
Oracle® Banking Microservices
Architecture
Containerization Guide

Release 14.7.1.0.0
F77008-01
May 2023

Oracle Banking Microservices Architecture Containerization Guide, Release 14.7.1.0.0

F77008-01

Copyright © 2018, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Technologies

2 Containerization

3 Oracle Banking Microservices Architecture Products Deployment
Approaches

3.1 Containerization of the Services Using Tomcat 3-1

3.1.1 Using Jib Plugin and Tomcat Image 3-1

3.1.2 Pipeline Integration in Jenkins 3-2

3.1.3 Using War Artifacts Delivered in OSDC 3-4

3.2 Containerization of the Services Using WebLogic 3-6

3.2.1 Using Pre-Built WebLogic Images 3-6

3.2.2 Run WebLogic Containers Using WebLogic Kubernetes Operator 3-7

3.3 Deploying Services without Docker Images 3-7

3.3.1 Deploying Applications to Tomcat without Docker Images 3-8

3.3.2 Deploying Applications to WebLogic without Docker Images 3-8

3.4 Deploying Services on Private Cloud using Docker Images 3-9

Index

iii

Preface

• Purpose

• Audience

• Acronyms and Abbreviations

• List of Topics

• Related Documents

Purpose
This guide provides the information on how to deploy Oracle Banking Microservices
Architecture products by creating a Docker image and deploying it in a Docker
container or inside a Kubernetes (K8) cluster.

Audience
This guide is intended for WebLogic admin or ops-web team who are responsible for
installing OFSS Banking Products. The user of the guide should have pre-acquired
skills in the below technologies to perform the steps mentioned in this guide:

• Docker

• Kubernetes

• Jenkins

Acronyms and Abbreviations
The list of the acronyms and abbreviations that are used in this guide are as follows:

Table Acronyms and Abbreviations

Abbreviation Description

OSDC Oracle Software Delivery Cloud

DDL Data Definition Language

DML Data Manipulation Language

List of Topics
This guide is organized as follows:

Table List of Topics

Topics Description

Technologies This topic provides information about the Technologies.

Containerization This topic provides information about the
Containerization.

Purpose

4

Table (Cont.) List of Topics

Topics Description

Oracle Banking Microservices
Architecture Products
Deployment Approaches

This topic provides information about Oracle Banking
Microservices Architecture Products deployment
approaches.

Related Documents
For more information, refer to the following documents:

• Product Installation Guide

Related Documents

5

1
Technologies

This topic describes about the various technologies used in Oracle Banking Microservices
Architecture.

Docker

Images and Containers
An image is a read-only template with instructions for creating a Docker container and an
image is based on another image.

A container is a standard unit of software that packages up code and all its dependencies.
Hence, the application runs quickly and reliably from one environment to another.

A Docker Container Image is a lightweight, standalone, executable package of software that
includes everything needed to run an application such as code, runtime, system tools, system
libraries, and settings.

Container images become containers at runtime and for Docker containers, the images
become containers when they run on the engine. Containers are available for both Linux and
Windows-based applications. The containerized software always runs the same code,
regardless of the infrastructure. The container isolates software from its environment and
ensures that it works uniformly despite differences for instance between Development,
Staging, and Production.

Kubernetes (K8)

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and
management of containerized applications. It groups the containers that makes an application
into logical units for easy management and discovery.

1-1

2
Containerization

This topic describes about the various containerization process.

Docker Registry

A Docker registry is a service for storing and retrieving the Docker images. A registry
contains a collection of one or more Docker image repositories. Each image repository
contains one or more tagged images. The Docker provides its own registry and the Docker
Hub, but users can also use private or third-party registries.

Note:

The user must self register in Oracle Container Registry to access the images
located in this registry.

Database

The Database is not included inside the Docker and the database feature should be used for
High availability.

Building Image

The process of building an image is below:

2-1

https://container-registry.oracle.com/ords/f?p=113:10::::::

Figure 2-1 Build Image

Image Creation
Image layered consists of the following components:

• Operating System Linux from provider Container Registry

• Java Runtime from provider Container Registry

• Application Server from provider Container Registry

• Applications from Oracle Banking Microservice Architecture product installer

Chapter 2

2-2

Figure 2-2 Image Components

Update Image for Patch/Customization
The modified image layered consists of the following components.

