sorting is required. In other words,

if the fields you sort by happen to be defined by an Index in that particular order then sort operation is
avoided. Therefore, whenever you see that an explicit sort operation has taken place, check if it can be
avoided by using an index or sometimes just by making sure your are using an index's fields in the right
order.

If no such index exists and the number of rows to be sorted is of high volume, please consult a DBA as
this may justify adding a new index.

More Extensive Performance Testing

Special attention should be paid to background processes that are designed to process high volume
tables. A thorough performance testing exercise in a benchmark format may be called upon.

SQL Development and Tuning Best Practices

« Length of the DataType Matters.

For example if you define a column with VARCHAR2(4000) (just the maximum limit) then you may
outflow you array as given in the example below.

Varchar2(n) where n is "right sized"

Assume 10 columns, average width is 40 characters
(some are 80, some are 10...).

400 bytes per row on a fetch.

Assume array fetch of 100 rows, so array fetch buffer
or 40,000 bytes.

Assume 25 open cursors, so 1,000,000 bytes of array
fetch buffers.

Assume connection pool with 30 connections — 30MB.

Varchar2(4000) for everything (just in case)

Assume 10 columns, average, minimum, maximum
width is 4000.

40,000 bytes per row on a fetch.

Assume array fetch of 100 rows, so array fetch buffer
or 4,000,000 bytes.

Assume 25 open cursors, so 100,000,000 bytes.

Assume connection pool with 30 connections — 3GB.

« NOT Null columns should be preferred over Null able columns. The reason is if you have an Index

on a Null able column then it would not be used by the SQL as the optimizer thinks that it would not

find any values in some of the columns so prefer a full scan.

As a workaround for columns with NULL data types the Index create SQL should look like:

Create | NDEX ABC ON TABL (COLUWNL, 0);

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 248

This will make sure that in case the Column1 is null the optimizer will consider the value as 0 and

leads to index scan as compared to Full scans.

- Always try to substitute the Bind Variables in a SQL with the actual constant value if there is only
one possible. Having too much Bind variables sometimes confuses the Optimizer to take the right
access path. So this is good for the stability of the SQL plans.

- Fields which are foreign keys to other tables and are used in SQLs for the Join criterion are good
candidates for creating Indexes on.

- Do not create any objects in the database of which the name may collide with any SQL reserved
words.

« Views are generally used to show specific data to specific users based on their interest. Views
are also used to restrict access to the base tables by granting permission only on views. Yet
another significant use of views is that they simplify your queries. Incorporate your frequently
required, complicated joins and calculations into a view so that you don't have to repeat those
joins/calculations in all your queries. Instead, just select from the view.

« Avoid creating views within views as it affects the performance.

- Offload tasks, like string manipulations, concatenations, row numbering, case conversions, type
conversions etc., to the front-end applications if these operations are going to consume more CPU
cycles on the database server. Also try to do basic validations in the front-end itself during data
entry. This saves unnecessary network roundtrips.

- Always be consistent with the usage of case in your code. On a case insensitive server, your code
might work fine, but it will fail on a case-sensitive server if your code is not consistent in case.

» Make sure you normalize your data at least to the 3rd normal form. At the same time, do not
compromise on query performance. A little bit of denormalization helps queries perform faster.

- Consider indexing those columns if they are frequently used in the ORDER clause of SQL
statements.

« Use tools like Tkprofs and AWR Report for measuring the Performance of your SQLs.

- In the SQL Explain Plans, usage of Nested Loops are good when there are table joins involved.

« Always looks for Autotrace to measure the SQL plan as it is closer to the plan which the optimizer
takes during the actual execution of the SQL. This can be get easily through SQL Developer and
other database monitoring tools.

- While looking at the Autotrace Plans look for consistent gets and make sure they are low. The other
thing reported by the Autotrace is COST. Do not worry too much about cost if the Consistent gets is
low and you are getting a desirable Plan.

« Make sure that the Statistics are current and not stale while you are trying to Tune a SQL.

» Having Secondary Unique Indexes help in achieving Index Unique scans. This will eliminate the

Table scans. It is worth trying and see if that makes a difference.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 249

- Oracle Optimizer executes the explain plans of a SQL from Inner to the outer area and from bottom
to the top. So make sure that the cardinality of the inner most Join criterion should be low.

- Always keep in mind the usage of the SQL in a real production scenario where the data in the
tables can go exponentially. Make sure that the SQLs can handle it and the Explain plan should be
accordingly tuned.

« Usage of <<, I= make the Index NOT to be used. Instead of this use the greater than or less than
statements.

« If you wrap a column a column with some functions like TO_DATE, TO_CHAR, SUBSTR and so on
then the Index on the Column would not be used.

« Avoid using UNION and make sure you use UNION ALL if possible. This will boost performance.

« Using EXISTS, NOT EXISTS are better than using IN, NOT IN statements respectively.

- Usage of Leading Hints helps in choosing what Table should be the first table in the join order.
[*+ LEADI NG Tabl el Tabl e2) */

» When writing comments within SQL statements make sure that the comments are not added at the
beginning because DB2 will not be able to parse it. You can instead put the Comments at the end
and it will work. For Oracle this is not an issue.

A JDEC conmnection to the target has succeeded.

—————————————————————————————— Ciamnisnds ERCEREd —omee s o e s e

select * /* IN 20L Comment */ from CI _MDr TELLS* POST S0L Comment */

RBesults for a single gquery are displayed on the Query Results tab.

100 rowi(s) returned successfully.

Additional Resources

Additional information on optimizing SQL in your OUAF applications can be found in the Oracle Utilities
Application Framework - Technical Best Practices whitepaper available on the My Oracle Support (MOS)
Knowledge Base (article 560367.1).

Database Design

The objective of this document is to provide a standard for database objects (such as tables, columns,
and indexes) for products using Oracle Utilities Application Framework. This standard is introduced

to insure clean database design, to promote communications, and to reduce errors leading to smooth
integration and upgrade processes. Just as Oracle Utilities Application Framework goes thorough
innovation in every release of the software, it is also inevitable that the product will take advantage

of various database vendors' new features in each release. The recommendations in the database

https://support.oracle.com/epmos/faces/ui/km/SearchDocDisplay.jspx?id=836362.1&type=DOCUMENT&displayIndex=4
https://support.oracle.com/epmos/faces/ui/km/SearchDocDisplay.jspx?id=836362.1&type=DOCUMENT&displayIndex=4
https://support.oracle.com

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 250

installation section include only the ones that have been proved by vigorous QA processes, field tests and

benchmarks.

Database Object Standard

This section discusses the rules applied to naming database objects and the attributes that are
associated with these objects.

Naming Standards

The following naming standards must be applied to database objects.

Table

Table names are prefixed with the owner flag value of the product. For customer modification CM must
prefix the table name. The length of the table names must be less than or equal to 30 characters. A
language table should be named by suffixing _L to the main table. The key table name should be named
by suffixing _K to the main table.

It is recommended to start a table name with the 2-3 letter acronym of the subsystem name that the table
belongs to. For example, MD stands for meta-data subsystem and all meta data table names start with
CI_MD.

Some examples are:

« CI_LADJ_TYPE
« CI_LADJ_TYPE_L

(L ™
Note:
A language table stores language sensitive columns such as a description of a code. The
primary key of a language table consists of the primary key of the code table plus language code
(LANGAGUE_CD).

Note:

A key table accompanies a table with a surrogate key column. A key value is stored with the

environment id that the key value resides in the key table.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 251

Note:

The tables prior to V2.0.0 are prefixed with CI_ or SC_.

Columns

The length of a column name must be less than or equal to 30 characters. The following conventions
apply when you define special types of columns in the database.

Use the suffix FLG to define a lookup table field. Flag columns must be CHAR(4). Choose lookup field
names carefully as these column names are defined in the lookup table (CI_LOOKUP_FLD) and must be
prefixed by the product owner flag value.

Use the suffix CD to define user-defined codes. User-defined codes are primarily found as the key column
of the admin tables.

Use the suffix ID to define system assigned key columns.

Use the suffix SW to define Boolean columns. The valid values of the switches are 'Y' or ‘N'. The switch
columns must be CHAR(1)

Use the suffix DT to define Date columns.
Use the suffix DTTM to define Date Time columns.
Use the suffix TM to define Time columns.

Some examples are:

* ADJ_STATUS_FLG
« CAN_RSN_CD

Indexes
Index names are composed of the following parts:
[XI[C/M/TINNN[P/S]

X - letter X is used as a leading character of all base index names prior to Version 2.0.0. Now the
first character of product owner flag value should be used instead of letter X. For client specific

implementation index in Oracle, use CM.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 252

C/M/T - The second character can be either C or M or T. C is used for control tables (Admin tables). M is

for the master tables. T is reserved for the transaction tables.
NNN - A three-digit number that uniquely identifies the table on which the index is defined.

P/S/C - P indicates that this index is the primary key index. S is used for indexes other than primary keys.

Use C to indicate a client specific implementation index in DB2 implementation.

Some examples are:

+ XC001PO
* XT206S1

« XT206C2
+ CM206S2

! Warning:
Do not use index names in the application as the names can change due to unforeseeable

reasons.

Sequence
The base sequence name must be prefixed with the owner flag value of the product.
Trigger

The base trigger name must be prefixed with the owner flag value of the product.

(L ™
Note:
When implementers add database objects, such as tables, triggers and sequences, the name of
the objects should be prefixed by CM. For example, Index names in base product are prefixed by

X; the Implementers' index name must not be prefixed with X.
N /

Column Data Type and Constraints

User Define Code

User Defined Codes are defined as CHAR type. The length can vary by the business requirements but a

minimum of eight characters is recommended. You will find columns defined in less than eight characters

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 253

but with internationalization in mind new columns should be defined as CHAR(10) or CHAR(12). Also note

that when the code is referenced in the application the descriptions are shown to users in most cases.

System Assigned Identifier

System assigned random numbers is defined as CHAR type. The length of the column varies to meet

the business requirements. Number type key columns are used when a sequential key assignment is
allowed or number type is required to interface with external software. For example, Notification Upload
Staging ID is a Number type because most EDI software uses a sequential key assignment mechanism.
For sequential key assignment implementation, the DBMS sequence generator is used in conjunction with

Number Type ID columns.

Date/Time/Timestamp

Date, Time and Timestamp columns are defined physically as DATE in Oracle. In DB2 the DATE, TIME
and TIMESTAMP column types, respectively, are used to implement them. Non-null constraints are

implemented only for the required columns.

Number

Numeric columns are implemented as NUMBER type in Oracle and DECIMAL type in DB2. The precision of
the number should always be defined. The scale of the number might be defined. Non-null constraints are

implemented for all number columns.

Fixed Length/Variable Length Character Columns

When a character column is a part of the primary key of a table define the column in CHAR type. For
the non-key character columns, the length should be the defining factor. If the column length should be
greater than 10, use VARCHAR?2 type in Oracle and VARCHAR type in DB2.

Null Constraints

The Non-null constraints are implemented for all columns except optional DATE, TIME or TIMESTAMP

columns.

Default Value Setting

The rule to set the database default value is the following:

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 254

» When a predefined default value is not available, set the default value of Non-null CHAR or
VARCHAR columns to blank except the primary key columns.

- When a predefined default value is not available, set the default value Non-null Number columns to
0 (zero) except the primary key columns.

 No database default values should be assigned to the Non Null Date, Time, and Timestamp

columns.
Foreign Key Constraints
Referential Integrity is enforced by the application. In database, do not define FK constraints. Indexes are

created on most of Foreign Key columns to increase performance.

