Oracle Banking Extensibility

Workbench
Getting Started User Guide

Release 14.8.0.0.0
G29517-01
April 2025

ORACLE"

Oracle Banking Extensibility Workbench Getting Started User Guide, Release 14.8.0.0.0
G29517-01
Copyright © 2024, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Preface
1.1 Purpose 1-1
1.2 Introduction 1-1
1.3 Audience 1-1
1.4 Documentation Accessibility 1-2
1.5 Critical Patches 1-2
1.6 Diversity and Inclusion 1-2
1.7 Related Resources 1-2
1.8 Conventions 1-2
1.9 Screenshot Disclaimer 1-3
1.10 Acronyms and Abbreviations 1-3
1.11 Basic Actions 1-3
1.12 Symbols and Icons 1-4

2 Welcome to Oracle Banking Extensibility Workbench

2.1 Introduction 2-1
2.2 OBX and Base artifacts compatibility 2-2
2.3 Setting up OBX for first time use 2-2
2.4 OBX Maintenance 2-4
25 OBXUIl 2-5
2.5.1 Entity Details 2-6
2.5.2 Field Details 2-6
2.5.3 Child Entity Details 2-8
2.5.4 Relationship Details 2-9
3 Service Extensions
3.1 Simple Sub Domain Service 3-2
3.2 Maintenance Sub Domain Service 3-5
3.3 Data/Resource Segment Sub Domain Service 3-7
3.3.1 RSOV1 3-7
3.3.2 RSOV2DS 3-10
3.3.3 Workflow DS 3-11

ORACLE" il

3.4 Simple Publisher/Subscriber Event Service 3-14
3.5 Batch Service 3-17
3.6 Custom Validation Service 3-18
3.7 Steps to Adopt Multi in Existing Service 3-20
3.8 Service Extensibility 3-22
Ul Extensions — Web Component
4.1 Component Server 4-4
4.2 Simple Standalone 4-4
4.3 Virtual Page 4-6
4.4 Maintenance Detail and Summary 4-10
4.5 Data Segment 4-12
4.6 Dashboard Widget 4-14
4.7 Running Component after Generation 4-16
4.8 Creating final Extended Component war for Deployment 4-17
4.9 Understanding DB Scripts for Web Components 4-18
Modification of Base Web Component
5.1 Steps for Modification of Base Component 5-2
5.2 Process Workbench 5-2
5.3 OBX Update Command 5-8
5.3.1 Service Update 5-9
5.3.2 Ul Update 5-9
5.4 In-Scope DS 5-10
5.5 OBX Release Command 5-11
Extending Product Data Segments with Additional Fields
6.1 Additional Fields Maintenance 6-1
6.2 Populating Data in Corresponding Fields From Ul 6-6
6.3 Fetching the Saved Values 6-8
Action URL and Static Tag Maintenance
7.1 Action URL Maintenance 7-1
7.2 Static Tag Maintenance 7-1
Extensibility Use Cases for OBBRN Servicing
8.1 New Transaction Screen — 1499 (Exact Clone of 1401) 8-1
8.2 Exact Clone with Additional Fields Using Common Code 8-2

ORACLE"

8.3 Exact Clone with Additional Fields Using Extensible Code 8-6
8.4 Jar Deployment in Weblogic 8-6

o Extensibility Use Cases for OBX
9.1 New Transaction screen — 1499 (Clone of 1401) 9-2
9.2 New Data Segment in Existing 1401 Screen 9-4
9.3 HTML Changes 9-5
9.4 JS Changes 9-6
9.5 JSON Changes 9-8
9.6 Model Changes 9-9
9.7 Database Changes 9-9
9.8 Service Component 9-10
9.9 New Field in Existing Base Data Segment 9-13
9.10 HTML Changes (Extended Components) 9-14
9.11 HTML Changes (Base Component) 9-15
9.12 JS Changes (Base Component) 9-16
9.13 JS Changes (Extended Component) 9-16
9.14 JSON Changes (Extended Component) 9-17
9.15 JSON Changes (Base Component) 9-18
9.16 DB Changes 9-18
9.17 Add New Columns in Base Component Table 9-20
9.18 Steps for adding extra column in task grid 9-21
9.19 Steps to use Additional Buttons provision in Task Screen 9-21
9.20 Steps to create common-extended folder for extending configJSON.js file 9-22
9.21 Customizing Existing LOV Fetch Result 9-23
9.22 Steps for adding Pre/post methods in extended components 9-24
9.23 ENDPOINT Overrides 9-25
9.24 Steps to create util-extended folder 9-26
9.25 Dynamic Data Configuration (DDC) 9-26
9.26 Task Screen Custom Config 9-29

10 Reference and Feedback
10.1 Reference 10-1
10.2 Documentation Accessibility 10-1
10.3 Feedback and Support 10-1
Index

ORACLE

Preface

e Purpose

e Introduction

e Audience

e Documentation Accessibility
e Critical Patches

e Diversity and Inclusion

* Related Resources

e Conventions

e Screenshot Disclaimer

e Acronyms and Abbreviations
e Basic Actions

e Symbols and Icons

1.1 Purpose

This guide is designed to help acquaint you with the Getting Started User Guide application.
This guide provides answers to specific features and procedures that the user need to be
aware of the module to function successfully.

This user guide would help you to understand the functioning of the Oracle Banking
Extensibility Workbench — OBX and the types of extensions it provides. It provides the steps
required to be followed for implementing the extensibility to the Base product. It is assumed
that all the prior setup is already done related with Base product/ Kernel. In this document it is
also assumed that installation will be done on Windows 10 operating system with minimum
8GB Ram and available/free space of 5GB.

1.2 Introduction

This user guide would help you to understand the functioning of the Oracle Banking
Extensibility Workbench — OBX and the types of extensions it provides. It provides the steps
required to be followed for implementing the extensibility to the Base product. It is assumed
that all the prior setup is already done related with Base product/ Kernel. In this document it is
also assumed that installation will be done on Windows 10 operating system with minimum
8GB Ram and available/free space of 5GB.

1.3 Audience

ORACLE

This document is intended for the teams and developers who are responsible for creating
extensions like services and web components for products which are developed using Oracle
Banking Microservices Architecture.

1-1

Chapter 1
Documentation Accessibility

1.4 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1.5 Critical Patches

Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

1.6 Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

1.7 Related Resources

For more information, see these related user guides:

* Oracle Banking Extensibility Workbench Installation Guide

¢ Oracle Banking Extensibility Workbench Release Notes

1.8 Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE 1o

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

Chapter 1
Screenshot Disclaimer

1.9 Screenshot Disclaimer

Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes.

1.10 Acronyms and Abbreviations

The list of the acronyms and abbreviations that are used in this guide are as follows:

Table 1-1 Acronyms and Abbreviations

Abbreviation Description

DDA Demand Deposit Accounts

ECA External Credit Approval

EOD End of Day

IBAN International Bank Account Number

1.11 Basic Actions

The basic actions performed in the screens are as follows:

Table 1-2 Basic Actions

Actions Description

New Click New to add a new record. The system displays a new record to
specify the required data. The fields marked with asterisk are
mandatory.
e This button is displayed only for the records that are already

created.
Save Click Save to save the details entered or selected in the screen.
Unlock Click Unlock to update the details of an existing record. The system

displays an existing record in editable mode.
e This button is displayed only for the records that are already
created.

Authorize Click Authorize to authorize the record created. A maker of the screen

is not allowed to authorize the same. Only a checker can authorize a

record.

e This button is displayed only for the already created records. For
more information on the process, refer Authorization Process.

Approve Click Approve to approve the initiated record.
e This button is displayed once the user click Authorize.

Audit Click Audit to view the maker details, checker details of the particular
record.
e This button is displayed only for the records that are already

created.

Close Click Close to close a record. This action is available only when a
record is created.

Confirm Click Confirm to confirm the action performed.

Cancel Click Cancel to cancel the action performed.

ORACLE 13

Chapter 1
Symbols and Icons

Table 1-2 (Cont.) Basic Actions

- __|
Actions Description

Compare Click Compare to view the comparison through the field values of old
record and the current record.
e This button is displayed in the widget once the user click Authorize.

View Click View to view the details in a particular modification stage.
e This button is displayed in the widget once the user click Authorize.

View Difference only Click View Difference only to view a comparison through the field
element values of old record and the current record, which has
undergone changes.

e This button is displayed once the user click Compare.

Expand All Click Expand All to expand and view all the details in the sections.
e This button is displayed once the user click Compare.

Collapse All Click Collapse All to hide the details in the sections.
e This button is displayed once the user click Compare.

OK Click OK to confirm the details in the screen.

1.12 Symbols and Icons

ORACLE

This guide has the following list of symbols and icons.

Table 1-3 Symbols and Icons - Common

Symbol/icon Function
<4 L Minimize
T r
r = Maximize
L Jd

Close

Perform Search

Open a list

Add a new record

+ |0 X

Navigate to the first record

N

1-4

ORACLE

Chapter 1
Symbols and Icons

Table 1-3 (Cont.) Symbols and Icons - Common

- __|
Symbol/icon Function

2l

Navigate to the last record

Navigate to the previous record

Navigate to the next record

Grid view

List view

Refresh

|

>
oo
oo
QG
| +

‘ Click this icon to add a new row.

[] Click this icon to delete a row, which is already added.
. Calendar
Q Alerts
L
Table 1-4 Symbols and Icons - Audit Details
Symbol/lcon Function
A user

Date and time

1-5

ORACLE

Chapter 1
Symbols and Icons

Table 1-4 (Cont.) Symbols and Icons - Audit Details

Symbol/icon Function

Unauthorized or Closed status

Authorized or Open status

Rejected status

A
v
Q

Table 1-5 Symbols and Icons - Widget

Symbol/lcon Function

& Open status

-ﬁ Unauthorized status

& Closed status

Authorized status
3

Rejected status

[
D: Modification Number

1-6

Welcome to Oracle Banking Extensibility
Workbench

This guide provides an overview and detailed instructions for using the Oracle Banking
Extensibility Workbench (OBX), enabling users to efficiently configure and customize banking
workflows.

It provides the complete solution to create extensions for products based and developed on
Oracle Banking Microservices Architecture (OBMA). It helps in generating the services and Ul
web components artifacts. This guide is designed to help you create all these types of service
and Ul artifacts. It also has complete life cycle management incorporated for all the extensions
generated from tool.

Introduction

Oracle Banking Extensibility Workbench (OBX) is a combination of GUI and command line
tool, intended to create different type of extensions for Oracle Banking Micro services
Architecture.

OBX and Base artifacts compatibility
This topic provides the systematic instruction to perform OBX and Base artifacts
compatibility.

Setting up OBX for first time use
This topic provides the systematic instruction to perform OBX setup for first time use.

OBX Maintenance
This topic provides the systematic instructions to execute OBX Maintenance operations.

OBX Ul
This topic provides information about OBX Ul details.

2.1 Introduction

Oracle Banking Extensibility Workbench (OBX) is a combination of GUI and command line tool,
intended to create different type of extensions for Oracle Banking Micro services Architecture.

ORACLE

OBX support generation of following types of Extensions:

1.

Service Extensions

e Simple sub domain service

e Maintenance sub domain service

» Data/Resource Segment sub domain service
e Simple Publisher/Subscriber Event Service

e Custom Validation Service

Ul Extensions — Web Component

e Simple Standalone

e Virtual Page

* Maintenance Detail and Summary

2-1

Chapter 2
OBX and Base artifacts compatibility

« Data Segment
e Dashboard Widget
3. Modification of Base Web Component
* Additions of Fields on Existing component
* Hiding fields from screen
« Defaulting values on screen
» Disable field

e Making Non-mandatory field

2.2 OBX and Base artifacts compatibility

This topic provides the systematic instruction to perform OBX and Base artifacts compatibility.
OJET version compatibility:

The implementation team must ensure that the OJET version of the app shell used aligns with
the OJET version present in the OBX tool.

Note:

As part of OJET upgrade some older libraries may not be supported. If consulting /
implementation team is using any of the unsupported libraries for their
customizations, compatibility issues may arise if the app-shell version they are using
doesn't include those OJET libraries.

All the Ul customizations/extensions are bundled into extended-components war which
ultimately refer to the app-shell OJET libraries only.

Please find the compatibility matrix of app-shell OJET versions and OBX OJET versions below.

Table 2-1 OBX - Compatibility

OBX version OJET version

14.7.0.0.0 Appshell version xxxx (has 13.0.0 OJET version)
14.7.5.0.0 Appshell version 9.5.0 (has 15.1.8 OJET version)
14.8.0.0.0 Appshell version 9.6.0 (has OJET Version 17.xxx)

2.3 Setting up OBX for first time use

This topic provides the systematic instruction to perform OBX setup for first time use.

To generate the first artifact, user must first complete the installation process, including the
creation of the extension_home folder, and then you should be able to see the help menu as
shown below.

ORACLE "5

Chapter 2
Setting up OBX for first time use

Figure 2-1 Setting up OBX

tions]

pdate
comnand> [options]
options]

tion [opticns]
% xdl-gen [options]

[boolean)
[boolean]

B cmdexe 5 B-E-al

Once that is done, we will proceed to next step which is setting up libraries and components
from base product. Follow the below process to setup libraries and components:

1. Create a folder component-server inside extension_home directory.

2. Use 7zip or other similar tool to extract app-shell-9.5.0.war from base product to copy the
common & js folders and put it inside the component-server folder.

3. Navigate inside the js folder and copy the components folders and place it in the
component- server folder.

4. Create a folder lib inside extension_home directory.

5. To use a service war file like cmc-datasegment-services-9.5.0.war, open it using a tool
like 7zip. Navigate to the WEB-INF\lib folder within the war file and copy all the jars inside.
Then, paste them into the lib folder of your extension's home directory.

6. Create a folder runtime inside extension_home directory.

7. Navigate to the gradle folder within the obx.zip, then copy the extra_jars from the lib
folder to the runtime folder within the extension_home directory.

8. After all the above process extension_home folder looks like below.

Figure 2-2 Extension Home Folder

= | extension_home =] >

Home Share View
£ = W P * This PC » System [C) » extension_home ~ | %) | Search e ¥}

Name

Quick access

component-server
liy
runtime

B Desktop

9. Once all of the above process is done, we cannot now generate the artifact.

ORACLE)3

Chapter 2
OBX Maintenance

2.4 OBX Maintenance

This topic provides the systematic instructions to execute OBX Maintenance operations.
Before generating the artifact, verify the below items from the base installation.
Items for the base installation verification.

e Verify if the PRODUCT_EXTENDED_LEDGER table exists in the plato-ui-config schema.
If it's not present, execute the script below:

CREATE TABLE "PRODUCT EXTENDED LEDGER" ("ID" VARCHAR2 (20),
"CCA NAME"VARCHAR2 (100), "CCA TYPE" VARCHAR2 (20), "PARENT CCA NAME"
VARCHAR2 (100), "PRODUCT NAME" VARCHAR2 (100))

ALTER TABLE "PRODUCT EXTENDED LEDGER" ADD CONSTRAINT

"PRODUCT EXTENDED LEDGER PK" PRIMARY KEY ("ID")

ALTER TABLE "PRODUCT EXTENDED LEDGER" MODIFY ("CCA NAME" NOT NULL
ENABLE)

ALTER TABLE "PRODUCT EXTENDED LEDGER" MODIFY ("ID" NOT NULL ENABLE)
ALTER TABLE "PRODUCT EXTENDED LEDGER" ADD CONSTRAINT

"UNIQUES_CCA NAME" UNIQUE ("CCA NAME")

e Maintain the product name OBX in the table SMS_TM_APPLICATION inside SMS
schema.

e Grant user OBX application access through SMS_TM_USER_APPLICATION or preferred
use the UL.

Figure 2-3 Create User

Create User bl .

e

User Role Branches

a Branch Code Role Code Robe Desaription
N et to display,

Page 1 (Oof Oitems) 1

Customer Access Groups

+ | &

[m] Customen Accass Group Customer Access Description
P data to display.

Page 1 (Dol Ohems) 1

to n

ORACLE 4

Chapter 2
OBX Ul

2.5 0BX Ul

This topic provides information about OBX Ul details.

After setting up the OBX, we can now generate the XDL (OBX Domain Language) file, which
will be used by the OBX engine to further generate the service and Ul artifacts.

To start OBX Ul:

1. Navigate to extension_home folder from console emulator (cmder).
2. Use the command obx xdl-gen.

3. This command will automatically open a new tab in cmder with OBX Ul running at local
port 8080 (https://localhost:8080).

Note:

If you have running applications on port number 8080, you may need to stop
them to start the obx Ul.

Figure 2-4 OBX Ul

@ Cmder = o X

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.9.8)

Copyright & 5, Oracle and/or its affi s. All rights reserved,

D:\0BX\0BX_Workbench\extension_home\obxuixnpm link fs-extra cucumber-html-reporter cucumber selenium-webdriver express http-proxy-middleware gulp gulp-connect gulp-open gulp
-sass karma karma-chrome-launcher karma-coverage requirejs karma-jasmine karma-junit-reporter karma-requirejs karma-sonarqube-unit-reporter morgan portscanner serve-index 1
>nul
0BX UI is running at po 89, Please generate xdl file before proceeding

Did you generate the (Y/n)

4. Open the browser and navigate to http://localhost:8080. after the obx Ul is running.

ORACLE oe

Chapter 2
OBX Ul

Figure 2-5 Banking Extensibility Workbench

Please drop XDL file or Click here to upload

Field Details

Mo data to display.

Add | Modify || Delete

Child Entity Details

Add Child Entity

Following are sections present on the OBX Ul:
* Entity Details

* Field Details

e Child Entity Details

* Relationship Details

e Entity Details
This topics helps user to capture the entity name.

* Field Details
This topic helps user to define the fields for the main entity.

e Child Entity Details
This topic helps user to define the fields for the Child Entity.

e Relationship Details
This topic helps user to define the fields for the Relationship Details.

2.5.1 Entity Details

This topics helps user to capture the entity name.

As the Domain Entity pattern an object is primarily defined by its identity is called an Entity.

Figure 2-6 Entity Details

Entity Details
Entity Name

Please drop XDL file or Click here to upload

2.5.2 Field Details

ORACLE

This topic helps user to define the fields for the main entity.

2-6

Chapter 2
OBX Ul

Click the Add button and provide the field details.

Figure 2-7 Field Details

Field Details

Fiekd Name Field Type Default Value Field Size

No data to display.

Add Modify Delete

OBX supports the following field types:

Table 2-2 Field types - Field Description

Field Description

String The OBX field type is built-in. It's translated to a varchar in SQL scripts,
a string type in Java files, and a normal text field in Ul components.

Integer The OBX field type is built-in. It's translated to a number in SQL scripts,
a integer type in Java files, and a normal text field in Ul components.

Float The OBX field type is built-in. It's translated to a number in SQL scripts,
a float type in Java files, and a normal text field in Ul components.

LoV The OBX field type is inherited from the base product and has its own
configuration as below.

Figure 2-8 LOV Configuration

>
Field Details
Field Name Field Datatype Default Value Size
only letters l LOV - l default value for field 1
| Required|
Mandatory

@ True O False

~ LOV Configuration

Id Title End Point

lov id lov title end point

Add

This ID is the specific ID given to this LOV component. The title is displayed on the LOV dialog
box, and the endpoint is the service endpoint this field connects to for fetching values.

ORACLE .

ORACLE

Table 2-3 LOV component - Field Description

Chapter 2
OBX Ul

Field Name Description

Date This field is also inherited from the base product and add date
component on the screen.

Amount This field is also inherited from the base product and add the amount
field on the screen. This field also captures currency along with the
amount.

Combobox This field is taken from Ojet Cookbook and OBX Ul provides

configurations to needed for this component like value and label.

Figure 2-9 Combobox Configuration

Field Details

® True O False

~ Combobox Configuration

Value Label

No data to display.

Field Name Field Datatype Default Value Size
only letters I Combobox w l default value for field 1

|] Required|

Mandatory

Value

Label

Add

Table 2-4 Combobox Configuration - Field Description

Field Description

Checkbox This field type is also taken from Ojet Cookbook and OBX Ul provides
configurations to needed for this component like value and label.

Toggle Button This field type is taken from Ojet Cookbook.

Text Area This field type is taken from Ojet Cookbook.

2.5.3 Child Entity Details

This topic helps user to define the fields for the Child Entity.

Use this block for adding the child entities. Once clicked the Add Child Entity Button, it will
open a dialog box where we can enter the child entity name. Once clicked ok it will add a child

block below with its details.

Add the child entity field details in a similar way like we added for main entity.

2-8

Chapter 2
OBX Ul

Figure 2-10 Child Entity Details

Child Entity Details
Add Child Entity

No items to display.

2.5.4 Relationship Details

This topic helps user to define the fields for the Relationship Details.

Once all the entity details are added we can define relationship among them. Use this block to
define the relationship.

Currently OBX supports two types of relationships:
¢ One to Many
¢ One to Many to Many

Figure 2-11 Relationship Details

Relationship Details

Has Relationship Relationship Type

® True O False One-Many -

CoskED) Save XDL

One-Many-Mar
Copyright @ 2023, 2024 Oracle and/or its affiliates All rights reserved. y-Many

Once all of the above Entity, Field Details & Relationship is created click on the Save XDL
button and it will save the xdl file on machine.

