
Oracle® Banking APIs
Extensibility Guide

Patchset Release 22.2.4.0.0
F99652-01
June 2024

Oracle Banking APIs Extensibility Guide, Patchset Release 22.2.4.0.0

F99652-01

Copyright © 2006, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose vi

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Conventions vii

Related Resources vii

Screenshot Disclaimer vii

Acronyms and Abbreviations vii

1 Objective and Scope

1.1 Background 1-1

1.2 Objective 1-1

1.3 Scope 1-2

1.4 Structure 1-2

2 Architecture of GUI Tier

3 Extensible Points in Service Tier

3.1 REST Tier 3-1

3.2 Service Extensions 3-2

3.3 Business Policy 3-3

3.4 Dictionary 3-3

3.5 Domain Extensions 3-6

3.6 Error Messages 3-6

3.7 Adapter Tier 3-6

3.8 Outbound web service extensions 3-7

3.9 Security Customizations 3-9

3.10 Taxonomy Validations 3-9

3.11 Authentication Extensibility 3-9

iii

3.12 Miscellaneous 3-10

4 Extensible Points in Approval

4.1 Adding New Rule Criteria 4-1

4.1.1 Adding New Rule Criteria 4-1

4.1.2 Implementing a Rule Criteria Handler 4-1

4.1.3 Registering a Rule Criteria Handler 4-2

5 Architecture of Service Tier

6 Extensible Points in GUI Tier

6.1 Theme and Brand 6-1

6.2 Component Extensibility 6-1

6.2.1 Adding New And Overriding Existing Components 6-1

6.2.2 Add / Modify Validations 6-2

6.3 Calling custom REST service 6-3

7 Libraries

7.1 OBAPI Libraries 7-1

8 Digx Scheduler Application

8.1 Create New Scheduler Class 8-1

8.2 Configure Scheduler Class 8-2

9 Consistent UI Download

9.1 Add configurations in the Metadata Tables 9-1

9.2 Custom Datatypes for Report Download 9-4

9.3 Implement IPaginable and add XmlRootElement annotation on Response Object 9-5

9.4 Adding content before and after table in PDF Reports 9-7

10

Package and Deploy Customisations

10.1 Base product packaging 10-1

10.2 Customisation packaging 10-2

10.2.1 Customizations in existing service layer without the need to expose a new
customized REST endpoint 10-2

iv

10.2.2 Customizations to add new war 10-5

11

List of Topics

Index

v

Preface

• Purpose

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Conventions

• Related Resources

• Screenshot Disclaimer

• Acronyms and Abbreviations

Purpose
This guide is designed to help acquaint you with the Oracle Banking APIs application. This
guide provides answers to specific features and procedures that the user need to be aware of
the module to function successfully.

Audience
This document is intended for the following audience:

• Customers

• Partners

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within
a paragraph, URLs, code in examples, text
that appears on the screen, or text that you
enter.

Related Resources
For more information on any related features, refer to the following documents:

• Oracle Banking APIs Installation Manuals

Screenshot Disclaimer
Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes.

Acronyms and Abbreviations
The list of the acronyms and abbreviations used in this guide are as follows:

Table 1 Acronyms and Abbreviations

Abbreviation Description

OBAPI Oracle Banking APIs

Preface

vii

1
Objective and Scope

• Background

• Objective

• Scope

• Structure

1.1 Background
OBAPI is designed to help banks respond strategically to today’s business challenges, while
also transforming their business models and processes to reduce operating costs and improve
productivity across both front and back offices. It is a one-stop solution for a bank that seeks to
leverage Oracle Fusion experience across its core banking operations across its retail and
corporate offerings.

OBAPI provides a unified yet scalable IT solution for a bank to manage its data and end-to-end
business operations with an enriched user experience. It comprises pre-integrated enterprise
applications leveraging and relying on the underlying Oracle Technology Stack to help reduce
in-house integration and testing efforts.

1.2 Objective
While most product development can be accomplished via highly flexible system parameters
and business rules, further competitive differentiation can be achieved via IT configuration &
extension support. Time consuming, custom coding to enable region specific, site specific or
bank specific customizations can be minimized by offering extension points and customization
support which can be implemented by the bank and / or by partners.

Extensibility objective

OBAPI when extended & customized by the Bank and / or Partners results in reduced
dependence on Oracle. As a result of this, the Bank does not have to align plans with Oracle’s
release plans for getting certain customizations or product upgrades. The bank has the
flexibility to choose and do the customizations themselves or have them done by partners.

One of the key considerations towards enabling extensibility in OBAPI has been to ensure that
the developed software can respond to future growth. This has been achieved by disciplined
software development leading to cleaner dependencies, well defined interfaces and
abstractions with corresponding reduction in high cohesion & coupling. Hence, the extensions
are kept separate from Core – Bank can take advantage of OBAPI Core upgrades as most
extensions done for a previous release can sit directly on top of the upgraded version. This
reduces testing effort thereby reducing overall costs of planning & taking up an upgrade. This
would also improve TTM significantly as the bank enjoys the advantage of getting universal
features through upgrades.

The broad guiding principles w.r.t. providing extensibility in OBAPI are summarized below:

• Strategic intent for enabling customers and partners to extend the application.

• Internal development uses the same principles for client specific customizations.

1-1

• Localization packs.

• Extensions by Oracle Consultants, Oracle Partners, Banks or Bank Partners.

• Extensions through the addition of new functionality or modification of existing functionality.

• Planned focus on this area of the application.

• Standards based.

• Leverage large development pool for standards based technology.

• Developer tool sets provided for as part of JDeveloper and Eclipse for productivity.

1.3 Scope
The scope of this document is to explain the customization & extension of OBAPI for the
following use cases:

• Customizing OBAPI application services and implement composite application services

• Adding pre-processing or post processing validations in the application services extension

• Adding Business Logic in pre hook or post hook points in the application services
extension

• Altering the product behavior at customizations hooks provided as adapter calls in
functional areas that are prone to change and in between modules that can be replaced
(e.g. alerts, content management)

• Adding new fields to the OBAPI domain model and including it on the corresponding
screen.

• Defining the security related access and authorization policies

• Defining different security related rules, validator and processing logics

• Customizing OBAPI UI

• Adding a new field or a table on the screen

• Removing fields from the UI

This document would be a useful tool for Oracle Consulting, bank IT and partners for
customizing and extending the product.