Standard Columns

Owner Flag

Owner Flag (OWNER_FLG) columns exist on the system tables that are shared by multiple products.
Oracle Utilities Application Framework limits the data modification of the tables that have owner flag to

the data owned by the product.

Version

The Version column is used to for optimistic concurrency control in the application code. Add the Version

column to all tables that are maintained by a Row Maintenance program.

System Table Guide

Key components of products built on the Oracle Application Framework are the system tables. The
data in those tables controls many aspects of the application. There are standards required for these
tables to support the installation, development, configuration and customization of the Oracle Utilities
products. Implementations add their own records to the system tables. Adhering to the data standards
is a prerequisite for seamless upgrade to the next release of the product(s). Please refer to the Oracle
Utilities Application Framework System Table Guide section of your product's Database Administration

Guide for details about the system tables and the standards to follow.

Key Generation

Key generation is performed for tables that have sequential or system generated prime key. This is
performed automatically for Java instances via the OUAF enTegrity.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 255

Tables with a system-generated key contain their own unique key that is replicated in a related 'key table'
suffixed with '_K'. The purpose of the key table is to store the table identifier as well as the identifier of
the environment in which the data row exists. An example is the Account table containing the Account
identifier and the Account Key table containing the Account identifier and the Environment identifier.

These key tables support the Archiving and ConfigLab functionality by ensuring that a key will be unique

across environments.

(L ™

Note:
Oracle recommends that customers using Oracle Utilities Application Framework version 4.2 or
later and currently using ConfigLab switch to Configuration Migration Assistant (CMA) for their
configuration data migration needs and retain ConfigLab for migration of master and transaction
data migration. Also note that CMA functionality is not available to every Framework-based
product. For details, including tips and requirements for moving from ConfigLab to CMA for
configuration data migrations, see the "Configuration Migration Assistant" section in the Oracle

Utilities Application Framework Aministration Guide.
- _/

Metadata for Key Generation

The required table metadata that is used by the key generator indicates:

» The type of key, e.g. whether it is system-generated or sequential

« The key table in which key values are stored

« The length of the inherited portion of the key.

ORACLE

Home Menu - & History -

T ot i | Constraints | Referred By Constraints

Table Mame CI_sA = Cwner Base
SA (Service Agresment)
O =g
CSVAT |
Tabie [v] Type Loce! Legal Tme [v]
:.V:asler Table E Meadium Volume E
CisA Q, Keep ||
[cosoL [w] Convart (Naw)]
s CIPZADTA Tﬂ :ﬂ Audit Trad
E L
E . CI SA K -% System-generated q
=, - [,\\5 serviceAgreement
[riot Cached \Tj Key Validation Always Check Uniqueness T_'—l

C1_BPDI1Custinfo_Maintaining_Service_Agreements

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 256

Example Table Metadata Key Information

In the Service Agreement table metadata example above, the metadata key information is shown by the
values in the fields Key Table, Type of Key and Inherited Key Prefix Length.

The primary key constraint is used to retrieve the name of the key field for the table from the field
metadata.

The field metadata provides the field data type and length.

- N
Note:
Key Types. Although there are more types of keys indicated in metadata drop-down list, the only
types currently supported by the key generator in the Oracle Utilities Application Framework are

system-generated and sequential.

Note:

Special Annotation. If a table's inherited key prefix length is non-zero, a special entry

"clusteringParentProperty" must be in the business entity annotation for this table.
- J

Development Performance Guidelines

This document includes information, guidelines, and strategies to help designers and developers
understand performance impacts when developing a feature using the Oracle Utilities Application
Framework.

Object-Relational Mapping: Background

OUAF uses an Object-Relational Mapping (ORM) engine, which maps tables to entities using the system's
table, table/field, field, and constraint metadata to guide the creation of mapping definitions during

artifact generation.

Entities represent database tables. They are created as Java objects during a database "session", which
has the lifetime of a single DB transaction.

DONT: Entities are not safe to use for reference, calling methods, etc., after the session that created them
has ended. For example, don't copy entities into application caches. DO: Instead, let the application cache
do the data retrieval and return the data to the session. ID objects are safe to store across sessions. Note
in the following example that the entity AlgorithmType is not stored:

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 257

public class Al gorithniTypel nfoCache i npl ements ApplicationCache {
private static final Al gorithnTypel nfoCache | NSTANCE = new Al gorit hniTypel nf oCache() ;
private final ConcurrentMap<Al gorithnilype_Ild, Al gorithnilypel nfo> al gorithnTypel nfoByld = new Concurrent HashMap<Al gor i

thnifype_I d, Al gorithniTypel nf 0>();

protected Al gorithniTypel nfoCache() { ContextHol der. get Context().registerCache(this); }
public String getName() { return "Al gorithniTypel nfoCache"; }
public void flush() {algorithnTypel nfoByld.clear(); }

public static Al gorithnTypel nfo get Al gorithniTypel nfo(Al gorithnType_Id al gTypeld) {

return | NSTANCE. pri vat eGet Al gori t hnTypel nfo(al gTypel d);

private Al gorithniTypel nfo privateGet Al gorithniTypel nfo(Al gorithnType_ld al gTypeld) {
Al gorithnifypel nfo al gTypel nfo = al gorithnilypel nf oByl d. get (al gTypel d);
if (algTypelnfo !'= null) return al gTypel nfo;
Al gorithnType type = al gTypeld.getEntity();
if (type == null) return null;
Al gorithnlypel nfo info = new Al gorithnTypel nfo(type);
Al gorithnlypel nfo prev = al gorithniTypel nf oByl d. put| f Absent (al gTypeld, info);
if (prev !=null) return preyv;

return info;

DO: it is safe to use XML documents (to be consumed by BOs, BSs, or SSs) for moving data between

sessions.

Every entity has a unique corresponding "id" class, e.g. BatchControl has BachControlld. The ORM

framework automatically generates correct SQL to perform the following essential tasks:

- Read, update, insert, delete one entity (row) from the database.
- Navigate between related entities as per their key/constraint relationships, for example from a
parent entity to a collection of children.

The ORM defers database calls for performance

The ORM tries to be as "lazy" as possible; its basic stance is to avoid loading any data from the DB until
the last possible moment. Let's use the following example to describe how the data is only loaded at last

moment possible:

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 258

Bat chControl soneBat chControl = batchControlld.getEntity();

Bat chCont r ol Paraneters parnms = soneBat chControl . get Paraneters();
for (BatchControl Paraneter each : parns) {

String nane = each. get Bat chPar anet er Narme() ;

}

In the above example, the getEntity() call only retrieves the parent ID as a proxy. The "someBatchControl"
is not fully "hydrated" until some other property is accessed. "Hydrating Entities" is the process of taking a

row from the database and turning it into an entity.
The getParameters() call only retrives the child IDs, again as proxies.

Only when the getBatchParameterName() is called, is a row (the child row) actually retrieved.

ID Objects

« When you create an ID, the ID object will not be null. After you use an ID to retrieve an entity (using
getEntity()), that is when you find out if the entity actually exists. Just because an ID exists, doesn't
mean the entity itself exists! DO: So you must check for null before attempting to use the entity you

retrieved. For example:

BatchControlld id = ...
Bat chControl batchControl = id.getEntity();

if (batchControl == null) { /* oh oh */ }

Counting a collection

DO: If you want to count the number of batch control parameters that belong to a parent batch control,

use the size() method as in the following example:

Bat chControl someBatchControl = ...;
Bat chCont r ol Paraneters parns = soneBat chControl . get Paraneters();

int count = parns.size();

The framework implementation code has an optimized implementation of the size() method, which either
counts the existing in-memory collection elements, if they are already present, or issues a SQL count(*)

query, if they aren't.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 259

Avoid unnecessary work

DON'T: In the example, below, the call to listSize() is unnessary. In most cases, you shouldn't need to write

something to loop over a collection:

if(query.listSize() > 0) {
while (iter.next()) { }

}

The call to listSize() will make an unnecessary call to "select count(*)". Let the iterator do the work. Avoid

the extra call to the database.

ORM 'Navigation' is your friend

Don't be tempted to hand-write queries that are equivalent to navigations between entities:

Bat chControl I d batchControlld = ...

Query<Bat chControl Paraneter> query = createQuery("from BatchControl Paranmeter parm where parmid. batchControlld = :paren
trd");

query. bi ndl d("parentld", batchControlld);

Li st <Bat chControl Paraneter> |ist = query.list();

DO: Use this instead - it'll use the cache and will almost certainly be faster:

Bat chControl batchControl = id.getEntity();
if (batchControl == null) { /* oh oh */ }

Bat chControl Paraneters |ist = batchControl.getParaneters();

How to Pre-load Entities Using Fetch

This technique is for performance intensive jobs that are doing too many single-row SQL retrieves. The

"fetch” command will pre-load the entities, resulting in one fewer database calls.

Write a query using "left join fetch" to select all data. The ORM will fetch the associated collection for
every retrieved table into the session cache. Subsequent navigation to the underlying collection is then an
in-memory operation with no database 10. Again, PREFER code that performs standard navigation.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 260

- As a general strategy:
> For most jobs, navigation is just fine.
o Write code using navigation first, then ADD the fetch query later, only if it's needed.

This is a link to the Hibernate help on "fetch": http://docs.jboss.org/hibernate/stable/core/reference/

en/html_single/#performance-fetching

Session Cache

If an entity is retrieved previously within a session it does not, in most cases, have to be retrieved again
since it is stored in the session cache.

As a result, multiple BO reads against Java-backed MOs do not re-execute SQL.

Level 2 Cache Applicable for Batch

Hibernate's Level 2 cache is a second level of caching that allows sharing of data between sessions.

This is useful for static, admin data like rates, type codes, etc., since objects that are added to this cache
cannot be updated. The caching is enabled per entity on the Table transaction's Caching Regime Flag with
values of "Not Cached" and "Cached for Batch." By default, the product is not configured to have Log and
Language tables as not cached.

Flushing - COBOL and Save Points

Flushing means writing the changes to the database. It syncs the database with the session cache.
Flushing is expensive but necessary to maintain data integrity. The system flushes under the following

conditions:

* Before commit

- Before raw SQL queries

« Before most HQL queries

» When specifically requested

« Savepoints

http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching
http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 261

Avoid Extra SQL

Inspect generated SQL for extra calls. Tools like Oracle's tkprof, Yourkit java profiler, or debug application
logs can help identify extra database calls. The screen capture below shows how Yourkit is able to reveal
SQL statements behind PreparedStatement calls.

Yourkit Demo: http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

G CPU | & Treests | o 3 ; & s a
CPU statistics [W nested XCEE cals (3 Group qusries by SCL type (1) Inchade prepareStatement()prepareCal) :
ol i Gl Ui et R aTcT =] ﬂﬂ::ﬂ Irvncation counk
ol tresy (B] =
bk 1pote. sebeck umerll_ i aa il _, wsed_ orgion o veniiond _, uienll usmiaing 841 &0 i5
Heathad bt select robsl)_id 2e i 0, roled_ name as rame 01, roled)_ description e 55 1%
welenct rodesl]_user_id a5 user] _0_, robsl_roba_id as robed_0_ From user_n 41 15
e sebect rolel_d s b0 _, wobs0_risme s name0_, nods0_description & deso 1 o]
THE statistics S -
SR @ + DELETE H
= UFDATE F
i::wsrms wpate DD _USer Set versine?, USEFNATe=T, paseeords?, first_names7, & 4 [ey
INSERT 1

CPLI g beberretny

[Hame [= Time fms) |
= B, orgspache commons. dbop DelegatingPreparedSt stement, set String|nt, Shirg)
= B org hibermisbe Sype Strineg T ype. sedy PreqensdSsbement, Ohject, ink)
%, org.hsbernate. type. Mullsble Type nulSaleSetiPrepaedSstement, Object, int)
= B, orgepache comimons. deop PoolingDat-aScurce$PoolGuandC onnectionWrapper prepareStatemend 1
= B, cog hibermste jdbe. AbstractBatcheer . getPrepanedSEat ennend Conrechon, Sheing, bookean, boolssn,
Lol e ticais I_ @ #, orghibernate. dbc AbstractBatcher. prepareStat emenb|String, booksan, String(T

oty o show For v W, ongoapache commod. dbop DelegatingPreparedStabement. s uteUipdate])
the current ielsction

L

Prepared statement - use binding

DON'T: Never concatenate values - DO: use binding instead. Besides helping to reduce security concerns
with SQL injection, concatenation results in reparsing of SQL statements by the database. You could also
lose the benefits of any PreparedStatement caching by the jdbc drivers.