Note:

Its recommended to put the xdl file under the same extension_home folder and give
it proper name (generally main entity name).

The final XDL file looks like below:

ORACLE 9

Chapter 2
OBX Ul

Figure 2-12 XDL File Folder

~ OPEN EDITORS

X [8 customer.xdl entity customer {
v EXTENSION HOME customerId String r»qulrEd si

mobil i . default(1:‘.34-«

> B component-server
(15)

urrency LOV) endpoint(
> I runtime untOpenDate St
customer.xd| balance String req) defa amount

stomer i (ne) dropdown [{no

default(India) text-area

default() t

tring required s
ired size(6)

mer to address

> OUTLINE
> TIMELINE

Once XDL file is generated you may come back to cmder main tab where it is waiting for the
input. You may proceed creating next set of artifacts which are described in next sections.

Figure 2-13 OBX Ul

[cmder = a X

ORACLE BANKING EXTENSIBILITY WORKEBENCH October 2024 (1£.7.5.0.8)

ess http-prox ddleware gulp gulp-connect gulp-open gulp
ndex 1

3 er e
ge requirejs karma-jasmine ka unit-; re-mrter karm —requx'e]: kama— onarqube-unit-reporter morgan portscanner serve

ate xdl file before p ding

(Use arrow keys)

puonnl detail & ary UI components
fc Users\saayare re-global.json

ORACLE 510

Service Extensions

This topic provides the systematic instructions to perform the basic operations on the selected
records.

Using OBX we can create multiple types of service extensions. This services extension has
complete infrastructure needed to build to service. Also, the source folder generated out the

box from OBX follows the package structure which is adopted and used by base/kernel teams
to keep it in sync.

There are two ways to generate the service artifact:

1. Select the category immediately after generating the XDL file and proceed.

Figure 3-1 XDL File

OBX UI is running at port: ¢ se generate xdl file before proceeding
Did you generate the xdl fil
Do you want to create: (Use arrow
Do you want to create:

Domain service with optional UI component

gment service with optional UI component

Maintenance domain service with optional detail & summary UI components
Obscf service with optional UI component

2. Use the service specific command to generate different types.

Figure 3-2 Command

service -h
ce <command> [options]

e ds [options]

mn [options]
[ej.\pti -
obscf [options]
& 2 [options
wfds [options

Note:

Both above ways will generate the same artifacts.

ORACLE -

Chapter 3
Simple Sub Domain Service

e Simple Sub Domain Service
This topic provides the systematic instructions to perform the basic operations on the
selected records.

e Maintenance Sub Domain Service
This topic describes the process to generate the Maintenance Sub Domain Service.

» Data/Resource Segment Sub Domain Service
This topic provides the systematic instructions to perform the basic operations on the Data/
Resource Segment sub domain service.

e Simple Publisher/Subscriber Event Service
This topic the systematic instructions to perform the basic process to generate simple
publisher/subscriber event service.

e Batch Service
This topic describes the process to generate Oracle Banking Microservices Architecture
(OBMA) based Batch service.

e Custom Validation Service
This topic provides the systematic instructions to generate custom validation service.

e Steps to Adopt Multi in Existing Service
This topic provides the systematic instruction to adop multi in existing service.

e Service Extensibility
This topic provides the systematic instructions to perform the basic operations on the
selected records.

3.1 Simple Sub Domain Service

ORACLE

This topic provides the systematic instructions to perform the basic operations on the selected
records.

This is one of the primary use cases in OBX. To generate the simple sub-domain service,
follow the below steps:

1. Navigate to same extension_home folder using cmder.

2. Use the command obx service new -c.

3-2

Chapter 3
Simple Sub Domain Service

Figure 3-3 OBX Service new -c

Cmder

D:\0B) X_Work ch nsion_home
obx service new -c

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

Copyright ® 2024-2025, Oracle and/or its affiliates. All rights reserved.

? Select the product family:
> Oracle Banking Extensibility Workbench
Oracle Banking Branch
Oracle FLexcube Onboarding
Oracle Banking Virtual Account Management
Oracle Banking Trade Finance Process Management
Oracle Banking Credit Facility Process Management
Oracle Banking Corporate Lending Process Management
(Move up and down to reveal more choices)

3. Once this command is fired, this will take you to next section where it will prompt other set
of questions. Answer them accordingly to your setup and requirement.

Figure 3-4 OBX Ul

II Cmder

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2824 (14.7.5.0.9)

Copyright © 2024-2025, Oracle and/or its affiliates. All rights reserved.

? Select the product family: Oracle Banking Extensibility Workbench
Enter name of service (I'll add -service to it): customer

? Select service tenant type: Single Tenant

? Enter name of Infra (OBMA) data source (I'll add prefix jdbc/ to it): OBMA
Enter name of Security data source (I'll add prefix jdbc/ to it): PLATO_SECURITY
Enter name of this service data source (I'll add prefix jdbc/ to it): ENTITY
Enter product release version: 14.7.5.0.9

? Enter the absoclute path of xdl file: P:\0BX\xdl-files\customer.xdl

4. Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

ORACLE 23

8.

ORACLE

Chapter 3
Simple Sub Domain Service

Figure 3-5 OBX Customer Service

d = | obx-customer-service i O %
Home Share View P
L JEE.. > > This PC » System (C) » extension_home > obx-customer-service ~ |ty [S B
Quick access [Mame
I Desktop . sre
&l .gitignore
& yo-rcjson
& build.gradle
& gradle properties PROPERTIE]
Jlenkinsfile File
& plato-db-object-creation.sql sal File
README.md
& settings.gradle
= >
9 itemns | :‘ —

Select the option based on your requirement for question Do you want to create Ul
component for this service? (Y/n).

For building the service go into the service folder from cmder and run the command gradle
clean build.

This will build the service and we can find the war of the service getting created inside the
build/libs directory.

Figure 3-6 Lib's Directory

== = 2 . PP . . . —

IR cmctese @

Use this service and deploy it in your environment.

3-4

Chapter 3
Maintenance Sub Domain Service

Note:

» DB scripts for the service will be generated inside the folder:
\extension_homelobxcustomerservice\src\main\resources\db

» Compile the Entity script in the entity schema created for extensions only.

e Service created as part of extension should be deployed in separate domain and
should not be mixed or co-deployed with any other product specific services.

» Before compiling CONFIG_SCRIPT.sql in verify the entries manually and change
it according to your setup.

e Also, verify PLATO_TABLE_SCRIPT.sql before executing it in the schema it
may contain some dummy values.

3.2 Maintenance Sub Domain Service

This topic describes the process to generate the Maintenance Sub Domain Service.

Maintenance service generally has concept of main and worktable. This allows enables
functionality where all the Authorized records goes to main table and all the unauthorized
records goes to worktable. Also, with this type of service we attach audit details to payload.

To generate the maintenance type of service, follow the below steps:

1. Navigate to same extension_home folder using cmder.

2. Use the command obx service mn -c.

Figure 3-7 OBX Command

[&] cmder

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)
Copyright ® 2024-2025, Oracle and/or its affiliates. All rights reserved.

? Select the product family: (Use arrow keys)
Oracle Banking Virtual Account Management
Oracle Banking Trade Finance Process Management
Oracle Banking Credit Facility Process Management
Oracle Banking Corporate Lending Process Management
Oracle Banking Intrest & Charges
Oracle Banking Supply Chain Finance
Oracle Banking Cash Management

{Move up and down to reveal more choices)

3. Once this command is fired, this will take you to next section where it will prompt other set
of questions. Answer them accordingly to your setup and requirement.

ORACLE .

Chapter 3
Maintenance Sub Domain Service

Figure 3-8 OBX Setup

II Cmder

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

Copyright @ 2024-2025, Oracle and/or its affiliates. All rights reserved.

? Select the product family: Oracle Banking Extensibility Workbench
? Enter name of service (I'll add -service to it): customer
? Select service tenant type: Single Tenant
Enter name of Infra (0BMA) data source (I'll add prefix jdbc/ to it): OBMA
Enter name of Security data source (I'll add prefix jdbc/ to it): PLATO_SECURITY
? Enter name of this service data source (I'll add prefix jdbc/ to it): ENTITY
? Enter product release version: 14.7.5.0.0
? Enter the absolute path of xdl file: [:\0BX\xdl-files\customer.xdl

4. Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

Figure 3-9 Extension Home Folder

o + | obx-customer-service — O =
Home Share View ®
« by > This PC » System (C) » extension_home > obx-customer-service ~ O search obx.. @
Quick access 03 Name
I Desktop it
& .gitignore
™4 yo-rcjsan
& build.gradle
& gradle properties
Jenkinsfile
& plato-db-object-creation.sql
README.md
™ settings.gradle
= >
9 iterns == =

5. Select the option based on your requirement for question: Do you want to create a
Maintenance and Summary Components for this service? (Y/n).

6. For building the service go into the service folder from cmder and run the command gradle
clean build.

7. This will build the service and we can find the war of the service getting created inside the
build/libs directory.

ORACLE 26

8.

Chapter 3
Data/Resource Segment Sub Domain Service

Figure 3-10 Lib's Directory

[Wcwan

B cmdes Gra-al Viem -

Use this service and deploy it in your environment.

< Note:
e DB scripts for the service will be generated inside the folder:
\extension_homelobxcustomerservice\src\main\resources\db
e Compile the Entity script in the entity schema created for extensions only.

e Service created as part of extension should be deployed in separate domain and
should not be mixed or co-deployed with any other product specific services.

e Here Security Management System (SMS) scripts are also generated.
\extension_homelobxcustomer-service\srcimain\resources\db\sms

e Execute the SMS script in sms schema, here we only generate the functional
activity of service. Assigning to proper role should be done according to the steps
mentioned in base application.

3.3 Data/Resource Segment Sub Domain Service

This topic provides the systematic instructions to perform the basic operations on the Data/
Resource Segment sub domain service.

This topic consists of the following sub-topics:

3.3.1RSOV1

RSOV1
This topic describes the process to generate the data/resource segment type of
maintenance service.

RSOV2 DS
This topic provides information on RSOV2 DS operations data segment.

Workflow DS
This topic provides information on workflow details data segment.

This topic describes the process to generate the data/resource segment type of maintenance
service.

Here we can generate Master Type of data segment or child type of data segment.

ORACLE

3-7

ORACLE

Chapter 3
Data/Resource Segment Sub Domain Service

Master Type: This case is used when user wants to generate the complete flow from
scratch. It will generate the new screen class code for the data segments.

Child Type: This is primarily used when user wants to attach a single data-segment in the
existing flow/process. Generally, this existing flow/process is available in the base product.
We use the same screen class code from base and attach our data segment to it. To
generate it please follow the below steps:

1.
2.

Navigate to same extension_home folder using cmder

Use the command obx service ds -c.

Figure 3-11 OBX serviceds -c

[&] Cmder

orkbench\ex

obx service ds -c

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

Copyright ® 2024-2025, Oracle and/or its affiliates. All rights reserved.

’ Select the product family: Oracle Banking Extensibility Workbench
? Enter name of service (I'll add -service to it): customer
? Is it a Master type component? Yes
? Select service tenant type: Single Tenant
7?7 Enter name of Infra (OBMA) data scurce (I'll add prefix jdbc/ to it): OBMA
? Enter name of Security data source (I'll add prefix jdbc/ to it): PLATO_SECURITY
? Enter name of this service data source {(I'll add prefix jdbc/ to it): ENTITY
? Enter product release version: 14.7.5.0.0
? Enter the absolute path of xdl file: D:\DBX\xdl—files\customer.xdl

Once this command is fired, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

Select the type of component according to your requirement.

Figure 3-12 Master Type Component

7 Is it a Master type corﬁponent? (Y/n) | '

Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

3-8

9.

ORACLE

Chapter 3
Data/Resource Segment Sub Domain Service

Figure 3-13 Extension Home Folder

A W 5 | obrtustomerssivics = o '3
Hame Share View @

== iy > This PC > System (C) > extension_home > obx-customer-service v O | Search obx.. P

Quick access] Name

BN Desktop i
&l .gitignore
_';;’ yo-rcjson
™~ build.gradle
& gradle.properties

PROPERTIE]

Jenkinsfile File

& plato-db-object-creation.sql
README.md

'_’.J settings.gradle

SAQL File

< >
9 items ==

Select the option based on your requirement for question: Do you want to create a
Data Segment for this service? (Y/n).

For building the service, go into the service folder from cmder and run the command:
gradle clean build.

This will build the service and we can find the war of the service getting created inside
the build/libs directory.

Figure 3-14 Lib's Directory

= =3 e S . S T
T FC > Splem(Ch 3 estemsion beeme 3 cl-austomer-senice 3 buakd 3 fbs)]
& Systemicy a
coackepintess B Ch e ma-ENRES10)
Dvers
asses
generaled
™
v < >
I cmon G - aL e &

Use this service and deploy it in your environment.

3-9

Chapter 3
Data/Resource Segment Sub Domain Service

Note:

» DB scripts for the service will be generated inside the folder:
\extension_homelobxcustomerservice\src\main\resources\db

» Compile the Entity script in the entity schema created for extensions only.

e Service created as part of extension should be deployed in separate domain and
should not be mixed or co-deployed with any other product specific services.

* Here Security Management System (SMS) scripts are also generated:
\extension_homelobxcustomer-service\srcimain\resources\db\sms.

» Execute the SMS script in sms schema, here we only generate the functional
activity of service. Assigning to proper role should be done according to the steps
mentioned in base application.

e Here along with SMS and Entity, CMC scripts are also generated under folder:
\extension_homelobx-customer-servicelsrci\main\resources\db\cmc.

» Execute them in the CMC schema.

e Screen Class and Data Segment has to be maintained from the Ul which is
present under common core.

3.3.2 RSOV2 DS

ORACLE

This topic provides information on RSOV2 DS operations data segment.

For Nov patchset innovation - RSOv1 is discontinued and RSOv2 should be adopted for all
customizations for maintenance services.

Here we can generate Master Type of data segment or child type of data segment.

3-10

Chapter 3
Data/Resource Segment Sub Domain Service

Figure 3-15 OBX Service RSOV2-C

:E]Cmder

D:
obx service rsov2z -c

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.8)

Copyright ® 20824-2025, Oracle and/or its affiliates. All rights reserved.

* Select the product family: Oracle Banking Extensibility Workbench
Enter name of service (I'll add -service to it): customer
> Is it a Master type component? Yes
Select service tenant type: Single Tenant
name of Infra (OBMA) data source (I'll add prefix jdbec/ to it): OBMA
i e (I'1ll add prefix jdbec/ to it): PLATO_SECURITY
source (I'll add prefix jdbc/ to it): ENTITY
product release version: 14 5.0.0
r the absolute path of xdl file: D:\DBX\xdl-files\customer.xdl

e Master Type: This will create two components one would be core component of product
services which will contain utility service, the other one would be the master type of
component that needs to be included in the core services folder.

* Child Type: This will create only one component that needs to be included in the core
services (containing utility).

Follow the steps to deploy it in your environment:

=

Navigate to same extension_home folder using cmder.
2. Use the command obx service rsov2 -c.

3. Once this command is fired, this will take you to next section where it will prompt other set
of questions. Answer them accordingly to your setup and requirement.

4. Select the type of component according to your requirement.

5. Once all the questions are answered and path of XDL is given, it will generate the folders
accordingly inside the extension_home.

6. Select the option based on your requirement for question: Do you want to create a Data
Segment for this service?(YIN).

7. Include the folders created either master or child inside the (core-services), folder and
make the modifications accordingly.

8. Use this service and deploy it in your environment.

3.3.3 Workflow DS

This topic provides information on workflow details data segment.

Here, the user can generate master or child type if data segment.

ORACLE 311

ORACLE

Chapter 3
Data/Resource Segment Sub Domain Service

Master Type: This case is used when user wants to generate the complete flow from
scratch. It will generate the new screen class code for the data segments.

Child Type: This is primarily used when user wants to attach a single data-segment in the
existing flow/process. Generally, this existing flow/process is available in the base product.
We use the same screen class code from base and attach our data segment to child type.
To generate master or child type if data segment, follow the below steps:

1.
2.

Navigate to same extension_home folder using cmder.

Use the command obx service wfds -c.

Figure 3-16 OBX service wfds -c

II Cmder

D: rkben
obx service wfds -

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2824 (14.7.5.8.8)
Copyright @ 2024-2025, Oracle and/or its affiliates. All rights reserved.

lect the product family: Oracle Banking Extensibility Workbench

? Enter name of service (I'll add -service to it): customer

Is it a Master type component? Yes
? Select service tenant type: Single Tenant
? Enter name of Infra (OBMA) data source (I'll add prefix jdbe/ to it): OBMA
? Enter name of Security data source (I'll add prefix jdbc/ to it): PLATO_SECURITY
7 Enter name 2 E e (I'1l add prefix jdbc/ to it): ENTITY
? Enter product re .9
? Enter the absolute X ile: D:\0BX\xdl-files\customer.xdl

Once this command is fired, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

Select the type of component according to your requirement.

Figure 3-17 Component Type

? Is it a Master type corﬁponent? (Y/n) | —

Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

3-12

9.

ORACLE

Chapter 3
Data/Resource Segment Sub Domain Service

Figure 3-18 Extension Home Folder

A W 5 | obrtustomerssivics = o '3
Hame Share View @

== iy > This PC > System (C) > extension_home > obx-customer-service v O | Search obx.. P

Quick access] Name

BN Desktop i
&l .gitignore
_';;’ yo-rcjson
™~ build.gradle
& gradle.properties

PROPERTIE]

Jenkinsfile File

& plato-db-object-creation.sql
README.md

'_’.J settings.gradle

SAQL File

< >
9 items ==

Select the option based on your requirement for question: Do you want to create a
Data Segment for this service? (Y/n).

For building the service go into the service folder from cmder and run the command
gradle clean build.

This will build the service and we can find the war of the service getting created inside
the build/libs directory.

Figure 3-19 Lib's Directory

= =3 e S . S T
T FC > Splem(Ch 3 estemsion beeme 3 cl-austomer-senice 3 buakd 3 fbs)]
& Systemicy a
coackepintess B Ch e ma-ENRES10)
Dvers
asses
generaled
™
v < >
I cmon G - aL e &

Use this service and deploy it in your environment.

3-13

Chapter 3
Simple Publisher/Subscriber Event Service

Note:

DB scripts for the service will be generated inside the folder.
\extension_homelobxcustomerservice\src\main\resources\db

Compile the Entity script in the entity schema created for extensions only.

Service created as part of extension should be deployed in separate domain and
should not be mixed or co-deployed with any other product specific services.

Here Security Management System (SMS) scripts are also generated.
\extension_homelobxcustomer-service\src\main\resources\db\sms

Execute the SMS script in sms schema, here we only generate the functional
activity of service. Assigning to proper role should be done according to the steps
mentioned in base application.

Here along with SMS and Entity, CMC scripts are also generated under folder.
\extension_homelobx-customer-service\src\main\resources\db\cmc

Execute them in the CMC schema.

Screen Class and Data Segment has to be maintained from the Ul which is
present under common core.

3.4 Simple Publisher/Subscriber Event Service

This topic the systematic instructions to perform the basic process to generate simple
publisher/subscriber event service.

ORACLE

To generate simple publisher/subscriber event service, follow the below steps:

1.
2.
3.

Navigate to same extension_home folder using cmder.
Use the command obx event -c.

Once this command is fired, this will take you to next section where it will prompt other set
of questions. Answer them accordingly to your setup and requirement.

3-14

Chapter 3
Simple Publisher/Subscriber Event Service

Figure 3-20 OBX event-c

obx event

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.8.8)

Copyright @ 2024-2025, Oracle and/or its affiliates. All rights reserved.

? Enter name of service (I'll add =-service to it): customer
Enter the hostname for kafka server: localhost
Enter the port for kafka server: 9892
? Enter the hostname for zookeeper server: localhost
? Enter the port for zookeeper server: 2181
! Enter number of events: 1
Please Select the Type of event/stream you wish to create publisher
Enter the name of event/stream 1:
Enter topic name for the selected event/stream: customer
? Enter avro schema name for the selected event: Avrosch

4. Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

Figure 3-21 Extension Home Folder

C Q > - OBX_WorkSpace > OBX_Final > extension_home > event-customer-service >

T Sort = View wes

sIc
@ .gitignore

build.gradle 10/18/2024 10:15 AM =

grad|e. properties 10/18/2024 10:15 AM TIES

I

README.md

&l settings.gradle 18 4 \DLE File 1 Kl

ORACLE 315

Chapter 3
Simple Publisher/Subscriber Event Service

Figure 3-22 Extension Home Folder

% <+ | obx-customer-service e (] x
Home Share View @
&« UL > This PC » System {C) » extension_home > obx-customer-service v O X 1obx.. R
Quick access L] Name
I Desktop ik it
L& .gitignore
& yo-rcjson
& build.gradle
& gradle properties PROPERTIE}
Jenkinsfile File
& plato-db-object-creation.sq SQL File
README.md MD
™4 settings.gradle GRADLE Fily
< >
9 itemns | = :‘ —

5. For building the service, go into the service folder from cmder and run the command
gradle clean build.

6. This will build the service and we can find the war of the service getting created inside the
build/libs directory.

Figure 3-23 Libs Directory

A crmder

7. Use this service and deploy it in your environment.

ORACLE 316

Chapter 3
Batch Service

3.5 Batch Service

This topic describes the process to generate Oracle Banking Microservices Architecture
(OBMA) based Batch service.

