5.6.7.2 Supervised Scoring

  1. This is a pre-seeded batch and will be available in all workspaces ( production & sandboxes )
  2. This Batch is to be executed in the Production workspace.
Batch and Task Parameters
The batch contains the following tasks:
  • Task 1: Scoring_Data_Load
  • Task 2: ML_Scoring
  • Task 3: ECM_Event_Processing
Task 1: Scoring_Data_Load, Task Parameters
  • Objective folder for this task:
    Home / Modeling / Pipelines / AIF Batch Framework / Supervised ML /
    Scoring Data
  • Optional Parameters:
    • from_date: Start date for Scoring Data lookup in DD-Mon-YYYY format.
    • to_date: End Date for Scoring/New Data lookup in DD-Mon-YYYY format.
  • Example: from_date=01-Jul-2020,to_date=31-Jul-2021
  • Optional Parameters can be edited from the Schedule Batch option.
  • Change any other batch /task parameters, except Optional Parameters.

    Figure 5-93 Edit Task for Scoring Data Load



Task 2: ML Scoring, Task Parameters
  • Objective folder for this task:
    Home / Modeling / Pipelines / AIF Supervised ML / AIF
    • Navigate to respective model group/scenario folders for actual model templates.
    • Optional Parameters:
      • osot_end_month: Specify the scoring data month in YYYYMM format. If not specified by default latest month data available in the table will be picked up for scoring.
      • threshold: Input threshold or cutoff to create events. Events will be created if the score of an entity exceeds the threshold. Example: 0.7
      • from_date: Start date for Scoring Data lookup in YYYYMM format.
      • to_date: End Date for Scoring/New Data lookup in YYYYMM format. Example : from_date=202007,to_date=202007
    • Optional Parameters can be edited from the Schedule Batch option.
    • Choose Link Types as Scoring
    • Do not change any batch/task parameters, except Optional Parameters.

      Figure 5-94 Edit Task for ML Scoring



Task 3: ECM_Event_Processing, Task Parameters
  • Objective folder for this task:
    Home / Modeling / Pipelines / AIF Batch Framework / Supervised ML /
    Event Processing
  • This task does not take any optional parameters.
  • Do not change any other batch/task parameters.

    Figure 5-95 Edit Task for ECM Event Processing



  • After scoring for supervised customer risk scoring, the outputs are stored in the AIF_ENTITY_SCORE table.
  • Alerts generated above thresholds are moved to the following tables for case management integration:
    • FCC_AM_EVENTS
    • FCC_AM_EVENT_DETAILS
    • FCC_AM_EVENT_ENTITY_MAP
    • FCC_AM_EVENT_BINDING
Cleanup Steps in case of running the Scoring Process twice
In case the user wants to run the Scoring Process for the same FIC_MIS_DATE and same MODEL_GROUP_NAME twice, the following cleanup steps should be performed first:
  1. Remove the existing events:
    delete from fcc_am_event_binding where v_event_cd in (select v_event_cd
    from fcc_am_events where prcsng_dt='DD-Mon-YYYY');
    delete from fcc_am_event_entity_map where v_event_cd in (select
    v_event_cd from fcc_am_events where prcsng_dt='DD-Mon-YYYY');
    delete from fcc_am_event_details where n_event_cd in (select v_event_cd
    from fcc_am_events where prcsng_dt='DD-Mon-YYYY');
    delete from fcc_am_events where prcsng_dt='DD-Mon-YYYY');
  2. Get the child tables which contain scoring results:
    select D_FIC_MIS_DATE, V_MODEL_GROUP, V_OUTPUT_TABLE_NAME,
    V_OUTPUT_TABLE_NAME_ALL_ENTITY
    from aif_entity_score
    where d_fic_mis_date ='DD-Mon-YYYY'
    and model_group_name='<Model_Group_Name>';
  3. Drop all child tables manually listed in V_OUTPUT_TABLE_NAME and V_OUTPUT_TABLE_NAME_ALL_ENTITY columns from the result of the above query :
    drop <Child_Table_Name>;
  4. Delete the parent entry from aif_entity_score:
    delete from aif_entity_score where d_fic_mis_date='DD-Mon-YYYY'