Oracle® Financial Services Lending

and Leasing
Regression Testing Tool

Release 14.12.0.0.0
F82321-01
August 2024

ORACLE"

Oracle Financial Services Lending and Leasing Regression Testing Tool, Release 14.12.0.0.0
F82321-01
Copyright © 2022, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1

10

Regressions testing tool

Scope

2.1 Origination
2.2 Customer Service

Architecture / Technical Design

2-1
2-2

Steps to Clone Base OFSLL Environment

Automated Testing Procedure

Validations and Checks

Comparing Results

Testing Tool Exceptions

8.1 Scenario 1
8.2 Scenario 2 — This scenario results in an exception due to mismatch of balances

Testing Tool Test Cases

8-1
8-2

For Next Releases

ORACLE"

Regressions testing tool

The purpose of this document is to outline the high level requirements of the scope of the
Testing tool for regression tests during DLS/OFSLL upgrades by performing a parallel testing
between a lower version of DLS/OFSLL (production) and a higher one (test).

ORACLE 1

Scope

The testing tool will log certain operations done in the production system and replicate them in
the Test system. This will enable parallel testing by comparison of the production and test
systems, specifically with regards to the General Ledger transactions. The aim is not to
replicate user keystrokes in the Production system but instead is to ensure that the eventual
Posted values are captured in the Test system in the same way they were in the Production
system.

Figure 2-1 Automated Regression Testing Tool

) H
[
o
Production System 1 ¢)
(LowerVersion) |
13
1
Final
Results

TestSystem
(Higher Version)

Automated
Regression
Testing Tool

This tool was designed to work for all DLS/OFSLL upgrades, independently of versions and
customizations.

The Testing Tool covers the Origination (App Entry, Funding, Account Creation) and Customer
Service, as detailed below:

e Origination
The testing tool will perform the following: -

e Customer Service
The testing tool will perform the following: -

2.1 Origination

ORACLE

The testing tool will perform the following: -
App Entry:

1. Applications entered in Production on that day will be replicated in the Application tables of
the Test system.

2-1

Chapter 2
Customer Service

2. The application will pass through the Data Entry and Pre screen edits.

3. The application will pull the Credit bureau as defined by the current system parameter
configuration.

4. The application will be placed in a New: Review Required status.

Funding:

1. All applications funded in Production on that day will be replicated in the Test environment.

The application in the Test environment will be funded using the same values that were
used to fund the application in Production.

Assumptions/Restrictions:

Changes to the application values by the users in the Underwriting screen will not be
replicated in the Test Environment.

Intermediate steps between Application Entry and Funding viz. Fax/Letters on Status
change, NADA pulls will not be replicated in the test system. This will require manual
testing efforts. (The final values in the Production system will be used to fund the
application)

As part of the manual testing the user will not set the Application to Approved: Funded
since it is possible that the values used by the user in the test system will be different from
the values used in Production resulting indifferent GL entries.

As part of the manual testing, the Fax numbers of all producers must be set to an internal
fax number to avoid fax documents being set back to producers.

2.2 Customer Service

The testing tool will perform the following: -

ORACLE

Monetary Transactions posted on Accounts in Production will be replicated in Test for that
particular day. This will allow comparison of the Transaction history on Accounts in the Test
and Production instances. To replicate the monetary transactions, the Testing tool will perform
the following:

1.

Payments applied to Accounts in Production will be replicated in Test

« Payment batches and details will be created in the replicated in the test system
(TXNS_GROUP_TEMP, TXNS_TEMP table will be created)

Monetary transactions posted on Accounts in Production will be replicated in Test

e Corresponding entries in the Customer Service > Maintenance tab will be available
(BATCH_MODE_TXNS, BATCH_MODE_TXNS_TEMP)

Assessment of Work Order expenses on an Account will be handled as a monetary
transaction on an account.

