
Oracle® Banking Treasury
Management
Development Security Guide

Release 14.8.1.0.0
G45343-02
October 2025

Oracle Banking Treasury Management Development Security Guide, Release 14.8.1.0.0

G45343-02

Copyright © 2020, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 How to address the OWASP Top10 in Oracle Banking Treasury
Management

1.1 Injection 1

1.2 Broken Authentication and Session Management 2

1.3 Cross-Site Scripting (XSS) 3

1.4 Insecure Direct Object References 4

1.5 Security Misconfiguration 5

1.6 Sensitive Data Exposure 6

1.7 Missing Function Level Access Control 8

1.8 Cross-Site Request Forgery (CSRF) 8

1.9 Using Components with Known Vulnerabilities 9

1.10 Unvalidated Redirects and Forwards Network Security 9

2 Securing Gateway Services

2.1 Inbound Application Integration 1

2.2 EJB Based Synchronous Deployment Pattern 2

2.3 Web Services Based Synchronous Deployment Pattern 2

2.4 HTTP Servlet Based Synchronous Deployment Pattern 2

2.5 MDB Based Asynchronous Deployment Pattern 3

2.6 Outbound Application Integration 3

2.7 Securing Web Services 3

2.8 Accessing Service and Operation 4

2.9 Gateway Password Generation Logic for External System Authentication 4

2.10 XSD Validation and Input Validation 4

2.11 List of Services 4

2.12 List of Interfaces 5

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page i of i

Preface

This topic contains the following sub-topics:

• Purpose

• Audience

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Conventions

• Screenshot Disclaimer

• Symbols, Definitions and Abbreviations

• Scope

Purpose
This document provides security-related usage and configuration recommendations for Oracle
Banking Treasury Management. This guide may outline procedures required to implement or
secure certain features, but it is also not a general-purpose configuration manual.

Audience
This guide is primarily intended for Developers for Oracle Banking Treasury Management and
third party or vendor software’s. Some information may be relevant to IT decision makers and
users of the application are also included. Readers are assumed to possess basic operating
system, network, and system administration skills with awareness of vendor/third-party
software’s and knowledge of Oracle Banking Treasury Management.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to make sure effective
security, as strongly recommended by Oracle Software Security Assurance.

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 1 of 3

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Screenshot Disclaimer
Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes.

Symbols, Definitions and Abbreviations
The following are some of the abbreviations you are likely to find in the manual.

Table Abbreviations

Abbreviation Description

FCUBS Oracle FLEXCUBE Universal Banking

OL Oracle Lending

System Unless and otherwise specified, it shall always refer
to Oracle FLEXCUBE Universal Banking Solutions
System.

SAML Security Assertion Markup Language

XML Extensible Markup Language

HTML Hypertext Markup Language

URL Uniform Resource Locator

GI Generic Interface

XSD XML Schema Documents

HTTP Hypertext Transfer Protocol

Diversity and Inclusion

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 2 of 3

Scope
Table Scope

Field Description

Read Sections Completely Each section should be read and understood
completely. Instructions should never be blindly
applied. Relevant discussion may occur
immediately after instructions for an action, so be
sure to read whole sections before beginning
implementation.

Understand the Purpose of this Guidance The purpose of the guidance is to provide security-
relevant code and configuration recommendations.

Limitations This guide is limited in its scope to security-related
guideline for developers.

Scope

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 3 of 3

1
How to address the OWASP Top10 in Oracle
Banking Treasury Management

This topic contains following sub-topics:

• Injection

• Broken Authentication and Session Management

• Cross-Site Scripting (XSS)

• Insecure Direct Object References

• Security Misconfiguration

• Sensitive Data Exposure

• Missing Function Level Access Control

• Cross-Site Request Forgery (CSRF)

• Using Components with Known Vulnerabilities

• Unvalidated Redirects and Forwards Network Security

1.1 Injection
Injection flaws occur when an application sends untrusted data to an interpreter. Injection flaws
are very prevalent, particularly in legacy code. They are often found in SQL, LDAP, Xpath, or
SQL queries; OS commands; XML parsers, SMTP Headers, program arguments, and so on.
Injection flaws are easy to discover when examining code.