Service Script vs. Java Services

Service Scripts perform slower than java services. There is an overhead on scripting that comes from xml
manipulation and xpath evaluation. Lots of moves, complicated XPath - proportional to amount of XPath.

Here are some tips:

 One complicated XPath expression should be faster than several smaller ones - the overhead is in
the setup.

« Smaller documents will process faster - think about that when designing script schemas - only
send what you need.

http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 262

Java Performance Patterns

« Loop over entryset of a hashmap, not the entities
« Concatenate strings using StringBuilder
« Use Findbugs - it will help expose patterns to be avoided.

Batch Performance

Commit Considerations

DON'T: Do not commit too frequently. For example, we do not commit ever record since each commit
has overhead at the database; however, sessions with lots of objects in the cache should commit more
frequently. Adjust your default value accordingly.

Clustered vs. Distributed Mode Performance: Clustered is Preferred

No coding changes required for clustered mode and no reason to use the distributed mode anymore.

Clustered mode was created for stability, not performance; however, clustered mode should have less
overhead because "tspace" table is not continually accessed. This tspace table stored the batch job's
instructions and information used by the distributed mode and accessed by the batch threads. There have
been cases where this table is in high contention.

Light Business Objects

Sometimes it is possible to create a smaller schema that only accesses the objects that are needed

for a particularly performance-instensive process. This can be particularly important if there are many
child collections that are referenced by a particular business object (BO). When a child collection on the
maintenance object (MO) is not mapped, the application does not issue a read. While a large BO with
many collections might be acceptable for online transactions, a process used in a batch could benefit by
a smaller subset of elements. These smaller BOs are referred to as Light or "Lite" BOs.

When any XML-mapped field is referenced, the application must parse the XMLs columns data.
Depending on how much data is mapped, there could be some minor savings gained by avoiding the XML
data since it will not need to be parsed.

Here is an example of a very large BO:

<schema fwRel ="2">

<mai nSection type="group" ndFi el d="Cl_TAXFORM MAI N_LBL"/>

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 263

<sel ect TaxFor nLabel type="group" ndFi el d="Cl_SELECT_TAXFORM LBL"/>

<taxForm d mapFi el d="TAX_FORM | D" isPrimeKey="true" fkRef="Cl-TXFRM'/>

<f ornType mapFi el d="FORM TYPE_CD" f kRef ="Cl- FRMTY"/ >

<bo mepFi el d="BUS_OBJ_CD' fkRef="F1-BUSOB" suppress="true"/>

<boSt at us mapFi el d="BO_STATUS CD'/ >

<st at usUpdat eDat eTi me mapFi el d=" STATUS_UPD DTTM' suppress="true"/>

<t ot al Amount DueOver pai d mapFi el d="Cl_TOTAL_OWED OVERPAI D'/ >

<rem ttanceAnmount napFi el d="Cl_FORM PYMNT_AMI"/>

<f or nBour ce mapFi el d="C1_FORM SRCE_CD" f kRef =" Cl- FRVsC'/ >

<fornDet ai | sl nfoSection type="group" ndFi el d="Cl_I TF_FORM DTLS_ | NFO'/ >

<denogr aphi cl nf oSecti on type="group" ndFi el d="Cl_TF_DEMO | NFO LBL"/ >

<t axpayer Denogr aphi cl nf or mati on type="group">

<i ncl udeDA nane="Cl- Taxpayer Denol nf 0"/ >

</ t axpayer Denogr aphi cl nf or nat i on>

<l inel tensl nfoSection type="group” ndFiel d="Cl1_TF_LINE_| TEMS_LBL"/>

<obl i gationld mapFi el d="SA | D' fkRef="SA"/>

<recei veDat e nmapFi el d="RECV_DT" required="true"/>

<t axFor nFi | i ngType mapFi el d="TAX_FORM FI LI NG TYPE_FLG' defaul t="CLOR"' required="true"/>
<f or nBat chHeader | d mapFi el d="FORM BATCH HDR | D" fkRef ="C1- FBHDR'/ >

<docunent Locat or napFi el d="DOC_LOC_NBR'/ >

<adj ust Reason dat aType="1ookup" ndFi el d="Cl_TXF_ADIJRSN_FLG' mapXM.="BO _DATA AREA"/>
<transfer Reason dataType="I| ookup” ndFi el d="Cl1_TXF_TFRRSN_FLG' mapXM.="BO_DATA_ AREA"/ >
<rever seReason dataType="1|ookup" ndFi el d="Cl_TXF_RVSRSN FLG' mapXM.="BO DATA AREA"'/>
<cancel Reason dat aType="1ookup" ndFi el d="Cl_TXF_CANRSN FLG' mapXM.="BO_DATA AREA"'/>
<i ssuesSection type="group" ndFiel d="Cl1_TF_| SSUES_LBL"/>

<suspensel ssuelLi st type="group" mapXM.="BO DATA AREA">

<i ncl udeDA name="Cl- | ssueslList"/>

</ suspensel ssuelLi st >

<wai ti ngFor | nfol ssueLi st type="group" mapXM.="BO_DATA AREA">

<i ncl udeDA nane="Cl- | ssuesList"/>

</ wai ti ngFor | nf ol ssueLi st >

<t axpayer Per sonl D f kRef =" PER" nuFi el d="PER_| D' nmapXM.="BO_DATA_ AREA"/ >

<account fkRef="ACCT" ndFi el d="ACCT_I D' mapXM.="BO_DATA AREA"/>

<taxRol e fkRef="Cl- TXRL" nuFi el d=" TAX_ROLE | D' napXM.="BO DATA AREA"/ >

<transf er Adj ust Section type="group" nudFi el d="Cl_TF_TRANSFER ADJUST"/ >

<adj ust edFr onfor m f kRef =" C1- TXFRM' mapXM.="BO_DATA AREA" ndFi el d="Cl1_TF_ADJUSTED FROM'/>

<t ransf erredFronfor m f kRef =" C1- TXFRM' mapXM_="BO_DATA_AREA" ndFi el d="Cl1_TF_TRANSFERRED FROM'/>

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 264

<adj ust edToFor m f kRef =" C1- TXFRM' nmapXM.="BO_DATA AREA" ndFi el d="Cl_TF_ADJUSTED_TO'/ >
<t ransf erredToFor m f kRef =" C1- TXFRM' mapXM.="BO_DATA AREA" nuFi el d="C1_TF_TRANSFERRED TO'/ >
<versi on nmapFi el d="VERSI ON' suppress="true"/>

</ schema>

This performance-sensitive process only required a subset of the BO, so the following light BO was
created:

<schema fwRel ="2">

<taxForm d mapFi el d="TAX FORM | D" isPrimeKey="true" fkRef="Cl-TXFRM'/>

<f or nType mapFi el d="FORM TYPE_CD' f kRef =" C1- FRMI'Y"/ >

<bo nepFi el d="BUS_OBJ_CD"' fkRef="F1-BUSOB" suppress="true" required="true"/>
<boSt at us mapFi el d="BO_STATUS_CD'/ >

<recei veDat e nmapFi el d="RECV_DT"/>

<f or nChangeReasons type="group” mapXM.="BO DATA AREA">

<f or nChangeReasonsLi st type="1list">

<f or nChangeReason ndFi el d="FORM CHG RSN _CD" i sPri meKey="true" fkRef="Cl-FRCHR'/>
</ f or nChangeReasonsLi st >

</ f or mChangeReasons>

<f or mChangeComent s ndFi el d=" COMMENTS" nmapXM.="BO_DATA_AREA"/>

<versi on mapFi el d="VERSI ON" suppress="true"/>

</ schema>

Benefits of Light BOs

 Not mapping unneeded child collections removes the need to read the child table from the
database.

- The "read" benefits extend to BO updates as well, though in a minor way. The light BO would be
used for the read when finishing an update. However, this benefit may be reduced by the availability
of the updateWithoutRead action, which would do the update with whatever BO was presented,
and then not do a read at the end. This would achieve an optimization as well as the light BO
update.

« XML document size reduction. There are performance penalties when transmitting and parsing

large XML documents.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 265

Disadvantage of Light BOs

While this is not really a disadvantage of the concept, creating additional BOs results in more objects to

maintain.
Tips and Conventions

« The light BO Code ends with "Light" or "Lite" and description ends with "Light". The rest of the code
and description should follow the normal BO naming standard.

« Instance Control is set to "Do not allow new instances".

 Each MO has one parent light BO. The parent light BO schema would contain just the first level
elements and no collections.

« Each "child" light BO for the MO has the parent light BO as its parent. This is important for the BO
Hierarchy dashboard zone.

» When to update an existing light BO versus creating a new light BO: Generally reuse and update an
existing light BO if the level or "collection level" of the element to add is in an existing light BO. A
new light BO is warranted if a new "collection level" is needed. If multiple levels and many elements

are needed, you may consider reading the actual BO instead of the light BO.

Data Explorer

It is important to understand that Data Explorers process ALL records returned from the database, even if
they are not displayed. For example, FK ref info strings, BS calls, SS calls, Inhibit Row in Explorers - all can

cause per-row processing even if they are not displayed.

Data Explorers are rendered using JavaScript. They are not designed to display many records, and trying
to do so will result in possibly unacceptable performance. DO: Consider limiting the results returned
and asking Users to add additional filter criteria to narrow down the results. DON'T: Don't try to display

hundreds of records.

Zone Configuration

« DO: Consider limiting the number of rows retrieved by the database limiting the query size. Specify
this on the zone parameter and the query will use the "rownum" technique to restrict the number of
rows returned.

« DO: As a rule-of-thumb: 10 columns (even if not visible) in a data explorer zone should be an alert

to really think about performance implications.

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 266

« DO: Try to perform all processing in the SQL instead of fkinfo, BS, or SS calls in other columns.
As described earlier, these would be additional processes run on a per-row basis. If a description
exists, consider using the description and a Navigation Option instead of the Foreign Key. For

example, replace the Person fkRef with Person Name and its Navigation Option.

Table Indices and SQL

Here are some more common patterns to look out for. (This is not meant to be a complete SQL tuning

guide.)

« Put Indexes on the most commonly used criteria. If there is no proper index, the optimizer does a
full table scan. Consider:
o Primary keys, foreign keys, ORDER BY fields.
> Secondary Unique Indexes
» DO: Use a JOIN instead of EXISTS. This is faster for unique scan indexes.
» DO: Use EXISTS instead of IN when working with ID fields, use '='" instead of LIKE. Using LIKE on a
system-generated key isn't "reasonable”
« CONSIDER: Using functions like TO_DATE(), SUBSTR() etc. means indexes on those fields won't be
used! Use only when necessary.

« DO: Use the power of optional filters - and not just in the WHERE clause.