The document is a developer’s extensibility guide and does not intend to work as a
replacement of the functional specification which would be the primary resource covering the
following:

• OBAPI installation & configuration.

• OBAPI parameterization as part of implementation.

• Functional solution and product user guide.

Out of scope

The scope of extensibility does not intend to suggest that OBAPI is forward compatible.

1.4 Structure
This document is organized into following chapters:

Chapter 1
Scope

1-2

• Architecture of Service Tier: Provides overall architecture of the service tier of OBAPI
platform. This chapter will set the context for further chapters and also will introduce you to
various terminologies that you will encounter throughout this document

• Extensible Points in Service Tier: Provides in depth knowledge about various extensible
hooks available in the service tier.

• Architecture of GUI Tier: Provides overall architecture of the GUI tier of OBAPI platform.
This chapter will introduce you to various terminologies that you will encounter for UI
extensibility.

• Extensible points in GUI Tier: Provides in depth knowledge about various extensible hooks
available in the GUI tier.

• Libraries: Provides a listing of various libraries provided by OBAPI out of the box along with
their usage

• Workspace Setup: Provides step by step guidelines for setting up Eclipse workspace for
extensibility

• Deployment: Provides information in packaging and deployment of the customized code on
Weblogic server

• GUI Tier: Workspace Setup: Provides step by step guidelines for setting up workspace for
GUI tier extensibility

• GUI Tier: Deployment: Provides information on packaging and deployment of customized
GUI code on HTTP server

• Use Cases: This chapter discusses some of the extensibility points covered in earlier
chapters with the help of some use cases.

Chapter 1
Structure

1-3

2
Architecture of GUI Tier

Below diagram shows structure of the UI artifacts and some of the important artifacts are
explained subsequently.

2-1

3
Extensible Points in Service Tier

Various extensible points / hooks provided by OBAPI framework, are explained in detail in this
section.

• REST Tier

• Service Extensions

• Business Policy

• Dictionary

• Domain Extensions

• Error Messages

• Adapter Tier

• Outbound web service extensions

• Security Customizations

• Taxonomy Validations
For extensions in taxonomy validations, please refer to Oracle Banking APIs Taxonomy
Configuration Guide

• Authentication Extensibility

• Miscellaneous

3.1 REST Tier
Customization developer can extend the REST tier by writing new REST services. This new
REST service will consume new or existing application service. Please note that it is not
possible to customize the REST services provided out of the box. Extensibility in REST tier is
limited to writing new services.

References:

Please refer to workspace setup of DTO (xface) and REST service.

Please refer to Use case 1 for steps to write new REST service along with sample code.

3-1

3.2 Service Extensions
This extension point should be used when the customization developer needs additional
business logic for an application service. This additional logic, which is not available as part of
the API product functionality, but could be a client requirement. For these purposes, two hooks
are provided in the application code:

Pre-extension hook

This extension point is available in application service before it performs any validations and
executes business logic. This hook can be important in the following scenarios:

• Additional input validations

• Execution of business logic, which necessarily has to happen before going ahead with
normal service execution.

Post-extension hook

This extension point is available in the application service after it has executed business logic.
This hook can be important in the following scenarios:

• Output response manipulation

• Custom data logging for subsequent processing or reporting.

Both ‘pre’ and ‘post’ service extensions are available in the application service layer (also
known as the ‘app’ layer) of OBAPI.

This hook in implemented using service extension executor and service extensions. These
components are explained in detail below. Customization developer can use these
components suitably based on the requirement.

Below class diagram depicts the relationship between application service, extension executor
and extensions. The diagram considers a sample ‘create’ method in application service.

Chapter 3
Service Extensions

3-2

Note:

The RequestDTO and ResponseDTO components depicted in above diagram are
explained in subsequent sections. For now, note that the RequestDTO contains
inputs to the application service method and ResponseDTO contains output
generated by the method.

3.3 Business Policy
OBAPI supports three types of validations

DTO field validations: These are the field level validations such as syntax check of the input.
These validations are achieved by using field level annotations in request DTO. These
validations are not available for extension. Below is the list of out of box annotations available

Annotation Description

@Email This annotation is used to validate the respective field with email regular-
expression. If the field doesn't satisfy the mentioned regular-expression
then the respective error code is thrown

@Mandatory This annotation marks the fields as mandatory. Once marked, if the field
is null then respective error-code is thrown

Eg. @Mandatory(errorCode =
DemandDepositErrorConstants.DDA_MANDATORY_ACCOUNT_ID)
private Account accountId;

@Length This annotation marks the lengths of the fields. Once marked, if the
validation is violated then the respective error code is thrown.

Eg. @Length(min = 2, max = 20, errorCode =
PartyErrorConstants.PI_LENGTH_EXTERNAL_REF_ID)

@NonNegative This annotation checks that the value is non-negative

@Regex This annotation checks if the value matches regular expression provided

System Constraints: System performs these checks mandatorily. It is not possible to override
or bypass these checks.

Business Policies: These are typically the business validations required to be performed
before executing business logic. OBAPI framework allows customization developer to override
business policies as per the requirement.

3.4 Dictionary
Dictionary is not an extension point in itself, but it plays an important role in enabling
extensibility of domain. Hence, it is worth understanding the ‘Dictionary’ before proceeding to
subsequent sections

Data transfer object (DTO)

Data transfer object (DTO) is a design pattern used to transfer data between an external
system and the application service. All the information may be wrapped in a single DTO
containing all the details and passed as input request as well as returned as an output
response. The client can then invoke accessory (or getter) methods on the DTO to get the

Chapter 3
Business Policy

3-3

individual attribute values from the Transfer Object. All request response classes in OBAPI
application services are modelled as data transfer objects.

Dictionary

All data transfer objects extend a base class DataTransferObject which holds an array of
Dictionary object. The Dictionary encapsulates an array of NameValuePairDTO which is used to
pass data of custom data fields or attributes from the UI layer to the host middleware.

Below class diagram shows the relationship between these classes.

Chapter 3
Dictionary

3-4

Dictionary class looks like

Following image shows use of dictionary with NameValuePairDTO and added it to the Data
Transfer Object.

