
Oracle® Banking Digital Experience
Taxonomy Configuration Guide

Release 25.1.1.0.0
G43908-01
October 2025

Oracle Banking Digital Experience Taxonomy Configuration Guide, Release 25.1.1.0.0

G43908-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose i

Before you Begin i

Pre-requisites i

Audience i

Documentation Accessibility ii

Critical Patches ii

Diversity and Inclusion ii

Related Resources ii

Conventions ii

Screenshot Disclaimer iii

Acronyms and Abbreviations iii

Post-requisites iii

1 Introduction

2 Taxonomy Validation Table structure

3 Taxonomy Validation Process

4 Data Type Definition

5 Categories of taxonomy validators

6 Hierarchy to define field validation

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page i of ii

7 Extended Validators

8 Validators for complex data type

9 Configurations for taxonomy validation

10

Key Things to note for Taxonomy Validation

11

Templates

12

Configuring Taxonomy Validation in UI

13

Utility to generate Validators

14

Manual to create Validators

Index

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page ii of ii

Preface

• Purpose

• Before you Begin

• Pre-requisites

• Audience

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Related Resources

• Conventions

• Screenshot Disclaimer

• Acronyms and Abbreviations

• Post-requisites

Purpose
This guide is designed to help acquaint you with the Oracle Banking application. This guide
provides answers to specific features and procedures that the user need to be aware of the
module to function successfully.

Before you Begin
Kindly refer to our Getting Started User Guide for common elements, including Symbols and
Icons, Conventions Definitions, and so forth.

Pre-requisites
Specify User ID and Password, and login to Home screen.

Audience
This document is intended for the following audience:

• Customers

• Partners

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page i of iii

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
For more information on any related features, refer to the following documents:

• Oracle Banking Digital Experience Installation Manuals

• Oracle Banking Digital Experience Licensing Manuals

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

Preface

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page ii of iii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

Convention Meaning

monospace Monospace type indicates commands within
a paragraph, URLs, code in examples, text
that appears on the screen, or text that you
enter.

Screenshot Disclaimer
Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes; actual screens that appear in the application may
vary based on selected browser, theme, and mobile devices.

Acronyms and Abbreviations
The list of the acronyms and abbreviations used in this guide are as follows:

Table 1 Acronyms and Abbreviations

Abbreviation Description

OBDX Oracle Banking Digital Experience

Post-requisites
After finishing all the requirements, please log out from the Home screen.

Preface

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page iii of iii

1
Introduction

Taxonomy validation is used to validate each field of the request object for each service in
OBDX application. This validation pattern for each field can be defined in OBDX tables.

The taxonomy validation can be used for language specific validation of fields. This validation
can be configured at system as well as object level.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 1

2
Taxonomy Validation Table structure

This topic provides information on Taxonomy Validation Table structure.

DIGX_FW_LOCALE_DATA_TYPE
This table holds the complete list of predefined data types in Out of the box OBDX application.
The default locale used to define data type is ‘en’. Separate entries for data types can be made
for required locales. All the taxonomy data is validated against these data types. The validation
pattern for specific data type is formed based on the column values of this table which is as
follows:

For more information on fields, refer to the field description table.

Table 2-1 Table: DIGX_FW_LOCALE_DATA_TYPE

Column Name Type Description

ID VARCHAR2(100) Unique identifier of the
data type

LOCALE VARCHAR2(3) Locale identifier for which
validation pattern is
required

DESCRIPTION VARCHAR2(255) Description of the
taxonomy

MINLENGTH NUMBER minimum length required
for the field

MAXLENGTH NUMBER maximum length allowed
for the field

PATTERN VARCHAR2(255) regex pattern required to
be validated(if any)

ERRORCODE VARCHAR2(255) the default error code if the
pattern validation fails

LENGTHERRORCODE VARCHAR2(255) error code thrown if length
criteria fails

VALIDATION_CLASS VARCHAR2(255) Fully qualified name of the
class that needs to be
invoked for the validation.

DIGX_FW_TAXONOMY_DATA_TYPE_MAP
This table is used to define taxonomy and map it to the desired data type. The taxonomy can
be defined at class level or field level in this table. The validation pattern for the taxonomy can
be defined using following columns.