Application uses Oracle database and it has adequate in-built techniques to prevent SQL
injections as underlined below:

1. Use of prepared statements (parameterized queries) - Application uses Prepared
Statement with bind variables to construct and execute SQL statements in JAVA.

2. Use of Stored procedures - Stored procedures have the same effect as the use of
prepared statements when implemented safely. Implemented safely means the stored
procedure does not include any unsafe dynamic SQL generation. Application uses safe
Java stored procedures calls.
In addition to the above, wherever dynamic queries exist, application uses adequate
defence to sanitize the un-trusted input. The use of DBMS_ASSERT.SIMPLE_SQL_NAME
and the use of bind variables justify the fact.

3. Escaping all user supplied input - This third technique is to escape user input before
putting it in a query. If it is a concern that rewriting the dynamic queries as prepared
statements or stored procedures might break the application or adversely affect
performance, then this might be the best approach for the purpose. However, this
methodology is frail compared to using parameterized queries and there is no guarantee
that it prevents all SQL Injection in all situations.
APPLICATION uses context specific escaping. It has a String Escape Utils.java file, where
context specific escaping is handled.

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 1 of 9

1.2 Broken Authentication and Session Management
In application session interval is validated against the session interval stored in the
configurable file FCUBS.properties file. Validations are added to check the maximum time limit
for the inactive session from being expired. Java API method javax.servlet.http.HTTP Session
sets the max time out period for the session.

A maximum limit is imposed on the value passed to set the maximum limit of session interval.
The maximum limit is a positive practical value. This validation is required to prevent long
running sessions that can be actively targeted.

The default value for session time out is 30 minutes and it is configurable in properties file.

The session used for login authentication is not validated (destroyed) and a new session is
created once the user logged-in successfully to the application. And the new session is used to
store the required variables.

A session attribute IsAuthenticated set to Y on successful login to the application. A new
random token (Cross-site request forgery) also generates and same is available in the session
attribute.

The entire subsequent request within the session have the Authenticated and Cross-site
request forgery tokens .Every request send to the application from the browser is validated
against the IsAuthenticated attribute and Cross-site request forgery token.

A hidden form is used to submit the logout request to the server, with the response resulting in
a 302 redirect instead of client initiated redirect to the login page.

Session get expire once user log off from application or if idle for its maximum limit.

Cryptography used

PCI council defines Strong Cryptography as:
Cryptography based on industry-tested and accepted algorithms, along with strong key lengths
and proper key-management practices. Cryptography is a method to protect data and includes
both encryption (which is reversible) and hashing (which is not reversible, or one way). SHA-1
is an example of an industry-tested and accepted hashing algorithm. Examples of industry-
tested and accepted standards and algorithms for encryption include AES (128 bits and
higher), TDES (minimum double-length keys), RSA (1024 bits and higher), ECC (160 bits and
higher), and ElGamal (1024 bits and higher).

Encryption algorithm

The application leverages AES encryption algorithm to store sensitive information into
properties file. This algorithm uses 256 bit secret key for encryption and decryption which is
stored at property file.

Hashing algorithm

Oracle Banking Solutions leverages SHA-512 hashing algorithm for user password
authentication. This algorithm generates a password digest for the user password by using the
SALT (Random number generated using SHA1PRNG algorithm) and the iteration number
available in the property file.

Session storage

Oracle Banking Application does not store Http Session objects.

Chapter 1
Broken Authentication and Session Management

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 2 of 9

A unique sequence number generates and stored in current user table for the purpose of
mapping server-side sessions with the entries in the current user table.

During session expiry (triggered by the container), the session listener provides the application
with the sequence number of the session. The application makes checks as to whether the
entry in current user table contains the same sequence number. Only in such a case should
the entry be deleted.
When authentication of credentials (involving an incorrect user ID) is unsuccessful, the user id
should not be logged in the audit logs (database table). The following possible scenarios are
accounted for:

Session logging

Unsuccessful attempt to login is stored in the database with terminal’s IP address and
timestamp. Invalid and expired session IDs submitted to the application are categorized as
authentication failures and the same are logged in the database table.

