
Oracle Banking Trade Finance
Development Security Guide

Release 14.8.1.0.0
G46033-01
October 2025

Oracle Banking Trade Finance Development Security Guide, Release 14.8.1.0.0

G46033-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose i

Audience i

Scope i

Documentation Accessibility ii

Critical Patches ii

Diversity and Inclusion ii

Conventions ii

1 How to address the OWASP Top10 in Oracle Banking Trade Finance

1.1 Injection 1

1.2 Broken Authentication and Session Management 1

1.3 Cross-Site Scripting (XSS) 3

1.4 Insecure Direct Object References 4

1.5 Security Misconfiguration 5

1.6 Sensitive Data Exposure 6

1.7 Missing Function Level Access Control 7

1.8 Cross-Site Request Forgery (CSRF) 8

1.9 Using Components with Known Vulnerabilities 8

1.10 Unvalidated Redirects and Forwards Network Security 8

2 Securing Gateway Services

2.1 Inbound Application Integration 1

2.2 Web Services Based Synchronous Deployment Pattern 2

2.3 HTTP Servlet Based Synchronous Deployment Pattern 2

2.4 Message Listener Based Asynchronous Deployment Pattern 2

2.5 Outbound Application Integration 3

2.6 Securing Web Services 3

2.7 Accessing Service and Operation 3

2.8 Gateway Password Generation Logic for External System Authentication 4

2.9 XSD Validation and Input Validation 4

2.10 List of Services 4

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page i of ii

2.11 List of Interfaces 5

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page ii of ii

Preface

• Purpose

• Audience

• Scope

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Conventions

Purpose
This document provides security-related usage and configuration recommendations for Oracle
Banking Trade Finance 14.8.0.0.0. This guide may outline procedures required to implement or
secure certain features, but it is also not a general-purpose configuration manual.

Audience
This guide is primarily intended for Developers for Oracle Banking Trade Finance and third
party or vendor software’s. Some information may be relevant to IT decision makers and users
of the application are also included. Readers are assumed to possess basic operating system,
network, and system administration skills with awareness of vendor/third-party software’s and
knowledge of Oracle Banking Trade Finance application.

Scope
• Read Sections Completely

• Understand the Purpose of this Guidance

• Limitations

Read Sections Completely
Each section should be read and understood completely. Instructions should never be blindly
applied. Relevant discussion may occur immediately after instructions for an action, so be sure
to read whole sections before beginning implementation.

Understand the Purpose of this Guidance
The purpose of the guidance is to provide security-relevant code and configuration
recommendations.

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page i of ii

Limitations
This guide is limited in its scope to security-related guideline for developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page ii of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

1
How to address the OWASP Top10 in Oracle
Banking Trade Finance

1.1 Injection
Injection flaws occur when an application sends untrusted data to an interpreter. Injection flaws
are very prevalent, particularly in legacy code. They are often found in SQL, LDAP, Xpath, or
SQL queries; OS commands; XML parsers, SMTP Headers, program arguments, etc. Injection
flaws are easy to discover when examining code.

Oracle Banking Trade Finance uses Oracle database and it has adequate inbuilt techniques to
prevent SQL injections as underlined below:-

1. Use of prepared statements (parameterized queries) — Oracle Banking Trade Finance
uses PreparedStatement with bind variables to construct and execute SQL statements in
JAVA.

2. Use of Stored procedures -- Stored procedures have the same effect as the use of
prepared statements when implemented safely. 'Implemented safely' means the stored
procedure does not include any unsafe dynamic SQL generation. Oracle Banking Trade
Finance uses safe Java stored procedures calls.

3. In addition to the above, wherever dynamic queries exist, Oracle Banking Trade Finance
uses adequate defence to sanitize the untrusted input. The use of
DBMS_ASSERT.SIMPLE_SQL_NAME and the use of bind variables justify the fact.

4. Escaping all user supplied input-- This third technique is to escape user input before
putting it in a query. If it’s a concern that rewriting the dynamic queries as prepared
statements or stored procedures might break the application or adversely affect
performance, then this might be the best approach for the purpose. However, this
methodology is frail compared to using parameterized queries and there’s no guarantee
that it will prevent all SQL Injection in all situations.

