
Oracle® Banking Microservices
Architecture
Observability User Guide

Release 14.7.4.0.0
F98121-01
June 2024

Oracle Banking Microservices Architecture Observability User Guide, Release 14.7.4.0.0

F98121-01

Copyright © 2018, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose v

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Resources v

Conventions vi

Acronyms and Abbreviations vi

Prerequisites vi

General Prevention vi

Best Practices vi

1 Observability Improvements using Zipkin Traces

1.1 Setting Zipkin Server 1-1

1.2 Troubleshooting Zipkin 1-1

1.3 Zipkin Issues 1-4

1.3.1 Application Service is not Registered 1-4

1.3.2 404 Error 1-6

1.3.3 Unable to Change Zipkin Default Port Number 1-7

2 Observability Improvements Logs using ELK Stack

2.1 Introduction 2-1

2.2 Architecture 2-1

2.3 Setting up ELK Stack 2-2

2.3.1 Run ELK Stack 2-3

2.3.1.1 Start Elastic Search 2-4

2.3.1.2 Setup and Start Logstash 2-4

2.3.1.3 Setup and Start Kibana 2-5

2.3.2 Access Kibana 2-6

2.3.3 Kibana Logs 2-7

iii

3 Health Checks

3.1 Discovery Health Check 3-1

3.2 Actuator Health Indicator Endpoint 3-1

3.2.1 Generic Service 3-1

3.2.2 Kafka Consumers and Producers 3-3

4 Troubleshooting Kafka Issues

4.1 Kafka Health 4-1

4.1.1 Verify Kafka Health 4-1

4.1.2 Verify Zookeeper Health 4-1

4.2 Prometheus and Grafana 4-1

4.2.1 Prometheus Setup 4-1

4.2.2 JMX-Exporter Setup 4-1

4.2.3 Grafana Setup 4-2

4.2.4 Prometheus Metrics 4-2

5 Troubleshooting Flyway Issues

5.1 Failed Migrations 5-1

5.1.1 Success Column Verification 5-1

5.1.2 Migration Checksum Mismatch for a Version 5-1

5.1.3 Placeholder errors 5-1

Index

iv

Preface

Purpose
This guide helps to use the tools that enable users to observe the Oracle Banking
Microservices Architecture suite of products better.

The sections provide tools that can enable a user to:

• Observe the spans associated with various API calls and the response of each API.

• Troubleshoot Kafka better.

• Aggregate logs and interpret out of log searches.

This guide also describes recommended tools to enhance monitoring and observability aspects
of the Oracle Banking Microservices Architecture products.

Audience
This guide is intended for the implementation teams.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
The related documents are as follows:

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Banking Getting Started User Guide

• Troubleshooting Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Acronyms and Abbreviations
The list of the acronyms and abbreviations that you are likely to find in the guide are as follows:

Table 1 Acronyms and Abbreviations

Abbreviation Description

API Application Programming Interface

ELK Elasticsearch Logstash Kibana

UI User Interface

URL Uniform Resource Locator

Prerequisites
The prerequisites are as follows:

• Basic understanding of Eventing platform.

• Basic understanding application log analysis using tools.

• Basic understanding DB changes.

General Prevention
Do not make any changes to Flyway scripts manually.

Best Practices
The best practices are as follows:

• It is ideal to have ELK stack installed on a separate VM outside the product VMs to ensure
flow of logs in case of app crash.

• Log levels can be adjusted to INFO and above to enable relevant logs to flow in.

• Verify all Kafka settings as per User Troubleshooting Guide before the health check.

Preface

vi

1
Observability Improvements using Zipkin
Traces

This topic describes the troubleshooting procedures using the Zipkin Traces.

1.1 Setting Zipkin Server
This topic provides the information to install and setup Zipkin server.

Zipkin works as an independent application, and it can be downloaded as a runnable jar from
the official website of Zipkin https://zipkin.io/ The latest version of Zipkin needs a Java version
above 8.