The purpose of this service is to create reader, writer and processor in which methods will be
written according to business use case.

To generate Oracle Banking Microservices Architecture (OBMA) based Batch service, follow
the below steps:

1. Navigate to same extension_home folder using cmder.
2. Use the command obx batch -c.
3. Inputs to be given after the command:

* Select the product family.

« Enter name of the service (I'll construct it as <productFamilyName>-
batch<serviceName>- extended-services).

e Enter product release version.

4. Upon successful creation of batch service, user will find a folder generated with
<productFamilyName>-batch-<serviceName>-extended-services having the sample
service code generated.

5. The generated code has two types of batch job template inside.o Simple job creation using
spring batch features. The method name for this type of job creation is jobName(). The
reader, writer, processor etc are taken from spring’s itemReader, itemWriter,
itemProcessor.

6. Plato batch type job creation by keeping plato batch into consideration.

Figure 3-24 Job Name

@ean(name

jobNa T y y ter r ry stepBuilderFactory,

p).build();

7. The method name for this type of job creation is batchProcessJob(). In this case reader is
specified as EReader, writer as TWriter and processor as ETProcessor. E means the entity
to be read for this job; T means the transformed object to be persisted in the database.
Hence the names are given in that manner.

ORACLE 3-17

Chapter 3
Custom Validation Service

Figure 3-25 Batch Process Job

b batchProcessJab() throw
n jobBuiderFactory. get(‘batchProcessiob").start(taskletstep()) next (chunkstep()) .build();

8. For plato batch type job, user needs to write his/her entity classes in which the business
logic will be kept. For example, this is the structure of the entity class highlighted in the left.

Figure 3-26 Plato Batch Type

9. One needs to write methods for reader, writer and processor accordingly.
10. To build the service:

a. Navigate to the service.

b. Fire the command gradle clean build.

c. This will create the war file of the service in the folder structure build/libs/
productFamilyName>-batch-<serviceName>-extended-services.war.

3.6 Custom Validation Service

ORACLE

This topic provides the systematic instructions to generate custom validation service.

The purpose of this service is to perform custom validations on the base service. It is important
to remember that we will be only able to perform the validation and never modify the payload to
change the value.

To generate validation service, follow the below steps:

3-18

Chapter 3
Custom Validation Service

1. Navigate to same extension_home folder using cmder.
2. Use the command obx validation -c.
3. It will generate a folder inside the extension_home folder with obx-validation-service.

Figure 3-27 OBX validation service

v s | obx-validation-service = O X
Home Share View 0

« v 4 » This PC » System (C:) » extension_home » obx-validation-service v O | Search obx.. 2
Quick access O Name Date modified Type
v [Desktop : sfc 6/8/2020 6:28 PM
& Oradle Content .*d‘ Ao
. & build.gradle
S peshant :1' gradle.properties 5/8/2020 6
3 This PC Jenkinsfile 6/8/2020 6:24 o
i Libraries README.md 6/8/2020 6:28 PM MD
& Network & settings.gradle 6/8/2020 6:28 PM GRADLE File

[EH Control Panel

4 Recycle Bin
)2 Beehive Extensions for Explorer

]

7 items

4. For building the service, go into the service folder from cmder and run the command
gradle clean build.

5. This will build the service and we can find the war of the service getting created inside the
build/libs directory.

ORACLE" 3-19

Chapter 3
Steps to Adopt Multi in Existing Service

Figure 3-28 Libs Directory

A crmder

6. Use this service and deploy it in your environment.

3.7 Steps to Adopt Multi in Existing Service
This topic provides the systematic instruction to adop multi in existing service.

Plato Micro Service Dependencies Changes

compile ("release.obma.plato.21l 0 0O.services:plato-microservice-
dependencies:6.0.0")

Eventhub dependency changes

compile ("release.obma.plato.21l 0 0.services:plato-eventhub-
dependencies:6.0.0")

Platolnterceptor Changes

@Bean public MappedInterceptor gemInterceptor (PlatoInterceptor
platolnterceptor) {

LOG.info ("Added interceptor for fetching the application headers"); return new
MappedInterceptor (new String[] { "/**" }, platolnterceptor);

}

Logging (Please include only ,%X{entityld}, change. Rest of them remain as per the old
logback.xml)

Please include only %X{entityId} in the existing value of the LOG_PATTERN of

ORACLE 350

Chapter 3
Steps to Adopt Multi in Existing Service

your logba
c k.xml

One sample format is below,

<property name="LOG PATTERN" value="%clr (5d{yyyy-MM- dd
HH:mm:ss.SSS}) {faint} %$clr(%5p [S{applicationName},%$X{entityId}, $X{X-B3-
Traceld:},%$X{X-B3-Spanld:-}, 3X{X-Span-Export:-}]) %clr([%mdc{env:-null}]
[$mdc{tenant:- null}]

[$mdc{user:-null}] [%mdc{branch:-null}]){faint} %clr(${PID:- }) {magenta}
$clr(--

=) {faint} %clr([%15.15t]){faint} %clr(%-

40.401logger{39}) {cyan} %clr(:){faint} %m%n${LOG EXCEPTION CONVERSION WORD:-
SWEx}" />

Feed Services

Folder structure should be */parentFolder/<<entityld>>/{fileName}

compile ("release.obma.plato.21l 0 O.services:plato-feed-core:6.0.0")

Caching Strategy

@Cacheable (value = "customers", key = "{ <<funtionalKeys>>
T (oracle.fsgbu.plato.core.per
sistence.provider.PlatoHolder) .getCurrentEntityId() }")

Introduce appld in application.yml of individual micro services

If the service is a eventhub based service they should use

spring:
application:
applID:

If the service is a non-eventhub based service they can use either

spring:
application:
applID:

or

appld: <<appId>>

ORACLE 301

Chapter 3
Service Extensibility

3.8 Service Extensibility

This topic provides the systematic instructions to perform the basic operations on the selected
records.

ORACLE

Structure of Service Extensions can be seen in below table.

Table 3-1 Service Extensibility - Field Description

Component Name Component Description

<< micro - service - name >>- extn.jar | Extension jar

<< micro - service - name >> .war WAR File which refers to << micro - service - name >> -

extn .jar during runtime.

For systematic instructions to retrieve a service extensibility record, follow the steps:

1.

Add all the required classes from << micro - service - name >>.war to the classpath of <<
micro - service - name >> - extn.jar project and then build it.
For creation of war we can use the command obx create-jar

a. Go to extension home.
b. Runthe command obx create-jar.

c. It will prompt you with the location of the extended war file. (After giving the location
give enter two times).

d. On providing the war file, it will create a jar for the same in the same location.

The build.gradle of the extension project should include the statement.
compileOnly files("classes").

For shared libraries we follow the optional packages approach. The following entries are
expected in the MANIFEST.MF of respective war file.

Extension-List: << micro - service - name >> - extn, << micro - service - name
>> - extn-Extension-Name : << micro - service - name >> - extn

For this, we need to modify the build.gradle of war files to include the below statements.

war {
manifest {
attributes(
"Extension-List": "<< micro - service - name >> -extn",
"<< micro - service - name >>- extn -Extension -Name": "<< micro-

service- name >>-extn"
)
}

In the extension jar create a new service class that extends the original service class and
annotate the class with @Primary annotation to give the service class in the extension jar
higher precedence.

3-22

Chapter 3
Service Extensibility

CustomerServicelmplExt

@Primary

@Service

public class CustomerServiceImplExt extends CustomerServiceImpl
implements CustomerService {..... }

If the extension jar is provided the methods in the extension jar will be invoked or else the
methods in the original war will be invoked.

5. Weblogic deployment
Deploy the extension jar first in the weblogic then in the same server deploy the war.

Tomcat deployment

Modification in server.xml

<Context ...>
<Resources>
<PreResources className =
"org.apache.catalina.webresources.DirResourceSet" base="<<directory
containing the extension jars "webAppMount="/WEB-INF/1ib"/>
</Resources>
</Context>

6. The class names inside the << micro - service - name >>- extn.jar, should have the
naming convention as below,
<<basePackageNameOf<< micro - service - name >>.war>>.<<service /controller /
model>>

ORACLE 393

Ul Extensions — Web Component

ORACLE

This topic describes the OBX capability to generate to different types of web components.
Each Web component is capable of running itself locally.

There are various types of these web components each serving different functionality.

Standalone Component: A standalone component can be thought of as a smallest reusable
Ul component. They are generally the building blocks of main screens. Components like
amount, text fields, lov etc. are part of standalone components.

Virtual Page: A virtual page can be thought of as a screen or a web page in single page
applications. They are loaded inside the content area next to the left navigation menu.
Important point to remember when designing virtual page is, it appends and changes the router
(app URL) when navigation is done.

Figure 4-1 Virtual Page

= ORACLE [EIGIEEEE me ey

Core Maintenance Bank Code * Default Currency
‘Customer DS
Dashboard Bank Name ™ Holiday *

Feed M

Number Of Branches
OAUTEH

'OBX 5creens

Security Management

Bank Code Bank Name Number Of Branches Default Currency Holiday
Task Management

No data to display.

Container Component: These Components are a special type of components which are
loaded inside a container called as Wizard. It gives functionality like minimizing the component
and open multiple screens simultaneously on the screen. Important point to remove here is
that these components never change to router state, so bookmarking is not possible for these
screens.

4-1

Chapter 4

Figure 4-2 Bank Details

Plato { 000) pawaAN |

: oOoRrRACLE Bank Virtual Page m°’
Bank Details
Bank Code Bank Name
Number Of Branches Default Currency Holiday
Address City State Country Pincode
Mo data to display

Data/Resource Segment: A component designed using data segment approach are similar to
that of virtual page but are always part of flow or process and loaded like container
components. It is helpful in use cases where data to be captured is huge or is captured in
various stages of applications.

Figure 4-3 Customer Dashboard

= ORACLE [DPESEEEE m “NL‘W PAWAN

Customer DS Details

Customer Id *

Income Details

CUsST100
First Name
firstname

Last Name
Dob
Address

Mebile Number

987654321

m v cee

In above screenshot Customer and Income Details on left are two data segments which is part
of Customer DS Details Application.

Widgets: Widgets are special components meant for dashboard. These are generally created
in the form of tiles and are attached to the dashboard.

ORACLE 4-2

ORACLE

Chapter 4

Figure 4-4 Dashboard

= ORACLE [DESBLET m f_'_a_!o i PAWAN

Additional Fields
Core Maintenance
Customer DS
Dashboard

Feed Management

OAUTH Users Management »

OBX Screens »

< Note:

e All the above components except standalone components have SMS applied on
it.

e We have to assign functional activity of web components to the role and then
only they are integrated with the main application shell.

e Also, it always recommended to try and run the component locally before
merging them into main application.

e All web components come bundled with testing framework including unit test
cases and functional test. Therefore, it's a good practice to write them along with
the development.

e Component Server
This topic provides the systematic instructions to perform the basic operations on the
selected records.

e Simple Standalone
This topic describes the process of creating the simple standalone component using OBX.

e Virtual Page
This topic describes the process of creating the virtual page component using OBX.

e Maintenance Detail and Summary
This topic describes the process of creating the Maintenance Detail and Summary
component using OBX.

e Data Segment
This topic describes the process of creating the virtual page component using OBX.

e Dashboard Widget
This topic describes the process of creating the simple standalone component using OBX.

* Running Component after Generation
This topic describes the steps you need to follow to re-run the component created or
generated earlier.

e Creating final Extended Component war for Deployment
This topic describes the steps to generate Extended Component war for Deployment.

4-3

Chapter 4
Component Server

e Understanding DB Scripts for Web Components
This topic describes the significance of DB folder generate inside the web component
folder.

4.1 Component Server

This topic provides the systematic instructions to perform the basic operations on the selected
records.

It is one of highlight feature from OBX. A component server is hub of components which are
available from the base/kernel application. As each component is developed individually and
reusable, we can use this functionality to reuse even the components from base application. It
saves time as we don't have to code same thing again and again. We can reuse as many
components as possible from base application into extensions.

Component server is started automatically when you generate the web component. It runs on
http://localhost:8002. One can simply go to browser and copy components and put them in a
metadata.js file which is created inside the component and by doing so it indicated OBX that
we have to reuse the component and it generates the code automatically.

Figure 4-5 Component Server

OBX Compoenent Server Copy Selected

Common Components

Methods Events Methods Events Methods Events Metheds Events

Select Card Preview Select Card Preview SelectCard Preview Select Card Preview

fsgbu-cmn-ct-action-widget - fsgbu-cmn-ct-address = fsgbu-cmn-ct-address-input = fsgbu-cmn-ct-admin-action-card =

Methods Events Methods Events Methods Events Methods Events

4.2 Simple Standalone

ORACLE

This topic describes the process of creating the simple standalone component using OBX.
Following are the steps needed to be followed:

1. Navigate to extension_home folder from cmder.

2. Use the command: obx ui —sd.

3. Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

4-4

Chapter 4
Simple Standalone

Figure 4-6 OBX Ul-sd

Cmder

obx ui —--sd

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)
Copyright ® 2024-2025, Oracle and/or its affiliates. All rights reserved.

? select the product family: Oracle Banking Extensibility Workbench
? Select the name of the standalone component (I'll prepend obx-sd- to it): customer
force ..\.yo-rc.json

C:\Users\saayare\.yo-rc—-global.json

buildExtendedComponent.sh

buildExtendedComponent.bat

build.gradle

gradle.properties

package.json

Jenkinsfile

> app.Jjs :

gulpfile.js

startCS.Jjs

metadata.js

middleware.js

4. It will automatically generate the libraries for the component to run locally and you will be
also able to see new cmder tab opened where component server is running.

5. At this point of time go to browser and navigate to http://localhost:8002. You will be able to
see component server home page like:

Figure 4-7 OBX Component Server

OBX Component Server Copy Selected
Common C: 1t
fsgb t t-input = 1sgb t P . fsgbu-cmn-ct-action-card - fsgbu-cmn-ct-action-header
Methods Events Methods Events Methods Events Methods Events
Select Card Preview Select Card Preview Select Card Preview Select Card Preview
fsgbu-cmn-ct-action-widget = tsgbu-cmn-ct-address = fsgbu-cmn=ct-address-input = tsgbu-cmn=ct-admin-action-card _
Methods Events Methods Events Methods Events Methods Events

6. Select the component which you want to reuse in your extension and paste it in
module.exports =[] inside the metadata.js file.

ORACLE s

Figure 4-8 obx-sd-amount

Chapter 4
Virtual Page

« v A
¥ Quick access

I Deskiop

14 items

obx-sd-amount

Share Wiew

» This PC » System(C) » extension_home > obx-sd-amount

I:l Mame -
node_modules

reports

web

app.js

[build.gradle

| buildExtendedComponent.sh
gradle.properties

E K E

gulpfilejs

| Jenkinsfile
metadata.js
middleware.js
npm-link.sh
package.json
startCS.js

E K K K B

IS Fi

GRADLE

JS File
File

IS File

J5 File
SH File

JSON File

7. Once done come back to main tab in cmder where is waiting with question, Please modify

the Metadata.js file before proceeding. Once done press y to proceed?

On completing the above process, it will automatically generate the source folder now and
open a new tab on cmder where component will be running.
Along with cmder tab it will automatically open a tab on default browser as well with

component rendered on the screen.

Figure 4-9 Source folder

@ OBX Component Server % @ PageTitle ® +

C @ localhost:E001

\Welcome to obx-sd-amount

o

o

Qo

Ct

=] x

» D0 aEO8 @

4.3 Virtual Page

This topic describes the process of creating the virtual page component using OBX.

Following are the steps needed to be followed:

1. Navigate to extension_home folder from cmder.

ORACLE

4-6

Chapter 4
Virtual Page

2. Use the command obx ui —-vp.

Figure 4-10 obx ui-vp

Cmder

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

Copyright @ 2024-2025, Oracle and/or its affiliates. All rights reserved.

7 select the product family: Oracle Banking Extensibility Workbench
? Enter Virtual Page Name (I'll prepend obx-vp- to it): amount
? Enter the absolute path of xdl file: (D:\0BX\xdl-files\vessel.xdl) |

3. Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

ORACLE 4.7

Chapter 4
Virtual Page

Figure 4-11 obx ui-vp

[X] cmder

obx ui —--vp

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

Copyright ® 2824-2025, Oracle and/or its affiliates. All rights reserved.

select the product family: Oracle Banking Extensibility Workbench

Enter Virtual Page Name (I'll prepend obx-vp- to it): amount
Enter the absolute path of xdl file: D:\0BX\xdl-files\amount.xdl
force ..\.yo-rc.json
force C:\Users\saayare\.yo-rc—-global.json
(buildExtendedComponent.sh
buildExtendedComponent.bat
build.gradle
gradle.properties
package.json
Jenkinsfile
app.js
gulpfile.js
startCS.Jjs
metadata.ijs
middleware.jﬂ
/

4. It will automatically generate the libraries for the component to run locally and you will be
also able to see new cmder tab opened where component server is running.

5. At this point of time go to browser and navigate to http://localhost:8002. You will be able to
component server home page like:

Figure 4-12 OBX Component Server

OBX Component Server Copy Selected
Common Components
fsgb t t-input - tsgb t tlookup fsgbu-cmn-ct-action-card - fsgbu-cmn-ct-action-header
Methods Events Methods Events Methods Events Methods Events
Select Card Preview Select Card Preview Select Card Preview Select Card Preview
tsgbu-cmn-ct-action-widget & tsgbu-cmn-ct-address & fsgbu-cmn-ct-address-input = tsgbu-cmn-ct-admin-action-card _
Methods Events Methods Events Methods Events Methods Events

ORACLE

4-8

Chapter 4

Virtual Page
6. Select the component which you want to reuse in your extension and paste it in
module.exports = []; inside the metadata.js file.
Figure 4-13 obx-sd-amount
o = | obx-sd-amount O X
Home Share Wiew e
<« w A » This PC » System(C) » extension_home > obx-sd-amount v U | Search obx.. 2
¥ Quick access [Name h Date modified
B Deskiop node_modules
reports
web
& appis
™ build.gradle
™ buildExtendedComponent.sh SH File
& gradie.properties PROPERTIES F
g gulpfilejs J5 File
| Jenkinsfile File
& metadatajs IS File
™ middleware.js JS File
&/ npm-link.sh SH File
& package.json JSON File
L startCSijs IS File
< >
14 itermns L_. -

7. Once done come back to main tab in cmder where is waiting with question: Please modify
the Metadata.js file before proceeding. Once done press y to proceed?

8. On completing the above process, it will automatically generate the source folder now and
open a new tab on cmder where component will be running.

9. Along with cmder tab it will automatically open a tab on default browser as well with
component rendered on the screen.

Figure 4-14 Component

~ @ PageTitle

C @ localho

Reset Save Get All

Vesselname

Ownership

o o Companyname Relationship

No data to display.

Page 1 (Dof Oitems) 1

ORACLE 4o

Chapter 4
Maintenance Detail and Summary

4.4 Maintenance Detail and Summary

This topic describes the process of creating the Maintenance Detail and Summary component
using OBX.

Here we must remember that we will be generating two web components one will be detail
component and another one for summary component.

Following are the steps needed to be followed:
1. Navigate to extension_home folder from cmder.
2. Use the command obx ui -mnsm.

3. Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

Figure 4-15 OBX Ul

Cmder

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2824 (14.7.5.09.8)

Copyright @ 2024-2025, Oracle and/or its affiliates. All rights reserved.

?7 select the product family: Oracle Banking Extensibility Workbench
? Enter your Web Component Name (I'll prepend obx-mn- and obx=sm- to the components): testmaint
? Enter the absolute path of xdl file: D:\0BX\xdl-files\vessel.xdl

force ..\.yo=-rc.json
C:\Users\saayare\.yo-rc-global.json
ite buildExtendedComponent.sh

e buildExtendedComponent.bat

© build.gradle

: gradle.properties
package.json

> Jenkinsfile

e startCS.js
metadata.js
middleware.js

4. It will automatically generate the libraries for the components.

5. At this point of time go to browser and navigate to http://localhost:8002. You will be able to
component server home page like:

ORACLE 410

ORACLE

Figure 4-16 OBX Component Server

OBX Component Server

Common Ce s

Chapter 4
Maintenance Detail and Summary

Copy Selected

fsgbu-emn-ct-account-input

Methods

Events

Select Card Preview

fsgbu-cmn-ct-account-lookup

Methods Events

Select Card Preview

fsgbu-cmn-ct-action-card

Methods Events

Select Card Preview

{sgbu-cmn-ct-action-header

Methods Events

Select Card Preview

fsgbu-cmn-ct-action-widget

Methods

Events

fsgbu-cmn-ct-address =

Methods Events

fsgbu-cmn-ct-address-input

Mathods Events

tsgbu-cmn-ct-admin-action-card _

Methods Events

6. Select the component which you want to reuse in your extension and paste it in
module.exports = []; inside the metadata.js file.