Oracle Banking Trade Finance uses context specific escaping. It has a StringEscapeUtils.java
file, where context specific escaping is handled.

1.2 Broken Authentication and Session Management
In Oracle Banking Trade application session interval will be validated against the session
interval stored in the configurable file fcubs.properties file. Validations are added to check the
maximum time limit for the inactive session from being expired. Java API method
javax.servlet.http.HTTPSession will set the max time out period for the session.

A maximum limit is imposed on the value passed to set the maximum limit of session interval.
The maximum limit is a positive practical value. This validation is required to prevent long
running sessions that can be actively targeted.

The default value for session time out is 30 minutes and it is configurable in properties file.

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 1 of 8

The session used for login authentication will be invalidated (destroyed) and a new session will
be created once the user logged-in successfully to the application. And the new session will be
used to store the required variables.

A session attribute IsAuthenticated set to “Y” on successful login to the application. A new
random token (Cross-site request forgery) also generates and same is available in the session
attribute.

The entire subsequent request within the session will be having the Authenticated and Cross-
site request forgery tokens. Every request send to the application from the browser is validated
against the IsAuthenticated attribute and Cross-site request forgery token.

A hidden form is used to submit the logout request to the server, with the response resulting in
a 302 redirect instead of client initiated redirect to the login page.

Session get expire once user log off from application or if idle for its maximum limit.

Cryptography used

PCI council defines Strong Cryptography as:

Cryptography based on industry-tested and accepted algorithms, along with strong key lengths
and proper key-management practices. Cryptography is a method to protect data and includes
both encryption (which is reversible) and hashing (which is not reversible, or “one way”).
SHA-1 is an example of an industry-tested and accepted hashing algorithm. Examples of
industry-tested and accepted standards and algorithms for encryption include AES (128 bits
and higher), TDES (minimum doublelength keys), RSA (1024 bits and higher), ECC (160 bits
and higher), and ElGamal (1024 bits and higher).

Encryption algorithm: The application leverages AES encryption algorithm to store sensitive
information into properties file. This algorithm uses 256 bit secret key for encryption and
decryption which would be stored at property file.

Hashing algorithm: Oracle Banking Trade Finance leverages SHA-512 hashing algorithm for
user password authentication. This algorithm generates a password digest for the user
password by using the SALT (Random number generated using SHA1PRNG algorithm) and
the iteration number available in the property file.

Session storage

Oracle Banking Trade Finance application does not store Http Session objects.

A unique sequence number generates and stored in current user table for the purpose of
mapping server-side sessions with the entries in the current user table.

During session expiry (triggered by the container), the session listener provides the application
with the sequence number of the session. The application makes checks as to whether the
entry in current user table contains the same sequence number. Only in such a case should
the entry be deleted.

When authentication of credentials (involving an incorrect user ID) is unsuccessful, the user id
should not be logged in the audit logs (database table). The following possible scenarios will
be accounted for:

Session logging

Unsuccessful attempt to login is stored in the database with terminal’s ip address and
timestamp. Invalid and expired session IDs submitted to the application are categorized as
authentication failures and the same are logged in the database table.

Chapter 1
Broken Authentication and Session Management

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 2 of 8

1.3 Cross-Site Scripting (XSS)
XSS is the most prevalent web application security flaw. XSS flaws occur when an application
includes user supplied data in a page sent to the browser without properly validating or
escaping that content. Oracle Banking Trade Finance is coded keeping in view the XSS
prevention rules as below:-

1. Technique#1—HTML Escape before inserting untrusted data into HTML element
content
Across the Oracle Banking Trade Finance application, context specific escaping has been
used to sanitize the untrusted data. For HTML content, the below function takes care of
escaping the probable tainted data:

public static String escapeHTML(String input);

Escaping the following characters, with HTML entity encoding, to prevent switching into
any execution context, such as script, style, or event handlers has been done. Use of
recommended hex entities is in place. In addition to the 5 characters significant in XML (&,
<, >, ", '), the forward slash is included as it helps to end an HTML entity.

