
Oracle Utilities Testing Accelerator
User’s Guide
Release 7.0.0.0
F59687-01

August 2022

Oracle Utilities Testing Accelerator User’s Guide, Release 7.0.0.0

F59687-01

Copyright © 2019, 2022 Oracle and/or its affiliates.

https://docs.oracle.com/cd/E23003_01/html/en/cpyr.htm

Contents - i
Oracle Utilities Testing Accelerator User’s Guide

Preface... i
Audience .. ii
Prerequisite Knowledge... ii
Abbreviations .. ii
Related Documents .. ii
Updates to the Documentation ... iii
Documentation Accessibility ... iii
Conventions.. iii
Deprecation Notice ... iii

Chapter 1
Overview .. 1-1

Introduction.. 1-2
Terminology ... 1-2
Application Architecture .. 1-3
Application Features ... 1-4
Supported Oracle Utilities Applications... 1-4

Chapter 2
Oracle Utilities Testing Accelerator Features ... 2-1

Administration ... 2-2
Components ... 2-2
Dashboard .. 2-2
Flows.. 2-5
Flow Sets ... 2-5
Tools .. 2-6

Chapter 3
Developing Metadata Driven Web Service Based Test Automation .. 3-1

Metadata Driven Automation Development Methodology.. 3-2
Planning .. 3-3
Design and Development .. 3-3
Test Run ... 3-3

Setting Up Automation Development Environment .. 3-4
Setting Up Oracle Utilities Testing Accelerator Server ... 3-4
Setting Up Workstations for Development/ Testing.. 3-5
Setting Up Flow and User Configuration Sets ... 3-8
Setting Up Application under Test... 3-8

Chapter 4
Oracle Utilities Testing Accelerator Administration... 4-1

Overview... 4-2
Administration Tab ... 4-2

Contents

Contents - ii
Oracle Utilities Testing Accelerator User’s Guide

Managing Products ... 4-3
Managing Modules .. 4-4
Managing Users ... 4-5
User Access Types .. 4-6
Purging Flow Run Data.. 4-7
Purging Notification Data.. 4-7
Custom Content Upgrade.. 4-7

Chapter 5
Creating Test Flows... 5-1

Creating Flow Modules... 5-2
Creating Flows ... 5-2

Creating Flows By Dragging-and-Dropping Components... 5-3
Adding Test Data in a Flow .. 5-3
Moving Data Between Components without Using Global Variables... 5-7
Annotating Components in a Flow.. 5-11
Using Global Variables... 5-11
Flow Lifecycle .. 5-13
Locking/Unlocking Flows... 5-13
Copying Flows ... 5-14
Reordering Components in a Flow .. 5-14
Copying Test Data from One Component to Another in a Flow .. 5-15
Fetching Component Test Data from an Utilities Application ... 5-15
Unit Testing a Component in a Flow .. 5-16
Bulk Replacing Component Test Data in Multiple Flows.. 5-17
Flow Subroutines .. 5-18
Running Subroutine in a Loop.. 5-20
Conditional Bypass of Components in a Flow Run (Skip Component) .. 5-23
Component Test Data Sets.. 5-24
Creating Reference Test Data for a Component ... 5-24
Loading Test Data from a Component Test Data Set .. 5-25
Deleting Component Test Data Sets ... 5-25
Loading Test Data from a .csv File .. 5-25
Flow Test Data Sets .. 5-26

Adding Email Capabilities to Flows ... 5-27
Support for HTTPS Web Services.. 5-28
Support for Integration Flows... 5-28
Running Test Flows .. 5-31

Running Test Flows Using a Browser ... 5-31
Iterative Flow Run .. 5-32
Stopping Flow Run on Validation Failure... 5-32
Stopping Flow Run Manually .. 5-33
Viewing Flow Run Details ... 5-33
Viewing Flow Run Failure Details.. 5-33
Viewing Flow Run Summary Report ... 5-34
Conversational Test Data Management... 5-34
Generating Oracle Utilities Testing Accelerator Scripts ... 5-35
Importing the Generated Oracle Utilities Testing Accelerator Script into Eclipse IDE..................................... 5-36

Running Flows from Command Line .. 5-37
Encrypting Passwords... 5-37

Generating Keystore for Encryption from Windows Explorer .. 5-38
Generating Keystore for Encryption from Command Prompt... 5-38
Using Password Encryptor Tool From Windows Explorer... 5-38
Using PasswordEncryptor Tool From Console/Command Line... 5-39
Configuring the Runtime Properties (For Run Using Eclipse).. 5-39
Runtime Configuration for Flow Run (For Run Using Browser) ... 5-40

Contents - iii
Oracle Utilities Testing Accelerator User’s Guide

Chapter 6
Creating Components .. 6-1

Component Structure.. 6-2
Component Lifecycle .. 6-2

Locking/Unlocking Components... 6-3
Component Types ... 6-4

Web Service Based Components.. 6-4
GUI Based Components.. 6-4
REST Web Service Components.. 6-4

Creating Web Service Based Components .. 6-4
Creating a Component ... 6-5
Creating a Component Definition.. 6-6
Defining Default Data at Component Level .. 6-8
Setting Up Operation Name for a Web Service... 6-8
Using Runtime Variables in Components ... 6-8
file: prefix - csv file.. 6-9
Using Function Libraries.. 6-9
Resolving the Repeating Elements in Response XML.. 6-9
Adding Validations.. 6-10
Logging and Reporting... 6-10
Handling the List Elements ... 6-11

Creating GUI Based Components .. 6-13
Creating a Component Definition for GUI Components.. 6-14

Creating REST Web Service Components .. 6-15
Creating a REST Service Component Definition .. 6-16
Entering Test Data for a REST Component.. 6-17

Copying Components ... 6-19

Chapter 7
Creating Test Flow Sets ... 7-1

Creating Flow Sets ... 7-2
Adding Flows to a Flow Set... 7-2
Deleting Flows from a Flow Set.. 7-2
Running Flow Sets... 7-3
Stopping Flow Set Run ... 7-3
Exporting Flow Sets.. 7-3
Viewing Flow Set Run History .. 7-3
Viewing Flow Set Execution Summary Report .. 7-4

Chapter 8
Creating Test Plans.. 8-1

About Test Plans ... 8-2
Creating a Test Plan .. 8-2
Adding and Removing Flow Sets in a Test Plan .. 8-3
Managing Test Plan Lifecycle .. 8-3
Running a Test Plan .. 8-4
Viewing Test Plan Run Results ... 8-5

Chapter 9
Development Accelerator Tools .. 9-1

Component Export Tool ... 9-2
Flow Export Tool.. 9-2
Component/ Flow Import Tool ... 9-2
Component Generation Tool .. 9-3
Password Encryption Tool .. 9-4

Overview .. 9-4
Running the Password Encryption Tool ... 9-5

Component Definition Validation Tool .. 9-5

Contents - iv
Oracle Utilities Testing Accelerator User’s Guide

Chapter 10
Function Library Reference... 10-1

OUTSPCORELIB .. 10-2
WSVALIDATELIB .. 10-7
CORERESPONSEUTILLIB.. 10-12
COREDATETIMELIB ... 10-31
COREDATAGENLIB .. 10-34
COREVALIDATEVARIABLELIB.. 10-35
COREVERIFYCONDITIONVARIABLELIB.. 10-41
CORESTOREVALUES .. 10-46
COREFILEOPS.. 10-48
CORESTRINGOPS... 10-49
CORENUMBEROPS .. 10-49
COREUTAOPS .. 10-52

Chapter 11
Custom Libraries ... 11-1

Creating/Updating Custom Libraries... 11-2
Exporting/Importing Custom Libraries .. 11-4
Using Custom Library Functions.. 11-4

Appendix A
Web Service Component Keywords.. A-1

WS-SETWEBSERVICENAME.. A-2
WS-SETXMLELEMENT .. A-2
WS-SETXMLLISTELEMENT... A-2
WS-SETVARIABLE ... A-3
WS-SETVARIABLEFROMRESPONSE.. A-3
WS-SETTRANSACTIONTYPE .. A-3
WS-LOGMESSAGE ... A-4
WS-CREATEWSREQUEST... A-4
WS-PROCESSWSREQUEST ... A-4
WS-STARTPOLLWS .. A-4
WS-STOPPOLLWSIF... A-5

Appendix B
GUI Component Keywords .. B-1

APPROVE .. B-2
CANCEL ... B-2
CHECK.. B-2
CLICK.. B-3
CLOSE... B-3
GET_ATTRIBUTE_VALUE ... B-3
GET_ATTRIBUTE_ID ... B-4
LAUNCH .. B-4
MAXIMIZE .. B-4
MINIMIZE ... B-5
POPUP... B-5
PRESSTABKEY .. B-5
SELECT... B-6
SETTEXT ... B-6
SWITCHTO.. B-6
UNCHECK... B-7
UNSELECT.. B-7
UI-STARTBROWSER.. B-7
UI-ENDBROWSER.. B-8
WAIT.. B-8

Contents - v
Oracle Utilities Testing Accelerator User’s Guide

Appendix C
REST Component Keywords.. C-1

RS-SETREQUESTHEADER ... C-2
RS-SETENDPOINT... C-2
RS-ARGUMENT... C-2
RS-SETMETHOD... C-3
RS-PROCESSRESTREQUEST.. C-3

Appendix D
Setting Up Inbound Web Services... D-1

Creating Inbound Web Services.. D-2
Importing Inbound Web Services... D-2
Searching Inbound Web Services.. D-2

Appendix E
Generating Re-runnable Test Data .. E-1

Appendix F
Connecting to Multiple Databases ... F-1

Appendix G
Configuring Authentication for Web Service Requests.. G-1

Appendix H
OUTA REST Services.. H-1

Prerequisites.. H-2
Flow Run... H-2
Flow Set Run .. H-4
Flow Run Analytics ... H-5
Flow Set Run Analytics... H-6
Flow Run Summary... H-7
Flow Set Run Summary .. H-8

Preface - i
Oracle Utilities Testing Accelerator User’s Guide

Preface

Welcome to the Oracle Utilities Testing Accelerator User’s Guide.

The guide explains how to use Oracle Utilities Testing Accelerator to automate the
business test flows for testing the Oracle Utilities’ applications.

This preface focuses on the following:

• Audience

• Prerequisite Knowledge

• Abbreviations

• Related Documents

• Updates to the Documentation

• Documentation Accessibility

• Conventions

• Deprecation Notice

Audience

Preface - ii
Oracle Utilities Testing Accelerator User’s Guide

Audience
This guide is intended for Automation Developers, and Test Engineers who automate
the business test flows for testing the Oracle Utilities' applications.

Prerequisite Knowledge
The metadata driven automation development paradigm of Oracle Utilities Testing
Accelerator does not require any programming experience to develop scripts for testing.
However, the advanced programming features available in the application require
experience with the Java programming language.

Abbreviations
The following terms are used in this document:

Related Documents
For more information, refer to the following Oracle resources.

Release Notes

• Oracle Utilities Testing Accelerator Release Notes

Installation and Administration Guide

• Oracle Utilities Testing Accelerator Installation and Administration Guide

User and Reference Guides

• Oracle Utilities Testing Accelerator Custom Flows Upgrade Guide

• Oracle Utilities Testing Accelerator Security Guide

• Oracle Utilities Testing Accelerator Licensing Information User Manual

Additional Documentation

The following resources are available on My Oracle Support.

• Practice exercises for Oracle Utilities Testing Accelerator (Doc ID 2726629.1)

Term Expanded Form

CCB Oracle Utilities Customer Care and Billing

C2M Oracle Utilities Customer to Meter

MDM Oracle Utilities Meter Data Management

MWM Oracle Utilities Mobile Workforce Management

WAM Oracle Utilities Work and Asset Management

UTA Oracle Utilities Testing Accelerator

https://support.oracle.com/portal/

Updates to the Documentation

Preface - iii
Oracle Utilities Testing Accelerator User’s Guide

• Flow Subroutines and Test Data Sets (Doc ID 2632033.1)

• Building Custom Components And Functions for Oracle Utilities Application Framework
Based Products (Doc ID 2662058.1)

• Test Strategy Best Practices Guidance for Oracle Utilities Application Framework Based
Products (Doc ID 2659556.1)

Training Material

• Training Material on Oracle Video Hub Oracle Utilities Testing Accelerator
channel

Updates to the Documentation
Documentation updates are posted on Oracle Help Center as they become available.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle’s
Accessibility Program website.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. If you
are hearing impaired, visit the Oracle Accessibility Learning and Support website for
more information.

Conventions
The following text conventions are used in this document:

Deprecation Notice
The following features will be deprecated in the next Oracle Utilities Testing Accelerator
release:

• Eclipse plugin for running Oracle Utilities Testing Accelerator flows on a
local machine: The Eclipse plugin will be deprecated in the next Oracle Utilities

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

https://videohub.oracle.com/channel/Oracle%2BUtilities%2BTesting%2BAccelerator/
https://docs.oracle.com/en/industries/utilities/testing-accelerator-cloud/
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Preface - iv
Oracle Utilities Testing Accelerator User’s Guide

Testing Accelerator release. This deprecation in turn removes any support for
GUI based test flows and components.

• Groovy script language support for custom library will be deprecated in the next
Oracle Utilities Testing Accelerator release.

Overview 1 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 1
Overview

This chapter introduces the Oracle Utilities Testing Accelerator application and provides
an overview of the application architecture and features.

• Introduction

• Terminology

• Application Architecture

• Application Features

• Supported Oracle Utilities Applications

Introduction

Overview 1 - 2
Oracle Utilities Testing Accelerator User’s Guide

Introduction
Oracle Utilities Testing Accelerator comprises test automation accelerators for the
automated testing of Oracle Utilities applications. It is a framework based on Java and
Selenium for creating the web services and user interface automation scripts.

Oracle Utilities Testing Accelerator enables you to create the automation scripts using
keywords or metadata, and without using any programming language. This saves the test
automation development effort and avoid programming the scripts manually.

The accelerators contain out-of-the-box delivered test components that can be used to
build test flows for the Oracle Utilities applications. You can extend the delivered
components or create new custom components to build customized test flows. For
information about the reference guides included in this release, refer to the Related
Documents section in Preface.

Terminology
This table lists the different terms used in the document:

Term Description

Oracle Utilities Test Accelerator
(UTA)

Helps to build and maintain components and flows for
automated testing.

Keyword A pre-defined word used to define a specific step in a
test case.

Component Reusable automated test or part of a test.
A component is the building block of an automated test
flow. Each component is made up of a definition which
allows users to define a keyword and associate values
and parameters for the keyword.

Flow An automated test.
A flow comprises one or more components and/or
component sets that are called in a pre-determined
sequence.

Flow Test Data A test data set specific for a given flow.

All components and flows in Oracle Utilities Testing Accelerator are organized into hierarchy
for better manageability. The hierarchy is:
Release > Portfolio > Product > Module

Release Represents the highest level of hierarchy.
There is one release per an Oracle Utilities Testing
Accelerator version, and it contains one or more
portfolios.

Portfolio Represents a product family consisting of one or more
related products.
A portfolio contains one or more products.

Application Architecture

Overview 1 - 3
Oracle Utilities Testing Accelerator User’s Guide

For information about these terms, refer to Chapter 2: Oracle Utilities Testing
Accelerator Features.

Application Architecture
The following diagram depicts the high-level architecture of Oracle Utilities Testing
Accelerator.

Oracle Utilities Testing Accelerator's workbench can be accessed using a web browser,
such as Mozilla Firefox or Google Chrome. The workbench allows users to create and
manage components and flows. Additionally, flow runs and their corresponding history
can be managed from the workbench.

There are various modules within the workbench:

• Component Manager supports auto generation creation, update and delete of
components.

Product Represents an Oracle Utilities application.

For example: CCB
A product contains one or more modules.

Module Represents an Oracle Utilities application functional
area. For example: Billing in CCB
A module contains one or more components that are
used to automate a specific functional area in an Oracle
Utilities application.
A module in the flow tree hierarchy can be used for
logical grouping of custom flows for easier access.
Note: The module in the hierarchy of flow and
component tree structure is different.

Flow Module Represents a group of flows typically a group of related
flows meant to test a functional area.

Term Description

Application Features

Overview 1 - 4
Oracle Utilities Testing Accelerator User’s Guide

• Flow Manager provides features to create and manage test flows in Oracle
Utilities Testing Accelerator.

• Test Planning helps to manage flow runs corresponding to testing of specific
product upgrades/updates.

• Utilities help manage flow upgrades, export-import and custom component
creation.

Security module in Oracle Utilities Testing Accelerator workbench makes sure that only
authorized users have access to the workbench. The module also provides necessary
support to add authentication to outbound requests that are used for testing an
application. Additionally, the module controls the access to the flow runs using the
Oracle Utilities Testing Accelerator REST APIs.

All the components and flows are defined using metadata as Testing Objects. The
metadata and the flow run history gets stored in the database for unified, concurrent
access by various users of Oracle Utilities Testing Accelerator.

Oracle Utilities Testing Accelerator comes with several predefined components provided
by the corresponding product's Quality Assurance teams.

All the web service based test flow runs use Testing APIs on the Oracle Utilities
Enterprise products. These APIs are web service end points on the Enterprise
applications and are delivered along with Oracle Utilities Testing Accelerator.

For more information about Oracle Utilities Testing Accelerator, refer to the Oracle
Utilities Testing Accelerator Installation and Administration Guide.

Application Features
The features available in this Oracle Utilities Testing Accelerator release are the
dashboard, components, flows, flow sets, various tools, and administration.

For more information about these features and their significance, refer to Chapter 2:
Oracle Utilities Testing Accelerator Features.

Supported Oracle Utilities Applications
Oracle Utilities Testing Accelerator v7.0.0.0 release supports the respective versions that
each of the below listed Oracle Utilities product currently supports:

• Oracle Utilities Customer Care and Billing

• Oracle Utilities Customer to Meter

• Oracle Utilities Work and Asset Management

• Oracle Utilities Operational Device Management

• Oracle Utilities Meter Data Management

• Oracle Utilities Smart Grid Gateway

Refer to the Certification Matrix for Oracle Utilities Products (Document ID 1454143.1) on My
Oracle Support to determine if support for newer versions of the listed products has
been added.

Supported Oracle Utilities Applications

Overview 1 - 5
Oracle Utilities Testing Accelerator User’s Guide

Oracle Utilities Testing Accelerator Features 2 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 2
Oracle Utilities Testing Accelerator Features

This chapter describes the features available in this Oracle Utilities Testing Accelerator
release:

• Administration

• Components

• Dashboard

• Flows

• Flow Sets

• Tools

Administration

Oracle Utilities Testing Accelerator Features 2 - 2
Oracle Utilities Testing Accelerator User’s Guide

Administration
The Administration tab allows the users with Administrator role to do the following:

• Create/edit release, portfolio, product and modules

• Create/manage Oracle Utilities Testing Accelerator application user accounts

• Upgrade CM (custom) content from one version of an Oracle Utilities
application’s Test Accelerator pack to a later version

For example: From Oracle Utilities Customer Care and Billing v2.6.0.0 to Oracle
Utilities Customer Care and Billing v2.6.0.1

• Purging old flow run log and history

• Create and manage custom function libraries

For more details, refer to Chapter 4: Oracle Utilities Testing Accelerator Administration.

Components
The Components page displays all the available components imported/created in the
application. On this page, you can do the following:

• Create a new component

• Define/update the definition of a component

• Submit the component for approval

• Accept/reject the approval based on the state of the component

For more information about components, refer to Chapter 6: Creating Components.

Dashboard
This is the Home page of the application. The Dashboard page includes two tabs:

Analytics
This tab displays test run analytics with the ability to filter the data using several data
points. The tab has three zones:

• The first zone has two visualizations that can be used to visualize the flow run
data based on the filters provided at the top of the dashboard:

• Product Family: Filters the visualization data to include flows that belong
to the product family selected.

• Product Name: Filters the visualization data based on the selected product
name

• Module Name: Filters the visualization data to include flows that belong to
the module name selected.

• Flow Name: Filters the visualization data to include flows that start or end
with a set of characters.

Dashboard

Oracle Utilities Testing Accelerator Features 2 - 3
Oracle Utilities Testing Accelerator User’s Guide

• Start Date: Filters the visualization data to include flow runs that are after
the start date.

• End Date: Filters the visualization data to include flow runs that are before
the end date.

The following figure shows the filters applicable for visualizations in the first
zone.

After selecting the filter criteria, click Refresh to refresh the visualizations in the
first zone. The results are displayed based on the filtered data.

• The first visualization, Flow Run History, provides a view of the
cumulative of test flow run results based on the filter criteria. This graph also
supports rolling window based visualization, so results can be further
filtered across time windows. This visualization shows the count of flow
runs divided by their statuses (Stopped, Failed and Passed) subject to the
filters.

The following figure shows the rolling window based visualization under the
first zone in the dashboard.

• The second visualization, Flow Usage helps ascertain the count of flows
between flows that were never run, flows that were run but had never
passed, and flows that had passed at least once, subject to the filters.

The following figure shows the second visualization related to flow run
status.

Dashboard

Oracle Utilities Testing Accelerator Features 2 - 4
Oracle Utilities Testing Accelerator User’s Guide

Run List
The second zone has a run list of flows that are dependent on the filters at the top of the
dashboard. The run list shows the list of flow runs based on the values selected against
the filters. The generic search provided at the top of the run list can be used to find
appropriate results from within the displayed list of values, if required.

• The zone on the right holds the dashboard that details Flow Status
Summary and Component Status Summary. The flow count displays the
count of flows in the various states that are applicable to the flows. Similarly,
the component count displays the count of components in various states
that are applicable to the components.

Note: The filters provided in the dashboard are not applicable to this
zone.

Notifications
The Notifications tab displays notifications of interest to the user currently logged in to
Oracle Utilities Testing Accelerator.

Click Get All Notifications to display all unread notifications applicable to the current
user. Any event of interest in the application triggers a notification that is sent to one or
more users.

Flows

Oracle Utilities Testing Accelerator Features 2 - 5
Oracle Utilities Testing Accelerator User’s Guide

Events could be either of the following:

• Creating/updating any hierarchy related entity (for example: Release/Portfolio/
Product/Module)

• Change in lifecycle state of a component/flow (for example: submitting a
component for approval/rejection, etc.)

The different types of notifications are as follows:

• FYI Notifications: For informational purpose only and are generated when the
following are performed:

• A component/flow for all users is created.

• A release/portfolio/product/module for an administrator is created.

• A user for an administrator is created.

• A flow/component for approval for a developer is submitted.

Click a FYI notification for more information about the event and also mark the
notification as 'read'. Once an FYI notification is read, it is removed from the
notification area.

• To Do Notifications/FYA Notifications: For a component/flow when
submitted for approval by an approver/administrator. They require some action
from the user. They are displayed in the Notification area for users with
Approver/Administrator role.

A To Do notification displays detailed information about the respective event. It
also allows users to take appropriate action as applicable. (example: Reject,
Revert to Approve, Approve, or Send to in progress (Flow)). Select the Read
column corresponding to the To Do to mark a To Do notification as 'read'.

Flows
This page displays all the available flows imported/created in the application. On this
page, you can do the following:

• Create a new flow

• Define the flow

• Submit the flow for approval

• Accept/reject the approval based on the state of the flow

For more details, refer to the Creating Flows section in Chapter 5: Creating Test Flows.

Flow Sets
This page displays all available flow sets imported/created in the application. You can:

• Create a new flow set

• Define/manage a flow set

Tools

Oracle Utilities Testing Accelerator Features 2 - 6
Oracle Utilities Testing Accelerator User’s Guide

Tools
This feature provides access to various tools that allow you to import/export
components and flows in the application. web service components are automatically
generated by specifying the WSDL of the web service that the component makes a call to
in the Oracle Utilities applications, such as Oracle Utilities Customer Care and Billing or
Oracle Utilities Customer to Meter.

For more details, refer to Chapter 8: Development Accelerator Tools.

Developing Metadata Driven Web Service Based Test Automation 3 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 3
Developing Metadata Driven Web Service Based

Test Automation

The Oracle Utilities Testing Accelerator components, component sets, and flows are
organized in a tree hierarchy. This hierarchy compartmentalizes these for different Oracle
Utilities applications.

This chapter is intended primarily for automation developers and testers. It describes the
metadata-driven automation development methodology and the set up of automation
development environment.

• Metadata Driven Automation Development Methodology

• Setting Up Automation Development Environment

Metadata Driven Automation Development Methodology

Developing Metadata Driven Web Service Based Test Automation 3 - 2
Oracle Utilities Testing Accelerator User’s Guide

Metadata Driven Automation Development Methodology
This section describes the metadata-driven automation development methodology that
enables a test automation engineer to create automation scripts for an Oracle Utilities
application.

An application has to be tested for its base functionality and extensions or customization.
For this, you can create granular tests or larger end-to-end business test flows.
Irrespective of the test design techniques, these tests can be used for regression testing
the application in case of upgrades or customization to ensure that the existing
functionality is not broken.

Typically, automation development is a time consuming exercise and teams have
challenges in knowing and implementing the industry best practices and automation tools
that work best for their product technology stack, helping them be successful in their
efforts. Few of such challenges are:

• Selecting an automation tool

• Creating the automation framework

• Identifying the automation development methodology

• Ensuring the automated tests are updated for new releases

• Ensuring the coverage levels are up to date

• Configuration management of automated test programs

The metadata-driven automation development methodology provides solutions to such
challenges.

For the Oracle Utilities applications built on Oracle Utilities Application Framework,
web service based automated testing is proven to be more robust, maintainable, and
faster to develop and execute. Oracle Utilities Testing Accelerator comprises web
services and UI based components that enable creation and running of test flows.

The following sections provide the test automation development phases in which an
automated test flow is created.

Planning

Developing Metadata Driven Web Service Based Test Automation 3 - 3
Oracle Utilities Testing Accelerator User’s Guide

• Planning

• Design and Development

• Test Run

Planning
To plan an automated test flow, identify the business test flow to be automated and the
components required for the flow. If necessary, create additional components or extend
the delivered components.

For details about how to extend the components, refer to the Copying Components
section in Chapter 6: Creating Components.

Design and Development
A flow design explains the order in which the components will be used to interact with
each other in the flow. It also defines the test data combinations to use.

To design and develop an automated test flow:

1. Create/extend the required components that are identified in planning phase.

2. Create a test flow in Oracle Utilities Testing Accelerator that maps to the identified
business test flow in the application.

For details about how to create a test flow, refer to the Creating Flows section in
Chapter 5: Creating Test Flows.

For information about delivered sample flows to understand the flow creation, refer
to the Sample Work Flows chapter in the respective product-specific reference
guides. For a list of reference guides available in this release, refer to the Related
Documents section in Preface.

3. Drag and drop the required components into the flow.

4. Add the test data for the flow.

The test data can be modified at the runtime using the standard Oracle Utilities
Testing Accelerator databanks. For more details, refer to Chapter 5: Appendix 5:
Creating Test Flows.

5. Assemble and generate the script for the test flow.

6. Download the test script.

Test Run
To run the automated test flow, execute the script in Oracle Utilities Testing Accelerator
workbench. Alternately, the scripts can be generated and run using the Eclipse IDE.

For more details, refer to the Running Test Flows section in Appendix 5: Creating Test
Flows.

The components and test flows developed using this approach are stored and
components are version controlled (upto the previous approved version) in the Oracle
Utilities Testing Accelerator database. It takes care of the challenges in configuration
management of automated tests.

Setting Up Automation Development Environment

Developing Metadata Driven Web Service Based Test Automation 3 - 4
Oracle Utilities Testing Accelerator User’s Guide

Setting Up Automation Development Environment
The steps involved to set up the development environment for Oracle Utilities Testing
Accelerator are as follows:

• Step 1: Setting Up Oracle Utilities Testing Accelerator Server

• Step 2: Setting Up Workstations for Development/ Testing

• Step 3: Setting Up Flow and User Configuration Sets

• Step 4: Setting Up Application under Test

Setting Up Oracle Utilities Testing Accelerator Server
This section explains the steps to be performed to setup the server.

• Installing Oracle Utilities Testing Accelerator

• Installing Oracle Utilities Testing Accelerator Client Runtime

• Creating Users

Installing Oracle Utilities Testing Accelerator
For detailed instructions to install Oracle Utilities Testing Accelerator, refer to the Oracle
Utilities Testing Accelerator Installation and Administration Guide.

Installing Oracle Utilities Testing Accelerator Client Runtime
Oracle Utilities Testing Accelerator Client Runtime can be installed on a client
workstation.

Note: Oracle Utilities Testing Accelerator Client Runtime is required
only for GUI based flow run. For web service based flow run, it is
recommended to use Oracle Utilities Testing Accelerator work bench
(the client runtime need not be installed for running web services based
test flows in OUTA).

For installation instructions, refer to the Installing on Client Admin Workstation
section in Oracle Utilities Testing Accelerator Installation and Administration Guide.

Note: The Oracle Utilities Testing Accelerator application need not be
installed on the user workstations. Users only need:

• A browser access to it for the component and flow development.

• An installation of Eclipse IDE for Java Developers with Oracle Utilities Testing
Accelerator Eclipse plugin to enable the run of flows.

Creating Users
Create users with Administrator access. A user with Administrator access can create the
necessary users with various roles (Developer/Approver/Administrator) so the
automation developers can start using the Oracle Utilities Testing Accelerator
application.

Setting Up Workstations for Development/ Testing

Developing Metadata Driven Web Service Based Test Automation 3 - 5
Oracle Utilities Testing Accelerator User’s Guide

Setting Up Workstations for Development/ Testing
This section provides the steps to set up the Oracle Utilities Testing Accelerator
developer workstations. The tasks include:

• Extracting Oracle Utilities Testing Accelerator Client Runtime

• Installing Oracle Utilities Testing Accelerator Eclipse IDE for Java Developers

• Installing Oracle Utilities Testing Accelerator Eclipse Plugin

Extracting Oracle Utilities Testing Accelerator Client Runtime
The Oracle Utilities Testing Accelerator package downloaded from Oracle Software
Delivery Cloud (OSDC) (https://edelivery.oracle.com/) contains UTA_Client.zip file
that includes all the Client Runtime artifacts.

After the UTA_Client.zip file is unzipped, a folder structure similar to as shown in the
following diagram is created.

Creating Oracle Utilities Testing Accelerator Client Runtime Folder
Structure
To create a Oracle Utilities Testing Accelerator client runtime folder structure:

1. Create/select a folder to use as your runtime folder.

Note: This folder is referred to as <UTA_CLIENT_WORK_DIR> in
the following sections.

2. Copy the contents of the runtime folder from UTA_Client.zip zip into
<UTA_CLIENT_WORK_DIR>.

For more details about UTA_Client.zip refer to the Extracting Oracle Utilities
Testing Accelerator Client Runtime section.

Setting Up Workstations for Development/ Testing

Developing Metadata Driven Web Service Based Test Automation 3 - 6
Oracle Utilities Testing Accelerator User’s Guide

After copying the contents of the runtime folder, the <UTA_CLIENT_WORK_DIR>
should look as follows.

• drivers

The Chrome and Firefox browser drivers are used to invoke the browser during
running of flows that contain Graphical User Interface (GUI) based
components.

• etc

The configuration.properties file includes all the properties that the Oracle
Utilities Testing Accelerator flows refer to during the flow run. The
log4j.properties file controls the logging output from flows.

Note: All passwords contained in this file have to be encrypted. The
Password Encryption Tool can be used to encrypt plain-text passwords.
For more details, refer to the Encrypting Passwords section in
Appendix 5: Creating Test Flows.

• flows

The scripts that are generated and downloaded from Oracle Utilities Testing
Accelerator should be placed in this folder.

• jar

The 3rd party jar files that are needed to execute the Oracle Utilities Testing
Accelerator flows.

• Logs

The runtime generated test run logs that can be later used for debugging.

• tools

The Password Encryption Tool that you can use to encrypt any passwords. For
information about how to encrypt passwords that are stored in the
configuration.properties file, refer to the Encrypting Passwords section in
Appendix 5: Creating Test Flows.

• xsd

The run-time generated XSDs required for processing the web services request.

Installing Oracle Utilities Testing Accelerator Eclipse IDE for Java
Developers
Make sure Eclipse IDE for Java Developers is installed on each user workstation where
automation run is performed or where component and flow development is intended to
be performed.

Setting Up Workstations for Development/ Testing

Developing Metadata Driven Web Service Based Test Automation 3 - 7
Oracle Utilities Testing Accelerator User’s Guide

For certified Eclipse IDE for Java Developers version details, refer to the System
Requirements section in Oracle Utilities Testing Accelerator Installation and Administration
Guide.

To install Eclipse IDE for Java Developers:

1. Download Eclipse IDE for Java Developers from the following location:

https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-java-
developers

2. Extract the downloaded zip file to a folder. For example: C:\UTA_Eclipse

3. Navigate to the unzipped Eclipse folder and double-click the eclipse.exe file to
launch the Eclipse IDE.

4. When prompted for workspace, select the <UTA_CLIENT_WORK_DiR>/flows
folder (as created in the Creating Oracle Utilities Testing Accelerator Client Runtime
Folder Structure section) as the workspace folder.