Chapter 3
Dictionary

3-5

3.5 Domain Extensions
The Domain layer is a central layer in designing entities in OBAPI. The design philosophy is
called domain driven design. In this, the domain object (also referred as ‘entity’ in OBAPI
context) is central to the design. The domain captures all attributes of the real time entity that it
models.

OBAPI provides infrastructure to customize existing domains. It also allows to add new
domains.

3.6 Error Messages
If an API fails, It returns an error code and an error message which briefly specifies the failure
reason of the API call. Error message is returned from service to convey the cause of
transaction failure.

3.7 Adapter Tier
An adapter, by definition, helps the interfacing or integrating components adapt. In software it
represents a coding discipline that helps two different modules or systems to communicate with
each other and helps the consuming side adapt to any incompatibility of the invoked interface
work together.

Incompatibility could be in the form of input data elements which the consumer does not have
and hence might require defaulting or the invoked interface might be a third party interface with

Chapter 3
Domain Extensions

3-6

a different message format requiring message translation. Such functions, which do not form
part of the consumer functionality, can be implemented in the adapter layer.

3.8 Outbound web service extensions
The outbound webservice configurations are set of properties defined to invoke services from
the host. The host is the core bank system where the business logic for core banking facilities
is written and contains the corresponding services to access that data. The existing OBAPI
application has an Adapter layer which directly interacts with the host. There are extension
endpoints available for configuring a different host in the adapter layer. Following steps need to
be followed:

Using your own web service constants

The web service constants will change depending on the WSDL specification provided by the
host system. An Example WebServiceConstants file is shown below:

Web service configuration

digx_fw_config_out_ws_cfg_b. Holds the entries for the host service endpoints.

For Example:

insert into digx_fw_config_out_ws_cfg_b (SERVICE_ID, PROCESS, URL,
ENDPOINT_URL,
NAMESPACE,TIME_OUT, SERVICE, STUB_CLASS, SECURITY_POLICY, ENDPOINT_NAME,
STUB_SERVICE,
HTTP_BASIC_AUTH_CONNECTOR, HTTP_BASIC_AUTH_REALM, PROXY_CLASS_NAME, IP, PORT,
USERNAME,
PASSWORD, CREATED_BY, LAST_UPDATED_BY, CREATION_DATE, LAST_UPDATED_DATE,

Chapter 3
Outbound web service extensions

3-7

OBJECT_STATUS,
OBJECT_VERSION_NUMBER, ANONYMOUS_SECURITY_POLICY,ANONYMOUS_SECURITY_KEY_NAME)
values ('inquireApplication','BaseApplicationServiceSpi',

'

'

'','http://application.core.service.origination.appx.fc.ofss.com/
BaseApplicationServiceSpi',
1200000, 'BaseApplicationServiceSpi', '', '', 'BaseApplicationServiceSpiPort',
'com.ofss.fc.appx.origination.service.core.application.baseapplicationservice

Class Diagram

Client Jar

Generate the corresponding service stubs from the WSDL specifications using The JAX-WS RI
tool. Package the generated code as a jar and include it in the Adapter implementation.

Custom Adapter

Lastly create a custom adapter to handle the changes made in the host configurations. The
custom adapter will be using the JAXWSFacotry to create instances of the desired service
stubs. The rest of the custom adapter implementation is the same as mentioned in the section.

For example:

Chapter 3
Outbound web service extensions

3-8

3.9 Security Customizations
OBAPI comprising of several modules has to interface with various systems in an enterprise to
transfer/share data which is generated during business activity that takes place during teller
operations or processing. While managing the transactions that are within OBAPI, it is needed
to consider security & identity management and the uniform way in which these services need
to be consumed by all applications in the enterprise.

OBAPI provides a mechanism for creating permissions and role based authorization model
that controls access of the user to OBAPI services.

3.10 Taxonomy Validations
For extensions in taxonomy validations, please refer to Oracle Banking APIs Taxonomy
Configuration Guide

3.11 Authentication Extensibility
OBDX now supports authentication extensibility for users based on enterprise roles. This can
be done by following the below steps -

1. Need to write own Java class to implement authentication. Different classes can be used
for different enterprise roles.

2. The custom classes must implement
com.ofss.digx.app.sms.handlers.credentials.ICredentialsManager. Below methods
need to be implemented -

Chapter 3
Security Customizations

3-9

create - This method is to be used to create a user on the external system

public void create(AbstractUser user) throws Exception;

update - This method is to be used to update the user on the external system

public boolean update(User user, boolean isPasswordSystemGenerated) throws
Exception;

verify - This method is to be used to authenticate the user on the external system

public boolean verify(String name, String newPassword, String currentPassword) throws
Exception;

3. The classes' fully qualified names have to be updated in DIGX_FW_CONFIG_ALL_B
against prop_ids - credentials_manager_administrator,
credentials_manager_corporateuser, credentials_manager_retailuser. By default all
three currently have
com.ofss.digx.app.sms.handlers.credentials.LocalCredentialsManager as
prop_value.

3.12 Miscellaneous
This section lists some other features in OBAPI platform that can be extended

Chapter 3
Miscellaneous

3-10

4
Extensible Points in Approval

This article explains extensible points in Approval framework.

• Adding New Rule Criteria

4.1 Adding New Rule Criteria
Every rule in the system is created against a TaskType. TaskType decides which Rule Criteria
are to be associated with a Rule being created. Examples of existing Rule Criteria are
Transaction, Account, Amount and Currency.

If the existing Rule Criteria does not meet your requirement, then a new Rule Criteria can be
extended in the system by following the steps given below:

• Adding New Rule Criteria

• Implementing a Rule Criteria Handler

• Registering a Rule Criteria Handler

4.1.1 Adding New Rule Criteria
Add a new rule criteria in the Table DIGX_AP_RULE_CRITERIA shown below against the
TASK_TYPE to which the customized Task belongs:

4.1.2 Implementing a Rule Criteria Handler
For the newly created RuleCriteria mentioned in step above , create a RuleCriteriaHandler
implementation. This class implements the interface named
com.ofss.digx.app.approval.service.rulecriteria.handler.IRuleCriteriaHandler

4-1

Override the methods

• addRuleCriteriaRelationships : This method returns the list of
RuleRuleCriteriaRelationshipDTO to be added as a part of the newly created RuleCriteria
to the rule being created for the TaskType to which the customized task belongs.