& --> &

< --> <

> --> >

" --> "

' --> '

/ --> /

2. Technique #2-- JavaScript Escape Before Inserting Untrusted Data into JavaScript
Data Values Including untrusted data inside any other JavaScript context is quite
dangerous, as it is extremely easy to switch into an execution context with characters
including (but not limited to) semi-colon, equals, space, plus, and many more. For
JavaScript context, the below function takes care of escaping the probable tainted data:
public static String escapeJavaScript(String input);

3. Technique #3—Escape JavaScript Characters
This works in conjunction with rule#2. Except for alphanumeric characters in Oracle
Banking Trade Finance, all characters less than 256 are escaped with the \xHH format to
prevent switching out of the data value into the script context or into another attribute. No
use of any escaping shortcuts like \" ,because the quote character may be matched by the
HTML attribute parser which runs first. These escaping shortcuts are also susceptible to
"escape-the-escape" attacks where the attacker sends \" and the vulnerable code turns
that into \\" which enables the quote.

4. Technique #4--URL Escape And Strictly Validate Before Inserting Untrusted Data
into HTML URL Parameters.
Oracle Banking Trade Finance encodes URL with the URLEncoder java class. It doesn’t
check for a valid URL, but directly does URL encoding, and that encoding is based on the
context of display.

5. Technique #5---Use of HttpOnly and secure cookie flag
Oracle Banking Trade Finance uses the HTTPOnly flag on the session cookie and any
custom cookies that are not accessed by any JavaScript.

Chapter 1
Cross-Site Scripting (XSS)

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 3 of 8

1.4 Insecure Direct Object References
1. Use of prepared statements (parameterized queries)

Oracle Banking Trade Finance uses PreparedStatement with bind variables to construct
and execute SQL statements in JAVA.

2. Input Validation
Oracle Banking Trade Finance is a web based application, the request data from browser
to server will be passed using request headers and request parameters. All the request
fields coming from the client are validated using white list validation to prevent cross site
scripting.

User defined method validateParameter() is used for input validation which checks each
character of the request field with a range of allowed characters.

User defined methods escapeJavaScript(), escapeHTML() and escapeURL() will sanitize
the output data before flushing it into client browser.

escapeJavaScript() will escape all characters except immune JavaScript characters and
alphanumeric characters in the ASCII character set. All other characters are encoded
using the \\xHH or \\uHHHH notation for representing ASCII or Unicode sequences.

escapeHTML() will escape the characters with equivalent HTML entities obtained from the
lookup map. Lookup map will have entities such as amp, quot, lt, gt etc.

escapeURL() will encode the URL using URLEncoder class.

White list validation is also used to restrict Image/signature/excel upload and to check
rights for every operation performed by user.

3. Image Content validation
Signature upload will check for image type and image content using the inbuilt classes
(ImageIO and JarFile) available in java.

4. Field validation
Field level validations exist for all mandatory fields. Database too had limits on the type
and the length of data. Blacklisted characters are not allowed in the mandatory fields.
Nevertheless, Oracle Banking Trade Finance has free-text fields, which takes all data,
entered by the user, as a String.

5. Restriction on Blacklist characters
Similar to white list validation black list validation is also used for validating the request
fields. Oracle Banking Trade Finance uses blacklist validation to check whether the
request xml contains unwanted tags like scripting tag, html tag, anchor tag etc inside the
xml content. It is also used for the advance summary field’s validation to check whether
proper request fields are coming from the browser.

Below table shows the list of bad characters which should not be allowed in URL path but
the Oracle Banking Trade Finance operations requires many of the below characters to be
passed in the request. So Oracle Banking Trade Finance will encode the below bad
characters before sending them through the URL and same will be decoded at the server
to prevent the hacker from modifying the request.

Bad URL Characters(Unsafe Characters)

& //

< ./

> /.

; /*

Chapter 1
Insecure Direct Object References

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 4 of 8

Bad URL Characters(Unsafe Characters)

\" *.

\' ~

% \

) 25%

(%25u

+ %25U

, %00-%1f, %7f-%ff

" " (space) %00-%1f and %7f-%ff

- %25u and %25U

6. Restriction on Script/Html tags
Oracle Banking Trade Finance has blacklist validation for unwanted tag in xml like scripting
tag or html tag inside xml content particularly in the header

1.5 Security Misconfiguration
1. Configuration files

Configuration files are securely placed inside the Classes folder of the WEB-INF folder
which is not publicly accessible.