1.3 Cross-Site Scripting (XSS)
XSS is the most prevalent web application security flaw. XSS flaws occur when an application
includes user supplied data in a page sent to the browser without properly validating or
escaping that content. Application is coded keeping in view the XSS prevention rules as
below:-

1. Technique#1 - HTML Escape before inserting untrusted data into HTML element
content
Across the application, context specific escaping has been used to sanitize the untrusted
data. For HTML content, the below function takes care of escaping the probable tainted
data:

• Public static String escapeHTML (String input):
Escaping the following characters, with HTML entity encoding, to prevent switching
into any execution context, such as script, style, or event handlers has been done. Use
of recommended hex entities is in place. In addition to the 5 characters significant in
XML (&, <, >, ", '), the forward slash is included as it helps to end an HTML entity.

& --> &

< --> <

> --> >

" --> "

' --> '

/ --> /

2. Technique #2 - JavaScript Escape Before Inserting Untrusted Data into JavaScript
Data Values
Including untrusted data inside any other JavaScript context is quite dangerous, as it is
extremely easy to switch into an execution context with characters including (but not
limited to) semi-colon, equals, space, plus, and many more. For JavaScript context, the
below function takes care of escaping the probable tainted data:

• Public static String escapeJavaScript(String input);

3. Technique #3 - Escape JavaScript Characters
This works in conjunction with rule#2. Except for alphanumeric characters, all characters
less than 256 are escaped with the \xHH format to prevent switching out of the data value
into the script context or into another attribute. No use of any escaping shortcuts like \",

Chapter 1
Cross-Site Scripting (XSS)

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 3 of 9

because the quote character may be matched by the HTML attribute parser which runs
first. These escaping shortcuts are also susceptible to escape-the-escape attacks where
the attacker sends \" and the vulnerable code turns that into \\" which enables the quote.

4. Technique #4 - URL Escape And Strictly Validate Before Inserting Untrusted Data
into HTML URL Parameters.
Application encodes URL with the URLEncoder java class. It does not check for a valid
URL, but directly does URL encoding, and that encoding is based on the context of display.

5. Technique #5 - Use of HttpOnly and secure cookie flag
Application uses the HTTPOnly flag on the session cookie and any custom cookies that
are not accessed by any JavaScript.

1.4 Insecure Direct Object References
1. Use of prepared statements (parameterized queries)

Application uses Prepared Statement with bind variables to construct and execute SQL
statements in JAVA.

2. Input Validation
Oracle Banking Treasury Management is a web based application, the request data from
browser to server is passed using request headers and request parameters. All the request
fields coming from the client are validated using white list validation to prevent cross site
scripting.

User defined method validateParameter() is used for input validation which checks each
character of the request field with a range of allowed characters.

User defined methods escapeJavaScript(), escapeHTML() and escapeURL() sanitizes the
output data before flushing it into client browser.

escapeJavaScript() escapes all characters except immune JavaScript characters and
alphanumeric characters in the ASCII character set. All other characters are encoded
using the \\xHH or \\uHHHH notation for representing ASCII or Unicode sequences.

escapeHTML() escapes the characters with equivalent HTML entities obtained from the
lookup map. Lookup map has entities such as amp, quot, lt, gt, and so on.

escapeURL() encodes the URL using URLEncoder class.

White list validation is also used to restrict Image/signature/excel upload and to check
rights for every operation performed by user.

3. Image Content validation
Signature upload checks for image type and image content using the inbuilt classes
(ImageIO and JarFile) available in java.

4. Field validation
Field level validations exist for all mandatory fields. Database too had limits on the type
and the length of data. Blacklisted characters are not allowed in the mandatory fields.
Nevertheless, free-text fields, which takes all data, entered by the user, as a String.

5. Restriction on Blacklist characters
Similar to white list validation black list validation is also used for validating the request
fields. Oracle Banking Treasury Management uses blacklist validation to check whether the
request xml contains unwanted tags like scripting tag, html tag, anchor tag, and so on,
inside the xml content. It is also used for the advance summary field’s validation to check
whether proper request fields are coming from the browser.

Below table shows the list of bad characters which are not allowed in URL path but the
operations requires many of the below characters to be passed in the request. So

Chapter 1
Insecure Direct Object References

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 4 of 9

application encodes the below bad characters before sending them through the URL and
same is decoded at the server to prevent the hacker from modifying the request.