FROM d1_tou_nmap tm dil_tou_map_| tni

FROM d1_tou_map tm [(F1) dl_tou_map_| tni,]

« DO: Only include necessary tables:

SELECT A usg_grp_cd, A usg_rule_cd, A exe_seq,A referred_usg_grp_cd, A usg_rule_cat_flg, B.crit_seq, C. descrl100
DESCR

FROM D1_USG RULE A, dl_usg_rule_elig_crit B, dl_usg_rule_elig_crit_| C

WHERE A. usg_grp_cd= :HL

AND A. usg_grp_cd = B.usg_grp_cd

AND A.usg_rule_cd = B.usg_rule_cd

AND b. usg_grp_cd = C.usg_grp_cd

AND b.usg_rule_cd = C usg_rule_cd

AND b.crit_seq = C.crit_seq

AND C. | anguage_cd= : | anguage

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 267

Note that Table B is not necessary; you could instead simply link directly from A to C.

- Offload tasks, like string manipulations, concatenations, row numbering, case conversions, type
conversions etc., to the front-end applications

« Do basic validations in the front-end during data entry. This saves unnecessary network roundtrips.

» Avoid using UNION - use UNION ALL if it is possible.

« Operators <> and != will NOT use the index! Also the word "NOT" Use the Greater Than or Less Than

operators.

select * fromci_scr_step where (scr_cd <> 'ZZCW3') has cost 68

select * fromci_scr_step where (scr_cd > 'ZZCOW3' or scr_cd < 'ZZCW3') has cost 1!!!

Ul Maps and BPAs

Ul maps will not be able to display many rows very quickly. DONT display hundreds of rows in a Ul Map.

Alternatively, the zone type "SERVICE" can display a large number of records faster.

DO: Ensure that the html code is proper. Malformed HTML in Ul maps (for example, opening a <div> and
not closing it) can cause significant performance degradations at the browser. It is possible to copy and
paste HTML into Eclipse to check its validity. There are also various tools like html tidy that can help to
identify bad html.

DO: Minimize browser-to-server calls. Namely, invokeBO/BS/SS will perform a call to a server to
retrieve the data, which can be slow. Many of these such calls on load of the Ul Map will result in slow

performance.

« Use service script instead of BPA if multiple calls need to be made to BO, BS, SS.
« Create a "bulk" processing service script instead of calling the same one multiple times. Instead of
multiple invokeBS calls on load of a Ul map, write a pre-processing service script instead.

Diagnosing Performance Issues

Execution times can be obtained in a number of ways.

Fiddler

In a Ul-oriented scenario, the first recommended analysis tool is to use an http logger like fiddler
(http://www.fiddler2.com). This tool should make it apparent if there are excessive calls from the client
browser to the server and the server response times as seen from the browser. The timings can then be

categorized as server-side or client side calls. When using fidder be sure to enable the following:

http://www.fiddler2.com

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 268

* "Time-to-Last-Byte"
- "Response Timestamp"

OUAF 'Show Trace' button

Enable debug mode by adding debug=true to the url. Then use the "Start Debug", "Stop Debug" and "Show

Trace" buttons

User

StartDebug | oo o-ouc |

Log Service times in spl_service.log

In log4j2 properties, add the following, including adding "serviceDispatcher” to the comma-separated

named loggers, to log service execution times:

| ogger . servi ceDi spat cher. name = com spl wg. base. api . servi ce. Servi ceDi spat cher
| ogger . servi ceDi spat cher. appender Ref . user Log. ref = userLog
| ogger . servi ceDi spat cher. | evel = debug

| ogger . servi ceDi spatcher.additivity = fal se

Optimization and Performance Profiling

To squeeze every second of a given program for mission critical optimizations, it may be necessary to
craft a repeatable unit test and profile the results using a profiling tool such as YourKit (www.yourkit.com).
This section will include some code samples to log execution times. Attaching a profiler could give clues
to optimization points. A common pattern to follow in testing code is to allow the System to "warm up,’
for example to load up the necessary application caches which are only done once and are not relevant to

the code being optimized.

Basic Logging
The following code can be placed in a junit test to log execution times:
long start = | ogger.debugStart("Starting process");

/... code for process

| ogger . debugTi me("End process", start);

http://www.yourkit.com

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 269

Timing code (‘'shootout’):

The code below will run a BO Update 100 times and report the amount of time taken. Note the 5 "warmup"

executions before the repeated 100 runs.

public void testMiltiplePluginScripts() throws Exception {
String docStringl = "<DR Short Createl nterval Records><fact | d>219250542869</ f act | d><| ongDescr >REEE</ | ongDescr ></ D
R _Short Creat el nt er val Recor ds>";

Docurment docl = Docunent Hel per. parseText (docStringl);

String docString2 = "<DR Short Creat el nt er val Recor ds2><f act | d>219250542869</ f act | d><| ongDescr >REEE</ | ongDescr
></ DR_Short Cr eat el nt er val Recor ds2>";

Docunent doc2 = Docunent Hel per . par seText (docString2);

/] war nups

for (int i =0; i <5; i++) {
Busi nessbj ect Di spat cher. execut e(docl, Busi nessObj ect Acti onLookup. const ants. FAST_UPDATE) ;
rol | backAndCont i nue();
Busi nessbj ect Di spat cher . execut e(doc2, Busi nessObj ect Acti onLookup. const ant s. FAST_UPDATE) ;

rol | backAndCont i nue();

long total El apsed = O;
Il speed
for (int i =0; i < 100; i++) {
long start = System nanoTi me();
Busi nessbj ect Di spat cher. execut e(docl, Busi nessObj ect Acti onLookup. const ants. FAST_UPDATE) ;
flush();
total El apsed += System nanoTine() - start;
rol | backAndCont i nue();

}

Systemout.println("Script (100): " + total El apsed / 1000000 + "ns");

total El apsed = O;
for (int i =0; i < 100; i++) {
long start = System nanoTi ne();

Busi nessbj ect Di spat cher . execut e(doc2, Busi nessObj ect Acti onLookup. const ant s. FAST_UPDATE) ;

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 270

flush();
t ot al El apsed += System nanoTine() - start;
rol | backAndCont i nue();

}

Systemout. println("Java (100): " + total El apsed / 1000000 + "ns");

Using PerformanceTestResult helpers

A performance helper suite of classes was introduced, allowing "shoot-out’s like the above to be more

simple:

Cal | abl e<Voi d> exprCal | abl e = new Cal | abl e<Voi d>() {
@verride
public Void call () throws Exception {
expression. val ue(cont ext);

return null;

b
Cal | abl e<Voi d> javaCal | abl e = new Cal | abl e<Voi d>() {
@verride
public Void call () throws Exception {
function(x);

return null;

b
Per f or manceTest Cal | abl e expr Perf Cal | abl e = new PerformanceTest Cal | abl e(" Expressi on "
+ expression. get ExpressionString(), exprCallable);

Per f or manceTest Cal | abl e javaPerf Cal | abl e = new PerformanceTest Cal | abl e("Java", javaCall able);

Per f or manceTest Resul t conpareResult = Perfor manceTest Hel per. conpar e(20, 200000, expr Perf Cal | abl e,
javaPerf Cal | abl e) ;

conpar eResul t. print Resul ts();

The APl is com.splwg.base.api.testers.performance.PerformanceTestHelper:

public static PerformanceTestResult conpare(int warnups, int reps, PerfornanceTestCallable... callables)

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 271

throws Exception {

Each of the performance callables is treated the same. It gets a series of warmup executions, in order to
populate caches, and allow hotspot JVM optimizations of any methods. Then the accurate system nano

timing (e.g., System.nanoTime()) is called around the loop of the given number of reps.

Profiling

The code below uses YourKit's controll classes to create a snapshot.

public void testProfilePluginScripts() throws Exception {
String docString = "<DR ShortCreatel nterval Records><fact|d>219250542869</ f act | d><| ongDescr >REEE</ | ongDescr ></ DR
_Short Creat el nterval Records>";

Docunent doc = Docunent Hel per. par seText (docStri ng);

/] war mups
for (int i =0; i <5; i++) {
Busi nessbj ect Di spat cher. execut e(doc, Busi nessCbj ect Acti onLookup. const ants. FAST_UPDATE) ;

rol | backAndCont i nue() ;

Controller controller = new Controller();

control ler.forceGC();

control l er.start CPUProfiling(ProfilingMdes. CPU SAMPLI NG Controller. DEFAULT_FI LTERS);

for (int i =0; i < 500; i++) {
Busi nessbj ect Di spat cher . execut e(doc, Busi nessCbj ect Acti onLookup. const ants. FAST_UPDATE) ;
rol | backAndCont i nue();

}

control | er. captureSnapshot (ProfilingMbdes. SNAPSHOT_W THOUT_HEAP) ;

PerformanceTestHelper API

As before, the PerformanceTestHelper helps by providing a seamless interface into the yourkit profiler, for
various options of sampling, tracing, monitoring threads or timing in threads:

public static PerformanceTest Cal | abl eResult profileSanple(int warmups, int reps, PerformanceTestCallable callable)

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 272

throws Exception {
public static PerformanceTest Cal | abl eResult profileTrace(int warmups, int reps, PerformanceTestCallable callable)

throws Exception {

public static PerformanceTestCal | abl eResult nonitor(int warmups, int reps, int nuniThreads,

Per f ormanceTest Cal | abl e cal | abl e) throws Exception {

public static PerformanceTest Cal | abl eResult tinelnThreads(int warnmups, int reps, int nunihreads,

Per f or manceTest Cal | abl e cal | abl e) throws Exception {

The PerformanceTestHelper utility class uses reflection to know whether the yourkit library is available

or not. If it is not available (such as on the build server), the behavior reverts to simple timing protocols

of the corresponding callable iterations. If it is available (such as on a developer's workstation, and they
want to profile a test), then the yourkit profiler is connected to. This would require actually running the test
under a profile session, else an error is produced.

Profiling a callable is somewhat similar to the simple timing of a callable, except for some added steps:

1. Performs some warmups

2. Forces garbage collection via the yourkit API

3. Starts the given profile type (sample vs trace)- the test should be run without automatically starting
the profiler

4. Wrap the repetition loop in a timer

5. Capture a snapshot

This design approach allows profile/performance tests to be checked into version control, for re-profiling
at a later point, and for documentation examples of how to profile code, etc.

References and Additional Resources

Batch programs and strategies:

For details on writing batch programs, using threads for performance improvements, and other batch-
related information, see the Batch Best Practices whitepaper available on the My Oracle Support (MOS)
Knowledge Base (article 836362.1).

Hibernate fetching strategies:

http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching

https://support.oracle.com/epmos/faces/ui/km/SearchDocDisplay.jspx?id=836362.1&type=DOCUMENT&displayIndex=4
https://support.oracle.com
http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching

Oracle Utilities Application Framework Software Development Kit | 3 - Developer Guide | 273

Yourkit profiling demo:

http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

Chapter 4. Packaging Guide

CM Packaging Utilities Cookbook

This document describes the installation, configuration, and operation of the packaging utilities provided
with the Software Development Kit. These utilities enable developers to prepare releases of their custom
modifications, called CM releases, to the products. Releases prepared using these utilities may be

installed on top of an existing base product environment.

(o

Note:
CM releases will correspond to a specific base product version and can only be installed on base
product environments of that version. Customers installing a CM release must first verify the

corresponding base product version with the Implementation team.

Note:
This document describes CM packaging utilities operation for Oracle database only. The
application server can be Unix or Windows/DOS operating system. In Unix you must execute the

script with .sh suffix, in window the script with .cmd suffix. They both will execute the same Perl

script with .plx suffix. For instance:

« applyCM.sh: Unix driver script
+ applyCM.cmd: Windows driver script
- applyCM.plx: Perl script

All the examples in this document are related to Unix. If you are in Windows/DOS simply execute

the same scripts, but using .cmd extension instead .sh.