For more information on fields, refer to the field description table.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 2

Table 2-2 Table: DIGX_FW_LOCALE_DATA_TYPE

Column Name Type Description

ID VARCHAR2(255) Unique identifier of the
field to be validated. This
can be only field name,
field name in class
hierarchy or complex fields
parameters

TYPE VARCHAR2(20) (FIELD/CLASS/
COMPLEX)

DATATYPEID VARCHAR2(100) Identifier of the Data Type
to be applied on taxonomy

MINLENGTH NUMBER minimum length required
for the field

MAXLENGTH NUMBER maximum length allowed
for the field

MANDATORY VARCHAR2(1) Is the field value
mandatorily required
(Values - Y/N)

ERRORCODE VARCHAR2(255) the default error code if the
pattern validation fails

LENGTHERROCODE VARCHAR2(255) error code thrown if length
criteria fails

MANDATORYERRORCODE VARCHAR2(255) error code thrown if
mandatory criteria fails

Note

For all the fields which are common in both the tables, the field value in
'DIGX_FW_TAXONOMY_DATA_TYPE_MAP' will take the precedence.

Chapter 2

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 2 of 2

3
Taxonomy Validation Process

This topic provides information on Taxonomy Validation Process.

Taxonomy validation is applicable for all the objects that extend Validatable class. All the
private member (excluding static) fields are validated using taxonomy validation.

The member fields of the class which also extends the Validatable class will be validated
recursively. If there is a List of the fields, all the values will be validated in loop.

The detailed validation process is as follows:

1. The taxonomy validation flow will be called as part of the traditional
<DTO_Object>.validate method call in the service class.

2. The taxonomy validation should be applied or not for the respective DTO object is
configured in preferences (Explained in ‘Configurations’ section)

3. All the classes in ‘xface’ and ‘appcore/dto’ package which extends Validatable class will
have their corresponding validator class loaded in the system in the same package. The
validator class name would be <DTO_NAME>Validator.java.

Note

These validator classes need not be written by developers. These files will be
generated at build time and loaded in corresponding ear files.

4. All the member fields of the validatable object class will be validated against the
corresponding taxonomy data loaded.

5. If the validation fails for a particular field the corresponding error will be added to validation
error list. All the validation criteria will be applied to the field at once and all the possible
errors codes will collated together.

6. The ValidationError object will contain error code, error message, the fully qualified name
of the parent request DTO on which validate method is called and the fieldkey. The fieldkey
is the name of the field with its hierarchy w.r.t parent class.

7. If there is no validation data maintained for the field at class level or field level, an
exception will be raised.

8. The rest process of service execution will remain same.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 1

4
Data Type Definition

This topic provides information on Data Type Definition.

All the out of box available data types will be listed in ‘DIGX_FW_LOCALE_DATA_TYPE' table for
default locale ('en').

If the data type needs to be redefined for a different locale (e.g. if pattern is required to be
changed for different locale for a data type), a specific entry needs to be inserted for that data
type for required data type.

If the validation pattern for a particular field is asked for a locale other than 'en' and
corresponding entry is available in DIGX_FW_LOCALE_DATA_TYPE table the same will be applied.
Otherwise by default validation pattern of 'en' will be used.

Perform following steps, if new data type is to be introduced for the taxonomy validation.

1. Make an entry in ' DIGX_FW_LOCALE_DATA_TYPE' for default locale ('en').

2. Define the validation definition using the columns available in the table (like minlength,
maxlength, pattern etc).

3. Provide required error codes and their corresponding entries in
'DIGX_FW_ERROR_MESSAGES'.

4. Create a taxonomy validation class for the data type and provide its fully qualified name in
the respective column.

5. The out of the box taxonomy validation class should reside in
'projects\framework\com.ofss.digx.appcore.dto\src\com\ofss\digx\app
\dto\validator\taxonomy' .

6. Each taxonomy validation class must implement
'com.ofss.digx.app.dto.validator.ITaxonomyValidator'. Use the overridden 'validate' method
to provide logic for validation. It should be defined as singleton class and provide a
‘getInstance’ method for its loading. (Refer Templates section for reference).

7. Also each taxonomy validation class must implement the ‘getCategory’ method. The
validator category can be ‘NUMBER’, ‘TEXT’, ‘DATE’ or ‘OTHER’.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 1

5
Categories of taxonomy validators

This topic provides information on Categories of taxonomy validators. The taxonomy has
been divided into 4 categories.

