
Oracle® Banking Microservices
Architecture
Containerization Guide

Innovation Release 14.8.1.0.0
G43748-01
October 2025

Oracle Banking Microservices Architecture Containerization Guide, Innovation Release 14.8.1.0.0

G43748-01

Copyright © 2018, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Technologies

2 Containerization

3 Oracle Banking Microservices Architecture Products Deployment
Approaches

3.1 Containerization of the Services Using Tomcat 1

3.1.1 Using Jib Plugin and Tomcat Image 1

3.1.2 Pipeline Integration in Jenkins 2

3.1.3 Using War Artifacts Delivered in OSDC 4

3.2 Containerization of the Services Using WebLogic 6

3.2.1 Using Pre-Built WebLogic Images 6

3.2.2 Run WebLogic Containers Using WebLogic Kubernetes Operator 7

3.3 Deploying Services without Docker Images 7

3.3.1 Deploying Applications to Tomcat without Docker Images 7

3.3.2 Deploying Applications to WebLogic without Docker Images 8

3.4 Deploying Services on Private Cloud using Docker Images 8

Index

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page i of i

Preface

• Purpose

• Audience

• Before You Begin

• Module Pre-requisite

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Related Resources

• Acronyms and Abbreviations

• Module Post-requisite

Purpose
This guide provides the information on how to deploy Oracle Banking Microservices
Architecture products by creating a Docker image and deploying it in a Docker container or
inside a Kubernetes (K8) cluster.

Audience
This guide is intended for WebLogic admin or ops-web team who are responsible for installing
OFSS Banking Products. The user of the guide should have pre-acquired skills in the below
technologies to perform the steps mentioned in this guide:

• Docker

• Kubernetes

• Jenkins

Before You Begin
Kindly refer to the Getting Started User Guide for information on common functionalities like
login, navigation, and general settings before proceeding with this guide.

Module Pre-requisite
Specify User Id and Password, and login to the Home screen.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 2

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to make sure effective
security, as strongly recommended by Oracle Software Security Assurance.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
For more information, refer to the following documents:

• Product Installation Guide

Acronyms and Abbreviations
The list of the acronyms and abbreviations that are used in this guide are as follows:

Table Acronyms and Abbreviations

Abbreviation Description

OSDC Oracle Software Delivery Cloud

DDL Data Definition Language

DML Data Manipulation Language

Module Post-requisite
After finishing all the requirements, log out from the Home screen.

Critical Patches

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 2

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

1
Technologies

This topic describes about the various technologies used in Oracle Banking Microservices
Architecture.

Docker

Images and Containers
An image is a read-only template with instructions for creating a Docker container and an
image is based on another image.

A container is a standard unit of software that packages up code and all its dependencies.
Hence, the application runs quickly and reliably from one environment to another.

A Docker Container Image is a lightweight, standalone, executable package of software that
includes everything needed to run an application such as code, runtime, system tools, system
libraries, and settings.

Container images become containers at runtime and for Docker containers, the images
become containers when they run on the engine. Containers are available for both Linux and
Windows-based applications. The containerized software always runs the same code,
regardless of the infrastructure. The container isolates software from its environment and
ensures that it works uniformly despite differences for instance between Development, Staging,
and Production.

Kubernetes (K8)

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and
management of containerized applications. It groups the containers that makes an application
into logical units for easy management and discovery.

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 1

2
Containerization

This topic describes about the various containerization process.

Docker Registry

A Docker registry is a service for storing and retrieving the Docker images. A registry contains
a collection of one or more Docker image repositories. Each image repository contains one or
more tagged images. The Docker provides its own registry and the Docker Hub, but users can
also use private or third-party registries.

Note

The user must self register in Oracle Container Registry to access the images located
in this registry.

Database

The Database is not included inside the Docker and the database feature should be used for
High availability.

Building Image

The process of building an image is below:

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 4

https://container-registry.oracle.com/ords/f?p=113:10::::::

Figure 2-1 Build Image

Image Creation
Image layered consists of the following components:

• Operating System Linux from provider Container Registry

• Java Runtime from provider Container Registry

• Application Server from provider Container Registry

• Applications from Oracle Banking Microservice Architecture product installer

Chapter 2

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 4

Figure 2-2 Image Components

Update Image for Patch/Customization
The modified image layered consists of the following components.