Note:

The image needs to be updated from local Container Registry.

Chapter 2

2-3

Figure 2-3 Modified Image Components

Chapter 2

2-4

3
Oracle Banking Microservices Architecture
Products Deployment Approaches

This topic describes about the various approaches to deploy the Oracle Banking
Microservices Architecture products.

• Containerization of the Services Using Tomcat
This topic describes about the various methods that can be used to containerize a
service in the Oracle Banking Microservices Architecture Product stack.

• Containerization of the Services Using WebLogic
This topic describes about the various options to build the service containers using
Oracle Weblogic images.

• Deploying Services without Docker Images
This topic describes about the process to deploy product services without Docker
images.

• Deploying Services on Private Cloud using Docker Images
This topic describes about the process to deploy the services on private cloud using
docker images.

3.1 Containerization of the Services Using Tomcat
This topic describes about the various methods that can be used to containerize a service in
the Oracle Banking Microservices Architecture Product stack.

• Using Jib Plugin and Tomcat Image
This topic provides the systematic instructions to create the Docker image using Jib
Plugin and Tomcat image.

• Pipeline Integration in Jenkins
This topic describes about the pipeline integration in Jenkins.

• Using War Artifacts Delivered in OSDC
This topic describes about the usage of War Artifacts delivered in OSDC.

3.1.1 Using Jib Plugin and Tomcat Image
This topic provides the systematic instructions to create the Docker image using Jib Plugin
and Tomcat image.

This approach uses the google Jib plugin to integrate the creation of Docker images along
with gradle build. This approach can be used to create Docker images of components where
the consulting or customer teams have access to code generated using the Oracle Banking
Microservices Architecture Extensibility framework.

1. Update to build.gradle to include Jib plugin.

id 'com.google.cloud.tools.jib' version '2.6.0'

3-1

2. Add the Jib task in build.gradle.

jib {
 from {
 image = 'tomcat:<tag>'
 }
 to {
 auth{
 //it is ideal to use credHelper value here instead of
username/passwd if it is configured using the below line //
credHelper = '<credHelper_value>', else username/password to the //
registry can be used
 username = 'docker_registry_username'
 password = 'docker_registry_passwork'
 }
 image = <docker_registry_name>/<image_name:image_version>'
 }
 container {
 appRoot = '/usr/local/tomcat/webapps/ROOT'
 }
}

tasks {
 build {
 dependsOn(tasks.jib)
 }
}

3. Run the Gradle build using the command $ gradlew clean build.

4. Test the Docker image as follows:

a. Login to Registry using Docker login ‘registry_name’.

b. Pull the image from repository using docker pull <docker_registry_name>/
<image_name:image_version>.

c. Run the docker image using docker run -d -p 80:8080:
<docker_registry_name>/<image_name:image_version>.

d. To pass env variable to your service to start, use the below options.

• docker run -d -p <port> -v <Host Path>:/opt/logs/ <image> -e
ds_jndi_1=jdbc/PLATO ds_db_host_1=<DBHOST>
ds_db_port_1=<DB_HOST_PORT> ds_db_serviceid_1=<SID>
ds_db_username_1=<USERNAME> ds_db_password_1=<PASSWORD>

• docker run -d -v <Host Path>:/opt/logs/ --env-file <file> <image>

3.1.2 Pipeline Integration in Jenkins
This topic describes about the pipeline integration in Jenkins.

The Docker image creation using Jib plugin can be automated in the Continuous
Integration pipeline. The Continuous Integration pipeline is used to run automated
tasks that build a source code at preconfigure intervals to enable build automation for
an application. The Jenkins Pipeline can be enhanced to support the automated
deployment of Docker images in a Continuous Deployment pipeline.

Chapter 3
Containerization of the Services Using Tomcat

3-2

Prerequisites

Before proceeding, make sure that the below installations and configurations are done.

