
Oracle Utilities Testing Accelerator
User’s Guide for Cloud
Release 24A
F93150-01

April 2024

Oracle Utilities Testing Accelerator User’s Guide for Cloud

F93150-01

Copyright © 2000, 2024 Oracle and/or its affiliates.

https://docs.oracle.com/cd/E23003_01/html/en/cpyr.htm

Contents - i
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Preface... i
Prerequisite Knowledge... ii
Abbreviations .. ii
Related Documents .. ii
Updates to the Documentation ... iii
Documentation Accessibility ... iii
Conventions.. iii

Chapter 1
Overview .. 1-1

Terminology ... 1-2
Application Architecture .. 1-3
Application Features ... 1-4
What's New in 24A ... 1-4
Supported Oracle Utilities Applications... 1-5

Chapter 2
Oracle Utilities Testing Accelerator Features ... 2-1

Components ... 2-2
Dashboard .. 2-2
Flows.. 2-5
Flow Sets ... 2-5
Tools .. 2-6

Chapter 3
Developing Metadata Driven Web Service Based Test Automation .. 3-1

Planning .. 3-3
Design and Development .. 3-3
Test Run ... 3-3

Configuring the Automation Development Environment ... 3-3
Setting Up Flow and User Configuration Sets ... 3-4
Setting Up Application under Test... 3-4

Chapter 4
Oracle Utilities Testing Accelerator Administration... 4-1

Administration Tab ... 4-2
Managing Products ... 4-3
Managing Modules .. 4-4
Purging Flow Run Data.. 4-5
Purging Notification Data.. 4-5
Custom Content Upgrade.. 4-5

Contents

Contents - ii
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 5
Creating Components .. 5-1

Component Lifecycle .. 5-2
Locking/Unlocking Components... 5-3

Component Types ... 5-4
Web Service Based Components.. 5-4
REST Web Service Components.. 5-4

Creating Web Service Based Components .. 5-4
Creating a Component ... 5-5
Creating a Component Definition.. 5-6
Defining Default Data at Component Level .. 5-7
Setting Up Operation Name for a Web Service... 5-8
Using Runtime Variables in Components ... 5-8
file: prefix - csv file.. 5-8
Using Function Libraries.. 5-8
Resolving the Repeating Elements in Response XML.. 5-9
Adding Validations.. 5-9
Handling the List Elements ... 5-10
Extending the Base Component Definition ... 5-12

Creating REST Web Service Components .. 5-14
Creating a REST Service Component Definition .. 5-14
Entering Test Data for a REST Component.. 5-16

Copying Components ... 5-18

Chapter 6
 Creating Test Flows ... 6-1

Creating Flow Modules... 6-3
Creating Flows ... 6-3

Creating Flows by Dragging-and-Dropping Components ... 6-4
Adding Test Data in a Flow .. 6-5
Moving Data Between Components without Using Global Variables... 6-12
Managing Flow Test Data Using Spreadsheets .. 6-16
Annotating Components in a Flow.. 6-17
Adding Documentation to a Flow.. 6-17
Using Global Variables... 6-20
Using Container for Flow Variables... 6-21
Flow Lifecycle .. 6-22
Locking/Unlocking Flows... 6-22
Copying Flows ... 6-23
Reordering Components in a Flow .. 6-23
Copying Test Data from One Component to Another in a Flow .. 6-24
Fetching Component Test Data from an Utilities Application ... 6-24
Unit Testing a Component in a Flow .. 6-25
Bulk Replacing Component Test Data in Multiple Flows.. 6-26
Flow Subroutines .. 6-27
Running Subroutine in a Loop.. 6-29
Conditional Bypass of Components in a Flow Run (Skip Component) .. 6-32
Suspension/Pause and Conditional Resumption of Flow Run ... 6-33
Component Test Data Sets.. 6-34
Creating Reference Test Data for a Component ... 6-35
Loading Test Data from a Component Test Data Set .. 6-35
Deleting Component Test Data Sets ... 6-36
Flow Test Data Sets .. 6-36

Support for Integration Flows... 6-37
Running Test Flows .. 6-40

Running Test Flows Using a Browser ... 6-41
Iterative Flow Run .. 6-42

Contents - iii
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Stopping Flow Run on Validation Failure... 6-43
Stopping Flow Run Manually .. 6-43
Viewing Flow Run Details ... 6-43
Viewing Flow Run Failure Details.. 6-43
Viewing Flow Run Summary Report ... 6-44
Conversational Test Data Management... 6-44
Runtime Configuration for Flow Run ... 6-45

Chapter 7
Creating Test Flow Sets ... 7-1

Adding Flows to a Flow Set... 7-2
Deleting Flows from a Flow Set.. 7-2
Running Flow Sets... 7-3
Stopping Flow Set Run ... 7-3
Exporting Flow Sets.. 7-3
Viewing Flow Set Run History .. 7-3
Viewing Flow Set Execution Summary Report .. 7-4

Chapter 8
Creating Test Plans.. 8-1

Creating a Test Plan .. 8-2
Adding and Removing Flow Sets in a Test Plan .. 8-3
Managing Test Plan Lifecycle .. 8-3
Running a Test Plan .. 8-4
Viewing Test Plan Run Results ... 8-5

Chapter 9
Development Accelerator Tools .. 9-1

Flow Export Tool.. 9-2
Component/ Flow Import Tool ... 9-2
Component Generation Tool .. 9-3

Chapter 10
Function Library Reference... 10-1

WSVALIDATELIB .. 10-7
CORERESPONSEUTILLIB.. 10-12
COREDATETIMELIB ... 10-31
COREDATAGENLIB .. 10-34
COREVALIDATEVARIABLELIB.. 10-35
COREVERIFYCONDITIONVARIABLELIB.. 10-40
CORESTOREVALUES .. 10-46
COREFILEOPS.. 10-48
CORESTRINGOPS... 10-49
CORENUMBEROPS .. 10-49
COREUTAOPS .. 10-52

Chapter 11
Custom Libraries ... 11-1

Exporting/Importing Custom Libraries .. 11-4
Using Custom Library Functions.. 11-4

Chapter 12
User Settings .. 12-1

Selecting User Time Zone.. 12-2
Selecting User Language ... 12-2

Appendix A
Web Service Component Keywords.. A-1

WS-SETXMLELEMENT .. A-2
WS-SETXMLLISTELEMENT... A-2

Contents - iv
Oracle Utilities Testing Accelerator User’s Guide for Cloud

WS-SETVARIABLE ... A-3
WS-SETVARIABLEFROMRESPONSE.. A-3
WS-SETTRANSACTIONTYPE .. A-3
WS-LOGMESSAGE ... A-4
WS-CREATEWSREQUEST... A-4
WS-PROCESSWSREQUEST ... A-4
WS-STARTPOLLWS .. A-4
WS-STOPPOLLWSIF... A-5

Appendix B
REST Component Keywords.. B-1

RS-SETENDPOINT... B-2
RS-ARGUMENT... B-2
RS-SETMETHOD... B-3
RS-PROCESSRESTREQUEST.. B-3

Appendix C
Setting Up Inbound Web Services.. C-1

Importing Inbound Web Services.. C-2
Searching Inbound Web Services... C-2

Appendix D
Generating Re-runnable Test Data ... D-1

Appendix E
OUTA REST Services... E-1

Next Generation REST APIs ... E-2
Legacy REST APIs... E-3
Flow Run.. E-3
Flow Set Run ... E-5
Flow Run Analytics .. E-7
Flow Set Run Analytics.. E-7
Flow Run Summary.. E-8
Flow Set Run Summary ... E-9

Preface - i
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Preface

Welcome to the Oracle Utilities Testing Accelerator User’s Guide for Cloud for release
24A. The guide explains how to use Oracle Utilities Testing Accelerator to automate the
business test flows for testing the Oracle Utilities’ applications.

This preface focuses on the following:

• Audience

• Prerequisite Knowledge

• Abbreviations

• Related Documents

• Updates to the Documentation

• Documentation Accessibility

• Conventions

Audience

Preface - ii
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Audience
This guide is intended for Automation Developers, and Test Automation Engineers who
automate the business test flows for testing the Oracle Utilities’ applications.

Prerequisite Knowledge
The metadata driven automation development paradigm of Oracle Utilities Testing
Accelerator does not require any in-depth programming experience to develop scripts for
testing. However, good understanding and working knowledge of Oracle Utilities
Application Framework and its metadata based objects along with in-depth functional
understanding of the application being tested, is required. The advanced programming
features available in the application require experience with the programming concepts
and groovy scripting language.

Abbreviations
The following terms are used in this document:

Related Documents
For more information, refer to the following Oracle resources.

User and Reference Guides

• Oracle Utilities Testing Accelerator Reference Guide for Core

• Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities
Customer Cloud Service

• Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Billing
Cloud Service

• Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities
Customer Care and Billing Cloud Service

• Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Meter
Solution Cloud Service

• Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Work
and Asset Cloud Service

• Oracle Utilities Testing Accelerator Reference Guide for Oracle Utilities Rate
Cloud Service

Additional Documentation

The following resources are available on My Oracle Support.

• Practice exercises for Oracle Utilities Testing Accelerator (Doc ID 2726629.1)

Term Expanded Form

UTA Oracle Utilities Testing Accelerator

https://support.oracle.com/portal/

Updates to the Documentation

Preface - iii
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Flow Subroutines and Test Data Sets (Doc ID 2632033.1)

• Building Custom Components And Functions for Oracle Utilities Application Framework
Based Products (Doc ID 2662058.1)

• Test Strategy Best Practices Guidance for Oracle Utilities Application Framework Based
Products (Doc ID 2659556.1)

Training Material

• Training Material on Oracle Video Hub Oracle Utilities Testing Accelerator
channel

Utility Reference Model Based Test Flows

The Utility Reference Model based Oracle Utilities Testing Accelerator test flows for
supported Oracle Utilities cloud services, along with the necessary documentation, are
available here: https://docs.oracle.com/cd/F25653_01/index.htm

Sample Data Generation Flows

The sample data generation Oracle Utilities Testing Accelerator flows for supported
Oracle Utilities cloud services, along with necessary documentation, are available here:
https://docs.oracle.com/cd/F42444_01/index.htm

Updates to the Documentation
Documentation updates are posted on Oracle Help Center as they become available.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle’s
Accessibility Program website.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. If you
are hearing impaired, visit the Oracle Accessibility Learning and Support website for
more information.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

https://videohub.oracle.com/channel/Oracle%2BUtilities%2BTesting%2BAccelerator/
https://docs.oracle.com/cd/F25653_01/index.htm
https://docs.oracle.com/cd/F25653_01/index.htm
https://docs.oracle.com/cd/F42444_01/index.htm
https://docs.oracle.com/cd/F42444_01/index.htm
https://docs.oracle.com/en/industries/utilities/testing-accelerator-cloud/
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Conventions

Preface - iv
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Overview 1-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 1
Overview

This chapter introduces the Oracle Utilities Testing Accelerator application and provides
an overview of the application architecture and features.

• Introduction

• Terminology

• Application Architecture

• Application Features

• What's New in 24A

• Supported Oracle Utilities Applications

Introduction

Overview 1-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Introduction
Oracle Utilities Testing Accelerator comprises test automation accelerators for the
automated testing of Oracle Utilities applications. It is a framework based on Java for
creating the web service based automation scripts.

Oracle Utilities Testing Accelerator enables you to create the automation scripts using
keywords or metadata, and without using any programming language. This saves the test
automation development effort and avoid programming the scripts manually.

The accelerators contain out-of-the-box delivered test components that can be used to
build test flows for the Oracle Utilities applications. You can extend the delivered
components or create new custom components to build customized test flows. For
information about the reference guides included in this release, refer to the Related
Documents section in Preface.

Terminology
This table lists the different terms used in the document:

Term Description

Oracle Utilities Test Accelerator
(UTA)

Helps to build and maintain components and flows for
automated testing.

Keyword A pre-defined word used to define a specific step in a
test case.

Component Reusable automated test or part of a test.
A component is the building block of an automated test
flow. Each component is made up of a definition which
allows users to define a keyword and associate values
and parameters for the keyword.

Flow An automated test.
A flow comprises one or more components and/or
component sets that are called in a pre-determined
sequence.

Flow Test Data A test data set specific for a given flow.

All components and flows in Oracle Utilities Testing Accelerator are organized into hierarchy
for better manageability. The hierarchy is:
Release > Portfolio > Product > Module

Release Represents the highest level of hierarchy.
There is one release per an Oracle Utilities Testing
Accelerator version, and it contains one or more
portfolios.

Portfolio Represents a product family consisting of one or more
related products.
A portfolio contains one or more products.

Application Architecture

Overview 1-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

For information about these terms, refer to Chapter 2: Oracle Utilities Testing
Accelerator Features.

Application Architecture
The following diagram depicts the high-level architecture of Oracle Utilities Testing
Accelerator.

Oracle Utilities Testing Accelerator's workbench can be accessed using a web browser,
such as Microsoft Edge, Mozilla Firefox or Google Chrome. The workbench allows users
to create and manage components and flows. Additionally, flow runs and their
corresponding history can be managed from the workbench.

There are various modules within the workbench:

• Dashboard provides basic analytics on flow execution through time series
visualizations, along with the overall status of flow development and usage.

• Administration provides various controls to manage logs and functions within
Oracle Utilities Testing Accelerator.

Product Represents an Oracle Utilities application.

For example: CCS
A product contains one or more modules.

Module Represents an Oracle Utilities application functional
area. For example: Billing in CCS
A module contains one or more components that are
used to automate a specific functional area in an Oracle
Utilities application.
A module in the flow tree hierarchy can be used for
logical grouping of custom flows for easier access.
Note: The module in the hierarchy of flow and
component tree structure is different.

Term Description

Application Features

Overview 1-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Utilities can be used to auto generate components, import-export components
and flows from and to different instances of Oracle Utilities Testing Accelerator.

• Component Manager supports auto generation creation, update and delete of
components.

• Flow Manager provides features to create and manage test flows in Oracle
Utilities Testing Accelerator.

• Test Planning provides basic test planning functions to better manage test flow
runs and review the overall results.

Note: Test Planning is designed only to provide basic test manager. It is
not a test management suite.

• Test Run Engine is used to run a Oracle Utilities Testing Accelerator test flow
directly through the web browser.

• UTA APIs can be used to run Oracle Utilities Testing Accelerator test flows and
flow sets remotely using the REST APIs. These can be used to integrate Oracle
Utilities Testing Accelerator flow runs to external continuous integration/
continuous delivery or test management systems.

• Testing APIs are used by Oracle Utilities Testing Accelerator flows to post
messages to and receive responses from Oracle Utilities Application Framework
based cloud services/applications.

• Data Manager helps to manage various test data sets, use conversational test
data entry and fetch test data for easier entry and management of test data used
within a flow.

All the components and flows are defined using metadata as Testing Objects. The
metadata and the flow run history gets stored in the database for unified, concurrent
access by various users of Oracle Utilities Testing Accelerator.

Oracle Utilities Testing Accelerator comes with several predefined components provided
by the corresponding product's Quality Assurance teams.

All the web service based test flow runs use Testing APIs on the Oracle Utilities
Enterprise products. These APIs are web service end points on the Enterprise
applications and are delivered along with Oracle Utilities Testing Accelerator.

Application Features
The features available in this Oracle Utilities Testing Accelerator release are the
dashboard, components, flows, flow sets, various tools, and administration.

For more information about these features and their significance, refer to Chapter 2:
Oracle Utilities Testing Accelerator Features.

What's New in 24A
The new features/enhancements in this release are:

• The component’s custom extensions can now be exported and imported across
the Oracle Utilities Testing Accelerator instances. Exporting a component

Supported Oracle Utilities Applications

Overview 1-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

automatically includes the custom extensions that have been created for the
component. Elements added as part of the custom extensions are also available
in the test data spreadsheet and in the flow test data’s Data from.. feature that
supports mapping of test data from a component’s response.

• The new filters on the summary report provide you with options to view and
focus on specific content in the flow run summary. This improves the ease of
use and provides finer grain control of the summary report. With the new filters,
you can select and filter the summary report to view only failed steps or steps
that correspond to the execution of specific types of flow steps.

In addition to the filters, the option to view the summary report as a list of all the
results for each step or as a table showcasing the validations at each step has
been provided. These filters make it easier for you to look to specific
information in the summary report.

Supported Oracle Utilities Applications
The following table lists the Oracle Utilities cloud services testing accelerator packs
available as part this Oracle Utilities Testing Accelerator release.

Product Version

Oracle Utilities Customer Cloud Service 24A

Oracle Utilities Billing Cloud Service 24A

Oracle Utilities Customer Care and Billing Cloud Service 24A

Oracle Utilities Meter Solution Cloud Service 24A

Oracle Utilities Work and Asset Cloud Service 24A

Oracle Utilities Rate Cloud Service 24A

Oracle Utilities Testing Accelerator Features 1-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 2
Oracle Utilities Testing Accelerator

Features

This chapter describes the features available in this Oracle Utilities Testing Accelerator
release:

• Administration

• Components

• Dashboard

• Flows

• Flow Sets

• Tools

Administration

Oracle Utilities Testing Accelerator Features 2-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Administration
The Administration tab allows the users with Administrator role to do the following:

• Create/edit release, portfolio, product and modules

Components
The Components page displays all the available components imported/created in the
application. On this page, you can do the following:

• Create a new component

• Define/update the definition of a component

• Submit the component for approval

• Accept/reject the approval based on the state of the component

For more information about components, refer to Chapter 5: Creating Components.

Dashboard
This is the Home page of the application. The Dashboard page includes two tabs:

Analytics
This tab displays test run analytics with the ability to filter the data using several data
points. The tab has three zones:

• The first zone has two visualizations that can be used to visualize the flow run
data based on the filters provided at the top of the dashboard:

• Product Family: Filters the visualization data to include flows that belong
to the product family selected.

• Product Name: Filters the visualization data based on the selected product
name

• Module Name: Filters the visualization data to include flows that belong to
the module name selected.

• Flow Name: Filters the visualization data to include flows that start or end
with a set of characters.

• Start Date: Filters the visualization data to include flow runs that are after
the start date.

• End Date: Filters the visualization data to include flow runs that are before
the end date.

Dashboard

Oracle Utilities Testing Accelerator Features 2-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The following figure shows the filters applicable for visualizations in the first
zone.

After selecting the filter criteria, click Refresh to refresh the visualizations in the
first zone. The results are displayed based on the filtered data.

• The first visualization, Flow Run History, provides a view of the
cumulative of test flow run results based on the filter criteria. This graph also
supports rolling window based visualization, so results can be further
filtered across time windows. This visualization shows the count of flow
runs divided by their statuses (Stopped, Failed and Passed) subject to the
filters.

The following figure shows the rolling window based visualization under the
first zone in the dashboard.

• The second visualization, Flow Usage, helps ascertain the count of flows
between flows that were never run, flows that were run but had never
passed, and flows that had passed at least once, subject to the filters.

The following figure shows the second visualization related to flow run
status.

Dashboard

Oracle Utilities Testing Accelerator Features 2-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Run List
The second zone has a run list of flows that are dependent on the filters at the top of the
dashboard. The run list shows the list of flow runs based on the values selected against
the filters. The generic search provided at the top of the run list can be used to find
appropriate results from within the displayed list of values, if required.

• The zone on the right holds the dashboard that details Flow Status
Summary and Component Status Summary. The flow count displays the
count of flows in the various states that are applicable to the flows. Similarly,
the component count displays the count of components in various states
that are applicable to the components.

Note: The filters provided in the dashboard are not applicable to this
zone.

Notifications
The Notifications tab displays notifications of interest to the user currently logged in to
Oracle Utilities Testing Accelerator.

From the drop-down list, you can select Unread, Read, or All to view the notifications
applicable to the current user.

Flows

Oracle Utilities Testing Accelerator Features 2-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Any event of interest in the application triggers a notification that is sent to one or more
users. Events could be either of the following:

• Creating/updating any hierarchy related entity

Example: Release/Portfolio/Product/Module

• Change in lifecycle state of a component/flow

Example: Submitting a component for approval/rejection, etc.

The different types of notifications are as follows:

• FYI Notifications: For informational purpose only and are generated when the
following are performed:

• A component/flow for all users is created.

• A release/portfolio/product/module for an administrator is created.

• A user for an administrator is created.

• A flow/component for approval for a developer is submitted.

Click a FYI notification for more information about the event and also mark the
notification as 'read'. Once an FYI notification is read, it is removed from the
notification area.

• To Do Notifications/FYA Notifications: For a component/flow when
submitted for approval by an approver/administrator. They require some action
from the user. They are displayed in the Notification area for users with
Approver/Administrator role.

A To Do notification displays detailed information about the respective event. It
also allows users to take appropriate action as applicable. (example: Reject,
Revert to Approve, Approve, or Send to in progress (Flow)). Select the Read
column corresponding to the To Do to mark a To Do notification as 'read'.

Flows
This page displays all the available flows imported/created in the application. On this
page, you can do the following:

• Create a new flow

• Define the flow structure

• Submit the flow for approval

• Accept/reject the approval based on the state of the flow

For more details, refer to the Creating Flows section in Chapter 6: Creating Test Flows.

Flow Sets
This page displays all available flow sets imported/created in the application. You can:

• Create a new flow set

• Define/manage a flow set

Tools

Oracle Utilities Testing Accelerator Features 2-6
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Tools
This feature provides access to various tools that allow you to import/export
components and flows in the application. web service components are automatically
generated by specifying the WSDL URL end point of the web service that the
component makes a call to in the Oracle Utilities applications, such as Oracle Utilities
Customer Care and Billing or Oracle Utilities Customer to Meter.

For more details, refer to Chapter 9: Development Accelerator Tools.

Developing Metadata Driven Web Service Based Test Automation 3-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 3
Developing Metadata Driven Web

Service Based Test Automation

The Oracle Utilities Testing Accelerator components and flows are organized in a tree
hierarchy. This hierarchy compartmentalizes these for different Oracle Utilities
applications.

This chapter is intended primarily for automation developers and testers. It describes the
metadata-driven automation development methodology and the set up of automation
development environment.

• Metadata Driven Automation Development Methodology

• Configuring the Automation Development Environment

Metadata Driven Automation Development Methodology

Developing Metadata Driven Web Service Based Test Automation 3-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Metadata Driven Automation Development Methodology
This section describes the metadata-driven automation development methodology that
enables a test automation engineer to create test automation flows for an Oracle Utilities
application.

An application has to be tested for its base functionality and extensions or customization.
For this, you can create granular tests or larger end-to-end business test flows.
Irrespective of the test design techniques, these tests can be used for regression testing
the application in case of upgrades or customization to ensure that the existing
functionality is not broken.

Typically, automation development is a time consuming exercise and teams have
challenges in knowing and implementing the industry best practices and automation tools
that work best for their product technology stack, helping them be successful in their
efforts. Few of such challenges are:

• Selecting an automation tool

• Creating the automation framework

• Identifying the automation development methodology

• Ensuring the automated tests are updated for new releases

• Ensuring the coverage levels are up to date

• Configuration management of automated test programs

The metadata-driven automation development methodology provides solutions to such
challenges.

For the Oracle Utilities applications built on Oracle Utilities Application Framework,
web service based automated testing is proven to be more robust, maintainable, and
faster to develop and execute. Oracle Utilities Testing Accelerator comprises web
services and UI based components that enable creation and running of test flows.

The following sections provide the test automation development phases in which an
automated test flow is created.

• Planning

Planning

Developing Metadata Driven Web Service Based Test Automation 3-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Design and Development

• Test Run

Planning
To plan an automated test flow, identify the business test flow to be automated and the
components required for the flow. If necessary, create custom components or extend the
delivered components.

For details about how to extend the components, refer to the Copying Components
section in Chapter 5: Creating Components.

Design and Development
A flow design explains the order in which the components will be used to interact with
each other in the flow. It also defines the test data combinations to use.

To design and develop an automated test flow:

1. Create/extend the required components that are identified in planning phase.

2. Create a test flow in Oracle Utilities Testing Accelerator that maps to the identified
business test flow in the application.

For details about how to create a test flow, refer to the Chapter 6: Creating Flows
section in Chapter 6: Creating Test Flows.

3. Drag and drop the required components into the flow.

4. Add the test data for the flow.

The test data can be modified at the runtime using the standard Oracle Utilities
Testing Accelerator databanks. For more details, refer to Chapter 6: Creating Test
Flows.

Test Run
To run the automated test flow, execute the test flow in Oracle Utilities Testing
Accelerator workbench.

For more details, refer to the Running Test Flows section in Chapter 6: Creating Test
Flows.

The components and test flows developed using this approach are stored and
components are version controlled (upto the previous approved version) in the Oracle
Utilities Testing Accelerator database. It takes care of the challenges in configuration
management of automated tests.

Configuring the Automation Development Environment
The steps involved to set up the development environment for Oracle Utilities Testing
Accelerator are as follows:

• Step 1: Setting Up Flow and User Configuration Sets

Setting Up Flow and User Configuration Sets

Developing Metadata Driven Web Service Based Test Automation 3-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Step 2: Setting Up Application under Test

Setting Up Flow and User Configuration Sets
Before a flow can be executed, appropriate flow and user configuration sets have be to
created. These hold the user credentials for authentication of the user to access the
Oracle Utilities cloud service being tested.

Setting Up Application under Test
For the test flows to be able to communicate with the Oracle Utilities cloud service,
corresponding Inbound Web Services should exist in the Oracle Utilities cloud service.
Each of the Utilities cloud service content (components/flows) pack comes with an
ImportBundles flow in the Pre-Requisites module under the corresponding flow tree
structure. This flow containing all the requisite Inbound Web Services should to be
executed to setup the application under test.

For more details about the flows and components, refer to the corresponding Oracle
Utilities Testing Accelerator component reference guide for that Oracle Utilities cloud
service.

Oracle Utilities Testing Accelerator Administration 4-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 4
Oracle Utilities Testing Accelerator

Administration

This chapter introduces the Administration feature in Oracle Utilities Testing
Accelerator. It focuses on the following:

• Overview

• Administration Tab

Overview

Oracle Utilities Testing Accelerator Administration 4-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Overview
The Administration feature in Oracle Utilities Testing Accelerator allows the users with
Administrator role to do the following:

• Create/edit product and component modules

• Upgrade CM content (flows)from one version of an Oracle Utilities application
to a later version.

Example: From Oracle Utilities Customer Cloud Service 19B to Oracle Utilities
Customer Cloud Service 19C

• Purging old flow run logs/results

• Create and manage custom function libraries

Administration Tab
The Administration tab in the Oracle Utilities Testing Accelerator application allows
users with Administrator role to perform the following actions:

• Managing Products

• Managing Modules

• Purging Flow Run Data

• Purging Notification Data

• Custom Content Upgrade

The following diagram shows the organization of components and flows as per hierarchy
in the Oracle Utilities Testing Accelerator application.

Note: Though flows are also organized under modules, flow modules
are different from component modules and should be managed
separately.

Managing Products

Oracle Utilities Testing Accelerator Administration 4-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Managing Products
A product represents an Oracle Utilities application. A product contains one or more
modules.

Example: CCB

Creating a Product
To create a new product:

1. On the Administration tab, click Products in the left pane.

2. In the Create Product window, enter the product name and its description.

3. Click Save.

Alternatively, you can create a new product:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the portfolio under which the product has to be created. From
the Context menu, click Create Product.

3. Enter the new product name and its description.

4. Click Save.

Updating a Product
Note that you can only edit a custom product.

To update an existing product:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the product name to be updated. From the Context menu,
click Update Product.

3. Enter the modified description and click Update.

Deleting a Product
Though this is an admin function, a product can be deleted via the component or flow
tree structure only. Only an administrator can exercise the delete option.

It is always a best practice to export all the custom flows and components from a product
hierarchy before deleting the product as a whole. Deleting a product removes all the
flows and components under the product hierarchy permanently. Appropriate caution
should be exercised while using this feature.

To delete an existing product:

1. On the Components tab, expand the Component tree.

2. Select and right-click the product name to be deleted.

3. From the Context menu, click Delete Product.

Note: If a product (example: Oracle Utilities Customer Cloud Service
23A) includes flows that use components from another product
(example: Oracle Utilities Meter Solution Cloud Service 23A), to delete
the Oracle Utilities Meter Solution Cloud Service, the flows in the first

Managing Modules

Oracle Utilities Testing Accelerator Administration 4-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

product (Oracle Utilities Customer Cloud Service 23A) that use the
components from the second product should be deleted first.

Managing Modules
A module represents an Oracle Utilities application functional area for the components.
Example: Billing in CCS

Note: Modules created through the Administration section only apply
to the component tree hierarchy. Flow modules should be created and
managed through the flow hierarchy tree structure.

Creating a Module
To create a new module:

1. On the Administration tab, click Modules in the left pane.

2. In the Create Module window, enter the module name and its description.

3. Click Save.

Alternatively, you can create a module.

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the product under which the module has to be created.

3. From the Context menu, click Create Module.

4. Enter the new module name and its description.

5. Click Save.

Updating a Module
Note that you can only edit a custom module.

To update an existing module:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the module name to be updated.

3. From the Context menu, click Update Module.

4. Enter the modified description and click Update.

Deleting a Module
Note that you can only delete an empty module.

To delete an existing module:

1. On the Components tab, expand the Component tree.

2. Select and right-click the module name to be deleted.

3. From the Context menu, click Delete Module (context menu option only appears if
the module is empty).

Purging Flow Run Data

Oracle Utilities Testing Accelerator Administration 4-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Purging Flow Run Data
When the flow run logs and flow run history entries accumulate over time, it may impact
the performance/usability. An administrator can decide to purge some of the existing
flow run data for maintenance purposes. The flow run can be purged by specifying the
cut-off date for purging entries; the data older than the specified date will be purged.

• Flow Run Logs: Allows purging of all the flow run log files that meet the
specified criteria.

• Flow Run History: Allows purging of flow run history that helps in keeping the
Flow Run History page more manageable.

Purging Notification Data
An administrator can decide to purge some of the existing notifications for maintenance
purposes. The notifications can be purged by specifying the cut-off date for purging
entries; the data older than the specified date will be purged.

• Notifications: Allows purging of all the notifications that meet the specified
criteria.

Custom Content Upgrade
Oracle Utilities cloud service's/application's version specific Oracle Utilities Testing
Accelerator test components are released with each of the Oracle Utilities cloud service
major version updates, such as 20B, 20C, etc. The custom content upgrade process
allows custom flows to be automatically upgraded to the latest component pack version
that correspond to the latest version of Oracle Utilities cloud service/application.