Note

The image needs to be updated from local Container Registry.

Chapter 2

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 4

Figure 2-3 Modified Image Components

Chapter 2

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 4

3
Oracle Banking Microservices Architecture
Products Deployment Approaches

This topic describes about the various approaches to deploy the Oracle Banking Microservices
Architecture products.

• Containerization of the Services Using Tomcat
This topic describes about the various methods that can be used to containerize a service
in the Oracle Banking Microservices Architecture Product stack.

• Containerization of the Services Using WebLogic
This topic describes about the various options to build the service containers using Oracle
Weblogic images.

• Deploying Services without Docker Images
This topic describes about the process to deploy product services without Docker images.

• Deploying Services on Private Cloud using Docker Images
This topic describes about the process to deploy the services on private cloud using
docker images.

3.1 Containerization of the Services Using Tomcat
This topic describes about the various methods that can be used to containerize a service in
the Oracle Banking Microservices Architecture Product stack.

• Using Jib Plugin and Tomcat Image
This topic provides the systematic instructions to create the Docker image using Jib Plugin
and Tomcat image.

• Pipeline Integration in Jenkins
This topic describes about the pipeline integration in Jenkins.

• Using War Artifacts Delivered in OSDC
This topic describes about the usage of War Artifacts delivered in OSDC.

3.1.1 Using Jib Plugin and Tomcat Image
This topic provides the systematic instructions to create the Docker image using Jib Plugin and
Tomcat image.

This approach uses the google Jib plugin to integrate the creation of Docker images along with
gradle build. This approach can be used to create Docker images of components where the
consulting or customer teams have access to code generated using the Oracle Banking
Microservices Architecture Extensibility framework.

1. Update to build.gradle to include Jib plugin.

id 'com.google.cloud.tools.jib' version '2.6.0'

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 8

2. Add the Jib task in build.gradle.

jib {
 from {
 image = 'tomcat:<tag>'
 }
 to {
 auth{
 //it is ideal to use credHelper value here instead of username/
passwd if it is configured using the below line // credHelper =
'<credHelper_value>', else username/password to the // registry can be used
 username = 'docker_registry_username'
 password = 'docker_registry_passwork'
 }
 image = <docker_registry_name>/<image_name:image_version>'
 }
 container {
 appRoot = '/usr/local/tomcat/webapps/ROOT'
 }
}

tasks {
 build {
 dependsOn(tasks.jib)
 }
}

3. Run the Gradle build using the command $ gradlew clean build.

4. Test the Docker image as follows:

a. Login to Registry using Docker login ‘registry_name’.

b. Pull the image from repository using docker pull <docker_registry_name>/
<image_name:image_version>.

c. Run the docker image using docker run -d -p 80:8080: <docker_registry_name>/
<image_name:image_version>.

d. To pass env variable to your service to start, use the below options.

• docker run -d -p <port> -v <Host Path>:/opt/logs/ <image> -e ds_jndi_1=jdbc/
PLATO ds_db_host_1=<DBHOST> ds_db_port_1=<DB_HOST_PORT>
ds_db_serviceid_1=<SID> ds_db_username_1=<USERNAME>
ds_db_password_1=<PASSWORD>

• docker run -d -v <Host Path>:/opt/logs/ --env-file <file> <image>

3.1.2 Pipeline Integration in Jenkins
This topic describes about the pipeline integration in Jenkins.

The Docker image creation using Jib plugin can be automated in the Continuous Integration
pipeline. The Continuous Integration pipeline is used to run automated tasks that build a
source code at preconfigure intervals to enable build automation for an application. The
Jenkins Pipeline can be enhanced to support the automated deployment of Docker images in a
Continuous Deployment pipeline.

Chapter 3
Containerization of the Services Using Tomcat

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 8

Prerequisites

Before proceeding, make sure that the below installations and configurations are done.