Oracle Utilities Testing Accelerator Eclipse IDE for Java Developers is successfully
installed.

Installing Oracle Utilities Testing Accelerator Eclipse Plugin
The Oracle Utilities Testing Accelerator Eclipse Plugin provides a custom Eclipse
perspective with necessary information about the Oracle Utilities Testing Accelerator
generated script run (such as components executed, request/response xml content, etc.).

To install the Oracle Utilities Testing Accelerator Eclipse Plugin:

1. Extract the UTA_Eclipse_Plugin.zip file from the EclipsePlugin folder.

For instructions to extract the plugin, refer to the Extracting Oracle Utilities Testing
Accelerator Client Runtime section.

2. Launch Eclipse.

For instructions to install Eclipse, refer to the Installing Oracle Utilities Testing
Accelerator Eclipse IDE for Java Developers section.

3. Navigate to Help menu > Install New Software.

4. In the Install dialog box, click Add.

5. Navigate to Location. Enter the following URL and click Add. The URL is added as
one of the update sites to Eclipse.

http://download.eclipse.org/nebula/releases/latest

6. In the Install dialog box, click Add.

7. On the Add Repository dialog box, click Local.

8. Browse to the location where the UTA_Eclipse_Plugin.zip was extracted and click
OK.

9. Click the OUTA Eclipse Plugin check box.

10. Click Next.

11. Accept the License Agreement and click Finish.

12. When prompted for click Install Anyway.

13. Restart Eclipse IDE to use the Oracle Utilities Testing Accelerator Eclipse Plugin.

https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-ide-java-developers
http://download.eclipse.org/nebula/releases/latest

Setting Up Flow and User Configuration Sets

Developing Metadata Driven Web Service Based Test Automation 3 - 8
Oracle Utilities Testing Accelerator User’s Guide

14. To use the Oracle Utilities Functional Test perspective, navigate to Window >
Perspective > Open Perspective > Other...

15. Select Oracle Utilities Functional Test from the list of perspectives.

16. Click Open.

The Eclipse with the Oracle Utilities Testing Accelerator plugin is now setup.

Setting Up Flow and User Configuration Sets
Before a flow can be executed, appropriate flow and user configuration sets have to
created. These hold user credentials for authentication of the user to access Oracle
Utilities cloud service being tested.

Setting Up Application under Test
For setup details, refer to the respective Oracle Utilities’ application-specific installation
guide.

Make sure that Oracle Utilities Testing Accelerator related metadata exists in this
application instance. For more details, refer to the Post-Installation Tasks section in
Oracle Utilities Testing Accelerator Installation and Administration Guide.

Oracle Utilities Testing Accelerator Administration 4 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 4
Oracle Utilities Testing Accelerator

Administration

This chapter introduces the Administration feature in Oracle Utilities Testing
Accelerator. It focuses on the following:

• Overview

• Administration Tab

Overview

Oracle Utilities Testing Accelerator Administration 4 - 2
Oracle Utilities Testing Accelerator User’s Guide

Overview
The Administration feature in Oracle Utilities Testing Accelerator allows the users with
Administrator role to do the following:

• Create/edit release, portfolio, product, and modules

• Create/manage Oracle Utilities Testing Accelerator application user accounts

• Upgrade CM content from one version of an Oracle Utilities application to a
later version.

• Example: From Oracle Utilities Customer Care and Billing V2.6.0.0 to Oracle
Utilities Customer Care and Billing V2.6.0.1Purging old flow run logs/results

• Create and manage custom function libraries

Administration Tab
The Administration tab in the Oracle Utilities Testing Accelerator application allows
users with Administrator role to perform the following actions:

• Managing Products

• Managing Modules

• Managing Users

• User Access Types

• Purging Flow Run Data

• Purging Notification Data

• Custom Content Upgrade

The following diagram shows the organization of components and flows as per hierarchy
in the Oracle Utilities Testing Accelerator application.

Note: Though flows are also organized under modules, flow modules
are different from component modules and should be managed
separately.

Managing Products

Oracle Utilities Testing Accelerator Administration 4 - 3
Oracle Utilities Testing Accelerator User’s Guide

Managing Products
A product represents an Oracle Utilities application. A product contains one or more
modules.

For example: CCB

Creating a Product
To create a new product:

1. On the Administration tab, click Products in the left pane.

2. In the Create Product window, enter the product name and its description.

3. Click Save.

Alternatively, you can create a new product:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the portfolio under which the product has to be created. From
the Context menu, click Create Product.

3. Enter the new product name and its description.

4. Click Save.

Updating a Product
Note that you can only edit a custom product.

To update an existing product:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the product name to be updated. From the Context menu,
click Update Product.

3. Enter the modified description and click Update.

Deleting a Product
Though this is an admin function, a product can be deleted via the component or flow
tree structure only. Only an administrator can exercise the delete option.

It is always a best practice to export all the custom flows and components from a product
hierarchy before deleting the product as a whole. Deleting a product removes all the
flows and components under the product hierarchy permanently. Appropriate caution
should be exercised while using this feature.

To delete an existing product:

1. On the Components tab, expand the Component tree.

2. Select and right-click the product name to be deleted.

3. From the Context menu, click Delete Product.

Note: If a product (example: Oracle Utilities Customer Care and Billing
V2.7.0.3.0) includes flows that use components from another product
(example: Oracle Utilities Meter Data Management V2.3.0.1.0), to delete
the Oracle Utilities Meter Data Management product, the flows in the

Managing Modules

Oracle Utilities Testing Accelerator Administration 4 - 4
Oracle Utilities Testing Accelerator User’s Guide

first product (Oracle Utilities Customer Care and Billing V2.7.0.3.0) that
use the components from the second product should be deleted first.

Managing Modules
A module represents an Oracle Utilities application functional area for the components.
Example: Billing in CCB

Note: Modules created through the Administration section only apply
to the component tree hierarchy. Flow modules should be created and
managed through the flow hierarchy tree structure.

Creating a Module
To create a new module:

1. On the Administration tab, click Modules in the left pane.

2. In the Create Module window, enter the module name and its description.

3. Click Save.

Alternatively, you can create a module.

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the product under which the module has to be created.

3. From the Context menu, click Create Module.

4. Enter the new module name and its description.

5. Click Save.

Updating a Module
Note that you can only edit a custom module.

To update an existing module:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the module name to be updated.

3. From the Context menu, click Update Module.

4. Enter the modified description and click Update.

Deleting a Module
Note that you can only delete an empty module.

To delete an existing module:

1. On the Components tab, expand the Component tree.

2. Select and right-click the module name to be deleted.

3. From the Context menu, click Delete Module (context menu option only appears if
the module is empty).

Managing Users

Oracle Utilities Testing Accelerator Administration 4 - 5
Oracle Utilities Testing Accelerator User’s Guide

Managing Users
Only users with an Administrator role can manage the other users.

To create, search for, upgrade, or delete a user, you need to be on the Administration
page to perform the task. You can also change the password from this page.

To get to the Administration page:

1. Login to the application.

2. Navigate to the Administration tab.

3. On the Administration page, details of all users are shown in the right pane.

Creating a User
To create a new user:

1. On the Administration page, click Add to create a new user.

2. Fill in the following fields and click Save.

• Username

• Full name

• Manager name

• Password (length should be 6-15 characters)

• E-mail

• Access type (for information about access types, refer to the User Access
Types section.)

On success, the “User created successfully” message is displayed. If the user name
entered already exists, the “User Name already exists” message is displayed.

Tip: Click Back to get redirected to the Search Users page. Click Cancel to refresh all
the fields.

Searching for User(s)
To search for a user:

1. On the Administration page, click Search to search for a specific user.

2. Enter “%” in the User Name field to view all the existing users.

You can also search based on a particular name or use a wild card search (Example:
“J%” will fetch all the users starting with the alphabet “J”).

Updating User Details
To update the details of an existing user:

1. On the Administration page, click Search and select the record you want to update.

2. Modify the required fields and click the update icon .

User Access Types

Oracle Utilities Testing Accelerator Administration 4 - 6
Oracle Utilities Testing Accelerator User’s Guide

Deleting a User
To delete an existing user:

1. On the Administration page, click Search to select the record to be deleted.

2. Click the delete icon .

A window appears asking for confirmation about the deletion.

3. Select Yes to delete the user.

Please note that deleting the default “administrator” user is not allowed.

Changing a User's Password
To change the password of an existing user:

1. On the Administration page, click Search and select the record for which you want
to change the password.

2. Click the change password icon .

3. On the Update Password window, enter the new password in both the fields.

4. Click Submit.

On success, the “Password is changed” message is displayed.

User Access Types
The following table lists the privileges provided to users for various types of access.

Access Developer Approver Administrator

Approve/reject a component

Approve/reject a flow

Change Password (self)

Component - Create/update/
view/delete

Copy Component

Create Module

Create Portfolio

Create Product

Create Release

Export Component

Export Flow

Flow - Create/update/view/
delete

Generate a component from
WSDL

Purging Flow Run Data

Oracle Utilities Testing Accelerator Administration 4 - 7
Oracle Utilities Testing Accelerator User’s Guide

Purging Flow Run Data
When the flow run logs and flow run history entries accumulate over time, it may impact
the performance/usability. An administrator can decide to purge some of the existing
flow run data for maintenance purposes. The flow run can be purged by specifying the
cut-off date for purging entries; the data older than the specified date will be purged.

• Flow Run Logs: Allows purging of all the flow run log files that meet the
specified criteria.

• Flow Run History: Allows purging of flow run history that helps in keeping the
Flow Run History page more manageable.

Purging Notification Data
An administrator can decide to purge some of the existing notifications for maintenance
purposes. The notifications can be purged by specifying the cut-off date for purging
entries; the data older than the specified date will be purged.

• Notifications: Allows purging of all the notifications that meet the specified
criteria.

Custom Content Upgrade
Version specific Oracle Utilities Testing Accelerator test components are released with
each of the Oracle Utilities Enterprise major version updates, such as Oracle Utilities
Customer Care and Billing V2.7.0.1.0, V2.7.0.3.0, etc. The custom content upgrade
process allows custom flows to be automatically upgraded to the latest component pack
version that corresponds to the latest version of Oracle Utilities Enterprise application.

Example: Flows may have been built using components from Oracle Utilities Customer
Care and Billing V2.6.0.1.0. When a new version (Oracle Utilities Customer Care and
Billing V2.6.0.1.0) is released, a corresponding set of components for V2.7.0.3.0 are also
released as part of Oracle Utilities Testing Accelerator. Using the CM Content Upgrade
option in the administration, the flows can be automatically upgraded to use the
components from the latest V2.7.0.3.0 instead of components from V2.6.0.1.0.

Import Component

Import Flow

Update Module

Update Portfolio

Update Release

User Management
• Create/update/view/

delete

• Change other user
password

Access Developer Approver Administrator

Custom Content Upgrade

Oracle Utilities Testing Accelerator Administration 4 - 8
Oracle Utilities Testing Accelerator User’s Guide

This ensures that the flows are using the components that correspond to the latest release
of Oracle Utilities Enterprise application.

The CM Content Upgrade process checks to see if there are any structural changes in
each of the components between old and newer versions of the product pack. If any
changes are found, the flows using the updated components are automatically
highlighted, so you can review (updated test data if required) and clear the highlight
marker for each flow. If required, the highlight marker can be cleared at once for all the
flows directly at the module or product level.

Running the CM Content Upgrade Process
To upgrade an existing set of flows:

1. Select a Release Name.

2. Select the Product Family under which the flows exist.

3. From the From Product field select the product version under which the flows exit.

4. From the To Product field select the product version to which the flows should be
upgraded.

5. If only a subset of flows have to be upgraded, provide a “Tag” corresponding to
these flows (the tag that has been specified in the flows header). “%” can also be
used.

6. If the destination product version already has a set of flows, these can either be
overwritten during the upgrade or skipped from being upgraded. It applies only to
the flows in the destination product that have the same name as the flows from the
source product. Select either “Override” or “Skip” based on the requirement.

7. Click Upgrade.

The upgrade process should run to completion with appropriate messages displayed.

When you upgrade the custom test flows to a newer version of a product pack using
the CM Content Upgrade feature in Oracle Utilities Testing Accelerator, flows using
components that have been updated between the older and the newer version will
automatically be highlighted with a marker. This ensures that you have clear visibility
into the impact of changes in the application being tested on the automated test
flows.

Custom Content Upgrade

Oracle Utilities Testing Accelerator Administration 4 - 9
Oracle Utilities Testing Accelerator User’s Guide

The following figure shows the flows marked with the highlight marker as part of the CM
Content Upgrade process.

Clearing the Highlight Markers
The CM Content Upgrade process checks to see if there are any changes in the
component between the current/older and a newer version of the product pack and
highlights a Flow with a marker, if any component used in the flow has changed in its
structure. The feature also highlights the component in the flow which caused the flow to
be highlighted. This enables you to quickly identify and update the test data in the flows
that may have been impacted because of the upgrade, without having to run the flows
first. Navigate to each of the highlighted flows, review it, update test data if necessary.

After updating the test data, clear the highlight marker. Right-click the flow and select
Clear Highlight to clear the highlight marker. Alternately, the highlight marker can be
cleared for multiple flows at once at the module or product level. Right-click the module/
product in the flow tree in the leftmost frame and select Clear Highlighted Flows.
Clearing the highlight marker at the product or the module level clears the marker for all
the flows under the corresponding module/product.

Note: For a flow to be picked up by the upgrade process, the flow
header should have a tag specified.

• If a custom component is created and used in the flows being upgraded, the
upgrade process checks for the custom component name to start with
“CM”. If the name doesn't start with CM, the upgrade process copies the
custom component across and prefixes “CM” to the component name. All
references to this component in flows will be updated accordingly so that
the flow remains intact. If the name starts with “CM”, the upgrade process
simply copies the custom component across from the source to the
destination product.

• The test data defined in the flows in the source product will remain intact in
the destination product flows.

Running the CM Content Upgrade Process for Integration Flows
Integration flows are developed using components from two or more Oracle Utilities
Testing Accelerator product packs belonging to different Oracle Utilities Enterprise
applications.

Custom Content Upgrade

Oracle Utilities Testing Accelerator Administration 4 - 10
Oracle Utilities Testing Accelerator User’s Guide

Triggering the CM Content Upgrade process is the same for both the integration flows
and non-integration flows. To upgrade an existing set of flows, follow the steps in the
Running the CM Content Upgrade Process section.

After step 7, during the initiation phase, the CM Content Upgrade process checks to see
if any of the flows being upgraded use components from two or more product packs. If it
finds such a flow/flows, it determines them as integration flows. The CM Content
Upgrade process will then prompt to select the “from” and “to” product pack versions
for each of the source product from which components have been used in the flow.

The following figure shows the mapping option for upgrading integration flows.

After selecting the appropriate “from” and “to” product versions, click Map Products.
The CM Upgrade process upgrades the flows by mapping the components appropriately
between various product packs.

The flows being upgraded will still be created under the To Product specified in the
main screen of the CM Content Upgrade process (before step 7 of the process). The
upgrade mapping for integration flows only defines the component mapping to be done
for integration flows.

Example: If one or more flows are created in CCB 2.7.0.3 product and they use
components from WAM 2.0.0.0 along with CCB 2.7.0.3 components, during the course
of the CM content upgrade process, the product mapping screen will be displayed with
the source product as WAM 2.0.0.0 and the destination product containing a list of
available product packs in UTA, such as WAM 2.0.0.0/WAM 2.1.0.0 etc. To proceed
with the upgrade, the appropriate destination product needs to be selected. If WAM
2.1.0.0 is selected as the destination product for WAM 2.0.0.0 components, in this
example, then the upgrade process will upgrade the flows from CCB 2.7.0.3 to CCB
2.9.0.0 and will also upgrade all the WAM 2.0.0.0 components being used in the upgraded
CCB 2.7.0.3 flows to WAM 2.1.0.0.

Creating Test Flows 5 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 5
Creating Test Flows

Test flows are actual business tests executed on the application under test. The flows are
assembled in Oracle Utilities Testing Accelerator by using predetermined components
and are updated with data to guide the flow run.

A test flow consists of one or more scenarios, which in turn consist of one or more
components.

This chapter describes the steps to create a flow, including:

• Creating Flow Modules

• Creating Flows

• Adding Email Capabilities to Flows

• Support for HTTPS Web Services

• Support for Integration Flows

• Running Test Flows

• Running Flows from Command Line

• Encrypting Passwords

Creating Flow Modules

Creating Test Flows 5 - 2
Oracle Utilities Testing Accelerator User’s Guide

Creating Flow Modules
Related flows can be grouped into a flow module. By default, each product has a
“Default” module under which all flows are created unless they are explicitly created
under a named module.

To create a flow module:

1. Navigate to Flow menu > product under which the flow module should be created.

2. Right-click the product and click Create Flow Module to create a new flow module.

To create a flow under a flow module:

1. Navigate to Flow menu > product and flow module under which the new flow
should be created.

2. Right-click the flow module and click Create Flow to create a new flow under the
selected flow module.

To move an existing flow to a flow module:

1. Navigate to Flow menu > flow that should be moved to a flow module.

2. Right-click the flow and click Move to Flow Module.

3. Select the target flow module.

4. Click Move.

Creating Flows
A flow simulates a business process that needs to be tested. Flows may be synonymous
with test cases or test scenarios based on how test automation strategy is developed. Each
flow may have one or more test scenarios. You can create a flow by dragging and
dropping components into a default scenario under the flow.

This section includes the following:

• Creating Flows By Dragging-and-Dropping Components

• Adding Test Data in a Flow

• Moving Data Between Components without Using Global Variables

• Annotating Components in a Flow

•

• Using Global Variables

Creating Flows By Dragging-and-Dropping Components

Creating Test Flows 5 - 3
Oracle Utilities Testing Accelerator User’s Guide

Creating Flows By Dragging-and-Dropping Components
Before creating a flow, identify the components required to create the flow.

Note: The components delivered with Oracle Utilities Testing
Accelerator may have to be extended or new components have to be
created.

To create a flow:

1. Navigate to the product/module in the flow tree to create the flow.

2. Right-click the product/module and select Create Flow.

3. In the Create Flow pane, enter the Flow Name, Flow Type, Tags, and
Description.

4. Save in either of the following ways:

• Save: Saves the flow and redirects to the Search Flow page.

• Create Structure: Creates the flow with a default scenario and redirects to the
Flow Structure page.

5. Expand the flow tree. The flow contains a default scenario with the same name as
the flow name.

6. In the sequence defined by the business scenario being tested, drag and drop the
components from the Approved Components pane to the flow scenario or
components within the flow structure. The component moved will be added below
the scenario/component to which it was moved.

Note: Flow definition can be modified (components added or removed)
only if the flow is in “In Progress” state.

7. Make sure to enter the test data at the component step level while defining a flow.

Adding Test Data in a Flow
To add data to a component in a flow:

1. In the flow tree structure, right-click the component and select Edit Test Data.

2. Enter the test data in the Test Data page. The Webservice Test Data page has 3
sections.

Adding Test Data in a Flow

Creating Test Flows 5 - 4
Oracle Utilities Testing Accelerator User’s Guide

a. Pre Validations

The Pre Validations section can be used for specifying functions that can
generate randomized test data for the flow/component step. It is used to add
functions in the components that may be specific to the flow being developed.
Click New Row to add new rows.

The library in which the function exists can be selected in the Library field.
Based on the library selected the function can be selected from the Function
drop-down list. If the function outputs a value, provide the custom global
variable name in the Output Variable field into which the function output is
stored. This variable can be used as test data in the Test Data section or in
subsequent pre validations or post validations sections. The function inputs can
be specified against the parameter fields, based on the number of input
parameters that the function needs. The variable names defined in the pre
validations and post validations sections will be automatically prefixed with
“fvar” and presented in the test data field's drop down under the Global
Variables section, so they can clearly be distinguished from the global variables
defined in the component definition.

b. Test Data

The test data corresponding to each of the elements in the component can be
specified in the Test Data GUI.

• The Web Service Name and Web Transaction Type fields help define the
web service end point to which the request needs to be posted to during the
test execution. Most of the components have the web service name and
transaction type specified as the default data in the component definition.
You can select the corresponding values by clicking on the test data drop
down corresponding to the web service name/transaction type fields and
selecting the value under the Default Data section in the list of values.

• The Log Message field appears for most of the components that have this
option enabled. This is free text field and any value entered in this field will
be added to the flow run summary report. This helps to identify what a
component step does in a flow, by looking at the summary report.

Adding Test Data in a Flow

Creating Test Flows 5 - 5
Oracle Utilities Testing Accelerator User’s Guide

• Test data pertaining to a component line can be specified against that
specific line in the test data Value field in the Test Data section. The test
data field is an editable drop down field, so test data can either be selected
from the drop-down list or can be keyed into the test data field. The test data
field drop down provides 3 options to populate the test data:

• Data From..: This option allows the test data to be set from the web
service response of any preceding component in the flow. It allows test
data to be passed between components, without the use of global
variables.

Refer to the Moving Data Between Components without Using Global
Variables for more information on this feature usage.

• Default Data: This section allows test data to be set from the default
data specified in the component definition. For most of the UTA
components, the default data is set only for the web service name and
the transaction type fields. If the default data is not specified in the
component definition for a given field, this option will not be displayed
in the test data field drop down.

• Global Variables: This section allows test data to be set using the global
variables defined in the preceding components in the same flow. The list
of available global variables are displayed under this section. A global
variable can be set as test data input for a given field, in which case,
during the course of test flow run, the value populated into the global
variable in the preceding component steps will be used as the test data.

• If an element is a repeatable group or list element, click Add List in the
Action column to add multiple repetitions of the list elements. You can add
a new instance of the list elements under the group, so another set of test
data can be provided.

Adding Test Data in a Flow

Creating Test Flows 5 - 6
Oracle Utilities Testing Accelerator User’s Guide

• The bottom part of the Test Data GUI shows the functions defined in the
component. Enable or disable the validations/functions defined in the
component by appropriately switching Enable in the first cell. If the switch
is not enabled, during the course of the test run, the function/validation will
not be triggered. The switch only appears for rows to which this feature is
applicable.

Note: If the test data includes the double quotes character (“ “), it needs
to be escaped with another double quote character. Example: To enter
My “Test Data”, enter it as My “”Test Data””.

c. Post Validations

The Post Validations section is used to add verification functions post the base
validations. Each of the component comes with a base set of validations and
these can be disabled or enabled in the Test Data GUI using the switch
corresponding to the validation line in the test data UI for the component. And,
if any new or more of these verifications are to be added based on the flow
specific requirements or if a specific set of values have to be retrieved from the
response of the component run, the Post Validations section can be used.

The post validations section allows users to add any number of functions/
validations to the component step in a flow. These will be specific to the
component's instance in that flow. These will not apply to the component when
used in other flows. Specification of functions in the Post Validations section
follows the same pattern as the one specified in the Pre-validations section.

Only function calls can be added in the Post Validations section.

3. Click Save & Close to return to the Flow Creation page.

Moving Data Between Components without Using Global Variables

Creating Test Flows 5 - 7
Oracle Utilities Testing Accelerator User’s Guide

Moving Data Between Components without Using Global Variables
Test data can be linked/moved from the response of one component to the input test
data field of a subsequent or a later component without using global variables. You can
directly select and map the component data fields so the corresponding values are
mapped.

To invoke the GUI that supports this mapping feature, click the Search icon next to the
input test data fields in the Flow Test Data page.

The following sections include steps to map the test data between components without
variables.

Example: Mapping personId from the response for C1-PersonAdd component to
the personId field in C1-AccountAdd component.

To map to non-list elements in a response:

1. Navigate to the Create/Update Flow Structure for the test flow.

2. Navigate to the Flow Test Data page of the component into which test data should
be linked to. Click the downward arrow corresponding to the test data field to show
the drop-down list.

3. From the list, select Data From...

In the example, the test data page corresponds to C1-AccountAdd component in the
flow, which has C1-PersonAdd component preceding the C1-AccountAdd
component.

The flow tree structure up to the preceding component of the current component is
displayed.

4. Click the component from whose response the value should to be mapped. The
corresponding elements in the component is displayed.

Moving Data Between Components without Using Global Variables

Creating Test Flows 5 - 8
Oracle Utilities Testing Accelerator User’s Guide

5. Select the element from the component’s response whose value needs to be mapped
to this field in the current component. The filter at the top of the xpath attributes can
be used to quickly find the xpath that is needed.

In the case of the example, select the personId field from the C1-PersonAdd
component.

The test data field is populated with the selected element. “-->” is prefixed to the
selected element name to differentiate it from the global variables and static test data.

The following figure shows the selected personId field mapped between the
components.

6. To view/update an existing mapping, click the Test Data drop-down list and select
Data From. The Map To An Element In Component's Response screen
highlights the existing mapping.

Note:

• The mapping feature extracts the value from the web service response of the
component used in the mapping and provides it as test data to the test data
field to which it is mapped.

• This feature can also be used in the Pre-validations and Post-validations
sections to map a response value from the prior component as input to base
or custom functions.

To map to list elements in a response:

1. Navigate to the Create/Update Flow Structure for the test flow.

2. Navigate to the Flow Test Data page of the component into which test data should
be linked to. Click the downward arrow corresponding to the test data field to show
the drop-down list.

3. From the list, select Data From...

Moving Data Between Components without Using Global Variables

Creating Test Flows 5 - 9
Oracle Utilities Testing Accelerator User’s Guide

In the example, the test data page corresponds to C1-AccountAdd component in the
flow, which has C1-PersonAdd component preceding the C1-AccountAdd
component.

The flow tree structure up to the preceding component of the current component is
displayed.

4. Click the component from whose response the value should to be mapped. The
corresponding elements in the component is displayed.

5. Select the element from the component’s response whose value needs to be mapped
to this field in the current component.

The following figure shows the option to map to a specific occurrence of the list
element:

Moving Data Between Components without Using Global Variables

Creating Test Flows 5 - 10
Oracle Utilities Testing Accelerator User’s Guide

6. If a specific occurrence of the list element is already known, the xpath value can be
updated to point to that specific occurrence of that list.

Example: personName[2]/personId will map the personId from second occurrence
of the personName list

7. If the specific occurrence is not known, conditions may be applied on one or more
of the list elements to find the required value from the list.

In the above example: To find the personId corresponding to the person with the
name “John”, the first condition can be enabled and the condition can be specified in
the condition filter.

The list element on which the condition needs to be specified should be selected in
the xpath field and a condition type can selected from the condition drop down.
Based on the condition type, the value can be provided.

The supported conditions are:

• “Less than”, “Less than or equal to”, “Greater than”, “Greater than or equal to”:
These are applicable only to value type Number.

• “Equal to”, “Not equal to”, “contains”: These are applicable to value type String.

• “Equal to” and “Not equal to” condition types as applicable to value type
Number as well.

If more than one condition needs to be specified, the appropriate conditions may be
added by enabling succeeding condition filters. The corresponding join type also
needs to be selected for multiple filters. The support join types are “And” and “Or”.

8. After specifying all conditions, click Submit to save the conditions for mapping.

9. To review or update the conditions, click the Test Data drop-down list
corresponding to this field and then select Data From option. The Map to Xpath
window is displayed with the current conditions.

Annotating Components in a Flow

Creating Test Flows 5 - 11
Oracle Utilities Testing Accelerator User’s Guide

Annotating Components in a Flow
Annotations can be added for each component step to describe the purpose of each of
the steps in an Oracle Utility Testing Accelerator test flow. This helps in understanding
the functional aspects of the flow just by looking at the flow tree structure.

To add an annotation right-click a component step in the flow definition. Select Update
Component Description and enter the description. The description replaces the default
display of the component name in the flow step. The annotation can be removed or
updated through the same process. Clearing the component description in the flow
removes the annotation and displays the component name.

The following figure shows a flow without and with annotations:

10.

Using Global Variables
This section explains the usage of global variables to pass data across components.

In a simple test flow, add a new person in Oracle Utilities Customer Care and Billing and
add a customer contact for that person. The C1-CustomerContactAdd component is a
dependent component and during runtime needs the ID of the person, created using C1-
PersonAdd component within the same flow.

To add component references to a dependent component (C1-CustomerContactAdd):

1. In the Edit Test Data GUI of the C1-CustomerContactAdd component, find the
component line that requires the personId as input.

2. Against the personId row, click the downward arrow to open the Test Data drop-
down list. All variables exposed by the preceding components are diaplayed in the
Global Variables section.

In this case, personId exposed by the C1- PersonAdd component.

Using Global Variables

Creating Test Flows 5 - 12
Oracle Utilities Testing Accelerator User’s Guide

3. Select the personId variable from the drop down list and set it as test data against this
element.

Each of the base components expose one or more global variables that hold the output
of the component during execution. These global variables can be used to set the output
of one component as the input of another component.

Additionally, global variables are also created to hold output of functions used in pre-
validations or post-validations sections. These global variables are defined in the Output
Variable field and are to be set against only functions that return an output value. These
function based global variables are automatically pre-fixed with “fVar_” and these can be
used as input in the test data of subsequent steps in the flow.

All the global variables are automatically suffixed with their occurrence number. If the
C1-PersonAdd component is used twice in the flow, there will be two variables
(gVarPersonId1, gVarPersonId2) one for each occurrence of the component, suffixed
with it's occurrence number. Custom global variables can be defined and exposed by the
components through the Pre-Validations and Post Validations sections. These
variables are automatically prefixed with “fvar_”, to differentiate them from the
component's base global variables. These variables are also suffixed with their occurrence
number in the flow, similar to the global variables specified in the component definition.

Flow Lifecycle

Creating Test Flows 5 - 13
Oracle Utilities Testing Accelerator User’s Guide

Flow Lifecycle
The flow lifecycle begins once a flow is created in Oracle Utilities Testing Accelerator. It
can exist in one of the several possible lifecycle states as shown in the following diagram.

The state of a flow determines the actions that can be performed on the component. The
following table summarizes the component states, and the possible actions and roles that
can take the actions.

Locking/Unlocking Flows
A flow is/can be locked in the following scenarios:

• To prevent any other users from editing the flow until the flow is complete.

• By default when the flow is submitted for approval.

• If the flow is unlocked while in the ‘Pending Approval’ state, its state is changed
back to ‘In Progress’. However, if it is moved to ‘In Progress’ state from
‘Pending Approval’ state, it stays locked until the user unlocks it.

Flow Lifecycle
State

Permitted
Actions Role Resultant State (post

action)

In Progress Submit for
Approval

Developer,
Approver,
Administrator

Pending Approval

Pending Approval Send to In
Progress

Developer,
Approver,
Administrator

In Progress

Unlock Developer,
Approver,
Administrator

In Progress

Approve Approver,
Administrator

Approved

Approved Send to In
Progress

Developer,
Approver,
Administrator

In Progress

Copying Flows

Creating Test Flows 5 - 14
Oracle Utilities Testing Accelerator User’s Guide

Click the icon to lock/unlock a flow in Oracle Utilities Testing Accelerator.

Note that scripts can be generated only when the flow is in an “Approved” state.

Copying Flows
To copy a flow from one product to another product(s):

1. Login to the application.

2. Navigate to the Flows menu.

3. In the left navigation pane, expand the flow to be copied.

Note: Use the Search Component field on the top of the approved
component tree to find the components you need. The available
components are listed similar to a type ahead search, with the product
and module names under which the component is available. Select the
appropriate component from the prompted results and the
corresponding component is highlighted in the approved component
tree.

4. Right-click the flow to be copied and select Copy Flow.

5. Navigate to the product to which the flow needs to be copied.

6. Right-click the product and select Paste Flow.

7. In the pop-up window, enter the name for the new flow.

8. Click Paste flow.

Reordering Components in a Flow
Note that a flow needs to be “In progress” for components to be re-ordered. You cannot
re-order components in a flow that is locked by another user.

To change the sequence of components in a scenario:

1. Login to the application.

2. Navigate to the Flows menu.

3. In the left pane, right-click the flow for which components have to be reordered.

Note: Use the Search Component field on the top of the approved
component tree to find the components you need. The available
components are listed similar to a type ahead search, with the product
and module names under which the component is available. Select the
appropriate component from the prompted results and the
corresponding component is highlighted in the approved component
tree.

4. Select Create/update Flow Structure.

5. Reorder the components in any of the following ways:

• By drag-and-drop method

• Moving the components to a desired location using menu

6. Right-click the component to be moved and select Move Component.

Copying Test Data from One Component to Another in a Flow

Creating Test Flows 5 - 15
Oracle Utilities Testing Accelerator User’s Guide

7. Move the selected component in any of the following ways:

• Right-click another component in the flow and choose Paste Component
Above.

• Right-click another component in the flow and choose Paste Component
Below.

• Right-click a scenario in the flow and choose Paste Component Inside. This
will move the selected component to the first position in the scenario.

8. After reordering the components, click Save to save the modified flow.

The popup closes and the flow tree is refreshed to reflect the correct order of
components.