Table 1-1 Unsafe Characters

Bad URL Characters (Unsafe Characters) Values

& //

< ./

> /.

; /*

\" *.

\' ~

% \

) 25%

(%25u

+ %25U

, %00-%1f, %7f-%ff

" " (Space) %00-%1f and %7f-%ff

- %25u and %25U

6. Restriction on Script/Html tags
Application has blacklist validation for unwanted tag in xml like scripting tag or html tag
inside xml content particularly in the header.

1.5 Security Misconfiguration
1. Configuration files

Configuration files are securely placed inside the Classes folder of the WEB-INF folder
which is not publicly accessible.

2. Exception handling in java
Different types of exceptions can rise in application. Java exceptions handled using try
catch blocks available in java. Sometimes we use the Throw statement to throw an
exception which is caught by the catch block. Caught exceptions are written into the log
files for the debug purpose when ever required. Whenever any exception occurs in
application, proper information used to send to the front-end user by showing alert.

3. Exception handling in oracle database
Database exceptions handled using EXCEPTION statement available in PL/SQL. Caught
exceptions are written into the log files for the debug purpose. And proper error message
created to send the same in response to the user.

4. Package lockout situation handled in backend
Application is hanged in an oracle system package lockout situation. Locked objects are
released manually using SQL scripts or through database restart. We have handled cursor
lock out problem in the required packages.

5. Auto generated password
The password is generated by the system accordance to the password policy. The salt is
also be generated every time the password is changed by using predefined algorithm.

The salt concatenated with auto generated password and SHA-512 hash applies on the
resultant which results the password digest.

Once the successful generation of password digests both salt and password digest is
stored in the DB.

Chapter 1
Security Misconfiguration

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 5 of 9

6. Custom password
The password is keyed in by the administrator / user accordance to the password policy.
The salt is generated every time the password is changed by using predefined algorithm.

The salt concatenated with the password input and SHA-512 hash applies on the resultant
which results the password digest.

Once the successful generation of password digests both salt and password digest is
stored in the DB.

Oracle Banking application does not provide any default user/password. User and
password needs to be created at the time of installation.

7. Sand Box for File Upload
The application uses a sandbox for placing files that are uploaded through the signature/
image upload screen. The sandbox is placed in a specified location (the location is
specified in the properties file) on the server.

8. BI Publisher Reports – generation and access
The application uses a sandbox for placing the generated reports file into a sandbox area.
The sandbox is placed in a specified location (the location is specified in the properties file)
on the server. The application validates if the user has explicit Rights to generate Reports.

1.6 Sensitive Data Exposure
1. Secure Transformation of Data (SSL)

The Installer allows a deployer to configure the application such that all HTTP connections
to the application are over SSL/TLS. In other words, all HTTP traffic in the clear is
prohibited; only HTTPS traffic is allowed. It is mandatory to enable this option in a
production environment, especially when WebLogic Server acts as the SSL terminator.

A two-way SSL is used when the server needs to authenticate the client. In a two-way SSL
connection the client verifies the identity of the server and then passes its identity
certificate to the server. The server then validates the identity certificate of the client before
completing the SSL handshake.
In order to establish a two-way SSL connection, need to have two certificates, one for the
server and the other for client. This is required for de-centralized setup of application.

For solutions, need to configure a single connector. This connector is related to SSL/TLS
communication between host or browser and the branch which uses two-way
authentication.
If the secure flag is set on a cookie, then browsers shoud not submit the cookie in any
requests that use an unencrypted HTTP connection, thereby preventing the cookie from
being trivially intercepted by an attacker monitoring network traffic.

Below configuration has to be ensured in weblogic.xml within the deployed application ear.

• Cookies are set with Http only as true

• Cookie secure flag set to true

• Cookie path to refer to deployed application

<wls: session-descriptor>
<wls: cookie-http-only>true</wls: cookie-http-only>
</wls: session-descriptor>

<wls: session-descriptor>
<wls: cookie-secure>true</wls: cookie-secure>

Chapter 1
Sensitive Data Exposure

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 6 of 9

<wls: url-rewriting-enabled>false</wls: url-rewriting-enabled>
</wls: session-descriptor>

<session-descriptor>
<cookie-name>JSESSIONID</cookie-name>
<cookie-path>/<DeployedApplicationPath></cookie-path>
<cookie-http-only>true</cookie-http-only>
<cookie-secure>true</cookie-secure>
<url-rewriting-enabled>false</url-rewriting-enabled>
</session-descriptor>

Always make sure Cookies are set with always Auth Flag enabled by default for
WebLogic server.