• Jenkins installation

• Docker engine installation on Jenkins VM

• Network connectivity between docker registry and Jenkins VM

• Gradle plugin for Jenkins installation

• CredHelper Configuration

Automated Build – Continuous Integration

The gradel build step should be added as a stage in Jenkins to trigger the automated build for
a service. This results in the image being created and pushed to the mentioned Docker
registry.

stage('Build and Publish Docker Image') {
 steps {
 script {
 /* provide the Dockerfile and the context of the build which is the
directory which contains the Dockerfile */
 def image = docker.build(docker_image_name, "-f " + dockerfile_path +
"/Dockerfile " + dockerfile_path)
 /* once the image is complete, this runs the image and you can verify
if the image is correct by adding tests */
 image.inside {
 sh 'echo "Put Tests for your new image here"'
 }
 /* Replace the docker repo with your repo and the login with a cre-
dential in
 your Jenkins that has permission to push to your docker repo */
 docker.withRegistry('https://' + docker_registry + '/v2/',
docker_registry_login)
 {
 image.push(docker_image_version)
 }
 }
 }
}

Automated Deployment – Continuous Deployment

This topic describes about automated deployment for Continuous Deployment.

The codes used to auto-deploy an image on a VM with a vanilla Docker installation is detailed
in the below Jenkins file.

 def docker_image_name = "<image_name:image_version>"
 def remote = [:]
 remote.name = "dkx"
 remote.host = "<docker_hostname>"
 remote.allowAnyHosts = true

Chapter 3
Containerization of the Services Using Tomcat

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 8

 remote.user = "<username>"
 remote.password = "<passwd>"

 stage('Login to remote box') {
 steps {
 withCredentials([usernamePassword(credentialsId: 'sshUserAcct',
 passwordVariable: 'password', usernameVariable: 'userName')]) {
 sshCommand remote: remote, command: 'docker pull
 <docker_registry_name>/' + docker_image_name
 sshCommand remote: remote, command: 'docker run -d -p 80:8080
 <docker_registry_name>/' + docker_image_name
 }
 }
 }

3.1.3 Using War Artifacts Delivered in OSDC
This topic describes about the usage of War Artifacts delivered in OSDC.

This approach used if a consulting or partner installation team does not have access to the
source code service and need to containerize product applications. This approach uses war
files shipped under the Product Installer in the OSDC portal. This topic describes the individual
steps to create docker images for each service.

Prerequisites

Before proceeding, make sure that the below steps are done.

• Make sure that the Docker Engine is up and running on the VM to perform the following
operations.

• Make sure that the Proxy setting in /etc/environment file is updated using root
permissions.

Create Docker file in Tomcat

Create a sample Docker file as follows:

1. Create a separate directory structure for each service.
$mkdir <service_name>/docker

$cd <service_name>/docker

2. Copy the service's war file from the installer to the path <service_name>/docker.
$cp <service_name>.war <service_name>/docker/

3. Create a Docker file in the docker directory for the service.
$vi Dockerfile

Note

Services Dockerfile should have "tomcat:<tag_name>" as a base image.
FROM tomcat:<tag>

Chapter 3
Containerization of the Services Using Tomcat

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 8

4. Pass the appropriate build arguments to docker.

ARG application_context=<application context name>
ARG war_file_name=<microservices war file name>
ARG shutdown_port=<tomcat server shutdown port value>
ARG http_port=<tomcat server http port value>
ARG redirect_port=<tomcat server redirect port value>
ARG ajp_port=<tomcat server redirect port value>

application_context - This value represents the context root of the Plato application. This
value must be passed as an argument in the docker file.
war_file_name - This value represents the name of the war file of the application that is
present in the local system where the docker image is being built

shutdown_port - This value represents the shutdown port in the Tomcat server.

http_port - This value represents the HTTP port on which the application will be available
for accessing via REST API.

redirect_port - This value represents the redirect port in the Tomcat server.

ajp_port - This value represents the AJP port in the Tomcat server.

Note

The port values are not mandatory to give in case the docker image is getting built
for deployment in Kubernetes but it is mandatory in case of docker-compose
because the container port values should unique for the same. The port values are
not passed/mentioned in the Docker file then the default will be used for while
building the image.