N

App Server CM Packaging Overview

The following diagram describes the app server CM packaging procedure.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 275

extractCMSource Packaging
Directory

create_CM_Release
Release

Project
Repository

Packaging
App Server

[—==1
==
——
——]
——
[l

—

The starting point of packaging the app server component is the project repository. The tool
extractCMSource is used to get the source from the project repository into the packaging directory.

Note:

The packaging directory must not be used for any other purpose except for storing the extracts.

Mixing other files into the packaging directory will result in errors in succeeding processes.

applyCM copies the extracted source to the packaging app server. It then does all the necessary steps
like generate, compile, etc., to update the packaging app server runtime based on the extracted source.

create_CM_Release is then used to create CM release install package from the packaging app server.
The CM release install package contains all CM code that has been applied to the packaging app server.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 276

Project QA
App Server

install

o] iffabateide

Production
App Server

=i
—T1
T
T
L

The install tool applies the CM release install files to either QA or production app servers.

(L ™
Note:
Release install packages are usually applied only to fresh environments, e.g., to apply the first
batch of CM code or when upgrading to a new version of the product. To install additional code to

an existing environment, patch install packages (described next) are used.
- J

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 277

create_CM_Patch

Old Release
Install Package

Patch
nstall Package

New Release
Install Package

CM patch install packages are used to update an existing installation with the changes since it was

last updated. A patch install package is created by create_CM_Patch as the difference between two CM
release install packages (a newer one and an older one), e.g., for a monthly update schedule, CM release
install packages are created every month and every month, a cm patch install package is created using

the release install packages from the previous and the current month.

To create a patch install package, a new release install package must be created first. Note that a release
(not patch) install package must be available for the previous period. Executing create_CM_Patch with the

two CM release install packages as input creates the patch install package.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 278

Project QA
App Server

install

o] iffabateide

Production
App Server

=i
—T1
T
T
L

Developing Off-site

When developing off-site, there may be no available environments on the target platform. In this case,
development and QA must be done off-site, but packaging and QA must be re-done on-site using

environments on the target platform.

Off-site Process

Development and QA (and the packaging) is done using the same procedure as on-site except for the

following:

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 279

- Packaging and QA are done on environments that may not match the target platform.

- Instead of sending a release or patch install package to the implementation site, only the source
from the install package is sent. This package is called the release/patch source package. It is
created by executing extractCMSource with the data directory of the install package as the source

directory.
Packaging
Release/Patch ! App Server
Source Package ‘ Source
— =]

J

[
[
[ooo-)
— —-1
—=
Sy
L

(

Off-site Development Release

On-site Process

Upon receiving the release/patch source package, the on-site team proceeds with the regular packaging
procedure starting from the applyCM step using the release/patch source package as the source

directory.
Packaging
Release/Patch ! App Server
Source Package ‘ Source

[
[0l
=
[—)
]
L

J

On-site Packaging

(

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 280

Guidelines

Applying a CM patch install package to QA or production app servers is the same as for release install
package, e.g., it is done simply by executing the install tool from the the package directory. By using
these scripts, implementation developers can prepare an installation package containing the contents

of their custom modifications. Developers need to build a packaging environment on a server of the
same operating system platform as used by the target environment to create CM release packages.

A version number must be used to identify each custom modifications (CM) release version. Once
developers select a version number format, the version number must be stored on the environment in the
file SSPLEBASE/etc/CMVERSION.txt, to achieve this place CMVERSION.txt file in etc subdirectory in your
patch directory.

Implementers are strongly recommended to use CM packaging utilities for implementation delivery to
customer site. It will ensure the correct installation complying with base product rules and will keep
an environment upgradable. Please, note, that web files can be also packaged in archive war format (if
SisExpanded environment variable is set to false), in that case it is not possible to just manually copy

changes to the directories.

App Server CM Packaging Tools

The following utilities are provided in this package for maintaining the packaging environment and

creating release versions of customer modifications (CM):

extractCMSource utility, used to extract source from an app server or from a release or patch install
package.

applyCM utility, used to apply a CM patch to a packaging environment.
create_CM_Release utility, used to create a full CM release version.
create_CM_Patch utility, used to create CM patch release version utility.

Instructions for using these utilities are described in the following sections.

Post Install Setup

After the CM Packaging Tools installation, it is required to copy the proper spl-tools-<VERSION>.jar to the
actual jar location, e.g.:

cp <CM script dir>/tools/spl-tools-4.5.0.jar <CM script dir>/lib/

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 281

Using the extractCMSource.plx Utility

This utility written in perl extracts source code from an app server, typically the project repository, or from

a release or patch install package.

Note:

extractCMSource.plx is a Windows-only utility.

Display Usage

To display the usage information, execute the utility without any parameters from the Windows command

prompt.

perl extract CMSource. pl x

extract CMsource. pl x -s sourceDirectory -d destinationDirectory -v Version

[-n subDirectoryName] [-m CnDwner]

-v Version
The Version Nunmber to attach to this rel ease of
the Custorer Modifications.

-s sourceDirectory
sourceDirectory is the location to extract from

-d destinationDirectory
destinationDirectory is the location in which the extracted files
are placed. The programthen creates a subdirectory under the
destinationDirectory to hold the patch.

-n subDirect oryName
Subdi rectory under "Directory" in which this patch will be placed.
If this parameter is not provided, an automatic directory nane
is generated based on the environnent nanme and date/tine.

- m CnOwner
Used for a Milti-CMjar enhancenment, this optional paraneter
specifies the CM owner that needs to be extracted fromthe
project directory (e.g., "cnmD1"). If not specified, the script

uses the default "cni.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 282

Extract From an App Server

To extract the source from a development app server, specify the app server directory as the source
directory. For example, the following invocation extracts source from an app server named CM_PROJ1 in
the C:\SPL directory into C:\CMExtarct and marks the extract as version CM1.0:

perl extractCMSource.plx -s C:\SPL\CM PRQJ1 -d C:\CMExtract -v CML. O

Extract From Release/Patch Install Package

To extract the source from a release or patch install package, specify the data directory in the install
package as the source directory. For example, the following invocation extracts source from a patch
install package named CM1.0_1 in the C:\CMInstall directory into C:\CMExtract and marks the extract as
version CM1.0_1:

perl extract CMSource.plx -s C:\CMnstal |l\CML. 0_1\ CMCCB\ dat a

-d C\CMExtract -v CML.0_1

FW Utility to extract CM sources from Unix environments

The following utility, delivered with the Oracle Utility Application Framework, is to extract CM sources from
a Unix environment (note that extractCMSource.plx is the Window only utility):

SSPLEBASE/bin/extractCMSourceUNIX.sh

Usage:

-V <version>

The Version Number to attach to this release of the Customer Modifications. (Example: CM001)
-t <target directory>

Target Direcory is where the extracted files will be placed. This program will then create a subdirectory
under that directory for the patch with a timestamp. with a timestamp.

Using the applyCM Utility

After an Implementation team has completed CM development on a Windows server or prepared a fix in

a development environment, they'll need to copy and apply the CM modules to a packaging environment

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 283

on the same platform as the target (e.g. production, testing). In other words, if the target system is a Unix

platform, the packaging environment must be on Unix as well.

The applyCM.sh utility (applyCM.cmd for Windows installations) serves this need. It can be used to copy
and apply all CM development modules to a packaging environment or any specific extract (patch) of CM
development. The script needs to be executed using the full pathname (this is necessary because you
need to be located in a different folder, see below). In addition, you need to be set to a target environment
(e.g. packaging environment).

Script: <CM scripts>/applyCM.sh
Usage:
(no options)

Apply patch on top of the existing base product and possibly CM integration environment. This mode will
add new CM files from patch to the environment and replace the changed ones. But it will not delete the
previously existing in the environment CM modules that are not part of the patch.

It needs to be executed from the source root folder.
-d

Remove all previous CM modules from the environment and apply patch on clean base product
environment. This option is useful when needed to create the CM integration environment from scratch.

It needs to be executed from the source root folder.
-b

Recompile the existing sources in current environemnt. Usually it is used to execute full recompile a

development environment.

It needs to be executed from the application folder root, e.g. SSPLEBASE.
-n

It won't stop/start automatically the target environment.

The input for applyCM.sh utility is current folder (source root folder), which contains the following
subfolders:

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 284

* java
* scripts
. etc

* services

* splapp

These subdirectories contain only CM modules created according to the rules of the document "Naming
conventions for tailoring application implemetation" (see Installation Guide of the product). This directory
structure should be prepared and filled with relevant CM modules on development Windows server, then
copied over to the server that hosts a packaging environment by ftp utility. After that you can apply the
patch to the packaging environment. Modules that are not created using these conventions will be
ignored by applyCM.sh utility. You have to reside in the patch directory to apply the patch. ApplyCM utility
will generate and compile java code, will create java jar file (cm.jar) required for customer implementation
platform.

Using the create_CM_Release Utility

The create_CM_Release.sh utility is used to create a CM full release package that will contain only
customer modification (CM) files. This is used to install a full set of customizations on top of the base
product environment.

In order to build a CM release version that is compatible with the target platform, you need a packaging
environment on the same operating system as the one on which the receiving product is installed. The
target environment for installing the release version on a customer site can either be a pure base product
environment, or an environment that already contains previous CM versions. In the second case, all
previous CM modules will be removed by the install utility at the beginning of the installation process.

It is mandatory that every implementation version is identified by its own release version number. This
number may be in any free standard and must be recorded in the $SPLEBASE/etc/CMVERSION.txt file on
the environment.

Here are the detailed instructions for creating the full release version for CMs:

« Log in to the server with the administrator user id and initialize a packaging environment. You will
use this environment to create the CM release version.

« Change the directory to the directory that contains the Developers Tool Suite utilities (CM_
packaging).

- Execute the utility using the following command:

.lcreate_CM Rel ease. sh -e $SPLENVI RON -v $VERNO -d $RELEASEHOME,

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 285

where
SSPLENVIRON is the target packaging environment
SVERNO is the CM version number (the content of the file CMVERSION.txt)

SRELEASEHOME is the name of the directory on the server where you want to place the resulting
CM release package.

For example:
./create_CM_Release.sh -e M4_Q1_SUNDB2 -v M.4.0.0 -d /versions

Tar and zip the resulting CM release directory for Unix platform or zip it for Windows platform and ship it
to your customer.

The customer who wishes to install the delivered package onsite will follow the instructions:

« Decompress and untar the installation media to a temporary directory for the Unix server or unzip it
for Windows server.

» Change directory to the target directory.

- Login and initialize the target environment.

« Change to the Installation directory using the following command
cd CMCCB. $VERNO
where

SVERNO is the version number (the content of the file CMVERSION.txt)

* Run the following script
.Jinstall.sh - for Unix

install.cmd - for Windows

Using the create_CM_Patch Utility

The utility create_CM_Patch.sh is used to create a patch release of CMs. A patch release version is
created as a difference between a previous CM version and a new CM version. This type of release may
be useful if the implementation team wants to ship only an update of the previously released version by
preparing a smaller package that can be delivered easily by email or ftp to the customer.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 286

-
’ Fastpath:

Before executing the utility, be sure that both packages are available in the same directory on the

CM version.

N

server. During the installation process at the customer site, the patch install utility will not remove
the previous version of CM modules, and will only install the patch content on top of the previous

J

Here is the process for creating a patch release CM version:

* Log in to the server with the administrator user id.