The direct download link of jar is https://search.maven.org/remote_content?
g=io.zipkin&a=zipkin-server&v=LATEST&c=exec

• The downloaded jar can be executed using the java –jar JAR_NAME command.

• The configuration of Zipkin can be done environment variables. The port of the Zipkin can
be set using QUERY_PORT environment variable.

• The application starts on the port number assigned for QUERY_PORT environment
variable or its default value of 9411. The web UI of Zipkin can be accessed at http://
localhost:PORT.

1.2 Troubleshooting Zipkin
This topic provides the systematic instructions to troubleshooting using Zipkin Traces.

1. Launch the Zipkin URL.

The Layout of Zipkin screen displays.

Figure 1-1 Layout of Zipkin

2. Use Search to find the traces of required API calls and services.

The List of Traces screen displays.

1-1

https://zipkin.io/
https://search.maven.org/remote_content?g=io.zipkin&a=zipkin-server&v=LATEST&c=exec
https://search.maven.org/remote_content?g=io.zipkin&a=zipkin-server&v=LATEST&c=exec

Figure 1-2 List of Traces

Note:

The search options given in the user interface are self-explanatory, and there is
another UI option (Try Lens UI). It is given a different user interface with the
same functionality. The list of the traces can be seen as shown in the above
screen. Error API calls are made to showcase how to track errors. The blue
listing shows the successful API hits, and the red listing indicates the errors.
Each block indicates a single trace in the listing.

3. Open an individual trace to view the details of the trace.

The Individual Trace screen displays.

Figure 1-3 Individual Trace

Note:

Individual Trace describes the time taken for each block. As the two custom
spans are created inside two service calls, user can find a total of four blocks.
The time taken for an individual block is shown in the above screen.

Chapter 1
Troubleshooting Zipkin

1-2

4. Click an individual block to display the details.

The Details of Individual Block screen displays.

Figure 1-4 Details of Individual Block

Note:

The user can also view the span block details and logging events in the Zipkin UI
as small circular blocks. An example of an error log is shown in the below screen.

Figure 1-5 Sample Error Log

5. Click the error portion to get clear details and place of the error.

The Details of Error screen displays.

Chapter 1
Troubleshooting Zipkin

1-3

Figure 1-6 Details of Error

Note:

If the Lens UI is used in Zipkin, the above figures are not applicable but are
relatable to the Lens UI as well. Traces of the application can be found using
TraceId. The TraceId can be found in the debug logs of the deployment when
spring-cloud-sleuth is included in the dependencies (included in spring-cloud-
starter-Zipkin dependency).

6. Click Dependencies to get the dependency graph information between micro-services.

The Sample Dependency Graph displays.

Figure 1-7 Sample Dependency Graph

1.3 Zipkin Issues
This topic describes the various issues faced in Zipkin.

1.3.1 Application Service is not Registered
This topic describes the systematic instructions to register the application service.

Chapter 1
Zipkin Issues

1-4

1. Check the applications that are sending the trace report to the Zipkin server from Service
Name drop-down list.

Figure 1-8 Find Traces

2. If the required application is not listed in Zipkins, check the application.yml file for Zipkin
base URL configuration.

Figure 1-9 Application.yml File

Note:

The shipped application.yml should have the Zipkin entry. Every service
should have a spring-cloud-sleuth-zipkin dependency added in the build
gradle file for the service to generate and send trace Id and span Id.

3. Specify the necessary values are as follows:

Compile group: org.springframework.cloud
Name: spring-cloud-sleuth-zipkin

Version: 2.1.2.RELEASE

Chapter 1
Zipkin Issues

1-5

Figure 1-10 Branch Common Services

Figure 1-11 Branch Common Services Trace

1.3.2 404 Error
This topic provides the information to troubleshoot the 404 Error in the application.