1. NUMBER

2. TEXT

3. DATE

4. OTHER

The validation of taxonomy based on length and pattern is done based on above 4 categories.
Each taxonomy validator has to define it category by implementing ‘getCategory()’ method.

Methodology to validate length based on category

• For TEXT category the minLength and maxLength columns will refer to the actual length of
the string.

• For NUMBER category the minLength and maxLength columns will refer to the minimum
and maximum allowed integer value for the input

• For DATE category the minLength and maxLength columns will refer to the minimum offset
value (in number of days – positive or negative) from current date in which input date is
allowed.

• For OTHER category length validation will not be performed.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 1

6
Hierarchy to define field validation

This topic provides information on Hierarchy to define field validation. The field can be
defined for validation in one the following ways:

For more information on fields, refer to the field description table.

Table 6-1 Hierarchy to define field validation

Level Description Entry in DIGX_FW_TAXONOMY_DATA_MAP

ID Type

Field Level This level is used to validate
the taxonomy based on the
name of the field. It will be
applicable to all the fields
with same name in the
application irrespective of its
data type. This validation
can be overridden by a class
level entry for specific
request DTO

Exact name (case-
sensitive) of the
private member field
of the request DTO
class.

e.g. payeeID,
fromDate, name

FIELD

Class Level This level is used to validate
the taxonomy based on the
complete hierarchical field
name starting with fully
qualified name of the
request DTO.

Fully hierarchical
name of the field.

e.g.

com.ofss.digx.app.dt
o.finlimit.Transaction
alLimitDTO.owner.va
lue

CLASS

Complex Field Level This level is used to validate
the fields of complex data
type

As defined in the
complex data type
validator class.

COMPLEX

Note

1. While defining the taxonomy in ‘DIGX_FW_TAXONOMY_DATA_MAP’, override the
parameters of ‘DIGX_FW_LOCALE_DATA_TYPE’ as per the requirement.

2. If the entry for the field already exists in ‘DIGX_FW_TAXONOMY_DATA_MAP’, do not
modify it for specific case. Instead make an entry of the field as per class hierarchy.

3. In class level entry- If the same DTO is used in multiple services and different
taxonomy validation is expected for the field, the developer can override this validation
by adding service level taxonomy entry. In this case, instead of fully qualified DTO
class name, use the fully qualified method name. (i.e.
<Fully_qualified_service_class_name>.<method_name>.fieldName).

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 1

7
Extended Validators

This topic provides information on Extended Validators.

The default DTO validator classes can be extended using customized DTO validators. The
customized validator must implement IDTOValidator class. The validation logic should be
provided in overridden validate method.

The default DTO validation logic can be used by extending the default validator of the DTO
class and calling super.validate() followed by customized validation logic. The customized
class name should be given in ‘DIGX_FW_CONFIG_ALL_B’ under category
‘ExtValidationConfig’.

The extended validation class should contain a protected constructor and should use singleton
pattern with a‘getInstance’ method to return the validator object. Refer the templates section
for sample extended validator.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 1

8
Validators for complex data type

This topic provides information on Validators for complex data type.

The complex data type in OBDX can have specific validators. These validators are responsible
for validating the fields in the complex data type.

The validation of the fields can also be configured in ‘DIGX_FW_TAXONOMY_DATA_MAP’ (as per
given in section Data Type Definition). By using this, the field validation can be kept
configurable using database entries (refer Template section for sample code). The custom
validation can also be written in validators specific to complex data type.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 1

9
Configurations for taxonomy validation

This topic provides information on Configurations for taxonomy validation. Following are
the day-0 configuration properties related to taxonomy. All the properties are maintained in
‘DIGX_FW_CONFIG_ALL_B’. For all properties default handling is for ‘false’.

PROP_ID Value CATEGORY_ID Description

TAXONOMY_VALIDATION
_ENABLED

true/false ValidationConfig This property indicates
whether taxonomy
validation is required or
annotation based
validation should be
applied.

CHECK_TAXONOMY_ALLO
WLIST

true/false ValidationConfig This property will be
used if taxonomy
validation is enabled. If
this property is true, the
DTOs for which
taxonomy needs to be
enabled should be
configured.