2. Sign-On messages
Below table shows the general Sign-On messages which is displayed to the user during
invalid authentication.

Table 1-2 Sign-On messages

Message Explanation

User Already Logged In The user has already logged into the system and
is attempting a login through a different terminal.

Invalid User ID/Login. An incorrect user ID or password was entered.

iUser Status is Disabled. Please contact your
System Administrator.

The user profile has been disabled due to
number of dormancy days allowed for the user
has exceeded the dormancy days configured in
the system.

User Status is Locked. Please contact your
System Administrator.

The user profile has been locked due to an
excessive number of attempts to login, using an
incorrect user ID or password. The number of
attempts could have matched either the
successive or cumulative number of login failures
(configured for the system).

3. CACHE Control in Servlet and jsp
There are three basic HTTP response headers that prevent a page from being cached to
disk. Different browsers handle them in slightly different ways, so they need to be used in
combination to ensure all browsers do not cache the specific page. These headers are
Expires, Pragma and Cache-control. In addition, these headers can either be sent
directly by the server or placed in the HTML code as HTTP-EQUIV META tags within the
HEAD section. The Expire header gives a date at which point the page should expire and
no longer be cached. Browser supports a date of 0 for immediately and any negative
number for already expired. The Pragma: no-cache header indicates that the page should
not be cached.

4. Clickjacking/Frame-bursting
Application uses the X-Frame-Options HTTP response header to indicate whether or not a
browser should be allowed to render a page in a <frame> or <iframe>. This is used to
avoid Clickjacking attacks, by ensuring that the content is not embedded into other sites.

Chapter 1
Sensitive Data Exposure

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 7 of 9

1.7 Missing Function Level Access Control
It is likely that users working in the same department at the same level of hierarchy need to
have similar user profiles. In such cases, you can define a Role Profile that includes access
rights to the functions that are common to a group of users. A user can be linked to a Role
Profile by which you give the user access rights to all the functions in the Role Profile.

Application level access has implemented through the Security Management System (SMS)
module. SMS supports ROLE BASED access of Screens and different types of operations.

Oracle Banking Solutions supports dual control methodology, wherein every operation
performed has to be authorized by another user with the requisite rights. Please refer 2.6
section of the SMS user manual for more details.

Apart from the role based access control particular functions , products can be restricted for
user as described below.

Table 1-3 Function Level Access Control

Fields Description

Disallowed functions Function IDs or UI level restrictions can be
provided for the user by including the function Ids in
the disallowed list. This restricts the user from
accessing the UI. When accessed, an error
message dialogue box pops up saying -

User not authorized
to access the screen

Disallowed account class The user could be restricted to perform any
operation using a particular a/c class. When
disallowed, no accounts could be created by the
user using the account class.

Disallowed products The user could be restricted to use product(s) of
any module(s), if disallowed. This is really required
when restricting users department wise. For
example, staffs of accounts department need not
be given access to view the loans of customers.

Disallowed branches The user could be restricted to access branches
other than his own branch (reporting branch). He
can be given access to login from other branches
of the bank at an approval from authenticated
person, an action which again requires manual
authorization.

1.8 Cross-Site Request Forgery (CSRF)
In case of XMLHttpRequest objects, the XMLHttpRequest object sets a custom HTTP header
in the request, with the header value being the Cross-site request forgery token; the server
then verifies for the presence of such a header and the Cross-site request forgery token. This
serves as a protection at endpoints used for XMLHttpRequest requests, since only
XMLHttpRequest objects can set HTTP headers (apart from Flash; and both cannot make
cross-domain requests).

Chapter 1
Missing Function Level Access Control

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 8 of 9

1.9 Using Components with Known Vulnerabilities
Source code scanning done using the latest fortify to identify the sources code issue and
provides the proper fix for the reported issues.