Example: Flows may have been built using components from Oracle Utilities Customer
Cloud Service 20A version. When a new version say Oracle Utilities Customer Cloud
Service 20B is released, a corresponding set of components for 20B are also released as
part of UTA. Using the CM Content Upgrade option in the administration, flows can be
automatically upgraded to use the components from the latest 20B version instead of
components from 20A version.

This ensures that the flows are using the components that correspond to the latest release
of Oracle Utilities cloud services.

The CM Content Upgrade process checks to see if there are any structural changes in
each of the components between old and newer versions of the product pack. If any
changes are found, the flows using the updated components are automatically
highlighted, so you can review (updated test data if required) and clear the highlight
marker for each flow. If required, the highlight marker can be cleared at once for all the
flows directly at the module or product level.

Running the CM Content Upgrade Process
To upgrade an existing set of flows:

1. Select a Release Name.

2. Select the Product Family under which the flows exist.

3. From the From Product field select the product version under which the flows exit.

Custom Content Upgrade

Oracle Utilities Testing Accelerator Administration 4-6
Oracle Utilities Testing Accelerator User’s Guide for Cloud

4. From the To Product field select the product version to which the flows should be
upgraded.

5. If only a subset of flows have to be upgraded, provide a “Tag” corresponding to
these flows (the tag that has been specified in the flows header). “%” can also be
used.

6. If the destination product version already has a set of flows, these can either be
overwritten during the upgrade or skipped from being upgraded. It applies only to
the flows in the destination product that have the same name as the flows from the
source product. Select either “Override” or “Skip” based on the requirement.

7. Click Upgrade.

The upgrade process should run to completion with appropriate messages displayed.

When you upgrade the custom test flows to a newer version of a product pack using
the CM Content Upgrade feature in Oracle Utilities Testing Accelerator, flows using
components that have been updated between the older and the newer version will
automatically be highlighted with a marker. This ensures that you have clear visibility
into the impact of changes in the application being tested on the automated test
flows.

8. Click the About section on the top-right corner of the application and select Clear
Cache to clear the cache after the upgrade process is complete.

Note:

• For a flow to be picked up by the upgrade process, the flow header should
have a tag specified.

• If a custom component has been created and used in the flows being
upgraded, the upgrade process checks for the custom component name to
start with “CM”. If the name doesn't start with CM, the upgrade process
copies the custom component across and prefixes “CM” to the component
name. All references to this component in flows will be updated accordingly
to remain intact. This ensures that the flow works fine. But, if the name
starts with “CM”, the upgrade process simply copies the custom component
across from the source to the destination product.

• The test data defined in the flows in the source product will remain intact in
the destination product flows.

Custom Content Upgrade

Oracle Utilities Testing Accelerator Administration 4-7
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The following figure shows the flows marked with the highlight marker as part of the CM
Content Upgrade process.

Clearing the Highlight Markers
The CM Content Upgrade process checks to see if there are any changes in the
component between the current/older and a newer version of the product pack and
highlights a Flow with a marker, if any component used in the flow has changed in its
structure. The feature also highlights the component in the flow which caused the flow to
be highlighted. This enables you to quickly identify and update the test data in the flows
that may have been impacted because of the upgrade, without having to run the flows
first. Navigate to each of the highlighted flows, review it, update test data if necessary.

After updating the test data, clear the highlight marker. Right-click the flow and select
Clear Highlight to clear the highlight marker. Alternately, the highlight marker can be
cleared for multiple flows at once at the module or product level. Right-click the module/
product in the flow tree in the leftmost frame and select Clear Highlighted Flows.
Clearing the highlight marker at the product or the module level clears the marker for all
the flows under the corresponding module/product.

Note the following:

• For a flow to be picked up by the upgrade process, the flow header
should have a tag specified.

• If a custom component is created and used in the flows being upgraded,
the upgrade process checks for the custom component name to start
with “CM”. If the name doesn't start with CM, the upgrade process
copies the custom component across and prefixes “CM” to the
component name. All references to this component in flows will be
updated accordingly so that the flow remains intact. If the name starts
with “CM”, the upgrade process simply copies the custom component
across from the source to the destination product.

• The test data defined in the flows in the source product will remain
intact in the destination product flows.

Running the CM Content Upgrade Process for Integration Flows
Integration flows are developed using components from two or more Oracle Utilities
Testing Accelerator product packs belonging to different Oracle Utilities Enterprise
applications.

Custom Content Upgrade

Oracle Utilities Testing Accelerator Administration 4-8
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Triggering the CM Content Upgrade process is the same for both the integration flows
and non-integration flows. To upgrade an existing set of flows, follow the steps in the
Running the CM Content Upgrade Process section.

After step 7, during the initiation phase, the CM Content Upgrade process checks to see
if any of the flows being upgraded use components from two or more product packs. If it
finds such a flow/flows, it determines them as integration flows. The CM Content
Upgrade process will then prompt to select the “from” and “to” product pack versions
for each of the source product from which components have been used in the flow.

The following figure shows the mapping option for upgrading integration flows.

After selecting the appropriate “from” and “to” product versions, click Map Products.
The CM Upgrade process upgrades the flows by mapping the components appropriately
between various product packs.

The flows being upgraded will still be created under the To Product specified in the
main screen of the CM Content Upgrade process (before step 7 of the process). The
upgrade mapping for integration flows only defines the component mapping to be done
for integration flows.

Example: If one or more flows are created in CCS 21B and they use components from
WACS 21B along with CCS 21B components, then during the course of the CM content
upgrade process, the product mapping screen will be displayed with the source product as
WACS 21B and the destination product containing a list of available product packs in
UTA, such as WACS 21B/WACS 21C, etc. To proceed with the upgrade, the appropriate
destination product needs to be selected. If WACS 21C is selected as the destination
product for WACS 21B components, in this example, then the upgrade process will
upgrade the flows from CCS 21B to CCS 21C and will also upgrade all the WACS 21B
components being used in the upgraded CCS 21C flows to WACS 21C.

Creating Components 5-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 5
Creating Components

The Oracle Utilities Testing Accelerator components, component sets, and flows are
organized in a tree hierarchy. The hierarchy is organized as follows:

Oracle Utilities Testing Accelerator Release > Portfolio> Product > Module >
Components

This chapter describes the component hierarchy and also the steps to create different
types of components in Oracle Utilities Testing Accelerator.

• Component Structure

• Component Lifecycle

• Component Types

• Creating Web Service Based Components

• Creating REST Web Service Components

• Copying Components

Component Structure

Creating Components 5-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Component Structure
The following figure shows the high-level component structure.

Component Lifecycle
The component lifecycle begins once a component is created in Oracle Utilities Testing
Accelerator. It can exist in one of the several possible lifecycle states as shown in the
following diagram.

Locking/Unlocking Components

Creating Components 5-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The state of a component determines the actions that can be performed on the
component. The following table summarizes the component states, and the possible
actions and roles that can take the actions.

Locking/Unlocking Components
A component is/can be locked in the following scenarios:

• To prevent any other users from editing the component until the component
definition is complete.

• By default when the component is submitted for approval.

• When moved to the ‘In Progress’ state, the component gets locked. You can
then unlock and edit it as needed.

Click the icon to lock/unlock a component in the Oracle Utilities Testing
Accelerator application.

Tip: After a component is moved to ‘Approved’ status, it gets unlocked automatically.

Component
Lifecycle State

Permitted
Actions Role Resultant State (after

action)

In Progress Submit for
Approval

Developer
Approver
Administrator

Pending Approval

Approve Approver
Administrator

Approved

Save Developer
Approver
Administrator

In Progress

Pending Approval Send to In
Progress / Reject

Approver
Administrator

In Progress

Approve Approver
Administrator

Approved

Revert to
Approved

Approver
Administrator

Approved (Reverts to
Previous Approved
version of the component)

Save Developer
Approver
Administrator

Pending Approval

Approved Send to In
Progress

Developer
Approver
Administrator

In Progress

Submit for
Approval

Developer
Approver
Administrator

Pending Approval

Approve (save
and approve)

Approver
Administrator

Approved

Component Types

Creating Components 5-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Component Types
Ensure the component is created under the required hierarchy level.

Oracle Utilities Testing Accelerator supports the following types of components:

• Web Service Based Components

• REST Web Service Components

Web Service Based Components
A web service based component represents an Inbound Web Service/Business Object/
Business Service in Oracle Utilities Customer Cloud Service.

A distinguishing feature of the web service component is that its component type is
defined as “WS” and the keywords used in defining it are specific to a web service
request.

For information about web service specific keywords, refer to Appendix A: Web Service
Component Keywords.

REST Web Service Components
A REST web service component represents a REST interface in Oracle Utilities
Customer Cloud Service application.

A distinguishing feature of the REST based component is that its component type is
defined as “REST” and the keywords used in defining the component are specific to a
REST web service.

For information about REST-specific keywords, refer to Appendix B: REST Component
Keywords.

Creating Web Service Based Components
You can create web service based components in either of the following ways:

• Using the Component Generation Tool feature in Oracle Utilities Testing
Accelerator

For detailed instructions about the Component Generation Tool, refer to the
Component Generation Tool section in Chapter 9: Development Accelerator
Tools.

• Create the component manually

This section focuses on the following:

• Creating a Component

• Creating a Component Definition

• Defining Default Data at Component Level

• Setting Up Operation Name for a Web Service

• Using Runtime Variables in Components

Creating a Component

Creating Components 5-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Using Function Libraries

• Resolving the Repeating Elements in Response XML

• Adding Validations

• Handling the List Elements

• Extending the Base Component Definition

Creating a Component
To create a web service based component manually:

1. Navigate to the component tree where the component has to be created.

2. Right-click the feature (release/product/module) in the component tree.

Note: Create a new feature folder if it is not found in the delivered tree
structure.

3. Select Create Component.

Note: The component name must be prefixed with ‘CM’ and the Tags
field should have a CM tag for every component. The tagging enables
porting the custom components to latest Oracle Utilities Testing
Accelerator release.

4. Enter the component name in the Component field.

Note: For information about extending components, refer to the
Copying Components section.

5. Select Web Service in the ComponentType drop-down list.

6. Enter a description in the Description field.

7. Click Attach Code to add the metadata. The Component window is displayed.

8. Create component definitions.

9. Click Save & Unlock to save and create the component.

Creating a Component Definition

Creating Components 5-6
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating a Component Definition
A component consists of several component definition lines. Each component definition
line comprises a keyword, object, display name, attribute values, default data, function
name, and output parameters.

The following list describes each entity in a component definition:

• Keyword: Defines the action to be performed by the component line. Example:
WS-SETVARIABLEFROM RESPONSE, WS-VALIDATE, etc

• Object: The name of the function library whose functions may be used for
defining a component.

• Display Name: Description of the component line that is made visible to the
user while entering test data against the component line in a flow.

• Attribute Values: The xpath of the component's element as defined in the
Oracle Utilities Enterprise application.

• Default Data: The default data that may be used while providing test data for a
component in a flow.

• Function Name: The name of the function that is used as a plugin to perform
actions such as generating randomized test data or performing validation on web
service response values.

• Output Parameters: If a function returns an output, the output can be stored in
a variable which is defined against the Output Parameters field. This variable can
be used across components in a flow to pass test data from one component to
another.

• Tooltip: The information presented as a tool tip during the flow creation.

The following figure shows the Component page with the available component
definitions.

Add the required component definition lines using the Keyword drop-down list to
define the web services based component.

Defining Default Data at Component Level

Creating Components 5-7
Oracle Utilities Testing Accelerator User’s Guide for Cloud

For a list of keywords used to define the web service based components, refer to
Appendix A: Web Service Component Keywords.

The following example shows different component lines created for the CM-
MobileWorker component.

1. Select SETAPPTYPE in the Keyword drop-down list to define the component type.

2. Select WS in the Object drop-down list to denote that it is a web service based
component.

3. Select the WS-SETWEBSERVICENAME keyword to allow for the web service
name to be set for this component in a flow.

4. Select the WS-SETTRANSACTIONTYPE keyword to allow for the transaction
type of the web service call to be set for this component, in a flow.

Note: The final script of a component is web service call to create,
update, and delete.

5. Select the WS-LOGMESSAGE keyword to log comments in component step as part
of a flow run. This helps in better understanding of the Flow run results in which the
component is used.

6. Select the WS-SETXMLELEMENT keyword to allow test data to be set against a
specific element of request XML.

Consider the CM-Account component in Oracle Utilities Customer Cloud Service.
This component maps to the C1-Account business object. It includes elements, such
as:

<accountId/>
<billCycle/>

7. Select the WS-SETXMLLISTELEMENT keyword to allow multiple sets of test data
to be set against the list element of request XML. The list element is ‘skills’.

Note: The schema of a web service/business object/business service
can be complex (the schema has group elements which in turn may have
group elements within them).

For instructions about how to handle such scenarios, refer to the Handling the
List Elements section.

Defining Default Data at Component Level
In Oracle Utilities Testing Accelerator some of the test data can be maintained at
component level for quick and easy use at the flow level.

In each component definition line the “Default Data” column is available to hold the
default test data. Using this field, default test data can be populated in the component.
While using a component with default data in a flow, the default data can easily be
selected into the test data field by selecting from the drop down option available for each
of the test data entry fields on the Flow Test Data window.

Even after the default data is populated in the flow test data, data elements in the test
data entry page can still be edited, if required. This helps to build the flow faster for cases
where administration and master test data are pre-determined.

Setting Up Operation Name for a Web Service

Creating Components 5-8
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Setting Up Operation Name for a Web Service
An operation name determines the action to be taken while running a web service
request. This is dictated by the operation name of the web service in Oracle Utilities
Application Framework based applications. The value for the WS-
SETTRANSACTIONTYPE keyword is specified while adding the test data for the flow.
If designed so, the same component can be used to add record, update record, or delete
record operations.

Using Runtime Variables in Components
In some cases, few elements from the component run’s response may have to be passed
as inputs to another component’s request XML. This can be achieved using the “Moving
Data Between Components without Using Global Variables” feature. Or another option
is to store the output of first component in the global variable by using the
FUNCTIONCALL keyword along with the appropriate function in the provided
function library.

An example would be the library rSVALIDATELIB and the function getElementValue.
This function requires Xpath of the response element whose value is to be stored. It
should be specified in the Attribute Values column. The global variable which holds this
value in the script is defined in the Output Parameter column. This method of passing
data between components allows for a single global variable to be used as input in
multiple component's test data, where ever it is applicable.

file: prefix - csv file
Any test data value containing “.csv” filename as value should be prefixed with “file:” to
allow Oracle Utilities Testing Accelerator to process it correctly. For example: If a
component contains an attribute name inputFile for which “InputData.csv” is the value,
ensure to prefix the filename with “file:”. The value of “inputFile” should be
“file:InputData.csv”.

Using Function Libraries
This section explains how to use the function libraries shipped with this Oracle Utilities
Testing Accelerator release and create new help libraries.

Function libraries shipped with Oracle Utilities Testing Accelerator can be accessed in
the Component window using the FUNCTIONCALL key word and specifying the
library name in the Object column and the function name in the Function Name
column. Define the variable name in the Output Parameters field to store the return
value of the function.

Function parameters can be provided while entering test data for the component in a
flow. For more details, refer to Chapter 6: Creating Test Flows.

For a list of libraries and functions available in Oracle Utilities Testing Accelerator, refer
to Chapter 10: Function Library Reference.

Resolving the Repeating Elements in Response XML

Creating Components 5-9
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Resolving the Repeating Elements in Response XML
If the response XML has repeating elements, the value embedded within the repeating
elements is retrieved as follows:

<ContactDetails>
<Phone> 123-456-7890 </Phone>
<Phone>234-567-8901 </Phone>
<email> joe@oracle.com </email>
</ContactDetails>

1. If building a custom component, you can use the WS-
SETVARIABLEFROMRESPONSE keyword to retrieve the response of the web
service invocation into the global variable. gVar1 is defined in the Output
Parameter column.

The keyword resolves all occurrences of the Phone element and stores all values in
the gVar1 variable separated by comma. gVar1 will be set to “123-456-7890,234-567-
8901”.

Or, you can use the FUNCTIONCALL keyword and use appropriate functions from
the base delivered function libraries, such as coreResponseUtillib library.

2. If trying to retrieve a value from the response XML for a component in a flow, in the
post validations sections, use the FUNCTIONCALL keyword to call the appropriate
function available in the coreResponseUtillib libraries.

For more information, refer to the Chapter 10: Function Library Reference.

Adding Validations
The different ways in which you can add validations are:

• Using the FUNCTIONCALL keyword in the component definition

To validate the response, use the FUNCTIONCALL keyword to validate the
content; in particular, the Xpath of response XML.

Select the wSVALIDATELIB function library from the Object drop-down list.
Select the function to be called from the Function Name drop-down list.

For a complete reference of the validation function library, refer to Chapter 10:
Function Library Reference.

• Using flow-level validations

Validations can be added before and after a component step in a flow. The same
flow can be reused with different or no validations before (pre-level validations)
and after (post-level validations). The pre-validations can be used to determine if
that component step needs to be run or skipped as part of the flow run, while
the post validations can be used for validating the component step results.

For more information about the flow-level validations, refer to the Flow-Level
Validations section.

Handling the List Elements

Creating Components 5-10
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Flow-Level Validations
Apart from being able to define validations at the component level, you can also define
validations at a flow level as follows:

1. Navigate to the component in the flow.

2. Right-click and select Edit Test Data from the context menu.

3. On the Test Data page, click Pre Validations or Post Validations to specify
validations that need to be performed either before sending the request or after the
response is received from a Utilities application.

Note: In addition to adding validations in the pre-validations section,
function calls can be made to generate (randomization) test data and
stored in variables. These variables can then be used to set test data
against component elements.

The post validation section can be used to add functions that retrieve and store
any values from the response that can be used further down the flow, as test data
in other components.

Refer to the Adding Test Data in a Flow section in Chapter 6: Creating Test Flows for
more information.

Handling the List Elements
The list elements of a schema should be defined using the keyword WS-
SETXMLLISTELEMENT.

Consider the following partial schema. Note that the node usageDetails has a
usagePeriods list element which in turn has another list element serviceQty and other
non-list nodes (leaf nodes) (such as startDateTime, standardStartDateTime,

Handling the List Elements

Creating Components 5-11
Oracle Utilities Testing Accelerator User’s Guide for Cloud

endDateTime, etc.,). The list node serviceQty has non-list nodes such as seq, UOM,
TOU, etc.

To define this schema in the component, consider the non-list nodes and enter a row for
each of them, with the keyword as WS-SETXMLLISTELEMENT and Attribute value as
the full xpath of the element, making sure to enter the appropriate Display names.

Extending the Base Component Definition

Creating Components 5-12
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Note: If any of the list nodes repeat (serviceQty occurrs thrice inside
usagePeriods, which in turn occurrs twice in usageDetais), do not define
the elements multiple times in the component definition. The number
of occurrences can be controlled in the test data (as defined in the
Providing Test Data section).

Providing Test Data
On the Test Data page, each of the list nodes (usageDetails, usagePeriods and
serviceQty for example) has an Add List button next to them under the Action column
and are expandable. Expand the list node to view the children of that particular node.

Example: Expand usageDetails to view usagePeriods, and expand usagePeriods to view
serviceQty, startDateTime, standardStartDateTime, etc.

Initially only one instance exists for all the list nodes. To add more nodes, click Add List
next to the desired element under the Action column.

Example: To have two instances of usagePeriods inside usageDetails, click Add List next
to usagePeriods. There will be two usagePeriods nodes inside usageDetials, each of which
will have the same content.

To view three serviceQty nodes in the first usagePeriods node and four in the second
one:

1. Expand the first usagePeriods and add three serviceQty nodes.

2. Expand the second usagePeriods and add four serviceQty nodes.

The complete structure of the final schema is ready. You can add data to all the leaf
nodes.

Extending the Base Component Definition
Base components that are delivered by the product in Oracle Utilities Testing Accelerator
can be extended to add additional custom elements in the component definition. Custom
elements can be added to the component definition through the component definition
GUI. When a flow is built using this extended component, test data can be provided for
both the base and extended schema elements through the same test data GUI in the
Flow Definition screen. Extended elements in the component definition can be added
or removed based on the requirement, across upgrades.

Extending the Base Component Definition

Creating Components 5-13
Oracle Utilities Testing Accelerator User’s Guide for Cloud

To add new custom elements to the component definition:

1. Login to the application.

2. Navigate to the Components menu.

3. On the left pane, navigate to the module where the new component needs to be
added.

4. Right-click the component and select View Component.

5. In the View Component screen, click Extend Base Component.

6. In the Manage Component Extension GUI, select the “WS-
SETXMLELEMENT” or “WS-SETXMLLISTELEMENT” keywords depending
on whether the custom element to be added is a list or an individual element.

7. Add one or more rows based on the requirement.

8. Provide the following information for each row:

• Display Name: The description visible in the flow’s test data GUI against this
custom element.

• Attribute Values: The xpath of the element or list element in the Oracle Utilities
Application Framework object’s schema.

• Default Data: The data provided in this field is available as default data in the
element’s Test Data field, in the flow’s Test Data GUI.

9. Click Save to add the custom component lines to the base component.

Creating REST Web Service Components

Creating Components 5-14
Oracle Utilities Testing Accelerator User’s Guide for Cloud

To update or delete custom elements of the component definition:

1. Login to the application.

2. Navigate to the Components menu.

3. On the left pane, navigate to the module where the new component needs to be
added.

4. Right-click the component and select View Component.

5. On the View Component screen, click Extend Base Component.

6. Update or delete the custom component lines.

7. Click Save to save the updated custom component definition.

Creating REST Web Service Components
To create REST web service based component:

1. Login to the application.

2. Navigate to the Components menu.

3. In the left pane, navigate to the module where the new component needs to be
added.

4. Right-click the component and select Create Component.

5. On the Create Component page, select the component type as REST SERVICE.

6. Fill in the required fields and click Save.

7. Click Attach Code to save the component and edit it.

This section focuses on the following:

• Creating a REST Service Component Definition

• Entering Test Data for a REST Component

Creating a REST Service Component Definition
A component consists of several component definition lines. Each component definition
line comprises a keyword, object, display name, attribute values, default data, function
name, and output parameters.

The following list describes each entity in a component definition:

• Keyword: The step to be performed.

For example: RS-SETREQUESTHEADER, RS-SETENDPOING, RS-
PROCESSREQUEST, etc

• Object: The Oracle Utilities Testing Accelerator function library name from
where the function is called.

• Display Name: Component definition

• Attribute Values: The web service XML tag name used as variable to store its
value.

Creating a REST Service Component Definition

Creating Components 5-15
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Default Data: The default data used in the component definition.

• Function Name: The function name called from the library.

• Output Parameters: The output in the form of a variable.

For more options, refer to Appendix D: Generating Re-runnable Test Data.

• Tooltip: The data presented as a tool tip during the flow creation.

The following figure shows the Component page with the available component
definitions.

Add the required component definition lines using the Keyword drop-down list to define
the REST web service based component.

For a list of keywords used to define the REST web service based components, refer to
Appendix B: REST Component Keywords.

The following example shows different component lines that can be created.

1. Select SETAPPTYPE in the Keyword drop-down list to define the application type.

2. Select RS in the Object drop-down list to denote that it is a web services based
component.

3. Select the WS-LOGMESSAGE keyword to log comments in component definition.
This helps in debugging the script code for that component.

4. Select RS-SETREQUESTHEADER keyword to specify any headers that need to
be passed to the REST end point.

5. Select RS-SETMETHOD keyword to specify whether the REST end point needs
to be invoked using a GET/POST call.

6. Select RS-PROCESSRESTREQUEST keyword to specify processing of the
response from the REST end point.

7. Add more component definition lines as needed and select appropriate keywords
based on the REST web service that the component represents.

8. Click Save.

Entering Test Data for a REST Component

Creating Components 5-16
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Entering Test Data for a REST Component
To enter test data for a REST component:

1. Navigate to the Flows menu.

2. On the left pane, right-click the flow and select Create/Update Flow Structure.

3. On the Flow Definition page, right-click the REST component and select Edit
Test Data.

4. Add any pre-validation and post-validation functions by specifying the library and
function details in the Pre Validations and Post Validations tabs.

The REST request body can be any of the following:

• Form Data: Key pair values

• RAW Data: Raw text that would be sent out as body

Entering Test Data for a REST Component

Creating Components 5-17
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Binary: Attach a file that contains the request that would be sent as request to
REST end point

Copying Components

Creating Components 5-18
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Copying Components
The components delivered can be customized; however, modifying the existing
components is not a good practice.

A component can be extended by making its copy and saving it with a different name
prefixed and tagged by CM, and then adding or modifying the metadata or key words as
follows:

1. Right-click an existing component and select Copy Component.

2. Select and right-click a module. It is recommended to create a new module named
“Custom Components” to hold any custom components.

3. From the context menu, select Paste Component.

If the component name already exists in the module, then a warning will be displayed
followed with a prompt for providing a new name to the component.

4. Click Save. The component is copied successfully.

Creating Test Flows 6-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 6
 Creating Test Flows

Test flows are actual business tests executed on the application under test. The flows are
assembled in Oracle Utilities Testing Accelerator by using predetermined components
and are updated with data to guide the flow run.

A test flow consists of one or more scenarios, which in turn consist of one or more
components.

This chapter describes the steps to create a flow, including:

• Adding Products to Workspace Products

• Creating Flow Modules

• Creating Flows

• Support for Integration Flows

• Running Test Flows

Adding Products to Workspace Products

Creating Test Flows 6-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Adding Products to Workspace Products
Oracle Utilities Testing Accelerator generally may have a number of product versions in
the flow tree structure based on the number of upgrades being tested/managed. With the
workspace products feature, you can focus on specific product versions that you are
currently working on, so you do not need to navigate and search for the product version
in the Oracle Utilities Testing Accelerator component or flow tree structure. You can
bring specific product versions into focus by adding them to your workspace based on
the product version that you need to work on. The workspace is specific to a user, so
each user can add or remove different product versions in their own workspace.

To add a product to your workspace:

1. On the All Products tab, navigate to the product in the flow tree.

2. Right-click the product that needs to be added and select Add to Workspace
Products.

3. To view the Workspace Products, click the Workspace Products tab in the Flow
Tree zone.

To remove a product from your workspace:

1. In the Flow Tree zone, navigate to the product either on the All Products tab or the
Workspace Products tab.

Creating Flow Modules

Creating Test Flows 6-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

2. Right-click the product that needs to be removed and select Remove from
Workspace Products to remove a product from Workspace Products.

Note: Workspace Products is common for to both components and
flows.

Creating Flow Modules
Related flows can be grouped into a flow module. By default, each product has a
“Default” module under which all flows are created unless they are explicitly created
under a named module.

To create a flow module:

1. Navigate to Flow menu > product under which the flow module should be created.

2. Right-click the product and click Create Flow Module to create a new flow module.

To create a flow under a flow module:

1. Navigate to Flow menu > product and flow module under which the new flow
should be created.

2. Right-click the flow module and click Create Flow to create a new flow under the
selected flow module.

To move an existing flow to a flow module:

1. Navigate to Flow menu > flow that should be moved to a flow module.

2. Right-click the flow and click Move to Flow Module.

3. Select the target flow module.

4. Click Move.

Creating Flows
A flow simulates a business process that needs to be tested. Flows may be synonymous
with test cases or test scenarios based on how test automation strategy is developed. Each
flow may have one or more test scenarios. You can create a flow by dragging and
dropping components into a default scenario under the flow.

This section includes the following:

• Creating Flows by Dragging-and-Dropping Components

• Adding Test Data in a Flow

• Moving Data Between Components without Using Global Variables

• Managing Flow Test Data Using Spreadsheets

• Annotating Components in a Flow

• Adding Documentation to a Flow

Creating Flows by Dragging-and-Dropping Components

Creating Test Flows 6-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Using Global Variables

• Using Container for Flow Variables

Creating Flows by Dragging-and-Dropping Components
Before creating a flow, identify the components required to create the flow.

Note: The components delivered with Oracle Utilities Testing
Accelerator may have to be extended or new components have to be
created.

To create a flow:

1. Navigate to the product/module in the flow tree to create the flow.

2. Right-click the product/module and select Create Flow.

3. In the Create Flow pane, enter the Flow Name, Flow Type, Tags, and
Description.

4. Save in either of the following ways:

• Save: Saves the flow and redirects to the Search Flow page.

• Create Structure: Creates the flow with a default scenario and redirects to the
Flow Structure page.

5. To view or update the flow structure, click the broadcast icon , next to the flow
name in the flow tree.

Alternatively, right-click the flow name and select Create/Update Flow Structure.
The flow contains a default scenario with the same name as the flow name.

6. Expand the flow tree. The flow contains a default scenario with the same name as
the flow name.

7. In the sequence defined by the business scenario being tested, drag and drop the
components from the Approved Components pane to the flow scenario or
components within the flow structure. The component moved will be added below
the scenario/component to which it was moved.

By default, the Approved Components pane is collapsed if the Flow Status is
anything other than “In Progress”. To expand it, click > on the Component
Selection bar.

Note: Flow definition can be modified (components added or removed)
only if the flow is in “In Progress” state.

8. Make sure to enter the test data at the component step level while defining a flow.

Adding Test Data in a Flow

Creating Test Flows 6-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Adding Test Data in a Flow
To add data to a component in a flow:

1. In the flow tree structure, click Edit Test Data icon next to the component.
Alternatively, you can right-click the component and select Edit Test Data.

2. Enter the test data in the Test Data page. The Webservice Test Data page has 3
sections.

a. Pre Validations

The Pre Validations section can be used for specifying functions that can
generate randomized test data for the flow/component step. It is used to add
functions in the components that may be specific to the flow being developed.
Click New Row to add new rows.

Note: The new Generate Test Data.. option in the Test Data drop-down list
allows randomized test data to be generated based on certain user defined rules.
These can be specified using an intuitive GUI. It is used for randomized
generation of test data for a flow run. Usage of functions in the Pre-validations
section for the same is supported, but is a legacy method of random data
generation.

The library in which the function exists can be selected in the Library field.
Based on the library selected the function can be selected from the Function
drop-down list. If the function outputs a value, provide the custom global
variable name in the Output Variable field into which the function output is
stored. This variable can be used as test data in the Test Data section or in
subsequent pre validations or post validations sections. The function inputs can
be specified against the parameter fields, based on the number of input
parameters that the function needs. The variable names defined in the pre
validations and post validations sections will be automatically prefixed with
“fvar” and presented in the test data field's drop down under the Global
Variables section, so they can clearly be distinguished from the global variables
defined in the component definition.

b. Test Data

The test data corresponding to each of the elements in the component can be
specified in the Test Data GUI.