If false, the DTOs for
which taxonomy
validation is not
required should be
configured.

<Fully_qualified_name_
of_dto>.EnableTaxonom
y

true/false ValidationConfig This property will be
effective for respective
DTO
if‘CHECK_TAXONOMY_AL
LOWLIST’ is true.

If this property is set
to true, taxonomy
validation will be
applied to the DTO.
Otherwise it will follow
annotation based
validation.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 2

PROP_ID Value CATEGORY_ID Description

<Fully_qualified_name_
of_dto>.DisableTaxonom
y

true/false ValidationConfig This property will be
effective for respective
DTO

If
‘CHECK_TAXONOMY_ALL
OWLIST’ is false.If this
property is set to true,
annotation based
validation will be
applied to the DTO.
Otherwise it will follow
taxonomy validation.

<Fully_qualified_name_
of_dto>

<Fully_qualified_name_
of_extended_validator>

ExtValidationConfig This property is used to
specify the extended
validator class for a
specific DTO.

Chapter 9

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 2 of 2

10
Key Things to note for Taxonomy Validation

This topic provides information on Key Things to note for Taxonomy Validation.

1. Taxonomy validation is applied to all non-static private fields. . Exceptions: Fields of types
extending DataTransferObject, ENUM fields.

2. The fields should have appropriate getter method.

a. For Boolean – the getter method should be ‘is<Fieldname>’ (e.g. isShared)

b. For other types – the getter should be ‘get<Fieldname>’ (e.g. getPartyId)

3. If any field in the DTO is of type of an object which extends Validatable Class, the
corresponding validator class will be responsible for its field validation.

4. For fields that do not require any specific data type validation, data type ‘FREETEXT’ an be
mapped.

5. For list type of fields the validation will be done in loop, validating each field as per
taxonomy definition.

6. In validationError, the structure of the error object is as follows-

 {
 "objectName": <fully qualified name of the DTO on which validate
method is called>,
 "attributeName": < the field in which the validation has failed>,
 "errorCode": <error code>,
 "errorMessage": <locale specific message for the errorCode>
 }

For list of objects or fields the attribute name will have an index concatenated by ‘#’ in
attributeName.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 1

11
Templates

This topic provides information on Templates.

1. Template to define Extended DTO validator

• DTO name: com.ofss.digx.app.test.TestDTO

• Default validator: com.ofss.digx.app.test.TestDTOValidator

• Extended DTO validator: com.ofss.cz.app.test.ExtTestDTOValidator

package com.ofss.cz.app.finlimit.dto.limitpackage;
import java.util.List;
import com.ofss.digx.app.dto.validator.IDTOValidator;
import com.ofss.fc.app.dto.validation.IValidatable;
import com.ofss.fc.infra.validation.error.ValidationError;
public class ExtTestDTOValidator extends
com.ofss.digx.app.test.TestDTOValidator
implements IDTOValidator
 {
 protected ExtTestDTOValidator()
 {
 }
 public static ExtTestDTOValidator getInstance()
 {
 return ExtTestDTOValidatorHolder.INSTANCE;
 }
 private static class ExtTestDTOValidatorHolder
 {
 private static final ExtTestDTOValidator INSTANCE = new
ExtTestDTOValidator();
 }
 @Override public void validateInput
 (
 IValidatable validatable,
 String key, String parentName,
 List<ValidationError>
 validationErrors
)
 {
 LOGGER.log(Level.SEVERE,
 FORMATTER.formatMessage
 (
 "Class : %s, Entering into the customized class and calling digx
class ",
 THIS_COMPONENT_NAME));
 super.validateInput(validatable, key, parentName,
validationErrors);
 // Provide the required addiotion validation for the DTO. Add
the required errors
 in validationErrors for the failed cases.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 6

