4.1 Fields
This topic provides information on Fields.
This section allows users to define basic model details.
- Use Case Name:- Enter a unique name for the model.
- Example: "Login_Anomaly_Model" or "Payment_Fraud_Detection"
- (Required) – This field must be filled to proceed.
 
- Description:- Provide a summary of the model’s purpose.
- Example: "Detects unusual login attempts based on user behaviour patterns."
 
- Use Case Type:- Select the type of use case as Anomaly_Detection.
- Options may Regression & Classification, or any other specific use cases.(Required)
 
- Product Processor:- Select the system or processor that will handle training.
- Example: "OBDX"
- (Required)
 
- Training Data Source:- Specify the dataset used to train the anomaly detection model.
- The dataset must include the target column (i.e., the column indicating whether an instance is anomalous or normal).
- Example: A CSV file or database table containing past login records.
- (Required)
 
- Inference Data Source:- Specify the dataset used when making predictions.
- Unlike the training dataset, this dataset should not include the target column.
- Example: "Live payment transaction records without labels."
- (Required)
 
- Unique Case Identifier:- Select the column in the dataset that uniquely identifies each record.
- Example: "User_ID" for login data or "Transaction_ID" for payment data.
- (Required)
 
- Target Column:- Select the column that defines whether a transaction/login attempt is an anomaly.
- Example: A column labelled "Anomaly_Flag" where 1 indicates an anomaly and 0 indicates normal behaviour.
- (Required)
 
- Positive Target Value:- Specify the value that represents an anomaly.
- Example: If "1" indicates fraud or an unauthorized login, set "1" as the positive target value.
 
- Tablespace:- Define the storage location for the model’s data within the system.
 
- Partition Column Names:- Select the columns used for partitioning the dataset.
- Example: "Date" to separate records by time period.
 
- Selected Algorithm:- Choose the machine learning algorithm to be used.
- Example: ALGO_SUPPORT_VECTOR_MACHINES, ALGO_NEURAL_NETWORK etc.
 
- Model Error Statistic:- Select an error metric to evaluate the model’s accuracy.
- Example: F1 Score, Precision-Recall, or AUC-ROC.
 
- Correlation Button:- Clicking this button will analyse relationships between features and the target variable.
- Helps in understanding the significance of different input features.
 
- Cost Matrix Button:- Allows users to define cost-sensitive learning, useful for reducing false positives or false negatives.
- (Optional)
 
- Save Button:- Saves the model configuration.
 
- Cancel Button:- Exits without saving any changes.
 
Parent topic: Use Case Setup