Copying Test Data from One Component to Another in a Flow
To copy the test data from one instance of a component to another instance of the same
component within and across the scenario/flow:

1. Login to application and navigate to the Flows tab.

2. In the left navigation pane, right-click the flow and select Create/update Flow
Structure.

3. Expand the flow.

4. Right-click a component from which you want copy the test data and select Copy
Test Data.

5. Navigate to the component in the flow.

6. Right-click the component where you want to paste the test data and select Paste.

Fetching Component Test Data from an Utilities Application
Instead of manually entering the test data for a component, you can fetch the test data
from a Utilities application (such as Customer Care and Billing, Meter Data Management,
etc.). Provide the required WSDL name, operation name (typically read operation), the
user credentials to access the WSDL and required fields that are mandatory for the
specified operation. Oracle Utilities Testing Accelerator calls the WSDL with provided
details and fetches the response from web service and populates in the test data of the
component.

To fetch the test data:

1. Navigate to the Flows tab.

2. Select and right-click the flow and then click Create/Update Flow Structure.

3. On the Flow Definition page, navigate to the component. Right-click and select
Edit Test Data.

4. On the Edit Test Data page, click Fetch Test Data.

5. On the Fetch Test Data page, enter in the web service name from which the test
data has to be retrieved, operation (typically READ operation) to invoke and

Unit Testing a Component in a Flow

Creating Test Flows 5 - 16
Oracle Utilities Testing Accelerator User’s Guide

necessary credentials and any required info (for example: to retrieve data related to
ToDoRole).

6. Enter the WSDL name and operation name. Select the user and flow configuration
set. Click Populate Form to populate the form with all fields that the web service
supports.

Alternatively, use the URL and user credentials from the Flow/User Configuration
properties file. Click Use Configuration Properties and select the appropriate
flow/user configuration from the respective drop-down menus.

Note: While creating an integration flow (a flow where components
may send requests to more than one environment) prefix the URLs with
keywords that can be used while specifying the WSDL to connect to.

Example: If a flow should connect to an Oracle Utilities Meter Data
Management instance apart from the Oracle Utilities Customer Cloud
Service instance, specify the three properties mentioned below either in
the flow or user configuration properties.
MDM=<MDM url>
MDM_gStrApplicationUserName=johnDoe
MDM_gStrApplicationUserPassword=enc(pj0TFjXMczsoyzmQ8GuXPt2PSyd
O7VCbR2jhxtkUH06Fuz+zmChpGSCr241KggFC6FwgMg==)

To fetch the test data for an Oracle Utilities Meter Data Management
component:

a. Select the flow/user configuration file from the drop-down menu.

b. Enter the WSDL URL as shown below.

7. Provide the necessary key information to retrieve data (for example: in this case the
ToDoRole name) and click Fetch Test Data.

8. After the data is retrieved from the target application, review/validate it. Click Save
and Close.

Unit Testing a Component in a Flow
As part of the flow development, test data needs to be provided for a component in a
flow. After the test data is added, a component may have to be unit tested to make sure
that the provided test data gets the flow working as expected.

To unit test a component that is part of a flow:

1. Navigate to the Flows tab.

2. Select and right-click the flow. Click Create/Update Flow Structure.

Bulk Replacing Component Test Data in Multiple Flows

Creating Test Flows 5 - 17
Oracle Utilities Testing Accelerator User’s Guide

3. On the Flow Definition page, navigate to the component. Right-click and select
Edit Test Data.

4. On the Edit Test Data page, provide the web service name in the component's test
data. Also, provide the operation name/transaction type in the appropriate
component's test data field. Fill up all the test data for the component as necessary.

5. Save the test data and click Close.

6. On the Flow Definition page, right-click the component and select the test
component.

This will open up the conversational test data entry screen for the component.

7. Select the flow and user configuration needed to test the component. Click OK.

8. Click Send to post the request to the application being tested.

9. After receiving the response, validate it (for errors) to see if the test data provided is
appropriate. Else, adjust the test data and click Send to send a new request to the
application being tested.

10. Repeat step 9 till the expected response is obtained.

11. Once the appropriate test data is set and the response is as expected, click Save to
save the updated test data into the component's test data in the flow.

Note: Clicking Save will only replace any static values provided in the
component's test data for a given element. If the Test Data field for a
component line contains a global variable, the variable in the field will
not be replaced by the static data in the request being saved.

Bulk Replacing Component Test Data in Multiple Flows
The Replace Test Data feature allows to replace/edit value of one or more elements of
a component in multiple flows, at once. If the component is used in multiple flows, select
all or specific flows in which the test data needs to be changed for the component. This
feature allows an easy way to change an existing test data value in several flows to a new
value to reflect change in test data setup.

• Access the option to replace component test data. Navigate to the Component
menu and right-click the component whose test data needs to be edited/
replaced. Click Find Component Usage.

• In the Find Component Usage interface, select the flows under which the
component test data needs to be replaced. Select the checkbox next to the flow
name(s) and click Replace Test Data.

• Click Add Row to add a row to choose the element of the component whose
specified existing test data value needs to be replaced with a new value. To
replace the test data of multiple elements of the component, add multiple rows
that specify the xpath of the element whose test data value needs to be replaced.

• Set an existing element value to blank or enter test data for component element
whose current test data value does not exist. Use #EMPTY as the value in
appropriate field (Existing Value/New Value).

• Specify a particular occurrence of an element in a group element. Indicate the
index of the element in the group. To replace the zip code of second address
group element, specify similar to /user/address[2]/zipCode and specify the
Existing Value and New Value.

Flow Subroutines

Creating Test Flows 5 - 18
Oracle Utilities Testing Accelerator User’s Guide

• Use wildcard "%" in the Existing Value field to indicate replacing of any
existing value that matches the pattern. Example: To replace a field value that
contain anything that starts with a “Building” to “Apartment 123” specify the
Existing Value as “Building%” and New Value as “Apartment 123”.

Flow Subroutines
A flow subroutine is a flow that can be included/used in other flows. It improves reuse
of a flow. For example: Many test cases expect a ‘V’ setup to be available before being
able to verify some business test cases. In this case, create a flow for ‘V’ setup and all
other test case flows can reuse this ‘V’ setup flow as a subroutine in their respective
flows. Specify any variables/parameters that the subroutine expects from the parent flow
and also expose any variables/parameters that are created in the subroutine. Right-click
Edit Test Data on the flow subroutine component in the flow.

Note: The default test data set of the subroutine is used when the
subroutine is executed as part of the parent flow.

• For a given flow test data set pertaining to the flow calling the subroutines,
the test data set of the subroutine can be selected in the subroutine's test
data GUI. Right-click the subroutine and select Edit Test Data.

• Only the variables defined in the default test data set of a subroutine flow
can be used as input or output of the subroutine. This is to ensure
standardized API for the subroutine.

Adding Subroutines to a Flow
To add an existing flow as a subroutine in a flow:

1. Right-click the scenario/component in the flow.

2. Select Add SubRoutine.

3. Specify the Release, Product Family, and Product to filter the flows.

4. From the Flows drop-down list , select the flow to be included.

5. Click Add to add it to the current flow as a subroutine.

Note: A flow cannot be added to itself as a subroutine. Make sure not to
nest the subroutines to include other subroutines.

Defining Input-Output Parameters of a Subroutine
To define input and output parameters for a subroutine:

1. Navigate to the Flows tab.

2. Right-click the flow name in the product and navigate to module > flow tree
structure in the left pane. Select Define Subroutine Interface.

3. Specify the parameters the subroutine expects from the calling flow and the
parameters the subroutine exposes to the calling flow.

Example: If the subroutine creates an Account, it expects a personId value to be
provided for it to create an Account. After an account is created, it returns the
accountId. The subroutine should be defined with one input variable “personId” and
another output variable “accountId”.

Flow Subroutines

Creating Test Flows 5 - 19
Oracle Utilities Testing Accelerator User’s Guide

4. Add additional input/output variable.

a. Click Add IN/OUT Variable.

b. Enter the name and parameter type.

c. Click Save.

This figure shows a subroutine interface definition for a flow that creates both a
person and account and exposes personId and accountId as outputs, so they can
be used by the calling flow.

5. After a subroutine is added to a flow calling a subroutine, map the input or output
variable(s) of the subroutine.

a. Right-click the subroutine in the flow tree structure of the calling flow and select
Edit Test Data.

b. Map the input/output variable of the subroutine to a variable in the calling flow.

Example: The subroutine might be exposing accountId as the variable. To use
the exposed variable in the calling flow, create a new variable in the calling flow
using Create New Variable. Map the output accountId variable from the
subroutine flow to the newly created variable in the calling flow. This new
variable can be used in the test data GUI of any component that succeeds the
subroutine in the calling flow.

Running Subroutine in a Loop

Creating Test Flows 5 - 20
Oracle Utilities Testing Accelerator User’s Guide

This figure shows the Edit Test Data screen for a subroutine that outputs a
personId and accountId. New variables, personId and accountId are created and
mapped to the outputs of the subroutine, which are gVarAccountId1 and
gVarPersonId1.

Running Subroutine in a Loop
To achieve the capability to loop one or more components within a flow, create the
component(s) as a subroutine. A subroutine in a loop can be run either a fixed number of
times or until an exit condition is satisfied. Example: If the subroutine creates a meter
read, the user can loop the subroutine 24 times to create a meter read for every hour of a
particular day.

Note: This feature only works with simple subroutines and not intended
for nested subroutines. The flow re-run (from the point of failure)
feature will not work if the flow has a loop defined.

To define subroutine looping, add the sub-routine flow to the parent flow. To specify the
loop criteria and other details for the subroutine, open the Test Data page of the
subroutine within the parent flow. Enable the Loop subroutine switch and click Open
Looping Interface to provide the criteria for executing the subroutine in a loop.

Running Subroutine in a Loop

Creating Test Flows 5 - 21
Oracle Utilities Testing Accelerator User’s Guide

The following figure shows the Loop subroutine switch and Open Looping Interface.

Open Looping Interface provides the following options:

• Maximum Number of Iterations: Represents the maximum number of
iterations that the subroutine will be run for, irrespective of the exit criteria
specified. This is useful in scenarios where the subroutine can wait but not run
indefinitely (either due to wrong test data/unexpected application behavior). Use
this option to run the subroutine a fixed number of times.

Example: If the subroutine creates a person entity in the application, specify the
value 10 to run the subroutine for 10 times resulting in creation of 10 person
entities in Oracle Utilities Customer Cloud Service.

• Incrementor Type: Indicates if the loop incrementor would be a number or a
date-time or list variable based, user can choose date as incrementor in case the
subroutine creates meter reads for a meter and user wants to run the subroutine
to create meter reads in a certain date range.

• Initial Number/Initial Date-Time: Based on the Incrementor Type
selected, specify the starting number or the starting date-time to be used. This is
not applicable for list variable based looping.

• Increment Value: Based on the Incrementor Type selected, specify by how
much the initial number would be incremented by (either a number or in days,
hours, minutes and seconds). This is not applicable for list variable based
looping.

Running Subroutine in a Loop

Creating Test Flows 5 - 22
Oracle Utilities Testing Accelerator User’s Guide

The following figure shows a subroutine looping interface with the incrementor
type selected as number.

• Exit Condition: The exit condition controls when the subroutine loop would
end before the Maximum Number of Iterations. This is not applicable for list
variable based looping. Specify the exit condition as follows:

• Variable: Can be either based on a value of the incrementor variable or any
OUT variable of the subroutine.

• Condition: Specifies if the value of variable should be less than, greater
than, equal to etc. of the value that is specified for the Exit Condition.

• Value: The value that the variable is compared with using the condition
specified above, to check if the loop needs to be terminated or continued.

Example: Assuming that the Incrementer Type was number and Initial value
was 1 and Increment Value was 1 then the below values for the Exit
Condition means that the subroutine is looped until the Incrementer value is
equal to 5.

Variable: “Incrementer” Condition: “equals to” Value: “5”

The incrementer is a global variable that can used for setting incrementing
test data in the flow.

Note: To specify the exit condition value when using a date, the date
format to be specified is the same as the initial date format. To use the
incrementer date as an input to a test data field, the date format may be
converted to suite the test data needs, using the delivered functions in
the COREDATETIMELIB or if necessary, a custom function may be
created.

• List variable based looping: Subroutine looping can be used to iterate
through a list of values stored in a variable.

Example: A list of values retrieved from a component's response, such as
accountIds retrieved using a search component. The
setVariableFromResponseList function from CORERESPONSEUTILIB
can be used to retrieve a list of values from the response into a variable.
Similarly, the output of any preceeding subroutine iterations in the same flow
can be stored in a variable using the function “appendValueToList” from
the library “CORESTOREVALUES”.

• After the incrementor type is set as “Variable” in the Subroutine looping
interface GUI, the select variable field will be enabled.

Conditional Bypass of Components in a Flow Run (Skip Component)

Creating Test Flows 5 - 23
Oracle Utilities Testing Accelerator User’s Guide

• Select the variable containing the list of values that need to be iterated
through, as part of the subroutine looping runs. Click Save to set the
subroutine looping based on list values in a variable.

• The subroutine iterations will continue until the list of values in the
variable is exhausted or until it reaches the maximum number of
iterations specified, which ever comes first.

• For each iteration through the list of values, the corresponding value
from the list will be automatically stored in the incrementer variable,
which can be used as input to any component within the subroutine.

Conditional Bypass of Components in a Flow Run (Skip Component)
This feature supports finer control of a flow run. It can be specified whether a
component has to be skipped or run as part of the flow run, based on the custom
conditions in the component's test data in the flow. The feature can be used to selectively
run or skip one or more components based on the outcome of the previous component
step or based on the Flow Test Data set that is used, as part of the flow run.

To bypass/skip the running of a component within a flow:

1. Login to the application and navigate to the Flows tab.

2. On the left navigation pane, right-click the flow name and select Create/Update
Flow Structure.

3. On the right pane, expand the flow structure.

4. Right-click a component and select Edit Test Data.

5. In the component's Test Data section, click the Pre-Validations tab.

6. Add the “skipStep” function from the “CoreUTAOps” library. Set the test data to
“true” so that the component may be skipped during the flow run.

7. If the component should not be skipped during the flow run, set the test data for the
function to “false”.

Multiple test data sets can be used to set different test data for the function making sure
that the specific components in which the function exists may be skipped or run based
on the input to the function.

Skipping more than one component in a flow
Additionally, the function can take in global variable which holds the values true or false
as input. If certain components in a flow have to skipped during a run, then set a global
variable in the Pre Validations section of the first component. The global variable can
be used as an input to the skipStep function in various components. Changing the value
of the global variable (using flow level test data sets) will make sure that the defined set of
components are either skipped or run as part of the flow run.

Skipping components based on outcome of a component step
In cases where certain component/components have to be skipped based on the
outcome of a component step result in a flow, the “CoreVerifyConditionVariableLib”
library can be used. The functions in the library can be used to validate the response for a
component request, much like the functions in the WSValidateLib that are used to

Component Test Data Sets

Creating Test Flows 5 - 24
Oracle Utilities Testing Accelerator User’s Guide

validate a response. But, the functions in the “CoreVerifyConditionVariableLib” library
output either a false or true value, but do not fail or pass the test.

The output of the functions in “CoreVerifyConditionVariableLib” can be stored into a
global variable and then the global variable may be used as input to the “skipStep”
function. This allows conditional bypass/running of a component based on the outcome
of another component.

Note: If a certain set of components have to be skipped as part of the
flow run using this feature, add the “skipStep” function in the Pre
Validations section of each of the components.

Component Test Data Sets
The component level test data sets allow to create test data sets specific to the
component. These can be thought of as master test data sets for a component.

Example: For a C1-PremiseAdd component in Oracle Utilities Customer Cloud Service,
the component level test data sets can be residential premise test data set and commercial
premise test data set. Every time the C1-PremiseAdd component is used in a flow,
instead of filling up the test data manually, the appropriate component test data set can
be selected which automatically populates the test data from the component test data set
into the component's test data GUI in the flow. This reduces a lot of work while
providing test data in a flow.

Component test data sets save current test data of a component with a given name, which
can later be retrieved and auto-populated it into another instance of the component
either in the same flow or another flow.

Creating Reference Test Data for a Component
Save the current test data of a component for future use by saving it as a component test
data set. After saving the test data set, the component can be populated with the test data
contained in a Test Data Set. On the Edit Test Data page, select Test Data Set from
the drop-down menu.

To create a test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow in which the component is used. Right-
click and select Create/Update Flow Structure to open the Flow Definition page.

3. Navigate to the component for which the test data set needs to be created. Right-
click the component and click Edit Test Data.

4. Click Save As Test Data Set to save the test data of the component. Specify the
name of the test data set and click Save. Then, click OK to return to the Edit Test
Data page.

Note: If a test data set with the same name already exists, the
application asks for confirmation to overwrite the test data.

Loading Test Data from a Component Test Data Set

Creating Test Flows 5 - 25
Oracle Utilities Testing Accelerator User’s Guide

Loading Test Data from a Component Test Data Set
To populate the test data from a given component test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow in which the component is used.

3. Right-click the flow and select Create/Update Flow Structure.

4. On the Flow Definition page, navigate to the component for which the test data set
needs to be created.

5. Right-click the component and then click Edit Test Data.

6. Select the test data set from the drop-down menu. The test data gets populated into
the component.

Deleting Component Test Data Sets
To delete one or more component test data sets for a given component:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Components menu, navigate to the component for which the test data set
needs to be deleted.

3. Right-click the component and select Delete Test Data Sets.

4. Select the test data set from the popup window. Click Yes to delete the selected
component test data sets. The test data set/sets should be deleted.

Loading Test Data from a .csv File
Populate the test data of a component using the component’s generated databank and
filling in the data in the databank. Note that this upload feature is not supported for
components with nested groups.

Note:

• The upload will fail if the databank is not in the same format as the
generated databank for the component. The upload capability is limited to
test data that does not have multilists/groups. It is recommended to use the
component test data sets and flow test data sets in place of CSVs, as the
features are designed to provide better reusability of test data.

To upload test data using the .csv file:

1. Login to Oracle Utilities Testing Accelerator.

2. Navigate to the Flows menu and select the flow in which the component is used.

3. Right-click the flow and select Create/Update Flow Structure.

4. On the Flow Definition page, navigate to the component for which test data set
needs to be created. Right-click the component and click Edit Test Data.

5. Click Load Data. From the window displayed, drag-and-drop the .csv file to upload.

6. Click Save to start loading the test data.

Flow Test Data Sets

Creating Test Flows 5 - 26
Oracle Utilities Testing Accelerator User’s Guide

Flow Test Data Sets
Flow Test Data Sets allow users to create and manage multiple test data sets for the same
flow. These test data sets can be used for selective or iterative run of the flow. This
feature is aimed at creating multiple sets of test data per flow and swap between these test
data sets before running a flow.

The Flow Test Data sets store the data specified against all the components within the
flow, as a single data set. Users can copy the data set to create a new test data set and
update it to reflect any changes. This feature has been provided to enhance reusability
where test cases which do not differ in the flow structure, but only in the test data that is
used, can be automated without having to recreate a test automation flow.

For more information, see the Iterative Flow Run section.

Creating Flow Test Data Sets
To create a flow test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow for which the test data set should be
created.

3. Right-click and select Create/Update Flow Structure.

4. On the Flow Definition page, click Add under Flow Test Data Sets.

5. Specify the data set name and click Add.

6. Click Save As to save the test data of the flow.

7. Specify the name of the test data set and click OK.

Note: If a test data set with the same name already exists, the
application asks for confirmation to overwrite the test data.

8. If the flow definition includes a subroutine, select the test data set for the subroutine.
Right-click the subroutine and select Edit Test Data. Select the test data set from
the Subroutine Flow Test Data Set drop-down list.

9. To edit or add test data against a flow test data set, the corresponding flow test data
set has to be selected on the flow structure definition pane.

10. Navigate to the Edit Test Data page of each component in the flow and update/
add the test data.

This figure shows flow test data sets option for the selected flow.

Adding Email Capabilities to Flows

Creating Test Flows 5 - 27
Oracle Utilities Testing Accelerator User’s Guide

Loading Test Data from Flow Test Data Sets
To populate the test data from a given test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow in which the component is used.

3. Right-click the flow and select Create/Update Flow Structure.

4. On the Flow Definition page, select the test data set to be populated in the flow
from the Flow Test Data Sets drop-down list.

To edit or add test data against a flow test data set, the corresponding flow test data
set has to be selected on the flow structure definition pane. Navigate to the Edit
Test Data page of each component in the flow and update/add the test data.

5. If the flow definition includes a subroutine, select the test data set for the subroutine.
Right-click the subroutine and select Edit Test Data. Select the test data set from
the Subroutine Flow Test Data Set drop-down list.

Adding Email Capabilities to Flows

For Eclipse based test run
The test run report can be sent to users as an email. To add email capabilities in a flow,
add the component line mentioned in the following table towards the end in the flow.

The email related properties have to be specified in the configuration.properties file
located under <UTA-CLIENT>/etc folder, where <UTA-CLIENT> is the location of
the folder where the UTA_Client_FolderStructure.zip was extracted.

Update the following values as mentioned to configure the email:

#Email Details
gStrSMTP_HOST_NAME=<mention your SMTP server details here>
gStrSMTP_PORT=<mention SMTP port here>
gStrTO_EMAIL_RECIPIENTS=<mention target user/group email id>

For Browser based test run
The email capability allows the flow run summary report to be e-mailed to the specified
email accounts. Specify the email account IDs to which the report needs to be sent in the
flow configuration set or the user configuration set. The email capability for a flow or
flow set run is auto enabled if the user configuration set or flow configuration set has the
email property defined. The SMTP email server details should be entered in the Oracle
Utilities Testing Accelerator application for email capability to work.

Usage Details Value

Keyword FUNCTIONCALL

Object wSCOMMONLIB

Function Name generateAndSendReport

Support for HTTPS Web Services

Creating Test Flows 5 - 28
Oracle Utilities Testing Accelerator User’s Guide

Note: The generateAndSendReport function in WSCOMMONLIB is
redundant and need not be included in the flow as the last step for
browser based (work bench) flow run.

Support for HTTPS Web Services
While connecting to the edge applications that use the HTTPS protocol, before executing
the Oracle Utilities Testing Accelerator scripts, the security certificate should be saved on
the system from where the Oracle Utilities Testing Accelerator test cases are being
executed. Register the certificate in the Java security certificates repository.

To import the security key store into Java key store:

1. Enter the URL (HTTPS) of the application in the browser (Example: Internet
Explorer).

2. Click Continue to this Website (not recommended) link on the Security
certificate page.

3. Click Certificate error in the address bar.

4. Click the View certificates link on the Certificate Invalid pop-up window.

5. On the Details tab, click Copy to File.

6. Click Browse and select the file you want to export. Click Next.

7. Review the settings and click Finish.

8. Login to the machine where this certificate has to be imported into the Java key store,
and open the command prompt.

9. If the Java path is not set in the environment variables, navigate to the Java/jdk/bin
directory and execute the following command:
keytool -import -alias <Alias Name> -file <path of the file which
we exported in Step 7> -keystore <Java keystore path>

10. Enter “changeit” as the Password.

11. Click Yes to import the certificate. The property file attributes for HTTPS requests
are as follows:
##Handling Https WSDL - Java key Store
gStrJavaKeyStorePath=C:\\jdk8\\jre\\lib\\security\\
gStrJavaKeyStorePwd=changeit

The setup is ready to process the HTTPS requests.

Support for Integration Flows
To test an end-to-end flow, the functional testing typically involves accessing different
applications integrated for running the flow. In order to execute the integration tests,
create flows that span multiple applications. These flows send/receive information to and
from different applications.

To perform complete end-end tests, add the URL as an attribute in the properties file as
follows:

Support for Integration Flows

Creating Test Flows 5 - 29
Oracle Utilities Testing Accelerator User’s Guide

configuration.properties

Integration Environments gStrMWMApplication=https\://<server
name>\:<port>/ouaf/webservices/ gStrCCBAppliation=https\://<server
name>\:<port>/ouaf/webservices/ gStrMDMAppliation=https\://<server
name>\:<port>/ouaf/webservices/

Following is the example where the Oracle Utilities Customer Care and Billing service
AT-C1Premise is called.

Test data:

Calling CCB service: gStrCCBAppliation/AT-C1Premise
Calling MWM Service: gStrMWMApplication/AT-M1CrewShift

Note that this test data is a combination of environment and application service names.

In cases where the integration environments used for testing have different
authentication credentials (userID/password), support is provided for setting the
username and password for each environment. To enable this support, in the
configuration.properties file, provide the user name/password variable prefixed with the
environment URL variable, separated by an underscore.

Following is an example that extends the above integration environments example to use
different user names and passwords for each environment:

configuration.properties

Integration Environments gStrMWMApplication=https\://<server
name>\:<port>/ouaf/webservices/
gStrCCBAppliation=https\://<server name>\:<port>/ouaf/webservices/
gStrMDMAppliation=https\://<server name>\:<port>/ouaf/webservices/

Setting user name/password for a Oracle Utilities Customer Care and Billing
service:

gStrCCBAppliation_gStrApplicationUserName=<%CCBUsername%>
gStrCCBAppliation_gStrApplicationUserPassword=<%CCBPassword%>

Setting user name/password for a Oracle Utilities Mobile Workforce
Management service:

gStrMWMApplication_gStrApplicationUserName=<%MWMUsername%>
gStrMWMApplication_gStrApplicationUserPassword=<%MWMPassword%>

Note: If the integration flow spans across multiple environments that
use common user credentials (user name and password), then the above
setting is not required.

The sample configuration file in this case is as follows.

configuration.properties

Integration Environments
gStrMWMApplication=https\://<server name>\:<port>/ouaf/webservices/
gStrCCBApplication=https\://<server name>\:<port>/ouaf/webservices/
gStrMDMApplication=https\://<server name>\:<port>/ouaf/webservices/
gStrApplicationUserName=<%CommonUsername%>
gStrApplicationUserPassword=<%CommonPassword%>

Support for Integration Flows

Creating Test Flows 5 - 30
Oracle Utilities Testing Accelerator User’s Guide

Configuring Integration Flows for UTA Workbench Based Run
By default, Oracle Utilities Testing Accelerator automatically constructs the web service
end point URL based on the web service name provided in the flow test dataand the
application URL provided in the flow/user configuration sets. To configure a
component in a flow to post a request to a different application as part of an integration
flow, the following configuration needs to be added to either the flow configuration set
or the user configuration set.

Define the environment configuration properties pertaining to the second Oracle
Utilities Enterprise application with which integration testing should be done. Example:
Integration testing between Oracle Utilities Customer Care and Billing and Oracle
Utilities Meter Data Management.

Prefix them with a custom keyword. This keyword is used in the component's test data in
a flow to specify the application configuration context to a component for running it.

Example: Assume that Oracle Utilities Customer Care and Billing is the application to be
used with Oracle Utilities Meter Data Management for integration testing where the
Oracle Utilities Meter Data Management environment details are set as default against the
flow and user configuration sets and the Oracle Utilities Customer Care and Billing
application's access details are to be specified. Assume the custom keyword chosen to
specify the Oracle Utilities Customer Care and Billing details is “CCB”. In the flow
configuration set or user configuration set, use the “Add Property” option, and add the
following properties.

CCB property holds the external web service end point URL prefixed up to but not
including the web service name. If the web service end point URL for the WSDL of
person object in CCB is https:myccbserver.mycompany.com/webservices/
ATC1PersonAdd?WSDL, the CCB property should hold the value -
“myccbserver.mycompany.com/webservices/”.

The properties CCB_gStrApplicationUserName and CCB_gStrApplicationUserPassword
hold the user name and password respectively for authenticating the user posting the web
service request to Oracle Utilities Customer Care and Billing.

The integration flow in Oracle Utilities Testing Accelerator may contain a mix of
components to two or more Oracle Utilities Enterprise applications. To get a component
in flow to post a request to the on-premise Oracle Utilities Enterprise applications, the
web service name in the component step's test data should be prefixed with the keyword.

In the example where Oracle Utilities Customer Care and Billing is the application with
which integration testing needs to be performed for Oracle Utilities Meter Data
Management and “CCB” is the keyword, the web service name for the C1-PersonAdd
component's test data in the integration flow should be specified as “CCB/
ATC1PersonAdd”. This ensures that the C1- PersonAdd component posts the request to
Oracle Utilities Customer Care and Billing whose configuration has been specified in the
flow configuration set or user configuration set using the keyword prefix “CCB”.

Property Name Property Value

CCB <CCB url>

CCB_gStrApplicationUserName <username>

CCB_gStrApplicationUserPassword <encryptedpassword>

Running Test Flows

Creating Test Flows 5 - 31
Oracle Utilities Testing Accelerator User’s Guide

The figure below shows a sample usage of prefix keyword in component step’s test data,
to specify the application’s context.

During the integration flow run, the flow configuration set and user configuration set
that have the required environment properties should be selected.

More than one such configuration can be set so that a test flow can interact with multiple
applications. Each application can have its own custom keyword which is used while
specifying the web service name in the component step's test data in a flow.

Running Test Flows
This section focuses on executing a test flow.

• Running Test Flows Using a Browser

• Iterative Flow Run

• Stopping Flow Run on Validation Failure

• Stopping Flow Run Manually

• Viewing Flow Run Details

• Viewing Flow Run Failure Details

• Viewing Flow Run Summary Report

• Conversational Test Data Management

• Generating Oracle Utilities Testing Accelerator Scripts

• Importing the Generated Oracle Utilities Testing Accelerator Script into Eclipse
IDE

Running Test Flows Using a Browser
To run a test flow using a browser:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, select the product to which the flow belongs. Right-click the
test flow and select Run Flow.

Note: The test flow can be run only if it is in either “Pending Approval”
or “Approved” state.

3. Select the Flow Configuration and User Configuration to be used to run the test
flow.

Iterative Flow Run

Creating Test Flows 5 - 32
Oracle Utilities Testing Accelerator User’s Guide

4. Click Run to start the test flow run.

Note: For more details about flow configuration and user configuration,
refer to the Runtime Configuration for Flow Run (For Run Using
Browser) section.

5. On the Flow Run page, the run details are displayed.

The tree shows each of the scenarios and components of the flow. Select a
component in the tree to display the corresponding request and response details.
Click View Logs to view the logs of the run.

Iterative Flow Run
To run a test flow using a browser:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, select the product to which the flow belongs.

3. Right-click the test flow and select Run Flow.

Note: The test flow can be executed only if it is either in “Pending
Approval” or “Approved” state.

4. Select the Flow Configuration and User Configuration used to run the test flow.

5. Select Iterative as the Flow Run Type.

6. In the Number of Iterations field, specify the number of iterations to run the flow.

7. If the flow has more than one flow test data set, specify more than one flow test data
set to be used during the iterative run. Select the checkbox next to the flow test data
set name.

Note: Based on the number of iterations and flow test data sets
specified, application will use test data sets for each of the iterations.
Example: If number of iterations is specified as 10 and two flow test
data sets are selected, the application runs the flow with first data set for
first iteration and second data set for second iteration, and switch back
to first data set for 3rd iteration and so on. At the end of 10 flow
iterations, there would be total of 5 runs of the flows with first data set
and 5 run of the flow with second data set.

8. Click Run to start the test flow run.

Note: For more details about flow configuration and user configuration,
see Runtime Configuration for Flow Run (For Run Using Browser).

The run details are displayed on the Flow Run page.

The tree shows each of the scenarios and components of the flow. Select a component in
the tree to display the corresponding request and response details. Click View Logs to
view the run logs.

Stopping Flow Run on Validation Failure
By default, the flow run continues until the last component in the flow even if there is a
validation failure for a component in the flow. This behavior can be changed to make the

Stopping Flow Run Manually

Creating Test Flows 5 - 33
Oracle Utilities Testing Accelerator User’s Guide

flow run stop when a validation fails by setting the property
“continueExecutionOnFailure” in the user or flow configuration to “false”.

Stopping Flow Run Manually
When a flow starts running, the Stop Flow button is enabled in the Flow Run page.

To stop a running flow, on the Flow Run page showing the current running state of a
flow, click Stop Flow. The flow run will be stopped.

Note that for flows including subroutines, the parent flow that calls the subroutines
should be stopped to stop the flow run. Individual subroutine flow runs cannot be
stopped. A stopped flow cannot be resumed.

Viewing Flow Run Details
To view the run details of a flow:

1. Login to Oracle Utilities Testing Accelerator.

2. Navigate to the Flow menu.

3. On the left pane, navigate and right-click the flow to view the run summary. Click
View Run History.

4. Click the flow run entries to view the respective details of that run.

5. Click the info icon next to the failed component step in the flow run. The following
error is displayed along with a list of possible reasons leading to the error.

Viewing Flow Run Failure Details
If a flow run fails, the possible reasons for failure can be viewed. Click the Info icon next
to the failed component step in the Flow Run Status tree structure.

To view the failure details for a flow run:

1. Login to Oracle Utilities Testing Accelerator.

2. Navigate to the Flow menu.

3. On the left pane, navigate to the flow and right-click it to view the run summary.
Click View Run History.

4. Click the flow run entries to view the respective details of that run.

5. Click the Info icon next to the failed component step in the flow run. The error is
displayed along with a list of possible reasons leading to the error.