• Jenkins installation

• Docker engine installation on Jenkins VM

• Network connectivity between docker registry and Jenkins VM

• Gradle plugin for Jenkins installation

• CredHelper Configuration

Automated Build – Continuous Integration

The gradel build step should be added as a stage in Jenkins to trigger the automated build for
a service. This results in the image being created and pushed to the mentioned Docker
registry.

stage('Build and Publish Docker Image') {
 steps {
 script {
 /* provide the Dockerfile and the context of the build which is the
directory which contains the Dockerfile */
 def image = docker.build(docker_image_name, "-f " + dockerfile_path +
"/Dockerfile " + dockerfile_path)
 /* once the image is complete, this runs the image and you can verify
if the image is correct by adding tests */
 image.inside {
 sh 'echo "Put Tests for your new image here"'
 }
 /* Replace the docker repo with your repo and the login with a cre-
dential in
 your Jenkins that has permission to push to your docker repo */
 docker.withRegistry('https://' + docker_registry + '/v2/',
docker_registry_login)
 {
 image.push(docker_image_version)
 }
 }
 }
}

Automated Deployment – Continuous Deployment

This topic describes about automated deployment for Continuous Deployment.

The codes used to auto-deploy an image on a VM with a vanilla Docker installation is detailed
in the below Jenkins file.

 def docker_image_name = "<image_name:image_version>"
 def remote = [:]
 remote.name = "dkx"
 remote.host = "<docker_hostname>"

Chapter 3
Containerization of the Services Using Tomcat

3-3

 remote.allowAnyHosts = true
 remote.user = "<username>"
 remote.password = "<passwd>"

 stage('Login to remote box') {
 steps {
 withCredentials([usernamePassword(credentialsId: 'sshUserAcct',
 passwordVariable: 'password', usernameVariable: 'userName')]) {
 sshCommand remote: remote, command: 'docker pull
 <docker_registry_name>/' + docker_image_name
 sshCommand remote: remote, command: 'docker run -d -p 80:8080
 <docker_registry_name>/' + docker_image_name
 }
 }
 }

3.1.3 Using War Artifacts Delivered in OSDC
This topic describes about the usage of War Artifacts delivered in OSDC.

This approach used if a consulting or partner installation team does not have access to
the source code service and need to containerize product applications. This approach
uses war files shipped under the Product Installer in the OSDC portal. This topic
describes the individual steps to create docker images for each service.

Prerequisites

Before proceeding, make sure that the below steps are done.

• Make sure that the Docker Engine is up and running on the VM to perform the
following operations.

• Make sure that the Proxy setting in /etc/environment file is updated using root
permissions.

Create Docker file in Tomcat

Create a sample Docker file as follows:

1. Create a separate directory structure for each service.
$mkdir <service_name>/docker
$cd <service_name>/docker

2. Copy the service's war file from the installer to the path <service_name>/docker.
$cp <service_name>.war <service_name>/docker/

3. Create a Docker file in the docker directory for the service.
$vi Dockerfile

Note:

Services Dockerfile should have "tomcat:<tag_name>" as a base image.
FROM tomcat:<tag>

Chapter 3
Containerization of the Services Using Tomcat

3-4

4. Pass the appropriate build arguments to docker.

ARG application_context=<application context name>
ARG war_file_name=<microservices war file name>
ARG shutdown_port=<tomcat server shutdown port value>
ARG http_port=<tomcat server http port value>
ARG redirect_port=<tomcat server redirect port value>
ARG ajp_port=<tomcat server redirect port value>

application_context - This value represents the context root of the Plato application.
This value must be passed as an argument in the docker file.
war_file_name - This value represents the name of the war file of the application that is
present in the local system where the docker image is being built

shutdown_port - This value represents the shutdown port in the Tomcat server.

http_port - This value represents the HTTP port on which the application will be
available for accessing via REST API.

redirect_port - This value represents the redirect port in the Tomcat server.

ajp_port - This value represents the AJP port in the Tomcat server.

Note:

The port values are not mandatory to give in case the docker image is getting
built for deployment in Kubernetes but it is mandatory in case of docker-
compose because the container port values should unique for the same. The
port values are not passed/mentioned in the Docker file then the default will be
used for while building the image.