• getRuleCriteriaMultiplierForRule: returns a multiplier (datatype :double) which gives
precedence to a rule over other rule in case both the rules are applicable for a particular
instance of a transaction.

Note:

While implementing Rule Criteria Handler make sure that it is implemented in a way
that it does not impact existing Tasks in the system belonging to the TaskType
against which it is added.

4.1.3 Registering a Rule Criteria Handler
The Rule Criteria Handler implemented in the step above needs to be registered in the system.
To register make an entry in the table DIGX_FW_CONFIG_ALL_B as shown in the example query
below.

insert into DIGX_FW_CONFIG_ALL_B (PROP_ID, CATEGORY_ID, PROP_VALUE,
FACTORY_SHIPPED_FLAG,PROP_COMMENTS,
SUMMARY_TEXT, CREATED_BY, CREATION_DATE, LAST_UPDATED_BY,
LAST_UPDATED_DATE,OBJECT_STATUS,OBJECT_VERSION_NUMBER)

values ('<<Rule Criteria Name>>', 'RuleCriteriaHandlerConfig','<<Fully
qualified name of the Handler implementation class
created in the step above>>', 'N', 'Specifies the class name of the Handler
for rule criteria type <<Rule Criteria Name>>.',
'Specifies the class name of the Handler for rule criteria type <<Rule
Criteria Name>>.',
'ofssuser', sysdate, 'ofssuser', sysdate, 'A', 1);

Chapter 4
Adding New Rule Criteria

4-2

5
Architecture of Service Tier

Let’s go through the building blocks of OBAPI framework (also known as DIGX framework). To
build a REST API, each of these framework components (as mentioned below) needs to be
addressed and that’s why it becomes important to have a holistic idea about each of them.

The arrangement of all of these framework components can be clearly understood in the
following diagram:

DIGX Service Layer

1. REST: The endpoint layer which gets invoked whenever a request URI is called. Also
known as the layer which contains REST annotations and path to resources or sub-
resources of an application

2. Service: Also called as module layer of the framework. Generally, the core modules of
DIGX application will have their own service implementation classes responsible for
implementing core business logic, validation and security checks

3. Assemblers: These are the mapping classes which convert data object containing request
or response parameters into domain or database compatible form. These classes help us
to get the required domain objects which can be further used in object-relational mapping

4. Business Policy/ System Constraints: Before letting the query data read or persisted in
the core application, certain business policies need to be validated. This separate layer of
constraints check let the application behave as per the policies configured

5. Domain/Entity: Represents the Java Object form of Database. This domain layer also
contains data to be persisted or query response fetched through Object relational mapping

6. Domain Repository: The term ‘repository’ denotes any data storage component. Each
module of the application will have its own repository to manage its CRUD operations and
that can be easily done using this component of the DIGX framework

7. Domain Repository Adapter: Adapters are the connecting points to some external
system and as the name suggests, this part of the framework contacts two kinds of

5-1

repositories of DIGX application – Local Repository and Remote Repository. Eventually,
the configured one out of these two will be invoked

8. Adapters: Finally these are the adapter classes that can call either Local Database (DIGX
specific tables) or Remote Repository (external system).

9. External System/ Host: The core banking application such as UBS/FCORE or OBP or
any third-party application which operates final banking transactions.

Chapter 5

5-2

6
Extensible Points in GUI Tier

This article provide the guidelines for UI Extensibility.

• Theme and Brand

• Component Extensibility

• Calling custom REST service

6.1 Theme and Brand
• CSS Custom Properties are available for modifications. You can change the variables by

creating a new CSS file which has updated value of CSS custom properties. Make sure
that file is imported after the main.css file. Same functionality you can achieve by Branding.
It is recommended that implementer should use Branding functionality.

• We are not allowing adding new styles in the core UI.

• For the Images you are free to do modifications.

6.2 Component Extensibility
• Framework Elements like (header,dashboard, menu etc) are not available for the

modification and customization.

• All components available under component folder are available for the extension.

• Adding New And Overriding Existing Components

• Add / Modify Validations

6.2.1 Adding New And Overriding Existing Components
If you want to add new component place that component in <CHANNEL_ROOT_PATH>/
extensions/components. It follow the same structure which is present in components folder.
Same thing is applicable for the existing components. If you want to change anything then
copy that component and place it extensions/components folder with the same structure.

If resource bundle needs to change for that component place related resource bundle in
<CHANNEL_ROOT_PATH>/extensions/resources location. Structure remain same for
<CHANNEL_ROOT_PATH>/resources and <CHANNEL_ROOT_PATH>/extensions/resources folder.
Make sure that you updated the resource bundle path in your component.

If any component is present in <CHANNEL_ROOT_PATH>/extensions/components will take
precedence over the <CHANNEL_ROOT_PATH>/components. For it we maintaining the list of
components available in extensions in <CHANNEL_ROOT_PATH>/extensions/extension.json
which is to be entered manually. For example:

6-1

Sample JSON for extension.json

{"components":
[<component1>,<component2>].“partials” :
 [“partial1.html”,”partial2.html”]}

In the same manner you can override the partial templates.

Note:

Out of the box we are providing extension for Internal Account Input Component
(inernal-account-input). This extension need to be implemented in scenario where the
bank account number do not have branch code prefixed in the account.

6.2.2 Add / Modify Validations
All the validation available in the application are maintained in <CHANNEL_ROOT_PATH>/
framework/js/base-models/validations/obapi-locale.js. Implementer can override and
add new validations in the application without changing this file. An extension hook is given at :

For OBAPI 18.1 at <CHANNEL_ROOT_PATH>/extensions/validations/obapi-locale.js
From OBAPI 18.2 onwards <CHANNEL_ROOT_PATH>extensions\override\obapi-locale.js
In this file Implementer can add or override validations.

For Example: If you need to change the pattern which validate Mobile Number. Add updated
pattern in this file as below.

Chapter 6
Component Extensibility

6-2

6.3 Calling custom REST service
In implementation if any new services are written by implementer it has been directed to
change the context root for new REST to digx/cz/v1. For supporting it from the UI, implementer
has to pass cz/v1 in the version field of the AJAX setting from his model.