Viewing Flow Run Summary Report

Creating Test Flows 5 - 34
Oracle Utilities Testing Accelerator User’s Guide

Viewing Flow Run Summary Report
To view the run summary of a flow:

1. Login to Oracle Utilities Testing Accelerator.

2. Navigate to the Flow menu.

3. On the left pane, navigate and right-click the flow to view the run summary.

4. Click View Run History.

5. Click any of the flow run entries to view the respective details.

6. On the Flow Run Status page, click Summary.

7. On the Flow Run Summary Report page, click Summary. The summary of the
flow run is displayed, including total scenarios passed/failed, percentage of pass/fail,
etc. You can also drill down individual scenarios and check more details.

The flow run summary can be sent via email. Specify the email address in the Summary
Report page and click Email.

Conversational Test Data Management
As an alternative to the Edit Test Data GUI, test data can also be provided in XML
format through the conversational Test Data Entry page. Before accessing this GUI,
the component's test data needs to be populated by providing the web service name and
the transaction type.

To navigate to the Conversational Test Data GUI, right-click the component in the
flow tree structure (in flow development screen) and select Edit Request.

Note: This feature is only supported for web service components.

The Edit Request feature allows to:

1. Open the failed request of a component.

2. Make changes to the test data and resend the request to edge application (without
running the flow multiple times).

Generating Oracle Utilities Testing Accelerator Scripts

Creating Test Flows 5 - 35
Oracle Utilities Testing Accelerator User’s Guide

3. Observe the response for the modified request.

4. Save the modified request as test data for the flow’s component step.

Repeat the above steps until the test data for the successful request is identified.

The Edit Request feature can be accessed from the flow structure screen/flow run
interface (including from flow run history, flow set run/history, iterative run/history).
User can invoke the Edit Request user interface. Right-click a component from the flow
run status tree and selecting the Edit Request option.

After selecting the Edit Request option from the right-click menu, a new window is
displayed and prompts to select the configuration sets to be used. Modify the request by
either changing test data value of one or more elements, adding/deleting new elements in
the request and click Send to send the request to the application being tested and observe
the response. Continue to make modifications until the desired response is received from
the edge application.

The user has below options to manage request content better:

• Repopulate all schema elements. Click Refresh Schema. This helps in resetting
fields that are required to make a successful request that were not present/left
out in the previous/original request.

• Click Settings to allow the user to control some header level information that is
sent as part of the request, including username token, timestamp and whether
the request should include any schema elements that do not have any test data
filled in.

• Choose to save the test data of the request to a flow test data set. Click Save to
select the flow test data set to which the test data needs to be saved to in the
dialog box.

Note: While saving the test data in the request XML in to the
component step's test data, only static test data values defined in the
component are replaced. The variables defined in the component's test
data are not replaced with the test data in the XML request.

Generating Oracle Utilities Testing Accelerator Scripts
Note that this section is applicable only for flows containing GUI based components. It
is recommended to use the Oracle Utilities Testing Accelerator browser based flow
execution feature in all other cases.

To generate Oracle Utilities Testing Accelerator scripts for a flow:

1. Login to the Oracle Utilities Testing Accelerator application.

2. On the flow tree page, right-click a flow and select Generate Scripts.

Importing the Generated Oracle Utilities Testing Accelerator Script into Eclipse IDE

Creating Test Flows 5 - 36
Oracle Utilities Testing Accelerator User’s Guide

Note that the Generate Scripts option is available only for those flows in
“Approved” state.

A zip file containing the generated flow is downloaded by the browser.

The Oracle Utilities Testing Accelerator scripts generated for the test flow have the
following structure:

• Databank folder - The databanks (text files with comma separated values (.csv))
for the flow that was downloaded. Each component in the flow has a
corresponding databank(s) file generated that contains the test data.

• src folder - The generated script files for the flow.

Importing the Generated Oracle Utilities Testing Accelerator Script into
Eclipse IDE

Note that this section is applicable only for flows containing GUI based components. It
is recommended to use the Oracle Utilities Testing Accelerator browser based flow run
feature in all other cases.

To import the Oracle Utilities Testing Accelerator scripts into Eclipse IDE:

1. Launch the Eclipse IDE for Java Developers that has the Oracle Utilities Testing
Accelerator Eclipse plugin installed.

For instructions to install Eclipse IDE, refer to the Installing Oracle Utilities Testing
Accelerator Client Runtime section in Appendix 3: Developing Metadata Driven
Web Service Based Test Automation.

2. In the Eclipse IDE, right-click the Project Explorer panel and click Import.

3. Click General and select Existing Projects into Workspace.

4. Click Next.

5. Select Select archive file: and click Browse.

6. Navigate to the downloaded zip file and click Open.

7. Click Finish.

You can now view the project in the Project Explorer panel.

8. Right-click the masterdrive and click Run.

Important: Before running GUI component based flows, make sure to
download the ChromeDriver v2.40/geckodriver v0.20.1 and copy it into
the 'drivers' folder mentioned in the Creating Oracle Utilities Testing
Accelerator Client Runtime Folder Structure section in Appendix 3:
Developing Metadata Driven Web Service Based Test Automation.

Download the drivers from the following URLs:

• Geckodriver: https://github.com/mozilla/geckodriver/releases/
download/v0.20.1/geckodriver-v0.20.1-win64.zip

• ChromeDriver: http://chromedriver.storage.googleapis.com/2.40/
chromedriver_win32.zip

https://github.com/mozilla/geckodriver/releases/download/v0.20.1/geckodriver-v0.20.1-win64.zip
https://github.com/mozilla/geckodriver/releases/download/v0.20.1/geckodriver-v0.20.1-win64.zip
http://chromedriver.storage.googleapis.com/2.40/chromedriver_win32.zip
http://chromedriver.storage.googleapis.com/2.40/chromedriver_win32.zip

Running Flows from Command Line

Creating Test Flows 5 - 37
Oracle Utilities Testing Accelerator User’s Guide

While executing the Sentinel script, if a failure occurs at any point, it is possible to resume
run from the point of failure by setting the runFromLastPointOfError flag to “true” in
the script.

Running Flows from Command Line
Note that this section is applicable only for flows containing GUI based components. It
is recommended to use the Oracle Utilities Testing Accelerator browser based flow run
feature in all other cases.

To run the scripts downloaded from Oracle Utilities Testing Accelerator from the
command line:

1. Navigate to the directory where the runtime folder is created.

2. Open a Windows command line window at this location.

3. Run the flow.
java -jar utascriptwrapper.jar -f “<directory containing the flow>”
-t “<Scenario name>”

4. After the script execution is complete, the Console shows the run status.

The detailed status can be found in the log file under the logs directory.

Encrypting Passwords
Note that this section is applicable only for flows containing GUI based components. It
is recommended to use the Oracle Utilities Testing Accelerator browser based flow run
feature in all other cases.

All the password fields (gStrApplicationUserPassword, gStrApplicationDBPassword,
gStrJavaKeyStorePwd) in the configuration.properties file must be encrypted. Before
encrypting the configuration.properties file, the keystore should be generated.

You can generate the keystore in either of the following ways:

• From Windows Explorer (Generating Keystore for Encryption from Windows
Explorer)

• From Command Line (Generating Keystore for Encryption from Command
Prompt)

Generating Keystore for Encryption from Windows Explorer

Creating Test Flows 5 - 38
Oracle Utilities Testing Accelerator User’s Guide

Use the Password Encryptor Tool to encrypt the configuration.properties file. You can
use the Password Encryptor Tool in either of the following ways:

• From Windows Explorer (Using Password Encryptor Tool From Windows
Explorer)

• From Command Line (Using PasswordEncryptor Tool From Console/
Command Line)

Generating Keystore for Encryption from Windows Explorer
Note that this section is applicable only for flows containing GUI based components. It
is recommended to use the Oracle Utilities Testing Accelerator browser based flow run
feature in all other cases.

To generate the keystore for encryption from Windows Explorer:

1. Launch Windows Explorer.

2. Navigate to the <UTA-CLIENT-WORK-DIR>\tools folder.

3. Double-click the KeystoreGenerator.jar file.

4. If the keystore and password store do not exist, they will be generated. Else, you will
be prompted to confirm to overwrite the existing keystore and password store with
the new one.

5. Click Yes to overwrite the existing keystore.

To continue with the existing keystore and password store, click No.

If you regenerate a keystore, all the passwords should be re-encrypted using the Password
Encryptor tool.

Generating Keystore for Encryption from Command Prompt
Note that this section is applicable only for flows containing GUI based components. It
is recommended to use the Oracle Utilities Testing Accelerator browser based flow run
feature in all other cases.

To generate the keystore for encryption from the command prompt:

1. Navigate to the <UTA-CLIENT-WORK-DIR>/tools folder.

2. Run the command: java -jar KeystoreGenerator.jar.

3. If the keystore and the password store for the keystore do not already exist, they will
be generated. Else, you will be prompted to overwrite the existing keystore.

4. Enter 'y' to generate a new keystore. Enter 'n' if you want to continue using the
existing keystore.

If you regenerate a keystore, all the passwords should be re-encrypted using the Password
Encryptor tool.

Using Password Encryptor Tool From Windows Explorer
Note that this section is applicable only for flows containing GUI based components. It
is recommended to use the Oracle Utilities Testing Accelerator browser based flow run
feature in all other cases.

Using PasswordEncryptor Tool From Console/Command Line

Creating Test Flows 5 - 39
Oracle Utilities Testing Accelerator User’s Guide

Important! Make sure to generate the keystore before encrypting the
configuration.properties file. For instructions, refer to the Generating Keystore for
Encryption from Windows Explorer section.

To use the password encryption tool from Windows:

1. Launch Windows Explorer.

2. Navigate to the <UTA-CLIENT-WORK-DIR>\tools folder.

3. Double-click the PasswordEncryptor.jar file.

You will be prompted to enter the password.

4. After entering the password, click OK.

A dialog box with encrypted text appears.

5. Copy this text and enter it as the value of the respective password field in the
configuration.properties file.

Using PasswordEncryptor Tool From Console/Command Line
Note that this section is applicable only for flows containing GUI based components. It
is recommended to use the Oracle Utilities Testing Accelerator browser based flow run
feature in all other cases.

To use the password encryption tool from console/command line:

1. Navigate to <UTA-CLIENT-WORK-DIR>/tools directory.

2. Enter the following command:
java -jar PasswordEncryptor.jar

The tool prompts to enter a password.

3. Type in the password and press Enter. A dialog box with encrypted text appears.

4. Copy this text and enter it as the value of the respective password field in the
configuration.properties file.

Configuring the Runtime Properties (For Run Using Eclipse)
Note that this section is applicable only for flows containing GUI based components. It
is recommended to use the Oracle Utilities Testing Accelerator browser based flow run
feature in all other cases.

The configuration.properties file is located in the <UTA-CLIENT-WORK-
DIR>\etc\ folder. It is used to store the runtime test run parameters, such as application
URL, application access information, email configuration, etc.

To use the email functionality for receiving the test run report, provide the following
values as mentioned in the configuration.properties file.

#Email Details
gStrSMTP_HOST_NAME=
gStrSMTP_PORT=
gStrTO_EMAIL_RECIPIENTS=

To provide the test environment details, provide the following values:

Application URL pointing to test run

Runtime Configuration for Flow Run (For Run Using Browser)

Creating Test Flows 5 - 40
Oracle Utilities Testing Accelerator User’s Guide

gStrApplicationURL =
gStrApplicationXAIServerPath=
gStrEnvironmentName=

To provide the application user information for login, provide the values for the
following keys:

gStrApplicationUserName =
gStrApplicationUserPassword =<Encrypted Password>

If the test suite has any database-side validations, provide the database details as follows:

gStrApplicationDBConnectionString =
gStrApplicationDBUsername =
gStrApplicationDBPassword =<Encrypted Password>

The path for the output files generated for reporting is as follows:

Output file details
gStrOutputFilePath =
gStrXSDFiles=

For properties related to the integration environment, refer to the Support for
Integration Flows section.

Runtime Configuration for Flow Run (For Run Using Browser)
A test flow is run using flow configuration sets and user flow configuration sets that
contain the required properties, such as URL of the environment against which the flow
to be run, username/password to be used, etc.

The flow configuration set includes configuration applicable for a particular environment. It
is expected that the flow level configuration sets do not contain any user specific
properties, thereby allowing many users to use a single flow configuration set.

The user configuration sets, on the other hand, are specific to each user and typically contain
user-specific properties, such as the username/password used to connect to an
environment.

It is expected that customers setup some generic flow configuration sets with common
runtime properties and users have their personal user configuration sets that contain their
credentials. While running a test flow/flow set, specify a flow configuration set and a user
configuration set in combination to get generic runtime properties and user specific
properties to be used for test flow/flow set run.

Note: Configuration in the user configuration sets overrides
configuration in the flow configuration if the same parameter is defined
in both the configuration sets.

This section focuses on managing the flow and user configuration sets:

• Creating a Flow Configuration Set

• Creating a User Configuration Set

• Editing a Flow Configuration Set

• Editing a User Configuration Set

• Copying a Flow Configuration Set

• Copying a User Configuration Set

Runtime Configuration for Flow Run (For Run Using Browser)

Creating Test Flows 5 - 41
Oracle Utilities Testing Accelerator User’s Guide

Creating a Flow Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click Flow Configuration Sets.

4. On the Manage Flow Configuration Sets page, click Create.

5. Specify the name of the flow configuration set being created and click Create.

6. If the flow configuration set is created successfully, a message appears confirming
that the operation was successful and redirects to the Manage Flow Configuration
Sets page.

7. Search for the configuration set created and click Edit to create flow level
configuration properties.

8. Each of the property is a key-value pair. By default some of the property names are
listed on the Edit page. You can either enter a value for the existing property or
choose to create a new property by clicking Add Property.

Important! It is recommended that sensitive information (such as passwords) be
encrypted. Click Encrypt to encrypt the corresponding row of the property.

Creating a User Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click User Configuration Sets.

4. On the Manage User Configuration Sets page, click Create.

5. Specify the name of the user configuration set to be created and click Create.

6. If the user configuration set is created successfully, a message appears confirming
that the operation was successful and redirects to the Manage User Configuration
Sets page.

7. Search for the configuration set created and click Edit to create user level
configuration properties.

8. Each of the property is a key-value pair. By default some of the property names are
listed on the Edit page. You can either enter a value for the existing property or
choose to create a new property by clicking Add Property.

Important! It is recommended that sensitive information (such as passwords) be
encrypted. Click Encrypt to encrypt the corresponding row of the property.

Editing a Flow Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click Flow Configuration Sets.

4. On the Manage Flow Configuration Sets page, search for the flow configuration
set to be edited, and click Edit.

5. On the Update Flow Configuration Set page, click Add Property to either enter a
value for the existing property or choose to create a new property.

Runtime Configuration for Flow Run (For Run Using Browser)

Creating Test Flows 5 - 42
Oracle Utilities Testing Accelerator User’s Guide

Important! It is required that sensitive information (such as passwords) be encrypted.
Click Encrypt against the corresponding row to encrypt the property.

Editing a User Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click User Configuration Sets.

4. On the Manage User Configuration Sets page, search for the user configuration
set to be edited, and click Edit.

5. On the Update User Configuration Sets page, click Add Property to either enter a
value for the existing property or choose to create a new property.

Important! It is recommended that sensitive information (such as passwords) be
encrypted. Click Encrypt to encrypt the corresponding row of the property.

Copying a Flow Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click Flow Configuration Sets.

4. On the Manage Flow Configuration Sets page, search for the flow configuration
set to be copied, and click Copy.

5. Enter the new configuration set name and click Confirm to create a copy.

Copying a User Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click User Configuration Sets.

4. On the Manage User Configuration Sets page, search for the user configuration
set to be copied, and click Copy.

5. Enter the new configuration set name and click Confirm to create a copy.

Creating Components 6 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 6
Creating Components

The Oracle Utilities Testing Accelerator components, component sets, and flows are
organized in a tree hierarchy. The hierarchy is organized as follows:

Oracle Utilities Testing Accelerator Release > Portfolio> Product > Module >
Components

This chapter describes the component hierarchy and also the steps to create different
types of components in Oracle Utilities Testing Accelerator.

• Component Structure

• Component Lifecycle

• Component Types

• Creating Web Service Based Components

• Creating GUI Based Components

• Creating REST Web Service Components

• Copying Components

Component Structure

Creating Components 6 - 2
Oracle Utilities Testing Accelerator User’s Guide

Component Structure
The following figure shows the high-level component structure.

Component Lifecycle
The component lifecycle begins once a component is created in Oracle Utilities Testing
Accelerator. It can exist in one of the several possible lifecycle states as shown in the
following diagram.

Locking/Unlocking Components

Creating Components 6 - 3
Oracle Utilities Testing Accelerator User’s Guide

The state of a component determines the actions that can be performed on the
component. The following table summarizes the component states, and the possible
actions and roles that can take the actions.

Locking/Unlocking Components
A component is/can be locked in the following scenarios:

• To prevent any other users from editing the component until the component
definition is complete.

• By default when the component is submitted for approval.

• When moved to the ‘In Progress’ state, the component gets locked. You can
then unlock and edit it as needed.

Click the icon to lock/unlock a component in the Oracle Utilities Testing
Accelerator application.

Tip: After a component is moved to ‘Approved’ status, it gets unlocked automatically.

Component
Lifecycle State

Permitted
Actions Role Resultant State (after

action)

In Progress Submit for
Approval

Developer
Approver
Administrator

Pending Approval

Approve Approver
Administrator

Approved

Save Developer
Approver
Administrator

In Progress

Pending Approval Send to In
Progress / Reject

Approver
Administrator

In Progress

Approve Approver
Administrator

Approved

Revert to
Approved

Approver
Administrator

Approved (Reverts to
Previous Approved
version of the component)

Save Developer
Approver
Administrator

Pending Approval

Approved Send to In
Progress

Developer
Approver
Administrator

In Progress

Submit for
Approval

Developer
Approver
Administrator

Pending Approval

Approve (save
and approve)

Approver
Administrator

Approved

Component Types

Creating Components 6 - 4
Oracle Utilities Testing Accelerator User’s Guide

Component Types
Ensure the component is created under the required hierarchy level.

Oracle Utilities Testing Accelerator supports the following types of components:

• Web Service Based Components

• GUI Based Components

• REST Web Service Components

Web Service Based Components
A web service based component represents an Inbound Web Service/Business Object/
Business Service in an Oracle Utilities application (such as CCB/C2M/WAM/Meter).

A distinguishing feature of the web service component is that its component type is
defined as “WS” and the keywords used in defining it are specific to a web service
request.

For information about web service specific keywords, refer to Appendix A: Web Service
Component Keywords.

GUI Based Components
A GUI based component typically represents a page/part of the page in an Oracle
Utilities application (such as CCB/C2M/WAM/Meter).

A distinguishing feature of the GUI based component is that it's component type is
defined as “Web” and the keywords used in defining the component are specific to a web
page.

Example: Click, Edit, etc.

For information about GUI-specific keywords, refer to Appendix B: GUI Component
Keywords.

REST Web Service Components
A REST web service component represents a REST interface in an Oracle Utilities
application (such as CCB/C2M/WAM/Meter).

A distinguishing feature of the REST based component is that its component type is
defined as “REST” and the keywords used in defining the component are specific to a
REST web service.

For information about REST-specific keywords, refer to Appendix C: REST Component
Keywords.

Creating Web Service Based Components
You can create web service based components in either of the following ways:

• Using the Component Generation Tool feature in Oracle Utilities Testing
Accelerator

Creating a Component

Creating Components 6 - 5
Oracle Utilities Testing Accelerator User’s Guide

For detailed instructions about the Component Generation Tool, refer to the
Component Generation Tool section in Chapter 8: Development Accelerator
Tools.

• Create the component manually

This section focuses on the following:

• Creating a Component

• Creating a Component Definition

• Defining Default Data at Component Level

• Setting Up Operation Name for a Web Service

• Using Runtime Variables in Components

• Using Function Libraries

• Resolving the Repeating Elements in Response XML

• Adding Validations

• Logging and Reporting

• Handling the List Elements

Creating a Component
To create a web service based component manually:

1. Navigate to the component tree where the component has to be created.

2. Right-click the feature (release/product/module) in the component tree.

Note: Create a new feature folder if it is not found in the delivered tree
structure.

3. Select Create Component.

Note: The component name must be prefixed with ‘CM’ and the Tags
field should have a CM tag for every component. The tagging enables
porting the custom components to latest Oracle Utilities Testing
Accelerator release.

4. Enter the component name in the Component field.

Note: For information about extending components, refer to the
Copying Components section.

5. Select Web Service in the ComponentType drop-down list.

6. Enter a description in the Description field.

Creating a Component Definition

Creating Components 6 - 6
Oracle Utilities Testing Accelerator User’s Guide

7. Click Attach Code to add the metadata. The Component window is displayed.

8. Create component definitions.

9. Click Save & Unlock to save and create the component.

Following is an example to create the CM-MobileWorker component under the Resource
Management feature for the Oracle Real-Time Scheduler v2.3.0.0.

1. Navigate to UTA 6.0.0.0 > ORS / MWM Portfolio > ORS 2.3.0.0 > Resource
Management.

2. Right-click the Resource Management module.

3. Select Create Component.

4. Enter CM-MobileWorker in the Component field to name the component.

5. Select Web Service in the ComponentType drop-down list.

6. Enter a description in the Description field.

7. Click Attach Code to add the metadata. The Component window is displayed.

8. Create component definitions.

9. Click Save & Unlock to save and create the component.

Creating a Component Definition
A component consists of several component definition lines. Each component definition
line comprises a keyword, object, display name, attribute values, default data, function
name, and output parameters.

The following list describes each entity in a component definition:

• Keyword: Defines the action to be performed by the component line. Example:
WS-SETVARIABLEFROM RESPONSE, WS-VALIDATE, etc

• Object: The name of the function library whose functions may be used for
defining a component.

• Display Name: Description of the component line that is made visible to the
user while entering test data against the component line in a flow.

• Attribute Values: The xpath of the component's element as defined in the
Oracle Utilities Enterprise application.

• Default Data: The default data that may be used while providing test data for a
component in a flow.

• Function Name: The name of the function that is used as a plugin to perform
actions such as generating randomized test data or performing validation on web
service response values.

• Output Parameters: If a function returns an output, the output can be stored in
a variable which is defined against the Output Parameters field. This variable can
be used across components in a flow to pass test data from one component to
another.

• Tooltip: The information presented as a tool tip during the flow creation.

Creating a Component Definition

Creating Components 6 - 7
Oracle Utilities Testing Accelerator User’s Guide

The following figure shows the Component page with the available component
definitions.

Add the required component definition lines using the Keyword drop-down list to
define the web services based component.

For a list of keywords used to define the web service based components, refer to
Appendix A: Web Service Component Keywords.

The following example shows different component lines created for the CM-
MobileWorker component.

1. Select SETAPPTYPE in the Keyword drop-down list to define the component type.

2. Select WS in the Object drop-down list to denote that it is a web service based
component.

3. Select the WS-SETWEBSERVICENAME keyword to allow for the web service
name to be set for this component in a flow.

4. Select the WS-SETTRANSACTIONTYPE keyword to allow for the transaction
type of the web service call to be set for this component, in a flow.

Note: The final script of a component is web service call to create,
update, and delete.

5. Select the WS-LOGMESSAGE keyword to log comments in component step as part
of a flow run. This helps in better understanding of the Flow run results in which the
component is used.

6. Select the WS-SETXMLELEMENT keyword to allow test data to be set against a
specific element of request XML.

Consider the CM-Account component in Oracle Utilities Customer Cloud Service.
This component maps to the C1-Account business object. It includes elements, such
as:

Defining Default Data at Component Level

Creating Components 6 - 8
Oracle Utilities Testing Accelerator User’s Guide

<accountId/>
<billCycle/>

7. Select the WS-SETXMLLISTELEMENT keyword to allow multiple sets of test data
to be set against the list element of request XML. The list element is ‘skills’.

Note: The schema of a web service/business object/business service
can be complex (the schema has group elements which in turn may have
group elements within them).

For instructions about how to handle such scenarios, refer to the Handling the
List Elements section.

Defining Default Data at Component Level
In Oracle Utilities Testing Accelerator some of the test data can be maintained at
component level for quick and easy use at the flow level.

In each component definition line the “Default Data” column is available to hold the
default test data. Using this field, default test data can be populated in the component.
While using a component with default data in a flow, the default data can easily be
selected into the test data field by selecting from the drop down option available for each
of the test data entry fields on the Flow Test Data window.

Even after the default data is populated in the flow test data, data elements in the test
data entry page can still be edited, if required. This helps to build the flow faster for cases
where administration and master test data are pre-determined.

Setting Up Operation Name for a Web Service
An operation name determines the action to be taken while running a web service
request. This is dictated by the operation name of the web service in Oracle Utilities
Application Framework based applications. The value for the WS-
SETTRANSACTIONTYPE keyword is specified while adding the test data for the flow.
If designed so, the same component can be used to add record, update record, or delete
record operations.

Using Runtime Variables in Components
In some cases, few elements from the component run’s response may have to be passed
as inputs to another component’s request XML. This can be achieved using the “Moving
Data Between Components without Using Global Variables” feature. Or another option
is to store the output of first component in the global variable by using the WS-
SETVARIABLEFROMRESPONSE keyword. This keyword requires Xpath of the
response element whose value is to be stored. It should be specified in the Attribute
Values column. The global variable which holds this value in the script is defined in the
Output Parameter column. This method of passing data between components allows
for a single global variable to be used as input in multiple component's test data, where
ever it is applicable.

The WS-SETVARIABLEFROMRESPONSE keyword stores the mobileWorkerId
obtained after a mobile worker component run to the global variable
gVar_mobileWorkerId1 declared in the Output Parameter column.

file: prefix - csv file

Creating Components 6 - 9
Oracle Utilities Testing Accelerator User’s Guide

file: prefix - csv file
Any test data value containing “.csv” filename as value should be prefixed with “file:” to
allow Oracle Utilities Testing Accelerator to process it correctly. For example: If a
component contains an attribute name inputFile for which “InputData.csv” is the value,
ensure to prefix the filename with “file:”. The value of “inputFile” should be
“file:InputData.csv”.

Using Function Libraries
This section explains how to use the function libraries shipped with this Oracle Utilities
Testing Accelerator release and create new help libraries.

Function libraries shipped with Oracle Utilities Testing Accelerator can be accessed in
the Component window using the FUNCTIONCALL key word and specifying the
library name in the Object column and the function name in the Function Name
column. Define the variable name in the Output Parameters field to store the return
value of the function.

Function parameters can be provided while entering test data for the component in a
flow. For more details, refer to Chapter 5: Creating Test Flows.

For a list of libraries and functions available in Oracle Utilities Testing Accelerator, refer
to Chapter 9: Function Library Reference.

Resolving the Repeating Elements in Response XML
If the response XML has repeating elements, the value embedded within the repeating
elements is retrieved as follows:

<ContactDetails>
<Phone> 123-456-7890 </Phone>
<Phone>234-567-8901 </Phone>
<email> joe@oracle.com </email>
</ContactDetails>

1. If building a custom component, you can use the WS-
SETVARIABLEFROMRESPONSE keyword to retrieve the response of the web
service invocation into the global variable. gVar1 is defined in the Output
Parameter column.

The keyword resolves all occurrences of the Phone element and stores all values in
the gVar1 variable separated by comma. gVar1 will be set to “123-456-7890,234-567-
8901”.

Or, you can use the FUNCTIONCALL keyword and use appropriate functions from
the base delivered function libraries, such as coreResponseUtillib library.

2. If trying to retrieve a value from the response XML for a component in a flow, in the
post validations sections, use the FUNCTIONCALL keyword to call the appropriate
function available in the coreResponseUtillib libraries.

For more information, refer to the Chapter 9: Function Library Reference.

Adding Validations

Creating Components 6 - 10
Oracle Utilities Testing Accelerator User’s Guide

Adding Validations
The different ways in which you can add validations are:

• Using the FUNCTIONCALL keyword

To validate the response, use the FUNCTIONCALL keyword to validate the
content; in particular, the Xpath of response XML.

Select the wSVALIDATELIB function library from the Object drop-down list.
Select the function to be called from the Function Name drop-down list.

For a complete reference of the validation function library, refer to Chapter 9:
Function Library Reference.

• Using flow-level validations

Validations can be added before and after a component step in a flow. The same
flow can be reused with different or no validations before (pre-level validations)
and after (post-level validations). The pre-validations can be used to determine if
that component step needs to be run or skipped as part of the flow run, while
the post validations can be used for validating the component step results.

For more information about the flow-level validations, refer to the Flow-Level
Validations section.

Flow-Level Validations
Note that this feature is available only for web service based components.

Apart from being able to define validations at the component level, you can also define
validations at a flow level as follows:

1. Navigate to the component in the flow.

2. Right-click and select Edit Test Data from the context menu.

3. On the Test Data page, click Pre Validations or Post Validations to specify
validations that need to be performed either before sending the request or after the
response is received from a Utilities application.

Note: In addition to adding validations in the pre-validations section,
function calls can be made to generate (randomization) test data and
stored in variables. These variables can then be used to set test data
against component elements.

The post validation section can be used to add functions that retrieve and store
any values from the response that can be used further down the flow, as test data
in other components.

Logging and Reporting
Oracle Utilities Testing Accelerator provides the following types of logging and
reporting:

• Test run log file: The test run logs are created and separate logs are generated
for each flow .

• Email report in HTML format: The summary report can be automatically
sent as an email to a specified list of email ids, which can be defined in the user
configuration set or the flow configuration set. If no email IDs are provided in

Handling the List Elements

Creating Components 6 - 11
Oracle Utilities Testing Accelerator User’s Guide

the configuration, the email is not sent. This applies to both flows and flow set
run.

Handling the List Elements
The list elements of a schema should be defined using the keyword WS-
SETXMLLISTELEMENT.

Consider the following partial schema. Note that the node usageDetails has a
usagePeriods list element which in turn has another list element serviceQty and other
non-list nodes (leaf nodes) (such as startDateTime, standardStartDateTime,
endDateTime, etc.,). The list node serviceQty has non-list nodes such as seq, UOM,
TOU, etc.

Handling the List Elements

Creating Components 6 - 12
Oracle Utilities Testing Accelerator User’s Guide

To define this schema in the component, consider the non-list nodes and enter a row for
each of them, with the keyword as WS-SETXMLLISTELEMENT and Attribute value as
the full xpath of the element, making sure to enter the appropriate Display names.

Note: If any of the list nodes repeat (serviceQty occurrs thrice inside
usagePeriods, which in turn occurrs twice in usageDetais), do not define
the elements multiple times in the component definition. The number
of occurrences can be controlled in the test data (as defined in the
Providing Test Data section).

Providing Test Data
On the test data page, each of the list nodes (usageDetails, usagePeriods and serviceQty
for example) has an Add List button next to them under the Action column and are
expandable. Expand the list node to view the children of that particular node.

Example: Expand usageDetails to view usagePeriods, and expand usagePeriods to view
serviceQty, startDateTime, standardStartDateTime, etc.

Initially only one instance exists for all the list nodes. To add more nodes, click Add List
next to the desired element under the Action column.

Example: To have two instances of usagePeriods inside usageDetails, click Add List next
to usagePeriods. There will be two usagePeriods nodes inside usageDetials, each of which
will have the same content.

To view three serviceQty nodes in the first usagePeriods node and four in the second
one:

1. Expand the first usagePeriods and add three serviceQty nodes.

2. Expand the second usagePeriods and add four serviceQty nodes.

The complete structure of the final schema is ready. You can add data to all the leaf
nodes.

Creating GUI Based Components

Creating Components 6 - 13
Oracle Utilities Testing Accelerator User’s Guide

Creating GUI Based Components
To manually create a GUI based component:

1. Navigate to the component tree where the component has to be created.

2. Right-click the feature (release/product/module) in the component tree.

Note: Create a new feature folder if it is not found in the delivered tree
structure.

3. Select Create Component.

4. Enter the name of the component in the Component field.

Note: The component name must be prefixed with ‘CM’ and the Tags
field should have a CM tag for every component. The tagging enables
porting the custom components to latest Oracle Utilities Testing
Accelerator release.

For information about extending components, refer to the Copying
Components section.

5. Select User Interface in the ComponentType drop-down list.

6. Enter a description in the Description field.

7. Click Attach Code to add the metadata. The Component window is displayed.

8. Create component definitions.

9. Click Save & Unlock to save and create the component.

Following is an example to create the CM-CompleteToDoEntry component under the
ToDoUI feature for the Core product:

Creating a Component Definition for GUI Components

Creating Components 6 - 14
Oracle Utilities Testing Accelerator User’s Guide

1. Navigate to UTA 6.0.0.0 > CORE 6.0.0.0 Portfolio > CORE UI 6.0.0.0 >
ToDoUI.

2. Right-click the ToDoUI module.

3. Select Create Component.

4. Enter CM-CompleteToDoEntry in the Component field.

5. Follow steps 5 to 9 as mentioned in the procedure above.

Creating a Component Definition for GUI Components
A user interface component consists of several component definition lines. Each
component definition line comprises of a keyword, object, display name, attribute values,
default data, function name, and output parameters.

The following list describes each entity in a component definition:

• Keyword: The step to be performed.