• The Web Service Name and Web Transaction Type fields help define the
web service end point to which the request needs to be posted to during the
test execution. Most of the components have the web service name and

Adding Test Data in a Flow

Creating Test Flows 6-6
Oracle Utilities Testing Accelerator User’s Guide for Cloud

transaction type specified as the default data in the component definition.
You can select the corresponding values by clicking on the test data drop
down corresponding to the web service name/transaction type fields and
selecting the value under the Default Data section in the list of values.

The Web Service Details section has a switch inside the Integration
Environment sub section to enable/disable the field to provide integration
environment details. This pertains to the environment identifier provided in
the flow or user configuration set, for a given integration environment that is
being tested.

Refer to the Support for Integration Flows section for more details.

• The Log Message field appears for most of the components that have this
option enabled. This is free text field and any value entered in this field will
be added to the flow run summary report. This helps to identify what a
component step does in a flow, by looking at the summary report.

• Test data pertaining to a component line can be specified against that
specific line in the test data Value field in the Test Data section. The test
data field is an editable drop down field, so test data can either be selected
from the drop-down list or can be keyed into the test data field. The test data
field drop down provides 3 options to populate the test data:

• Data From..: This option allows the test data to be set from the web
service response of any preceding component in the flow. It allows test
data to be passed between components, without the use of global
variables.

Refer to the Moving Data Between Components without Using Global
Variables for more information on this feature usage.

• Generate Test Data..: This option suppots randomized test data to be
generated during a flow run, based on a set of rules. The generated test
data is used as input to the field against which this option is specified.

To specify rules for the randomized test data generation:

a.Select Generate Test Data.. option from the drop-down list.

b.In the Generate Test Data window, select the Generator Type from
the following list:

• Random String Generator: To generate random strings

• Random Number Generator: To generate random numbers

Adding Test Data in a Flow

Creating Test Flows 6-7
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Data Generator: To generate dates

c.Based on the selected generator type, appropriate fields and options
are enabled.

d.Random String Generator supports 2 types of rule definitions.

• If Parameter Based Definition is selected:

a.Specify the minimum and maximum length of the random
string to be generated.

b.Enable/disable upper case, lower case, and number switches
to allow or disallow the character type in the generated
string.

• If Format Based Definition is selected:

a.Specify the format of the string to be generated.

b.'U' for upper case character, 'L' for lower case character, and
'N' for number.

c.Example: Specifying the format as UU43-LLLtest-NU
generates BX43-hsgtest-7R. To use character U,L,N as part
of the string, precede it with “\”.

e.Random Number Generator supports number generation between the
specified minimum and maximum values. The number of decimals
that should be part of the generated number can also be specified.

f.Date Generator is not a random generator, but generates the date
based on specified conditions. It can be used to retrieve/generate
the date when the flow is run. It can also used to add or subtract
days, minutes, and hours from a specified date time or current time
to generate a calculated date.

To generate a date, an input date has to be provided in the Input
Date field, which can be Current Date (date of the flow run) or a
variable containing a date or the date can be obtained from the
output of a previous component using the Data From.. option.

If a a global variable or Data From .. is selected, the Input Date
Format must to be provided, which specifies the format of the date
in the input variable.

• Timezone: Timezone of the input date field that defaults to
the user’s timezone.

• Operation: Specifies if a duration needs to be added to or
subtracted from the input date.

• Day(s)/Hour(s)/Minute(s): Specifies the duration that needs
to be added to or subtracted from the input date.

• Output Date Format: Specifies the format in which the
output date should be generated.

Note: The date formats are prepopulated with 3 date time formats
that are generally used in Oracle Utilities Application Framework. A
custom format can be specified by entering the date time format.
All Java date time formats are supported.

Adding Test Data in a Flow

Creating Test Flows 6-8
Oracle Utilities Testing Accelerator User’s Guide for Cloud

g.After entering the necessary inputs for Generate Test Data, click Save.

• Default Data: This section allows test data to be set from the default
data specified in the component definition. For most of the UTA
components, the default data is set only for the web service name and
the transaction type fields. If the default data is not specified in the
component definition for a given field, this option will not be displayed
in the test data field drop down.

• Global Variables: This section allows test data to be set using the global
variables defined in the preceding components in the same flow. The list
of available global variables are displayed under this section. A global
variable can be set as test data input for a given field, in which case,
during the course of test flow run, the value populated into the global
variable in the preceding component steps will be used as the test data.

• If an element is a repeatable group or list element, click Add List in the
Action column to add multiple repetitions of the list elements. You can add
a new instance of the list elements under the group, so another set of test
data can be provided.

• The bottom part of the Test Data GUI shows the functions defined in the
component. Enable or disable the validations/functions defined in the
component by appropriately switching Enable in the first cell. If the switch
is not enabled, during the course of the test run, the function/validation will
not be triggered. The switch only appears for rows to which this feature is
applicable.

Note: If the test data includes the double quotes character (“ “), it needs
to be escaped with another double quote character. Example: To enter
My “Test Data”, enter it as My “”Test Data””.

c. Post Validations

The Post Validations section is used to add verification functions post the base
validations. The validations determine if a particular flow step has passed or
failed, during the course of the test flow run. Validation failure is considered as a
flow step failure. Each of the component comes with a base set of validations
and these can be disabled or enabled in the Test Data GUI using the switch
corresponding to the validation line in the test data UI for the component. And,
if any new or more of these verifications are to be added based on the flow
specific requirements or if a specific set of values have to be retrieved from the
response of the component run, the Post Validations section can be used.

The post validations section allows users to add any number of functions/
validations to the component step in a flow. These will be specific to the

Adding Test Data in a Flow

Creating Test Flows 6-9
Oracle Utilities Testing Accelerator User’s Guide for Cloud

component's instance in that flow. These will not apply to the component when
used in other flows. Specification of functions in the Post Validations section
follows the same pattern as the one specified in the Pre-validations section.

The following types of validations can be provided in the Post Validations
section:

• Function based validations: (Legacy)

Validations are added to the Post Validations section using the library
functions that are similar to adding the functions in the Pre-validations
section. The WSValidateLib function library provides the necessary
functions to validate a response from the application being tested. The
validation library functions process elements in the web service response to
determine if the set conditions have been met. This determines if a
component step in a flow has failed or passed.

Stating 23B, this method of adding validations has been marked as Legacy.
An advanced way of specifying validations using conditions against flow
steps has also been added.

The function library based validations will continue to be supported along
side the condition based validations. But, for ease of use and improved
functionality, the condition based validations are recommended to be used.

• Condition based validations:

With the condition based flow validation feature, you can very quickly and
easily define complex validations for a flow step using Oracle Utilities
Testing Accelerator's advanced and intuitive user interface. This reduces the
flow development times while increasing the ease of defining validations in
the flow.

To add a condition based validation:

a.On the Test Data screen for a component in a flow, navigate to the Post
Validations section.

b.In the Condition Based Validation section, click + Add Validation.

c.On the Add Validation screen, provide appropriate information to create
the validation.

To provide the details about the elements to validate:

a.Select the element/response/variable that needs to be validated.

Adding Test Data in a Flow

Creating Test Flows 6-10
Oracle Utilities Testing Accelerator User’s Guide for Cloud

b.From the Response Element.. drop-down list, select the element to
be validated. If the element is a group/list element, you can specify
additional condition(s) to select specific values.

Example: If a Oracle Utilities Testing Accelerator flow reads a
person object from Oracle Utilities Customer Cloud Service using
the C1-PersonRead component and if the requirement is to validate
that the office phone number in the person object is not null, then a
new validation can be added. On the Add Validation screen, select
Response Element.. from the Element to Validate field.

On the new window, select the element to be validated. In this case,
it is the personPhone/phone.

After the group/list element is selected, add the condition. Since the
office phone number needs to be validated, a condition to select the
list that has the phoneType as OFFICE should be specified. Based
on this condition, if there are multiple phone numbers for the
person entity, only the phone number corresponding to the
phoneType 'OFFICE' is validated.

Adding Test Data in a Flow

Creating Test Flows 6-11
Oracle Utilities Testing Accelerator User’s Guide for Cloud

c.On the Element Selection Condition screen, click Submit, and then
click Close.

There is also another option to validate part of or the complete
response of the component's web service request. On the Add
Validation screen, click the Element to Validate field. In the drop-
down list, scroll down to the Web Service Response section and
select any of the With Header or Without Header options. This
option allows validations involving verification of a substring in the
response. As the name suggests, the 'with header' and 'without
header' options allow validation of the response including and
excluding the response header.

The third option on the Add Validation screen, Global Variable
allows validation of values stored in the global variables of the flow.

The Condition field allows the specification of the condition to be applied
to a validation, such as 'equals', 'not equals', etc.

Four different categories of validations are supported based on the type
of data being validated:

• Validation conditions under the String section allow validating a
string in the element/response/variables. These are essentially
string comparisions. Note that the validations on the Web Service
Response are typically string comparisions.

• Validation conditions under the Number section allow comparison
of numbers using conditions such as less than, greater than, etc.

• Validation conditions under the Date section allow the comparison
of date time values. If the conditions under the Date section are
selected, the corresponding date time format needs to be specified
against the Element to Validate and Value to Compare fields. A
date format from the existing options can be selected or a Java
supported date format can be explicitly specified in the date format
field.

• Validation conditions under the Any section allow the verification
of existence or non-existence of elements in the response.

The Value to Compare field specifies the value to be used for
validation/comparision based on the condition. The field supports
specification free text/static values or selection of global variables or

Moving Data Between Components without Using Global Variables

Creating Test Flows 6-12
Oracle Utilities Testing Accelerator User’s Guide for Cloud

response values from previous component steps in the flow using the
Data From.. option.

d.Click Add to add and save the validation.

e.The sequence of the condition based validations can be altered by dragging
the dropping the rows holding the condition based validation.

3. Click Save & Close to return to the Flow Creation page.

Moving Data Between Components without Using Global Variables
Test data can be linked/moved from the response of one component to the input test
data field of a subsequent or a later component without using global variables. You can
directly select and map the component data fields so the corresponding values are
mapped.

To invoke the GUI that supports this mapping feature, click the Search icon next to the
input test data fields in the Flow Test Data page.

The following sections include steps to map the test data between components without
variables.

Example: Mapping personId from the response for C1-PersonAdd component to
the personId field in C1-AccountAdd component.

To map to non-list elements in a response:

1. Navigate to the Create/Update Flow Structure for the test flow.

2. Navigate to the Flow Test Data page of the component into which test data should
be linked to. Click the downward arrow corresponding to the test data field to show
the drop-down list.

3. From the list, select Data From...

In the example, the test data page corresponds to C1-AccountAdd component in the
flow, which has C1-PersonAdd component preceding the C1-AccountAdd
component.

The flow tree structure up to the preceding component of the current component is
displayed.

Moving Data Between Components without Using Global Variables

Creating Test Flows 6-13
Oracle Utilities Testing Accelerator User’s Guide for Cloud

4. Click the component from whose response the value should to be mapped. The
corresponding elements in the component is displayed.

5. Select the element from the component’s response whose value needs to be mapped
to this field in the current component. The filter at the top of the xpath attributes can
be used to quickly find the xpath that is needed.

In the case of the example, select the personId field from the C1-PersonAdd
component.

The test data field is populated with the selected element. “-->” is prefixed to the
selected element name to differentiate it from the global variables and static test data.

The following figure shows the selected personId field mapped between the
components.

Moving Data Between Components without Using Global Variables

Creating Test Flows 6-14
Oracle Utilities Testing Accelerator User’s Guide for Cloud

6. To view/update an existing mapping, click the Test Data drop-down list and select
Data From. The Map To An Element In Component's Response screen
highlights the existing mapping.

Note:

• The mapping feature extracts the value from the web service response of the
component used in the mapping and provides it as test data to the test data
field to which it is mapped.

• This feature can also be used in the Pre-validations and Post-validations
sections to map a response value from the prior component as input to base
or custom functions.

To map to list elements in a response:

1. Navigate to the Create/Update Flow Structure for the test flow.

2. Navigate to the Flow Test Data page of the component into which test data should
be linked to. Click the downward arrow corresponding to the test data field to show
the drop-down list.

3. From the list, select Data From...

In the example, the test data page corresponds to C1-AccountAdd component in the
flow, which has C1-PersonAdd component preceding the C1-AccountAdd
component.

The flow tree structure up to the preceding component of the current component is
displayed.

4. Click the component from whose response the value should to be mapped. The
corresponding elements in the component is displayed.

5. Select the element from the component’s response whose value needs to be mapped
to this field in the current component.

Moving Data Between Components without Using Global Variables

Creating Test Flows 6-15
Oracle Utilities Testing Accelerator User’s Guide for Cloud

6. If a specific occurrence of the list element is already known, the xpath value can be
updated to point to that specific occurrence of that list.

Example: personName[2]/personId will map the personId from second occurrence
of the personName list

7. If the specific occurrence is not known, conditions may be applied on one or more
of the list elements to find the required value from the list.

In the above example: To find the personId corresponding to the person with the
name “John”, the first condition can be enabled and the condition can be specified in
the condition filter.

The list element on which the condition needs to be specified should be selected in
the xpath field and a condition type can selected from the condition drop down.
Based on the condition type, the value can be provided.

The supported conditions are:

• “Less than”, “Less than or equal to”, “Greater than”, “Greater than or equal to”:
These are applicable only to value type Number.

• “Equal to”, “Not equal to”, “contains”: These are applicable to value type String.

• “Equal to” and “Not equal to” condition types as applicable to value type
Number as well.

• “Starts with” and “Ends with” condition types are applicable to value type
String.

• “Not null” and “Is null” is used to check if the value exists or not, in the
response. In case Not null or Is null option is selected, the Value field should
be left blank.

If more than one condition needs to be specified, the appropriate conditions may be
added by enabling succeeding condition filters. The corresponding join type also
needs to be selected for multiple filters. The support join types are “And” and “Or”.

If a list/group that matches the conditions does not exist in the response, the value
specified under the Default value gets populated in the corresponding test data field
of the component. This can be left blank if the default value has to be populated.

8. After specifying all conditions, click Submit to save the conditions for mapping.

9. To review or update the conditions, click the Test Data drop-down list
corresponding to this field and then select Data From option. The Map to Xpath
window is displayed with the current conditions.

Managing Flow Test Data Using Spreadsheets

Creating Test Flows 6-16
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Managing Flow Test Data Using Spreadsheets
In addition to using the Oracle Utilities Testing Accelerator's workbench GUI for
adding/updating test data in a flow, spreadsheets can also be used to add/update test
data in the flows. The supported spreadsheet format is xlsx, which provides versatile
formatting for easier input of test data. Each flow has a download spreadsheet option
that allows you to download a template corresponding to the flow definition. Each
worksheet in the xlsx spreadsheet holds the test data pertaining to an individual
component in the flow. Test data can also be added/updated for test data sets in the
flow. You can even create new test data sets in the spreadsheet. Once the spreadsheet is
updated with appropriate test data, you can import the spreadsheet to update the test data
in the flow from which it was downloaded.

To manage test data using spreadsheets:

1. Navigate to the Create/Update Flow Structure for the test flow.

2. Click Test Data Spreadsheet in the flow creation frame.

3. In the Manage Test Data Through Spreadsheet popup, click Download.

4. Download and save the spreadsheet to your laptop/desktop.

5. Open the spreadsheet and edit the test data:

• The spreadsheet has multiple worksheets where each worksheet maps to a
component in the flow definition.

• The Documentation worksheet holds the high-level list of all the worksheets.

• The worksheets are named based on the scenario number and the components
sequence in the flow.

Example: The prefix SC1_SEQ1 is used to denote scenario 1 and component
sequence 1.

• Test data corresponding to a component in a flow is held in each individual
worksheet. The columns marked as element name, hold the names of each
individual element in the component and the columns marked with the header
test data sets holds the flow test data corresponding to the flow test data set.

• Multiple values under group/list elements in the component definition can be
added in the spreadsheet by duplicating the corresponding rows.

• The test data for elements in the component definition can be set against each of
the rows, under the appropriate flow test data sets.

Annotating Components in a Flow

Creating Test Flows 6-17
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• New flow test data sets can be added in the spreadsheet. Deletion of flow test
data sets through the spreadsheet is not allowed.

• After the test data is updated, the spreadsheet can be uploaded into the flow
definition through the popup window displayed under step 3 in this process.

Please note the following:

• The sequence of the worksheets in the spreadsheet should not be altered.

• The flow variables defined in the flow are marked in the spreadsheet as “Global
Variable”, in the test data. Similarly, the pointers used for mapping test data
between components in Oracle Utilities Testing Accelerator GUI are also
marked.

• Test data pertaining to subroutine flow calls cannot be managed through the
spreadsheet. If the flow has a subroutine flow as a flow step, then the
spreadsheet will not have test data or worksheet pertaining to the subroutine
flow call step.

Annotating Components in a Flow
Annotations can be added for each component step to describe the purpose of each of
the steps in an Oracle Utility Testing Accelerator test flow. This helps in understanding
the functional aspects of the flow just by looking at the flow tree structure.

To add an annotation right-click a component step in the flow definition. Select Update
Component Description and enter the description. The description replaces the default
display of the component name in the flow step. The annotation can be removed or
updated through the same process. Clearing the component description in the flow
removes the annotation and displays the component name.

The following figure shows a flow without and with annotations:

Adding Documentation to a Flow
Documentation is crucial to any technical artifact as it helps in preserving and sharing
information/knowledge pertaining to that artifact. Oracle Utilities Testing Accelerator
supports the ability to embed documentation pertaining to a flow within the flow
definition.

Adding Documentation to a Flow

Creating Test Flows 6-18
Oracle Utilities Testing Accelerator User’s Guide for Cloud

This feature supports several popular documentation formats. The documentation of the
flow is saved as a new type of attachment to the flow, allowing you to upload and
download the documentation directly through the Flow Definition page.

The following document types are supported: .csv, .doc, .docx, .jpeg, .jpg, .pdf, .png, .txt,
.xls, and .xlsx

This section focuses on the following:

• Adding Documents to a Flow

• Deleting Documents from a Flow

• Downloading Documents from a Flow

Adding Documents to a Flow
To add a document to a flow:

1. Select and right-click the flow name in the Oracle Utilities Testing Accelerator flows
tree structure.

2. Click Create/Update Flow Structure.

3. In the Flow Creation zone, click Documentation.

4. Click Manage.

5. Drag and drop the documentation file. Alternatively, click the field to add the file
using file explorer. Make sure the Documentation File Type option is selected.

6. Add the file description in the Description field.

7. Click Save.

Deleting Documents from a Flow
To delete a document from a flow:

1. Select and right-click the flow name in the Oracle Utilities Testing Accelerator flows
tree structure.

2. Click Create/Update Flow Structure.

Adding Documentation to a Flow

Creating Test Flows 6-19
Oracle Utilities Testing Accelerator User’s Guide for Cloud

3. In the Flow Creation zone, click Documentation.

4. Click Manage.

5. On the Delete tab, select the files to be deleted.

6. Click Delete and confirm the deletion.

Downloading Documents from a Flow
To download a document from a flow:

1. Select and right-click the flow name in the Oracle Utilities Testing Accelerator flows
tree structure.

2. Click Create/Update Flow Structure.

3. In the Flow Creation zone, click Documentation.

4. Click the Description icon next to the documentation file name to view the
description of the file.

5. Click the Download icon next to the file to be downloaded.

Using Global Variables

Creating Test Flows 6-20
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Using Global Variables
This section explains the usage of global variables to pass data across components.

In a simple test flow, add a new person in Oracle Utilities Customer Care and Billing and
add a customer contact for that person. The C1-CustomerContactAdd component is a
dependent component and during runtime needs the ID of the person, created using C1-
PersonAdd component within the same flow.

To add component references to a dependent component (C1-CustomerContactAdd):

1. In the Edit Test Data GUI of the C1-CustomerContactAdd component, find the
component line that requires the personId as input.

2. Against the personId row, click the downward arrow to open the Test Data drop-
down list. All variables exposed by the preceding components are diaplayed in the
Global Variables section.

In this case, personId exposed by the C1- PersonAdd component.

3. Select the personId variable from the drop down list and set it as test data against this
element.

Each of the base components expose one or more global variables that hold the output
of the component during execution. These global variables can be used to set the output
of one component as the input of another component.

Additionally, global variables are also created to hold output of functions used in pre-
validations or post-validations sections. These global variables are defined in the Output
Variable field and are to be set against only functions that return an output value. These
function based global variables are automatically pre-fixed with “fVar_” and these can be
used as input in the test data of subsequent steps in the flow.

All the global variables are automatically suffixed with their occurrence number. If the
C1-PersonAdd component is used twice in the flow, there will be two variables
(gVarPersonId1, gVarPersonId2) one for each occurrence of the component, suffixed
with it's occurrence number. Custom global variables can be defined and exposed by the
components through the Pre-Validations and Post Validations sections. These
variables are automatically prefixed with “fvar_”, to differentiate them from the
component's base global variables. These variables are also suffixed with their occurrence
number in the flow, similar to the global variables specified in the component definition.

Using Container for Flow Variables

Creating Test Flows 6-21
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Using Container for Flow Variables
The flow variables whose values are likely to change between flow runs can be defined in
a central container provided towards the beginning of the flow tree structure. This allows
the Oracle Utilities Testing Accelerator users to quickly update the test data values in the
flow definition before the flow run.

Container for flow variables in Oracle Utilities Testing Accelerator allows the definition
of flow variables that can hold test data in a central container within a flow. These
variables can be used in place of the actual test data in subsequent components in that
flow, so if a need arises to update the test data within the flow, between flow runs or
otherwise, you can quickly update the variable definition/value in the central container.
This eliminates the need to search through the components to update the test data, in
such a scenario. The flow variable container gets added as the first step in the flow
definition. Defining/using this container in a flow is optional and would depend on the
test flow design and requirements.

Adding Flow Variable Container to a Flow
To add a flow variable container to a flow:

1. Select and right-click the flow name in the Oracle Utilities Testing Accelerator flows
tree structure.

2. Click Create/Update Flow Structure.

3. Click Add Global Variable Container.

4. Right-click the variable container in the flow tree structure and select Edit Test
Data.

5. Define a flow variable name in the Output Variable Name field.

6. Define the variable value in the Value field.

7. Add more rows and enter the variables.

8. Click Save to save the updates.

These variables can be used as test data in the subsequent components in the flow.

Deleting Flow Variable Container from a Flow
To delete a flow variable container from a flow:

1. Select and right-click the flow name in the Oracle Utilities Testing Accelerator flows
tree structure.

2. Click Create/Update Flow Structure.

3. Right-click the variable container in the flow tree structure and select Delete
Component. Confirm the deletion.

Flow Lifecycle

Creating Test Flows 6-22
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Flow Lifecycle
The flow lifecycle begins once a flow is created in Oracle Utilities Testing Accelerator. It
can exist in one of the several possible lifecycle states as shown in the following diagram.

The state of a flow determines the actions that can be performed on the component. The
following table summarizes the component states, and the possible actions and roles that
can take the actions.

Locking/Unlocking Flows
A flow is/can be locked in the following scenarios:

• To prevent any other users from editing the flow until the flow is complete.

• By default when the flow is submitted for approval.

• If the flow is unlocked while in the ‘Pending Approval’ state, its state is changed
back to ‘In Progress’. However, if it is moved to ‘In Progress’ state from
‘Pending Approval’ state, it stays locked until the user unlocks it.

Flow Lifecycle
State

Permitted
Actions Role Resultant State (post

action)

In Progress Submit for
Approval

Developer,
Approver,
Administrator

Pending Approval

Pending Approval Send to In
Progress

Developer,
Approver,
Administrator

In Progress

Unlock Developer,
Approver,
Administrator

In Progress

Approve Approver,
Administrator

Approved

Approved Send to In
Progress

Developer,
Approver,
Administrator

In Progress

Copying Flows

Creating Test Flows 6-23
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Click the icon to lock/unlock a flow in Oracle Utilities Testing Accelerator.

Note that scripts can be generated only when the flow is in an “Approved” state.

Copying Flows
To copy a flow from one product to another product(s):

1. Login to the application.

2. Navigate to the Flows menu.

3. In the left navigation pane, expand the flow to be copied.

Note: Use the Search Component field on the top of the approved
component tree to find the components you need. The available
components are listed similar to a type ahead search, with the product
and module names under which the component is available. Select the
appropriate component from the prompted results and the
corresponding component is highlighted in the approved component
tree.

4. Right-click the flow to be copied and select Copy Flow.

5. Navigate to the product to which the flow needs to be copied.

6. Right-click the product and select Paste Flow.

7. In the pop-up window, enter the name for the new flow.

8. Click Paste flow.

Reordering Components in a Flow
Note that a flow needs to be “In progress” for components to be re-ordered. You cannot
re-order components in a flow that is locked by another user.

To change the sequence of components in a scenario:

1. Login to the application.

2. Navigate to the Flows menu.

3. In the left pane, right-click the flow for which components have to be reordered.

Note: Use the Search Component field on the top of the approved
component tree to find the components you need. The available
components are listed similar to a type ahead search, with the product
and module names under which the component is available. Select the
appropriate component from the prompted results and the
corresponding component is highlighted in the approved component
tree.

4. Select Create/update Flow Structure.

5. Reorder the components in any of the following ways:

• By drag-and-drop method

• Moving the components to a desired location using menu

6. Right-click the component to be moved and select Move Component.

Copying Test Data from One Component to Another in a Flow

Creating Test Flows 6-24
Oracle Utilities Testing Accelerator User’s Guide for Cloud

7. Move the selected component in any of the following ways:

• Right-click another component in the flow and choose Paste Component
Above.

• Right-click another component in the flow and choose Paste Component
Below.

• Right-click a scenario in the flow and choose Paste Component Inside. This
will move the selected component to the first position in the scenario.

8. After reordering the components, click Save to save the modified flow.

The popup closes and the flow tree is refreshed to reflect the correct order of
components.

Copying Test Data from One Component to Another in a Flow
To copy the test data from one instance of a component to another instance of the same
component within and across the scenario/flow:

1. Login to application and navigate to the Flows tab.

2. In the left navigation pane, right-click the flow and select Create/update Flow
Structure.

3. Expand the flow.

4. Right-click a component from which you want copy the test data and select Copy
Test Data.

5. Navigate to the component in the flow.

6. Right-click the component where you want to paste the test data and select Paste.

Fetching Component Test Data from an Utilities Application
Instead of manually entering the test data for a component, you can fetch the test data
from a Utilities application (such as Customer Care and Billing, Meter Data Management,
etc.). Select the User, Flow configuration and provide the web service name and the
transaction/operation name to access the WSDL and then provide values against
required fields that are mandatory for the specified operation. Oracle Utilities Testing
Accelerator calls the WSDL with provided details and fetches the response from web
service and populates in the test data of the component.

To fetch the test data:

1. Navigate to the Flows tab.

2. Select and right-click the flow and then click Create/Update Flow Structure.

3. On the Flow Definition page, navigate to the component. Right-click and select
Edit Test Data.

4. On the Edit Test Data page, click Fetch Test Data.

5. On the Fetch Test Data page, enter in the web service name from which the test
data has to be retrieved, operation (typically READ operation) to invoke and

Unit Testing a Component in a Flow

Creating Test Flows 6-25
Oracle Utilities Testing Accelerator User’s Guide for Cloud

necessary credentials and any required info (for example: to retrieve data related to
ToDoRole).

6. Enter the WSDL name and operation name. Select the user and flow configuration
set. Click Populate Form to populate the form with all fields that the web service
supports.

Alternatively, use the URL and user credentials from the Flow/User Configuration
properties file. Click Use Configuration Properties and select the appropriate
flow/user configuration from the respective drop-down menus.

Note: While creating an integration flow (a flow where components
may send requests to more than one environment) prefix the URLs with
keywords that can be used while specifying the WSDL to connect to.

Example: If a flow should connect to an Oracle Utilities Meter Data
Management instance apart from the Oracle Utilities Customer Cloud
Service instance, specify the three properties mentioned below either in
the flow or user configuration properties.
MDM=<MDM url>
MDM_gStrApplicationUserName=johnDoe
MDM_gStrApplicationUserPassword=enc(pj0TFjXMczsoyzmQ8GuXPt2PSyd
O7VCbR2jhxtkUH06Fuz+zmChpGSCr241KggFC6FwgMg==)

To fetch the test data for an Oracle Utilities Meter Data Management
component:

a. Select the flow/user configuration file from the drop-down menu.

b. Enter the WSDL URL as shown below.

7. Provide the necessary key information to retrieve data (for example: in this case the
ToDoRole name) and click Fetch Test Data.

8. After the data is retrieved from the target application, review/validate it. Click Save
and Close.

Unit Testing a Component in a Flow
As part of the flow development, test data needs to be provided for a component in a
flow. After the test data is added, a component may have to be unit tested to make sure
that the provided test data gets the flow working as expected.

To unit test a component that is part of a flow:

1. Navigate to the Flows tab.

2. Select and right-click the flow. Click Create/Update Flow Structure.

Bulk Replacing Component Test Data in Multiple Flows

Creating Test Flows 6-26
Oracle Utilities Testing Accelerator User’s Guide for Cloud

3. On the Flow Definition page, navigate to the component. Right-click and select
Edit Test Data.

4. On the Edit Test Data page, provide the web service name in the component's test
data. Also, provide the operation name/transaction type in the appropriate
component's test data field. Fill up all the test data for the component as necessary.

5. Save the test data and click Close.

6. On the Flow Definition page, click the Test Component icon next to the
component name. Alternatively, you can right-click the component and select Test
Component.

This will open up the conversational test data entry screen for the component.

7. Select the flow and user configuration needed to test the component. Click OK.

8. Click Send to post the request to the application being tested. Clicking Send does
not save the data into the test data of the component being tested.

9. After receiving the response, validate it (for errors) to see if the test data provided is
appropriate. Else, adjust the test data and click Send to send a new request to the
application being tested.

10. Repeat step 9 till the expected response is obtained.

11. Once the appropriate test data is set and the response is as expected, click Save to
save the updated test data into the component's test data in the flow.

Note: Clicking Save will only replace any static values provided in the
component's test data for a given element. If the Test Data field for a
component line contains a global variable, the variable in the field will
not be replaced by the static data in the request being saved.