- Change directory to the name of the directory that contains the SDK packaging utilities (CM_
packaging).

« Execute the utility by entering the following command:

./create_CM Patch. sh -d $RELEASEHOVE
where:

SRELEASEHOME is the directory that currently holds your CM full release packages - and where
you also want to put your new patch package.

Tar and zip the resulting CM patch directory for Unix platform or zip it for Windows platform and ship
it to your customer. The customer who wishes to install the delivered package onsite will follow the

instructions:

« Decompress and untar the installation media (on Unix) or unzip (on Windows) to a temporary
directory.

 Change directory to that directory.

« Login and initialize the target environment.

- Change to the Installation directory by using the following command
cd CMCCB. $VERNO
where

SVERNO is the version number (the content of the file CMVERSION.txt)

* Run the following script
.Jinstall.sh - on Unix

install.cmd - on Windows

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 287

Multi-CM Application Functionality
The Multi-CM Jar functionality allows multiple teams to develop features of the application separately.

Each team is identified by a CM application owner. For example, a team in one geographic location may

be identified by CM application owner cm01, whereas another team will be cm02.

Teams can have independent project repositories, packaging directories, packaging app servers, releases,
and patches.

The different CM application releases/patches are then installed into a target QA or production app server
so that they contain all cm applications, e.g., a target environment will contain cm07, cm02, cm3, etc.

The Multi-CM application is activated by using the "-m" option when running ext r act CVSour ce. pl x.
With this option, only the source code for the given CM application owner is extracted from the project
repository. It creates a file (et ¢/ cm owner . t xt) in the packaging directory identifying the CM application

owner.

If the cn_owner.txt file exists, all subsequent utilities, namely, applyCM, create_CM_release, create_CM_
patch, and install operate using the designated CM application owner. The installation of the final CM
package removes the previously-installed CM application owner's files and modules, replaces them with
the ones from the installation package, and, finally, appends the owner to the existing cm_owner.txt file in

the target environment.

If the Multi-CM application is activated, the applyCM script applies to the packaging environment all

the jar files extracted from development (excluding <CmOwner> jar, which is compiled and created by
applyCM). Such jar files are added to the Classpath for the Java compilation. The create_CM_release, in
case the Multi-CM application is activated, copies only the <CmOwner>.jar to the installable package:

perl extract CMSource.plx -s C\SPL\CM PRQJ1 -d C:\CMExtract -v CML.0 —-m cnD1

Each CM owner development requires separate CM jar structures, e.g., structures/ cnD1_j ars_

structure. xm .

Each CM owner development can also contain customized user exits, and if there are additional

templates, each must be defined in the relevant structure, e.g.:

tenpl at es/ cnD1_web. xm . exi t _end. i ncl ude

structures/cnD1_tenpl ate_structure. xn

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 288

CM System Data Packaging Tools

CM System Data Packaging Overview

CM System Data Packaging Tools allow implementers to extract and package Customer Modification
('CM') system data from their databases and deliver it to their customers.

The following example uses the Oracle database platform to illustrate the extract and upload process.

As a standard release process, the implementers can add the CM system and Meta data records to the
base product database or change base product system and Meta data records according to the specific
rules (see "System Table Guide" document in the Installation Guide of the product). Implementers can
then choose to migrate the CM data to a customer database as a full extract of CM data, or incremental
differences between the current version of the system data on the customer site and the new version of

the implementation development database.

Project Project Blueprint

Dev DB Release DB File
e Create Copy (— System Data (o

& & s

Packaging CM system data starts by creating a copy of the project dev database into a project release
database. A blueprint file of the system data is then created by running the GenSysdataBP java utility

from OraGenBPjar.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 289

Project
QA DB

Blueprint
File

&

Production
DB

s

To apply the latest changes to a QA or production database, run OraSDUpg java utility in OraDBI.jar with
the blueprint file as input and then specifying the target database.

Extract Process

Extract process involves extracting CM system data based on the rules defined in a parameter file and
packaging it in a binary file - blueprint. This file can then be used as an input source by the data upload
process.

The following example uses the Oracle database platform to illustrate the extract and upload process.

GenSysdataBP java utility in OraGenBPjar, included in this package, is the extract utility that reads an input
parameter file for the list of Oracle database tables, extracts data from these tables and compresses into
a binary file (blueprint).

A sample extract parameter file extract_cmsystbls.Ist is included in this package to provide the
implementers a starting point. This parameter file, as can be seen, defines rules for the tool to extract

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 290

CM data based on their key definition. However, in some cases, CM data may be stored on 'Cl' rows.
The column user_exit_pgm on CI_MD_PRG_COM table is one such case. For cases like these, the

implementers can choose to change the extraction rules in this file to match their requirements.

To extract your data, make a copy of extract_cmsystbls.Ist file and edit it to match your requirements.
Execute the extract process from a Command-window and provide it with the required parameter when

prompted.
The data in input parameter must match the following format:
CI_ALG_TYPE_L;LANGUAGE_CD ='ENG';VERSION

Where, the first field stores the table name, second field stores the selection criteria (where clause for
selecting data) and the third field stores the list of column that should be ignored during extraction. The
character semi-colon is used as the field separator. If there are multiple columns that need to be ignored

(not included in the data being extracted), comma can be used in the third field as the separator.

GenSysdataBP accepts the following parameters:

- -d Connect String

Where the Connect String contains:

« Schema owner name (say CISADM)
» Password for schema owner.
« Database name.

This is a mandatory parameter. If not entered, the utility will prompt the user to build the connect
string.

Connect String should be entered in the following format:
CISADM,CISADMPSWD,DBNAME

(Comma-separated and no space).

« -i Input Parameter file name.
Name of the input parameter file that the utility reads to get the list of tables and their selection
criteria. This parameter is optional. The default input parameter file name is CDXSdBp.Inp.

« -0 Output File Name.

This is the name of the binary file that the utility creates. This parameter is optional. The default
output file name is "OraSdBp" (without extension).

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 291

« -c NLS characterset of the target database

The utility uses this parameter to set the NLS_LANG parameter on the client side. This parameter is
then validated against the character set of the source database and is saved in the blueprint. This

is mandatory parameter and is prompted for if not set by the user.

°-s
Specify to generate object level SQL files. Optional.

« For help (to list all the accepted parameters with a brief description), execute the utility without any

parameters.

Upload Process

Data upload process compares the data included in the blueprint file (generated by the extract process)

and that extracted from a target database and generates output SQL to synchronize them.

The java utility OraSdUpg in OraDBI.jar, included in this package, is used by the process utility to compare
and synchronize the data in the target database with that in the input blueprint file.

OraSdUpg reads an input parameter file for the list of the tables to be upgraded along with the selection

criteria and upgrade rules for each table.

Each table has a corresponding record in the file with following 6 fields separated by semi-colon:

« Table Name

- The instance of the table. This number should be always set to 1. The cases where more than one
instances of a table are processed are extremely rare and are not discussed here.

* Selection Criteria for the table.

- Insert allowed indicator (T/F): Whether records should be inserted into the target database table if
they missing in the database but exist in the binary file.

« Update allowed indicator (T/F): Whether records should be updated in the table if they have
different values than in the binary file.

« Delete allowed indicator (T/F): Whether the obsolete data in table in the target database. Obsolete
records exist in target database but not in the binary file.

« Fresh Install Indicator (T/F): Whether the table should be seeded during the very first install. This
indicator is only used when the utility is invoked with "-f* switch.

- List of columns not updated can be specified in the sixth field. Use a comma to separate the
column names if multiple columns are to be ignored during updates. These columns will be
inserted but will not be updated during the data synchronization process.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 292

Following is the example of how these records should look like in the file:
CI_LOOKUP;1;LANGUAGE_CD = 'ENG';T;T;F;T;DESCR

A sample file upload_cmsystbls.Ist has been included in this package. Implementer can make a copy of

this file and edit it to match their requirements.

Before making connection to the target database, the utility reads the header from the blueprint and sets
NLS_LANG environment variable on the client machine. It then validates this character set setting to the

character set of the target db after making a connection and warns user if there is a mismatch.

The utility can be executed in verification and modification modes. In verification modes, the action
SQL statements are simply written to the log file but in modification mode they are applied the target
database.

It is very important to note that the primary requirement for OraSdUpg is definition (column and primary
key) of tables being upgrade in the target database should be same as that in the database from which
the binary file was extracted.

Be careful while selecting the table and the selection criteria because to compare the data, the utility, for
each table, first loads the data from the binary file and the database in the memory. If a table has huge
amount of data and selection criteria set causes the utility to work on large quantity of data, it may run out

of memory.

To avert unique key constraint violation error that can be caused by improper sequence of data deletion
and insertion on a table and also the foreign key issues, the utility first gathers all the generated action
statements for all the tables before executing them. The execution of all the generated statements is
done in multiple iterations. After each iteration, all the failed statements during that iteration are collected
and executed again in the next iteration. The iterations are repeated till either all the statements in

iteration are executed successfully or they fail.

The utility disables and enables all the triggers on the tables being upgraded before and after applying
database changes. No triggers get executed during the system data upgrade.

OraSdUpg accepts the following parameters:

« -d Connect String

Where the Connect String contains:

+ Schema owner name (say CISADM)

« Password for schema owner.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 293

» Database name.

This is a mandatory parameter. If not entered, the utility will prompt the user to build the connect
string.

Connect String should be entered in the following format:
CISADM,CISADMPSWD,DBNAME

(Comma-separated and no space).
- -b Bypass the database character set validation.
Before upgrading data in database, the utility validates character set stored in the blueprint by

OraSDBp against that of target database. The user can bypass this validation step by setting this
switch.

* -p Input Parameter file name.
Name of the input parameter file that the utility reads to get the list of tables and their selection
criteria. This parameter is mandatory.

« -i Input Binary File.
This is the name of the binary file that the utility reads to extract the data that it then uses to
upgrade the target database. This is a mandatory parameter.

. f
Treats the data synchronize process as New install. When set, the flag forces OraSdUpg to use

“fresh install indicator" for the tables where INSERT indicator is set to false and compels it to insert
missing records in all of them. Optional.

e-u
Makes OraSdUpg run in the modification mode. Optional.

*-q
Provide to run in silent mode (non-interactive mode). Optional.

«-m

If it is provided the DB triggers are not disabled. Optional.

* -l Log File Name.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 294

This is the name of the file that OraSdUpg creates, if it is missing and starts appending the
information about the action it is performing.

« -h Help.

This option will list all the accepted parameters with a brief description.

Note:

It is recommend that the implementers execute the upload process first in the verification mode

and review the SQL before running the tool in the modification mode.

Tailoring Your Oracle Utilities Application Implementation

This document describes the naming conventions and processes that must be followed to ensure

a successful upgrade of the Oracle Utilities application base product release-on-release. The
implementation team responsible for tailoring the Oracle Utilities application to meet specific customer
needs must follow this guide to preserve their changes and ensure successful upgrades. Only the
changes described in this document are considered as permitted for the tailoring of the base product. Any
changes that do not conform to these rules may be overridden by the install utility during a base product

upgrade.

Some naming conventions used in this document:

« $sPLEBASE (for UNIX) and sPLEBASE%(for Windows) is the generic Oracle Utilities environment
directory name.

* $SPLENVI RON (for UNIX) and usPLEBASE%(for Windows) is the generic Oracle Utilities environment
name.

- $sPLDB (for UNIX) and usPLDB%(for Windows) is the database type.

Preserving Customer Changes

For any kind of a customer modification, the file's directory structure and naming conventions are defined
in this section. The implementation team must follow these conventions to preserve the results of their
work during a subsequent base product upgrade.