5. Expose the container http_port
EXPOSE <http_port>

6. The completed services's Docker file is shown below.

ARG application_context=plato-discovery-service
ARG war_file_name=plato-discovery-service-1.0.3.war
ARG shutdown_port=5008
ARG http_port=5005
ARG redirect_port=5007
ARG ajp_port=5006

COPY plato-discovery-service-1.0.3.war /usr/local/tomcat/webapps/
EXPOSE 5005
CMD["catalina.sh", "run"]

Test the Docker Image

Perform the following steps to test the Docker Image:

1. Run the Docker image using the below option:

• docker run -d -p 80:8080 <docker_registry_name>/
<image_name:image_version>

Chapter 3
Containerization of the Services Using Tomcat

3-5

2. To pass env variable to your service use the below options:

• docker run -d -p <port> -v <Host Path>:/opt/logs/ <image> -e
ds_jndi_1=jdbc/PLATO
ds_db_host_1=<DBHOST> ds_db_port_1=<DB_HOST_PORT>
ds_db_serviceid_1=<SID>
ds_db_username_1=<USERNAME> ds_db_password_1=<PASSWORD>

• docker run -d -v <Host Path>:/opt/logs/ --env-file <file> <image>

3.2 Containerization of the Services Using WebLogic
This topic describes about the various options to build the service containers using
Oracle Weblogic images.

• Using Pre-Built WebLogic Images
This topic describes about the steps to deploy the services on a WebLogic Server
running in a Docker container.

• Run WebLogic Containers Using WebLogic Kubernetes Operator
This topic describes the process to run WebLogic containers using WebLogic
Kubernetes operator.

3.2.1 Using Pre-Built WebLogic Images
This topic describes about the steps to deploy the services on a WebLogic Server
running in a Docker container.

Prerequisites

Before proceeding, make sure that the below steps are completed.

• Make sure that the proxy settings is verified on the VM where Weblogic image
need to run.

• Make sure that the user is logged in to the Oracle Container Registry portal, and
accept the license agreements before pulling the Docker images.

• Sudo access to the VM to run commands as root.
Create a file domain.properties with username="" and password="".

Pull the WebLogic Docker Image

Run the following command:

docker pull container-registry.oracle.com/middleware/weblogic:12.2.1.4

Run the WebLogic Image

Run the following command:

docker run -d -p 7002:7001 -p 9004:9002 -v $PWD:/u01/oracle/properties
container-registry.oracle.com/middleware/weblogic:12.2.1.3

Chapter 3
Containerization of the Services Using WebLogic

3-6

https://container-registry.oracle.com/

Deploy the Application

Access the console at <hostname>:9004/console with admin credentials and deploy the
service.

Create Domains in WebLogic and Deploy the Applications

Deploy the application in custom domains. For information on deploying applications, refer to
the below documentation:

https://github.com/oracle/docker-images/tree/main/OracleWebLogic/samples/12213-domain-
home-in-image

3.2.2 Run WebLogic Containers Using WebLogic Kubernetes Operator
This topic describes the process to run WebLogic containers using WebLogic Kubernetes
operator.

Prerequisites

Before proceeding, ensure that the below installation is done.

• Docker engine installation

• Kubernetes cluster

• Access to Kubernetes operator

Install and Manage WebLogic Domains using Kubernetes Operator

An operator is an application-specific controller that extends Kubernetes to create, configure,
and manage instances of complex applications. The Oracle WebLogic Server Kubernetes
Operator simplifies the management and operation of WebLogic domains and deployments.

For information on installation and management of weblogic domains, refer to https://
oracle.github.io/weblogic-kubernetes-operator/.

3.3 Deploying Services without Docker Images
This topic describes about the process to deploy product services without Docker images.

• Deploying Applications to Tomcat without Docker Images
This topic describes about the process to deploy the applications to Tomcat without
docker images.

• Deploying Applications to WebLogic without Docker Images
This topic describes about the process to deploy the applications to WebLogic without
docker images.

Chapter 3
Deploying Services without Docker Images

3-7

https://github.com/oracle/docker-images/tree/main/OracleWebLogic/samples/12213-domain-home-in-image
https://github.com/oracle/docker-images/tree/main/OracleWebLogic/samples/12213-domain-home-in-image
https://oracle.github.io/weblogic-kubernetes-operator/
https://oracle.github.io/weblogic-kubernetes-operator/

3.3.1 Deploying Applications to Tomcat without Docker Images
This topic describes about the process to deploy the applications to Tomcat without
docker images.

Prerequisites

Make sure that the below installation is done.