 }
 }

2. Template to define taxonomy data type validator
Data Type: TESTTYPE

Validator: TestTypeValidator

package com.ofss.digx.app.dto.validator.taxonomy;
 import java.util.List;
 import com.ofss.digx.app.dto.validator.ITaxonomyValidator;
 import com.ofss.digx.app.dto.validator.ValidationData;
 import com.ofss.fc.infra.validation.error.ValidationError; public class
TestTypeValidator
 implements ITaxonomyValidator
 {
 private TestTypeValidator()
 {
 }
 private static class TestTypeValidatorHolder
 {
 private static final TestTypeValidator INSTANCE = new
TestTypeValidator();
 }
 /**
 * @return unique instance of {@link TestTypeValidator} */
 public static TestTypeValidator getInstance()
 {
 return TestTypeValidatorHolder.INSTANCE;
 }
 @Override public void validate
 (
 ValidationData data, Object val, String parentName,String
fieldKey,
 List<ValidationError> validationErrors)
 {
 if (val != null)
 {
 if (val instanceof <Type of the object>)
 {
 < Type of the object > value = (<Type of the object >)
val;
 if (<validation_case>)
 {
 validationErrors.add
 (new ValidationError(parentName, fieldKey, null,
data.getErrorCode(), null));
 }
 }
 else
 {
 validationErrors.add
 (new ValidationError(parentName, fieldKey, null,
"DIGX_INVALID_VALUE_TYPE",null));
 }

Chapter 11

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 2 of 6

 }
 }
 }

3. Template to define validator for custom data type

package com.ofss.digx.app.dto.validator.taxonomy;
 import java.util.List;
 import java.util.logging.Level;
 import java.util.logging.Logger;
 import java.util.prefs.Preferences;
 import com.ofss.digx.app.dto.validator.ITaxonomyValidator;
 import com.ofss.digx.app.dto.validator.TaxonomyHandler;
 import com.ofss.digx.app.dto.validator.TaxonomyValidatorFactory;
 import com.ofss.digx.app.dto.validator.ValidationData;
 import com.ofss.digx.enumeration.validator.TaxonomyCategory;
 import com.ofss.fc.datatype.PostalAddress;
 import com.ofss.fc.infra.config.ConfigurationFactory;
 import com.ofss.fc.infra.log.impl.MultiEntityLogger;
 import com.ofss.fc.infra.validation.error.ValidationError;
 /** * Validation class for complex type @AmountRange */public class
PostalAddressValidator implements ITaxonomyValidator {
 private static final String THIS_COMPONENT_NAME =
PostalAddressValidator.class.getName();
 private static final Logger LOGGER =
MultiEntityLogger.getUniqueInstance().getLogger(THIS_COMPONENT_NAME);
 private static final MultiEntityLogger FORMATTER =
MultiEntityLogger.getUniqueInstance();
 /** * Constant to hold validation configuration preference name
*/
 private static final String VALIDATION_CONFIGURATION =
"ValidationConfig";
 /** * Fully qualified name of the default length validator class
*/
 private static final String LENGTH_VALIDATOR =
"LENGTH_VALIDATOR"; /**
 * Fully qualified name of the default length validator class */
 private static final String DEFAULT_LENGTH_VALIDATOR =
"com.ofss.digx.app.dto.validator.taxonomy.LengthValidator";
 /** * private Constructor */
 private PostalAddressValidator()
 {
 }
 private static class PostalAddressValidatorHolder
 {
 private static final PostalAddressValidator INSTANCE = new
PostalAddressValidator();
 }
 /** * @return unique instance of {@link PostalAddressValidator}
*/
 public static PostalAddressValidator getInstance()
 {
 return PostalAddressValidatorHolder.INSTANCE;
 }
 /** * */
 @Override public void validate

Chapter 11

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 3 of 6

 (ValidationData data, Object val, String parentName,
 String fieldKey,
 List<ValidationError> validationErrors)
 {
 if (LOGGER.isLoggable(Level.FINE))
 {
 LOGGER.log(Level.FINE,FORMATTER.formatMessage
 ("Complex Data Type validation inside Class : %s,
for Field : %s",THIS_COMPONENT_NAME, fieldKey));
 }
 PostalAddress v = (PostalAddress) val;

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line1." + data.getLocale()),
 v.getLine1(), parentName, fieldKey + ".line1",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line2." + data.getLocale()),
 v.getLine2(), parentName, fieldKey + ".line2",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line3." + data.getLocale()),
 v.getLine3(), parentName, fieldKey +
".line3",validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line4." + data.getLocale()),
 v.getLine4(), parentName, fieldKey +
".line4",validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line5." + data.getLocale()),
 v.getLine5(), parentName, fieldKey +
".line5",validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line6." + data.getLocale()),
 v.getLine6(), parentName, fieldKey + ".line6",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line7." + data.getLocale()),
 v.getLine7(), parentName, fieldKey + ".line7",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line8." + data.getLocale()),
 v.getLine8(), parentName, fieldKey + ".line8",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line9." + data.getLocale()),
 v.getLine9(), parentName, fieldKey + ".line9",
validationErrors);