If there is a 404 error, check if the zipkin-server.jar is running in the system where the
application is deployed. To check this, execute the following command:

netstat -ltnup | grep ':9411'
The output should be like as below:

tcp6 0 0 :::9411 :::* LISTEN 10892/java
Here 10892 is the PID.

Chapter 1
Zipkin Issues

1-6

1.3.3 Unable to Change Zipkin Default Port Number
This topic provides the information to change the Zipkin Default Port Number in the application.

Zipkin default port number is not editable.

Hence, make sure that the port 9411 is available to start Zipkin-server.jar file.

Chapter 1
Zipkin Issues

1-7

2
Observability Improvements Logs using ELK
Stack

This topic describes the troubleshooting procedures using the ELK Stack.

The ELK Stack is a collection of the following open-source products:

• Elasticsearch: It is an open-source, full-text search, and analysis engine based on the
Apache Lucene search engine.

• Logstash: Logstash is a log aggregator that collects data from various input sources,
executes different transitions and enhancements, and then transports the data to various
supported output destinations.

• Kibana: Kibana is a visualization layer that works on top of Elasticsearch, providing users
with the ability to analyze and visualize the data.

These components together are most commonly used for monitoring, troubleshooting, and
securing IT environments. Logstash takes care of data collection and processing,
Elasticsearch indexes and stores the data, and Kibana provides a user interface for querying
the data and visualizing it.

2.1 Introduction
ELK Stack was a collection of the following open-source products:

• Elasticsearch

• Logstash

• Kibana

Elasticsearch is an open source, full-text search, and analysis engine, based on the Apache
Lucene search engine. Logstash is a log aggregator that collects data from various input
sources, executes different transformations and enhancements and then ships the data to
various supported output destinations. Kibana is a visualization layer that works on top of
Elasticsearch, providing users with the ability to analyze and visualize the data.

Together, these different components are most commonly used for monitoring, troubleshooting,
and securing IT environments. Logstash takes care of data collection and processing,
Elasticsearch indexes and stores the data, and Kibana provides a user interface for querying
the data and visualizing it.

2.2 Architecture
This topic describes about architecture.

It provides a comprehensive solution for handling all the required facets.

2-1

Figure 2-1 Architecture

Spring Cloud Sleuth also provides additional functionality to trace the application calls by
providing us with a way to create intermediate logging events. Therefore, Spring Cloud Sleuth
dependency must be added to the applications.

2.3 Setting up ELK Stack
This topic describes the systematic instruction to download, run and access the ELK Stack.

Download ELK Stack

1. Download the Elastic search from https://www.elastic.co/downloads/elasticsearch.

2. Download the Kibana from https://www.elastic.co/downloads/kibana.

3. Download the Logstash from https://www.elastic.co/downloads/logstash.

Chapter 2
Setting up ELK Stack

2-2

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/logstash

Figure 2-2 ELK Setup

Note:

Default port for Elastic search is 9200 and the default port for Kibana is 5601.

2.3.1 Run ELK Stack
This topic describes the systematic instruction to run the ELK Stack.

Perform the following steps:

1. Run the elasticsearch.sh file present in the folder path /scratch/software/ELK/
elasticsearch-6.5.1/bin.

2. Configure the Kibana to point the running instance of elastic search in the kibana.yml file.

3. Follow the below steps to configure the Logstash.

a. Input: This configuration is used to provide the log file location for the Logstash to
read from.

b. Filter: This configuration is used to control or format the read operation (Line by line or
Bulk read).

c. Output: This configuration is used to provide the running elastic search instance to
send the data for persisting.