Figure 4-17 OBX sd amount

obx-sd-amount

v] s
Home

- -

Share Wiew

Quick access

I Desktop

14 items

[J Name

node_modules
reports

web

app.js

[build.gradle

gradle.properties

i) I

,

gulpfilejs
| Jenkinsfile
1 metadata.js
{ middleware.js
[npm-link.sh
[packagejson

[startCSjs

EEEEE

» This PC » System (C) » extension_ home > ocbx-sd-amount

~

| buildExtendedCompaonent.sh

= 0 X
v U | Search obx... 2

Date modified Type
File folder

IS File

GRADLE File
SH File
PR

JS File

PERTIES F

File

J5 File

JS File

SH File
JSON File

J5 File

&=

7. Once done come back to main tab in cmder where is waiting with question Please modify
the Metadata.js file before proceeding. Once done press y to proceed?

8. On completing the above process, it will automatically generate the source folder for
maintenance details screen and same process will followed for summary screen as well.

9. For this case we will be not able to see the component running locally as we have to 2

components generated.
10.

To start the component, one needs to go inside the component are run it manually.

4-11

Chapter 4
Data Segment

4.5 Data Segment

This topic describes the process of creating the virtual page component using OBX.

Following are the steps needed to be followed:

1.
2.

ORACLE

Navigate to extension_home folder from cmder.
Use the command obx ui —-ds.

Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

Figure 4-18 obx ui-ds

HI(:mder

obx ui --ds

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

Copyright ® 2024-2025, Oracle and/or its affiliates. All rights reserved.

’ select the product family: Oracle Banking Extensibility Workbench
? Enter your Web Component Name (I'll prepend obx-ds- to it): dstest
? Enter the absolute path of xdl file: (D:\0BX\xdl-files\vessel.xdl)

It will automatically generate the libraries for the component to run locally and you will be
also able to see new cmder tab opened where component server is running.

At this point of time go to browser and navigate to http://localhost:8002. You will be able to
component server home page like:

4-12

ORACLE

6.

Chapter 4
Data Segment

Figure 4-19 OBX Component Server

OBX Component Server

Capy Selected
Common Ce s
fsgbu-cmn-ct-account-input e fsgbu-cmnsct-account-lookup fsgbu-cmn-ct-action-card = fsgbu-cmn-ct-action-header s
Methods Events Methods Events Methods Events Methods Events

Select Card Preview Select Card Preview Select Card Preview Select Card Preview

fsgbu-cmn-ct-action-widget = fsgbu-cmn-ct-address = fsgbu-cmn-ct-address-input & fsgbu-cmn-ct-admin-action-card _

Methods Events Methods Events Mathods Events Methods Events

Select the component which you want to reuse in your extension and paste it in
module.exports = []; inside the metadata.js file.

Figure 4-20 OBX sd amount extension home folder

| = | obx-sd-amount = O x
Home Share Wiew e
— ~ T » This PC » System (C) » extension_ home > ocbx-sd-amount v O | Search obx.. 2
Quick access [Name B Date modified Type
B Deskiop node_modules File folder
reports
web
&l appjs IS File
™ build.gradle GRADLE File
™ buildExtendedComponent.sh SH File
=4 gradle.properties PROPERTIES F
w gulpfilejs JS File
| Jenkinsfile File
™ metadatajs JS File
,";" middleware.js JS File
;‘_‘_‘,” npm-link.sh SH File
™ package.json JSON File
& startCSjs IS File
< >
14 items [_: =

Once done come back to main tab in cmder where is waiting with question Please modify
the Metadata.js file before proceeding. Once done press 'y' to proceed?

On completing the above process, it will automatically generate the source folder now and
open a new tab on cmder where component will be running.

Along with cmder tab it will automatically open a tab on default browser as well with
component rendered on the screen.

4-13

4.6 Dashboard Widget

This topic describes the process of creating the simple standalone component using OBX.

Following are the steps needed to be followed:

1. Navigate to extension_home folder from cmder.

2. Use the command obx ui --wd.

Figure 4-21 OBX Ul

Chapter 4
Dashboard Widget

[cmder

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

Copyright @ 2024-2025, Oracle and/or its affiliates. All rights reserved.

? select
> Oracle
Oracle
Oracle
Oracle
Oracle
Oracle
Oracle
(Move up

the product family: (Use arrow keys)

Banking
Banking
Banking
Banking
Banking
Banking
Banking

Virtual Account Management

Trade Finance Process Management
Credit Facility Process Management
Corporate Lending Process Management
Intrest & Charges

Supply Chain Finance

Cash Management

and down to reveal more choices)

3. Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

4. It will automatically generate the libraries for the component to run locally and you will be
also able to see new cmder tab opened where component server is running.

5. At this point of time go to browser and navigate to http://localhost:8002. You will be able to
see component server home page like:

ORACLE

4-14

ORACLE

Figure 4-22 OBX Component Server

OBX Component Server

Common Ce s

Chapter 4
Dashboard Widget

Copy Selected

fsgbu-emn-ct-account-input

Methods

Events

Select Card Preview

fsgbu-cmn-ct-account-lookup

Methods Events

Select Card Preview

fsgbu-cmn-ct-action-card

Methods Events

Select Card Preview

{sgbu-cmn-ct-action-header

Methods Events

Select Card Preview

fsgbu-cmn-ct-action-widget

Methods

Events

fsgbu-cmn-ct-address =

Methods Events

fsgbu-cmn-ct-address-input

Mathods Events

tsgbu-cmn-ct-admin-action-card _

Methods Events

Select the component which you want to reuse in your extension and paste it in
module.exports = []; inside the metadata.js file.

Figure 4-23 OBX sd amount extension folder

obx-sd-amount

v] s
Home

- -

Share Wiew

Quick access

I Desktop

14 items

[J Name

node_modules
reports

web

app.js

[build.gradle

K K

gradle.properties

=

i gulpfilejs

[

| Jenkinsfile

1 metadata.js
{ middleware.js

npm-link.sh
[packagejson
[startCSjs

EEEEE

~

» This PC » System (C) » extension_ home > ocbx-sd-amount

| buildExtendedCompaonent.sh

= 0 X
7]
v D | Search obx.. R
Type
File folder

IS File

GRADLE File
SH File
PROPERTIES F
JS File

File

JS File

JS File

SH File

JSON File

J5 File

&=

Once done come back to main tab in cmder where is waiting with question Please modify
the Metadata.js file before proceeding. Once done press 'y' to proceed?.

On completing the above process, it will automatically generate the source folder now and
open a new tab on cmder where component will be running.

Along with cmder tab it will automatically open a tab on default browser as well with
component rendered on the screen.

4-15

Chapter 4
Running Component after Generation

Figure 4-24 Cmder Component

& Page Title > —+

{ & @ localhost:8001 Q. o O o

Welcome to obx-wd-tile

4.7 Running Component after Generation

ORACLE

This topic describes the steps you need to follow to re-run the component created or generated
earlier.

Follow the below steps to do the same:
1. Make sure you always have the component server rightly created.
2. Open two tabs in the cmder tool.

3. Navigate to component folder in both the tabs for example \extension_home\obx-vp-
customer.

4. From the first tab run the command node startCS.js.

Figure 4-25 Node startCS.js

Cmder — O X

er (master -> origin)

[Minode startCs.j s
Component Server now listening for requests at: Bee2

5. This will make the component server up and running again. This is important as
component server not only serves base component but also some other important files
which is needed for the component to run locally.

6. After this from another cmder tab run the command npm start.

4-16

Chapter 4
Creating final Extended Component war for Deployment

Figure 4-26 npm start

[cmder =] X

vp-customer

m node.exe Search ol + RAT RS 1N ='.

7. This will make the component running again on http://localhost:8001/ and also open the
default browser.

4.8 Creating final Extended Component war for Deployment

This topic describes the steps to generate Extended Component war for Deployment.

This is the final stage for generating extended-component war for all the Web components
inside the extension_home folder. Important point to note here that before any component
gets bundled to extended-component.watr, it needs to pass all the test cases.

Perform the following steps to generate the war:

1. Go inside the individual component and run the command sh
buildExtendedComponent.sh. This command will start performing and running unit test
cases on the component.

ORACLE 4-17

Chapter 4
Understanding DB Scripts for Web Components

Figure 4-27 Command - sh buildExtendedComponent.sh

2. Once the test cases are executed successfully it will create a folder inside the
extension_home folder named extended-components.

3. Now we have to navigate back to extension_home folder and run the command obx
build-cca.

Figure 4-28 OBX Ul

IICnmer

obx build-cca

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

Copyright @ 2824-20825, Oracle and/or its affiliates. All rights reserved.

4. This extended-component.war should be deployed in the same domain where
application shell is deployed.

4.9 Understanding DB Scripts for Web Components

This topic describes the significance of DB folder generate inside the web component folder.

ORACLE 418

ORACLE

This is important as without executing these scripts extension web components will not be

Chapter 4
Understanding DB Scripts for Web Components

loaded inside application shell and even these components menu will be not listed in left

navigation menu.

Figure 4-29 DB Folder

| = |db
Home Share View

< i > This PC » System (C) > extension_home » obx-vp-customer » db
Quick access [Name
I Desktop sms
ui-config
<
2 items

DB folder inside the web component consists of two folders sms and ui-config:

e SMS: The sms scripts consists of all the service activity, functional activity generated all

out of the box from OBX.

Figure 4-30 SMS

VALUES (v ,null, ‘ '

INSERT INTO SMS_TM S

INSERT INTO SMS_TM MENU (ID
VALUES ('

INSERT INTO SMS_TM MENU_D
VALUES ('
INSERT INTO SMS_TM MENU D
VALUES ('

INSERT INTO SMS_TM FUNCTIONAL ACT UNCTIONAL ACTIVITY CODE,APPLICATION_ID,TYPE)

VALUES (' v)i
TIONAL ACTIVITY CODE,SERVICE A

)

INSERT INTO SMS_TM_FUNC_P
VALUES ('

COMMIT

ACTIVITY C

IMSERT INTO SMS TM UI_ACTIVITY (UI_ACTIVITY CODE,DESCRIPTION,ICON,CCA NAME,APPLICATION ID,UI ACTIVITY TYPE)
t b

HOD_NAME , APPLICATION 1D,

D, SEQUENCE)

VALUES ('

INSERT INTO SMS_TM _UI_ACTIVITY ACTIONS (ID,UI_ACTIVITY CODE,SERVICE ACTIVITY CODE,LABEL)
VALUES (' s 7 37 1:

INSERT INTO SMS_TM_MENU (ID

VALUES (

1D, SEQUENCE)

,null);

CODE)

SERVICE TYPE,UI_ACTIVITY

CODE)

* Ul Config: This script should be compiled in ui-config schema. It maintains the ledger of all
the extended components. App-shell uses this configuration to identify which components

should be referred from extended-component war.

4-19

Chapter 4
Understanding DB Scripts for Web Components

Figure 4-31 Ul Config

into PRODUCT_EXTENDED LEDGER (ID,CCA_NAME,CCA TYPE,PARENT CCR_NAME, PROD!
max (1D}, t tetvptemull, ! PONENTS ' fxrom PRODU

" HAME)
EXTENDED_LEDGER:

into PRODUCT_SERVICES LEDGER (ID,PRODUCT NWAME,ENDPOINT_KEY,ENDPOINT_VALUE,REQUEST TYPE,SERVICE NAME)
max(ID:)+, " g5 MER' , ' fap »'GET", ' from PRODUCT_SERVICES_LEDGER:

inte FRODUCT_SERVICES_CTX_LEDGER (ID,FPRODUCT_NAME,SERVIC RME , SERVICE_CONTEXT_PATH,HEADER_AFFID,CONTENT_TYFE,ACCEET,USERID, BRAN

SOURCE)
max{ID:0)ol, tORE", t ’ . L . ' null,null, null from PRODUCT _SERVICE

ORACLE"

4-20

Modification of Base Web Component

This topic provides the systematic instructions to perform the basic operations on the selected
records.

This feature of OBX enables users to create extensions which helps to modify the behavior of
existing component. Modification of Base Web Component serves the one of the most
common use cases from extensibility perspective. There are few important points which should
be remembered before modifying the behavior of existing components.

Important Points:

* Addition of fields can be done on various locations of base screen, but this make break the
CSS if not handled properly (Responsive Behavior). In such cases it is always
recommended to put additional fields at the bottom of other fields.

* Wherever possible, use Data-segments to add additional field.

* In use case where you want to hide the fields from existing screen, always check whether
the field is mandatory or not. If it is mandatory then it should set before making it hidden on
the screen. If not done so service calls make break.

e Above point is also valid in case where you want to disable a field on the screen.

Following are the uses cases which can be achieved using modification of existing component:
e Addition of Fields

* Hiding fields from screen

« Defaulting values on screen

* Disable field

e Making Non-mandatory field Mandatory

e Steps for Modification of Base Component
This topic provides the systematic instructions to the steps to follow in case of adding fields
on the existing screen.

* Process Workbench
This topic provides the systematic instructions to perform the basic operations on the
selected records.

e OBX Update Command
This topic provides the systematic instructions to perform the basic operations on the
selected records.

* In-Scope DS
This topic provides the systematic instructions to the overview of IN-Scope DS fields.

¢ OBX Release Command
This topic provides information on OBX Release Command details.

ORACLE -

Chapter 5
Steps for Modification of Base Component

5.1 Steps for Modification of Base Component

This topic provides the systematic instructions to the steps to follow in case of adding fields on
the existing screen.

It is assumed that before using this command a developer knows the name of the base
component in which he will be adding the additional fields.

Following are the steps needed to be followed:
1. Navigate to the extension_home folder from the cmder.

2. Execute the command obx ui --mb.

Figure 5-1 OBX Ul

Cmder

ORACLE BANKING EXTENSIBILITY WORKBENCH October 20824 (14.7.5.08.8)

Copyright @ 2024-2025, Oracle and/or its affiliates. All rights reserved.

? Enter Base Web component name which you want to modify (I'll append -extended to it): (testmaint) |

3. After above command is executed it will prompt for the name of base component. Once
given it will create a folder with base component name appending - extended at the end of
it.

4. Here also like above all the libraries are generated at runtime.

5. Component generated contains the boiler plate or reference code, which helps to achieve
the use case.

Again, db folder contains all the relevant scripts which is needed to be executed prior to see
the component live and running in main application shell.

5.2 Process Workbench

This topic provides the systematic instructions to perform the basic operations on the selected
records.

The Process Workbench screen is used to create or modify processes. Users can add new
stages, edit existing ones, or upload JSON-based DSLs into the system. This screen also
facilitates workflow customization and allows users to download a JSON-based DSL reflecting
the modifications made in the Ul. Additionally, users can preview the flow diagram of a newly
added or modified process. Any process changes will automatically increment the version
number by 1 from the latest version.

Process Creation and Modification Screen:

ORACLE -

Chapter 5
Process Workbench

1. Screen 1 - Shows list of the processes:
- Displays the List of Processes: A comprehensive list of existing processes is shown.
e Upload DSL Button: Enables the upload of workflows in JISON format

* Blank Option (First Row): Used to create a new process.

Figure 5-2 Workflow maintenance Process list

Workflow Maintenance otk
EEET oo st
e Sk
[0 Process Mam: blank % Version: blank Uplesd . -
(m] Process Mame: Man 0§ Version: | Process Description: Teu Malnii kflow Region Code: W
[Process Mams: 101-negatre Varson: | Procass Description: Recommendatson Workfion for ol Paery Types Pagion Code (W
(] Process Mame: MakiF regathe Version: | Process Description: T Mo S Region Code: FW
(] Process Mame: Pl Version: Process Description: Tt okl Region Code: FW
o Process Mame: TesTworkd low-m Verston: | Process Description: fest workflows Region Code: oW
O Process Mame: GRIPUNORT Teat) Version: | Process Description: GREP NORG Region Code W
(u] Process Mame: Poller 52 Version: | Process Description: Test Workflows Region Code: i
(u} Process Mame: fodler 15 WVersion: | Process Descriptian: Te Workllows Region Code: W
(u] Process Mame: Teuiwor kFlowok ! Verzion: | Process Description: Teas Woekllows Fegion Code
[] Process Mame: Testionks lowokl Version: | Process Descripthon: st Workdlowt Reglon Code: HW
[] Process Mame: TesiworkFlowhigration Version: | Region Code: B
0 P Mame: Test it Verston: | Region Code: W
~ Brrcass Mams oo Cbmaloes Amewine: 1 Bewine Fade- Da -5
o
2. Select a Process.
Figure 5-3 Select a process list
Workflow Maintenance it

Process Menagosment

Sk [o Workdio
i Submit B

] Process Hame: bark Version: blank UpesdDs. +

n] Process Name: MariyF Version Process Description: Test MainWorkflow Reghon Code: B
[0 Process Name: 101-negotive Version: 1 Process Description: Recommendation Workfioe for o Party Types Region Code: R
[0 Process Name: MaiiF-negathe Version: Process Description: Test Mainiiordlon Region Code: W
[] Process Name: Pollerd Version: | Process Descriptions Test Workfioud: Region Code: B/
n] Process Nasne: TestiiokFlow-m Version: | Process Description: Test Workflond: Regicn Code: B
B Process Name GRELNORGTest o Verslon: Process Description: GRPLNORG Region Code: B/
[] Process Name: Poller32 Version: | Process Description: Test iWorkfiond. Region Code: Fin
o Process Name: Poller i3 Version: | Process Description: Test wWorkfions Region Code: W
[Process Hame: TesthonkFlowokt Version: Process Description: Test Workdiont: Region Code: W
o Process Name: TestioekFlowok? Verston: 1 Process Description: Test Workflowd: Reglon Code: B
] Process Hame: TestWarkFlowdigration Version: 1 Progess Descriptions Tes! Workfiowd Region Code: R
o Version: Prosess Descriptions Test Workflont Regicn Code: B
~ Draracs Mama- Toctbinublloadok Varclan: 1 Barrate Matrrintian- Tocr Wodfralab Baglom Cada 20

3. Shows stages : Under the process which was selected on screen 1.

ORACLE 5.3

Chapter 5

Process Workbench
Figure 5-4 Workflow maintenance process management
Workflow Maintenance o
Process List l':ocessManagemenl Screen{2/3) 1
= e
Verify & Submit GRPLNORGTest! 1 GRPLNORG
Al Stage List Process Stage List
Type task name Type werkdlow name Tl g
Fetch Application Entry
—— W 3 RPM_GRPORG_APPEN_DECISION
TEST STAGES SUB_WORKFLOW SRSt
Hworkflow.input iransactionModeliransacti... SUB_WORKFLOW creditSconChickgrpResultgrp
TEST STAGES WAIT 5 RPM_CREDIT_SCORE_GRP_CHECK_RESULT_DECISION
TEST STAGES T
Cancel Buack n
4. Create Stage button:
e Used to create a new stage.
» Dialog box for creating a new stage.
Figure 5-5 Create Task
Create Task
Input Parameders Stage Properties
Ieput Param Wabows Core Properties Cone Values

FUNCTIONAL_CODE
naskReferenceName

TASK_OUTCOMES
APPLICATION_NO Siworkdlowinputapphication,.. ype WAIT
processRefNe $workdlow.inputprocessRel.., stanDelay 0
BatycleCode optional false
asycComplete false

5. We can edit/delete a particular stage in Process Stage list.

ORACLE" 5.4

ORACLE"

Figure 5-6 Process management

Workflow Maintenance

Prieesiet Process Management
@ Frocess Management o
Verity & Submit CRPLNORGTest!
All Stage List

Fetch
[T
TEST STAGES WaIT
ShworkfiowargutimnsactionModelirarmsacti., WAIT
TEST STAGES FORK_J0IN
TEST STAGES FORK_JOIN

Process Description

GRPLNORG

Process Stage List

kalka s

Application Entry

3 RPM_GRPORG_APPEN_DECISION

aediticoeCheckgrp

ereditSeoneChecker pResudtarp

Chapter 5
Process Workbench

0

ar

Serverlf) |

5 RPM_CREDIT_SCORE_GRP_CHECK_RESULT_DECISION

Dialogue box which opens when we edit a particular stage.

Figure 5-7 Modify Task

Modify Task
Input Parameters
gt Param Vabors
kafka _sequest [ropic™rpmDashboard”va. ..