Chapter 11

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 4 of 6

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line10." + data.getLocale()),
 v.getLine10(), parentName, fieldKey + ".line10",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line11." + data.getLocale()),
 v.getLine11(), parentName, fieldKey + ".line11",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.line12." + data.getLocale()),
 v.getLine12(), parentName, fieldKey + ".line12",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.city." + data.getLocale()),
 v.getCity(), parentName, fieldKey +
".city",validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.state." + data.getLocale()),
 v.getState(), parentName, fieldKey + ".state",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTALA
DDRESS.country." + data.getLocale()),
 v.getCountry(), parentName, fieldKey + ".country",
validationErrors);

validateField(TaxonomyHandler.getInstance().getValidationMap().get("POSTA
LADDRESS.postalCode." + data.getLocale()),
 v.getPostalCode(), parentName, fieldKey +
".postalCode", validationErrors);
 }
 /** * Validate individual field of the complex data type {@link
PostalAddress} * *
 @param data * @param value * @param parentName * @param
key * @param validationErrors */
 private void validateField(ValidationData data, String value, String
parentName,String key, List<ValidationError> validationErrors)
 {
 Preferences validationFactoryConfigurator =
ConfigurationFactory.getInstance()
 .getConfigurations(VALIDATION_CONFIGURATION);
 ITaxonomyValidator lengthValidator =
TaxonomyValidatorFactory.getInstance()
 .getValidator(validationFactoryConfigurator.get(LENGTH_VALIDATOR,
 DEFAULT_LENGTH_VALIDATOR));
 if (value == null)
 {
 if (data.isMandatory()
)
 {
 validationErrors.add(new ValidationError(parentName, key, null,

Chapter 11

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 5 of 6

data.getMandatoryErrorCode(), null));
 }
 }
 else
 {
 if (data.getMinLength() != null || data.getMaxLength() != null)
 {
 lengthValidator.validate(data, value, parentName,key,
validationErrors);
 }
 ITaxonomyValidator validator =
TaxonomyValidatorFactory.getInstance().getValidator(data.getClassName());

 if (validator != null)
 {
 validator.validate(data, value, parentName, key,
validationErrors);
 }
 }
 }
 @Override public final TaxonomyCategory getCategory()
 {
 return TaxonomyCategory.OTHER;
 }
 }

Chapter 11

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 6 of 6

12
Configuring Taxonomy Validation in UI

This topic describes the systematic instruction to Configuring Taxonomy Validation in UI
option.

To integrate the taxonomy based validation in UI components following steps are required for
migration from earlier UI based validations.

View Model

Create taxonomyDefinition instance by calling getTaxonomyDefinition method from
dashboard.

It accepts the name of the DTO as the only argument.

A REST call to fetch taxonomy details will be performed for each invocation of
getTaxonomyDefinition.

HTML

getTaxonomyValidator function accepts taxonomyDefinition created in the View Model as
first argument, and idField to search within taxonomyDefinition as second argument,

and element selector as the third argument.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 1

13
Utility to generate Validators

This topic provides information on Utility to generate Validators.

Once the taxonomy validation is enabled for a request DTO, it is mandatory to have a
taxonomy validator for the same in the application.

A utility has been provided to generate the validators for such request DTOs. This section
describes the steps to be followed to generate the validators using this utility.

Prerequisites:

1. The machine should have JDK version 1.7 or above installed

2. The project having the custom request DTOs must be ready

3. Supporting jars as mentioned below

a. com.ofss.digx.appcore.dto.jar – (available in ‘obdx.app.framework.ear’)

b. com.ofss.fc.infra.jar – (available in ‘obdx.app.core.domain.ear’)

c. com.ofss.fc.appcore.dto.jar – (available in ‘obdx.app.core.domain.ear’)

d. Any other jars required for compilation of project containing custom request DTOs

Running the Utility:
This section explains step by step process to generate the validators using the utility.