5. Expose the container http_port
EXPOSE <http_port>

6. The completed services's Docker file is shown below.

ARG application_context=plato-discovery-service
ARG war_file_name=plato-discovery-service-1.0.3.war
ARG shutdown_port=5008
ARG http_port=5005
ARG redirect_port=5007
ARG ajp_port=5006

COPY plato-discovery-service-1.0.3.war /usr/local/tomcat/webapps/

EXPOSE 5005

CMD["catalina.sh", "run"]

Test the Docker Image

Perform the following steps to test the Docker Image:

1. Run the Docker image using the below option:

• docker run -d -p 80:8080 <docker_registry_name>/<image_name:image_version>

2. To pass env variable to your service use the below options:

Chapter 3
Containerization of the Services Using Tomcat

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 5 of 8

• docker run -d -p <port> -v <Host Path>:/opt/logs/ <image> -e
ds_jndi_1=jdbc/PLATO
ds_db_host_1=<DBHOST> ds_db_port_1=<DB_HOST_PORT> ds_db_serviceid_1=<SID>

ds_db_username_1=<USERNAME> ds_db_password_1=<PASSWORD>

• docker run -d -v <Host Path>:/opt/logs/ --env-file <file> <image>

3.2 Containerization of the Services Using WebLogic
This topic describes about the various options to build the service containers using Oracle
Weblogic images.

• Using Pre-Built WebLogic Images
This topic describes about the steps to deploy the services on a WebLogic Server running
in a Docker container.

• Run WebLogic Containers Using WebLogic Kubernetes Operator
This topic describes the process to run WebLogic containers using WebLogic Kubernetes
operator.

3.2.1 Using Pre-Built WebLogic Images
This topic describes about the steps to deploy the services on a WebLogic Server running in a
Docker container.

Prerequisites

Before proceeding, make sure that the below steps are completed.

• Make sure that the proxy settings is verified on the VM where Weblogic image need to run.

• Make sure that the user is logged in to the Oracle Container Registry portal, and accept
the license agreements before pulling the Docker images.

• Sudo access to the VM to run commands as root.
Create a file domain.properties with username="" and password="".

Pull the WebLogic Docker Image

Run the following command:

docker pull container-registry.oracle.com/middleware/weblogic:12.2.1.4

Run the WebLogic Image

Run the following command:

docker run -d -p 7002:7001 -p 9004:9002 -v $PWD:/u01/oracle/properties
container-registry.oracle.com/middleware/weblogic:12.2.1.3

Deploy the Application

Access the console at <hostname>:9004/console with admin credentials and deploy the
service.

Chapter 3
Containerization of the Services Using WebLogic

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 6 of 8

https://container-registry.oracle.com/

Create Domains in WebLogic and Deploy the Applications

Deploy the application in custom domains. For information on deploying applications, refer to
the below documentation:

https://github.com/oracle/docker-images/tree/main/OracleWebLogic/samples/12213-domain-
home-in-image

3.2.2 Run WebLogic Containers Using WebLogic Kubernetes Operator
This topic describes the process to run WebLogic containers using WebLogic Kubernetes
operator.

Prerequisites

Before proceeding, ensure that the below installation is done.

• Docker engine installation

• Kubernetes cluster

• Access to Kubernetes operator

Install and Manage WebLogic Domains using Kubernetes Operator

An operator is an application-specific controller that extends Kubernetes to create, configure,
and manage instances of complex applications. The Oracle WebLogic Server Kubernetes
Operator simplifies the management and operation of WebLogic domains and deployments.

For information on installation and management of weblogic domains, refer to https://
oracle.github.io/weblogic-kubernetes-operator/.

3.3 Deploying Services without Docker Images
This topic describes about the process to deploy product services without Docker images.

• Deploying Applications to Tomcat without Docker Images
This topic describes about the process to deploy the applications to Tomcat without docker
images.

• Deploying Applications to WebLogic without Docker Images
This topic describes about the process to deploy the applications to WebLogic without
docker images.

3.3.1 Deploying Applications to Tomcat without Docker Images
This topic describes about the process to deploy the applications to Tomcat without docker
images.

Prerequisites

Make sure that the below installation is done.

• Tomcat installation

• Jenkins installation

Chapter 3
Deploying Services without Docker Images

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 7 of 8

https://github.com/oracle/docker-images/tree/main/OracleWebLogic/samples/12213-domain-home-in-image
https://github.com/oracle/docker-images/tree/main/OracleWebLogic/samples/12213-domain-home-in-image
https://oracle.github.io/weblogic-kubernetes-operator/
https://oracle.github.io/weblogic-kubernetes-operator/

Manual deployment

1. Download and place the individual war files for services in a common directory.

2. Follow the steps in the below link to deploy the individual service wars.

https://tomcat.apache.org/tomcat-10.0-doc/deployer-howto.html

Deployment using scripts

Alternatively, the war files can be configured to be deployed using a Jenkins pipeline. The
deploy to container plugin should be used for configuration.