For example see the snippet below:

Chapter 6
Calling custom REST service

6-3

7
Libraries

OBAPI has bundled its platform features and capabilities in various libraries based on logical
separation of features. This section provides a list of such libraries along with their purpose.

• OBAPI Libraries
This section provides information about various OBAPI libraries that are provided out of the
box.

7.1 OBAPI Libraries
This section provides information about various OBAPI libraries that are provided out of the
box.

7-1

8
Digx Scheduler Application

This section describes how to create custom schedulers in OBAPI.

• Create New Scheduler Class

• Configure Scheduler Class

8.1 Create New Scheduler Class
Follow the steps given below while creating new scheduler:

1. Implement the class with org.quartz.Job, java.io.Serializable.
Example

public class ReportSchedulerImpl implements Serializable, Job {}

2. Define the required business logic in the overridden method
execute(JobExecutionContext) required for scheduling.
Example

@Overridepublic void execute
(JobExecutionContext paramJobExecutionContext) throws JobExecutionException
{// business logic required for scheduling}

3. Get the SessionContext and AccessPoint objects from the method parameter before
calling the business logic (if any). Set both the objects in the thread attributes.
Example

SessionContext sessionContext = (SessionContext)
paramJobExecutionContext.getJobDetail().getJobDataMap().get("sessionContext
");
AccessPointDTO accessPoint = (AccessPointDTO)
paramJobExecutionContext.getJobDetail().getJobDataMap().get("accessPoint");
com.ofss.digx.infra.thread.ThreadAttribute.set(com.ofss.digx.infra.thread.T
hreadAttribute.ACCESS_POINT,
accessPoint);ThreadAttribute.set(ThreadAttribute.SESSION_CONTEXT,
sessionContext);

4. Call the respective service class (if any) for business logic.
Example

try {
 ReportRequest service = new
 ReportRequest();service.executeScheduled(sessionContext);
 }
 catch (Exception e)
 {
 logger.log(Level.SEVERE, "Error occurred while executing
ReportSchedulerImpl

8-1

 class at : " + new java.util.Date(), e);
 }
 catch (java.lang.Exception e)
 {
 logger.log(Level.SEVERE, "Error occurred while executing
ReportSchedulerImpl
 class at : " + new java.util.Date(), e);
 }

8.2 Configure Scheduler Class
Configure the newly created scheduler class in “DIGX_CM_TIMER” table as per the
following script.

Example:

Insert into digx_cm_timer
(TIMER_ID,TIMER_CLASS,SECONDS,MINUTE,HOUR,DAY_OF_WEEK,DAY_OF_MONTH,MONTH,YEAR,
IS_ENABLED,IS_PESISTENT,
JVM_ID,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_VERSI
ON_NUMBER)
values
('ReportSchedulerTimer','com.ofss.digx.scheduler.report.ReportSchedulerImpl','
0',
'*/
15','*',null,null,null,null,'Y','N','1','ofssuser',sysdate,'ofssuser',sysdate,
1);

Chapter 8
Configure Scheduler Class

8-2

9
Consistent UI Download

• Add configurations in the Metadata Tables

• Custom Datatypes for Report Download

• Implement IPaginable and add XmlRootElement annotation on Response Object

• Adding content before and after table in PDF Reports

9.1 Add configurations in the Metadata Tables
The report generation system relies on the following metadata tables

1. DIGX_CM_TABLE_METADATA
Stores information about each table.

Table 9-1 Field Description

Property Description

TABLE_CODE Unique identifier for each table.

SUPPORTED_DOWNLOAD_TYPES Media types supported for download. Supported
values are ‘pdf’ and ‘csv’.

PAGINATION_TYPE The type of pagination supported. Supported
values are ‘S’ and ‘V’. Static (‘S’) refers to a one
time fetching of all records. Virtual (‘V’) refers to
virtual fetching of records.

ACTION_COMPONENT The path of the UI component present in channel
folder for which gets loaded on click of a row.

TABLE_HEADER Comma Separated Values for Report and UI
Screen Headers. Please note headings are NLS
supported. The file name should be
<TABLE_CODE>.properties and maintain at
location “config/resources/nls/tablemetadata”
with the keys and values.
Example: BrandManagement, ManageBrand

Here the BrandMangement header key will be
used for reports and ManageBrand will be used
for UI screen.

Incase the second value is missing. The UI
screen won’t show the header.

Example: BrandManagement

TABLE_HEADER The heading to show on the table. Please note
headings are NLS supported. The file name
should be <TABLE_CODE>.properties and
maintain at location “config/resources/nls/
tablemetadata” with the keys and values.

ROW_ID Unique identifier for each record in a table.

9-1

Table 9-1 (Cont.) Field Description

Property Description

SERIAL_NUMBER_REQUIRED Flag to enable serial numbers on the user
interface. Supported values are ‘Y’ to enable and
‘N’ to disable.

MAX_COLUMNS Property to limit the number of columns a PDF
can show. Default is 6 which can be changed by
updating this property.

Example

Insert into DIGX_CM_TABLE_METADATA

(TABLE_CODE,SUPPORTED_DOWNLOAD_TYPES,PAGINATION_TYPE,ACTION_COMPONENT,TABLE
_HEADER,ROW_ID,
SERIAL_NUMBER_REQUIRED,MAX_COLUMNS)
 values ('ManageBrandBrand','csv,pdf','S','theme-config/review-
theme',
'brand,brand','brandId',null,4);

2. DIGX_CM_COLUMN_METADATA
Stores information about columns available for a given table.

Table 9-2 Field Description

Property Description

TABLE_METADATA_ID Unique identifier for each table. Many to one
relationship to DIGX_CM_TABLE_METADATA
table and TABLE_CODE column.

NAME The name of the column with NLS support.
Maintain the file with the name
"<TABLE_CODE>.properties" at the location
"config/resources/nls/tablemetadata" along with
the corresponding keys and values. Avoid
creating duplicate files, as this file already
contains the TABLE_HEADER for the
DIGX_CM_TABLE_METADATA table.

COMPONENT_ID Custom component created for user interface.
Used to add custom formatting for specific
columns. Default value is ‘null’.

DATATYPE The supported datatypes are String, Number,
Date, Currency and Complex. Similar to
COMPONENT_ID, which is purely use for UI
rendering; Datatypes is for report generation.