Stage Propetties
Core Properiies Core Vakees
name kafka g
taskReferenceMame KAFKA_RPM_GRPORG_APP...
type KAFKA_PLBLISH
startDelsy 0
optioral true

taekDofinition | Che to view RaciDeds

asynclomplete - false

Drag and Drop Functionality Stage named Testingl from all stage list was dragged and
dropped on the process stage list as shown here:

5-5

Chapter 5

Process Workbench
Figure 5-8 Process management Testing 1
Workflow Maintenance bl
Process List Process Management Samer(2f)
WIS T2
verify & Submit GRPLNORGTest1 1 GRPLNORG
Al Stage List Process Stage List
kafie_meg
Fatch Testing!
Mame 2 Type = Agghcation Eniry
Testing! WAIT TEST STAGES ;
TEST STAGES SUB_WORKFLOW
3 RPM_GRPORG_APPEN DECISION
Slworkfowinput raresctionhModeliransacti,.. SUB_WORKFLOW
creditScoreCheckgrp -
TEST STAGES W
Cancel Bach m‘
8. In this process includes:
* Preview: To preview flow diagram of the process selected.
* Create Process: For creating a new process.
* Export DSL: To Export DSL into a file in JSON format.
Figure 5-9 Workflow maintenance verify and submit
Workflow Maintenance Pt
Verify & Submit Seen(33) |
renen | [] St 5 Riginelrocess | Comaproces | | Exponiist
Peoess Tk Lt
Testrg]
—'\-‘!:-'_lco‘.mErlry
At-Man
wmmh_wmu
S Cancel Back

9. Flow Diagram of the modified or new added workbench process.

ORACLE" 5.6

Chapter 5
Process Workbench

Figure 5-10 Flow Diagram

Flow Diagram

i, i, i

byt

10. When Export DSL button is clicked. The DSL gets downloaded in workflow(1).json file as
shown.

Figure 5-11 Export DSL

workflow (Thjson
Workflow Maintenance el |
Process Lt Veriy & Submit Screen(3/]
Process Mesagement
W erify b Submie P Save & Regional Process | Covate Process Export 0L
Progiss Task List
kaficy_meg
Testing]
Agplcation Entry
A0t-Main
RPM_GRPORG_APPEN_DECISION
Cancel | | Bad

11. When Create Process button is clicked. Process is Created.

ORACLE"

Chapter 5
OBX Update Command

Figure 5-12 Create Process

12. Version is updated when the process is created successfully.

Figure 5-13 Workflow maintenance updated version

Workflow Maintenance e
m [Process Name: Mainl/F Version: 1 PProcess Description: Test Mainiworkfion Region Code: v/
e o Process Hame: 101-negative Version: 1 Proy ol Pariy Types Reghon Code: it
| () Process Name: MainitF-negative Version: 1 Process Description: Test Mainiorkfiow Region Code: R
| AH S [Process Name: Polke34 Varsion: 1 Process Description: Test Workflows Reglon Code: v/
[0 Process Name: TostiorkFw-m Version: 1 Process Description: Test Workllows. Region Code: R/
[Process Name: GRELNORGTest! Wersion: 1 Process Description: GRPLNORG Reghon Code: R
[Process Name: Polkss? Version: 1 Process Description: Test Workflowt, Reglon Code: v/
O Process Name: Polker33 Version: 1 Process Description: Test Workliowt: Region Code: R
O Process Name: TestiarkFawaki Version: 1 Process Description: Test Warkflowt, Region Code: v/
[Process Name: TestworkFlawek? Version: | Process Description: Test Workilows Region Code: R
[Process Hame: TesiiorkFowbligration Version: 1 Process Description: Test Warkflowt Reglon Code: R/
o Version: 1 Process Description: Test Workliowt: Region Code: R/
01 Process Name: TestiorkFowfark Version: 1 Pracess Deseription: Tost WorkllonF oek Region Code: f
[Process Name: TestiorkFlowassign Version: 1 Process Description: Test Workflow o sssign Region Code: R/
[Process Name: 101 Version: 1 i a8 Party Types Reghon Code: R/
[0 Process Name: GAPLNORG2S Version: 1 Process Description: GRPLNORG2S Reglon Code: f
@ Process Name: GRPUNDRGTest! Version: 2 Process Description: GRPLNORG Region Code: fv

Gl n

5.3 OBX Update Command

This topic provides the systematic instructions to perform the basic operations on the selected
records.

This topic helps in migrating the artifacts from previous version of OBX to latest. This is applied
to both services and web components.

This topic consists of the following sub-topics:

e Service Update
This topic provides the systematic instructions to perform the basic operations on the
selected records.

e Ul Update
This topic provides the systematic instructions to Ul Update developed in OBX.

ORACLE' - g

Chapter 5
OBX Update Command

5.3.1 Service Update

This topic provides the systematic instructions to perform the basic operations on the selected
records.

To migrate services developed in previous versions of OBX to latest please follow the below
steps:

1. Navigate to service specific folder inside the extension_home directory.
2. Execute the command obx service-update.

3. Provide the relevant product release version number.

4

Once provided it will automatically change the build.gradle file and service is ready to be
built with latest dependencies.

Figure 5-14 OBX Ul-Service Update

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

or its affiliates. All rig

Enter product release version: (1.0.2) |

5.3.2 Ul Update

This topic provides the systematic instructions to Ul Update developed in OBX.

To migrate services developed in previous versions of OBX to latest please follow the below
steps:

1. Navigate to Ul (Web Component) specific folder inside the extension_home directory.

2. Execute the command obx ui-update.

ORACLE -

Chapter 5
In-Scope DS

Figure 5-15 OBX Ul-Update

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.8.8)

its affiliates. All ri

3. This command will automatically start removing old libraries without changing the source
folder. This help will help you retaining the business logic already written in web
component.

4. One done and executed successfully you will the below message.

Figure 5-16 Message

= web\js\util\resources\trade\nls\ar\bundle.js
: web\js\util\resources\trade\nls\fr\bundle.js

5. Now to run the command with new libraries run below command sequentially:

e sh npm-link.sh — It will create new node module folder inside the component with
latest modules and dependencies.

* node startCS.js - Open a new tab in cmder and navigate to same web component
directory and run command node startCS.js.

* npm start — From the main tab, where we executed npm-link command run the
command npm start, it will automatically run the web component with latest libraries
and launch it on the browser as well.

5.4 In-Scope DS

ORACLE

This topic provides the systematic instructions to the overview of IN-Scope DS fields.
Following is the sequence to be followed:
< Additional of fields at any desired location in an existing data-segment is supported now.

e Data will be stored in separate custom schema.

* In-scope Data segment can be used for addition of new fields. (using jquery, at any
position, we can add the field).

Example of In-Scope DS (Additional fields):

5-10

Chapter 5
OBX Release Command

e Include the hooks required in js and html of base components accordingly.
* Run the command “obx ui --af” for adding fields in extended components.

* Include the additional field in “self.data”.

self.data = {
"newField": ko.observable("")
i
e Subscribe it to change handler.
self.data.newField.subscribe (self.changeHandler);
* Use jquery to insert it in the location you want to add the fields.
var element = context.properties.data.payload.homeBranch; $

("#homeBranch') .parent () .parent () .parent () .append ($ ('#ui-ex-div-
newField') .parent());

5.5 OBX Release Command

ORACLE

This topic provides information on OBX Release Command details.

This command is used to check all the available features bundled with OBX version installed
on the machine.

To run this command,
1. Navigate to extension_home folder.

2. Run the command: obx release

5-11

Chapter 5
OBX Release Command

Figure 5-17 OBX release

ORACLE BANKING EXTENSIBILITY WORKBEMCH October 2024 (14.7.

ORACLE - 1o

Extending Product Data Segments with
Additional Fields

This topic provides the systematic instructions to perform the basic operations on the selected
records.

This topic describes the following sub-topics:

* Additional Fields Maintenance
This topic provides the systematic instructions on Additional Fields Maintenance.

e Populating Data in Corresponding Fields From Ul
This topic provides information on Populating Data in Corresponding Fields From Ul.

* Fetching the Saved Values
This topic provides information on fetching the saved values for each field during the
transaction.

6.1 Additional Fields Maintenance

ORACLE

This topic provides the systematic instructions on Additional Fields Maintenance.
This screen is used to maintain the additional fields for a transaction screen.

To process this screen, type Additional Fields Maintenance in the Menu Item Search located at
the left corner of the application toolbar and select the appropriate screen.

Follow the below steps:

1. From Home screen, click Core Maintenance. Under Core Maintenance, click Additional
Fields Maintenance.

2. The Additional Fields Maintenance screen is displayed.

6-1

ORACLE

3.

Chapter 6

Additional Fields Maintenance

Figure 6-1 Additional Fields Maintenance

Additional Fields Maintenance

~ Additional Fields Detalls

Componant Nama

Faghu-cb-cmn-h-addinonal-fn

~ Construct Validation MetaData

e Vedaton Mame ¢ Valdgton Template To lse

oo catang dsglay

s

Ui pwtthan Prosfuct (e Decripton

Apgcaton)

Additoral Fields 080

S Covtom mor eviage S Edthgmms

Specify the details in the Additional Fields Maintenance screen.

For more information on fields, refer table Field Description — Additional Field

Maintenance.

Table 6-1 Additional Field Maintenance - Field Description

Field

Description

Component Name

Specify the data segment name as component name.

Note:By default, the value fsgbu-ob-cmndsadditional-fields is
displayed, which is the Common Core Data Segment that displays the
maintained additional fields. It will fetch the corresponding maintained
record for Additional Fields by querying with uiKey = DataSegmentName

@ ProductCode.

Product Code

Specify the function code as product code.

Product Name

Displays the product name of the specified product code.

Description Displays the description as Additional Fields.
Application ID Displays the Application ID.

+icon Click this icon to add a new row.

—icon Click this icon to delete a row, which is already added.

Construct Additional
Fields MetaData

Specify the fields.

Select

Check this box to select a row.

Field ID Specify the Field ID.

Field Label Specify the field label.

Category Specify the category.

Field Type Specify the field type.

Edit Select if a value needs to be inputted in the additional field.
Mandatory Select if the input value is mandatory in the additional field.

Construct Validation
MetaData

Specify the fields.

Select

Check this box to select a row.

Validation Name

Specify the validation name.

6-2

ORACLE

Chapter 6
Additional Fields Maintenance

Table 6-1 (Cont.) Additional Field Maintenance - Field Description
|

Field Description

Validation Template Specify the template to be used for validation.

to Use

Custom Error Specify the custom error message to be displayed.
Message

Edit Arguments Select if arguments needs to be edited in the additional field.

Click Save to add the additional field in the maintenance work table
(CMC_TW_ADDT_ATTR_MASTER).

Note:

Once it is approved, the data will persist in the master table. Currently, Mobile
Number and Date are added as additional fields. In addition,the validation is
added for Date.

Sign in with different user ID since maker will not be able to approve the records with the
same user ID.

Figure 6-2 Additional Fields Maintenance Records

Additional Fields Maintenance %t

~ Additional Fields Details

~ Condtruct Additionsl Fields MetaData

~ Construct Validation MetaDats

e Comgore: Dse 15 = rvor Duse e b > Doe 7 "

Map the new data segment for the function code. Make sure that the data is present in
CMC_TM_SCREEN_DS_MAPPING.

Note:
Once the additional fields are added for a particular function code, a separate

data segment will be enabled in the transaction screen for Additional Fields.

Click Submit, to save the transaction data of additional fields to the
CMC_TB_ADDT_ATTR_DATA.
In addition, the following actions have been performed from service side:

» Fetch record through inter-service call to additional attributes service in common
transaction with record ID.

6-3

Chapter 6
Additional Fields Maintenance

* Append the field data to the main payload for the ejlogging.

"data": {
"addDtls": {
"signatureVerifyIndicator": "Y",

"hostStatus": null,
"hostMultiTripId": null,
"txnBranchCcy": "GBP",
"txnBranchDate": "2020-03-25T18:30:00.000+0000",
"txnType": "C",
"cashInOutIndicator": "I",
"ejLoggingRequired": null,
"ejTxnAmtMapping": "TO",
"ejTxnCcyMapping": "TO",
"adviceName": null,
"orchestratorId": null,
"rsp": null,

"isReversal": "N",
"isAdvice": "N",
"reversalButton": "N",

"ignoreApproval": false,
"ignoreWarning": false,
"isExternal": false

I

"txnDtls": {
"functionCode": "1401",
"txnBranchCode": null,
"txnBranchCcy": null,
"txnBranchDate": null,
"requestStatus": "COMPLETED",
"assignmentMode": null,
"txnId": "£6b36a91-889d-4505-aac0-d7b984844098",
"txnRefNumber": "989124345493245™",
"tellerSegNumber": null,
"overrideConfirmFlag": null,
"supervisorId": null,
"onlineOfflineTxn": null,
"userComments": null,
"authoriserComments": null,
"eventCode": null,
"accountType": "UBS"

I

"dataPayload": ({
"datasegment": null,
"fromAccountAmt": 100,
"fromAccountCcy": "GBP",
"toAccountCcy": "GBP",
"beneficiaryName": null,
"beneficiaryAddressl": null,
"beneficiaryAddress2": null,
"beneficiaryAddress3": null,
"beneficiaryAddress4": null,
"identificationType": null,
"identificationNumber": null,
"exchangeRate": 1,

ORACLE 6.

ORACLE

"recievedAccount

Ccy": null,

"recievedAccount

Amt": null,

"totalCharges":

null,

"cashAmount":

100,

"netAccountCcy": null,
"netAccountAmt": null,
"narrative": "Cash Deposit",
"txnControllerRefNo": null,
"recordId": "f6b36a91-889d-4505-aac0-
d7b98484d098", "cashAmtCcy": null,
"cashAmt":

null,

"chequeDate": null,
"chequeNumber": null,
"eventCode": null,

"ejId": null,

"emailId": null,
"fromAccountBranch": "000",
"fromAccountNumber": null,
"mobileNumber": null,
"orginalExchangeRate": null,
"payee": null,

"productCode": null,
"reversalDate": null,
"stationId": null,
"toAccountBranch": "000",
"toAccountNumber": "00000008010010",
"toAccountAmt": 100,
"txnBranchCode": "000",
"functionCode": null,
"txnCustomer": null,
"tellerId": null,

"txnDate": 1585161000000,
"txnRefNumber": "9892566557744",
"txnSegNumber": null,
"uniqueIdentifierNumber": null,
"uniqueIdentifierType": null,
"userRefNumber": null,
"valueDate": null,
"versionNumber": null,
"referenceNumber": null,
"createdBy": null,
"createdTs": null,
"updatedBy": null,
"updatedTs": null,

"demDtls": [],

"fxInDemDtls": null,
"fxOutDemDtls": null,
"prcDtls": [],

"addDtls": null,

"txnDtls": null,
"overrideDtls": null,

Chapter 6
Additional Fields Maintenance

6-5

Chapter 6
Populating Data in Corresponding Fields From Ul

"batchTableDetails": null,
"cmcAddlFields": [

"id": "OTH passprt",
"label": "Passport No",
"typeH: "TEXTH,
"value": "43243"

"id": "UDF_aadhar",
"label": "Aadhar",
"typeH: "TEXTH,
"value": "1243"

"id": "TMIS toDate",
"label": "To Date",
"type": "DATE",
"value": ""

"id": "TMIS fromDate",
"label": "From Date",
"type": "DATE",
"value": ""

"extDetails": null,
"warDtls": [],
"authoriserDtls": []

}I
"errors": null,
"warnings": null,
"informations": null,
"authorizations": null,

"paging" : nn

6.2 Populating Data in Corresponding Fields From Ul

ORACLE

This topic provides information on Populating Data in Corresponding Fields From UI.

Unlike the other transaction screen data-segments, the ejlogged data is not required. Instead,
two GET calls that happen during screen launch fetches all the details.

To fetch the corresponding Additional-Fields-Maintenance screen record based on which it
will display the maintained fields for this function code.

Endpoint : CORE.GET CMC ADDITIONAL ATTRIBUTES

Request URL : http://whfOOpeb.in.oracle.com:8003/api-gateway/cmc-additional-
attributesservices/cmcadditional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-
fields@1006

6-6

Chapter 6
Populating Data in Corresponding Fields From Ul

Sample Response :

"data": [

{
"keyId": "33347926-842b-4232-af31-8c1b59612244",
"makerId": "ABHINAV",
"makerDateStamp": null,
"checkerId": null,
"checkerDateStamp": null,
"modNo": 1,
"recordStatus": "O",
"authStatus": "A",
"onceAuth": null,
"doerRemarks": null,
"approverRemarks": null,
"links": [

{

"rel": "self",

"href": "http://10.40.158.157:8005/cmc-
additional-attributesservices/cmcadditional-
attributes-services/33347926-842b-4232-
af318c1b59612244"

}
1,

"description": "Additional Fields",

"fieldMetaData":

"[{\"id\":\"OTH Mobile\",\"label\":\"Mobile

Number\", \"type\" :\"NUMBER\", \"required\":true}, {\"id\":\"OTH
_From\",\"label\":\"Fr om

Date\",\"type\" :\"DATE\", \"required\":true}, {\"id\":\"OTH To D
ate\",\"label\":\"To

Date\", \"type\":\"DATE\", \"required\":true}]", "uiKey": "fsgbu-
ob-cmn-ds-additional-fields@1006", "validationMetaData":

"L{\"1d\":\"\",\"validateMethod\":\"compareFromToDates\", \"type\":\"

\",\"args\": [{\"ty

pe\":\"FIELD\",\"value\":\"OTH From\"},

{\"type\":\"FIELD\", \"value\

":\"OTH _To Date\"

}1,\"errorMsg\":\"Error Date 1 must be &gt; Date
2\",\"validationName\":\"Date

Validation\"}]",
"applicationId": "OBTEFPM"

bl

"paging": {
"totalResults": 1,
"links": {

"next": null,
"prev": null

}

ORACLE .

Chapter 6
Fetching the Saved Values

6.3 Fetching the Saved Values

ORACLE

This topic provides information on fetching the saved values for each field during the
transaction.

You can fetch the values saved for each field during the transaction.

Endpoint : CORE.GET ADDITIONAL ATTRIBUTES.

Request URL : http://whf0Opeb.in.oracle.com:8003/api-gateway/cmc-
additionalattributesservices/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-
additionalfields@1006&dataReferenceKey=00a01dfd- 0d6f-4400-a9c5-0f56551165e4

Samples Response :

"ExtensibleDTO": [
{
"id": "1644022a-179e-429b-82c8-873761c3ac74",
"uiKey": "fsgbu-ob-cmn-ds-additional-fields@1006",
"dataReferenceKey": "00a01dfd-0d6£-4400-a9c5-
0f56551165e4",
"fieldMetaDataVersion": "1",
"fieldData": [
{
"id": "OTH Mobile",
"label": "Mobile Number",
"type": "NUMBER",
"value": “678688789”
}I
{
"id": "OTH From",
"label": "From Date",
"type": "DATE",
"value": ”678688789”
}I
{
"id": "OTH To Date",
"label": "To Date",
"type": "DATE",
"value": null
}
] 1
"applicationId": "OBREMO"
}

6-8

Action URL and Static Tag Maintenance

This topic provides the systematic instructions to perform the basic operations on Action URL
and Static Tag Maintenance.

This topic consists of the following sub-topics:

e Action URL Maintenance
This topic provides the systematic instructions of action URL maintenance.

e Static Tag Maintenance
This topic provides the systematic instructions to static tag maintennace.

7.1 Action URL Maintenance

This topic provides the systematic instructions of action URL maintenance.

Endpoints are maintained in cmn-transaction-services for the specific transaction based on
function code. The operation has to be maintained as action URL in table
SRV_TB_BC_ACTIONS_URL. Action URL will be called from all the domain services based on
function code and action (like OPENCHECK, CREATE, OVERRIDE, REVERSAL,
PENDING_APPROVAL, or AUTHORIZE).

The database details are as follows:
Schema; BRANCHCOMMON
Table: SRV_TB_BC_ACTIONS_URL

If the action URL is not maintained for the specific operation of the particular transaction, the
error message will be displayed as Action URL not maintained. Error code is maintained in
ERTB_MSGS as RM-BC-UR-01.

7.2 Static Tag Maintenance

This topic provides the systematic instructions to static tag maintennace.

Static tag is maintained for accounting, till update, and debit-credit for each transaction based
on the function code in table SRV_TB_TX_ STATIC_TAGS.

The database details are as follows:
Schema : TRANSACTION
Table : SRV_TB_TX_STATIC TAGS

TILL_TAGS, DRCR_TAGS and ACCOUNTING_TAGS are maintained as JSON structure.
Static tags will be fetched from cmn-transaction-services based on function code. If it is not
maintained for the particular function code, the transaction will be failed

ORACLE -

Extensibility Use Cases for OBBRN Servicing

This topic provides the systematic instructions to perform the basic operations on Extensibility
Use Cases for OBBRN Servicing.

This topic describes the following sub-topics:

New Transaction Screen — 1499 (Exact Clone of 1401)
This topic provides the systematic instructions to perform the basic operations on the
selected records.

Exact Clone with Additional Fields Using Common Code
This topic provides the systematic instructions to exact clone with additional fields using
common code.

Exact Clone with Additional Fields Using Extensible Code
This topic provides the systematic instructions to the exact clone with additional fields
using extensible code.

Jar Deployment in Weblogic
This topic provides the systematic instructions to the Jar Deployment in Weblogic.

8.1 New Transaction Screen — 1499 (Exact Clone of 1401)

This topic provides the systematic instructions to perform the basic operations on the selected
records.

For this use case, you need to ensure data is present in the tables similar to 1401.

The below mentioned tables need to be checked in SMS schema:

SMS_TM_MENU
SMS_TM_MENU_Description
SMS_TM_SERVICE_ACTIVITY
SMS_TM_FUNCTIONAL_ACTIVITY
SMS_TM_FUNC_ACTIVITY_DETAIL
SMS_TM_ROLE_ACTIVITY
SMS_TM_UI_ACTIVITY

The below mentioned tables need to be checked in common core schema:

CMC_TM_SCREEN_CLASS
CMC_TM_SCREEN_DS_MAPPING

The below mentioned tables need to be checked in branch common schema:

ORACLE

SRV_TM_BC_FUNCTION_INDICATOR
SRV_TM_BC_FUNCTION_CODE
SRV_TM_BC_FUNCTION_PREF
SRV_TM_BC_FUNCTION_PREF_DTLS

8-1

Chapter 8
Exact Clone with Additional Fields Using Common Code

- SRV_TM_BC_BRANCH_ACCOUNTING
- SRV_TM_MENU_CONFIG
- SRV_TB_BC_ACTIONS_URL

The below mentioned tables need to be checked in transaction schema:
e SRV_TB_TX STATIC_TAGS

Figure 8-1 Cash Deposit Clone

4 GCasn Deposix Clone Current THl Position
£10,016.553.33 L

uuuuuuuuuuuu

A e

i
i
i

B
< R

Figure 8-2 Information Message

& Information

Transpstion compianed sucsensfully

8.2 Exact Clone with Additional Fields Using Common Code

This topic provides the systematic instructions to exact clone with additional fields using
common code.