Bulk Replacing Component Test Data in Multiple Flows
The Replace Test Data feature allows to replace/edit value of one or more elements of
a component in multiple flows, at once. If the component is used in multiple flows, select
all or specific flows in which the test data needs to be changed for the component. This
feature allows an easy way to change an existing test data value in several flows to a new
value to reflect change in test data setup.

• Access the option to replace component test data. Navigate to the Component
menu and right-click the component whose test data needs to be edited/
replaced. Click Find Component Usage.

• In the Find Component Usage interface, select the flows under which the
component test data needs to be replaced. Select the checkbox next to the flow
name(s) and click Replace Test Data.

• Click Add Row to add a row to choose the element of the component whose
specified existing test data value needs to be replaced with a new value. To
replace the test data of multiple elements of the component, add multiple rows
that specify the xpath of the element whose test data value needs to be replaced.

• Set an existing element value to blank or enter test data for component element
whose current test data value does not exist. Use #EMPTY as the value in
appropriate field (Existing Value/New Value).

• Specify a particular occurrence of an element in a group element. Indicate the
index of the element in the group. To replace the zip code of second address

Flow Subroutines

Creating Test Flows 6-27
Oracle Utilities Testing Accelerator User’s Guide for Cloud

group element, specify similar to /user/address[2]/zipCode and specify the
Existing Value and New Value.

• Use wildcard "%" in the Existing Value field to indicate replacing of any
existing value that matches the pattern. Example: To replace a field value that
contain anything that starts with a “Building” to “Apartment 123” specify the
Existing Value as “Building%” and New Value as “Apartment 123”.

Flow Subroutines
A flow subroutine is a flow that can be included/used in other flows. It improves reuse
of a flow. For example: Many test cases expect a ‘V’ setup to be available before being
able to verify some business test cases. In this case, create a flow for ‘V’ setup and all
other test case flows can reuse this ‘V’ setup flow as a subroutine in their respective
flows. Specify any variables/parameters that the subroutine expects from the parent flow
and also expose any variables/parameters that are created in the subroutine. Right-click
Edit Test Data on the flow subroutine component in the flow.

• For a given flow test data set pertaining to the flow calling the subroutines, the
test data set of the subroutine can be selected in the subroutine's test data GUI.
Right-click the subroutine and select Edit Test Data.

• Only the variables defined in the default test data set of a subroutine flow can be
used as input or output of the subroutine. This is to ensure standardized API for
the subroutine.

Adding Subroutines to a Flow
To add an existing flow as a subroutine in a flow:

1. Right-click the scenario/component in the flow.

2. Select Add SubRoutine.

3. Specify the Release, Product Family, and Product to filter the flows.

4. From the Flows drop-down list (search-able), select the flow to be included.

5. Click Add to add it to the current flow as a subroutine.

Note:

• A flow cannot be added to itself as a subroutine. Make sure that nested
subroutines do not create a cyclic dependency.

• A flow can only be added as a subroutine only after it’s subroutine interface
has been defined. Refer to the Defining Input-Output Parameters of a
Subroutine section for information on how to define the subroutine
interface.

Defining Input-Output Parameters of a Subroutine
To define input and output parameters for a subroutine:

1. Navigate to the Flows tab.

2. Right-click the flow name in the product and navigate to module > flow tree
structure in the left pane. Select Define Subroutine Interface.

Flow Subroutines

Creating Test Flows 6-28
Oracle Utilities Testing Accelerator User’s Guide for Cloud

3. Specify the parameters the subroutine expects from the calling flow and the
parameters the subroutine exposes to the calling flow.

Example: If the subroutine creates an Account, it expects a personId value to be
provided for it to create an Account. After an account is created, it returns the
accountId. The subroutine should be defined with one input variable “personId” and
another output variable “accountId”.

4. Add additional input/output variable.

a. Click Add IN/OUT Variable.

b. Enter the name and parameter type.

c. Click Save.

This figure shows a subroutine interface definition for a flow that creates both a
person and account and exposes personId and accountId as outputs, so they can
be used by the calling flow.

5. After a subroutine is added to a flow calling a subroutine, map the input or output
variable(s) of the subroutine.

a. Right-click the subroutine in the flow tree structure of the calling flow and select
Edit Test Data.

b. Map the input/output variable of the subroutine to a variable in the calling flow.

Example: The subroutine might be exposing accountId as the variable. To use
the exposed variable in the calling flow, create a new variable in the calling flow
using Create New Variable. Map the output accountId variable from the
subroutine flow to the newly created variable in the calling flow. This new
variable can be used in the test data GUI of any component that succeeds the
subroutine in the calling flow.

Running Subroutine in a Loop

Creating Test Flows 6-29
Oracle Utilities Testing Accelerator User’s Guide for Cloud

This figure shows the Edit Test Data screen for a subroutine that outputs a
personId and accountId. New variables, personId and accountId are created and the
outputs of the subroutine are mapped to the variables (gVarAccountId1 and
gVarPersonId1).

Running Subroutine in a Loop
To achieve the capability to loop one or more components within a flow, create the
component(s) as a subroutine flow. A subroutine flow can be run in a loop either a fixed
number of times or until an exit condition is satisfied.

Example: If the subroutine creates a meter read, the user can loop the subroutine 24
times to create a meter read for every hour of a particular day.

Note: This feature only works with simple subroutines and not intended
for nested subroutines. The flow re-run (from the point of failure)
feature will not work if the flow has a subroutine loop defined.

To define subroutine looping, add the sub-routine flow to the parent flow. To specify the
loop criteria and other details for the subroutine, open the Test Data page of the
subroutine within the parent flow. Right-click the subroutine flow and select Edit Test
Data. Enable the Loop subroutine switch and click Open Looping Interface to
provide the criteria for executing the subroutine in a loop.

Running Subroutine in a Loop

Creating Test Flows 6-30
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The following figure shows the Loop subroutine switch and Open Looping Interface.

Open Looping Interface provides the following options:

• Maximum Number of Iterations: Represents the maximum number of
iterations that the subroutine will be run for, irrespective of the exit criteria
specified. This is useful in scenarios where the subroutine can wait but not run
indefinitely (either due to wrong test data/unexpected application behavior). Use
this option to run the subroutine a fixed number of times.

Example: If the subroutine creates a person entity in the application, specify the
value 10 to run the subroutine 10 times resulting in creation of 10 person entities
in Oracle Utilities Customer Cloud Service.

• Incrementor Type: Indicates if the loop incrementor would be a number or a
date-time or list variable based, user can choose date as incrementor in case the
subroutine creates meter reads for a meter and user wants to run the subroutine
to create meter reads in a certain date range. The value of this incrementor sis
available for usage in the subroutine flow, through the use of “incrementor”
variable.

• Initial Number/Initial Date-Time: Based on the Incrementor Type
selected, specify the starting number or the starting date-time to be used. This is
not applicable for list variable based looping.

• Increment Value: Based on the Incrementor Type selected, specify the value
by which the initial number/date should be incremented by (either a number or
in days, hours, minutes and seconds). This is not applicable for list variable based
looping.

Running Subroutine in a Loop

Creating Test Flows 6-31
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The following figure shows a subroutine looping interface with the incrementor
type selected as number.

• Exit Condition: The exit condition controls when the subroutine loop would
end before the Maximum Number of Iterations. This is not applicable for list
variable based looping. Specify the exit condition as follows:

• Variable: Can be either based on a value of the incrementor variable or any
OUT variable of the subroutine. An OUT variable of a subroutine can be
used if the subroutine loop should be terminated after a particular value is
available in the selected variable.

Example: We may expect that the subroutine loop should terminate if a
specific value is returned in the response element of the subroutine flow.
This value can be stored in an OUT variable of the subroutine flow and can
be used here.

• Condition: Specifies if the value of variable should be less than, greater
than, equal to etc. of the value that is specified for the Exit Condition.

• Value: The value that the variable is compared with using the condition
specified above, to check if the loop needs to be terminated or continued.

Example: Assuming that the Incrementer Type was number and Initial value
was 1 and Increment Value was 1 then the below values for the Exit
Condition means that the subroutine is looped until the Incrementer value is
equal to 5.

Variable: “Incrementer” Condition: “equals to” Value: “5”

The incrementer is a global variable that can used for setting incrementing
test data in the flow.

Note: To specify the exit condition value when using a date, the date
format to be specified is the same as the initial date format. To use the
incrementer date as an input to a test data field, the date format may be
converted to suite the test data needs, using the delivered functions in
the COREDATETIMELIB or if necessary, a custom function may be
created.

• List variable based looping: Subroutine looping can be used to iterate
through a list of values stored in a variable.

Example: A list of values retrieved from a component's response, such as
accountIds retrieved using a search component. The

Conditional Bypass of Components in a Flow Run (Skip Component)

Creating Test Flows 6-32
Oracle Utilities Testing Accelerator User’s Guide for Cloud

setVariableFromResponseList function from CORERESPONSEUTILIB
can be used to retrieve a list of values from the response into a variable.

• After the incrementor type is set as “Variable” in the Subroutine looping
interface GUI, the select variable field will be enabled.

• Select the variable containing the list of values that need to be iterated
through, as part of the subroutine looping runs. Click Save to set the
subroutine looping based on list values in a variable.

• The subroutine iterations will continue until the list of values in the
variable is exhausted or until it reaches the maximum number of
iterations specified, which ever comes first.

• For each iteration through the list of values, the value corresponding to
the iteration from the list will be automatically stored in the variable
“gvar_list_loopvar” that can be used as input to any component within
the subroutine flow. This variable is automatically created as an IN
variable for the subroutine flow as and when the looping is defined
using the list variable option in the subroutine looping interface.

Example: If the subroutine looping is defined using a list variable that
holds a set of account IDs, the gvar_list_loopvar will hold a specific ID
of the account that is being used/processed as part of a specific
subroutine loop.

Conditional Bypass of Components in a Flow Run (Skip Component)
This feature supports finer control of a flow run. It can be specified whether a
component has to be skipped or run as part of the flow run, based on the custom
conditions in the component's test data in the flow. The feature can be used to selectively
run or skip one or more components based on the outcome of the previous component
step or based on the Flow Test Data set that is used, as part of the flow run.

To bypass/skip the running of a component within a flow:

1. Login to the application and navigate to the Flows tab.

2. On the left navigation pane, right-click the flow name and select Create/Update
Flow Structure.

3. On the right pane, expand the flow structure.

4. Right-click a component and select Edit Test Data.

5. In the component's Test Data section, click the Pre-Validations tab.

6. Add the “skipStep” function from the “CoreUTAOps” library. Set the test data to
“true” so that the component may be skipped during the flow run.

7. If the component should not be skipped during the flow run, set the test data for the
function to “false”.

Multiple test data sets can be used to set different test data for the function making sure
that the specific components in which the function exists may be skipped or run based
on the input to the function.

Suspension/Pause and Conditional Resumption of Flow Run

Creating Test Flows 6-33
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Skipping more than one component in a flow
Additionally, the function can take in global variable which holds the values true or false
as input. If certain components in a flow have to skipped during a run, then set a global
variable in the Pre Validations section of the first component. The global variable can
be used as an input to the skipStep function in various components. Changing the value
of the global variable (using flow level test data sets) will make sure that the defined set of
components are either skipped or run as part of the flow run.

Skipping components based on outcome of a component step
In cases where certain component/components have to be skipped based on the
outcome of a component step result in a flow, the “CoreVerifyConditionVariableLib”
library can be used. The functions in the library can be used to validate the response for a
component request, much like the functions in the WSValidateLib that are used to
validate a response. But, the functions in the “CoreVerifyConditionVariableLib” library
output either a false or true value, but do not fail or pass the test.

The output of the functions in “CoreVerifyConditionVariableLib” can be stored into a
global variable and then the global variable may be used as input to the “skipStep”
function. This allows conditional bypass/running of a component based on the outcome
of another component.

Note: If a certain set of components have to be skipped as part of the
flow run using this feature, add the “skipStep” function in the Pre
Validations section of each of the components.

Suspension/Pause and Conditional Resumption of Flow Run
In cases where a flow run needs to be suspended temporarily and resumed, subject to one
or more conditions being met in the application being tested, this feature provides
necessary flexibility to configure the flow steps. A simple example would be an
integration test flow, where in the application/cloud service being tested sends out a
message to a 3rd party application as part of the test scenario and the flow run needs to
be in a wait state until the 3rd party application sends back an asynchronous message to
the application/cloud servicer being tested. In such a case, the flow run needs to be
suspended and the state of objects needs to be constantly monitored in the application
being tested the flow run can continue, if the objects show that the asynchronous
message has been received from the 3rd party application.

A new Suspend step can be added to the flow definition succeeding a component step,
at which point the flow needs to be suspended until a predetermined condition in met.
The predetermined condition is defined as a component/subroutine under the suspend-
resume flow control structure.

The concept is simple, in that the flow will suspend the run and will resume execution if
the component or subroutine step defined under the suspend-resume control structure
pass.

The predetermined condition is deemed to be met if the component/subroutine step
under the suspend-resume control structure passes. The validations in the component/
subroutine step act as the condition verification steps.

The suspend step holds the time interval details, that specify the time/duration after
which the flow run needs to check for the pre-determined condition, regularly. There is

Component Test Data Sets

Creating Test Flows 6-34
Oracle Utilities Testing Accelerator User’s Guide for Cloud

also a max time limit, after which the flow will be deemed as failed if the pre-determined
condition is not met.

The following set up needs to be done to add the conditions for suspend-resume of flow
run:

1. Login to the application and navigate to the Flows tab.

2. On the left navigation pane, right-click the flow name and select Create/Update
Flow Structure.

3. On the right pane, expand the flow structure.

4. Right-click on the component step in the flow definition at which point the flow run
needs to be suspended.

5. Select Add Suspend Step. A suspend step flow control structure is added to the
flow definition and the component is moved under the structure. Subroutines can
also be added under this feature as a condition.

6. Right-click the newly added suspend flow - resume control structure in the flow
definition and select Edit.

7. In the pop-up window, provide the Verification Interval details that specify how
often the flow run needs to check for the resume condition. This determines how
often the flow run executes the component/subroutine under the suspend-resume
control structure and checks for the validations to pass.

8. Provide the maximum time limit from the start of flow run suspension, until which
the condition to resume needs to be verified, at the specified verification intervals.
After this limit, the flow will be automatically failed if the condition to resume is not
met.

9. Click Save to save the definition.

Note:

• If one or more components listed above a suspend step fail, and if the
continue execution on failure flag in the flow configuration set or user
configuration set is set to true, then the suspend step will be ignored and
the flow run will progress to completion without suspending the flow
run.

• Multiple suspend-resume steps can be added to the same flow.

• Subroutines can also be added under a suspend-resume flow control
step.

• When a flow containing a suspend-resume control step is run, a hour
glass icon appears against the corresponding component for which the
suspend-resume step has been added.

Also, the flow run status is set as “waiting”, from the time the flow run is suspended,
until the time the resumption condition is met or the flow has failed. If the resumption
condition is met, the flow run will proceed further and flow run status is updated
appropriately.

Component Test Data Sets
The component level test data sets allow to create test data sets specific to the
component. These can be thought of as master test data sets for a component.

Creating Reference Test Data for a Component

Creating Test Flows 6-35
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Example: For a C1-PremiseAdd component in Oracle Utilities Customer Cloud Service,
the component level test data sets can be residential premise test data set and commercial
premise test data set. Every time the C1-PremiseAdd component is used in a flow,
instead of filling up the test data manually, the appropriate component test data set can
be selected which automatically populates the test data from the component test data set
into the component's test data GUI in the flow. This reduces a lot of work while
providing test data in a flow.

Component test data sets save current test data of a component with a given name, which
can later be retrieved and auto-populated it into another instance of the component
either in the same flow or another flow.

Creating Reference Test Data for a Component
Save the current test data of a component for future use by saving it as a component test
data set. After saving the test data set, the component can be populated with the test data
contained in a Test Data Set. On the Edit Test Data page, select Test Data Set from
the drop-down menu.

To create a test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow in which the component is used. Right-
click and select Create/Update Flow Structure to open the Flow Definition page.

3. Navigate to the component for which the test data set needs to be created. Right-
click the component and click Edit Test Data.

4. Click Save As Test Data Set to save the test data of the component. Specify the
name of the test data set and click Save. Then, click OK to return to the Edit Test
Data page.

Note: If a test data set with the same name already exists, the
application asks for confirmation to overwrite the test data.

Loading Test Data from a Component Test Data Set
To populate the test data from a given component test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow in which the component is used.

3. Right-click the flow and select Create/Update Flow Structure.

4. On the Flow Definition page, navigate to the component for which the test data set
needs to be created.

5. Right-click the component and then click Edit Test Data.

Deleting Component Test Data Sets

Creating Test Flows 6-36
Oracle Utilities Testing Accelerator User’s Guide for Cloud

6. Select the test data set from the drop-down menu. The test data gets populated into
the component.

Deleting Component Test Data Sets
To delete one or more component test data sets for a given component:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Components menu, navigate to the component for which the test data set
needs to be deleted.

3. Right-click the component and select Delete Test Data Sets.

4. Select the test data set from the popup window. Click Yes to delete the selected
component test data sets. The test data set/sets should be deleted.

Flow Test Data Sets
Flow Test Data Sets allow users to create and manage multiple test data sets for the same
flow. These test data sets can be used for selective or iterative run of the flow. This
feature is aimed at creating multiple sets of test data per flow and swap between these test
data sets before running a flow.

The Flow Test Data sets store the data specified against all the components within the
flow, as a single data set. Users can copy the data set to create a new test data set and
update it to reflect any changes. This feature has been provided to enhance reusability
where test cases which do not differ in the flow structure, but only in the test data that is
used, can be automated without having to recreate a test automation flow.

For more information, see the Iterative Flow Run section.

Creating Flow Test Data Sets
To create a flow test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow for which the test data set should be
created.

3. Right-click and select Create/Update Flow Structure.

4. On the Flow Definition page, click Add under Flow Test Data Sets.

5. Specify the data set name and click Add.

6. Click Save As to save the test data of the flow.

7. Specify the name of the test data set and click OK.

Note: If a test data set with the same name already exists, the
application asks for confirmation to overwrite the test data.

Support for Integration Flows

Creating Test Flows 6-37
Oracle Utilities Testing Accelerator User’s Guide for Cloud

8. If the flow definition includes a subroutine, select the test data set for the subroutine.
Right-click the subroutine and select Edit Test Data. Select the test data set from
the Subroutine Flow Test Data Set drop-down list.

9. To edit or add test data against a flow test data set, the corresponding flow test data
set has to be selected on the flow structure definition pane.

10. Navigate to the Edit Test Data page of each component in the flow and update/
add the test data.

This figure shows flow test data sets option for the selected flow.

Loading Test Data from Flow Test Data Sets
To populate the test data from a given test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow in which the component is used.

3. Right-click the flow and select Create/Update Flow Structure.

4. On the Flow Definition page, select the test data set to be populated in the flow
from the Flow Test Data Sets drop-down list.

To edit or add test data against a flow test data set, the corresponding flow test data
set has to be selected on the flow structure definition pane. Navigate to the Edit
Test Data page of each component in the flow and update/add the test data.

5. If the flow definition includes a subroutine, select the test data set for the subroutine.
Right-click the subroutine and select Edit Test Data. Select the test data set from
the Subroutine Flow Test Data Set drop-down list.

Support for Integration Flows
Support for integration flows allows users to create a single test flow that can interact
with multiple applications. Individual components in the flow can be configured to post
web service requests to different application URLs. The integration flow support includes
support for creation, management and execution of hybrid test flows, where Oracle
Utilities Testing Accelerator that is within Oracle Utilities Enterprise cloud service can
have a test flow that interacts with that cloud service and one or more Oracle Utilities
enterprise applications that may be at customer's premise/data center.

By default, Oracle Utilities Testing Accelerator automatically constructs the web service
end point URL based on the web service name provided in the flow test data. This
default URL executes test flows against the Oracle Utilities Enterprise cloud service that
it is part of.

Support for Integration Flows

Creating Test Flows 6-38
Oracle Utilities Testing Accelerator User’s Guide for Cloud

To configure a component in a flow to post a request to a different application,
depending on the integration scenario, one of the below approaches may be used.

Hybrid Integration Scenario
In this integration scenario, Oracle Utilities Testing Accelerator is used to develop and
run a test flow spanning an Oracle Utilities cloud service and an Oracle Utilities
enterprise application that is hosted either on-premises or PaaS. The following
configuration needs to be added to either the flow configuration set or user configuration
set.

Define the environment configuration properties pertaining to the on-premise Oracle
Utilities Enterprise application. Prefix them with a custom keyword. This keyword is
used in the component's test data in a flow to specify the application configuration
context to a component for execution.

Example: Oracle Utilities Customer Care and Billing is the on-premise application and
the custom keyword chosen is “CCB”. In the flow configuration set or user configuration
set, use the “Add Property” option and add the following properties:

CCB property holds the external web service end point URL prefixed with
“@ext_pub@”, up to but not including the web service name. If the web service end
point URL for the WSDL of person object in CCB is
https:myccbserver.mycompany.com/webservices/ATC1PersonAdd?WSDL, the CCB
property should hold the value - “@ext_pub@myccbserver.mycompany.com/
webservices/”.

The properties CCB_gStrApplicationUserName and CCB_gStrApplicationUserPassword
hold the user name and password respectively for authenticating the user posting the web
service request to Oracle Utilities Customer Care and Billing.

The figure below shows a sample setup of environment configuration for integration
flows.

The integration flow in Oracle Utilities Testing Accelerator may contain a mix of
components pertaining to the cloud service that it is part of and components pertaining
to on-premise Oracle Utilities Enterprise applications. To get a component in flow to
post a request to the on-premises Oracle Utilities Enterprise applications, the integration
switch needs to be enabled to view the Environment field under the Web Service
Details section in the test data GUI for the component in the flow. The ‘Environment’

Property Name Property Value

CCB <CCB url>

CCB_gStrApplicationUserName <username>

CCB_gStrApplicationUserPassword <encryptedpassword>

Support for Integration Flows

Creating Test Flows 6-39
Oracle Utilities Testing Accelerator User’s Guide for Cloud

keyword can be provided in the Environment field so that the requests from the
component are directed to the URL specified using the environment keyword.

In the example where Oracle Utilities Customer Care and Billing is the on-premises
application and “CCB” is the keyword, the environment name for the C1-PersonAdd
component's test data in the integration flow should be specified as “CCB” and the web
service name should be specified as ATC1Person. This ensures that the C1-PersonAdd
component posts the request to Oracle Utilities Customer Care and Billing whose
configuration has been specified in the flow configuration set or user configuration set
using the keyword prefix “CCB”.

During the integration flow execution, the flow configuration set and user configuration
set that have the required environment properties should be selected.

Oracle Utilities Cloud Services Integration Scenario
In this integration scenario, Oracle Utilities Testing Accelerator is used to develop and
run a test flow spanning two different Oracle Utilities cloud services, such as Oracle
Utilities Customer Cloud Service (OUCCS) and Oracle Utilities Work and Asset Cloud
Service (OUWACS).

In the above case, assuming that the Oracle Utilities Testing Accelerator that is part of
Oracle Utilities Customer Cloud Service is being used for the flow development and
execution, Oracle Utilities Work and Asset Cloud Service becomes the external
application (in the context of Oracle Utilities Testing Accelerator integration testing) to
which Oracle Utilities Testing Accelerator needs to post the integration test request to.

In the flow and user configuration sets in Oracle Utilities Testing Accelerator, which is
part of Oracle Utilities Customer Cloud Service, 3 properties pertaining to Oracle
Utilities Work and Asset Cloud Service can be found, provided that the Oracle Utilities
Work and Asset Cloud Service and Oracle Utilities Customer Cloud Service are part of
the same tenancy. The parameters are listed as follows:

• wacs

• wacs_gStrUserName

• wacs_gStrPassword

Depending on the Oracle Utilities enterprise cloud service available for the integration
scenario, the properties corresponding to Oracle Utilities Meter Solution Cloud Service,

Running Test Flows

Creating Test Flows 6-40
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Oracle Utilities Customer Care and Billing Cloud Service and others can be found in the
flow and user configuration sets.

Enter the following values corresponding to each of the parameters:

• wacs: Prefix “$” to the parameter name and provide it as the value for that
parameter. Example: $wacs

• wacs_gStrUserName: Provide the username for web service authentication to
Oracle Utilities Work and Asset Cloud Service application.

• wacs_gStrPassword: Provide the password corresponding to the username for
web service authentication to Oracle Utilities Work and Asset Cloud Service
application.

In the above example, to post a component request (say W1-AssetAdd) from Oracle
Utilities Testing Accelerator in Oracle Utilities Customer Cloud Service to Oracle
Utilities Work and Asset Cloud Service, in the corresponding component's test data, the
integration switch has to be enabled to view the Environment field under the Web
Service Details section in the test data GUI for the component in the flow. The
keyword ‘wacs’ (the environment to which the request needs to be sent to) should be
specified in the Environment field. The web service name for W1-Asset component's
test data in the integration flow should be specified as “ATW1AssetAdd”.

This ensures that the W1- AssetAdd component posts the request to Oracle Utilities
Work and Asset Cloud Service whose configuration has been specified in the flow
configuration set or user configuration set using the keyword prefix “wacs”.

More than one such configuration can be set so that a test flow can interact with multiple
applications/cloud services. Each application can have its own keyword which is used
while specifying the web service name in the component step's test data in a flow.

Running Test Flows
This section focuses on executing a test flow.

• Running Test Flows Using a Browser

• Iterative Flow Run

• Stopping Flow Run on Validation Failure

• Stopping Flow Run Manually

• Viewing Flow Run Details

Running Test Flows Using a Browser

Creating Test Flows 6-41
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Viewing Flow Run Failure Details

• Viewing Flow Run Summary Report

• Conversational Test Data Management

• Runtime Configuration for Flow Run

Running Test Flows Using a Browser
To run a test flow using a browser:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, select the product to which the flow belongs. Right-click the
test flow and select Run Flow.

Alternatively, you can click the broadcast icon next to the test flow name, and then
click Run Flow on the Flow Definition pane.

Note: The test flow can be run only if it is either in the “Pending
Approval” or the “Approved” state.

3. Select the Flow Configuration and User Configuration to be used to run the test
flow. These configurations hold the authentication information along with other
configuration parameters required for the flow run. The flow configuration set is
common for all the users of Oracle Utilities Testing Accelerator and is usually created
by the admin, where as the user configuration set corresponds to the user who
created the configuration set and is accessible only to the user who created it.

4. Click Run to start the test flow run.

Note: For more details about flow configuration and user configuration,
refer to the Runtime Configuration for Flow Run section.

5. On the Flow Run page, the run details are displayed.

At the top of the flow run tree, the flow run start time and duration are displayed,
along with the live flow run status.

The flow run has the following statuses:

• Running: Denotes that the flow run is in-progress.

• Passed: Displayed for all the flow runs that have successfully completed
execution and all the validations in the flow have passed.

• Failed: The flow run execution is complete, but the flow has failed due to
one or more failed in the validations in the flow.

• Stopped: Set on the flow and the flow run is stopped when user manually
clicks the Stop button on the Flow Run screen.

• Waiting: The flow run is in-progress, but is currently suspended waiting for
a user defined condition in the flow, to be met, so the flow execution can
continue. The condition to be met is checked for at regular intervals, as
defined in the flow’s suspend-resume definition.

Refer to the Suspension/Pause and Conditional Resumption of Flow Run
section for more information.

The flow run tree shows each of the scenarios and components of the flow. Select a
component in the tree to display the corresponding request and response details.

Iterative Flow Run

Creating Test Flows 6-42
Oracle Utilities Testing Accelerator User’s Guide for Cloud

A toggle switch has been provided to view the request-response in different formats.
If the Advanced View switch is enabled, the request-response details are displayed
as label-value pairs, similar to the flow test data GUI, where in the label is the
element name and the value is the data that was set in the request or received in the
response for that element.

With the Advanced View switch disabled, the display defaults to legacy XML based
view where in the request and response are visible as XML documents.

The tree shows each of the scenarios and components of the flow. Select a
component in the tree to display the corresponding request and response details.

The request-response details are displayed as lable-value pairs, similar to the flow test
data GUI, where in the label is the element name and the value is the data that was
set in the request or received in the response, for that element.

A toggle switch has been provided to switch to a legacy xml based view where in the
request and response are visible as XML documents.

6. Click View Logs to view the logs of the run.

Iterative Flow Run
To run a test flow using a browser:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, select the product to which the flow belongs.

3. Right-click the test flow and select Run Flow.

Note: The test flow can be executed only if it is either in “Pending
Approval” or “Approved” state.

4. Select the Flow Configuration and User Configuration used to run the test flow.

5. Select Iterative as the Flow Run Type.

6. In the Number of Iterations field, specify the number of iterations to run the flow.

7. If the flow has more than one flow test data set, specify more than one flow test data
set to be used during the iterative run. Select the checkbox next to the flow test data
set name.

Note: Based on the number of iterations and flow test data sets
specified, application will use test data sets for each of the iterations.
Example: If number of iterations is specified as 10 and two flow test
data sets are selected, the application runs the flow with first data set for
first iteration and second data set for second iteration, and switch back
to first data set for 3rd iteration and so on. At the end of 10 flow
iterations, there would be total of 5 runs of the flows with first data set
and 5 run of the flow with second data set.

8. Click Run to start the test flow run.

Note: For more details about flow configuration and user configuration,
see Runtime Configuration for Flow Run.

Stopping Flow Run on Validation Failure

Creating Test Flows 6-43
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The run details are displayed on the Flow Run page.

The tree shows each of the scenarios and components of the flow. Select a component in
the tree to display the corresponding request and response details. Click View Logs to
view the run logs.

Stopping Flow Run on Validation Failure
By default, the flow run continues until the last component in the flow even if there is a
validation failure for a component in the flow. This behavior can be changed to make the
flow run stop when a validation fails by setting the property
“continueExecutionOnFailure” in the user or flow configuration to “false”.

Stopping Flow Run Manually
When a flow starts running, the Stop Flow button is enabled in the Flow Run page.

To stop a running flow, on the Flow Run page showing the current running state of a
flow, click Stop Flow. The flow run will be stopped.

Note that for flows including subroutines, the parent flow that calls the subroutines
should be stopped to stop the flow run. Individual subroutine flow runs cannot be
stopped. A stopped flow cannot be resumed.