PATH For value fetching, use the data path. The root
path of a record is represented by the dot
operator ('.'). Use the root path if the entire data
object is required. Alternatively, use specific
JSON paths when only specific values are
required, example "Person.name", here we read
name from the Person object.

Chapter 9
Add configurations in the Metadata Tables

9-2

Table 9-2 (Cont.) Field Description

Property Description

FIXED To view column on some condition, Supported
values are ‘Y’ to enable and ‘N’ to disable.

SORTABLE Flag to enable serial numbers on the user
interface. Supported values are ‘Y’ to enable and
‘N’ to disable.

DOWNLOADABLE The column support for download. Supported
values are ‘Y’ to enable and ‘N’ to disable.

MIN_WIDTH The minimum width of the column.

MAX_WIDTH The maximum width of the column.

SEQUENCE_NO The position of the column in the table.

LENGTH The width of the column. The sum of all column
lengths for a table code should be 100 to avoid
overflow and underflow of table content. If not
mentioned framework will auto size the widths.

Example

Insert into DIGX_CM_TABLE_METADATA

(ID,TABLE_METADATA_ID,NAME,COMPONENT_ID,DATATYPE,PATH,FIXED,SORTABLE,DOWNLO
ADABLE,SEQUENCE_NO,LENGTH)
 values

('ManageBrandBrandthemeName','ManageBrandBrand','themeName',null,'String','
brandName','Y','Y','Y',1,null);Insert into DIGX_CM_TABLE_METADATA

(ID,TABLE_METADATA_ID,NAME,COMPONENT_ID,DATATYPE,PATH,FIXED,SORTABLE,DOWNLO
ADABLE,SEQUENCE_NO,LENGTH)
 values

('ManageBrandBrandthemeDesc','ManageBrandBrand','themeDesc',null,'String','
brandDescription','N','Y','Y',2,null);Insert into DIGX_CM_TABLE_METADATA

(ID,TABLE_METADATA_ID,NAME,COMPONENT_ID,DATATYPE,PATH,FIXED,SORTABLE,DOWNLO
ADABLE,SEQUENCE_NO,LENGTH)
 values

('ManageBrandBranddateCreated','ManageBrandBrand','dateCreated','formattedD
ate','Date','creationDate','Y','Y','Y',3,40);Insert into
DIGX_CM_TABLE_METADATA

(ID,TABLE_METADATA_ID,NAME,COMPONENT_ID,DATATYPE,PATH,FIXED,SORTABLE,DOWNLO
ADABLE,SEQUENCE_NO,LENGTH)
 values
 ('ManageBrandBrandactions','ManageBrandBrand','actions','theme-
config/theme-actions','String','brandId','N','Y','Y',4,null);

Chapter 9
Add configurations in the Metadata Tables

9-3

9.2 Custom Datatypes for Report Download
The framework supports various data types, including String, Number, Date, and Complex. For
any unsupported data type, the framework looks for corresponding XSL templates to handle
report generation.

To create your own custom data types, follow these steps:

1. Identify the data type string to for using in the DIGX_CM_COLUMN_METADATA table. For
example, 'CustomDateType' can be a string used to create special handling for dates.
Alphanumeric combinations like 'CustomDateType#1' for additional variations, where each
type corresponds to its own set of templates.

2. Create a custom template at the following location:

config\resources\com\ofss\digx\framework\list\universal\templates
 <?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0">
 <xsl:template name="CustomDateType">
 <xsl:param name = "data" />
 <fo:block>
 <!-- Add handling here --
>
 <!-- <xsl:value-of select="$data/calendarDayOfWeek" />
-->
 </fo:block>
 </xsl:template>
 </xsl:stylesheet>

The above is a sample template for your reference. We save it as CustomDateType.xsl at
the given location. Each template has a data parameter as input, which contains the data
provided based on the path specified in the maintenance. The above template selects the
'calendarDayOfWeek' value and displays it in the PDF from the available data.

3. Import the template in config\resources\com\ofss\digx\framework\list\universal\loader.xsl
and add the selection criteria.

<?xml version="1.0"
 encoding="UTF-8"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0">
 <!-- Import template -->
 <xsl:include
 href="resources/com/ofss/digx/framework/list/universal/templates/
CustomDateType.xsl"/>
 <xsl:template name="loader"> <xsl:param name =
"dataType" /> <xsl:param name = "data" />
<xsl:choose> <!-- Add selection critria here and call
template
 -->
 <xsl:when test="$dataType
 = 'CustomDateType'"> <xsl:call-template

Chapter 9
Custom Datatypes for Report Download

9-4

name="CustomDateType"
 select="$data"/> </xsl:when> <!--
default handling --> <xsl:otherwise>
<fo:block> <xsl:value-of select="$data"
 /> </fo:block> </
xsl:otherwise> </xsl:choose>
 </xsl:template>
 </xsl:stylesheet>

4. Steps for CSV templates:
The steps remain the same as mentioned above, with the difference being the storage
location of templates and the loader file. The templates are at
'config\resources\com\ofss\digx\framework\list\universal\csv\templa
tes', and the loader file should be
'config\resources\com\ofss\digx\framework\list\universal\csv\loader
.xsl'.

9.3 Implement IPaginable and add XmlRootElement annotation
on Response Object

To enable UI Download on a service, you should implement the IPaginable Interface and add
the XmlRootElement annotation as shown below. The XmlRootElement’s name property
should be 'root', and you need to implement all the methods in the IPaginable Interface.

Chapter 9
Implement IPaginable and add XmlRootElement annotation on Response Object

9-5

Chapter 9
Implement IPaginable and add XmlRootElement annotation on Response Object

9-6

9.4 Adding content before and after table in PDF Reports
1. Create a template with slots at location “config\resources\uidownload\templates\pdf“

The file should be named with tableCode example ManageBrandBrand.xsl where
ManageBrandBrand is tablecode.