A new screen is available with function code 9999. The Additional Fields is shown as 4th data
segment as below:

ORACLE g0

Chapter 8
Exact Clone with Additional Fields Using Common Code

Figure 8-3 Additional Fields Segment

Current Till Position

Additional Fields

Others

e The library reference in weblogic.xml is available for extensibility, for example, obremo-srv-
ext-common-txn. A new jar obremo-srv-cmn-common-txn, which holds the most of the
code of transaction service and can be a dependency in the external jar.

<wls:library-ref>
<wls:library-name>obremo-srv-cmn-common-
txn</wls:library-name> </wls:library-ref>

Response :
{
"data": {
"addDtls": {
"signatureVerifyIndicator": "Y",
"hostStatus": null,
"hostMultiTripId": null,
"txnBranchCcy": "GBP",
"txnBranchDate": "2020-03-25T18:30:00.000+0000",
"txnType": "C",
"cashInOutIndicator": "I",
"ejLoggingRequired": null,
"ejTxnAmtMapping": "TO",
"ejTxnCcyMapping": "TO",
"adviceName": null,
"orchestratorId": null,
"rsp": null,
"isReversal": "N",
"crossCcyEnabled": null,
"isTotChargesReq": null
} 4
"txnDtls": {

"functionCode": "9999",

"txnBranchCode": null,

"txnBranchCcy": null,

"txnBranchDate": null,

"requestStatus": "COMPLETED",

"assignmentMode": null,

"txnId": "71la08al0f-ee2a-405b-ale3-b77ca%59b6e",

ORACLE 8.3

ORACLE

b

Chapter 8

Exact Clone with Additional Fields Using Common Code

"txnRefNumber": "0002008600007160",
"tellerSegNumber": null,
"overrideConfirmFlag": "N",
"supervisorId": null,
"onlineOfflineTxn": null,
"userComments": null,
"authoriserComments": null,
"eventCode": null,

"accountType": "UBS"

"dataPayload": {

"datasegment": null,
"fromAccountAmt": 100,
"fromAccountCcy": "GBP",
"toAccountCcy": "GBP",
"beneficiaryName": null,
"beneficiaryAddressl": null,
"beneficiaryAddress2": null,
"beneficiaryAddress3": null,
"beneficiaryAddress4": null,
"identificationType": null,
"identificationNumber": null,
"exchangeRate": 1,
"recievedAccount

Ccy": null,

"recievedAccount

Amt": null,

"totalCharges":

null,

"cashAmount":

null,

"netAccountCcy": null,
"netAccountAmt": null,
"narrative": "Cash Deposit",
"txnControllerRefNo": null,
"recordId": "bd40562d-06b4-4£95-95fe-
e66fabeb7£13", "cashAmtCcy": null,
"cashAmt":

null,

"chequeDate": null,
"chequeNumber": null,
"eventCode": null,

"ejId": null,

"emailId": null,
"fromAccountBranch": "000",
"fromAccountNumber": null,
"mobileNumber": null,
"orginalExchangeRate": null,
"payee": null,
"productCode": null,
"reversalDate": null,
"stationId": null,
"toAccountBranch": "000",
"toAccountNumber": "00000008010010",
"toAccountAmt": 100,
"txnBranchCode": "000",

8-4

Chapter 8
Exact Clone with Additional Fields Using Common Code

"functionCode": null,
"txnCustomer": null,
"tellerId": null,
"txnDate": 1585161000000,
"txnRefNumber": "0002008600007160",
"txnSegNumber": null,
"uniqueIdentifierNumber": null,
"uniqueIdentifierType": null,
"userRefNumber": null,
"valueDate": null,
"versionNumber": null,
"referenceNumber": null,
"createdBy": null,
"createdTs": null,
"updatedBy": null,
"updatedTs": null,
"demDtls": null,
"fxInDemDtls": null,
"fxOutDemDtls": null,
"prcDtls": null,
"addDtls": null,
"txnDtls": null,
"overrideDtls": null,
"batchTableDetails": null

}I

"extDetails": null,

"warDtls": [],

"authoriserDtls": []

}I

"errors": null,

"warnings": null,

"informations": null,

"authorizations": null,

Hpagingll : nn

Figure 8-4 Common Core Additional Attributes

Foiumns Data Model | Constraints | Grants | Stafistics | Triggers | Flashiack | Dependences | Detals |Partitions | Indeses |SGL

A HE XS B st Fite: w|w Actions. ..
| ur_Er ; |1 DATA_REF SEY [{} FIELD_META_DATA_VER |{} FIELD_DATA

1 3811 faghu-ob-cin-ds-additional-fie1dsBSess DAd0562d-0Ebd-4£95-952e-2EE ad: 1

dsB5995 bd405€2d-06b4-4£95-a55e-EESas
dsR2355 bA40SE2d-0Fbd-4£55-35 e~ E6fababTELS 1
29998 BAL0SE2d-06bd-4£85-958 5
dsB9855 DAL0SE2d-06bd-4£585-952e-2dEtas

“, “OTH_Amounc=:
OTH_Amount™:
OTH_Amount™:
", "OTH_Amount™:
“, *0TH_Amount™: 100, *OTH_Nurber=: *DAHEM2] 4kA")

2 5ed3 fagbu-cb-cmn-ds-additiona.

3 7¢56 faghu—ob-cmn—ds-sdditicna.

4 2226 faghu-ob-cmn-ds-additions,

§ §32c fagbu-ob-cn-ds-additional-£ {"OTH_Year™: "2

* Inthe debug, you can find that the common code is used, stemplmpl onCashSubmitTillAcc
will be called.

ORACLE 8.5

Figure 8-5 Common Code

Chapter 8
Exact Clone with Additional Fields Using Extensible Code

: PlatoProxyEntityManager ::
: PlatoProxyEntityManager ::
: The application [App id =
: appId [SRVCMNTXN]

: tenantTId [SRVCMNTXN]

: emType [APPLICATION]

Application ::
Application ::
SRVCMNTXN / Tenant Id =

Current A
Current T

: Entity Manager Factory is available in Cache for tH
: Here for function code 9999 and beanname is FC9999
: onCashSubmitTillAcc operation

: inside onCashSubmitTillAcc
: START fetching the data
: START fetching the data

: after calll to move data from work to main charges

: Going to call EJ Creation

lf-tuning) '] o.f.p.c.p.p.PlatoProxyEntityManager
lf-tuning) '] o.f.p.c.p.p.PlatoProxyEntityManager
lf-tuning)'] o.f.p.c.p.p.PlatoProxyEntityManager
1f-tuning) '] o.f.p.c.p.provider.PlatoRegistry
1f-tuning) ') o.f.p.c.p.provider.PlatoRegistry
lf-tuning)'] o.f.p.c.p.provider.PlatoRegistry
lf-tuning)'] o.f.p.c.p.provider.PlatoRegistry
1f-tuning) '] Stepl

1f-tuning) '] Stepl

1f-tuning) '] o.f.o. .domain.CashService
1f-tuning)'] o.f.o. .s.TransactionServicelImpl
1f-tuning) '] o.f.o. .s.TransactionServiceImpl
lf-tuning) '] o.f.0.s .domain.CashService
1f-tuning)'] o.f.o. .domain.CashService
1f-tuning) '] o.f.o0. -transaction.util.Common
1f-tuning)'] o.f.o. .domain.CashService
lf-tuning)'] o.f.o. .domain.CashService
lf-tuning) '] o.f.o. .transaction.util.Common
lf-tuning) '] o.f.o. transaction.client.SMSImpl
lf-tuning) '] o.f.o. - .domain.CashService

: GenerateEJIdStep ends

: Going for enrichment

: Going for validate Roles check
: inside validateRole

: Going to call userLoginId

: Goinf for balance check

8.3 Exact Clone with Additional Fields

Using Extensible Code

This topic provides the systematic instructions to the exact clone with additional fields using

extensible code.

A screen is created with function code 9999 and Additional Fields as 4th data segment.

Figure 8-6 Additional Fields Segment

ladditional Fields

Others

]
Current Till Position

e Alibrary reference is added weblogic.xml (obremo-srv-ext-common-txn) for extensibility. A
new jar obremosrvecmn-common-txn, which holds the most of the code of transaction
service and can be a dependency in the external jar

<wls:library-ref>
<wls:library-name>obremo-srv-cmn-common-txn</wls:library-name>
</wls:library-ref>

8.4 Jar Deployment in Weblogic

ORACLE"

This topic provides the systematic instructions to the Jar Deployment in Weblogic.

Below screen shows the Jar Deployment in weblogic.

8-6

Chapter 8
Jar Deployment in Weblogic

Figure 8-7 Jar Deployment

* {@ obremo-srv-cmn-transaction-senvces-5.2.0_snapshot Acve | & OK Web Appiication | SERVICING | Global 1
o obremo-srv-Cus-customer-senvices-5.2.0_snapshot Active | 9 OK Web Application | SERVICING | Global 1
W chremo-srv-ext-common-tin ..q:.-.-o | -ub(ar\: .StR\"l(_iNG -Glo:.al . .1
Response:
"data": {
"addDtls": {
"signatureVerifyIndicator": "Y",

"hostStatus": null,
"hostMultiTripId": null,
"txnBranchCcy": "GBP",
"txnBranchDate": "2020-03-25T18:30:00.000+0000",
"txnType": "C",
"cashInOutIndicator": "I",
"ejLoggingRequired": null,
"ejTxnAmtMapping": "TO",
"ejTxnCcyMapping": "TO",
"adviceName": null,
"orchestratorId": null,
"rsp": null,
"isReversal": "N",
"crossCcyEnabled": null,
"isTotChargesReqg": null

}I

"txnDtls": {
"functionCode": "9999",
"txnBranchCode": null,
"txnBranchCcy": null,
"txnBranchDate": null,
"requestStatus": "COMPLETED",
"assignmentMode": null,
"txnId": "71a08a0f-ee2a-405b-ale3-b77ca%e59%b6e",
"txnRefNumber": "0002008600007160",
"tellerSegNumber": null,
"overrideConfirmFlag": "N",
"supervisorId": null,
"onlineOfflineTxn": null,
"userComments": null,
"authoriserComments": null,
"eventCode": null,
"accountType": "UBS"

}I

"dataPayload": ({
"datasegment": null,
"fromAccountAmt": 100,
"fromAccountCcy": "GBP",
"toAccountCcy": "GBP",
"beneficiaryName": null,
"beneficiaryAddressl": null,

ORACLE .

ORACLE

Chapter 8
Jar Deployment in Weblogic

"beneficiaryAddress2": null,
"beneficiaryAddress3": null,
"beneficiaryAddress4": null,
"identificationType": null,
"identificationNumber": null,
"exchangeRate": 1,
"recievedAccountCcy": null,
"recievedAccountAmt": null,
"totalCha

rges":

null,

"cashAm

ount":

null,

"netAccountCcy": null,
"netAccountAmt": null,
"narrative": "Cash Deposit",
"txnControllerRefNo": null,
"recordId": "bd40562d-06b4-4£95-95fe-
e66fabeb7£13", "cashAmtCcy": null,
"cashAmt":

null,

"chequeDate": null,
"chequeNumber": null,
"eventCode": null,

"ejId": null,

"emailId": null,
"fromAccountBranch": "000",
"fromAccountNumber": null,
"mobileNumber": null,
"orginalExchangeRate": null,
"payee": null,

"productCode": null,
"reversalDate": null,
"stationId": null,
"toAccountBranch": "000",
"toAccountNumber": "00000008010010",
"toAccountAmt": 100,
"txnBranchCode": "000",
"functionCode": null,
"txnCustomer": null,
"tellerId": null,

"txnDate": 1585161000000,
"txnRefNumber": "0002008600007160",
"txnSegNumber": null,
"uniqueIdentifierNumber": null,
"uniqueIdentifierType": null,
"userRefNumber": null,
"valueDate": null,
"versionNumber": null,
"referenceNumber": null,
"createdBy": null,
"createdTs": null,
"updatedBy": null,
"updatedTs": null,

"demDtls": null,

8-8

ORACLE"

"fxInDemDtls": null,
"fxOutDemDtls": null,
"prcDtls": null,
"addDtls": null,
"txnDtls": null,
"overrideDtls": null,

Chapter 8
Jar Deployment in Weblogic

"batchTableDetails": null

}I
"extDetails": null,
"warDtls": [],
"authoriserDtls": []
}I
"errors": null,
"warnings": null,
"informations": null,

"authorizations": null,

"paging" : nn

Figure 8-8 Common Core Additional Attributes

oG XKW W sort At

D0Pomaiy A lialy-brancheommon G Traly-cMiCore | T CC_TE_ADDT_ATTR DATA |
olumns | Data Mods! | Constraints | Grants | Statistics [Triggers | Flashback | Dependencies | Detais | Partitions | Indexes [5L

| ur sy

13811 fagbu-cb-con-da-addi

2 Sed3 fagbu-co-con-da-a

3 7c%€ fagbu-ob-cmn-ds-additional-fields@9555 bdi05€2d-08b4~-4£55-55fe-eEEfadebT£1ll 1
onal-fielda@9599 bd40562d-08b4-4£55-35fc-c66EabebTE1D 1
5 §32c faghu-ob-cun-da-additional-fields@3599 bd40562d-06bd-4£55-95fe-e66fadehTE1d 1

4 2826 £agbu-cb-can-da-al

- |w Actiong..,

| paTa_ReF_xEY [7|4 FIELD_META_paTa_VER. iF[E.DJJATA
onal-fielda@9559 bd40562d-08b4-4£55-35Fc-cidfnichTE19 1 +"2020", "OTH_Amouns” : 100, "0TH_Number " ; "DAREH21 42"
al-fields3959 bd40562d-08be-4155-35te-ed€TadebTEla 1 2020, "OTH_Amount”:100, "0TH_Number” ; "DAREMZ14RE"

Amount":100, *0TH_Number”:"DAHPMZ14AH"}
Amount" 100, "0TH_Mumbe: DAHPH214AH"}
£":100, "0TH_Number™: "DAHFMZ14RE"}

In the debug, the extensible code is used, which is present in the extension jar (obremo-
srv-ext-commontxn.jar). Instead stemplmpl onCashSubmitTillAcc, FC9999
onCashSubmitTillAcc will be called, where you can add code that is required for the new
dataSegment added or to achieve different functionality of charging, accounting, till

updates, etc

Figure 8-9 Debug Codes

lf-tuning)'] o.f.p.c.p.p.PlatoProxyEntityManager
1lf-tuning) '] o.f.p.c.p.p.PlatoProxyEntityManager
1lf-tuning)'] o.f.p.c.p.p-.PlatoProxyEntityManager
1f-tuning)'] o.f.p.c.p.provider.PlatoRegistry
lf-tuning) '] o.f.p.c.p.provider.PlatoRegistry
lf-tuning) '] o.f.p.c.p.preovider.PlatoRegistry
1f-tuning) '] o.f.p.c.p.provider.PlatoRegistry

1f-tuning) '] EEOH5E
1f-tuning) '] EC9999

1lf-tuning) '] o.f.o.s.s.t.domain.CashService
1f-tuning) '] o.f.o.s.s.t.s.TransactionServiceImpl
1lf-tuning)'] o.f.o.s.s.t.s.TransactionServiceImpl
lf-tuning)'] o.f.o.s.s5.t.domain.CashService
1f-tuning) '] o.f.o.s.s.t.domain.CashService
1f-tuning)'] o.f.o.s.srv.transaction.util.Common
1f-tuning) '] o.f.o.s.s.t.domain.CashService
1lf-tuning) '] o.f.o.s.s.t.domain.CashService
1f-tuning) '] o.f.o.s.srv.transaction.util.Common
1f-tuning) '] o.f.o.s.srv.transaction.client.SMSImpl
1lf-tuning) '] o.f.o.s.s.t.domain.CashService

: Here for function code 9999 and beanname is FC9999
: onCashSubmitTillAcc operation

PlatoProxyEntityManager :: Application :: Current Ap
: PlatoProxyEntityManager :: Application :: Current Te
: The application [ARpp id = SRVCMNTXN / Tenant Id = r
: appIld [SRVCMNTXN]
: tenantld [SRVCMNTXN]
: emType [APPLICATION]
: Entity Manager Factory is available in Cache for the

: inside onCashSubmitTillAcc

: START fetching the data

: START fetching the data

after calll to move data from work to main charges &
Going to call EJ Creation

: GenerateEJIdStep ends

: Going for enrichment

: Going for validate Roles check
: inside validateRole

: Going te call userLoginId

: Goinf for balance check

8-9

Extensibility Use Cases for OBX

ORACLE

This topic provides the systematic instructions to perform the basic operations on the
Extensibility Use Cases for OBX.

This topic describes the following sub-topics:

* New Transaction screen — 1499 (Clone of 1401)
This topic provides the systematic instructions to perform the basic operations on the
selected records.

* New Data Segment in Existing 1401 Screen
This topic provides the systematic instructions to perform the basic operations on the
selected records.

¢ HTML Changes
This topic provides the systematic instructions to perform the basic operations on the
selected records.

e JS Changes
This topic provides the systematic instructions to JS fields.

e JSON Changes
This topic describes the changes JSON fields across all the screens.

* Model Changes
This topic provides the systematic instructions to Model Changes.

» Database Changes
This topic provides the systematic instructions to Database Changes.

e Service Component
This topic provides the systematic instructions to the Service Component.

* New Field in Existing Base Data Segment
This topic provides the systematic instructions to perform the basic operations on the
selected records.

 HTML Changes (Extended Components)
This topic describes the changes Extended Component HTML fields across all the
screens.

 HTML Changes (Base Component)
This topic describes the bade components HTML fields changes for all the screens.

e JS Changes (Base Component)
This topic describes the base components JS fields changes for all the screens.

e JS Changes (Extended Component)
This topic describes the extended components JS fields changes for all the screens.

e JSON Changes (Extended Component)
This topic describes the extended components JSON fields changes for all the screens.

* JSON Changes (Base Component)
This topic describes the base components JSON fields changes for all the screens.

9-1

Chapter 9
New Transaction screen — 1499 (Clone of 1401)

DB Changes
This topic provides the systematic instructions to perform the basic operations on the
selected records.

¢ Add New Columns in Base Component Table
This topic provides the systematic instructions to perform the basic operations on the
selected records.

e Steps for adding extra column in task grid
This topic provides the systematic instructions to perform the basic operations on the
selected records.

e Steps to use Additional Buttons provision in Task Screen
This topic provides the systematic instructions to perform the basic operations on the
selected records.

* Steps to create common-extended folder for extending configJSON.js file
This topic provides the systematic instructions to perform the basic operations on common-
extended folder for extending configJSON.js file.

e Customizing Existing LOV Fetch Result
This topic provides the systematic instructions to perform the basic operations on the
Customizing Existing LOV Fetch Result.

» Steps for adding Pre/post methods in extended components
This topic provides the systematic instructions to perform the basic operations on the
selected records.

* ENDPOINT Overrides
This topic describes the endpoint overrides.

e Steps to create util-extended folder
This topic provides the systematic instructions to perform the basic operations on the
selected records.

* Dynamic Data Configuration (DDC)
This topic provides the systematic instructions to perform the basic operations on the
selected records.

e Task Screen Custom Config
This topic provides the systematic instructions to perform the basic operations on the
selected records.

9.1 New Transaction screen — 1499 (Clone of 1401)

ORACLE

This topic provides the systematic instructions to perform the basic operations on the selected
records.

For this use case, make sure that the data is present in the below tables similar to 1401. The
below mentioned tables need to be checked in SMS schema:

« SMS_TM_MENU

e SMS_TM_MENU_Description

¢ SMS_TM_SERVICE_ACTIVITY

« SMS_TM_FUNCTIONAL_ACTIVITY
« SMS_TM_FUNC_ACTIVITY_DETAIL
« SMS_TM_ROLE_ACTIVITY

¢ SMS_TM_UI_ACTIVITY

9-2

Chapter 9
New Transaction screen — 1499 (Clone of 1401)

The below mentioned tables need to be checked in Common Core schema:
e CMC_TM_SCREEN_CLASS
e CMC_TM_SCREEN_DS MAPPING

The below mentioned tables need to be checked in branch Common schema:
¢ SRV_TM_BC_FUNCTION_INDICATOR

« SRV_TM_BC_FUNCTION_CODE

¢ SRV_TM_BC_FUNCTION_PREF

« SRV_TM_BC_FUNCTION_PREF_DTLS

« SRV_TM_BC_BRANCH_ACCOUNTING

« SRV_TM_MENU_CONFIG

Figure 9-1 Cash Deposit Clone

< Gash Depas Clone Current Tl Position
£10,016,553.33 e

i
i
¥
f
f
i
i
i
H

“lz 8
@l sl o
. o e e
o
i
Sookh
o

Figure 9-2 Information Message

Transaction compleced successhully

ORACLE' 0.3

Chapter 9
New Data Segment in Existing 1401 Screen

9.2 New Data Segment in Existing 1401 Screen

This topic provides the systematic instructions to perform the basic operations on the selected
records.