2. Exception handling in java
Different types of exceptions can rise in application. Java exceptions handled using try
catch blocks available in java. Sometimes we use the Throw statement to throw an
exception which is caught by the catch block. Caught exceptions will be written into the log
files for the debug purpose when ever required. Whenever any exception occurs in
application, proper information used to send to the front end user by showing alert.

3. Exception handling in oracle database
Database exceptions handled using EXCEPTION statement available in PL/SQL. Caught
exceptions will be written into the log files for the debug purpose. And proper error
message created to send the same in response to the user.

4. Package lockout situation handled in backend
Application will be hanged in an oracle system package lockout situation. Locked objects
will be released manually using SQL scripts or through database restart.

We have handled cursor lock out problem in the required packages.

5. Auto generated password:
The password is generated by the system accordance to the password policy. The salt is
also be generated every time the password is changed by using predefined algorithm.

The salt concatenated with auto generated password and SHA-512 hash applies on the
resultant which results the password digest.

Once the successful generation of password digests both salt and password digest is
stored in the DB.

6. Custom password:
The password is keyed in by the administrator / user accordance to the password policy.
The salt is generated every time the password is changed by using predefined algorithm.

The salt concatenated with the password input and SHA-512 hash applies on the resultant
which results the password digest.

Once the successful generation of password digests both salt and password digest is
stored in the DB.

Chapter 1
Security Misconfiguration

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 5 of 8

Oracle Banking Trade Finance does not provide any default user/password. User and
password needs to be created at the time of installation.

7. Sand Box for File Upload
The application uses a sandbox for placing files that are uploaded via the signature/image
upload screen. The sandbox is placed in a specified location (the location will be specified
in the properties file) on the server.

8. BI Publisher Reports – generation and access
The application uses a sandbox for placing the generated reports file into a sandbox area.
The sandbox is placed in a specified location (the location will be specified in the
properties file) on the server. The application validates if the user has explicit Rights to
generate Reports.

1.6 Sensitive Data Exposure
1. Secure Transformation of Data (SSL)

The Oracle Banking Trade Finance Installer allows a deployer to configure Oracle Banking
Trade Finance such that all HTTP connections to the Oracle Banking Trade Finance
application are over SSL/TLS. In other words, all HTTP traffic in the clear will be prohibited;
only HTTPS traffic will be allowed. It is mandatory to enable this option in a production
environment, especially when WebLogic Server acts as the SSL terminator.

A two-way SSL is used when the server needs to authenticate the client. In a two-way SSL
connection the client verifies the identity of the server and then passes its identity
certificate to the server. The server then validates the identity certificate of the client before
completing the SSL handshake.

In order to establish a two-way SSL connection, need to have two certificates, one for the
server and the other for client. This is required for de-centralized setup of application.

For Oracle Banking Trade Finance, need to configure a single connector. This connector is
related to SSL/TLS communication between host or browser and the branch which uses
two-way authentication.

If the secure flag is set on a cookie, then browsers will not submit the cookie in any
requests that use an unencrypted HTTP connection, thereby preventing the cookie from
being trivially intercepted by an attacker monitoring network traffic.

Below configuration has to be ensured in weblogic.xml within the deployed application ear.

• Cookies are set with Http only as true

• Cookie secure flag set to true

• Cookie path to refer to deployed application
<wls: session-descriptor>

<wls: cookie-http-only>true</wls: cookie-http-only>

</wls: session-descriptor>

<wls: session-descriptor>

<wls: cookie-secure>true</wls: cookie-secure>

<wls: url-rewriting-enabled>false</wls: url-rewriting-enabled>

</wls: session-descriptor>

<session-descriptor>

<cookie-name>JSESSIONID</cookie-name>

<cookie-path>/<DeployedApplicationPath></cookie-path>

Chapter 1
Sensitive Data Exposure

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 6 of 8

<cookie-http-only>true</cookie-http-only>

<cookie-secure>true</cookie-secure>

<url-rewriting-enabled>false</url-rewriting-enabled>

</session-descriptor>

Always make sure Cookies are set with always Auth Flag enabled by default for WebLogic
server .

2. Sign-On messages
Below table shows the general Sign-On messages which would be displayed to the user
during invalid authentication.