Example: WS-SETVARIABLEFROM RESPONSE, WS-VALIDATE, etc

• Object: The Oracle Utilities Testing Accelerator function library name from
where the function is called.

• Display Name: The component definition (mandatory).

• Attribute Values: The xpath/ID of the UI element (mandatory).

For example: If ID is specified, specify the attribute value as id;TD_ENTRY_ID,
where TD_ENTRY_ID is the unique ID of the UI element being defined.

If xpath is specified, it can be provided similar to //
li[@id='CI_ADMINMENU_topMenuItem0x18']/span

Note: If the attribute values contain special characters (such as '$'), the
character should be prefixed by the backslash ('\') character.

For example: To input the attribute value as
id;ZONE_PRM\:0$ZONE_PARM_VAL, specify it as
id;ZONE_PRM\:0\$ZONE_PARM_VAL.

• Default Data: The default data used in the component definition.

• Function Name: The function name called from the library.

• Output Parameters: The output in the form of a variable.

For more options, refer to Appendix E: Generating Re-runnable Test Data.

• Tooltip: The data presented as a tool tip during the flow creation.

Creating REST Web Service Components

Creating Components 6 - 15
Oracle Utilities Testing Accelerator User’s Guide

The following figure shows the Component page with the available component
definitions.

Add the required component definition lines using the Keyword drop-down list to
define the web services based component.

For a list of keywords used to define the GUI based components, refer to Appendix B:
GUI Component Keywords.

The following example shows different component lines created for the CM-
CompleteToDoEntry component.

1. Select SETAPPTYPE in the Keyword drop-down list to define the application type.

2. Select Web in the Object drop-down list to denote that it is a web services based
component.

3. Select the WS-LOGMESSAGE keyword to log comments in component definition.
This helps in debugging the script code for that component.

4. Add more component definition lines as needed and select appropriate keywords
based on the GUI page that the component represents.

5. Click Save.

Creating REST Web Service Components
To create REST web service based component:

1. Login to the application.

2. Navigate to the Components menu.

Creating a REST Service Component Definition

Creating Components 6 - 16
Oracle Utilities Testing Accelerator User’s Guide

3. In the left pane, navigate to the module where the new component needs to be
added.

4. Right-click the component and select Create Component.

5. On the Create Component page, select the component type as REST SERVICE.

6. Fill in the required fields and click Save.

7. Click Attach Code to save the component and edit it.

This section focuses on the following:

• Creating a REST Service Component Definition

• Entering Test Data for a REST Component

Creating a REST Service Component Definition
A component consists of several component definition lines. Each component definition
line comprises a keyword, object, display name, attribute values, default data, function
name, and output parameters.

The following list describes each entity in a component definition:

• Keyword: The step to be performed.

For example: RS-SETREQUESTHEADER, RS-SETENDPOING, RS-
PROCESSREQUEST, etc

• Object: The Oracle Utilities Testing Accelerator function library name from
where the function is called.

• Display Name: Component definition

• Attribute Values: The web service XML tag name used as variable to store its
value.

• Default Data: The default data used in the component definition.

• Function Name: The function name called from the library.

• Output Parameters: The output in the form of a variable.

For more options, refer to Appendix E: Generating Re-runnable Test Data.

• Tooltip: The data presented as a tool tip during the flow creation.

Entering Test Data for a REST Component

Creating Components 6 - 17
Oracle Utilities Testing Accelerator User’s Guide

The following figure shows the Component page with the available component
definitions.

Add the required component definition lines using the Keyword drop-down list to define
the REST web service based component.

For a list of keywords used to define the REST web service based components, refer to
Appendix C: REST Component Keywords.

The following example shows different component lines that can be created.

1. Select SETAPPTYPE in the Keyword drop-down list to define the application type.

2. Select RS in the Object drop-down list to denote that it is a web services based
component.

3. Select the WS-LOGMESSAGE keyword to log comments in component definition.
This helps in debugging the script code for that component.

4. Select RS-SETREQUESTHEADER keyword to specify any headers that need to
be passed to the REST end point.

5. Select RS-SETMETHOD keyword to specify whether the REST end point needs
to be invoked using a GET/POST call.

6. Select RS-PROCESSRESTREQUEST keyword to specify processing of the
response from the REST end point.

7. Add more component definition lines as needed and select appropriate keywords
based on the REST web service that the component represents.

8. Click Save.

Entering Test Data for a REST Component
To enter test data for a REST component:

1. Navigate to the Flows menu.

2. On the left pane, right-click the flow and select Create/Update Flow Structure.

Entering Test Data for a REST Component

Creating Components 6 - 18
Oracle Utilities Testing Accelerator User’s Guide

3. On the Flow Definition page, right-click the REST component and select Edit
Test Data.

4. Add any pre-validation and post-validation functions by specifying the library and
function details in the Pre Validations and Post Validations tabs.

The REST request body can be any of the following:

• Form Data: Key pair values

• RAW Data: Raw text that would be sent out as body

• Binary: Attach a file that contains the request that would be sent as request to
REST end point

Copying Components

Creating Components 6 - 19
Oracle Utilities Testing Accelerator User’s Guide

Copying Components
The components delivered can be customized; however, modifying the existing
components is not a good practice.

A component can be extended by making its copy and saving it with a different name
prefixed and tagged by CM, and then adding or modifying the metadata or key words as
follows:

1. Right-click an existing component and select Copy Component.

2. Select and right-click a module. It is recommended to create a new module named
“Custom Components” to hold any custom components.

3. From the context menu, select Paste Component.

If the component name already exists in the module, then a warning will be displayed
followed with a prompt for providing a new name to the component.

4. Click Save. The component is copied successfully.

Creating Test Flow Sets 7 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 7
Creating Test Flow Sets

Flow sets offer a level of abstraction above the flows that allows more flexibility in
managing flows. Several related flows can be grouped into a flow set and can be run in
sequence. This chapter focuses on flow sets including:

• Creating Flow Sets

• Adding Flows to a Flow Set

• Deleting Flows from a Flow Set

• Running Flow Sets

• Stopping Flow Set Run

• Exporting Flow Sets

• Viewing Flow Set Run History

• Viewing Flow Set Execution Summary Report

Creating Flow Sets

Creating Test Flow Sets 7 - 2
Oracle Utilities Testing Accelerator User’s Guide

Creating Flow Sets
To create a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Create Flow Set.

4. Provide the Flow Set Name and Description, and click Save to save the flow set.

5. Navigate to the Manage Flow Set menu to add flows to the flow set.

Adding Flows to a Flow Set
To add flows to a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. The list of available flow sets is displayed.

4. Select the flow set name to which the flow(s) needs to be added.

5. Click Add Flows. You can search for one or more flows using the wildcard “%” to
search for flows matching a name.

For example: Search for all flows that contain the text “person” in their name by
searching for string “%person%”.

6. In the test data set column's drop down, select the flow test data set used to run the
flow.

7. Click Save to save the flow set.

Deleting Flows from a Flow Set
To delete flows from a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. In the left pane, click Manage Flow Set. The list of available flow sets is displayed.

4. Select the flow set from which the flow(s) needs to be deleted.

5. Delete one or more flows from the flows displayed. Select the checkbox for each of
the flow to be deleted and click Delete.

6. Click Save to save the flow set.

Running Flow Sets

Creating Test Flow Sets 7 - 3
Oracle Utilities Testing Accelerator User’s Guide

Running Flow Sets
To execute a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. In the left pane, click Manage Flow Set. The list of available flow sets is displayed.

4. Select the flow set to be run and click Run.

5. Select the flow configuration and user configuration to be used to run the flow set.

6. Click Confirm.

Note: For more details about on flow configuration and user
configuration, refer to the Runtime Configuration for Flow Run (For
Run Using Browser) section.

7. Once the flow set run starts, click each of the flows to view more details about the
run.

Stopping Flow Set Run
The Stop feature allows the active flow run to complete and stops all subsequent flows in
the flow set from running.

To stop a flow set run:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click View History on the name of the flow set whose run should be stopped.

5. Select the currently running instance of the flow set and click Stop.

Exporting Flow Sets
To export a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click Export against the flow set to be exported.

Viewing Flow Set Run History
To view the run history of a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

Viewing Flow Set Execution Summary Report

Creating Test Flow Sets 7 - 4
Oracle Utilities Testing Accelerator User’s Guide

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click View History of a flow set to display all previous runs. You can view details
such as the flow set run status, date and time of the run, the user who triggered the
run, etc.

5. Click any of the previous runs to view flow-level details of that particular run.

You can drill-down even further by clicking a flow name and view the details of the
flow run, including overall status, request and response details for each of the
component and even view the log file details of a particular component run.

Viewing Flow Set Execution Summary Report
To view the execution summary of a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click View History of a flow set to display all previous runs. You can view details
such as the flow set run status, date and time of the run, the user who triggered the
run, etc.

5. Click any of the previous runs to view flow-level details of that particular run.

6. Click Summary to display a summary of the flow set run, including total flows
passed/failed, percentage of pass/fail, etc. You can also drill down individual flows
to view the respective details.

7. Email the flow set run summary. Specify the email address on the Summary Report
page and click Email.

Creating Test Plans 8-1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 8
Creating Test Plans

This chapter focuses on test plans, including:

• About Test Plans

• Creating a Test Plan

• Adding and Removing Flow Sets in a Test Plan

• Managing Test Plan Lifecycle

• Running a Test Plan

• Viewing Test Plan Run Results

About Test Plans

Creating Test Plans 8-2
Oracle Utilities Testing Accelerator User’s Guide

About Test Plans
A test plan is an object that brings all the test assets together to make the test automation
process simpler and easy to use. Using a test plan, the test flows can be grouped to meet
an objective (positive and negative tests/assertions) as part of testing. It can be defined
using flow sets, which in turn hold all the requisite flows.

The following figure defines the test plan process.

Run the specified set of flows with the prescribed environment using the Credentials,
On-demand.

Running the tests to meet a given objective may take multiple iterations.

Example:

• A test plan may be created to successfully generate bills for any given customer.

• The test plan may include some automated test flows that verify the objective.

• Users can run this test plan ‘n’ number of times (during sprints in agile), logging
bugs/issues during the each iterative run of the test plan.

The Test Plan object encompasses the Flow Set object. One or more flow sets can be
grouped together to form a single test plan. It can be executed as a whole, which provides
consolidated run results of all the tests within the test plan (under the flow sets).

Creating a Test Plan
To create a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Click New under the Test Plans section.

4. Provide the Test Plan Name (a unique identifier for a test plan).

5. Provide a Short Description and a Long Description for the test plan.

6. Select the type of the test plan from the Type drop-down list. It helps to differentiate
if the test plan pertains to new feature testing, sanity testing or other types of testing.
You can also use it when searching for a test plan.

7. Click Create.

Adding and Removing Flow Sets in a Test Plan

Creating Test Plans 8-3
Oracle Utilities Testing Accelerator User’s Guide

The test plan will be created and displayed in the Test Plan page. The new test plan will
be in the “Planning” stage.

Adding and Removing Flow Sets in a Test Plan
To add a flow set to a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan to be edited.

5. Click Edit next to the Test Plan Definition.

Alternatively, click Add Flow Set.

6. In the Edit Test Plan screen, select the flow set to be added to the test plan and drag
and drop it into the Test Plan Definition column.

Make sure to select the flow set before it is dragged into the Test Plan Definition
column. Use the Flow Sets filter to find one or more flow sets based on the flow set
name.

7. Click Save to save the test plan definition.

To remove a flow set from a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan to be edited.

5. Click Edit next to the Test Plan Definition.

6. Select the flow set and click X next to it in the Test Plan Definition column.

7. Click Save to save the test plan definition.

Managing Test Plan Lifecycle
A test plan object supports various lifecycle states for easier and robust management of a
test plan. Based on its lifecycle state, certain operations may or may not be allowed on the
test plan.

The following lifecycle states are supported:

• Planning: This is the initial state of the test plan. All (newly created) test plans
will be in the planning state. The test plan definition is allowed in this stage. Flow
sets under the test plan can be added or removed when the test plan is in the
planning state. The test plan cannot be run in this state, but can be deleted.

• Active: After the test plan planning is complete, to run it, it should be moved to
the active state. It can be moved to active state from the planning state. An active

Running a Test Plan

Creating Test Plans 8-4
Oracle Utilities Testing Accelerator User’s Guide

test plan can be run. Flow sets cannot be edited/updated when the test plan is in
this lifecycle state. The descriptions and type can be updated. The test plan can
be moved to paused or complete state from the active state, but cannot be
deleted in this state.

• Paused: If the test plan definition needs to be changed after moving it to the
active state, pause it so that the test plan runs are not triggered during the update.
In this state, the test plan can no longer be run. It can be edited or updated and
the corresponding flow sets under the test plan can be added or removed. It can
be moved to active or archive state, but cannot be deleted.

• Complete: The test plan in Complete state signifies that the runs have been
completed and the objective has been met, but it still needs to be maintained in
the application for tracking/reporting purposes. Updates to the test plan are no
longer allowed and the runs are also not allowed. The only state allowed from
this is the archived state. The test plan cannot be deleted.

• Archive: This is the end state for a test plan that allows a test plan to be deleted.
The test plan updates and runs are not allowed in this state. It can be deleted.

The following figure shows the possible test plan lifecycle state transitions.

To update a test plan lifecycle:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan to be edited.

5. Select the appropriate state from the drop-down list. The test plan will be moved to
the selected lifecycle state.

Running a Test Plan
To run a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan to be run (make sure that the test plan is in “Active” state).

5. Click Run in the Test Plan Definition section on the Test Plan page.

Viewing Test Plan Run Results

Creating Test Plans 8-5
Oracle Utilities Testing Accelerator User’s Guide

6. Select the Flow Configuration Set and the User Configuration Set. Click
Confirm.

The test plan run page is displayed showing the state of the flow set runs for the test
plan.

7. To view detailed results of the flow set runs, click the corresponding flow set on the
Test Plan Results page.

Viewing Test Plan Run Results
To view the run results of a test plan:

1. Login to the application.

2. Navigate to the Test Planning menu.

3. Search for the test plan using the search filters.

4. Select the test plan.

5. Click Run History in the Test Plan Definition section on the Test Plan page. The
test plan run history page is displayed with the test plan run details.

6. Click the appropriate test plan run record. The test plan run page displays the state of
the flow set runs under the test plan.

7. To view the detailed results of the flow set runs, click the corresponding flow set on
the Test Plan Results page.

Development Accelerator Tools 9 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 9
Development Accelerator Tools

This chapter describes the development accelerator tools available in this Oracle Utilities
Testing Accelerator release:

• Component Export Tool

• Flow Export Tool

• Component/ Flow Import Tool

• Component Generation Tool

• Password Encryption Tool

• Component Definition Validation Tool

Component Export Tool

Development Accelerator Tools 9 - 2
Oracle Utilities Testing Accelerator User’s Guide

Component Export Tool
This tool is used to export one or more components to another environment. Note that
only components in “Approved” state can be exported.

To export a component pack:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Export Components in the left pane.

4. Select the Release, Portfolio, Product, Module, Component Name, Tags
(example: CM) and Owner Flag as required.

5. Click Export.

A prompt appears on the screen to open or save the generated zip file
“component.zip”.

6. Click Save to download the zip file.

The component has been exported as a .zip file.

Flow Export Tool
This feature is used to export one or more flows to another environment. Note that only
flows in “Approved” state can be exported.

To export a flow:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Export Flows in the left pane.

4. Select the Release, Portfolio, Product, Flow Name, Tags (example: CM) and
Owner Flag as required.

5. Click Export.

A prompt appears on the screen to open or save the generated zip file “flow.zip”.

6. Click Save to download the zip file.

The flow has been exported as a .zip file.

Component/ Flow Import Tool
This feature is used to import components and/or flows to another environment.

To import a component/flow:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Import in the left pane.

4. Drop the component/flow pack in to Import wizard in the right pane.

Component Generation Tool

Development Accelerator Tools 9 - 3
Oracle Utilities Testing Accelerator User’s Guide

When a file is selected/ dropped in the wizard, the file name appears.

5. Click Save.

6. If the component/flow already exists in the database, a pop-up is displayed giving a
choice to continue or abort the process.

7. When you click Cancel, the import component/flow process is not triggered and it
goes back to step 3 (you can still import it again).

8. When you click OK on the pop-up, the process of importing component/flows
begins with progress bar.

The component/flow is imported successfully.

Component Generation Tool
This feature is used to generate components from WSDL.

To generate components:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Generate Components on the left pane.

4. Enter the data in the required fields.

5. Specify the number of rows to add and click Add Rows.

6. Enter the component name, tags, and description, and provide a webservice name,
operation name.

7. Click Generate Component(s) and select the Flow/User configuration. The
application URL and user credentials will be taken from the specified configuration
file.

Note: When attempting to generate components from more than one
application at the same time, prefix the URLs with keywords in the
configuration files that can be used while specifying the WSDL to
connect to.

Example: If an Oracle Utilities Meter Data Management component
should be generated along with an Oracle Utilities Customer Cloud
Service component, specify the three properties mentioned below either
in flow or user configuration properties.

Password Encryption Tool

Development Accelerator Tools 9 - 4
Oracle Utilities Testing Accelerator User’s Guide

opdev=<MDM url>
opdev_gStrApplicationUserName=johnDoe
opdev_gStrApplicationUserPassword=enc(pj0TFjXMczsoyzmQ8GuXPt2PS
ydO7VCbR2jhxtkUH06Fuz+zmChpGSCr241KggFC6FwgMg==)

To generate a Oracle Utilities Meter Data Management component, enter the
webservice name prefixed with “opdev/”.

8. Upon successful component generation, a list of generated components and failed
components is displayed.

Tip: The WSDL Method column is an operation in WSDL. The
following figure shows the name of operation in WSDL.

Password Encryption Tool
The Password Encryption Tool is used to encrypt passwords for additional security.

This section provides the following details about the tool:

• Overview

• Running the Password Encryption Tool

Overview
All the password fields (gStrApplicationUserPassword, gStrApplicationDBPassword) in
the configuration.properties file and security.properties file, if any, must be encrypted.

Use the PasswordEncryptor tool to encrypt the password.

Running the Password Encryption Tool

Development Accelerator Tools 9 - 5
Oracle Utilities Testing Accelerator User’s Guide

Running the Password Encryption Tool
To encrypt plain text using the Password Encryption Tool:

1. Double-click the PasswordEncryptor.jar file. when asked for, enter the password.

2. Click OK. A dialog box with the encrypted text is displayed.

3. Copy this text and paste it in the respective password field in the
configuration.properties or security.properties file.

Alternatively, you can perform the following steps in the console:

1. Navigate to <ECLIPSE-WORKDIR>/tools.

2. Enter the following command:
java -jar PasswordEncryptor.jar

3. When prompted, enter the password.

4. Press Enter.

5. Copy this text and paste it in the respective password field in the
configuration.properties or security.properties file.

Component Definition Validation Tool
Use the Component Definition Validation Tool to assess the impact of the custom
components while upgrading to a newer version of the product. The impact can be
assessed either at a product level (report changes to all components of the given product
in the newer version) or at a component level.

Note: This tool is intended to be used with only web service based
components.

To generate a report at the product level:

1. Login to the application.

2. Navigate to the Components menu.

3. On the left pane, select and right-click the product.

4. Select Validate Components.

5. Enter the URL of the Utilities application against which the currently selected
product components should be validated.

https://<server-name>:<port>/ouaf/webservices/

6. Click Validate Components to generate the report.

7. After generating the report, the tool prompts to save the HTML report to your local
system.

Open the report in a browser to assess the impact.

Note: In the report, the Newly Added column lists all the new
attributes added to the web service and the Missing column lists all the
existing attributes that are no longer supported by the web service.

To generate a report at the component level:

Component Definition Validation Tool

Development Accelerator Tools 9 - 6
Oracle Utilities Testing Accelerator User’s Guide

1. Login to the application.

2. Navigate to the Components menu.

3. On the left pane, select and right-click the component to be validated.

4. Select Validate Components.

5. Enter the URL of the Utilities application against which the currently selected
product components should be validated.

https://<server-name>:<port>/ouaf/webservices/

6. Click Validate Components to generate the report.

7. After generating the report, the tool prompts to save the HTML report to your local
system.

Open the report in a browser to assess the impact.

Note: In the report, the Newly Added column lists all the new
attributes added to the web service and the Missing column lists all the
existing attributes that are no longer supported by the web service.

Function Library Reference 10 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 10
Function Library Reference

This chapter lists the Oracle Utilities Testing Accelerator function libraries and functions
available to create components and flows in Oracle Utilities Testing Accelerator
Workbench for testing Oracle Utilities Testing Accelerator.

The following function libraries are described:

• OUTSPCORELIB

• WSVALIDATELIB

• CORERESPONSEUTILLIB

• COREDATETIMELIB

• COREDATAGENLIB

• COREVALIDATEVARIABLELIB

• COREVERIFYCONDITIONVARIABLELIB

• CORESTOREVALUES

• COREFILEOPS

• CORESTRINGOPS

• CORENUMBEROPS

• COREUTAOPS

Note that all input parameters and output parameters of functions are of type String.
Type conversions are handled inside the functions.

The input parameters for the functions need to be specified against the logical, Value1,
Value2, Value3, Value4, Value5 and Value6 columns, depending on the function
definitions.

OUTSPCORELIB

Function Library Reference 10 - 2
Oracle Utilities Testing Accelerator User’s Guide

OUTSPCORELIB
This library develops the component code and flows for web services and general
applications. It includes functions with date and time processing and string processing
capabilities, as well as database and file operations.

This section provides a list of the functions included in the library, along with their usage
details.

setVariable
Stores/sets the value provided in the test data Value1 column into a global variable
specified in the OP Variable Name column, so it can be used across the flow.

Example:

setVariable (String valueToBeStored)

Input Parameters:
valueToBeStored - value to be set/stored into a variable
Return Type: String

getCurrentTimeInMilliSeconds
Gets the time in milliseconds.

Example:

getCurrentTimeInMilliSeconds ()

Input Parameters: <none>
Return Type: Sting

Randomstring
Generates a random string of random size and stores it into a global variable specified in
the OP Variable Name column.

Example:

randomstring ()

Input Parameters: <none>
Return Type: String

compare2Strings
Compares two strings and returns a boolean result based on the result of comparison
which gets stores it into a global variable specified in the OP Variable Name column.

Note: This function returns “True” if strings provided are same. Else, it
returns ‘False’.

Example:

compare2Strings (String_stringA, String_stringB)

stringA - The first String to be compared
stringB - The second String to be compared to stringA
Return Type: String

OUTSPCORELIB

Function Library Reference 10 - 3
Oracle Utilities Testing Accelerator User’s Guide

randomNumberUsingDateTime
Generates a random string with date and time in it and stores it into a global variable
specified in the OP Variable Name column.

Example:

randomNumberUsingDateTime()

Input Parameters: <none>
Return Type: String

getCurrentDateTimeWithGivenDateFormat
Gets the current date and time in the specified format and stores it into a global variable
specified in the OP Variable Name column.

Example:

getCurrentDateTimeWithGivenDateFormat(String dFormat)
dFormat- Java date formats are supported

dFormat - The format of the date output by the function
Return Type: String

getDateDiffInSecsWithGivenDateFormat()
Takes a start date and end data as and the corresponding data format as input parameters
and calculates the difference between the dates in seconds and stores it into a global
variable specified in the OP Variable Name column.

Example:

getDateDiffInSecsWithGivenDateFormat("12-13-2014", "12-29-2014",
"mm-dd-yyy")

Input Parameters:
dateStart - The start date for calculating the difference
dateEnd - The end date for calculating the difference
dFormat - the format of the date in which start and end dates have
been specified.

Return Type: String

getAdjustedTimeWithGivenDateTime
Calculates a date based on the specified date and an offset(adds or subtracts to the
specified date) along with the dateformat, gets the adjusted time and stores it into a global
variable specified in the OP Variable Name column.

Usage:

getAdjustedTimeWithGivenDateTime(String dateTime, String offset,
String dFormat)

Example:

getAdjustedTimeWithGivenDateTime("12-13-2014", "-02:30","mm-dd-
yyyy")

Input Parameters:

OUTSPCORELIB

Function Library Reference 10 - 4
Oracle Utilities Testing Accelerator User’s Guide

dateTime - The datetime to which the offset needs to be added.
offset - The offset of time in hh:mi format that needs to be added
to the given datetime.
dFormat - The format of the dateTime input parameter

Return Type: String

getAdjustedTimeWithCurrentDateTime
Calculates the date and time after adding the specified offset to the current date and time
in the specified date/time format and stores it into a global variable specified in the OP
Variable Name column.

Example:

getAdjustedTimeWithCurrentDateTime(String offset, String dFormat)
getAdjustedTimeWithCurrentDateTime("-2.30", "mm-dd-yyyy")

Input Parameters: String dateTime, String offset, String dFormat
Return Type: String

getAdjustedTimeWithGivenDateAndTime
Calculates the date and time after adding the specified offset to specified date and time in
the specified date/time format and stores it into a global variable specified in the OP
Variable Name column.

Usage:

getAdjustedTimeWithCurrentDateTime(String offset, String dFormat)

Example:

getAdjustedTimeWithCurrentDateTime("-2.30", "mm-dd-yyyy")

Input Parameters:
Offset - The offset to be added to the current date time, specified
in hh:mi format
dFormat - The format in which the function should output the
datetime

Return Type: String

getAdjustedTimeWithGivenDateAndTime
Calculates the date and time after adding the specified offset to specified date and time in
the specified date/time format and stores it into a global variable specified in the OP
Variable Name column.

Usage:

getAdjustedTimeWithGivenDateAndTime(String cuDate,String
cuTime,String offset, String dFormat)

Example:

getAdjustedTimeWithGivenDateAndTime("12-13-2014","12:15:00","-
2.30", "mm-dd-yyyy")

Input Parameters:

OUTSPCORELIB

Function Library Reference 10 - 5
Oracle Utilities Testing Accelerator User’s Guide

cuDate - The date provided as input
cuTime - Time provided as input
offset - Offset to be added to the date time
dFormat - The format of the date time that the function needs to
output in

Return Type: String

addDaysToCurrentDateWithGivenFormat
Calculates the date and time after adding the specified number of days to current date and
time in the specified date/time format and stores it into a global variable specified in the
OP Variable Name column.

Example:

addDaysToCurrentDateWithGivenFormat(String noOfDays, String
dFormat)
addDaysToCurrentDateWithGivenFormat("45", "mm-dd-yyyy")
Input Parameters: String noOfDays, String dFormat
Return Type: String

waitForTime
Pauses the flow run for the time duration specified, in minutes.

Usage:

waitForTime(String strWaitTimeInMinutes)

Example:

waitForTime("15")

Input Parameters:
String strWaitTimeInMinutes - The duration to pause a flow run,
specified in minutes.
Return Type: void

addDaysToAGivenDate
Adds days to the specified date and stores the output into a global variable specified in
the OP Variable Name column.

Usage:

addDaysToAGivenDate(String date, String noOfDays)

Example:

addDaysToAGivenDate("12-13-2014", "19")

Input Parameters:
Date - The date to which the number of days have to be added
noOfDays - number of days to be added to the provided date

Return Type: String

OUTSPCORELIB

Function Library Reference 10 - 6
Oracle Utilities Testing Accelerator User’s Guide

randomNumber
Adds days to the specified date and stores the output into a global variable specified in
the OP Variable Name column.

Example:

randomNumber()
Input Parameters: <none>
Return Type: String

setVariableValueUsingListIndex
Handles the retrieval of individual values from repeating elements in a comma separated
list. The function retrieves the value based on the list index passed. It retrieves the value
from the list which matches the specified index and stores the output into a global
variable specified in the OP Variable Name column. The parameters passed are global
variable (gVar1)/comma separated list and index value. This function is designed to be
used in conjunction with other functions that allow for retrieving repeating elements
from the response XML.

Usage:

setVariableValueUsingListIndex(String listVariableName,String
index)

Example:

setVariableValueUsingListIndex("data1,data2,data3", 2) - Retrieves
data2

Input Parameters:
listVariableName - List of values separated by comma
index - Index number of the value in the list that needs to be
retrieved

Return Type: String: Value

appendStrings
Concatenates strings provided in the parameters and stores the output into a global
variable specified in the OP Variable Name column. The default input values to this
function are 6 parameters. To concatenate less than 6 strings, provide #EMPTY against
the parameters which do not hold any string.

Usage:

appendStrings (String strValue1, String strValue2, String
strValue3, String strValue4, String strValue5, String strValue6

Input Parameters:

strValue1 - The base string
strValue2 - The string to be appended to strValue1
strValue3 - The string to be appended to strValue1+strValue2
strValue4 - The string to be appended to
strValue1+strValue2+strValue3
strValue5 - The string to be appended to
strValue1+strValue2+strValue3+strValue4 strValue6 - The string to
be appended to
strValue1+strValue2+strValue3+strValue4+strValue5
Return Type: String

WSVALIDATELIB

Function Library Reference 10 - 7
Oracle Utilities Testing Accelerator User’s Guide

getCurrentMonth
Retrieves the current month and stores the output into a global variable specified in the
OP Variable Name column.

Example:

getCurrentMonth()

Input Parameters: none
Return Type: String

readAttachmentAsString
Retrieves the content of the attachment file whose name is specified as the input
parameter and stores the content into a global variable specified in the OP Variable
Name column.

Example:

readAttachmentAsString(String Filename)

Input Parameters: Name of the attachment file that needs to be read
Return Type: String

WSVALIDATELIB
Use the WSVALIDATELIB function library to validate the test components (referred to
as verification points) in the components. The library covers validation routines for string
and XML elements in the returned response XML. The function automatically fails or
passes a flow run subject to the satisfaction of the specified condition.

This section provides a list of functions in the library, along with the usage details.

elementListNotNull
Verifies if all the elements with the specified xpath in response are not null. The xpath to
be verified needs to be provided in the Logical Name column in the pre/post validations
sections. If the value is null, this function validation will fail the flow run.

Example:

elementListNotNull(String xPath)
elementNotNull(contact/mobileNumber)

Input Parameters:
xPath - xpath of the element whose value needs to be checked.
Return Type: void

elementListNull
Verifies if all the elements in response with the specified xpath are null. The xpath to be
verified needs to be provided in the Logical Name column in the pre/post validations
sections. If the value is NOT null, this function validation will fail the flow run.

Example:

elementListNull(String xPath) elementNotNull(contact/mobileNumber)

WSVALIDATELIB

Function Library Reference 10 - 8
Oracle Utilities Testing Accelerator User’s Guide

Input Parameters:
xPath- xpath of the element whose value needs to be checked.
Return Type: void

validateXpathOccurrenceCount
Verifies if the specified xpath occurs the specified number of times in the response. The
xpath to be verified needs to be provided in the Logical Name column in the pre/post
validations sections. The function counts the number of occurrences of the xpath and
will fail the flow run, if the count in the response doesn't match the specified number.
The expected number of occurrences should be specified in the Value1 column.

Usage:

validateXpathOccurenceCount (String xpath,String expectedCount)

Example:

validateXpathOccurenceCount(contact/mobileNumber,20)

Input Parameters:
xpath - xpath of the element whose occurrence count needs to be
checked.
expectedCount - the expected count of occurrences of the element
Return Type: void

elementNotNull
Verifies if the specified element in response is null. The xpath to be verified needs to be
provided in the Logical Name column in the pre/post validations sections. This function
fails the flow run if the specified element is found to be null in the response.

Usage:

elementNotNull(String xpath)

Example:

elementNotNull(mobileNumber)

Input Parameters:
xpath - xpath of the element whose value needs to be checked.
Return Type: void

elementIsNull
Verifies if the specified element in response is not null.

Usage:

elementIsNull (String xpath)

Example:

elementIsNull (mobileNumber)

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
Return Type: void

WSVALIDATELIB

Function Library Reference 10 - 9
Oracle Utilities Testing Accelerator User’s Guide

elementValueEquals
Verifies if the specified element value in response is equal to the provided value.

Usage:

elementValueEquals(String xpath, String expectedValue)

Example:

elementValueEquals(mobileNumber, "1234567890")

Input Parameters:

Xpath - xpath of the element whose value needs to be checked.
expectedValue - the expected value to be compared to for validation

Return Type: void

elementValueNotEquals
Verifies if the specified element value in response is not equal to the provided value.

Usage:

elementValueNotEquals(String xpath, String expectedValue)

Example:

elementValueNotEquals(mobileNumber, "1234567890")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
expectedValue - the expected value to be compared to for validation

Return Type: void

elementValueGreaterThan
Verifies if the specified element value in response is greater than the provided value.

Usage:

elementValueGreaterThan(String xpath, String valueToCompare)

Example:

elementValueGreaterThan("count","5")

Input Parameters:

Xpath - xpath of the element whose value needs to be checked.
valueToCompare - the expected value to be compared to for
validation

Return Type: void

elementValueGreaterThanEqualTo
Verifies if the specified element value in response is greater than or equal to the provided
value.

WSVALIDATELIB

Function Library Reference 10 - 10
Oracle Utilities Testing Accelerator User’s Guide

Example:

elementValueGreaterThanEqualTo(String responseTag,String
valueToCompare)
elementValueGreaterThanEqualTo("totalRecords", "50")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
valueToCompare - the expected value to be compared to for
validation

Return Type: void

elementValueLesserThan
Verifies if the specified element value in response is less than the provided value.