Chapter 2
Setting up ELK Stack

2-3

Figure 2-3 Logstash Configuration

2.3.1.1 Start Elastic Search
This topic provides systematic instructions to start Elastic Search.

1. Navigate to Elasticsearch root folder.

2. Use nohup to start the Elasticsearch process.

> nohup ./bin/elasticsearch

2.3.1.2 Setup and Start Logstash
This topic provides the systematic instructions to setup and start Logstash.

1. Create a new logstash.conf file that provides the required file parsing and integration for
Elasticsearch.

logstatsh.conf:

#Point to the application logs
input {
 file {
 type => "java"
 path => "/scratch/app/work_area/app_logs/*.log"
 codec => multiline {
 pattern => "^%{YEAR}-%{MONTHNUM}-%{MONTHDAY} %{TIME}.*"
 negate => "true"
 what => "previous"
 }
 }
}
#Provide the parsing logic to transform logs into JSON
filter {
 #If log line contains tab character followed by 'at' then we will tag
that entry as stacktrace
 if [message] =~ "\tat" {
 grok {

Chapter 2
Setting up ELK Stack

2-4

 match => ["message", "^(\tat)"]
 add_tag => ["stacktrace"]
 }
 }

 #Grokking Spring Boot's default log format
 grok {
 match => ["message",
 "(?<timestamp>%{YEAR}-%{MONTHNUM}-%{MONTHDAY}
%{TIME}) %{LOGLEVEL:level} %{NUMBER:pid} --- \[(?<thread>[A-Za-z0-9-]+)\]
[A-Za-z0-9.]*\.(?<class>[A-Za-z0-9#_]+)\s*:\s+(?<logmessage>.*)",
 "message",
 "(?<timestamp>%{YEAR}-%{MONTHNUM}-%{MONTHDAY} %{TIME}) %
{LOGLEVEL:level} %{NUMBER:pid} --- .+? :\s+(?<logmessage>.*)"
]
 }
 # pattern matching logback pattern
 grok {
 match =>
 { "message" => "%{TIMESTAMP_ISO8601:timestamp}\s+%{LOGLEVEL:severity}\s+\
[%{DATA:service},%{DATA:trace},%{DATA:span},%{DATA:exportable}\]\s+\[%
{DATA:environment}\]\s+\[%{DATA:tenant}\]\s+\[%{DATA:user}\]\s+\[%
{DATA:branch}\]\s+%{DATA:pid}\s+---\s+\[%{DATA:thread}\]\s+%{DATA:class}
\s+:\s+%{GREEDYDATA:rest}"
 }
 }
 #Parsing out timestamps which are in timestamp field thanks to previous
grok section
 date {
 match => ["timestamp" , "yyyy-MM-dd HH:mm:ss.SSS"]
 }
 }
 #Ingest logs to Elasticsearch
 output {
 elasticsearch { hosts => ["localhost:9200"] }
 stdout { codec => rubydebug }
 }

2. Start the Logstash process using below command.

>nohup ./bin/logstash -f logstash.conf

2.3.1.3 Setup and Start Kibana
This topic provides the systematic instructions to setup and start Kibana.

1. Navigate to the kibana.yml available under <kibana_setup_folder>/config.

2. Modify the file to include the below:

#Uncomment the below line and update the IP address to your host machine
IP.
server.host: "xx.xxx.xxx.xx"
#Provide the elasticsearch url. If this is running on the same machine

Chapter 2
Setting up ELK Stack

2-5

then you can use the below config as is
elasticsearch.url: "http://localhost:9200"

3. Start the Kibana process using the below command.

>nohup ./bin/kibana

Figure 2-4 Kibana Dashboard

2.3.2 Access Kibana
This topic describes the information to access the kibana.

Figure 2-5 Access Kibana

Chapter 2
Setting up ELK Stack

2-6

2.3.3 Kibana Logs
This topic describes the information to setup, search and export the logs in Kibana.

Setup Dynamic Log Levels in Oracle Banking Microservices Architecture Services
without Restart

The plato-logging-service is dependent on two tables, which needs to be present in the PLATO
schema (JNDI name: jdbc/PLATO). The two tables are as follows:

• PLATO_DEBUG_USERS: This table contains the information about whether the dynamic
logging is enabled to a user for a service. The table will have records, where
DEBUG_ENABLED values for a user and a service have values Y or N, and depending on
that plato-logger will enable dynamic logging.