• Tomcat installation

• Jenkins installation

Manual deployment

1. Download and place the individual war files for services in a common directory.

2. Follow the steps in the below link to deploy the individual service wars.

https://tomcat.apache.org/tomcat-10.0-doc/deployer-howto.html

Deployment using scripts

Alternatively, the war files can be configured to be deployed using a Jenkins pipeline.
The deploy to container plugin should be used for configuration.

3.3.2 Deploying Applications to WebLogic without Docker Images
This topic describes about the process to deploy the applications to WebLogic without
docker images.

Prerequisites

Make sure that the below installation is done.

• WebLogic installation

• Jenkins installation

Manual Deployment

Perform the following steps:

1. Download and place the individual war files for services in a common directory.

2. Follow the steps in the below link to deploy the individual service wars.

https://docs.oracle.com/cd/E19424-01/820-4807/war-weblogic/index.html

Deployment using Jenkins

Alternatively, the war files can be configured to be deployed using a Jenkins pipeline.
The Deploy WebLogic should be used for configuration. It is recommended to see if
the version of the plugin has any vulnerabilities.

Chapter 3
Deploying Services without Docker Images

3-8

https://tomcat.apache.org/tomcat-10.0-doc/deployer-howto.html
https://docs.oracle.com/cd/E19424-01/820-4807/war-weblogic/index.html

3.4 Deploying Services on Private Cloud using Docker Images
This topic describes about the process to deploy the services on private cloud using docker
images.

When deploying the services on Docker image in the private cloud, it is important to build
custom images of WebLogic and Tomcat using openjdk 8 unless the appropriate license
requirements are met with the built jdk versions in WebLogic.

For WebLogic, refer to https://github.com/oracle/docker-images/tree/main/OracleWebLogic
and follow the steps to build the base WebLogic images.

For Tomcat, refer to https://hub.docker.com/_/tomcat and follow the steps to build the base
tomcat images.

The pre-built OpenJDK 8 image is available in this link.

Chapter 3
Deploying Services on Private Cloud using Docker Images

3-9

https://github.com/oracle/docker-images/tree/main/OracleWebLogic
https://hub.docker.com/_/tomcat

Index

A
Automated Build – Continuous Integration, 3-3
Automated Deployment – Continuous

Deployment, 3-3

B
Building Image, 2-1

C
Containerization, 2-1
Containerization of the Services Using Tomcat,

3-1
Containerization of the Services Using WebLogic,

3-6

D
Database, 2-1
Deploying Applications to Tomcat without Docker

Images, 3-8
Deploying Applications to WebLogic without

Docker Images, 3-8
Deploying Services on Private Cloud using

Docker Images, 3-9
Deploying Services without Docker Images, 3-7
Docker, 1-1
Docker Registry, 2-1

I
Images and Containers, 1-1

Install and Manage WebLogic Domains using
Kubernetes Operator, 3-7

K
Kubernetes (K8), 1-1

O
Oracle Banking Microservices Architecture

Products Deployment Approaches, 3-1

P
Pipeline Integration in Jenkins, 3-2
Pull the WebLogic Docker Image, 3-6

R
Run WebLogic Containers Using WebLogic

Kubernetes Operator, 3-7

T
Technologies, 1-1

U
Using Jib Plugin and Tomcat Image, 3-1
Using Pre-Built WebLogic Images, 3-6
Using War Artifacts Delivered in OSDC, 3-4

Index-1

	Contents
	Preface
	Purpose
	Audience
	Acronyms and Abbreviations
	List of Topics
	Related Documents

	1 Technologies
	2 Containerization
	3 Oracle Banking Microservices Architecture Products Deployment Approaches
	3.1 Containerization of the Services Using Tomcat
	3.1.1 Using Jib Plugin and Tomcat Image
	3.1.2 Pipeline Integration in Jenkins
	3.1.3 Using War Artifacts Delivered in OSDC

	3.2 Containerization of the Services Using WebLogic
	3.2.1 Using Pre-Built WebLogic Images
	3.2.2 Run WebLogic Containers Using WebLogic Kubernetes Operator

	3.3 Deploying Services without Docker Images
	3.3.1 Deploying Applications to Tomcat without Docker Images
	3.3.2 Deploying Applications to WebLogic without Docker Images

	3.4 Deploying Services on Private Cloud using Docker Images

	Index