Assumptions

Work Order actions will not be replicated. Work Order Expenses assessed on an account
will be handled by the monetary transactions replication.

A one-time refresh at the beginning of the testing will be done instead of a daily refresh.
The only caveat would be that any errors, that affect data found during the testing, would
remain in the database till the fix is received.

The need for subsequent refreshes during the testing period will be discussed.

2-2

Chapter 2
Customer Service

* Test environment Setup will be in sync with the setup in the Production environment. Setup
changes to the production environment during the day will be replicated in the Test
environment, before the Testing tool is run for that day.

ORACLE 55

Architecture / Technical Design

The Testing Tool was only possible due to OFSLL architecture, based on a wrapper- engine
model. Like in OFSLL customizations, the Testing Tool takes advantage of the existing Exit
Points to log and re-post the actions done by the users, allowing an automated parallel testing
between the Production (lower version) and Test (higher version) environments of OFSLL.

Figure 3-1 EXxit Point Diagram

Fre-processing
Exit Faint

Frocessing
Feplacement
= Pl

Engine Pro

Fost-processing
Exit Point

The next two Diagrams show where in the Transaction Processing Engine the Testing Tool was
introduced:

ORACLE" 31

ORACLE

Figure 3-2 Non

monetary Transaction Processing Engine

Chapter 3

Non Monetary Transaction Processing Engine

Library Function Grid User Interface (GUI
tnmwfn_el_ 100_01 ucsbmit_el_ 100 _02

Engine Wirapper Batch biode Ten
tnmbmt _ew _ 100 _01

Engine Batch hode Transaction Processing
tnmbrmt _ em_ 100 _01

Engine Miappar Mon Monetary Transaction Processing
tnmpre _ew_ 100 _01

Engine Mon Monetary Transaction Processing
tnmpre _em_ 100_01

Engine Exits Mon Monetary Transaction Processing
tnmpre _ex_ 100 _M

Funetion Accourt Function Customer
tnmace_en_ 100 _01 tnmous _en_ 100_01

Library Function Grd
tnmwfn_el_ 100 _01

3-2

Figure 3-3 Monetary Transaction Processing Engine

Chapter 3

Monetary Transaction Processing Engine

Enginie Wrapper Monglary

T

i Processing

Banch Jo Accrugl B i Balch Job Charge OF | Balch Job Frai Pt dheduction | Baeh Job Rl Change
na i 10001 el 10 tarhe b 190 01 Lenfped b 10001 aresl 10001 Viragpar Advanca | Wiagpar Advanon
— tenaite_ew_100_7 | bera_ew_100_12
Batch Acoourt Activation Banch Job Accoun! Close Bafch Made Ton Fost Banch Job Morih To Date
tnact_b_100_01 et by_100_01 Berbe_bj_100_01 tnme_by_106_01 Ixnli‘:‘ﬁ“a‘] 0 I:‘::'f”;fﬁ"o‘é”g" H:r;:%?&
R A
Batch Joh Ammversary Batch Job Paymert Posting BetchJoby Sctade for Batch ok Fromesion Bech Jon YTD Refund Wesgper Payment
tamann_bj_100_(1 angmt_k_100_01 B b?""m ™ tarp_j_100_01 tenyd_j 100 01 tamipr_ v i | RSO TRL
" - \iragper Baic | Man Engne Barch
Batch Jofi Pt PVMENt | Boner det Advarce Posing | Baich Job Love Chorge | Bech Joi Promatian Cernel benbae_gw_100_01 | serimi_sm_100,01
01 irwty_t_112.01 ke b_100_01 tegrm_tj_100_03

Tan

Ervgine Monetary Ten
Process:

H)
barprs_em 11201

9
1.0

Engire Manetary Tan | Engine Payiren:

Engire: Paymert:

g 's
trpre_em 121 01 | benpe_am_100_01

Engire Payment
o
targent_ern_10_02

g
rairt_em_100 03

Engine: Payrment

Process;
Earprn_em_100_04

Engire First Pt
Refure Priocessg
sarfr_esn_111_04

Engine Asvance Processing
Tmadv_am_1HL_D

Engine Exits Manatary Transacion Processing

benpre_ax_111_04, bereeo_ax_111_01 temor_ax_112,01 tomooe_gx_121_{1 {x0e = anging funcion;

Engine Exits Non Prriaming Transactians
tennpt_ew_111_01

Eurctian Acem Siog | FUPEDEn Acsourt Furctien Credil FUGHonCIedt | i e e | Funcsion Delinguency Furction Ertar Funclion Error Furction Experse Fuction Payabe
0_01 Clase e Fetund terv_em_ 10001 tarcd e 100 01 Processing Processi Processing sertap_en_t0_01
e 1&nge_en_100_01 wncrb_en_100_ 01 txncr_en_ 100 01 e i Lxnesr_en_100_01 barert_en_100_02 taresp_en 100 01 ’ -
1 Feer Furctian FTP Furctian Funding Functian GL uni Funetion ¥YTD Function MTD Furction Insert Tan
10 prfp_en_ 40001 | tenfen 100 07 | ool en 10001 | baring tentd en_t00 01 | txrared_en 10001 | benite_en 100 01

Furction Arares
{Beforr and After]
birac_an_11n_(2

Funeion Advance
Ixnack_en_11n_ 01

Furction Arnersary F‘('g:m“:,mﬁ,“
srann_en_1nn a1 penaren an e 02

Cresne Felabed Tara.
wrcrl_en_tnn 01

Craate Rabnnd T
(Binfure ard Aar)
tencrt_en_1rn_02

Funen Extemsion
{Bekar and Afier)
torvet_en_fnn_(32

Funclion Extereion
brest_en_inn_ 01

{Before and Afler}

tunrs_en_tin 01 areas_en_ i 02

Funmion Securitiraion

g
tenser_en_11n_01 arl e g 01

“hangs (Before and
A

)
trwa en inn 02

Furction Stanemern:
tarstm_en_tra_01

Updae Accaunt
turapd_en_tnn_01

Funcson Ireuranca | Function Ineursnce | Funcion Matrity Funcsion Payment Furction Payott f;ﬁ:":;’;“&: Funcaon Promation F“EEL";":“;;{::"‘ Function Rste Changs F"Im':'ﬁ range
bering_en_11n_01 beine_en_1In03 | tewaten_drn 04 | tepeieninn 01 | SmemlentonDl | oo ey gz | DemseiInDt oo en tinge | BrEleniin srrat_en_11n 02
Furetion Rescarde | FUNCHON REschede Funclion SELs Funclion Reschadule

Furctisrivalidate Cthar
tenwat_en_tnn_01

Function Reschedule

i PC251}
barese_en_111_04 pnge. e 11105

Furclion CredtLimit | Furction CTD Funcsion Insuranoe | FuncionLoss Gain | Function Lesse Rey FunctionRert | Funcion Sakeof fsset | Function Tax Function Termirake | Furwtion Receivatile
o en 112,01 | oneden 11201 | beisen 11201 | telgs en 12101 | bmisren 12101 | bomeen 12001 | e en 121 01 | balwcen 12101 | bobm_en 121 00 | bowcy_en 10001
b T OnCTG o T

Function Due Date: Funcion 9|=|I’.‘1;|’K‘.l||5 Function P'Tlﬂ.'“t‘.lﬂs Functian Stahs Furction Reschedule Funcion Reschedue Function Escraw Pemfnm e | Bitare & Functian Dealer Lass

| Escrow] { Escrow | Escraw) { Escrow | | Escrow | Escrow] Trarmactiors Jaloeming | Pedomsirg B Rescrve
drt_en_111_03 beretm_en_111_03 | sepm_en_141_03 bursta_en_111_03 bowse_an_111_03 buresc_en_111_08 tanesc_an_111_{1 mn; o)