Viewing Flow Run Details
To view the run details of a flow:

1. Login to Oracle Utilities Testing Accelerator.

2. Navigate to the Flow menu.

3. On the left pane, navigate and right-click the flow to view the run summary. Click
View Run History.

4. Click the flow run entries to view the respective details of that run. The flow run tree
for the corresponding flow is displayed.

5. Click the info icon next to the failed component step in the flow run. The
appropriate error is displayed along with a list of possible reasons leading to the
error.

Viewing Flow Run Failure Details
If a flow run fails, the possible reasons for failure can be viewed. Click the Info icon next
to the failed component step in the Flow Run Status tree structure.

To view the failure details for a flow run:

1. Login to Oracle Utilities Testing Accelerator.

2. Navigate to the Flow menu.

3. On the left pane, navigate to the flow and right-click it to view the run summary.
Click View Run History.

4. Click the flow run entries to view the respective details of that run.

Viewing Flow Run Summary Report

Creating Test Flows 6-44
Oracle Utilities Testing Accelerator User’s Guide for Cloud

5. Click the Info icon next to the failed component step in the flow run. The error is
displayed along with a list of possible reasons leading to the error.

Viewing Flow Run Summary Report
To view the run summary of a flow:

1. Login to Oracle Utilities Testing Accelerator.

2. Navigate to the Flow menu.

3. On the left pane, navigate and right-click the flow to view the run summary.

4. Click View Run History.

5. Click any of the flow run entries to view the respective details.

6. On the Flow Run Status page, click Summary.

7. On the Flow Run Summary Report page, click Summary. The summary of the
flow run is displayed, including total scenarios passed/failed, percentage of pass/fail,
etc. You can also drill down individual scenarios and check more details.

The flow run summary can be sent via email. Specify the email address in the Summary
Report page and click Email.

Conversational Test Data Management
As an alternative to the Edit Test Data GUI, test data can also be provided in XML
format through the conversational Test Data Entry page. Before accessing this GUI,
the component's test data needs to be populated by providing the web service name and
the transaction type.

To navigate to the Conversational Test Data GUI, right-click the component in the
flow tree structure (in flow development screen) and select Edit Request.

Note: This feature is only supported for web service components.

The Edit Request feature allows to:

1. Open the failed request of a component.

2. Make changes to the test data and resend the request to edge application (without
running the flow multiple times).

3. Observe the response for the modified request.

Runtime Configuration for Flow Run

Creating Test Flows 6-45
Oracle Utilities Testing Accelerator User’s Guide for Cloud

4. Save the modified request as test data for the flow’s component step.

Repeat the above steps until the test data for the successful request is identified.

The Edit Request feature can be accessed from the flow structure screen/flow run
interface (including from flow run history, flow set run/history, iterative run/history).
User can invoke the Edit Request user interface. Right-click a component from the flow
run status tree and selecting the Edit Request option.

After selecting the Edit Request option from the right-click menu, a new window is
displayed and prompts to select the configuration sets to be used. Modify the request by
either changing test data value of one or more elements, adding/deleting new elements in
the request and click Send to send the request to the application being tested and observe
the response. Continue to make modifications until the desired response is received from
the edge application.

The user has below options to manage request content better:

• Repopulate all schema elements. Click Refresh Schema. This helps in resetting
fields that are required to make a successful request that were not present/left
out in the previous/original request.

• Click Settings to allow the user to control some header level information that is
sent as part of the request, including username token, timestamp and whether
the request should include any schema elements that do not have any test data
filled in.

• Choose to save the test data of the request to a flow test data set. Click Save to
select the flow test data set to which the test data needs to be saved to in the
dialog box.

Note: While saving the test data in the request XML in to the
component step's test data, only static test data values defined in the
component are replaced. The variables defined in the component's test
data are not replaced with the test data in the XML request.

Runtime Configuration for Flow Run
A test flow is run using flow configuration sets and user flow configuration sets that
contain the required properties, such as URL of the environment against which the flow
to be run, username/password to be used, etc.

The flow configuration set includes configuration applicable for a particular environment. It
is expected that the flow level configuration sets do not contain any user specific
properties, thereby allowing many users to use a single flow configuration set.

The user configuration sets, on the other hand, are specific to each user and typically contain
user-specific properties, such as the username/password used to connect to an
environment.

Runtime Configuration for Flow Run

Creating Test Flows 6-46
Oracle Utilities Testing Accelerator User’s Guide for Cloud

It is expected that customers setup some generic flow configuration sets with common
runtime properties and users have their personal user configuration sets that contain their
credentials. While running a test flow/flow set, specify a flow configuration set and a user
configuration set in combination to get generic runtime properties and user specific
properties to be used for test flow/flow set run.

Note: Configuration in the user configuration sets overrides
configuration in the flow configuration if the same parameter is defined
in both the configuration sets.

The following properties are available by default:

• Continue Execution on Failure: Setting this flag to “true” will cause a flow
run to execute all the components defined in the flow, even if one or more of the
component steps fail. Setting this flag to “false” will ensure that the flow
execution stops at the first component step that has failed, during a flow run.

• Application URL: The common web service's end point URL of the
application that is being tested needs to be specified against this property.

Note: For Oracle Utilities Testing Accelerator that is available as part of
Oracle Utilities Enterprise cloud services, the corresponding
environment's URL is predefined within Oracle Utilities Testing
Accelerator. Users need not provide the Application URL for the same.
However, users can provide the user name and password for
authentication.

• Application User Name: The user name for authentication of the web services
of the application being tested needs to be specified here.

• Application User Password: The password corresponding to the above
application user name for authentication of the web services of the application
being tested needs to be specified here.

• SSO Federated Login: In the flow configuration set or the user configuration
set, the SSO Federated Login parameter can be set to “true”, in which case, the
web service request from Oracle Utilities Testing Accelerator to the
corresponding Oracle Utilities cloud service will use the current user's SSO
authentication, implicitly. Application User name and Application User
password need not be provided if this parameter is set to “true”. If the SSO
Federated Login is set to “false”, the username and password should be provided
for web services authentication. This parameter can be set to “true” only in
Oracle Utilities Testing Accelerator that is available as part of Oracle Utilities
Enterprise cloud services. For Oracle Utilities Testing Accelerator on-premises
installations, this parameter should be set as false.

• Environment Name: A custom free text environment name can be provided to
denote the environment against which the flows are/will be run. This name
appears in the summary report so users reviewing the report know the
environment the flow/flows were run against.

• Email Recipients: The summary report is automatically emailed to the email
addresses specified against this property. Multiple email addresses can be
provided, separated by a “;”(semi-colon).

• Rest Authorization Type: This property is applicable to REST based
components and allows for adding authorization type in the header. Supported
values: [basic|none]. Default is “none”.

Runtime Configuration for Flow Run

Creating Test Flows 6-47
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Rest Proxy: In cases where a REST end point needs to be accessed through a
proxy, this rest proxy can be set against this property.

• Rest Redirect: Setting this property to “true” will enable Oracle Utilities Testing
Accelerator to access the any end points that are a result of redirection of the
REST API request. Default value is “false”.

This section focuses on managing the flow and user configuration sets:

• Creating a Flow Configuration Set

• Creating a User Configuration Set

• Editing a Flow Configuration Set

• Editing a User Configuration Set

• Copying a Flow Configuration Set

• Copying a User Configuration Set

Creating a Flow Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click Flow Configuration Sets.

4. On the Manage Flow Configuration Sets page, click Create.

5. Specify the name of the flow configuration set being created and click Create.

6. If the flow configuration set is created successfully, a message appears confirming
that the operation was successful and redirects to the Manage Flow Configuration
Sets page.

7. Search for the configuration set created and click Edit to create flow level
configuration properties.

8. Each of the property is a key-value pair. By default some of the property names are
listed on the Edit page. You can either enter a value for the existing property or
choose to create a new property by clicking Add Property.

Important! It is recommended that sensitive information (such as passwords) be
encrypted. Toggle the Encrypt switch to encrypt the corresponding row of the property.

Creating a User Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click User Configuration Sets.

4. On the Manage User Configuration Sets page, click Create.

5. Specify the name of the user configuration set to be created and click Create.

6. If the user configuration set is created successfully, a message appears confirming
that the operation was successful and redirects to the Manage User Configuration
Sets page.

7. Search for the configuration set created and click Edit to create user level
configuration properties.

Runtime Configuration for Flow Run

Creating Test Flows 6-48
Oracle Utilities Testing Accelerator User’s Guide for Cloud

8. Each of the property is a key-value pair. By default some of the property names are
listed on the Edit page. You can either enter a value for the existing property or
choose to create a new property by clicking Add Property.

Important! It is recommended that sensitive information (such as passwords) be
encrypted. Toggle the Encrypt switch to encrypt the corresponding row of the property.

Editing a Flow Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click Flow Configuration Sets.

4. On the Manage Flow Configuration Sets page, search for the flow configuration
set to be edited, and click Edit.

5. On the Update Flow Configuration Set page, click Add Property to either enter a
value for the existing property or choose to create a new property.

Important! It is required that sensitive information (such as passwords) be encrypted.
Toggle the Encrypt switch to encrypt the corresponding row of the property.

Editing a User Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click User Configuration Sets.

4. On the Manage User Configuration Sets page, search for the user configuration
set to be edited, and click Edit.

5. On the Update User Configuration Sets page, click Add Property to either enter a
value for the existing property or choose to create a new property.

Important! It is recommended that sensitive information (such as passwords) be
encrypted. Toggle the Encrypt switch to encrypt the corresponding row of the property.

Copying a Flow Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click Flow Configuration Sets.

4. On the Manage Flow Configuration Sets page, search for the flow configuration
set to be copied, and click Copy.

5. Enter the new configuration set name and click Confirm to create a copy.

Copying a User Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click User Configuration Sets.

Runtime Configuration for Flow Run

Creating Test Flows 6-49
Oracle Utilities Testing Accelerator User’s Guide for Cloud

4. On the Manage User Configuration Sets page, search for the user configuration
set to be copied, and click Copy.

5. Enter the new configuration set name and click Confirm to create a copy.

Creating Test Flow Sets 7-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 7
Creating Test Flow Sets

Flow sets offer a level of abstraction above the flows that allows more flexibility in
managing flows. Several related flows can be grouped into a flow set and can be run in
sequence. Multiple flow sets can be run in parallel, whereas flows in a flow set will be run
in the specified sequence. Unlike the flow subroutines, the flows in a flow set do not have
a direct dependency on each other. The test data/outputs cannot be passed from one-
flow to another, within Oracle Utilities Testing Accelerator.

This chapter focuses on flow sets including:

• Creating Flow Sets

• Adding Flows to a Flow Set

• Deleting Flows from a Flow Set

• Running Flow Sets

• Stopping Flow Set Run

• Exporting Flow Sets

• Viewing Flow Set Run History

• Viewing Flow Set Execution Summary Report

Creating Flow Sets

Creating Test Flow Sets 7-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating Flow Sets
To create a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Create Flow Set.

4. Provide the Flow Set Name and Description, and click Save to save the flow set.

5. Navigate to the Manage Flow Set menu to add flows to the flow set.

Adding Flows to a Flow Set
To add flows to a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. The list of available flow sets is displayed.

4. Select the flow set name to which the flow(s) needs to be added.

5. Click Add Flows. You can search for one or more flows using the wildcard “%” to
search for flows matching a name.

For example: Search for all flows that contain the text “person” in their name by
searching for string “%person%”.

6. In the test data set column's drop down, select the flow test data set used to run the
flow.

7. Click Save to save the flow set.

Deleting Flows from a Flow Set
To delete flows from a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. In the left pane, click Manage Flow Set. The list of available flow sets is displayed.

4. Select the flow set from which the flow(s) needs to be deleted.

5. Delete one or more flows from the flows displayed. Select the checkbox for each of
the flow to be deleted and click Delete.

6. Click Save to save the flow set.

Running Flow Sets

Creating Test Flow Sets 7-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Running Flow Sets
To execute a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. In the left pane, click Manage Flow Set. The list of available flow sets is displayed.

4. Select the flow set to be run and click Run.

5. Select the flow configuration and user configuration to be used to run the flow set.

6. Click Confirm.

Note: For more details about on flow configuration and user
configuration, refer to the Runtime Configuration for Flow Run section.

7. Once the flow set run starts, click each of the flows to view more details about the
run.

Stopping Flow Set Run
The Stop feature allows the active flow run to complete and stops all subsequent flows in
the flow set from running.

To stop a flow set run:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click View History on the name of the flow set whose run should be stopped.

5. Select the currently running instance of the flow set and click Stop.

Exporting Flow Sets
To export a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click Export against the flow set to be exported.

Viewing Flow Set Run History
To view the run history of a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

Viewing Flow Set Execution Summary Report

Creating Test Flow Sets 7-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

4. Click View History of a flow set to display all previous runs. You can view details
such as the flow set run status, date and time of the run, the user who triggered the
run, etc.

5. Click any of the previous runs to view flow-level details of that particular run.

You can drill-down even further by clicking a flow name and view the details of the
flow run, including overall status, request and response details for each of the
component and even view the log file details of a particular component run.

Viewing Flow Set Execution Summary Report
To view the execution summary of a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click View History of a flow set to display all previous runs. You can view details
such as the flow set run status, date and time of the run, the user who triggered the
run, etc.

5. Click any of the previous runs to view flow-level details of that particular run.

6. Click Summary to display a summary of the flow set run, including total flows
passed/failed, percentage of pass/fail, etc. You can also drill down individual flows
to view the respective details.

7. Email the flow set run summary. Specify the email address on the Summary Report
page and click Email.

Creating Test Plans 8-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 8
Creating Test Plans

This chapter focuses on test plans, including:

• About Test Plans

• Creating a Test Plan

• Adding and Removing Flow Sets in a Test Plan

• Managing Test Plan Lifecycle

• Running a Test Plan

• Viewing Test Plan Run Results

About Test Plans

Creating Test Plans 8-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

About Test Plans
A test plan is an object that brings all the test assets together to make the test automation
process simpler and easy to use. Using a test plan, the test flows can be grouped to meet
an objective (positive and negative tests/assertions) as part of testing. It can be defined
using flow sets, which in turn hold all the requisite flows.

The following figure defines the test plan process.

Run the specified set of flows with the prescribed environment using the Credentials,
On-demand.

Running the tests to meet a given objective may take multiple iterations.

Example:

• A test plan may be created to successfully generate bills for any given customer.

• The test plan may include some automated test flows that verify the objective.

• Users can run this test plan ‘n’ number of times (during sprints in agile), logging
bugs/issues during the each iterative run of the test plan.

The Test Plan object encompasses the Flow Set object. One or more flow sets can be
grouped together to form a single test plan. It can be executed as a whole, which provides
consolidated run results of all the tests within the test plan (under the flow sets).

Creating a Test Plan
To create a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Click New under the Test Plans section.

4. Provide the Test Plan Name (a unique identifier for a test plan).

5. Provide a Short Description and a Long Description for the test plan.

6. Select the type of the test plan from the Type drop-down list. It helps to differentiate
if the test plan pertains to new feature testing, sanity testing or other types of testing.
You can also use it when searching for a test plan.

7. Click Create.

Adding and Removing Flow Sets in a Test Plan

Creating Test Plans 8-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The test plan will be created and displayed in the Test Plan page. The new test plan will
be in the “Planning” stage.

Adding and Removing Flow Sets in a Test Plan
To add a flow set to a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan to be edited.

5. Click Edit next to the Test Plan Definition.

Alternatively, click Add Flow Set.

6. In the Edit Test Plan screen, select the flow set to be added to the test plan and drag
and drop it into the Test Plan Definition column.

Make sure to select the flow set before it is dragged into the Test Plan Definition
column. Use the Flow Sets filter to find one or more flow sets based on the flow set
name.

7. Click Save to save the test plan definition.

To remove a flow set from a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan to be edited.

5. Click Edit next to the Test Plan Definition.

6. Select the flow set and click X next to it in the Test Plan Definition column.

7. Click Save to save the test plan definition.

Managing Test Plan Lifecycle
A test plan object supports various lifecycle states for easier and robust management of a
test plan. Based on its lifecycle state, certain operations may or may not be allowed on the
test plan.

The following lifecycle states are supported:

• Planning: This is the initial state of the test plan. All (newly created) test plans
will be in the planning state. The test plan definition is allowed in this stage. Flow
sets under the test plan can be added or removed when the test plan is in the
planning state. The test plan cannot be run in this state, but can be deleted.

• Active: After the test plan planning is complete, to run it, it should be moved to
the active state. It can be moved to active state from the planning state. An active

Running a Test Plan

Creating Test Plans 8-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

test plan can be run. Flow sets cannot be edited/updated when the test plan is in
this lifecycle state. The descriptions and type can be updated. The test plan can
be moved to paused or complete state from the active state, but cannot be
deleted in this state.

• Paused: If the test plan definition needs to be changed after moving it to the
active state, pause it so that the test plan runs are not triggered during the update.
In this state, the test plan can no longer be run. It can be edited or updated and
the corresponding flow sets under the test plan can be added or removed. It can
be moved to active or archive state, but cannot be deleted.

• Complete: The test plan in Complete state signifies that the runs have been
completed and the objective has been met, but it still needs to be maintained in
the application for tracking/reporting purposes. Updates to the test plan are no
longer allowed and the runs are also not allowed. The only state allowed from
this is the archived state. The test plan cannot be deleted.

• Archive: This is the end state for a test plan that allows a test plan to be deleted.
The test plan updates and runs are not allowed in this state. It can be deleted.

The following figure shows the possible test plan lifecycle state transitions.

To update a test plan lifecycle:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan to be edited.

5. Select the appropriate state from the drop-down list. The test plan will be moved to
the selected lifecycle state.

Running a Test Plan
To run a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan to be run (make sure that the test plan is in “Active” state).

5. Click Run in the Test Plan Definition section on the Test Plan page.

Viewing Test Plan Run Results

Creating Test Plans 8-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

6. Select the Flow Configuration Set and the User Configuration Set. Click
Confirm.

The test plan run page is displayed showing the state of the flow set runs for the test
plan.

7. To view detailed results of the flow set runs, click the corresponding flow set on the
Test Plan Results page.

Viewing Test Plan Run Results
To view the run results of a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan.

5. Click Run History in the Test Plan Definition section on the Test Plan page. The
test plan run history page is displayed with the test plan run details.

6. Click the appropriate test plan run record. The test plan run page displays the state of
the flow set runs under the test plan.

7. To view the detailed results of the flow set runs, click the corresponding flow set on
the Test Plan Results page.

Development Accelerator Tools 9-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 9
Development Accelerator Tools

This chapter describes the development accelerator tools available in this Oracle Utilities
Testing Accelerator release:

• Component Export Tool

• Flow Export Tool

• Component/ Flow Import Tool

• Component Generation Tool

Component Export Tool

Development Accelerator Tools 9-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Component Export Tool
This tool is used to export one or more components to another environment. Note that
only components in “Approved” state can be exported.

To export a component pack:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Export Components in the left pane.

4. Select the Release, Portfolio, Product, Module, Component Name, Tags
(example: CM) and Owner Flag as required.

5. Click Export.

A prompt appears on the screen to open or save the generated zip file
“component.zip”.

6. Click Save to download the zip file.

The component has been exported as a .zip file.

Flow Export Tool
This feature is used to export one or more flows to another environment. Note that only
flows in “Approved” state can be exported.

To export a flow:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Export Flows in the left pane.

4. Select the Release, Portfolio, Product, Flow Name, Tags (example: CM) and
Owner Flag as required.

5. Click Export.

A prompt appears on the screen to open or save the generated zip file “flow.zip”.

6. Click Save to download the zip file.

The flow has been exported as a .zip file.

Component/ Flow Import Tool
This feature is used to import components and/or flows to another environment.

To import a component/flow:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Import in the left pane.

4. Drop the component/flow pack in to Import wizard in the right pane.

Component Generation Tool

Development Accelerator Tools 9-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

When a file is selected/ dropped in the wizard, the file name appears.

5. Click Save.

6. If the component/flow already exists in the database, a pop-up is displayed giving a
choice to continue or abort the process.

7. When you click Cancel, the import component/flow process is not triggered and it
goes back to step 3 (you can still import it again).

8. When you click OK on the pop-up, the process of importing component/flows
begins with progress bar.

The component/flow is imported successfully.

Component Generation Tool
This feature is used to generate components from WSDL.

To generate components:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Generate Components on the left pane.

4. Enter the data in the required fields.

5. Specify the number of rows to add and click Add Rows.

6. Enter the component name, tags, and description, and provide a webservice name,
operation name.

7. Click Generate Component(s) and select the Flow/User configuration. The
application URL and user credentials will be taken from the specified configuration
file.

Note: When attempting to generate components from more than one
application at the same time, prefix the URLs with keywords in the
configuration files that can be used while specifying the WSDL to
connect to.

Example: If an Oracle Utilities Meter Data Management component
should be generated along with an Oracle Utilities Customer Cloud
Service component, specify the three properties mentioned below either
in flow or user configuration properties.

Component Generation Tool

Development Accelerator Tools 9-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

opdev=<MDM url>
opdev_gStrApplicationUserName=johnDoe
opdev_gStrApplicationUserPassword=enc(pj0TFjXMczsoyzmQ8GuXPt2PS
ydO7VCbR2jhxtkUH06Fuz+zmChpGSCr241KggFC6FwgMg==)

To generate a Oracle Utilities Meter Data Management component, enter the
webservice name prefixed with “opdev/”.

8. Upon successful component generation, a list of generated components and failed
components is displayed.

9. To view components that were created new, navigate to the components GUI and
expand the component tree structure.

Note: If the component generated is not visible in the tree structure,
refresh the application's cache. Click the username on the top-right corner
of the application and select Clear Cache. Refresh the web browser.

Tip: The WSDL Method column is an operation in WSDL. The
following figure shows the name of operation in WSDL.

Function Library Reference 10-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 10
Function Library Reference

This chapter lists the Oracle Utilities Testing Accelerator function libraries and functions
available to create components and flows in Oracle Utilities Testing Accelerator
Workbench for testing Oracle Utilities Testing Accelerator.

The following function libraries are described:

• OUTSPCORELIB

• WSVALIDATELIB

• CORERESPONSEUTILLIB

• COREDATETIMELIB

• COREDATAGENLIB

• COREVALIDATEVARIABLELIB

• COREVERIFYCONDITIONVARIABLELIB

• CORESTOREVALUES

• COREFILEOPS

• CORESTRINGOPS

• CORENUMBEROPS

• COREUTAOPS

Note that all input parameters and output parameters of functions are of type String.
Type conversions are handled inside the functions.

The input parameters for the functions need to be specified against the logical, Value1,
Value2, Value3, Value4, Value5 and Value6 columns, depending on the function
definitions.

OUTSPCORELIB

Function Library Reference 10-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

OUTSPCORELIB
This library develops the component code and flows for web services and general
applications. It includes functions with date and time processing and string processing
capabilities, as well as database and file operations.

This section provides a list of the functions included in the library, along with their usage
details.

setVariable
Stores/sets the value provided in the test data Value1 column into a global variable
specified in the Output Variable Name column, so it can be used across the flow.

setVariable (String valueToBeStored)

Input Parameters:
valueToBeStored - value to be set/stored into a variable.

Return Type: String

getCurrentTimeInMilliSeconds
Gets the time in milliseconds and stores the value into a global variable specified in the
Output Variable Name column.

Example:

getCurrentTimeInMilliSeconds ()

Input Parameters: <none>
Return Type: String

Randomstring
Generates a random string of random size and stores it into a global variable specified in
the Output Variable Name column.

Example:

randomstring ()

Input Parameters: <None>
Return Type: String

compare2Strings
Compares two strings and returns a boolean result based on the result of comparison
which gets stores it into a global variable specified in the Output Variable Name
column.

Note: This function returns “True” if strings provided are same. Else, it
returns ‘False’.

Example:

compare2Strings (String_stringA, String_stringB)

Input Parameters:
stringA - The first String to be compared

OUTSPCORELIB

Function Library Reference 10-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

stringB - The second String to be compared to stringA

Return Type: String

randomNumberUsingDateTime
Generates a random string with date and time in it and stores it into a global variable
specified in the Output Variable Name column.

Example:

randomNumberUsingDateTime()

Input Parameters: <none>
Return Type: String

getCurrentDateTimeWithGivenDateFormat
Gets the current date and time in the specified format and stores it into a global variable
specified in the Output Variable Name column.

Example:

getCurrentDateTimeWithGivenDateFormat(String dFormat)
dFormat- Java date formats are supported

dFormat - The format of the date output by the function
Return Type: String

getDateDiffInSecsWithGivenDateFormat()
Takes a start date and end data as and the corresponding data format as input parameters
and calculates the difference between the dates in seconds and stores it into a global
variable specified in the Output Variable Name column.

Example:

getDateDiffInSecsWithGivenDateFormat("12-13-2014", "12-29-2014",
"mm-dd-yyy")

Input Parameters:
dateStart - The start date for calculating the difference
dateEnd - The end date for calculating the difference
dFormat - the format of the date in which start and end dates have
been specified.

Return Type: String

getAdjustedTimeWithGivenDateTime
Calculates a date based on the specified date and an offset(adds or subtracts to the
specified date) along with the dateformat, gets the adjusted time and stores it into a global
variable specified in the Output Variable Name column.

Usage:

getAdjustedTimeWithGivenDateTime(String dateTime, String offset,
String dFormat)

OUTSPCORELIB

Function Library Reference 10-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Example:

getAdjustedTimeWithGivenDateTime("12-13-2014", "-02:30","mm-dd-
yyyy")

Input Parameters:
dateTime - The datetime to which the offset needs to be added
offset - The offset of time in hh:mi format that needs to be added
to the given datetime.
dFormat - The format of the dateTime input parameter

Return Type: String

getAdjustedTimeWithCurrentDateTime
Calculates the date and time after adding the specified offset to the current date and time
in the specified date/time format and stores it into a global variable specified in the
Output Variable Name column.

Example:

getAdjustedTimeWithCurrentDateTime(String offset, String dFormat)
getAdjustedTimeWithCurrentDateTime("-2.30", "mm-dd-yyyy")

Input Parameters: String offset, String dFormat
Return Type: String

getAdjustedTimeWithGivenDateAndTime
Calculates the date and time after adding the specified offset to specified date and time in
the specified date/time format and stores it into a global variable specified in the Output
Variable Name column.

Usage:

getAdjustedTimeWithCurrentDateTime(String offset, String dFormat)

Example:

getAdjustedTimeWithCurrentDateTime("-2.30", "mm-dd-yyyy")

Input Parameters:
Offset - The offset to be added to the current date time, specified
in hh:mi format
dFormat - The format in which the function should output the
datetime

Return Type: String

getAdjustedTimeWithGivenDateAndTime
Calculates the date and time after adding the specified offset to specified date and time in
the specified date/time format and stores it into a global variable specified in the Output
Variable Name column.

Usage:

getAdjustedTimeWithGivenDateAndTime(String cuDate,String
cuTime,String offset, String dFormat)

OUTSPCORELIB

Function Library Reference 10-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Example:

getAdjustedTimeWithGivenDateAndTime("12-13-2014","12:15:00","-
2.30", "mm-dd-yyyy")

Input Parameters:
cuDate - The date provided as input
cuTime - Time provided as input
offset - Offset to be added to the date time
dFormat - The format of the date time that the function needs to
output in.

Return Type: String

addDaysToCurrentDateWithGivenFormat
Calculates the date and time after adding the specified number of days to current date and
time in the specified date/time format and stores it into a global variable specified in the
Output Variable Name column.

Example:

addDaysToCurrentDateWithGivenFormat(String noOfDays, String
dFormat)
addDaysToCurrentDateWithGivenFormat("45", "mm-dd-yyyy")

Input Parameters: String noOfDays, String dFormat
Return Type: String

waitForTime
Pauses the flow run for the time duration specified, in minutes.

Usage:

waitForTime(String strWaitTimeInMinutes)

Example:

waitForTime(“15”)

Input Parameters:
String strWaitTimeInMinutes - The duration to pause a flow run,
specified in minutes.
Return Type: void

addDaysToAGivenDate
Adds days to the specified date and stores the output into a global variable specified in
the Output Variable Name column.

Usage:

addDaysToAGivenDate(String date, String noOfDays)

Example:

addDaysToAGivenDate("12-13-2014", "19")

Input Parameters:
Date - The date to which the number of days have to be added
noOfDays - number of days to be added to the provided date

OUTSPCORELIB

Function Library Reference 10-6
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Return Type: String

randomNumber
Adds days to the specified date and stores the output into a global variable specified in
the Output Variable Name column.

Example:

randomNumber()
Input Parameters: <none>
Return Type: String

setVariableValueUsingListIndex
Handles the retrieval of individual values from repeating elements in a comma separated
list. The function retrieves the value based on the list index passed. It retrieves the value
from the list which matches the specified index and stores the output into a global
variable specified in the Output Variable Name column. The parameters passed are
global variable (gVar1)/comma separated list and index value. This function is designed
to be used in conjunction with other functions that allow for retrieving repeating
elements from the response XML.

Usage:

setVariableValueUsingListIndex(String listVariableName,String
index)

Example:

setVariableValueUsingListIndex("data1,data2,data3", 2) - Retrieves
data2.

Input Parameters:
listVariableName: List of values separated by comma
index: the index number of the value in the list that needs to be
retrieved

Return Type: String: Value

appendStrings
Concatenates strings provided in the parameters and stores the output into a global
variable specified in the Output Variable Name column. The default input values to
this function are 6 parameters. To concatenate less than 6 strings, provide #EMPTY
against the parameters which do not hold any string.

Usage:

appendStrings (String strValue1, String strValue2, String
strValue3, String strValue4, String strValue5, String strValue6

Input Parameters:
strValue1 - The base string
strValue2 - The string to be appended to strValue1
strValue3 - The string to be appended to strValue1+strValue2
strValue4 - The string to be appended to
strValue1+strValue2+strValue3

WSVALIDATELIB

Function Library Reference 10-7
Oracle Utilities Testing Accelerator User’s Guide for Cloud

strValue5 - The string to be appended to
strValue1+strValue2+strValue3+strValue4
strValue6 - The string to be appended to
strValue1+strValue2+strValue3+strValue4+strValue5

Return Type: String

getCurrentMonth
Retrieves the current month and stores the output into a global variable specified in the
Output Variable Name column.

Usage:

getCurrentMonth()

Input Parameters: none
Return Type: String

readAttachmentAsString
Retrieves the content of the attachment file whose name is specified as the input
parameter and stores the content into a global variable specified in the Output Variable
Name column.