Usage:

elementValueLesserThan(String xpath,String valueToCompare)

Example:

elementValueLesserThan ("counter", "50")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
valueToCompare - the expected value to be compared to for
validation

Return Type: void

elementValueLesserThanEqualTo
Verifies if the specified element value in response is less than or equal to the provided
value.

Example:

elementValueLesserThanEqualTo(String responseTag,String
valueToCompare)

Usage:

elementValueLesserThanEqualTo ("attempts", "10")

Input Parameters:
Xpath - xpath of the element whose value needs to be checked.
valueToCompare - the expected value to be compared to for
validation

Return Type: void

elementContains
Verifies if the specified element is available in the response.

Usage:

elementContains(String xpath,String valueToBeChecked)

WSVALIDATELIB

Function Library Reference 10 - 11
Oracle Utilities Testing Accelerator User’s Guide

Example:

elementContains("batchName", "F1-BILLING)

Input Parameters:

Xpath - xpath of the element whose value needs to be checked.
valueToBeChecked - the expected value to be compared to for
validation

Return Type: void

elementNotContains
Verifies if the specified element is not available in the response.

Usage:

elementNotContains(String xpath,String valueToBeChecked)

Example:

elementNotContains("batchName", "F1-BILLING)

Input Parameters:

Xpath - xpath of the element whose value needs to be checked.
valueToBeChecked - the expected value to be compared to for
validation

Return Type: void

reponseNotContains
Verifies if the specified value or element is not available in the response.

Usage:

reponseNotContains(String value)

Example:

reponseNotContains("Failed")

Input Parameters:

value - the value to be compared to for validation
Return Type: void

responseContains
Verifies if the specified value or element is available in the response.

Usage:

responseContains(String value)

Example:

responseContains("Exception")

Input Parameters:

value - the value to be compared to for validation

CORERESPONSEUTILLIB

Function Library Reference 10 - 12
Oracle Utilities Testing Accelerator User’s Guide

Return Type: void

CORERESPONSEUTILLIB
Use the RESPONSEUTILLIB function library to retrieve/extract specific values from
the response XML for a component request, generated as part of the flow run. The
library covers data retrieval routines for in the returned response XML.

This section provides a list of functions in the library, along with the usage details.

setVariableFromResponseList
Takes the xpath of an element as input and outputs the value of the xpath in the response
into a global variable specified against the OP Variable Name column. If there are
multiple occurrences of the element, the corresponding values will be returned as a
comma separated list and stored in to the variable specified against the OP Variable
Name column.

Usage:

setVariableFromResponseList(String xPath)
setVariableFromResponseList (contact/mobileNumber)

Input Parameters:

String xPath
Return Type: String

setVariableFromResponseListWithFilter
This function helps to retrieve specific values from a reoccurring list in the response,
based on certain condition that can be applied on other elements in the same list. It takes
the xpath of an element whose value needs to be retrieved, the xpath of an element
whose value needs to be compared and a filter condition for comparison operation as
inputs and outputs the value/values of the xpath in the response that corresponds to the
filter condition into a global variable specified against the OP Variable Name column. If
there are multiple occurrences of the element satisfying the provided condition, then the
corresponding values will be returned as a comma separated list and stored in to the
output variable.

The first parameter holds the xpath of the element whose value has to be retrieved.

The second parameter holds the xpath of the element within the repeated list, whose
value needs to be compared for a specific condition.

The third parameter holds the comparison condition.

Example:

setVariableFromResponseListWithFilter(String xPathToRetrieve,
String xPathToCompare, String Comparison)

Input Parameters:

String xPath, String xPath, String comparisionCondition
Return Type: String

CORERESPONSEUTILLIB

Function Library Reference 10 - 13
Oracle Utilities Testing Accelerator User’s Guide

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
<env:Header/>
<env:Body>
<ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
<ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
<ouaf:batchNumber>1</ouaf:batchNumber>
<ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
<ouaf:user>SYSUSER</ouaf:user>
<ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
<ouaf:language>ENG</ouaf:language>
<ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
<ouaf:threadCount>0</ouaf:threadCount>
<ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
<ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
<ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
<ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
<ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
<ouaf:isTracingSQL>false</ouaf:isTracingSQL>
<ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
<ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
<ouaf:version>3</ouaf:version>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

CORERESPONSEUTILLIB

Function Library Reference 10 - 14
Oracle Utilities Testing Accelerator User’s Guide

<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
</ouaf:ATF1BatchSubmission_READ>
</env:Body>
</env:Envelope>

To retrieve all the bacthJobId values, where the batchParameterValue is "K1-
STAGING" the function call would be as follows:

setVariableFromResponseListWithFilter("batchJobExtraParameter/
batchJobId", "batchJobExtraParameter/batchParameterValue", "==K1-
STAGING")

The "==" operator in the 3rd input parameter to the function performs an "is equal to"
comparision with the specified value.

The following are the supported operators for comparison operation:

• ""==" compares to check if the value in the response is equal to the value in the
condition

• ""!=" compares to check if the value in the response is not equal to the value in
the condition

• "">" compares to check if the value in the response is greater than the value in
the condition (works only with numerical values)

• "">=" compares to check if the value in the response is greater than or equal to
the value in the condition (works only with numerical values

• ""<" compares to check if the value in the response is less than the value in the
condition (works only with numerical values)

• ""<=" compares to check returns true if the value in the response is less than or
equal to the value in the condition (works only with numerical values

• ""*" compares to check for any character

• If the condition starts with “*”, it will evaluate the condition as satisfied if
the value in response ends with the value in the condition.

Example: *close will be evaluated as valid for values like enclose.

• If the condition ends with “*”, it will evaluate the condition as satisfied if the
value in response starts with the value in the condition.

Example: pen* will be evaluated as valid for values like pending.

• If the condition begins and ends with “*”, it will evaluate the condition as
satisfied if the value in response contains the value in the condition.

Example: *en* will return true for values like pending.

• If only “*” is provided without any value, the function checks for the
existence of the element and will evaluate the condition as valid if the
element exists irrespective of the value.

CORERESPONSEUTILLIB

Function Library Reference 10 - 15
Oracle Utilities Testing Accelerator User’s Guide

• If "!*" is present, it will check for the non-existence of the element and will
consider the condition as valid if the element is not present in the list.

setVariableFromResponseListWithFilters
This is an extension of the setVariableFromReponseListWithFilter function that helps to
retrieve specific values from a reoccurring list in the response, based on a condition that
can be applied on other elements in the same list, but, instead of a single condition that
was allowed in the setVariableFromReponseListWithFilter function, this function allows
users to provide two conditions.

This function takes the xpath of an element whose value needs to be retrieved, the xpath
of the elements whose values need to be compared and two filter conditions
corresponding to those xpath elements for comparison operation as inputs. The function
outputs the value/ values of the xpath in the response that corresponds to the filter
conditions into a global variable specified against the OP Variable Name column. If there
are multiple occurrences of the element satisfying the provided conditions, then the
corresponding values will be returned as a comma separated list and stored in to the
output variable.

The first parameter holds the xpath of the element whose value has to be retrieved.

The second parameter holds the xpath of the element within the repeated list, whose
value needs to be compared as the first condition.

The third parameter holds the comparison condition corresponding to the second
parameter. The fourth parameter holds the xpath of the element within the repeated list,
whose value needs to be compared as the second condition.

The fifth parameter holds the comparison condition corresponding to the fourth
parameter (the second condition to be evaluated).

Example:

setVariableFromResponseListWithFilter(String xPathToRetrieve,
String xPathToCompareFirstCondition, String ComparisonForFirst
Condition, String xPathToCompareForSecondCondition, String
ComparisonForSecondCondition)

Input Parameters:

String xPath, String xPath, String comparisionCondition, String
xPath, String comparisionCondition
Return Type: String

See the setVariableFromResponseListWithFilter function for details on valid comparison
conditions and their usage.

getValueFromListWithIndex
This is a supporting util function for the setVariableFromResponseListWithFilter and
setVariableFromResponseListWithFilters functions, which takes the a comma separated
list of values and returns the value in the list corresponding to the index provided as the
second input to the function.

Example:

CORERESPONSEUTILLIB

Function Library Reference 10 - 16
Oracle Utilities Testing Accelerator User’s Guide

getValueFromListWithIndex(String commaSeperatedList, String
indexNumber)

Input Parameters:

String CommaSeperatedList , String InderNumber
Return Type: String

getGroupsInIntervalFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements that should be retrieved and used in later components in the same flow, this
function can be used to retrieve the groups of XML elements and their values.

The function retrieves a set of the XML group elements under the provided parent
element's xpath. The occurrences of reoccurring groups to be retrieved for the given
xpath can specified using the startIndex and endIndex parameters. The output of the
function is a group of list elements in XML format that can be stored in to a global
variable.

The other functions in this library can be used to extract specific values from the output
variable containing the repeating list groups.

Example:

getGroupsInIntervalFromResponse (String xpath, String startIndex,
String endIndex)

Input Parameters:

xpath - xpath of the parent element of the list whose elements &
values need to be retrieved.
startIndex - starting occurrence number of list that needs to be
retrieved.
endIndex - Ending occurrence number of the list that needs to be
retrieved.

Output Parameters:

String - The XML string holding all the elements & values of
repeating group of elements between the start and end indexes
specified.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
<env:Header/>
<env:Body>
<ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
<ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
<ouaf:batchNumber>1</ouaf:batchNumber>
<ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
<ouaf:user>SYSUSER</ouaf:user>
<ouaf:submissionUser>SYSUSER</ouaf:submissionUser>

CORERESPONSEUTILLIB

Function Library Reference 10 - 17
Oracle Utilities Testing Accelerator User’s Guide

<ouaf:language>ENG</ouaf:language>
<ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
<ouaf:threadCount>0</ouaf:threadCount>
<ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
<ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
<ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
<ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
<ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
<ouaf:isTracingSQL>false</ouaf:isTracingSQL>
<ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
<ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
<ouaf:version>3</ouaf:version>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
</ouaf:ATF1BatchSubmission_READ>
</env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter for the second and
third occurrence of the group, call the function using the following input parameters:

CORERESPONSEUTILLIB

Function Library Reference 10 - 18
Oracle Utilities Testing Accelerator User’s Guide

xpath: batchJobExtraParameter startIndex: 2
endIndex: 3

Output XML String:

<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

getFirstGroupFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements to be retrieved and used in later components in the same flow, this function can
be used to retrieve the groups of XML elements and their values.

The function retrieves a first set of the XML group elements under the provided parent
element's xpath. The output of the function is a group of list elements in XML format
that can be stored in to a global variable.

Use the other functions in this library to extract specific values from the output variable
containing the XML string.

Example:

getFirstGroupFromResponse (String xpath)

Input Parameters:

xpath - xpath of the parent element of the list whose first
occurrence of elements & values need to be retrieved.

Output Parameters:

String - The XML string holding all the elements & values of the
first occurrence of the repeating group of elements.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
<env:Header/>
<env:Body>
<ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://

CORERESPONSEUTILLIB

Function Library Reference 10 - 19
Oracle Utilities Testing Accelerator User’s Guide

ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
<ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
<ouaf:batchNumber>1</ouaf:batchNumber>
<ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
<ouaf:user>SYSUSER</ouaf:user>
<ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
<ouaf:language>ENG</ouaf:language>
<ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
<ouaf:threadCount>0</ouaf:threadCount>
<ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
<ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
<ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
<ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
<ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
<ouaf:isTracingSQL>false</ouaf:isTracingSQL>
<ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
<ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
<ouaf:version>3</ouaf:version>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

CORERESPONSEUTILLIB

Function Library Reference 10 - 20
Oracle Utilities Testing Accelerator User’s Guide

</ouaf:ATF1BatchSubmission_READ>
</env:Body>
</env:Envelope>

To retrieve the first group of elements under the batchJobExtraParameter, call the
function using the following input parameters:

xpath: batchJobExtraParameter

Output XML String:

<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

getFirstNGroupsFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements to be retrieved and used in later components in the same flow, use this function
to retrieve the groups of XML elements and their values.

The function retrieves a set of the XML group elements under the provided parent
element's xpath. The occurrences of reoccurring groups to be retrieved for the given
xpath can be specified using the numberOfOccurrences parameter. The output of the
function is a group of list elements in XML format that can be stored in to a global
variable.

Use the other functions in this library to extract specific values from the output variable
containing the repeating list groups.

Example:

getFirstNGroupsFromResponse (String xpath, String
numberOfOccurrences)

Input Parameters:

xpath - xpath of the parent element of the list whose elements and
values need to be retrieved.
NumberOfOccurrences - the occurrences of the group of list elements
starting from 1, whose elements and values have to be retrieved.

Output Parameters:

String - The XML string holding all the elements and values of
repeating group of elements for the specified number of
occurrences.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/

CORERESPONSEUTILLIB

Function Library Reference 10 - 21
Oracle Utilities Testing Accelerator User’s Guide

envelope/\">
<env:Header/>
<env:Body>
<ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
<ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
<ouaf:batchNumber>1</ouaf:batchNumber>
<ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
<ouaf:user>SYSUSER</ouaf:user>
<ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
<ouaf:language>ENG</ouaf:language>
<ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
<ouaf:threadCount>0</ouaf:threadCount>
<ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
<ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
<ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
<ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
<ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
<ouaf:isTracingSQL>false</ouaf:isTracingSQL>
<ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
<ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
<ouaf:version>3</ouaf:version>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>

CORERESPONSEUTILLIB

Function Library Reference 10 - 22
Oracle Utilities Testing Accelerator User’s Guide

<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
</ouaf:ATF1BatchSubmission_READ>
</env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter for first 2
occurrences of the group, call the function using the following input parameters:

xpath: batchJobExtraParameter numberOfOccurrences: 2

Output XML String:

<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

getAllGroupsFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements to be retrieved and used in later components in the same flow, use this function
to retrieve the groups of XML elements and their values.

The function retrieves all sets (occurrences) of the XML group elements under the
provided parent element's xpath. The output of the function is a group of list elements in
XML format that can be stored in to a global variable.

Use the other functions in this library to extract specific values from the output variable
containing the repeating list groups.

Example:

getAllGroupsFromResponse (String xpath)

Input Parameters:

xpath - xpath of the parent element of the list whose elements and
values need to be retrieved

Output Parameters:

CORERESPONSEUTILLIB

Function Library Reference 10 - 23
Oracle Utilities Testing Accelerator User’s Guide

String - The XML string holding all the elements and values of
repeating group of under the parent element

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
<env:Header/>
<env:Body>
<ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
<ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
<ouaf:batchNumber>1</ouaf:batchNumber>
<ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
<ouaf:user>SYSUSER</ouaf:user>
<ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
<ouaf:language>ENG</ouaf:language>
<ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
<ouaf:threadCount>0</ouaf:threadCount>
<ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
<ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
<ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
<ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
<ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
<ouaf:isTracingSQL>false</ouaf:isTracingSQL>
<ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
<ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
<ouaf:version>3</ouaf:version>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</

CORERESPONSEUTILLIB

Function Library Reference 10 - 24
Oracle Utilities Testing Accelerator User’s Guide

ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
</ouaf:ATF1BatchSubmission_READ>
</env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter for all the
occurrences of the group, call the function using the following input parameters:

xpath: batchJobExtraParameter

Output XML String:

<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

CORERESPONSEUTILLIB

Function Library Reference 10 - 25
Oracle Utilities Testing Accelerator User’s Guide

getLastGroupFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements to be retrieved and used in later components in the same flow, use this function
to retrieve the groups of XML elements and their values.

The function retrieves the last set (occurrence) of the XML group elements under the
provided parent element's xpath. The output of the function is a group of list elements in
XML format that can be stored in to a global variable.

Use the other functions in this library to extract specific values from the output variable
containing the repeating list groups.

Example:

getLastGroupFromResponse (String xpath)

Input Parameters:

xpath - xpath of the parent element of the list whose elements and
values need to be retrieved.

Output Parameters:

String - The XML string holding the elements and values of the last
occurrence of the repeating group of elements under the parent
element.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
<env:Header/>
<env:Body>
<ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
<ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
<ouaf:batchNumber>1</ouaf:batchNumber>
<ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
<ouaf:user>SYSUSER</ouaf:user>
<ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
<ouaf:language>ENG</ouaf:language>
<ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
<ouaf:threadCount>0</ouaf:threadCount>
<ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
<ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
<ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
<ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
<ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
<ouaf:isTracingSQL>false</ouaf:isTracingSQL>
<ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
<ouaf:batchJobStatus>ST</ouaf:batchJobStatus>

CORERESPONSEUTILLIB

Function Library Reference 10 - 26
Oracle Utilities Testing Accelerator User’s Guide

<ouaf:version>3</ouaf:version>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
</ouaf:ATF1BatchSubmission_READ>
</env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter for the last
occurrence of the group, use this function to call the following input parameters:

xpath: batchJobExtraParameter

Output XML String:

<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

CORERESPONSEUTILLIB

Function Library Reference 10 - 27
Oracle Utilities Testing Accelerator User’s Guide

getLastNGroupsFromResponse
If an XML response to a component request has multiple occurrences of a group of list
elements to be retrieved and used in later components in the same flow, use this function
to retrieve the groups of XML elements and their values.

The function retrieves a set of the XML group elements under the provided parent
element's xpath. The occurrences (starting from the end of reoccurrence group) of
reoccurring groups to be retrieved for the given xpath can specified using the
numberOfLastNOccurrences parameter. The output of the function is a group of list
elements in XML format that can be stored in to a global variable.

The other functions in this library can be used to extract specific values from the output
variable containing the repeating list groups.

Example:

getLastNGroupsFromResponse (String xpath, String
numberOfLastNOccurrences)

Input Parameters:

xpath - xpath of the parent element of the list whose elements and
values need to be retrieved.
NumberOfLastNOccurrences - occurrences of the group of list
elements starting from the end/total, whose elements and values
have to be retrieved.

Output Parameters:

String - The XML string holding all the elements and values of
repeating group of elements for the specified number of occurrences
from last.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
<env:Header/>
<env:Body>
<ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://
ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
<ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
<ouaf:batchNumber>1</ouaf:batchNumber>
<ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
<ouaf:user>SYSUSER</ouaf:user>
<ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
<ouaf:language>ENG</ouaf:language>
<ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
<ouaf:threadCount>0</ouaf:threadCount>
<ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
<ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
<ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
<ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>

CORERESPONSEUTILLIB

Function Library Reference 10 - 28
Oracle Utilities Testing Accelerator User’s Guide

<ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
<ouaf:isTracingSQL>false</ouaf:isTracingSQL>
<ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
<ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
<ouaf:version>3</ouaf:version>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
</ouaf:ATF1BatchSubmission_READ>
</env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter for last 2
occurrences of the group, call the function using the following input parameters:

xpath: batchJobExtraParameter numberOfOccurrences: 2

Output XML String:

<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>

CORERESPONSEUTILLIB

Function Library Reference 10 - 29
Oracle Utilities Testing Accelerator User’s Guide

<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

getGroupsFromResponseWithFilter
If an XML response to a component request has multiple occurrences of a group of list
elements to be retrieved based on some conditions to be applied on the elements in the
group, to be used in later components in the same flow, use this function to retrieve the
groups of XML elements and their values.

The function retrieves a set of the XML group elements under the provided parent
element's xpath subject to a specified condition. The condition based on which the
reoccurring groups are to be retrieved for the given xpath can specified using the
corresponding xpath and the conditional parameters. The output of the function is a
group of list elements in XML format that can be stored in to a global variable.

The other functions in this library can be used to extract specific values from the output
variable containing the repeating list groups.

Example:

getGroupsFromResponseWithFilter (String xpath, String
elementXpathForCondition, String condition)

Input Parameters:

xpath - xpath of the parent element of the list whose elements and
values need to be retrieved.
elementXpathForCondition - xpath of the element within the list
whose value needs to be validated against the specified condition,
for match.
condition - The condition to be applied on the element specified
against elementXpathForCondition parameter. For the supported list
of conditions, refer to the list of conditional statements
specified under the function "setVariableFromReponseListWithFilter"

Output Parameters:

String - The XML string holding the elements and values of
repeating group of elements between whose element matches the
conditional statement specified.

Example:

Consider the following XML as the response XML for a component in a flow:

<env:Envelope xmlns:env=\"http://schemas.xmlsoap.org/soap/
envelope/\">
<env:Header/>
<env:Body>
<ouaf:ATF1BatchSubmission_READ xmlns:ouaf=\"http://

CORERESPONSEUTILLIB

Function Library Reference 10 - 30
Oracle Utilities Testing Accelerator User’s Guide

ouaf.oracle.com/webservices/cm/ATF1BatchSubmission\">
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:batchControl>K1-SCLTB</ouaf:batchControl>
<ouaf:submissionMethod>F1OT</ouaf:submissionMethod>
<ouaf:batchNumber>1</ouaf:batchNumber>
<ouaf:batchRerunNumber>0</ouaf:batchRerunNumber>
<ouaf:user>SYSUSER</ouaf:user>
<ouaf:submissionUser>SYSUSER</ouaf:submissionUser>
<ouaf:language>ENG</ouaf:language>
<ouaf:batchStartDateTime>2020-07-02T22:40:31+08:00</
ouaf:batchStartDateTime>
<ouaf:threadCount>0</ouaf:threadCount>
<ouaf:batchThreadNumber>0</ouaf:batchThreadNumber>
<ouaf:maximumCommitRecords>0</
ouaf:maximumCommitRecords>
<ouaf:maximumTimeoutMinutes>0</
ouaf:maximumTimeoutMinutes>
<ouaf:isTracingProgramStart>false</
ouaf:isTracingProgramStart>
<ouaf:isTracingProgramEnd>false</
ouaf:isTracingProgramEnd>
<ouaf:isTracingSQL>false</ouaf:isTracingSQL>
<ouaf:isTracingStandardOut>false</
ouaf:isTracingStandardOut>
<ouaf:batchJobStatus>ST</ouaf:batchJobStatus>
<ouaf:version>3</ouaf:version>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049025</ouaf:batchJobId>
<ouaf:sequence>10</ouaf:sequence>
<ouaf:batchParameterName>targetSchema</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049026</ouaf:batchJobId>
<ouaf:sequence>20</ouaf:sequence>
<ouaf:batchParameterName>targetSchema2</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1-STAGING</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

COREDATETIMELIB

Function Library Reference 10 - 31
Oracle Utilities Testing Accelerator User’s Guide

</ouaf:ATF1BatchSubmission_READ>
</env:Body>
</env:Envelope>

To retrieve the group of elements under the batchJobExtraParameter parent element,
whose sequence is greater than 20, call the function using the following input parameters:

xpath: batchJobExtraParameter elementXpathForCondition: sequence
condition: >20

Output XML String:

<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049027</ouaf:batchJobId>
<ouaf:sequence>30</ouaf:sequence>
<ouaf:batchParameterName>table</
ouaf:batchParameterName>
<ouaf:batchParameterValue>CI_NT_UP</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>
<ouaf:batchJobExtraParameter>
<ouaf:batchJobId>82503583049028</ouaf:batchJobId>
<ouaf:sequence>40</ouaf:sequence>
<ouaf:batchParameterName>action</
ouaf:batchParameterName>
<ouaf:batchParameterValue>K1BT</
ouaf:batchParameterValue>
<ouaf:version>1</ouaf:version>
</ouaf:batchJobExtraParameter>

getResponseGroupSize
If an XML response to a component request has multiple occurrences of a group of list
elements whose group count needs to be determined, use this function to retrieve the
number of occurrences of the groups of XML elements. The output of the function is
the number of occurrences of the group that can be stored in to a global variable.

Example:

getResponseGroupSize (String xpath)

Input Parameters:

xpath - xpath of the parent element of the group whose occurrence
count needs to be determined.

Output Parameters:

String - count of the number of occurrences of the specified group

COREDATETIMELIB
Use the COREDATETIMELIB function library to calculate date time operations to be
used as test data inputs in a component of a flow. The library also has date time
conversion functions to format the date time.

This section provides a list of functions in the library, along with the usage details.

COREDATETIMELIB

Function Library Reference 10 - 32
Oracle Utilities Testing Accelerator User’s Guide

getCurrentDatetimeWithGivenDateFormat
Gets the current date and time in the specified format and stores it into a global variable
specified in the OP Variable Name column.

Usage:

getCurrentDateTimeWithGivenDateFormat(String dFormat) dFormat- Java
date formats are supported.
getCurrentDateTimeWithGivenDateFormat("mm-dd-yyyy:hh.mm.ss")

Input Parameters:

Date Format String
Return Type: String

getFormattedDateWithGivenDate
Converts the date time input provided in to the specified format and stores it into a
global variable specified in the OP Variable Name column.

Usage:

getFormattedDateWithGivenDate(String sourceDatetime, String
sourceDateFromat, String outputDateFormat)

dFormat- Java date formats are supported

getFormattedDateWithGivenDate ("02/01/2020:23:00:00","dd/mm/
YYYY:HH24:mi:ss","mm-dd-yyyy:hh.mi.ss")

getDateDiffInSecsWithGivenDateFormat
Takes a start date and end data and the corresponding data format as input parameters
and calculates the difference between the dates in seconds and stores it into a global
variable specified in the OP Variable Name column.

Example:

getDateDiffInSecsWithGivenDateFormat(String dateStart, String
dateEnd, String dFormat)

getDateDiffInSecsWithGivenDateFormat("12-13-2014", "12-29-2014",
"mm-dd-yyy")

Input Parameters:

String dateStart, String dateEnd, String dFormat
Return Type: String

getAdjustedTimeWithGivenDateTime
Calculates a date based on the specified date and an offset (adds or subtracts to the
specified date) along with the dateformat, gets the adjusted time and stores it into a global
variable specified in the OP Variable Name column.

Note: Supports the offset in hours:minutes:seconds = hh:mm:ss.

Example:

getAdjustedTimeWithGivenDateTime(String dateTime, String offset,
String dFormat)

COREDATETIMELIB

Function Library Reference 10 - 33
Oracle Utilities Testing Accelerator User’s Guide

getAdjustedTimeWithGivenDateTime("12-13-2014", "-02:30","mm-dd-
yyyy")

Input Parameters:

String dateTime, String offset, String dFormat
Return Type: String

getAdjustedTimeWithCurrentDateTime
Calculates the date and time after adding the specified offset to the current date and time
in the specified date/time format and stores it into a global variable specified in the OP
Variable Name column.

Usage:

getAdjustedTimeWithCurrentDateTime(String offset, String dFormat)

getAdjustedTimeWithCurrentDateTime("-2.30", "mm-dd-yyyy")

Input Parameters:

String offset, String dFormat
Return Type: String

addDaysToCurrentDateWithGivenFormat
Calculates the date and time after adding the specified number of days to current date and
time in the specified date/time format and stores it into a global variable specified in the
OP Variable Name column.

Usage:

addDaysToCurrentDateWithGivenFormat(String noOfDays, String
dFormat)
addDaysToCurrentDateWithGivenFormat("45", "mm-dd-yyyy")

Input Parameters:

String noOfDays, String dFormat
Return Type: String

getCurrentTimeinMilliSeconds
Gets the current date time in milliseconds and stores it into a global variable specified in
the OP Variable Name column.

Usage:

getCurrentDateTimeinMilliSeconds()

Input Parameters: None

Return Type: String

getEpochInGivenDateTimeFormat
Supports the conversion of the date time value from epoch format, which is the format
used for incrementer in the subroutine looping interface, when user selects the
incrementer type as date time.

COREDATAGENLIB

Function Library Reference 10 - 34
Oracle Utilities Testing Accelerator User’s Guide

This function takes two parameters, the first is the name of the variable that has the
timestamp in epoch (example: incrementer in sub-routine loop), and the second is a valid
date-time output format. It returns a string with the date-time in the format specified.and
stores it into a global variable specified in the OP Variable Name column.

Usage:

getEpochInGivenDateTimeFormat(String epochDateTime, String
outputDateFormat)

Input Parameters:

epochDateTime - The epoch that needs to be converted
outputDateFormat - The format of the date to be output by the
function
Return Type: String

getNthDayOfCurrentMonth
Calculates and returns the date for Nth day of the current month based on the input date
format and day of the month.

Usage:

getNthDayOfCurrentMonth(String dFormat, String noOfDays)
getNthDayOfCurrentMonth("yy-MM-dd", "15")

Input Parameters:

dFormat - Format of the output date
noOfDays - Day of the month for which the date has to be calculated

getNthDayOfCurrentYear
Calculates and returns the date for Nth day of the current year based on the input date
format and day of the year.

Usage:

getNthDayOfCurrentMonth(String dFormat, String noOfDays)
getNthDayOfCurrentMonth("yy-MM-dd", "45")

Input Parameters:

dFormat - Format of the output date

COREDATAGENLIB
This library contains functions that help with the generation of random numbers and
strings which can be used as test data inputs for a flow.

This section provides a list of functions in the library, along with the usage details.

randomStringWithGivenRange
Generates a random string within the specified number of characters, either in upper case
of lower case based on the input parameters and stores it into a global variable specified
in the OP Variable Name column.

COREVALIDATEVARIABLELIB

Function Library Reference 10 - 35
Oracle Utilities Testing Accelerator User’s Guide

Usage:

randomStringWithGivenRange(String minCharacters, String
maxCharacters, String isUpperCase)

Input Parameters:

minCharacters- The minimum number of characters(min size) in the
random string. Only numbers are allowed.
maxCharacters- The maximum number of characters(max size) in the
random string. Only numbers are allowed.
isUpperCase - Set to "true" if the random string needs to be in
UpperCase, else set to "false". Only Boolean values are allowed.

randomString
Generates a random string of random length and stores it into a global variable specified
in the OP Variable Name column.

Usage:

randomString ()

Input Parameters: None

ReturnType - String

randomNumber
Generates a random number of specified size and stores it into a global variable specified
in the OP Variable Name column.

Usage:

randomNumber(String length)

Input Parameters:

length - The length of the random number to be generated. Only
numbers are allowed.

COREVALIDATEVARIABLELIB
Use this function library to validate the values/elements stored in variables (referred to as
verification points) in a flow. The library covers validation routines for string and XML
elements in the variables. It includes all the functions of the WSVALIDATELIB, except
that the functions in this library work on the values/elements stored in variables instead
of a response to component request in flow run.

This section provides a list of functions in the library, along with the usage details.

elementListNotNull
Verifies if all the elements with the specified xpath in the XML string stored in a variable
are not null. The xpath to be verified needs to be provided in the value column in the
pre/post validations sections. If the value is null, this function validation will fail the flow
run.

COREVALIDATEVARIABLELIB

Function Library Reference 10 - 36
Oracle Utilities Testing Accelerator User’s Guide

Usage:

elementListNotNull(String variableName, String xPath)
elementNotNull(gVarVariable,contact/mobileNumber)

Input Parameters:

variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
xpath - xpath of the element to be validated. To be provided in the
Value column of test data. Return Type: void

elementListNull
Verifies if all the elements with the specified xpath are null in the XML string stored in a
variable. The xpath to be verified needs to be provided in the value column in the pre/
post validations sections. If the value is NOT null, this function validation will fail the
flow run.

Usage:

elementListNull(String variableName, String xPath)
elementNotNull(gVarVariable,contact/mobileNumber)

Input Parameters:

variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value1
column.
xpath - xpath of the element to be validated. To be provided in the
Value column of test data.
Return Type: void

validateXpathOccurrenceCount
Verifies if the specified xpath occurs the specified number of times in the XML string
stored in a variable. The xpath to be verified needs to be provided in the value column in
the pre/post validations sections. The function counts the number of occurrences of the
xpath and will fail the flow run, if the count in the response doesn't match the specified
number.

Usage:

validateXpathOccurenceCount (String xpath,String VariableName,
String expectedCount) validateXpathOccurenceCount(contact/
mobileNumber,20)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
Value column of test data.
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedOccurrenceCount - The expected number of occurrences needs
to be specified in the Value column.

Return Type: void

COREVALIDATEVARIABLELIB

Function Library Reference 10 - 37
Oracle Utilities Testing Accelerator User’s Guide

elementNotNull
Verifies if the specified element in the XML string stored in a variable is null. This
function fails the flow run if the specified element is found to be null in the response.

Usage:

elementNotNull(String xpath, String VariableName)
elementNotNull(mobileNumber)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.

Return Type: void

elementIsNull
Verifies if the specified element in the XML string stored in a variable is not null.

Usage:

elementIsNull(String xpath, String variableName)
elementIsNull(mobileNumber)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.

Return Type: void

elementValueEquals
Verifies if the specified element value in the XML string stored in a variable is equal to
the provided value. The functions fails the flow if the value does not match.

Usage:

elementValueEquals(String xpath,String variableName, String
expectedValue)
elementValueEquals(mobileNumber,gVarVariable, "1234567890")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections.
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedValue - The value to be compared to for validation.

Return Type: void

COREVALIDATEVARIABLELIB

Function Library Reference 10 - 38
Oracle Utilities Testing Accelerator User’s Guide

elementValueNotEquals
Verifies if the specified element value in the XML string stored in a variable is not equal
to the provided value. The functions fails the flow if the value matches.