Message Explanation

User Already Logged In The user has already logged into the system and is attempting a
login through a different terminal.

User Authentication Failed An incorrect user ID or password was entered.

User Status is Disabled.
Please contact your System
Administrator

The user profile has been disabled due to number of dormancy days
allowed for the user has exceeded the dormancy days configured in
the system.

User Status is Locked.
Please contact your System
Administrator

The user profile has been locked due to an excessive number of
attempts to login, using an incorrect user ID or password. The
number of attempts could have matched either the successive or
cumulative number of login failures (configured for the system).

3. CACHE Control in Servlet and jsp
There are three basic HTTP response headers that prevent a page from being cached to
disk. Different browsers handle them in slightly different ways, so they need to be used in
combination to ensure all browsers do not cache the specific page. These headers are
"Expires", "Pragma" and "Cache-control". In addition, these headers can either be sent
directly by the server or placed in the HTML code as HTTP-EQUIV META tags within the
HEAD section. The "Expire" header gives a date at which point the page should expire and
no longer be cached. Internet Explorer supports a date of "0" for immediately and any
negative number for already expired. The "Pragma: no-cache" header indicates that the
page should not be cached.

4. Clickjacking/Frame-bursting
Oracle Banking Trade Finance uses the X-Frame-Options HTTP response header to
indicate whether or not a browser should be allowed to render a page in a <frame> or
<iframe>. This is used to avoid Clickjacking attacks, by ensuring that the content is not
embedded into other sites.

1.7 Missing Function Level Access Control
It is likely that users working in the same department at the same level of hierarchy need to
have similar user profiles. In such cases, you can define a Role Profile that includes access
rights to the functions that are common to a group of users. A user can be linked to a Role
Profile by which you give the user access rights to all the functions in the Role Profile.

Application level access has implemented via the Security Management System (SMS)
module. SMS supports “ROLE BASED” access of Screens and different types of operations.

Oracle Banking Trade Finance supports dual control methodology, wherein every operation
performed has to be authorized by another user with the requisite rights.

Please refer 2.6 section of the SMS user manual for more details.

Chapter 1
Missing Function Level Access Control

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 7 of 8

Apart from the role based access control particular functions , products can be restricted for
user as described below.

Disallowed functions: Function IDs or UI level restrictions can be provided for the user by
including the function Ids in the disallowed list. This will restrict the user from accessing the UI.
When accessed, an error message dialogue box will pop up saying-“User not authorized to
access the screen”.

Disallowed account class: The user could be restricted to perform any operation using a
particular a/c class. When disallowed, no accounts could be created by the user using the
account class.

Disallowed products: The user could be restricted to use product(s) of any module(s), if
disallowed. This is really required when restricting users department wise. For example, staffs
of accounts department need not be given access to view the loans of customers.

Disallowed branches: The user could be restricted to access branches other than his own
branch (reporting branch). He can be given access to login from other branches of the bank at
an approval from authenticated person, an action which again requires manual authorization.

1.8 Cross-Site Request Forgery (CSRF)
In case of XMLHttpRequest objects, the XMLHttpRequest object sets a custom HTTP header
in the request, with the header value being the Cross-site request forgery token; the server
then verifies for the presence of such a header and the Cross-site request forgery token. This
serves as a protection at endpoints used for XMLHttpRequest requests, since only
XMLHttpRequest objects can set HTTP headers (apart from Flash; and both cannot make
cross-domain requests).

1.9 Using Components with Known Vulnerabilities
Source code scanning done using the latest fortify to identify the sources code issue and will
provide the proper fix for the reported issues.

3rd party libraries scanning for every release has been done to validate if any security issues
rise for any of the components or not. Update the 3PL with latest security patch or upgraded to
latest version.

1.10 Unvalidated Redirects and Forwards Network Security
Application uses 302 redirect wherever required. Oracle Banking Trade Finance uses
response.sendRedirect(newURL);

Chapter 1
Cross-Site Request Forgery (CSRF)

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 8 of 8

2
Securing Gateway Services

Different applications deployed on disparate platforms and using different infrastructure need to
be able to communicate and integrate seamlessly with Oracle Banking Trade Finance in order
to exchange data. The Oracle Banking Trade Finance Integration Gateway will cater to these
integration needs.