Use the below starter template,

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0" >

<xsl:include href="resources/com/ofss/digx/framework/list/universal/utils/ui-
download.xsl" />

<xsl:template match="/">

<xsl:call-template name="ui-download">

<xsl:with-param name="data" select="." />

</xsl:call-template>

</xsl:template>

<xsl:template name="top-slot"></xsl:template>

<xsl:template name="bottom-slot"></xsl:template>

</xsl:stylesheet>

2. Now new content can be added to the top-slot and bottom-slot templates, example
<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0" >

<xsl:include href="resources/com/ofss/digx/framework/list/universal/utils/ui-
download.xsl" />

<xsl:template match="/">

<xsl:call-template name="ui-download">

<xsl:with-param name="data" select="." />

</xsl:call-template>

</xsl:template>

<xsl:template name="top-slot">

<xsl:param name="data" />

<fo:block>

<xsl:value-of select="$data/status/apiType" />

</fo:block>

</xsl:template>

<xsl:template name="bottom-slot">

Chapter 9
Adding content before and after table in PDF Reports

9-7

<xsl:param name="data" />

<fo:block>

<xsl:value-of select="$data/status/apiType" />

</fo:block>

</xsl:template>

</xsl:stylesheet>

3. The complete response object can be accessed using the $data param, excluding the
items.
{

"status": {

"result": "SUCCESSFUL",

"contextID": "0063eZOykwSAHReEtbToWH00E9EP000CXx",

"message": {

"type": "INFO"

},

"apiType": "brand"

},

"brandDTOs": []

}

Chapter 9
Adding content before and after table in PDF Reports

9-8

10
Package and Deploy Customisations

• Base product packaging

• Customisation packaging

10.1 Base product packaging
Before we look at how to package service extensions we need to understand the packaging of
the base product.

Below we showcase project structure of an OBAPI base module. We take approvals as an
example.

1. Main-module-project.

2. Sub-project containing all the schedulers required by the module.

3. Sub-project containing all the services comprising the module. (Majority extensions fall
under this subproject).

4. Sub-project containing all the Data Transfer Objects used in other sub-projects

5. Sub-project containing validators used to validate Data Transfer Objects facilitating input to
OBAPI.

6. Sub-project containing classes used to make cross module calls.

7. Sub-project exposing endpoints to UI for end user to interact with OBAPI.

8. Subproject exposing endpoints used by other module’s services to consume the services
of this module via REST.

9. Sub-project containing JMS listeners required for the functioning of this module.

10-1

Each of the above listed subprojects are gradle projects which are then built into their
respective jars. In case of the example shown above the jars artifacts resulting from the build
are as given below.

1. com.ofss.digx.app.<<moduleName>>.scheduler.jar eg.
com.ofss.digx.app.approval.scheduler.jar

2. com.ofss.digx.app.<<moduleName>>.service.jar eg.
com.ofss.digx.app.approval.service.jar

3. com.ofss.digx.app.<<moduleName>>.xface.jar eg. com.ofss.digx.app.approval.xface.jar

4. com.ofss.digx.app.<<moduleName>>.xface.validators.jar eg.
com.ofss.digx.app.approval.xface.validators.jar

5. com.ofss.digx.app.<<moduleName>>.adapter.jar eg.
com.ofss.digx.app.approval.adapter.jar

6. com.ofss.digx.appx.<<moduleName>>.endpoint.jar eg.
com.ofss.digx.appx.approval.endpoint.jar

7. com.ofss.digx.ixface.<<moduleName>>.endpoint.jar eg.
com.ofss.digx.ixface.approval.endpoint.jar

8. com.ofss.digx.jms.<<moduleName>>.listener.jar eg. com.ofss.digx.jms.approval.listener.jar

10.2 Customisation packaging
Customizations or extensions can be broadly classified into 2 as mentioned below

• Customizations in existing service layer without the need to expose a new customized
REST endpoint

• Customizations to add new war

10.2.1 Customizations in existing service layer without the need to expose a
new customized REST endpoint

1. Building custom classes into customised jars:-
The majority customizations that fall into this category for example Pre-Post hooks, domain
and adapter extensions are done on artifacts present in the service jar mentioned in the
previous section namely com.ofss.digx.app.<<moduleName>>.service.jar. So the
corresponding extensions should be packaged in a jar named
com.ofss.digx.cz.app.<<moduleName>>.service.jar

Note:

Similarily in case required artifacts related to extension classes get packaged into
corresponding cz jars as mentioned above. For example if for a requirement we
need to add a custom listener to a module say approval, the artifacts related to
these listeners are packaged in a jar named
com.ofss.digx.cz.jms.approval.listener.jar. This is depicted in the image below.

Chapter 10
Customisation packaging

10-2

2. Adding customised jars as dependencies in build scripts:-
These custom jars can then be added to the war of the domain using the gradle scripts
provided in the installer as demonstrated below:

The patch set installer has the following folder structure

OBDX_Patch_Installer\installables\dist\Domainwise\wars
Taking ahead the current customization example we will refer module approval packaged
within domain digx-admin. Please refer the below mentioned file for module approval. (As
module approval is packaged in the domain named digx-admin)

OBDX_Patch_Installer\installables\dist\Domainwise\wars\digx-
admin\module.gradle

There is a line in the above file as shown below:

apply from: "../../cz/wars/digx-approval/module-cz.gradle"

Chapter 10
Customisation packaging

10-3

The highlighted line above refers to the file present inside the installer at the location given
below.

OBDX_Patch_Installer\installables\dist\Domainwise\cz\wars\digx-
approval\module-cz.gradle
So after customizations are done in a new jar say
com.ofss.digx.cz.app.approval.service.jar, this jar can be specified in this (module-
cz.gradle) file above as a dependency. Since dependencies in gradle are specified in
group:artifact:version format, we can specify the dependency of this customized jar as
below:

warLibs
"com.ofss.digx.cz.module.approval:com.ofss.digx.cz.app.account.service:$libs_digxVersio
n"

3. a. Place custom jars in the folder such that it gets picked by the gradle script and
is packaged within the domain war:-
So that the above specified dependency of the customized jar gets resolved we need
to place it in the folder structure as per group:artifact:version format.The repository
defined for our base and customized product jars is

OBDX_Patch_Installer\installables\gradle-repo

Since in the above examplegroup isas mentioned below

com.ofss.digx.cz.module.approval

So
wewillcreateafolderstructure\com\ofss\digx\cz\module\approvalinsideOBDX
_Patch_Installer\installables\gradle-repo

Now coming toartefact

com.ofss.digx.cz.app.app roval.service

For this we will create a folder named /
com.ofss.digx.cz.app.approval.service inside the above mentioned folder.