Example:

readAttachmentAsString(String Filename)

Input Parameters: Name of the attachment file that needs to be read
Return Type: String

WSVALIDATELIB
Use the WSVALIDATELIB function library to validate the test components (referred to
as verification points) in the components. The library covers validation routines for string
and XML elements in the returned response XML. The function automatically fails or
passes a flow run subject to the satisfaction of the specified condition.

This section provides a list of functions in the library, along with the usage details.

elementListNotNull
Verifies if all the elements with the specified xpath in response are not null. The xpath to
be verified needs to be provided in the Logical Name column in the pre/post
validations sections. If the value is null, this function validation will fail the flow run.

Example:

elementListNotNull(String xPath)
elementNotNull(contact/mobileNumber)

Input Parameters:
xPath - xpath of the element whose value needs to be checked.
Return Type: void

WSVALIDATELIB

Function Library Reference 10-8
Oracle Utilities Testing Accelerator User’s Guide for Cloud

elementListNull
Verifies if all the elements in response with the specified xpath are null. The xpath to be
verified needs to be provided in the Logical Name column in the pre/post validations
sections. If the value is NOT null, this function validation will fail the flow run.

Usage:

elementListNull(String xPath) elementNotNull(contact/mobileNumber)

Input Parameters:
xPath- xpath of the element whose value needs to be checked.

Return Type: void

validateXpathOccurrenceCount
Verifies if the specified xpath occurs the specified number of times in the response. The
xpath to be verified needs to be provided in the Logical Name column in the pre/post
validations sections. The function counts the number of occurrences of the xpath and
will fail the flow run, if the count in the response doesn't match the specified number.
The expected number of occurrences should be specified in the Value1 column.

Usage:

validateXpathOccurenceCount (String xpath,String expectedCount)

Example:

validateXpathOccurenceCount(contact/mobileNumber,20)

Input Parameters:
xpath - xpath of the element whose occurrence count needs to be
checked.
expectedCount - the expected count of occurrences of the element
Return Type: void

elementNotNull
Verifies if the specified element in response is null. The xpath to be verified needs to be
provided in the Logical Name column in the pre/post validations sections. This
function fails the flow run if the specified element is found to be null in the response.

Usage:

elementNotNull(String xpath)

Example:

elementNotNull(mobileNumber)

Input Parameters:
xpath - xpath of the element whose value needs to be checked.

Return Type: void

WSVALIDATELIB

Function Library Reference 10-9
Oracle Utilities Testing Accelerator User’s Guide for Cloud

elementIsNull
Verifies if the specified element in response is not null.

Usage:

elementIsNull (String xpath)

Example:

elementIsNull (mobileNumber)

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
Return Type: void

elementValueEquals
Verifies if the specified element value in response is equal to the provided value.

Usage:

elementValueEquals(String xpath, String expectedValue)

Example:

elementValueEquals(mobileNumber, "1234567890")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
expectedValue - the expected value to be compared to for validation

Return Type: void

elementValueNotEquals
Verifies if the specified element value in response is not equal to the provided value.

Usage:

elementValueNotEquals(String xpath, String expectedValue)

Example:

elementValueNotEquals (mobileNumber, "1234567890")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
expectedValue - the expected value to be compared to for validation

Return Type: void

elementValueGreaterThan
Verifies if the specified element value in response is greater than the provided value.

Usage:

elementValueGreaterThan(String xpath, String valueToCompare)

Example:

elementValueGreaterThan("count","5")

WSVALIDATELIB

Function Library Reference 10-10
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
valueToCompare - the expected value to be compared to for
validation

Return Type: void

elementValueGreaterThanEqualTo
Verifies if the specified element value in response is greater than or equal to the provided
value.

Example:

elementValueGreaterThanEqualTo(String responseTag,String
valueToCompare)
elementValueGreaterThanEqualTo("totalRecords", "50")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
valueToCompare - the expected value to be compared to for
validation

Return Type: void

elementValueLesserThan
Verifies if the specified element value in response is less than the provided value.

Usage:

elementValueLesserThan(String xpath,String valueToCompare)

Example:

elementValueLesserThan ("counter", "50")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
valueToCompare - the expected value to be compared to for
validation

Return Type: void

elementValueLesserThanEqualTo
Verifies if the specified element value in response is less than or equal to the provided
value.

Example:

elementValueLesserThanEqualTo(String xpath,String valueToCompare)

Usage:

elementValueLesserThanEqualTo ("attempts", "10")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
valueToCompare - the expected value to be compared to for
validation
Return Type: void

WSVALIDATELIB

Function Library Reference 10-11
Oracle Utilities Testing Accelerator User’s Guide for Cloud

elementContains
Verifies if the specified element is available in the response.

Usage:

elementContains(String xpath,String valueToBeChecked)

Example:

elementContains("batchName", "F1-BILLING)

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
valueToBeChecked - the expected value to be compared to for
validation

Return Type: void

elementNotContains
Verifies if the specified element is not available in the response.

Usage:

elementNotContains(String xpath, String valueToBeChecked)

Example:

elementNotContains ("description", "billing")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
valueToBeChecked - the expected value to be compared to for
validation

Return Type: void

reponseNotContains
Verifies if the specified value or element is not available in the response.

Usage:

reponseNotContains(String value)

Example:

reponseNotContains("Failed")

Input Parameters:
value - the value to be compared to for validation

Return Type: void

responseContains
Verifies if the specified value or element is available in the response.

Usage:

responseContains(String value)

CORERESPONSEUTILLIB

Function Library Reference 10-12
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Example:

responseContains("Exception")
Input Parameters:
value - the value to be compared to for validation

Return Type: void

CORERESPONSEUTILLIB
Use the RESPONSEUTILLIB function library to retrieve/extract specific values from
the response XML for a component request, generated as part of the flow run. The
library covers data retrieval routines for in the returned response XML.

This section provides a list of functions in the library, along with the usage details.

setResponseIntoVariable
This function stores the complete web service response body into a global variable
specified against the Output Variable Name column. The output variable is used as
input to the COREVALIDATEVARIABLELIB and
COREVERIFYCONDITIONVARIABLELIB, which can be used to bypass or skip
component as part of a run based on certain conditions.

Usage:

setResponseIntoVariable()

Input Parameters: NA
Return Type: String

setVariableFromResponseList
This function takes the xpath of an element as input and outputs the value of the xpath in
the response into a global variable specified against the Output Variable Name column.
If there are multiple occurrences of the element, the corresponding values will be
returned as a comma separated list and stored in to the variable specified against the OP
Variable Name column.

Usage:

setVariableFromResponseList(String xPath)
setVariableFromResponseList (contact/mobileNumber)

Input Parameters: String xPath
Return Type: String

setVariableFromResponseListWithFilter
This function helps to retrieve specific values from a reoccurring list in the response,
based on certain condition that can be applied on other elements in the same list. It takes
the xpath of an element whose value needs to be retrieved, the xpath of an element
whose value needs to be compared and a filter condition for comparison operation as
inputs and outputs the value/values of the xpath in the response that corresponds to the
filter condition into a global variable specified against the Output Variable Name
column. If there are multiple occurrences of the element satisfying the provided

CORERESPONSEUTILLIB

Function Library Reference 10-13
Oracle Utilities Testing Accelerator User’s Guide for Cloud

condition, then the corresponding values will be returned as a comma separated list and
stored in to the output variable.

The first parameter holds the xpath of the element whose value has to be retrieved.

The second parameter holds the xpath of the element within the repeated list, whose
value needs to be compared for a specific condition.

The third parameter holds the comparison condition.

Example:

setVariableFromResponseListWithFilter(String xPathToRetrieve,
String xPathToCompare, String Comparison)

Input Parameters:
String xPath, String xPath, String comparisionCondition
Return Type: String

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
 <env:Header/>
 <env:Body>
 <ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://

ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
 <ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
 <ouaf:batchNumber>1</ouaf:batchNumber>
 <ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
 <ouaf:user>SYSUSER</ouaf:user>
 <ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
 <ouaf:language>ENG</ouaf:language>
 <ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</

ouaf:batchStartDateTime>
 <ouaf:threadCount>0</ouaf:threadCount>
 <ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
 <ouaf:maximumCommitRecords>0</

ouaf:maximumCommitRecords>
 <ouaf:maximumTimeoutMinutes>0</

ouaf:maximumTimeoutMinutes>
 <ouaf:isTracingProgramStart>false</

ouaf:isTracingProgramStart>
 <ouaf:isTracingProgramEnd>false</

ouaf:isTracingProgramEnd>
 <ouaf:isTracingSQL>false</ouaf:isTracingSQL>
 <ouaf:isTracingStandardOut>false</

ouaf:isTracingStandardOut>
 <ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
 <ouaf:version>3</ouaf:version>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</

ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</

ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>

CORERESPONSEUTILLIB

Function Library Reference 10-14
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</

ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</

ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</

ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</

ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</

ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</

ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 </ouaf:ATF1BatchSubmission_READ>
 </env:Body>
</env:Envelope>

To retrieve all the batchJobId values, where the batchParameterValue is "K1-
STAGING" the function call would be as follows:

setVariableFromResponseListWithFilter("batchJobExtraParameter/
batchJobId", "batchJobExtraParameter/batchParameterValue", "==K1-
STAGING")

The "==" operator in the 3rd input parameter to the function performs an "is equal to"
comparison with the specified value.

The following are the supported operators for comparison operation:

• ""==" compares to check if the value in the response is equal to the value in the
condition

• ""!=" compares to check if the value in the response is not equal to the value in
the condition

• "">" compares to check if the value in the response is greater than the value in
the condition (works only with numerical values

• "">=" compares to check if the value in the response is greater than or equal to
the value in the condition (works only with numerical values

• ""<" compares to check if the value in the response is less than the value in the
condition (works only with numerical values

• ""<=" compares to check returns true if the value in the response is less than or
equal to the value in the condition (works only with numerical values

• ""*" compares to check for any character:

CORERESPONSEUTILLIB

Function Library Reference 10-15
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• If the condition starts with “*”, it will evaluate the condition as satisfied if
the value in response ends with the value in the condition.
Example: *close will be evaluated as valid for values like enclose.

• If the condition ends with "*", it will evaluate the condition as satisfied if the
value in response starts with the value in the condition.
Example: pen* will be evaluated as valid for values like pending.

• If the condition begins and ends with “*”, it will evaluate the condition as
satisfied if the value in response contains the value in the condition.
Example: *en* will return true for values like pending.

• If only “*” is provided without any value, the function checks for the
existence of the element and will evaluate the condition as valid if the
element exists irrespective of the value.

• If “!*” is present, it will check for the non-existence of the element and will
consider the condition as valid if the element is not present in the list

setVariableFromResponseListWithFilters
This is an extension of the setVariableFromReponseListWithFilter function that helps to
retrieve specific values from a reoccurring list in the response, based on a condition that
can be applied on other elements in the same list, but instead of a single condition that
was allowed in the setVariableFromReponseListWithFilter function, this function allows
users to provide two conditions.

This function takes the xpath of an element whose value needs to be retrieved, the xpath
of the elements whose values need to be compared and two filter conditions
corresponding to those xpath elements for comparison operation as inputs. The function
outputs the value/values of the xpath in the response that corresponds to the filter
conditions into a global variable specified against the Output Variable Name column. If
there are multiple occurrences of the element satisfying the provided conditions, then the
corresponding values will be returned as a comma separated list and stored in to the
output variable.

The first parameter holds the xpath of the element whose value has to be retrieved.

The second parameter holds the xpath of the element within the repeated list, whose
value needs to be compared as the first condition.

The third parameter holds the comparison condition corresponding to the second
parameter.

The fourth parameter holds the xpath of the element within the repeated list, whose
value needs to be compared as the second condition.

The fifth parameter holds the comparison condition corresponding to the fourth
parameter, which is the second condition to be evaluated.

Example:

setVariableFromResponseListWithFilter(String xPathToRetrieve,
String xPathToCompareFirstCondition, String ComparisonForFirst
Condition, String xPathToCompareForSecondCondition, String
ComparisonForSecondCondition)

Input Parameters:
String xPath, String xPath, String comparisionCondition, String
xPath, String comparisionCondition

CORERESPONSEUTILLIB

Function Library Reference 10-16
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Return Type: String

Refer to the setVariableFromResponseListWithFilter function for details on valid
comparison conditions and their usage.

getValueFromListWithIndex
This is a supporting util function for the setVariableFromReponseListWithFilter &
setVariableFromReponseListWithFilters functions, which takes the a comma separated
list of values and returns the value in the list corresponding to the index provided as the
second input to the function.

Example:

getValueFromListWithIndex(String commaSeperatedList, String
indexNumber)

Input Parameters:
String CommaSeperatedList , String IndexNumber
Return Type: String

getGroupsInIntervalFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements that will have to be retrieved and used in later components in the same flow,
then this function can be used to retrieve the groups of XML elements and their values.

This function retrieves a set of the XML group elements under the provided parent
element's xpath. The occurrences of reoccurring groups to be retrieved for the given
xpath can specified using the startIndex and endIndex parameters. The output of the
function is a group of list elements in XML format that can be stored in to a global
variable. Further functions in this library can be used to extract specific values from the
output variable containing the repeating list groups.

Example:

getGroupsInIntervalFromResponse (String xpath, String startIndex,
String endIndex)

Input Parameters:
xpath - xpath of the parent element of the list whose elements &
values need to be retrieved.
startIndex - starting occurrence number of list that needs to be
retrieved.
endIndex - Ending occurrence number of the list that needs to be
retrieved.

Output Parameters:
String - The XML string holding all the elements & values of
repeating group of elements between the start and end indexes
specified.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
 <env:Header/>

CORERESPONSEUTILLIB

Function Library Reference 10-17
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <env:Body>
 <ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
 <ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
 <ouaf:batchNumber>1</ouaf:batchNumber>
 <ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
 <ouaf:user>SYSUSER</ouaf:user>
 <ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
 <ouaf:language>ENG</ouaf:language>
 <ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
 <ouaf:threadCount>0</ouaf:threadCount>
 <ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
 <ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
 <ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
 <ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
 <ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
 <ouaf:isTracingSQL>false</ouaf:isTracingSQL>
 <ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
 <ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
 <ouaf:version>3</ouaf:version>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>

CORERESPONSEUTILLIB

Function Library Reference 10-18
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 </ouaf:ATF1BatchSubmission_READ>
 </env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter for the second and
third occurrence of the group.

Call the function using the following input parameters:

xpath: batchJobExtraParameter
startIndex: 2
endIndex: 3

Output XML String:
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>

getFirstGroupFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements that will have to be retrieved and used in later components in the same flow,
then this function can be used to retrieve the groups of XML elements and their values.

This function retrieves a first set of the XML group elements under the provided parent
element's xpath. The output of the function is a group of list elements in XML format
that can be stored in to a global variable. Further functions in this library can be used to
extract specific values from the output variable containing the XML string.

Example:

getFirstGroupFromResponse (String xpath)

Input Parameters:
xpath - xpath of the parent element of the list whose first
occurrence of elements & values need to be retrieved.

Output Parameters:
String - The XML string holding all the elements & values of the
first occurrence of the repeating group of elements.

CORERESPONSEUTILLIB

Function Library Reference 10-19
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
 <env:Header/>
 <env:Body>
 <ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
 <ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
 <ouaf:batchNumber>1</ouaf:batchNumber>
 <ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
 <ouaf:user>SYSUSER</ouaf:user>
 <ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
 <ouaf:language>ENG</ouaf:language>
 <ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
 <ouaf:threadCount>0</ouaf:threadCount>
 <ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
 <ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
 <ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
 <ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
 <ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
 <ouaf:isTracingSQL>false</ouaf:isTracingSQL>
 <ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
 <ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
 <ouaf:version>3</ouaf:version>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>

CORERESPONSEUTILLIB

Function Library Reference 10-20
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 </ouaf:ATF1BatchSubmission_READ>
 </env:Body>
</env:Envelope>

To retrieve the first group of elements under the batchJobExtraParameter.

The function needs to be called using the following input parameters:

xpath: batchJobExtraParameter

Output XML String:
<ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

getFirstNGroupsFromResponse
 If an XML response to a component request has multiple occurrences of a group of list
elements that will have to be retrieved and used in later components in the same flow,
then this function can be used to retrieve the groups of XML elements and their values.

This function retrieves a set of the XML group elements under the provided parent
element's xpath. The occurrences of reoccurring groups to be retrieved for the given
xpath can specified using the numberOfOccurrences parameter. The output of the
function is a group of list elements in XML format that can be stored in to a global
variable.

Further functions in this library can be used to extract specific values from the output
variable containing the repeating list groups.

Example:

getFirstNGroupsFromResponse (String xpath, String
numberOfOccurrences)

Input Parameters:
xpath - xpath of the parent element of the list whose elements &
values need to be retrieved.

NumberOfOccurrences - the occurrences of the group of list elements
starting from 1, whose elements and values have to be retrieved.

Output Parameters:
String - The XML string holding all the elements & values of
repeating group of elements for the specified number of
occurrences.

CORERESPONSEUTILLIB

Function Library Reference 10-21
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
 <env:Header/>
 <env:Body>
 <ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
 <ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
 <ouaf:batchNumber>1</ouaf:batchNumber>
 <ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
 <ouaf:user>SYSUSER</ouaf:user>
 <ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
 <ouaf:language>ENG</ouaf:language>
 <ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
 <ouaf:threadCount>0</ouaf:threadCount>
 <ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
 <ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
 <ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
 <ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
 <ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
 <ouaf:isTracingSQL>false</ouaf:isTracingSQL>
 <ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
 <ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
 <ouaf:version>3</ouaf:version>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>

CORERESPONSEUTILLIB

Function Library Reference 10-22
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 </ouaf:ATF1BatchSubmission_READ>
 </env:Body>
</env:Envelope>

In order to retrieve the group of elements under the batchJobExtraParameter for first 2
occurrences of the group.

The function needs to be called using the following input parameters:

xpath: batchJobExtraParameter
numberOfOccurrences: 2

Output XML String:
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>

getAllGroupsFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements that will have to be retrieved and used in later components in the same flow,
then this function can be used to retrieve the groups of XML elements and their values.

This function retrieves all the sets (occurrences) of the XML group elements under the
provided parent element's xpath. The output of the function is a group of list elements in
XML format that can be stored in to a global variable. Further functions in this library
can be used to extract specific values from the output variable containing the repeating
list groups.

Example:

getAllGroupsFromResponse (String xpath)

Input Parameters:
xpath - xpath of the parent element of the list whose elements &
values need to be retrieved.

CORERESPONSEUTILLIB

Function Library Reference 10-23
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Output Parameters: String - The XML string holding all the elements
& values of repeating group of under the parent element.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
 <env:Header/>
 <env:Body>
 <ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
 <ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
 <ouaf:batchNumber>1</ouaf:batchNumber>
 <ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
 <ouaf:user>SYSUSER</ouaf:user>
 <ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
 <ouaf:language>ENG</ouaf:language>
 <ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
 <ouaf:threadCount>0</ouaf:threadCount>
 <ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
 <ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
 <ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
 <ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
 <ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
 <ouaf:isTracingSQL>false</ouaf:isTracingSQL>
 <ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
 <ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
 <ouaf:version>3</ouaf:version>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>

CORERESPONSEUTILLIB

Function Library Reference 10-24
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 </ouaf:ATF1BatchSubmission_READ>
 </env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter for all the
occurrences of the group.

The function needs to be called using the following input parameters:

xpath: batchJobExtraParameter

Output XML String:
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>

CORERESPONSEUTILLIB

Function Library Reference 10-25
Oracle Utilities Testing Accelerator User’s Guide for Cloud

getLastGroupFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements that will have to be retrieved and used in later components in the same flow,
then this function can be used to retrieve the groups of XML elements and their values.

This function retrieves the last set (occurrence) of the XML group elements under the
provided parent element's xpath. The output of the function is a group of list elements in
XML format that can be stored in to a global variable. Further functions in this library
can be used to extract specific values from the output variable containing the repeating
list groups.

Example:

getLastGroupFromResponse (String xpath)

Input Parameters:
xpath - xpath of the parent element of the list whose elements &

values need to be retrieved.

Output Parameters:
String - The XML string holding the elements & values of the last
occurrence of the repeating group of elements under the parent
element.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
 <env:Header/>
 <env:Body>
 <ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
 <ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
 <ouaf:batchNumber>1</ouaf:batchNumber>
 <ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
 <ouaf:user>SYSUSER</ouaf:user>
 <ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
 <ouaf:language>ENG</ouaf:language>
 <ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
 <ouaf:threadCount>0</ouaf:threadCount>
 <ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
 <ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
 <ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
 <ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
 <ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
 <ouaf:isTracingSQL>false</ouaf:isTracingSQL>
 <ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
 <ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
 <ouaf:version>3</ouaf:version>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>

CORERESPONSEUTILLIB

Function Library Reference 10-26
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 </ouaf:ATF1BatchSubmission_READ>
 </env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter for the last
occurrence of the group.

The function needs to be called using the following input parameters:

xpath: batchJobExtraParameter

Output XML String:
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>

getLastNGroupsFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements that will have to be retrieved and used in later components in the same flow,
then this function can be used to retrieve the groups of XML elements and their values.

CORERESPONSEUTILLIB

Function Library Reference 10-27
Oracle Utilities Testing Accelerator User’s Guide for Cloud

This function retrieves a set of the XML group elements under the provided parent
element's xpath. The occurrences (Starting from the end of reoccurrence group) of
reoccurring groups to be retrieved for the given xpath can specified using the
numberOfLastNOccurrences parameter. The output of the function is a group of list
elements in XML format that can be stored in to a global variable.

The other functions in this library can be used to extract specific values from the output
variable containing the repeating list groups.

Example:

getLastNGroupsFromResponse (String xpath, String
numberOfLastNOccurrences)

Input Parameters:
xpath - xpath of the parent element of the list whose elements &

values need to be retrieved.
NumberOfLastNOccurrences - the occurrences of the group of list

elements starting from the end/total, whose elements and values
have to be retrieved.

Output Parameters:
String - The XML string holding all the elements and values of
repeating group of elements for the specified number of occurrences
from last.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
 <env:Header/>
 <env:Body>
 <ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
 <ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
 <ouaf:batchNumber>1</ouaf:batchNumber>
 <ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
 <ouaf:user>SYSUSER</ouaf:user>
 <ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
 <ouaf:language>ENG</ouaf:language>
 <ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
 <ouaf:threadCount>0</ouaf:threadCount>
 <ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
 <ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
 <ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
 <ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
 <ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
 <ouaf:isTracingSQL>false</ouaf:isTracingSQL>
 <ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
 <ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
 <ouaf:version>3</ouaf:version>
 <ouaf:batchJobExtraParameter>

CORERESPONSEUTILLIB

Function Library Reference 10-28
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 </ouaf:ATF1BatchSubmission_READ>
 </env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter for last 2
occurrences of the group.

The function needs to be called using the following input parameters:

xpath: batchJobExtraParameter
numberOfOccurrences: 2

Output XML String:
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>

CORERESPONSEUTILLIB

Function Library Reference 10-29
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>

getGroupsFromResponseWithFilter
If an XML response to a component request has multiple occurrences of a group of list
elements that will have to be retrieved based on some conditions to be applied on the
elements in the group, to be used in later components in the same flow, then this
function can be used to retrieve the groups of XML elements and their values.

This function retrieves a set of the XML group elements under the provided parent
element's xpath subject to a specified condition. The condition based on which the
reoccurring groups are to be retrieved for the given xpath can specified using the
corresponding xpath and the conditional parameters. The output of the function is a
group of list elements in XML format that can be stored in to a global variable.

The other functions in this library can be used to extract specific values from the output
variable containing the repeating list groups.

Example:

getGroupsFromResponseWithFilter (String xpath, String
elementXpathForCondition, String condition)

Input Parameters:
xpath - xpath of the parent element of the list whose elements &

values need to be retrieved.
elementXpathForCondition - xpath of the element within the list

whose value needs to be validated against the specified condition,
for match.

condition - The condition to be applied on the element specified
against elementXpathForCondition parameter. For the supported list
of conditions, refer to the list of conditional statements
specified under the function "setVariableFromReponseListWithFilter"

Output Parameters:
String - The XML string holding the elements & values of repeating
group of elements between whose element matches the conditional
statement specified.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
 <env:Header/>
 <env:Body>
 <ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
 <ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
 <ouaf:batchNumber>1</ouaf:batchNumber>
 <ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
 <ouaf:user>SYSUSER</ouaf:user>
 <ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
 <ouaf:language>ENG</ouaf:language>

CORERESPONSEUTILLIB

Function Library Reference 10-30
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 <ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
 <ouaf:threadCount>0</ouaf:threadCount>
 <ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
 <ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
 <ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
 <ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
 <ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
 <ouaf:isTracingSQL>false</ouaf:isTracingSQL>
 <ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
 <ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
 <ouaf:version>3</ouaf:version>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049025</ouaf:batchJobId>
 <ouaf:sequence>10</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049026</ouaf:batchJobId>
 <ouaf:sequence>20</ouaf:sequence>
 <ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 </ouaf:ATF1BatchSubmission_READ>
 </env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter parent element,
whose sequence is greater than 20, the function needs to be called using the following
input parameters:

xpath: batchJobExtraParameter

COREDATETIMELIB

Function Library Reference 10-31
Oracle Utilities Testing Accelerator User’s Guide for Cloud

elementXpathForCondition: sequence
condition: >20

Output XML String:
<ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049027</ouaf:batchJobId>
 <ouaf:sequence>30</ouaf:sequence>
 <ouaf:batchParameterName>table</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>
 <ouaf:batchJobExtraParameter>
 <ouaf:batchJobId>82503583049028</ouaf:batchJobId>
 <ouaf:sequence>40</ouaf:sequence>
 <ouaf:batchParameterName>action</
ouaf:batchParameterName>
 <ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
 <ouaf:version>1</ouaf:version>
 </ouaf:batchJobExtraParameter>

getResponseGroupSize
If an XML response to a component request has multiple occurrences of a group of list
elements whose group count needs to be determined, then this function can be used to
retrieve the number of occurrences of the groups of XML elements. The output of the
function is the number of occurrences of the group that can be stored in to a global
variable.

Example:

getResponseGroupSize (String xpath)

Input Parameters:
xpath - xpath of the parent element of the group whose occurrence
count needs to be determined.

Output Parameters:
String - The count of the number of occurrences of the specified
group.

COREDATETIMELIB
Use the COREDATETIMELIB function library to calculate date time operations to be
used as test data inputs in a component of a flow. The library also has date time
conversion functions to format the date time.

This section provides a list of functions in the library, along with the usage details.

getCurrentDatetimeWithGivenDateFormat
Gets the current date and time in the specified format and stores it into a global variable
specified in the Output Variable Name column.

COREDATETIMELIB

Function Library Reference 10-32
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Usage:

getCurrentDateTimeWithGivenDateFormat(String dFormat)
dFormat- Java date formats are supported.
getCurrentDateTimeWithGivenDateFormat("mm-dd-yyyy:hh.mm.ss")

Input Parameters: Date Format String
Return Type: String

getFormattedDateWithGivenDate
Converts the date time input provided in to the specified format and stores it into a
global variable specified in the Output Variable Name column.

Usage:

getFormattedDateWithGivenDate(String sourceDatetime, String
sourceDateFromat, String outputDateFormat)
dFormat- Java date formats are supported.
getFormattedDateWithGivenDate ("02/01/2020:23:00:00","dd/mm/
YYYY:HH24:mi:ss","mm-dd-yyyy:hh.mi.ss")

getDateDiffInSecsWithGivenDateFormat
Takes a start date and end data and the corresponding data format as input parameters
and calculates the difference between the dates in seconds and stores it into a global
variable specified in the Output Variable Name column.

Example:

getDateDiffInSecsWithGivenDateFormat(String dateStart, String
dateEnd, String dFormat) getDateDiffInSecsWithGivenDateFormat("12-
13-2014", "12-29-2014", "mm-dd-yyy")

Input Parameters: String dateStart, String dateEnd, String dFormat
Return Type: String

getAdjustedTimeWithGivenDateTime
Calculates a date based on the specified date and an offset (adds or subtracts to the
specified date) along with the dateformat, gets the adjusted time and stores it into a global
variable specified in the Output Variable Name column.

Note: Supports the offset in hours:minutes:seconds = hh:mm:ss.

Example:

getAdjustedTimeWithGivenDateTime(String dateTime, String offset,
String dFormat)
getAdjustedTimeWithGivenDateTime("12-13-2014", "-02:30","mm-dd-
yyyy")

Input Parameters: String dateTime, String offset, String dFormat
Return Type: String

getAdjustedTimeWithCurrentDateTime
Calculates the date and time after adding the specified offset to the current date and time
in the specified date/time format and stores it into a global variable specified in the OP
Variable Name column.

COREDATETIMELIB

Function Library Reference 10-33
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Usage:

getAdjustedTimeWithCurrentDateTime(String offset, String dFormat)
getAdjustedTimeWithCurrentDateTime("-2.30", "mm-dd-yyyy")

Input Parameters:String offset, String dFormat
Return Type: String

addDaysToCurrentDateWithGivenFormat
Calculates the date and time after adding the specified number of days to current date and
time in the specified date/time format and stores it into a global variable specified in the
Output Variable Name column.

Usage:

addDaysToCurrentDateWithGivenFormat(String noOfDays, String
dFormat)
addDaysToCurrentDateWithGivenFormat("45", "mm-dd-yyyy")

Input Parameters: String noOfDays, String dFormat
Return Type: String

getCurrentTimeinMilliSeconds
Gets the current date time in milliseconds and stores it into a global variable specified in
the Output Variable Name column.

Usage:

getCurrentDateTimeinMilliSeconds()

Input Parameters: None
Return Type: String

getEpochInGivenDateTimeFormat
Supports the conversion of the date time value from epoch format, which is the format
used for incrementer in the subroutine looping interface, when user selects the
incrementer type as date time. This function takes two parameters, the first is the name of
the variable that has the timestamp in epoch (example: incrementer in sub-routine loop),
and the second is a valid date-time output format. It returns a string with the date-time in
the format specified.and stores it into a global variable specified in the OP Variable
Name column.

Usage:

getEpochInGivenDateTimeFormat(String epochDateTime, String
outputDateFormat)

Input Parameters:
epochDateTime - The epoch that needs to be converted
outputDateFormat - Format of the date to be output by the function.
Return Type: String

getNthDayOfCurrentMonth
Calculates and returns the date for Nth day of the current month based on the input date
format and day of the month.