Figure 2-6 PLATO_DEBUG_USERS

• PLATO_LOGGER_PARAM_CONFIG: This table contains the key-value entries of different
parameters that can be changed at runtime for the dynamic logging.

Figure 2-7 PLATO_LOGGER_PARAM_CONFIG

The values that can be passed are as follows:

– LOG_PATH: This specifies a dynamic logging path for the logging files to be stored.
Changing this in runtime, changes the location of the log files at runtime. If this value is
not passed then by default, the LOG_PATH value is taken from the -D parameter of
plato.service.logging.path.

– LOG_LEVEL: The level of the logging can be specified on runtime as INFO or ERROR
etc. The default value of this can be set in the logback.xml.

– LOG_MSG_WITH_TIME: Making this Y appends the current date into the log file
name. Setting the value of this as N cannot append the current date into the filename.

Search for Logs in Kibana

Search logs in Kibana using https://www.elastic.co/guide/en/kibana/current/search.html.

Export Logs for Tickets

Perform the following steps to export logs:

1. Click Share from the top menu bar.

2. Select the CSV Reports option.

Chapter 2
Setting up ELK Stack

2-7

https://www.elastic.co/guide/en/kibana/current/search.html

3. Click Generate CSV button.

Chapter 2
Setting up ELK Stack

2-8

3
Health Checks

This section describes the possible approaches to monitor health of Oracle Banking
Microservices Architecture services.

3.1 Discovery Health Check
This topic describes about the health status of all the registered services and their instances.

Figure 3-1 Discovery Health Check

3.2 Actuator Health Indicator Endpoint
This topic describes about the Health Status of the Endpoint

3.2.1 Generic Service
To check the health status of any service hit the below endpoint:

http://<Host>:<Port>/context_path/actuator/health
Example:http://localhost:8089/refapp/actuator/health
With headers similar to:

userId: XYZ

appId: PLATOREFAPP

entityId: DEFAULTENTITY

branchCode: 000

3-1

Sample Response:

{
 "status": "UP"
}

To get more detailed health status add following property:

management.endpoint.health.show-details=always
Sample Response:

{
 "status": "UP",
 "components": {
 "binders": {
 "status": "UP",
 "components": {
 "kafka": {
 "status": "UP"
 }
 }
 },
 "clientConfigServer": {
 "status": "UP",
 "details": {
 "propertySources": [
 "refapp-jdbc"
]
 }
 },
 "db": {
 "status": "UP",
 "components": {
 "PLATO_LOGGER_DS": {
 "status": "UP",
 "details": {
 "database": "Oracle",
 "validationQuery": "isValid()"
 }
 },
 "dataSource": {
 "status": "UP",
 "details": {
 "database": "Oracle",
 "validationQuery": "isValid()"
 }
 }
 }
 },
 "discoveryComposite": {
 "status": "UP",
 "components": {
 "discoveryClient": {
 "status": "UP",
 "details": {

Chapter 3
Actuator Health Indicator Endpoint

3-2

 "services": [
 "plato-feed-services",
 "plato-api-gateway",
 "plato-rule-service",
 "refapp"
]
 }
 },
 "eureka": {
 "description": "Remote status from Eureka server",
 "status": "UP",
 "details": {
 "applications": {
 "PLATO-API-GATEWAY": 1,
 "PLATO-RULE-SERVICE": 1,
 "REFAPP": 1,
 "PLATO-FEED-SERVICES": 4,
 }
 }
 }
 }
 },
 "diskSpace": {
 "status": "UP",
 "details": {
 "total": 248031522816,
 "free": 81710915584,
 "threshold": 10485760,
 "exists": true
 }
 },
 "hystrix": {
 "status": "UP"
 },
 "ping": {
 "status": "UP"
 },
 "refreshScope": {
 "status": "UP"
 }
 }
}

3.2.2 Kafka Consumers and Producers
To check the health status of kafka consumers and producers hit the following endpoint:
http://<Host>:<Port>/context_path/actuator/health
To stop discovery service from routing requests to kafka consumers or producers when
connection to kafka is not successful, following flag needs to be set:
eureka.client.healthcheck.enabled=true

Chapter 3
Actuator Health Indicator Endpoint

3-3

4
Troubleshooting Kafka Issues

This topic describes the troubleshooting procedures for the Kafka issues.