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 295

« The configuration parameters of the environment being upgraded are displayed (as default
parameters) during the configuration stage of the install process. These parameters may be
changed if new settings are preferred.

- The base product is shipped with examples of different kinds of modules that may be used by
implementation teams. The examples can be found in the following directories:

o $SPLEBASE/ spl app/ appl i cati ons/root/cm t enpl at es contains Oracle Utilities Application
Framework Web file examples.

o $SPLEBASE/ spl app/ appl i cat i ons/ r oot/ <appl i cation product code>/cm tenpl ates. This
directory contains Oracle Utilities application product Web file examples. The <application
product code> varies by product; for example, the Oracle Utilities Customer Care and Billing,
the <application product code> is c1.

o $SPLEBASE/ scri pt s/ cm exanpl es. For batch script examples, this directory has two
subdirectories: Fwfor Oracle Utilities Application Framework examples, and <application
product code> for Oracle Utilities application product examples (e.g., ccs for Oracle Utilities
Customer Care and Billing, Tax for Oracle Public Sector Revenue Management).

(L N
Note:
For simplicity, this document generally uses UNIX platform naming conventions. To apply these
names to the Windows platform, use the Windows naming conventions "%" sign instead of the
"$" sign, and backslashes ("\") instead of forward slashes ("/") as directory separators (e.g.,

YSPLEBASE% spl app\ appl i cati ons\root\cm tenpl at es).
- J

Tailoring Web Files

Base product Ul files are located in the directory $SPLEBASE/ spl app/ appl i cat i ons/ r oot . Implementers may
develop their own Ul files under the directory $SPLEBASE/ spl app/ appl i cat i ons/ root / cm No specific naming

conventions are enforced under this directory.

The root directory may be deployed in war file format for runtime environment (SPLApp. war). Use provided

utilities to incorporate your cm directory into the sPLApp. war file.

Tailoring the CM Java Application

Implementers may write their own Java classes to extend the Oracle Utilities application functionality. All
Java files should belong to the com spl wg. cmpackage. The CM Java application should be compiled into
a jar file named cm j ar. The SDK Customer Modification packaging utilities will help build this file. The
cm j ar is typically deployed into the following directories:

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 296

$SPLEBASE/ spl app/ appl i cati ons/root/WEB-I NF/|ib
$SPLEBASE/ spl app/ appl i cati ons/ XAl App/ WEB- | NF/ | i b
$SPLEBASE/ spl app/ busi nessapp/ | i b

$SPLEBASE/ spl app/ st andal one/ | i b

Additional third-party jar files can be deployed by following the cnr. j ar naming standard. Customers
may use this option to deploy any additional functionality, interfaces with other applications, and so on.
These will not be built by the SDK Customer Modification packaging utilities, but will be deployed into the
application once it is supplied in jar format.

The root directory may be deployed in a war file format for the runtime environment (SPLApp. war). Use the

provided utilities to incorporate your / cmdirectory into sPLApp. war file.

Important:

All cnt . j ar files that need to be applied must be defined in $SPLEBASE/ structures/cmjars_
structure. xm . If the file does not exist in the target environment, the sample cmj ars_
structure. xm . exanpl e file can be copied from the SDK packaging's / et ¢ folder.

Manual cm.jar deployment

The cmj ar file is usually deployed as part of the CM packaging process (ext ract CMsour ce, appl yCM
create_CM rel ease, etc.), but in some cases it may be desirable to manually deploy the cm j ar file to one

or more target environments.

@ CAUTION:

This should be done with care and should only be considered if the cm j ar components are self-

contained and have no external dependencies.

To manually deploy cm j ar:

1. The SPLEBASE/structures/cm_jars_structure.xml must exist and should have at least the

following:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<j ar_structure>
<cm j ar>
<source_dir_jar>@PLEBASE@ et c/ | i b</ source_dir_jar>

<dest _f ol der s>

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 297

<dest _f ol der _1>@SPLEBASE@ spl app/ appl i cat i ons/ XAl App/ \EB- | NF/ | i b</ dest _f ol der _1>
<dest _f ol der _2>@BPLEBASE@ spl app/ appl i cati ons/ root/WEB- | NF/ | i b</ dest _f ol der _2>
<dest _f ol der _3>@PLEBASE@ spl app/ busi nessapp/ | i b</ dest _f ol der _3>
<dest _f ol der _4>@PLEBASE@ spl app/ st andal one/ | i b</ dest _f ol der _4>
</ dest _f ol der s>
<chi | d_j vm pat h>@PLEBASE@ spl app/ st andal one/ | i b</chi |l d_j vm pat h>
</cmjar>

</jar_structure>

The <cm.jar> element identifies the jar file name, usually cm j ar, as defined here.

Element <source_dir_jar> defines the source location of the abovementioned jar. The directory in

the example above should work for most cases.

The dest _f ol der_ n elements point to the target locations where the jar will be placed. The
directories in this example should work for all.

2. Manually copy the cm j ar to the directory specified in the <sour ce_di r_j ar > element, typically

$SPLEBASE/ et ¢/ | i b.

3. Run initialSetup.sh (or .bat on Windows) to do the rest. This will copy the cm j ar to the specified

target locations and rebuild the war and ear files.

Positioning Custom Scripts

Customers and implementers may put their scripts under the directory $SPLEBASE/ scri pts/cm

Replacing the Oracle Utilities Logo

Customers may want to replace the Oracle Utilities logo image on the Main menu with another logo
image. To do this, put the logo <customer_logo_file>.gif file into the directory $SPLEBASE/ et ¢/ conf/r oot/ cm
and create a new "External” Navigation Key called CM_logolmage.

To replace the logo, run the Oracle Utilities application from the browser with the parameters:

http://<host name>: <port>/cis.jsp?utilities=true&t ool s=true

From the Admin menu, select Navigation Key. Add the above Navigation Key with its corresponding URL
Override path.

The syntax for the URL path is:

Oracle Utilities Application Framework Software Development Kit | 4 - Packaging Guide | 298

For Windows:

http://<host name>: <port>/cni <custoner_| ogo_file> gif

For UNIX:

http://<host name>: <port>/spl/cnl <custoner_| ogo_file>. gif

The root directory may be deployed in war file format for the runtime environment (SPLApp. war). Use the

provided utilities to incorporate your cmdirectory into the SPLApp. war file.

Using the Implementation Version File

Implementers may keep the implementation version number in the cwWERSI ON. t xt file in the $SPLEBASE/ et ¢
directory. This file is preserved by the install utility.

Tailoring XML Schema

Note:

This implementation option is applicable for Oracle Enterprise Taxation Management application

only.

Implementers may generate their own XML schemas and store them in the directory $SPLEBASE/ spl app/
xm Met al nf o. The implementation schemas must use the naming convention cML*. xni .

Tailoring Templates and User Exits

The templates delivered under the folder $SPLEBASE/ t enpl at es can be overridden by the Application
by creating a copy of the template file with the same name but prefixed by "cm.". The cm copy will be

customized.

Since the templates can contain user exits (special statements that allow to import external files during
the template processing). Those user exits can be overridden by creating a copy of the user exit file with
the same name but prefixed by "cm_". The cm copy will be customized.

Index

C 25,298
CM Java application logo files
tailoring implementation 25,297
23,295 overview
CMVERSION 21,294
tailoring implementation preserving customer changes
25,298 22,294
COBOL conversions scripts
8 25,297
| templates and user exits
Introduction 26, 298
7 Web files
L 23,295
Light business objects XML Schema
262 25,298
logo files templates and user exits
tailoring implementation tailoring implementation
25,297 26, 298
o W
overview Web files
tailoring implementation tailoring implementation
21,294 23,295
P X
preserving customer changes XML Schema
tailoring implementation tailoring implementation
22,294 25,298
S
scripts

tailoring implementation
25,297
T
tailoring implementation
CM Java application
23,295
CMVERSION

	Oracle Utilities Application Framework Software Development Kit
	Contents
	Chapter 1. Oracle Utilities Application Framework Software Development Kit
	Chapter 2. User Guide
	Overview
	Converted COBOL Programs
	Development Environment
	Overview
	The App Server is the Development Environment
	Development App Server is Local, Not Shared
	Repository for Project

	Components of the Software Development Kit
	Project Development Database
	Project Repository
	Development Workstation

	Directory Structure
	The App Server Directory
	Standard App Server Directory Structure
	Additional Directories for Development
	Java
	Project Configuration Information

	Pertinent Directories in the App Server
	Client Directory
	The Software Development Kit Client
	Project Directories
	Shortcuts Directory

	Synchronizing with the Project Repository
	Versions
	Version Number
	Compatibility with Products
	Updates
	Moving Up to a New Update
	Moving Up to a New Version of a Product

	Product Single Fixes

	Build Server
	Tailoring Your Oracle Utilities Application Implementation
	Preserving Customer Changes
	Tailoring Web Files
	Tailoring the CM Java Application
	Manual cm.jar deployment

	Positioning Custom Scripts
	Replacing the Oracle Utilities Logo
	Using the Implementation Version File
	Tailoring XML Schema
	Tailoring Templates and User Exits

	JUnit testing
	Standard test cases
	Testing Searches
	Testing Maintenance Classes
	Testing Add on Maintenance Class
	Testing Change on Maintenance Class
	Testing Delete on Maintenance Class
	Test default actions on Maintenance Class

	Testing Entity Page Maintenance Classes
	Testing Add on Entity Page Maintenance Class
	Testing Change on Entity Page Maintenance Class
	The Comparisons
	Test default actions on Entity Page Maintenance Class

	Testing Business Entity Validation
	Test handleChange / handleAdd / etc code
	Testing for Warnings
	Maintenance Classes
	Entity tests

	Technical Background
	Technology Overview
	Portability
	Distribution

	OUAF Web Services
	SPL Service XML Metainfo Files
	Example using Page Service
	Example Using Search Service

	Server Architecture Overview
	Client Architecture Overview
	Introduction
	Client Architecture Discussion

	SPL Client API
	Overview
	Client API Discussion
	JavaScript Invocation Context
	Data Representation and Localization
	Core JavaScript Classes
	CisModel
	Data representation
	Navigation
	CisModel Instance Variables
	Static methods
	CisModel Instance Methods

	DataElement
	DataElement Instance Variables
	DataElement Instance Methods

	List
	List Instance Variables
	List Instance Methods

	Free Functions
	top.js
	cis.js

	Metadata Overview
	Generated Tab Menu Metadata
	Generated UI Program Component Metadata
	Menu and Navigation Metadata
	Table-Related Metadata
	Maintenance Object Metadata
	Defining Generator Tools Metadata

	Development Process
	Hooking into User Exits
	Hooking into UI Javascript User Exits
	Hooking into Java User Exits (interceptors)

	Extending Business Entities
	Extending the Business Interface
	Extending the Specialization Interface
	Creating New Business Entities
	Specifying the Business Interface
	Specifying the Specialization Interface

	Extending Maintenance Classes
	Maintenance extensions

	Creating Business Components
	Plugging in Algorithms
	Creating Background Processes
	Testing Background Processes

	Creating MOs and Maintenance Transactions
	Creating Javadocs for CM Source Code
	Generate CM Javadocs
	Recreate the Javadoc Indices

	Cookbook
	Hooking into User Exits
	Hooking into Maintenance Class User Exits
	Maintenance extensions
	Developing Maintenance Extensions

	Hooking into UI Javascript User Exits
	Miscellaneous How-To's
	How Do I Control the Initial Focus Within Tab Pages/Grids/Search Pages?
	How Do I Mark Fields that Won't Make the Model Dirty?
	How Do I Control the Triggering of Defaults After a Search?
	How Do I Avoid Automatically Setting Fields to Uppercase?
	How Can I Force the Save Button to be Enabled?
	How Can I Override the Processing After a Change/Add?
	How Do I Prevent the System from Setting Focus to a Widget After an Error?
	How Do I Prevent Attributes From Being Copied into New List Elements?
	How Do I Customize New List Elements?
	How Can I Get My Sequence Numbers to Default Properly on My List Grid?
	How Do I Override the Tab Page Shown After an Error in a List (Grid/Scroll)?
	How Do I Disregard Unwanted Criteria from a Search Triggered by a Search Button?
	How Do I Disregard Unwanted Search Result Columns?
	How Do I Format a Value Based on a Given Format?