Finally the version is

Chapter 10
Customisation packaging

10-4

$libs_digxVersion

This version is a variable. The value of this variable is defined in a file

OBDX_Patch_Installer\core\config\gradle.properties.
If the value of the variable is as shown below

Create a folder named 22.2.0.0.0-SNAPSHOT inside the folder created for artefact
above.

Consequently the final folder structure should be as below

OBDX_Patch_Installer\installables\gradle-
repo\com\ofss\digx\cz\module\approval\
com.ofss.digx.cz.app.approval.service\22.2.0.0.0-SNAPSHOT

Place your customised jar inside the above folder such that it gets picked by the gradle
script and packaged inside the digx-admin war

10.2.2 Customizations to add new war
1. Create module specific folder in dist\cz\wars (typically 'digx-cz-<<ModuleName>>')

2. Ensure all the artifacts like src, build.gradle, settings.gradle, module.gradle of modules are
present.

3. Provide all the dependency, like other module jars and third party jars in module.gradle.
The libraries which are part of digx-shared-lib should not be included here.

4. Once the dependencies are included, build the war using gradle build command. It will
generate the module war in wars\digx-cz-<<ModuleName>>\build\libs folder.

5. Ensure the generated war has all the necessary components and deploy the same as an
application on the server. Also make sure that the module name is correctly present in
application.properties with following property name.

6. spring.application.name=digx-cz-<ModuleName>

Chapter 10
Customisation packaging

10-5

11
List of Topics

This user manual is organized as follows:

Table 11-1 List of Topics

Topics Description

Preface This topic provides information on the introduction, intended audience,
list of topics, and acronyms covered in this guide.

Objective and Scope This topic provides information about extensibility objective and scope of
it.

Architecture of Service Tier This topic explains OBDX framework (also known as DIGX framework).

Extensible Points in Service
Tier

This topic provides the various extensible points / hooks provided by
OBDX framework

Extensible Points in
Approval

This topic provides the extensible points in Approval framework.

Architecture of GUI Tier This topic provides the structure of the UI artifacts and some of the
important artifacts

Extensible Points in GUI
Tier

This topic provides the guidelines for UI Extensibility.

Libraries This topic provides how the OBDX has bundled its platform features and
capabilities in various librarie s based on logical separation of features.

Digx Scheduler Application This topic provides how to create custom schedulers in OBDX.

Consistent UI Download This topic provides how to Implement IPaginable and add
XmlRootElement annotation on Response Object, Adding configurations
in the Metadata Tables, Custom Datatypes for Report Download.

Package and Deploy
Customisations

This topic provides details of base prodccut packaging and customsing
packaging.

11-1

Index

A
Adapter Tier, 3-6
Add / Modify Validations, 6-2
Add configurations in the Metadata Tables, 9-1
Adding content before and after table in PDF

Reports, 9-7
Adding New And Overriding Existing

Components, 6-1
Adding New Rule Criteria, 4-1
Architecture of GUI Tier, 2-1
Architecture of Service Tier, 5-1
Authentication Extensibility, 3-9

B
Background, 1-1
Base product packaging, 10-1
Business Policy, 3-3

C
Calling custom REST service, 6-3
Component Extensibility, 6-1
Configure Scheduler Class, 8-2
Consistent UI Download, 9-1
Create New Scheduler Class, 8-1
Custom Datatypes for Report Download, 9-4
Customisation packaging, 10-2
Customizations in existing service layer without

the need to expose a new customized
REST endpoint, 10-2

Customizations to add new war, 10-5

D
Dictionary, 3-3
Digx Scheduler Application, 8-1
Domain Extensions, 3-6

E
Error Messages, 3-6
Extensible Points in Approval, 4-1
Extensible Points in GUI Tier, 6-1

Extensible Points in Service Tier, 3-1

I
Implement IPaginable and add XmlRootElement

annotation on Response Object, 9-5
Implementing a Rule Criteria Handler, 4-1

L
Libraries, 7-1

M
Miscellaneous, 3-10

O
OBAPI Libraries, 7-1
Objective, 1-1
Objective and Scope, 1-1
Outbound web service extensions, 3-7

P
Package and Deploy Customisations, 10-1

R
Registering a Rule Criteria Handler, 4-2
REST Tier, 3-1

S
Scope, 1-2
Security Customizations, 3-9
Service Extensions, 3-2
Structure, 1-2

T
Taxonomy Validations, 3-9
Theme and Brand, 6-1

Index-1

	Contents
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions
	Related Resources
	Screenshot Disclaimer
	Acronyms and Abbreviations

	1 Objective and Scope
	1.1 Background
	1.2 Objective
	1.3 Scope
	1.4 Structure

	2 Architecture of GUI Tier
	3 Extensible Points in Service Tier
	3.1 REST Tier
	3.2 Service Extensions
	3.3 Business Policy
	3.4 Dictionary
	3.5 Domain Extensions
	3.6 Error Messages
	3.7 Adapter Tier
	3.8 Outbound web service extensions
	3.9 Security Customizations
	3.10 Taxonomy Validations
	3.11 Authentication Extensibility
	3.12 Miscellaneous

	4 Extensible Points in Approval
	4.1 Adding New Rule Criteria
	4.1.1 Adding New Rule Criteria
	4.1.2 Implementing a Rule Criteria Handler
	4.1.3 Registering a Rule Criteria Handler

	5 Architecture of Service Tier
	6 Extensible Points in GUI Tier
	6.1 Theme and Brand
	6.2 Component Extensibility
	6.2.1 Adding New And Overriding Existing Components
	6.2.2 Add / Modify Validations

	6.3 Calling custom REST service

	7 Libraries
	7.1 OBAPI Libraries

	8 Digx Scheduler Application
	8.1 Create New Scheduler Class
	8.2 Configure Scheduler Class

	9 Consistent UI Download
	9.1 Add configurations in the Metadata Tables
	9.2 Custom Datatypes for Report Download
	9.3 Implement IPaginable and add XmlRootElement annotation on Response Object
	9.4 Adding content before and after table in PDF Reports

	10 Package and Deploy Customisations
	10.1 Base product packaging
	10.2 Customisation packaging
	10.2.1 Customizations in existing service layer without the need to expose a new customized REST endpoint
	10.2.2 Customizations to add new war

	11 List of Topics
	Index