4.1 Kafka Health
This topic describes the troubleshooting procedures for the Kafka Health.

4.1.1 Verify Kafka Health
Run the below command and verify: $ netstat -tlnp | grep :9092

Note:

9092 is default port of kafka

4.1.2 Verify Zookeeper Health
Kafka instance will not start if Zookeeper is not yet started.

1. Run the below command and verify.
$ netstat -tlnp | grep :2181 (2181 is default port of zookeeper)
tcp6 0 0 :::2181 :::* LISTEN 19936/java

2. To debug, check if the permissions of Kafka log folder are correct.
The log folder path can be found by looking at the value of the property log.dirs in the
server.properties file of Kafka installation.

4.2 Prometheus and Grafana
This topic describes about the Troubleshooting Kafka issues using Prometheus and Grafana.

4.2.1 Prometheus Setup
Prometheus is an open-source project, which helps monitoring of the applications metrics. It is
widely used for the monitoring of Kafka and its metrics. The installer for Prometheus can be
downloaded Prometheus from https://prometheus.io/download/.

4.2.2 JMX-Exporter Setup
A JMX-Exporter application is used to integrate with the Kafka broker as a Java agent to
expose the values of JMX MBeans as an API. The JMX-Exporter is used by the Prometheus to
fetch the values of the JMX metrics.

Perform the following steps:

4-1

https://prometheus.io/download/

1. Download the latest jmx_prometheus_javaagent jar file from the maven repository in the
Kafka directory along with the bin, config directories.

Note:

This can be used to monitor consumer_laghttps://repo1.maven.org/maven2/io/
prometheus/jmx/jmx_prometheus_javaagent/0.15.0/
jmx_prometheus_javaagent-0.15.0.jar

2. Set the KAFKA_OPTS variable to the desired value to execute the jar as a java agent
export KAFKA_OPTS="$KAFKA_OPTS -javaagent:$PWD/
jmx_prometheus_javaagent-0.15.0.jar=7071:$PWD/kafka-0-8-2.yml"

Note:

You can choose the port according to our preference.

3. Restart Kafka Broker.

4.2.3 Grafana Setup
Perform the following steps:

1. Download Grafana from https://grafana.com/grafana/download in the stand-alone
application mode, and extract its contents.

2. Go to the bin folder in the extracted contents, and start the Grafana server.

Note:

Grafana should start on the default port 3000 (HOST: 3000). The default user
and password for Grafana are admin/admin.

Perform the following steps to integrate Grafana with the Prometheus instance installed:

3. Click on the Grafana logo to open the sidebar.

4. Click Data Sources in the sidebar.

5. Choose Add New.

6. Select Prometheus as the data source.

7. Click Add to test the connection and to save the new data source.

4.2.4 Prometheus Metrics
The Prometheus Metrics are as follows:

• process_cpu_seconds_total.

• http_request_duration_seconds.

• node_memory_usage_bytes.

• http_requests_total.

Chapter 4
Prometheus and Grafana

4-2

https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.15.0/jmx_prometheus_javaagent-0.15.0.jar
https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.15.0/jmx_prometheus_javaagent-0.15.0.jar
https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.15.0/jmx_prometheus_javaagent-0.15.0.jar
https://grafana.com/grafana/download

• process_cpu_seconds_total.