3rd party libraries scanning for every release has been done to validate if any security issues
rise for any of the components or not. Update the 3PL with latest security patch or upgraded to
latest version.

1.10 Unvalidated Redirects and Forwards Network Security
Application uses 302 redirect wherever required. Application uses
response.sendRedirect(newURL);

Chapter 1
Using Components with Known Vulnerabilities

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 9 of 9

2
Securing Gateway Services

Different applications deployed on disparate platforms and using different infrastructure need to
be able to communicate and integrate seamlessly with Oracle Banking Treasury Management
in order to exchange data. The Oracle Banking Treasury Management Integration Gateway
caters to these integration needs.
The integration needs supported by the Gateway can be broadly categorized from the
perspective of the Gateway as follows:

• Inbound application integration – used when any external system needs to add, modify
or query information within Oracle Banking Treasury Management

• Outbound application integration – used when any external system needs to be notified
of the various events that occur within Oracle Banking Treasury Management.

This topic contains following sub-topics:

• Inbound Application Integration

• EJB Based Synchronous Deployment Pattern

• Web Services Based Synchronous Deployment Pattern

• HTTP Servlet Based Synchronous Deployment Pattern

• MDB Based Asynchronous Deployment Pattern

• Outbound Application Integration

• Securing Web Services

• Accessing Service and Operation

• Gateway Password Generation Logic for External System Authentication

• XSD Validation and Input Validation

• List of Services

• List of Interfaces

2.1 Inbound Application Integration
Gateway provides XML based interfaces thus enhancing the need to communicate and
integrate with the external systems. The data exchanged between Oracle Banking Treasury
Management and the external systems are in the form of XML messages. These XML
messages are defined in Oracle Banking Treasury Management in the form of XML Schema
Documents (XSD).

Oracle Banking Treasury Management Inbound Application Integration Gateway uses the
Synchronous and Asynchronous Deployment Pattern for addressing the integration needs.

The Synchronous Deployment Pattern is classified into the following:

• EJB Based Synchronous Inbound Application Integration Deployment Pattern

• Web Services Based Synchronous Inbound Application Integration Deployment Pattern

• MDB Based Asynchronous Inbound Application Integration Deployment Patten

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 1 of 6

2.2 EJB Based Synchronous Deployment Pattern
The Enterprise Java Beans (EJB) deployment pattern is used in integration scenarios where
the external system connecting to Oracle Banking Treasury Management is EJB literate, that
is, the external system is capable of interacting with Oracle Banking Treasury Management
based upon the EJB interface. In this deployment pattern, the external system uses the RMI/
IIOP protocol to communicate with the Oracle Banking Treasury Management EJB.

In this deployment pattern the EJB displayed by Oracle Banking Treasury Management a
stateless session bean. The actual request is in the form of an XML message. After the
necessary processing is done in Oracle Banking Treasury Management based on the request,
the response is returned to the external system as an XML message. The transaction control
for the processing stays with the Oracle Banking Treasury Managment EJB.

2.3 Web Services Based Synchronous Deployment Pattern
The web services deployment pattern is used in integration scenarios where the external
system connecting to Oracle Banking Treasury Managment wants to connect using standards-
based, inter-operable web services

This deployment pattern is especially applicable to systems which meet the following broad
guidelines:

• Systems that are not EJB literate, that is, such systems are not capable of establishing
connections with Oracle Banking Treasury Management based upon the EJB interface;
and/or

• Systems that prefer to use a standards-based approach

In this deployment pattern, the external system uses the SOAP (Simple Object Access
Protocol) messages to communicate to the Oracle Banking Treasury Management web
services.

The services displayed by Oracle Banking Treasury Management are of a message based
style, that is, the actual request is in the form of an XML message, but the request is payload
within the SOAP message. After the necessary processing is done in Oracle Banking Treasury
Management based on the request, the response is returned to the external system as an XML
message which is a payload within the response SOAP message. The transaction control for
the processing stays with the Oracle Banking Treasury Management.

2.4 HTTP Servlet Based Synchronous Deployment Pattern
The HTTP servlet deployment pattern is used in integration scenarios where the external
system connecting to Oracle Banking Treasury Management wants to connect to Oracle
Banking Treasury Management using simple HTTP messages.