~ ke el g Nehge | FURCTGN Fas LISrve Fur FURCTION S{E08 I
Funzzion Insuranze. | - Fnem Insuence Processryg Processng [Betore | Processing (3tege | Furding Draw Feriod | Far cnarga | § i Fo (SCRA)
wrine 8 111 01 and Atar) \wring &n 111 03 (BackDated; Bnd Aftar Fundng Draw Fenod) (Batore & After) Paramenars) Sallor Act) {Bators & Afar)

—— e en 111 02 e Lxorar_am 1080 02 breat en 111 02 Lengrw &0 111 01 Zrdny an 111 01 teobip en 117 01 JreEcr an 11n 41 fxnscr en 110 02)

The Testing Tool is divided in 3 main processes:

Figure 3-4 Testing Tool - Processes

» LogQging: Transactions done by users in Production environment

CMN_TEST_TOOL_LOGGING (Y/N)

> Posting: done sequentially and automatically by the Testing Tool in Test environment

> Reporti Ng: Comparison between Production and Test Environments

Logging: Transactions done by users in Production environment

The logging process in Production environment can be turned on/off by setting the System
Parameter CMN_TEST_TOOL_LOGGING. When its value is “N” system will behave normally.
When its value is “Y”, the system will log all the transactions done by the users.

ORACLE"

3-3

Chapter 3

Figure 3-5 Logging process

[Production System (Lower Yersion) }
l
User
Activities
Systermn Parameter
DLSIOFSLL Wrapper
Before Exit Point Yes
Testing Tool Logging Engine
Main P - Serializes &
ain Processing No Capturing Transaction
Data before posting
After Exit Point |
Log Tables

Posting: Done sequentially and automatically by the Testing Tool in Test environment

Figure 3-6 Posting process

OFSLL Wrapper
Before Exit Point

Log Tables

From Production

Main Processing

After Exit Point

Testing Tool Posting Engine

Selects & Inserts Call
Transaction Data
Sequentially

Reporting: Comparison between Production and Test Environments

ORACLE 3

ORACLE

Chapter 3

Figure 3-7 Reporting process

r

~

Test System
(Higher Version)

Production System
(Lower Version)

Final
Results

3-5

Steps to Clone Base OFSLL Environment

ORACLE

Following are the steps to Clone Base OFSLL Environment.

1.

g » 8 Db

o

10.
11.
12.
13.

14.

15.

16.

Copy x* packages and so from production to test after patch up of test schema. (some of
these objects in production are newer versions than ones in upgrade patches.)

Perform export from production schema.
Confirm that CMN_SERVER_HOME path is identical between test and production servers.
Run alter table and alter index scripts against production schema.

Run compare schema scripts between the production and test schemas. Reconcile
differences.

Perform export (no data) from test (upgraded) schema.

Perform import (ignore=yes) on production schema from step five’s export. Confirm that
packages, views, and types are correct versions.

Perform export from test (upgraded) schema of setup tables (LESS producers tables!).
Copy schema specific system parameters values from production schema

Truncate setup tables on production schema.

Perform import on production schema from step seven’s export.

Overlay system parameters value from step 8

Create backup copies of folders in the CMN_SERVER_HOME tree on production app
server.

Copy CMN_SERVER_HOME tree from test to production app servers. Consider results of
step two.

Copy any other patch objects (.so’s, etc.) into production environment. (If step 1 is done,
we can copy without risk of overwriting newer versions in prod)

Restore any X* packages necessary. (if step 1 is done, we can copy without risk of
overwriting newer versions in prod).

4-1

Automated Testing Procedure

Following is the suggested sequence of steps that would need to be performed on a daily
basis as part of the Automated Testing.

Table 5-1 Automated Testing Procedure

Day 1

Test Database to be refreshed with Production values *
1. Truncate the Log tables in Production
2. Logging is Turned On in Production after last job has completed

Cut off time for manual transactions/user activities in the Production Environment. Logging by testing
tool will be turned off.