Chapter 4
Prometheus and Grafana

4-3

5
Troubleshooting Flyway Issues

This topic describes the troubleshooting procedures for the flyway issues.

5.1 Failed Migrations
This topic describes about the Troubleshooting procedures for failed migrations.

5.1.1 Success Column Verification
Perform the following steps for the success column verification:

1. Check the flyway_schema_history table to identify the migration record with success
column as ‘0’.

2. Delete the record with status as ‘0.

3. Restart deployment.

5.1.2 Migration Checksum Mismatch for a Version
Perform the following steps for the success column verification:

1. Make sure that the flyway script is not manually updated before deployment.

2. If yes, then replace with original and restart deployment.

5.1.3 Placeholder errors
Pass the placeholder values using setUserOverrides.sh in Weblogic. Alternatively, these
issues can be debugged from Weblogic console during deployment. In addition, the application
specific logs can be verified for further inputs.

5-1

Index

Numerics
404 Error, 1-6

A
Access Kibana, 2-6
Application Service is not Registered, 1-4
Architecture, 2-1

D
Discovery Health Check, 3-1

F
Failed Migrations, 5-1

G
Generic Service, 3-1
Grafana Setup, 4-2

H
Health Checks, 3-1

I
Introduction, 2-1

J
JMX-Exporter Setup, 4-1

K
Kafka Consumers and Producers, 3-3
Kafka Health, 4-1
Kibana Logs, 2-7

M
Migration Checksum Mismatch for a Version, 5-1

O
Observability Improvements Logs using ELK

Stack, 2-1
Observability Improvements using Zipkin Traces,

1-1

P
Placeholder errors, 5-1
Prometheus and Grafana, 4-1
Prometheus Metrics, 4-2
Prometheus Setup, 4-1

R
Run ELK Stack, 2-3

S
Setting up ELK Stack, 2-2
Setting Zipkin Server, 1-1
Setup and Start Kibana, 2-5
Setup and Start Logstash, 2-4
Start Elastic Search, 2-4
Success Column Verification, 5-1

T
Troubleshooting Flyway Issues, 5-1
Troubleshooting Kafka Issues, 4-1
Troubleshooting Zipkin, 1-1

U
Unable to Change Zipkin Default Port Number,

1-7

V
Verify Kafka Health, 4-1
Verify Zookeeper Health, 4-1

Index-1

	Contents
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions
	Acronyms and Abbreviations
	Prerequisites
	General Prevention
	Best Practices

	1 Observability Improvements using Zipkin Traces
	1.1 Setting Zipkin Server
	1.2 Troubleshooting Zipkin
	1.3 Zipkin Issues
	1.3.1 Application Service is not Registered
	1.3.2 404 Error
	1.3.3 Unable to Change Zipkin Default Port Number

	2 Observability Improvements Logs using ELK Stack
	2.1 Introduction
	2.2 Architecture
	2.3 Setting up ELK Stack
	2.3.1 Run ELK Stack
	2.3.1.1 Start Elastic Search
	2.3.1.2 Setup and Start Logstash
	2.3.1.3 Setup and Start Kibana

	2.3.2 Access Kibana
	2.3.3 Kibana Logs

	3 Health Checks
	3.1 Discovery Health Check
	3.2 Actuator Health Indicator Endpoint
	3.2.1 Generic Service
	3.2.2 Kafka Consumers and Producers

	4 Troubleshooting Kafka Issues
	4.1 Kafka Health
	4.1.1 Verify Kafka Health
	4.1.2 Verify Zookeeper Health

	4.2 Prometheus and Grafana
	4.2.1 Prometheus Setup
	4.2.2 JMX-Exporter Setup
	4.2.3 Grafana Setup
	4.2.4 Prometheus Metrics

	5 Troubleshooting Flyway Issues
	5.1 Failed Migrations
	5.1.1 Success Column Verification
	5.1.2 Migration Checksum Mismatch for a Version
	5.1.3 Placeholder errors

	Index