For this use case, it is needed to implement Ul Component and Service side to persist data.
The steps to create Ul Component are as follows:

1. Start OBX and create XDL by running command obx xdI-gen.

2. Once XDL is created, go to Cmder tab, and press Y for XDL generation.

Figure 9-3 OBX XDL generation

I oiem B 550 B-0-al
3. Select the option Ul Component.
4. Select product family as Oracle Banking Retail Mid Office.
5. Specify the name of virtual page/data-segment/stand-alone component to be created.
6. Specify absolute path of the XDL generated. (XDL is generated inside extension_home
folder).
¢ Note:

A new Ul Component will be created in extension_home folder with prefix obx-
vp/obx-ds. In the Cmder tab, OBX will prompt to modify Metadata.js file of the
newly created component. In addition, the component-server will start running at
port 8002.

ORACLE 0.4

Chapter 9
HTML Changes

Figure 9-4 XDL Path

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2024 (14.7.5.0.0)

T : O-O-a0=

Figure 9-5 Extension Home Folder

git db nade_modules
reports sre template
test web appjs
& build.gradle % buildExtendedComponent bat buildExtendedComponent.sh
generateReportjs ™ gradle.properties gulpfilejs
Jenkinsfile karma.conf js metadata js
middleware.js % Inpm-link bat package.json
munTests.sh startCSjs test-main.js

7. The generated Ul component contains boiler plate code to do the common operations of
Save, Get, Get All etc. Changes needed in the newly created component from OBX tool
from Ul side.

9.3 HTML Changes

This topic provides the systematic instructions to perform the basic operations on the selected
records.

* According to the screen design, one can change the HTML values like payload() and
mobileNumber. If mobileNumber field is entered by the user, value of mobileNumber will
directly update the JS payload that will be going as a part of save call.

ORACLE o5

Chapter 9
JS Changes

Figure 9-6 HTML Changes

value="{{p.

* The oj-validation-group is required for configuring the HTML as part of validation.

Figure 9-7 Validation

p data-bind=":

9.4 JS Changes

This topic provides the systematic instructions to JS fields.
Perform the following steps to implement JS changes:

1. Add all the dependencies in define block.

2. The JS self.payload is an observable, which will hold all the info inputted from the HTML.
All keys in self.payload is directly linked with HTML.

ORACLE 06

Chapter 9
JS Changes

Figure 9-8 JS Changes

define(["«

ko.observable({

) ko.observable(self.datasegment()),
ko.observable(),
ko.observable(),

3. Save method implementation will look like in below figure. In the next line, it is making a
promise and calling the save function of cmn-ct-datasegment providing the payload and
endpoint as parameters. If save is success, it will resolve and for failures it will come to
reject.

ORACLE o

Chapter 9
JSON Changes

Figure 9-10 Save Method

11orundef

4. The function null check is as shown below:

Figure 9-11 Function Null Check

self.isEmptyNullorundefined = function (value) {
if (value === "" || value indefined || value === nu
r’.__;y I.: ‘ .

5. The validate function is shown in the below mentioned validate function screen, which will
check all mandatory fields during save.

Figure 9-12 Validate Function

self.validate =
ntById(“tracker”+self.unique(

9.5 JSON Changes

This topic describes the changes JSON fields across all the screens.

The data and datatransferPayload properties need to be exposed from JSON. The data
property is used to take the information of transaction specific and the datatransferPayload
property is used to share data between data segments.

ORACLE 0.8

Chapter 9
Model Changes

Figure 9-13 JSON Changes

scr-iption”™:
pe™ = Tstrin

£
L
“"description™ T
“Ttype™ = Tobject™T .
Twr-iteback™: i

¥

"dataTtTra s FerrPayload™

“descripti
“"twvpe™: -
“wr-iteback™ :
¥ -
“methods"": {
Tsave™ = £
"description®™:

3

9.6 Model Changes

This topic provides the systematic instructions to Model Changes.

There will be no methods in the model. All the REST calls needs to go through cmn-ct-
datasegment similar to Save.

Perform the following steps to make model changes:

1. Run the DB Scripts present in this component.

< Note:

he OBX generates SQL script with default HEADER_APPID as PXDSSRV001 for
all components. This script can be changed and used

2. Create extended war for the component and deploy.

9.7 Database Changes

This topic provides the systematic instructions to Database Changes.

To add database changes to do the following:

1. Add the newly created data segment name in the PRODUCT_EXTENDED_LEDGER table
(this will be done when DB script from Ul component is run).

2. Make a fourth Data Segment entry for function code 1401 in
CMC_TM_SCREEN_DS_MAPPING table of CMNCORE. The DS_CODE should be the
name of the Ul Component created. The entry is as shown in the Data Segment Entry.

ORACLE 0.9

Chapter 9
Service Component

Figure 9-14 Data Segment Entry

s Data Mo |Corcir s | s | i [Tiggers | etbeck |Depenchciss ekl [P tions [Eeves 1501
PHIABD ot Ao = ki

] SRS D [)ff § 05 0008 + SEQUENCE % EDIT_FLAG |} MANDATCRY

'DS_DET_T:H’N&
Charge

1N T Daj
B Tedditicn:]

Details

3. Ifthe service is created separately than Ul Component, change the endpoint URL in SQL
script for table PRODUCT_SERVICES_LEDGER accordingly.

9.8 Service Component

This topic provides the systematic instructions to the Service Component.
To create a service component do the following:
1. Start OBX and use the XDL file that is already generated.

2. Select the domain service with optional Ul component.

Figure 9-15 Domain Service

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2824 (14.7.5.8.8)

u Wi crea

u want to create:

3. Select product family as Oracle Banking Retail Mid Office.

ORACLE 510

Chapter 9
Service Component

Figure 9-16 Product Family

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2824 (14.7.5.9.8)

ght © 20824-2025, Oracle and/or its affiliates. All rights re

Select the product family:
Enter name of service (I'll add -service to it): additionaDetails

4. Specify the service name as additional Details and all the remaining details as mentioned
in the service name screen.

Figure 9-17 Service Name

ORACLE BANKING EXTENSIBILITY WORKBENCH October 2824 (14.7.5.0.9)

Select the
Enter name

Select serv tenant
Enter name Infra (
Enter name

Enter name o

Enter p

Enter

5. A new service is generated in extension_home folder with prefix obremo-
additionadetails-service.

ORACLE 011

Chapter 9
Service Component

Figure 9-18 Extension Home Folder

sre a| gitignare & build.gradle

&l gradle properties s READMEmd & settings.gradie

6. Run the DB scripts present in this service.

Note:

It will create a new table to persist data of new data segment. For example, a
table is created as ADDITIONALDETAILS. This table can be created in existing
schema or in a new schema.

7. If you need to create a new schema, mention that in table.
PRODUCT_SERVICES_CTX_LEDGER while running Ul Component Script.

8. Restart plato servers once this change is completed.

9. If required, make appropriate changes in the service, build it, and deploy.

Note:

After deploying extended war and additional details service along with proper DB
entry, you can see a new data segment in the appshell screen.

10. Fill the necessary details and click Submit, the data for new DS will be saved in new table.

Figure 9-19 Additional Details Segment

Depositor Name Mobile Number

Mo data to display

ORACLE o.12

Chapter 9
New Field in Existing Base Data Segment

Figure 9-20 Updated Data in New Table

“olumns Data Model | Constraints | Grants |Statistics | Triggers | Flashback | Dependencies | Details |Partitions | Indexes | SQL

3 RE XS B sot. Fiker
L) '{} moBILE_numBeR |7 {} DEPOSITOR_NAME|7
! b2ebeBbc-cb89-43d6-b369-447d7477a%ac 8960436521 Alok

9.9 New Field in Existing Base Data Segment

This topic provides the systematic instructions to perform the basic operations on the selected
records.

This use case defines a new field in the existing base data segment (fsgbu-ob-remo-srv-ds-
cash-deposit) in 1401 screen class.

For this use case, you need to create an extended Ul Component, make changes in the
existing Ul appshell, and make changes in the service.

Perform the following steps:

1. Modify the base component cca and create an extended component. To do this, start OBX
and run the command obx ui --mb. It will prompt for name of base web component.

2. Specify the name of base web component. A folder will be created with base component
name appending -extended at the end of it.

Figure 9-21 Base Web Component

ORACLE 013

Chapter 9
HTML Changes (Extended Components)

Figure 9-22 Base Web Component

Figure 9-23 Extended Folder

git db node_modules
reports SIC template
test web appJjs

,'_ build.gradle [%] buildExtendedComponent bat | buildExtendedComponent.sh
generateReportjs ,'_'.',-‘J gradle properties | gulpfilejs

' Jenkinsfile karma.conf.js | middleware.js

[% Inpm-ink bat package,json " runTests.sh

test-main,js
Note:

The changes are required in the extended component from the Ul side.

9.10 HTML Changes (Extended Components)

This topic describes the changes Extended Component HTML fields across all the screens.

The extended component contains the boiler plate codes, in which you need to make the
changes as shown in the below HTML Changes (Extended Component) screen. After you
make the necessary changes, the additional fields will be added after the existing fields in the
base component.

ORACLE 014

Chapter 9
HTML Changes (Base Component)

Figure 9-24 HTML Changes (Extended Component)

The following changes are required only if you need to add the additional field at the end of the
base component and in a separate extension panel. You can choose to add the additional
fields in the existing base component or in the extension panel as per the requirement.

Figure 9-25 Extension Panel

9.11 HTML Changes (Base Component)

ORACLE

This topic describes the bade components HTML fields changes for all the screens.

Perform the HTML changes in the base component.

Figure 9-26 HTML Changes (Base Component)

9-15

Chapter 9
JS Changes (Base Component)

9.12 JS Changes (Base Component)

This topic describes the base components JS fields changes for all the screens.

Perform the JS changes in the base component as shown in the JS Changes (Base
Component) screen.

Figure 9-27 JS Changes (Base Component)

self.loadExtendedCCA = ko.observable(
self.ifExtension = ko.observable() I

self.loadExtendedComponent = function () {

(requirejs.s.contexts._.config.paths| : + self.loadExtendedCCA()]) {
var componentName = [+ self.loadExtendedCCA() + i
require(componentName, function () {

self.ifExtension(Y

i

The part of code shown below is present in JS or view model file. From the self.connected
method, you need to call self.loadExtendedComponent method.

Figure 9-28 Self Connected Method

self.connected = function (context
s

elf.loadExtendedComponent();

9.13 JS Changes (Extended Component)

This topic describes the extended components JS fields changes for all the screens.

In the bindings applied, it will take the ID of the fields and add the additional fields after the field
base component. Both additional fields will be added after the field of base component for
which the ID is lastTab.

ORACLE 016

Chapter 9
JSON Changes (Extended Component)

Figure 9-29 JS Changes (Extended Component)

newent it yNameTemp late.outerHTMi);

ewentityNameTe tel.outerHTML);

9.14 JSON Changes (Extended Component)

This topic describes the extended components JSON fields changes for all the screens.

Perform the HTML changes to add data and base property for extended component.

Figure 9-30 Json Changes (Extended Component)

ORACLE

9-17

Chapter 9
JSON Changes (Base Component)

Figure 9-31 Json Changes (Extended Component)

9.15 JSON Changes (Base Component)

This topic describes the base components JSON fields changes for all the screens.

In base component JSON file, the properties is Extensible and authMode are present. You
need to make changes in the existing appshell Ul component so that it reads the extended
component. In addition, it will contain DB scripts which need to be run.

Figure 9-32 JSON Changes (Base Component)

name -

“wversion™:

“dswvirtualPage

"iseExtensible™

“properties™:
“"name™ : {
"description™:
"type™: "object

i

“"totalDs™: {
“"description™

>

data™: {

"description™

“authmMmode™ : {
"description™:
“"type™: l

|” =

9.16 DB Changes

This topic provides the systematic instructions to perform the basic operations on the selected
records.

ORACLE 018

ORACLE

Chapter 9
DB Changes

Add the newly created data segment name in the PRODUCT_EXTENDED_LEDGER table.

Perform the following steps to make the service level change:

1.

Add a new field named additionalFields with data type String in work and main table entity
classes of the respective service. The corresponding setters and getters should also be
added in these classes.

@Column(name = “ADDITIONAL_FIELDS") private String additionalFields.

Add a column with the name ADDITIONAL_FIELDS in the main and work tables of the DB
with CLOB data type.

For persistence of data in main table, add additionalFields with data type String in model
class.

Deploy the changed service, extended war component, and changed appshell.

Note:

After deployment, the two additional fields named Pan Number and Aadhaar
Number will be added in existing data segment.

Specify the necessary details and click Submit. The additional fields will be saved in
respective work and main table in an additional column ADDITIONAL_FIELDS.

Figure 9-33 Data Segment with Additional Fields

Teller Transaction m

@
Frequent Customer

Marrative = Oparations

Cheque Withdrawal ¢ O0

In the request payload from Ul to backend, the values appear as follows:

Figure 9-34 Request Payload

¥ Request Payload view source
v {datasegment: "fsgbu-ob-remo-srv-ds-cheque-withdrawal™, chequeDate: "2020-83-26",..}

b addDtls: {txnType: "C", cashInoutIndicator: "0", ejTxnAmtMapping: "FROM", ejTxnCcyMapping: "FROM",..}

additionalFields: "{"aadharNo":"1234567890", panNo™:"123456abc™}"

chequeDate: "2028-83-26"

chequeNumber: "123456"

The data will get saved in newly added column Additional Fields in the respective table.

9-19

Chapter 9
Add New Columns in Base Component Table

Figure 9-35 SRV_TB_CH_CASH_TXN Table

lewea Data, Mo | Cenitmnns | Cewnes |Statenes | Triggers [Fashbiach | Gepersenees [Detubs [Partniens | Indeses |50
AHEXD N e e - | = Actiona..
T DATE FROM_ALE IO FRO... |{) P (F. [B | 10 ACC BRN |1} 1O, ACE_CCY |1} 10 ACC AHT RARRATIVE CREATED, TS STATLS AOITIONAL P
1 26-MAR-2000000001060032 000 GBF 10 1. 000 GBP 10 . Cheaue withdrawal |- B (null) .. (BUII) oo wo v vmmn s nnns {"aadha. ..

9.17 Add New Columns in Base Component Table

This topic provides the systematic instructions to perform the basic operations on the selected
records.

For adding new columns in base component table to do the following.

1. Create an extended component for the base cca by making these changes in the base

accordingly.
2. Changes in base
In HTML
<!-- ko if: ifExtension -->

<componentName-extended data="{{base}}">
</componentName-extended>

<l--/ko -->
InJS

self.base
= this;

self.ifExtension = ko.observable (false);

self.connected = function () { if
(requirejs.s.contexts. .config.paths['components/componentName-
extended']) {

require (['components/componentName-extended/loader'], function
O
self.ifExtension (true);

P

3. Changes in extended

self.bindingsApplied = function (context) {
context.props.then (function (properties) {
console.log (properties.data.columnArray) ;
properties.data.columnArrray.splice (columnIndex, O,
{
headerText: "Manager Id", field: "ManagerId"
1)
tableId.refresh(properties.data.columnArray);

1)

ORACLE 9.20

Chapter 9
Steps for adding extra column in task grid

4. Changes needed at service level.
For data inside table, custom projection service had to be written, custom events needs to
be raised while custom fields persistence. For base fields, a call can be made from
projection service to base service to fetch data and persisting the same over projection
schema.

9.18 Steps for adding extra column in task grid

This topic provides the systematic instructions to perform the basic operations on the selected
records.

For adding extra column in task grid to do the following:

1. Clone the respective Free/My/Hold Task components.

2. Then the additional column can be added using the following example code snippet.

self.additionalColumns = [{
dataIndex: 'customerName',
dataType: 'string',
displayType: 'text',
width: '60px"',
sortable: true,
resizable: true,
accessTo: ['AVAILABLE', 'HOLD', 'ACQUIRED']
11

The above code needs to be added in js file of the cloned components.

While calling fsgbu-ob-cmn-fd-work-list from the html of the cloned components please
make a call like this (which also sends additional columns as a property).

Example:

<fsgbu-ob-cmn-fd-work-list id='completedTaskGridCCA' dashboard-
id="STANDARD' dashboard-
queue-name="ACQUIRED'

process-code={ {processCode}} dashboard-queue-type='L' worklist-
columns="'{{columnArray}}"'

additional-columns='{{additionalColumns}}' page-size=20 dependent-
vm="{{dialogParameters}}"></fsgbu-ob-cmn-fd-work-1list>

3. Making these changes would display the extra column in the task screens.

9.19 Steps to use Additional Buttons provision in Task Screen

This topic provides the systematic instructions to perform the basic operations on the selected
records.

In the custom component (example - fsgbu-ob-slp0-vp-wl-locked-task-extended) from where
you will be calling fsgbu-ob-cmn-fd-work-list, make the following changes:

ORACLE 991

Chapter 9
Steps to create common-extended folder for extending configJSON.js file

1. Inthe js file you can declare an array of the buttons you want to include like this-

self.extraButtons = [{ label: 'Extraa', icons: {

start: 'oj-ux-ico-refresh' }, display: 'all',

accessTo: ['L', 'F', 'H', 'Cc', 's', 'A', 'O', 'T', 'WFCC']
}, { label: 'Extrab',

icons: { start: 'oj-ux-ico-refresh' },

display: 'all', accessTo: ['L', 'F']

}
]

2. And also the method which needs to be executed on the button click.

self.extraa = function(data) {
console.log("it got called");
}

Note:

The function name should be same as label of the button (in lower case).

3. Inthe HTML file, additional buttons attribute needs to be included like this:

<fsgbu-ob-cmn-fd-work-1list id='completedTaskGridCCA' dashboard-
id="'STANDARD'

dashboard-queue-name="'ACQUIRED' dashboard-queue-type='L"' worklist-
columns="'{{columnArray}}' additional-columns="'{{additionalColumns}}’'
additional-buttons="'{{extraButtons}}' page-size=20>
</fsgbu-ob-cmn-fd-work-1list>

4. In the json file, the methods which would be implemented on the custom button click needs
to be exposed.

"methods": {
"extraa": {
"description": "Would be implemented on Extraa button click"

b
"extrab": {
"description": "Would be implemented on Extrab button click"

9.20 Steps to create common-extended folder for extending
configJSON.Js file

This topic provides the systematic instructions to perform the basic operations on common-
extended folder for extending configJSON.js file.

ORACLE 9.99

Chapter 9
Customizing Existing LOV Fetch Result

For creating common-extended folder for extending configJSON.js file to do the following:

1.
2

3.
4.

Create a folder inside extended-components\js\components.
Folder structure \common-extended\js\util.
Next we will add a file configJSON.js in the created folder.

The code inside this configJSON.js would be like-

define (['cmn-util/configdSON'], function (baseobj) {
baseobj.applicationObject.entityIdByProcessCode['CUSTOM'] = {'ccName':
'fsgbu-

ob-remo-deposit-ct-process-flow', 'Name': 'RD Amount Block', 'shortName':
'RD

Amount Block'};

)

Some understanding of the code: -

* Including the base object by giving the path of configJSON.js base file.

e Then for example adding the entry for custom process as shown above.

* The extended configJSON file would be loaded from base commonFunction.js
Insertion of the below script into PRODUCT_EXTENDED_LEDGER table

Insert into PRODUCT EXTENDED LEDGER
(ID,CCA_NAME,CCA_TYPE,PARENT_CCA_NAME,PRODUCT_NAME) select nvl(new_uuid
, 'common-extended', 'config',null, 'EXTENDED COMPONENTS'from

PRODUCT EXTENDED LEDGER;

9.21 Customizing Existing LOV Fetch Result

This topic provides the systematic instructions to perform the basic operations on the
Customizing Existing LOV Fetch Result.

Modifying the retrieval output of an existing LOV to meet specific requirements.

ORACLE

Ins cope Data segment can be used for addition of new fields. (using jquery, at any
position, we can add the field).

Service Extensibility to be used for overriding the base method, OBX tool will generate the
base service jar from base service war and this jar should be used to override the base
service method and implement the custom changes.

From UlI, call will go to custom service , from custom service, call will go to base service for
base field persistence as Java to Java call, then custom functionality to be implemented for
persistence of custom fields as part of REST call to another custom service.

For LOV data, custom projection service to be written. Custom Event needs to be raised
while custom fields persistence. For base fields, a call can be made from projection service
to base service to fetch data and persisting over the projection schema.

9-23

Chapter 9

Steps for adding Pre/post methods in extended components

9.22 Steps for adding Pre/post methods in extended components

This topic provides the systematic instructions to perform the basic operations on the selected
records.

Suppose here we consider that we want to persist custom fields on postnext call (which means
first ‘self.next’ method of base would get called and then the control will come in postnext
method written in extended component).

1.

ORACLE

Write postnext method in .js file of the extended component — wherein you can call the
custom Api for persisting the custom fields.

Expose this method in the .json file of the extended component.

Similarly we can add prenext method as well.(it would get executed before ‘self.next’
method of base executes).

Note:

The hooks for these methods to work should be a part of common infrastructure
components in appshell.