	Hooking into Java User Exits (interceptors)
	Example

	Maintaining General-Purpose Maintenance Classes
	Maintaining MOs
	Maintaining Maintenance Classes for MOs
	List Maintenance Classes
	Maintenance List Filters
	List Maintenance Get More

	Maintaining Maintenance Objects

	Maintaining Database Meta-data
	Maintaining Fields
	Maintaining Tables

	Maintaining Java Classes
	Maintaining Business Entities
	Business Entity Background
	How Do I Create a New Business Entity Instance?
	How Do I Change Values on an Existing Business Entity Instance?
	How Do I Delete a Business Entity Instance?

	Persistent Classes
	Creating the Implementation Class
	Developing Change Handlers
	Creating the Change Handler Class
	Testing the Change Handler Class
	Validation Rules
	The Rules
	Custom Rules
	Conditions

	Change Handler Helpers for Maintenance Objects
	BO-Based MO
	Change Handler Sample Code
	Change Handler Junit Test Code
	Standard MO Log Table
	Change Handler Sample Code
	Change Handler Junit Test Code
	Standard MO Log Parameter Table
	Change Handler Sample Code
	Additional Validations
	Using Helper Class Validations Only
	Using Helper and Change Handler Validations

	Maintaining Business Components
	Creating Business Components
	Component Replacement
	Calling Components

	Maintaining Maintenance Classes, including collections

	Maintaining Services
	Maintaining Foreign Key References
	Maintaining Lookup Tables
	Maintaining Navigation Keys
	Maintaining Navigation Options
	Maintaining User Interfaces
	Maintaining Menus
	Maintaining Application Security
	Maintaining UI Components (Translation)
	Flushing Server and Client Caches
	User Language
	Modifying Dialog Titles
	Modifying Transaction Titles and Tab Labels
	Modifying Field Labels on Pages
	Modifying Button Labels
	Modifying Messages

	Plugging in Algorithms
	Creating Algorithm Spot Implementation Class
	Review Algorithm Spot Definition
	Create Algorithm Component Implementation

	Add Algorithm Type
	Add Algorithm
	Create References to New Algorithm

	Maintaining Portals and Zones
	Maintaining Background Processes
	Maintaining Background Processes Overview
	Creating a BatchJob
	The BatchJob Annotation
	Creating JobWork
	Declaring a ThreadWorker Class

	Creating a ThreadWorker
	Initializing ThreadWork
	Executing a WorkUnit
	Finalizing ThreadWork
	Choosing a ThreadExecutionStrategy

	Creating Javadocs for CM Source Code
	Upgrade JSP to XSLT
	Create User Exit Files
	Tree User Exit Changes
	Change Template Code in Program Components
	Create XML File with UI Meta-data
	Delete the JSP Files
	Log into the Application and Test

	Utilities
	Environment Batch Programs
	displayEnvironment.bat
	switchEnvironments.bat
	createNewEnv.bat

	Services
	Batch Program setupSvcXMLPrompted.bat
	Batch Program updateXMLMetaInfo.bat

	Eclipse Tools/Wizards
	Batch Program startEclipse.cmd
	Annotation Editor
	Project database information
	Maintenance Object wizard

	Upgrade JSP to XSLT
	Batch Program convertTreePageExits.pl
	convertTreePageExits Purpose
	convertTreePageExits Description
	convertTreePageExits Usage

	Batch Program convertSubPanelExits.pl
	convertSubPanelExits Purpose
	convertSubPanelExits Description
	convertSubPanelExits Usage

	SQL Script changeTemplateCodesTTRAndPN.pl
	changeTemplateCodesTTRAndPN Purpose
	changeTemplateCodesTTRAndPN Description

	Javadocs
	Batch Program generateJavadoc.bat
	Batch Program reindexJavadoc.bat

	Chapter 3. Developer Guide
	Overview
	Java Annotations
	Public API
	SQL Return Codes
	Standard Business Methods
	Business Entity Public Methods
	Public Methods
	Protected Methods
	Data Transfer Object Methods
	Id Methods

	Maintenance Class Public Methods
	UI Javascript User Exits
	Client User Exit Flow
	Read Page
	Delete Page
	Save Page
	Refresh Page
	Prepare Model for Add
	Update Field

	External User Exit Templates
	Template Structure
	Design Approach
	Using the External User Exit Templates

	Create an External User Exit
	Find the Name of the JSP File
	Determine the Base User Exit
	Uncomment the Function and Add Code
	Test Your Code

	Field-level Security Client-Side User Exit Example
	How-To
	How Do I Control the Initial Focus Within Tab Pages/Grids/Search Pages?
	How Do I Mark Fields that Won't Make the Model Dirty?
	How Do I Control the Triggering of Defaults After a Search?
	How Do I Avoid Automatically Setting Fields to Uppercase?
	How Can I Force the Save Button to be Enabled?
	How Can I Override the Processing After a Change/Add?
	How Do I Prevent the System from Setting Focus to a Widget After an Error?
	How Do I Prevent Attributes from Being Copied into New List Elements?
	How Do I Customize New List Elements?
	How Can I Get My Sequence Numbers to Default Properly on My List Grid?
	How Do I Override the Tab Page Shown After an Error in a List (Grid/Scroll)?
	How Do I Disregard Unwanted Criteria from a Search Triggered by a Search Button?
	How Do I Disregard Unwanted Search Result Columns?
	How Do I Format a Value Based on a Given Format?

	Java User Exits (interceptors) Interfaces and Classes
	IAddInterceptor Interface
	PageBody aboutToAdd(RequestContext, PageBody)
	void afterAdd(RequestContext, PageBody)

	IChangeInterceptor Interface
	PageBody aboutToChange(RequestContext, PageBody)
	void afterChange(RequestContext, PageBody)

	IDeleteInterceptor Interface
	boolean aboutToDelete(RequestContext, PageBody)
	void afterDelete(RequestContext, PageBody)

	IReadInterceptor Interface
	PageBody aboutToRead(RequestContext, PageHeader)
	void afterRead(RequestContext, PageBody)

	InterceptorError class
	void setMessageNumber(BigInteger messageNumber)
	void setMessageCategory(BigInteger messageCategory)
	void setMessageParameters(List messageParameters)
	void setMessageParameterTypeFlags(List messageParameterTypeFlags)

	InterceptorWarning class
	InterceptorWarning(ServerMessage warningMessage)
	InterceptorWarning(List warningMessages)
	void addWarningMessage(ServerMessage message)

	RequestContext Methods
	String getLanguageCode()
	String getUserId()

	Data Objects
	PageHeader and PageBody Methods
	Object get(String fieldName)
	String getString(String fieldName)
	boolean getBoolean(String fieldName)
	BigInteger getBigInteger(String fieldName)
	void put(String fieldName, Object value)

	PageHeader
	PageBody
	ItemList getList(String name)

	ItemList
	ListHeader getHeader()
	String getName()
	List getList()
	void setList(List list)

	ListHeader
	ListBody
	String getActionFlag()

	CMServiceConfig.xml structure

	Application Logs
	Logging within Business Logic
	Configuring Logging at Runtime
	Property Configuration
	Trace Flags

	Java Programming Standards
	Rationale
	Guidelines
	Naming Standards
	General guidelines
	Entity Naming Guidelines
	Collection Naming Guidelines
	Class Name
	Collection Name

	Lookup Naming Guidelines
	Special Cases
	'Type' Entity Controlling Characteristics for 'Instance' Entities - Characteristic Controls

	HQL Programming Standards
	Examples
	Union queries
	Performance
	Raw SQL

	SQL Programming Standards
	Composing SQL Statements
	Prerequisite
	Composing a SELECT Statement
	General SELECT Statement Considerations
	Selection List
	Database-specific Features
	Oracle

	FROM Clause
	WHERE Clause
	General WHERE Clause Considerations
	Use of Sub-Selects
	Use of in Function
	Use of Database Functions
	Other

	Sort Order
	Grouping

	Existence Checks
	SQL statements to avoid
	Decimal Delimiter

	Testing SQL Statements
	Result Data
	Performance Testing - Oracle Only
	Overview
	What is an Explain Plan?
	Generate the SQL's Explain Plan
	Analyzing the Explain Plan
	Access Methods
	Common Issues to Be Aware of
	Cartesian Product
	Full Table Scan
	Join Order
	Nested Loops
	Sort

	More Extensive Performance Testing
	SQL Development and Tuning Best Practices
	Additional Resources

	Database Design
	Database Object Standard
	Naming Standards
	Table
	Columns
	Indexes
	Sequence
	Trigger

	Column Data Type and Constraints
	User Define Code
	System Assigned Identifier
	Date/Time/Timestamp
	Number
	Fixed Length/Variable Length Character Columns
	Null Constraints
	Default Value Setting
	Foreign Key Constraints

	Standard Columns
	Owner Flag
	Version

	System Table Guide
	Key Generation
	Metadata for Key Generation

	Development Performance Guidelines
	Object-Relational Mapping: Background
	The ORM defers database calls for performance
	ID Objects
	Counting a collection
	Avoid unnecessary work
	ORM 'Navigation' is your friend
	How to Pre-load Entities Using Fetch
	Session Cache
	Level 2 Cache Applicable for Batch
	Flushing - COBOL and Save Points

	Avoid Extra SQL
	Prepared statement - use binding
	Service Script vs. Java Services
	Java Performance Patterns
	Batch Performance
	Commit Considerations
	Clustered vs. Distributed Mode Performance: Clustered is Preferred

	Light Business Objects
	Benefits of Light BOs
	Disadvantage of Light BOs
	Tips and Conventions

	Data Explorer
	Zone Configuration
	Table Indices and SQL

	UI Maps and BPAs
	Diagnosing Performance Issues
	Fiddler
	OUAF 'Show Trace' button
	Log Service times in spl_​service.log

	Optimization and Performance Profiling
	Basic Logging
	Timing code ('shootout'):
	Using PerformanceTestResult helpers
	Profiling
	PerformanceTestHelper API

	References and Additional Resources

	Chapter 4. Packaging Guide
	CM Packaging Utilities Cookbook
	App Server CM Packaging Overview
	Developing Off-site
	Off-site Process
	On-site Process

	Guidelines

	App Server CM Packaging Tools
	Post Install Setup
	Using the extractCMSource.plx Utility
	Display Usage
	Extract From an App Server
	Extract From Release/Patch Install Package
	FW Utility to extract CM sources from Unix environments

	Using the applyCM Utility
	Using the create_​CM_​Release Utility
	Using the create_​CM_​Patch Utility
	Multi-CM Application Functionality

	CM System Data Packaging Tools
	CM System Data Packaging Overview
	Extract Process
	Upload Process

	Tailoring Your Oracle Utilities Application Implementation
	Preserving Customer Changes
	Tailoring Web Files
	Tailoring the CM Java Application
	Manual cm.jar deployment

	Positioning Custom Scripts
	Replacing the Oracle Utilities Logo
	Using the Implementation Version File
	Tailoring XML Schema
	Tailoring Templates and User Exits

	Index