Step 1: Copy the following artifacts from the <installer> to desired directory. This directory will
be referred as <UTIL_DIR>.

1. validator_gen.bat (for Windows) OR validator_gen.sh (for Linux)

2. lib folder – (contains pre-built jars required for utility)

Add the supporting jars as mentioned in the prerequisites (point no 3) in the lib folder.

Step 2: Go to < UTIL_DIR > and open command prompt / terminal.
Execute following command:

1. For Linux
./validator_gen.sh <BIN_DIR> <UTIL_DIR> <PROJECT_DIR> <PACKAGE_NAME>

2. For Windows
/validator_gen.bat <BIN_DIR> <UTIL_DIR> <PROJECT_DIR> <PACKAGE_NAME>.

Where,

<BIN_DIR>: Path where JDK bin is located (e.g. C:\Program Files\Java\jdk1.8.0_171\bin) (use
“ if the path contains spaces)

<PROJECT_DIR>: path where request DTO project is located

<PACKAGE_NAME>: name of the package where the source of request DTOs is located

Consider following example

If the customized request DTOs are located in
‘D:\workspaces\trunk\com.ofss.digx.cz.app.xface\src \com…’

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 2

Then, < PROJECT_DIR > = ‘D:\workspaces\trunk’ and < PACKAGE_NAME > =
‘com.ofss.digx.cz.app.xface’

Step 3:
As a result of utility, a jar containing the compiled classes of validator files will be created in
<UTIL_DIR>. Copy the jar file and paste in the EAR file where the jar of customized DTO
classes is located. Deploy the EAR file in the application and restart the server.

Note

As the utility runs, it creates the source folder of the validator classes in
<PROJECT_DIR>. By default, this folder is deleted once the utility execution is
completed. This source folder can be retained by following way.

Open ‘validator_gen.bat’ or ‘validator_gen.sh’ in notepad and set the value of variable
‘isValidatorSourceRequired’ to Y. Run the utility again. The source will available in
<PROJECT_DIR>.

Chapter 13

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 2 of 2

14
Manual to create Validators

This topic provides information on Manual to create Validators.

If the utility to generate validator is not available, following steps can be referred to create the
request DTO validator manually. This can be created in the same workspace as that of request
DTO.
Project Creation for validators

1. Import the project containing customized DTO in eclipse workspace

2. Create project in the workspace for valiadator classes. Name the project by
appending ’.validators’ to the name of project containing DTOs

3. Create the validator class for each of the DTO. Maintain the same package structure as
that of DTO project while creating the validator classes. To name the validator, use the
DTO name appended with prefix ‘Validator’.

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 1 of 4

Validator file creation
Use following steps to create validator class:

In this document, we will use CardDTO, OfferDTO, CreditCardDTO as example to create
validators. CardDTO extends DataTransferObject and CreditCardDTO extends CardDTO.

For these DTOs, CardDTOValidator, OfferDTOValidator and CreditCardDTOValidator will be
created.

Each validator class must extend a parent DTO validator class.

If Request DTO extends DataTransferObject then the validator class should extend
‘com.ofss.digx.app.dto.validator.AbstractDTOValidator’.

E.g. public class CardDTOValidator extends AbstractDTOValidator implements
IDTOValidator {

If request DTO extends another request DTO then the validator class should extends the
validator class of parent DTO.

e.g.public class CreditCardDTOValidator extends CardDTOValidator implements
IDTOValidator {

1. Each validator class must implement the interface
‘com.ofss.digx.app.dto.validator.IDTOValidator’

Each validator should be a singleton class and must contain ‘getInstance’ method to return
validator class instance. The class can be made singleton by any method. One of the
method is given in following snippet.

protected CreditCardDTOValidator()
 {
 } /**
 * @return instance of {@link CreditCardDTOValidator}.
 */

Chapter 14

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 2 of 4

 public static CreditCardDTOValidator getInstance()
 {
 return CreditCardDTOValidatorHolder.INSTANCE;
 }
 /**
 *
 The class holds the instance of {@link
CreditCardDTOValidator}.
 */
 private static class CreditCardDTOValidatorHolder
 {
 /**
 *
 private instance variable {@value new
CreditCardDTOValidator()}.
 */
 private static final CreditCardDTOValidator INSTANCE = new
CreditCardDTOValidator();
 }