Below is the list of CCAs and the common methods which has pre and post hooks:

Table 9-1 List of CCAs - Field Description

CCA Name Common method Pre hook present Post hook present
name

fsgbu-ob-cmn-ct- compare No Yes

authorization approve No Yes

fsgbu-ob-cmn-ct-act- delete No Yes

summary- template reopen No Yes
close No Yes

fsgbu-ob-cmn-ct- save Yes Yes

maintenance

fsgbu-ob-cmn-ct-wizard | next Yes Yes
previous Yes Yes
saveClose Yes Yes
cancel Yes Yes
hold Yes Yes
Applicable for custom | Yes Yes
footer buttons as well

fsgbu-ob-cmn-ct-rs- approve No Yes

authorization

fsgbu-ob-cmn-ct- delete No Yes

summary-template open No Yes
close No Yes

9-24

Chapter 9
ENDPOINT Overrides

0.23 ENDPOINT Overrides

ORACLE

This topic describes the endpoint overrides.

To enhance the endpoint override extensibility, we've added a new column, CCA NAME, to the
PRODUCT_SERVICE_EXT_LEDGER table.

This column provides an extensibility for overriding the existing endpoint behaviour for specific
Ul components.

How to configure:
1. Determine the component for which you want to override the endpoint.

2. Enter the component's name in the CCA_NAME column of the
PRODUCT_SERVICE_EXT_LEDGER table.

3. PRODUCT_NAME & ENDPOINT_KEY must be same as endpoint we are extending.

4. The ENDPOINT_VALUE field should be populated with the new endpoint URI, while the
SERVICE_NAME field should specify the corresponding service to which this endpoint
belongs.

5. An entry of extension service should also be present in
PRODUCT_SERVICE_CTX_LEDGER to pick up the new APPID or other properties.

6. If CCA_NAME column contains NULL value, then endpoint override will be applicable
across all components subscribed to respective ENDPOINT_KEY.

Figure 9-36 Endpoint 1

3] parael firked 1) cuerlessdl | £ poDuCT SERVICES BT _LEDGER
Columng Data Modsl | Constraints | Granks | Statistics | Triggers | Flashback | Dependancies | Detals |Partiions | Indexes | S0L
SHEXD R son P
10 i} PRODUCT WAME ||| ENDPOINT _JEY EMDPOINT _VALLE SERVICE_NAME CCA_NAME
1 10GEDX CORPORATE_PREFERENCES fweb/vlSfcorporatesaintenance/corporatenases obedx-core-service fagbu-ob-eda-wi-todays-snapshot

Figure 9-37 Endpoint 2

0] paralel hirtsdl (0] queniessgl | [RODUCT _SERVICES LEDGER

Columns Data Modsl | Consty snts | Grants | Statistics | Triggers | Flashback | Dependencies | Detals | Partitions | Indexes | 50U
AHEXE R et A
3] PROD... " { ENDPOINT_KEY " | ENDPOINT_VALLE REQUEST... " service e |

1 JE8 QBEDK CORPORATE PREFEREMCES fwebfvlicorporatesaintenance GET obedx-core-service

How it works:

When a request is made for the component, the ext orchestrator service will now consult the
CCA_NAME column. If a matching entry exists, the endpoint specified in the ext orchestrator
service (PRODUCT_SERVICE_EXT_LEDGER) will take precedence over the existing
endpoint of base product.

This new approach offers several advantages:

e Any endpoint can be extended using this approach.

e The PRODUCT_SERVICE_EXT_LEDGER table is independent of product-related flyway
updates, ensuring that future changes won't impact existing overrides.

9-25

Chapter 9
Steps to create util-extended folder

This extensibility allows for specific endpoint overrides, other components are unaffected
with their original endpoints.

9.24 Steps to create util-extended folder

This topic provides the systematic instructions to perform the basic operations on the selected

records.
1. Create a folder inside extended-components\js\components in app-shell for component
you want to make label-changes.
2. Folder structure: <%componentName%>-util-extended\resources\<component-name>\nls.
Example : for sms it would look like: sms-util-extended\resources\sms\nls.
3. Add the file bundle.js in the created folder.
4. The code inside bundle.js would be like-
define(['ojLlOn!' + window.location.origin + '/<%componentName$%>-component-
server/js/components/resources/<%componentName%>/nls/bundle.js'],
function (baselabels) {
baselabels. fsgbuobsmsmnusers.lblhomeBranch = "Foreigllln Branch"
baselLabels.fsgbuobsmsmnusers.lblstatusChangedOn = "Yogesh" return
{
'root': baselabels
i
1
5. Some understanding for the code: -
* Including the base labels by giving the path of bundle.js of main component.
e Then changing the labels accordingly like in the example above -> Home Branch is
replaced with “Foreign111n Branch”.
* Returning the labels (including the changes).
6. Insertion of the below script into PRODUCT_EXTENDED_LEDGER table.

Insert into PRODUCT EXTENDED LEDGER

ID,CCA NAME,CCA TYPE, PARENT CCA NAME, PRODUCT_NAME)

select nvl(new uuid , '<%=componentName%>-util-

extended', 'util', null, 'EXTENDED_COMPONENTS 'from PRODUCT EXTENDED LEDGER;

9.25 Dynamic Data Configuration (DDC)

ORACLE

This topic provides the systematic instructions to perform the basic operations on the selected

records.

DDC is an infrastructure component comprising a user interface and a service.

It empowers developers to define prepared statements for dynamic data retrieval. The
Dynamic Data Configuration (DDC) service's response is utilized by Ul components or invoking

services to render List of Values (LOV) results.

Dynamic Data Configuration infra can be utilized with OBX code to call endpoint and bind the
response.

9-26

Chapter 9
Dynamic Data Configuration (DDC)

Prerequisites:

e For domain services to perform dynamic data queries on the domain schema, the
@ComponentScan annotation must include the "oracle.fsgbu.plato.validation" where
domain services reside.

Figure 9-38 Plato Validation

e A database schema created for the Dynamic Data Configuration service.
e A configured JDBC data source named jdbc/PLATODYNADATA on the server.
e Configure newly created schema name in PROPERTIES table of PLATO schema.

Figure 9-39 PLATO schema

 APPLICATION PROFILE LABEL KEY VALLE
plato-dynamic-data-services jdbe jdbic flyway. domain. schesas OBEDX_PLATODYMADATA_DEV1
plato-dynamic-data-services jdbe jdbe flyway.domain.placeholderReplacensnt false
plato-dynamic-data-services jdbe jdbe flyway . domain.out0fOrder true
plato-dynanic-data-services jdbe jdbe flyway. domain. locations db/migration/doemain
plato-dynamic-data-services jdbc jdbe flyway.domain. ignoreMiss ingMigrations true
plato-dynamic-data-services jdbe jdbe flyway.dosain.db. jndi Jdbc/PLATODYHADATA
Deployment Steps:

1. Deploy the Dynamic Data Configuration service to the server.

2. Once deployed, the Dynamic Data Configuration user interface should be accessible.

Configuration steps:

Select the desired product processor.
Specify the service nhame.

Define the unique key for the data.

List the required columns.

Provide the from query to retrieve data.

Set the paging parameters (if applicable).

N o g & w DhN PR

Determine the desired response format.

ORACLE 9-27

Chapter 9
Dynamic Data Configuration (DDC)

Figure 9-40 Dynamic Data Configure

Dynamic Data Configure 2t %
Raset | Save | up\!:[Delete | GetAN et |
Praduct Processor service Name Key Column List
PLATO_PASSWORD Q plato-password-policy-service | testt DEFAULT_VALUE
4
From Query Paging Param Format Response Query to be executed .
PLATO_TM_PASSWORD_POLICY_D OFFSET 7offset ROWS FETCH NEXT ["data" ; Srespanse%, "paging” : SELECT DEFAULT_VALUE FROM g
ETAIL where FIELD_NAME=? #imit ROWS ONLY {“totalResults™ PLATO_TM_PASSWORD_POLICY I
FIELD_NAME StotalResultCountse),"error™: _DETAIL where FIELD_NAME=?
| “Skerrark”) FIELD_NAME OFFSET ?offset
4 y | Y. DAWIE CETAL MEYT Himis DOWE 7|
TestAPI | TestLOV
Product - - - - - -~
R] Key 2 Service Name 2 ColumnList = From Query = Paging Param -

PLATO_PASSWORD tesl lato-p d-policy-services DEFAULT _VALUE PLATO_TM

D_POLICY_DETAIL where FIELD_NAME=YFIELD_NAME OFFSET offset ROWS FETCH NEXT #

Test Query:

Test API: Use the test API to execute the query. Provide any necessary query parameters
and click "OK." The results will be displayed based on the query.

Figure 9-41 Modal Dialog

Modal Dialog

"Enter the query params "

D&offset=0&FIELD_NAME="account|

Required

Figure 9-42 Success

"DEFAULT_VALUE™: "1234"
}
T
paging": (
“totalResults”: 1

1
“error”: “null™

}

ORACLE 998

Chapter 9
Task Screen Custom Config

* Test LOV: If applicable, use the test List of Values (LOV) to test the query.

Figure 9-43 Modal Dialog

Modal Dialog

“Enter the column to be displayed(Comma Separated) in LOV, first column
will be defaulted value in LOV "

| pEFAULT_vALUE
|

Figure 9-44 Test LOV

Test LOV

DEFAULT_VALUE

1234

ol 1 (1=-10f1itemns) K 4

Once satisfied with the results, save the dynamic data query.

9.26 Task Screen Custom Config

This topic provides the systematic instructions to perform the basic operations on the selected
records.

This document outlines how to customize the task screen using a CUSTOM_CONFIG table,
you can show or hide existing columns, and even add additional filters to the task search
screen for specific fields.

Prerequisites:

Ensure that all columns on the task screen are listed in the CUSTOM_CONFIG table present in
PLATO_ORCH schema. All the default columns would already be present in this table.

e For all the default columns in Task screen, TASK_SCREEN_VIEW column value will be
set to YES by default. If consulting wishes to hide any default column, they can set it to
NO.

e Also, if they wish to add new custom column, they need to add the key (key in which we
will get the value of custom field in response of task screen plato-orch-servicelapilvl/

ORACLE 9.99

Chapter 9
Task Screen Custom Config

extn/tasks api) of that column in CUSTOM_FIELD_NAME column in CUSTOM_CONFIG
table.

Adding Custom Filters

1. Determine the custom field for which you want to add a filter.

2. Update CUSTOM_CONFIG table:
e Add the field name (custom field key) to the CUSTOM_FIELD_NAME column.
* Setthe SEARCH_SCREEN_VIEW column to YES for this field.

Once these changes are made, the additional filter will be displayed on the search screen's Ul.

Figure 9-45 Custom Fields 1

Columns Dats Model | Constrants | Grants | Statistics | Trppers | Fashback | Dependences | Detads |Partbons | Indexes | 50U
i} CUSTOM_FIELD_NAME i!':! H&PPED_.,.:L': TASK_SCREEN_VIEW {} SEARCH_SCREEN V../!] WIDTH |{; ORDER_N...
[1 bustrocesscode Couomis 0 e O]

1 priority (nall) YES HO T5px 1
3 procesalame {nall) YES HO 170px 2
4 procesasReflo {nmll) TES KO 200px 3
5 applicationHumber {nuall) YES HO 1€5px]
& scage {nmll) YES HO 200px L]
7 starcTime (nall) TES HO 200px &
8 branchCode {mall) YES HO 120px 7
9 referenceRumber {null) YES HO 200px B
10 customerHumber (null) YES HO 200px 5
11 amountWithCurrency {nall) YES NHO 200px 1a

Figure 9-46 Screen Ul

|| select Branch
Menu Item Search... Q :
x
| > Processes/Tasks
| <
| > Priority
*
| > Process
| N]
> Amount

* Additional Filters

Hiding/Adding Columns on the Task Screen:
1. Identify the column you want to hide.

2. Update CUSTOM_CONFIG table:
Set the TASK_SCREEN_VIEW column to NO for that column.

ORACLE"

9-30

ORACLE

Chapter 9
Task Screen Custom Config

After updating the configuration, the column will no longer be visible on the task screen.

Figure 9-47 Custom Fields 2

..ct G2 PlatoSMS dedet 1] SMS_TW_ROLE_ACTIVITY £7 CusTom_CONFIG (i PLATOUICONFIG_CICDET 2 Aea7

Columns Data Model | Constrants | Grants | Statistics | Triggers | Flashback | Dependences | Detads |Partibons | Indexes |SQL
o E & XS W osort. | Fien

} CUSTOM_FIELD _NAME } MAPPED .. | { TASK_SCREEN_VIEW SEARCH_SCREEN_V...|{! WIDTH } ORDER_M...

1 bosProcessCods COLUMNS HO YES 200 11

2 priority {null) YES HO T5px 1

39??:1_““ | (mull) [wo ko 170px 2

4 processReflo (mull) ¥YES HO 200px 3

5 applicationHumber {null) YES HO lESpx 4

& stage (nuzll) YES HO 200px 5

7 starcTime (mall) YES HO [«t‘ 200px L

8 branchCode (null) YES RO 120px 7

9 referenceliumber (null) YES HO 200px B

10 customerfumber (null) ¥YES O 200px 9

11 amountWithCurrency (null) YES o] 200px 10

Figure 9-48 Task List

My Tasks

Cd Refresh

0 Edst priority = Process Reference Number = Application Mumber 2 Stage = Application D
O Edit 1 300ILCI012269 300ILCI01226% TEST STAGES 18-05-05

Similarly , we can even add new custom column in Task screens. For this they need to add the
custom field name (key in which we will get the value of custom field in response of task
screen plato-orch-servicelapilvl/extni/tasks api) of that column in CUSTOM_FIELD_NAME
column in CUSTOM_CONFIG table.

Configurations needed from backend:

Configurations needed from backend side to get the custom field in plato-orch-servicelapilvl/
extn/tasks response —

During workflow initiation, the customer provides key-value pairs for specific columns. In the
CUSTOM_CONFIG table, columns are mapped under the MAPPED_COLUMN_NAME field.
For instance, COLUMNA4 is mapped to a custom_field name, such as CustomField.

Here's how it works: In the CUSTOM_CONFIG table, COLUMN4 is mapped to the field
CustomField. During workflow initiation, the customer provides the value for COLUMNA4, such
as COLUMN4 = CF_1. The system uses this mapping to interpret the value as follows:
CustomField (from the CUSTOM_CONFIG mapping) will get the value CF_1 for that task ,
provided by the customer during initiation. This allows the customer to input COLUMN4 =
CF_1 during workflow initiation, and it will be mapped with CUSTOM_FIELD_NAME based on
the mapping defined in the CUSTOM_CONFIG table This way, you can map any internal
column to a custom field name that suits your specific use case.

9-31

Chapter 9

Task Screen Custom Config

Additionally, the columns that can be used for such mappings currently range from COLUMN1

to COLUMNZ20, providing flexibility to define up to 20 custom fields.

Figure 9-49 Custom Fields 3

Colmns Data Model | Constrants | Grants | Statistis | Triggers | Flashbadk | Dependendes | Detals |Partitions | Indexes |50L

FRB XD s A

{CUSTOM FED NAVE A MAPPED COMN NAME [TASK SCREEN VIEW |} SEARCH SCREEN VW |{} WD

| ORDR ...

! CustomField COLMEY TES "o

1T0px

Figure 9-50 Test Workflow

"createTime": 1585655473582,
"updateTime": 1588595146622,
“"name" : "MK-SQL",
"description”: "Test Workflowé6",
“version": 2,
"ftasks": [
i
"name" : "TestTask",
"taskReferenceName": "test",
"description": "first test task",
"inputParameters": {

-------------- “COLUMN4® - : “CF_1",

I "FUNCTIONAL_CODE": "PLATORULE_FA_FACT_NEW"

ORACLE"

9-32

Reference and Feedback

This section describes following topics:

* Reference
e Documentation Accessibility

e Feedback and Support

10.1 Reference

For more information on any related features, you can refer to the following documents:

* Oracle Banking Extensibility Workbench Installation Guide

10.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/us/corporate/accessibility/index.html.

10.3 Feedback and Support

Oracle welcomes customers' comments and suggestions on the quality and usefulness of the
document. Your feedback is important to us. If you have a query that is not covered in this user
guide.

ORACLE 104

https://www.oracle.com/corporate/accessibility/

Index

A

Action URL and Static Tag Maintenance, 7-1
Additional Fields Maintenance, 6-1

C

Creating final Extended Component war for
Deployment, 4-17

D

Dashboard Widget, 4-14

E

Entity Details, 2-6

Extending Product Data Segments with Additional
Fields, 6-1

Extensibility Use Cases for OBBRN Servicing, 8-1

Extensibility Use Cases for OBX, 9-1

H

HTML Changes, 9-5

In-Scope DS, 5-10

J

JS Changes, 9-6

M

Maintenance Detail and Summary, 4-10
Model Changes, 9-9
Modification of Base Web Component, 5-1

ORACLE

N

New Field in Existing Base Data Segment, 9-13
New Transaction screen — 1499 (Clone of 1401),
9-2

O

OBX Release Command, 5-11
OBX Ul, 2-5
OBX Update Command, 5-8

R

Reference and Feedback, 10-1
Running Component after Generation, 4-16

S

Service Component, 9-10

Service Extensions, 3-1

Service Update, 5-9

SignIn, 4-4, 4-12

Steps for Modification of Base Component, 5-2

U

Ul Extensions — Web Component, 4-1

Ul Update, 5-9

Understanding DB Scripts for Web Component,
4-18

Vv

Virtual Page, 4-6

W

Welcome to Oracle Banking Extensibility
Workbench, 2-1

Index-1

	Contents
	1 Preface
	1.1 Purpose
	1.2 Introduction
	1.3 Audience
	1.4 Documentation Accessibility
	1.5 Critical Patches
	1.6 Diversity and Inclusion
	1.7 Related Resources
	1.8 Conventions
	1.9 Screenshot Disclaimer
	1.10 Acronyms and Abbreviations
	1.11 Basic Actions
	1.12 Symbols and Icons

	2 Welcome to Oracle Banking Extensibility Workbench
	2.1 Introduction
	2.2 OBX and Base artifacts compatibility
	2.3 Setting up OBX for first time use
	2.4 OBX Maintenance
	2.5 OBX UI
	2.5.1 Entity Details
	2.5.2 Field Details
	2.5.3 Child Entity Details
	2.5.4 Relationship Details

	3 Service Extensions
	3.1 Simple Sub Domain Service
	3.2 Maintenance Sub Domain Service
	3.3 Data/Resource Segment Sub Domain Service
	3.3.1 RSOV1
	3.3.2 RSOV2 DS
	3.3.3 Workflow DS

	3.4 Simple Publisher/Subscriber Event Service
	3.5 Batch Service
	3.6 Custom Validation Service
	3.7 Steps to Adopt Multi in Existing Service
	3.8 Service Extensibility

	4 UI Extensions – Web Component
	4.1 Component Server
	4.2 Simple Standalone
	4.3 Virtual Page
	4.4 Maintenance Detail and Summary
	4.5 Data Segment
	4.6 Dashboard Widget
	4.7 Running Component after Generation
	4.8 Creating final Extended Component war for Deployment
	4.9 Understanding DB Scripts for Web Components

	5 Modification of Base Web Component
	5.1 Steps for Modification of Base Component
	5.2 Process Workbench
	5.3 OBX Update Command
	5.3.1 Service Update
	5.3.2 UI Update

	5.4 In-Scope DS
	5.5 OBX Release Command

	6 Extending Product Data Segments with Additional Fields
	6.1 Additional Fields Maintenance
	6.2 Populating Data in Corresponding Fields From UI
	6.3 Fetching the Saved Values

	7 Action URL and Static Tag Maintenance
	7.1 Action URL Maintenance
	7.2 Static Tag Maintenance

	8 Extensibility Use Cases for OBBRN Servicing
	8.1 New Transaction Screen – 1499 (Exact Clone of 1401)
	8.2 Exact Clone with Additional Fields Using Common Code
	8.3 Exact Clone with Additional Fields Using Extensible Code
	8.4 Jar Deployment in Weblogic

	9 Extensibility Use Cases for OBX
	9.1 New Transaction screen – 1499 (Clone of 1401)
	9.2 New Data Segment in Existing 1401 Screen
	9.3 HTML Changes
	9.4 JS Changes
	9.5 JSON Changes
	9.6 Model Changes
	9.7 Database Changes
	9.8 Service Component
	9.9 New Field in Existing Base Data Segment
	9.10 HTML Changes (Extended Components)
	9.11 HTML Changes (Base Component)
	9.12 JS Changes (Base Component)
	9.13 JS Changes (Extended Component)
	9.14 JSON Changes (Extended Component)
	9.15 JSON Changes (Base Component)
	9.16 DB Changes
	9.17 Add New Columns in Base Component Table
	9.18 Steps for adding extra column in task grid
	9.19 Steps to use Additional Buttons provision in Task Screen
	9.20 Steps to create common-extended folder for extending configJSON.js file
	9.21 Customizing Existing LOV Fetch Result
	9.22 Steps for adding Pre/post methods in extended components
	9.23 ENDPOINT Overrides
	9.24 Steps to create util-extended folder
	9.25 Dynamic Data Configuration (DDC)
	9.26 Task Screen Custom Config

	10 Reference and Feedback
	10.1 Reference
	10.2 Documentation Accessibility
	10.3 Feedback and Support

	Index