The integration needs supported by the Gateway can be broadly categorized from the
perspective of the Gateway as follows:

• Inbound application integration – used when any external system needs to add, modify or
query information within Oracle Banking Trade Finance

• Outbound application integration – used when any external system needs to be notified of
the various events that occur within Oracle Banking Trade Finance.

• Inbound Application Integration

• Web Services Based Synchronous Deployment Pattern

• HTTP Servlet Based Synchronous Deployment Pattern

• Message Listener Based Asynchronous Deployment Pattern

• Outbound Application Integration

• Securing Web Services

• Accessing Service and Operation

• Gateway Password Generation Logic for External System Authentication

• XSD Validation and Input Validation

• List of Services

• List of Interfaces

2.1 Inbound Application Integration
Oracle Banking Trade Finance Inbound Application Gateway provides XML based interfaces
thus enhancing the need to communicate and integrate with the external systems. The data
exchanged between Oracle Banking Trade Finance and the external systems will be in the
form of XML messages. These XML messages are defined in Oracle Banking Trade Finance in
the form of XML Schema Documents (XSD) and are referred to as ‘FCUBS formats’.

OBTF Inbound Application Integration Gateway uses the Synchronous and Asynchronous
Deployment Pattern for addressing the integration needs.

The Synchronous Deployment Pattern is classified into the following:

• Oracle Banking Trade Finance Web Services Based Synchronous Inbound Application
Integration Deployment Pattern

• Oracle Banking Trade Finance Message Listener Based Asynchronous Inbound
Application Integration Deployment Patten

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 1 of 6

2.2 Web Services Based Synchronous Deployment Pattern
The web services deployment pattern will be used in integration scenarios where the external
system connecting to Oracle Banking Trade Finance wants to connect using standards-based,
inter-operable web services.

This deployment pattern is especially applicable to systems which meet the following broad
guidelines:

• Systems that are not ‘EJB literate’, i.e., such systems are not capable of establishing
connections with Oracle Banking Trade Finance based upon the EJB interface; and/or

• Systems that prefer to use a standards-based approach

In this deployment pattern, the external system will use the SOAP (Simple Object Access
Protocol) messages to communicate to the Oracle Banking Trade Finance web services.

The services displayed by Oracle Banking Trade Finance are of a ‘message based’ style, i.e.,
the actual request will be in the form of an XML message, but the request will be a ‘payload’
within the SOAP message. After the necessary processing is done in Oracle Banking Trade
Finance based on the request, the response is returned to the external system as an XML
message which will be a ‘payload’ within the response SOAP message. The transaction control
for the processing will stay with the Oracle Banking Trade Finance.

2.3 HTTP Servlet Based Synchronous Deployment Pattern
The HTTP servlet deployment pattern will be used in integration scenarios where the external
system connecting to Oracle Banking Trade Finance wants to connect to Oracle Banking Trade
Finance using simple HTTP messages.

This is especially applicable to systems such as the following:

• Systems that are not ‘EJB literate’, i.e., are not capable establishing a connections with
Oracle Banking Trade Finance based upon the EJB interface; and/or

• Systems that prefer to use a simple http message based approach without wanting to use
SOAP as the standard

In this deployment pattern, the external system will make an HTTP request to the Oracle
Banking Trade Finance servlet.

For this deployment pattern, Oracle Banking Trade Finance will display a single servlet. The
actual request will be in the form of an XML message. This XML message is embedded into
the body of the HTTP request sent to the Oracle Banking Trade Finance servlet. After the
necessary processing is done in Oracle Banking Trade Finance based on the request, the
response is returned to the external system as an XML message which is once again
embedded within the body of the response HTTP message. The transaction control for the
processing will stay with the Oracle Banking Trade Finance.

2.4 Message Listener Based Asynchronous Deployment Pattern
The Message Listener deployment pattern is used in integration scenarios where the external
system connecting to Oracle Banking Trade Finance wants to connect to Oracle Banking Trade
Finance using queues.

This is especially applicable to systems that prefer to use queues-based approach without
wanting to wait for the reply.