1. Take a Production database snapshot (S1) of the required tables

2. Ensure sequences on test match sequences on Production (for applications and accounts)
3. Dat files and log tables are moved to the Test database
4. Testing tool is Run on Test instance (Ensure previous files are removed)

Comparison/Validation scripts are run against S1 and the Test database. Report (R1) is generated. (This
gives us the comparison before the jobs are run)

A copy of input file in Production (lockbox) should be available in Test
Batch jobs are run (Batch job setup is identical to production) on both Test & Production
Take a Production database snapshot (S2) of the required tables

Comparison Scripts are run against S2 and the Test database. Report (R2) is generated. (This gives us
the comparison before the jobs are run)

Day 2

Validates R1 & R2 and reports discrepancies to OFSLL

Investigate the discrepancies. Some may be reconciled and some may require a fix
Manual testing proceeds in the interim

Next run is planned

Test Database to be refreshed with Production values.

* Refresh Test database

Example: To run the testing tool in the Test environment on 4/23, a snapshot of the Production
database AFTER the batch jobs have completed on the morning of 4/23 and before any other
user activity for 4/23 begins needs to be taken. This snapshot will be used to refresh the test
database for the testing tool to be run on the evening of 4/23.

ORACLE -

Validations and Checks

ORACLE

Table 6-1 Validations and Checks

Before txns posting

Set logging parameter to 'N'

Turn scheduler off on Test system

Ensure that setup tables are not truncated before refresh (only in case of a new refresh).

Ensure that jobs, job_sets, job_threads and job_buckets are copied over from Prod onto test (only in the
case of new refresh).

Make sure that the batch jobs are setup the same in Prod and Test.

Ensure sequences are in sync with Production

Bump up sequences - recreate sequences

Ensure that the Test specific setup scripts are run for 1) all seed data 2) DML scripts to create data in
the new tables

Check GL post date

Check log tables have just one day's transactions

Query by txn_tcd_code, check numbers match on Prod and Test

Drop index TXNT_LOG_UDX

Make sure that the batch jobs have no sequence numbers overlapping - the scheduler might not start
because of this.

Run all the DML scripts - for seed data and others

Check for database locks on both test systems

Check run_dt_nxt on all batch jobs - should be updated correctly

6-1

Comparing Results

ORACLE

Once the tool run, we will be able to start comparing the results. Below is an example of a high
level results extracted from a Production and a Test environment, where the tool replicated all

the user actions executed during one day.

Table 7-1 Production and a Test environment

PRODUCTION

TEST

TXN_TCD_CODE SUM(TXN_AMT)

ACCRUAL_STOP

0

TXN_TCD_CODE

SUM(TXN_AMT)

ACC_MAINT_MON -1

ACCRUAL_STOP

0

ACC_MAINT_MON

-1

ETARY_CBT
ACTIVE 0
ADV_RECOURSE_ 5.25
CHGOFF_CBT

ADV_WAIVE 7
CHGOFF 0
CREDIT_REFUND 2875.01
CREDIT_REFUND 6762.65
_REV

DDT 403310.84
DDT_REV 12494.97
ERPO 18762
ERPO_REV 4355
ERPO_WAIVE 108.42
ERPO_WAIVE_RE 5

v

ESVC 175
ESVC_REV 75
ESVC_WAIVE 0.2
EXTENSION 606.9
EXTENSION_REV 0

FEXT 2093.28
FEXT_REV 68.18
FIN_1 2521.19
FIN_2 2357.28
FIN_3 10210
FLC 8071.77
FLC_REV 209.44
FLC_WAIVE 15
FNSF 0

ETARY_CBT

ACTIVE 0
CHGOFF 0
CREDIT_REFUND 6312.85
_REV

DDT 29034.13
DDT_REV 12494.97
ERPO 15262
ERPO_REV 855
ERPO_WAIVE 90
ERPO_WAIVE_RE 5

Y

ESVC 175
ESVC_REV 75
EXTENSION 606.9
EXTENSION_REV 0

FEXT 2093.28
FEXT_REV 68.18
FIN_1 2521.19
FIN_2 2357.28
FIN_3 10605
FLC 263.63
FLC_REV 195.15
FLC_WAIVE 15
FNSF 0
FUN_1 658203.33
FUN_2 14259.2
FUN_3 85
FUN_4 305.55