3.3.2 Deploying Applications to WebLogic without Docker Images
This topic describes about the process to deploy the applications to WebLogic without docker
images.

Prerequisites

Make sure that the below installation is done.

• WebLogic installation

• Jenkins installation

Manual Deployment

Perform the following steps:

1. Download and place the individual war files for services in a common directory.

2. Follow the steps in the below link to deploy the individual service wars.

https://docs.oracle.com/cd/E19424-01/820-4807/war-weblogic/index.html

Deployment using Jenkins

Alternatively, the war files can be configured to be deployed using a Jenkins pipeline. The
Deploy WebLogic should be used for configuration. It is recommended to see if the version of
the plugin has any vulnerabilities.

3.4 Deploying Services on Private Cloud using Docker Images
This topic describes about the process to deploy the services on private cloud using docker
images.

When deploying the services on Docker image in the private cloud, it is important to build
custom images of WebLogic and Tomcat using openjdk 8 unless the appropriate license
requirements are met with the built jdk versions in WebLogic.

For WebLogic, refer to https://github.com/oracle/docker-images/tree/main/OracleWebLogic and
follow the steps to build the base WebLogic images.

For Tomcat, refer to https://hub.docker.com/_/tomcat and follow the steps to build the base
tomcat images.

The pre-built OpenJDK 8 image is available in this link.

Chapter 3
Deploying Services on Private Cloud using Docker Images

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Page 8 of 8

https://tomcat.apache.org/tomcat-10.0-doc/deployer-howto.html
https://docs.oracle.com/cd/E19424-01/820-4807/war-weblogic/index.html
https://github.com/oracle/docker-images/tree/main/OracleWebLogic
https://hub.docker.com/_/tomcat

Index

A
Automated Build – Continuous Integration, 3
Automated Deployment – Continuous

Deployment, 3

B
Building Image, 1

C
Containerization, 1
Containerization of the Services Using Tomcat, 1
Containerization of the Services Using WebLogic,

6

D
Database, 1
Deploying Applications to Tomcat without Docker

Images, 7
Deploying Applications to WebLogic without

Docker Images, 8
Deploying Services on Private Cloud using

Docker Images, 8
Deploying Services without Docker Images, 7
Docker, 1
Docker Registry, 1

I
Images and Containers, 1

Install and Manage WebLogic Domains using
Kubernetes Operator, 7

K
Kubernetes (K8), 1

O
Oracle Banking Microservices Architecture

Products Deployment Approaches, 1

P
Pipeline Integration in Jenkins, 2
Pull the WebLogic Docker Image, 6

R
Run WebLogic Containers Using WebLogic

Kubernetes Operator, 7

T
Technologies, 1

U
Using Jib Plugin and Tomcat Image, 1
Using Pre-Built WebLogic Images, 6
Using War Artifacts Delivered in OSDC, 4

Containerization Guide
G43748-01
Copyright © 2018, 2025, Oracle and/or its affiliates.

October 22, 2025
Index-1 of Index-1

	Contents
	Preface
	Purpose
	Audience
	Before You Begin
	Module Pre-requisite
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Related Resources
	Acronyms and Abbreviations
	Module Post-requisite

	1 Technologies
	2 Containerization
	3 Oracle Banking Microservices Architecture Products Deployment Approaches
	3.1 Containerization of the Services Using Tomcat
	3.1.1 Using Jib Plugin and Tomcat Image
	3.1.2 Pipeline Integration in Jenkins
	3.1.3 Using War Artifacts Delivered in OSDC

	3.2 Containerization of the Services Using WebLogic
	3.2.1 Using Pre-Built WebLogic Images
	3.2.2 Run WebLogic Containers Using WebLogic Kubernetes Operator

	3.3 Deploying Services without Docker Images
	3.3.1 Deploying Applications to Tomcat without Docker Images
	3.3.2 Deploying Applications to WebLogic without Docker Images

	3.4 Deploying Services on Private Cloud using Docker Images

	Index