This is especially applicable to systems such as the following:

• Systems that are not EJB literate, that is, are not capable establishing a connections with
Oracle Banking Treasury Management based upon the EJB interface; and/or

• Systems that prefer to use a simple http message based approach without wanting to use
SOAP as the standard.

• In this deployment pattern, the external system makes an HTTP request to the Oracle
Banking Treasury Management servlet.

Chapter 2
EJB Based Synchronous Deployment Pattern

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 2 of 6

For this deployment pattern, Oracle Banking Treasury Management displays a single
servlet. The actual request is in the form of an XML message. This XML message is
embedded into the body of the HTTP request sent to the Oracle Banking Treasury
Management servlet. After the necessary processing is done in Oracle Banking Treasury
Management based on the request, the response is returned to the external system as an
XML message which is once again embedded within the body of the response HTTP
message. The transaction control for the processing stays with the Oracle Banking
Treasury Management.

2.5 MDB Based Asynchronous Deployment Pattern
The MDB deployment pattern is used in integration scenarios where the external system
connecting to Oracle Banking Treasury Management wants to connect to Oracle Banking
Treasury Management using JMS queues.

This is especially applicable to systems such as the following:

• Systems that prefer to use JMS queues based approach without wanting to wait for the
reply.

• Here external system sends messages in XML format to request queue on which an MDB
is listening. When a message arrives on the queue, it is picked up for processing. After the
necessary processing is done in Oracle Banking Treasury Management, based on the
request, the response is sent to the response queue as an XML message.

2.6 Outbound Application Integration
The Outbound Application Integration is also called the Oracle Banking Treasury Management
Notify Application Integration layer. This application layer sends out notification messages to
the external system whenever events occur in Oracle Banking Treasury Management.

The notification messages generated by Oracle Banking Treasury Management on the
occurrence of these events are XML messages. These XML messages are defined in the form
of XML Schema Documents (XSD) and are referred to as OBTR formats.

2.7 Securing Web Services
Web services can be secured by applying security policies available in web logic sever. We
can attach two types of policies to Web Logic Web services and clients at design and
deployment time.

• Oracle WSM policy : We can attach Oracle Web Services Manager(WSM) policies to Web
Logic JAX-WS Web services and clients.

• Web Logic Web service policy: This policies are provided by Oracle Web Logic Server
and can be attached to any web service deployed in Web Logic.

We can use Oracle Enterprise Manager Fusion Middleware Control to attach Oracle WSM
security policies to Web Logic Java EE Web services and clients.

We can attach policies to Web Logic Web services at both design time and after the Web
service has been deployed.

At design time, use the weblogic.jws.Policy and weblogic.jws.Policies JWS annotations in JWS
file to associate policy files with Web service. We can associate any number of policy files with
a Web service, although it is up to us to ensure that the assertions do not contradict each
other. We can specify a policy file at the class level of our JWS file.

Chapter 2
MDB Based Asynchronous Deployment Pattern

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 3 of 6

After the Web service has been deployed, use the Oracle Web Logic Server Administration
Console to attach Web Logic Web service policies to Web Logic Web services.

2.8 Accessing Service and Operation
In a message it is mandatory to maintain a list of Service Names and Operation Codes. This
information is called Gateway Operations.

A combination of every such Service Name and Operation Code is mapped to a combination of
Function ID and Action. Every screen in Oracle Banking Treasury Management is linked with a
function ID. This information is called Gateway Functions.

User can gain access to an external system using the Gateway Functions. The Function IDs
mapped in Gateway Functions should be valid Function IDs maintained in Oracle Banking
Treasury Management. Hence, for every new Service or Operation being introduced, it is
important that you provide data in Gateway Operations and Gateway Functions.

2.9 Gateway Password Generation Logic for External System
Authentication

As a secure configuration password authentication should be enabled for the external system
maintained. The same can be verifying in external system detail screen level.

Once these features enable, system validates for Encrypted password as part of every request
sent by the External System.

The Message ID which is present as part of the header in Request XML, is considered as
hash. External System generates a unique Message ID, which is functional mandatory field in
the header. Create a Message Digest with SHA-512 algorithm.