7-1

ORACLE

Table 7-1 (Cont.) Production and a Test environment

Chapter 7

PRODUCTION TEST

FOTHL WAIVE 5 INT 88904.16
FPHP 1659 INT_ESTIMATED 128900.35
FUN_1 630790.18 INT_REBATE 8654.78
FUN_2 13648.2 INT_REV 3038.93
FUN_3 85 LNR 788796.75
FUN_4 284.55 NP_EXCESS 2388.78

7-2

Testing Tool Exceptions

Following is the list of exceptions/limitations of the testing tool

1.
2.
3.
1.

Direct Reversal of an Indirect transaction
Multiple Payment Hold Assessments/Reversals
Payment not allocated to Phone Pay Fee

Direct Reversal of an ‘Indirect’ transaction

An Indirect transaction is one that is created by a different transaction. For example, FNSF
is an indirect transaction created by the PAYMENT _VOID transaction. The tool replicates
the PAYMENT _VOID transaction that in turn creates the FNSF. Along the same lines,
reversal of the PAYMENT _VOID transaction will result in the reversal of the FNSF
transaction (This is normal Ofsll processing) and will be replicated by the tool.

However when the FNSF transaction is reversed directly, by using the Reverse button on
the Transactions screen, the tool is unable to replicate that.

Another example is the PAYMENT_NONCASH created by modifying the
PAYMENT_ERROR transaction on the Payment Maintenance screen. The non-cash
transaction is an indirect transaction and directly reversing it or further modifying it will not
get replicated in the Test environment. To summarize direct reversal/modification of the
child transaction is not replicated.

Note, the above restriction applies only for the same dataset. If the database is refreshed
after the creation of the child transaction and before its direct reversal, the tool replicates
the reversal.

Multiple Payment Hold Assessment/Reversals

Since the tool is not recording the call activities, multiple payment holds applied or
removed on the same day is NOT replicated. To paraphrase, the existence/absence of the
Payment Hold condition will match that in production, however intermediate changes will
not be reflected.

Examples
Scenario 1

Scenario 2 — This scenario results in an exception due to mismatch of balances

8.1 Scenario 1

Production

ORACLE

Pmt Hold condition exists on an Account
Payment applied, payment goes into PAYMENT_ERROR
Pmt Hold removed on the same day

Payment reapplied from Payment Maintenance > Suspense screen. Payment successfully
applied to the account as a PAYMENT_NONCASH

Test

Removal of Pmt hold is replicated on Test

8-1

Chapter 8
Scenario 2 — This scenario results in an exception due to mismatch of balances

« Payment will be applied successfully to the Account as a PAYMENT.
* No PAYMENT_ERROR is created

8.2 Scenario 2 — This scenario results in an exception due to
mismatch of balances

ORACLE

Production

* Pmt Hold condition exists on an Account
e Payment applied, payment goes into PAYMENT_ERROR
e Pmt Hold removed on the same day

e Payment reapplied from Payment Maintenance > Suspense screen. Payment successfully
applied to the account as a PAYMENT_NONCASH

e Payment Hold condition reapplied
Test

* Since the final state of the account is a PMT HOLD condition no change will be made to
the account in test

e Consequently the payment will go into a PAYMENT_ERROR and will not get applied to the
account

In this scenario the account balances DO NOT match.
Phone Pay Fee

Currently in Production One time Phone Pays created during the day are picked up by the
SET-CBT-ACHO > ACCOUNT ACH PROCESSING JOB in the middle of the day (3:15 pm).
This job creates the Phone Pay fee (FPHP) (The payment batch is created by the same job).
The payments, which post later in the day, get allocated to the FPHP.