Usage:

elementValueNotEquals(String xpath,String variableName, String
expectedValue)
elementValueNotEquals(mobileNumber,gVarVariable, "1234567890")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections.
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedValue - The value to be compared to for validation

Return Type: void

elementValueGreaterThan
Verifies if the specified element value in the XML string stored in a variable is greater
than the provided value. This function fails the flow if the value is not greater than the
specified value.

Usage:

elementValueGreaterThan(String xpath, String variableName String
valueToCompare)
elementValueGreaterThan("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections.
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.

Return Type: void

elementValueGreaterThanEqualTo
Verifies if the specified element value in the XML string stored in a variable is greater
than or equal the provided value. The function fails the flow if the value is not greater
than or equal to the specified value.

Usage:

elementValueGreaterThanEqualTo(String xpath, String variableName
String valueToCompare)
elementValueGreaterThanEqualTo("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be

COREVALIDATEVARIABLELIB

Function Library Reference 10 - 39
Oracle Utilities Testing Accelerator User’s Guide

validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.

Return Type: void

elementValueLesserThan
Verifies if the specified element value in the XML string stored in a variable is less than
the provided value. The functions fails the flow if the value is not less than the specified
value.

Usage:

elementValueLesserThan(String xpath, String variableName String
valueToCompare)
elementValueLesserThan("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column

Return Type: void

elementValueLesserThanEqualTo
Verifies if the specified element value in the XML string stored in a variable is lesser than
or equal the provided value. The functions fails the flow if the value is not greater than or
equal to the specified value.

Usage:

elementValueLesserThanEqualTo(String xpath, String variableName
String valueToCompare)
elementValueLesserThanEqualTo("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the value column

Return Type: void

elementContains
Verifies if the specified element contains the specified value in the XML string stored in a
variable. The function fails the flow if the element does not contain the specified value.

Usage:

COREVALIDATEVARIABLELIB

Function Library Reference 10 - 40
Oracle Utilities Testing Accelerator User’s Guide

elementContains(String xpath,String varibleName, String
valueToCompare) elementContains("batchName",gVarVariable, "F1-
BILLING)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column

Return Type: void

elementNotContains
Verifies if the specified element does not contain the specified value in the XML string
stored in a variable. The function fails the flow run if the element contains the specified
value.

Usage:

elementContains(String xpath,String varibleName, String
valueToCompare) elementContains("batchName",gVarVariable, "F1-
BILLING)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column

variableNotContains
Verifies if the specified value or element is not available in the XML string held in the
variable. The function fails the flow run if the element contains the specified value.

Usage:

reponseNotContains(String variableName,String valueToCompare)
reponseNotContains(gVarVariable,"Failed")

Input Parameters:

variableName - the name of the variable that holds the XML string.
valueToCompare - value to compare to

Return Type: void

variableContains
Verifies if the specified value or element is available in the XML string held in a variable.
The function fails the flow run if the element does not contain the specified value.

Usage:

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10 - 41
Oracle Utilities Testing Accelerator User’s Guide

responseContains(String variableName,String value)
responseContains(gVarVariable,"Exception")

Input Parameters:

variableName - the name of the variable that holds the XML string.
valueToCompare - value to compare to
Return Type: void

COREVERIFYCONDITIONVARIABLELIB
This library has been designed to be used in conjunction with the skip component feature
of Oracle Utilities Testing Accelerator. Use this function library to validate the values/
elements stored in variables (referred to as verification points) in a flow. The library
covers validation routines for string and XML elements in the variables. The library
validates the conditions on the response XML and outputs true or false value, which can
be stored into an output global variable.

The functions in this library take a variable holding the response XML as one of the
inputs and apply the validation condition on the XML in the variable.

The response of a component step can be stored in to a global variable using the
“setReponseIntoVariable” function in the CORERESPONSEUTILLIB.

This section provides a list of functions in the library, along with the usage details.

elementListNotNull
Verifies if all the elements with the specified xpath in the XML string stored in a variable
are not null. The variable holding the response XML and the xpath to be verified needs
to be provided in the value column in the pre/post validations sections. If the value is
null, this function will return false, else it will return true.

Usage:

elementListNotNull(String variableName, String xPath)
elementNotNull(gVarVariable,contact/mobileNumber)

Input Parameters:

variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
xpath - xpath of the element to be validated. To be provided in the
Value column of test data.

Return Type: String (true|false)

elementListNull
Verifies if all the elements with the specified xpath are null in the XML string stored in a
variable. The variable holding the response XML and the xpath to be verified needs to be
provided in the value columns in the pre/post validations sections. If the value is NOT
null, this function will return false, else it will return true..

Usage:

elementListNull(String variableName, String xPath)

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10 - 42
Oracle Utilities Testing Accelerator User’s Guide

elementNotNull(gVarVariable,contact/mobileNumber)

Input Parameters:

variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value1
column.
xpath - xpath of the element to be validated. To be provided in the
Value column of test data.
Return Type: String (true|false)

validateXpathOccurrenceCount
Verifies if the specified xpath occurs the specified number of times in the XML string
stored in a variable. The xpath to be verified needs to be provided in the value column in
the pre/post validations sections. The function counts the number of occurrences of the
xpath and this function will return false, if the count in the response does not match the
specified number, else it will return true.

Usage:

validateXpathOccurenceCount (String xpath,String VariableName,
String expectedCount)
validateXpathOccurenceCount(contact/ mobileNumber,20)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
Value column of test data.
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedOccurrenceCount - The expected number of occurrences needs
to be specified in the Value column.
Return Type: string (true|false)

elementNotNull
If the specified element in the XML string stored in a variable is null, then this function
will return false, else it will return true.

Usage:

elementNotNull(String xpath, String VariableName)
elementNotNull(mobileNumber)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
Return Type: String (true|false)

elementIsNull
If the specified element in the XML string stored in a variable is null, then the function
returns true, else it will return false.

Usage:

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10 - 43
Oracle Utilities Testing Accelerator User’s Guide

elementIsNull(String xpath, String variableName)
elementIsNull(mobileNumber)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
Return Type: String (true|false)

elementValueEquals
If the specified element value in the XML string stored in a variable is equal to the
provided value, then the function returns true, else it returns false.

Usage:

elementValueEquals(String xpath,String variableName, String
expectedValue)
elementValueEquals(mobileNumber,gVarVariable, "1234567890")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedValue - The value to be compared to for validation
Return Type: String {true|false)

elementValueNotEquals
If the specified element value in the XML string stored in a variable is not equal to the
provided value, then the function returns true, else it returns false.

Usage:

elementValueNotEquals(String xpath,String variableName, String
expectedValue)
elementValueNotEquals(mobileNumber,gVarVariable, "1234567890")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
expectedValue - The value to be compared to for validation
Return Type: String (true|false)

elementValueGreaterThan
If the specified element value in the XML string stored in a variable is greater than the
provided value, then the function returns true else it returns false.

Usage:

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10 - 44
Oracle Utilities Testing Accelerator User’s Guide

elementValueGreaterThan(String xpath, String variableName String
valueToCompare)
elementValueGreaterThan("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.
Return Type: String (true|false)

elementValueGreaterThanEqualTo
If the specified element value in the XML string stored in a variable is greater than or
equal the provided value, then function returns true, else it returns false.

Usage:

elementValueGreaterThanEqualTo(String xpath, String variableName
String valueToCompare)
elementValueGreaterThanEqualTo("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column.
Return Type: String (true|false)

elementValueLesserThan
If the specified element value in the XML string stored in a variable is less than the
provided value, then the function returns true, else it returns false.

Usage:

elementValueLesserThan(String xpath, String variableName String
valueToCompare)
elementValueLesserThan("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column
Return Type: String (true|false)

COREVERIFYCONDITIONVARIABLELIB

Function Library Reference 10 - 45
Oracle Utilities Testing Accelerator User’s Guide

elementValueLesserThanEqualTo
If the specified element value in the XML string stored in a variable is lesser than or equal
the provided value, then the function returns false, else it returns true.

Usage:

elementValueLesserThanEqualTo(String xpath, String variableName
String valueToCompare)
elementValueLesserThanEqualTo("count",gVarVariable,"5")

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the value column
Return Type: String (true|false)

elementContains
If the specified element contains the specified value in the XML string stored in a
variable, the function returns true. Else, it returns false.

Usage:

elementContains(String xpath,String varibleName, String
valueToCompare) elementContains("batchName",gVarVariable, "F1-
BILLING)

Input Parameters

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.
valueToCompare - The value to be compared to for validation. To be
provided in the Value column
Return Type: void

elementNotContains
Verifies if the specified element does not contain the specified value in the XML string
stored in a variable. The function fails the flow run if the element contains the specified
value.

Usage:

elementContains(String xpath,String varibleName, String
valueToCompare) elementContains("batchName",gVarVariable, "F1-
BILLING)

Input Parameters:

xpath - xpath of the element to be validated. To be provided in the
value column of test data in the pre/post validations sections
variableName - Name of the variable that holds the XML string to be
validated. The variable name needs to be provided in the Value
column.

CORESTOREVALUES

Function Library Reference 10 - 46
Oracle Utilities Testing Accelerator User’s Guide

valueToCompare - The value to be compared to for validation. To be
provided in the Value column.

variableNotContains
If the specified value or element is not available in the XML string held in the variable,
the function returns true. Else, it returns false.

Usage:

reponseNotContains(String variableName,String valueToCompare)
reponseNotContains(gVarVariable,"Failed")

Input Parameters:

variableName - the name of the variable that holds the XML string.
valueToCompare - value to compare to
Return Type: String (true|false)

variableContains
If the specified value or element is available in the XML string held in a variable, the
function returns true. Else, it returns false.

Usage:

responseContains(String variableName,String value)
responseContains(gVarVariable,”Exception”)

Input Parameters:

variableName - the name of the variable that holds the XML string
valueToCompare - value to compare to
Return Type: String {true|false)

CORESTOREVALUES
Use this function library to store values into a variable.

setVariable
Stores the specified input value into a global variable specified in the OP Variable Name
column.

Usage:

setVariable(String valueToStore)
elementNotNull("32425683235")

Input Parameters:

valueToStore - value to be stored in a global variable

Return Type: String

CORESTOREVALUES

Function Library Reference 10 - 47
Oracle Utilities Testing Accelerator User’s Guide

appendValueToList
This function Appends a value to a list of values. The input to the function can either be
a value or a variable. The output will be a list stored into a global variable. The function is
used as part of subroutine looping to store a list of values into the function, one from
each iteration of the subroutine.

Example: Consider a subroutine that has a component that adds a new meter read into
Oracle Utilities Meter Solution Cloud Service, for each loop that it runs for. Oracle
Utilities Meter Solution Cloud Service responds with the meterReadId for each of the
meter read add transactions, which can be stored as a list of values (the list of
meterReadIds that are generated as part of subroutine looping). MeterReadId can be
extracted from the response into a variable using coreresponseutilib functions and then
this variable can be used as input to the appendValueToList function.

Users can also use the value of the incrementer from the subroutine looping data as the
input.

Stores the list of values in a global variable specified in the OP Variable Name column.

Usage:

appendValueToList (String variable)

Input Parameters:

variable: The value to be appended to the list
Return Type: list

getListValueUsingIndex
This function fetches a particular value from the a list of values based on the provided
index. This function complements the above appendValueToList function in that it
allows for extracting individual values from the list of values generated by the
appendValueToList function. The input to the function is the index of the value that we
need.

Stores the fetched value from the list into a global variable specified in the OP Variable
Name column.

Usage:

getListValueUsingIndex (String index)

Input Parameters:

index - The index of the value that needs to be retrieved from a
list of values
Return Type: String

appendKeyValueToList
Creates a key based list of values, which users can later use to retrieve specific values.
This is an extension of the appendValuesToList function wherein the index has been
replaced with a custom key.

The function appends a key and a value/variable to a map. The input to the function will
be a key and a corresponding value/variable. The output will be a map stored into a
global variable.

COREFILEOPS

Function Library Reference 10 - 48
Oracle Utilities Testing Accelerator User’s Guide

An example is a subroutine iteration that needs to create activities and complete them.
After the completion of the subroutine loop run with 10 iterations that create 10
activities, subsequent steps in the parent flow will be able to get the id of an activity that
could not be completed or that was stuck in started state.

Usage:

appendKeyValueToList (String key,String value)

Input Parameters:

key - The key for the corresponding value
value - The value to be added along with the key to the map.
Return Type: map

getListValueUsingKey
Fetches a particular value from the key value pair map generated by
appendKeyValueToList function based on the provided key. The input to the function is
a key.

Stores the fetched value from the map into a global variable specified in the OP Variable
Name column

Usage:

getListValueUsingKey (String key)

Input Parameters:

key - The key corresponding to a value that needs to be fetched from
the map.
Return Type: String

COREFILEOPS
Use this function library to read files that are stored in flow attachments.

readAttachmentAsString
Reads the content of the attachment whose filename is provided as input parameter and
stores the content as string into a global variable specified in the OP Variable Name
column. The encoding of the file needs to be specified as a second input parameter.

Usage:

readAttachmentAsString(String fileName, String fileEncoding)
readAttachmentAsString("testFile.txt","UTF-8")

Input Parameters:

fileName - name of file in flow attachments
fileEncoding - encoding of the file being read

Return Type: String

CORESTRINGOPS

Function Library Reference 10 - 49
Oracle Utilities Testing Accelerator User’s Guide

CORESTRINGOPS
Use this function library perform String operations such as append, etc.

appendStrings
Appends the inputs strings specified in the value 1 to value 6 columns in that sequence
and stores the output into a global variable specified in the OP Variable Name column.

The function takes 6 parameters as inputs by default. If less than 6 strings have to
concatenated, then provide #EMPTY in the value columns where test data need not be
specified.

Usage:

appendStrings(String strValue1, String strValue2, String strValue3,
String strValue4, String strValue5, String strValue6)
appendStrings("string1", "string2", "string3", "string4",
"string5", "string6",)

Input Parameters:

strValue1 - The base string
strValue2 - The string to be appended to strValue1
strValue3 - The string to be appended to strValue1+strValue2
strValue4 - The string to be appended to
strValue1+strValue2+strValue3
strValue5 - The string to be appended to
strValue1+strValue2+strValue3+strValue4
strValue6 - The string to be appended to
strValue1+strValue2+strValue3+strValue4+strValue5

Return Type: String

CORENUMBEROPS
Use this function library perform numeric operations such as addition, subtraction etc.
This section provides a list of functions in the library, along with the usage details.

getSumOfTwoNumbers
Gets the sum of two input numbers specified in the value 1 and value 2 columns and
stores the output into a global variable specified in the OP Variable Name column.

Usage:

getSumOfTwoNumbers(String number1, String number2)
getSumOfTwoNumbers ("3", "5")

Input Parameters:

number1 - The first number
number2 - The second number to be added to number1

Return Type: String

CORENUMBEROPS

Function Library Reference 10 - 50
Oracle Utilities Testing Accelerator User’s Guide

getDiffOfTwoNumbers
Gets the difference of two input numbers specified in the value 1 and value 2 columns
and stores the output into a global variable specified in the OP Variable Name column.

Usage:

getDiffOfTwoNumbers(String number1, String number2)
getDiffOfTwoNumbers ("3", "5")

Input Parameters:

number1 - The first number
number2 - The second number to be subtracted from number1

Return Type: String

getProductOfTwoNumbers
Gets the product of two input numbers specified in the value 1 and value 2 columns and
stores the output into a global variable specified in the OP Variable Name column.

Usage:

getProductOfTwoNumbers(String number1, String number2)
getProductOfTwoNumbers ("3", "5")

Input Parameters:

number1 - The first number
number2 - The second number to be multiplied with number1

Return Type: String

getModOfTwoNumbers
Gets the modulus of two input numbers specified in the value 1 and value 2 columns and
stores the output into a global variable specified in the OP Variable Name column.

Usage:

getModulusOfTwoNumbers(String number1, String number2)
getModulusOfTwoNumbers ("3", "5")

Input Parameters:

number1 - The first number
number2 - The second number to be used as a divisor for the first
number

Return Type: String

getDivisionOfTwoNumbers
Gets the quotient of the division of input numbers specified in the value 1 and value 2
columns and stores the content as byte array into a global variable specified in the OP
Variable Name column.

Usage:

getDivisionOfTwoNumbers(String number1, String number2)
getDivisionOfTwoNumbers ("3", "5")

CORENUMBEROPS

Function Library Reference 10 - 51
Oracle Utilities Testing Accelerator User’s Guide

Input Parameters:

number1 - The first number
number2 - The second number to be used as a divisor for the first
number

Return Type: String

getMaxOfTwoNumbers
Gets the maximum value among two input numbers specified in the value 1 and value 2
columns and stores the output into a global variable specified in the OP Variable Name
column.

Usage:

getMaxOfTwoNumbers(String number1, String number2)
getMaxOfTwoNumbers ("3", "5")

Input Parameters:

number1 - The first number
number2 - The second number to be compared to the first to
determine the maximum of two numbers.

Return Type: String

getMinOfTwoNumbers
Gets the minimum value among two input numbers specified in the value 1 and value 2
columns and stores the output into a global variable specified in the OP Variable Name
column.

Usage:

getMinOfTwoNumbers(String number1, String number2)
getMinOfTwoNumbers ("3", "5")

Input Parameters:

number1 - The first number
number2 - The second number to be compared to the first to
determine the minimum of two numbers.

Return Type: String

getAbsoluteOfNumber
Gets the absolute value of the number specified in the value 1 column and stores the
output into a global variable specified in the OP Variable Name column.

Usage:

getAbsoluteOfNumber(String number1)
getAbsoluteOfNumber ("3.754")

Input Parameters:

number1 - The number whose absolute value needs to be determined.

Return Type: String

COREUTAOPS

Function Library Reference 10 - 52
Oracle Utilities Testing Accelerator User’s Guide

COREUTAOPS
Use this function library to perform operations specific to flow run in Oracle Utilities
Test Accelerator such as pausing a flow run for a specified time, conditional constructs to
exit polling of a specific component IWS.

This section provides a list of functions in the library, along with the usage details.

waitForTime
Pauses the flow run for the specified number of minutes. The flow run is resumed after
the completion of the wait time.

Usage:

waitForTime(String timeInMinutes)
waitForTime ("3")

Input Parameters:

timeInMinutes - Number of minutes for which the flow run needs to
be paused.

Return Type: void

customLog
This function can be used to add custom messages to the flow run summary report. It
concatenates the input parameters and adds the final concatenated message to the flow
execution summary report.

Usage:

customLog(String message1,String message2)

Input Parameters:

message1: string that needs to be printed into to the summary
report,
message2: suffix to the message1 that needs to be appended to the
summary report.
Return Type: void

Note: If more than two strings need to be appended and printed to the
output, use the appendStrings function from CORESTRINGOPS and
store the output into a global variable and use the global variable as a
parameter to customLog function.

If only one message needs to be printed and there is no suffix to it, then you can
set #EMPTY in the second input parameter filed.

Custom Libraries 11 - 1
Oracle Utilities Testing Accelerator User’s Guide

Chapter 11
Custom Libraries

This chapter focuses on creating custom libraries that include custom validation
functions used for component validation.

Note:

• Only Java Script language can be used to develop new custom function
libraries.

• Any existing custom libraries developed using Groovy language will be
supported in V7.0.0.0 of Oracle Utilities Testing Accelerator.

• Due to security constraints, only a few approved Java Script packages are
allowed in custom libraries.

• Groovy script based libraries will not be supported in Oracle Utilities
Testing Accelerator in a future release (later than V7.0.0.0). So, if any custom
libraries have been created using Groovy, they should be migrated to Java
Script manually.

The chapter covers the following:

• Creating/Updating Custom Libraries

• Exporting/Importing Custom Libraries

• Using Custom Library Functions

Creating/Updating Custom Libraries

Custom Libraries 11 - 2
Oracle Utilities Testing Accelerator User’s Guide

Creating/Updating Custom Libraries
Make sure to have Administrator privileges to manage custom libraries.

To create a custom library:

1. Login to Oracle Utilities Testing Accelerator as an Administrator.

2. Navigate to the Administration tab and click Libraries on the left pane.

3. Enter the name of the new custom library in the Library Name field. Click Create
Library.

4. From the Library Type drop-down list, select the library type being created. Based
on the library type selected, it can only be used for web services based components,
REST based components, or all type of components.

5. Click Create.

Note: This step only creates a header definition of the library, the actual
code supporting/implementing the definition is expected to have been
already developed using an IDE like Eclipse or JavaScript consoles. See
the example at the end of this section for more details.

6. Once a library is created, add the function definitions using “+Add”. The function
definition should specify the function name (Function), number of input parameters
of the function (Parameter Count), comma separated comments for each of the input
parameters, which gets displayed against the parameter in the test data screen and
description of the function.

7. On the Create/Update Library page, click “+” in the Library Functions section.
Add functions exposed by the custom library and other details, such as parameters of
the functions.

8. Add separate rows for each exposed function in the custom library.

• Function: Function name in the custom library

• Parameter Count: Total number of parameters for the function. A function can
have a maximum of 6 parameters.

• Parameter Comments: Description about parameters, helps to show more
information about the parameters. If the function has more than one parameter,
descriptions should be separated by a comma.

• Description: Function description

9. Click Save.

10. Click Open Editor to develop or upload/code a Java Script library containing actual
implementation of the functions included.

11. Specify the package name of the custom library.

12. Enter the code or paste it from an external source.

13. Click Save. This triggers the compilation of custom library Java Script code and
displays errors if any. Rectify the code and click Save again to verify and save the
changes.

Creating/Updating Custom Libraries

Custom Libraries 11 - 3
Oracle Utilities Testing Accelerator User’s Guide

To create a function to generate a random social security number as test data to create a
person, create a .groovy file with the function definition. The library name is
“UTATEST” and the function name is “generateSSN”. It takes an input prefix and
returns a random set of digits prefixed with the input value.

The script contents are as follows:

var ArrayList = Java.type('java.util.ArrayList');
var List = Java.type('java.util.List');
var Random = Java.type('java.util.Random');
var OUTSPCORELIB =
Java.type('com.oracle.utilities.core.lib.OUTSPCORELIB');

function generateSSN(prefix){
var random = new Random();
var x = random.nextInt(900) + 100;
var y = random.nextInt(90) + 10;
var z = random.nextInt(9000) + 1000;
var zz = x+"-"+y+"-"+z;
print(prefix+zz);
return prefix+zz;

}

Below is the function definition in Oracle Utilities Testing Accelerator.

Click Open Editor to create the implementation of the groovy library. It can be plugged
into any custom component or the pre-validations and post-validations section of flow
test data definition.

Exporting/Importing Custom Libraries

Custom Libraries 11 - 4
Oracle Utilities Testing Accelerator User’s Guide

Exporting/Importing Custom Libraries
Make sure you have Administrator privileges to manage custom libraries.

To export a single custom library:

1. Login to Oracle Utilities Testing Accelerator as an Administrator.

2. Navigate to the Administration tab and click Libraries on the left pane.

3. Enter the name of the new custom library in the Library Name field. Click Search.

4. After the library functions are displayed in the GUI, click Export. This generates an
export file of the custom function library currently being displayed.

To export multiple custom libraries:

1. Login to Oracle Utilities Testing Accelerator as an Administrator.

2. Navigate to the Administration tab and click Export Libraries on the left pane.

3. Search for the library based on names. Select two or more custom function libraries
to be exported.

4. Click Export. The selected custom function libraries should be exported into an
archive file that can be downloaded.

To import custom libraries:

1. Login to Oracle Utilities Testing Accelerator as an Administrator.

2. Navigate to the Tools tab and click Import on the left pane.

3. Select the archive file that has the library definitions and click Import.

The library should be imported and available for use in the components/flows.

Using Custom Library Functions
After successfully uploading the custom library into Oracle Utilities Testing Accelerator
use any of the exposed custom library functions in any of their components/flows. It is
similar to how the built-in libraries are provided with Oracle Utilities Testing Accelerator.

Web Service Component Keywords A - 1
Oracle Utilities Testing Accelerator User’s Guide

Appendix A
Web Service Component Keywords

This chapter provides the list of keywords used in a web service based component.

• WS-SETWEBSERVICENAME

• WS-SETXMLELEMENT

• WS-SETXMLLISTELEMENT

• WS-SETVARIABLE

• WS-SETVARIABLEFROMRESPONSE

• WS-SETTRANSACTIONTYPE

• WS-LOGMESSAGE

• WS-CREATEWSREQUEST

• WS-PROCESSWSREQUEST

• WS-STARTPOLLWS

• WS-STOPPOLLWSIF

WS-SETWEBSERVICENAME

Web Service Component Keywords A - 2
Oracle Utilities Testing Accelerator User’s Guide

WS-SETWEBSERVICENAME
Sets the name of the application web service.

Use Case: Defines the web service to which the component’s web service request is sent.
The web service name is provided in the attribute values column during the component
development. This service name is appended with the WebContainerURL to form a
complete WSDL URL for processing the request. The WebContainerURL has to be
specified in the flow runtime configuration property file.

WS-SETXMLELEMENT
Sets the element (Xpath) value in the web service request using either a variable or a
value.

Use Case: Enables the web service creation request (XML) with the element values
populated by setting each value for the defined element.

WS-SETXMLLISTELEMENT
Sets the repeating list element (Xpath) value in the web service request using either a
variable or a value.

Use Case: Enables the web service creation request (XML) with repeating list element
values populated by setting each value set for the defined element list. The values are
provided from the test data.

Usage Details Value

Keyword WS-SETWEBSERVICENAME

Display Name User Defined Display Name

Attribute Values Web Service Name

Usage Details Value

Keyword WS-SETXMLELEMENT

Display Name User Defined Display Name

Attribute Values Xpath of the element

Usage Details Value

Keyword WS-SETXMLLISTELEMENT

Display Name User Defined Display Name

Attribute Values Xpath of the element

WS-SETVARIABLE

Web Service Component Keywords A - 3
Oracle Utilities Testing Accelerator User’s Guide

WS-SETVARIABLE
Sets a value to a global variable.

Use Case: Used for setting a value to a global variable used across the flow for
validations or for setting XML elements. The values are provided from the test data.

WS-SETVARIABLEFROMRESPONSE
Used to retrieve the XML element value from the response and stores it in a global
variable for further processing.

Use Case: Enables use of a response value, such as ID from a component, as an input to
a request in another component.

WS-SETTRANSACTIONTYPE
Sets a value for the transaction type.

Use Case: Used to set a value to a transaction type variable used in the request XML to
pass a request for specific operations, such as ADD, UPDATE, READ, DELETE, etc.
The transaction type is provided from the test data.

Usage Details Value

Keyword WS-SETVARIABLE

Display Name User Defined Display Name

Output Parameters Variable Name

Usage Details Value

Keyword WS-SETVARIABLEFROMRESPONSE

Display Name User Defined Display Name

Attribute Values Xpath of the element in response

Output Parameters Variable Name

Usage Details Value

Keyword WS-SETTRANSACTIONTYPE

Display Name User Defined Display Name

WS-LOGMESSAGE

Web Service Component Keywords A - 4
Oracle Utilities Testing Accelerator User’s Guide

WS-LOGMESSAGE
Used to set custom log messages in the run results report.

Use Case: Provides the necessary extensibility to provide custom log messages for the
generated results report, such as to identify the start and completion of a transaction, etc.

WS-CREATEWSREQUEST
Creates a web service request XML and stores it in the “WSDLXML” global variable.

Use Case: Enables the manipulation of the web service XML request generated before
submitting it to the application for processing, giving greater flexibility in development.

WS-PROCESSWSREQUEST
Sends the web services request and receives the response from the application for the
specified WSDL name.

Use Case: Posts the generated XML request from WS-CREATEWSREQUEST to the
application and processes the response. This keyword performs the core process of the
web services based request-response model.

WS-STARTPOLLWS
Starts the polling of the web services request and receives the response from the
application for the specified WSDL name. It takes two parameters, the first is for the
total time for which polling should occur and the second is the interval between polls.

Usage Details Value

Keyword WS-LOGMESSAGE

Display Name User Defined Value

Attribute Values Message

Usage Details Value

Keyword WS-CREATEWSREQUEST

Display Name User Defined Display Name

Attribute Values Web Service Name

Usage Details Value

Keyword WS-PROCESSWSREQUEST

Display Name User Defined Display Name

Attribute Values Web Service Name

WS-STOPPOLLWSIF

Web Service Component Keywords A - 5
Oracle Utilities Testing Accelerator User’s Guide

Use Case: Provides a means to run a loop to keep polling a web service for a specified
time measure or till a condition is met (specified in WS-STOPPOLLWSIF).

WS-STOPPOLLWSIF
Indicates the end of the polling specified by WS-STARTPOLLWS.

Use Case: The condition to stop the poll can be specified here. The attribute takes the
xpath of the element against which the condition is to be compared. The condition is
specified while entering the test data. If the test data is just a string, say <val>, then
polling would stop when element value is <val>.

For example, if a web service needs to be polled unless the element BatchJobId is “ED”,
the attribute value should be set as the xpath of BatchJobId and the test data should be
entered as “ED”.

Similarly, if polling needs to continue as long as a certain value is returned, a “!” should be
prefixed to the value of test data. If we want to continue polling as long as the
BatchJobId is “PD”, test data should be “!PD” (the symbol ! indicates “not equals”).
Similar conditions can be set for greater than, less than, greater than equal to and less
than equal to, by prefixing the test data with “>”, “<“, “>=” and “<=” respectively.

Usage Details Value

Keyword WS-STARTPOLLWS

Display Name User Defined Display Name

Attribute Values User Defined Display Name

Usage Details Value

Keyword WS- STOPPOLLWSIF

Display Name User Defined Display Name

Attribute Values Xpath of element

GUI Component Keywords B - 1
Oracle Utilities Testing Accelerator User’s Guide

Appendix B
GUI Component Keywords

This chapter provides the list of keywords used in a GUI based component.

• APPROVE

• CANCEL

• CHECK

• CLICK

• CLOSE

• GET_ATTRIBUTE_VALUE

• GET_ATTRIBUTE_ID

• LAUNCH

• MAXIMIZE

• MINIMIZE

• POPUP

• PRESSTABKEY

• SELECT

• SETTEXT

• SWITCHTO

• UNCHECK

• UNSELECT

• UI-STARTBROWSER

• UI-ENDBROWSER

• WAIT

APPROVE

GUI Component Keywords B - 2
Oracle Utilities Testing Accelerator User’s Guide

APPROVE
Approves the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format.

You can replace xpath with ID or name.

CANCEL
Cancels the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format.

You can replace xpath with ID or name.

CHECK
Checks a checkbox object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format.

You can replace xpath with ID or name.

Usage Details Value

Keyword APPROVE

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid ALERT - Closes the Alert box, gets its text, and
sets the value to ‘true’.

Usage Details Value

Keyword CANCEL

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid ALERT

Usage Details Value

Keyword CHECK

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid CHECKBOX

CLICK

GUI Component Keywords B - 3
Oracle Utilities Testing Accelerator User’s Guide

CLICK
Cancel the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format.

You can replace xpath with ID or name.

CLOSE
Closes the specified window object. It is used to close a single browser window.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format.

You can replace xpath with ID or name.

GET_ATTRIBUTE_VALUE
Retrieves the “value” attribute of the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format.

You can replace xpath with ID or name.

Usage Details Value

Keyword CLICK

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid IMAGE
LINK
TAB
EDIT (edit is for a text box)
BUTTON
ELEMENT

Usage Details Value

Keyword CLOSE

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid CLOSE

Usage Details Value

Keyword GET_ATTRIBUTE_VALUE

GET_ATTRIBUTE_ID

GUI Component Keywords B - 4
Oracle Utilities Testing Accelerator User’s Guide

GET_ATTRIBUTE_ID
Retrieves the “ID” attribute of the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format.

You can replace xpath with ID or name.

LAUNCH
Launches the specified browser object.

Use Case: The attribute value takes the browser URL.

MAXIMIZE
Maximizes the specified window object.

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid No objects required

Usage Details Value

Usage Details Value

Keyword GET_ATTRIBUTE_ID

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid No objects required

Usage Details Value

Keyword LAUNCH

Display Name User Defined Display Name

Attribute Values Browser URL

Objects Valid BROWSER

Usage Details Value

Keyword MAXIMIZE

Display Name User Defined Display Name

MINIMIZE

GUI Component Keywords B - 5
Oracle Utilities Testing Accelerator User’s Guide

MINIMIZE
Minimizes the specified window object.

POPUP
Handles the pop-up of the window.

PRESSTABKEY
Performs a tab key press on the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format.

You can replace xpath with ID or name.

Attribute Values None

Objects Valid WINDOW

Usage Details Value

Usage Details Value

Keyword MINIMIZE

Display Name User Defined Display Name

Attribute Values None

Objects Valid WINDOW

Usage Details Value

Keyword POPUP

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid STARTPOPUP - To go to the popup
ENDPOPUP - To come out from the popup

Usage Details Value

Keyword PRESSTABKEY

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid EDIT

SELECT

GUI Component Keywords B - 6
Oracle Utilities Testing Accelerator User’s Guide

SELECT
Performs a ‘select’ action on the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format. You can replace xpath with ID or name. The test data should be
given a value from the list of values present in the select list.

SETTEXT
Closes the specified window object. It can be used to close a single browser window.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format. You can replace xpath with ID or name. Provide the actual text for
that object in the test data.