COREDATAGENLIB

Function Library Reference 10-34
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Usage:

getNthDayOfCurrentMonth(String dFormat, String noOfDays)
getNthDayOfCurrentMonth("yy-MM-dd", "15")

Input Parameters:

dFormat - Format of the output date
noOfDays - day of the month for which the date has to be calculated

getNthDayOfCurrentYear
Calculates and returns the date for Nth day of the current year based on the input date
format and day of the year.

Usage:

getNthDayOfCurrentMonth(String dFormat, String noOfDays)
getNthDayOfCurrentMonth("yy-MM-dd", "45")

Input Parameters:

dFormat - Format of the output date
noOfDays - day of the year for which the date has to be calculated

COREDATAGENLIB
This library contains functions that help with the generation of random numbers and
strings which can be used as test data inputs for a flow.

This section provides a list of functions in the library, along with the usage details.

randomStringWithGivenRange
Generates a random string within the specified number of characters, either in upper
case of lower case based on the input parameters and stores it into a global variable
specified in the Output Variable Name column.

Usage:

randomStringWithGivenRange(String minCharacters, String
maxCharacters, String isUpperCase)

Input Parameters:
minCharacters- The minimum number of characters(min size) in the
random string. Only numbers are allowed.
maxCharacters- The maximum number of characters(max size) in the
random string. Only numbers are allowed
isUpperCase - Set to "true" if the random string needs to be in
UpperCase, else set to "false". Only Boolean values are allowed.

randomString
Generates a random string of random length and stores it into a global variable specified
in the Output Variable Name column.

Usage:

randomString ()

COREVALIDATEVARIABLELIB

Function Library Reference 10-35
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Input Parameters: None
ReturnType: String

randomNumber
Generates a random number of random specified size and stores it into a global variable
specified in the Output Variable Name column.

Usage:

randomNumber()

Input Parameters: None
ReturnType: String

COREVALIDATEVARIABLELIB
Use this function library to validate the values/elements stored in variables (referred to as
verification points) in a flow. The library covers validation routines for string and XML
elements in the variables. It includes all the functions of the WSVALIDATELIB, except
that the functions in this library work on the values/elements stored in variables instead
of a response to component request in flow run.

This section provides a list of functions in the library, along with the usage details.

elementListNotNull
Verifies if all the elements with the specified xpath in the XML string stored in a variable
are not null. The xpath to be verified needs to be provided in the value column in the
pre/post validations sections. If the value is null, this function validation will fail the flow
run.

Usage:

elementListNotNull(String variableName, String xPath)
elementNotNull(gVarVariable,contact/
mobileNumber)

Input Parameters:
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.

xpath - xpath of the element to be validated. To be provided in the
Value column of test data.

Return Type: void

elementListNull
Verifies if all the elements with the specified xpath are null in the XML string stored in a
variable. The xpath to be verified needs to be provided in the value column in the pre/
post validations sections. If the value is NOT null, the validation will fail the flow run.

COREVALIDATEVARIABLELIB

Function Library Reference 10-36
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Usage:

elementListNull(String variableName, String xPath)
elementNotNull(gVarVariable,contact/
mobileNumber)

Input Parameters:
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value1
column.
xpath - xpath of the element to be validated. To be provided in the
Value column of test data.

Return Type: void

validateXpathOccurrenceCount
Verifies if the specified xpath occurs the specified number of times in the XML string
stored in a variable. The xpath to be verified needs to be provided in the value column in
the pre/post validations sections. The function counts the number of occurrences of the
xpath and will fail the flow run, if the count in the response does not match the specified
number.

Usage:

validateXpathOccurenceCount (String xpath,String VariableName,
String expectedCount)
validateXpathOccurenceCount(contact/mobileNumber,20)

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
Value column of test data.
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedOccurrenceCount - The expected number of occurrences needs
to be specified in the Value column.

Return Type: void

elementNotNull
Verifies if the specified element in the XML string stored in a variable is null. This
function fails the flow run if the specified element is found to be null in the response.

Usage:

elementNotNull(String xpath, String VariableName)
elementNotNull(mobileNumber)

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections.
variableName - Name of the variable that holds the XML string to be
validated. Variable name should be provided in the Value column.
Return Type: void

COREVALIDATEVARIABLELIB

Function Library Reference 10-37
Oracle Utilities Testing Accelerator User’s Guide for Cloud

elementIsNull
Verifies if the specified element in the XML string stored in a variable is not null.

Usage:

elementIsNull(String xpath, String variableName)
elementIsNull(mobileNumber)

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.

Return Type: void

elementValueEquals
Verifies if the specified element value in the XML string stored in a variable is equal to
the provided value. The functions fails the flow if the value does not match.

Usage:

elementValueEquals(String xpath,String variableName, String
expectedValue)
elementValueEquals(mobileNumber,gVarVariable, "1234567890")

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedValue - The value to be compared to for validation

Return Type: void

elementValueNotEquals
Verifies if the specified element value in the XML string stored in a variable is not equal
to the provided value. The functions fails the flow if the value matches.

Usage:

elementValueNotEquals(String xpath,String variableName, String
expectedValue)
elementValueNotEquals(mobileNumber,gVarVariable, "1234567890")

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedValue - The value to be compared to for validation
Return Type: void

COREVALIDATEVARIABLELIB

Function Library Reference 10-38
Oracle Utilities Testing Accelerator User’s Guide for Cloud

elementValueGreaterThan
Verifies if the specified element value in the XML string stored in a variable is greater
than the provided value. This function fails the flow if the value is not greater than the
specified value.

Usage:

elementValueGreaterThan(String xpath, String variableName String
valueToCompare)
elementValueGreaterThan("count",gVarVariable,"5")

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.

Return Type: void

elementValueGreaterThanEqualTo
Verifies if the specified element value in the XML string stored in a variable is greater
than or equal the provided value. The function fails the flow if the value is not greater
than or equal to the specified value.

 Usage:

elementValueGreaterThanEqualTo(String xpath, String variableName
String valueToCompare)
elementValueGreaterThanEqualTo("count",gVarVariable,"5")

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.

Return Type: void

elementValueLesserThan
Verifies if the specified element value in the XML string stored in a variable is less than
the provided value. The functions fails the flow if the value is not less than the specified
value.

Usage:

elementValueLesserThan(String xpath, String variableName String
valueToCompare)
elementValueLesserThan("count",gVarVariable,"5")

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections

COREVALIDATEVARIABLELIB

Function Library Reference 10-39
Oracle Utilities Testing Accelerator User’s Guide for Cloud

variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column

Return Type: void

elementValueLesserThanEqualTo
Verifies if the specified element value in the XML string stored in a variable is lesser than
or equal the provided value. The functions fails the flow if the value is not greater than or
equal to the specified value.

Usage:

elementValueLesserThanEqualTo(String xpath, String variableName
String valueToCompare)
elementValueLesserThanEqualTo("count",gVarVariable,"5")

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the value column

Return Type: void

elementContains
Verifies if the specified element contains the specified value in the XML string stored in a
variable. The function fails the flow if the element does not contain the specified value.

Usage:

elementContains(String xpath,String varibleName, String
valueToCompare)
elementContains("batchName",gVarVariable, "F1-BILLING)

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column

Return Type: void

elementNotContains
Verifies if the specified element does not contain the specified value in the XML string
stored in a variable. The function fails the flow run if the element contains the specified
value.

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10-40
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Usage:

elementContains(String xpath,String varibleName, String
valueToCompare)
elementContains("batchName",gVarVariable, "F1-BILLING)

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections.
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.

variableNotContains
Verifies if the specified value or element is not available in the XML string held in the
variable. The function fails the flow run if the element contains the specified value.

Usage:

reponseNotContains(String variableName,String valueToCompare)
reponseNotContains(gVarVariable,"Failed")

Input Parameters:
variableName - the name of the variable that holds the XML string.
valueToCompare - value to compare to

Return Type: void

variableContains
Verifies if the specified value or element is available in the XML string held in a variable.
The function fails the flow run if the element does not contain the specified value.

Usage:

responseContains(String variableName,String value)
responseContains(gVarVariable,"Exception")

Input Parameters:
variableName - the name of the variable that holds the XML string.
valueToCompare - value to compare to

Return Type: void

COREVERIFYCONDITIONVARIABLELIB
This library has been designed to be used in conjunction with the skip component feature
of Oracle Utilities Testing Accelerator. Use this function library to validate the values/
elements stored in variables (referred to as verification points) in a flow. The library
covers validation routines for string and XML elements in the variables. The library
validates the conditions on the response XML and outputs true or false value, which can
be stored into an output global variable.

The functions in this library take a variable holding the response XML as one of the
inputs and apply the validation condition on the XML in the variable.

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10-41
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The response of a component step can be stored in to a global variable using the
“setResponseIntoVariable” function in the CORERESPONSEUTILLIB library.

This section provides a list of functions in the library, along with the usage details.

elementListNotNull
Verifies if all the elements with the specified xpath in the XML string stored in a variable
are not null. The variable holding the response XML and the xpath to be verified needs
to be provided in the value column in the pre/post validations sections. If the value is
null, this function will return false, else it will return true.

Usage:

elementListNotNull(String variableName, String xPath)
elementNotNull(gVarVariable,contact/mobileNumber)

Input Parameters:

variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
xpath - xpath of the element to be validated. To be provided in the
Value column of test data.

Return Type: String (true|false)

elementListNull
Verifies if all the elements with the specified xpath are null in the XML string stored in a
variable. The variable holding the response XML and the xpath to be verified needs to be
provided in the value columns in the pre/post validations sections. If the value is NOT
null, this function will return ‘false’, else it will return ‘true’.

Usage:

elementListNull(String variableName, String xPath)
elementNotNull(gVarVariable,contact/
mobileNumber)

Input Parameters:
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value1
column.
xpath - xpath of the element to be validated. To be provided in the
Value column of test data.

Return Type: String (true|false)
validateXpathOccurrenceCount

Verifies if the specified xpath occurs the specified number of times in the XML string
stored in a variable. The xpath to be verified needs to be provided in the value column in
the pre/post validations sections. The function counts the number of occurrences of the
xpath. It returns ‘false’ if the count in the response does not match the specified number,
else it returns ‘true’.

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10-42
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Usage:

validateXpathOccurenceCount (String xpath,String VariableName,
String expectedCount) validateXpathOccurenceCount(contact/
mobileNumber,20)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
Value column of test data.
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedOccurrenceCount - The expected number of occurrences needs
to be specified in the Value column.

Return Type: string (true|false)

elementNotNull
If the specified element in the XML string stored in a variable is null, this function
returns ‘false’, else it returns ‘true’.

Usage:

elementNotNull(String xpath, String VariableName)
elementNotNull(mobileNumber) Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.

Return Type: String (true|false)

elementIsNull
If the specified element in the XML string stored in a variable is null, the function returns
‘true’, else it returns ‘false’.

Usage:

elementIsNull(String xpath, String variableName)
elementIsNull(mobileNumber)

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.

Return Type: String (true|false)

elementValueEquals
If the specified element value in the XML string stored in a variable is equal to the
provided value, the function returns ‘true’, else it returns ‘false’.

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10-43
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Usage:

elementValueEquals(String xpath,String variableName, String
expectedValue)
elementValueEquals(mobileNumber,gVarVariable, "1234567890")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedValue - The value to be compared to for validation

Return Type: String {true|false)

elementValueNotEquals
If the specified element value in the XML string stored in a variable is not equal to the
provided value, the function returns ‘true’, else it returns ‘false’.

Usage:

elementValueNotEquals(String xpath,String variableName, String
expectedValue)
elementValueNotEquals(mobileNumber,gVarVariable, "1234567890")

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedValue - The value to be compared to for validation

Return Type: String (true|false)

elementValueGreaterThan
If the specified element value in the XML string stored in a variable is greater than the
provided value, the function returns ‘true’, else it returns ‘false’.

Usage:

elementValueGreaterThan(String xpath, String variableName String
valueToCompare)
elementValueGreaterThan("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.

Return Type: String (true|false)

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10-44
Oracle Utilities Testing Accelerator User’s Guide for Cloud

elementValueGreaterThanEqualTo
If the specified element value in the XML string stored in a variable is greater than or
equal the provided value, the function returns ‘true’, else it returns ‘false’.

Usage:

elementValueGreaterThanEqualTo(String xpath, String variableName
String valueToCompare)
elementValueGreaterThanEqualTo("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.

Return Type: String (true|false)

elementValueLesserThan
If the specified element value in the XML string stored in a variable is less than the
provided value, the function returns ‘true’, else it returns ‘false’.

Usage:

elementValueLesserThan(String xpath, String variableName String
valueToCompare)
elementValueLesserThan("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.

valueToCompare - The value to be compared to for validation. To be
provided in the Value column

Return Type: String (true|false)

elementValueLesserThanEqualTo
If the specified element value in the XML string stored in a variable is lesser than or equal
the provided value, then the function returns false, else it returns true.

Usage:

elementValueLesserThanEqualTo(String xpath, String variableName
String valueToCompare)
elementValueLesserThanEqualTo("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10-45
Oracle Utilities Testing Accelerator User’s Guide for Cloud

variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the value column

Return Type: String (true|false)

elementContains
If the specified element contains the specified value in the XML string stored in a
variable, the function returns ‘true’. Else, it returns ‘false’.

Usage:

elementContains(String xpath,String varibleName, String
valueToCompare) elementContains("batchName",gVarVariable, "F1-
BILLING)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column

Return Type: void

elementNotContains
Verifies if the specified element does not contain the specified value in the XML string
stored in a variable. The function fails the flow run if the element contains the specified
value.

Usage:

elementContains(String xpath,String varibleName, String
valueToCompare) elementContains("batchName",gVarVariable, "F1-
BILLING)

Input Parameters:
xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections

variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.

variableNotContains
If the specified value or element is not available in the XML string held in the variable,
the function returns true. Else, it returns false.

CORESTOREVALUES

Function Library Reference 10-46
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Usage:

reponseNotContains(String variableName,String valueToCompare)
reponseNotContains(gVarVariable,"Failed")

Input Parameters:

variableName - the name of the variable that holds the XML string.
valueToCompare - value to compare to

Return Type: String (true|false)

variableContains
If the specified value or element is available in the XML string held in a variable, the
function returns true. Else, it returns false.

Usage:

responseContains(String variableName,String value)
responseContains(gVarVariable,"Exception") Input Parameters:
variableName - the name of the variable that holds the XML string.
valueToCompare - value to compare to

Return Type: String {true|false)

CORESTOREVALUES
Use this function library to store values into a variable.

This section provides a list of functions in the library, along with the usage details.

setVariable
Stores the specified input value into a global variable specified in the Output Variable
Name column.

Usage:

setVariable(String valueToStore)
elementNotNull("32425683235")

Input Parameters:
valueToStore - The value to be stored in a global variable.

Return Type: String

appendValueToList
This function appends a value to a list of values. The input to the function can either be a
value or a variable. The output will be a list stored into a global variable. The function can
be used as part of subroutine looping to store a list of values into the function, one from
each iteration of the subroutine.

Example: Consider a subroutine that has a component that adds a new meter read into
Oracle Utilities Meter Solution Cloud Service, for each loop that it runs for. Oracle
Utilities Meter Solution Cloud Service,responds with the meterReadId for each of the
meter read add transactions, which can be stored as a list of values i.e., the list of

CORESTOREVALUES

Function Library Reference 10-47
Oracle Utilities Testing Accelerator User’s Guide for Cloud

meterReadIds that are generated as part of subroutine looping. MeterReadId can be
extracted from the response into a variable using coreresponseutilib functions and then
this variable can be used as input to the appendValueToList function.

Users can also use the value of the incrementer from the subroutine looping data as the
input.

Stores the list of values in a global variable specified in the OP Variable Name column.

Usage:

appendValueToList (String variable)

Input Parameters:

Variable: The value to be appended to the list
Return Type: String

getListValueUsingIndex
Fetches a particular value from the a list of values based on the provided index. This
function complements the appendValueToList function in that it allows for extracting
individual values from the list of values generated by the appendValueToList function.
The input to the function is the index of the value that we need.

Stores the fetched value from the list into a global variable specified in the OP Variable
Name column.

Usage:

getListValueUsingIndex (String index)

Input Parameters:

index: Index of the value to be retrieved from the list
VariableName: Variable holding the list of values

Return Type: String

appendKeyValueToList
Creates a key based list of values, which users can later use to retrieve specific values.
This is an extension of the appendValueToList function wherein the index has been
replaced with a custom key.

The function appends a key and a value/variable to a map. The input to the function will
be a key and a corresponding value/variable. The output will be a map stored into a
global variable.

An example is a subroutine iteration that needs to create activities and complete them.
After the completion of the subroutine loop run with 10 iterations that create 10
activities, subsequent steps in the parent flow will be able to get the ID of an activity that
could not be completed or that remained in the started state.

Usage:

appendKeyValueToList (String key,String value)

Input Parameters:

key: The key for the corresponding value
value: The value to be added along with the key to the map

COREFILEOPS

Function Library Reference 10-48
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Return Type: map

getListValueUsingKey
Fetches a particular value from the key value pair map generated by
appendKeyValueToList function based on the provided key. The input to the function is
a key.

Stores the fetched value from the map into a global variable specified in the OP Variable
Name column.

Usage:

getListValueUsingKey (String key)

Input Parameters:

key: The key corresponding to a value that needs to be fetched from
the map
Return Type: String

COREFILEOPS
Use this function library to read files that are stored in flow attachments.

This section provides a list of functions in the library, along with the usage details.

readAttachmentAsString
Reads the content of the attachment whose filename is provided as input parameter and
stores the content as string into a global variable specified in the Output Variable
Name column. The encoding of the file needs to be specified as a second input
parameter.

Usage:

readAttachmentAsString(String fileName, String fileEncoding)
readAttachmentAsString("testFile.txt","UTF-8")

Input Parameters:
fileName: The name of file in flow attachments
fileEncoding: The encoding of the file being read

Return Type: String

CORESTRINGOPS

Function Library Reference 10-49
Oracle Utilities Testing Accelerator User’s Guide for Cloud

CORESTRINGOPS
Use this function library perform String operations, such as append etc.

This section provides a list of functions in the library, along with the usage details.

appendStrings
Appends the inputs strings specified in the value 1 to value 6 columns in that sequence
and stores the output into a global variable specified in the Output Variable Name
column.

The function takes 6 parameters as inputs by default. If less than 6 strings have to
concatenated, then provide #EMPTY in the value columns where test data need not be
specified.

Usage:

appendStrings(String strValue1, String strValue2, String strValue3,
String strValue4, String strValue5, String strValue6)
appendStrings("string1", "string2", "string3", "string4",
"string5", "string6",)

Input Parameters:
strValue1: The base string
strValue2: The string to be appended to strValue1
strValue3: The string to be appended to strValue1+strValue2
strValue4: The string to be appended to
strValue1+strValue2+strValue3
strValue5: The string to be appended to
strValue1+strValue2+strValue3+strValue4
strValue6: The string to be appended to
strValue1+strValue2+strValue3+strValue4+strValue5

Return Type: String

CORENUMBEROPS
Use this function library perform numeric operations such as addition, subtraction etc.

This section provides a list of functions in the library, along with the usage details.

getSumOfTwoNumbers
Gets the sum of two input numbers specified in the value 1 and value 2 columns and
stores the output into a global variable specified in the Output Variable Name column.

Usage:

getSumOfTwoNumbers(String number1, String number2)
getSumOfTwoNumbers ("3", "5")

Input Parameters:
number1: The first number
number2: The second number to be added to number1

Return Type: String

CORENUMBEROPS

Function Library Reference 10-50
Oracle Utilities Testing Accelerator User’s Guide for Cloud

getDiffOfTwoNumbers
Gets the difference of two input numbers specified in the value 1 and value 2 columns
and stores the output into a global variable specified in the Output Variable Name
column.

Usage:

getDiffOfTwoNumbers(String number1, String number2)
getDiffOfTwoNumbers ("3", "5")

Input Parameters:
number1: The first number
number2: The second number to be subtracted from number1

Return Type: String

getProductOfTwoNumbers
Gets the product of two input numbers specified in the value 1 & value 2 columns and
stores the output into a global variable specified in the Output Variable Name column.

Usage:

getProductOfTwoNumbers(String number1, String number2)
getProductOfTwoNumbers ("3", "5")

Input Parameters:
number1: The first number
number2: The second number to be multiplied with number1

Return Type: String

getModOfTwoNumbers
Gets the modulus of two input numbers specified in the value 1 & value 2 columns and
stores the output into a global variable specified in the Output Variable Name column.

Usage:

getModulusOfTwoNumbers(String number1, String number2)
getModulusOfTwoNumbers ("3", "5")

Input Parameters:
number1: The first number
number2: The second number to be used as a divisor for the first
number

Return Type: String

getDivisionOfTwoNumbers
Gets the quotient of the division of of input numbers specified in the value 1 & value 2
columns and stores the content as byte array into a global variable specified in the
Output Variable Name column.

Usage:

getDivisionOfTwoNumbers(String number1, String number2)
getDivisionOfTwoNumbers ("3", "5")

CORENUMBEROPS

Function Library Reference 10-51
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Input Parameters:
number1: The first number
number2: The second number to be used as a divisor for the first
number

Return Type: String

getMaxOfTwoNumbers
Gets the maximum value among two input numbers specified in the value 1 & value 2
columns and stores the output into a global variable specified in the Output Variable
Name column.

Usage:

getMaxOfTwoNumbers(String number1, String number2)
getMaxOfTwoNumbers ("3", "5")

Input Parameters:
number1: The first number
number2: The second number to be compared to the first to determine
the maximum of two numbers.

Return Type: String

getMinOfTwoNumbers
Gets the minimum value among two input numbers specified in the value 1 & value 2
columns and stores the output into a global variable specified in the Output Variable
Name column.

Usage:

getMinOfTwoNumbers(String number1, String number2)
getMinOfTwoNumbers ("3", "5")

Input Parameters:
number1: The first number
number2: The second number to be compared to the first to determine
the minimum of two numbers.

Return Type: String

getAbsoluteOfNumber
Gets the absolute value of the number specified in the value 1 column and stores the
output into a global variable specified in the Output Variable Name column.

Usage:

getAbsoluteOfNumber(String number1)
getAbsoluteOfNumber ("3.754")

Input Parameters:
number1: The number whose absolute value needs to be determined.

Return Type: String

COREUTAOPS

Function Library Reference 10-52
Oracle Utilities Testing Accelerator User’s Guide for Cloud

COREUTAOPS
Use this function library to perform operations specific to flow run in Oracle Utilities
Testing Accelerator, such as pausing a flow run for a specified time, conditional
constructs to exit polling of a specific component Inbound Web Services.

This section provides a list of functions in the library, along with the usage details.

waitForTime
Pauses the flow run for the specified number of minutes. The flow run is resumed after
the completion of the wait time.

Usage:

waitForTime(String timeInMinutes)
waitForTime ("3")

Input Parameters:
timeInMinutes: Number of minutes for which the flow run needs to be
paused

Return Type: void

customLog
This function can be used to add custom messages to the flow run summary report. This
function Concatenates the input parameters and adds the final concatenated message to
the flow execution summary report.

Usage:

customLog(String message1,String message2)

Input Parameters:
message1: the string that needs to be printed into to the summary
report
message2: the suffix to the message1 that needs to be appended to
the summary report

Return Type: void

Note: If more than two strings need to be appended and printed to the
output, use the appendStrings function from CORESTRINGOPS and
store the output into a global variable and use the global variable as a
parameter to customLog function. If only one message needs to be
printed and there is no suffix to it, you can set #EMPTY in the 2nd
input parameter field.

Custom Libraries 11-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 11
Custom Libraries

This chapter focuses on creating custom libraries that include custom validation
functions used for component validation.

Note the following:

• Only Java Script language can be used to develop new custom function libraries.

• Due to security constraints, only a few approved Java Script packages are allowed
in custom libraries.

• Starting release 22A, Groovy script based libraries are not supported in Oracle
Utilities Testing Accelerator. Custom libraries created using Groovy have to be
manually migrated to Java Script.

The chapter includes the following:

• Creating/Updating Custom Libraries

• Exporting/Importing Custom Libraries

• Using Custom Library Functions

Creating/Updating Custom Libraries

Custom Libraries 11-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating/Updating Custom Libraries
Make sure to have Administrator privileges to manage custom libraries.

To create a custom library:

1. Login to Oracle Utilities Testing Accelerator as an Administrator.

2. Navigate to the Administration tab and click Libraries on the left pane.

3. Enter the name of the new custom library in the Library Name field. Click Create
Library.

4. From the Library Type drop-down list, select the library type being created. Based
on the library type selected, it can only be used for web services based components,
REST based components, or all type of components.

5. Click Create.

Note: This step only creates a header definition of the library, the actual
code supporting/implementing the definition is expected to have been
already developed using an IDE like Eclipse or JavaScript consoles. See
the example at the end of this section for more details.

6. Once a library is created, add the function definitions using “+Add”. The function
definition should specify the function name (Function), number of input parameters
of the function (Parameter Count), comma separated comments for each of the input
parameters, which gets displayed against the parameter in the test data screen and
description of the function.

7. On the Create/Update Library page, click “+” in the Library Functions section.
Add functions exposed by the custom library and other details, such as parameters of
the functions.

8. Add separate rows for each exposed function in the custom library.

• Function: Function name in the custom library

• Parameter Count: Total number of parameters for the function. A function can
have a maximum of 6 parameters.

• Parameter Comments: Description about parameters, helps to show more
information about the parameters. If the function has more than one parameter,
descriptions should be separated by a comma.

• Description: Function description

9. Click Save.

10. Click Open Editor to develop or upload/code a Java Script library containing actual
implementation of the functions included.

11. Specify the package name of the custom library.

12. Enter the code or paste it from an external source.

13. Click Save. This triggers the compilation of the custom library Java Script code and
displays errors if any. Rectify the code and click Save again to verify and save the
changes.

14. Click Save to overwrite any existing library with an updated version or a new library
being created.

Creating/Updating Custom Libraries

Custom Libraries 11-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Example: Creating a Java Script Library

To create a function to generate a random social security number as test data to create a
person, create a .groovy file with the function definition. The library name is
“UTATEST” and the function name is “generateSSN”. It takes an input prefix and
returns a random set of digits prefixed with the input value.

The script contents are as follows:

var ArrayList = Java.type('java.util.ArrayList');
var List = Java.type('java.util.List');
var Random = Java.type('java.util.Random');
var OUTSPCORELIB =
Java.type('com.oracle.utilities.core.lib.OUTSPCORELIB');

function generateSSN(prefix){
var random = new Random();
var x = random.nextInt(900) + 100;
var y = random.nextInt(90) + 10;
var z = random.nextInt(9000) + 1000;
var zz = x+"-"+y+"-"+z;
print(prefix+zz);
return prefix+zz;

}

Below is the function definition in Oracle Utilities Testing Accelerator.

Click Open Editor to create the implementation of the .groovy library. It can be plugged
into any custom component or the pre-validations and post-validations section of flow
test data definition.

Exporting/Importing Custom Libraries

Custom Libraries 11-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Exporting/Importing Custom Libraries
Make sure to have Administrator privileges to manage custom libraries.

To export a single custom library:

1. Login to Oracle Utilities Testing Accelerator as an Administrator.

2. Navigate to the Administration tab and click Libraries on the left pane.

3. Enter the name of the new custom library in the Library Name field. Click Search.

4. After the library functions are displayed, click Export. An export file of the custom
function library currently displayed is generated.

To export multiple custom libraries:

1. Login to Oracle Utilities Testing Accelerator as an Administrator.

2. Navigate to the Administration tab and click Export Libraries on the left pane.

3. Search for the library based on names and select two or more custom function
libraries to be exported.

4. Click Export. The selected custom function libraries should be exported into an
archive file that can be downloaded.

To import custom libraries:

1. Login to Oracle Utilities Testing Accelerator as an Administrator.

2. Navigate to the Tools tab and click Import on the left pane.

3. Select the archive file that has the library definitions and click Import.

The library is imported and available for use in the components/flows.

Using Custom Library Functions
After successfully uploading the custom library into Oracle Utilities Testing Accelerator
use can the library functions in any of the components/flows. The usage is similar to the
usage of base function libraries.

User Settings 12-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 12
User Settings

This chapter focuses on user settings that include flushing cache, language and timezone
selections. It focuses on the following:

• Clearing Server Side Cache

• Selecting User Time Zone

• Selecting User Language

Clearing Server Side Cache

User Settings 12-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Clearing Server Side Cache
The Oracle Utilities Testing Accelerator metadata is cached on the server side to ensure
faster load times of the application. The server side cache can be flushed through the
following steps:

1. Login to Oracle Utilities Testing Accelerator.

2. Click the drop-down menu showing your user name on the top-right corner of the
workbench.

3. Select Clear Cache from the drop-down menu.

4. Click Yes to confirm.

Selecting User Time Zone
Oracle Utilities Testing Accelerator supports viewing the date time values on the
application's workbench in multiple time zones.

To support a user time zone:

1. Login to Oracle Utilities Testing Accelerator.

2. Click the drop-down menu having your username on the top-right corner of the
workbench and select Settings.

3. Select the time zone from the Time Zone drop-down menu.

4. Click Save.

Selecting User Language
Oracle Utilities Testing Accelerator supports viewing of the application's workbench in
multiple languages.

1. Login to Oracle Utilities Testing Accelerator.

2. Click the drop-down menu having your username on the top-right corner of the
workbench and select Settings.

3. Select language from the Language drop-down list.

4. Click Save.

Note: The Language options drop-down list shows the available
languages only if your Oracle Utilities Testing Accelerator instance
supports multiple languages. Else, the drop-down list will be empty.

Web Service Component Keywords A-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Appendix A
Web Service Component Keywords

This chapter provides the list of keywords used in a web service based component.

• WS-SETWEBSERVICENAME

• WS-SETXMLELEMENT

• WS-SETXMLLISTELEMENT

• WS-SETVARIABLE

• WS-SETVARIABLEFROMRESPONSE

• WS-SETTRANSACTIONTYPE

• WS-LOGMESSAGE

• WS-CREATEWSREQUEST

• WS-PROCESSWSREQUEST

• WS-STARTPOLLWS

• WS-STOPPOLLWSIF

WS-SETWEBSERVICENAME

Web Service Component Keywords A-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

WS-SETWEBSERVICENAME
Sets the name of the application web service.

Use Case: Defines the web service to which the component’s web service request is sent.
The web service name is provided in the attribute values column during the component
development. This service name is appended with the WebContainerURL to form a
complete WSDL URL for processing the request. The WebContainerURL has to be
specified in the flow runtime configuration property file.