On the test environment, the tool posts transactions including Phone pay payments for the
entire day. The SET-CBT-ACHO > ACCOUNT ACH PROCESSING JOB runs AFTER the tool
posting is complete. When the payment hits the account, the FPHP is not present on the
account. This results in: -

$7 - additional Principal (ADV) being paid

$.01 - less interest being accrued since additional principal has been paid

8-2

Testing Tool Test Cases

Table 9-1 Testing Tool Test Cases

Module Function Sl. No Test cases
Origination 1 Direct loan
App Entry 2 Indirect loan
3 With CRB pull
4 Without CRB pull
5 Application in different stages: New

Review Required, Auto Approved,
Approved Blank, Approved
Verifying, Approved Verified

Funding 6 Loan with Insurances
7 Loan without Insurances
8 Loan with Dealer's commission
9 PreCompute loan
10 Simple interest loan
Customer Service 11 Back dated payment posting across
billing for Simple Interest Loan.
Payments 12 Back dated payment reversal

across billing for Simple Interest
Loan Payment reversal from
Payment Maintenance screen.

13 Back dated payment reversal
across hilling for Simple Interest
Loan Already existing payment.
Payment reversal from Payment
Maintenance screen.

14 Back dated payment posting across
billing for PreCompute Loan.

15 Back dated payment reversal
across billing for PreCompute Loan
Payment reversal from Payment
Maintenance screen.

16 Back dated payment reversal
across bhilling for PreCompute Loan
Already existing payment. Payment
reversal from Payment
Maintenance screen.

17 Overpayment to an account within
tolerance.

18 Overpayment to an account outside
tolerance.

19 Erroneous Payment Batch posting.

20 ACH Payment Batch posting.

ORACLE o1

Chapter 9

Table 9-1 (Cont.) Testing Tool Test Cases

|
Module Function Sl. No Test cases

21 Post backdated payment across
billing and NSF the same. NSF
from Payment Maintenance screen.

22 NSF already existing payment.
NSF from Payment Maintenance
screen.

23 Create a Payment Batch and Hold
the same.

24 Erroneous Payment Batch posting.

Correct the same erroneous
transaction and repost successfully.

Already existing erroneous
Payment Batch posting. Correct the
same erroneous transaction: Add
one row Update one row for date
as well as for amount and repost
successfully.

Already existing Open/Hold
payment batch: Add one row
Remove one row Update one row
for date as well as for amount and
repost successfully.

25 Create open Payment Batch and
posting the same by running SET-
LBT: PAYMENT POSTING

Payments Combinations 26 Create sequence of Payment Batch
& post the same, having mix of
valid and erroneous batches. Few
erroneous payment batches not
corrected and reposted and few
corrected and reposted.

27 Post payments thru lock box with
the ach file having:

* non-existing a/c no

* closed alc

* alc having payment hold
condition

e alc having non-accrual
condition, and txn date for the
payment is before non-accrual

Correct the erroneous payment
batches (suspense payments) and
repost it.

Reverse the payments:

* posted correctly first time
» corrected and reposted

28 Post the already existing hold
payment batch. Reverse the
payment.

ORACLE 9.0

Chapter 9

Table 9-1 (Cont.) Testing Tool Test Cases

|
Module Function Sl. No Test cases

29 Create an erroneous payment
batch. Correct the payment batch.
Put it on hold. Post the payment
batch. Reverse the payment.