Chapter 2
Web Services Based Synchronous Deployment Pattern

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 2 of 6

Here external system sends messages in XML format to request queue on which an MDB is
listening. When a message arrives on the queue, it is picked up for processing. After the
necessary processing is done in Oracle Banking Trade Finance, based on the request, the
response is sent to the response queue as an XML message.

2.5 Outbound Application Integration
The Outbound Application Integration is also called the Oracle Banking Trade Finance Notify
Application Integration layer. This application layer sends out notification messages to the
external system whenever events occur in Oracle Banking Trade Finance.

The notification messages generated by Oracle Banking Trade Finance on the occurrence of
these events will be XML messages. These XML messages are defined in Oracle Banking
Trade Finance in the form of XML Schema Documents (XSD) and are referred to as ‘FCUBS
formats’

2.6 Securing Web Services
Web services can be secured by applying security policies available in web logic sever. We
can attach two types of policies to Web Logic Web services and clients at design and
deployment time. Oracle WSM policy: We can attach Oracle Web Services Manager(WSM)
policies to Web Logic JAX-WS Web services and clients

Web Logic Web service policy: These policies are provided by Oracle Web Logic Server and
can be attached to any web service deployed in Web Logic.

We can use Oracle Enterprise Manager Fusion Middleware Control to attach Oracle WSM
security policies to Web Logic Java EE Web services and clients.

We can attach policies to Web Logic Web services at both design time and after the Web
service has been deployed.

At design time, use the weblogic.jws.Policy and weblogic.jws.Policies JWS annotations in JWS
file to associate policy files with Web service. We can associate any number of policy files with
a Web service, although it is up to us to ensure that the assertions do not contradict each
other. We can specify a policy file at the class level of our JWS file.

After the Web service has been deployed, use the Oracle Web Logic Server Administration
Console to attach Web Logic Web service policies to Web Logic Web services.

2.7 Accessing Service and Operation
In a message it is mandatory to maintain a list of Service Names and Operation Codes. This
information is called Gateway Operations.

A combination of every such Service Name and Operation Code is mapped to a combination of
Function ID and Action. Every screen in Oracle Banking Trade Finance is linked with a function
ID. This information is called Gateway Functions.

User can gain access to an external system using the Gateway Functions. The Function IDs
mapped in Gateway Functions should be valid Function IDs maintained in Oracle Banking
Trade Finance. Hence, for every new Service or Operation being introduced, it is important that
you provide data in Gateway Operations and Gateway Functions.

Chapter 2
Outbound Application Integration

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 3 of 6

2.8 Gateway Password Generation Logic for External System
Authentication

As a secure configuration password authentication should be enabled for the external system
maintained. The same can be verifying in External system detail screen level.

Once these features enable, system will validate for Encrypted password as part of every
request sent by the External System.

The Message ID which is present as part of the header in Request XML, is considered as
hash. External System generates an unique Message ID, which is functional mandatory field in
the header. Create a Message Digest with SHA-512 algorithm.

The hash created from the previous step and the password in clear text together is encrypted
in AES encryption method. Apply Base64 encoding to encrypted value and send to the Oracle
Banking Trade Finance gateway.

2.9 XSD Validation and Input Validation
Oracle Banking Trade Finance supports the XSD validation for all types Gateway. Each node
in request xml is getting validated with the corresponding webservice XSD’s.

Restriction on Script/Html tags

Oracle Banking Trade Finance Gateway has blacklist validation for unwanted tag in xml like
scripting tag or html tag inside xml content particularly in the header

2.10 List of Services

Web Service Name Service Type Service Description

OBTFCustomerService OBTF Trade Finance Customer Service

OBTFIBService OBTF Islamic Bills and Collections
Service

OBTFLCMaintService OBTF LC Maintenance Service

OBTFLCService OBTF Letter Credit Service

OBTFLIService OBTF Islamic Letter of Credit Service

OBTFLMService OBTF Trade Finance Limit Service

OBTFMSService OBTF Trade Finance Messaging
Service

OBTFBCService OBTF Bills and Collections Service

OBTFIFService OBTF Trade Finance Interface

OBTFCSService OBTF Core Service

OBTFEPSService OBTF External Payment System
Service

OBTFISService OBTF Trade Finance Settlement
Instruction Service

OBTFLQService OBTF Receivable Liquidation Service

FCUBSCoreentitiesService ODT Common Core Core Entity Service

FCUBSSMService ODT Common Core SMS Service

FCUBSGIService ODT Common Core Generic Interface Service

Chapter 2
Gateway Password Generation Logic for External System Authentication

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 4 of 6

FCUBSCcyService ODT Common Core Currency Service

2.11 List of Interfaces

Interfaces Description Security Considerations

Generic Interface This Generic Interface called 'GI',
streamline the incoming /
outgoing data between OBTF
system and external systems
using batch mechanism (flat
files).