WS-SETXMLELEMENT
Sets the element (Xpath) value in the web service request using either a variable or a
value.

Use Case: Enables the web service creation request (XML) with the element values
populated by setting each value for the defined element.

WS-SETXMLLISTELEMENT
Sets the repeating list element (Xpath) value in the web service request using either a
variable or a value.

Use Case: Enables the web service creation request (XML) with repeating list element
values populated by setting each value set for the defined element list. The values are
provided from the test data.

Usage Details Value

Keyword WS-SETWEBSERVICENAME

Display Name User Defined Display Name

Attribute Values Web Service Name

Usage Details Value

Keyword WS-SETXMLELEMENT

Display Name User Defined Display Name

Attribute Values Xpath of the element

Usage Details Value

Keyword WS-SETXMLLISTELEMENT

Display Name User Defined Display Name

Attribute Values Xpath of the element

WS-SETVARIABLE

Web Service Component Keywords A-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

WS-SETVARIABLE
Sets a value to a global variable.

Use Case: Used for setting a value to a global variable used across the flow for
validations or for setting XML elements. The values are provided from the test data.

WS-SETVARIABLEFROMRESPONSE
Used to retrieve the XML element value from the response and stores it in a global
variable for further processing.

Use Case: Enables use of a response value, such as ID from a component, as an input to
a request in another component.

WS-SETTRANSACTIONTYPE
Sets a value for the transaction type.

Use Case: Used to set a value to a transaction type variable used in the request XML to
pass a request for specific operations, such as ADD, UPDATE, READ, DELETE, etc.
The transaction type is provided from the test data.

Usage Details Value

Keyword WS-SETVARIABLE

Display Name User Defined Display Name

Output Parameters Variable Name

Usage Details Value

Keyword WS-SETVARIABLEFROMRESPONSE

Display Name User Defined Display Name

Attribute Values Xpath of the element in response

Output Parameters Variable Name

Usage Details Value

Keyword WS-SETTRANSACTIONTYPE

Display Name User Defined Display Name

WS-LOGMESSAGE

Web Service Component Keywords A-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

WS-LOGMESSAGE
Used to set custom log messages in the run results report.

Use Case: Provides the necessary extensibility to provide custom log messages for the
generated results report, such as to identify the start and completion of a transaction, etc.

WS-CREATEWSREQUEST
Creates a web service request XML and stores it in the “WSDLXML” global variable.

Use Case: Enables the manipulation of the web service XML request generated before
submitting it to the application for processing, giving greater flexibility in development.

WS-PROCESSWSREQUEST
Sends the web services request and receives the response from the application for the
specified WSDL name.

Use Case: Posts the generated XML request from WS-CREATEWSREQUEST to the
application and processes the response. This keyword performs the core process of the
web services based request-response model.

WS-STARTPOLLWS
Starts the polling of the web services request and receives the response from the
application for the specified WSDL name. It takes two parameters, the first is for the
total time for which polling should occur and the second is the interval between polls.

Usage Details Value

Keyword WS-LOGMESSAGE

Display Name User Defined Value

Attribute Values Message

Usage Details Value

Keyword WS-CREATEWSREQUEST

Display Name User Defined Display Name

Attribute Values Web Service Name

Usage Details Value

Keyword WS-PROCESSWSREQUEST

Display Name User Defined Display Name

Attribute Values Web Service Name

WS-STOPPOLLWSIF

Web Service Component Keywords A-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Use Case: Provides a means to run a loop to keep polling a web service for a specified
time measure or till a condition is met (specified in WS-STOPPOLLWSIF).

WS-STOPPOLLWSIF
Indicates the end of the polling specified by WS-STARTPOLLWS.

Use Case: The condition to stop the poll can be specified here. The attribute takes the
xpath of the element against which the condition is to be compared. The condition is
specified while entering the test data. If the test data is just a string, say <val>, then
polling would stop when element value is <val>.

For example, if a web service needs to be polled unless the element BatchJobId is “ED”,
the attribute value should be set as the xpath of BatchJobId and the test data should be
entered as “ED”.

Similarly, if polling needs to continue as long as a certain value is returned, a “!” should be
prefixed to the value of test data. If we want to continue polling as long as the
BatchJobId is “PD”, test data should be “!PD” (the symbol ! indicates “not equals”).
Similar conditions can be set for greater than, less than, greater than equal to and less
than equal to, by prefixing the test data with “>”, “<“, “>=” and “<=” respectively.

Usage Details Value

Keyword WS-STARTPOLLWS

Display Name User Defined Display Name

Attribute Values User Defined Display Name

Usage Details Value

Keyword WS- STOPPOLLWSIF

Display Name User Defined Display Name

Attribute Values Xpath of element

REST Component Keywords B-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Appendix B
REST Component Keywords

This chapter provides the following REST component keywords:

• RS-SETREQUESTHEADER

• RS-SETENDPOINT

• RS-ARGUMENT

• RS-SETMETHOD

• RS-PROCESSRESTREQUEST

RS-SETREQUESTHEADER

REST Component Keywords B-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

RS-SETREQUESTHEADER
Sets the header in the defined REST request.

Use case: The attribute value takes the name of the request header.

RS-SETENDPOINT
Sets the endpoint for the REST request.

Use Case: Defines the static part of the application's REST endpoint.

RS-ARGUMENT
Sets the query parameter or the path parameter for the REST request.

Use Case: Used for setting the query parameter and path variable in the REST request.
The values are provided from the test data.

Usage Details Value

Keyword RS-SETREQUESTHEADER

Display Name User Defined Display Name

Attribute Values User Defined Header Name

Objects Valid No objects required

Usage Details Value

Keyword RS-SETENDPOINT

Display Name User Defined Display Name

Attribute Values User Defined End Point

Objects Valid No objects required

Usage Details Value

Keyword RS-ARGUMENT

Display Name User Defined Display Name

Attribute Values User Defined Query Parameter Name for
QueryParameter

None for PathVariable

Objects Valid QueryParameter - Appends the query parameter
name in the component definition and value
given in the test data to the REST end point.

PathVariable - Appends the user defined value
in test data to the REST end point.

RS-SETMETHOD

REST Component Keywords B-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

RS-SETMETHOD
Sets the method type for the REST request.

Use Case: Used to set the REST request method type.

RS-PROCESSRESTREQUEST
Sends the REST request and receives the response from the application for the specified
REST.

Use Case: Used to send the REST request using the methods and data provided using
the above keywords.

Usage Details Value

Keyword RS-SETMETHOD

Display Name User Defined Display Name

Attribute Values None

Objects Valid GET - Creates a GET method to hit the REST
end point.

POST - Creates a POST method to hit the
REST end point.

Usage Details Value

Keyword RS-PROCESSRESTREQUEST

Display Name User Defined Display Name

Attribute Values None

Objects Valid No objects required

Setting Up Inbound Web Services C-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Appendix C
Setting Up Inbound Web Services

The Oracle Utilities application-specific components are developed using the web
services method, and these components need the Inbound Web Services to be defined in
the application.

This chapter includes the following sections:

• Creating Inbound Web Services

• Importing Inbound Web Services

• Searching Inbound Web Services

Creating Inbound Web Services

Setting Up Inbound Web Services C-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating Inbound Web Services
To create an Inbound Web Service for any custom component to be created:

1. Login to the Oracle Utilities cloud service.

2. Navigate to Admin > Integration > Inbound Web Service > Add.

3. On the Inbound Web Service page, enter the Inbound Web Service Name.

4. Enter the Description and the Detailed Description.

5. Select the appropriate trace,debug.active,post error option from the drop down.

6. Enter the Operation Name.

7. Select the Schema Type, Schema Name and Transaction Type.

8. Click Save.

Importing Inbound Web Services
To import the delivered Inbound Web Services corresponding to the components into
the Oracle Utilities cloud service:

1. Login to the Oracle Utilities Testing Accelerator.

2. Click the Flows tab on the top-right section.

3. Expand the flow tree structure corresponding to the Oracle Utilities cloud service
version.

4. Right-click the Pre-requisites flow for the respective product version.

5. Select Run Flow.

6. Select the Flow and User Configuration sets and click Run.

7. The flow should successfully run to completion with status as ‘Passed’. The
corresponding Inbound Web Services will be imported into Oracle Utilities cloud
service.

Searching Inbound Web Services
To search an Inbound Web Service in an Oracle Utilities cloud service:

1. Login to the Oracle Utilities application.

2. Navigate to Admin > Integration > Inbound Web Service > Search.

3. On the Inbound Web Service Search page, enter the name of the required web
service in the Name field.

4. Enter the description in the Description field.

5. Click Refresh.

The web service, if found, is retrieved and displayed.

Generating Re-runnable Test Data D-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Appendix D
Generating Re-runnable Test Data

To run a flow multiple times, some fields might need unique values for each run. Instead
of changing the value in the databank, we can enable re-runnable test data so that the test
data is generated randomly every time the flow is run.

This chapter describes the options available on how the random data generated can be
configured.

Requirement Test Data
Structure Example Test Data Generated String

A specified number of random lower
case characters need to be appended
to the given test data.

<int>?data 4?van
3?appl
6?AC
2?
?

vancara
applxtg
ACkdbvdl
nd
ufdbn

A specified number of random upper
case characters need to be appended
to the given test data.

<int>U?data 4U?van
3u?appl
6U?AC
2U?
U?

vanCARA
applXTG
ACKDBVDL
ND
UFDBN

A specified number of random lower
case characters need to be prefixed to
the given test data.

<int>B?data 4B?van
3b?appl
6B?AC
2B?
B?

caravan
xtgappl
kdbvdlAC
nd
ufdbn

A specified number of random upper
case characters need to be prefixed to
the given test data.

<int>BU?data 4BU?van
3bu?appl
6Bu?AC
2BU?
BU?

CARAvan
XTGappl
KDBVDLAC
ND
UFDBN

A specified number of random
numbers need to prefixed to the
given test data

<int> d?data d?ABCD
2d?ABCD

ABCD32940
ABCD43

A specified number of random
numbers need to suffixed to the
given test data

<int> bd?data bd?ABCD
4bd?ABCD

32940ABCD
1534ABCD

Generating Re-runnable Test Data

Generating Re-runnable Test Data D-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

OUTA REST Services E-1
Oracle Utilities Testing Accelerator User’s Guide

Appendix E
OUTA REST Services

Oracle Utilities Testing Accelerator provides REST services that can be used to integrate
with any compatible third party application, such as test management applications,
Jenkins, etc.

This chapter focuses on the Oracle Utilities Testing Accelerator REST services to run
flows and retrieve flow run analytics. It describes the following services:

• Prerequisites

• Next Generation REST APIs

• Legacy REST APIs

• Flow Run

• Flow Set Run

• Flow Run Analytics

• Flow Set Run Analytics

• Flow Run Summary

• Flow Set Run Summary

Prerequisites

OUTA REST Services E-2
Oracle Utilities Testing Accelerator User’s Guide

Prerequisites
All the REST services require a base64 encoded username and password as one of the
parameters on the request header for authorization.

You can obtain the base64 encoded username and password using the following
command on Linux:

echo -n '<username>:<password>' | base64

Where username is the username that needs to be encoded and password is the password
corresponding to the username that needs to be encoded.

Next Generation REST APIs
The next generation of REST APIs to invoke the Oracle Utilities Testing Accelerator
flow executions and retrieve results supports Open API specifications.

The authentication mechanism is the same for the next generation REST APIs as those
used for the older REST APIs. For more information, refer to the Prerequisites section.
REST APIs can be invoked remotely using commands (such as curl) depending on the
application that supports the commands.

To access Open API specifications for next generation REST APIs:

1. Open the following URL in a supported web browser:

<UTA URL>/swagger-ui/

Example: If the Oracle Utilities Testing Accelerator URL is https://
someoraclecloudserver.com/prod/ccs/uta/, the corresponding swagger UI URL
will be https://someoraclecloudserver.com/prod/ccs/uta/swagger-ui/.

Legacy REST APIs

OUTA REST Services E-3
Oracle Utilities Testing Accelerator User’s Guide

2. The REST API specifications are documented on the page. The following figure
shows Swagger UI with Open API specification for UTA REST APIs.

Example curl command for running a UTA flow:

curl -k --request POST 'https:// someoraclecloudserver:8086/prod/
ccs/uta/rest/v1/flow/run' \
--header 'Authorization: Basic U1lTVVNFUjpXZWxjb21lMTIzNDU2' \
--header 'Content-Type: application/json' \
--data '{
 "configuration": "SCHED_54",
 "flow": "QA-ToDoComplete",
 "flowTestDataSet": "default",
 "identity": "SCHED_54",
 "portfolio": "CORE",
 "product": "CORE",
 "release": "UTA"
}'

The list of available APIs and the corresponding field definitions can be found in Oracle
Utilities Testing Accelerator’s API specification.

Legacy REST APIs
It is recommended to use the next generation REST APIs described in the Next
Generation REST APIs section to invoke Oracle Utilities Testing Accelerator flow runs
and retrieving results using REST APIs.

Flow Run
The Flow Run service provides an endpoint allowing a flow to run by passing the
relevant flow details.

Flow Run

OUTA REST Services E-4
Oracle Utilities Testing Accelerator User’s Guide

Endpoint

>/rest/run/flow

Curl command for Flow Run

curl -i -X POST 'https://<hostname>:<port>/.…../ uta/rest/run/flow'
-H 'authorization:Basic <Base64 encoded username & password>' -H
'cache-control: no-cache' -H 'content-type: application/json' -d '{
"executionType": "flow",
"release" : "<release>",
"portfolio" : "<portfolio>",
"product" : "<product>",
"flow" : "<flow>",
"configuration":"<configuration>",
"identity": "<user configuration>",
"flowtestdataset": "<flowtestdataset>"
}'

Note: <flowtestdataset> parameter is optional, if user does not provide
the parameter then the default test data set will be used for run.

Parameters

• <hostname>: OUTA application host name

• <port>: OUTA application port

• <access token>: Authentication token from the step in pre-requisites above

• <release>: The name of the release to which the flow belongs to

• <portfolio>: The name of the portfolio/product family to which the flow
belongs to

• <product>: The name of the product to which the flow belongs to

• <flow>: Name of the flow to be run

• <configuration>: Configuration to be used for running the flow

• <user configuration>: The user configuration to be used for run the flow

• <flowtestdataset>: The flow test data set that needs to be used during the flow
run

Example
Flow Run

curl -X POST -k https://my.server.com:8080/dev01/ccs/uta/rest/
execute/flow -H 'authorization: Basic bXJpbmFsOk9yYWNsZTEyMw==' -H
'content-type: application/json' -d' {"executionType": "flow",
"release" : "UTA", "portfolio" : "CUSTOMER CARE AND BILLING",
"product" : "CCB 2.7.0.1", "flow" : "CreateBusinessWithCC",
"configuration":"myCCBConfig", "identity": "myCCBConfig
","flowtestdataset":"CCBTestDataSet" }'

Once a flow run is triggered, the service responds with a response similar as follows.

{"flowExecutionId":1810,"trackingCode":" CreateBusinessWithCC
_100000065_2020_01_29_04.00.24.604_26843725-5fe4-4c38-a481-
b7e775ddcff0"}

Querying Status of Flow Run

Flow Set Run

OUTA REST Services E-5
Oracle Utilities Testing Accelerator User’s Guide

Query the status of the flow run as follows.

Endpoint

>/rest/execute/flowstatus
Curl for Flow Run Status

curl -i -k -X GET -k 'https://<hostname>:<port>/rest/execute/
flowstatus?flowExecutionId=<flowExecutionId>' -H
'authorization:Basic <Base64 encoded username & password>'

Parameters

• <hostname> : Oracle Utilities Testing Accelerator host name

• <port> : Oracle Utilities Testing Accelerator port

• <access token> : Authentication token (See Prerequisites for more information.)

• <flowExecutionId >: The flow run ID received when the flow run was
triggered.

Example
curl -i -k -X GET 'https://my.server.com:8080/rest/execute/
flowstatus?flowExecutionId=1810' -H 'authorization: Basic
bXJpbmFsOk9yYWNsZTEyMw=='

The service responds to the flow run status query with a response.

Response

{"product":"CCB 2.7.0.1","portfolio":"CUSTOMER CARE AND
BILLING","release":"UTA","flowName":"CreateBusinessWithCC","status
":"Running"}

The status element in the response contains the current flow run status.

Flow Set Run
The Flow Set Run service provides an endpoint allowing a flow set to be run by passing
relevant flow set details.

Endpoint

>/rest/execute/flow

Curl command for Flow Set Run

curl -i -X POST 'https://<hostname>:<port>/.…../ uta/rest/run/flow'
-H 'authorization:Basic <Base64 encoded username & password>' -H
'cache-control: no-cache' -H 'content-type: application/json' -d '{
"executionType" : "flowSet",
"flowSet" : "<flowSet>", "configuration":"<configuration>",
"identity": "<user configuration>"}’

Parameters

• <hostname>: Oracle Utilities Testing Accelerator application host name

• <port>: Oracle Utilities Testing Accelerator application port

Flow Set Run

OUTA REST Services E-6
Oracle Utilities Testing Accelerator User’s Guide

• <access token>: Authentication token from the step in pre-requisites above

• <flowSet>: Name of the flow set to be executed

• <configuration>: Configuration to be used for executing the flow

• <user configuration>: The user configuration to be used for executing the flow

Example
Flow Set Run

curl -X POST -k https://my.server.com:8080/rest/execute/flow -H
'authorization: Basic bXJpbmFsOk9yYWNsZTEyMw==' -H 'content-type:
application/json' -d
'{"executionType": "flowSet", "flowSet" : "MyBillingTestSuite",
"configuration":"myCCBConfig", "identity": "myCCBConfig" }'

Once a flow set run is triggered, the service responds with a response as follows:

[{"flowSetExecutionId":"502","flowSetName":"MyBillingTestSuite","s
tatus":"Running"}]

Querying Status of Flow Set Run

User can query the status of flow set run.

Curl for Flow Set Run Status

curl -i -X GET -k 'https://<hostname>:<port>/flowset/
status?flowSet=<flowSet>&flowSetExecutionId=<flowSetExecutionId>'
-H 'authorization:Basic <Base64 encoded username & password>'

Parameters

• <hostname>: Oracle Utilities Testing Accelerator Application host name

• <port>: Oracle Utilities Testing Accelerator application port

• <access token>: Authentication token from the step in pre-requisites above

• <flowSetExecutionId>: The flow set run ID that was received when the flow set
run was triggered.

Example
curl -i -k -X GET 'https://my.server.com:8080/rest/execute/flowset/
status?flowSet=MyBillingTestSuite &flowSetExecutionId=502' -H
'authorization: Basic bXJpbmFsOk9yYWNsZTEyMw=='

The service responds to the flow run status query with a response as follows.

Response

[{"flowStatuses":[{"timeStamp":"Jan 19, 2020 04:00:25 PST","product":"CCB
2.7.0.1","portfolio":"CUSTOMER CARE AND
BILLING","release":"UTA","flowExecutionId":"1811","id":1,"flowName":"X1-
MDMFlow","portProdXrefId":"100000065","status":"Not
Started"}],"flowSetExecutionId":"502","flowSetName":"MyBillingTestSuite","status":"Runni
ng"}]'

Flow Run Analytics

OUTA REST Services E-7
Oracle Utilities Testing Accelerator User’s Guide

The status element in the response contains the current flow set overall run status. The
flowStatuses element in the response contains individual flow status for each of the flows
that were/are run in the flow set.

Flow Run Analytics
The Flow Run Analytics service provides analytics for the flows run in Oracle Utilities
Testing Accelerator by a specific user for a given period.

Endpoint

>/rest/analytics/user

Curl Command for Flow Run Analytics

curl -i -k -X GET -k 'https://<hostname>:<port>/rest/analytics/
user/<username>/flowExecutionAnalytics/from/<fromDate>/to/
<toDate>' -H 'authorization: Basic <Base64 encoded username &
password>'

Parameters

• <hostname>: OUTA application host name

• <port>: OUTA application port

• <access token>: Authentication token from the step in pre-requisites above

• <username>: Name of the user who executed the flow(s)

• <fromDate>: The start date to query for analytics - format DD-MON-YY
(example: 10-JAN-20)

• <toDate>: The end date to query for analytics - format DD-MON-YY
(example: 20-JAN-20)

Example
Flow Run Analytics

curl -i -k -X GET -k https://<hostname>:<port>/rest/analytics/user/
admin/flowExecutionAnalytics/from/01-JAN-20/to/15-JAN-20 -H
'authorization: basic 62593bbd-b057-4f38-8a3e-5915d4ab559f'

Once a flow set run is triggered, the service responds with a response as follows.

{"totalFlowsRanByUser":50,"totalFlowsRanByUserSuccess":48,"totalFl
owsRanByUserFailure":2,"totalFlowsRanByUserRunning":0}'

Flow Set Run Analytics
The Flow Set Run Analytics service provides analytics for the flow sets run in Oracle
Utilities Testing Accelerator by a specific user for a given period.

Endpoint

>/rest/analytics/user

Flow Run Summary

OUTA REST Services E-8
Oracle Utilities Testing Accelerator User’s Guide

Curl Command for Flow Run Analytics

curl -i -k -X GET -k 'https://<hostname>:<port>/rest/analytics/
user/<username>/flowSetExecutionAnalytics/from/<fromDate>/to/
<toDate>' -H 'authorization: Basic <Base64 encoded username &
password>'

Parameters

• <hostname>: OUTA application host name

• <port>: OUTA application port

• <access token>: Authentication token from the step in pre-requisites above

• <username>: Name of the user who executed the flow(s)

• <fromDate>: The start date to query for analytics - format DD-MON-YY
(example: 10-JAN-20)

• <toDate>: The end date to query for analytics - format DD-MON-YY
(example: 20-JAN-20)

Example
Flow Run Analytics

curl -i -k -X GET -k https://my.server.com:8080/rest/analytics/
user/admin/flowSetExecutionAnalytics/from/01-JAN-20/to/15-JAN-20 -
H 'authorization: Basic bXJpbmFsOk9yYWNsZTEyMw=='

Once a flow set run is triggered, the service responds with a response as follows:

{"totalFlowSetsRanByUser":30,"totalFlowSetsRanByUserSuccess":29,"t
otalFlowSetsRanByUserFailure":1,"totalFlowSetsRanByUserRunning":0}

Flow Run Summary
The Flow Run Summary service provides summary file for the flow run in Oracle
Utilities Testing Accelerator.

Endpoint

>/rest/summary/report

Curl Command for Flow Run Summary

curl -X POST \
 'https://<hostname>:<port>/rest/summary/
report?type=flow&flowName=x' \
 -H 'accept: application/xml' \
 -H 'authorization: Basic <Base64 encoded username & password>' \
-H 'authorization:Basic <Base64 encoded username & password>' \
 -d '["<flow execution id>"]'

Parameters

• <hostname>: Oracle Utilities Testing Accelerator application host name

• <port>: Oracle Utilities Testing Accelerator application port

Flow Set Run Summary

OUTA REST Services E-9
Oracle Utilities Testing Accelerator User’s Guide

• < token>: Authentication token from the steps mentioned in pre-requisites
above

• <flow execution id>: Flow execution ID of the flow for which the summary is
being requested

Example
Flow Run Summary

curl -X POST \
 'https://<hostname>:<port>/rest/summary/
report?type=flow&flowName=x' \
 -H 'accept: application/xml' \
 -H 'authorization: Basic bXJpbmFsOk9yYWNsZTEyMw==' \
 -H 'content-type: application/json' \
 -d '["2507"]'

The server responds with a HTML summary file as response upon receiving this request.

Flow Set Run Summary
The Flow Set Run Summary service provides summary file for the flow set run in Oracle
Utilities Testing Accelerator.

Endpoint

>/rest/summary/report

Curl Command for Flow Set Run Summary

curl -X POST \
 'https://<hostname>:<port>/rest/summary/
report?type=flowset&flowSetName=x' \
 -H 'accept: application/xml' \
 -H 'authorization:Basic <Base64 encoded username & password>' \
 -H 'content-type: application/json' \
 -d '["<flow execution id>"]'

Parameters

• <hostname>: Oracle Utilities Testing Accelerator application host name

• <port>: Oracle Utilities Testing Accelerator application port

• < token>: Authentication token from the steps mentioned in pre-requisites
above

• <flow execution id>: Flow execution ID of the flow set for which the summary
is being requested

Example
Flowset Run Summary

curl -X POST \
 'https://<hostname>:<port>/rest/summary/
report?type=flowset&flowSetName=x' \
 -H 'accept: application/xml' \

Flow Set Run Summary

OUTA REST Services E-10
Oracle Utilities Testing Accelerator User’s Guide

 -H 'authorization: Basic <Base64 encoded username & password>' \
 -H 'content-type: application/json' \
 -d '["2507"]'

The server responds with a HTML summary file of the flow set as response.

	User’s Guide for Cloud
	Preface
	Audience
	Prerequisite Knowledge
	Abbreviations
	Related Documents
	Updates to the Documentation
	Documentation Accessibility
	Conventions

	Chapter 1
	Overview
	Introduction
	Terminology
	Application Architecture
	Application Features
	What's New in 24A
	Supported Oracle Utilities Applications

	Chapter 2
	Oracle Utilities Testing Accelerator Features
	Administration
	Components
	Dashboard
	Flows
	Flow Sets
	Tools

	Chapter 3
	Developing Metadata Driven Web Service Based Test Automation
	Metadata Driven Automation Development Methodology
	Planning
	Design and Development
	Test Run

	Configuring the Automation Development Environment
	Setting Up Flow and User Configuration Sets
	Setting Up Application under Test

	Chapter 4
	Oracle Utilities Testing Accelerator Administration
	Overview
	Administration Tab
	Managing Products
	Managing Modules
	Purging Flow Run Data
	Purging Notification Data
	Custom Content Upgrade

	Chapter 5
	Creating Components
	Component Structure
	Component Lifecycle
	Locking/Unlocking Components

	Component Types
	Web Service Based Components
	REST Web Service Components

	Creating Web Service Based Components
	Creating a Component
	Creating a Component Definition
	Defining Default Data at Component Level
	Setting Up Operation Name for a Web Service
	Using Runtime Variables in Components
	file: prefix - csv file
	Using Function Libraries
	Resolving the Repeating Elements in Response XML
	Adding Validations
	Handling the List Elements
	Extending the Base Component Definition

	Creating REST Web Service Components
	Creating a REST Service Component Definition
	Entering Test Data for a REST Component

	Copying Components

	Chapter 6
	Creating Test Flows
	Adding Products to Workspace Products
	Creating Flow Modules
	Creating Flows
	Creating Flows by Dragging-and-Dropping Components
	Adding Test Data in a Flow
	Moving Data Between Components without Using Global Variables
	Managing Flow Test Data Using Spreadsheets
	Annotating Components in a Flow
	Adding Documentation to a Flow
	Using Global Variables
	Using Container for Flow Variables
	Flow Lifecycle
	Locking/Unlocking Flows
	Copying Flows
	Reordering Components in a Flow
	Copying Test Data from One Component to Another in a Flow
	Fetching Component Test Data from an Utilities Application
	Unit Testing a Component in a Flow
	Bulk Replacing Component Test Data in Multiple Flows
	Flow Subroutines
	Running Subroutine in a Loop
	Conditional Bypass of Components in a Flow Run (Skip Component)
	Suspension/Pause and Conditional Resumption of Flow Run
	Component Test Data Sets
	Creating Reference Test Data for a Component
	Loading Test Data from a Component Test Data Set
	Deleting Component Test Data Sets
	Flow Test Data Sets

	Support for Integration Flows
	Running Test Flows
	Running Test Flows Using a Browser
	Iterative Flow Run
	Stopping Flow Run on Validation Failure
	Stopping Flow Run Manually
	Viewing Flow Run Details
	Viewing Flow Run Failure Details
	Viewing Flow Run Summary Report
	Conversational Test Data Management
	Runtime Configuration for Flow Run

	Chapter 7
	Creating Test Flow Sets
	Creating Flow Sets
	Adding Flows to a Flow Set
	Deleting Flows from a Flow Set
	Running Flow Sets
	Stopping Flow Set Run
	Exporting Flow Sets
	Viewing Flow Set Run History
	Viewing Flow Set Execution Summary Report

	Chapter 8
	Creating Test Plans
	About Test Plans
	Creating a Test Plan
	Adding and Removing Flow Sets in a Test Plan
	Managing Test Plan Lifecycle
	Running a Test Plan
	Viewing Test Plan Run Results

	Chapter 9
	Development Accelerator Tools
	Component Export Tool
	Flow Export Tool
	Component/ Flow Import Tool
	Component Generation Tool

	Chapter 10
	Function Library Reference
	OUTSPCORELIB
	WSVALIDATELIB
	CORERESPONSEUTILLIB
	COREDATETIMELIB
	COREDATAGENLIB
	COREVALIDATEVARIABLELIB
	COREVERIFYCONDITIONVARIABLELIB
	CORESTOREVALUES
	COREFILEOPS
	CORESTRINGOPS
	CORENUMBEROPS
	COREUTAOPS

	Chapter 11
	Custom Libraries
	Creating/Updating Custom Libraries
	Exporting/Importing Custom Libraries
	Using Custom Library Functions

	Chapter 12
	User Settings
	Clearing Server Side Cache
	Selecting User Time Zone
	Selecting User Language

	Appendix A
	Web Service Component Keywords
	WS-SETWEBSERVICENAME
	WS-SETXMLELEMENT
	WS-SETXMLLISTELEMENT
	WS-SETVARIABLE
	WS-SETVARIABLEFROMRESPONSE
	WS-SETTRANSACTIONTYPE
	WS-LOGMESSAGE
	WS-CREATEWSREQUEST
	WS-PROCESSWSREQUEST
	WS-STARTPOLLWS
	WS-STOPPOLLWSIF

	Appendix B
	REST Component Keywords
	RS-SETREQUESTHEADER
	RS-SETENDPOINT
	RS-ARGUMENT
	RS-SETMETHOD
	RS-PROCESSRESTREQUEST

	Appendix C
	Setting Up Inbound Web Services
	Creating Inbound Web Services
	Importing Inbound Web Services
	Searching Inbound Web Services

	Appendix D
	Generating Re-runnable Test Data
	Appendix E
	OUTA REST Services
	Prerequisites
	Next Generation REST APIs
	Legacy REST APIs
	Flow Run
	Flow Set Run
	Flow Run Analytics
	Flow Set Run Analytics
	Flow Run Summary
	Flow Set Run Summary