30 Create a payment batch with:
* more than one payments
e correct and incorrect payments
Post the payment batch.

Reverse payments:

« one which was valid initially
e one which was invalid initially

31 Crete payment batches with:

e more than one payments

e correct and incorrect payment
batches

Run the SET-LBT batch job.
Reverse the payments:

* one which was valid initially

e one which was invalid initially

Transactions 32 PreCompute loan put into non-

performing.

33 PreCompute loan to Simple
Interest conversion.

34 Simple Interest loan put into non-
performing.

35 Work order Service Expense
assessment.

36 Post Extension.

37 Post Due Date Change.

38 Charge off an account.

39 Pay off an account.

40 Insurance cancellation on a
PreCompute loan aJ/c.

41 Insurance cancellation on a Simple
Interest loan a/c.

42 Waive Late Charge on an a/c.

43 Waive Advance on an a/c.

44 Waive Interest on an a/c.

45 Reduce Interest Rebate for
PreCompute loan a/c.

46 A/c Monetary maintenance on an

alc to change the advance, rate,
payment amount and maturity
dates.

47 Account Due Paid Amount
Maintenance posted on an a/c to
update the amount paid in due
buckets 1 through 4

ORACLE 0.3

Chapter 9

Table 9-1 (Cont.) Testing Tool Test Cases

Module Function Sl. No Test cases

48 Post any of the non-monetary
transaction.

49 Reverse any of the already existing
monetary transaction.

50 Post and reverse any of the
monetary transaction.

51 Reverse the charge off transaction
for an a/c already charged off.

52 Post and reverse the charge off
transaction.

53 Reverse the paid off transaction for
an a/c already paid off.

54 Post and reverse the paid off
transaction.

55 Post a monetary erroneous
transaction from maintenance
screen.

56 Post a non-monetary erroneous
transaction from maintenance
screen.

57 Post an erroneous monetary

transaction for which we get the
error result in the results pane,
correct the same and repost
successfully.

58 Post an erroneous monetary
transaction for which we get the
popup error message, correct the
same and repost successfully.

59 Void any monetary transaction.

60 Void any non-monetary transaction.
Transactions 61 Put a PreCompute loan into non-
Combinations performing.

Convert the same to Simple
Interest.

Put the converted loan into non-
performing.

ORACLE 0.4

Chapter 9

Table 9-1 (Cont.) Testing Tool Test Cases

Module Function Sl. No Test cases
62 Sequence of monetary transactions
from maintenance screen, having
mix of:

e erroneous monetary
transaction, for which we get
the error result in the results
pane

» successful non-monetary
transactions

* erroneous monetary
transaction, for which we get
the error result in the results
pane, corrected and reposted
successfully

e erroneous transactions for
which we get the popup error
message

e erroneous transactions for
which we get the popup error
message, corrected and
reposted successfully

e void monetary transactions

e successful monetary
transactions

Full Run 63 . Fund a new backdated loan
from scratch.

* Post payments.
* Post monetary transactions.

* Post non-monetary
transactions.

ORACLE o5

For Next Releases

Though the Testing Tool is totally dynamic and automates the tests by logging all actions
executed on a Production environment, then replicating them in a Test environment, which will
have a higher version of OFSLL. This tool still requires technical people, with technical
knowledge of OFSLL processes and architecture to be installed and run. For future releases,
we can create an installation package and a user friendly front end in order to users to be able
to do all the tests independently. Also, some of the current exceptions and limitations could be
worked on in order to incorporate to the tool’s functionalities.

ORACLE 101

Glossary

ORACLE Glossary-1

	Contents
	1 Regressions testing tool
	2 Scope
	2.1 Origination
	2.2 Customer Service

	3 Architecture / Technical Design
	4 Steps to Clone Base OFSLL Environment
	5 Automated Testing Procedure
	6 Validations and Checks
	7 Comparing Results
	8 Testing Tool Exceptions
	8.1 Scenario 1
	8.2 Scenario 2 – This scenario results in an exception due to mismatch of balances

	9 Testing Tool Test Cases
	10 For Next Releases
	Glossary