The hash created from the previous step and the password in clear text together is encrypted
in AES encryption method. Apply Base64 encoding to encrypted value and send to the Oracle
Banking Treasury Management gateway.

2.10 XSD Validation and Input Validation
Oracle Banking Treasury Management supports the XSD validation for all types Gateway.
Each node in request xml is getting validated with the corresponding webservice XSD’s.

Restriction on Script/Html tags.

Oracle Banking Treasury Management Gateway has blacklist validation for unwanted tag in
xml like scripting tag or html tag inside xml content particularly in the header.

2.11 List of Services
List of Services

The list of services available in Oracle Banking Treasury Management are as follows:

• FCUBSCcyService

• FCUBSCoreentitiesService

• FCUBSSMService

Chapter 2
Accessing Service and Operation

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 4 of 6

• OBTRBrokerService

• OBTRCFService

• OBTRCoreService

• OBTRDVService

• OBTRETDService

• OBTRFWService

• OBTRFXService

• OBTRIDService

• OBTRIFService

• OBTRISService

• OBTRMCService

• OBTRMMService

• OBTRMSService

• OBTRMWService

• OBTROTService

• OBTRSRService

• OBTRSecuritiesService

• SMSUserService

2.12 List of Interfaces
Table 2-1 List of Interfaces

Interfaces Description Security Considerations

Generic Interface This Generic Interface called GI,
streamline the incoming /
outgoing data between Oracle
Banking Treasury Management
system and external systems
using batch mechanism (flat files)

Refer topic Securing Gateway
Services in Security Measure
Documents.

Oracle Identity Manager
Interface

The Oracle Banking Treasury
Management - Oracle Identity
Manager Interface helps in
integrating the two systems for
user provisioning and de-
provisioning services.

Oracle Identity Manager (OIM)
automates user provisioning,
identity administration, and
password management. OIM
manages the entire life cycle of
user identities and entitlements
and helps to control user access
across all resources in the
organization.

Chapter 2
List of Interfaces

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 5 of 6

Table 2-1 (Cont.) List of Interfaces

Interfaces Description Security Considerations

OFSAA Interface Oracle Banking Treasury
Management interfaces with the
Oracle Financial Services
Analytical application for sending
the transaction data &
maintenance data. Following
features provided to address the
same.
• Data Handoff from different

tables of OBTR to OFSAA.
• Providing Full or Incremental

Data based onstaging tables.
• Handling of failure data

during extraction.
Batch Configuration for Data
Extraction

Interface with Standalone
Payments System

Oracle Banking Treasury
Management Interfaces with
standalone payment system to
handoff customer, customer
account, GL, transaction code
and currency rates information in
online and batch mode.

Also sends the response to
standalonepayment system for
currency rate look up andFX
utilization

Chapter 2
List of Interfaces

Development Security Guide
G45343-02
Copyright © 2020, 2025, Oracle and/or its affiliates.

November 10, 2025
Page 6 of 6

	Contents
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Conventions
	Screenshot Disclaimer
	Symbols, Definitions and Abbreviations
	Scope

	1 How to address the OWASP Top10 in Oracle Banking Treasury Management
	1.1 Injection
	1.2 Broken Authentication and Session Management
	1.3 Cross-Site Scripting (XSS)
	1.4 Insecure Direct Object References
	1.5 Security Misconfiguration
	1.6 Sensitive Data Exposure
	1.7 Missing Function Level Access Control
	1.8 Cross-Site Request Forgery (CSRF)
	1.9 Using Components with Known Vulnerabilities
	1.10 Unvalidated Redirects and Forwards Network Security

	2 Securing Gateway Services
	2.1 Inbound Application Integration
	2.2 EJB Based Synchronous Deployment Pattern
	2.3 Web Services Based Synchronous Deployment Pattern
	2.4 HTTP Servlet Based Synchronous Deployment Pattern
	2.5 MDB Based Asynchronous Deployment Pattern
	2.6 Outbound Application Integration
	2.7 Securing Web Services
	2.8 Accessing Service and Operation
	2.9 Gateway Password Generation Logic for External System Authentication
	2.10 XSD Validation and Input Validation
	2.11 List of Services
	2.12 List of Interfaces