SWITCHTO
Used to switch between different frames.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format. You can replace xpath with ID or name.

Usage Details Value

Keyword SELECT

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid LISTBOX
RADIOBUTTON
LIST

Usage Details Value

Keyword SETTEXT

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid EDIT (edit is for a text box)
TEXTAREA
PASSWORD
DATE

Usage Details Value

Keyword SWITCHTO

Display Name User Defined Display Name

UNCHECK

GUI Component Keywords B - 7
Oracle Utilities Testing Accelerator User’s Guide

UNCHECK
Uncheck the specified checkbox object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format. You can replace xpath with ID or name.

UNSELECT
Unselects the specified object.

Use Case: The attribute value takes xpath of an element in the “xpath; actual xpath of
the element” format. You can replace xpath with ID or name. The test data should be
given a value from the list of values in the list selected previously.

UI-STARTBROWSER
Starts the browser.

Attribute Values Xpath of the element for STARTFRAME
None for ENDFRAME

Objects Valid STARTFRAME - Switches to the specified
frame
ENDFRAME - Navigates back to the parent
frame

Usage Details Value

Usage Details Value

Keyword UNCHECK

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid CHECKBOX

Usage Details Value

Keyword UNSELECT

Display Name User Defined Display Name

Attribute Values Xpath of the element

Objects Valid LISTBOX

Usage Details Value

Keyword UI-STARTBROWSER

UI-ENDBROWSER

GUI Component Keywords B - 8
Oracle Utilities Testing Accelerator User’s Guide

UI-ENDBROWSER
Closes the browser.

WAIT
Waits for the specified object. It is used to communicate to wait for a certain amount of
time before throwing an exception that it cannot find the element on the page.

Use Case: The attribute value takes the xpath of the element in the “xpath; actual xpath
of the element” format. xpath can be replaced with ID or name.

In the test data, provide the wait time(number) for LIST, LISTBOX, TEXTAREA,
LINK, and BUTTON objects. For EDIT, IMAGE, WINDOW, and NORMAL objects,
no test data is required.

Display Name User Defined Display Name

Attribute Values None

Objects Valid No objects required

Usage Details Value

Usage Details Value

Keyword UI-ENDBROSER

Display Name User Defined Display Name

Attribute Values None

Objects Valid No objects required

Usage Details Value

Keyword WAIT

Display Name User Defined Display Name

Attribute Values Xpath of the element
EDIT, IMAGE, WINDOW, NORMAL - None

Objects Valid LIST
LISTBOX
TEXTAREA
LINK
BUTTON
EDIT
IMAGE
WINDOW
NORMAL - Can be used for any element

WAIT

GUI Component Keywords B - 9
Oracle Utilities Testing Accelerator User’s Guide

REST Component Keywords C - 1
Oracle Utilities Testing Accelerator User’s Guide

Appendix C
REST Component Keywords

This chapter provides the following REST component keywords:

• RS-SETREQUESTHEADER

• RS-SETENDPOINT

• RS-ARGUMENT

• RS-SETMETHOD

• RS-PROCESSRESTREQUEST

RS-SETREQUESTHEADER

REST Component Keywords C - 2
Oracle Utilities Testing Accelerator User’s Guide

RS-SETREQUESTHEADER
Sets the header in the defined REST request.

Use case: The attribute value takes the name of the request header.

RS-SETENDPOINT
Sets the endpoint for the REST request.

Use Case: Defines the static part of the application's REST endpoint.

RS-ARGUMENT
Sets the query parameter or the path parameter for the REST request.

Use Case: Used for setting the query parameter and path variable in the REST request.
The values are provided from the test data.

Usage Details Value

Keyword RS-SETREQUESTHEADER

Display Name User Defined Display Name

Attribute Values User Defined Header Name

Objects Valid No objects required

Usage Details Value

Keyword RS-SETENDPOINT

Display Name User Defined Display Name

Attribute Values User Defined End Point

Objects Valid No objects required

Usage Details Value

Keyword RS-ARGUMENT

Display Name User Defined Display Name

Attribute Values User Defined Query Parameter Name for
QueryParameter

None for PathVariable

Objects Valid QueryParameter - Appends the query parameter
name in the component definition and value
given in the test data to the REST end point.

PathVariable - Appends the user defined value
in test data to the REST end point.

RS-SETMETHOD

REST Component Keywords C - 3
Oracle Utilities Testing Accelerator User’s Guide

RS-SETMETHOD
Sets the method type for the REST request.

Use Case: Used to set the REST request method type.

RS-PROCESSRESTREQUEST
Sends the REST request and receives the response from the application for the specified
REST.

Use Case: Used to send the REST request using the methods and data provided using
the above keywords.

Usage Details Value

Keyword RS-SETMETHOD

Display Name User Defined Display Name

Attribute Values None

Objects Valid GET - Creates a GET method to hit the REST
end point.

POST - Creates a POST method to hit the
REST end point.

Usage Details Value

Keyword RS-PROCESSRESTREQUEST

Display Name User Defined Display Name

Attribute Values None

Objects Valid No objects required

Setting Up Inbound Web Services D - 1
Oracle Utilities Testing Accelerator User’s Guide

Appendix D
Setting Up Inbound Web Services

The Oracle Utilities application-specific components are developed using the web
services method, and these components need the Inbound Web Services to be defined in
the application.

This chapter includes the following sections:

• Creating Inbound Web Services

• Importing Inbound Web Services

• Searching Inbound Web Services

Creating Inbound Web Services

Setting Up Inbound Web Services D - 2
Oracle Utilities Testing Accelerator User’s Guide

Creating Inbound Web Services
To create an Inbound Web Service for any custom component to be created:

1. Login to the Oracle Utilities cloud service.

2. Navigate to Admin > Integration > Inbound Web Service > Add.

3. On the Inbound Web Service page, enter the Inbound Web Service Name.

4. Enter the Description and the Detailed Description.

5. Select the appropriate trace,debug.active,post error option from the drop down.

6. Enter the Operation Name.

7. Select the Schema Type, Schema Name and Transaction Type.

8. Click Save.

Importing Inbound Web Services
To import an Inbound Web Service into the Oracle Utilities cloud service:

1. Login to the Oracle Utilities cloud service.

2. Click Admin > Implementation Tools > Bundle Import > Add.

3. On the Bundle Import page, enter the reference and detailed description.

4. Copy paste the bundle details from the Inbound Web Services bundle.

5. Click Apply bundle. The “Imported Successfully” message appears in the Message
text column.

Searching Inbound Web Services
To search an Inbound Web Service in an Oracle Utilities cloud service:

1. Login to the Oracle Utilities application.

2. Navigate to Admin > Integration > Inbound Web Service > Search.

3. On the Inbound Web Service Search page, enter the name of the required web
service in the Name field.

4. Enter the description in the Description field.

5. Click Refresh.

The web service, if found, is retrieved and displayed.

Generating Re-runnable Test Data E - 1
Oracle Utilities Testing Accelerator User’s Guide

Appendix E
Generating Re-runnable Test Data

To run a flow multiple times, some fields might need unique values for each run. Instead
of changing the value in the databank, we can enable re-runnable test data so that the test
data is generated randomly every time the flow is run.

This chapter describes the options available on how the random data generated can be
configured.

Requirement Test Data
Structure Example Test Data Generated String

A specified number of random lower
case characters need to be appended
to the given test data.

<int>?data 4?van
3?appl
6?AC
2?
?

vancara
applxtg
ACkdbvdl
nd
ufdbn

A specified number of random upper
case characters need to be appended
to the given test data.

<int>U?data 4U?van
3u?appl
6U?AC
2U?
U?

vanCARA
applXTG
ACKDBVDL
ND
UFDBN

A specified number of random lower
case characters need to be prefixed to
the given test data.

<int>B?data 4B?van
3b?appl
6B?AC
2B?
B?

caravan
xtgappl
kdbvdlAC
nd
ufdbn

A specified number of random upper
case characters need to be prefixed to
the given test data.

<int>BU?data 4BU?van
3bu?appl
6Bu?AC
2BU?
BU?

CARAvan
XTGappl
KDBVDLAC
ND
UFDBN

A specified number of random
numbers need to prefixed to the
given test data

<int> d?data d?ABCD
2d?ABCD

ABCD32940
ABCD43

A specified number of random
numbers need to suffixed to the
given test data

<int> bd?data bd?ABCD
4bd?ABCD

32940ABCD
1534ABCD

Generating Re-runnable Test Data

Generating Re-runnable Test Data E - 2
Oracle Utilities Testing Accelerator User’s Guide

Connecting to Multiple Databases F - 1
Oracle Utilities Testing Accelerator User’s Guide

Appendix F
Connecting to Multiple Databases

While building the integration flows that involve using components from various product
packs, there might be a need to access databases of individual products as part of
verification process. Users can connect to different databases by specifying the database
connection properties prefixed with the application prefix. This is similar to the
application prefix that is used for connecting to different application URLs.

Following is a sample configuration.properties file. It shows the entries for two
environments.

Note: Users are expected to write custom functions for connecting/
accessing databases.

Test Environment Details - UAT1

Application URL pointing to test run
gStrUAT1_gStrApplicationURL = http://myuat1environment:8001/ouaf
gStrUAT1_gStrApplicationXAIServerPath=/webservices/
gStrUAT1_gStrEnvironmentName=UAT1

Application Database Details
gStrUAT1_gStrApplicationDBConnectionString
=jdbc\:oracle\:thin\:@myuatserver1\:1521\:UATSID1
gStrUAT1_gStrApplicationDBUsername=mydbuser1
gStrUAT1_gStrApplicationDBPassword==<Entrypted Password>

Test Environment Details - UAT2

Application URL pointing to test run
gStrUAT2_gStrApplicationURL = http:// myuat1environment2:8001/ouaf
gStrUAT2_gStrApplicationXAIServerPath=/webservices/
gStrUAT2_gStrEnvironmentName=UAT2

Application Database Details
gStrUAT2_gStrApplicationDBConnectionString =jdbc\:oracle\:thin\:@
myuatserver2\:1521\: UATSID2
gStrUAT2_gStrApplicationDBUsername= mydbuser2
gStrUAT2_gStrApplicationDBPassword= <Entrypted Password>

##Handling Https WSDL - Java key Store
gStrJavaKeyStorePath=
gStrJavaKeyStorePwd=<Entrypted Password>

Connecting to Multiple Databases

Connecting to Multiple Databases F - 2
Oracle Utilities Testing Accelerator User’s Guide

#Email Details
gStrSMTP_HOST_NAME==<SMTP server address>
gStrSMTP_PORT=25
gStrTO_EMAIL_RECIPIENTS=

Application user name
gStrApplicationUserName=<Your OUAF Application Username>

Application user password
gStrApplicationUserPassword=<Encrypted Password>

Output file details
gStrOutputFilePath=/<UTA-CLIENT-WORK-DIR>//Logs/
gStrXSDFiles=/<UTA-CLIENT-WORK-DIR>//XSD/

Configuring Authentication for Web Service Requests G - 1
Oracle Utilities Testing Accelerator User’s Guide

Appendix G
Configuring Authentication for Web Service

Requests

Based on the version of the Oracle Utilities application (and the Oracle Utilities
Application Framework), the web service requests are expected to include additional
information apart from the user credentials. In order to support this, two new properties
have been introduced in the configuration.properties file using which users can specify
the authentication used by the environment.

For the latest versions of Oracle Utilities applications, a timestamp is expected in the web
service requests. For these environments, specify the header type as TIMESTAMP, the
other property gStrTimeToLive specifies the validity of the request in seconds.

#Header Type
gStrApplicationHeaderType=TIMESTAMP
#Timestamp interval
gStrTimeToLive=120

In cases where the configuration.properties contains details of more than one
environment, prefix the header property with the application string.

#Header Type
gStrUAT_gStrApplicationHeaderType=TIMESTAMP
#Timestamp interval
gStrUAT_gStrTimeToLive=120

For the older versions of Oracle Utilities applications, only the user credentials are
expected. So specify the header as USERTOKEN.

#Header Type
gStrApplicationHeaderType=USERTOKEN

In cases where there is a mix of environments that use the new header type and old
header type in the same configuration.properties file, specify the properties for individual
environments as follows.

#Header Type
gStrUAT_gStrApplicationHeaderType=TIMESTAMP
#Timestamp interval
gStrUAT_gStrTimeToLive=120

#Header Type
gStrINT_gStrApplicationHeaderType=USERTOKEN

Configuring Authentication for Web Service Requests

Configuring Authentication for Web Service Requests G - 2
Oracle Utilities Testing Accelerator User’s Guide

Note: The user credentials are sent as digest by default. To send them as
plain text, set the property mentioned needs to ‘true’.
gStrSendPasswordAsText = true

OUTA REST Services H - 1
Oracle Utilities Testing Accelerator User’s Guide

Appendix H
OUTA REST Services

Oracle Utilities Testing Accelerator provides REST services that can be used to integrate
with any compatible third party application, such as test management applications,
Jenkins, etc.

While the REST APIs available before the 7.0.0.0 release of Oracle Utilities Testing
Accelerator continue to be supported, a new set of REST APIs that follow Open API
specification are included in Oracle Utilities Testing Accelerator 7.0.0.0 release.

This chapter focuses on the Oracle Utilities Testing Accelerator REST services to run
flows and retrieve flow run analytics. It describes the following services:

• Prerequisites

• Flow Run

• Flow Set Run

• Flow Run Analytics

• Flow Set Run Analytics

• Flow Run Summary

• Flow Set Run Summary

Prerequisites

OUTA REST Services H - 2
Oracle Utilities Testing Accelerator User’s Guide

Prerequisites
All the REST services require an authentication token as one of the parameters. Use the
following command to obtain an authentication token.

Endpoint

/token/generate-token

Curl command

curl --insecure -X POST https://<hostname>:<port>/token/generate-
token -H 'content- type: application/json' -d '{ "username":
"<username>", "password": "<password>"}'

Note: The option --insecure is only needed if the application uses a self
signed certificate.

Parameters

• < username>: Valid Oracle Utilities Testing Accelerator application user's
username

• < password>: Oracle Utilities Testing Accelerator application user's password

• <hostname>: Oracle Utilities Testing Accelerator application host name

• <port>: Oracle Utilities Testing Accelerator application port

Below is a sample response from the call.

{
"token":
"eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJsb2NhbGhvc3QiLCJzY29wZXMiOiJST0xF
X0FkbWl
uaXN0cmF0b3IiLCJpYXQiOjE2MjAwMzQ1NjMsImV4cCI6MTYyMDA1MjU2M30.2SrK
iZPslj6Ba2S8zqJm8YakjaFdZfhIhfuXcEsSE-Q"
}

Flow Run
The Flow Run service provides an endpoint allowing a flow to run by passing the
relevant flow details.

Endpoint

>/rest/run/flow

Curl command for Flow Run

curl -i -X POST 'https://<hostname>:<port>/.…../ uta/rest/run/flow'
-H 'authorization:Basic <Base64 encoded username & password>' -H
'cache-control: no-cache' -H 'content-type: application/json' -d '{
"executionType": "flow",
"release" : "<release>",
"portfolio" : "<portfolio>",
"product" : "<product>",
"flow" : "<flow>",
"configuration":"<configuration>",
"identity": "<user configuration>",
"flowtestdataset": "<flowtestdataset>"
}'

Flow Run

OUTA REST Services H - 3
Oracle Utilities Testing Accelerator User’s Guide

Note: <flowtestdataset> parameter is optional, if user does not provide
the parameter then the default test data set will be used for run.

Parameters

• <hostname>: OUTA application host name

• <port>: OUTA application port

• <access token>: Authentication token from the step in pre-requisites above

• <release>: The name of the release to which the flow belongs to

• <portfolio>: The name of the portfolio/product family to which the flow
belongs to

• <product>: The name of the product to which the flow belongs to

• <flow>: Name of the flow to be run

• <configuration>: Configuration to be used for running the flow

• <user configuration>: The user configuration to be used for run the flow

• <flowtestdataset>: The flow test data set that needs to be used during the flow
run

Example
Flow Run

curl -X POST -k https://my.server.com:8080/dev01/ccs/uta/rest/
execute/flow -H 'authorization: Basic bXJpbmFsOk9yYWNsZTEyMw==' -H
'content-type: application/json' -d' {"executionType": "flow",
"release" : "UTA", "portfolio" : "CUSTOMER CARE AND BILLING",
"product" : "CCB 2.7.0.1", "flow" : "CreateBusinessWithCC",
"configuration":"myCCBConfig", "identity": "myCCBConfig
","flowtestdataset":"CCBTestDataSet" }'

Once a flow run is triggered, the service responds with a response similar as follows.

{"flowExecutionId":1810,"trackingCode":" CreateBusinessWithCC
_100000065_2020_01_29_04.00.24.604_26843725-5fe4-4c38-a481-
b7e775ddcff0"}

Querying Status of Flow Run

Query the status of the flow run as follows.

Endpoint

>/rest/execute/flowstatus
Curl for Flow Run Status

curl -i -k -X GET -k 'https://<hostname>:<port>/rest/execute/
flowstatus?flowExecutionId=<flowExecutionId>' -H
'authorization:Basic <Base64 encoded username & password>'

Parameters

• <hostname> : Oracle Utilities Testing Accelerator host name

• <port> : Oracle Utilities Testing Accelerator port

• <access token> : Authentication token (See Prerequisites for more information.)

Flow Set Run

OUTA REST Services H - 4
Oracle Utilities Testing Accelerator User’s Guide

• <flowExecutionId >: The flow run ID received when the flow run was
triggered.

Example
curl -i -k -X GET 'https://my.server.com:8080/rest/execute/
flowstatus?flowExecutionId=1810' -H 'authorization: Basic
bXJpbmFsOk9yYWNsZTEyMw=='

The service responds to the flow run status query with a response.

Response

{"product":"CCB 2.7.0.1","portfolio":"CUSTOMER CARE AND
BILLING","release":"UTA","flowName":"CreateBusinessWithCC","status
":"Running"}

The status element in the response contains the current flow run status.

Flow Set Run
The Flow Set Run service provides an endpoint allowing a flow set to be run by passing
relevant flow set details.

Endpoint

>/rest/execute/flow

Curl command for Flow Set Run

curl -i -X POST 'https://<hostname>:<port>/rest/execute/flow' -H
'authorization: Bearer
<access_token>' -H 'cache-control: no-cache' -H 'content-type:
application/json' -d '{ "executionType" : "flowSet",
"flowSet" : "<flowSet>", "configuration":"<configuration>",
"identity": "<user configuration>"
}'

Parameters

• <hostname>: Oracle Utilities Testing Accelerator application host name

• <port>: Oracle Utilities Testing Accelerator application port

• <access token>: Authentication token from the step in pre-requisites above

• <flowSet>: Name of the flow set to be executed

• <configuration>: Configuration to be used for executing the flow

• <user configuration>: The user configuration to be used for executing the flow

Example
Flow Set Run

curl -X POST -k https://my.server.com:8080/rest/execute/flow -H
'authorization: bearer
62593bbd-b057-4f38-8a3e-5915d4ab559f' -H 'content-type:
application/json' -d

Flow Run Analytics

OUTA REST Services H - 5
Oracle Utilities Testing Accelerator User’s Guide

'{"executionType": "flowSet", "flowSet" : "MyBillingTestSuite",
"configuration":"myCCBConfig", "identity": "myCCBConfig" }'

Once a flow set run is triggered, the service responds with a response as follows:

[{"flowSetExecutionId":"502","flowSetName":"MyBillingTestSuite","s
tatus":"Running"}]

Querying Status of Flow Set Run

User can query the status of flow set run.

Curl for Flow Set Run Status

curl -i -X GET -k 'https://<hostname>:<port>/flowset/
status?flowSet=<flowSet>&flowSetExecutionId=<flowSetExecutionId>'
-H 'authorization: Bearer <access_token>

Parameters

• <hostname>: Oracle Utilities Testing Accelerator Application host name

• <port>: Oracle Utilities Testing Accelerator application port

• <access token>: Authentication token from the step in pre-requisites above

• <flowSetExecutionId>: The flow set run ID that was received when the flow set
run was triggered.

Example
curl -i -k -X GET 'https://my.server.com:8080/rest/execute/flowset/
status?flowSet=MyBillingTestSuite &flowSetExecutionId=502' -H
'authorization: bearer
62593bbd-b057-4f38-8a3e-5915d4ab559f'

The service responds to the flow run status query with a response as follows.

Response

[{"flowStatuses":[{"timeStamp":"Jan 19, 2020 04:00:25 PST","product":"CCB
2.7.0.1","portfolio":"CUSTOMER CARE AND
BILLING","release":"UTA","flowExecutionId":"1811","id":1,"flowName":"X1-
MDMFlow","portProdXrefId":"100000065","status":"Not
Started"}],"flowSetExecutionId":"502","flowSetName":"MyBillingTestSuite","status":"Runni
ng"}]'

The status element in the response contains the current flow set overall run status. The
flowStatuses element in the response contains individual flow status for each of the flows
that were/are run in the flow set.

Flow Run Analytics
The Flow Run Analytics service provides analytics for the flows run in Oracle Utilities
Testing Accelerator by a specific user for a given period.

Endpoint

>/rest/analytics/user

Curl Command for Flow Run Analytics

Flow Set Run Analytics

OUTA REST Services H - 6
Oracle Utilities Testing Accelerator User’s Guide

curl -i -k -X GET -k 'https://<hostname>:<port>/rest/analytics/
user/<username>/flowExecutionAnalytics/from/<fromDate>/to/
<toDate>' -H 'authorization: Bearer <access_token>'

Parameters

• <hostname>: OUTA application host name

• <port>: OUTA application port

• <access token>: Authentication token from the step in pre-requisites above

• <username>: Name of the user who executed the flow(s)

• <fromDate>: The start date to query for analytics - format DD-MON-YY
(example: 10-JAN-20)

• <toDate>: The end date to query for analytics - format DD-MON-YY
(example: 20-JAN-20)

Example
Flow Run Analytics

curl -i -k -X GET -k https://<hostname>:<port>/rest/analytics/user/
admin/flowExecutionAnalytics/from/01-JAN-20/to/15-JAN-20 -H
'authorization: bearer 62593bbd-b057-4f38-8a3e-5915d4ab559f'

Once a flow set run is triggered, the service responds with a response as follows.

{"totalFlowsRanByUser":50,"totalFlowsRanByUserSuccess":48,"totalFl
owsRanByUserFailure":2,"totalFlowsRanByUserRunning":0}'

Flow Set Run Analytics
The Flow Set Run Analytics service provides analytics for the flow sets run in Oracle
Utilities Testing Accelerator by a specific user for a given period.

Endpoint

>/rest/analytics/user

Curl Command for Flow Run Analytics

curl -i -k -X GET -k 'https://<hostname>:<port>/rest/analytics/
user/<username>/flowSetExecutionAnalytics/from/<fromDate>/to/
<toDate>' -H 'authorization: Bearer <access_token>'

Parameters

• <hostname>: OUTA application host name

• <port>: OUTA application port

• <access token>: Authentication token from the step in pre-requisites above

• <username>: Name of the user who executed the flow(s)

• <fromDate>: The start date to query for analytics - format DD-MON-YY
(example: 10-JAN-20)

Flow Run Summary

OUTA REST Services H - 7
Oracle Utilities Testing Accelerator User’s Guide

• <toDate>: The end date to query for analytics - format DD-MON-YY
(example: 20-JAN-20)

Example
Flow Run Analytics

curl -i -k -X GET -k https://my.server.com:8080/rest/analytics/
user/admin/
flowSetExecutionAnalytics/from/01-JAN-20/to/15-JAN-20 -H
'authorization: bearer
62593bbd-b057-4f38-8a3e-5915d4ab559f'

Once a flow set run is triggered, the service responds with a response as follows:

{"totalFlowSetsRanByUser":30,"totalFlowSetsRanByUserSuccess":29,"t
otalFlowSetsRanByUserFailure":1,"totalFlowSetsRanByUserRunning":0}

Flow Run Summary
The Flow Run Summary service provides summary file for the flow run in Oracle
Utilities Testing Accelerator.

Endpoint

>/rest/summary/report

Curl Command for Flow Run Summary

curl -X POST \
'https://<hostname>:<port>/rest/summary/
report?type=flow&flowName=x' \
-H 'accept: application/xml' \
-H 'authorization: Bearer <token>' \
-H 'content-type: application/json' \
-d '["<flow execution id>"]'

Parameters

• <hostname>: Oracle Utilities Testing Accelerator application host name

• <port>: Oracle Utilities Testing Accelerator application port

• < token>: Authentication token from the steps mentioned in pre-requisites
above

• <flow execution id>: Flow execution ID of the flow for which the summary is
being requested

Example
Flow Run Summary

curl -X POST \
'https://my.server.com:8080/rest/summary/
report?type=flow&flowName=x' \
-H 'accept: application/xml' \
-H 'authorization: Bearer 3fdb6422-b62c-4398-8781-a05fa4d9fecd' \
-H 'content-type: application/json' \
-d '["2507"]'

Flow Set Run Summary

OUTA REST Services H - 8
Oracle Utilities Testing Accelerator User’s Guide

The server responds with a HTML summary file as response upon receiving this request.

Flow Set Run Summary
The Flow Set Run Summary service provides summary file for the flow set run in Oracle
Utilities Testing Accelerator.

Endpoint

>/rest/summary/report

Curl Command for Flow Set Run Summary

curl -X POST \
'https://<hostname>:<port>/rest/summary/
report?type=flowset&flowSetName=x' \
-H 'accept: application/xml' \
-H 'authorization: Bearer <token>' \
-H 'content-type: application/json' \
-d '["<flow execution id>"]'

Parameters

• <hostname>: Oracle Utilities Testing Accelerator application host name

• <port>: Oracle Utilities Testing Accelerator application port

• < token>: Authentication token from the steps mentioned in pre-requisites
above

• <flow execution id>: Flow execution ID of the flow set for which the summary
is being requested

Example
Flowset Run Summary

curl -X POST \
 'https://<hostname>:<port>/rest/summary/
report?type=flowset&flowSetName=x' \
 -H 'accept: application/xml' \
 -H 'authorization: Bearer 3fdb6422-b62c-4398-8781-a05fa4d9fecd' \
 -H 'content-type: application/json' \
 -d '["2507"]'

The server responds with a HTML summary file of the flow set as response.

	User’s Guide
	Preface
	Audience
	Prerequisite Knowledge
	Abbreviations
	Related Documents
	Updates to the Documentation
	Documentation Accessibility
	Conventions
	Deprecation Notice

	Chapter 1
	Overview
	Introduction
	Terminology
	Application Architecture
	Application Features
	Supported Oracle Utilities Applications

	Chapter 2
	Oracle Utilities Testing Accelerator Features
	Administration
	Components
	Dashboard
	Flows
	Flow Sets
	Tools

	Chapter 3
	Developing Metadata Driven Web Service Based Test Automation
	Metadata Driven Automation Development Methodology
	Planning
	Design and Development
	Test Run

	Setting Up Automation Development Environment
	Setting Up Oracle Utilities Testing Accelerator Server
	Setting Up Workstations for Development/ Testing
	Setting Up Flow and User Configuration Sets
	Setting Up Application under Test

	Chapter 4
	Oracle Utilities Testing Accelerator Administration
	Overview
	Administration Tab
	Managing Products
	Managing Modules
	Managing Users
	User Access Types
	Purging Flow Run Data
	Purging Notification Data
	Custom Content Upgrade

	Chapter 5
	Creating Test Flows
	Creating Flow Modules
	Creating Flows
	Creating Flows By Dragging-and-Dropping Components
	Adding Test Data in a Flow
	Moving Data Between Components without Using Global Variables
	Annotating Components in a Flow
	Using Global Variables
	Flow Lifecycle
	Locking/Unlocking Flows
	Copying Flows
	Reordering Components in a Flow
	Copying Test Data from One Component to Another in a Flow
	Fetching Component Test Data from an Utilities Application
	Unit Testing a Component in a Flow
	Bulk Replacing Component Test Data in Multiple Flows
	Flow Subroutines
	Running Subroutine in a Loop
	Conditional Bypass of Components in a Flow Run (Skip Component)
	Component Test Data Sets
	Creating Reference Test Data for a Component
	Loading Test Data from a Component Test Data Set
	Deleting Component Test Data Sets
	Loading Test Data from a .csv File
	Flow Test Data Sets

	Adding Email Capabilities to Flows
	Support for HTTPS Web Services
	Support for Integration Flows
	Running Test Flows
	Running Test Flows Using a Browser
	Iterative Flow Run
	Stopping Flow Run on Validation Failure
	Stopping Flow Run Manually
	Viewing Flow Run Details
	Viewing Flow Run Failure Details
	Viewing Flow Run Summary Report
	Conversational Test Data Management
	Generating Oracle Utilities Testing Accelerator Scripts
	Importing the Generated Oracle Utilities Testing Accelerator Script into Eclipse IDE

	Running Flows from Command Line
	Encrypting Passwords
	Generating Keystore for Encryption from Windows Explorer
	Generating Keystore for Encryption from Command Prompt
	Using Password Encryptor Tool From Windows Explorer
	Using PasswordEncryptor Tool From Console/Command Line
	Configuring the Runtime Properties (For Run Using Eclipse)
	Runtime Configuration for Flow Run (For Run Using Browser)

	Chapter 6
	Creating Components
	Component Structure
	Component Lifecycle
	Locking/Unlocking Components

	Component Types
	Web Service Based Components
	GUI Based Components
	REST Web Service Components

	Creating Web Service Based Components
	Creating a Component
	Creating a Component Definition
	Defining Default Data at Component Level
	Setting Up Operation Name for a Web Service
	Using Runtime Variables in Components
	file: prefix - csv file
	Using Function Libraries
	Resolving the Repeating Elements in Response XML
	Adding Validations
	Logging and Reporting
	Handling the List Elements

	Creating GUI Based Components
	Creating a Component Definition for GUI Components

	Creating REST Web Service Components
	Creating a REST Service Component Definition
	Entering Test Data for a REST Component

	Copying Components

	Chapter 7
	Creating Test Flow Sets
	Creating Flow Sets
	Adding Flows to a Flow Set
	Deleting Flows from a Flow Set
	Running Flow Sets
	Stopping Flow Set Run
	Exporting Flow Sets
	Viewing Flow Set Run History
	Viewing Flow Set Execution Summary Report

	Chapter 8
	Creating Test Plans
	About Test Plans
	Creating a Test Plan
	Adding and Removing Flow Sets in a Test Plan
	Managing Test Plan Lifecycle
	Running a Test Plan
	Viewing Test Plan Run Results

	Chapter 9
	Development Accelerator Tools
	Component Export Tool
	Flow Export Tool
	Component/ Flow Import Tool
	Component Generation Tool
	Password Encryption Tool
	Overview
	Running the Password Encryption Tool

	Component Definition Validation Tool

	Chapter 10
	Function Library Reference
	OUTSPCORELIB
	WSVALIDATELIB
	CORERESPONSEUTILLIB
	COREDATETIMELIB
	COREDATAGENLIB
	COREVALIDATEVARIABLELIB
	COREVERIFYCONDITIONVARIABLELIB
	CORESTOREVALUES
	COREFILEOPS
	CORESTRINGOPS
	CORENUMBEROPS
	COREUTAOPS

	Chapter 11
	Custom Libraries
	Creating/Updating Custom Libraries
	Exporting/Importing Custom Libraries
	Using Custom Library Functions

	Appendix A
	Web Service Component Keywords
	WS-SETWEBSERVICENAME
	WS-SETXMLELEMENT
	WS-SETXMLLISTELEMENT
	WS-SETVARIABLE
	WS-SETVARIABLEFROMRESPONSE
	WS-SETTRANSACTIONTYPE
	WS-LOGMESSAGE
	WS-CREATEWSREQUEST
	WS-PROCESSWSREQUEST
	WS-STARTPOLLWS
	WS-STOPPOLLWSIF

	Appendix B
	GUI Component Keywords
	APPROVE
	CANCEL
	CHECK
	CLICK
	CLOSE
	GET_ATTRIBUTE_VALUE
	GET_ATTRIBUTE_ID
	LAUNCH
	MAXIMIZE
	MINIMIZE
	POPUP
	PRESSTABKEY
	SELECT
	SETTEXT
	SWITCHTO
	UNCHECK
	UNSELECT
	UI-STARTBROWSER
	UI-ENDBROWSER
	WAIT

	Appendix C
	REST Component Keywords
	RS-SETREQUESTHEADER
	RS-SETENDPOINT
	RS-ARGUMENT
	RS-SETMETHOD
	RS-PROCESSRESTREQUEST

	Appendix D
	Setting Up Inbound Web Services
	Creating Inbound Web Services
	Importing Inbound Web Services
	Searching Inbound Web Services

	Appendix E
	Generating Re-runnable Test Data
	Appendix F
	Connecting to Multiple Databases
	Appendix G
	Configuring Authentication for Web Service Requests
	Appendix H
	OUTA REST Services
	Prerequisites
	Flow Run
	Flow Set Run
	Flow Run Analytics
	Flow Set Run Analytics
	Flow Run Summary
	Flow Set Run Summary