Refer section 4. Securing
Gateway Services in Security
Measure Documents

Document Management System
Interface

Oracle IPM (Imaging and
Process Management) is an
external Document Management
System with which OBTF
integrates for document
processes. Oracle IPM provides
image scanning and business
process management capabilities
for enterprise applications.
Oracle IPM is integrated with
OBTF to support the existing
Oracle FLEXCUBE DMS.

Interface with Oracle FLEXCUBE
Universal Banking

OBTF Interface with Oracle
FLEXCUBE Universal Banking
for External Account Check,
External Credit Approval,
External Account Handoff and
Trade details for Corporate 360
And OBTF Interface with Oracle
FLEXCUBE Universal Banking
for Relationship Pricing

Also OBTF interface with Oracle
FLEXCUBE Universal Banking
for Current Account Savings
Account / Corporate Deposit
Linkage.

Oracle Identity Manager Interface The OBTF - Oracle Identity
Manager Interface helps in
integrating the two systems for
user provisioning and de-
provisioning services.
Oracle Identity Manager (OIM)
automates user provisioning,
identity administration, and
password management. OIM
manages the entire life cycle of
user identities and entitlements
and helps to control user access
across all resources in the
organization.

Chapter 2
List of Interfaces

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 5 of 6

Interfaces Description Security Considerations

OFSAA Interface Oracle Banking Trade Finance
interfaces with the Oracle
Financial Services Analytical
application for sending the
transaction data & maintenance
data. Following features provided
to address the same.
• Data Handoff from different

tables of OBTF to OFSAA.
• Providing Full or Incremental

Data based on staging
tables.

• Handling of failure data
during extraction.

• Batch Configuration for Data
Extraction

Interface with standalone
Corporate Lending

OBTF Interfaces with standalone
corporate lending to get the loan
details from OBCL system and
display in corporate customer
360 degree screen. This is to
show the corporate customers
overall transaction details in one
screen.

Interface with Standalone
Payments System

OBTF Interfaces with standalone
payment system to incoming MT
202 results Bill Liquidation, MT
103 / 202 message generation

Interface with Standalone
Treasury System

OBTF Interfaces with standalone
Treasury system to link and
Utilize the FX contracts

Interface with Standalone ELCM
system

OBTF Interfaces with standalone
ELCM to access the Limits and
Collaterals.

Chapter 2
List of Interfaces

Development Security Guide
G46033-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 2, 2025
Page 6 of 6

	Contents
	Preface
	Purpose
	Audience
	Scope
	Read Sections Completely
	Understand the Purpose of this Guidance
	Limitations

	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Conventions

	1 How to address the OWASP Top10 in Oracle Banking Trade Finance
	1.1 Injection
	1.2 Broken Authentication and Session Management
	1.3 Cross-Site Scripting (XSS)
	1.4 Insecure Direct Object References
	1.5 Security Misconfiguration
	1.6 Sensitive Data Exposure
	1.7 Missing Function Level Access Control
	1.8 Cross-Site Request Forgery (CSRF)
	1.9 Using Components with Known Vulnerabilities
	1.10 Unvalidated Redirects and Forwards Network Security

	2 Securing Gateway Services
	2.1 Inbound Application Integration
	2.2 Web Services Based Synchronous Deployment Pattern
	2.3 HTTP Servlet Based Synchronous Deployment Pattern
	2.4 Message Listener Based Asynchronous Deployment Pattern
	2.5 Outbound Application Integration
	2.6 Securing Web Services
	2.7 Accessing Service and Operation
	2.8 Gateway Password Generation Logic for External System Authentication
	2.9 XSD Validation and Input Validation
	2.10 List of Services
	2.11 List of Interfaces