2. Validator class should override ‘validateInput’ with signature as given below:

@Override public void validateInput
(
IValidatable validatable, String key, String
parentName,List<ValidationError> validationErrors
)
{

3. In ‘validateInput’ method: include following content in the beginning-

a. String parent = parentName != null ? parentName :
validatable.getClass().getName();
String fullKey = (key != null ? (key + ".") : "");
 super.validateInput(validatable, key, parent, validationErrors);

(The super.validateInput validates the fields of parent class by calling parent validator’s
‘validateInput’ method.

b. validatable’ parameter of ‘validateInput’ should be casted to DTO which we want to
validate. For example, in case of CardDTOValidator, CardDTO is to be validated.
Therefore, below code should be used for casting

CardDTO cardDTO = (CardDTO) validatable;

c. Create a HashMap of String as key and Object as value as in below snippet

Map<String,Object> fieldsMap =new HashMap<String,Object>();

Add all fields of DTO in hashmap one by one.

‘fullKey’ appended with particular fieldname should be inserted as key of hashmap and
corresponding field as value of hashmap .

Chapter 14

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 3 of 4

For eg in case of CardDTO below snippet should be added to CardValidator

Map<String,Object> fieldsMap = new HashMap<String,Object>();
fieldsMap.put(fullKey + "id",cardDTO.getId());
fieldsMap.put(fullKey + "cvv",cardDTO.getCvv());
fieldsMap.put(fullKey + "active",cardDTO.isActive());

d. If some DTO have other DTO in its attribute, then to validate attribute level DTO,
corresponding DTOs validator should be called.
For e.g. CardDTO contains a field cardProductDTO of type CardProductDTO. So
CardValidator should have following snippet to validate field of type CardProductDTO.

if(cardDTO.getCardProductDTO() != null)
{
DTOValidatorFactory.getInstance().getValidator(cardDTO.getCardProductDT
O()).validateInput
(cardDTO.getCardProductDTO(),fullKey + "cardProductDTO", parent,
validationErrors);
 }
fieldsMap.put(fullKey + "cardProductDTO",cardDTO.getCardProductDTO());

e. If some DTO contains list of objects, include following snippet for its validation.

if(cardDTO.getOffers()
!= null && !cardDTO.getOffers().isEmpty())
 {
 int dtoVarIndex = 0;
 for(OfferDTO dtoVar : cardDTO.getOffers())
 {

DTOValidatorFactory.getInstance().getValidator(dtoVar).validateInput
 (dtoVar, fullKey + "offers#" + dtoVarIndex, parent,
validationErrors);
 dtoVarIndex++;
 }
 }
 fieldsMap.put(fullKey + "offers",cardDTO.getOffers()
);

f. Finally add following method to validate parameters.

DefaultDTOValidator.validateParams(fieldsMap,parent,validationErrors);

Chapter 14

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Page 4 of 4

Index

C
Categories of taxonomy validators, 1
Configurations for taxonomy validation, 1
Configuring Taxonomy Validation in UI, 1

D
Data Type Definition, 1

E
Extended Validators, 1

H
Hierarchy to define field validation, 1

K
Key Things to note for Taxonomy Validation, 1

M
Manual to create Validators, 1

T
Taxonomy Validation Process, 1
Taxonomy Validation Table structure, 1
Templates, 1

U
Utility to generate Validators, 1

V
Validators for complex data type, 1

Taxonomy Configuration Guide
G43908-01
Copyright © 2015, 2025, Oracle and/or its affiliates.

November 4, 2025
Index-1 of Index-1

	Contents
	Preface
	Purpose
	Before you Begin
	Pre-requisites
	Audience
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Related Resources
	Conventions
	Screenshot Disclaimer
	Acronyms and Abbreviations
	Post-requisites

	1 Introduction
	2 Taxonomy Validation Table structure
	3 Taxonomy Validation Process
	4 Data Type Definition
	5 Categories of taxonomy validators
	6 Hierarchy to define field validation
	7 Extended Validators
	8 Validators for complex data type
	9 Configurations for taxonomy validation
	10 Key Things to note for Taxonomy Validation
	11 Templates
	12 Configuring Taxonomy Validation in UI
	13 Utility to generate Validators
	14 Manual to create Validators
	Index

